Unpacking Software Livestream

Join our monthly Unpacking Software livestream to hear about the latest news, chat and opinion on packaging, software deployment and lifecycle management!

Learn More

Chocolatey Product Spotlight

Join the Chocolatey Team on our regular monthly stream where we put a spotlight on the most recent Chocolatey product releases. You'll have a chance to have your questions answered in a live Ask Me Anything format.

Learn More

Chocolatey Coding Livestream

Join us for the Chocolatey Coding Livestream, where members of our team dive into the heart of open source development by coding live on various Chocolatey projects. Tune in to witness real-time coding, ask questions, and gain insights into the world of package management. Don't miss this opportunity to engage with our team and contribute to the future of Chocolatey!

Learn More

Calling All Chocolatiers! Whipping Up Windows Automation with Chocolatey Central Management

Webinar from
Wednesday, 17 January 2024

We are delighted to announce the release of Chocolatey Central Management v0.12.0, featuring seamless Deployment Plan creation, time-saving duplications, insightful Group Details, an upgraded Dashboard, bug fixes, user interface polishing, and refined documentation. As an added bonus we'll have members of our Solutions Engineering team on-hand to dive into some interesting ways you can leverage the new features available!

Watch On-Demand
Chocolatey Community Coffee Break

Join the Chocolatey Team as we discuss all things Community, what we do, how you can get involved and answer your Chocolatey questions.

Watch The Replays
Chocolatey and Intune Overview

Webinar Replay from
Wednesday, 30 March 2022

At Chocolatey Software we strive for simple, and teaching others. Let us teach you just how simple it could be to keep your 3rd party applications updated across your devices, all with Intune!

Watch On-Demand
Chocolatey For Business. In Azure. In One Click.

Livestream from
Thursday, 9 June 2022

Join James and Josh to show you how you can get the Chocolatey For Business recommended infrastructure and workflow, created, in Azure, in around 20 minutes.

Watch On-Demand
The Future of Chocolatey CLI

Livestream from
Thursday, 04 August 2022

Join Paul and Gary to hear more about the plans for the Chocolatey CLI in the not so distant future. We'll talk about some cool new features, long term asks from Customers and Community and how you can get involved!

Watch On-Demand
Hacktoberfest Tuesdays 2022

Livestreams from
October 2022

For Hacktoberfest, Chocolatey ran a livestream every Tuesday! Re-watch Cory, James, Gary, and Rain as they share knowledge on how to contribute to open-source projects such as Chocolatey CLI.

Watch On-Demand

Downloads:

34,648

Downloads of v 3.4.1:

1,648

Last Update:

18 Jul 2023

Package Maintainer(s):

Software Author(s):

  • IronPython Contributors
  • Microsoft

Tags:

ironpython python dynamic dlr

IronPython

  • 1
  • 2
  • 3

3.4.1 | Updated: 18 Jul 2023

Downloads:

34,648

Downloads of v 3.4.1:

1,648

Software Author(s):

  • IronPython Contributors
  • Microsoft

IronPython 3.4.1

  • 1
  • 2
  • 3

All Checks are Passing

3 Passing Tests


Validation Testing Passed


Verification Testing Passed

Details

Scan Testing Successful:

No detections found in any package files

Details
Learn More

Deployment Method: Individual Install, Upgrade, & Uninstall

To install IronPython, run the following command from the command line or from PowerShell:

>

To upgrade IronPython, run the following command from the command line or from PowerShell:

>

To uninstall IronPython, run the following command from the command line or from PowerShell:

>

Deployment Method:

NOTE

This applies to both open source and commercial editions of Chocolatey.

1. Enter Your Internal Repository Url

(this should look similar to https://community.chocolatey.org/api/v2/)


2. Setup Your Environment

1. Ensure you are set for organizational deployment

Please see the organizational deployment guide

2. Get the package into your environment

  • Open Source or Commercial:
    • Proxy Repository - Create a proxy nuget repository on Nexus, Artifactory Pro, or a proxy Chocolatey repository on ProGet. Point your upstream to https://community.chocolatey.org/api/v2/. Packages cache on first access automatically. Make sure your choco clients are using your proxy repository as a source and NOT the default community repository. See source command for more information.
    • You can also just download the package and push it to a repository Download

3. Copy Your Script

choco upgrade ironpython -y --source="'INTERNAL REPO URL'" [other options]

See options you can pass to upgrade.

See best practices for scripting.

Add this to a PowerShell script or use a Batch script with tools and in places where you are calling directly to Chocolatey. If you are integrating, keep in mind enhanced exit codes.

If you do use a PowerShell script, use the following to ensure bad exit codes are shown as failures:


choco upgrade ironpython -y --source="'INTERNAL REPO URL'" 
$exitCode = $LASTEXITCODE

Write-Verbose "Exit code was $exitCode"
$validExitCodes = @(0, 1605, 1614, 1641, 3010)
if ($validExitCodes -contains $exitCode) {
  Exit 0
}

Exit $exitCode

- name: Install ironpython
  win_chocolatey:
    name: ironpython
    version: '3.4.1'
    source: INTERNAL REPO URL
    state: present

See docs at https://docs.ansible.com/ansible/latest/modules/win_chocolatey_module.html.


chocolatey_package 'ironpython' do
  action    :install
  source   'INTERNAL REPO URL'
  version  '3.4.1'
end

See docs at https://docs.chef.io/resource_chocolatey_package.html.


cChocoPackageInstaller ironpython
{
    Name     = "ironpython"
    Version  = "3.4.1"
    Source   = "INTERNAL REPO URL"
}

Requires cChoco DSC Resource. See docs at https://github.com/chocolatey/cChoco.


package { 'ironpython':
  ensure   => '3.4.1',
  provider => 'chocolatey',
  source   => 'INTERNAL REPO URL',
}

Requires Puppet Chocolatey Provider module. See docs at https://forge.puppet.com/puppetlabs/chocolatey.


4. If applicable - Chocolatey configuration/installation

See infrastructure management matrix for Chocolatey configuration elements and examples.

Package Approved

This package was approved as a trusted package on 18 Jul 2023.

Description

IronPython is an open-source implementation of the Python programming language that is tightly integrated with the .NET Framework. IronPython can use the .NET Framework and Python libraries, and other .NET languages can use Python code just as easily.


IKVM.Reflection.dll
md5: 2EC8B6F478E732D34F6458B47CC83016 | sha1: 9D833125C1B4FCAE8B49C8DEB13D681D0BBC63F7 | sha256: 0718C32F2184FE2B177A9F1DFADFCFFCC2C1755DE84F659730BA237E13339AF7 | sha512: 6AD6A512471702967E67B76075EF7E458500A7EC6A3DA08841D8108ED287B1F9A20144420303EF95D12910F5318B3A7E8051E35F947732F3910CD281D2E366AA
IronPython.dll
md5: 0CEF60F8033247008F70D12457F52C6D | sha1: 69268B9C497635B85085284274431C56D455BE2B | sha256: FA31585F4EE4140EE4DC3E4130643EA21F514D142A8DBACBC12AFBA5ED7BB5A3 | sha512: D46D37B2AD9846E4AB524D7ABC342A06E046376B14242BD12009E70584F008F50CB63A29A2E616FEBBE533B65E9E93C65DAC9E6C95B62191FB6916609F524C62
IronPython.Modules.dll
md5: 81CB4E974BDD7BE3D2B6A517D5A6BE8A | sha1: BDEE2E351F189BCADB4DE623B634E4A674946619 | sha256: 42154D6CF9FC8C15571140F0656BD98A127814E40F8CEA1FB567D9D97CDE0AA5 | sha512: D75B778A748FDDCD571777DBC36CE1C399BF0E3620E51D079491E5231AAA78C4E47551B6F14D53CC23377253960D9F6ED7B716EF0A48C89CCE9A953E205AC4C9
Microsoft.Dynamic.dll
md5: E23F28491BF2FAA9B4FF0A5EA14F6104 | sha1: 0BCA66EF671E8C860E9F647278B084CAAEC721E4 | sha256: 237F9659526CB6C7F19837A6F2E13E368A19BD0A0731A4C9911038B146BDFF56 | sha512: F58D8396F210DABDFB3EAF011CE2503BF2DE4B005F37D8AE710745D84F81DD7E414C95E853D82DE6B1F48DFDD19FAA9A86DB4BA905B5409AA7CA4BDCC7650258
Microsoft.Scripting.dll
md5: 73DCF3954F7228B3290B6342B55A3D57 | sha1: 0AD74A838AD8AF7A766A99A24EDD822657E56114 | sha256: E5197479D47ADA36E395CBC9DA3381324A792D5D72C0F43916A45264EE97B0ED | sha512: 58763EF89E66C903887DD8B0EC60E8E243966496CBC6F8DEE49FD75F21D841162A4FB5C8EEA8C69C768A563827A73B30F2BBFB9B89B7F4C4B70462091DF50C70
System.Buffers.dll
md5: ECDFE8EDE869D2CCC6BF99981EA96400 | sha1: 2F410A0396BC148ED533AD49B6415FB58DD4D641 | sha256: ACCCCFBE45D9F08FFEED9916E37B33E98C65BE012CFFF6E7FA7B67210CE1FEFB | sha512: 5FC7FEE5C25CB2EEE19737068968E00A00961C257271B420F594E5A0DA0559502D04EE6BA2D8D2AAD77F3769622F6743A5EE8DAE23F8F993F33FB09ED8DB2741
System.Memory.dll
md5: F09441A1EE47FB3E6571A3A448E05BAF | sha1: 3C5C5DF5F8F8DB3F0A35C5ED8D357313A54E3CDE | sha256: BF3FB84664F4097F1A8A9BC71A51DCF8CF1A905D4080A4D290DA1730866E856F | sha512: 0199AE0633BCCFEAEFBB5AED20832A4379C7AD73461D41A9DA3D6DC044093CC319670E67C4EFBF830308CBD9A48FB40D4A6C7E472DCC42EB745C6BA813E8E7C6
System.Numerics.Vectors.dll
md5: AAA2CBF14E06E9D3586D8A4ED455DB33 | sha1: 3D216458740AD5CB05BC5F7C3491CDE44A1E5DF0 | sha256: 1D3EF8698281E7CF7371D1554AFEF5872B39F96C26DA772210A33DA041BA1183 | sha512: 0B14A039CA67982794A2BB69974EF04A7FBEE3686D7364F8F4DB70EA6259D29640CBB83D5B544D92FA1D3676C7619CD580FF45671A2BB4753ED8B383597C6DA8
System.Runtime.CompilerServices.Unsafe.dll
md5: DA04A75DDC22118ED24E0B53E474805A | sha1: 2D68C648A6A6371B6046E6C3AF09128230E0AD32 | sha256: 66409F670315AFE8610F17A4D3A1EE52D72B6A46C544CEC97544E8385F90AD74 | sha512: 26AF01CA25E921465F477A0E1499EDC9E0AC26C23908E5E9B97D3AFD60F3308BFBF2C8CA89EA21878454CD88A1CDDD2F2F0172A6E1E87EF33C56CD7A8D16E9C8
ipy.exe
md5: DA634C577CFE205A10D8D07789098565 | sha1: 1F0D5D2BD3A5331F3F3E2DB3803E500FC2153312 | sha256: E0D0ADA32DA47D7D72E0B1CD57A0146CF1BA456CD9BD7969D5753E5A79E50A1C | sha512: 8A147D5CB779C679B277689AE284BB6BB063A74B3932344DC46573E4C2A23BB221A7DFDA852EDBAD77F60AE8C3E2371E59B81F3DE1C1DC1D315993E37881DA74
ipy32.exe
md5: 7DF883A176DB40367A021870D5493984 | sha1: 94DA6B65FF390D7C26A3A44028D7021F85277376 | sha256: 9023CA3D1BB7DEBD58D74611B1F7A96F101B4192C6E146B6916060A78C170815 | sha512: 2C9C83449C90E5C30B36F193933B1D517EF1142E2EB9959A25EDAD7D64DED6AF4C277A1A471946F92A3654F7FA1ECBF673CC9AA1C90CB0FD7D1934D43E2F2F9A
ipyc.exe
md5: 1CBD3797464703E0F615CE6C305952DA | sha1: 482317A6B46E77B579B9E927B0057424D5A3A193 | sha256: D2E05B45DBD778448BAE830CB209431885463915205D01DB1AA88C76960D1C4C | sha512: CF18BB53E6917B18961806E5C1F81C87DF382ACD0BA5D7BF5D0BD6439F1305C455C8AC5C0929E97722B510E7DEC1BFF3EF181BE5034B184DECD0E4A397DB0204
ipyw.exe
md5: AB876538B68C21DAA09BD562321D088B | sha1: 98272EE4EB3DF1955632D57F450A5F7F8482CFB3 | sha256: 3D9987A384175801DF3B065EFAE6A3CF7C9ADA136E995F5DED9CB9F9F9998822 | sha512: B56CF32DA42A619EE0315FB68FD6C7E9783D30A870C73E407BC4E8EF2176C03C1E9DD2F32DB3B861C9E5CFFFD8E70A98A7D91401F74A5A7BC800DF9499714AFD
ipyw32.exe
md5: 6DC3877BBB2B7BB46EDD2590E94D335B | sha1: 1AA3A59FB5E392C1F8E0CF0C4D3A9A5687406344 | sha256: 19920DD81602A9CBB76F40268AC70D8897AC3B8BEA3EF0F7F1A1A27C9AD5674F | sha512: 3BD19444CEF28ACB741B9AABE675A2418865A2B6FE5DF9D8BD2050F68924DBE396A9011FDC14ACB2A085CDB51B8E37AD349C287F040A68E7F405EBD6E1EF763C
DLLs\IronPython.SQLite.dll
md5: 428C0BDEA54356A34218627970C3CFE7 | sha1: C4F0A7DBB18AD638E3E94E86E7042560B03B4F43 | sha256: 5C43C75D7D88DF61CF76C4739346A1F7947671019C08785457E61DC790ECB0A5 | sha512: B1A1FC669931D0D1D559E50D94C3E7E32C3478F7C52BA11441359FC9C8499193209AD1A931BAFCCF70D9ABD1B2F2ED2879397BBB06B6576418FB5357A8B62189
DLLs\IronPython.SQLite.pdb
 
DLLs\IronPython.Wpf.dll
md5: 248C5D53AA98789FEFBD8DA6DBA4156C | sha1: F80D766A9058765CA1BFD425D85C8677CD3A74A6 | sha256: 4E3C9E0D0EC9120DE35521EE3C3E7A5AD6709686EDC26E7B2B746973BA9C1A47 | sha512: 81EF2D3E12E249A7F26293B9DB981553AB7325A4AA2715573A7749716281B0080F08A0D3C8B6CDF7EBC10ABF353BF2A307646B5103CFD943F152CA0B67D2D21B
DLLs\IronPython.Wpf.pdb
 
lib\abc.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) according to PEP 3119."""

from _weakrefset import WeakSet


def abstractmethod(funcobj):
    """A decorator indicating abstract methods.

    Requires that the metaclass is ABCMeta or derived from it.  A
    class that has a metaclass derived from ABCMeta cannot be
    instantiated unless all of its abstract methods are overridden.
    The abstract methods can be called using any of the normal
    'super' call mechanisms.

    Usage:

        class C(metaclass=ABCMeta):
            @abstractmethod
            def my_abstract_method(self, ...):
                ...
    """
    funcobj.__isabstractmethod__ = True
    return funcobj


class abstractclassmethod(classmethod):
    """
    A decorator indicating abstract classmethods.

    Similar to abstractmethod.

    Usage:

        class C(metaclass=ABCMeta):
            @abstractclassmethod
            def my_abstract_classmethod(cls, ...):
                ...

    'abstractclassmethod' is deprecated. Use 'classmethod' with
    'abstractmethod' instead.
    """

    __isabstractmethod__ = True

    def __init__(self, callable):
        callable.__isabstractmethod__ = True
        super().__init__(callable)


class abstractstaticmethod(staticmethod):
    """
    A decorator indicating abstract staticmethods.

    Similar to abstractmethod.

    Usage:

        class C(metaclass=ABCMeta):
            @abstractstaticmethod
            def my_abstract_staticmethod(...):
                ...

    'abstractstaticmethod' is deprecated. Use 'staticmethod' with
    'abstractmethod' instead.
    """

    __isabstractmethod__ = True

    def __init__(self, callable):
        callable.__isabstractmethod__ = True
        super().__init__(callable)


class abstractproperty(property):
    """
    A decorator indicating abstract properties.

    Requires that the metaclass is ABCMeta or derived from it.  A
    class that has a metaclass derived from ABCMeta cannot be
    instantiated unless all of its abstract properties are overridden.
    The abstract properties can be called using any of the normal
    'super' call mechanisms.

    Usage:

        class C(metaclass=ABCMeta):
            @abstractproperty
            def my_abstract_property(self):
                ...

    This defines a read-only property; you can also define a read-write
    abstract property using the 'long' form of property declaration:

        class C(metaclass=ABCMeta):
            def getx(self): ...
            def setx(self, value): ...
            x = abstractproperty(getx, setx)

    'abstractproperty' is deprecated. Use 'property' with 'abstractmethod'
    instead.
    """

    __isabstractmethod__ = True


class ABCMeta(type):

    """Metaclass for defining Abstract Base Classes (ABCs).

    Use this metaclass to create an ABC.  An ABC can be subclassed
    directly, and then acts as a mix-in class.  You can also register
    unrelated concrete classes (even built-in classes) and unrelated
    ABCs as 'virtual subclasses' -- these and their descendants will
    be considered subclasses of the registering ABC by the built-in
    issubclass() function, but the registering ABC won't show up in
    their MRO (Method Resolution Order) nor will method
    implementations defined by the registering ABC be callable (not
    even via super()).

    """

    # A global counter that is incremented each time a class is
    # registered as a virtual subclass of anything.  It forces the
    # negative cache to be cleared before its next use.
    # Note: this counter is private. Use `abc.get_cache_token()` for
    #       external code.
    _abc_invalidation_counter = 0

    def __new__(mcls, name, bases, namespace):
        cls = super().__new__(mcls, name, bases, namespace)
        # Compute set of abstract method names
        abstracts = {name
                     for name, value in namespace.items()
                     if getattr(value, "__isabstractmethod__", False)}
        for base in bases:
            for name in getattr(base, "__abstractmethods__", set()):
                value = getattr(cls, name, None)
                if getattr(value, "__isabstractmethod__", False):
                    abstracts.add(name)
        cls.__abstractmethods__ = frozenset(abstracts)
        # Set up inheritance registry
        cls._abc_registry = WeakSet()
        cls._abc_cache = WeakSet()
        cls._abc_negative_cache = WeakSet()
        cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
        return cls

    def register(cls, subclass):
        """Register a virtual subclass of an ABC.

        Returns the subclass, to allow usage as a class decorator.
        """
        if not isinstance(subclass, type):
            raise TypeError("Can only register classes")
        if issubclass(subclass, cls):
            return subclass  # Already a subclass
        # Subtle: test for cycles *after* testing for "already a subclass";
        # this means we allow X.register(X) and interpret it as a no-op.
        if issubclass(cls, subclass):
            # This would create a cycle, which is bad for the algorithm below
            raise RuntimeError("Refusing to create an inheritance cycle")
        cls._abc_registry.add(subclass)
        ABCMeta._abc_invalidation_counter += 1  # Invalidate negative cache
        return subclass

    def _dump_registry(cls, file=None):
        """Debug helper to print the ABC registry."""
        print("Class: %s.%s" % (cls.__module__, cls.__name__), file=file)
        print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file)
        for name in sorted(cls.__dict__.keys()):
            if name.startswith("_abc_"):
                value = getattr(cls, name)
                print("%s: %r" % (name, value), file=file)

    def __instancecheck__(cls, instance):
        """Override for isinstance(instance, cls)."""
        # Inline the cache checking
        subclass = instance.__class__
        if subclass in cls._abc_cache:
            return True
        subtype = type(instance)
        if subtype is subclass:
            if (cls._abc_negative_cache_version ==
                ABCMeta._abc_invalidation_counter and
                subclass in cls._abc_negative_cache):
                return False
            # Fall back to the subclass check.
            return cls.__subclasscheck__(subclass)
        return any(cls.__subclasscheck__(c) for c in {subclass, subtype})

    def __subclasscheck__(cls, subclass):
        """Override for issubclass(subclass, cls)."""
        # Check cache
        if subclass in cls._abc_cache:
            return True
        # Check negative cache; may have to invalidate
        if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter:
            # Invalidate the negative cache
            cls._abc_negative_cache = WeakSet()
            cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
        elif subclass in cls._abc_negative_cache:
            return False
        # Check the subclass hook
        ok = cls.__subclasshook__(subclass)
        if ok is not NotImplemented:
            assert isinstance(ok, bool)
            if ok:
                cls._abc_cache.add(subclass)
            else:
                cls._abc_negative_cache.add(subclass)
            return ok
        # Check if it's a direct subclass
        if cls in getattr(subclass, '__mro__', ()):
            cls._abc_cache.add(subclass)
            return True
        # Check if it's a subclass of a registered class (recursive)
        for rcls in cls._abc_registry:
            if issubclass(subclass, rcls):
                cls._abc_cache.add(subclass)
                return True
        # Check if it's a subclass of a subclass (recursive)
        for scls in cls.__subclasses__():
            if issubclass(subclass, scls):
                cls._abc_cache.add(subclass)
                return True
        # No dice; update negative cache
        cls._abc_negative_cache.add(subclass)
        return False


class ABC(metaclass=ABCMeta):
    """Helper class that provides a standard way to create an ABC using
    inheritance.
    """
    pass


def get_cache_token():
    """Returns the current ABC cache token.

    The token is an opaque object (supporting equality testing) identifying the
    current version of the ABC cache for virtual subclasses. The token changes
    with every call to ``register()`` on any ABC.
    """
    return ABCMeta._abc_invalidation_counter
lib\aifc.py
"""Stuff to parse AIFF-C and AIFF files.

Unless explicitly stated otherwise, the description below is true
both for AIFF-C files and AIFF files.

An AIFF-C file has the following structure.

  +-----------------+
  | FORM            |
  +-----------------+
  | <size>          |
  +----+------------+
  |    | AIFC       |
  |    +------------+
  |    | <chunks>   |
  |    |    .       |
  |    |    .       |
  |    |    .       |
  +----+------------+

An AIFF file has the string "AIFF" instead of "AIFC".

A chunk consists of an identifier (4 bytes) followed by a size (4 bytes,
big endian order), followed by the data.  The size field does not include
the size of the 8 byte header.

The following chunk types are recognized.

  FVER
      <version number of AIFF-C defining document> (AIFF-C only).
  MARK
      <# of markers> (2 bytes)
      list of markers:
          <marker ID> (2 bytes, must be > 0)
          <position> (4 bytes)
          <marker name> ("pstring")
  COMM
      <# of channels> (2 bytes)
      <# of sound frames> (4 bytes)
      <size of the samples> (2 bytes)
      <sampling frequency> (10 bytes, IEEE 80-bit extended
          floating point)
      in AIFF-C files only:
      <compression type> (4 bytes)
      <human-readable version of compression type> ("pstring")
  SSND
      <offset> (4 bytes, not used by this program)
      <blocksize> (4 bytes, not used by this program)
      <sound data>

A pstring consists of 1 byte length, a string of characters, and 0 or 1
byte pad to make the total length even.

Usage.

Reading AIFF files:
  f = aifc.open(file, 'r')
where file is either the name of a file or an open file pointer.
The open file pointer must have methods read(), seek(), and close().
In some types of audio files, if the setpos() method is not used,
the seek() method is not necessary.

This returns an instance of a class with the following public methods:
  getnchannels()  -- returns number of audio channels (1 for
             mono, 2 for stereo)
  getsampwidth()  -- returns sample width in bytes
  getframerate()  -- returns sampling frequency
  getnframes()    -- returns number of audio frames
  getcomptype()   -- returns compression type ('NONE' for AIFF files)
  getcompname()   -- returns human-readable version of
             compression type ('not compressed' for AIFF files)
  getparams() -- returns a namedtuple consisting of all of the
             above in the above order
  getmarkers()    -- get the list of marks in the audio file or None
             if there are no marks
  getmark(id) -- get mark with the specified id (raises an error
             if the mark does not exist)
  readframes(n)   -- returns at most n frames of audio
  rewind()    -- rewind to the beginning of the audio stream
  setpos(pos) -- seek to the specified position
  tell()      -- return the current position
  close()     -- close the instance (make it unusable)
The position returned by tell(), the position given to setpos() and
the position of marks are all compatible and have nothing to do with
the actual position in the file.
The close() method is called automatically when the class instance
is destroyed.

Writing AIFF files:
  f = aifc.open(file, 'w')
where file is either the name of a file or an open file pointer.
The open file pointer must have methods write(), tell(), seek(), and
close().

This returns an instance of a class with the following public methods:
  aiff()      -- create an AIFF file (AIFF-C default)
  aifc()      -- create an AIFF-C file
  setnchannels(n) -- set the number of channels
  setsampwidth(n) -- set the sample width
  setframerate(n) -- set the frame rate
  setnframes(n)   -- set the number of frames
  setcomptype(type, name)
          -- set the compression type and the
             human-readable compression type
  setparams(tuple)
          -- set all parameters at once
  setmark(id, pos, name)
          -- add specified mark to the list of marks
  tell()      -- return current position in output file (useful
             in combination with setmark())
  writeframesraw(data)
          -- write audio frames without pathing up the
             file header
  writeframes(data)
          -- write audio frames and patch up the file header
  close()     -- patch up the file header and close the
             output file
You should set the parameters before the first writeframesraw or
writeframes.  The total number of frames does not need to be set,
but when it is set to the correct value, the header does not have to
be patched up.
It is best to first set all parameters, perhaps possibly the
compression type, and then write audio frames using writeframesraw.
When all frames have been written, either call writeframes(b'') or
close() to patch up the sizes in the header.
Marks can be added anytime.  If there are any marks, you must call
close() after all frames have been written.
The close() method is called automatically when the class instance
is destroyed.

When a file is opened with the extension '.aiff', an AIFF file is
written, otherwise an AIFF-C file is written.  This default can be
changed by calling aiff() or aifc() before the first writeframes or
writeframesraw.
"""

import struct
import builtins
import warnings

__all__ = ["Error", "open", "openfp"]

class Error(Exception):
    pass

_AIFC_version = 0xA2805140     # Version 1 of AIFF-C

def _read_long(file):
    try:
        return struct.unpack('>l', file.read(4))[0]
    except struct.error:
        raise EOFError

def _read_ulong(file):
    try:
        return struct.unpack('>L', file.read(4))[0]
    except struct.error:
        raise EOFError

def _read_short(file):
    try:
        return struct.unpack('>h', file.read(2))[0]
    except struct.error:
        raise EOFError

def _read_ushort(file):
    try:
        return struct.unpack('>H', file.read(2))[0]
    except struct.error:
        raise EOFError

def _read_string(file):
    length = ord(file.read(1))
    if length == 0:
        data = b''
    else:
        data = file.read(length)
    if length & 1 == 0:
        dummy = file.read(1)
    return data

_HUGE_VAL = 1.79769313486231e+308 # See <limits.h>

def _read_float(f): # 10 bytes
    expon = _read_short(f) # 2 bytes
    sign = 1
    if expon < 0:
        sign = -1
        expon = expon + 0x8000
    himant = _read_ulong(f) # 4 bytes
    lomant = _read_ulong(f) # 4 bytes
    if expon == himant == lomant == 0:
        f = 0.0
    elif expon == 0x7FFF:
        f = _HUGE_VAL
    else:
        expon = expon - 16383
        f = (himant * 0x100000000 + lomant) * pow(2.0, expon - 63)
    return sign * f

def _write_short(f, x):
    f.write(struct.pack('>h', x))

def _write_ushort(f, x):
    f.write(struct.pack('>H', x))

def _write_long(f, x):
    f.write(struct.pack('>l', x))

def _write_ulong(f, x):
    f.write(struct.pack('>L', x))

def _write_string(f, s):
    if len(s) > 255:
        raise ValueError("string exceeds maximum pstring length")
    f.write(struct.pack('B', len(s)))
    f.write(s)
    if len(s) & 1 == 0:
        f.write(b'\x00')

def _write_float(f, x):
    import math
    if x < 0:
        sign = 0x8000
        x = x * -1
    else:
        sign = 0
    if x == 0:
        expon = 0
        himant = 0
        lomant = 0
    else:
        fmant, expon = math.frexp(x)
        if expon > 16384 or fmant >= 1 or fmant != fmant: # Infinity or NaN
            expon = sign|0x7FFF
            himant = 0
            lomant = 0
        else:                   # Finite
            expon = expon + 16382
            if expon < 0:           # denormalized
                fmant = math.ldexp(fmant, expon)
                expon = 0
            expon = expon | sign
            fmant = math.ldexp(fmant, 32)
            fsmant = math.floor(fmant)
            himant = int(fsmant)
            fmant = math.ldexp(fmant - fsmant, 32)
            fsmant = math.floor(fmant)
            lomant = int(fsmant)
    _write_ushort(f, expon)
    _write_ulong(f, himant)
    _write_ulong(f, lomant)

from chunk import Chunk
from collections import namedtuple

_aifc_params = namedtuple('_aifc_params',
                          'nchannels sampwidth framerate nframes comptype compname')


class Aifc_read:
    # Variables used in this class:
    #
    # These variables are available to the user though appropriate
    # methods of this class:
    # _file -- the open file with methods read(), close(), and seek()
    #       set through the __init__() method
    # _nchannels -- the number of audio channels
    #       available through the getnchannels() method
    # _nframes -- the number of audio frames
    #       available through the getnframes() method
    # _sampwidth -- the number of bytes per audio sample
    #       available through the getsampwidth() method
    # _framerate -- the sampling frequency
    #       available through the getframerate() method
    # _comptype -- the AIFF-C compression type ('NONE' if AIFF)
    #       available through the getcomptype() method
    # _compname -- the human-readable AIFF-C compression type
    #       available through the getcomptype() method
    # _markers -- the marks in the audio file
    #       available through the getmarkers() and getmark()
    #       methods
    # _soundpos -- the position in the audio stream
    #       available through the tell() method, set through the
    #       setpos() method
    #
    # These variables are used internally only:
    # _version -- the AIFF-C version number
    # _decomp -- the decompressor from builtin module cl
    # _comm_chunk_read -- 1 iff the COMM chunk has been read
    # _aifc -- 1 iff reading an AIFF-C file
    # _ssnd_seek_needed -- 1 iff positioned correctly in audio
    #       file for readframes()
    # _ssnd_chunk -- instantiation of a chunk class for the SSND chunk
    # _framesize -- size of one frame in the file

    def initfp(self, file):
        self._version = 0
        self._convert = None
        self._markers = []
        self._soundpos = 0
        self._file = file
        chunk = Chunk(file)
        if chunk.getname() != b'FORM':
            raise Error('file does not start with FORM id')
        formdata = chunk.read(4)
        if formdata == b'AIFF':
            self._aifc = 0
        elif formdata == b'AIFC':
            self._aifc = 1
        else:
            raise Error('not an AIFF or AIFF-C file')
        self._comm_chunk_read = 0
        while 1:
            self._ssnd_seek_needed = 1
            try:
                chunk = Chunk(self._file)
            except EOFError:
                break
            chunkname = chunk.getname()
            if chunkname == b'COMM':
                self._read_comm_chunk(chunk)
                self._comm_chunk_read = 1
            elif chunkname == b'SSND':
                self._ssnd_chunk = chunk
                dummy = chunk.read(8)
                self._ssnd_seek_needed = 0
            elif chunkname == b'FVER':
                self._version = _read_ulong(chunk)
            elif chunkname == b'MARK':
                self._readmark(chunk)
            chunk.skip()
        if not self._comm_chunk_read or not self._ssnd_chunk:
            raise Error('COMM chunk and/or SSND chunk missing')

    def __init__(self, f):
        if isinstance(f, str):
            f = builtins.open(f, 'rb')
        # else, assume it is an open file object already
        self.initfp(f)

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    #
    # User visible methods.
    #
    def getfp(self):
        return self._file

    def rewind(self):
        self._ssnd_seek_needed = 1
        self._soundpos = 0

    def close(self):
        file = self._file
        if file is not None:
            self._file = None
            file.close()

    def tell(self):
        return self._soundpos

    def getnchannels(self):
        return self._nchannels

    def getnframes(self):
        return self._nframes

    def getsampwidth(self):
        return self._sampwidth

    def getframerate(self):
        return self._framerate

    def getcomptype(self):
        return self._comptype

    def getcompname(self):
        return self._compname

##  def getversion(self):
##      return self._version

    def getparams(self):
        return _aifc_params(self.getnchannels(), self.getsampwidth(),
                            self.getframerate(), self.getnframes(),
                            self.getcomptype(), self.getcompname())

    def getmarkers(self):
        if len(self._markers) == 0:
            return None
        return self._markers

    def getmark(self, id):
        for marker in self._markers:
            if id == marker[0]:
                return marker
        raise Error('marker {0!r} does not exist'.format(id))

    def setpos(self, pos):
        if pos < 0 or pos > self._nframes:
            raise Error('position not in range')
        self._soundpos = pos
        self._ssnd_seek_needed = 1

    def readframes(self, nframes):
        if self._ssnd_seek_needed:
            self._ssnd_chunk.seek(0)
            dummy = self._ssnd_chunk.read(8)
            pos = self._soundpos * self._framesize
            if pos:
                self._ssnd_chunk.seek(pos + 8)
            self._ssnd_seek_needed = 0
        if nframes == 0:
            return b''
        data = self._ssnd_chunk.read(nframes * self._framesize)
        if self._convert and data:
            data = self._convert(data)
        self._soundpos = self._soundpos + len(data) // (self._nchannels
                                                        * self._sampwidth)
        return data

    #
    # Internal methods.
    #

    def _alaw2lin(self, data):
        import audioop
        return audioop.alaw2lin(data, 2)

    def _ulaw2lin(self, data):
        import audioop
        return audioop.ulaw2lin(data, 2)

    def _adpcm2lin(self, data):
        import audioop
        if not hasattr(self, '_adpcmstate'):
            # first time
            self._adpcmstate = None
        data, self._adpcmstate = audioop.adpcm2lin(data, 2, self._adpcmstate)
        return data

    def _read_comm_chunk(self, chunk):
        self._nchannels = _read_short(chunk)
        self._nframes = _read_long(chunk)
        self._sampwidth = (_read_short(chunk) + 7) // 8
        self._framerate = int(_read_float(chunk))
        self._framesize = self._nchannels * self._sampwidth
        if self._aifc:
            #DEBUG: SGI's soundeditor produces a bad size :-(
            kludge = 0
            if chunk.chunksize == 18:
                kludge = 1
                warnings.warn('Warning: bad COMM chunk size')
                chunk.chunksize = 23
            #DEBUG end
            self._comptype = chunk.read(4)
            #DEBUG start
            if kludge:
                length = ord(chunk.file.read(1))
                if length & 1 == 0:
                    length = length + 1
                chunk.chunksize = chunk.chunksize + length
                chunk.file.seek(-1, 1)
            #DEBUG end
            self._compname = _read_string(chunk)
            if self._comptype != b'NONE':
                if self._comptype == b'G722':
                    self._convert = self._adpcm2lin
                elif self._comptype in (b'ulaw', b'ULAW'):
                    self._convert = self._ulaw2lin
                elif self._comptype in (b'alaw', b'ALAW'):
                    self._convert = self._alaw2lin
                else:
                    raise Error('unsupported compression type')
                self._sampwidth = 2
        else:
            self._comptype = b'NONE'
            self._compname = b'not compressed'

    def _readmark(self, chunk):
        nmarkers = _read_short(chunk)
        # Some files appear to contain invalid counts.
        # Cope with this by testing for EOF.
        try:
            for i in range(nmarkers):
                id = _read_short(chunk)
                pos = _read_long(chunk)
                name = _read_string(chunk)
                if pos or name:
                    # some files appear to have
                    # dummy markers consisting of
                    # a position 0 and name ''
                    self._markers.append((id, pos, name))
        except EOFError:
            w = ('Warning: MARK chunk contains only %s marker%s instead of %s' %
                 (len(self._markers), '' if len(self._markers) == 1 else 's',
                  nmarkers))
            warnings.warn(w)

class Aifc_write:
    # Variables used in this class:
    #
    # These variables are user settable through appropriate methods
    # of this class:
    # _file -- the open file with methods write(), close(), tell(), seek()
    #       set through the __init__() method
    # _comptype -- the AIFF-C compression type ('NONE' in AIFF)
    #       set through the setcomptype() or setparams() method
    # _compname -- the human-readable AIFF-C compression type
    #       set through the setcomptype() or setparams() method
    # _nchannels -- the number of audio channels
    #       set through the setnchannels() or setparams() method
    # _sampwidth -- the number of bytes per audio sample
    #       set through the setsampwidth() or setparams() method
    # _framerate -- the sampling frequency
    #       set through the setframerate() or setparams() method
    # _nframes -- the number of audio frames written to the header
    #       set through the setnframes() or setparams() method
    # _aifc -- whether we're writing an AIFF-C file or an AIFF file
    #       set through the aifc() method, reset through the
    #       aiff() method
    #
    # These variables are used internally only:
    # _version -- the AIFF-C version number
    # _comp -- the compressor from builtin module cl
    # _nframeswritten -- the number of audio frames actually written
    # _datalength -- the size of the audio samples written to the header
    # _datawritten -- the size of the audio samples actually written

    def __init__(self, f):
        if isinstance(f, str):
            filename = f
            f = builtins.open(f, 'wb')
        else:
            # else, assume it is an open file object already
            filename = '???'
        self.initfp(f)
        if filename[-5:] == '.aiff':
            self._aifc = 0
        else:
            self._aifc = 1

    def initfp(self, file):
        self._file = file
        self._version = _AIFC_version
        self._comptype = b'NONE'
        self._compname = b'not compressed'
        self._convert = None
        self._nchannels = 0
        self._sampwidth = 0
        self._framerate = 0
        self._nframes = 0
        self._nframeswritten = 0
        self._datawritten = 0
        self._datalength = 0
        self._markers = []
        self._marklength = 0
        self._aifc = 1      # AIFF-C is default

    def __del__(self):
        self.close()

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    #
    # User visible methods.
    #
    def aiff(self):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        self._aifc = 0

    def aifc(self):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        self._aifc = 1

    def setnchannels(self, nchannels):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        if nchannels < 1:
            raise Error('bad # of channels')
        self._nchannels = nchannels

    def getnchannels(self):
        if not self._nchannels:
            raise Error('number of channels not set')
        return self._nchannels

    def setsampwidth(self, sampwidth):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        if sampwidth < 1 or sampwidth > 4:
            raise Error('bad sample width')
        self._sampwidth = sampwidth

    def getsampwidth(self):
        if not self._sampwidth:
            raise Error('sample width not set')
        return self._sampwidth

    def setframerate(self, framerate):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        if framerate <= 0:
            raise Error('bad frame rate')
        self._framerate = framerate

    def getframerate(self):
        if not self._framerate:
            raise Error('frame rate not set')
        return self._framerate

    def setnframes(self, nframes):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        self._nframes = nframes

    def getnframes(self):
        return self._nframeswritten

    def setcomptype(self, comptype, compname):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        if comptype not in (b'NONE', b'ulaw', b'ULAW',
                            b'alaw', b'ALAW', b'G722'):
            raise Error('unsupported compression type')
        self._comptype = comptype
        self._compname = compname

    def getcomptype(self):
        return self._comptype

    def getcompname(self):
        return self._compname

##  def setversion(self, version):
##      if self._nframeswritten:
##          raise Error, 'cannot change parameters after starting to write'
##      self._version = version

    def setparams(self, params):
        nchannels, sampwidth, framerate, nframes, comptype, compname = params
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        if comptype not in (b'NONE', b'ulaw', b'ULAW',
                            b'alaw', b'ALAW', b'G722'):
            raise Error('unsupported compression type')
        self.setnchannels(nchannels)
        self.setsampwidth(sampwidth)
        self.setframerate(framerate)
        self.setnframes(nframes)
        self.setcomptype(comptype, compname)

    def getparams(self):
        if not self._nchannels or not self._sampwidth or not self._framerate:
            raise Error('not all parameters set')
        return _aifc_params(self._nchannels, self._sampwidth, self._framerate,
                            self._nframes, self._comptype, self._compname)

    def setmark(self, id, pos, name):
        if id <= 0:
            raise Error('marker ID must be > 0')
        if pos < 0:
            raise Error('marker position must be >= 0')
        if not isinstance(name, bytes):
            raise Error('marker name must be bytes')
        for i in range(len(self._markers)):
            if id == self._markers[i][0]:
                self._markers[i] = id, pos, name
                return
        self._markers.append((id, pos, name))

    def getmark(self, id):
        for marker in self._markers:
            if id == marker[0]:
                return marker
        raise Error('marker {0!r} does not exist'.format(id))

    def getmarkers(self):
        if len(self._markers) == 0:
            return None
        return self._markers

    def tell(self):
        return self._nframeswritten

    def writeframesraw(self, data):
        if not isinstance(data, (bytes, bytearray)):
            data = memoryview(data).cast('B')
        self._ensure_header_written(len(data))
        nframes = len(data) // (self._sampwidth * self._nchannels)
        if self._convert:
            data = self._convert(data)
        self._file.write(data)
        self._nframeswritten = self._nframeswritten + nframes
        self._datawritten = self._datawritten + len(data)

    def writeframes(self, data):
        self.writeframesraw(data)
        if self._nframeswritten != self._nframes or \
              self._datalength != self._datawritten:
            self._patchheader()

    def close(self):
        if self._file is None:
            return
        try:
            self._ensure_header_written(0)
            if self._datawritten & 1:
                # quick pad to even size
                self._file.write(b'\x00')
                self._datawritten = self._datawritten + 1
            self._writemarkers()
            if self._nframeswritten != self._nframes or \
                  self._datalength != self._datawritten or \
                  self._marklength:
                self._patchheader()
        finally:
            # Prevent ref cycles
            self._convert = None
            f = self._file
            self._file = None
            f.close()

    #
    # Internal methods.
    #

    def _lin2alaw(self, data):
        import audioop
        return audioop.lin2alaw(data, 2)

    def _lin2ulaw(self, data):
        import audioop
        return audioop.lin2ulaw(data, 2)

    def _lin2adpcm(self, data):
        import audioop
        if not hasattr(self, '_adpcmstate'):
            self._adpcmstate = None
        data, self._adpcmstate = audioop.lin2adpcm(data, 2, self._adpcmstate)
        return data

    def _ensure_header_written(self, datasize):
        if not self._nframeswritten:
            if self._comptype in (b'ULAW', b'ulaw', b'ALAW', b'alaw', b'G722'):
                if not self._sampwidth:
                    self._sampwidth = 2
                if self._sampwidth != 2:
                    raise Error('sample width must be 2 when compressing '
                                'with ulaw/ULAW, alaw/ALAW or G7.22 (ADPCM)')
            if not self._nchannels:
                raise Error('# channels not specified')
            if not self._sampwidth:
                raise Error('sample width not specified')
            if not self._framerate:
                raise Error('sampling rate not specified')
            self._write_header(datasize)

    def _init_compression(self):
        if self._comptype == b'G722':
            self._convert = self._lin2adpcm
        elif self._comptype in (b'ulaw', b'ULAW'):
            self._convert = self._lin2ulaw
        elif self._comptype in (b'alaw', b'ALAW'):
            self._convert = self._lin2alaw

    def _write_header(self, initlength):
        if self._aifc and self._comptype != b'NONE':
            self._init_compression()
        self._file.write(b'FORM')
        if not self._nframes:
            self._nframes = initlength // (self._nchannels * self._sampwidth)
        self._datalength = self._nframes * self._nchannels * self._sampwidth
        if self._datalength & 1:
            self._datalength = self._datalength + 1
        if self._aifc:
            if self._comptype in (b'ulaw', b'ULAW', b'alaw', b'ALAW'):
                self._datalength = self._datalength // 2
                if self._datalength & 1:
                    self._datalength = self._datalength + 1
            elif self._comptype == b'G722':
                self._datalength = (self._datalength + 3) // 4
                if self._datalength & 1:
                    self._datalength = self._datalength + 1
        try:
            self._form_length_pos = self._file.tell()
        except (AttributeError, OSError):
            self._form_length_pos = None
        commlength = self._write_form_length(self._datalength)
        if self._aifc:
            self._file.write(b'AIFC')
            self._file.write(b'FVER')
            _write_ulong(self._file, 4)
            _write_ulong(self._file, self._version)
        else:
            self._file.write(b'AIFF')
        self._file.write(b'COMM')
        _write_ulong(self._file, commlength)
        _write_short(self._file, self._nchannels)
        if self._form_length_pos is not None:
            self._nframes_pos = self._file.tell()
        _write_ulong(self._file, self._nframes)
        if self._comptype in (b'ULAW', b'ulaw', b'ALAW', b'alaw', b'G722'):
            _write_short(self._file, 8)
        else:
            _write_short(self._file, self._sampwidth * 8)
        _write_float(self._file, self._framerate)
        if self._aifc:
            self._file.write(self._comptype)
            _write_string(self._file, self._compname)
        self._file.write(b'SSND')
        if self._form_length_pos is not None:
            self._ssnd_length_pos = self._file.tell()
        _write_ulong(self._file, self._datalength + 8)
        _write_ulong(self._file, 0)
        _write_ulong(self._file, 0)

    def _write_form_length(self, datalength):
        if self._aifc:
            commlength = 18 + 5 + len(self._compname)
            if commlength & 1:
                commlength = commlength + 1
            verslength = 12
        else:
            commlength = 18
            verslength = 0
        _write_ulong(self._file, 4 + verslength + self._marklength + \
                     8 + commlength + 16 + datalength)
        return commlength

    def _patchheader(self):
        curpos = self._file.tell()
        if self._datawritten & 1:
            datalength = self._datawritten + 1
            self._file.write(b'\x00')
        else:
            datalength = self._datawritten
        if datalength == self._datalength and \
              self._nframes == self._nframeswritten and \
              self._marklength == 0:
            self._file.seek(curpos, 0)
            return
        self._file.seek(self._form_length_pos, 0)
        dummy = self._write_form_length(datalength)
        self._file.seek(self._nframes_pos, 0)
        _write_ulong(self._file, self._nframeswritten)
        self._file.seek(self._ssnd_length_pos, 0)
        _write_ulong(self._file, datalength + 8)
        self._file.seek(curpos, 0)
        self._nframes = self._nframeswritten
        self._datalength = datalength

    def _writemarkers(self):
        if len(self._markers) == 0:
            return
        self._file.write(b'MARK')
        length = 2
        for marker in self._markers:
            id, pos, name = marker
            length = length + len(name) + 1 + 6
            if len(name) & 1 == 0:
                length = length + 1
        _write_ulong(self._file, length)
        self._marklength = length + 8
        _write_short(self._file, len(self._markers))
        for marker in self._markers:
            id, pos, name = marker
            _write_short(self._file, id)
            _write_ulong(self._file, pos)
            _write_string(self._file, name)

def open(f, mode=None):
    if mode is None:
        if hasattr(f, 'mode'):
            mode = f.mode
        else:
            mode = 'rb'
    if mode in ('r', 'rb'):
        return Aifc_read(f)
    elif mode in ('w', 'wb'):
        return Aifc_write(f)
    else:
        raise Error("mode must be 'r', 'rb', 'w', or 'wb'")

openfp = open # B/W compatibility

if __name__ == '__main__':
    import sys
    if not sys.argv[1:]:
        sys.argv.append('/usr/demos/data/audio/bach.aiff')
    fn = sys.argv[1]
    with open(fn, 'r') as f:
        print("Reading", fn)
        print("nchannels =", f.getnchannels())
        print("nframes   =", f.getnframes())
        print("sampwidth =", f.getsampwidth())
        print("framerate =", f.getframerate())
        print("comptype  =", f.getcomptype())
        print("compname  =", f.getcompname())
        if sys.argv[2:]:
            gn = sys.argv[2]
            print("Writing", gn)
            with open(gn, 'w') as g:
                g.setparams(f.getparams())
                while 1:
                    data = f.readframes(1024)
                    if not data:
                        break
                    g.writeframes(data)
            print("Done.")
lib\antigravity.py

import webbrowser
import hashlib

webbrowser.open("http://xkcd.com/353/")

def geohash(latitude, longitude, datedow):
    '''Compute geohash() using the Munroe algorithm.

    >>> geohash(37.421542, -122.085589, b'2005-05-26-10458.68')
    37.857713 -122.544543

    '''
    # http://xkcd.com/426/
    h = hashlib.md5(datedow).hexdigest()
    p, q = [('%f' % float.fromhex('0.' + x)) for x in (h[:16], h[16:32])]
    print('%d%s %d%s' % (latitude, p[1:], longitude, q[1:]))
lib\argparse.py
# Author: Steven J. Bethard <[email protected]>.

"""Command-line parsing library

This module is an optparse-inspired command-line parsing library that:

    - handles both optional and positional arguments
    - produces highly informative usage messages
    - supports parsers that dispatch to sub-parsers

The following is a simple usage example that sums integers from the
command-line and writes the result to a file::

    parser = argparse.ArgumentParser(
        description='sum the integers at the command line')
    parser.add_argument(
        'integers', metavar='int', nargs='+', type=int,
        help='an integer to be summed')
    parser.add_argument(
        '--log', default=sys.stdout, type=argparse.FileType('w'),
        help='the file where the sum should be written')
    args = parser.parse_args()
    args.log.write('%s' % sum(args.integers))
    args.log.close()

The module contains the following public classes:

    - ArgumentParser -- The main entry point for command-line parsing. As the
        example above shows, the add_argument() method is used to populate
        the parser with actions for optional and positional arguments. Then
        the parse_args() method is invoked to convert the args at the
        command-line into an object with attributes.

    - ArgumentError -- The exception raised by ArgumentParser objects when
        there are errors with the parser's actions. Errors raised while
        parsing the command-line are caught by ArgumentParser and emitted
        as command-line messages.

    - FileType -- A factory for defining types of files to be created. As the
        example above shows, instances of FileType are typically passed as
        the type= argument of add_argument() calls.

    - Action -- The base class for parser actions. Typically actions are
        selected by passing strings like 'store_true' or 'append_const' to
        the action= argument of add_argument(). However, for greater
        customization of ArgumentParser actions, subclasses of Action may
        be defined and passed as the action= argument.

    - HelpFormatter, RawDescriptionHelpFormatter, RawTextHelpFormatter,
        ArgumentDefaultsHelpFormatter -- Formatter classes which
        may be passed as the formatter_class= argument to the
        ArgumentParser constructor. HelpFormatter is the default,
        RawDescriptionHelpFormatter and RawTextHelpFormatter tell the parser
        not to change the formatting for help text, and
        ArgumentDefaultsHelpFormatter adds information about argument defaults
        to the help.

All other classes in this module are considered implementation details.
(Also note that HelpFormatter and RawDescriptionHelpFormatter are only
considered public as object names -- the API of the formatter objects is
still considered an implementation detail.)
"""

__version__ = '1.1'
__all__ = [
    'ArgumentParser',
    'ArgumentError',
    'ArgumentTypeError',
    'FileType',
    'HelpFormatter',
    'ArgumentDefaultsHelpFormatter',
    'RawDescriptionHelpFormatter',
    'RawTextHelpFormatter',
    'MetavarTypeHelpFormatter',
    'Namespace',
    'Action',
    'ONE_OR_MORE',
    'OPTIONAL',
    'PARSER',
    'REMAINDER',
    'SUPPRESS',
    'ZERO_OR_MORE',
]


import collections as _collections
import copy as _copy
import os as _os
import re as _re
import sys as _sys
import textwrap as _textwrap

from gettext import gettext as _, ngettext


SUPPRESS = '==SUPPRESS=='

OPTIONAL = '?'
ZERO_OR_MORE = '*'
ONE_OR_MORE = '+'
PARSER = 'A...'
REMAINDER = '...'
_UNRECOGNIZED_ARGS_ATTR = '_unrecognized_args'

# =============================
# Utility functions and classes
# =============================

class _AttributeHolder(object):
    """Abstract base class that provides __repr__.

    The __repr__ method returns a string in the format::
        ClassName(attr=name, attr=name, ...)
    The attributes are determined either by a class-level attribute,
    '_kwarg_names', or by inspecting the instance __dict__.
    """

    def __repr__(self):
        type_name = type(self).__name__
        arg_strings = []
        for arg in self._get_args():
            arg_strings.append(repr(arg))
        for name, value in self._get_kwargs():
            arg_strings.append('%s=%r' % (name, value))
        return '%s(%s)' % (type_name, ', '.join(arg_strings))

    def _get_kwargs(self):
        return sorted(self.__dict__.items())

    def _get_args(self):
        return []


def _ensure_value(namespace, name, value):
    if getattr(namespace, name, None) is None:
        setattr(namespace, name, value)
    return getattr(namespace, name)


# ===============
# Formatting Help
# ===============

class HelpFormatter(object):
    """Formatter for generating usage messages and argument help strings.

    Only the name of this class is considered a public API. All the methods
    provided by the class are considered an implementation detail.
    """

    def __init__(self,
                 prog,
                 indent_increment=2,
                 max_help_position=24,
                 width=None):

        # default setting for width
        if width is None:
            try:
                width = int(_os.environ['COLUMNS'])
            except (KeyError, ValueError):
                width = 80
            width -= 2

        self._prog = prog
        self._indent_increment = indent_increment
        self._max_help_position = max_help_position
        self._max_help_position = min(max_help_position,
                                      max(width - 20, indent_increment * 2))
        self._width = width

        self._current_indent = 0
        self._level = 0
        self._action_max_length = 0

        self._root_section = self._Section(self, None)
        self._current_section = self._root_section

        self._whitespace_matcher = _re.compile(r'\s+')
        self._long_break_matcher = _re.compile(r'\n\n\n+')

    # ===============================
    # Section and indentation methods
    # ===============================
    def _indent(self):
        self._current_indent += self._indent_increment
        self._level += 1

    def _dedent(self):
        self._current_indent -= self._indent_increment
        assert self._current_indent >= 0, 'Indent decreased below 0.'
        self._level -= 1

    class _Section(object):

        def __init__(self, formatter, parent, heading=None):
            self.formatter = formatter
            self.parent = parent
            self.heading = heading
            self.items = []

        def format_help(self):
            # format the indented section
            if self.parent is not None:
                self.formatter._indent()
            join = self.formatter._join_parts
            for func, args in self.items:
                func(*args)
            item_help = join([func(*args) for func, args in self.items])
            if self.parent is not None:
                self.formatter._dedent()

            # return nothing if the section was empty
            if not item_help:
                return ''

            # add the heading if the section was non-empty
            if self.heading is not SUPPRESS and self.heading is not None:
                current_indent = self.formatter._current_indent
                heading = '%*s%s:\n' % (current_indent, '', self.heading)
            else:
                heading = ''

            # join the section-initial newline, the heading and the help
            return join(['\n', heading, item_help, '\n'])

    def _add_item(self, func, args):
        self._current_section.items.append((func, args))

    # ========================
    # Message building methods
    # ========================
    def start_section(self, heading):
        self._indent()
        section = self._Section(self, self._current_section, heading)
        self._add_item(section.format_help, [])
        self._current_section = section

    def end_section(self):
        self._current_section = self._current_section.parent
        self._dedent()

    def add_text(self, text):
        if text is not SUPPRESS and text is not None:
            self._add_item(self._format_text, [text])

    def add_usage(self, usage, actions, groups, prefix=None):
        if usage is not SUPPRESS:
            args = usage, actions, groups, prefix
            self._add_item(self._format_usage, args)

    def add_argument(self, action):
        if action.help is not SUPPRESS:

            # find all invocations
            get_invocation = self._format_action_invocation
            invocations = [get_invocation(action)]
            for subaction in self._iter_indented_subactions(action):
                invocations.append(get_invocation(subaction))

            # update the maximum item length
            invocation_length = max([len(s) for s in invocations])
            action_length = invocation_length + self._current_indent
            self._action_max_length = max(self._action_max_length,
                                          action_length)

            # add the item to the list
            self._add_item(self._format_action, [action])

    def add_arguments(self, actions):
        for action in actions:
            self.add_argument(action)

    # =======================
    # Help-formatting methods
    # =======================
    def format_help(self):
        help = self._root_section.format_help()
        if help:
            help = self._long_break_matcher.sub('\n\n', help)
            help = help.strip('\n') + '\n'
        return help

    def _join_parts(self, part_strings):
        return ''.join([part
                        for part in part_strings
                        if part and part is not SUPPRESS])

    def _format_usage(self, usage, actions, groups, prefix):
        if prefix is None:
            prefix = _('usage: ')

        # if usage is specified, use that
        if usage is not None:
            usage = usage % dict(prog=self._prog)

        # if no optionals or positionals are available, usage is just prog
        elif usage is None and not actions:
            usage = '%(prog)s' % dict(prog=self._prog)

        # if optionals and positionals are available, calculate usage
        elif usage is None:
            prog = '%(prog)s' % dict(prog=self._prog)

            # split optionals from positionals
            optionals = []
            positionals = []
            for action in actions:
                if action.option_strings:
                    optionals.append(action)
                else:
                    positionals.append(action)

            # build full usage string
            format = self._format_actions_usage
            action_usage = format(optionals + positionals, groups)
            usage = ' '.join([s for s in [prog, action_usage] if s])

            # wrap the usage parts if it's too long
            text_width = self._width - self._current_indent
            if len(prefix) + len(usage) > text_width:

                # break usage into wrappable parts
                part_regexp = r'\(.*?\)+|\[.*?\]+|\S+'
                opt_usage = format(optionals, groups)
                pos_usage = format(positionals, groups)
                opt_parts = _re.findall(part_regexp, opt_usage)
                pos_parts = _re.findall(part_regexp, pos_usage)
                assert ' '.join(opt_parts) == opt_usage
                assert ' '.join(pos_parts) == pos_usage

                # helper for wrapping lines
                def get_lines(parts, indent, prefix=None):
                    lines = []
                    line = []
                    if prefix is not None:
                        line_len = len(prefix) - 1
                    else:
                        line_len = len(indent) - 1
                    for part in parts:
                        if line_len + 1 + len(part) > text_width and line:
                            lines.append(indent + ' '.join(line))
                            line = []
                            line_len = len(indent) - 1
                        line.append(part)
                        line_len += len(part) + 1
                    if line:
                        lines.append(indent + ' '.join(line))
                    if prefix is not None:
                        lines[0] = lines[0][len(indent):]
                    return lines

                # if prog is short, follow it with optionals or positionals
                if len(prefix) + len(prog) <= 0.75 * text_width:
                    indent = ' ' * (len(prefix) + len(prog) + 1)
                    if opt_parts:
                        lines = get_lines([prog] + opt_parts, indent, prefix)
                        lines.extend(get_lines(pos_parts, indent))
                    elif pos_parts:
                        lines = get_lines([prog] + pos_parts, indent, prefix)
                    else:
                        lines = [prog]

                # if prog is long, put it on its own line
                else:
                    indent = ' ' * len(prefix)
                    parts = opt_parts + pos_parts
                    lines = get_lines(parts, indent)
                    if len(lines) > 1:
                        lines = []
                        lines.extend(get_lines(opt_parts, indent))
                        lines.extend(get_lines(pos_parts, indent))
                    lines = [prog] + lines

                # join lines into usage
                usage = '\n'.join(lines)

        # prefix with 'usage:'
        return '%s%s\n\n' % (prefix, usage)

    def _format_actions_usage(self, actions, groups):
        # find group indices and identify actions in groups
        group_actions = set()
        inserts = {}
        for group in groups:
            try:
                start = actions.index(group._group_actions[0])
            except ValueError:
                continue
            else:
                end = start + len(group._group_actions)
                if actions[start:end] == group._group_actions:
                    for action in group._group_actions:
                        group_actions.add(action)
                    if not group.required:
                        if start in inserts:
                            inserts[start] += ' ['
                        else:
                            inserts[start] = '['
                        inserts[end] = ']'
                    else:
                        if start in inserts:
                            inserts[start] += ' ('
                        else:
                            inserts[start] = '('
                        inserts[end] = ')'
                    for i in range(start + 1, end):
                        inserts[i] = '|'

        # collect all actions format strings
        parts = []
        for i, action in enumerate(actions):

            # suppressed arguments are marked with None
            # remove | separators for suppressed arguments
            if action.help is SUPPRESS:
                parts.append(None)
                if inserts.get(i) == '|':
                    inserts.pop(i)
                elif inserts.get(i + 1) == '|':
                    inserts.pop(i + 1)

            # produce all arg strings
            elif not action.option_strings:
                default = self._get_default_metavar_for_positional(action)
                part = self._format_args(action, default)

                # if it's in a group, strip the outer []
                if action in group_actions:
                    if part[0] == '[' and part[-1] == ']':
                        part = part[1:-1]

                # add the action string to the list
                parts.append(part)

            # produce the first way to invoke the option in brackets
            else:
                option_string = action.option_strings[0]

                # if the Optional doesn't take a value, format is:
                #    -s or --long
                if action.nargs == 0:
                    part = '%s' % option_string

                # if the Optional takes a value, format is:
                #    -s ARGS or --long ARGS
                else:
                    default = self._get_default_metavar_for_optional(action)
                    args_string = self._format_args(action, default)
                    part = '%s %s' % (option_string, args_string)

                # make it look optional if it's not required or in a group
                if not action.required and action not in group_actions:
                    part = '[%s]' % part

                # add the action string to the list
                parts.append(part)

        # insert things at the necessary indices
        for i in sorted(inserts, reverse=True):
            parts[i:i] = [inserts[i]]

        # join all the action items with spaces
        text = ' '.join([item for item in parts if item is not None])

        # clean up separators for mutually exclusive groups
        open = r'[\[(]'
        close = r'[\])]'
        text = _re.sub(r'(%s) ' % open, r'\1', text)
        text = _re.sub(r' (%s)' % close, r'\1', text)
        text = _re.sub(r'%s *%s' % (open, close), r'', text)
        text = _re.sub(r'\(([^|]*)\)', r'\1', text)
        text = text.strip()

        # return the text
        return text

    def _format_text(self, text):
        if '%(prog)' in text:
            text = text % dict(prog=self._prog)
        text_width = max(self._width - self._current_indent, 11)
        indent = ' ' * self._current_indent
        return self._fill_text(text, text_width, indent) + '\n\n'

    def _format_action(self, action):
        # determine the required width and the entry label
        help_position = min(self._action_max_length + 2,
                            self._max_help_position)
        help_width = max(self._width - help_position, 11)
        action_width = help_position - self._current_indent - 2
        action_header = self._format_action_invocation(action)

        # no help; start on same line and add a final newline
        if not action.help:
            tup = self._current_indent, '', action_header
            action_header = '%*s%s\n' % tup

        # short action name; start on the same line and pad two spaces
        elif len(action_header) <= action_width:
            tup = self._current_indent, '', action_width, action_header
            action_header = '%*s%-*s  ' % tup
            indent_first = 0

        # long action name; start on the next line
        else:
            tup = self._current_indent, '', action_header
            action_header = '%*s%s\n' % tup
            indent_first = help_position

        # collect the pieces of the action help
        parts = [action_header]

        # if there was help for the action, add lines of help text
        if action.help:
            help_text = self._expand_help(action)
            help_lines = self._split_lines(help_text, help_width)
            parts.append('%*s%s\n' % (indent_first, '', help_lines[0]))
            for line in help_lines[1:]:
                parts.append('%*s%s\n' % (help_position, '', line))

        # or add a newline if the description doesn't end with one
        elif not action_header.endswith('\n'):
            parts.append('\n')

        # if there are any sub-actions, add their help as well
        for subaction in self._iter_indented_subactions(action):
            parts.append(self._format_action(subaction))

        # return a single string
        return self._join_parts(parts)

    def _format_action_invocation(self, action):
        if not action.option_strings:
            default = self._get_default_metavar_for_positional(action)
            metavar, = self._metavar_formatter(action, default)(1)
            return metavar

        else:
            parts = []

            # if the Optional doesn't take a value, format is:
            #    -s, --long
            if action.nargs == 0:
                parts.extend(action.option_strings)

            # if the Optional takes a value, format is:
            #    -s ARGS, --long ARGS
            else:
                default = self._get_default_metavar_for_optional(action)
                args_string = self._format_args(action, default)
                for option_string in action.option_strings:
                    parts.append('%s %s' % (option_string, args_string))

            return ', '.join(parts)

    def _metavar_formatter(self, action, default_metavar):
        if action.metavar is not None:
            result = action.metavar
        elif action.choices is not None:
            choice_strs = [str(choice) for choice in action.choices]
            result = '{%s}' % ','.join(choice_strs)
        else:
            result = default_metavar

        def format(tuple_size):
            if isinstance(result, tuple):
                return result
            else:
                return (result, ) * tuple_size
        return format

    def _format_args(self, action, default_metavar):
        get_metavar = self._metavar_formatter(action, default_metavar)
        if action.nargs is None:
            result = '%s' % get_metavar(1)
        elif action.nargs == OPTIONAL:
            result = '[%s]' % get_metavar(1)
        elif action.nargs == ZERO_OR_MORE:
            result = '[%s [%s ...]]' % get_metavar(2)
        elif action.nargs == ONE_OR_MORE:
            result = '%s [%s ...]' % get_metavar(2)
        elif action.nargs == REMAINDER:
            result = '...'
        elif action.nargs == PARSER:
            result = '%s ...' % get_metavar(1)
        else:
            formats = ['%s' for _ in range(action.nargs)]
            result = ' '.join(formats) % get_metavar(action.nargs)
        return result

    def _expand_help(self, action):
        params = dict(vars(action), prog=self._prog)
        for name in list(params):
            if params[name] is SUPPRESS:
                del params[name]
        for name in list(params):
            if hasattr(params[name], '__name__'):
                params[name] = params[name].__name__
        if params.get('choices') is not None:
            choices_str = ', '.join([str(c) for c in params['choices']])
            params['choices'] = choices_str
        return self._get_help_string(action) % params

    def _iter_indented_subactions(self, action):
        try:
            get_subactions = action._get_subactions
        except AttributeError:
            pass
        else:
            self._indent()
            yield from get_subactions()
            self._dedent()

    def _split_lines(self, text, width):
        text = self._whitespace_matcher.sub(' ', text).strip()
        return _textwrap.wrap(text, width)

    def _fill_text(self, text, width, indent):
        text = self._whitespace_matcher.sub(' ', text).strip()
        return _textwrap.fill(text, width, initial_indent=indent,
                                           subsequent_indent=indent)

    def _get_help_string(self, action):
        return action.help

    def _get_default_metavar_for_optional(self, action):
        return action.dest.upper()

    def _get_default_metavar_for_positional(self, action):
        return action.dest


class RawDescriptionHelpFormatter(HelpFormatter):
    """Help message formatter which retains any formatting in descriptions.

    Only the name of this class is considered a public API. All the methods
    provided by the class are considered an implementation detail.
    """

    def _fill_text(self, text, width, indent):
        return ''.join(indent + line for line in text.splitlines(keepends=True))


class RawTextHelpFormatter(RawDescriptionHelpFormatter):
    """Help message formatter which retains formatting of all help text.

    Only the name of this class is considered a public API. All the methods
    provided by the class are considered an implementation detail.
    """

    def _split_lines(self, text, width):
        return text.splitlines()


class ArgumentDefaultsHelpFormatter(HelpFormatter):
    """Help message formatter which adds default values to argument help.

    Only the name of this class is considered a public API. All the methods
    provided by the class are considered an implementation detail.
    """

    def _get_help_string(self, action):
        help = action.help
        if '%(default)' not in action.help:
            if action.default is not SUPPRESS:
                defaulting_nargs = [OPTIONAL, ZERO_OR_MORE]
                if action.option_strings or action.nargs in defaulting_nargs:
                    help += ' (default: %(default)s)'
        return help


class MetavarTypeHelpFormatter(HelpFormatter):
    """Help message formatter which uses the argument 'type' as the default
    metavar value (instead of the argument 'dest')

    Only the name of this class is considered a public API. All the methods
    provided by the class are considered an implementation detail.
    """

    def _get_default_metavar_for_optional(self, action):
        return action.type.__name__

    def _get_default_metavar_for_positional(self, action):
        return action.type.__name__



# =====================
# Options and Arguments
# =====================

def _get_action_name(argument):
    if argument is None:
        return None
    elif argument.option_strings:
        return  '/'.join(argument.option_strings)
    elif argument.metavar not in (None, SUPPRESS):
        return argument.metavar
    elif argument.dest not in (None, SUPPRESS):
        return argument.dest
    else:
        return None


class ArgumentError(Exception):
    """An error from creating or using an argument (optional or positional).

    The string value of this exception is the message, augmented with
    information about the argument that caused it.
    """

    def __init__(self, argument, message):
        self.argument_name = _get_action_name(argument)
        self.message = message

    def __str__(self):
        if self.argument_name is None:
            format = '%(message)s'
        else:
            format = 'argument %(argument_name)s: %(message)s'
        return format % dict(message=self.message,
                             argument_name=self.argument_name)


class ArgumentTypeError(Exception):
    """An error from trying to convert a command line string to a type."""
    pass


# ==============
# Action classes
# ==============

class Action(_AttributeHolder):
    """Information about how to convert command line strings to Python objects.

    Action objects are used by an ArgumentParser to represent the information
    needed to parse a single argument from one or more strings from the
    command line. The keyword arguments to the Action constructor are also
    all attributes of Action instances.

    Keyword Arguments:

        - option_strings -- A list of command-line option strings which
            should be associated with this action.

        - dest -- The name of the attribute to hold the created object(s)

        - nargs -- The number of command-line arguments that should be
            consumed. By default, one argument will be consumed and a single
            value will be produced.  Other values include:
                - N (an integer) consumes N arguments (and produces a list)
                - '?' consumes zero or one arguments
                - '*' consumes zero or more arguments (and produces a list)
                - '+' consumes one or more arguments (and produces a list)
            Note that the difference between the default and nargs=1 is that
            with the default, a single value will be produced, while with
            nargs=1, a list containing a single value will be produced.

        - const -- The value to be produced if the option is specified and the
            option uses an action that takes no values.

        - default -- The value to be produced if the option is not specified.

        - type -- A callable that accepts a single string argument, and
            returns the converted value.  The standard Python types str, int,
            float, and complex are useful examples of such callables.  If None,
            str is used.

        - choices -- A container of values that should be allowed. If not None,
            after a command-line argument has been converted to the appropriate
            type, an exception will be raised if it is not a member of this
            collection.

        - required -- True if the action must always be specified at the
            command line. This is only meaningful for optional command-line
            arguments.

        - help -- The help string describing the argument.

        - metavar -- The name to be used for the option's argument with the
            help string. If None, the 'dest' value will be used as the name.
    """

    def __init__(self,
                 option_strings,
                 dest,
                 nargs=None,
                 const=None,
                 default=None,
                 type=None,
                 choices=None,
                 required=False,
                 help=None,
                 metavar=None):
        self.option_strings = option_strings
        self.dest = dest
        self.nargs = nargs
        self.const = const
        self.default = default
        self.type = type
        self.choices = choices
        self.required = required
        self.help = help
        self.metavar = metavar

    def _get_kwargs(self):
        names = [
            'option_strings',
            'dest',
            'nargs',
            'const',
            'default',
            'type',
            'choices',
            'help',
            'metavar',
        ]
        return [(name, getattr(self, name)) for name in names]

    def __call__(self, parser, namespace, values, option_string=None):
        raise NotImplementedError(_('.__call__() not defined'))


class _StoreAction(Action):

    def __init__(self,
                 option_strings,
                 dest,
                 nargs=None,
                 const=None,
                 default=None,
                 type=None,
                 choices=None,
                 required=False,
                 help=None,
                 metavar=None):
        if nargs == 0:
            raise ValueError('nargs for store actions must be > 0; if you '
                             'have nothing to store, actions such as store '
                             'true or store const may be more appropriate')
        if const is not None and nargs != OPTIONAL:
            raise ValueError('nargs must be %r to supply const' % OPTIONAL)
        super(_StoreAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            nargs=nargs,
            const=const,
            default=default,
            type=type,
            choices=choices,
            required=required,
            help=help,
            metavar=metavar)

    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, values)


class _StoreConstAction(Action):

    def __init__(self,
                 option_strings,
                 dest,
                 const,
                 default=None,
                 required=False,
                 help=None,
                 metavar=None):
        super(_StoreConstAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            nargs=0,
            const=const,
            default=default,
            required=required,
            help=help)

    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, self.const)


class _StoreTrueAction(_StoreConstAction):

    def __init__(self,
                 option_strings,
                 dest,
                 default=False,
                 required=False,
                 help=None):
        super(_StoreTrueAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            const=True,
            default=default,
            required=required,
            help=help)


class _StoreFalseAction(_StoreConstAction):

    def __init__(self,
                 option_strings,
                 dest,
                 default=True,
                 required=False,
                 help=None):
        super(_StoreFalseAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            const=False,
            default=default,
            required=required,
            help=help)


class _AppendAction(Action):

    def __init__(self,
                 option_strings,
                 dest,
                 nargs=None,
                 const=None,
                 default=None,
                 type=None,
                 choices=None,
                 required=False,
                 help=None,
                 metavar=None):
        if nargs == 0:
            raise ValueError('nargs for append actions must be > 0; if arg '
                             'strings are not supplying the value to append, '
                             'the append const action may be more appropriate')
        if const is not None and nargs != OPTIONAL:
            raise ValueError('nargs must be %r to supply const' % OPTIONAL)
        super(_AppendAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            nargs=nargs,
            const=const,
            default=default,
            type=type,
            choices=choices,
            required=required,
            help=help,
            metavar=metavar)

    def __call__(self, parser, namespace, values, option_string=None):
        items = _copy.copy(_ensure_value(namespace, self.dest, []))
        items.append(values)
        setattr(namespace, self.dest, items)


class _AppendConstAction(Action):

    def __init__(self,
                 option_strings,
                 dest,
                 const,
                 default=None,
                 required=False,
                 help=None,
                 metavar=None):
        super(_AppendConstAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            nargs=0,
            const=const,
            default=default,
            required=required,
            help=help,
            metavar=metavar)

    def __call__(self, parser, namespace, values, option_string=None):
        items = _copy.copy(_ensure_value(namespace, self.dest, []))
        items.append(self.const)
        setattr(namespace, self.dest, items)


class _CountAction(Action):

    def __init__(self,
                 option_strings,
                 dest,
                 default=None,
                 required=False,
                 help=None):
        super(_CountAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            nargs=0,
            default=default,
            required=required,
            help=help)

    def __call__(self, parser, namespace, values, option_string=None):
        new_count = _ensure_value(namespace, self.dest, 0) + 1
        setattr(namespace, self.dest, new_count)


class _HelpAction(Action):

    def __init__(self,
                 option_strings,
                 dest=SUPPRESS,
                 default=SUPPRESS,
                 help=None):
        super(_HelpAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            default=default,
            nargs=0,
            help=help)

    def __call__(self, parser, namespace, values, option_string=None):
        parser.print_help()
        parser.exit()


class _VersionAction(Action):

    def __init__(self,
                 option_strings,
                 version=None,
                 dest=SUPPRESS,
                 default=SUPPRESS,
                 help="show program's version number and exit"):
        super(_VersionAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            default=default,
            nargs=0,
            help=help)
        self.version = version

    def __call__(self, parser, namespace, values, option_string=None):
        version = self.version
        if version is None:
            version = parser.version
        formatter = parser._get_formatter()
        formatter.add_text(version)
        parser._print_message(formatter.format_help(), _sys.stdout)
        parser.exit()


class _SubParsersAction(Action):

    class _ChoicesPseudoAction(Action):

        def __init__(self, name, aliases, help):
            metavar = dest = name
            if aliases:
                metavar += ' (%s)' % ', '.join(aliases)
            sup = super(_SubParsersAction._ChoicesPseudoAction, self)
            sup.__init__(option_strings=[], dest=dest, help=help,
                         metavar=metavar)

    def __init__(self,
                 option_strings,
                 prog,
                 parser_class,
                 dest=SUPPRESS,
                 help=None,
                 metavar=None):

        self._prog_prefix = prog
        self._parser_class = parser_class
        self._name_parser_map = _collections.OrderedDict()
        self._choices_actions = []

        super(_SubParsersAction, self).__init__(
            option_strings=option_strings,
            dest=dest,
            nargs=PARSER,
            choices=self._name_parser_map,
            help=help,
            metavar=metavar)

    def add_parser(self, name, **kwargs):
        # set prog from the existing prefix
        if kwargs.get('prog') is None:
            kwargs['prog'] = '%s %s' % (self._prog_prefix, name)

        aliases = kwargs.pop('aliases', ())

        # create a pseudo-action to hold the choice help
        if 'help' in kwargs:
            help = kwargs.pop('help')
            choice_action = self._ChoicesPseudoAction(name, aliases, help)
            self._choices_actions.append(choice_action)

        # create the parser and add it to the map
        parser = self._parser_class(**kwargs)
        self._name_parser_map[name] = parser

        # make parser available under aliases also
        for alias in aliases:
            self._name_parser_map[alias] = parser

        return parser

    def _get_subactions(self):
        return self._choices_actions

    def __call__(self, parser, namespace, values, option_string=None):
        parser_name = values[0]
        arg_strings = values[1:]

        # set the parser name if requested
        if self.dest is not SUPPRESS:
            setattr(namespace, self.dest, parser_name)

        # select the parser
        try:
            parser = self._name_parser_map[parser_name]
        except KeyError:
            args = {'parser_name': parser_name,
                    'choices': ', '.join(self._name_parser_map)}
            msg = _('unknown parser %(parser_name)r (choices: %(choices)s)') % args
            raise ArgumentError(self, msg)

        # parse all the remaining options into the namespace
        # store any unrecognized options on the object, so that the top
        # level parser can decide what to do with them

        # In case this subparser defines new defaults, we parse them
        # in a new namespace object and then update the original
        # namespace for the relevant parts.
        subnamespace, arg_strings = parser.parse_known_args(arg_strings, None)
        for key, value in vars(subnamespace).items():
            setattr(namespace, key, value)

        if arg_strings:
            vars(namespace).setdefault(_UNRECOGNIZED_ARGS_ATTR, [])
            getattr(namespace, _UNRECOGNIZED_ARGS_ATTR).extend(arg_strings)


# ==============
# Type classes
# ==============

class FileType(object):
    """Factory for creating file object types

    Instances of FileType are typically passed as type= arguments to the
    ArgumentParser add_argument() method.

    Keyword Arguments:
        - mode -- A string indicating how the file is to be opened. Accepts the
            same values as the builtin open() function.
        - bufsize -- The file's desired buffer size. Accepts the same values as
            the builtin open() function.
        - encoding -- The file's encoding. Accepts the same values as the
            builtin open() function.
        - errors -- A string indicating how encoding and decoding errors are to
            be handled. Accepts the same value as the builtin open() function.
    """

    def __init__(self, mode='r', bufsize=-1, encoding=None, errors=None):
        self._mode = mode
        self._bufsize = bufsize
        self._encoding = encoding
        self._errors = errors

    def __call__(self, string):
        # the special argument "-" means sys.std{in,out}
        if string == '-':
            if 'r' in self._mode:
                return _sys.stdin
            elif 'w' in self._mode:
                return _sys.stdout
            else:
                msg = _('argument "-" with mode %r') % self._mode
                raise ValueError(msg)

        # all other arguments are used as file names
        try:
            return open(string, self._mode, self._bufsize, self._encoding,
                        self._errors)
        except OSError as e:
            message = _("can't open '%s': %s")
            raise ArgumentTypeError(message % (string, e))

    def __repr__(self):
        args = self._mode, self._bufsize
        kwargs = [('encoding', self._encoding), ('errors', self._errors)]
        args_str = ', '.join([repr(arg) for arg in args if arg != -1] +
                             ['%s=%r' % (kw, arg) for kw, arg in kwargs
                              if arg is not None])
        return '%s(%s)' % (type(self).__name__, args_str)

# ===========================
# Optional and Positional Parsing
# ===========================

class Namespace(_AttributeHolder):
    """Simple object for storing attributes.

    Implements equality by attribute names and values, and provides a simple
    string representation.
    """

    def __init__(self, **kwargs):
        for name in kwargs:
            setattr(self, name, kwargs[name])

    def __eq__(self, other):
        if not isinstance(other, Namespace):
            return NotImplemented
        return vars(self) == vars(other)

    def __ne__(self, other):
        if not isinstance(other, Namespace):
            return NotImplemented
        return not (self == other)

    def __contains__(self, key):
        return key in self.__dict__


class _ActionsContainer(object):

    def __init__(self,
                 description,
                 prefix_chars,
                 argument_default,
                 conflict_handler):
        super(_ActionsContainer, self).__init__()

        self.description = description
        self.argument_default = argument_default
        self.prefix_chars = prefix_chars
        self.conflict_handler = conflict_handler

        # set up registries
        self._registries = {}

        # register actions
        self.register('action', None, _StoreAction)
        self.register('action', 'store', _StoreAction)
        self.register('action', 'store_const', _StoreConstAction)
        self.register('action', 'store_true', _StoreTrueAction)
        self.register('action', 'store_false', _StoreFalseAction)
        self.register('action', 'append', _AppendAction)
        self.register('action', 'append_const', _AppendConstAction)
        self.register('action', 'count', _CountAction)
        self.register('action', 'help', _HelpAction)
        self.register('action', 'version', _VersionAction)
        self.register('action', 'parsers', _SubParsersAction)

        # raise an exception if the conflict handler is invalid
        self._get_handler()

        # action storage
        self._actions = []
        self._option_string_actions = {}

        # groups
        self._action_groups = []
        self._mutually_exclusive_groups = []

        # defaults storage
        self._defaults = {}

        # determines whether an "option" looks like a negative number
        self._negative_number_matcher = _re.compile(r'^-\d+$|^-\d*\.\d+$')

        # whether or not there are any optionals that look like negative
        # numbers -- uses a list so it can be shared and edited
        self._has_negative_number_optionals = []

    # ====================
    # Registration methods
    # ====================
    def register(self, registry_name, value, object):
        registry = self._registries.setdefault(registry_name, {})
        registry[value] = object

    def _registry_get(self, registry_name, value, default=None):
        return self._registries[registry_name].get(value, default)

    # ==================================
    # Namespace default accessor methods
    # ==================================
    def set_defaults(self, **kwargs):
        self._defaults.update(kwargs)

        # if these defaults match any existing arguments, replace
        # the previous default on the object with the new one
        for action in self._actions:
            if action.dest in kwargs:
                action.default = kwargs[action.dest]

    def get_default(self, dest):
        for action in self._actions:
            if action.dest == dest and action.default is not None:
                return action.default
        return self._defaults.get(dest, None)


    # =======================
    # Adding argument actions
    # =======================
    def add_argument(self, *args, **kwargs):
        """
        add_argument(dest, ..., name=value, ...)
        add_argument(option_string, option_string, ..., name=value, ...)
        """

        # if no positional args are supplied or only one is supplied and
        # it doesn't look like an option string, parse a positional
        # argument
        chars = self.prefix_chars
        if not args or len(args) == 1 and args[0][0] not in chars:
            if args and 'dest' in kwargs:
                raise ValueError('dest supplied twice for positional argument')
            kwargs = self._get_positional_kwargs(*args, **kwargs)

        # otherwise, we're adding an optional argument
        else:
            kwargs = self._get_optional_kwargs(*args, **kwargs)

        # if no default was supplied, use the parser-level default
        if 'default' not in kwargs:
            dest = kwargs['dest']
            if dest in self._defaults:
                kwargs['default'] = self._defaults[dest]
            elif self.argument_default is not None:
                kwargs['default'] = self.argument_default

        # create the action object, and add it to the parser
        action_class = self._pop_action_class(kwargs)
        if not callable(action_class):
            raise ValueError('unknown action "%s"' % (action_class,))
        action = action_class(**kwargs)

        # raise an error if the action type is not callable
        type_func = self._registry_get('type', action.type, action.type)
        if not callable(type_func):
            raise ValueError('%r is not callable' % (type_func,))

        # raise an error if the metavar does not match the type
        if hasattr(self, "_get_formatter"):
            try:
                self._get_formatter()._format_args(action, None)
            except TypeError:
                raise ValueError("length of metavar tuple does not match nargs")

        return self._add_action(action)

    def add_argument_group(self, *args, **kwargs):
        group = _ArgumentGroup(self, *args, **kwargs)
        self._action_groups.append(group)
        return group

    def add_mutually_exclusive_group(self, **kwargs):
        group = _MutuallyExclusiveGroup(self, **kwargs)
        self._mutually_exclusive_groups.append(group)
        return group

    def _add_action(self, action):
        # resolve any conflicts
        self._check_conflict(action)

        # add to actions list
        self._actions.append(action)
        action.container = self

        # index the action by any option strings it has
        for option_string in action.option_strings:
            self._option_string_actions[option_string] = action

        # set the flag if any option strings look like negative numbers
        for option_string in action.option_strings:
            if self._negative_number_matcher.match(option_string):
                if not self._has_negative_number_optionals:
                    self._has_negative_number_optionals.append(True)

        # return the created action
        return action

    def _remove_action(self, action):
        self._actions.remove(action)

    def _add_container_actions(self, container):
        # collect groups by titles
        title_group_map = {}
        for group in self._action_groups:
            if group.title in title_group_map:
                msg = _('cannot merge actions - two groups are named %r')
                raise ValueError(msg % (group.title))
            title_group_map[group.title] = group

        # map each action to its group
        group_map = {}
        for group in container._action_groups:

            # if a group with the title exists, use that, otherwise
            # create a new group matching the container's group
            if group.title not in title_group_map:
                title_group_map[group.title] = self.add_argument_group(
                    title=group.title,
                    description=group.description,
                    conflict_handler=group.conflict_handler)

            # map the actions to their new group
            for action in group._group_actions:
                group_map[action] = title_group_map[group.title]

        # add container's mutually exclusive groups
        # NOTE: if add_mutually_exclusive_group ever gains title= and
        # description= then this code will need to be expanded as above
        for group in container._mutually_exclusive_groups:
            mutex_group = self.add_mutually_exclusive_group(
                required=group.required)

            # map the actions to their new mutex group
            for action in group._group_actions:
                group_map[action] = mutex_group

        # add all actions to this container or their group
        for action in container._actions:
            group_map.get(action, self)._add_action(action)

    def _get_positional_kwargs(self, dest, **kwargs):
        # make sure required is not specified
        if 'required' in kwargs:
            msg = _("'required' is an invalid argument for positionals")
            raise TypeError(msg)

        # mark positional arguments as required if at least one is
        # always required
        if kwargs.get('nargs') not in [OPTIONAL, ZERO_OR_MORE]:
            kwargs['required'] = True
        if kwargs.get('nargs') == ZERO_OR_MORE and 'default' not in kwargs:
            kwargs['required'] = True

        # return the keyword arguments with no option strings
        return dict(kwargs, dest=dest, option_strings=[])

    def _get_optional_kwargs(self, *args, **kwargs):
        # determine short and long option strings
        option_strings = []
        long_option_strings = []
        for option_string in args:
            # error on strings that don't start with an appropriate prefix
            if not option_string[0] in self.prefix_chars:
                args = {'option': option_string,
                        'prefix_chars': self.prefix_chars}
                msg = _('invalid option string %(option)r: '
                        'must start with a character %(prefix_chars)r')
                raise ValueError(msg % args)

            # strings starting with two prefix characters are long options
            option_strings.append(option_string)
            if option_string[0] in self.prefix_chars:
                if len(option_string) > 1:
                    if option_string[1] in self.prefix_chars:
                        long_option_strings.append(option_string)

        # infer destination, '--foo-bar' -> 'foo_bar' and '-x' -> 'x'
        dest = kwargs.pop('dest', None)
        if dest is None:
            if long_option_strings:
                dest_option_string = long_option_strings[0]
            else:
                dest_option_string = option_strings[0]
            dest = dest_option_string.lstrip(self.prefix_chars)
            if not dest:
                msg = _('dest= is required for options like %r')
                raise ValueError(msg % option_string)
            dest = dest.replace('-', '_')

        # return the updated keyword arguments
        return dict(kwargs, dest=dest, option_strings=option_strings)

    def _pop_action_class(self, kwargs, default=None):
        action = kwargs.pop('action', default)
        return self._registry_get('action', action, action)

    def _get_handler(self):
        # determine function from conflict handler string
        handler_func_name = '_handle_conflict_%s' % self.conflict_handler
        try:
            return getattr(self, handler_func_name)
        except AttributeError:
            msg = _('invalid conflict_resolution value: %r')
            raise ValueError(msg % self.conflict_handler)

    def _check_conflict(self, action):

        # find all options that conflict with this option
        confl_optionals = []
        for option_string in action.option_strings:
            if option_string in self._option_string_actions:
                confl_optional = self._option_string_actions[option_string]
                confl_optionals.append((option_string, confl_optional))

        # resolve any conflicts
        if confl_optionals:
            conflict_handler = self._get_handler()
            conflict_handler(action, confl_optionals)

    def _handle_conflict_error(self, action, conflicting_actions):
        message = ngettext('conflicting option string: %s',
                           'conflicting option strings: %s',
                           len(conflicting_actions))
        conflict_string = ', '.join([option_string
                                     for option_string, action
                                     in conflicting_actions])
        raise ArgumentError(action, message % conflict_string)

    def _handle_conflict_resolve(self, action, conflicting_actions):

        # remove all conflicting options
        for option_string, action in conflicting_actions:

            # remove the conflicting option
            action.option_strings.remove(option_string)
            self._option_string_actions.pop(option_string, None)

            # if the option now has no option string, remove it from the
            # container holding it
            if not action.option_strings:
                action.container._remove_action(action)


class _ArgumentGroup(_ActionsContainer):

    def __init__(self, container, title=None, description=None, **kwargs):
        # add any missing keyword arguments by checking the container
        update = kwargs.setdefault
        update('conflict_handler', container.conflict_handler)
        update('prefix_chars', container.prefix_chars)
        update('argument_default', container.argument_default)
        super_init = super(_ArgumentGroup, self).__init__
        super_init(description=description, **kwargs)

        # group attributes
        self.title = title
        self._group_actions = []

        # share most attributes with the container
        self._registries = container._registries
        self._actions = container._actions
        self._option_string_actions = container._option_string_actions
        self._defaults = container._defaults
        self._has_negative_number_optionals = \
            container._has_negative_number_optionals
        self._mutually_exclusive_groups = container._mutually_exclusive_groups

    def _add_action(self, action):
        action = super(_ArgumentGroup, self)._add_action(action)
        self._group_actions.append(action)
        return action

    def _remove_action(self, action):
        super(_ArgumentGroup, self)._remove_action(action)
        self._group_actions.remove(action)


class _MutuallyExclusiveGroup(_ArgumentGroup):

    def __init__(self, container, required=False):
        super(_MutuallyExclusiveGroup, self).__init__(container)
        self.required = required
        self._container = container

    def _add_action(self, action):
        if action.required:
            msg = _('mutually exclusive arguments must be optional')
            raise ValueError(msg)
        action = self._container._add_action(action)
        self._group_actions.append(action)
        return action

    def _remove_action(self, action):
        self._container._remove_action(action)
        self._group_actions.remove(action)


class ArgumentParser(_AttributeHolder, _ActionsContainer):
    """Object for parsing command line strings into Python objects.

    Keyword Arguments:
        - prog -- The name of the program (default: sys.argv[0])
        - usage -- A usage message (default: auto-generated from arguments)
        - description -- A description of what the program does
        - epilog -- Text following the argument descriptions
        - parents -- Parsers whose arguments should be copied into this one
        - formatter_class -- HelpFormatter class for printing help messages
        - prefix_chars -- Characters that prefix optional arguments
        - fromfile_prefix_chars -- Characters that prefix files containing
            additional arguments
        - argument_default -- The default value for all arguments
        - conflict_handler -- String indicating how to handle conflicts
        - add_help -- Add a -h/-help option
    """

    def __init__(self,
                 prog=None,
                 usage=None,
                 description=None,
                 epilog=None,
                 parents=[],
                 formatter_class=HelpFormatter,
                 prefix_chars='-',
                 fromfile_prefix_chars=None,
                 argument_default=None,
                 conflict_handler='error',
                 add_help=True):

        superinit = super(ArgumentParser, self).__init__
        superinit(description=description,
                  prefix_chars=prefix_chars,
                  argument_default=argument_default,
                  conflict_handler=conflict_handler)

        # default setting for prog
        if prog is None:
            prog = _os.path.basename(_sys.argv[0])

        self.prog = prog
        self.usage = usage
        self.epilog = epilog
        self.formatter_class = formatter_class
        self.fromfile_prefix_chars = fromfile_prefix_chars
        self.add_help = add_help

        add_group = self.add_argument_group
        self._positionals = add_group(_('positional arguments'))
        self._optionals = add_group(_('optional arguments'))
        self._subparsers = None

        # register types
        def identity(string):
            return string
        self.register('type', None, identity)

        # add help argument if necessary
        # (using explicit default to override global argument_default)
        default_prefix = '-' if '-' in prefix_chars else prefix_chars[0]
        if self.add_help:
            self.add_argument(
                default_prefix+'h', default_prefix*2+'help',
                action='help', default=SUPPRESS,
                help=_('show this help message and exit'))

        # add parent arguments and defaults
        for parent in parents:
            self._add_container_actions(parent)
            try:
                defaults = parent._defaults
            except AttributeError:
                pass
            else:
                self._defaults.update(defaults)

    # =======================
    # Pretty __repr__ methods
    # =======================
    def _get_kwargs(self):
        names = [
            'prog',
            'usage',
            'description',
            'formatter_class',
            'conflict_handler',
            'add_help',
        ]
        return [(name, getattr(self, name)) for name in names]

    # ==================================
    # Optional/Positional adding methods
    # ==================================
    def add_subparsers(self, **kwargs):
        if self._subparsers is not None:
            self.error(_('cannot have multiple subparser arguments'))

        # add the parser class to the arguments if it's not present
        kwargs.setdefault('parser_class', type(self))

        if 'title' in kwargs or 'description' in kwargs:
            title = _(kwargs.pop('title', 'subcommands'))
            description = _(kwargs.pop('description', None))
            self._subparsers = self.add_argument_group(title, description)
        else:
            self._subparsers = self._positionals

        # prog defaults to the usage message of this parser, skipping
        # optional arguments and with no "usage:" prefix
        if kwargs.get('prog') is None:
            formatter = self._get_formatter()
            positionals = self._get_positional_actions()
            groups = self._mutually_exclusive_groups
            formatter.add_usage(self.usage, positionals, groups, '')
            kwargs['prog'] = formatter.format_help().strip()

        # create the parsers action and add it to the positionals list
        parsers_class = self._pop_action_class(kwargs, 'parsers')
        action = parsers_class(option_strings=[], **kwargs)
        self._subparsers._add_action(action)

        # return the created parsers action
        return action

    def _add_action(self, action):
        if action.option_strings:
            self._optionals._add_action(action)
        else:
            self._positionals._add_action(action)
        return action

    def _get_optional_actions(self):
        return [action
                for action in self._actions
                if action.option_strings]

    def _get_positional_actions(self):
        return [action
                for action in self._actions
                if not action.option_strings]

    # =====================================
    # Command line argument parsing methods
    # =====================================
    def parse_args(self, args=None, namespace=None):
        args, argv = self.parse_known_args(args, namespace)
        if argv:
            msg = _('unrecognized arguments: %s')
            self.error(msg % ' '.join(argv))
        return args

    def parse_known_args(self, args=None, namespace=None):
        if args is None:
            # args default to the system args
            args = _sys.argv[1:]
        else:
            # make sure that args are mutable
            args = list(args)

        # default Namespace built from parser defaults
        if namespace is None:
            namespace = Namespace()

        # add any action defaults that aren't present
        for action in self._actions:
            if action.dest is not SUPPRESS:
                if not hasattr(namespace, action.dest):
                    if action.default is not SUPPRESS:
                        setattr(namespace, action.dest, action.default)

        # add any parser defaults that aren't present
        for dest in self._defaults:
            if not hasattr(namespace, dest):
                setattr(namespace, dest, self._defaults[dest])

        # parse the arguments and exit if there are any errors
        try:
            namespace, args = self._parse_known_args(args, namespace)
            if hasattr(namespace, _UNRECOGNIZED_ARGS_ATTR):
                args.extend(getattr(namespace, _UNRECOGNIZED_ARGS_ATTR))
                delattr(namespace, _UNRECOGNIZED_ARGS_ATTR)
            return namespace, args
        except ArgumentError:
            err = _sys.exc_info()[1]
            self.error(str(err))

    def _parse_known_args(self, arg_strings, namespace):
        # replace arg strings that are file references
        if self.fromfile_prefix_chars is not None:
            arg_strings = self._read_args_from_files(arg_strings)

        # map all mutually exclusive arguments to the other arguments
        # they can't occur with
        action_conflicts = {}
        for mutex_group in self._mutually_exclusive_groups:
            group_actions = mutex_group._group_actions
            for i, mutex_action in enumerate(mutex_group._group_actions):
                conflicts = action_conflicts.setdefault(mutex_action, [])
                conflicts.extend(group_actions[:i])
                conflicts.extend(group_actions[i + 1:])

        # find all option indices, and determine the arg_string_pattern
        # which has an 'O' if there is an option at an index,
        # an 'A' if there is an argument, or a '-' if there is a '--'
        option_string_indices = {}
        arg_string_pattern_parts = []
        arg_strings_iter = iter(arg_strings)
        for i, arg_string in enumerate(arg_strings_iter):

            # all args after -- are non-options
            if arg_string == '--':
                arg_string_pattern_parts.append('-')
                for arg_string in arg_strings_iter:
                    arg_string_pattern_parts.append('A')

            # otherwise, add the arg to the arg strings
            # and note the index if it was an option
            else:
                option_tuple = self._parse_optional(arg_string)
                if option_tuple is None:
                    pattern = 'A'
                else:
                    option_string_indices[i] = option_tuple
                    pattern = 'O'
                arg_string_pattern_parts.append(pattern)

        # join the pieces together to form the pattern
        arg_strings_pattern = ''.join(arg_string_pattern_parts)

        # converts arg strings to the appropriate and then takes the action
        seen_actions = set()
        seen_non_default_actions = set()

        def take_action(action, argument_strings, option_string=None):
            seen_actions.add(action)
            argument_values = self._get_values(action, argument_strings)

            # error if this argument is not allowed with other previously
            # seen arguments, assuming that actions that use the default
            # value don't really count as "present"
            if argument_values is not action.default:
                seen_non_default_actions.add(action)
                for conflict_action in action_conflicts.get(action, []):
                    if conflict_action in seen_non_default_actions:
                        msg = _('not allowed with argument %s')
                        action_name = _get_action_name(conflict_action)
                        raise ArgumentError(action, msg % action_name)

            # take the action if we didn't receive a SUPPRESS value
            # (e.g. from a default)
            if argument_values is not SUPPRESS:
                action(self, namespace, argument_values, option_string)

        # function to convert arg_strings into an optional action
        def consume_optional(start_index):

            # get the optional identified at this index
            option_tuple = option_string_indices[start_index]
            action, option_string, explicit_arg = option_tuple

            # identify additional optionals in the same arg string
            # (e.g. -xyz is the same as -x -y -z if no args are required)
            match_argument = self._match_argument
            action_tuples = []
            while True:

                # if we found no optional action, skip it
                if action is None:
                    extras.append(arg_strings[start_index])
                    return start_index + 1

                # if there is an explicit argument, try to match the
                # optional's string arguments to only this
                if explicit_arg is not None:
                    arg_count = match_argument(action, 'A')

                    # if the action is a single-dash option and takes no
                    # arguments, try to parse more single-dash options out
                    # of the tail of the option string
                    chars = self.prefix_chars
                    if arg_count == 0 and option_string[1] not in chars:
                        action_tuples.append((action, [], option_string))
                        char = option_string[0]
                        option_string = char + explicit_arg[0]
                        new_explicit_arg = explicit_arg[1:] or None
                        optionals_map = self._option_string_actions
                        if option_string in optionals_map:
                            action = optionals_map[option_string]
                            explicit_arg = new_explicit_arg
                        else:
                            msg = _('ignored explicit argument %r')
                            raise ArgumentError(action, msg % explicit_arg)

                    # if the action expect exactly one argument, we've
                    # successfully matched the option; exit the loop
                    elif arg_count == 1:
                        stop = start_index + 1
                        args = [explicit_arg]
                        action_tuples.append((action, args, option_string))
                        break

                    # error if a double-dash option did not use the
                    # explicit argument
                    else:
                        msg = _('ignored explicit argument %r')
                        raise ArgumentError(action, msg % explicit_arg)

                # if there is no explicit argument, try to match the
                # optional's string arguments with the following strings
                # if successful, exit the loop
                else:
                    start = start_index + 1
                    selected_patterns = arg_strings_pattern[start:]
                    arg_count = match_argument(action, selected_patterns)
                    stop = start + arg_count
                    args = arg_strings[start:stop]
                    action_tuples.append((action, args, option_string))
                    break

            # add the Optional to the list and return the index at which
            # the Optional's string args stopped
            assert action_tuples
            for action, args, option_string in action_tuples:
                take_action(action, args, option_string)
            return stop

        # the list of Positionals left to be parsed; this is modified
        # by consume_positionals()
        positionals = self._get_positional_actions()

        # function to convert arg_strings into positional actions
        def consume_positionals(start_index):
            # match as many Positionals as possible
            match_partial = self._match_arguments_partial
            selected_pattern = arg_strings_pattern[start_index:]
            arg_counts = match_partial(positionals, selected_pattern)

            # slice off the appropriate arg strings for each Positional
            # and add the Positional and its args to the list
            for action, arg_count in zip(positionals, arg_counts):
                args = arg_strings[start_index: start_index + arg_count]
                start_index += arg_count
                take_action(action, args)

            # slice off the Positionals that we just parsed and return the
            # index at which the Positionals' string args stopped
            positionals[:] = positionals[len(arg_counts):]
            return start_index

        # consume Positionals and Optionals alternately, until we have
        # passed the last option string
        extras = []
        start_index = 0
        if option_string_indices:
            max_option_string_index = max(option_string_indices)
        else:
            max_option_string_index = -1
        while start_index <= max_option_string_index:

            # consume any Positionals preceding the next option
            next_option_string_index = min([
                index
                for index in option_string_indices
                if index >= start_index])
            if start_index != next_option_string_index:
                positionals_end_index = consume_positionals(start_index)

                # only try to parse the next optional if we didn't consume
                # the option string during the positionals parsing
                if positionals_end_index > start_index:
                    start_index = positionals_end_index
                    continue
                else:
                    start_index = positionals_end_index

            # if we consumed all the positionals we could and we're not
            # at the index of an option string, there were extra arguments
            if start_index not in option_string_indices:
                strings = arg_strings[start_index:next_option_string_index]
                extras.extend(strings)
                start_index = next_option_string_index

            # consume the next optional and any arguments for it
            start_index = consume_optional(start_index)

        # consume any positionals following the last Optional
        stop_index = consume_positionals(start_index)

        # if we didn't consume all the argument strings, there were extras
        extras.extend(arg_strings[stop_index:])

        # make sure all required actions were present and also convert
        # action defaults which were not given as arguments
        required_actions = []
        for action in self._actions:
            if action not in seen_actions:
                if action.required:
                    required_actions.append(_get_action_name(action))
                else:
                    # Convert action default now instead of doing it before
                    # parsing arguments to avoid calling convert functions
                    # twice (which may fail) if the argument was given, but
                    # only if it was defined already in the namespace
                    if (action.default is not None and
                        isinstance(action.default, str) and
                        hasattr(namespace, action.dest) and
                        action.default is getattr(namespace, action.dest)):
                        setattr(namespace, action.dest,
                                self._get_value(action, action.default))

        if required_actions:
            self.error(_('the following arguments are required: %s') %
                       ', '.join(required_actions))

        # make sure all required groups had one option present
        for group in self._mutually_exclusive_groups:
            if group.required:
                for action in group._group_actions:
                    if action in seen_non_default_actions:
                        break

                # if no actions were used, report the error
                else:
                    names = [_get_action_name(action)
                             for action in group._group_actions
                             if action.help is not SUPPRESS]
                    msg = _('one of the arguments %s is required')
                    self.error(msg % ' '.join(names))

        # return the updated namespace and the extra arguments
        return namespace, extras

    def _read_args_from_files(self, arg_strings):
        # expand arguments referencing files
        new_arg_strings = []
        for arg_string in arg_strings:

            # for regular arguments, just add them back into the list
            if not arg_string or arg_string[0] not in self.fromfile_prefix_chars:
                new_arg_strings.append(arg_string)

            # replace arguments referencing files with the file content
            else:
                try:
                    with open(arg_string[1:]) as args_file:
                        arg_strings = []
                        for arg_line in args_file.read().splitlines():
                            for arg in self.convert_arg_line_to_args(arg_line):
                                arg_strings.append(arg)
                        arg_strings = self._read_args_from_files(arg_strings)
                        new_arg_strings.extend(arg_strings)
                except OSError:
                    err = _sys.exc_info()[1]
                    self.error(str(err))

        # return the modified argument list
        return new_arg_strings

    def convert_arg_line_to_args(self, arg_line):
        return [arg_line]

    def _match_argument(self, action, arg_strings_pattern):
        # match the pattern for this action to the arg strings
        nargs_pattern = self._get_nargs_pattern(action)
        match = _re.match(nargs_pattern, arg_strings_pattern)

        # raise an exception if we weren't able to find a match
        if match is None:
            nargs_errors = {
                None: _('expected one argument'),
                OPTIONAL: _('expected at most one argument'),
                ONE_OR_MORE: _('expected at least one argument'),
            }
            default = ngettext('expected %s argument',
                               'expected %s arguments',
                               action.nargs) % action.nargs
            msg = nargs_errors.get(action.nargs, default)
            raise ArgumentError(action, msg)

        # return the number of arguments matched
        return len(match.group(1))

    def _match_arguments_partial(self, actions, arg_strings_pattern):
        # progressively shorten the actions list by slicing off the
        # final actions until we find a match
        result = []
        for i in range(len(actions), 0, -1):
            actions_slice = actions[:i]
            pattern = ''.join([self._get_nargs_pattern(action)
                               for action in actions_slice])
            match = _re.match(pattern, arg_strings_pattern)
            if match is not None:
                result.extend([len(string) for string in match.groups()])
                break

        # return the list of arg string counts
        return result

    def _parse_optional(self, arg_string):
        # if it's an empty string, it was meant to be a positional
        if not arg_string:
            return None

        # if it doesn't start with a prefix, it was meant to be positional
        if not arg_string[0] in self.prefix_chars:
            return None

        # if the option string is present in the parser, return the action
        if arg_string in self._option_string_actions:
            action = self._option_string_actions[arg_string]
            return action, arg_string, None

        # if it's just a single character, it was meant to be positional
        if len(arg_string) == 1:
            return None

        # if the option string before the "=" is present, return the action
        if '=' in arg_string:
            option_string, explicit_arg = arg_string.split('=', 1)
            if option_string in self._option_string_actions:
                action = self._option_string_actions[option_string]
                return action, option_string, explicit_arg

        # search through all possible prefixes of the option string
        # and all actions in the parser for possible interpretations
        option_tuples = self._get_option_tuples(arg_string)

        # if multiple actions match, the option string was ambiguous
        if len(option_tuples) > 1:
            options = ', '.join([option_string
                for action, option_string, explicit_arg in option_tuples])
            args = {'option': arg_string, 'matches': options}
            msg = _('ambiguous option: %(option)s could match %(matches)s')
            self.error(msg % args)

        # if exactly one action matched, this segmentation is good,
        # so return the parsed action
        elif len(option_tuples) == 1:
            option_tuple, = option_tuples
            return option_tuple

        # if it was not found as an option, but it looks like a negative
        # number, it was meant to be positional
        # unless there are negative-number-like options
        if self._negative_number_matcher.match(arg_string):
            if not self._has_negative_number_optionals:
                return None

        # if it contains a space, it was meant to be a positional
        if ' ' in arg_string:
            return None

        # it was meant to be an optional but there is no such option
        # in this parser (though it might be a valid option in a subparser)
        return None, arg_string, None

    def _get_option_tuples(self, option_string):
        result = []

        # option strings starting with two prefix characters are only
        # split at the '='
        chars = self.prefix_chars
        if option_string[0] in chars and option_string[1] in chars:
            if '=' in option_string:
                option_prefix, explicit_arg = option_string.split('=', 1)
            else:
                option_prefix = option_string
                explicit_arg = None
            for option_string in self._option_string_actions:
                if option_string.startswith(option_prefix):
                    action = self._option_string_actions[option_string]
                    tup = action, option_string, explicit_arg
                    result.append(tup)

        # single character options can be concatenated with their arguments
        # but multiple character options always have to have their argument
        # separate
        elif option_string[0] in chars and option_string[1] not in chars:
            option_prefix = option_string
            explicit_arg = None
            short_option_prefix = option_string[:2]
            short_explicit_arg = option_string[2:]

            for option_string in self._option_string_actions:
                if option_string == short_option_prefix:
                    action = self._option_string_actions[option_string]
                    tup = action, option_string, short_explicit_arg
                    result.append(tup)
                elif option_string.startswith(option_prefix):
                    action = self._option_string_actions[option_string]
                    tup = action, option_string, explicit_arg
                    result.append(tup)

        # shouldn't ever get here
        else:
            self.error(_('unexpected option string: %s') % option_string)

        # return the collected option tuples
        return result

    def _get_nargs_pattern(self, action):
        # in all examples below, we have to allow for '--' args
        # which are represented as '-' in the pattern
        nargs = action.nargs

        # the default (None) is assumed to be a single argument
        if nargs is None:
            nargs_pattern = '(-*A-*)'

        # allow zero or one arguments
        elif nargs == OPTIONAL:
            nargs_pattern = '(-*A?-*)'

        # allow zero or more arguments
        elif nargs == ZERO_OR_MORE:
            nargs_pattern = '(-*[A-]*)'

        # allow one or more arguments
        elif nargs == ONE_OR_MORE:
            nargs_pattern = '(-*A[A-]*)'

        # allow any number of options or arguments
        elif nargs == REMAINDER:
            nargs_pattern = '([-AO]*)'

        # allow one argument followed by any number of options or arguments
        elif nargs == PARSER:
            nargs_pattern = '(-*A[-AO]*)'

        # all others should be integers
        else:
            nargs_pattern = '(-*%s-*)' % '-*'.join('A' * nargs)

        # if this is an optional action, -- is not allowed
        if action.option_strings:
            nargs_pattern = nargs_pattern.replace('-*', '')
            nargs_pattern = nargs_pattern.replace('-', '')

        # return the pattern
        return nargs_pattern

    # ========================
    # Value conversion methods
    # ========================
    def _get_values(self, action, arg_strings):
        # for everything but PARSER, REMAINDER args, strip out first '--'
        if action.nargs not in [PARSER, REMAINDER]:
            try:
                arg_strings.remove('--')
            except ValueError:
                pass

        # optional argument produces a default when not present
        if not arg_strings and action.nargs == OPTIONAL:
            if action.option_strings:
                value = action.const
            else:
                value = action.default
            if isinstance(value, str):
                value = self._get_value(action, value)
                self._check_value(action, value)

        # when nargs='*' on a positional, if there were no command-line
        # args, use the default if it is anything other than None
        elif (not arg_strings and action.nargs == ZERO_OR_MORE and
              not action.option_strings):
            if action.default is not None:
                value = action.default
            else:
                value = arg_strings
            self._check_value(action, value)

        # single argument or optional argument produces a single value
        elif len(arg_strings) == 1 and action.nargs in [None, OPTIONAL]:
            arg_string, = arg_strings
            value = self._get_value(action, arg_string)
            self._check_value(action, value)

        # REMAINDER arguments convert all values, checking none
        elif action.nargs == REMAINDER:
            value = [self._get_value(action, v) for v in arg_strings]

        # PARSER arguments convert all values, but check only the first
        elif action.nargs == PARSER:
            value = [self._get_value(action, v) for v in arg_strings]
            self._check_value(action, value[0])

        # all other types of nargs produce a list
        else:
            value = [self._get_value(action, v) for v in arg_strings]
            for v in value:
                self._check_value(action, v)

        # return the converted value
        return value

    def _get_value(self, action, arg_string):
        type_func = self._registry_get('type', action.type, action.type)
        if not callable(type_func):
            msg = _('%r is not callable')
            raise ArgumentError(action, msg % type_func)

        # convert the value to the appropriate type
        try:
            result = type_func(arg_string)

        # ArgumentTypeErrors indicate errors
        except ArgumentTypeError:
            name = getattr(action.type, '__name__', repr(action.type))
            msg = str(_sys.exc_info()[1])
            raise ArgumentError(action, msg)

        # TypeErrors or ValueErrors also indicate errors
        except (TypeError, ValueError):
            name = getattr(action.type, '__name__', repr(action.type))
            args = {'type': name, 'value': arg_string}
            msg = _('invalid %(type)s value: %(value)r')
            raise ArgumentError(action, msg % args)

        # return the converted value
        return result

    def _check_value(self, action, value):
        # converted value must be one of the choices (if specified)
        if action.choices is not None and value not in action.choices:
            args = {'value': value,
                    'choices': ', '.join(map(repr, action.choices))}
            msg = _('invalid choice: %(value)r (choose from %(choices)s)')
            raise ArgumentError(action, msg % args)

    # =======================
    # Help-formatting methods
    # =======================
    def format_usage(self):
        formatter = self._get_formatter()
        formatter.add_usage(self.usage, self._actions,
                            self._mutually_exclusive_groups)
        return formatter.format_help()

    def format_help(self):
        formatter = self._get_formatter()

        # usage
        formatter.add_usage(self.usage, self._actions,
                            self._mutually_exclusive_groups)

        # description
        formatter.add_text(self.description)

        # positionals, optionals and user-defined groups
        for action_group in self._action_groups:
            formatter.start_section(action_group.title)
            formatter.add_text(action_group.description)
            formatter.add_arguments(action_group._group_actions)
            formatter.end_section()

        # epilog
        formatter.add_text(self.epilog)

        # determine help from format above
        return formatter.format_help()

    def _get_formatter(self):
        return self.formatter_class(prog=self.prog)

    # =====================
    # Help-printing methods
    # =====================
    def print_usage(self, file=None):
        if file is None:
            file = _sys.stdout
        self._print_message(self.format_usage(), file)

    def print_help(self, file=None):
        if file is None:
            file = _sys.stdout
        self._print_message(self.format_help(), file)

    def _print_message(self, message, file=None):
        if message:
            if file is None:
                file = _sys.stderr
            file.write(message)

    # ===============
    # Exiting methods
    # ===============
    def exit(self, status=0, message=None):
        if message:
            self._print_message(message, _sys.stderr)
        _sys.exit(status)

    def error(self, message):
        """error(message: string)

        Prints a usage message incorporating the message to stderr and
        exits.

        If you override this in a subclass, it should not return -- it
        should either exit or raise an exception.
        """
        self.print_usage(_sys.stderr)
        args = {'prog': self.prog, 'message': message}
        self.exit(2, _('%(prog)s: error: %(message)s\n') % args)
lib\ast.py
"""
    ast
    ~~~

    The `ast` module helps Python applications to process trees of the Python
    abstract syntax grammar.  The abstract syntax itself might change with
    each Python release; this module helps to find out programmatically what
    the current grammar looks like and allows modifications of it.

    An abstract syntax tree can be generated by passing `ast.PyCF_ONLY_AST` as
    a flag to the `compile()` builtin function or by using the `parse()`
    function from this module.  The result will be a tree of objects whose
    classes all inherit from `ast.AST`.

    A modified abstract syntax tree can be compiled into a Python code object
    using the built-in `compile()` function.

    Additionally various helper functions are provided that make working with
    the trees simpler.  The main intention of the helper functions and this
    module in general is to provide an easy to use interface for libraries
    that work tightly with the python syntax (template engines for example).


    :copyright: Copyright 2008 by Armin Ronacher.
    :license: Python License.
"""
from _ast import *


def parse(source, filename='<unknown>', mode='exec'):
    """
    Parse the source into an AST node.
    Equivalent to compile(source, filename, mode, PyCF_ONLY_AST).
    """
    return compile(source, filename, mode, PyCF_ONLY_AST)


def literal_eval(node_or_string):
    """
    Safely evaluate an expression node or a string containing a Python
    expression.  The string or node provided may only consist of the following
    Python literal structures: strings, bytes, numbers, tuples, lists, dicts,
    sets, booleans, and None.
    """
    if isinstance(node_or_string, str):
        node_or_string = parse(node_or_string, mode='eval')
    if isinstance(node_or_string, Expression):
        node_or_string = node_or_string.body
    def _convert(node):
        if isinstance(node, (Str, Bytes)):
            return node.s
        elif isinstance(node, Num):
            return node.n
        elif isinstance(node, Tuple):
            return tuple(map(_convert, node.elts))
        elif isinstance(node, List):
            return list(map(_convert, node.elts))
        elif isinstance(node, Set):
            return set(map(_convert, node.elts))
        elif isinstance(node, Dict):
            return dict((_convert(k), _convert(v)) for k, v
                        in zip(node.keys, node.values))
        elif isinstance(node, NameConstant):
            return node.value
        elif isinstance(node, UnaryOp) and \
             isinstance(node.op, (UAdd, USub)) and \
             isinstance(node.operand, (Num, UnaryOp, BinOp)):
            operand = _convert(node.operand)
            if isinstance(node.op, UAdd):
                return + operand
            else:
                return - operand
        elif isinstance(node, BinOp) and \
             isinstance(node.op, (Add, Sub)) and \
             isinstance(node.right, (Num, UnaryOp, BinOp)) and \
             isinstance(node.left, (Num, UnaryOp, BinOp)):
            left = _convert(node.left)
            right = _convert(node.right)
            if isinstance(node.op, Add):
                return left + right
            else:
                return left - right
        raise ValueError('malformed node or string: ' + repr(node))
    return _convert(node_or_string)


def dump(node, annotate_fields=True, include_attributes=False):
    """
    Return a formatted dump of the tree in *node*.  This is mainly useful for
    debugging purposes.  The returned string will show the names and the values
    for fields.  This makes the code impossible to evaluate, so if evaluation is
    wanted *annotate_fields* must be set to False.  Attributes such as line
    numbers and column offsets are not dumped by default.  If this is wanted,
    *include_attributes* can be set to True.
    """
    def _format(node):
        if isinstance(node, AST):
            fields = [(a, _format(b)) for a, b in iter_fields(node)]
            rv = '%s(%s' % (node.__class__.__name__, ', '.join(
                ('%s=%s' % field for field in fields)
                if annotate_fields else
                (b for a, b in fields)
            ))
            if include_attributes and node._attributes:
                rv += fields and ', ' or ' '
                rv += ', '.join('%s=%s' % (a, _format(getattr(node, a)))
                                for a in node._attributes)
            return rv + ')'
        elif isinstance(node, list):
            return '[%s]' % ', '.join(_format(x) for x in node)
        return repr(node)
    if not isinstance(node, AST):
        raise TypeError('expected AST, got %r' % node.__class__.__name__)
    return _format(node)


def copy_location(new_node, old_node):
    """
    Copy source location (`lineno` and `col_offset` attributes) from
    *old_node* to *new_node* if possible, and return *new_node*.
    """
    for attr in 'lineno', 'col_offset':
        if attr in old_node._attributes and attr in new_node._attributes \
           and hasattr(old_node, attr):
            setattr(new_node, attr, getattr(old_node, attr))
    return new_node


def fix_missing_locations(node):
    """
    When you compile a node tree with compile(), the compiler expects lineno and
    col_offset attributes for every node that supports them.  This is rather
    tedious to fill in for generated nodes, so this helper adds these attributes
    recursively where not already set, by setting them to the values of the
    parent node.  It works recursively starting at *node*.
    """
    def _fix(node, lineno, col_offset):
        if 'lineno' in node._attributes:
            if not hasattr(node, 'lineno'):
                node.lineno = lineno
            else:
                lineno = node.lineno
        if 'col_offset' in node._attributes:
            if not hasattr(node, 'col_offset'):
                node.col_offset = col_offset
            else:
                col_offset = node.col_offset
        for child in iter_child_nodes(node):
            _fix(child, lineno, col_offset)
    _fix(node, 1, 0)
    return node


def increment_lineno(node, n=1):
    """
    Increment the line number of each node in the tree starting at *node* by *n*.
    This is useful to "move code" to a different location in a file.
    """
    for child in walk(node):
        if 'lineno' in child._attributes:
            child.lineno = getattr(child, 'lineno', 0) + n
    return node


def iter_fields(node):
    """
    Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields``
    that is present on *node*.
    """
    for field in node._fields:
        try:
            yield field, getattr(node, field)
        except AttributeError:
            pass


def iter_child_nodes(node):
    """
    Yield all direct child nodes of *node*, that is, all fields that are nodes
    and all items of fields that are lists of nodes.
    """
    for name, field in iter_fields(node):
        if isinstance(field, AST):
            yield field
        elif isinstance(field, list):
            for item in field:
                if isinstance(item, AST):
                    yield item


def get_docstring(node, clean=True):
    """
    Return the docstring for the given node or None if no docstring can
    be found.  If the node provided does not have docstrings a TypeError
    will be raised.
    """
    if not isinstance(node, (FunctionDef, ClassDef, Module)):
        raise TypeError("%r can't have docstrings" % node.__class__.__name__)
    if node.body and isinstance(node.body[0], Expr) and \
       isinstance(node.body[0].value, Str):
        if clean:
            import inspect
            return inspect.cleandoc(node.body[0].value.s)
        return node.body[0].value.s


def walk(node):
    """
    Recursively yield all descendant nodes in the tree starting at *node*
    (including *node* itself), in no specified order.  This is useful if you
    only want to modify nodes in place and don't care about the context.
    """
    from collections import deque
    todo = deque([node])
    while todo:
        node = todo.popleft()
        todo.extend(iter_child_nodes(node))
        yield node


class NodeVisitor(object):
    """
    A node visitor base class that walks the abstract syntax tree and calls a
    visitor function for every node found.  This function may return a value
    which is forwarded by the `visit` method.

    This class is meant to be subclassed, with the subclass adding visitor
    methods.

    Per default the visitor functions for the nodes are ``'visit_'`` +
    class name of the node.  So a `TryFinally` node visit function would
    be `visit_TryFinally`.  This behavior can be changed by overriding
    the `visit` method.  If no visitor function exists for a node
    (return value `None`) the `generic_visit` visitor is used instead.

    Don't use the `NodeVisitor` if you want to apply changes to nodes during
    traversing.  For this a special visitor exists (`NodeTransformer`) that
    allows modifications.
    """

    def visit(self, node):
        """Visit a node."""
        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        return visitor(node)

    def generic_visit(self, node):
        """Called if no explicit visitor function exists for a node."""
        for field, value in iter_fields(node):
            if isinstance(value, list):
                for item in value:
                    if isinstance(item, AST):
                        self.visit(item)
            elif isinstance(value, AST):
                self.visit(value)


class NodeTransformer(NodeVisitor):
    """
    A :class:`NodeVisitor` subclass that walks the abstract syntax tree and
    allows modification of nodes.

    The `NodeTransformer` will walk the AST and use the return value of the
    visitor methods to replace or remove the old node.  If the return value of
    the visitor method is ``None``, the node will be removed from its location,
    otherwise it is replaced with the return value.  The return value may be the
    original node in which case no replacement takes place.

    Here is an example transformer that rewrites all occurrences of name lookups
    (``foo``) to ``data['foo']``::

       class RewriteName(NodeTransformer):

           def visit_Name(self, node):
               return copy_location(Subscript(
                   value=Name(id='data', ctx=Load()),
                   slice=Index(value=Str(s=node.id)),
                   ctx=node.ctx
               ), node)

    Keep in mind that if the node you're operating on has child nodes you must
    either transform the child nodes yourself or call the :meth:`generic_visit`
    method for the node first.

    For nodes that were part of a collection of statements (that applies to all
    statement nodes), the visitor may also return a list of nodes rather than
    just a single node.

    Usually you use the transformer like this::

       node = YourTransformer().visit(node)
    """

    def generic_visit(self, node):
        for field, old_value in iter_fields(node):
            old_value = getattr(node, field, None)
            if isinstance(old_value, list):
                new_values = []
                for value in old_value:
                    if isinstance(value, AST):
                        value = self.visit(value)
                        if value is None:
                            continue
                        elif not isinstance(value, AST):
                            new_values.extend(value)
                            continue
                    new_values.append(value)
                old_value[:] = new_values
            elif isinstance(old_value, AST):
                new_node = self.visit(old_value)
                if new_node is None:
                    delattr(node, field)
                else:
                    setattr(node, field, new_node)
        return node
lib\asynchat.py
# -*- Mode: Python; tab-width: 4 -*-
#       Id: asynchat.py,v 2.26 2000/09/07 22:29:26 rushing Exp
#       Author: Sam Rushing <[email protected]>

# ======================================================================
# Copyright 1996 by Sam Rushing
#
#                         All Rights Reserved
#
# Permission to use, copy, modify, and distribute this software and
# its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of Sam
# Rushing not be used in advertising or publicity pertaining to
# distribution of the software without specific, written prior
# permission.
#
# SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
# INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
# NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
# CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
# OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
# NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# ======================================================================

r"""A class supporting chat-style (command/response) protocols.

This class adds support for 'chat' style protocols - where one side
sends a 'command', and the other sends a response (examples would be
the common internet protocols - smtp, nntp, ftp, etc..).

The handle_read() method looks at the input stream for the current
'terminator' (usually '\r\n' for single-line responses, '\r\n.\r\n'
for multi-line output), calling self.found_terminator() on its
receipt.

for example:
Say you build an async nntp client using this class.  At the start
of the connection, you'll have self.terminator set to '\r\n', in
order to process the single-line greeting.  Just before issuing a
'LIST' command you'll set it to '\r\n.\r\n'.  The output of the LIST
command will be accumulated (using your own 'collect_incoming_data'
method) up to the terminator, and then control will be returned to
you - by calling your self.found_terminator() method.
"""
import asyncore
from collections import deque


class async_chat(asyncore.dispatcher):
    """This is an abstract class.  You must derive from this class, and add
    the two methods collect_incoming_data() and found_terminator()"""

    # these are overridable defaults

    ac_in_buffer_size = 65536
    ac_out_buffer_size = 65536

    # we don't want to enable the use of encoding by default, because that is a
    # sign of an application bug that we don't want to pass silently

    use_encoding = 0
    encoding = 'latin-1'

    def __init__(self, sock=None, map=None):
        # for string terminator matching
        self.ac_in_buffer = b''

        # we use a list here rather than io.BytesIO for a few reasons...
        # del lst[:] is faster than bio.truncate(0)
        # lst = [] is faster than bio.truncate(0)
        self.incoming = []

        # we toss the use of the "simple producer" and replace it with
        # a pure deque, which the original fifo was a wrapping of
        self.producer_fifo = deque()
        asyncore.dispatcher.__init__(self, sock, map)

    def collect_incoming_data(self, data):
        raise NotImplementedError("must be implemented in subclass")

    def _collect_incoming_data(self, data):
        self.incoming.append(data)

    def _get_data(self):
        d = b''.join(self.incoming)
        del self.incoming[:]
        return d

    def found_terminator(self):
        raise NotImplementedError("must be implemented in subclass")

    def set_terminator(self, term):
        """Set the input delimiter.

        Can be a fixed string of any length, an integer, or None.
        """
        if isinstance(term, str) and self.use_encoding:
            term = bytes(term, self.encoding)
        elif isinstance(term, int) and term < 0:
            raise ValueError('the number of received bytes must be positive')
        self.terminator = term

    def get_terminator(self):
        return self.terminator

    # grab some more data from the socket,
    # throw it to the collector method,
    # check for the terminator,
    # if found, transition to the next state.

    def handle_read(self):

        try:
            data = self.recv(self.ac_in_buffer_size)
        except BlockingIOError:
            return
        except OSError as why:
            self.handle_error()
            return

        if isinstance(data, str) and self.use_encoding:
            data = bytes(str, self.encoding)
        self.ac_in_buffer = self.ac_in_buffer + data

        # Continue to search for self.terminator in self.ac_in_buffer,
        # while calling self.collect_incoming_data.  The while loop
        # is necessary because we might read several data+terminator
        # combos with a single recv(4096).

        while self.ac_in_buffer:
            lb = len(self.ac_in_buffer)
            terminator = self.get_terminator()
            if not terminator:
                # no terminator, collect it all
                self.collect_incoming_data(self.ac_in_buffer)
                self.ac_in_buffer = b''
            elif isinstance(terminator, int):
                # numeric terminator
                n = terminator
                if lb < n:
                    self.collect_incoming_data(self.ac_in_buffer)
                    self.ac_in_buffer = b''
                    self.terminator = self.terminator - lb
                else:
                    self.collect_incoming_data(self.ac_in_buffer[:n])
                    self.ac_in_buffer = self.ac_in_buffer[n:]
                    self.terminator = 0
                    self.found_terminator()
            else:
                # 3 cases:
                # 1) end of buffer matches terminator exactly:
                #    collect data, transition
                # 2) end of buffer matches some prefix:
                #    collect data to the prefix
                # 3) end of buffer does not match any prefix:
                #    collect data
                terminator_len = len(terminator)
                index = self.ac_in_buffer.find(terminator)
                if index != -1:
                    # we found the terminator
                    if index > 0:
                        # don't bother reporting the empty string
                        # (source of subtle bugs)
                        self.collect_incoming_data(self.ac_in_buffer[:index])
                    self.ac_in_buffer = self.ac_in_buffer[index+terminator_len:]
                    # This does the Right Thing if the terminator
                    # is changed here.
                    self.found_terminator()
                else:
                    # check for a prefix of the terminator
                    index = find_prefix_at_end(self.ac_in_buffer, terminator)
                    if index:
                        if index != lb:
                            # we found a prefix, collect up to the prefix
                            self.collect_incoming_data(self.ac_in_buffer[:-index])
                            self.ac_in_buffer = self.ac_in_buffer[-index:]
                        break
                    else:
                        # no prefix, collect it all
                        self.collect_incoming_data(self.ac_in_buffer)
                        self.ac_in_buffer = b''

    def handle_write(self):
        self.initiate_send()

    def handle_close(self):
        self.close()

    def push(self, data):
        if not isinstance(data, (bytes, bytearray, memoryview)):
            raise TypeError('data argument must be byte-ish (%r)',
                            type(data))
        sabs = self.ac_out_buffer_size
        if len(data) > sabs:
            for i in range(0, len(data), sabs):
                self.producer_fifo.append(data[i:i+sabs])
        else:
            self.producer_fifo.append(data)
        self.initiate_send()

    def push_with_producer(self, producer):
        self.producer_fifo.append(producer)
        self.initiate_send()

    def readable(self):
        "predicate for inclusion in the readable for select()"
        # cannot use the old predicate, it violates the claim of the
        # set_terminator method.

        # return (len(self.ac_in_buffer) <= self.ac_in_buffer_size)
        return 1

    def writable(self):
        "predicate for inclusion in the writable for select()"
        return self.producer_fifo or (not self.connected)

    def close_when_done(self):
        "automatically close this channel once the outgoing queue is empty"
        self.producer_fifo.append(None)

    def initiate_send(self):
        while self.producer_fifo and self.connected:
            first = self.producer_fifo[0]
            # handle empty string/buffer or None entry
            if not first:
                del self.producer_fifo[0]
                if first is None:
                    self.handle_close()
                    return

            # handle classic producer behavior
            obs = self.ac_out_buffer_size
            try:
                data = first[:obs]
            except TypeError:
                data = first.more()
                if data:
                    self.producer_fifo.appendleft(data)
                else:
                    del self.producer_fifo[0]
                continue

            if isinstance(data, str) and self.use_encoding:
                data = bytes(data, self.encoding)

            # send the data
            try:
                num_sent = self.send(data)
            except OSError:
                self.handle_error()
                return

            if num_sent:
                if num_sent < len(data) or obs < len(first):
                    self.producer_fifo[0] = first[num_sent:]
                else:
                    del self.producer_fifo[0]
            # we tried to send some actual data
            return

    def discard_buffers(self):
        # Emergencies only!
        self.ac_in_buffer = b''
        del self.incoming[:]
        self.producer_fifo.clear()


class simple_producer:

    def __init__(self, data, buffer_size=512):
        self.data = data
        self.buffer_size = buffer_size

    def more(self):
        if len(self.data) > self.buffer_size:
            result = self.data[:self.buffer_size]
            self.data = self.data[self.buffer_size:]
            return result
        else:
            result = self.data
            self.data = b''
            return result


class fifo:
    def __init__(self, list=None):
        if not list:
            self.list = deque()
        else:
            self.list = deque(list)

    def __len__(self):
        return len(self.list)

    def is_empty(self):
        return not self.list

    def first(self):
        return self.list[0]

    def push(self, data):
        self.list.append(data)

    def pop(self):
        if self.list:
            return (1, self.list.popleft())
        else:
            return (0, None)


# Given 'haystack', see if any prefix of 'needle' is at its end.  This
# assumes an exact match has already been checked.  Return the number of
# characters matched.
# for example:
# f_p_a_e("qwerty\r", "\r\n") => 1
# f_p_a_e("qwertydkjf", "\r\n") => 0
# f_p_a_e("qwerty\r\n", "\r\n") => <undefined>

# this could maybe be made faster with a computed regex?
# [answer: no; circa Python-2.0, Jan 2001]
# new python:   28961/s
# old python:   18307/s
# re:        12820/s
# regex:     14035/s

def find_prefix_at_end(haystack, needle):
    l = len(needle) - 1
    while l and not haystack.endswith(needle[:l]):
        l -= 1
    return l
lib\asyncore.py
# -*- Mode: Python -*-
#   Id: asyncore.py,v 2.51 2000/09/07 22:29:26 rushing Exp
#   Author: Sam Rushing <[email protected]>

# ======================================================================
# Copyright 1996 by Sam Rushing
#
#                         All Rights Reserved
#
# Permission to use, copy, modify, and distribute this software and
# its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of Sam
# Rushing not be used in advertising or publicity pertaining to
# distribution of the software without specific, written prior
# permission.
#
# SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
# INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
# NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
# CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
# OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
# NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# ======================================================================

"""Basic infrastructure for asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do "more
than one thing at a time".  Multi-threaded programming is the simplest and
most popular way to do it, but there is another very different technique,
that lets you have nearly all the advantages of multi-threading, without
actually using multiple threads. it's really only practical if your program
is largely I/O bound. If your program is CPU bound, then pre-emptive
scheduled threads are probably what you really need. Network servers are
rarely CPU-bound, however.

If your operating system supports the select() system call in its I/O
library (and nearly all do), then you can use it to juggle multiple
communication channels at once; doing other work while your I/O is taking
place in the "background."  Although this strategy can seem strange and
complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The module documented here solves
many of the difficult problems for you, making the task of building
sophisticated high-performance network servers and clients a snap.
"""

import select
import socket
import sys
import time
import warnings

import os
from errno import EALREADY, EINPROGRESS, EWOULDBLOCK, ECONNRESET, EINVAL, \
     ENOTCONN, ESHUTDOWN, EISCONN, EBADF, ECONNABORTED, EPIPE, EAGAIN, \
     errorcode

_DISCONNECTED = frozenset((ECONNRESET, ENOTCONN, ESHUTDOWN, ECONNABORTED, EPIPE,
                           EBADF))

try:
    socket_map
except NameError:
    socket_map = {}

def _strerror(err):
    try:
        return os.strerror(err)
    except (ValueError, OverflowError, NameError):
        if err in errorcode:
            return errorcode[err]
        return "Unknown error %s" %err

class ExitNow(Exception):
    pass

_reraised_exceptions = (ExitNow, KeyboardInterrupt, SystemExit)

def read(obj):
    try:
        obj.handle_read_event()
    except _reraised_exceptions:
        raise
    except:
        obj.handle_error()

def write(obj):
    try:
        obj.handle_write_event()
    except _reraised_exceptions:
        raise
    except:
        obj.handle_error()

def _exception(obj):
    try:
        obj.handle_expt_event()
    except _reraised_exceptions:
        raise
    except:
        obj.handle_error()

def readwrite(obj, flags):
    try:
        if flags & select.POLLIN:
            obj.handle_read_event()
        if flags & select.POLLOUT:
            obj.handle_write_event()
        if flags & select.POLLPRI:
            obj.handle_expt_event()
        if flags & (select.POLLHUP | select.POLLERR | select.POLLNVAL):
            obj.handle_close()
    except OSError as e:
        if e.args[0] not in _DISCONNECTED:
            obj.handle_error()
        else:
            obj.handle_close()
    except _reraised_exceptions:
        raise
    except:
        obj.handle_error()

def poll(timeout=0.0, map=None):
    if map is None:
        map = socket_map
    if map:
        r = []; w = []; e = []
        for fd, obj in list(map.items()):
            is_r = obj.readable()
            is_w = obj.writable()
            if is_r:
                r.append(fd)
            # accepting sockets should not be writable
            if is_w and not obj.accepting:
                w.append(fd)
            if is_r or is_w:
                e.append(fd)
        if [] == r == w == e:
            time.sleep(timeout)
            return

        try:
            r, w, e = select.select(r, w, e, timeout)
        except InterruptedError:
            return

        for fd in r:
            obj = map.get(fd)
            if obj is None:
                continue
            read(obj)

        for fd in w:
            obj = map.get(fd)
            if obj is None:
                continue
            write(obj)

        for fd in e:
            obj = map.get(fd)
            if obj is None:
                continue
            _exception(obj)

def poll2(timeout=0.0, map=None):
    # Use the poll() support added to the select module in Python 2.0
    if map is None:
        map = socket_map
    if timeout is not None:
        # timeout is in milliseconds
        timeout = int(timeout*1000)
    pollster = select.poll()
    if map:
        for fd, obj in list(map.items()):
            flags = 0
            if obj.readable():
                flags |= select.POLLIN | select.POLLPRI
            # accepting sockets should not be writable
            if obj.writable() and not obj.accepting:
                flags |= select.POLLOUT
            if flags:
                pollster.register(fd, flags)
        try:
            r = pollster.poll(timeout)
        except InterruptedError:
            r = []
        for fd, flags in r:
            obj = map.get(fd)
            if obj is None:
                continue
            readwrite(obj, flags)

poll3 = poll2                           # Alias for backward compatibility

def loop(timeout=30.0, use_poll=False, map=None, count=None):
    if map is None:
        map = socket_map

    if use_poll and hasattr(select, 'poll'):
        poll_fun = poll2
    else:
        poll_fun = poll

    if count is None:
        while map:
            poll_fun(timeout, map)

    else:
        while map and count > 0:
            poll_fun(timeout, map)
            count = count - 1

class dispatcher:

    debug = False
    connected = False
    accepting = False
    connecting = False
    closing = False
    addr = None
    ignore_log_types = frozenset(['warning'])

    def __init__(self, sock=None, map=None):
        if map is None:
            self._map = socket_map
        else:
            self._map = map

        self._fileno = None

        if sock:
            # Set to nonblocking just to make sure for cases where we
            # get a socket from a blocking source.
            sock.setblocking(0)
            self.set_socket(sock, map)
            self.connected = True
            # The constructor no longer requires that the socket
            # passed be connected.
            try:
                self.addr = sock.getpeername()
            except OSError as err:
                if err.args[0] in (ENOTCONN, EINVAL):
                    # To handle the case where we got an unconnected
                    # socket.
                    self.connected = False
                else:
                    # The socket is broken in some unknown way, alert
                    # the user and remove it from the map (to prevent
                    # polling of broken sockets).
                    self.del_channel(map)
                    raise
        else:
            self.socket = None

    def __repr__(self):
        status = [self.__class__.__module__+"."+self.__class__.__name__]
        if self.accepting and self.addr:
            status.append('listening')
        elif self.connected:
            status.append('connected')
        if self.addr is not None:
            try:
                status.append('%s:%d' % self.addr)
            except TypeError:
                status.append(repr(self.addr))
        return '<%s at %#x>' % (' '.join(status), id(self))

    __str__ = __repr__

    def add_channel(self, map=None):
        #self.log_info('adding channel %s' % self)
        if map is None:
            map = self._map
        map[self._fileno] = self

    def del_channel(self, map=None):
        fd = self._fileno
        if map is None:
            map = self._map
        if fd in map:
            #self.log_info('closing channel %d:%s' % (fd, self))
            del map[fd]
        self._fileno = None

    def create_socket(self, family=socket.AF_INET, type=socket.SOCK_STREAM):
        self.family_and_type = family, type
        sock = socket.socket(family, type)
        sock.setblocking(0)
        self.set_socket(sock)

    def set_socket(self, sock, map=None):
        self.socket = sock
##        self.__dict__['socket'] = sock
        self._fileno = sock.fileno()
        self.add_channel(map)

    def set_reuse_addr(self):
        # try to re-use a server port if possible
        try:
            self.socket.setsockopt(
                socket.SOL_SOCKET, socket.SO_REUSEADDR,
                self.socket.getsockopt(socket.SOL_SOCKET,
                                       socket.SO_REUSEADDR) | 1
                )
        except OSError:
            pass

    # ==================================================
    # predicates for select()
    # these are used as filters for the lists of sockets
    # to pass to select().
    # ==================================================

    def readable(self):
        return True

    def writable(self):
        return True

    # ==================================================
    # socket object methods.
    # ==================================================

    def listen(self, num):
        self.accepting = True
        if os.name == 'nt' and num > 5:
            num = 5
        return self.socket.listen(num)

    def bind(self, addr):
        self.addr = addr
        return self.socket.bind(addr)

    def connect(self, address):
        self.connected = False
        self.connecting = True
        err = self.socket.connect_ex(address)
        if err in (EINPROGRESS, EALREADY, EWOULDBLOCK) \
        or err == EINVAL and os.name in ('nt', 'ce'):
            self.addr = address
            return
        if err in (0, EISCONN):
            self.addr = address
            self.handle_connect_event()
        else:
            raise OSError(err, errorcode[err])

    def accept(self):
        # XXX can return either an address pair or None
        try:
            conn, addr = self.socket.accept()
        except TypeError:
            return None
        except OSError as why:
            if why.args[0] in (EWOULDBLOCK, ECONNABORTED, EAGAIN):
                return None
            else:
                raise
        else:
            return conn, addr

    def send(self, data):
        try:
            result = self.socket.send(data)
            return result
        except OSError as why:
            if why.args[0] == EWOULDBLOCK:
                return 0
            elif why.args[0] in _DISCONNECTED:
                self.handle_close()
                return 0
            else:
                raise

    def recv(self, buffer_size):
        try:
            data = self.socket.recv(buffer_size)
            if not data:
                # a closed connection is indicated by signaling
                # a read condition, and having recv() return 0.
                self.handle_close()
                return b''
            else:
                return data
        except OSError as why:
            # winsock sometimes raises ENOTCONN
            if why.args[0] in _DISCONNECTED:
                self.handle_close()
                return b''
            else:
                raise

    def close(self):
        self.connected = False
        self.accepting = False
        self.connecting = False
        self.del_channel()
        if self.socket is not None:
            try:
                self.socket.close()
            except OSError as why:
                if why.args[0] not in (ENOTCONN, EBADF):
                    raise

    # cheap inheritance, used to pass all other attribute
    # references to the underlying socket object.
    def __getattr__(self, attr):
        try:
            retattr = getattr(self.socket, attr)
        except AttributeError:
            raise AttributeError("%s instance has no attribute '%s'"
                                 %(self.__class__.__name__, attr))
        else:
            msg = "%(me)s.%(attr)s is deprecated; use %(me)s.socket.%(attr)s " \
                  "instead" % {'me' : self.__class__.__name__, 'attr' : attr}
            warnings.warn(msg, DeprecationWarning, stacklevel=2)
            return retattr

    # log and log_info may be overridden to provide more sophisticated
    # logging and warning methods. In general, log is for 'hit' logging
    # and 'log_info' is for informational, warning and error logging.

    def log(self, message):
        sys.stderr.write('log: %s\n' % str(message))

    def log_info(self, message, type='info'):
        if type not in self.ignore_log_types:
            print('%s: %s' % (type, message))

    def handle_read_event(self):
        if self.accepting:
            # accepting sockets are never connected, they "spawn" new
            # sockets that are connected
            self.handle_accept()
        elif not self.connected:
            if self.connecting:
                self.handle_connect_event()
            self.handle_read()
        else:
            self.handle_read()

    def handle_connect_event(self):
        err = self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR)
        if err != 0:
            raise OSError(err, _strerror(err))
        self.handle_connect()
        self.connected = True
        self.connecting = False

    def handle_write_event(self):
        if self.accepting:
            # Accepting sockets shouldn't get a write event.
            # We will pretend it didn't happen.
            return

        if not self.connected:
            if self.connecting:
                self.handle_connect_event()
        self.handle_write()

    def handle_expt_event(self):
        # handle_expt_event() is called if there might be an error on the
        # socket, or if there is OOB data
        # check for the error condition first
        err = self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR)
        if err != 0:
            # we can get here when select.select() says that there is an
            # exceptional condition on the socket
            # since there is an error, we'll go ahead and close the socket
            # like we would in a subclassed handle_read() that received no
            # data
            self.handle_close()
        else:
            self.handle_expt()

    def handle_error(self):
        nil, t, v, tbinfo = compact_traceback()

        # sometimes a user repr method will crash.
        try:
            self_repr = repr(self)
        except:
            self_repr = '<__repr__(self) failed for object at %0x>' % id(self)

        self.log_info(
            'uncaptured python exception, closing channel %s (%s:%s %s)' % (
                self_repr,
                t,
                v,
                tbinfo
                ),
            'error'
            )
        self.handle_close()

    def handle_expt(self):
        self.log_info('unhandled incoming priority event', 'warning')

    def handle_read(self):
        self.log_info('unhandled read event', 'warning')

    def handle_write(self):
        self.log_info('unhandled write event', 'warning')

    def handle_connect(self):
        self.log_info('unhandled connect event', 'warning')

    def handle_accept(self):
        pair = self.accept()
        if pair is not None:
            self.handle_accepted(*pair)

    def handle_accepted(self, sock, addr):
        sock.close()
        self.log_info('unhandled accepted event', 'warning')

    def handle_close(self):
        self.log_info('unhandled close event', 'warning')
        self.close()

# ---------------------------------------------------------------------------
# adds simple buffered output capability, useful for simple clients.
# [for more sophisticated usage use asynchat.async_chat]
# ---------------------------------------------------------------------------

class dispatcher_with_send(dispatcher):

    def __init__(self, sock=None, map=None):
        dispatcher.__init__(self, sock, map)
        self.out_buffer = b''

    def initiate_send(self):
        num_sent = 0
        num_sent = dispatcher.send(self, self.out_buffer[:65536])
        self.out_buffer = self.out_buffer[num_sent:]

    def handle_write(self):
        self.initiate_send()

    def writable(self):
        return (not self.connected) or len(self.out_buffer)

    def send(self, data):
        if self.debug:
            self.log_info('sending %s' % repr(data))
        self.out_buffer = self.out_buffer + data
        self.initiate_send()

# ---------------------------------------------------------------------------
# used for debugging.
# ---------------------------------------------------------------------------

def compact_traceback():
    t, v, tb = sys.exc_info()
    tbinfo = []
    if not tb: # Must have a traceback
        raise AssertionError("traceback does not exist")
    while tb:
        tbinfo.append((
            tb.tb_frame.f_code.co_filename,
            tb.tb_frame.f_code.co_name,
            str(tb.tb_lineno)
            ))
        tb = tb.tb_next

    # just to be safe
    del tb

    file, function, line = tbinfo[-1]
    info = ' '.join(['[%s|%s|%s]' % x for x in tbinfo])
    return (file, function, line), t, v, info

def close_all(map=None, ignore_all=False):
    if map is None:
        map = socket_map
    for x in list(map.values()):
        try:
            x.close()
        except OSError as x:
            if x.args[0] == EBADF:
                pass
            elif not ignore_all:
                raise
        except _reraised_exceptions:
            raise
        except:
            if not ignore_all:
                raise
    map.clear()

# Asynchronous File I/O:
#
# After a little research (reading man pages on various unixen, and
# digging through the linux kernel), I've determined that select()
# isn't meant for doing asynchronous file i/o.
# Heartening, though - reading linux/mm/filemap.c shows that linux
# supports asynchronous read-ahead.  So _MOST_ of the time, the data
# will be sitting in memory for us already when we go to read it.
#
# What other OS's (besides NT) support async file i/o?  [VMS?]
#
# Regardless, this is useful for pipes, and stdin/stdout...

if os.name == 'posix':
    import fcntl

    class file_wrapper:
        # Here we override just enough to make a file
        # look like a socket for the purposes of asyncore.
        # The passed fd is automatically os.dup()'d

        def __init__(self, fd):
            self.fd = os.dup(fd)

        def __del__(self):
            if self.fd >= 0:
                warnings.warn("unclosed file %r" % self, ResourceWarning)
            self.close()

        def recv(self, *args):
            return os.read(self.fd, *args)

        def send(self, *args):
            return os.write(self.fd, *args)

        def getsockopt(self, level, optname, buflen=None):
            if (level == socket.SOL_SOCKET and
                optname == socket.SO_ERROR and
                not buflen):
                return 0
            raise NotImplementedError("Only asyncore specific behaviour "
                                      "implemented.")

        read = recv
        write = send

        def close(self):
            if self.fd < 0:
                return
            os.close(self.fd)
            self.fd = -1

        def fileno(self):
            return self.fd

    class file_dispatcher(dispatcher):

        def __init__(self, fd, map=None):
            dispatcher.__init__(self, None, map)
            self.connected = True
            try:
                fd = fd.fileno()
            except AttributeError:
                pass
            self.set_file(fd)
            # set it to non-blocking mode
            flags = fcntl.fcntl(fd, fcntl.F_GETFL, 0)
            flags = flags | os.O_NONBLOCK
            fcntl.fcntl(fd, fcntl.F_SETFL, flags)

        def set_file(self, fd):
            self.socket = file_wrapper(fd)
            self._fileno = self.socket.fileno()
            self.add_channel()
lib\base64.py
#! /usr/bin/env python3

"""Base16, Base32, Base64 (RFC 3548), Base85 and Ascii85 data encodings"""

# Modified 04-Oct-1995 by Jack Jansen to use binascii module
# Modified 30-Dec-2003 by Barry Warsaw to add full RFC 3548 support
# Modified 22-May-2007 by Guido van Rossum to use bytes everywhere

import re
import struct
import binascii


__all__ = [
    # Legacy interface exports traditional RFC 1521 Base64 encodings
    'encode', 'decode', 'encodebytes', 'decodebytes',
    # Generalized interface for other encodings
    'b64encode', 'b64decode', 'b32encode', 'b32decode',
    'b16encode', 'b16decode',
    # Base85 and Ascii85 encodings
    'b85encode', 'b85decode', 'a85encode', 'a85decode',
    # Standard Base64 encoding
    'standard_b64encode', 'standard_b64decode',
    # Some common Base64 alternatives.  As referenced by RFC 3458, see thread
    # starting at:
    #
    # http://zgp.org/pipermail/p2p-hackers/2001-September/000316.html
    'urlsafe_b64encode', 'urlsafe_b64decode',
    ]


bytes_types = (bytes, bytearray)  # Types acceptable as binary data

def _bytes_from_decode_data(s):
    if isinstance(s, str):
        try:
            return s.encode('ascii')
        except UnicodeEncodeError:
            raise ValueError('string argument should contain only ASCII characters')
    if isinstance(s, bytes_types):
        return s
    try:
        return memoryview(s).tobytes()
    except TypeError:
        raise TypeError("argument should be a bytes-like object or ASCII "
                        "string, not %r" % s.__class__.__name__) from None


# Base64 encoding/decoding uses binascii

def b64encode(s, altchars=None):
    """Encode a byte string using Base64.

    s is the byte string to encode.  Optional altchars must be a byte
    string of length 2 which specifies an alternative alphabet for the
    '+' and '/' characters.  This allows an application to
    e.g. generate url or filesystem safe Base64 strings.

    The encoded byte string is returned.
    """
    # Strip off the trailing newline
    encoded = binascii.b2a_base64(s)[:-1]
    if altchars is not None:
        assert len(altchars) == 2, repr(altchars)
        return encoded.translate(bytes.maketrans(b'+/', altchars))
    return encoded


def b64decode(s, altchars=None, validate=False):
    """Decode a Base64 encoded byte string.

    s is the byte string to decode.  Optional altchars must be a
    string of length 2 which specifies the alternative alphabet used
    instead of the '+' and '/' characters.

    The decoded string is returned.  A binascii.Error is raised if s is
    incorrectly padded.

    If validate is False (the default), non-base64-alphabet characters are
    discarded prior to the padding check.  If validate is True,
    non-base64-alphabet characters in the input result in a binascii.Error.
    """
    s = _bytes_from_decode_data(s)
    if altchars is not None:
        altchars = _bytes_from_decode_data(altchars)
        assert len(altchars) == 2, repr(altchars)
        s = s.translate(bytes.maketrans(altchars, b'+/'))
    if validate and not re.match(b'^[A-Za-z0-9+/]*={0,2}$', s):
        raise binascii.Error('Non-base64 digit found')
    return binascii.a2b_base64(s)


def standard_b64encode(s):
    """Encode a byte string using the standard Base64 alphabet.

    s is the byte string to encode.  The encoded byte string is returned.
    """
    return b64encode(s)

def standard_b64decode(s):
    """Decode a byte string encoded with the standard Base64 alphabet.

    s is the byte string to decode.  The decoded byte string is
    returned.  binascii.Error is raised if the input is incorrectly
    padded or if there are non-alphabet characters present in the
    input.
    """
    return b64decode(s)


_urlsafe_encode_translation = bytes.maketrans(b'+/', b'-_')
_urlsafe_decode_translation = bytes.maketrans(b'-_', b'+/')

def urlsafe_b64encode(s):
    """Encode a byte string using a url-safe Base64 alphabet.

    s is the byte string to encode.  The encoded byte string is
    returned.  The alphabet uses '-' instead of '+' and '_' instead of
    '/'.
    """
    return b64encode(s).translate(_urlsafe_encode_translation)

def urlsafe_b64decode(s):
    """Decode a byte string encoded with the standard Base64 alphabet.

    s is the byte string to decode.  The decoded byte string is
    returned.  binascii.Error is raised if the input is incorrectly
    padded or if there are non-alphabet characters present in the
    input.

    The alphabet uses '-' instead of '+' and '_' instead of '/'.
    """
    s = _bytes_from_decode_data(s)
    s = s.translate(_urlsafe_decode_translation)
    return b64decode(s)



# Base32 encoding/decoding must be done in Python
_b32alphabet = b'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567'
_b32tab2 = None
_b32rev = None

def b32encode(s):
    """Encode a byte string using Base32.

    s is the byte string to encode.  The encoded byte string is returned.
    """
    global _b32tab2
    # Delay the initialization of the table to not waste memory
    # if the function is never called
    if _b32tab2 is None:
        b32tab = [bytes((i,)) for i in _b32alphabet]
        _b32tab2 = [a + b for a in b32tab for b in b32tab]
        b32tab = None

    if not isinstance(s, bytes_types):
        s = memoryview(s).tobytes()
    leftover = len(s) % 5
    # Pad the last quantum with zero bits if necessary
    if leftover:
        s = s + bytes(5 - leftover)  # Don't use += !
    encoded = bytearray()
    from_bytes = int.from_bytes
    b32tab2 = _b32tab2
    for i in range(0, len(s), 5):
        c = from_bytes(s[i: i + 5], 'big')
        encoded += (b32tab2[c >> 30] +           # bits 1 - 10
                    b32tab2[(c >> 20) & 0x3ff] + # bits 11 - 20
                    b32tab2[(c >> 10) & 0x3ff] + # bits 21 - 30
                    b32tab2[c & 0x3ff]           # bits 31 - 40
                   )
    # Adjust for any leftover partial quanta
    if leftover == 1:
        encoded[-6:] = b'======'
    elif leftover == 2:
        encoded[-4:] = b'===='
    elif leftover == 3:
        encoded[-3:] = b'==='
    elif leftover == 4:
        encoded[-1:] = b'='
    return bytes(encoded)

def b32decode(s, casefold=False, map01=None):
    """Decode a Base32 encoded byte string.

    s is the byte string to decode.  Optional casefold is a flag
    specifying whether a lowercase alphabet is acceptable as input.
    For security purposes, the default is False.

    RFC 3548 allows for optional mapping of the digit 0 (zero) to the
    letter O (oh), and for optional mapping of the digit 1 (one) to
    either the letter I (eye) or letter L (el).  The optional argument
    map01 when not None, specifies which letter the digit 1 should be
    mapped to (when map01 is not None, the digit 0 is always mapped to
    the letter O).  For security purposes the default is None, so that
    0 and 1 are not allowed in the input.

    The decoded byte string is returned.  binascii.Error is raised if
    the input is incorrectly padded or if there are non-alphabet
    characters present in the input.
    """
    global _b32rev
    # Delay the initialization of the table to not waste memory
    # if the function is never called
    if _b32rev is None:
        _b32rev = {v: k for k, v in enumerate(_b32alphabet)}
    s = _bytes_from_decode_data(s)
    if len(s) % 8:
        raise binascii.Error('Incorrect padding')
    # Handle section 2.4 zero and one mapping.  The flag map01 will be either
    # False, or the character to map the digit 1 (one) to.  It should be
    # either L (el) or I (eye).
    if map01 is not None:
        map01 = _bytes_from_decode_data(map01)
        assert len(map01) == 1, repr(map01)
        s = s.translate(bytes.maketrans(b'01', b'O' + map01))
    if casefold:
        s = s.upper()
    # Strip off pad characters from the right.  We need to count the pad
    # characters because this will tell us how many null bytes to remove from
    # the end of the decoded string.
    l = len(s)
    s = s.rstrip(b'=')
    padchars = l - len(s)
    # Now decode the full quanta
    decoded = bytearray()
    b32rev = _b32rev
    for i in range(0, len(s), 8):
        quanta = s[i: i + 8]
        acc = 0
        try:
            for c in quanta:
                acc = (acc << 5) + b32rev[c]
        except KeyError:
            raise binascii.Error('Non-base32 digit found') from None
        decoded += acc.to_bytes(5, 'big')
    # Process the last, partial quanta
    if padchars:
        acc <<= 5 * padchars
        last = acc.to_bytes(5, 'big')
        if padchars == 1:
            decoded[-5:] = last[:-1]
        elif padchars == 3:
            decoded[-5:] = last[:-2]
        elif padchars == 4:
            decoded[-5:] = last[:-3]
        elif padchars == 6:
            decoded[-5:] = last[:-4]
        else:
            raise binascii.Error('Incorrect padding')
    return bytes(decoded)



# RFC 3548, Base 16 Alphabet specifies uppercase, but hexlify() returns
# lowercase.  The RFC also recommends against accepting input case
# insensitively.
def b16encode(s):
    """Encode a byte string using Base16.

    s is the byte string to encode.  The encoded byte string is returned.
    """
    return binascii.hexlify(s).upper()


def b16decode(s, casefold=False):
    """Decode a Base16 encoded byte string.

    s is the byte string to decode.  Optional casefold is a flag
    specifying whether a lowercase alphabet is acceptable as input.
    For security purposes, the default is False.

    The decoded byte string is returned.  binascii.Error is raised if
    s were incorrectly padded or if there are non-alphabet characters
    present in the string.
    """
    s = _bytes_from_decode_data(s)
    if casefold:
        s = s.upper()
    if re.search(b'[^0-9A-F]', s):
        raise binascii.Error('Non-base16 digit found')
    return binascii.unhexlify(s)

#
# Ascii85 encoding/decoding
#

_a85chars = None
_a85chars2 = None
_A85START = b"<~"
_A85END = b"~>"

def _85encode(b, chars, chars2, pad=False, foldnuls=False, foldspaces=False):
    # Helper function for a85encode and b85encode
    if not isinstance(b, bytes_types):
        b = memoryview(b).tobytes()

    padding = (-len(b)) % 4
    if padding:
        b = b + b'\0' * padding
    words = struct.Struct('!%dI' % (len(b) // 4)).unpack(b)

    chunks = [b'z' if foldnuls and not word else
              b'y' if foldspaces and word == 0x20202020 else
              (chars2[word // 614125] +
               chars2[word // 85 % 7225] +
               chars[word % 85])
              for word in words]

    if padding and not pad:
        if chunks[-1] == b'z':
            chunks[-1] = chars[0] * 5
        chunks[-1] = chunks[-1][:-padding]

    return b''.join(chunks)

def a85encode(b, *, foldspaces=False, wrapcol=0, pad=False, adobe=False):
    """Encode a byte string using Ascii85.

    b is the byte string to encode. The encoded byte string is returned.

    foldspaces is an optional flag that uses the special short sequence 'y'
    instead of 4 consecutive spaces (ASCII 0x20) as supported by 'btoa'. This
    feature is not supported by the "standard" Adobe encoding.

    wrapcol controls whether the output should have newline ('\\n') characters
    added to it. If this is non-zero, each output line will be at most this
    many characters long.

    pad controls whether the input string is padded to a multiple of 4 before
    encoding. Note that the btoa implementation always pads.

    adobe controls whether the encoded byte sequence is framed with <~ and ~>,
    which is used by the Adobe implementation.
    """
    global _a85chars, _a85chars2
    # Delay the initialization of tables to not waste memory
    # if the function is never called
    if _a85chars is None:
        _a85chars = [bytes((i,)) for i in range(33, 118)]
        _a85chars2 = [(a + b) for a in _a85chars for b in _a85chars]

    result = _85encode(b, _a85chars, _a85chars2, pad, True, foldspaces)

    if adobe:
        result = _A85START + result
    if wrapcol:
        wrapcol = max(2 if adobe else 1, wrapcol)
        chunks = [result[i: i + wrapcol]
                  for i in range(0, len(result), wrapcol)]
        if adobe:
            if len(chunks[-1]) + 2 > wrapcol:
                chunks.append(b'')
        result = b'\n'.join(chunks)
    if adobe:
        result += _A85END

    return result

def a85decode(b, *, foldspaces=False, adobe=False, ignorechars=b' \t\n\r\v'):
    """Decode an Ascii85 encoded byte string.

    s is the byte string to decode.

    foldspaces is a flag that specifies whether the 'y' short sequence should be
    accepted as shorthand for 4 consecutive spaces (ASCII 0x20). This feature is
    not supported by the "standard" Adobe encoding.

    adobe controls whether the input sequence is in Adobe Ascii85 format (i.e.
    is framed with <~ and ~>).

    ignorechars should be a byte string containing characters to ignore from the
    input. This should only contain whitespace characters, and by default
    contains all whitespace characters in ASCII.
    """
    b = _bytes_from_decode_data(b)
    if adobe:
        if not (b.startswith(_A85START) and b.endswith(_A85END)):
            raise ValueError("Ascii85 encoded byte sequences must be bracketed "
                             "by {!r} and {!r}".format(_A85START, _A85END))
        b = b[2:-2] # Strip off start/end markers
    #
    # We have to go through this stepwise, so as to ignore spaces and handle
    # special short sequences
    #
    packI = struct.Struct('!I').pack
    decoded = []
    decoded_append = decoded.append
    curr = []
    curr_append = curr.append
    curr_clear = curr.clear
    for x in b + b'u' * 4:
        if b'!'[0] <= x <= b'u'[0]:
            curr_append(x)
            if len(curr) == 5:
                acc = 0
                for x in curr:
                    acc = 85 * acc + (x - 33)
                try:
                    decoded_append(packI(acc))
                except struct.error:
                    raise ValueError('Ascii85 overflow') from None
                curr_clear()
        elif x == b'z'[0]:
            if curr:
                raise ValueError('z inside Ascii85 5-tuple')
            decoded_append(b'\0\0\0\0')
        elif foldspaces and x == b'y'[0]:
            if curr:
                raise ValueError('y inside Ascii85 5-tuple')
            decoded_append(b'\x20\x20\x20\x20')
        elif x in ignorechars:
            # Skip whitespace
            continue
        else:
            raise ValueError('Non-Ascii85 digit found: %c' % x)

    result = b''.join(decoded)
    padding = 4 - len(curr)
    if padding:
        # Throw away the extra padding
        result = result[:-padding]
    return result

# The following code is originally taken (with permission) from Mercurial

_b85alphabet = (b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                b"abcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~")
_b85chars = None
_b85chars2 = None
_b85dec = None

def b85encode(b, pad=False):
    """Encode an ASCII-encoded byte array in base85 format.

    If pad is true, the input is padded with "\\0" so its length is a multiple of
    4 characters before encoding.
    """
    global _b85chars, _b85chars2
    # Delay the initialization of tables to not waste memory
    # if the function is never called
    if _b85chars is None:
        _b85chars = [bytes((i,)) for i in _b85alphabet]
        _b85chars2 = [(a + b) for a in _b85chars for b in _b85chars]
    return _85encode(b, _b85chars, _b85chars2, pad)

def b85decode(b):
    """Decode base85-encoded byte array"""
    global _b85dec
    # Delay the initialization of tables to not waste memory
    # if the function is never called
    if _b85dec is None:
        _b85dec = [None] * 256
        for i, c in enumerate(_b85alphabet):
            _b85dec[c] = i

    b = _bytes_from_decode_data(b)
    padding = (-len(b)) % 5
    b = b + b'~' * padding
    out = []
    packI = struct.Struct('!I').pack
    for i in range(0, len(b), 5):
        chunk = b[i:i + 5]
        acc = 0
        try:
            for c in chunk:
                acc = acc * 85 + _b85dec[c]
        except TypeError:
            for j, c in enumerate(chunk):
                if _b85dec[c] is None:
                    raise ValueError('bad base85 character at position %d'
                                    % (i + j)) from None
            raise
        try:
            out.append(packI(acc))
        except struct.error:
            raise ValueError('base85 overflow in hunk starting at byte %d'
                             % i) from None

    result = b''.join(out)
    if padding:
        result = result[:-padding]
    return result

# Legacy interface.  This code could be cleaned up since I don't believe
# binascii has any line length limitations.  It just doesn't seem worth it
# though.  The files should be opened in binary mode.

MAXLINESIZE = 76 # Excluding the CRLF
MAXBINSIZE = (MAXLINESIZE//4)*3

def encode(input, output):
    """Encode a file; input and output are binary files."""
    while True:
        s = input.read(MAXBINSIZE)
        if not s:
            break
        while len(s) < MAXBINSIZE:
            ns = input.read(MAXBINSIZE-len(s))
            if not ns:
                break
            s += ns
        line = binascii.b2a_base64(s)
        output.write(line)


def decode(input, output):
    """Decode a file; input and output are binary files."""
    while True:
        line = input.readline()
        if not line:
            break
        s = binascii.a2b_base64(line)
        output.write(s)

def _input_type_check(s):
    try:
        m = memoryview(s)
    except TypeError as err:
        msg = "expected bytes-like object, not %s" % s.__class__.__name__
        raise TypeError(msg) from err
    if m.format not in ('c', 'b', 'B'):
        msg = ("expected single byte elements, not %r from %s" %
                                          (m.format, s.__class__.__name__))
        raise TypeError(msg)
    if m.ndim != 1:
        msg = ("expected 1-D data, not %d-D data from %s" %
                                          (m.ndim, s.__class__.__name__))
        raise TypeError(msg)


def encodebytes(s):
    """Encode a bytestring into a bytestring containing multiple lines
    of base-64 data."""
    _input_type_check(s)
    pieces = []
    for i in range(0, len(s), MAXBINSIZE):
        chunk = s[i : i + MAXBINSIZE]
        pieces.append(binascii.b2a_base64(chunk))
    return b"".join(pieces)

def encodestring(s):
    """Legacy alias of encodebytes()."""
    import warnings
    warnings.warn("encodestring() is a deprecated alias, use encodebytes()",
                  DeprecationWarning, 2)
    return encodebytes(s)


def decodebytes(s):
    """Decode a bytestring of base-64 data into a bytestring."""
    _input_type_check(s)
    return binascii.a2b_base64(s)

def decodestring(s):
    """Legacy alias of decodebytes()."""
    import warnings
    warnings.warn("decodestring() is a deprecated alias, use decodebytes()",
                  DeprecationWarning, 2)
    return decodebytes(s)


# Usable as a script...
def main():
    """Small main program"""
    import sys, getopt
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'deut')
    except getopt.error as msg:
        sys.stdout = sys.stderr
        print(msg)
        print("""usage: %s [-d|-e|-u|-t] [file|-]
        -d, -u: decode
        -e: encode (default)
        -t: encode and decode string 'Aladdin:open sesame'"""%sys.argv[0])
        sys.exit(2)
    func = encode
    for o, a in opts:
        if o == '-e': func = encode
        if o == '-d': func = decode
        if o == '-u': func = decode
        if o == '-t': test(); return
    if args and args[0] != '-':
        with open(args[0], 'rb') as f:
            func(f, sys.stdout.buffer)
    else:
        func(sys.stdin.buffer, sys.stdout.buffer)

def test():
    s0 = b"Aladdin:open sesame"
    print(repr(s0))
    s1 = encodebytes(s0)
    print(repr(s1))
    s2 = decodebytes(s1)
    print(repr(s2))
    assert s0 == s2


if __name__ == '__main__':
    main()
lib\bdb.py
"""Debugger basics"""

import fnmatch
import sys
import os
from inspect import CO_GENERATOR

__all__ = ["BdbQuit", "Bdb", "Breakpoint"]

class BdbQuit(Exception):
    """Exception to give up completely."""


class Bdb:
    """Generic Python debugger base class.

    This class takes care of details of the trace facility;
    a derived class should implement user interaction.
    The standard debugger class (pdb.Pdb) is an example.
    """

    def __init__(self, skip=None):
        self.skip = set(skip) if skip else None
        self.breaks = {}
        self.fncache = {}
        self.frame_returning = None

    def canonic(self, filename):
        if filename == "<" + filename[1:-1] + ">":
            return filename
        canonic = self.fncache.get(filename)
        if not canonic:
            canonic = os.path.abspath(filename)
            canonic = os.path.normcase(canonic)
            self.fncache[filename] = canonic
        return canonic

    def reset(self):
        import linecache
        linecache.checkcache()
        self.botframe = None
        self._set_stopinfo(None, None)

    def trace_dispatch(self, frame, event, arg):
        if self.quitting:
            return # None
        if event == 'line':
            return self.dispatch_line(frame)
        if event == 'call':
            return self.dispatch_call(frame, arg)
        if event == 'return':
            return self.dispatch_return(frame, arg)
        if event == 'exception':
            return self.dispatch_exception(frame, arg)
        if event == 'c_call':
            return self.trace_dispatch
        if event == 'c_exception':
            return self.trace_dispatch
        if event == 'c_return':
            return self.trace_dispatch
        print('bdb.Bdb.dispatch: unknown debugging event:', repr(event))
        return self.trace_dispatch

    def dispatch_line(self, frame):
        if self.stop_here(frame) or self.break_here(frame):
            self.user_line(frame)
            if self.quitting: raise BdbQuit
        return self.trace_dispatch

    def dispatch_call(self, frame, arg):
        # XXX 'arg' is no longer used
        if self.botframe is None:
            # First call of dispatch since reset()
            self.botframe = frame.f_back # (CT) Note that this may also be None!
            return self.trace_dispatch
        if not (self.stop_here(frame) or self.break_anywhere(frame)):
            # No need to trace this function
            return # None
        # Ignore call events in generator except when stepping.
        if self.stopframe and frame.f_code.co_flags & CO_GENERATOR:
            return self.trace_dispatch
        self.user_call(frame, arg)
        if self.quitting: raise BdbQuit
        return self.trace_dispatch

    def dispatch_return(self, frame, arg):
        if self.stop_here(frame) or frame == self.returnframe:
            # Ignore return events in generator except when stepping.
            if self.stopframe and frame.f_code.co_flags & CO_GENERATOR:
                return self.trace_dispatch
            try:
                self.frame_returning = frame
                self.user_return(frame, arg)
            finally:
                self.frame_returning = None
            if self.quitting: raise BdbQuit
            # The user issued a 'next' or 'until' command.
            if self.stopframe is frame and self.stoplineno != -1:
                self._set_stopinfo(None, None)
        return self.trace_dispatch

    def dispatch_exception(self, frame, arg):
        if self.stop_here(frame):
            # When stepping with next/until/return in a generator frame, skip
            # the internal StopIteration exception (with no traceback)
            # triggered by a subiterator run with the 'yield from' statement.
            if not (frame.f_code.co_flags & CO_GENERATOR
                    and arg[0] is StopIteration and arg[2] is None):
                self.user_exception(frame, arg)
                if self.quitting: raise BdbQuit
        # Stop at the StopIteration or GeneratorExit exception when the user
        # has set stopframe in a generator by issuing a return command, or a
        # next/until command at the last statement in the generator before the
        # exception.
        elif (self.stopframe and frame is not self.stopframe
                and self.stopframe.f_code.co_flags & CO_GENERATOR
                and arg[0] in (StopIteration, GeneratorExit)):
            self.user_exception(frame, arg)
            if self.quitting: raise BdbQuit

        return self.trace_dispatch

    # Normally derived classes don't override the following
    # methods, but they may if they want to redefine the
    # definition of stopping and breakpoints.

    def is_skipped_module(self, module_name):
        for pattern in self.skip:
            if fnmatch.fnmatch(module_name, pattern):
                return True
        return False

    def stop_here(self, frame):
        # (CT) stopframe may now also be None, see dispatch_call.
        # (CT) the former test for None is therefore removed from here.
        if self.skip and \
               self.is_skipped_module(frame.f_globals.get('__name__')):
            return False
        if frame is self.stopframe:
            if self.stoplineno == -1:
                return False
            return frame.f_lineno >= self.stoplineno
        if not self.stopframe:
            return True
        return False

    def break_here(self, frame):
        filename = self.canonic(frame.f_code.co_filename)
        if filename not in self.breaks:
            return False
        lineno = frame.f_lineno
        if lineno not in self.breaks[filename]:
            # The line itself has no breakpoint, but maybe the line is the
            # first line of a function with breakpoint set by function name.
            lineno = frame.f_code.co_firstlineno
            if lineno not in self.breaks[filename]:
                return False

        # flag says ok to delete temp. bp
        (bp, flag) = effective(filename, lineno, frame)
        if bp:
            self.currentbp = bp.number
            if (flag and bp.temporary):
                self.do_clear(str(bp.number))
            return True
        else:
            return False

    def do_clear(self, arg):
        raise NotImplementedError("subclass of bdb must implement do_clear()")

    def break_anywhere(self, frame):
        return self.canonic(frame.f_code.co_filename) in self.breaks

    # Derived classes should override the user_* methods
    # to gain control.

    def user_call(self, frame, argument_list):
        """This method is called when there is the remote possibility
        that we ever need to stop in this function."""
        pass

    def user_line(self, frame):
        """This method is called when we stop or break at this line."""
        pass

    def user_return(self, frame, return_value):
        """This method is called when a return trap is set here."""
        pass

    def user_exception(self, frame, exc_info):
        """This method is called if an exception occurs,
        but only if we are to stop at or just below this level."""
        pass

    def _set_stopinfo(self, stopframe, returnframe, stoplineno=0):
        self.stopframe = stopframe
        self.returnframe = returnframe
        self.quitting = False
        # stoplineno >= 0 means: stop at line >= the stoplineno
        # stoplineno -1 means: don't stop at all
        self.stoplineno = stoplineno

    # Derived classes and clients can call the following methods
    # to affect the stepping state.

    def set_until(self, frame, lineno=None):
        """Stop when the line with the line no greater than the current one is
        reached or when returning from current frame"""
        # the name "until" is borrowed from gdb
        if lineno is None:
            lineno = frame.f_lineno + 1
        self._set_stopinfo(frame, frame, lineno)

    def set_step(self):
        """Stop after one line of code."""
        # Issue #13183: pdb skips frames after hitting a breakpoint and running
        # step commands.
        # Restore the trace function in the caller (that may not have been set
        # for performance reasons) when returning from the current frame.
        if self.frame_returning:
            caller_frame = self.frame_returning.f_back
            if caller_frame and not caller_frame.f_trace:
                caller_frame.f_trace = self.trace_dispatch
        self._set_stopinfo(None, None)

    def set_next(self, frame):
        """Stop on the next line in or below the given frame."""
        self._set_stopinfo(frame, None)

    def set_return(self, frame):
        """Stop when returning from the given frame."""
        if frame.f_code.co_flags & CO_GENERATOR:
            self._set_stopinfo(frame, None, -1)
        else:
            self._set_stopinfo(frame.f_back, frame)

    def set_trace(self, frame=None):
        """Start debugging from `frame`.

        If frame is not specified, debugging starts from caller's frame.
        """
        if frame is None:
            frame = sys._getframe().f_back
        self.reset()
        while frame:
            frame.f_trace = self.trace_dispatch
            self.botframe = frame
            frame = frame.f_back
        self.set_step()
        sys.settrace(self.trace_dispatch)

    def set_continue(self):
        # Don't stop except at breakpoints or when finished
        self._set_stopinfo(self.botframe, None, -1)
        if not self.breaks:
            # no breakpoints; run without debugger overhead
            sys.settrace(None)
            frame = sys._getframe().f_back
            while frame and frame is not self.botframe:
                del frame.f_trace
                frame = frame.f_back

    def set_quit(self):
        self.stopframe = self.botframe
        self.returnframe = None
        self.quitting = True
        sys.settrace(None)

    # Derived classes and clients can call the following methods
    # to manipulate breakpoints.  These methods return an
    # error message is something went wrong, None if all is well.
    # Set_break prints out the breakpoint line and file:lineno.
    # Call self.get_*break*() to see the breakpoints or better
    # for bp in Breakpoint.bpbynumber: if bp: bp.bpprint().

    def set_break(self, filename, lineno, temporary=False, cond=None,
                  funcname=None):
        filename = self.canonic(filename)
        import linecache # Import as late as possible
        line = linecache.getline(filename, lineno)
        if not line:
            return 'Line %s:%d does not exist' % (filename, lineno)
        list = self.breaks.setdefault(filename, [])
        if lineno not in list:
            list.append(lineno)
        bp = Breakpoint(filename, lineno, temporary, cond, funcname)

    def _prune_breaks(self, filename, lineno):
        if (filename, lineno) not in Breakpoint.bplist:
            self.breaks[filename].remove(lineno)
        if not self.breaks[filename]:
            del self.breaks[filename]

    def clear_break(self, filename, lineno):
        filename = self.canonic(filename)
        if filename not in self.breaks:
            return 'There are no breakpoints in %s' % filename
        if lineno not in self.breaks[filename]:
            return 'There is no breakpoint at %s:%d' % (filename, lineno)
        # If there's only one bp in the list for that file,line
        # pair, then remove the breaks entry
        for bp in Breakpoint.bplist[filename, lineno][:]:
            bp.deleteMe()
        self._prune_breaks(filename, lineno)

    def clear_bpbynumber(self, arg):
        try:
            bp = self.get_bpbynumber(arg)
        except ValueError as err:
            return str(err)
        bp.deleteMe()
        self._prune_breaks(bp.file, bp.line)

    def clear_all_file_breaks(self, filename):
        filename = self.canonic(filename)
        if filename not in self.breaks:
            return 'There are no breakpoints in %s' % filename
        for line in self.breaks[filename]:
            blist = Breakpoint.bplist[filename, line]
            for bp in blist:
                bp.deleteMe()
        del self.breaks[filename]

    def clear_all_breaks(self):
        if not self.breaks:
            return 'There are no breakpoints'
        for bp in Breakpoint.bpbynumber:
            if bp:
                bp.deleteMe()
        self.breaks = {}

    def get_bpbynumber(self, arg):
        if not arg:
            raise ValueError('Breakpoint number expected')
        try:
            number = int(arg)
        except ValueError:
            raise ValueError('Non-numeric breakpoint number %s' % arg)
        try:
            bp = Breakpoint.bpbynumber[number]
        except IndexError:
            raise ValueError('Breakpoint number %d out of range' % number)
        if bp is None:
            raise ValueError('Breakpoint %d already deleted' % number)
        return bp

    def get_break(self, filename, lineno):
        filename = self.canonic(filename)
        return filename in self.breaks and \
            lineno in self.breaks[filename]

    def get_breaks(self, filename, lineno):
        filename = self.canonic(filename)
        return filename in self.breaks and \
            lineno in self.breaks[filename] and \
            Breakpoint.bplist[filename, lineno] or []

    def get_file_breaks(self, filename):
        filename = self.canonic(filename)
        if filename in self.breaks:
            return self.breaks[filename]
        else:
            return []

    def get_all_breaks(self):
        return self.breaks

    # Derived classes and clients can call the following method
    # to get a data structure representing a stack trace.

    def get_stack(self, f, t):
        stack = []
        if t and t.tb_frame is f:
            t = t.tb_next
        while f is not None:
            stack.append((f, f.f_lineno))
            if f is self.botframe:
                break
            f = f.f_back
        stack.reverse()
        i = max(0, len(stack) - 1)
        while t is not None:
            stack.append((t.tb_frame, t.tb_lineno))
            t = t.tb_next
        if f is None:
            i = max(0, len(stack) - 1)
        return stack, i

    def format_stack_entry(self, frame_lineno, lprefix=': '):
        import linecache, reprlib
        frame, lineno = frame_lineno
        filename = self.canonic(frame.f_code.co_filename)
        s = '%s(%r)' % (filename, lineno)
        if frame.f_code.co_name:
            s += frame.f_code.co_name
        else:
            s += "<lambda>"
        if '__args__' in frame.f_locals:
            args = frame.f_locals['__args__']
        else:
            args = None
        if args:
            s += reprlib.repr(args)
        else:
            s += '()'
        if '__return__' in frame.f_locals:
            rv = frame.f_locals['__return__']
            s += '->'
            s += reprlib.repr(rv)
        line = linecache.getline(filename, lineno, frame.f_globals)
        if line:
            s += lprefix + line.strip()
        return s

    # The following methods can be called by clients to use
    # a debugger to debug a statement or an expression.
    # Both can be given as a string, or a code object.

    def run(self, cmd, globals=None, locals=None):
        if globals is None:
            import __main__
            globals = __main__.__dict__
        if locals is None:
            locals = globals
        self.reset()
        if isinstance(cmd, str):
            cmd = compile(cmd, "<string>", "exec")
        sys.settrace(self.trace_dispatch)
        try:
            exec(cmd, globals, locals)
        except BdbQuit:
            pass
        finally:
            self.quitting = True
            sys.settrace(None)

    def runeval(self, expr, globals=None, locals=None):
        if globals is None:
            import __main__
            globals = __main__.__dict__
        if locals is None:
            locals = globals
        self.reset()
        sys.settrace(self.trace_dispatch)
        try:
            return eval(expr, globals, locals)
        except BdbQuit:
            pass
        finally:
            self.quitting = True
            sys.settrace(None)

    def runctx(self, cmd, globals, locals):
        # B/W compatibility
        self.run(cmd, globals, locals)

    # This method is more useful to debug a single function call.

    def runcall(self, func, *args, **kwds):
        self.reset()
        sys.settrace(self.trace_dispatch)
        res = None
        try:
            res = func(*args, **kwds)
        except BdbQuit:
            pass
        finally:
            self.quitting = True
            sys.settrace(None)
        return res


def set_trace():
    Bdb().set_trace()


class Breakpoint:
    """Breakpoint class.

    Implements temporary breakpoints, ignore counts, disabling and
    (re)-enabling, and conditionals.

    Breakpoints are indexed by number through bpbynumber and by
    the file,line tuple using bplist.  The former points to a
    single instance of class Breakpoint.  The latter points to a
    list of such instances since there may be more than one
    breakpoint per line.

    """

    # XXX Keeping state in the class is a mistake -- this means
    # you cannot have more than one active Bdb instance.

    next = 1        # Next bp to be assigned
    bplist = {}     # indexed by (file, lineno) tuple
    bpbynumber = [None] # Each entry is None or an instance of Bpt
                # index 0 is unused, except for marking an
                # effective break .... see effective()

    def __init__(self, file, line, temporary=False, cond=None, funcname=None):
        self.funcname = funcname
        # Needed if funcname is not None.
        self.func_first_executable_line = None
        self.file = file    # This better be in canonical form!
        self.line = line
        self.temporary = temporary
        self.cond = cond
        self.enabled = True
        self.ignore = 0
        self.hits = 0
        self.number = Breakpoint.next
        Breakpoint.next += 1
        # Build the two lists
        self.bpbynumber.append(self)
        if (file, line) in self.bplist:
            self.bplist[file, line].append(self)
        else:
            self.bplist[file, line] = [self]

    def deleteMe(self):
        index = (self.file, self.line)
        self.bpbynumber[self.number] = None   # No longer in list
        self.bplist[index].remove(self)
        if not self.bplist[index]:
            # No more bp for this f:l combo
            del self.bplist[index]

    def enable(self):
        self.enabled = True

    def disable(self):
        self.enabled = False

    def bpprint(self, out=None):
        if out is None:
            out = sys.stdout
        print(self.bpformat(), file=out)

    def bpformat(self):
        if self.temporary:
            disp = 'del  '
        else:
            disp = 'keep '
        if self.enabled:
            disp = disp + 'yes  '
        else:
            disp = disp + 'no   '
        ret = '%-4dbreakpoint   %s at %s:%d' % (self.number, disp,
                                                self.file, self.line)
        if self.cond:
            ret += '\n\tstop only if %s' % (self.cond,)
        if self.ignore:
            ret += '\n\tignore next %d hits' % (self.ignore,)
        if self.hits:
            if self.hits > 1:
                ss = 's'
            else:
                ss = ''
            ret += '\n\tbreakpoint already hit %d time%s' % (self.hits, ss)
        return ret

    def __str__(self):
        return 'breakpoint %s at %s:%s' % (self.number, self.file, self.line)

# -----------end of Breakpoint class----------

def checkfuncname(b, frame):
    """Check whether we should break here because of `b.funcname`."""
    if not b.funcname:
        # Breakpoint was set via line number.
        if b.line != frame.f_lineno:
            # Breakpoint was set at a line with a def statement and the function
            # defined is called: don't break.
            return False
        return True

    # Breakpoint set via function name.

    if frame.f_code.co_name != b.funcname:
        # It's not a function call, but rather execution of def statement.
        return False

    # We are in the right frame.
    if not b.func_first_executable_line:
        # The function is entered for the 1st time.
        b.func_first_executable_line = frame.f_lineno

    if  b.func_first_executable_line != frame.f_lineno:
        # But we are not at the first line number: don't break.
        return False
    return True

# Determines if there is an effective (active) breakpoint at this
# line of code.  Returns breakpoint number or 0 if none
def effective(file, line, frame):
    """Determine which breakpoint for this file:line is to be acted upon.

    Called only if we know there is a bpt at this
    location.  Returns breakpoint that was triggered and a flag
    that indicates if it is ok to delete a temporary bp.

    """
    possibles = Breakpoint.bplist[file, line]
    for b in possibles:
        if not b.enabled:
            continue
        if not checkfuncname(b, frame):
            continue
        # Count every hit when bp is enabled
        b.hits += 1
        if not b.cond:
            # If unconditional, and ignoring go on to next, else break
            if b.ignore > 0:
                b.ignore -= 1
                continue
            else:
                # breakpoint and marker that it's ok to delete if temporary
                return (b, True)
        else:
            # Conditional bp.
            # Ignore count applies only to those bpt hits where the
            # condition evaluates to true.
            try:
                val = eval(b.cond, frame.f_globals, frame.f_locals)
                if val:
                    if b.ignore > 0:
                        b.ignore -= 1
                        # continue
                    else:
                        return (b, True)
                # else:
                #   continue
            except:
                # if eval fails, most conservative thing is to stop on
                # breakpoint regardless of ignore count.  Don't delete
                # temporary, as another hint to user.
                return (b, False)
    return (None, None)


# -------------------- testing --------------------

class Tdb(Bdb):
    def user_call(self, frame, args):
        name = frame.f_code.co_name
        if not name: name = '???'
        print('+++ call', name, args)
    def user_line(self, frame):
        import linecache
        name = frame.f_code.co_name
        if not name: name = '???'
        fn = self.canonic(frame.f_code.co_filename)
        line = linecache.getline(fn, frame.f_lineno, frame.f_globals)
        print('+++', fn, frame.f_lineno, name, ':', line.strip())
    def user_return(self, frame, retval):
        print('+++ return', retval)
    def user_exception(self, frame, exc_stuff):
        print('+++ exception', exc_stuff)
        self.set_continue()

def foo(n):
    print('foo(', n, ')')
    x = bar(n*10)
    print('bar returned', x)

def bar(a):
    print('bar(', a, ')')
    return a/2

def test():
    t = Tdb()
    t.run('import bdb; bdb.foo(10)')
lib\binhex.py
"""Macintosh binhex compression/decompression.

easy interface:
binhex(inputfilename, outputfilename)
hexbin(inputfilename, outputfilename)
"""

#
# Jack Jansen, CWI, August 1995.
#
# The module is supposed to be as compatible as possible. Especially the
# easy interface should work "as expected" on any platform.
# XXXX Note: currently, textfiles appear in mac-form on all platforms.
# We seem to lack a simple character-translate in python.
# (we should probably use ISO-Latin-1 on all but the mac platform).
# XXXX The simple routines are too simple: they expect to hold the complete
# files in-core. Should be fixed.
# XXXX It would be nice to handle AppleDouble format on unix
# (for servers serving macs).
# XXXX I don't understand what happens when you get 0x90 times the same byte on
# input. The resulting code (xx 90 90) would appear to be interpreted as an
# escaped *value* of 0x90. All coders I've seen appear to ignore this nicety...
#
import io
import os
import struct
import binascii

__all__ = ["binhex","hexbin","Error"]

class Error(Exception):
    pass

# States (what have we written)
_DID_HEADER = 0
_DID_DATA = 1

# Various constants
REASONABLY_LARGE = 32768  # Minimal amount we pass the rle-coder
LINELEN = 64
RUNCHAR = b"\x90"

#
# This code is no longer byte-order dependent


class FInfo:
    def __init__(self):
        self.Type = '????'
        self.Creator = '????'
        self.Flags = 0

def getfileinfo(name):
    finfo = FInfo()
    with io.open(name, 'rb') as fp:
        # Quick check for textfile
        data = fp.read(512)
        if 0 not in data:
            finfo.Type = 'TEXT'
        fp.seek(0, 2)
        dsize = fp.tell()
    dir, file = os.path.split(name)
    file = file.replace(':', '-', 1)
    return file, finfo, dsize, 0

class openrsrc:
    def __init__(self, *args):
        pass

    def read(self, *args):
        return b''

    def write(self, *args):
        pass

    def close(self):
        pass

class _Hqxcoderengine:
    """Write data to the coder in 3-byte chunks"""

    def __init__(self, ofp):
        self.ofp = ofp
        self.data = b''
        self.hqxdata = b''
        self.linelen = LINELEN - 1

    def write(self, data):
        self.data = self.data + data
        datalen = len(self.data)
        todo = (datalen // 3) * 3
        data = self.data[:todo]
        self.data = self.data[todo:]
        if not data:
            return
        self.hqxdata = self.hqxdata + binascii.b2a_hqx(data)
        self._flush(0)

    def _flush(self, force):
        first = 0
        while first <= len(self.hqxdata) - self.linelen:
            last = first + self.linelen
            self.ofp.write(self.hqxdata[first:last] + b'\n')
            self.linelen = LINELEN
            first = last
        self.hqxdata = self.hqxdata[first:]
        if force:
            self.ofp.write(self.hqxdata + b':\n')

    def close(self):
        if self.data:
            self.hqxdata = self.hqxdata + binascii.b2a_hqx(self.data)
        self._flush(1)
        self.ofp.close()
        del self.ofp

class _Rlecoderengine:
    """Write data to the RLE-coder in suitably large chunks"""

    def __init__(self, ofp):
        self.ofp = ofp
        self.data = b''

    def write(self, data):
        self.data = self.data + data
        if len(self.data) < REASONABLY_LARGE:
            return
        rledata = binascii.rlecode_hqx(self.data)
        self.ofp.write(rledata)
        self.data = b''

    def close(self):
        if self.data:
            rledata = binascii.rlecode_hqx(self.data)
            self.ofp.write(rledata)
        self.ofp.close()
        del self.ofp

class BinHex:
    def __init__(self, name_finfo_dlen_rlen, ofp):
        name, finfo, dlen, rlen = name_finfo_dlen_rlen
        close_on_error = False
        if isinstance(ofp, str):
            ofname = ofp
            ofp = io.open(ofname, 'wb')
            close_on_error = True
        try:
            ofp.write(b'(This file must be converted with BinHex 4.0)\r\r:')
            hqxer = _Hqxcoderengine(ofp)
            self.ofp = _Rlecoderengine(hqxer)
            self.crc = 0
            if finfo is None:
                finfo = FInfo()
            self.dlen = dlen
            self.rlen = rlen
            self._writeinfo(name, finfo)
            self.state = _DID_HEADER
        except:
            if close_on_error:
                ofp.close()
            raise

    def _writeinfo(self, name, finfo):
        nl = len(name)
        if nl > 63:
            raise Error('Filename too long')
        d = bytes([nl]) + name.encode("latin-1") + b'\0'
        tp, cr = finfo.Type, finfo.Creator
        if isinstance(tp, str):
            tp = tp.encode("latin-1")
        if isinstance(cr, str):
            cr = cr.encode("latin-1")
        d2 = tp + cr

        # Force all structs to be packed with big-endian
        d3 = struct.pack('>h', finfo.Flags)
        d4 = struct.pack('>ii', self.dlen, self.rlen)
        info = d + d2 + d3 + d4
        self._write(info)
        self._writecrc()

    def _write(self, data):
        self.crc = binascii.crc_hqx(data, self.crc)
        self.ofp.write(data)

    def _writecrc(self):
        # XXXX Should this be here??
        # self.crc = binascii.crc_hqx('\0\0', self.crc)
        if self.crc < 0:
            fmt = '>h'
        else:
            fmt = '>H'
        self.ofp.write(struct.pack(fmt, self.crc))
        self.crc = 0

    def write(self, data):
        if self.state != _DID_HEADER:
            raise Error('Writing data at the wrong time')
        self.dlen = self.dlen - len(data)
        self._write(data)

    def close_data(self):
        if self.dlen != 0:
            raise Error('Incorrect data size, diff=%r' % (self.rlen,))
        self._writecrc()
        self.state = _DID_DATA

    def write_rsrc(self, data):
        if self.state < _DID_DATA:
            self.close_data()
        if self.state != _DID_DATA:
            raise Error('Writing resource data at the wrong time')
        self.rlen = self.rlen - len(data)
        self._write(data)

    def close(self):
        if self.state is None:
            return
        try:
            if self.state < _DID_DATA:
                self.close_data()
            if self.state != _DID_DATA:
                raise Error('Close at the wrong time')
            if self.rlen != 0:
                raise Error("Incorrect resource-datasize, diff=%r" % (self.rlen,))
            self._writecrc()
        finally:
            self.state = None
            ofp = self.ofp
            del self.ofp
            ofp.close()

def binhex(inp, out):
    """binhex(infilename, outfilename): create binhex-encoded copy of a file"""
    finfo = getfileinfo(inp)
    ofp = BinHex(finfo, out)

    ifp = io.open(inp, 'rb')
    # XXXX Do textfile translation on non-mac systems
    while True:
        d = ifp.read(128000)
        if not d: break
        ofp.write(d)
    ofp.close_data()
    ifp.close()

    ifp = openrsrc(inp, 'rb')
    while True:
        d = ifp.read(128000)
        if not d: break
        ofp.write_rsrc(d)
    ofp.close()
    ifp.close()

class _Hqxdecoderengine:
    """Read data via the decoder in 4-byte chunks"""

    def __init__(self, ifp):
        self.ifp = ifp
        self.eof = 0

    def read(self, totalwtd):
        """Read at least wtd bytes (or until EOF)"""
        decdata = b''
        wtd = totalwtd
        #
        # The loop here is convoluted, since we don't really now how
        # much to decode: there may be newlines in the incoming data.
        while wtd > 0:
            if self.eof: return decdata
            wtd = ((wtd + 2) // 3) * 4
            data = self.ifp.read(wtd)
            #
            # Next problem: there may not be a complete number of
            # bytes in what we pass to a2b. Solve by yet another
            # loop.
            #
            while True:
                try:
                    decdatacur, self.eof = binascii.a2b_hqx(data)
                    break
                except binascii.Incomplete:
                    pass
                newdata = self.ifp.read(1)
                if not newdata:
                    raise Error('Premature EOF on binhex file')
                data = data + newdata
            decdata = decdata + decdatacur
            wtd = totalwtd - len(decdata)
            if not decdata and not self.eof:
                raise Error('Premature EOF on binhex file')
        return decdata

    def close(self):
        self.ifp.close()

class _Rledecoderengine:
    """Read data via the RLE-coder"""

    def __init__(self, ifp):
        self.ifp = ifp
        self.pre_buffer = b''
        self.post_buffer = b''
        self.eof = 0

    def read(self, wtd):
        if wtd > len(self.post_buffer):
            self._fill(wtd - len(self.post_buffer))
        rv = self.post_buffer[:wtd]
        self.post_buffer = self.post_buffer[wtd:]
        return rv

    def _fill(self, wtd):
        self.pre_buffer = self.pre_buffer + self.ifp.read(wtd + 4)
        if self.ifp.eof:
            self.post_buffer = self.post_buffer + \
                binascii.rledecode_hqx(self.pre_buffer)
            self.pre_buffer = b''
            return

        #
        # Obfuscated code ahead. We have to take care that we don't
        # end up with an orphaned RUNCHAR later on. So, we keep a couple
        # of bytes in the buffer, depending on what the end of
        # the buffer looks like:
        # '\220\0\220' - Keep 3 bytes: repeated \220 (escaped as \220\0)
        # '?\220' - Keep 2 bytes: repeated something-else
        # '\220\0' - Escaped \220: Keep 2 bytes.
        # '?\220?' - Complete repeat sequence: decode all
        # otherwise: keep 1 byte.
        #
        mark = len(self.pre_buffer)
        if self.pre_buffer[-3:] == RUNCHAR + b'\0' + RUNCHAR:
            mark = mark - 3
        elif self.pre_buffer[-1:] == RUNCHAR:
            mark = mark - 2
        elif self.pre_buffer[-2:] == RUNCHAR + b'\0':
            mark = mark - 2
        elif self.pre_buffer[-2:-1] == RUNCHAR:
            pass # Decode all
        else:
            mark = mark - 1

        self.post_buffer = self.post_buffer + \
            binascii.rledecode_hqx(self.pre_buffer[:mark])
        self.pre_buffer = self.pre_buffer[mark:]

    def close(self):
        self.ifp.close()

class HexBin:
    def __init__(self, ifp):
        if isinstance(ifp, str):
            ifp = io.open(ifp, 'rb')
        #
        # Find initial colon.
        #
        while True:
            ch = ifp.read(1)
            if not ch:
                raise Error("No binhex data found")
            # Cater for \r\n terminated lines (which show up as \n\r, hence
            # all lines start with \r)
            if ch == b'\r':
                continue
            if ch == b':':
                break

        hqxifp = _Hqxdecoderengine(ifp)
        self.ifp = _Rledecoderengine(hqxifp)
        self.crc = 0
        self._readheader()

    def _read(self, len):
        data = self.ifp.read(len)
        self.crc = binascii.crc_hqx(data, self.crc)
        return data

    def _checkcrc(self):
        filecrc = struct.unpack('>h', self.ifp.read(2))[0] & 0xffff
        #self.crc = binascii.crc_hqx('\0\0', self.crc)
        # XXXX Is this needed??
        self.crc = self.crc & 0xffff
        if filecrc != self.crc:
            raise Error('CRC error, computed %x, read %x'
                        % (self.crc, filecrc))
        self.crc = 0

    def _readheader(self):
        len = self._read(1)
        fname = self._read(ord(len))
        rest = self._read(1 + 4 + 4 + 2 + 4 + 4)
        self._checkcrc()

        type = rest[1:5]
        creator = rest[5:9]
        flags = struct.unpack('>h', rest[9:11])[0]
        self.dlen = struct.unpack('>l', rest[11:15])[0]
        self.rlen = struct.unpack('>l', rest[15:19])[0]

        self.FName = fname
        self.FInfo = FInfo()
        self.FInfo.Creator = creator
        self.FInfo.Type = type
        self.FInfo.Flags = flags

        self.state = _DID_HEADER

    def read(self, *n):
        if self.state != _DID_HEADER:
            raise Error('Read data at wrong time')
        if n:
            n = n[0]
            n = min(n, self.dlen)
        else:
            n = self.dlen
        rv = b''
        while len(rv) < n:
            rv = rv + self._read(n-len(rv))
        self.dlen = self.dlen - n
        return rv

    def close_data(self):
        if self.state != _DID_HEADER:
            raise Error('close_data at wrong time')
        if self.dlen:
            dummy = self._read(self.dlen)
        self._checkcrc()
        self.state = _DID_DATA

    def read_rsrc(self, *n):
        if self.state == _DID_HEADER:
            self.close_data()
        if self.state != _DID_DATA:
            raise Error('Read resource data at wrong time')
        if n:
            n = n[0]
            n = min(n, self.rlen)
        else:
            n = self.rlen
        self.rlen = self.rlen - n
        return self._read(n)

    def close(self):
        if self.state is None:
            return
        try:
            if self.rlen:
                dummy = self.read_rsrc(self.rlen)
            self._checkcrc()
        finally:
            self.state = None
            self.ifp.close()

def hexbin(inp, out):
    """hexbin(infilename, outfilename) - Decode binhexed file"""
    ifp = HexBin(inp)
    finfo = ifp.FInfo
    if not out:
        out = ifp.FName

    ofp = io.open(out, 'wb')
    # XXXX Do translation on non-mac systems
    while True:
        d = ifp.read(128000)
        if not d: break
        ofp.write(d)
    ofp.close()
    ifp.close_data()

    d = ifp.read_rsrc(128000)
    if d:
        ofp = openrsrc(out, 'wb')
        ofp.write(d)
        while True:
            d = ifp.read_rsrc(128000)
            if not d: break
            ofp.write(d)
        ofp.close()

    ifp.close()
lib\bisect.py
"""Bisection algorithms."""

def insort_right(a, x, lo=0, hi=None):
    """Insert item x in list a, and keep it sorted assuming a is sorted.

    If x is already in a, insert it to the right of the rightmost x.

    Optional args lo (default 0) and hi (default len(a)) bound the
    slice of a to be searched.
    """

    if lo < 0:
        raise ValueError('lo must be non-negative')
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        if x < a[mid]: hi = mid
        else: lo = mid+1
    a.insert(lo, x)

insort = insort_right   # backward compatibility

def bisect_right(a, x, lo=0, hi=None):
    """Return the index where to insert item x in list a, assuming a is sorted.

    The return value i is such that all e in a[:i] have e <= x, and all e in
    a[i:] have e > x.  So if x already appears in the list, a.insert(x) will
    insert just after the rightmost x already there.

    Optional args lo (default 0) and hi (default len(a)) bound the
    slice of a to be searched.
    """

    if lo < 0:
        raise ValueError('lo must be non-negative')
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        if x < a[mid]: hi = mid
        else: lo = mid+1
    return lo

bisect = bisect_right   # backward compatibility

def insort_left(a, x, lo=0, hi=None):
    """Insert item x in list a, and keep it sorted assuming a is sorted.

    If x is already in a, insert it to the left of the leftmost x.

    Optional args lo (default 0) and hi (default len(a)) bound the
    slice of a to be searched.
    """

    if lo < 0:
        raise ValueError('lo must be non-negative')
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        if a[mid] < x: lo = mid+1
        else: hi = mid
    a.insert(lo, x)


def bisect_left(a, x, lo=0, hi=None):
    """Return the index where to insert item x in list a, assuming a is sorted.

    The return value i is such that all e in a[:i] have e < x, and all e in
    a[i:] have e >= x.  So if x already appears in the list, a.insert(x) will
    insert just before the leftmost x already there.

    Optional args lo (default 0) and hi (default len(a)) bound the
    slice of a to be searched.
    """

    if lo < 0:
        raise ValueError('lo must be non-negative')
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        if a[mid] < x: lo = mid+1
        else: hi = mid
    return lo

# Overwrite above definitions with a fast C implementation
try:
    from _bisect import *
except ImportError:
    pass
lib\bz2.py
"""Interface to the libbzip2 compression library.

This module provides a file interface, classes for incremental
(de)compression, and functions for one-shot (de)compression.
"""

__all__ = ["BZ2File", "BZ2Compressor", "BZ2Decompressor",
           "open", "compress", "decompress"]

__author__ = "Nadeem Vawda <[email protected]>"

from builtins import open as _builtin_open
import io
import warnings

try:
    from threading import RLock
except ImportError:
    from dummy_threading import RLock

from _bz2 import BZ2Compressor, BZ2Decompressor


_MODE_CLOSED   = 0
_MODE_READ     = 1
_MODE_READ_EOF = 2
_MODE_WRITE    = 3

_BUFFER_SIZE = 8192


class BZ2File(io.BufferedIOBase):

    """A file object providing transparent bzip2 (de)compression.

    A BZ2File can act as a wrapper for an existing file object, or refer
    directly to a named file on disk.

    Note that BZ2File provides a *binary* file interface - data read is
    returned as bytes, and data to be written should be given as bytes.
    """

    def __init__(self, filename, mode="r", buffering=None, compresslevel=9):
        """Open a bzip2-compressed file.

        If filename is a str or bytes object, it gives the name
        of the file to be opened. Otherwise, it should be a file object,
        which will be used to read or write the compressed data.

        mode can be 'r' for reading (default), 'w' for (over)writing,
        'x' for creating exclusively, or 'a' for appending. These can
        equivalently be given as 'rb', 'wb', 'xb', and 'ab'.

        buffering is ignored. Its use is deprecated.

        If mode is 'w', 'x' or 'a', compresslevel can be a number between 1
        and 9 specifying the level of compression: 1 produces the least
        compression, and 9 (default) produces the most compression.

        If mode is 'r', the input file may be the concatenation of
        multiple compressed streams.
        """
        # This lock must be recursive, so that BufferedIOBase's
        # readline(), readlines() and writelines() don't deadlock.
        self._lock = RLock()
        self._fp = None
        self._closefp = False
        self._mode = _MODE_CLOSED
        self._pos = 0
        self._size = -1

        if buffering is not None:
            warnings.warn("Use of 'buffering' argument is deprecated",
                          DeprecationWarning)

        if not (1 <= compresslevel <= 9):
            raise ValueError("compresslevel must be between 1 and 9")

        if mode in ("", "r", "rb"):
            mode = "rb"
            mode_code = _MODE_READ
            self._decompressor = BZ2Decompressor()
            self._buffer = b""
            self._buffer_offset = 0
        elif mode in ("w", "wb"):
            mode = "wb"
            mode_code = _MODE_WRITE
            self._compressor = BZ2Compressor(compresslevel)
        elif mode in ("x", "xb"):
            mode = "xb"
            mode_code = _MODE_WRITE
            self._compressor = BZ2Compressor(compresslevel)
        elif mode in ("a", "ab"):
            mode = "ab"
            mode_code = _MODE_WRITE
            self._compressor = BZ2Compressor(compresslevel)
        else:
            raise ValueError("Invalid mode: %r" % (mode,))

        if isinstance(filename, (str, bytes)):
            self._fp = _builtin_open(filename, mode)
            self._closefp = True
            self._mode = mode_code
        elif hasattr(filename, "read") or hasattr(filename, "write"):
            self._fp = filename
            self._mode = mode_code
        else:
            raise TypeError("filename must be a str or bytes object, or a file")

    def close(self):
        """Flush and close the file.

        May be called more than once without error. Once the file is
        closed, any other operation on it will raise a ValueError.
        """
        with self._lock:
            if self._mode == _MODE_CLOSED:
                return
            try:
                if self._mode in (_MODE_READ, _MODE_READ_EOF):
                    self._decompressor = None
                elif self._mode == _MODE_WRITE:
                    self._fp.write(self._compressor.flush())
                    self._compressor = None
            finally:
                try:
                    if self._closefp:
                        self._fp.close()
                finally:
                    self._fp = None
                    self._closefp = False
                    self._mode = _MODE_CLOSED
                    self._buffer = b""
                    self._buffer_offset = 0

    @property
    def closed(self):
        """True if this file is closed."""
        return self._mode == _MODE_CLOSED

    def fileno(self):
        """Return the file descriptor for the underlying file."""
        self._check_not_closed()
        return self._fp.fileno()

    def seekable(self):
        """Return whether the file supports seeking."""
        return self.readable() and self._fp.seekable()

    def readable(self):
        """Return whether the file was opened for reading."""
        self._check_not_closed()
        return self._mode in (_MODE_READ, _MODE_READ_EOF)

    def writable(self):
        """Return whether the file was opened for writing."""
        self._check_not_closed()
        return self._mode == _MODE_WRITE

    # Mode-checking helper functions.

    def _check_not_closed(self):
        if self.closed:
            raise ValueError("I/O operation on closed file")

    def _check_can_read(self):
        if self._mode not in (_MODE_READ, _MODE_READ_EOF):
            self._check_not_closed()
            raise io.UnsupportedOperation("File not open for reading")

    def _check_can_write(self):
        if self._mode != _MODE_WRITE:
            self._check_not_closed()
            raise io.UnsupportedOperation("File not open for writing")

    def _check_can_seek(self):
        if self._mode not in (_MODE_READ, _MODE_READ_EOF):
            self._check_not_closed()
            raise io.UnsupportedOperation("Seeking is only supported "
                                          "on files open for reading")
        if not self._fp.seekable():
            raise io.UnsupportedOperation("The underlying file object "
                                          "does not support seeking")

    # Fill the readahead buffer if it is empty. Returns False on EOF.
    def _fill_buffer(self):
        if self._mode == _MODE_READ_EOF:
            return False
        # Depending on the input data, our call to the decompressor may not
        # return any data. In this case, try again after reading another block.
        while self._buffer_offset == len(self._buffer):
            rawblock = (self._decompressor.unused_data or
                        self._fp.read(_BUFFER_SIZE))

            if not rawblock:
                if self._decompressor.eof:
                    # End-of-stream marker and end of file. We're good.
                    self._mode = _MODE_READ_EOF
                    self._size = self._pos
                    return False
                else:
                    # Problem - we were expecting more compressed data.
                    raise EOFError("Compressed file ended before the "
                                   "end-of-stream marker was reached")

            if self._decompressor.eof:
                # Continue to next stream.
                self._decompressor = BZ2Decompressor()
                try:
                    self._buffer = self._decompressor.decompress(rawblock)
                except OSError:
                    # Trailing data isn't a valid bzip2 stream. We're done here.
                    self._mode = _MODE_READ_EOF
                    self._size = self._pos
                    return False
            else:
                self._buffer = self._decompressor.decompress(rawblock)
            self._buffer_offset = 0
        return True

    # Read data until EOF.
    # If return_data is false, consume the data without returning it.
    def _read_all(self, return_data=True):
        # The loop assumes that _buffer_offset is 0. Ensure that this is true.
        self._buffer = self._buffer[self._buffer_offset:]
        self._buffer_offset = 0

        blocks = []
        while self._fill_buffer():
            if return_data:
                blocks.append(self._buffer)
            self._pos += len(self._buffer)
            self._buffer = b""
        if return_data:
            return b"".join(blocks)

    # Read a block of up to n bytes.
    # If return_data is false, consume the data without returning it.
    def _read_block(self, n, return_data=True):
        # If we have enough data buffered, return immediately.
        end = self._buffer_offset + n
        if end <= len(self._buffer):
            data = self._buffer[self._buffer_offset : end]
            self._buffer_offset = end
            self._pos += len(data)
            return data if return_data else None

        # The loop assumes that _buffer_offset is 0. Ensure that this is true.
        self._buffer = self._buffer[self._buffer_offset:]
        self._buffer_offset = 0

        blocks = []
        while n > 0 and self._fill_buffer():
            if n < len(self._buffer):
                data = self._buffer[:n]
                self._buffer_offset = n
            else:
                data = self._buffer
                self._buffer = b""
            if return_data:
                blocks.append(data)
            self._pos += len(data)
            n -= len(data)
        if return_data:
            return b"".join(blocks)

    def peek(self, n=0):
        """Return buffered data without advancing the file position.

        Always returns at least one byte of data, unless at EOF.
        The exact number of bytes returned is unspecified.
        """
        with self._lock:
            self._check_can_read()
            if not self._fill_buffer():
                return b""
            return self._buffer[self._buffer_offset:]

    def read(self, size=-1):
        """Read up to size uncompressed bytes from the file.

        If size is negative or omitted, read until EOF is reached.
        Returns b'' if the file is already at EOF.
        """
        with self._lock:
            self._check_can_read()
            if size == 0:
                return b""
            elif size < 0:
                return self._read_all()
            else:
                return self._read_block(size)

    def read1(self, size=-1):
        """Read up to size uncompressed bytes, while trying to avoid
        making multiple reads from the underlying stream.

        Returns b'' if the file is at EOF.
        """
        # Usually, read1() calls _fp.read() at most once. However, sometimes
        # this does not give enough data for the decompressor to make progress.
        # In this case we make multiple reads, to avoid returning b"".
        with self._lock:
            self._check_can_read()
            if (size == 0 or
                # Only call _fill_buffer() if the buffer is actually empty.
                # This gives a significant speedup if *size* is small.
                (self._buffer_offset == len(self._buffer) and not self._fill_buffer())):
                return b""
            if size > 0:
                data = self._buffer[self._buffer_offset :
                                    self._buffer_offset + size]
                self._buffer_offset += len(data)
            else:
                data = self._buffer[self._buffer_offset:]
                self._buffer = b""
                self._buffer_offset = 0
            self._pos += len(data)
            return data

    def readinto(self, b):
        """Read up to len(b) bytes into b.

        Returns the number of bytes read (0 for EOF).
        """
        with self._lock:
            return io.BufferedIOBase.readinto(self, b)

    def readline(self, size=-1):
        """Read a line of uncompressed bytes from the file.

        The terminating newline (if present) is retained. If size is
        non-negative, no more than size bytes will be read (in which
        case the line may be incomplete). Returns b'' if already at EOF.
        """
        if not isinstance(size, int):
            if not hasattr(size, "__index__"):
                raise TypeError("Integer argument expected")
            size = size.__index__()
        with self._lock:
            self._check_can_read()
            # Shortcut for the common case - the whole line is in the buffer.
            if size < 0:
                end = self._buffer.find(b"\n", self._buffer_offset) + 1
                if end > 0:
                    line = self._buffer[self._buffer_offset : end]
                    self._buffer_offset = end
                    self._pos += len(line)
                    return line
            return io.BufferedIOBase.readline(self, size)

    def readlines(self, size=-1):
        """Read a list of lines of uncompressed bytes from the file.

        size can be specified to control the number of lines read: no
        further lines will be read once the total size of the lines read
        so far equals or exceeds size.
        """
        if not isinstance(size, int):
            if not hasattr(size, "__index__"):
                raise TypeError("Integer argument expected")
            size = size.__index__()
        with self._lock:
            return io.BufferedIOBase.readlines(self, size)

    def write(self, data):
        """Write a byte string to the file.

        Returns the number of uncompressed bytes written, which is
        always len(data). Note that due to buffering, the file on disk
        may not reflect the data written until close() is called.
        """
        with self._lock:
            self._check_can_write()
            compressed = self._compressor.compress(data)
            self._fp.write(compressed)
            self._pos += len(data)
            return len(data)

    def writelines(self, seq):
        """Write a sequence of byte strings to the file.

        Returns the number of uncompressed bytes written.
        seq can be any iterable yielding byte strings.

        Line separators are not added between the written byte strings.
        """
        with self._lock:
            return io.BufferedIOBase.writelines(self, seq)

    # Rewind the file to the beginning of the data stream.
    def _rewind(self):
        self._fp.seek(0, 0)
        self._mode = _MODE_READ
        self._pos = 0
        self._decompressor = BZ2Decompressor()
        self._buffer = b""
        self._buffer_offset = 0

    def seek(self, offset, whence=0):
        """Change the file position.

        The new position is specified by offset, relative to the
        position indicated by whence. Values for whence are:

            0: start of stream (default); offset must not be negative
            1: current stream position
            2: end of stream; offset must not be positive

        Returns the new file position.

        Note that seeking is emulated, so depending on the parameters,
        this operation may be extremely slow.
        """
        with self._lock:
            self._check_can_seek()

            # Recalculate offset as an absolute file position.
            if whence == 0:
                pass
            elif whence == 1:
                offset = self._pos + offset
            elif whence == 2:
                # Seeking relative to EOF - we need to know the file's size.
                if self._size < 0:
                    self._read_all(return_data=False)
                offset = self._size + offset
            else:
                raise ValueError("Invalid value for whence: %s" % (whence,))

            # Make it so that offset is the number of bytes to skip forward.
            if offset < self._pos:
                self._rewind()
            else:
                offset -= self._pos

            # Read and discard data until we reach the desired position.
            self._read_block(offset, return_data=False)

            return self._pos

    def tell(self):
        """Return the current file position."""
        with self._lock:
            self._check_not_closed()
            return self._pos


def open(filename, mode="rb", compresslevel=9,
         encoding=None, errors=None, newline=None):
    """Open a bzip2-compressed file in binary or text mode.

    The filename argument can be an actual filename (a str or bytes
    object), or an existing file object to read from or write to.

    The mode argument can be "r", "rb", "w", "wb", "x", "xb", "a" or
    "ab" for binary mode, or "rt", "wt", "xt" or "at" for text mode.
    The default mode is "rb", and the default compresslevel is 9.

    For binary mode, this function is equivalent to the BZ2File
    constructor: BZ2File(filename, mode, compresslevel). In this case,
    the encoding, errors and newline arguments must not be provided.

    For text mode, a BZ2File object is created, and wrapped in an
    io.TextIOWrapper instance with the specified encoding, error
    handling behavior, and line ending(s).

    """
    if "t" in mode:
        if "b" in mode:
            raise ValueError("Invalid mode: %r" % (mode,))
    else:
        if encoding is not None:
            raise ValueError("Argument 'encoding' not supported in binary mode")
        if errors is not None:
            raise ValueError("Argument 'errors' not supported in binary mode")
        if newline is not None:
            raise ValueError("Argument 'newline' not supported in binary mode")

    bz_mode = mode.replace("t", "")
    binary_file = BZ2File(filename, bz_mode, compresslevel=compresslevel)

    if "t" in mode:
        return io.TextIOWrapper(binary_file, encoding, errors, newline)
    else:
        return binary_file


def compress(data, compresslevel=9):
    """Compress a block of data.

    compresslevel, if given, must be a number between 1 and 9.

    For incremental compression, use a BZ2Compressor object instead.
    """
    comp = BZ2Compressor(compresslevel)
    return comp.compress(data) + comp.flush()


def decompress(data):
    """Decompress a block of data.

    For incremental decompression, use a BZ2Decompressor object instead.
    """
    results = []
    while data:
        decomp = BZ2Decompressor()
        try:
            res = decomp.decompress(data)
        except OSError:
            if results:
                break  # Leftover data is not a valid bzip2 stream; ignore it.
            else:
                raise  # Error on the first iteration; bail out.
        results.append(res)
        if not decomp.eof:
            raise ValueError("Compressed data ended before the "
                             "end-of-stream marker was reached")
        data = decomp.unused_data
    return b"".join(results)
lib\calendar.py
"""Calendar printing functions

Note when comparing these calendars to the ones printed by cal(1): By
default, these calendars have Monday as the first day of the week, and
Sunday as the last (the European convention). Use setfirstweekday() to
set the first day of the week (0=Monday, 6=Sunday)."""

import sys
import datetime
import locale as _locale

__all__ = ["IllegalMonthError", "IllegalWeekdayError", "setfirstweekday",
           "firstweekday", "isleap", "leapdays", "weekday", "monthrange",
           "monthcalendar", "prmonth", "month", "prcal", "calendar",
           "timegm", "month_name", "month_abbr", "day_name", "day_abbr"]

# Exception raised for bad input (with string parameter for details)
error = ValueError

# Exceptions raised for bad input
class IllegalMonthError(ValueError):
    def __init__(self, month):
        self.month = month
    def __str__(self):
        return "bad month number %r; must be 1-12" % self.month


class IllegalWeekdayError(ValueError):
    def __init__(self, weekday):
        self.weekday = weekday
    def __str__(self):
        return "bad weekday number %r; must be 0 (Monday) to 6 (Sunday)" % self.weekday


# Constants for months referenced later
January = 1
February = 2

# Number of days per month (except for February in leap years)
mdays = [0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

# This module used to have hard-coded lists of day and month names, as
# English strings.  The classes following emulate a read-only version of
# that, but supply localized names.  Note that the values are computed
# fresh on each call, in case the user changes locale between calls.

class _localized_month:

    _months = [datetime.date(2001, i+1, 1).strftime for i in range(12)]
    _months.insert(0, lambda x: "")

    def __init__(self, format):
        self.format = format

    def __getitem__(self, i):
        funcs = self._months[i]
        if isinstance(i, slice):
            return [f(self.format) for f in funcs]
        else:
            return funcs(self.format)

    def __len__(self):
        return 13


class _localized_day:

    # January 1, 2001, was a Monday.
    _days = [datetime.date(2001, 1, i+1).strftime for i in range(7)]

    def __init__(self, format):
        self.format = format

    def __getitem__(self, i):
        funcs = self._days[i]
        if isinstance(i, slice):
            return [f(self.format) for f in funcs]
        else:
            return funcs(self.format)

    def __len__(self):
        return 7


# Full and abbreviated names of weekdays
day_name = _localized_day('%A')
day_abbr = _localized_day('%a')

# Full and abbreviated names of months (1-based arrays!!!)
month_name = _localized_month('%B')
month_abbr = _localized_month('%b')

# Constants for weekdays
(MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7)


def isleap(year):
    """Return True for leap years, False for non-leap years."""
    return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0)


def leapdays(y1, y2):
    """Return number of leap years in range [y1, y2).
       Assume y1 <= y2."""
    y1 -= 1
    y2 -= 1
    return (y2//4 - y1//4) - (y2//100 - y1//100) + (y2//400 - y1//400)


def weekday(year, month, day):
    """Return weekday (0-6 ~ Mon-Sun) for year (1970-...), month (1-12),
       day (1-31)."""
    return datetime.date(year, month, day).weekday()


def monthrange(year, month):
    """Return weekday (0-6 ~ Mon-Sun) and number of days (28-31) for
       year, month."""
    if not 1 <= month <= 12:
        raise IllegalMonthError(month)
    day1 = weekday(year, month, 1)
    ndays = mdays[month] + (month == February and isleap(year))
    return day1, ndays


class Calendar(object):
    """
    Base calendar class. This class doesn't do any formatting. It simply
    provides data to subclasses.
    """

    def __init__(self, firstweekday=0):
        self.firstweekday = firstweekday # 0 = Monday, 6 = Sunday

    def getfirstweekday(self):
        return self._firstweekday % 7

    def setfirstweekday(self, firstweekday):
        self._firstweekday = firstweekday

    firstweekday = property(getfirstweekday, setfirstweekday)

    def iterweekdays(self):
        """
        Return an iterator for one week of weekday numbers starting with the
        configured first one.
        """
        for i in range(self.firstweekday, self.firstweekday + 7):
            yield i%7

    def itermonthdates(self, year, month):
        """
        Return an iterator for one month. The iterator will yield datetime.date
        values and will always iterate through complete weeks, so it will yield
        dates outside the specified month.
        """
        date = datetime.date(year, month, 1)
        # Go back to the beginning of the week
        days = (date.weekday() - self.firstweekday) % 7
        date -= datetime.timedelta(days=days)
        oneday = datetime.timedelta(days=1)
        while True:
            yield date
            try:
                date += oneday
            except OverflowError:
                # Adding one day could fail after datetime.MAXYEAR
                break
            if date.month != month and date.weekday() == self.firstweekday:
                break

    def itermonthdays2(self, year, month):
        """
        Like itermonthdates(), but will yield (day number, weekday number)
        tuples. For days outside the specified month the day number is 0.
        """
        for date in self.itermonthdates(year, month):
            if date.month != month:
                yield (0, date.weekday())
            else:
                yield (date.day, date.weekday())

    def itermonthdays(self, year, month):
        """
        Like itermonthdates(), but will yield day numbers. For days outside
        the specified month the day number is 0.
        """
        for date in self.itermonthdates(year, month):
            if date.month != month:
                yield 0
            else:
                yield date.day

    def monthdatescalendar(self, year, month):
        """
        Return a matrix (list of lists) representing a month's calendar.
        Each row represents a week; week entries are datetime.date values.
        """
        dates = list(self.itermonthdates(year, month))
        return [ dates[i:i+7] for i in range(0, len(dates), 7) ]

    def monthdays2calendar(self, year, month):
        """
        Return a matrix representing a month's calendar.
        Each row represents a week; week entries are
        (day number, weekday number) tuples. Day numbers outside this month
        are zero.
        """
        days = list(self.itermonthdays2(year, month))
        return [ days[i:i+7] for i in range(0, len(days), 7) ]

    def monthdayscalendar(self, year, month):
        """
        Return a matrix representing a month's calendar.
        Each row represents a week; days outside this month are zero.
        """
        days = list(self.itermonthdays(year, month))
        return [ days[i:i+7] for i in range(0, len(days), 7) ]

    def yeardatescalendar(self, year, width=3):
        """
        Return the data for the specified year ready for formatting. The return
        value is a list of month rows. Each month row contains up to width months.
        Each month contains between 4 and 6 weeks and each week contains 1-7
        days. Days are datetime.date objects.
        """
        months = [
            self.monthdatescalendar(year, i)
            for i in range(January, January+12)
        ]
        return [months[i:i+width] for i in range(0, len(months), width) ]

    def yeardays2calendar(self, year, width=3):
        """
        Return the data for the specified year ready for formatting (similar to
        yeardatescalendar()). Entries in the week lists are
        (day number, weekday number) tuples. Day numbers outside this month are
        zero.
        """
        months = [
            self.monthdays2calendar(year, i)
            for i in range(January, January+12)
        ]
        return [months[i:i+width] for i in range(0, len(months), width) ]

    def yeardayscalendar(self, year, width=3):
        """
        Return the data for the specified year ready for formatting (similar to
        yeardatescalendar()). Entries in the week lists are day numbers.
        Day numbers outside this month are zero.
        """
        months = [
            self.monthdayscalendar(year, i)
            for i in range(January, January+12)
        ]
        return [months[i:i+width] for i in range(0, len(months), width) ]


class TextCalendar(Calendar):
    """
    Subclass of Calendar that outputs a calendar as a simple plain text
    similar to the UNIX program cal.
    """

    def prweek(self, theweek, width):
        """
        Print a single week (no newline).
        """
        print(self.formatweek(theweek, width), end=' ')

    def formatday(self, day, weekday, width):
        """
        Returns a formatted day.
        """
        if day == 0:
            s = ''
        else:
            s = '%2i' % day             # right-align single-digit days
        return s.center(width)

    def formatweek(self, theweek, width):
        """
        Returns a single week in a string (no newline).
        """
        return ' '.join(self.formatday(d, wd, width) for (d, wd) in theweek)

    def formatweekday(self, day, width):
        """
        Returns a formatted week day name.
        """
        if width >= 9:
            names = day_name
        else:
            names = day_abbr
        return names[day][:width].center(width)

    def formatweekheader(self, width):
        """
        Return a header for a week.
        """
        return ' '.join(self.formatweekday(i, width) for i in self.iterweekdays())

    def formatmonthname(self, theyear, themonth, width, withyear=True):
        """
        Return a formatted month name.
        """
        s = month_name[themonth]
        if withyear:
            s = "%s %r" % (s, theyear)
        return s.center(width)

    def prmonth(self, theyear, themonth, w=0, l=0):
        """
        Print a month's calendar.
        """
        print(self.formatmonth(theyear, themonth, w, l), end=' ')

    def formatmonth(self, theyear, themonth, w=0, l=0):
        """
        Return a month's calendar string (multi-line).
        """
        w = max(2, w)
        l = max(1, l)
        s = self.formatmonthname(theyear, themonth, 7 * (w + 1) - 1)
        s = s.rstrip()
        s += '\n' * l
        s += self.formatweekheader(w).rstrip()
        s += '\n' * l
        for week in self.monthdays2calendar(theyear, themonth):
            s += self.formatweek(week, w).rstrip()
            s += '\n' * l
        return s

    def formatyear(self, theyear, w=2, l=1, c=6, m=3):
        """
        Returns a year's calendar as a multi-line string.
        """
        w = max(2, w)
        l = max(1, l)
        c = max(2, c)
        colwidth = (w + 1) * 7 - 1
        v = []
        a = v.append
        a(repr(theyear).center(colwidth*m+c*(m-1)).rstrip())
        a('\n'*l)
        header = self.formatweekheader(w)
        for (i, row) in enumerate(self.yeardays2calendar(theyear, m)):
            # months in this row
            months = range(m*i+1, min(m*(i+1)+1, 13))
            a('\n'*l)
            names = (self.formatmonthname(theyear, k, colwidth, False)
                     for k in months)
            a(formatstring(names, colwidth, c).rstrip())
            a('\n'*l)
            headers = (header for k in months)
            a(formatstring(headers, colwidth, c).rstrip())
            a('\n'*l)
            # max number of weeks for this row
            height = max(len(cal) for cal in row)
            for j in range(height):
                weeks = []
                for cal in row:
                    if j >= len(cal):
                        weeks.append('')
                    else:
                        weeks.append(self.formatweek(cal[j], w))
                a(formatstring(weeks, colwidth, c).rstrip())
                a('\n' * l)
        return ''.join(v)

    def pryear(self, theyear, w=0, l=0, c=6, m=3):
        """Print a year's calendar."""
        print(self.formatyear(theyear, w, l, c, m))


class HTMLCalendar(Calendar):
    """
    This calendar returns complete HTML pages.
    """

    # CSS classes for the day <td>s
    cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]

    def formatday(self, day, weekday):
        """
        Return a day as a table cell.
        """
        if day == 0:
            return '<td class="noday">&nbsp;</td>' # day outside month
        else:
            return '<td class="%s">%d</td>' % (self.cssclasses[weekday], day)

    def formatweek(self, theweek):
        """
        Return a complete week as a table row.
        """
        s = ''.join(self.formatday(d, wd) for (d, wd) in theweek)
        return '<tr>%s</tr>' % s

    def formatweekday(self, day):
        """
        Return a weekday name as a table header.
        """
        return '<th class="%s">%s</th>' % (self.cssclasses[day], day_abbr[day])

    def formatweekheader(self):
        """
        Return a header for a week as a table row.
        """
        s = ''.join(self.formatweekday(i) for i in self.iterweekdays())
        return '<tr>%s</tr>' % s

    def formatmonthname(self, theyear, themonth, withyear=True):
        """
        Return a month name as a table row.
        """
        if withyear:
            s = '%s %s' % (month_name[themonth], theyear)
        else:
            s = '%s' % month_name[themonth]
        return '<tr><th colspan="7" class="month">%s</th></tr>' % s

    def formatmonth(self, theyear, themonth, withyear=True):
        """
        Return a formatted month as a table.
        """
        v = []
        a = v.append
        a('<table border="0" cellpadding="0" cellspacing="0" class="month">')
        a('\n')
        a(self.formatmonthname(theyear, themonth, withyear=withyear))
        a('\n')
        a(self.formatweekheader())
        a('\n')
        for week in self.monthdays2calendar(theyear, themonth):
            a(self.formatweek(week))
            a('\n')
        a('</table>')
        a('\n')
        return ''.join(v)

    def formatyear(self, theyear, width=3):
        """
        Return a formatted year as a table of tables.
        """
        v = []
        a = v.append
        width = max(width, 1)
        a('<table border="0" cellpadding="0" cellspacing="0" class="year">')
        a('\n')
        a('<tr><th colspan="%d" class="year">%s</th></tr>' % (width, theyear))
        for i in range(January, January+12, width):
            # months in this row
            months = range(i, min(i+width, 13))
            a('<tr>')
            for m in months:
                a('<td>')
                a(self.formatmonth(theyear, m, withyear=False))
                a('</td>')
            a('</tr>')
        a('</table>')
        return ''.join(v)

    def formatyearpage(self, theyear, width=3, css='calendar.css', encoding=None):
        """
        Return a formatted year as a complete HTML page.
        """
        if encoding is None:
            encoding = sys.getdefaultencoding()
        v = []
        a = v.append
        a('<?xml version="1.0" encoding="%s"?>\n' % encoding)
        a('<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">\n')
        a('<html>\n')
        a('<head>\n')
        a('<meta http-equiv="Content-Type" content="text/html; charset=%s" />\n' % encoding)
        if css is not None:
            a('<link rel="stylesheet" type="text/css" href="%s" />\n' % css)
        a('<title>Calendar for %d</title>\n' % theyear)
        a('</head>\n')
        a('<body>\n')
        a(self.formatyear(theyear, width))
        a('</body>\n')
        a('</html>\n')
        return ''.join(v).encode(encoding, "xmlcharrefreplace")


class different_locale:
    def __init__(self, locale):
        self.locale = locale

    def __enter__(self):
        self.oldlocale = _locale.getlocale(_locale.LC_TIME)
        _locale.setlocale(_locale.LC_TIME, self.locale)

    def __exit__(self, *args):
        _locale.setlocale(_locale.LC_TIME, self.oldlocale)


class LocaleTextCalendar(TextCalendar):
    """
    This class can be passed a locale name in the constructor and will return
    month and weekday names in the specified locale. If this locale includes
    an encoding all strings containing month and weekday names will be returned
    as unicode.
    """

    def __init__(self, firstweekday=0, locale=None):
        TextCalendar.__init__(self, firstweekday)
        if locale is None:
            locale = _locale.getdefaultlocale()
        self.locale = locale

    def formatweekday(self, day, width):
        with different_locale(self.locale):
            if width >= 9:
                names = day_name
            else:
                names = day_abbr
            name = names[day]
            return name[:width].center(width)

    def formatmonthname(self, theyear, themonth, width, withyear=True):
        with different_locale(self.locale):
            s = month_name[themonth]
            if withyear:
                s = "%s %r" % (s, theyear)
            return s.center(width)


class LocaleHTMLCalendar(HTMLCalendar):
    """
    This class can be passed a locale name in the constructor and will return
    month and weekday names in the specified locale. If this locale includes
    an encoding all strings containing month and weekday names will be returned
    as unicode.
    """
    def __init__(self, firstweekday=0, locale=None):
        HTMLCalendar.__init__(self, firstweekday)
        if locale is None:
            locale = _locale.getdefaultlocale()
        self.locale = locale

    def formatweekday(self, day):
        with different_locale(self.locale):
            s = day_abbr[day]
            return '<th class="%s">%s</th>' % (self.cssclasses[day], s)

    def formatmonthname(self, theyear, themonth, withyear=True):
        with different_locale(self.locale):
            s = month_name[themonth]
            if withyear:
                s = '%s %s' % (s, theyear)
            return '<tr><th colspan="7" class="month">%s</th></tr>' % s


# Support for old module level interface
c = TextCalendar()

firstweekday = c.getfirstweekday

def setfirstweekday(firstweekday):
    if not MONDAY <= firstweekday <= SUNDAY:
        raise IllegalWeekdayError(firstweekday)
    c.firstweekday = firstweekday

monthcalendar = c.monthdayscalendar
prweek = c.prweek
week = c.formatweek
weekheader = c.formatweekheader
prmonth = c.prmonth
month = c.formatmonth
calendar = c.formatyear
prcal = c.pryear


# Spacing of month columns for multi-column year calendar
_colwidth = 7*3 - 1         # Amount printed by prweek()
_spacing = 6                # Number of spaces between columns


def format(cols, colwidth=_colwidth, spacing=_spacing):
    """Prints multi-column formatting for year calendars"""
    print(formatstring(cols, colwidth, spacing))


def formatstring(cols, colwidth=_colwidth, spacing=_spacing):
    """Returns a string formatted from n strings, centered within n columns."""
    spacing *= ' '
    return spacing.join(c.center(colwidth) for c in cols)


EPOCH = 1970
_EPOCH_ORD = datetime.date(EPOCH, 1, 1).toordinal()


def timegm(tuple):
    """Unrelated but handy function to calculate Unix timestamp from GMT."""
    year, month, day, hour, minute, second = tuple[:6]
    days = datetime.date(year, month, 1).toordinal() - _EPOCH_ORD + day - 1
    hours = days*24 + hour
    minutes = hours*60 + minute
    seconds = minutes*60 + second
    return seconds


def main(args):
    import optparse
    parser = optparse.OptionParser(usage="usage: %prog [options] [year [month]]")
    parser.add_option(
        "-w", "--width",
        dest="width", type="int", default=2,
        help="width of date column (default 2, text only)"
    )
    parser.add_option(
        "-l", "--lines",
        dest="lines", type="int", default=1,
        help="number of lines for each week (default 1, text only)"
    )
    parser.add_option(
        "-s", "--spacing",
        dest="spacing", type="int", default=6,
        help="spacing between months (default 6, text only)"
    )
    parser.add_option(
        "-m", "--months",
        dest="months", type="int", default=3,
        help="months per row (default 3, text only)"
    )
    parser.add_option(
        "-c", "--css",
        dest="css", default="calendar.css",
        help="CSS to use for page (html only)"
    )
    parser.add_option(
        "-L", "--locale",
        dest="locale", default=None,
        help="locale to be used from month and weekday names"
    )
    parser.add_option(
        "-e", "--encoding",
        dest="encoding", default=None,
        help="Encoding to use for output."
    )
    parser.add_option(
        "-t", "--type",
        dest="type", default="text",
        choices=("text", "html"),
        help="output type (text or html)"
    )

    (options, args) = parser.parse_args(args)

    if options.locale and not options.encoding:
        parser.error("if --locale is specified --encoding is required")
        sys.exit(1)

    locale = options.locale, options.encoding

    if options.type == "html":
        if options.locale:
            cal = LocaleHTMLCalendar(locale=locale)
        else:
            cal = HTMLCalendar()
        encoding = options.encoding
        if encoding is None:
            encoding = sys.getdefaultencoding()
        optdict = dict(encoding=encoding, css=options.css)
        write = sys.stdout.buffer.write
        if len(args) == 1:
            write(cal.formatyearpage(datetime.date.today().year, **optdict))
        elif len(args) == 2:
            write(cal.formatyearpage(int(args[1]), **optdict))
        else:
            parser.error("incorrect number of arguments")
            sys.exit(1)
    else:
        if options.locale:
            cal = LocaleTextCalendar(locale=locale)
        else:
            cal = TextCalendar()
        optdict = dict(w=options.width, l=options.lines)
        if len(args) != 3:
            optdict["c"] = options.spacing
            optdict["m"] = options.months
        if len(args) == 1:
            result = cal.formatyear(datetime.date.today().year, **optdict)
        elif len(args) == 2:
            result = cal.formatyear(int(args[1]), **optdict)
        elif len(args) == 3:
            result = cal.formatmonth(int(args[1]), int(args[2]), **optdict)
        else:
            parser.error("incorrect number of arguments")
            sys.exit(1)
        write = sys.stdout.write
        if options.encoding:
            result = result.encode(options.encoding)
            write = sys.stdout.buffer.write
        write(result)


if __name__ == "__main__":
    main(sys.argv)
lib\cgi.py
#! /usr/local/bin/python

# NOTE: the above "/usr/local/bin/python" is NOT a mistake.  It is
# intentionally NOT "/usr/bin/env python".  On many systems
# (e.g. Solaris), /usr/local/bin is not in $PATH as passed to CGI
# scripts, and /usr/local/bin is the default directory where Python is
# installed, so /usr/bin/env would be unable to find python.  Granted,
# binary installations by Linux vendors often install Python in
# /usr/bin.  So let those vendors patch cgi.py to match their choice
# of installation.

"""Support module for CGI (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts
written in Python.
"""

# History
# -------
#
# Michael McLay started this module.  Steve Majewski changed the
# interface to SvFormContentDict and FormContentDict.  The multipart
# parsing was inspired by code submitted by Andreas Paepcke.  Guido van
# Rossum rewrote, reformatted and documented the module and is currently
# responsible for its maintenance.
#

__version__ = "2.6"


# Imports
# =======

from io import StringIO, BytesIO, TextIOWrapper
from collections import Mapping
import sys
import os
import urllib.parse
from email.parser import FeedParser
from email.message import Message
from warnings import warn
import html
import locale
import tempfile

__all__ = ["MiniFieldStorage", "FieldStorage",
           "parse", "parse_qs", "parse_qsl", "parse_multipart",
           "parse_header", "print_exception", "print_environ",
           "print_form", "print_directory", "print_arguments",
           "print_environ_usage", "escape"]

# Logging support
# ===============

logfile = ""            # Filename to log to, if not empty
logfp = None            # File object to log to, if not None

def initlog(*allargs):
    """Write a log message, if there is a log file.

    Even though this function is called initlog(), you should always
    use log(); log is a variable that is set either to initlog
    (initially), to dolog (once the log file has been opened), or to
    nolog (when logging is disabled).

    The first argument is a format string; the remaining arguments (if
    any) are arguments to the % operator, so e.g.
        log("%s: %s", "a", "b")
    will write "a: b" to the log file, followed by a newline.

    If the global logfp is not None, it should be a file object to
    which log data is written.

    If the global logfp is None, the global logfile may be a string
    giving a filename to open, in append mode.  This file should be
    world writable!!!  If the file can't be opened, logging is
    silently disabled (since there is no safe place where we could
    send an error message).

    """
    global log, logfile, logfp
    if logfile and not logfp:
        try:
            logfp = open(logfile, "a")
        except OSError:
            pass
    if not logfp:
        log = nolog
    else:
        log = dolog
    log(*allargs)

def dolog(fmt, *args):
    """Write a log message to the log file.  See initlog() for docs."""
    logfp.write(fmt%args + "\n")

def nolog(*allargs):
    """Dummy function, assigned to log when logging is disabled."""
    pass

def closelog():
    """Close the log file."""
    global log, logfile, logfp
    logfile = ''
    if logfp:
        logfp.close()
        logfp = None
    log = initlog

log = initlog           # The current logging function


# Parsing functions
# =================

# Maximum input we will accept when REQUEST_METHOD is POST
# 0 ==> unlimited input
maxlen = 0

def parse(fp=None, environ=os.environ, keep_blank_values=0, strict_parsing=0):
    """Parse a query in the environment or from a file (default stdin)

        Arguments, all optional:

        fp              : file pointer; default: sys.stdin.buffer

        environ         : environment dictionary; default: os.environ

        keep_blank_values: flag indicating whether blank values in
            percent-encoded forms should be treated as blank strings.
            A true value indicates that blanks should be retained as
            blank strings.  The default false value indicates that
            blank values are to be ignored and treated as if they were
            not included.

        strict_parsing: flag indicating what to do with parsing errors.
            If false (the default), errors are silently ignored.
            If true, errors raise a ValueError exception.
    """
    if fp is None:
        fp = sys.stdin

    # field keys and values (except for files) are returned as strings
    # an encoding is required to decode the bytes read from self.fp
    if hasattr(fp,'encoding'):
        encoding = fp.encoding
    else:
        encoding = 'latin-1'

    # fp.read() must return bytes
    if isinstance(fp, TextIOWrapper):
        fp = fp.buffer

    if not 'REQUEST_METHOD' in environ:
        environ['REQUEST_METHOD'] = 'GET'       # For testing stand-alone
    if environ['REQUEST_METHOD'] == 'POST':
        ctype, pdict = parse_header(environ['CONTENT_TYPE'])
        if ctype == 'multipart/form-data':
            return parse_multipart(fp, pdict)
        elif ctype == 'application/x-www-form-urlencoded':
            clength = int(environ['CONTENT_LENGTH'])
            if maxlen and clength > maxlen:
                raise ValueError('Maximum content length exceeded')
            qs = fp.read(clength).decode(encoding)
        else:
            qs = ''                     # Unknown content-type
        if 'QUERY_STRING' in environ:
            if qs: qs = qs + '&'
            qs = qs + environ['QUERY_STRING']
        elif sys.argv[1:]:
            if qs: qs = qs + '&'
            qs = qs + sys.argv[1]
        environ['QUERY_STRING'] = qs    # XXX Shouldn't, really
    elif 'QUERY_STRING' in environ:
        qs = environ['QUERY_STRING']
    else:
        if sys.argv[1:]:
            qs = sys.argv[1]
        else:
            qs = ""
        environ['QUERY_STRING'] = qs    # XXX Shouldn't, really
    return urllib.parse.parse_qs(qs, keep_blank_values, strict_parsing,
                                 encoding=encoding)


# parse query string function called from urlparse,
# this is done in order to maintain backward compatiblity.

def parse_qs(qs, keep_blank_values=0, strict_parsing=0):
    """Parse a query given as a string argument."""
    warn("cgi.parse_qs is deprecated, use urllib.parse.parse_qs instead",
         DeprecationWarning, 2)
    return urllib.parse.parse_qs(qs, keep_blank_values, strict_parsing)

def parse_qsl(qs, keep_blank_values=0, strict_parsing=0):
    """Parse a query given as a string argument."""
    warn("cgi.parse_qsl is deprecated, use urllib.parse.parse_qsl instead",
         DeprecationWarning, 2)
    return urllib.parse.parse_qsl(qs, keep_blank_values, strict_parsing)

def parse_multipart(fp, pdict):
    """Parse multipart input.

    Arguments:
    fp   : input file
    pdict: dictionary containing other parameters of content-type header

    Returns a dictionary just like parse_qs(): keys are the field names, each
    value is a list of values for that field.  This is easy to use but not
    much good if you are expecting megabytes to be uploaded -- in that case,
    use the FieldStorage class instead which is much more flexible.  Note
    that content-type is the raw, unparsed contents of the content-type
    header.

    XXX This does not parse nested multipart parts -- use FieldStorage for
    that.

    XXX This should really be subsumed by FieldStorage altogether -- no
    point in having two implementations of the same parsing algorithm.
    Also, FieldStorage protects itself better against certain DoS attacks
    by limiting the size of the data read in one chunk.  The API here
    does not support that kind of protection.  This also affects parse()
    since it can call parse_multipart().

    """
    import http.client

    boundary = b""
    if 'boundary' in pdict:
        boundary = pdict['boundary']
    if not valid_boundary(boundary):
        raise ValueError('Invalid boundary in multipart form: %r'
                            % (boundary,))

    nextpart = b"--" + boundary
    lastpart = b"--" + boundary + b"--"
    partdict = {}
    terminator = b""

    while terminator != lastpart:
        bytes = -1
        data = None
        if terminator:
            # At start of next part.  Read headers first.
            headers = http.client.parse_headers(fp)
            clength = headers.get('content-length')
            if clength:
                try:
                    bytes = int(clength)
                except ValueError:
                    pass
            if bytes > 0:
                if maxlen and bytes > maxlen:
                    raise ValueError('Maximum content length exceeded')
                data = fp.read(bytes)
            else:
                data = b""
        # Read lines until end of part.
        lines = []
        while 1:
            line = fp.readline()
            if not line:
                terminator = lastpart # End outer loop
                break
            if line.startswith(b"--"):
                terminator = line.rstrip()
                if terminator in (nextpart, lastpart):
                    break
            lines.append(line)
        # Done with part.
        if data is None:
            continue
        if bytes < 0:
            if lines:
                # Strip final line terminator
                line = lines[-1]
                if line[-2:] == b"\r\n":
                    line = line[:-2]
                elif line[-1:] == b"\n":
                    line = line[:-1]
                lines[-1] = line
                data = b"".join(lines)
        line = headers['content-disposition']
        if not line:
            continue
        key, params = parse_header(line)
        if key != 'form-data':
            continue
        if 'name' in params:
            name = params['name']
        else:
            continue
        if name in partdict:
            partdict[name].append(data)
        else:
            partdict[name] = [data]

    return partdict


def _parseparam(s):
    while s[:1] == ';':
        s = s[1:]
        end = s.find(';')
        while end > 0 and (s.count('"', 0, end) - s.count('\\"', 0, end)) % 2:
            end = s.find(';', end + 1)
        if end < 0:
            end = len(s)
        f = s[:end]
        yield f.strip()
        s = s[end:]

def parse_header(line):
    """Parse a Content-type like header.

    Return the main content-type and a dictionary of options.

    """
    parts = _parseparam(';' + line)
    key = parts.__next__()
    pdict = {}
    for p in parts:
        i = p.find('=')
        if i >= 0:
            name = p[:i].strip().lower()
            value = p[i+1:].strip()
            if len(value) >= 2 and value[0] == value[-1] == '"':
                value = value[1:-1]
                value = value.replace('\\\\', '\\').replace('\\"', '"')
            pdict[name] = value
    return key, pdict


# Classes for field storage
# =========================

class MiniFieldStorage:

    """Like FieldStorage, for use when no file uploads are possible."""

    # Dummy attributes
    filename = None
    list = None
    type = None
    file = None
    type_options = {}
    disposition = None
    disposition_options = {}
    headers = {}

    def __init__(self, name, value):
        """Constructor from field name and value."""
        self.name = name
        self.value = value
        # self.file = StringIO(value)

    def __repr__(self):
        """Return printable representation."""
        return "MiniFieldStorage(%r, %r)" % (self.name, self.value)


class FieldStorage:

    """Store a sequence of fields, reading multipart/form-data.

    This class provides naming, typing, files stored on disk, and
    more.  At the top level, it is accessible like a dictionary, whose
    keys are the field names.  (Note: None can occur as a field name.)
    The items are either a Python list (if there's multiple values) or
    another FieldStorage or MiniFieldStorage object.  If it's a single
    object, it has the following attributes:

    name: the field name, if specified; otherwise None

    filename: the filename, if specified; otherwise None; this is the
        client side filename, *not* the file name on which it is
        stored (that's a temporary file you don't deal with)

    value: the value as a *string*; for file uploads, this
        transparently reads the file every time you request the value
        and returns *bytes*

    file: the file(-like) object from which you can read the data *as
        bytes* ; None if the data is stored a simple string

    type: the content-type, or None if not specified

    type_options: dictionary of options specified on the content-type
        line

    disposition: content-disposition, or None if not specified

    disposition_options: dictionary of corresponding options

    headers: a dictionary(-like) object (sometimes email.message.Message or a
        subclass thereof) containing *all* headers

    The class is subclassable, mostly for the purpose of overriding
    the make_file() method, which is called internally to come up with
    a file open for reading and writing.  This makes it possible to
    override the default choice of storing all files in a temporary
    directory and unlinking them as soon as they have been opened.

    """
    def __init__(self, fp=None, headers=None, outerboundary=b'',
                 environ=os.environ, keep_blank_values=0, strict_parsing=0,
                 limit=None, encoding='utf-8', errors='replace'):
        """Constructor.  Read multipart/* until last part.

        Arguments, all optional:

        fp              : file pointer; default: sys.stdin.buffer
            (not used when the request method is GET)
            Can be :
            1. a TextIOWrapper object
            2. an object whose read() and readline() methods return bytes

        headers         : header dictionary-like object; default:
            taken from environ as per CGI spec

        outerboundary   : terminating multipart boundary
            (for internal use only)

        environ         : environment dictionary; default: os.environ

        keep_blank_values: flag indicating whether blank values in
            percent-encoded forms should be treated as blank strings.
            A true value indicates that blanks should be retained as
            blank strings.  The default false value indicates that
            blank values are to be ignored and treated as if they were
            not included.

        strict_parsing: flag indicating what to do with parsing errors.
            If false (the default), errors are silently ignored.
            If true, errors raise a ValueError exception.

        limit : used internally to read parts of multipart/form-data forms,
            to exit from the reading loop when reached. It is the difference
            between the form content-length and the number of bytes already
            read

        encoding, errors : the encoding and error handler used to decode the
            binary stream to strings. Must be the same as the charset defined
            for the page sending the form (content-type : meta http-equiv or
            header)

        """
        method = 'GET'
        self.keep_blank_values = keep_blank_values
        self.strict_parsing = strict_parsing
        if 'REQUEST_METHOD' in environ:
            method = environ['REQUEST_METHOD'].upper()
        self.qs_on_post = None
        if method == 'GET' or method == 'HEAD':
            if 'QUERY_STRING' in environ:
                qs = environ['QUERY_STRING']
            elif sys.argv[1:]:
                qs = sys.argv[1]
            else:
                qs = ""
            qs = qs.encode(locale.getpreferredencoding(), 'surrogateescape')
            fp = BytesIO(qs)
            if headers is None:
                headers = {'content-type':
                           "application/x-www-form-urlencoded"}
        if headers is None:
            headers = {}
            if method == 'POST':
                # Set default content-type for POST to what's traditional
                headers['content-type'] = "application/x-www-form-urlencoded"
            if 'CONTENT_TYPE' in environ:
                headers['content-type'] = environ['CONTENT_TYPE']
            if 'QUERY_STRING' in environ:
                self.qs_on_post = environ['QUERY_STRING']
            if 'CONTENT_LENGTH' in environ:
                headers['content-length'] = environ['CONTENT_LENGTH']
        else:
            if not (isinstance(headers, (Mapping, Message))):
                raise TypeError("headers must be mapping or an instance of "
                                "email.message.Message")
        self.headers = headers
        if fp is None:
            self.fp = sys.stdin.buffer
        # self.fp.read() must return bytes
        elif isinstance(fp, TextIOWrapper):
            self.fp = fp.buffer
        else:
            if not (hasattr(fp, 'read') and hasattr(fp, 'readline')):
                raise TypeError("fp must be file pointer")
            self.fp = fp

        self.encoding = encoding
        self.errors = errors

        if not isinstance(outerboundary, bytes):
            raise TypeError('outerboundary must be bytes, not %s'
                            % type(outerboundary).__name__)
        self.outerboundary = outerboundary

        self.bytes_read = 0
        self.limit = limit

        # Process content-disposition header
        cdisp, pdict = "", {}
        if 'content-disposition' in self.headers:
            cdisp, pdict = parse_header(self.headers['content-disposition'])
        self.disposition = cdisp
        self.disposition_options = pdict
        self.name = None
        if 'name' in pdict:
            self.name = pdict['name']
        self.filename = None
        if 'filename' in pdict:
            self.filename = pdict['filename']
        self._binary_file = self.filename is not None

        # Process content-type header
        #
        # Honor any existing content-type header.  But if there is no
        # content-type header, use some sensible defaults.  Assume
        # outerboundary is "" at the outer level, but something non-false
        # inside a multi-part.  The default for an inner part is text/plain,
        # but for an outer part it should be urlencoded.  This should catch
        # bogus clients which erroneously forget to include a content-type
        # header.
        #
        # See below for what we do if there does exist a content-type header,
        # but it happens to be something we don't understand.
        if 'content-type' in self.headers:
            ctype, pdict = parse_header(self.headers['content-type'])
        elif self.outerboundary or method != 'POST':
            ctype, pdict = "text/plain", {}
        else:
            ctype, pdict = 'application/x-www-form-urlencoded', {}
        self.type = ctype
        self.type_options = pdict
        if 'boundary' in pdict:
            self.innerboundary = pdict['boundary'].encode(self.encoding)
        else:
            self.innerboundary = b""

        clen = -1
        if 'content-length' in self.headers:
            try:
                clen = int(self.headers['content-length'])
            except ValueError:
                pass
            if maxlen and clen > maxlen:
                raise ValueError('Maximum content length exceeded')
        self.length = clen
        if self.limit is None and clen:
            self.limit = clen

        self.list = self.file = None
        self.done = 0
        if ctype == 'application/x-www-form-urlencoded':
            self.read_urlencoded()
        elif ctype[:10] == 'multipart/':
            self.read_multi(environ, keep_blank_values, strict_parsing)
        else:
            self.read_single()

    def __del__(self):
        try:
            self.file.close()
        except AttributeError:
            pass

    def __repr__(self):
        """Return a printable representation."""
        return "FieldStorage(%r, %r, %r)" % (
                self.name, self.filename, self.value)

    def __iter__(self):
        return iter(self.keys())

    def __getattr__(self, name):
        if name != 'value':
            raise AttributeError(name)
        if self.file:
            self.file.seek(0)
            value = self.file.read()
            self.file.seek(0)
        elif self.list is not None:
            value = self.list
        else:
            value = None
        return value

    def __getitem__(self, key):
        """Dictionary style indexing."""
        if self.list is None:
            raise TypeError("not indexable")
        found = []
        for item in self.list:
            if item.name == key: found.append(item)
        if not found:
            raise KeyError(key)
        if len(found) == 1:
            return found[0]
        else:
            return found

    def getvalue(self, key, default=None):
        """Dictionary style get() method, including 'value' lookup."""
        if key in self:
            value = self[key]
            if isinstance(value, list):
                return [x.value for x in value]
            else:
                return value.value
        else:
            return default

    def getfirst(self, key, default=None):
        """ Return the first value received."""
        if key in self:
            value = self[key]
            if isinstance(value, list):
                return value[0].value
            else:
                return value.value
        else:
            return default

    def getlist(self, key):
        """ Return list of received values."""
        if key in self:
            value = self[key]
            if isinstance(value, list):
                return [x.value for x in value]
            else:
                return [value.value]
        else:
            return []

    def keys(self):
        """Dictionary style keys() method."""
        if self.list is None:
            raise TypeError("not indexable")
        return list(set(item.name for item in self.list))

    def __contains__(self, key):
        """Dictionary style __contains__ method."""
        if self.list is None:
            raise TypeError("not indexable")
        return any(item.name == key for item in self.list)

    def __len__(self):
        """Dictionary style len(x) support."""
        return len(self.keys())

    def __bool__(self):
        if self.list is None:
            raise TypeError("Cannot be converted to bool.")
        return bool(self.list)

    def read_urlencoded(self):
        """Internal: read data in query string format."""
        qs = self.fp.read(self.length)
        if not isinstance(qs, bytes):
            raise ValueError("%s should return bytes, got %s" \
                             % (self.fp, type(qs).__name__))
        qs = qs.decode(self.encoding, self.errors)
        if self.qs_on_post:
            qs += '&' + self.qs_on_post
        self.list = []
        query = urllib.parse.parse_qsl(
            qs, self.keep_blank_values, self.strict_parsing,
            encoding=self.encoding, errors=self.errors)
        for key, value in query:
            self.list.append(MiniFieldStorage(key, value))
        self.skip_lines()

    FieldStorageClass = None

    def read_multi(self, environ, keep_blank_values, strict_parsing):
        """Internal: read a part that is itself multipart."""
        ib = self.innerboundary
        if not valid_boundary(ib):
            raise ValueError('Invalid boundary in multipart form: %r' % (ib,))
        self.list = []
        if self.qs_on_post:
            query = urllib.parse.parse_qsl(
                self.qs_on_post, self.keep_blank_values, self.strict_parsing,
                encoding=self.encoding, errors=self.errors)
            for key, value in query:
                self.list.append(MiniFieldStorage(key, value))

        klass = self.FieldStorageClass or self.__class__
        first_line = self.fp.readline() # bytes
        if not isinstance(first_line, bytes):
            raise ValueError("%s should return bytes, got %s" \
                             % (self.fp, type(first_line).__name__))
        self.bytes_read += len(first_line)

        # Ensure that we consume the file until we've hit our inner boundary
        while (first_line.strip() != (b"--" + self.innerboundary) and
                first_line):
            first_line = self.fp.readline()
            self.bytes_read += len(first_line)

        while True:
            parser = FeedParser()
            hdr_text = b""
            while True:
                data = self.fp.readline()
                hdr_text += data
                if not data.strip():
                    break
            if not hdr_text:
                break
            # parser takes strings, not bytes
            self.bytes_read += len(hdr_text)
            parser.feed(hdr_text.decode(self.encoding, self.errors))
            headers = parser.close()

            # Some clients add Content-Length for part headers, ignore them
            if 'content-length' in headers:
                del headers['content-length']

            part = klass(self.fp, headers, ib, environ, keep_blank_values,
                         strict_parsing,self.limit-self.bytes_read,
                         self.encoding, self.errors)
            self.bytes_read += part.bytes_read
            self.list.append(part)
            if part.done or self.bytes_read >= self.length > 0:
                break
        self.skip_lines()

    def read_single(self):
        """Internal: read an atomic part."""
        if self.length >= 0:
            self.read_binary()
            self.skip_lines()
        else:
            self.read_lines()
        self.file.seek(0)

    bufsize = 8*1024            # I/O buffering size for copy to file

    def read_binary(self):
        """Internal: read binary data."""
        self.file = self.make_file()
        todo = self.length
        if todo >= 0:
            while todo > 0:
                data = self.fp.read(min(todo, self.bufsize)) # bytes
                if not isinstance(data, bytes):
                    raise ValueError("%s should return bytes, got %s"
                                     % (self.fp, type(data).__name__))
                self.bytes_read += len(data)
                if not data:
                    self.done = -1
                    break
                self.file.write(data)
                todo = todo - len(data)

    def read_lines(self):
        """Internal: read lines until EOF or outerboundary."""
        if self._binary_file:
            self.file = self.__file = BytesIO() # store data as bytes for files
        else:
            self.file = self.__file = StringIO() # as strings for other fields
        if self.outerboundary:
            self.read_lines_to_outerboundary()
        else:
            self.read_lines_to_eof()

    def __write(self, line):
        """line is always bytes, not string"""
        if self.__file is not None:
            if self.__file.tell() + len(line) > 1000:
                self.file = self.make_file()
                data = self.__file.getvalue()
                self.file.write(data)
                self.__file = None
        if self._binary_file:
            # keep bytes
            self.file.write(line)
        else:
            # decode to string
            self.file.write(line.decode(self.encoding, self.errors))

    def read_lines_to_eof(self):
        """Internal: read lines until EOF."""
        while 1:
            line = self.fp.readline(1<<16) # bytes
            self.bytes_read += len(line)
            if not line:
                self.done = -1
                break
            self.__write(line)

    def read_lines_to_outerboundary(self):
        """Internal: read lines until outerboundary.
        Data is read as bytes: boundaries and line ends must be converted
        to bytes for comparisons.
        """
        next_boundary = b"--" + self.outerboundary
        last_boundary = next_boundary + b"--"
        delim = b""
        last_line_lfend = True
        _read = 0
        while 1:
            if _read >= self.limit:
                break
            line = self.fp.readline(1<<16) # bytes
            self.bytes_read += len(line)
            _read += len(line)
            if not line:
                self.done = -1
                break
            if delim == b"\r":
                line = delim + line
                delim = b""
            if line.startswith(b"--") and last_line_lfend:
                strippedline = line.rstrip()
                if strippedline == next_boundary:
                    break
                if strippedline == last_boundary:
                    self.done = 1
                    break
            odelim = delim
            if line.endswith(b"\r\n"):
                delim = b"\r\n"
                line = line[:-2]
                last_line_lfend = True
            elif line.endswith(b"\n"):
                delim = b"\n"
                line = line[:-1]
                last_line_lfend = True
            elif line.endswith(b"\r"):
                # We may interrupt \r\n sequences if they span the 2**16
                # byte boundary
                delim = b"\r"
                line = line[:-1]
                last_line_lfend = False
            else:
                delim = b""
                last_line_lfend = False
            self.__write(odelim + line)

    def skip_lines(self):
        """Internal: skip lines until outer boundary if defined."""
        if not self.outerboundary or self.done:
            return
        next_boundary = b"--" + self.outerboundary
        last_boundary = next_boundary + b"--"
        last_line_lfend = True
        while True:
            line = self.fp.readline(1<<16)
            self.bytes_read += len(line)
            if not line:
                self.done = -1
                break
            if line.endswith(b"--") and last_line_lfend:
                strippedline = line.strip()
                if strippedline == next_boundary:
                    break
                if strippedline == last_boundary:
                    self.done = 1
                    break
            last_line_lfend = line.endswith(b'\n')

    def make_file(self):
        """Overridable: return a readable & writable file.

        The file will be used as follows:
        - data is written to it
        - seek(0)
        - data is read from it

        The file is opened in binary mode for files, in text mode
        for other fields

        This version opens a temporary file for reading and writing,
        and immediately deletes (unlinks) it.  The trick (on Unix!) is
        that the file can still be used, but it can't be opened by
        another process, and it will automatically be deleted when it
        is closed or when the current process terminates.

        If you want a more permanent file, you derive a class which
        overrides this method.  If you want a visible temporary file
        that is nevertheless automatically deleted when the script
        terminates, try defining a __del__ method in a derived class
        which unlinks the temporary files you have created.

        """
        if self._binary_file:
            return tempfile.TemporaryFile("wb+")
        else:
            return tempfile.TemporaryFile("w+",
                encoding=self.encoding, newline = '\n')


# Test/debug code
# ===============

def test(environ=os.environ):
    """Robust test CGI script, usable as main program.

    Write minimal HTTP headers and dump all information provided to
    the script in HTML form.

    """
    print("Content-type: text/html")
    print()
    sys.stderr = sys.stdout
    try:
        form = FieldStorage()   # Replace with other classes to test those
        print_directory()
        print_arguments()
        print_form(form)
        print_environ(environ)
        print_environ_usage()
        def f():
            exec("testing print_exception() -- <I>italics?</I>")
        def g(f=f):
            f()
        print("<H3>What follows is a test, not an actual exception:</H3>")
        g()
    except:
        print_exception()

    print("<H1>Second try with a small maxlen...</H1>")

    global maxlen
    maxlen = 50
    try:
        form = FieldStorage()   # Replace with other classes to test those
        print_directory()
        print_arguments()
        print_form(form)
        print_environ(environ)
    except:
        print_exception()

def print_exception(type=None, value=None, tb=None, limit=None):
    if type is None:
        type, value, tb = sys.exc_info()
    import traceback
    print()
    print("<H3>Traceback (most recent call last):</H3>")
    list = traceback.format_tb(tb, limit) + \
           traceback.format_exception_only(type, value)
    print("<PRE>%s<B>%s</B></PRE>" % (
        html.escape("".join(list[:-1])),
        html.escape(list[-1]),
        ))
    del tb

def print_environ(environ=os.environ):
    """Dump the shell environment as HTML."""
    keys = sorted(environ.keys())
    print()
    print("<H3>Shell Environment:</H3>")
    print("<DL>")
    for key in keys:
        print("<DT>", html.escape(key), "<DD>", html.escape(environ[key]))
    print("</DL>")
    print()

def print_form(form):
    """Dump the contents of a form as HTML."""
    keys = sorted(form.keys())
    print()
    print("<H3>Form Contents:</H3>")
    if not keys:
        print("<P>No form fields.")
    print("<DL>")
    for key in keys:
        print("<DT>" + html.escape(key) + ":", end=' ')
        value = form[key]
        print("<i>" + html.escape(repr(type(value))) + "</i>")
        print("<DD>" + html.escape(repr(value)))
    print("</DL>")
    print()

def print_directory():
    """Dump the current directory as HTML."""
    print()
    print("<H3>Current Working Directory:</H3>")
    try:
        pwd = os.getcwd()
    except OSError as msg:
        print("OSError:", html.escape(str(msg)))
    else:
        print(html.escape(pwd))
    print()

def print_arguments():
    print()
    print("<H3>Command Line Arguments:</H3>")
    print()
    print(sys.argv)
    print()

def print_environ_usage():
    """Dump a list of environment variables used by CGI as HTML."""
    print("""
<H3>These environment variables could have been set:</H3>
<UL>
<LI>AUTH_TYPE
<LI>CONTENT_LENGTH
<LI>CONTENT_TYPE
<LI>DATE_GMT
<LI>DATE_LOCAL
<LI>DOCUMENT_NAME
<LI>DOCUMENT_ROOT
<LI>DOCUMENT_URI
<LI>GATEWAY_INTERFACE
<LI>LAST_MODIFIED
<LI>PATH
<LI>PATH_INFO
<LI>PATH_TRANSLATED
<LI>QUERY_STRING
<LI>REMOTE_ADDR
<LI>REMOTE_HOST
<LI>REMOTE_IDENT
<LI>REMOTE_USER
<LI>REQUEST_METHOD
<LI>SCRIPT_NAME
<LI>SERVER_NAME
<LI>SERVER_PORT
<LI>SERVER_PROTOCOL
<LI>SERVER_ROOT
<LI>SERVER_SOFTWARE
</UL>
In addition, HTTP headers sent by the server may be passed in the
environment as well.  Here are some common variable names:
<UL>
<LI>HTTP_ACCEPT
<LI>HTTP_CONNECTION
<LI>HTTP_HOST
<LI>HTTP_PRAGMA
<LI>HTTP_REFERER
<LI>HTTP_USER_AGENT
</UL>
""")


# Utilities
# =========

def escape(s, quote=None):
    """Deprecated API."""
    warn("cgi.escape is deprecated, use html.escape instead",
         DeprecationWarning, stacklevel=2)
    s = s.replace("&", "&amp;") # Must be done first!
    s = s.replace("<", "&lt;")
    s = s.replace(">", "&gt;")
    if quote:
        s = s.replace('"', "&quot;")
    return s


def valid_boundary(s):
    import re
    if isinstance(s, bytes):
        _vb_pattern = b"^[ -~]{0,200}[!-~]$"
    else:
        _vb_pattern = "^[ -~]{0,200}[!-~]$"
    return re.match(_vb_pattern, s)

# Invoke mainline
# ===============

# Call test() when this file is run as a script (not imported as a module)
if __name__ == '__main__':
    test()
lib\cgitb.py
"""More comprehensive traceback formatting for Python scripts.

To enable this module, do:

    import cgitb; cgitb.enable()

at the top of your script.  The optional arguments to enable() are:

    display     - if true, tracebacks are displayed in the web browser
    logdir      - if set, tracebacks are written to files in this directory
    context     - number of lines of source code to show for each stack frame
    format      - 'text' or 'html' controls the output format

By default, tracebacks are displayed but not saved, the context is 5 lines
and the output format is 'html' (for backwards compatibility with the
original use of this module)

Alternatively, if you have caught an exception and want cgitb to display it
for you, call cgitb.handler().  The optional argument to handler() is a
3-item tuple (etype, evalue, etb) just like the value of sys.exc_info().
The default handler displays output as HTML.

"""
import inspect
import keyword
import linecache
import os
import pydoc
import sys
import tempfile
import time
import tokenize
import traceback

def reset():
    """Return a string that resets the CGI and browser to a known state."""
    return '''<!--: spam
Content-Type: text/html

<body bgcolor="#f0f0f8"><font color="#f0f0f8" size="-5"> -->
<body bgcolor="#f0f0f8"><font color="#f0f0f8" size="-5"> --> -->
</font> </font> </font> </script> </object> </blockquote> </pre>
</table> </table> </table> </table> </table> </font> </font> </font>'''

__UNDEF__ = []                          # a special sentinel object
def small(text):
    if text:
        return '<small>' + text + '</small>'
    else:
        return ''

def strong(text):
    if text:
        return '<strong>' + text + '</strong>'
    else:
        return ''

def grey(text):
    if text:
        return '<font color="#909090">' + text + '</font>'
    else:
        return ''

def lookup(name, frame, locals):
    """Find the value for a given name in the given environment."""
    if name in locals:
        return 'local', locals[name]
    if name in frame.f_globals:
        return 'global', frame.f_globals[name]
    if '__builtins__' in frame.f_globals:
        builtins = frame.f_globals['__builtins__']
        if type(builtins) is type({}):
            if name in builtins:
                return 'builtin', builtins[name]
        else:
            if hasattr(builtins, name):
                return 'builtin', getattr(builtins, name)
    return None, __UNDEF__

def scanvars(reader, frame, locals):
    """Scan one logical line of Python and look up values of variables used."""
    vars, lasttoken, parent, prefix, value = [], None, None, '', __UNDEF__
    for ttype, token, start, end, line in tokenize.generate_tokens(reader):
        if ttype == tokenize.NEWLINE: break
        if ttype == tokenize.NAME and token not in keyword.kwlist:
            if lasttoken == '.':
                if parent is not __UNDEF__:
                    value = getattr(parent, token, __UNDEF__)
                    vars.append((prefix + token, prefix, value))
            else:
                where, value = lookup(token, frame, locals)
                vars.append((token, where, value))
        elif token == '.':
            prefix += lasttoken + '.'
            parent = value
        else:
            parent, prefix = None, ''
        lasttoken = token
    return vars

def html(einfo, context=5):
    """Return a nice HTML document describing a given traceback."""
    etype, evalue, etb = einfo
    if isinstance(etype, type):
        etype = etype.__name__
    pyver = 'Python ' + sys.version.split()[0] + ': ' + sys.executable
    date = time.ctime(time.time())
    head = '<body bgcolor="#f0f0f8">' + pydoc.html.heading(
        '<big><big>%s</big></big>' %
        strong(pydoc.html.escape(str(etype))),
        '#ffffff', '#6622aa', pyver + '<br>' + date) + '''
<p>A problem occurred in a Python script.  Here is the sequence of
function calls leading up to the error, in the order they occurred.</p>'''

    indent = '<tt>' + small('&nbsp;' * 5) + '&nbsp;</tt>'
    frames = []
    records = inspect.getinnerframes(etb, context)
    for frame, file, lnum, func, lines, index in records:
        if file:
            file = os.path.abspath(file)
            link = '<a href="file://%s">%s</a>' % (file, pydoc.html.escape(file))
        else:
            file = link = '?'
        args, varargs, varkw, locals = inspect.getargvalues(frame)
        call = ''
        if func != '?':
            call = 'in ' + strong(func) + \
                inspect.formatargvalues(args, varargs, varkw, locals,
                    formatvalue=lambda value: '=' + pydoc.html.repr(value))

        highlight = {}
        def reader(lnum=[lnum]):
            highlight[lnum[0]] = 1
            try: return linecache.getline(file, lnum[0])
            finally: lnum[0] += 1
        vars = scanvars(reader, frame, locals)

        rows = ['<tr><td bgcolor="#d8bbff">%s%s %s</td></tr>' %
                ('<big>&nbsp;</big>', link, call)]
        if index is not None:
            i = lnum - index
            for line in lines:
                num = small('&nbsp;' * (5-len(str(i))) + str(i)) + '&nbsp;'
                if i in highlight:
                    line = '<tt>=&gt;%s%s</tt>' % (num, pydoc.html.preformat(line))
                    rows.append('<tr><td bgcolor="#ffccee">%s</td></tr>' % line)
                else:
                    line = '<tt>&nbsp;&nbsp;%s%s</tt>' % (num, pydoc.html.preformat(line))
                    rows.append('<tr><td>%s</td></tr>' % grey(line))
                i += 1

        done, dump = {}, []
        for name, where, value in vars:
            if name in done: continue
            done[name] = 1
            if value is not __UNDEF__:
                if where in ('global', 'builtin'):
                    name = ('<em>%s</em> ' % where) + strong(name)
                elif where == 'local':
                    name = strong(name)
                else:
                    name = where + strong(name.split('.')[-1])
                dump.append('%s&nbsp;= %s' % (name, pydoc.html.repr(value)))
            else:
                dump.append(name + ' <em>undefined</em>')

        rows.append('<tr><td>%s</td></tr>' % small(grey(', '.join(dump))))
        frames.append('''
<table width="100%%" cellspacing=0 cellpadding=0 border=0>
%s</table>''' % '\n'.join(rows))

    exception = ['<p>%s: %s' % (strong(pydoc.html.escape(str(etype))),
                                pydoc.html.escape(str(evalue)))]
    for name in dir(evalue):
        if name[:1] == '_': continue
        value = pydoc.html.repr(getattr(evalue, name))
        exception.append('\n<br>%s%s&nbsp;=\n%s' % (indent, name, value))

    return head + ''.join(frames) + ''.join(exception) + '''


<!-- The above is a description of an error in a Python program, formatted
     for a Web browser because the 'cgitb' module was enabled.  In case you
     are not reading this in a Web browser, here is the original traceback:

%s
-->
''' % pydoc.html.escape(
          ''.join(traceback.format_exception(etype, evalue, etb)))

def text(einfo, context=5):
    """Return a plain text document describing a given traceback."""
    etype, evalue, etb = einfo
    if isinstance(etype, type):
        etype = etype.__name__
    pyver = 'Python ' + sys.version.split()[0] + ': ' + sys.executable
    date = time.ctime(time.time())
    head = "%s\n%s\n%s\n" % (str(etype), pyver, date) + '''
A problem occurred in a Python script.  Here is the sequence of
function calls leading up to the error, in the order they occurred.
'''

    frames = []
    records = inspect.getinnerframes(etb, context)
    for frame, file, lnum, func, lines, index in records:
        file = file and os.path.abspath(file) or '?'
        args, varargs, varkw, locals = inspect.getargvalues(frame)
        call = ''
        if func != '?':
            call = 'in ' + func + \
                inspect.formatargvalues(args, varargs, varkw, locals,
                    formatvalue=lambda value: '=' + pydoc.text.repr(value))

        highlight = {}
        def reader(lnum=[lnum]):
            highlight[lnum[0]] = 1
            try: return linecache.getline(file, lnum[0])
            finally: lnum[0] += 1
        vars = scanvars(reader, frame, locals)

        rows = [' %s %s' % (file, call)]
        if index is not None:
            i = lnum - index
            for line in lines:
                num = '%5d ' % i
                rows.append(num+line.rstrip())
                i += 1

        done, dump = {}, []
        for name, where, value in vars:
            if name in done: continue
            done[name] = 1
            if value is not __UNDEF__:
                if where == 'global': name = 'global ' + name
                elif where != 'local': name = where + name.split('.')[-1]
                dump.append('%s = %s' % (name, pydoc.text.repr(value)))
            else:
                dump.append(name + ' undefined')

        rows.append('\n'.join(dump))
        frames.append('\n%s\n' % '\n'.join(rows))

    exception = ['%s: %s' % (str(etype), str(evalue))]
    for name in dir(evalue):
        value = pydoc.text.repr(getattr(evalue, name))
        exception.append('\n%s%s = %s' % (" "*4, name, value))

    return head + ''.join(frames) + ''.join(exception) + '''

The above is a description of an error in a Python program.  Here is
the original traceback:

%s
''' % ''.join(traceback.format_exception(etype, evalue, etb))

class Hook:
    """A hook to replace sys.excepthook that shows tracebacks in HTML."""

    def __init__(self, display=1, logdir=None, context=5, file=None,
                 format="html"):
        self.display = display          # send tracebacks to browser if true
        self.logdir = logdir            # log tracebacks to files if not None
        self.context = context          # number of source code lines per frame
        self.file = file or sys.stdout  # place to send the output
        self.format = format

    def __call__(self, etype, evalue, etb):
        self.handle((etype, evalue, etb))

    def handle(self, info=None):
        info = info or sys.exc_info()
        if self.format == "html":
            self.file.write(reset())

        formatter = (self.format=="html") and html or text
        plain = False
        try:
            doc = formatter(info, self.context)
        except:                         # just in case something goes wrong
            doc = ''.join(traceback.format_exception(*info))
            plain = True

        if self.display:
            if plain:
                doc = doc.replace('&', '&amp;').replace('<', '&lt;')
                self.file.write('<pre>' + doc + '</pre>\n')
            else:
                self.file.write(doc + '\n')
        else:
            self.file.write('<p>A problem occurred in a Python script.\n')

        if self.logdir is not None:
            suffix = ['.txt', '.html'][self.format=="html"]
            (fd, path) = tempfile.mkstemp(suffix=suffix, dir=self.logdir)

            try:
                file = os.fdopen(fd, 'w')
                file.write(doc)
                file.close()
                msg = '%s contains the description of this error.' % path
            except:
                msg = 'Tried to save traceback to %s, but failed.' % path

            if self.format == 'html':
                self.file.write('<p>%s</p>\n' % msg)
            else:
                self.file.write(msg + '\n')
        try:
            self.file.flush()
        except: pass

handler = Hook().handle
def enable(display=1, logdir=None, context=5, format="html"):
    """Install an exception handler that formats tracebacks as HTML.

    The optional argument 'display' can be set to 0 to suppress sending the
    traceback to the browser, and 'logdir' can be set to a directory to cause
    tracebacks to be written to files there."""
    sys.excepthook = Hook(display=display, logdir=logdir,
                          context=context, format=format)
lib\chunk.py
"""Simple class to read IFF chunks.

An IFF chunk (used in formats such as AIFF, TIFF, RMFF (RealMedia File
Format)) has the following structure:

+----------------+
| ID (4 bytes)   |
+----------------+
| size (4 bytes) |
+----------------+
| data           |
| ...            |
+----------------+

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order)
gives the size of the whole chunk, including the 8-byte header.

Usually an IFF-type file consists of one or more chunks.  The proposed
usage of the Chunk class defined here is to instantiate an instance at
the start of each chunk and read from the instance until it reaches
the end, after which a new instance can be instantiated.  At the end
of the file, creating a new instance will fail with an EOFError
exception.

Usage:
while True:
    try:
        chunk = Chunk(file)
    except EOFError:
        break
    chunktype = chunk.getname()
    while True:
        data = chunk.read(nbytes)
        if not data:
            pass
        # do something with data

The interface is file-like.  The implemented methods are:
read, close, seek, tell, isatty.
Extra methods are: skip() (called by close, skips to the end of the chunk),
getname() (returns the name (ID) of the chunk)

The __init__ method has one required argument, a file-like object
(including a chunk instance), and one optional argument, a flag which
specifies whether or not chunks are aligned on 2-byte boundaries.  The
default is 1, i.e. aligned.
"""

class Chunk:
    def __init__(self, file, align=True, bigendian=True, inclheader=False):
        import struct
        self.closed = False
        self.align = align      # whether to align to word (2-byte) boundaries
        if bigendian:
            strflag = '>'
        else:
            strflag = '<'
        self.file = file
        self.chunkname = file.read(4)
        if len(self.chunkname) < 4:
            raise EOFError
        try:
            self.chunksize = struct.unpack_from(strflag+'L', file.read(4))[0]
        except struct.error:
            raise EOFError
        if inclheader:
            self.chunksize = self.chunksize - 8 # subtract header
        self.size_read = 0
        try:
            self.offset = self.file.tell()
        except (AttributeError, OSError):
            self.seekable = False
        else:
            self.seekable = True

    def getname(self):
        """Return the name (ID) of the current chunk."""
        return self.chunkname

    def getsize(self):
        """Return the size of the current chunk."""
        return self.chunksize

    def close(self):
        if not self.closed:
            try:
                self.skip()
            finally:
                self.closed = True

    def isatty(self):
        if self.closed:
            raise ValueError("I/O operation on closed file")
        return False

    def seek(self, pos, whence=0):
        """Seek to specified position into the chunk.
        Default position is 0 (start of chunk).
        If the file is not seekable, this will result in an error.
        """

        if self.closed:
            raise ValueError("I/O operation on closed file")
        if not self.seekable:
            raise OSError("cannot seek")
        if whence == 1:
            pos = pos + self.size_read
        elif whence == 2:
            pos = pos + self.chunksize
        if pos < 0 or pos > self.chunksize:
            raise RuntimeError
        self.file.seek(self.offset + pos, 0)
        self.size_read = pos

    def tell(self):
        if self.closed:
            raise ValueError("I/O operation on closed file")
        return self.size_read

    def read(self, size=-1):
        """Read at most size bytes from the chunk.
        If size is omitted or negative, read until the end
        of the chunk.
        """

        if self.closed:
            raise ValueError("I/O operation on closed file")
        if self.size_read >= self.chunksize:
            return b''
        if size < 0:
            size = self.chunksize - self.size_read
        if size > self.chunksize - self.size_read:
            size = self.chunksize - self.size_read
        data = self.file.read(size)
        self.size_read = self.size_read + len(data)
        if self.size_read == self.chunksize and \
           self.align and \
           (self.chunksize & 1):
            dummy = self.file.read(1)
            self.size_read = self.size_read + len(dummy)
        return data

    def skip(self):
        """Skip the rest of the chunk.
        If you are not interested in the contents of the chunk,
        this method should be called so that the file points to
        the start of the next chunk.
        """

        if self.closed:
            raise ValueError("I/O operation on closed file")
        if self.seekable:
            try:
                n = self.chunksize - self.size_read
                # maybe fix alignment
                if self.align and (self.chunksize & 1):
                    n = n + 1
                self.file.seek(n, 1)
                self.size_read = self.size_read + n
                return
            except OSError:
                pass
        while self.size_read < self.chunksize:
            n = min(8192, self.chunksize - self.size_read)
            dummy = self.read(n)
            if not dummy:
                raise EOFError
lib\clrtype.py
# Licensed to the .NET Foundation under one or more agreements.
# The .NET Foundation licenses this file to you under the Apache 2.0 License.
# See the LICENSE file in the project root for more information.

__all__ = ["ClrClass", "ClrInterface", "accepts", "returns", "attribute", "propagate_attributes"]

import clr
clr.AddReference("Microsoft.Dynamic")
clr.AddReference("Microsoft.Scripting")
clr.AddReference("IronPython")

if clr.IsNetCoreApp:
    clr.AddReference("System.Reflection.Emit")

import System
from System import Char, Void, Boolean, Array, Type, AppDomain
from System.Reflection import FieldAttributes, MethodAttributes, PropertyAttributes, ParameterAttributes
from System.Reflection import CallingConventions, TypeAttributes, AssemblyName
from System.Reflection.Emit import OpCodes, CustomAttributeBuilder, AssemblyBuilder, AssemblyBuilderAccess
from System.Runtime.InteropServices import DllImportAttribute, CallingConvention, CharSet
from Microsoft.Scripting.Generation import Snippets
from Microsoft.Scripting.Runtime import DynamicOperations
from Microsoft.Scripting.Utils import ReflectionUtils
from IronPython.Runtime import NameType, PythonContext
from IronPython.Runtime.Types import PythonType, ReflectedField, ReflectedProperty

PropertyAttributes_None = getattr(PropertyAttributes, "None")
ParameterAttributes_None = getattr(ParameterAttributes, "None")

def validate_clr_types(signature_types, var_signature = False):
    if not isinstance(signature_types, tuple):
        signature_types = (signature_types,)
    for t in signature_types:
        if type(t) is type(System.IComparable): # type overloaded on generic arity, eg IComparable and IComparable[T]
            t = t[()] # select non-generic version
        clr_type = clr.GetClrType(t)
        if t == Void:
            raise TypeError("Void cannot be used in signature")
        is_typed = clr.GetPythonType(clr_type) == t
        # is_typed needs to be weakened until the generated type
        # gets explicitly published as the underlying CLR type
        is_typed = is_typed or (hasattr(t, "__metaclass__") and t.__metaclass__ in [ClrInterface, ClrClass])
        if not is_typed:
            raise Exception("Invalid CLR type %s" % str(t))
        if not var_signature:
            if clr_type.IsByRef:
                raise TypeError("Byref can only be used as arguments and locals")
            # ArgIterator is not present in Silverlight
            if hasattr(System, "ArgIterator") and t == System.ArgIterator:
                raise TypeError("Stack-referencing types can only be used as arguments and locals")

class TypedFunction(object):
    """
    A strongly-typed function can get wrapped up as a staticmethod, a property, etc.
    This class represents the raw function, but with the type information
    it is decorated with.
    Other information is stored as attributes on the function. See propagate_attributes
    """
    def __init__(self, function, is_static = False, prop_name_if_prop_get = None, prop_name_if_prop_set = None):
        self.function = function
        self.is_static = is_static
        self.prop_name_if_prop_get = prop_name_if_prop_get
        self.prop_name_if_prop_set = prop_name_if_prop_set

class ClrType(type):
    """
    Base metaclass for creating strongly-typed CLR types
    """

    def is_typed_method(self, function):
        if hasattr(function, "arg_types") != hasattr(function, "return_type"):
            raise TypeError("One of @accepts and @returns is missing for %s" % function.__name__)

        return hasattr(function, "arg_types")

    def get_typed_properties(self):
        for item_name, item in self.__dict__.items():
            if isinstance(item, property):
                if item.fget:
                    if not self.is_typed_method(item.fget): continue
                    prop_type = item.fget.return_type
                else:
                    if not self.is_typed_method(item.fset): continue
                    prop_type = item.fset.arg_types[0]
                validate_clr_types(prop_type)
                clr_prop_type = clr.GetClrType(prop_type)
                yield item, item_name, clr_prop_type

    def emit_properties(self, typebld):
        for prop, prop_name, clr_prop_type in self.get_typed_properties():
            self.emit_property(typebld, prop, prop_name, clr_prop_type)

    def emit_property(self, typebld, prop, name, clrtype):
        prpbld = typebld.DefineProperty(name, PropertyAttributes_None, clrtype, None)
        if prop.fget:
            getter = self.emitted_methods[(prop.fget.__name__, prop.fget.arg_types)]
            prpbld.SetGetMethod(getter)
        if prop.fset:
            setter = self.emitted_methods[(prop.fset.__name__, prop.fset.arg_types)]
            prpbld.SetSetMethod(setter)

    def dummy_function(self): raise RuntimeError("this should not get called")

    def get_typed_methods(self):
        """
        Get all the methods with @accepts (and @returns) decorators
        Functions are assumed to be instance methods, unless decorated with @staticmethod
        """

        # We avoid using the "types" library as it is not a builtin
        FunctionType = type(ClrType.__dict__["dummy_function"])

        for item_name, item in self.__dict__.items():
            function = None
            is_static = False
            if isinstance(item, FunctionType):
                function, is_static = item, False
            elif isinstance(item, staticmethod):
                function, is_static = getattr(self, item_name), True
            elif isinstance(item, property):
                if item.fget and self.is_typed_method(item.fget):
                    if item.fget.__name__ == item_name:
                        # The property hides the getter. So yield the getter
                        yield TypedFunction(item.fget, False, item_name, None)
                if item.fset and self.is_typed_method(item.fset):
                    if item.fset.__name__ == item_name:
                        # The property hides the setter. So yield the setter
                        yield TypedFunction(item.fset, False, None, item_name)
                continue
            else:
                continue
            if self.is_typed_method(function):
                yield TypedFunction(function, is_static)

    def emit_methods(self, typebld):
        # We need to track the generated methods so that we can emit properties
        # referring these methods.
        # Also, the hash is indexed by name *and signature*. Even though Python does
        # not have method overloading, property getter and setter functions can have
        # the same __name__ attribute
        self.emitted_methods = {}
        for function_info in self.get_typed_methods():
            method_builder = self.emit_method(typebld, function_info)
            function = function_info.function
            if (function.__name__, function.arg_types) in self.emitted_methods:
                raise TypeError("methods with clashing names")
            self.emitted_methods[(function.__name__, function.arg_types)] = method_builder

    def emit_classattribs(self, typebld):
        if hasattr(self, '_clrclassattribs'):
            for attrib_info in self._clrclassattribs:
                if isinstance(attrib_info, type):
                    ci = clr.GetClrType(attrib_info).GetConstructor(())
                    cab = CustomAttributeBuilder(ci, ())
                elif isinstance(attrib_info, CustomAttributeDecorator):
                    cab = attrib_info.GetBuilder()
                else:
                    make_decorator = attrib_info()
                    cab = make_decorator.GetBuilder()
                typebld.SetCustomAttribute(cab)

    def get_clr_type_name(self):
        if hasattr(self, "_clrnamespace"):
            return self._clrnamespace + "." + self.__name__
        else:
            return self.__name__

    def create_type(self, typebld):
        self.emit_members(typebld)
        new_type = typebld.CreateType()
        self.map_members(new_type)
        return new_type

class ClrInterface(ClrType):
    """
    Set __metaclass__ in a Python class declaration to declare a
    CLR interface type.
    You need to specify object as the base-type if you do not specify any other
    interfaces as the base interfaces
    """

    def __init__(self, *args):
        return super(ClrInterface, self).__init__(*args)

    def emit_method(self, typebld, function_info):
        assert(not function_info.is_static)
        function = function_info.function
        attributes = MethodAttributes.Public | MethodAttributes.Virtual | MethodAttributes.Abstract
        method_builder = typebld.DefineMethod(
            function.__name__,
            attributes,
            function.return_type,
            function.arg_types)

        instance_offset = 0 if function_info.is_static else 1
        arg_names = function.__code__.co_varnames
        for i in range(len(function.arg_types)):
            # TODO - set non-trivial ParameterAttributes, default value and custom attributes
            p = method_builder.DefineParameter(i + 1, ParameterAttributes_None, arg_names[i + instance_offset])

        if hasattr(function, "CustomAttributeBuilders"):
            for cab in function.CustomAttributeBuilders:
                method_builder.SetCustomAttribute(cab)

        return method_builder

    def emit_members(self, typebld):
        self.emit_methods(typebld)
        self.emit_properties(typebld)
        self.emit_classattribs(typebld)

    def map_members(self, new_type): pass

    interface_module_builder = None

    @staticmethod
    def define_interface(typename, bases):
        for b in bases:
            validate_clr_types(b)
        if not ClrInterface.interface_module_builder:
            name = AssemblyName("interfaces")
            access = AssemblyBuilderAccess.Run
            assembly_builder = ReflectionUtils.DefineDynamicAssembly(name, access)
            ClrInterface.interface_module_builder = assembly_builder.DefineDynamicModule("interfaces")
        attrs = TypeAttributes.Public | TypeAttributes.Interface | TypeAttributes.Abstract
        return ClrInterface.interface_module_builder.DefineType(typename, attrs, None, bases)

    def map_clr_type(self, clr_type):
        """
        TODO - Currently "t = clr.GetPythonType(clr.GetClrType(C)); t == C" will be False
        for C where C.__metaclass__ is ClrInterface, even though both t and C
        represent the same CLR type. This can be fixed by publishing a mapping
        between t and C in the IronPython runtime.
        """
        pass

    def __clrtype__(self):
        # CFoo below will use ClrInterface as its metaclass, but the user will not expect CFoo
        # to be an interface in this case:
        #
        #   class IFoo(object):
        #     __metaclass__ = ClrInterface
        #   class CFoo(IFoo): pass
        if not "__metaclass__" in self.__dict__:
            return super(ClrInterface, self).__clrtype__()

        bases = list(self.__bases__)
        bases.remove(object)
        bases = tuple(bases)
        if False: # Snippets currently does not support creating interfaces
            typegen = Snippets.Shared.DefineType(self.get_clr_type_name(), bases, True, False)
            typebld = typegen.TypeBuilder
        else:
            typebld = ClrInterface.define_interface(self.get_clr_type_name(), bases)
        clr_type = self.create_type(typebld)
        self.map_clr_type(clr_type)
        return clr_type

# Note that ClrClass inherits from ClrInterface to satisfy Python requirements of metaclasses.
# A metaclass of a subtype has to be subtype of the metaclass of a base type. As a result,
# if you define a type hierarchy as shown below, it requires ClrClass to be a subtype
# of ClrInterface:
#
#   class IFoo(object):
#     __metaclass__ = ClrInterface
#   class CFoo(IFoo):
#     __metaclass__ = ClrClass
class ClrClass(ClrInterface):
    """
    Set __metaclass__ in a Python class declaration to specify strong-type
    information for the class or its attributes. The Python class
    retains its Python attributes, like being able to add or remove methods.
    """

    # Holds the FieldInfo for a static CLR field which points to a
    # Microsoft.Scripting.Runtime.DynamicOperations corresponding to the current ScriptEngine
    dynamic_operations_field = None

    def emit_fields(self, typebld):
        if hasattr(self, "_clrfields"):
            for fldname in self._clrfields:
                field_type = self._clrfields[fldname]
                validate_clr_types(field_type)
                typebld.DefineField(
                    fldname,
                    clr.GetClrType(field_type),
                    FieldAttributes.Public)

    def map_fields(self, new_type):
        if hasattr(self, "_clrfields"):
            for fldname in self._clrfields:
                fldinfo = new_type.GetField(fldname)
                setattr(self, fldname, ReflectedField(fldinfo))

    @staticmethod
    def get_dynamic_operations_field():
        if ClrClass.dynamic_operations_field:
            return ClrClass.dynamic_operations_field
        python_context = clr.GetCurrentRuntime().GetLanguage(PythonContext)
        dynamic_operations = DynamicOperations(python_context)

        typegen = Snippets.Shared.DefineType(
            "DynamicOperationsHolder" + str(hash(python_context)),
            object,
            True,
            False)
        typebld = typegen.TypeBuilder
        typebld.DefineField(
            "DynamicOperations",
            DynamicOperations,
            FieldAttributes.Public | FieldAttributes.Static)
        new_type = typebld.CreateType()
        ClrClass.dynamic_operations_field = new_type.GetField("DynamicOperations")

        ClrClass.dynamic_operations_field.SetValue(None, dynamic_operations)

        return ClrClass.dynamic_operations_field

    def emit_typed_stub_to_python_method(self, typebld, function_info):
        function = function_info.function
        """
        Generate a stub method that repushes all the arguments and
        dispatches to DynamicOperations.InvokeMember
        """
        invoke_member = clr.GetClrType(DynamicOperations).GetMethod(
            "InvokeMember",
            Array[Type]((object, str, Array[object])))

        # Type.GetMethod raises an AmbiguousMatchException if there is a generic and a non-generic method
        # (like DynamicOperations.GetMember) with the same name and signature. So we have to do things
        # the hard way
        get_member_search = [m for m in clr.GetClrType(DynamicOperations).GetMethods() if m.Name == "GetMember" and not m.IsGenericMethod and m.GetParameters().Length == 2]
        assert(len(get_member_search) == 1)
        get_member = get_member_search[0]

        set_member_search = [m for m in clr.GetClrType(DynamicOperations).GetMethods() if m.Name == "SetMember" and not m.IsGenericMethod and m.GetParameters().Length == 3]
        assert(len(set_member_search) == 1)
        set_member = set_member_search[0]

        convert_to = clr.GetClrType(DynamicOperations).GetMethod(
            "ConvertTo",
            Array[Type]((object, Type)))
        get_type_from_handle = clr.GetClrType(Type).GetMethod("GetTypeFromHandle")

        attributes = MethodAttributes.Public
        if function_info.is_static: attributes |= MethodAttributes.Static
        if function.__name__ == "__new__":
            if function_info.is_static: raise TypeError
            method_builder = typebld.DefineConstructor(
                attributes,
                CallingConventions.HasThis,
                function.arg_types)
            raise NotImplementedError("Need to call self.baseType ctor passing in self.get_python_type_field()")
        else:
            method_builder = typebld.DefineMethod(
                function.__name__,
                attributes,
                function.return_type,
                function.arg_types)

        instance_offset = 0 if function_info.is_static else 1
        arg_names = function.__code__.co_varnames
        for i in range(len(function.arg_types)):
            # TODO - set non-trivial ParameterAttributes, default value and custom attributes
            p = method_builder.DefineParameter(i + 1, ParameterAttributes_None, arg_names[i + instance_offset])

        ilgen = method_builder.GetILGenerator()

        args_array = ilgen.DeclareLocal(Array[object])
        args_count = len(function.arg_types)
        ilgen.Emit(OpCodes.Ldc_I4, args_count)
        ilgen.Emit(OpCodes.Newarr, object)
        ilgen.Emit(OpCodes.Stloc, args_array)
        for i in range(args_count):
            arg_type = function.arg_types[i]
            if clr.GetClrType(arg_type).IsByRef:
                raise NotImplementedError("byref params not supported")
            ilgen.Emit(OpCodes.Ldloc, args_array)
            ilgen.Emit(OpCodes.Ldc_I4, i)
            ilgen.Emit(OpCodes.Ldarg, i + int(not function_info.is_static))
            ilgen.Emit(OpCodes.Box, arg_type)
            ilgen.Emit(OpCodes.Stelem_Ref)

        has_return_value = True
        if function_info.prop_name_if_prop_get:
            ilgen.Emit(OpCodes.Ldsfld, ClrClass.get_dynamic_operations_field())
            ilgen.Emit(OpCodes.Ldarg, 0)
            ilgen.Emit(OpCodes.Ldstr, function_info.prop_name_if_prop_get)
            ilgen.Emit(OpCodes.Callvirt, get_member)
        elif function_info.prop_name_if_prop_set:
            ilgen.Emit(OpCodes.Ldsfld, ClrClass.get_dynamic_operations_field())
            ilgen.Emit(OpCodes.Ldarg, 0)
            ilgen.Emit(OpCodes.Ldstr, function_info.prop_name_if_prop_set)
            ilgen.Emit(OpCodes.Ldarg, 1)
            ilgen.Emit(OpCodes.Callvirt, set_member)
            has_return_value = False
        else:
            ilgen.Emit(OpCodes.Ldsfld, ClrClass.get_dynamic_operations_field())
            if function_info.is_static:
                raise NotImplementedError("need to load Python class object from a CLR static field")
                # ilgen.Emit(OpCodes.Ldsfld, class_object)
            else:
                ilgen.Emit(OpCodes.Ldarg, 0)

            ilgen.Emit(OpCodes.Ldstr, function.__name__)
            ilgen.Emit(OpCodes.Ldloc, args_array)
            ilgen.Emit(OpCodes.Callvirt, invoke_member)

        if has_return_value:
            if function.return_type == Void:
                ilgen.Emit(OpCodes.Pop)
            else:
                ret_val = ilgen.DeclareLocal(object)
                ilgen.Emit(OpCodes.Stloc, ret_val)
                ilgen.Emit(OpCodes.Ldsfld, ClrClass.get_dynamic_operations_field())
                ilgen.Emit(OpCodes.Ldloc, ret_val)
                ilgen.Emit(OpCodes.Ldtoken, clr.GetClrType(function.return_type))
                ilgen.Emit(OpCodes.Call, get_type_from_handle)
                ilgen.Emit(OpCodes.Callvirt, convert_to)
                ilgen.Emit(OpCodes.Unbox_Any, function.return_type)
        ilgen.Emit(OpCodes.Ret)
        return method_builder

    def emit_method(self, typebld, function_info):
        function = function_info.function
        if hasattr(function, "DllImportAttributeDecorator"):
            dllImportAttributeDecorator = function.DllImportAttributeDecorator
            name = function.__name__
            dllName = dllImportAttributeDecorator.args[0]
            entryName = function.__name__
            attributes = MethodAttributes.Public | MethodAttributes.Static | MethodAttributes.PinvokeImpl
            callingConvention = CallingConventions.Standard
            returnType = function.return_type
            returnTypeRequiredCustomModifiers = ()
            returnTypeOptionalCustomModifiers = ()
            parameterTypes = function.arg_types
            parameterTypeRequiredCustomModifiers = None
            parameterTypeOptionalCustomModifiers = None
            nativeCallConv = CallingConvention.Winapi
            nativeCharSet = CharSet.Auto
            method_builder = typebld.DefinePInvokeMethod(
                name,
                dllName,
                entryName,
                attributes,
                callingConvention,
                returnType,
                returnTypeRequiredCustomModifiers,
                returnTypeOptionalCustomModifiers,
                parameterTypes,
                parameterTypeRequiredCustomModifiers,
                parameterTypeOptionalCustomModifiers,
                nativeCallConv,
                nativeCharSet)
        else:
            method_builder = self.emit_typed_stub_to_python_method(typebld, function_info)

        if hasattr(function, "CustomAttributeBuilders"):
            for cab in function.CustomAttributeBuilders:
                method_builder.SetCustomAttribute(cab)

        return method_builder

    def map_pinvoke_methods(self, new_type):
        pythonType = clr.GetPythonType(new_type)
        for function_info in self.get_typed_methods():
            function = function_info.function
            if hasattr(function, "DllImportAttributeDecorator"):
                # Overwrite the Python function with the pinvoke_method
                pinvoke_method = getattr(pythonType, function.__name__)
                setattr(self, function.__name__, pinvoke_method)

    def emit_python_type_field(self, typebld):
        return typebld.DefineField(
            "PythonType",
            PythonType,
            FieldAttributes.Public | FieldAttributes.Static)

    def set_python_type_field(self, new_type):
        self.PythonType = new_type.GetField("PythonType")
        self.PythonType.SetValue(None, self)

    def add_wrapper_ctors(self, baseType, typebld):
        python_type_field = self.emit_python_type_field(typebld)
        for ctor in baseType.GetConstructors():
            ctorparams = ctor.GetParameters()

            # leave out the PythonType argument
            assert(ctorparams[0].ParameterType == clr.GetClrType(PythonType))
            ctorparams = ctorparams[1:]

            ctorbld = typebld.DefineConstructor(
                        ctor.Attributes,
                        ctor.CallingConvention,
                        tuple([p.ParameterType for p in ctorparams]))
            ilgen = ctorbld.GetILGenerator()
            ilgen.Emit(OpCodes.Ldarg, 0)
            ilgen.Emit(OpCodes.Ldsfld, python_type_field)
            for index in range(len(ctorparams)):
                ilgen.Emit(OpCodes.Ldarg, index + 1)
            ilgen.Emit(OpCodes.Call, ctor)
            ilgen.Emit(OpCodes.Ret)

    def emit_members(self, typebld):
        self.emit_fields(typebld)
        self.add_wrapper_ctors(self.baseType, typebld)
        super(ClrClass, self).emit_members(typebld)

    def map_members(self, new_type):
        self.map_fields(new_type)
        self.map_pinvoke_methods(new_type)
        self.set_python_type_field(new_type)
        super(ClrClass, self).map_members(new_type)

    def __clrtype__(self):
        # CDerived below will use ClrClass as its metaclass, but the user may not expect CDerived
        # to be a typed .NET class in this case:
        #
        #   class CBase(object):
        #     __metaclass__ = ClrClass
        #   class CDerived(CBase): pass
        if not "__metaclass__" in self.__dict__:
            return super(ClrClass, self).__clrtype__()

        # Create a simple Python type first.
        self.baseType = super(ClrType, self).__clrtype__()
        # We will now subtype it to create a customized class with the
        # CLR attributes as defined by the user
        typegen = Snippets.Shared.DefineType(self.get_clr_type_name(), self.baseType, True, False)
        typebld = typegen.TypeBuilder
        return self.create_type(typebld)

def make_cab(attrib_type, *args, **kwds):
    clrtype = clr.GetClrType(attrib_type)
    argtypes = tuple(map(lambda x:clr.GetClrType(type(x)), args))
    ci = clrtype.GetConstructor(argtypes)

    props = ([],[])
    fields = ([],[])

    for kwd in kwds:
        pi = clrtype.GetProperty(kwd)
        if pi is not None:
            props[0].append(pi)
            props[1].append(kwds[kwd])
        else:
            fi = clrtype.GetField(kwd)
            if fi is not None:
                fields[0].append(fi)
                fields[1].append(kwds[kwd])
            else:
                raise TypeError("No %s Member found on %s" % (kwd, clrtype.Name))

    return CustomAttributeBuilder(ci, args,
        tuple(props[0]), tuple(props[1]),
        tuple(fields[0]), tuple(fields[1]))

def accepts(*args):
    """
    TODO - needs to be merged with clr.accepts
    """
    validate_clr_types(args, True)
    def decorator(function):
        function.arg_types = args
        return function
    return decorator

def returns(return_type = Void):
    """
    TODO - needs to be merged with clr.returns
    """
    if return_type != Void:
        validate_clr_types(return_type)
    def decorator(function):
        function.return_type = return_type
        return function
    return decorator

class CustomAttributeDecorator(object):
    """
    This represents information about a custom-attribute applied to a type or a method
    Note that we cannot use an instance of System.Attribute to capture this information
    as it is not possible to go from an instance of System.Attribute to an instance
    of System.Reflection.Emit.CustomAttributeBuilder as the latter needs to know
    how to represent information in metadata to later *recreate* a similar instance of
    System.Attribute.

    Also note that once a CustomAttributeBuilder is created, it is not possible to
    query it. Hence, we need to store the arguments required to store the
    CustomAttributeBuilder so that pseudo-custom-attributes can get to the information.
    """
    def __init__(self, attrib_type, *args, **kwargs):
        self.attrib_type = attrib_type
        self.args = args
        self.kwargs = kwargs

    def __call__(self, function):
        if self.attrib_type == DllImportAttribute:
            function.DllImportAttributeDecorator = self
        else:
            if not hasattr(function, "CustomAttributeBuilders"):
                function.CustomAttributeBuilders = []
            function.CustomAttributeBuilders.append(self.GetBuilder())
        return function

    def GetBuilder(self):
        assert not self.attrib_type in [DllImportAttribute]
        return make_cab(self.attrib_type, *self.args, **self.kwargs)

def attribute(attrib_type):
    """
    This decorator is used to specify a CustomAttribute for a type or method.
    """
    def make_decorator(*args, **kwargs):
        return CustomAttributeDecorator(attrib_type, *args, **kwargs)
    return make_decorator

def propagate_attributes(old_function, new_function):
    """
    Use this if you replace a function in a type with ClrInterface or ClrClass as the metaclass.
    This will typically be needed if you are defining a decorator which wraps functions with
    new functions, and want it to work in conjunction with clrtype
    """
    if hasattr(old_function, "return_type"):
        new_function.__name__ = old_function.__name__
        new_function.return_type = old_function.return_type
        new_function.arg_types = old_function.arg_types
    if hasattr(old_function, "CustomAttributeBuilders"):
        new_function.CustomAttributeBuilders = old_function.CustomAttributeBuilders
    if hasattr(old_function, "CustomAttributeBuilders"):
        new_function.DllImportAttributeDecorator = old_function.DllImportAttributeDecorator
lib\cmd.py
"""A generic class to build line-oriented command interpreters.

Interpreters constructed with this class obey the following conventions:

1. End of file on input is processed as the command 'EOF'.
2. A command is parsed out of each line by collecting the prefix composed
   of characters in the identchars member.
3. A command `foo' is dispatched to a method 'do_foo()'; the do_ method
   is passed a single argument consisting of the remainder of the line.
4. Typing an empty line repeats the last command.  (Actually, it calls the
   method `emptyline', which may be overridden in a subclass.)
5. There is a predefined `help' method.  Given an argument `topic', it
   calls the command `help_topic'.  With no arguments, it lists all topics
   with defined help_ functions, broken into up to three topics; documented
   commands, miscellaneous help topics, and undocumented commands.
6. The command '?' is a synonym for `help'.  The command '!' is a synonym
   for `shell', if a do_shell method exists.
7. If completion is enabled, completing commands will be done automatically,
   and completing of commands args is done by calling complete_foo() with
   arguments text, line, begidx, endidx.  text is string we are matching
   against, all returned matches must begin with it.  line is the current
   input line (lstripped), begidx and endidx are the beginning and end
   indexes of the text being matched, which could be used to provide
   different completion depending upon which position the argument is in.

The `default' method may be overridden to intercept commands for which there
is no do_ method.

The `completedefault' method may be overridden to intercept completions for
commands that have no complete_ method.

The data member `self.ruler' sets the character used to draw separator lines
in the help messages.  If empty, no ruler line is drawn.  It defaults to "=".

If the value of `self.intro' is nonempty when the cmdloop method is called,
it is printed out on interpreter startup.  This value may be overridden
via an optional argument to the cmdloop() method.

The data members `self.doc_header', `self.misc_header', and
`self.undoc_header' set the headers used for the help function's
listings of documented functions, miscellaneous topics, and undocumented
functions respectively.
"""

import string, sys

__all__ = ["Cmd"]

PROMPT = '(Cmd) '
IDENTCHARS = string.ascii_letters + string.digits + '_'

class Cmd:
    """A simple framework for writing line-oriented command interpreters.

    These are often useful for test harnesses, administrative tools, and
    prototypes that will later be wrapped in a more sophisticated interface.

    A Cmd instance or subclass instance is a line-oriented interpreter
    framework.  There is no good reason to instantiate Cmd itself; rather,
    it's useful as a superclass of an interpreter class you define yourself
    in order to inherit Cmd's methods and encapsulate action methods.

    """
    prompt = PROMPT
    identchars = IDENTCHARS
    ruler = '='
    lastcmd = ''
    intro = None
    doc_leader = ""
    doc_header = "Documented commands (type help <topic>):"
    misc_header = "Miscellaneous help topics:"
    undoc_header = "Undocumented commands:"
    nohelp = "*** No help on %s"
    use_rawinput = 1

    def __init__(self, completekey='tab', stdin=None, stdout=None):
        """Instantiate a line-oriented interpreter framework.

        The optional argument 'completekey' is the readline name of a
        completion key; it defaults to the Tab key. If completekey is
        not None and the readline module is available, command completion
        is done automatically. The optional arguments stdin and stdout
        specify alternate input and output file objects; if not specified,
        sys.stdin and sys.stdout are used.

        """
        if stdin is not None:
            self.stdin = stdin
        else:
            self.stdin = sys.stdin
        if stdout is not None:
            self.stdout = stdout
        else:
            self.stdout = sys.stdout
        self.cmdqueue = []
        self.completekey = completekey

    def cmdloop(self, intro=None):
        """Repeatedly issue a prompt, accept input, parse an initial prefix
        off the received input, and dispatch to action methods, passing them
        the remainder of the line as argument.

        """

        self.preloop()
        if self.use_rawinput and self.completekey:
            try:
                import readline
                self.old_completer = readline.get_completer()
                readline.set_completer(self.complete)
                readline.parse_and_bind(self.completekey+": complete")
            except ImportError:
                pass
        try:
            if intro is not None:
                self.intro = intro
            if self.intro:
                self.stdout.write(str(self.intro)+"\n")
            stop = None
            while not stop:
                if self.cmdqueue:
                    line = self.cmdqueue.pop(0)
                else:
                    if self.use_rawinput:
                        try:
                            line = input(self.prompt)
                        except EOFError:
                            line = 'EOF'
                    else:
                        self.stdout.write(self.prompt)
                        self.stdout.flush()
                        line = self.stdin.readline()
                        if not len(line):
                            line = 'EOF'
                        else:
                            line = line.rstrip('\r\n')
                line = self.precmd(line)
                stop = self.onecmd(line)
                stop = self.postcmd(stop, line)
            self.postloop()
        finally:
            if self.use_rawinput and self.completekey:
                try:
                    import readline
                    readline.set_completer(self.old_completer)
                except ImportError:
                    pass


    def precmd(self, line):
        """Hook method executed just before the command line is
        interpreted, but after the input prompt is generated and issued.

        """
        return line

    def postcmd(self, stop, line):
        """Hook method executed just after a command dispatch is finished."""
        return stop

    def preloop(self):
        """Hook method executed once when the cmdloop() method is called."""
        pass

    def postloop(self):
        """Hook method executed once when the cmdloop() method is about to
        return.

        """
        pass

    def parseline(self, line):
        """Parse the line into a command name and a string containing
        the arguments.  Returns a tuple containing (command, args, line).
        'command' and 'args' may be None if the line couldn't be parsed.
        """
        line = line.strip()
        if not line:
            return None, None, line
        elif line[0] == '?':
            line = 'help ' + line[1:]
        elif line[0] == '!':
            if hasattr(self, 'do_shell'):
                line = 'shell ' + line[1:]
            else:
                return None, None, line
        i, n = 0, len(line)
        while i < n and line[i] in self.identchars: i = i+1
        cmd, arg = line[:i], line[i:].strip()
        return cmd, arg, line

    def onecmd(self, line):
        """Interpret the argument as though it had been typed in response
        to the prompt.

        This may be overridden, but should not normally need to be;
        see the precmd() and postcmd() methods for useful execution hooks.
        The return value is a flag indicating whether interpretation of
        commands by the interpreter should stop.

        """
        cmd, arg, line = self.parseline(line)
        if not line:
            return self.emptyline()
        if cmd is None:
            return self.default(line)
        self.lastcmd = line
        if line == 'EOF' :
            self.lastcmd = ''
        if cmd == '':
            return self.default(line)
        else:
            try:
                func = getattr(self, 'do_' + cmd)
            except AttributeError:
                return self.default(line)
            return func(arg)

    def emptyline(self):
        """Called when an empty line is entered in response to the prompt.

        If this method is not overridden, it repeats the last nonempty
        command entered.

        """
        if self.lastcmd:
            return self.onecmd(self.lastcmd)

    def default(self, line):
        """Called on an input line when the command prefix is not recognized.

        If this method is not overridden, it prints an error message and
        returns.

        """
        self.stdout.write('*** Unknown syntax: %s\n'%line)

    def completedefault(self, *ignored):
        """Method called to complete an input line when no command-specific
        complete_*() method is available.

        By default, it returns an empty list.

        """
        return []

    def completenames(self, text, *ignored):
        dotext = 'do_'+text
        return [a[3:] for a in self.get_names() if a.startswith(dotext)]

    def complete(self, text, state):
        """Return the next possible completion for 'text'.

        If a command has not been entered, then complete against command list.
        Otherwise try to call complete_<command> to get list of completions.
        """
        if state == 0:
            import readline
            origline = readline.get_line_buffer()
            line = origline.lstrip()
            stripped = len(origline) - len(line)
            begidx = readline.get_begidx() - stripped
            endidx = readline.get_endidx() - stripped
            if begidx>0:
                cmd, args, foo = self.parseline(line)
                if cmd == '':
                    compfunc = self.completedefault
                else:
                    try:
                        compfunc = getattr(self, 'complete_' + cmd)
                    except AttributeError:
                        compfunc = self.completedefault
            else:
                compfunc = self.completenames
            self.completion_matches = compfunc(text, line, begidx, endidx)
        try:
            return self.completion_matches[state]
        except IndexError:
            return None

    def get_names(self):
        # This method used to pull in base class attributes
        # at a time dir() didn't do it yet.
        return dir(self.__class__)

    def complete_help(self, *args):
        commands = set(self.completenames(*args))
        topics = set(a[5:] for a in self.get_names()
                     if a.startswith('help_' + args[0]))
        return list(commands | topics)

    def do_help(self, arg):
        'List available commands with "help" or detailed help with "help cmd".'
        if arg:
            # XXX check arg syntax
            try:
                func = getattr(self, 'help_' + arg)
            except AttributeError:
                try:
                    doc=getattr(self, 'do_' + arg).__doc__
                    if doc:
                        self.stdout.write("%s\n"%str(doc))
                        return
                except AttributeError:
                    pass
                self.stdout.write("%s\n"%str(self.nohelp % (arg,)))
                return
            func()
        else:
            names = self.get_names()
            cmds_doc = []
            cmds_undoc = []
            help = {}
            for name in names:
                if name[:5] == 'help_':
                    help[name[5:]]=1
            names.sort()
            # There can be duplicates if routines overridden
            prevname = ''
            for name in names:
                if name[:3] == 'do_':
                    if name == prevname:
                        continue
                    prevname = name
                    cmd=name[3:]
                    if cmd in help:
                        cmds_doc.append(cmd)
                        del help[cmd]
                    elif getattr(self, name).__doc__:
                        cmds_doc.append(cmd)
                    else:
                        cmds_undoc.append(cmd)
            self.stdout.write("%s\n"%str(self.doc_leader))
            self.print_topics(self.doc_header,   cmds_doc,   15,80)
            self.print_topics(self.misc_header,  list(help.keys()),15,80)
            self.print_topics(self.undoc_header, cmds_undoc, 15,80)

    def print_topics(self, header, cmds, cmdlen, maxcol):
        if cmds:
            self.stdout.write("%s\n"%str(header))
            if self.ruler:
                self.stdout.write("%s\n"%str(self.ruler * len(header)))
            self.columnize(cmds, maxcol-1)
            self.stdout.write("\n")

    def columnize(self, list, displaywidth=80):
        """Display a list of strings as a compact set of columns.

        Each column is only as wide as necessary.
        Columns are separated by two spaces (one was not legible enough).
        """
        if not list:
            self.stdout.write("<empty>\n")
            return

        nonstrings = [i for i in range(len(list))
                        if not isinstance(list[i], str)]
        if nonstrings:
            raise TypeError("list[i] not a string for i in %s"
                            % ", ".join(map(str, nonstrings)))
        size = len(list)
        if size == 1:
            self.stdout.write('%s\n'%str(list[0]))
            return
        # Try every row count from 1 upwards
        for nrows in range(1, len(list)):
            ncols = (size+nrows-1) // nrows
            colwidths = []
            totwidth = -2
            for col in range(ncols):
                colwidth = 0
                for row in range(nrows):
                    i = row + nrows*col
                    if i >= size:
                        break
                    x = list[i]
                    colwidth = max(colwidth, len(x))
                colwidths.append(colwidth)
                totwidth += colwidth + 2
                if totwidth > displaywidth:
                    break
            if totwidth <= displaywidth:
                break
        else:
            nrows = len(list)
            ncols = 1
            colwidths = [0]
        for row in range(nrows):
            texts = []
            for col in range(ncols):
                i = row + nrows*col
                if i >= size:
                    x = ""
                else:
                    x = list[i]
                texts.append(x)
            while texts and not texts[-1]:
                del texts[-1]
            for col in range(len(texts)):
                texts[col] = texts[col].ljust(colwidths[col])
            self.stdout.write("%s\n"%str("  ".join(texts)))
lib\code.py
"""Utilities needed to emulate Python's interactive interpreter.

"""

# Inspired by similar code by Jeff Epler and Fredrik Lundh.


import sys
import traceback
from codeop import CommandCompiler, compile_command

__all__ = ["InteractiveInterpreter", "InteractiveConsole", "interact",
           "compile_command"]

class InteractiveInterpreter:
    """Base class for InteractiveConsole.

    This class deals with parsing and interpreter state (the user's
    namespace); it doesn't deal with input buffering or prompting or
    input file naming (the filename is always passed in explicitly).

    """

    def __init__(self, locals=None):
        """Constructor.

        The optional 'locals' argument specifies the dictionary in
        which code will be executed; it defaults to a newly created
        dictionary with key "__name__" set to "__console__" and key
        "__doc__" set to None.

        """
        if locals is None:
            locals = {"__name__": "__console__", "__doc__": None}
        self.locals = locals
        self.compile = CommandCompiler()

    def runsource(self, source, filename="<input>", symbol="single"):
        """Compile and run some source in the interpreter.

        Arguments are as for compile_command().

        One several things can happen:

        1) The input is incorrect; compile_command() raised an
        exception (SyntaxError or OverflowError).  A syntax traceback
        will be printed by calling the showsyntaxerror() method.

        2) The input is incomplete, and more input is required;
        compile_command() returned None.  Nothing happens.

        3) The input is complete; compile_command() returned a code
        object.  The code is executed by calling self.runcode() (which
        also handles run-time exceptions, except for SystemExit).

        The return value is True in case 2, False in the other cases (unless
        an exception is raised).  The return value can be used to
        decide whether to use sys.ps1 or sys.ps2 to prompt the next
        line.

        """
        try:
            code = self.compile(source, filename, symbol)
        except (OverflowError, SyntaxError, ValueError):
            # Case 1
            self.showsyntaxerror(filename)
            return False

        if code is None:
            # Case 2
            return True

        # Case 3
        self.runcode(code)
        return False

    def runcode(self, code):
        """Execute a code object.

        When an exception occurs, self.showtraceback() is called to
        display a traceback.  All exceptions are caught except
        SystemExit, which is reraised.

        A note about KeyboardInterrupt: this exception may occur
        elsewhere in this code, and may not always be caught.  The
        caller should be prepared to deal with it.

        """
        try:
            exec(code, self.locals)
        except SystemExit:
            raise
        except:
            self.showtraceback()

    def showsyntaxerror(self, filename=None):
        """Display the syntax error that just occurred.

        This doesn't display a stack trace because there isn't one.

        If a filename is given, it is stuffed in the exception instead
        of what was there before (because Python's parser always uses
        "<string>" when reading from a string).

        The output is written by self.write(), below.

        """
        type, value, tb = sys.exc_info()
        sys.last_type = type
        sys.last_value = value
        sys.last_traceback = tb
        if filename and type is SyntaxError:
            # Work hard to stuff the correct filename in the exception
            try:
                msg, (dummy_filename, lineno, offset, line) = value.args
            except ValueError:
                # Not the format we expect; leave it alone
                pass
            else:
                # Stuff in the right filename
                value = SyntaxError(msg, (filename, lineno, offset, line))
                sys.last_value = value
        if sys.excepthook is sys.__excepthook__:
            lines = traceback.format_exception_only(type, value)
            self.write(''.join(lines))
        else:
            # If someone has set sys.excepthook, we let that take precedence
            # over self.write
            sys.excepthook(type, value, tb)

    def showtraceback(self):
        """Display the exception that just occurred.

        We remove the first stack item because it is our own code.

        The output is written by self.write(), below.

        """
        try:
            type, value, tb = sys.exc_info()
            sys.last_type = type
            sys.last_value = value
            sys.last_traceback = tb
            tblist = traceback.extract_tb(tb)
            del tblist[:1]
            lines = traceback.format_list(tblist)
            if lines:
                lines.insert(0, "Traceback (most recent call last):\n")
            lines.extend(traceback.format_exception_only(type, value))
        finally:
            tblist = tb = None
        if sys.excepthook is sys.__excepthook__:
            self.write(''.join(lines))
        else:
            # If someone has set sys.excepthook, we let that take precedence
            # over self.write
            sys.excepthook(type, value, tb)

    def write(self, data):
        """Write a string.

        The base implementation writes to sys.stderr; a subclass may
        replace this with a different implementation.

        """
        sys.stderr.write(data)


class InteractiveConsole(InteractiveInterpreter):
    """Closely emulate the behavior of the interactive Python interpreter.

    This class builds on InteractiveInterpreter and adds prompting
    using the familiar sys.ps1 and sys.ps2, and input buffering.

    """

    def __init__(self, locals=None, filename="<console>"):
        """Constructor.

        The optional locals argument will be passed to the
        InteractiveInterpreter base class.

        The optional filename argument should specify the (file)name
        of the input stream; it will show up in tracebacks.

        """
        InteractiveInterpreter.__init__(self, locals)
        self.filename = filename
        self.resetbuffer()

    def resetbuffer(self):
        """Reset the input buffer."""
        self.buffer = []

    def interact(self, banner=None):
        """Closely emulate the interactive Python console.

        The optional banner argument specifies the banner to print
        before the first interaction; by default it prints a banner
        similar to the one printed by the real Python interpreter,
        followed by the current class name in parentheses (so as not
        to confuse this with the real interpreter -- since it's so
        close!).

        """
        try:
            sys.ps1
        except AttributeError:
            sys.ps1 = ">>> "
        try:
            sys.ps2
        except AttributeError:
            sys.ps2 = "... "
        cprt = 'Type "help", "copyright", "credits" or "license" for more information.'
        if banner is None:
            self.write("Python %s on %s\n%s\n(%s)\n" %
                       (sys.version, sys.platform, cprt,
                        self.__class__.__name__))
        elif banner:
            self.write("%s\n" % str(banner))
        more = 0
        while 1:
            try:
                if more:
                    prompt = sys.ps2
                else:
                    prompt = sys.ps1
                try:
                    line = self.raw_input(prompt)
                except EOFError:
                    self.write("\n")
                    break
                else:
                    more = self.push(line)
            except KeyboardInterrupt:
                self.write("\nKeyboardInterrupt\n")
                self.resetbuffer()
                more = 0

    def push(self, line):
        """Push a line to the interpreter.

        The line should not have a trailing newline; it may have
        internal newlines.  The line is appended to a buffer and the
        interpreter's runsource() method is called with the
        concatenated contents of the buffer as source.  If this
        indicates that the command was executed or invalid, the buffer
        is reset; otherwise, the command is incomplete, and the buffer
        is left as it was after the line was appended.  The return
        value is 1 if more input is required, 0 if the line was dealt
        with in some way (this is the same as runsource()).

        """
        self.buffer.append(line)
        source = "\n".join(self.buffer)
        more = self.runsource(source, self.filename)
        if not more:
            self.resetbuffer()
        return more

    def raw_input(self, prompt=""):
        """Write a prompt and read a line.

        The returned line does not include the trailing newline.
        When the user enters the EOF key sequence, EOFError is raised.

        The base implementation uses the built-in function
        input(); a subclass may replace this with a different
        implementation.

        """
        return input(prompt)



def interact(banner=None, readfunc=None, local=None):
    """Closely emulate the interactive Python interpreter.

    This is a backwards compatible interface to the InteractiveConsole
    class.  When readfunc is not specified, it attempts to import the
    readline module to enable GNU readline if it is available.

    Arguments (all optional, all default to None):

    banner -- passed to InteractiveConsole.interact()
    readfunc -- if not None, replaces InteractiveConsole.raw_input()
    local -- passed to InteractiveInterpreter.__init__()

    """
    console = InteractiveConsole(local)
    if readfunc is not None:
        console.raw_input = readfunc
    else:
        try:
            import readline
        except ImportError:
            pass
    console.interact(banner)


if __name__ == "__main__":
    interact()
lib\codecs.py
""" codecs -- Python Codec Registry, API and helpers.


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""#"

import builtins, sys

### Registry and builtin stateless codec functions

try:
    from _codecs import *
except ImportError as why:
    raise SystemError('Failed to load the builtin codecs: %s' % why)

__all__ = ["register", "lookup", "open", "EncodedFile", "BOM", "BOM_BE",
           "BOM_LE", "BOM32_BE", "BOM32_LE", "BOM64_BE", "BOM64_LE",
           "BOM_UTF8", "BOM_UTF16", "BOM_UTF16_LE", "BOM_UTF16_BE",
           "BOM_UTF32", "BOM_UTF32_LE", "BOM_UTF32_BE",
           "CodecInfo", "Codec", "IncrementalEncoder", "IncrementalDecoder",
           "StreamReader", "StreamWriter",
           "StreamReaderWriter", "StreamRecoder",
           "getencoder", "getdecoder", "getincrementalencoder",
           "getincrementaldecoder", "getreader", "getwriter",
           "encode", "decode", "iterencode", "iterdecode",
           "strict_errors", "ignore_errors", "replace_errors",
           "xmlcharrefreplace_errors", "backslashreplace_errors",
           "register_error", "lookup_error"]

### Constants

#
# Byte Order Mark (BOM = ZERO WIDTH NO-BREAK SPACE = U+FEFF)
# and its possible byte string values
# for UTF8/UTF16/UTF32 output and little/big endian machines
#

# UTF-8
BOM_UTF8 = b'\xef\xbb\xbf'

# UTF-16, little endian
BOM_LE = BOM_UTF16_LE = b'\xff\xfe'

# UTF-16, big endian
BOM_BE = BOM_UTF16_BE = b'\xfe\xff'

# UTF-32, little endian
BOM_UTF32_LE = b'\xff\xfe\x00\x00'

# UTF-32, big endian
BOM_UTF32_BE = b'\x00\x00\xfe\xff'

if sys.byteorder == 'little':

    # UTF-16, native endianness
    BOM = BOM_UTF16 = BOM_UTF16_LE

    # UTF-32, native endianness
    BOM_UTF32 = BOM_UTF32_LE

else:

    # UTF-16, native endianness
    BOM = BOM_UTF16 = BOM_UTF16_BE

    # UTF-32, native endianness
    BOM_UTF32 = BOM_UTF32_BE

# Old broken names (don't use in new code)
BOM32_LE = BOM_UTF16_LE
BOM32_BE = BOM_UTF16_BE
BOM64_LE = BOM_UTF32_LE
BOM64_BE = BOM_UTF32_BE


### Codec base classes (defining the API)

class CodecInfo(tuple):
    """Codec details when looking up the codec registry"""

    # Private API to allow Python 3.4 to blacklist the known non-Unicode
    # codecs in the standard library. A more general mechanism to
    # reliably distinguish test encodings from other codecs will hopefully
    # be defined for Python 3.5
    #
    # See http://bugs.python.org/issue19619
    _is_text_encoding = True # Assume codecs are text encodings by default

    def __new__(cls, encode, decode, streamreader=None, streamwriter=None,
        incrementalencoder=None, incrementaldecoder=None, name=None,
        *, _is_text_encoding=None):
        self = tuple.__new__(cls, (encode, decode, streamreader, streamwriter))
        self.name = name
        self.encode = encode
        self.decode = decode
        self.incrementalencoder = incrementalencoder
        self.incrementaldecoder = incrementaldecoder
        self.streamwriter = streamwriter
        self.streamreader = streamreader
        if _is_text_encoding is not None:
            self._is_text_encoding = _is_text_encoding
        return self

    def __repr__(self):
        return "<%s.%s object for encoding %s at 0x%x>" % \
                (self.__class__.__module__, self.__class__.__name__,
                 self.name, id(self))

class Codec:

    """ Defines the interface for stateless encoders/decoders.

        The .encode()/.decode() methods may use different error
        handling schemes by providing the errors argument. These
        string values are predefined:

         'strict' - raise a ValueError error (or a subclass)
         'ignore' - ignore the character and continue with the next
         'replace' - replace with a suitable replacement character;
                    Python will use the official U+FFFD REPLACEMENT
                    CHARACTER for the builtin Unicode codecs on
                    decoding and '?' on encoding.
         'surrogateescape' - replace with private code points U+DCnn.
         'xmlcharrefreplace' - Replace with the appropriate XML
                               character reference (only for encoding).
         'backslashreplace'  - Replace with backslashed escape sequences
                               (only for encoding).

        The set of allowed values can be extended via register_error.

    """
    def encode(self, input, errors='strict'):

        """ Encodes the object input and returns a tuple (output
            object, length consumed).

            errors defines the error handling to apply. It defaults to
            'strict' handling.

            The method may not store state in the Codec instance. Use
            StreamWriter for codecs which have to keep state in order to
            make encoding efficient.

            The encoder must be able to handle zero length input and
            return an empty object of the output object type in this
            situation.

        """
        raise NotImplementedError

    def decode(self, input, errors='strict'):

        """ Decodes the object input and returns a tuple (output
            object, length consumed).

            input must be an object which provides the bf_getreadbuf
            buffer slot. Python strings, buffer objects and memory
            mapped files are examples of objects providing this slot.

            errors defines the error handling to apply. It defaults to
            'strict' handling.

            The method may not store state in the Codec instance. Use
            StreamReader for codecs which have to keep state in order to
            make decoding efficient.

            The decoder must be able to handle zero length input and
            return an empty object of the output object type in this
            situation.

        """
        raise NotImplementedError

class IncrementalEncoder(object):
    """
    An IncrementalEncoder encodes an input in multiple steps. The input can
    be passed piece by piece to the encode() method. The IncrementalEncoder
    remembers the state of the encoding process between calls to encode().
    """
    def __init__(self, errors='strict'):
        """
        Creates an IncrementalEncoder instance.

        The IncrementalEncoder may use different error handling schemes by
        providing the errors keyword argument. See the module docstring
        for a list of possible values.
        """
        self.errors = errors
        self.buffer = ""

    def encode(self, input, final=False):
        """
        Encodes input and returns the resulting object.
        """
        raise NotImplementedError

    def reset(self):
        """
        Resets the encoder to the initial state.
        """

    def getstate(self):
        """
        Return the current state of the encoder.
        """
        return 0

    def setstate(self, state):
        """
        Set the current state of the encoder. state must have been
        returned by getstate().
        """

class BufferedIncrementalEncoder(IncrementalEncoder):
    """
    This subclass of IncrementalEncoder can be used as the baseclass for an
    incremental encoder if the encoder must keep some of the output in a
    buffer between calls to encode().
    """
    def __init__(self, errors='strict'):
        IncrementalEncoder.__init__(self, errors)
        # unencoded input that is kept between calls to encode()
        self.buffer = ""

    def _buffer_encode(self, input, errors, final):
        # Overwrite this method in subclasses: It must encode input
        # and return an (output, length consumed) tuple
        raise NotImplementedError

    def encode(self, input, final=False):
        # encode input (taking the buffer into account)
        data = self.buffer + input
        (result, consumed) = self._buffer_encode(data, self.errors, final)
        # keep unencoded input until the next call
        self.buffer = data[consumed:]
        return result

    def reset(self):
        IncrementalEncoder.reset(self)
        self.buffer = ""

    def getstate(self):
        return self.buffer or 0

    def setstate(self, state):
        self.buffer = state or ""

class IncrementalDecoder(object):
    """
    An IncrementalDecoder decodes an input in multiple steps. The input can
    be passed piece by piece to the decode() method. The IncrementalDecoder
    remembers the state of the decoding process between calls to decode().
    """
    def __init__(self, errors='strict'):
        """
        Create an IncrementalDecoder instance.

        The IncrementalDecoder may use different error handling schemes by
        providing the errors keyword argument. See the module docstring
        for a list of possible values.
        """
        self.errors = errors

    def decode(self, input, final=False):
        """
        Decode input and returns the resulting object.
        """
        raise NotImplementedError

    def reset(self):
        """
        Reset the decoder to the initial state.
        """

    def getstate(self):
        """
        Return the current state of the decoder.

        This must be a (buffered_input, additional_state_info) tuple.
        buffered_input must be a bytes object containing bytes that
        were passed to decode() that have not yet been converted.
        additional_state_info must be a non-negative integer
        representing the state of the decoder WITHOUT yet having
        processed the contents of buffered_input.  In the initial state
        and after reset(), getstate() must return (b"", 0).
        """
        return (b"", 0)

    def setstate(self, state):
        """
        Set the current state of the decoder.

        state must have been returned by getstate().  The effect of
        setstate((b"", 0)) must be equivalent to reset().
        """

class BufferedIncrementalDecoder(IncrementalDecoder):
    """
    This subclass of IncrementalDecoder can be used as the baseclass for an
    incremental decoder if the decoder must be able to handle incomplete
    byte sequences.
    """
    def __init__(self, errors='strict'):
        IncrementalDecoder.__init__(self, errors)
        # undecoded input that is kept between calls to decode()
        self.buffer = b""

    def _buffer_decode(self, input, errors, final):
        # Overwrite this method in subclasses: It must decode input
        # and return an (output, length consumed) tuple
        raise NotImplementedError

    def decode(self, input, final=False):
        # decode input (taking the buffer into account)
        data = self.buffer + input
        (result, consumed) = self._buffer_decode(data, self.errors, final)
        # keep undecoded input until the next call
        self.buffer = data[consumed:]
        return result

    def reset(self):
        IncrementalDecoder.reset(self)
        self.buffer = b""

    def getstate(self):
        # additional state info is always 0
        return (self.buffer, 0)

    def setstate(self, state):
        # ignore additional state info
        self.buffer = state[0]

#
# The StreamWriter and StreamReader class provide generic working
# interfaces which can be used to implement new encoding submodules
# very easily. See encodings/utf_8.py for an example on how this is
# done.
#

class StreamWriter(Codec):

    def __init__(self, stream, errors='strict'):

        """ Creates a StreamWriter instance.

            stream must be a file-like object open for writing.

            The StreamWriter may use different error handling
            schemes by providing the errors keyword argument. These
            parameters are predefined:

             'strict' - raise a ValueError (or a subclass)
             'ignore' - ignore the character and continue with the next
             'replace'- replace with a suitable replacement character
             'xmlcharrefreplace' - Replace with the appropriate XML
                                   character reference.
             'backslashreplace'  - Replace with backslashed escape
                                   sequences (only for encoding).

            The set of allowed parameter values can be extended via
            register_error.
        """
        self.stream = stream
        self.errors = errors

    def write(self, object):

        """ Writes the object's contents encoded to self.stream.
        """
        data, consumed = self.encode(object, self.errors)
        self.stream.write(data)

    def writelines(self, list):

        """ Writes the concatenated list of strings to the stream
            using .write().
        """
        self.write(''.join(list))

    def reset(self):

        """ Flushes and resets the codec buffers used for keeping state.

            Calling this method should ensure that the data on the
            output is put into a clean state, that allows appending
            of new fresh data without having to rescan the whole
            stream to recover state.

        """
        pass

    def seek(self, offset, whence=0):
        self.stream.seek(offset, whence)
        if whence == 0 and offset == 0:
            self.reset()

    def __getattr__(self, name,
                    getattr=getattr):

        """ Inherit all other methods from the underlying stream.
        """
        return getattr(self.stream, name)

    def __enter__(self):
        return self

    def __exit__(self, type, value, tb):
        self.stream.close()

###

class StreamReader(Codec):

    charbuffertype = str

    def __init__(self, stream, errors='strict'):

        """ Creates a StreamReader instance.

            stream must be a file-like object open for reading.

            The StreamReader may use different error handling
            schemes by providing the errors keyword argument. These
            parameters are predefined:

             'strict' - raise a ValueError (or a subclass)
             'ignore' - ignore the character and continue with the next
             'replace'- replace with a suitable replacement character;

            The set of allowed parameter values can be extended via
            register_error.
        """
        self.stream = stream
        self.errors = errors
        self.bytebuffer = b""
        self._empty_charbuffer = self.charbuffertype()
        self.charbuffer = self._empty_charbuffer
        self.linebuffer = None

    def decode(self, input, errors='strict'):
        raise NotImplementedError

    def read(self, size=-1, chars=-1, firstline=False):

        """ Decodes data from the stream self.stream and returns the
            resulting object.

            chars indicates the number of decoded code points or bytes to
            return. read() will never return more data than requested,
            but it might return less, if there is not enough available.

            size indicates the approximate maximum number of decoded
            bytes or code points to read for decoding. The decoder
            can modify this setting as appropriate. The default value
            -1 indicates to read and decode as much as possible.  size
            is intended to prevent having to decode huge files in one
            step.

            If firstline is true, and a UnicodeDecodeError happens
            after the first line terminator in the input only the first line
            will be returned, the rest of the input will be kept until the
            next call to read().

            The method should use a greedy read strategy, meaning that
            it should read as much data as is allowed within the
            definition of the encoding and the given size, e.g.  if
            optional encoding endings or state markers are available
            on the stream, these should be read too.
        """
        # If we have lines cached, first merge them back into characters
        if self.linebuffer:
            self.charbuffer = self._empty_charbuffer.join(self.linebuffer)
            self.linebuffer = None

        # read until we get the required number of characters (if available)
        while True:
            # can the request be satisfied from the character buffer?
            if chars >= 0:
                if len(self.charbuffer) >= chars:
                    break
            elif size >= 0:
                if len(self.charbuffer) >= size:
                    break
            # we need more data
            if size < 0:
                newdata = self.stream.read()
            else:
                newdata = self.stream.read(size)
            # decode bytes (those remaining from the last call included)
            data = self.bytebuffer + newdata
            if not data:
                break
            try:
                newchars, decodedbytes = self.decode(data, self.errors)
            except UnicodeDecodeError as exc:
                if firstline:
                    newchars, decodedbytes = \
                        self.decode(data[:exc.start], self.errors)
                    lines = newchars.splitlines(keepends=True)
                    if len(lines)<=1:
                        raise
                else:
                    raise
            # keep undecoded bytes until the next call
            self.bytebuffer = data[decodedbytes:]
            # put new characters in the character buffer
            self.charbuffer += newchars
            # there was no data available
            if not newdata:
                break
        if chars < 0:
            # Return everything we've got
            result = self.charbuffer
            self.charbuffer = self._empty_charbuffer
        else:
            # Return the first chars characters
            result = self.charbuffer[:chars]
            self.charbuffer = self.charbuffer[chars:]
        return result

    def readline(self, size=None, keepends=True):

        """ Read one line from the input stream and return the
            decoded data.

            size, if given, is passed as size argument to the
            read() method.

        """
        # If we have lines cached from an earlier read, return
        # them unconditionally
        if self.linebuffer:
            line = self.linebuffer[0]
            del self.linebuffer[0]
            if len(self.linebuffer) == 1:
                # revert to charbuffer mode; we might need more data
                # next time
                self.charbuffer = self.linebuffer[0]
                self.linebuffer = None
            if not keepends:
                line = line.splitlines(keepends=False)[0]
            return line

        readsize = size or 72
        line = self._empty_charbuffer
        # If size is given, we call read() only once
        while True:
            data = self.read(readsize, firstline=True)
            if data:
                # If we're at a "\r" read one extra character (which might
                # be a "\n") to get a proper line ending. If the stream is
                # temporarily exhausted we return the wrong line ending.
                if (isinstance(data, str) and data.endswith("\r")) or \
                   (isinstance(data, bytes) and data.endswith(b"\r")):
                    data += self.read(size=1, chars=1)

            line += data
            lines = line.splitlines(keepends=True)
            if lines:
                if len(lines) > 1:
                    # More than one line result; the first line is a full line
                    # to return
                    line = lines[0]
                    del lines[0]
                    if len(lines) > 1:
                        # cache the remaining lines
                        lines[-1] += self.charbuffer
                        self.linebuffer = lines
                        self.charbuffer = None
                    else:
                        # only one remaining line, put it back into charbuffer
                        self.charbuffer = lines[0] + self.charbuffer
                    if not keepends:
                        line = line.splitlines(keepends=False)[0]
                    break
                line0withend = lines[0]
                line0withoutend = lines[0].splitlines(keepends=False)[0]
                if line0withend != line0withoutend: # We really have a line end
                    # Put the rest back together and keep it until the next call
                    self.charbuffer = self._empty_charbuffer.join(lines[1:]) + \
                                      self.charbuffer
                    if keepends:
                        line = line0withend
                    else:
                        line = line0withoutend
                    break
            # we didn't get anything or this was our only try
            if not data or size is not None:
                if line and not keepends:
                    line = line.splitlines(keepends=False)[0]
                break
            if readsize < 8000:
                readsize *= 2
        return line

    def readlines(self, sizehint=None, keepends=True):

        """ Read all lines available on the input stream
            and return them as a list.

            Line breaks are implemented using the codec's decoder
            method and are included in the list entries.

            sizehint, if given, is ignored since there is no efficient
            way to finding the true end-of-line.

        """
        data = self.read()
        return data.splitlines(keepends)

    def reset(self):

        """ Resets the codec buffers used for keeping state.

            Note that no stream repositioning should take place.
            This method is primarily intended to be able to recover
            from decoding errors.

        """
        self.bytebuffer = b""
        self.charbuffer = self._empty_charbuffer
        self.linebuffer = None

    def seek(self, offset, whence=0):
        """ Set the input stream's current position.

            Resets the codec buffers used for keeping state.
        """
        self.stream.seek(offset, whence)
        self.reset()

    def __next__(self):

        """ Return the next decoded line from the input stream."""
        line = self.readline()
        if line:
            return line
        raise StopIteration

    def __iter__(self):
        return self

    def __getattr__(self, name,
                    getattr=getattr):

        """ Inherit all other methods from the underlying stream.
        """
        return getattr(self.stream, name)

    def __enter__(self):
        return self

    def __exit__(self, type, value, tb):
        self.stream.close()

###

class StreamReaderWriter:

    """ StreamReaderWriter instances allow wrapping streams which
        work in both read and write modes.

        The design is such that one can use the factory functions
        returned by the codec.lookup() function to construct the
        instance.

    """
    # Optional attributes set by the file wrappers below
    encoding = 'unknown'

    def __init__(self, stream, Reader, Writer, errors='strict'):

        """ Creates a StreamReaderWriter instance.

            stream must be a Stream-like object.

            Reader, Writer must be factory functions or classes
            providing the StreamReader, StreamWriter interface resp.

            Error handling is done in the same way as defined for the
            StreamWriter/Readers.

        """
        self.stream = stream
        self.reader = Reader(stream, errors)
        self.writer = Writer(stream, errors)
        self.errors = errors

    def read(self, size=-1):

        return self.reader.read(size)

    def readline(self, size=None):

        return self.reader.readline(size)

    def readlines(self, sizehint=None):

        return self.reader.readlines(sizehint)

    def __next__(self):

        """ Return the next decoded line from the input stream."""
        return next(self.reader)

    def __iter__(self):
        return self

    def write(self, data):

        return self.writer.write(data)

    def writelines(self, list):

        return self.writer.writelines(list)

    def reset(self):

        self.reader.reset()
        self.writer.reset()

    def seek(self, offset, whence=0):
        self.stream.seek(offset, whence)
        self.reader.reset()
        if whence == 0 and offset == 0:
            self.writer.reset()

    def __getattr__(self, name,
                    getattr=getattr):

        """ Inherit all other methods from the underlying stream.
        """
        return getattr(self.stream, name)

    # these are needed to make "with codecs.open(...)" work properly

    def __enter__(self):
        return self

    def __exit__(self, type, value, tb):
        self.stream.close()

###

class StreamRecoder:

    """ StreamRecoder instances translate data from one encoding to another.

        They use the complete set of APIs returned by the
        codecs.lookup() function to implement their task.

        Data written to the StreamRecoder is first decoded into an
        intermediate format (depending on the "decode" codec) and then
        written to the underlying stream using an instance of the provided
        Writer class.

        In the other direction, data is read from the underlying stream using
        a Reader instance and then encoded and returned to the caller.

    """
    # Optional attributes set by the file wrappers below
    data_encoding = 'unknown'
    file_encoding = 'unknown'

    def __init__(self, stream, encode, decode, Reader, Writer,
                 errors='strict'):

        """ Creates a StreamRecoder instance which implements a two-way
            conversion: encode and decode work on the frontend (the
            data visible to .read() and .write()) while Reader and Writer
            work on the backend (the data in stream).

            You can use these objects to do transparent
            transcodings from e.g. latin-1 to utf-8 and back.

            stream must be a file-like object.

            encode and decode must adhere to the Codec interface; Reader and
            Writer must be factory functions or classes providing the
            StreamReader and StreamWriter interfaces resp.

            Error handling is done in the same way as defined for the
            StreamWriter/Readers.

        """
        self.stream = stream
        self.encode = encode
        self.decode = decode
        self.reader = Reader(stream, errors)
        self.writer = Writer(stream, errors)
        self.errors = errors

    def read(self, size=-1):

        data = self.reader.read(size)
        data, bytesencoded = self.encode(data, self.errors)
        return data

    def readline(self, size=None):

        if size is None:
            data = self.reader.readline()
        else:
            data = self.reader.readline(size)
        data, bytesencoded = self.encode(data, self.errors)
        return data

    def readlines(self, sizehint=None):

        data = self.reader.read()
        data, bytesencoded = self.encode(data, self.errors)
        return data.splitlines(keepends=True)

    def __next__(self):

        """ Return the next decoded line from the input stream."""
        data = next(self.reader)
        data, bytesencoded = self.encode(data, self.errors)
        return data

    def __iter__(self):
        return self

    def write(self, data):

        data, bytesdecoded = self.decode(data, self.errors)
        return self.writer.write(data)

    def writelines(self, list):

        data = ''.join(list)
        data, bytesdecoded = self.decode(data, self.errors)
        return self.writer.write(data)

    def reset(self):

        self.reader.reset()
        self.writer.reset()

    def __getattr__(self, name,
                    getattr=getattr):

        """ Inherit all other methods from the underlying stream.
        """
        return getattr(self.stream, name)

    def __enter__(self):
        return self

    def __exit__(self, type, value, tb):
        self.stream.close()

### Shortcuts

def open(filename, mode='r', encoding=None, errors='strict', buffering=1):

    """ Open an encoded file using the given mode and return
        a wrapped version providing transparent encoding/decoding.

        Note: The wrapped version will only accept the object format
        defined by the codecs, i.e. Unicode objects for most builtin
        codecs. Output is also codec dependent and will usually be
        Unicode as well.

        Underlying encoded files are always opened in binary mode.
        The default file mode is 'r', meaning to open the file in read mode.

        encoding specifies the encoding which is to be used for the
        file.

        errors may be given to define the error handling. It defaults
        to 'strict' which causes ValueErrors to be raised in case an
        encoding error occurs.

        buffering has the same meaning as for the builtin open() API.
        It defaults to line buffered.

        The returned wrapped file object provides an extra attribute
        .encoding which allows querying the used encoding. This
        attribute is only available if an encoding was specified as
        parameter.

    """
    if encoding is not None and \
       'b' not in mode:
        # Force opening of the file in binary mode
        mode = mode + 'b'
    file = builtins.open(filename, mode, buffering)
    if encoding is None:
        return file
    info = lookup(encoding)
    srw = StreamReaderWriter(file, info.streamreader, info.streamwriter, errors)
    # Add attributes to simplify introspection
    srw.encoding = encoding
    return srw

def EncodedFile(file, data_encoding, file_encoding=None, errors='strict'):

    """ Return a wrapped version of file which provides transparent
        encoding translation.

        Data written to the wrapped file is decoded according
        to the given data_encoding and then encoded to the underlying
        file using file_encoding. The intermediate data type
        will usually be Unicode but depends on the specified codecs.

        Bytes read from the file are decoded using file_encoding and then
        passed back to the caller encoded using data_encoding.

        If file_encoding is not given, it defaults to data_encoding.

        errors may be given to define the error handling. It defaults
        to 'strict' which causes ValueErrors to be raised in case an
        encoding error occurs.

        The returned wrapped file object provides two extra attributes
        .data_encoding and .file_encoding which reflect the given
        parameters of the same name. The attributes can be used for
        introspection by Python programs.

    """
    if file_encoding is None:
        file_encoding = data_encoding
    data_info = lookup(data_encoding)
    file_info = lookup(file_encoding)
    sr = StreamRecoder(file, data_info.encode, data_info.decode,
                       file_info.streamreader, file_info.streamwriter, errors)
    # Add attributes to simplify introspection
    sr.data_encoding = data_encoding
    sr.file_encoding = file_encoding
    return sr

### Helpers for codec lookup

def getencoder(encoding):

    """ Lookup up the codec for the given encoding and return
        its encoder function.

        Raises a LookupError in case the encoding cannot be found.

    """
    return lookup(encoding).encode

def getdecoder(encoding):

    """ Lookup up the codec for the given encoding and return
        its decoder function.

        Raises a LookupError in case the encoding cannot be found.

    """
    return lookup(encoding).decode

def getincrementalencoder(encoding):

    """ Lookup up the codec for the given encoding and return
        its IncrementalEncoder class or factory function.

        Raises a LookupError in case the encoding cannot be found
        or the codecs doesn't provide an incremental encoder.

    """
    encoder = lookup(encoding).incrementalencoder
    if encoder is None:
        raise LookupError(encoding)
    return encoder

def getincrementaldecoder(encoding):

    """ Lookup up the codec for the given encoding and return
        its IncrementalDecoder class or factory function.

        Raises a LookupError in case the encoding cannot be found
        or the codecs doesn't provide an incremental decoder.

    """
    decoder = lookup(encoding).incrementaldecoder
    if decoder is None:
        raise LookupError(encoding)
    return decoder

def getreader(encoding):

    """ Lookup up the codec for the given encoding and return
        its StreamReader class or factory function.

        Raises a LookupError in case the encoding cannot be found.

    """
    return lookup(encoding).streamreader

def getwriter(encoding):

    """ Lookup up the codec for the given encoding and return
        its StreamWriter class or factory function.

        Raises a LookupError in case the encoding cannot be found.

    """
    return lookup(encoding).streamwriter

def iterencode(iterator, encoding, errors='strict', **kwargs):
    """
    Encoding iterator.

    Encodes the input strings from the iterator using an IncrementalEncoder.

    errors and kwargs are passed through to the IncrementalEncoder
    constructor.
    """
    encoder = getincrementalencoder(encoding)(errors, **kwargs)
    for input in iterator:
        output = encoder.encode(input)
        if output:
            yield output
    output = encoder.encode("", True)
    if output:
        yield output

def iterdecode(iterator, encoding, errors='strict', **kwargs):
    """
    Decoding iterator.

    Decodes the input strings from the iterator using an IncrementalDecoder.

    errors and kwargs are passed through to the IncrementalDecoder
    constructor.
    """
    decoder = getincrementaldecoder(encoding)(errors, **kwargs)
    for input in iterator:
        output = decoder.decode(input)
        if output:
            yield output
    output = decoder.decode(b"", True)
    if output:
        yield output

### Helpers for charmap-based codecs

def make_identity_dict(rng):

    """ make_identity_dict(rng) -> dict

        Return a dictionary where elements of the rng sequence are
        mapped to themselves.

    """
    return {i:i for i in rng}

def make_encoding_map(decoding_map):

    """ Creates an encoding map from a decoding map.

        If a target mapping in the decoding map occurs multiple
        times, then that target is mapped to None (undefined mapping),
        causing an exception when encountered by the charmap codec
        during translation.

        One example where this happens is cp875.py which decodes
        multiple character to \\u001a.

    """
    m = {}
    for k,v in decoding_map.items():
        if not v in m:
            m[v] = k
        else:
            m[v] = None
    return m

### error handlers

try:
    strict_errors = lookup_error("strict")
    ignore_errors = lookup_error("ignore")
    replace_errors = lookup_error("replace")
    xmlcharrefreplace_errors = lookup_error("xmlcharrefreplace")
    backslashreplace_errors = lookup_error("backslashreplace")
except LookupError:
    # In --disable-unicode builds, these error handler are missing
    strict_errors = None
    ignore_errors = None
    replace_errors = None
    xmlcharrefreplace_errors = None
    backslashreplace_errors = None

# Tell modulefinder that using codecs probably needs the encodings
# package
_false = 0
if _false:
    import encodings

### Tests

if __name__ == '__main__':

    # Make stdout translate Latin-1 output into UTF-8 output
    sys.stdout = EncodedFile(sys.stdout, 'latin-1', 'utf-8')

    # Have stdin translate Latin-1 input into UTF-8 input
    sys.stdin = EncodedFile(sys.stdin, 'utf-8', 'latin-1')
lib\codeop.py
r"""Utilities to compile possibly incomplete Python source code.

This module provides two interfaces, broadly similar to the builtin
function compile(), which take program text, a filename and a 'mode'
and:

- Return code object if the command is complete and valid
- Return None if the command is incomplete
- Raise SyntaxError, ValueError or OverflowError if the command is a
  syntax error (OverflowError and ValueError can be produced by
  malformed literals).

Approach:

First, check if the source consists entirely of blank lines and
comments; if so, replace it with 'pass', because the built-in
parser doesn't always do the right thing for these.

Compile three times: as is, with \n, and with \n\n appended.  If it
compiles as is, it's complete.  If it compiles with one \n appended,
we expect more.  If it doesn't compile either way, we compare the
error we get when compiling with \n or \n\n appended.  If the errors
are the same, the code is broken.  But if the errors are different, we
expect more.  Not intuitive; not even guaranteed to hold in future
releases; but this matches the compiler's behavior from Python 1.4
through 2.2, at least.

Caveat:

It is possible (but not likely) that the parser stops parsing with a
successful outcome before reaching the end of the source; in this
case, trailing symbols may be ignored instead of causing an error.
For example, a backslash followed by two newlines may be followed by
arbitrary garbage.  This will be fixed once the API for the parser is
better.

The two interfaces are:

compile_command(source, filename, symbol):

    Compiles a single command in the manner described above.

CommandCompiler():

    Instances of this class have __call__ methods identical in
    signature to compile_command; the difference is that if the
    instance compiles program text containing a __future__ statement,
    the instance 'remembers' and compiles all subsequent program texts
    with the statement in force.

The module also provides another class:

Compile():

    Instances of this class act like the built-in function compile,
    but with 'memory' in the sense described above.
"""

import __future__

_features = [getattr(__future__, fname)
             for fname in __future__.all_feature_names]

__all__ = ["compile_command", "Compile", "CommandCompiler"]

PyCF_DONT_IMPLY_DEDENT = 0x200          # Matches pythonrun.h

def _maybe_compile(compiler, source, filename, symbol):
    # Check for source consisting of only blank lines and comments
    for line in source.split("\n"):
        line = line.strip()
        if line and line[0] != '#':
            break               # Leave it alone
    else:
        if symbol != "eval":
            source = "pass"     # Replace it with a 'pass' statement

    err = err1 = err2 = None
    code = code1 = code2 = None

    try:
        code = compiler(source, filename, symbol)
    except SyntaxError as err:
        pass

    try:
        code1 = compiler(source + "\n", filename, symbol)
    except SyntaxError as e:
        err1 = e

    try:
        code2 = compiler(source + "\n\n", filename, symbol)
    except SyntaxError as e:
        err2 = e

    if code:
        return code
    if not code1 and repr(err1) == repr(err2):
        raise err1

def _compile(source, filename, symbol):
    return compile(source, filename, symbol, PyCF_DONT_IMPLY_DEDENT)

def compile_command(source, filename="<input>", symbol="single"):
    r"""Compile a command and determine whether it is incomplete.

    Arguments:

    source -- the source string; may contain \n characters
    filename -- optional filename from which source was read; default
                "<input>"
    symbol -- optional grammar start symbol; "single" (default) or "eval"

    Return value / exceptions raised:

    - Return a code object if the command is complete and valid
    - Return None if the command is incomplete
    - Raise SyntaxError, ValueError or OverflowError if the command is a
      syntax error (OverflowError and ValueError can be produced by
      malformed literals).
    """
    return _maybe_compile(_compile, source, filename, symbol)

class Compile:
    """Instances of this class behave much like the built-in compile
    function, but if one is used to compile text containing a future
    statement, it "remembers" and compiles all subsequent program texts
    with the statement in force."""
    def __init__(self):
        self.flags = PyCF_DONT_IMPLY_DEDENT

    def __call__(self, source, filename, symbol):
        codeob = compile(source, filename, symbol, self.flags, 1)
        for feature in _features:
            if codeob.co_flags & feature.compiler_flag:
                self.flags |= feature.compiler_flag
        return codeob

class CommandCompiler:
    """Instances of this class have __call__ methods identical in
    signature to compile_command; the difference is that if the
    instance compiles program text containing a __future__ statement,
    the instance 'remembers' and compiles all subsequent program texts
    with the statement in force."""

    def __init__(self,):
        self.compiler = Compile()

    def __call__(self, source, filename="<input>", symbol="single"):
        r"""Compile a command and determine whether it is incomplete.

        Arguments:

        source -- the source string; may contain \n characters
        filename -- optional filename from which source was read;
                    default "<input>"
        symbol -- optional grammar start symbol; "single" (default) or
                  "eval"

        Return value / exceptions raised:

        - Return a code object if the command is complete and valid
        - Return None if the command is incomplete
        - Raise SyntaxError, ValueError or OverflowError if the command is a
          syntax error (OverflowError and ValueError can be produced by
          malformed literals).
        """
        return _maybe_compile(self.compiler, source, filename, symbol)
lib\colorsys.py
"""Conversion functions between RGB and other color systems.

This modules provides two functions for each color system ABC:

  rgb_to_abc(r, g, b) --> a, b, c
  abc_to_rgb(a, b, c) --> r, g, b

All inputs and outputs are triples of floats in the range [0.0...1.0]
(with the exception of I and Q, which covers a slightly larger range).
Inputs outside the valid range may cause exceptions or invalid outputs.

Supported color systems:
RGB: Red, Green, Blue components
YIQ: Luminance, Chrominance (used by composite video signals)
HLS: Hue, Luminance, Saturation
HSV: Hue, Saturation, Value
"""

# References:
# http://en.wikipedia.org/wiki/YIQ
# http://en.wikipedia.org/wiki/HLS_color_space
# http://en.wikipedia.org/wiki/HSV_color_space

__all__ = ["rgb_to_yiq","yiq_to_rgb","rgb_to_hls","hls_to_rgb",
           "rgb_to_hsv","hsv_to_rgb"]

# Some floating point constants

ONE_THIRD = 1.0/3.0
ONE_SIXTH = 1.0/6.0
TWO_THIRD = 2.0/3.0

# YIQ: used by composite video signals (linear combinations of RGB)
# Y: perceived grey level (0.0 == black, 1.0 == white)
# I, Q: color components
#
# There are a great many versions of the constants used in these formulae.
# The ones in this library uses constants from the FCC version of NTSC.

def rgb_to_yiq(r, g, b):
    y = 0.30*r + 0.59*g + 0.11*b
    i = 0.74*(r-y) - 0.27*(b-y)
    q = 0.48*(r-y) + 0.41*(b-y)
    return (y, i, q)

def yiq_to_rgb(y, i, q):
    # r = y + (0.27*q + 0.41*i) / (0.74*0.41 + 0.27*0.48)
    # b = y + (0.74*q - 0.48*i) / (0.74*0.41 + 0.27*0.48)
    # g = y - (0.30*(r-y) + 0.11*(b-y)) / 0.59

    r = y + 0.9468822170900693*i + 0.6235565819861433*q
    g = y - 0.27478764629897834*i - 0.6356910791873801*q
    b = y - 1.1085450346420322*i + 1.7090069284064666*q

    if r < 0.0:
        r = 0.0
    if g < 0.0:
        g = 0.0
    if b < 0.0:
        b = 0.0
    if r > 1.0:
        r = 1.0
    if g > 1.0:
        g = 1.0
    if b > 1.0:
        b = 1.0
    return (r, g, b)


# HLS: Hue, Luminance, Saturation
# H: position in the spectrum
# L: color lightness
# S: color saturation

def rgb_to_hls(r, g, b):
    maxc = max(r, g, b)
    minc = min(r, g, b)
    # XXX Can optimize (maxc+minc) and (maxc-minc)
    l = (minc+maxc)/2.0
    if minc == maxc:
        return 0.0, l, 0.0
    if l <= 0.5:
        s = (maxc-minc) / (maxc+minc)
    else:
        s = (maxc-minc) / (2.0-maxc-minc)
    rc = (maxc-r) / (maxc-minc)
    gc = (maxc-g) / (maxc-minc)
    bc = (maxc-b) / (maxc-minc)
    if r == maxc:
        h = bc-gc
    elif g == maxc:
        h = 2.0+rc-bc
    else:
        h = 4.0+gc-rc
    h = (h/6.0) % 1.0
    return h, l, s

def hls_to_rgb(h, l, s):
    if s == 0.0:
        return l, l, l
    if l <= 0.5:
        m2 = l * (1.0+s)
    else:
        m2 = l+s-(l*s)
    m1 = 2.0*l - m2
    return (_v(m1, m2, h+ONE_THIRD), _v(m1, m2, h), _v(m1, m2, h-ONE_THIRD))

def _v(m1, m2, hue):
    hue = hue % 1.0
    if hue < ONE_SIXTH:
        return m1 + (m2-m1)*hue*6.0
    if hue < 0.5:
        return m2
    if hue < TWO_THIRD:
        return m1 + (m2-m1)*(TWO_THIRD-hue)*6.0
    return m1


# HSV: Hue, Saturation, Value
# H: position in the spectrum
# S: color saturation ("purity")
# V: color brightness

def rgb_to_hsv(r, g, b):
    maxc = max(r, g, b)
    minc = min(r, g, b)
    v = maxc
    if minc == maxc:
        return 0.0, 0.0, v
    s = (maxc-minc) / maxc
    rc = (maxc-r) / (maxc-minc)
    gc = (maxc-g) / (maxc-minc)
    bc = (maxc-b) / (maxc-minc)
    if r == maxc:
        h = bc-gc
    elif g == maxc:
        h = 2.0+rc-bc
    else:
        h = 4.0+gc-rc
    h = (h/6.0) % 1.0
    return h, s, v

def hsv_to_rgb(h, s, v):
    if s == 0.0:
        return v, v, v
    i = int(h*6.0) # XXX assume int() truncates!
    f = (h*6.0) - i
    p = v*(1.0 - s)
    q = v*(1.0 - s*f)
    t = v*(1.0 - s*(1.0-f))
    i = i%6
    if i == 0:
        return v, t, p
    if i == 1:
        return q, v, p
    if i == 2:
        return p, v, t
    if i == 3:
        return p, q, v
    if i == 4:
        return t, p, v
    if i == 5:
        return v, p, q
    # Cannot get here
lib\compileall.py
"""Module/script to byte-compile all .py files to .pyc (or .pyo) files.

When called as a script with arguments, this compiles the directories
given as arguments recursively; the -l option prevents it from
recursing into directories.

Without arguments, if compiles all modules on sys.path, without
recursing into subdirectories.  (Even though it should do so for
packages -- for now, you'll have to deal with packages separately.)

See module py_compile for details of the actual byte-compilation.
"""
import os
import sys
import importlib.util
import py_compile
import struct

__all__ = ["compile_dir","compile_file","compile_path"]

def compile_dir(dir, maxlevels=10, ddir=None, force=False, rx=None,
                quiet=False, legacy=False, optimize=-1):
    """Byte-compile all modules in the given directory tree.

    Arguments (only dir is required):

    dir:       the directory to byte-compile
    maxlevels: maximum recursion level (default 10)
    ddir:      the directory that will be prepended to the path to the
               file as it is compiled into each byte-code file.
    force:     if True, force compilation, even if timestamps are up-to-date
    quiet:     if True, be quiet during compilation
    legacy:    if True, produce legacy pyc paths instead of PEP 3147 paths
    optimize:  optimization level or -1 for level of the interpreter
    """
    if not quiet:
        print('Listing {!r}...'.format(dir))
    try:
        names = os.listdir(dir)
    except OSError:
        print("Can't list {!r}".format(dir))
        names = []
    names.sort()
    success = 1
    for name in names:
        if name == '__pycache__':
            continue
        fullname = os.path.join(dir, name)
        if ddir is not None:
            dfile = os.path.join(ddir, name)
        else:
            dfile = None
        if not os.path.isdir(fullname):
            if not compile_file(fullname, ddir, force, rx, quiet,
                                legacy, optimize):
                success = 0
        elif (maxlevels > 0 and name != os.curdir and name != os.pardir and
              os.path.isdir(fullname) and not os.path.islink(fullname)):
            if not compile_dir(fullname, maxlevels - 1, dfile, force, rx,
                               quiet, legacy, optimize):
                success = 0
    return success

def compile_file(fullname, ddir=None, force=False, rx=None, quiet=False,
                 legacy=False, optimize=-1):
    """Byte-compile one file.

    Arguments (only fullname is required):

    fullname:  the file to byte-compile
    ddir:      if given, the directory name compiled in to the
               byte-code file.
    force:     if True, force compilation, even if timestamps are up-to-date
    quiet:     if True, be quiet during compilation
    legacy:    if True, produce legacy pyc paths instead of PEP 3147 paths
    optimize:  optimization level or -1 for level of the interpreter
    """
    success = 1
    name = os.path.basename(fullname)
    if ddir is not None:
        dfile = os.path.join(ddir, name)
    else:
        dfile = None
    if rx is not None:
        mo = rx.search(fullname)
        if mo:
            return success
    if os.path.isfile(fullname):
        if legacy:
            cfile = fullname + ('c' if __debug__ else 'o')
        else:
            if optimize >= 0:
                cfile = importlib.util.cache_from_source(
                                fullname, debug_override=not optimize)
            else:
                cfile = importlib.util.cache_from_source(fullname)
            cache_dir = os.path.dirname(cfile)
        head, tail = name[:-3], name[-3:]
        if tail == '.py':
            if not force:
                try:
                    mtime = int(os.stat(fullname).st_mtime)
                    expect = struct.pack('<4sl', importlib.util.MAGIC_NUMBER,
                                         mtime)
                    with open(cfile, 'rb') as chandle:
                        actual = chandle.read(8)
                    if expect == actual:
                        return success
                except OSError:
                    pass
            if not quiet:
                print('Compiling {!r}...'.format(fullname))
            try:
                ok = py_compile.compile(fullname, cfile, dfile, True,
                                        optimize=optimize)
            except py_compile.PyCompileError as err:
                if quiet:
                    print('*** Error compiling {!r}...'.format(fullname))
                else:
                    print('*** ', end='')
                # escape non-printable characters in msg
                msg = err.msg.encode(sys.stdout.encoding,
                                     errors='backslashreplace')
                msg = msg.decode(sys.stdout.encoding)
                print(msg)
                success = 0
            except (SyntaxError, UnicodeError, OSError) as e:
                if quiet:
                    print('*** Error compiling {!r}...'.format(fullname))
                else:
                    print('*** ', end='')
                print(e.__class__.__name__ + ':', e)
                success = 0
            else:
                if ok == 0:
                    success = 0
    return success

def compile_path(skip_curdir=1, maxlevels=0, force=False, quiet=False,
                 legacy=False, optimize=-1):
    """Byte-compile all module on sys.path.

    Arguments (all optional):

    skip_curdir: if true, skip current directory (default True)
    maxlevels:   max recursion level (default 0)
    force: as for compile_dir() (default False)
    quiet: as for compile_dir() (default False)
    legacy: as for compile_dir() (default False)
    optimize: as for compile_dir() (default -1)
    """
    success = 1
    for dir in sys.path:
        if (not dir or dir == os.curdir) and skip_curdir:
            print('Skipping current directory')
        else:
            success = success and compile_dir(dir, maxlevels, None,
                                              force, quiet=quiet,
                                              legacy=legacy, optimize=optimize)
    return success


def main():
    """Script main program."""
    import argparse

    parser = argparse.ArgumentParser(
        description='Utilities to support installing Python libraries.')
    parser.add_argument('-l', action='store_const', const=0,
                        default=10, dest='maxlevels',
                        help="don't recurse into subdirectories")
    parser.add_argument('-f', action='store_true', dest='force',
                        help='force rebuild even if timestamps are up to date')
    parser.add_argument('-q', action='store_true', dest='quiet',
                        help='output only error messages')
    parser.add_argument('-b', action='store_true', dest='legacy',
                        help='use legacy (pre-PEP3147) compiled file locations')
    parser.add_argument('-d', metavar='DESTDIR',  dest='ddir', default=None,
                        help=('directory to prepend to file paths for use in '
                              'compile-time tracebacks and in runtime '
                              'tracebacks in cases where the source file is '
                              'unavailable'))
    parser.add_argument('-x', metavar='REGEXP', dest='rx', default=None,
                        help=('skip files matching the regular expression; '
                              'the regexp is searched for in the full path '
                              'of each file considered for compilation'))
    parser.add_argument('-i', metavar='FILE', dest='flist',
                        help=('add all the files and directories listed in '
                              'FILE to the list considered for compilation; '
                              'if "-", names are read from stdin'))
    parser.add_argument('compile_dest', metavar='FILE|DIR', nargs='*',
                        help=('zero or more file and directory names '
                              'to compile; if no arguments given, defaults '
                              'to the equivalent of -l sys.path'))
    args = parser.parse_args()

    compile_dests = args.compile_dest

    if args.rx:
        import re
        args.rx = re.compile(args.rx)

    # if flist is provided then load it
    if args.flist:
        try:
            with (sys.stdin if args.flist=='-' else open(args.flist)) as f:
                for line in f:
                    compile_dests.append(line.strip())
        except OSError:
            print("Error reading file list {}".format(args.flist))
            return False

    success = True
    try:
        if compile_dests:
            for dest in compile_dests:
                if os.path.isfile(dest):
                    if not compile_file(dest, args.ddir, args.force, args.rx,
                                        args.quiet, args.legacy):
                        success = False
                else:
                    if not compile_dir(dest, args.maxlevels, args.ddir,
                                       args.force, args.rx, args.quiet,
                                       args.legacy):
                        success = False
            return success
        else:
            return compile_path(legacy=args.legacy, force=args.force,
                                quiet=args.quiet)
    except KeyboardInterrupt:
        print("\n[interrupted]")
        return False
    return True


if __name__ == '__main__':
    exit_status = int(not main())
    sys.exit(exit_status)
lib\configparser.py
"""Configuration file parser.

A configuration file consists of sections, lead by a "[section]" header,
and followed by "name: value" entries, with continuations and such in
the style of RFC 822.

Intrinsic defaults can be specified by passing them into the
ConfigParser constructor as a dictionary.

class:

ConfigParser -- responsible for parsing a list of
                    configuration files, and managing the parsed database.

    methods:

    __init__(defaults=None, dict_type=_default_dict, allow_no_value=False,
             delimiters=('=', ':'), comment_prefixes=('#', ';'),
             inline_comment_prefixes=None, strict=True,
             empty_lines_in_values=True):
        Create the parser. When `defaults' is given, it is initialized into the
        dictionary or intrinsic defaults. The keys must be strings, the values
        must be appropriate for %()s string interpolation.

        When `dict_type' is given, it will be used to create the dictionary
        objects for the list of sections, for the options within a section, and
        for the default values.

        When `delimiters' is given, it will be used as the set of substrings
        that divide keys from values.

        When `comment_prefixes' is given, it will be used as the set of
        substrings that prefix comments in empty lines. Comments can be
        indented.

        When `inline_comment_prefixes' is given, it will be used as the set of
        substrings that prefix comments in non-empty lines.

        When `strict` is True, the parser won't allow for any section or option
        duplicates while reading from a single source (file, string or
        dictionary). Default is True.

        When `empty_lines_in_values' is False (default: True), each empty line
        marks the end of an option. Otherwise, internal empty lines of
        a multiline option are kept as part of the value.

        When `allow_no_value' is True (default: False), options without
        values are accepted; the value presented for these is None.

    sections()
        Return all the configuration section names, sans DEFAULT.

    has_section(section)
        Return whether the given section exists.

    has_option(section, option)
        Return whether the given option exists in the given section.

    options(section)
        Return list of configuration options for the named section.

    read(filenames, encoding=None)
        Read and parse the list of named configuration files, given by
        name.  A single filename is also allowed.  Non-existing files
        are ignored.  Return list of successfully read files.

    read_file(f, filename=None)
        Read and parse one configuration file, given as a file object.
        The filename defaults to f.name; it is only used in error
        messages (if f has no `name' attribute, the string `<???>' is used).

    read_string(string)
        Read configuration from a given string.

    read_dict(dictionary)
        Read configuration from a dictionary. Keys are section names,
        values are dictionaries with keys and values that should be present
        in the section. If the used dictionary type preserves order, sections
        and their keys will be added in order. Values are automatically
        converted to strings.

    get(section, option, raw=False, vars=None, fallback=_UNSET)
        Return a string value for the named option.  All % interpolations are
        expanded in the return values, based on the defaults passed into the
        constructor and the DEFAULT section.  Additional substitutions may be
        provided using the `vars' argument, which must be a dictionary whose
        contents override any pre-existing defaults. If `option' is a key in
        `vars', the value from `vars' is used.

    getint(section, options, raw=False, vars=None, fallback=_UNSET)
        Like get(), but convert value to an integer.

    getfloat(section, options, raw=False, vars=None, fallback=_UNSET)
        Like get(), but convert value to a float.

    getboolean(section, options, raw=False, vars=None, fallback=_UNSET)
        Like get(), but convert value to a boolean (currently case
        insensitively defined as 0, false, no, off for False, and 1, true,
        yes, on for True).  Returns False or True.

    items(section=_UNSET, raw=False, vars=None)
        If section is given, return a list of tuples with (name, value) for
        each option in the section. Otherwise, return a list of tuples with
        (section_name, section_proxy) for each section, including DEFAULTSECT.

    remove_section(section)
        Remove the given file section and all its options.

    remove_option(section, option)
        Remove the given option from the given section.

    set(section, option, value)
        Set the given option.

    write(fp, space_around_delimiters=True)
        Write the configuration state in .ini format. If
        `space_around_delimiters' is True (the default), delimiters
        between keys and values are surrounded by spaces.
"""

from collections.abc import MutableMapping
from collections import OrderedDict as _default_dict, ChainMap as _ChainMap
import functools
import io
import itertools
import re
import sys
import warnings

__all__ = ["NoSectionError", "DuplicateOptionError", "DuplicateSectionError",
           "NoOptionError", "InterpolationError", "InterpolationDepthError",
           "InterpolationSyntaxError", "ParsingError",
           "MissingSectionHeaderError",
           "ConfigParser", "SafeConfigParser", "RawConfigParser",
           "DEFAULTSECT", "MAX_INTERPOLATION_DEPTH"]

DEFAULTSECT = "DEFAULT"

MAX_INTERPOLATION_DEPTH = 10



# exception classes
class Error(Exception):
    """Base class for ConfigParser exceptions."""

    def __init__(self, msg=''):
        self.message = msg
        Exception.__init__(self, msg)

    def __repr__(self):
        return self.message

    __str__ = __repr__


class NoSectionError(Error):
    """Raised when no section matches a requested option."""

    def __init__(self, section):
        Error.__init__(self, 'No section: %r' % (section,))
        self.section = section
        self.args = (section, )


class DuplicateSectionError(Error):
    """Raised when a section is repeated in an input source.

    Possible repetitions that raise this exception are: multiple creation
    using the API or in strict parsers when a section is found more than once
    in a single input file, string or dictionary.
    """

    def __init__(self, section, source=None, lineno=None):
        msg = [repr(section), " already exists"]
        if source is not None:
            message = ["While reading from ", repr(source)]
            if lineno is not None:
                message.append(" [line {0:2d}]".format(lineno))
            message.append(": section ")
            message.extend(msg)
            msg = message
        else:
            msg.insert(0, "Section ")
        Error.__init__(self, "".join(msg))
        self.section = section
        self.source = source
        self.lineno = lineno
        self.args = (section, source, lineno)


class DuplicateOptionError(Error):
    """Raised by strict parsers when an option is repeated in an input source.

    Current implementation raises this exception only when an option is found
    more than once in a single file, string or dictionary.
    """

    def __init__(self, section, option, source=None, lineno=None):
        msg = [repr(option), " in section ", repr(section),
               " already exists"]
        if source is not None:
            message = ["While reading from ", repr(source)]
            if lineno is not None:
                message.append(" [line {0:2d}]".format(lineno))
            message.append(": option ")
            message.extend(msg)
            msg = message
        else:
            msg.insert(0, "Option ")
        Error.__init__(self, "".join(msg))
        self.section = section
        self.option = option
        self.source = source
        self.lineno = lineno
        self.args = (section, option, source, lineno)


class NoOptionError(Error):
    """A requested option was not found."""

    def __init__(self, option, section):
        Error.__init__(self, "No option %r in section: %r" %
                       (option, section))
        self.option = option
        self.section = section
        self.args = (option, section)


class InterpolationError(Error):
    """Base class for interpolation-related exceptions."""

    def __init__(self, option, section, msg):
        Error.__init__(self, msg)
        self.option = option
        self.section = section
        self.args = (option, section, msg)


class InterpolationMissingOptionError(InterpolationError):
    """A string substitution required a setting which was not available."""

    def __init__(self, option, section, rawval, reference):
        msg = ("Bad value substitution: option {!r} in section {!r} contains "
               "an interpolation key {!r} which is not a valid option name. "
               "Raw value: {!r}".format(option, section, reference, rawval))
        InterpolationError.__init__(self, option, section, msg)
        self.reference = reference
        self.args = (option, section, rawval, reference)


class InterpolationSyntaxError(InterpolationError):
    """Raised when the source text contains invalid syntax.

    Current implementation raises this exception when the source text into
    which substitutions are made does not conform to the required syntax.
    """


class InterpolationDepthError(InterpolationError):
    """Raised when substitutions are nested too deeply."""

    def __init__(self, option, section, rawval):
        msg = ("Recursion limit exceeded in value substitution: option {!r} "
               "in section {!r} contains an interpolation key which "
               "cannot be substituted in {} steps. Raw value: {!r}"
               "".format(option, section, MAX_INTERPOLATION_DEPTH,
                         rawval))
        InterpolationError.__init__(self, option, section, msg)
        self.args = (option, section, rawval)


class ParsingError(Error):
    """Raised when a configuration file does not follow legal syntax."""

    def __init__(self, source=None, filename=None):
        # Exactly one of `source'/`filename' arguments has to be given.
        # `filename' kept for compatibility.
        if filename and source:
            raise ValueError("Cannot specify both `filename' and `source'. "
                             "Use `source'.")
        elif not filename and not source:
            raise ValueError("Required argument `source' not given.")
        elif filename:
            source = filename
        Error.__init__(self, 'Source contains parsing errors: %r' % source)
        self.source = source
        self.errors = []
        self.args = (source, )

    @property
    def filename(self):
        """Deprecated, use `source'."""
        warnings.warn(
            "The 'filename' attribute will be removed in future versions.  "
            "Use 'source' instead.",
            DeprecationWarning, stacklevel=2
        )
        return self.source

    @filename.setter
    def filename(self, value):
        """Deprecated, user `source'."""
        warnings.warn(
            "The 'filename' attribute will be removed in future versions.  "
            "Use 'source' instead.",
            DeprecationWarning, stacklevel=2
        )
        self.source = value

    def append(self, lineno, line):
        self.errors.append((lineno, line))
        self.message += '\n\t[line %2d]: %s' % (lineno, line)


class MissingSectionHeaderError(ParsingError):
    """Raised when a key-value pair is found before any section header."""

    def __init__(self, filename, lineno, line):
        Error.__init__(
            self,
            'File contains no section headers.\nfile: %r, line: %d\n%r' %
            (filename, lineno, line))
        self.source = filename
        self.lineno = lineno
        self.line = line
        self.args = (filename, lineno, line)


# Used in parser getters to indicate the default behaviour when a specific
# option is not found it to raise an exception. Created to enable `None' as
# a valid fallback value.
_UNSET = object()


class Interpolation:
    """Dummy interpolation that passes the value through with no changes."""

    def before_get(self, parser, section, option, value, defaults):
        return value

    def before_set(self, parser, section, option, value):
        return value

    def before_read(self, parser, section, option, value):
        return value

    def before_write(self, parser, section, option, value):
        return value


class BasicInterpolation(Interpolation):
    """Interpolation as implemented in the classic ConfigParser.

    The option values can contain format strings which refer to other values in
    the same section, or values in the special default section.

    For example:

        something: %(dir)s/whatever

    would resolve the "%(dir)s" to the value of dir.  All reference
    expansions are done late, on demand. If a user needs to use a bare % in
    a configuration file, she can escape it by writing %%. Other % usage
    is considered a user error and raises `InterpolationSyntaxError'."""

    _KEYCRE = re.compile(r"%\(([^)]+)\)s")

    def before_get(self, parser, section, option, value, defaults):
        L = []
        self._interpolate_some(parser, option, L, value, section, defaults, 1)
        return ''.join(L)

    def before_set(self, parser, section, option, value):
        tmp_value = value.replace('%%', '') # escaped percent signs
        tmp_value = self._KEYCRE.sub('', tmp_value) # valid syntax
        if '%' in tmp_value:
            raise ValueError("invalid interpolation syntax in %r at "
                             "position %d" % (value, tmp_value.find('%')))
        return value

    def _interpolate_some(self, parser, option, accum, rest, section, map,
                          depth):
        rawval = parser.get(section, option, raw=True, fallback=rest)
        if depth > MAX_INTERPOLATION_DEPTH:
            raise InterpolationDepthError(option, section, rawval)
        while rest:
            p = rest.find("%")
            if p < 0:
                accum.append(rest)
                return
            if p > 0:
                accum.append(rest[:p])
                rest = rest[p:]
            # p is no longer used
            c = rest[1:2]
            if c == "%":
                accum.append("%")
                rest = rest[2:]
            elif c == "(":
                m = self._KEYCRE.match(rest)
                if m is None:
                    raise InterpolationSyntaxError(option, section,
                        "bad interpolation variable reference %r" % rest)
                var = parser.optionxform(m.group(1))
                rest = rest[m.end():]
                try:
                    v = map[var]
                except KeyError:
                    raise InterpolationMissingOptionError(
                        option, section, rawval, var)
                if "%" in v:
                    self._interpolate_some(parser, option, accum, v,
                                           section, map, depth + 1)
                else:
                    accum.append(v)
            else:
                raise InterpolationSyntaxError(
                    option, section,
                    "'%%' must be followed by '%%' or '(', "
                    "found: %r" % (rest,))


class ExtendedInterpolation(Interpolation):
    """Advanced variant of interpolation, supports the syntax used by
    `zc.buildout'. Enables interpolation between sections."""

    _KEYCRE = re.compile(r"\$\{([^}]+)\}")

    def before_get(self, parser, section, option, value, defaults):
        L = []
        self._interpolate_some(parser, option, L, value, section, defaults, 1)
        return ''.join(L)

    def before_set(self, parser, section, option, value):
        tmp_value = value.replace('$$', '') # escaped dollar signs
        tmp_value = self._KEYCRE.sub('', tmp_value) # valid syntax
        if '$' in tmp_value:
            raise ValueError("invalid interpolation syntax in %r at "
                             "position %d" % (value, tmp_value.find('$')))
        return value

    def _interpolate_some(self, parser, option, accum, rest, section, map,
                          depth):
        rawval = parser.get(section, option, raw=True, fallback=rest)
        if depth > MAX_INTERPOLATION_DEPTH:
            raise InterpolationDepthError(option, section, rawval)
        while rest:
            p = rest.find("$")
            if p < 0:
                accum.append(rest)
                return
            if p > 0:
                accum.append(rest[:p])
                rest = rest[p:]
            # p is no longer used
            c = rest[1:2]
            if c == "$":
                accum.append("$")
                rest = rest[2:]
            elif c == "{":
                m = self._KEYCRE.match(rest)
                if m is None:
                    raise InterpolationSyntaxError(option, section,
                        "bad interpolation variable reference %r" % rest)
                path = m.group(1).split(':')
                rest = rest[m.end():]
                sect = section
                opt = option
                try:
                    if len(path) == 1:
                        opt = parser.optionxform(path[0])
                        v = map[opt]
                    elif len(path) == 2:
                        sect = path[0]
                        opt = parser.optionxform(path[1])
                        v = parser.get(sect, opt, raw=True)
                    else:
                        raise InterpolationSyntaxError(
                            option, section,
                            "More than one ':' found: %r" % (rest,))
                except (KeyError, NoSectionError, NoOptionError):
                    raise InterpolationMissingOptionError(
                        option, section, rawval, ":".join(path))
                if "$" in v:
                    self._interpolate_some(parser, opt, accum, v, sect,
                                           dict(parser.items(sect, raw=True)),
                                           depth + 1)
                else:
                    accum.append(v)
            else:
                raise InterpolationSyntaxError(
                    option, section,
                    "'$' must be followed by '$' or '{', "
                    "found: %r" % (rest,))


class LegacyInterpolation(Interpolation):
    """Deprecated interpolation used in old versions of ConfigParser.
    Use BasicInterpolation or ExtendedInterpolation instead."""

    _KEYCRE = re.compile(r"%\(([^)]*)\)s|.")

    def before_get(self, parser, section, option, value, vars):
        rawval = value
        depth = MAX_INTERPOLATION_DEPTH
        while depth:                    # Loop through this until it's done
            depth -= 1
            if value and "%(" in value:
                replace = functools.partial(self._interpolation_replace,
                                            parser=parser)
                value = self._KEYCRE.sub(replace, value)
                try:
                    value = value % vars
                except KeyError as e:
                    raise InterpolationMissingOptionError(
                        option, section, rawval, e.args[0])
            else:
                break
        if value and "%(" in value:
            raise InterpolationDepthError(option, section, rawval)
        return value

    def before_set(self, parser, section, option, value):
        return value

    @staticmethod
    def _interpolation_replace(match, parser):
        s = match.group(1)
        if s is None:
            return match.group()
        else:
            return "%%(%s)s" % parser.optionxform(s)


class RawConfigParser(MutableMapping):
    """ConfigParser that does not do interpolation."""

    # Regular expressions for parsing section headers and options
    _SECT_TMPL = r"""
        \[                                 # [
        (?P<header>[^]]+)                  # very permissive!
        \]                                 # ]
        """
    _OPT_TMPL = r"""
        (?P<option>.*?)                    # very permissive!
        \s*(?P<vi>{delim})\s*              # any number of space/tab,
                                           # followed by any of the
                                           # allowed delimiters,
                                           # followed by any space/tab
        (?P<value>.*)$                     # everything up to eol
        """
    _OPT_NV_TMPL = r"""
        (?P<option>.*?)                    # very permissive!
        \s*(?:                             # any number of space/tab,
        (?P<vi>{delim})\s*                 # optionally followed by
                                           # any of the allowed
                                           # delimiters, followed by any
                                           # space/tab
        (?P<value>.*))?$                   # everything up to eol
        """
    # Interpolation algorithm to be used if the user does not specify another
    _DEFAULT_INTERPOLATION = Interpolation()
    # Compiled regular expression for matching sections
    SECTCRE = re.compile(_SECT_TMPL, re.VERBOSE)
    # Compiled regular expression for matching options with typical separators
    OPTCRE = re.compile(_OPT_TMPL.format(delim="=|:"), re.VERBOSE)
    # Compiled regular expression for matching options with optional values
    # delimited using typical separators
    OPTCRE_NV = re.compile(_OPT_NV_TMPL.format(delim="=|:"), re.VERBOSE)
    # Compiled regular expression for matching leading whitespace in a line
    NONSPACECRE = re.compile(r"\S")
    # Possible boolean values in the configuration.
    BOOLEAN_STATES = {'1': True, 'yes': True, 'true': True, 'on': True,
                      '0': False, 'no': False, 'false': False, 'off': False}

    def __init__(self, defaults=None, dict_type=_default_dict,
                 allow_no_value=False, *, delimiters=('=', ':'),
                 comment_prefixes=('#', ';'), inline_comment_prefixes=None,
                 strict=True, empty_lines_in_values=True,
                 default_section=DEFAULTSECT,
                 interpolation=_UNSET):

        self._dict = dict_type
        self._sections = self._dict()
        self._defaults = self._dict()
        self._proxies = self._dict()
        self._proxies[default_section] = SectionProxy(self, default_section)
        if defaults:
            for key, value in defaults.items():
                self._defaults[self.optionxform(key)] = value
        self._delimiters = tuple(delimiters)
        if delimiters == ('=', ':'):
            self._optcre = self.OPTCRE_NV if allow_no_value else self.OPTCRE
        else:
            d = "|".join(re.escape(d) for d in delimiters)
            if allow_no_value:
                self._optcre = re.compile(self._OPT_NV_TMPL.format(delim=d),
                                          re.VERBOSE)
            else:
                self._optcre = re.compile(self._OPT_TMPL.format(delim=d),
                                          re.VERBOSE)
        self._comment_prefixes = tuple(comment_prefixes or ())
        self._inline_comment_prefixes = tuple(inline_comment_prefixes or ())
        self._strict = strict
        self._allow_no_value = allow_no_value
        self._empty_lines_in_values = empty_lines_in_values
        self.default_section=default_section
        self._interpolation = interpolation
        if self._interpolation is _UNSET:
            self._interpolation = self._DEFAULT_INTERPOLATION
        if self._interpolation is None:
            self._interpolation = Interpolation()

    def defaults(self):
        return self._defaults

    def sections(self):
        """Return a list of section names, excluding [DEFAULT]"""
        # self._sections will never have [DEFAULT] in it
        return list(self._sections.keys())

    def add_section(self, section):
        """Create a new section in the configuration.

        Raise DuplicateSectionError if a section by the specified name
        already exists. Raise ValueError if name is DEFAULT.
        """
        if section == self.default_section:
            raise ValueError('Invalid section name: %r' % section)

        if section in self._sections:
            raise DuplicateSectionError(section)
        self._sections[section] = self._dict()
        self._proxies[section] = SectionProxy(self, section)

    def has_section(self, section):
        """Indicate whether the named section is present in the configuration.

        The DEFAULT section is not acknowledged.
        """
        return section in self._sections

    def options(self, section):
        """Return a list of option names for the given section name."""
        try:
            opts = self._sections[section].copy()
        except KeyError:
            raise NoSectionError(section)
        opts.update(self._defaults)
        return list(opts.keys())

    def read(self, filenames, encoding=None):
        """Read and parse a filename or a list of filenames.

        Files that cannot be opened are silently ignored; this is
        designed so that you can specify a list of potential
        configuration file locations (e.g. current directory, user's
        home directory, systemwide directory), and all existing
        configuration files in the list will be read.  A single
        filename may also be given.

        Return list of successfully read files.
        """
        if isinstance(filenames, str):
            filenames = [filenames]
        read_ok = []
        for filename in filenames:
            try:
                with open(filename, encoding=encoding) as fp:
                    self._read(fp, filename)
            except OSError:
                continue
            read_ok.append(filename)
        return read_ok

    def read_file(self, f, source=None):
        """Like read() but the argument must be a file-like object.

        The `f' argument must be iterable, returning one line at a time.
        Optional second argument is the `source' specifying the name of the
        file being read. If not given, it is taken from f.name. If `f' has no
        `name' attribute, `<???>' is used.
        """
        if source is None:
            try:
                source = f.name
            except AttributeError:
                source = '<???>'
        self._read(f, source)

    def read_string(self, string, source='<string>'):
        """Read configuration from a given string."""
        sfile = io.StringIO(string)
        self.read_file(sfile, source)

    def read_dict(self, dictionary, source='<dict>'):
        """Read configuration from a dictionary.

        Keys are section names, values are dictionaries with keys and values
        that should be present in the section. If the used dictionary type
        preserves order, sections and their keys will be added in order.

        All types held in the dictionary are converted to strings during
        reading, including section names, option names and keys.

        Optional second argument is the `source' specifying the name of the
        dictionary being read.
        """
        elements_added = set()
        for section, keys in dictionary.items():
            section = str(section)
            try:
                self.add_section(section)
            except (DuplicateSectionError, ValueError):
                if self._strict and section in elements_added:
                    raise
            elements_added.add(section)
            for key, value in keys.items():
                key = self.optionxform(str(key))
                if value is not None:
                    value = str(value)
                if self._strict and (section, key) in elements_added:
                    raise DuplicateOptionError(section, key, source)
                elements_added.add((section, key))
                self.set(section, key, value)

    def readfp(self, fp, filename=None):
        """Deprecated, use read_file instead."""
        warnings.warn(
            "This method will be removed in future versions.  "
            "Use 'parser.read_file()' instead.",
            DeprecationWarning, stacklevel=2
        )
        self.read_file(fp, source=filename)

    def get(self, section, option, *, raw=False, vars=None, fallback=_UNSET):
        """Get an option value for a given section.

        If `vars' is provided, it must be a dictionary. The option is looked up
        in `vars' (if provided), `section', and in `DEFAULTSECT' in that order.
        If the key is not found and `fallback' is provided, it is used as
        a fallback value. `None' can be provided as a `fallback' value.

        If interpolation is enabled and the optional argument `raw' is False,
        all interpolations are expanded in the return values.

        Arguments `raw', `vars', and `fallback' are keyword only.

        The section DEFAULT is special.
        """
        try:
            d = self._unify_values(section, vars)
        except NoSectionError:
            if fallback is _UNSET:
                raise
            else:
                return fallback
        option = self.optionxform(option)
        try:
            value = d[option]
        except KeyError:
            if fallback is _UNSET:
                raise NoOptionError(option, section)
            else:
                return fallback

        if raw or value is None:
            return value
        else:
            return self._interpolation.before_get(self, section, option, value,
                                                  d)

    def _get(self, section, conv, option, **kwargs):
        return conv(self.get(section, option, **kwargs))

    def getint(self, section, option, *, raw=False, vars=None,
               fallback=_UNSET):
        try:
            return self._get(section, int, option, raw=raw, vars=vars)
        except (NoSectionError, NoOptionError):
            if fallback is _UNSET:
                raise
            else:
                return fallback

    def getfloat(self, section, option, *, raw=False, vars=None,
                 fallback=_UNSET):
        try:
            return self._get(section, float, option, raw=raw, vars=vars)
        except (NoSectionError, NoOptionError):
            if fallback is _UNSET:
                raise
            else:
                return fallback

    def getboolean(self, section, option, *, raw=False, vars=None,
                   fallback=_UNSET):
        try:
            return self._get(section, self._convert_to_boolean, option,
                             raw=raw, vars=vars)
        except (NoSectionError, NoOptionError):
            if fallback is _UNSET:
                raise
            else:
                return fallback

    def items(self, section=_UNSET, raw=False, vars=None):
        """Return a list of (name, value) tuples for each option in a section.

        All % interpolations are expanded in the return values, based on the
        defaults passed into the constructor, unless the optional argument
        `raw' is true.  Additional substitutions may be provided using the
        `vars' argument, which must be a dictionary whose contents overrides
        any pre-existing defaults.

        The section DEFAULT is special.
        """
        if section is _UNSET:
            return super().items()
        d = self._defaults.copy()
        try:
            d.update(self._sections[section])
        except KeyError:
            if section != self.default_section:
                raise NoSectionError(section)
        # Update with the entry specific variables
        if vars:
            for key, value in vars.items():
                d[self.optionxform(key)] = value
        value_getter = lambda option: self._interpolation.before_get(self,
            section, option, d[option], d)
        if raw:
            value_getter = lambda option: d[option]
        return [(option, value_getter(option)) for option in d.keys()]

    def popitem(self):
        """Remove a section from the parser and return it as
        a (section_name, section_proxy) tuple. If no section is present, raise
        KeyError.

        The section DEFAULT is never returned because it cannot be removed.
        """
        for key in self.sections():
            value = self[key]
            del self[key]
            return key, value
        raise KeyError

    def optionxform(self, optionstr):
        return optionstr.lower()

    def has_option(self, section, option):
        """Check for the existence of a given option in a given section.
        If the specified `section' is None or an empty string, DEFAULT is
        assumed. If the specified `section' does not exist, returns False."""
        if not section or section == self.default_section:
            option = self.optionxform(option)
            return option in self._defaults
        elif section not in self._sections:
            return False
        else:
            option = self.optionxform(option)
            return (option in self._sections[section]
                    or option in self._defaults)

    def set(self, section, option, value=None):
        """Set an option."""
        if value:
            value = self._interpolation.before_set(self, section, option,
                                                   value)
        if not section or section == self.default_section:
            sectdict = self._defaults
        else:
            try:
                sectdict = self._sections[section]
            except KeyError:
                raise NoSectionError(section)
        sectdict[self.optionxform(option)] = value

    def write(self, fp, space_around_delimiters=True):
        """Write an .ini-format representation of the configuration state.

        If `space_around_delimiters' is True (the default), delimiters
        between keys and values are surrounded by spaces.
        """
        if space_around_delimiters:
            d = " {} ".format(self._delimiters[0])
        else:
            d = self._delimiters[0]
        if self._defaults:
            self._write_section(fp, self.default_section,
                                    self._defaults.items(), d)
        for section in self._sections:
            self._write_section(fp, section,
                                self._sections[section].items(), d)

    def _write_section(self, fp, section_name, section_items, delimiter):
        """Write a single section to the specified `fp'."""
        fp.write("[{}]\n".format(section_name))
        for key, value in section_items:
            value = self._interpolation.before_write(self, section_name, key,
                                                     value)
            if value is not None or not self._allow_no_value:
                value = delimiter + str(value).replace('\n', '\n\t')
            else:
                value = ""
            fp.write("{}{}\n".format(key, value))
        fp.write("\n")

    def remove_option(self, section, option):
        """Remove an option."""
        if not section or section == self.default_section:
            sectdict = self._defaults
        else:
            try:
                sectdict = self._sections[section]
            except KeyError:
                raise NoSectionError(section)
        option = self.optionxform(option)
        existed = option in sectdict
        if existed:
            del sectdict[option]
        return existed

    def remove_section(self, section):
        """Remove a file section."""
        existed = section in self._sections
        if existed:
            del self._sections[section]
            del self._proxies[section]
        return existed

    def __getitem__(self, key):
        if key != self.default_section and not self.has_section(key):
            raise KeyError(key)
        return self._proxies[key]

    def __setitem__(self, key, value):
        # To conform with the mapping protocol, overwrites existing values in
        # the section.

        # XXX this is not atomic if read_dict fails at any point. Then again,
        # no update method in configparser is atomic in this implementation.
        if key == self.default_section:
            self._defaults.clear()
        elif key in self._sections:
            self._sections[key].clear()
        self.read_dict({key: value})

    def __delitem__(self, key):
        if key == self.default_section:
            raise ValueError("Cannot remove the default section.")
        if not self.has_section(key):
            raise KeyError(key)
        self.remove_section(key)

    def __contains__(self, key):
        return key == self.default_section or self.has_section(key)

    def __len__(self):
        return len(self._sections) + 1 # the default section

    def __iter__(self):
        # XXX does it break when underlying container state changed?
        return itertools.chain((self.default_section,), self._sections.keys())

    def _read(self, fp, fpname):
        """Parse a sectioned configuration file.

        Each section in a configuration file contains a header, indicated by
        a name in square brackets (`[]'), plus key/value options, indicated by
        `name' and `value' delimited with a specific substring (`=' or `:' by
        default).

        Values can span multiple lines, as long as they are indented deeper
        than the first line of the value. Depending on the parser's mode, blank
        lines may be treated as parts of multiline values or ignored.

        Configuration files may include comments, prefixed by specific
        characters (`#' and `;' by default). Comments may appear on their own
        in an otherwise empty line or may be entered in lines holding values or
        section names.
        """
        elements_added = set()
        cursect = None                        # None, or a dictionary
        sectname = None
        optname = None
        lineno = 0
        indent_level = 0
        e = None                              # None, or an exception
        for lineno, line in enumerate(fp, start=1):
            comment_start = sys.maxsize
            # strip inline comments
            inline_prefixes = {p: -1 for p in self._inline_comment_prefixes}
            while comment_start == sys.maxsize and inline_prefixes:
                next_prefixes = {}
                for prefix, index in inline_prefixes.items():
                    index = line.find(prefix, index+1)
                    if index == -1:
                        continue
                    next_prefixes[prefix] = index
                    if index == 0 or (index > 0 and line[index-1].isspace()):
                        comment_start = min(comment_start, index)
                inline_prefixes = next_prefixes
            # strip full line comments
            for prefix in self._comment_prefixes:
                if line.strip().startswith(prefix):
                    comment_start = 0
                    break
            if comment_start == sys.maxsize:
                comment_start = None
            value = line[:comment_start].strip()
            if not value:
                if self._empty_lines_in_values:
                    # add empty line to the value, but only if there was no
                    # comment on the line
                    if (comment_start is None and
                        cursect is not None and
                        optname and
                        cursect[optname] is not None):
                        cursect[optname].append('') # newlines added at join
                else:
                    # empty line marks end of value
                    indent_level = sys.maxsize
                continue
            # continuation line?
            first_nonspace = self.NONSPACECRE.search(line)
            cur_indent_level = first_nonspace.start() if first_nonspace else 0
            if (cursect is not None and optname and
                cur_indent_level > indent_level):
                cursect[optname].append(value)
            # a section header or option header?
            else:
                indent_level = cur_indent_level
                # is it a section header?
                mo = self.SECTCRE.match(value)
                if mo:
                    sectname = mo.group('header')
                    if sectname in self._sections:
                        if self._strict and sectname in elements_added:
                            raise DuplicateSectionError(sectname, fpname,
                                                        lineno)
                        cursect = self._sections[sectname]
                        elements_added.add(sectname)
                    elif sectname == self.default_section:
                        cursect = self._defaults
                    else:
                        cursect = self._dict()
                        self._sections[sectname] = cursect
                        self._proxies[sectname] = SectionProxy(self, sectname)
                        elements_added.add(sectname)
                    # So sections can't start with a continuation line
                    optname = None
                # no section header in the file?
                elif cursect is None:
                    raise MissingSectionHeaderError(fpname, lineno, line)
                # an option line?
                else:
                    mo = self._optcre.match(value)
                    if mo:
                        optname, vi, optval = mo.group('option', 'vi', 'value')
                        if not optname:
                            e = self._handle_error(e, fpname, lineno, line)
                        optname = self.optionxform(optname.rstrip())
                        if (self._strict and
                            (sectname, optname) in elements_added):
                            raise DuplicateOptionError(sectname, optname,
                                                       fpname, lineno)
                        elements_added.add((sectname, optname))
                        # This check is fine because the OPTCRE cannot
                        # match if it would set optval to None
                        if optval is not None:
                            optval = optval.strip()
                            cursect[optname] = [optval]
                        else:
                            # valueless option handling
                            cursect[optname] = None
                    else:
                        # a non-fatal parsing error occurred. set up the
                        # exception but keep going. the exception will be
                        # raised at the end of the file and will contain a
                        # list of all bogus lines
                        e = self._handle_error(e, fpname, lineno, line)
        # if any parsing errors occurred, raise an exception
        if e:
            raise e
        self._join_multiline_values()

    def _join_multiline_values(self):
        defaults = self.default_section, self._defaults
        all_sections = itertools.chain((defaults,),
                                       self._sections.items())
        for section, options in all_sections:
            for name, val in options.items():
                if isinstance(val, list):
                    val = '\n'.join(val).rstrip()
                options[name] = self._interpolation.before_read(self,
                                                                section,
                                                                name, val)

    def _handle_error(self, exc, fpname, lineno, line):
        if not exc:
            exc = ParsingError(fpname)
        exc.append(lineno, repr(line))
        return exc

    def _unify_values(self, section, vars):
        """Create a sequence of lookups with 'vars' taking priority over
        the 'section' which takes priority over the DEFAULTSECT.

        """
        sectiondict = {}
        try:
            sectiondict = self._sections[section]
        except KeyError:
            if section != self.default_section:
                raise NoSectionError(section)
        # Update with the entry specific variables
        vardict = {}
        if vars:
            for key, value in vars.items():
                if value is not None:
                    value = str(value)
                vardict[self.optionxform(key)] = value
        return _ChainMap(vardict, sectiondict, self._defaults)

    def _convert_to_boolean(self, value):
        """Return a boolean value translating from other types if necessary.
        """
        if value.lower() not in self.BOOLEAN_STATES:
            raise ValueError('Not a boolean: %s' % value)
        return self.BOOLEAN_STATES[value.lower()]

    def _validate_value_types(self, *, section="", option="", value=""):
        """Raises a TypeError for non-string values.

        The only legal non-string value if we allow valueless
        options is None, so we need to check if the value is a
        string if:
        - we do not allow valueless options, or
        - we allow valueless options but the value is not None

        For compatibility reasons this method is not used in classic set()
        for RawConfigParsers. It is invoked in every case for mapping protocol
        access and in ConfigParser.set().
        """
        if not isinstance(section, str):
            raise TypeError("section names must be strings")
        if not isinstance(option, str):
            raise TypeError("option keys must be strings")
        if not self._allow_no_value or value:
            if not isinstance(value, str):
                raise TypeError("option values must be strings")


class ConfigParser(RawConfigParser):
    """ConfigParser implementing interpolation."""

    _DEFAULT_INTERPOLATION = BasicInterpolation()

    def set(self, section, option, value=None):
        """Set an option.  Extends RawConfigParser.set by validating type and
        interpolation syntax on the value."""
        self._validate_value_types(option=option, value=value)
        super().set(section, option, value)

    def add_section(self, section):
        """Create a new section in the configuration.  Extends
        RawConfigParser.add_section by validating if the section name is
        a string."""
        self._validate_value_types(section=section)
        super().add_section(section)


class SafeConfigParser(ConfigParser):
    """ConfigParser alias for backwards compatibility purposes."""

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        warnings.warn(
            "The SafeConfigParser class has been renamed to ConfigParser "
            "in Python 3.2. This alias will be removed in future versions."
            " Use ConfigParser directly instead.",
            DeprecationWarning, stacklevel=2
        )


class SectionProxy(MutableMapping):
    """A proxy for a single section from a parser."""

    def __init__(self, parser, name):
        """Creates a view on a section of the specified `name` in `parser`."""
        self._parser = parser
        self._name = name

    def __repr__(self):
        return '<Section: {}>'.format(self._name)

    def __getitem__(self, key):
        if not self._parser.has_option(self._name, key):
            raise KeyError(key)
        return self._parser.get(self._name, key)

    def __setitem__(self, key, value):
        self._parser._validate_value_types(option=key, value=value)
        return self._parser.set(self._name, key, value)

    def __delitem__(self, key):
        if not (self._parser.has_option(self._name, key) and
                self._parser.remove_option(self._name, key)):
            raise KeyError(key)

    def __contains__(self, key):
        return self._parser.has_option(self._name, key)

    def __len__(self):
        return len(self._options())

    def __iter__(self):
        return self._options().__iter__()

    def _options(self):
        if self._name != self._parser.default_section:
            return self._parser.options(self._name)
        else:
            return self._parser.defaults()

    def get(self, option, fallback=None, *, raw=False, vars=None):
        return self._parser.get(self._name, option, raw=raw, vars=vars,
                                fallback=fallback)

    def getint(self, option, fallback=None, *, raw=False, vars=None):
        return self._parser.getint(self._name, option, raw=raw, vars=vars,
                                   fallback=fallback)

    def getfloat(self, option, fallback=None, *, raw=False, vars=None):
        return self._parser.getfloat(self._name, option, raw=raw, vars=vars,
                                     fallback=fallback)

    def getboolean(self, option, fallback=None, *, raw=False, vars=None):
        return self._parser.getboolean(self._name, option, raw=raw, vars=vars,
                                       fallback=fallback)

    @property
    def parser(self):
        # The parser object of the proxy is read-only.
        return self._parser

    @property
    def name(self):
        # The name of the section on a proxy is read-only.
        return self._name
lib\contextlib.py
"""Utilities for with-statement contexts.  See PEP 343."""

import sys
from collections import deque
from functools import wraps

__all__ = ["contextmanager", "closing", "ContextDecorator", "ExitStack",
           "redirect_stdout", "suppress"]


class ContextDecorator(object):
    "A base class or mixin that enables context managers to work as decorators."

    def _recreate_cm(self):
        """Return a recreated instance of self.

        Allows an otherwise one-shot context manager like
        _GeneratorContextManager to support use as
        a decorator via implicit recreation.

        This is a private interface just for _GeneratorContextManager.
        See issue #11647 for details.
        """
        return self

    def __call__(self, func):
        @wraps(func)
        def inner(*args, **kwds):
            with self._recreate_cm():
                return func(*args, **kwds)
        return inner


class _GeneratorContextManager(ContextDecorator):
    """Helper for @contextmanager decorator."""

    def __init__(self, func, args, kwds):
        self.gen = func(*args, **kwds)
        self.func, self.args, self.kwds = func, args, kwds
        # Issue 19330: ensure context manager instances have good docstrings
        doc = getattr(func, "__doc__", None)
        if doc is None:
            doc = type(self).__doc__
        self.__doc__ = doc
        # Unfortunately, this still doesn't provide good help output when
        # inspecting the created context manager instances, since pydoc
        # currently bypasses the instance docstring and shows the docstring
        # for the class instead.
        # See http://bugs.python.org/issue19404 for more details.

    def _recreate_cm(self):
        # _GCM instances are one-shot context managers, so the
        # CM must be recreated each time a decorated function is
        # called
        return self.__class__(self.func, self.args, self.kwds)

    def __enter__(self):
        try:
            return next(self.gen)
        except StopIteration:
            raise RuntimeError("generator didn't yield") from None

    def __exit__(self, type, value, traceback):
        if type is None:
            try:
                next(self.gen)
            except StopIteration:
                return
            else:
                raise RuntimeError("generator didn't stop")
        else:
            if value is None:
                # Need to force instantiation so we can reliably
                # tell if we get the same exception back
                value = type()
            try:
                self.gen.throw(type, value, traceback)
                raise RuntimeError("generator didn't stop after throw()")
            except StopIteration as exc:
                # Suppress the exception *unless* it's the same exception that
                # was passed to throw().  This prevents a StopIteration
                # raised inside the "with" statement from being suppressed
                return exc is not value
            except:
                # only re-raise if it's *not* the exception that was
                # passed to throw(), because __exit__() must not raise
                # an exception unless __exit__() itself failed.  But throw()
                # has to raise the exception to signal propagation, so this
                # fixes the impedance mismatch between the throw() protocol
                # and the __exit__() protocol.
                #
                if sys.exc_info()[1] is not value:
                    raise


def contextmanager(func):
    """@contextmanager decorator.

    Typical usage:

        @contextmanager
        def some_generator(<arguments>):
            <setup>
            try:
                yield <value>
            finally:
                <cleanup>

    This makes this:

        with some_generator(<arguments>) as <variable>:
            <body>

    equivalent to this:

        <setup>
        try:
            <variable> = <value>
            <body>
        finally:
            <cleanup>

    """
    @wraps(func)
    def helper(*args, **kwds):
        return _GeneratorContextManager(func, args, kwds)
    return helper


class closing(object):
    """Context to automatically close something at the end of a block.

    Code like this:

        with closing(<module>.open(<arguments>)) as f:
            <block>

    is equivalent to this:

        f = <module>.open(<arguments>)
        try:
            <block>
        finally:
            f.close()

    """
    def __init__(self, thing):
        self.thing = thing
    def __enter__(self):
        return self.thing
    def __exit__(self, *exc_info):
        self.thing.close()

class redirect_stdout:
    """Context manager for temporarily redirecting stdout to another file

        # How to send help() to stderr
        with redirect_stdout(sys.stderr):
            help(dir)

        # How to write help() to a file
        with open('help.txt', 'w') as f:
            with redirect_stdout(f):
                help(pow)
    """

    def __init__(self, new_target):
        self._new_target = new_target
        # We use a list of old targets to make this CM re-entrant
        self._old_targets = []

    def __enter__(self):
        self._old_targets.append(sys.stdout)
        sys.stdout = self._new_target
        return self._new_target

    def __exit__(self, exctype, excinst, exctb):
        sys.stdout = self._old_targets.pop()


class suppress:
    """Context manager to suppress specified exceptions

    After the exception is suppressed, execution proceeds with the next
    statement following the with statement.

         with suppress(FileNotFoundError):
             os.remove(somefile)
         # Execution still resumes here if the file was already removed
    """

    def __init__(self, *exceptions):
        self._exceptions = exceptions

    def __enter__(self):
        pass

    def __exit__(self, exctype, excinst, exctb):
        # Unlike isinstance and issubclass, CPython exception handling
        # currently only looks at the concrete type hierarchy (ignoring
        # the instance and subclass checking hooks). While Guido considers
        # that a bug rather than a feature, it's a fairly hard one to fix
        # due to various internal implementation details. suppress provides
        # the simpler issubclass based semantics, rather than trying to
        # exactly reproduce the limitations of the CPython interpreter.
        #
        # See http://bugs.python.org/issue12029 for more details
        return exctype is not None and issubclass(exctype, self._exceptions)


# Inspired by discussions on http://bugs.python.org/issue13585
class ExitStack(object):
    """Context manager for dynamic management of a stack of exit callbacks

    For example:

        with ExitStack() as stack:
            files = [stack.enter_context(open(fname)) for fname in filenames]
            # All opened files will automatically be closed at the end of
            # the with statement, even if attempts to open files later
            # in the list raise an exception

    """
    def __init__(self):
        self._exit_callbacks = deque()

    def pop_all(self):
        """Preserve the context stack by transferring it to a new instance"""
        new_stack = type(self)()
        new_stack._exit_callbacks = self._exit_callbacks
        self._exit_callbacks = deque()
        return new_stack

    def _push_cm_exit(self, cm, cm_exit):
        """Helper to correctly register callbacks to __exit__ methods"""
        def _exit_wrapper(*exc_details):
            return cm_exit(cm, *exc_details)
        _exit_wrapper.__self__ = cm
        self.push(_exit_wrapper)

    def push(self, exit):
        """Registers a callback with the standard __exit__ method signature

        Can suppress exceptions the same way __exit__ methods can.

        Also accepts any object with an __exit__ method (registering a call
        to the method instead of the object itself)
        """
        # We use an unbound method rather than a bound method to follow
        # the standard lookup behaviour for special methods
        _cb_type = type(exit)
        try:
            exit_method = _cb_type.__exit__
        except AttributeError:
            # Not a context manager, so assume its a callable
            self._exit_callbacks.append(exit)
        else:
            self._push_cm_exit(exit, exit_method)
        return exit # Allow use as a decorator

    def callback(self, callback, *args, **kwds):
        """Registers an arbitrary callback and arguments.

        Cannot suppress exceptions.
        """
        def _exit_wrapper(exc_type, exc, tb):
            callback(*args, **kwds)
        # We changed the signature, so using @wraps is not appropriate, but
        # setting __wrapped__ may still help with introspection
        _exit_wrapper.__wrapped__ = callback
        self.push(_exit_wrapper)
        return callback # Allow use as a decorator

    def enter_context(self, cm):
        """Enters the supplied context manager

        If successful, also pushes its __exit__ method as a callback and
        returns the result of the __enter__ method.
        """
        # We look up the special methods on the type to match the with statement
        _cm_type = type(cm)
        _exit = _cm_type.__exit__
        result = _cm_type.__enter__(cm)
        self._push_cm_exit(cm, _exit)
        return result

    def close(self):
        """Immediately unwind the context stack"""
        self.__exit__(None, None, None)

    def __enter__(self):
        return self

    def __exit__(self, *exc_details):
        received_exc = exc_details[0] is not None

        # We manipulate the exception state so it behaves as though
        # we were actually nesting multiple with statements
        frame_exc = sys.exc_info()[1]
        def _fix_exception_context(new_exc, old_exc):
            # Context may not be correct, so find the end of the chain
            while 1:
                exc_context = new_exc.__context__
                if exc_context is old_exc:
                    # Context is already set correctly (see issue 20317)
                    return
                if exc_context is None or exc_context is frame_exc:
                    break
                new_exc = exc_context
            # Change the end of the chain to point to the exception
            # we expect it to reference
            new_exc.__context__ = old_exc

        # Callbacks are invoked in LIFO order to match the behaviour of
        # nested context managers
        suppressed_exc = False
        pending_raise = False
        while self._exit_callbacks:
            cb = self._exit_callbacks.pop()
            try:
                if cb(*exc_details):
                    suppressed_exc = True
                    pending_raise = False
                    exc_details = (None, None, None)
            except:
                new_exc_details = sys.exc_info()
                # simulate the stack of exceptions by setting the context
                _fix_exception_context(new_exc_details[1], exc_details[1])
                pending_raise = True
                exc_details = new_exc_details
        if pending_raise:
            try:
                # bare "raise exc_details[1]" replaces our carefully
                # set-up context
                fixed_ctx = exc_details[1].__context__
                raise exc_details[1]
            except BaseException:
                exc_details[1].__context__ = fixed_ctx
                raise
        return received_exc and suppressed_exc
lib\copy.py
"""Generic (shallow and deep) copying operations.

Interface summary:

        import copy

        x = copy.copy(y)        # make a shallow copy of y
        x = copy.deepcopy(y)    # make a deep copy of y

For module specific errors, copy.Error is raised.

The difference between shallow and deep copying is only relevant for
compound objects (objects that contain other objects, like lists or
class instances).

- A shallow copy constructs a new compound object and then (to the
  extent possible) inserts *the same objects* into it that the
  original contains.

- A deep copy constructs a new compound object and then, recursively,
  inserts *copies* into it of the objects found in the original.

Two problems often exist with deep copy operations that don't exist
with shallow copy operations:

 a) recursive objects (compound objects that, directly or indirectly,
    contain a reference to themselves) may cause a recursive loop

 b) because deep copy copies *everything* it may copy too much, e.g.
    administrative data structures that should be shared even between
    copies

Python's deep copy operation avoids these problems by:

 a) keeping a table of objects already copied during the current
    copying pass

 b) letting user-defined classes override the copying operation or the
    set of components copied

This version does not copy types like module, class, function, method,
nor stack trace, stack frame, nor file, socket, window, nor array, nor
any similar types.

Classes can use the same interfaces to control copying that they use
to control pickling: they can define methods called __getinitargs__(),
__getstate__() and __setstate__().  See the documentation for module
"pickle" for information on these methods.
"""

import types
import weakref
from copyreg import dispatch_table
import builtins

class Error(Exception):
    pass
error = Error   # backward compatibility

try:
    from org.python.core import PyStringMap
except ImportError:
    PyStringMap = None

__all__ = ["Error", "copy", "deepcopy"]

def copy(x):
    """Shallow copy operation on arbitrary Python objects.

    See the module's __doc__ string for more info.
    """

    cls = type(x)

    copier = _copy_dispatch.get(cls)
    if copier:
        return copier(x)

    try:
        issc = issubclass(cls, type)
    except TypeError: # cls is not a class
        issc = False
    if issc:
        # treat it as a regular class:
        return _copy_immutable(x)

    copier = getattr(cls, "__copy__", None)
    if copier:
        return copier(x)

    reductor = dispatch_table.get(cls)
    if reductor:
        rv = reductor(x)
    else:
        reductor = getattr(x, "__reduce_ex__", None)
        if reductor:
            rv = reductor(2)
        else:
            reductor = getattr(x, "__reduce__", None)
            if reductor:
                rv = reductor()
            else:
                raise Error("un(shallow)copyable object of type %s" % cls)

    return _reconstruct(x, rv, 0)


_copy_dispatch = d = {}

def _copy_immutable(x):
    return x
for t in (type(None), int, float, bool, str, tuple,
          bytes, frozenset, type, range,
          types.BuiltinFunctionType, type(Ellipsis),
          types.FunctionType, weakref.ref):
    d[t] = _copy_immutable
t = getattr(types, "CodeType", None)
if t is not None:
    d[t] = _copy_immutable
for name in ("complex", "unicode"):
    t = getattr(builtins, name, None)
    if t is not None:
        d[t] = _copy_immutable

def _copy_with_constructor(x):
    return type(x)(x)
for t in (list, dict, set):
    d[t] = _copy_with_constructor

def _copy_with_copy_method(x):
    return x.copy()
if PyStringMap is not None:
    d[PyStringMap] = _copy_with_copy_method

del d

def deepcopy(x, memo=None, _nil=[]):
    """Deep copy operation on arbitrary Python objects.

    See the module's __doc__ string for more info.
    """

    if memo is None:
        memo = {}

    d = id(x)
    y = memo.get(d, _nil)
    if y is not _nil:
        return y

    cls = type(x)

    copier = _deepcopy_dispatch.get(cls)
    if copier:
        y = copier(x, memo)
    else:
        try:
            issc = issubclass(cls, type)
        except TypeError: # cls is not a class (old Boost; see SF #502085)
            issc = 0
        if issc:
            y = _deepcopy_atomic(x, memo)
        else:
            copier = getattr(x, "__deepcopy__", None)
            if copier:
                y = copier(memo)
            else:
                reductor = dispatch_table.get(cls)
                if reductor:
                    rv = reductor(x)
                else:
                    reductor = getattr(x, "__reduce_ex__", None)
                    if reductor:
                        rv = reductor(2)
                    else:
                        reductor = getattr(x, "__reduce__", None)
                        if reductor:
                            rv = reductor()
                        else:
                            raise Error(
                                "un(deep)copyable object of type %s" % cls)
                y = _reconstruct(x, rv, 1, memo)

    # If is its own copy, don't memoize.
    if y is not x:
        memo[d] = y
        _keep_alive(x, memo) # Make sure x lives at least as long as d
    return y

_deepcopy_dispatch = d = {}

def _deepcopy_atomic(x, memo):
    return x
d[type(None)] = _deepcopy_atomic
d[type(Ellipsis)] = _deepcopy_atomic
d[int] = _deepcopy_atomic
d[float] = _deepcopy_atomic
d[bool] = _deepcopy_atomic
try:
    d[complex] = _deepcopy_atomic
except NameError:
    pass
d[bytes] = _deepcopy_atomic
d[str] = _deepcopy_atomic
try:
    d[types.CodeType] = _deepcopy_atomic
except AttributeError:
    pass
d[type] = _deepcopy_atomic
d[range] = _deepcopy_atomic
d[types.BuiltinFunctionType] = _deepcopy_atomic
d[types.FunctionType] = _deepcopy_atomic
d[weakref.ref] = _deepcopy_atomic

def _deepcopy_list(x, memo):
    y = []
    memo[id(x)] = y
    for a in x:
        y.append(deepcopy(a, memo))
    return y
d[list] = _deepcopy_list

def _deepcopy_tuple(x, memo):
    y = []
    for a in x:
        y.append(deepcopy(a, memo))
    # We're not going to put the tuple in the memo, but it's still important we
    # check for it, in case the tuple contains recursive mutable structures.
    try:
        return memo[id(x)]
    except KeyError:
        pass
    for i in range(len(x)):
        if x[i] is not y[i]:
            y = tuple(y)
            break
    else:
        y = x
    return y
d[tuple] = _deepcopy_tuple

def _deepcopy_dict(x, memo):
    y = {}
    memo[id(x)] = y
    for key, value in x.items():
        y[deepcopy(key, memo)] = deepcopy(value, memo)
    return y
d[dict] = _deepcopy_dict
if PyStringMap is not None:
    d[PyStringMap] = _deepcopy_dict

def _deepcopy_method(x, memo): # Copy instance methods
    return type(x)(x.__func__, deepcopy(x.__self__, memo))
_deepcopy_dispatch[types.MethodType] = _deepcopy_method

def _keep_alive(x, memo):
    """Keeps a reference to the object x in the memo.

    Because we remember objects by their id, we have
    to assure that possibly temporary objects are kept
    alive by referencing them.
    We store a reference at the id of the memo, which should
    normally not be used unless someone tries to deepcopy
    the memo itself...
    """
    try:
        memo[id(memo)].append(x)
    except KeyError:
        # aha, this is the first one :-)
        memo[id(memo)]=[x]

def _reconstruct(x, info, deep, memo=None):
    if isinstance(info, str):
        return x
    assert isinstance(info, tuple)
    if memo is None:
        memo = {}
    n = len(info)
    assert n in (2, 3, 4, 5)
    callable, args = info[:2]
    if n > 2:
        state = info[2]
    else:
        state = None
    if n > 3:
        listiter = info[3]
    else:
        listiter = None
    if n > 4:
        dictiter = info[4]
    else:
        dictiter = None
    if deep:
        args = deepcopy(args, memo)
    y = callable(*args)
    memo[id(x)] = y

    if state is not None:
        if deep:
            state = deepcopy(state, memo)
        if hasattr(y, '__setstate__'):
            y.__setstate__(state)
        else:
            if isinstance(state, tuple) and len(state) == 2:
                state, slotstate = state
            else:
                slotstate = None
            if state is not None:
                y.__dict__.update(state)
            if slotstate is not None:
                for key, value in slotstate.items():
                    setattr(y, key, value)

    if listiter is not None:
        for item in listiter:
            if deep:
                item = deepcopy(item, memo)
            y.append(item)
    if dictiter is not None:
        for key, value in dictiter:
            if deep:
                key = deepcopy(key, memo)
                value = deepcopy(value, memo)
            y[key] = value
    return y

del d

del types

# Helper for instance creation without calling __init__
class _EmptyClass:
    pass
lib\copyreg.py
"""Helper to provide extensibility for pickle.

This is only useful to add pickle support for extension types defined in
C, not for instances of user-defined classes.
"""

__all__ = ["pickle", "constructor",
           "add_extension", "remove_extension", "clear_extension_cache"]

dispatch_table = {}

def pickle(ob_type, pickle_function, constructor_ob=None):
    if not callable(pickle_function):
        raise TypeError("reduction functions must be callable")
    dispatch_table[ob_type] = pickle_function

    # The constructor_ob function is a vestige of safe for unpickling.
    # There is no reason for the caller to pass it anymore.
    if constructor_ob is not None:
        constructor(constructor_ob)

def constructor(object):
    if not callable(object):
        raise TypeError("constructors must be callable")

# Example: provide pickling support for complex numbers.

try:
    complex
except NameError:
    pass
else:

    def pickle_complex(c):
        return complex, (c.real, c.imag)

    pickle(complex, pickle_complex, complex)

# Support for pickling new-style objects

def _reconstructor(cls, base, state):
    if base is object:
        obj = object.__new__(cls)
    else:
        obj = base.__new__(cls, state)
        if base.__init__ != object.__init__:
            base.__init__(obj, state)
    return obj

_HEAPTYPE = 1<<9

# Python code for object.__reduce_ex__ for protocols 0 and 1

def _reduce_ex(self, proto):
    assert proto < 2
    for base in self.__class__.__mro__:
        if hasattr(base, '__flags__') and not base.__flags__ & _HEAPTYPE:
            break
    else:
        base = object # not really reachable
    if base is object:
        state = None
    else:
        if base is self.__class__:
            raise TypeError("can't pickle %s objects" % base.__name__)
        state = base(self)
    args = (self.__class__, base, state)
    try:
        getstate = self.__getstate__
    except AttributeError:
        if getattr(self, "__slots__", None):
            raise TypeError("a class that defines __slots__ without "
                            "defining __getstate__ cannot be pickled")
        try:
            dict = self.__dict__
        except AttributeError:
            dict = None
    else:
        dict = getstate()
    if dict:
        return _reconstructor, args, dict
    else:
        return _reconstructor, args

# Helper for __reduce_ex__ protocol 2

def __newobj__(cls, *args):
    return cls.__new__(cls, *args)

def __newobj_ex__(cls, args, kwargs):
    """Used by pickle protocol 4, instead of __newobj__ to allow classes with
    keyword-only arguments to be pickled correctly.
    """
    return cls.__new__(cls, *args, **kwargs)

def _slotnames(cls):
    """Return a list of slot names for a given class.

    This needs to find slots defined by the class and its bases, so we
    can't simply return the __slots__ attribute.  We must walk down
    the Method Resolution Order and concatenate the __slots__ of each
    class found there.  (This assumes classes don't modify their
    __slots__ attribute to misrepresent their slots after the class is
    defined.)
    """

    # Get the value from a cache in the class if possible
    names = cls.__dict__.get("__slotnames__")
    if names is not None:
        return names

    # Not cached -- calculate the value
    names = []
    if not hasattr(cls, "__slots__"):
        # This class has no slots
        pass
    else:
        # Slots found -- gather slot names from all base classes
        for c in cls.__mro__:
            if "__slots__" in c.__dict__:
                slots = c.__dict__['__slots__']
                # if class has a single slot, it can be given as a string
                if isinstance(slots, str):
                    slots = (slots,)
                for name in slots:
                    # special descriptors
                    if name in ("__dict__", "__weakref__"):
                        continue
                    # mangled names
                    elif name.startswith('__') and not name.endswith('__'):
                        names.append('_%s%s' % (c.__name__, name))
                    else:
                        names.append(name)

    # Cache the outcome in the class if at all possible
    try:
        cls.__slotnames__ = names
    except:
        pass # But don't die if we can't

    return names

# A registry of extension codes.  This is an ad-hoc compression
# mechanism.  Whenever a global reference to <module>, <name> is about
# to be pickled, the (<module>, <name>) tuple is looked up here to see
# if it is a registered extension code for it.  Extension codes are
# universal, so that the meaning of a pickle does not depend on
# context.  (There are also some codes reserved for local use that
# don't have this restriction.)  Codes are positive ints; 0 is
# reserved.

_extension_registry = {}                # key -> code
_inverted_registry = {}                 # code -> key
_extension_cache = {}                   # code -> object
# Don't ever rebind those names:  pickling grabs a reference to them when
# it's initialized, and won't see a rebinding.

def add_extension(module, name, code):
    """Register an extension code."""
    code = int(code)
    if not 1 <= code <= 0x7fffffff:
        raise ValueError("code out of range")
    key = (module, name)
    if (_extension_registry.get(key) == code and
        _inverted_registry.get(code) == key):
        return # Redundant registrations are benign
    if key in _extension_registry:
        raise ValueError("key %s is already registered with code %s" %
                         (key, _extension_registry[key]))
    if code in _inverted_registry:
        raise ValueError("code %s is already in use for key %s" %
                         (code, _inverted_registry[code]))
    _extension_registry[key] = code
    _inverted_registry[code] = key

def remove_extension(module, name, code):
    """Unregister an extension code.  For testing only."""
    key = (module, name)
    if (_extension_registry.get(key) != code or
        _inverted_registry.get(code) != key):
        raise ValueError("key %s is not registered with code %s" %
                         (key, code))
    del _extension_registry[key]
    del _inverted_registry[code]
    if code in _extension_cache:
        del _extension_cache[code]

def clear_extension_cache():
    _extension_cache.clear()

# Standard extension code assignments

# Reserved ranges

# First  Last Count  Purpose
#     1   127   127  Reserved for Python standard library
#   128   191    64  Reserved for Zope
#   192   239    48  Reserved for 3rd parties
#   240   255    16  Reserved for private use (will never be assigned)
#   256   Inf   Inf  Reserved for future assignment

# Extension codes are assigned by the Python Software Foundation.
lib\cProfile.py
#! /usr/bin/env python3

"""Python interface for the 'lsprof' profiler.
   Compatible with the 'profile' module.
"""

__all__ = ["run", "runctx", "Profile"]

import _lsprof
import profile as _pyprofile

# ____________________________________________________________
# Simple interface

def run(statement, filename=None, sort=-1):
    return _pyprofile._Utils(Profile).run(statement, filename, sort)

def runctx(statement, globals, locals, filename=None, sort=-1):
    return _pyprofile._Utils(Profile).runctx(statement, globals, locals,
                                             filename, sort)

run.__doc__ = _pyprofile.run.__doc__
runctx.__doc__ = _pyprofile.runctx.__doc__

# ____________________________________________________________

class Profile(_lsprof.Profiler):
    """Profile(custom_timer=None, time_unit=None, subcalls=True, builtins=True)

    Builds a profiler object using the specified timer function.
    The default timer is a fast built-in one based on real time.
    For custom timer functions returning integers, time_unit can
    be a float specifying a scale (i.e. how long each integer unit
    is, in seconds).
    """

    # Most of the functionality is in the base class.
    # This subclass only adds convenient and backward-compatible methods.

    def print_stats(self, sort=-1):
        import pstats
        pstats.Stats(self).strip_dirs().sort_stats(sort).print_stats()

    def dump_stats(self, file):
        import marshal
        with open(file, 'wb') as f:
            self.create_stats()
            marshal.dump(self.stats, f)

    def create_stats(self):
        self.disable()
        self.snapshot_stats()

    def snapshot_stats(self):
        entries = self.getstats()
        self.stats = {}
        callersdicts = {}
        # call information
        for entry in entries:
            func = label(entry.code)
            nc = entry.callcount         # ncalls column of pstats (before '/')
            cc = nc - entry.reccallcount # ncalls column of pstats (after '/')
            tt = entry.inlinetime        # tottime column of pstats
            ct = entry.totaltime         # cumtime column of pstats
            callers = {}
            callersdicts[id(entry.code)] = callers
            self.stats[func] = cc, nc, tt, ct, callers
        # subcall information
        for entry in entries:
            if entry.calls:
                func = label(entry.code)
                for subentry in entry.calls:
                    try:
                        callers = callersdicts[id(subentry.code)]
                    except KeyError:
                        continue
                    nc = subentry.callcount
                    cc = nc - subentry.reccallcount
                    tt = subentry.inlinetime
                    ct = subentry.totaltime
                    if func in callers:
                        prev = callers[func]
                        nc += prev[0]
                        cc += prev[1]
                        tt += prev[2]
                        ct += prev[3]
                    callers[func] = nc, cc, tt, ct

    # The following two methods can be called by clients to use
    # a profiler to profile a statement, given as a string.

    def run(self, cmd):
        import __main__
        dict = __main__.__dict__
        return self.runctx(cmd, dict, dict)

    def runctx(self, cmd, globals, locals):
        self.enable()
        try:
            exec(cmd, globals, locals)
        finally:
            self.disable()
        return self

    # This method is more useful to profile a single function call.
    def runcall(self, func, *args, **kw):
        self.enable()
        try:
            return func(*args, **kw)
        finally:
            self.disable()

# ____________________________________________________________

def label(code):
    if isinstance(code, str):
        return ('~', 0, code)    # built-in functions ('~' sorts at the end)
    else:
        return (code.co_filename, code.co_firstlineno, code.co_name)

# ____________________________________________________________

def main():
    import os, sys
    from optparse import OptionParser
    usage = "cProfile.py [-o output_file_path] [-s sort] scriptfile [arg] ..."
    parser = OptionParser(usage=usage)
    parser.allow_interspersed_args = False
    parser.add_option('-o', '--outfile', dest="outfile",
        help="Save stats to <outfile>", default=None)
    parser.add_option('-s', '--sort', dest="sort",
        help="Sort order when printing to stdout, based on pstats.Stats class",
        default=-1)

    if not sys.argv[1:]:
        parser.print_usage()
        sys.exit(2)

    (options, args) = parser.parse_args()
    sys.argv[:] = args

    if len(args) > 0:
        progname = args[0]
        sys.path.insert(0, os.path.dirname(progname))
        with open(progname, 'rb') as fp:
            code = compile(fp.read(), progname, 'exec')
        globs = {
            '__file__': progname,
            '__name__': '__main__',
            '__package__': None,
            '__cached__': None,
        }
        runctx(code, globs, None, options.outfile, options.sort)
    else:
        parser.print_usage()
    return parser

# When invoked as main program, invoke the profiler on a script
if __name__ == '__main__':
    main()
lib\crypt.py
"""Wrapper to the POSIX crypt library call and associated functionality."""

import _crypt
import string as _string
from random import SystemRandom as _SystemRandom
from collections import namedtuple as _namedtuple


_saltchars = _string.ascii_letters + _string.digits + './'
_sr = _SystemRandom()


class _Method(_namedtuple('_Method', 'name ident salt_chars total_size')):

    """Class representing a salt method per the Modular Crypt Format or the
    legacy 2-character crypt method."""

    def __repr__(self):
        return '<crypt.METHOD_{}>'.format(self.name)


def mksalt(method=None):
    """Generate a salt for the specified method.

    If not specified, the strongest available method will be used.

    """
    if method is None:
        method = methods[0]
    s = '${}$'.format(method.ident) if method.ident else ''
    s += ''.join(_sr.choice(_saltchars) for char in range(method.salt_chars))
    return s


def crypt(word, salt=None):
    """Return a string representing the one-way hash of a password, with a salt
    prepended.

    If ``salt`` is not specified or is ``None``, the strongest
    available method will be selected and a salt generated.  Otherwise,
    ``salt`` may be one of the ``crypt.METHOD_*`` values, or a string as
    returned by ``crypt.mksalt()``.

    """
    if salt is None or isinstance(salt, _Method):
        salt = mksalt(salt)
    return _crypt.crypt(word, salt)


#  available salting/crypto methods
METHOD_CRYPT = _Method('CRYPT', None, 2, 13)
METHOD_MD5 = _Method('MD5', '1', 8, 34)
METHOD_SHA256 = _Method('SHA256', '5', 16, 63)
METHOD_SHA512 = _Method('SHA512', '6', 16, 106)

methods = []
for _method in (METHOD_SHA512, METHOD_SHA256, METHOD_MD5):
    _result = crypt('', _method)
    if _result and len(_result) == _method.total_size:
        methods.append(_method)
methods.append(METHOD_CRYPT)
del _result, _method
lib\csv.py

"""
csv.py - read/write/investigate CSV files
"""

import re
from _csv import Error, __version__, writer, reader, register_dialect, \
                 unregister_dialect, get_dialect, list_dialects, \
                 field_size_limit, \
                 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
                 __doc__
from _csv import Dialect as _Dialect

from io import StringIO

__all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
            "Error", "Dialect", "__doc__", "excel", "excel_tab",
            "field_size_limit", "reader", "writer",
            "register_dialect", "get_dialect", "list_dialects", "Sniffer",
            "unregister_dialect", "__version__", "DictReader", "DictWriter" ]

class Dialect:
    """Describe a CSV dialect.

    This must be subclassed (see csv.excel).  Valid attributes are:
    delimiter, quotechar, escapechar, doublequote, skipinitialspace,
    lineterminator, quoting.

    """
    _name = ""
    _valid = False
    # placeholders
    delimiter = None
    quotechar = None
    escapechar = None
    doublequote = None
    skipinitialspace = None
    lineterminator = None
    quoting = None

    def __init__(self):
        if self.__class__ != Dialect:
            self._valid = True
        self._validate()

    def _validate(self):
        try:
            _Dialect(self)
        except TypeError as e:
            # We do this for compatibility with py2.3
            raise Error(str(e))

class excel(Dialect):
    """Describe the usual properties of Excel-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\r\n'
    quoting = QUOTE_MINIMAL
register_dialect("excel", excel)

class excel_tab(excel):
    """Describe the usual properties of Excel-generated TAB-delimited files."""
    delimiter = '\t'
register_dialect("excel-tab", excel_tab)

class unix_dialect(Dialect):
    """Describe the usual properties of Unix-generated CSV files."""
    delimiter = ','
    quotechar = '"'
    doublequote = True
    skipinitialspace = False
    lineterminator = '\n'
    quoting = QUOTE_ALL
register_dialect("unix", unix_dialect)


class DictReader:
    def __init__(self, f, fieldnames=None, restkey=None, restval=None,
                 dialect="excel", *args, **kwds):
        self._fieldnames = fieldnames   # list of keys for the dict
        self.restkey = restkey          # key to catch long rows
        self.restval = restval          # default value for short rows
        self.reader = reader(f, dialect, *args, **kwds)
        self.dialect = dialect
        self.line_num = 0

    def __iter__(self):
        return self

    @property
    def fieldnames(self):
        if self._fieldnames is None:
            try:
                self._fieldnames = next(self.reader)
            except StopIteration:
                pass
        self.line_num = self.reader.line_num
        return self._fieldnames

    @fieldnames.setter
    def fieldnames(self, value):
        self._fieldnames = value

    def __next__(self):
        if self.line_num == 0:
            # Used only for its side effect.
            self.fieldnames
        row = next(self.reader)
        self.line_num = self.reader.line_num

        # unlike the basic reader, we prefer not to return blanks,
        # because we will typically wind up with a dict full of None
        # values
        while row == []:
            row = next(self.reader)
        d = dict(zip(self.fieldnames, row))
        lf = len(self.fieldnames)
        lr = len(row)
        if lf < lr:
            d[self.restkey] = row[lf:]
        elif lf > lr:
            for key in self.fieldnames[lr:]:
                d[key] = self.restval
        return d


class DictWriter:
    def __init__(self, f, fieldnames, restval="", extrasaction="raise",
                 dialect="excel", *args, **kwds):
        self.fieldnames = fieldnames    # list of keys for the dict
        self.restval = restval          # for writing short dicts
        if extrasaction.lower() not in ("raise", "ignore"):
            raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
                             % extrasaction)
        self.extrasaction = extrasaction
        self.writer = writer(f, dialect, *args, **kwds)

    def writeheader(self):
        header = dict(zip(self.fieldnames, self.fieldnames))
        self.writerow(header)

    def _dict_to_list(self, rowdict):
        if self.extrasaction == "raise":
            wrong_fields = [k for k in rowdict if k not in self.fieldnames]
            if wrong_fields:
                raise ValueError("dict contains fields not in fieldnames: "
                                 + ", ".join([repr(x) for x in wrong_fields]))
        return [rowdict.get(key, self.restval) for key in self.fieldnames]

    def writerow(self, rowdict):
        return self.writer.writerow(self._dict_to_list(rowdict))

    def writerows(self, rowdicts):
        rows = []
        for rowdict in rowdicts:
            rows.append(self._dict_to_list(rowdict))
        return self.writer.writerows(rows)

# Guard Sniffer's type checking against builds that exclude complex()
try:
    complex
except NameError:
    complex = float

class Sniffer:
    '''
    "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
    Returns a Dialect object.
    '''
    def __init__(self):
        # in case there is more than one possible delimiter
        self.preferred = [',', '\t', ';', ' ', ':']


    def sniff(self, sample, delimiters=None):
        """
        Returns a dialect (or None) corresponding to the sample
        """

        quotechar, doublequote, delimiter, skipinitialspace = \
                   self._guess_quote_and_delimiter(sample, delimiters)
        if not delimiter:
            delimiter, skipinitialspace = self._guess_delimiter(sample,
                                                                delimiters)

        if not delimiter:
            raise Error("Could not determine delimiter")

        class dialect(Dialect):
            _name = "sniffed"
            lineterminator = '\r\n'
            quoting = QUOTE_MINIMAL
            # escapechar = ''

        dialect.doublequote = doublequote
        dialect.delimiter = delimiter
        # _csv.reader won't accept a quotechar of ''
        dialect.quotechar = quotechar or '"'
        dialect.skipinitialspace = skipinitialspace

        return dialect


    def _guess_quote_and_delimiter(self, data, delimiters):
        """
        Looks for text enclosed between two identical quotes
        (the probable quotechar) which are preceded and followed
        by the same character (the probable delimiter).
        For example:
                         ,'some text',
        The quote with the most wins, same with the delimiter.
        If there is no quotechar the delimiter can't be determined
        this way.
        """

        matches = []
        for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
                      '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',   #  ".*?",
                      '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)',  # ,".*?"
                      '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):                            #  ".*?" (no delim, no space)
            regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
            matches = regexp.findall(data)
            if matches:
                break

        if not matches:
            # (quotechar, doublequote, delimiter, skipinitialspace)
            return ('', False, None, 0)
        quotes = {}
        delims = {}
        spaces = 0
        for m in matches:
            n = regexp.groupindex['quote'] - 1
            key = m[n]
            if key:
                quotes[key] = quotes.get(key, 0) + 1
            try:
                n = regexp.groupindex['delim'] - 1
                key = m[n]
            except KeyError:
                continue
            if key and (delimiters is None or key in delimiters):
                delims[key] = delims.get(key, 0) + 1
            try:
                n = regexp.groupindex['space'] - 1
            except KeyError:
                continue
            if m[n]:
                spaces += 1

        quotechar = max(quotes, key=quotes.get)

        if delims:
            delim = max(delims, key=delims.get)
            skipinitialspace = delims[delim] == spaces
            if delim == '\n': # most likely a file with a single column
                delim = ''
        else:
            # there is *no* delimiter, it's a single column of quoted data
            delim = ''
            skipinitialspace = 0

        # if we see an extra quote between delimiters, we've got a
        # double quoted format
        dq_regexp = re.compile(
                               r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
                               {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)



        if dq_regexp.search(data):
            doublequote = True
        else:
            doublequote = False

        return (quotechar, doublequote, delim, skipinitialspace)


    def _guess_delimiter(self, data, delimiters):
        """
        The delimiter /should/ occur the same number of times on
        each row. However, due to malformed data, it may not. We don't want
        an all or nothing approach, so we allow for small variations in this
        number.
          1) build a table of the frequency of each character on every line.
          2) build a table of frequencies of this frequency (meta-frequency?),
             e.g.  'x occurred 5 times in 10 rows, 6 times in 1000 rows,
             7 times in 2 rows'
          3) use the mode of the meta-frequency to determine the /expected/
             frequency for that character
          4) find out how often the character actually meets that goal
          5) the character that best meets its goal is the delimiter
        For performance reasons, the data is evaluated in chunks, so it can
        try and evaluate the smallest portion of the data possible, evaluating
        additional chunks as necessary.
        """

        data = list(filter(None, data.split('\n')))

        ascii = [chr(c) for c in range(127)] # 7-bit ASCII

        # build frequency tables
        chunkLength = min(10, len(data))
        iteration = 0
        charFrequency = {}
        modes = {}
        delims = {}
        start, end = 0, min(chunkLength, len(data))
        while start < len(data):
            iteration += 1
            for line in data[start:end]:
                for char in ascii:
                    metaFrequency = charFrequency.get(char, {})
                    # must count even if frequency is 0
                    freq = line.count(char)
                    # value is the mode
                    metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
                    charFrequency[char] = metaFrequency

            for char in charFrequency.keys():
                items = list(charFrequency[char].items())
                if len(items) == 1 and items[0][0] == 0:
                    continue
                # get the mode of the frequencies
                if len(items) > 1:
                    modes[char] = max(items, key=lambda x: x[1])
                    # adjust the mode - subtract the sum of all
                    # other frequencies
                    items.remove(modes[char])
                    modes[char] = (modes[char][0], modes[char][1]
                                   - sum(item[1] for item in items))
                else:
                    modes[char] = items[0]

            # build a list of possible delimiters
            modeList = modes.items()
            total = float(chunkLength * iteration)
            # (rows of consistent data) / (number of rows) = 100%
            consistency = 1.0
            # minimum consistency threshold
            threshold = 0.9
            while len(delims) == 0 and consistency >= threshold:
                for k, v in modeList:
                    if v[0] > 0 and v[1] > 0:
                        if ((v[1]/total) >= consistency and
                            (delimiters is None or k in delimiters)):
                            delims[k] = v
                consistency -= 0.01

            if len(delims) == 1:
                delim = list(delims.keys())[0]
                skipinitialspace = (data[0].count(delim) ==
                                    data[0].count("%c " % delim))
                return (delim, skipinitialspace)

            # analyze another chunkLength lines
            start = end
            end += chunkLength

        if not delims:
            return ('', 0)

        # if there's more than one, fall back to a 'preferred' list
        if len(delims) > 1:
            for d in self.preferred:
                if d in delims.keys():
                    skipinitialspace = (data[0].count(d) ==
                                        data[0].count("%c " % d))
                    return (d, skipinitialspace)

        # nothing else indicates a preference, pick the character that
        # dominates(?)
        items = [(v,k) for (k,v) in delims.items()]
        items.sort()
        delim = items[-1][1]

        skipinitialspace = (data[0].count(delim) ==
                            data[0].count("%c " % delim))
        return (delim, skipinitialspace)


    def has_header(self, sample):
        # Creates a dictionary of types of data in each column. If any
        # column is of a single type (say, integers), *except* for the first
        # row, then the first row is presumed to be labels. If the type
        # can't be determined, it is assumed to be a string in which case
        # the length of the string is the determining factor: if all of the
        # rows except for the first are the same length, it's a header.
        # Finally, a 'vote' is taken at the end for each column, adding or
        # subtracting from the likelihood of the first row being a header.

        rdr = reader(StringIO(sample), self.sniff(sample))

        header = next(rdr) # assume first row is header

        columns = len(header)
        columnTypes = {}
        for i in range(columns): columnTypes[i] = None

        checked = 0
        for row in rdr:
            # arbitrary number of rows to check, to keep it sane
            if checked > 20:
                break
            checked += 1

            if len(row) != columns:
                continue # skip rows that have irregular number of columns

            for col in list(columnTypes.keys()):

                for thisType in [int, float, complex]:
                    try:
                        thisType(row[col])
                        break
                    except (ValueError, OverflowError):
                        pass
                else:
                    # fallback to length of string
                    thisType = len(row[col])

                if thisType != columnTypes[col]:
                    if columnTypes[col] is None: # add new column type
                        columnTypes[col] = thisType
                    else:
                        # type is inconsistent, remove column from
                        # consideration
                        del columnTypes[col]

        # finally, compare results against first row and "vote"
        # on whether it's a header
        hasHeader = 0
        for col, colType in columnTypes.items():
            if type(colType) == type(0): # it's a length
                if len(header[col]) != colType:
                    hasHeader += 1
                else:
                    hasHeader -= 1
            else: # attempt typecast
                try:
                    colType(header[col])
                except (ValueError, TypeError):
                    hasHeader += 1
                else:
                    hasHeader -= 1

        return hasHeader > 0
lib\datetime.py
"""Concrete date/time and related types.

See http://www.iana.org/time-zones/repository/tz-link.html for
time zone and DST data sources.
"""

import time as _time
import math as _math

def _cmp(x, y):
    return 0 if x == y else 1 if x > y else -1

MINYEAR = 1
MAXYEAR = 9999
_MAXORDINAL = 3652059 # date.max.toordinal()

# Utility functions, adapted from Python's Demo/classes/Dates.py, which
# also assumes the current Gregorian calendar indefinitely extended in
# both directions.  Difference:  Dates.py calls January 1 of year 0 day
# number 1.  The code here calls January 1 of year 1 day number 1.  This is
# to match the definition of the "proleptic Gregorian" calendar in Dershowitz
# and Reingold's "Calendrical Calculations", where it's the base calendar
# for all computations.  See the book for algorithms for converting between
# proleptic Gregorian ordinals and many other calendar systems.

# -1 is a placeholder for indexing purposes.
_DAYS_IN_MONTH = [-1, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

_DAYS_BEFORE_MONTH = [-1] # -1 is a placeholder for indexing purposes.
dbm = 0
for dim in _DAYS_IN_MONTH[1:]:
    _DAYS_BEFORE_MONTH.append(dbm)
    dbm += dim
del dbm, dim

def _is_leap(year):
    "year -> 1 if leap year, else 0."
    return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0)

def _days_before_year(year):
    "year -> number of days before January 1st of year."
    y = year - 1
    return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):
    "year, month -> number of days in that month in that year."
    assert 1 <= month <= 12, month
    if month == 2 and _is_leap(year):
        return 29
    return _DAYS_IN_MONTH[month]

def _days_before_month(year, month):
    "year, month -> number of days in year preceding first day of month."
    assert 1 <= month <= 12, 'month must be in 1..12'
    return _DAYS_BEFORE_MONTH[month] + (month > 2 and _is_leap(year))

def _ymd2ord(year, month, day):
    "year, month, day -> ordinal, considering 01-Jan-0001 as day 1."
    assert 1 <= month <= 12, 'month must be in 1..12'
    dim = _days_in_month(year, month)
    assert 1 <= day <= dim, ('day must be in 1..%d' % dim)
    return (_days_before_year(year) +
            _days_before_month(year, month) +
            day)

_DI400Y = _days_before_year(401)    # number of days in 400 years
_DI100Y = _days_before_year(101)    #    "    "   "   " 100   "
_DI4Y   = _days_before_year(5)      #    "    "   "   "   4   "

# A 4-year cycle has an extra leap day over what we'd get from pasting
# together 4 single years.
assert _DI4Y == 4 * 365 + 1

# Similarly, a 400-year cycle has an extra leap day over what we'd get from
# pasting together 4 100-year cycles.
assert _DI400Y == 4 * _DI100Y + 1

# OTOH, a 100-year cycle has one fewer leap day than we'd get from
# pasting together 25 4-year cycles.
assert _DI100Y == 25 * _DI4Y - 1

def _ord2ymd(n):
    "ordinal -> (year, month, day), considering 01-Jan-0001 as day 1."

    # n is a 1-based index, starting at 1-Jan-1.  The pattern of leap years
    # repeats exactly every 400 years.  The basic strategy is to find the
    # closest 400-year boundary at or before n, then work with the offset
    # from that boundary to n.  Life is much clearer if we subtract 1 from
    # n first -- then the values of n at 400-year boundaries are exactly
    # those divisible by _DI400Y:
    #
    #     D  M   Y            n              n-1
    #     -- --- ----        ----------     ----------------
    #     31 Dec -400        -_DI400Y       -_DI400Y -1
    #      1 Jan -399         -_DI400Y +1   -_DI400Y      400-year boundary
    #     ...
    #     30 Dec  000        -1             -2
    #     31 Dec  000         0             -1
    #      1 Jan  001         1              0            400-year boundary
    #      2 Jan  001         2              1
    #      3 Jan  001         3              2
    #     ...
    #     31 Dec  400         _DI400Y        _DI400Y -1
    #      1 Jan  401         _DI400Y +1     _DI400Y      400-year boundary
    n -= 1
    n400, n = divmod(n, _DI400Y)
    year = n400 * 400 + 1   # ..., -399, 1, 401, ...

    # Now n is the (non-negative) offset, in days, from January 1 of year, to
    # the desired date.  Now compute how many 100-year cycles precede n.
    # Note that it's possible for n100 to equal 4!  In that case 4 full
    # 100-year cycles precede the desired day, which implies the desired
    # day is December 31 at the end of a 400-year cycle.
    n100, n = divmod(n, _DI100Y)

    # Now compute how many 4-year cycles precede it.
    n4, n = divmod(n, _DI4Y)

    # And now how many single years.  Again n1 can be 4, and again meaning
    # that the desired day is December 31 at the end of the 4-year cycle.
    n1, n = divmod(n, 365)

    year += n100 * 100 + n4 * 4 + n1
    if n1 == 4 or n100 == 4:
        assert n == 0
        return year-1, 12, 31

    # Now the year is correct, and n is the offset from January 1.  We find
    # the month via an estimate that's either exact or one too large.
    leapyear = n1 == 3 and (n4 != 24 or n100 == 3)
    assert leapyear == _is_leap(year)
    month = (n + 50) >> 5
    preceding = _DAYS_BEFORE_MONTH[month] + (month > 2 and leapyear)
    if preceding > n:  # estimate is too large
        month -= 1
        preceding -= _DAYS_IN_MONTH[month] + (month == 2 and leapyear)
    n -= preceding
    assert 0 <= n < _days_in_month(year, month)

    # Now the year and month are correct, and n is the offset from the
    # start of that month:  we're done!
    return year, month, n+1

# Month and day names.  For localized versions, see the calendar module.
_MONTHNAMES = [None, "Jan", "Feb", "Mar", "Apr", "May", "Jun",
                     "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
_DAYNAMES = [None, "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]


def _build_struct_time(y, m, d, hh, mm, ss, dstflag):
    wday = (_ymd2ord(y, m, d) + 6) % 7
    dnum = _days_before_month(y, m) + d
    return _time.struct_time((y, m, d, hh, mm, ss, wday, dnum, dstflag))

def _format_time(hh, mm, ss, us):
    # Skip trailing microseconds when us==0.
    result = "%02d:%02d:%02d" % (hh, mm, ss)
    if us:
        result += ".%06d" % us
    return result

# Correctly substitute for %z and %Z escapes in strftime formats.
def _wrap_strftime(object, format, timetuple):
    # Don't call utcoffset() or tzname() unless actually needed.
    freplace = None # the string to use for %f
    zreplace = None # the string to use for %z
    Zreplace = None # the string to use for %Z

    # Scan format for %z and %Z escapes, replacing as needed.
    newformat = []
    push = newformat.append
    i, n = 0, len(format)
    while i < n:
        ch = format[i]
        i += 1
        if ch == '%':
            if i < n:
                ch = format[i]
                i += 1
                if ch == 'f':
                    if freplace is None:
                        freplace = '%06d' % getattr(object,
                                                    'microsecond', 0)
                    newformat.append(freplace)
                elif ch == 'z':
                    if zreplace is None:
                        zreplace = ""
                        if hasattr(object, "utcoffset"):
                            offset = object.utcoffset()
                            if offset is not None:
                                sign = '+'
                                if offset.days < 0:
                                    offset = -offset
                                    sign = '-'
                                h, m = divmod(offset, timedelta(hours=1))
                                assert not m % timedelta(minutes=1), "whole minute"
                                m //= timedelta(minutes=1)
                                zreplace = '%c%02d%02d' % (sign, h, m)
                    assert '%' not in zreplace
                    newformat.append(zreplace)
                elif ch == 'Z':
                    if Zreplace is None:
                        Zreplace = ""
                        if hasattr(object, "tzname"):
                            s = object.tzname()
                            if s is not None:
                                # strftime is going to have at this: escape %
                                Zreplace = s.replace('%', '%%')
                    newformat.append(Zreplace)
                else:
                    push('%')
                    push(ch)
            else:
                push('%')
        else:
            push(ch)
    newformat = "".join(newformat)
    return _time.strftime(newformat, timetuple)

def _call_tzinfo_method(tzinfo, methname, tzinfoarg):
    if tzinfo is None:
        return None
    return getattr(tzinfo, methname)(tzinfoarg)

# Just raise TypeError if the arg isn't None or a string.
def _check_tzname(name):
    if name is not None and not isinstance(name, str):
        raise TypeError("tzinfo.tzname() must return None or string, "
                        "not '%s'" % type(name))

# name is the offset-producing method, "utcoffset" or "dst".
# offset is what it returned.
# If offset isn't None or timedelta, raises TypeError.
# If offset is None, returns None.
# Else offset is checked for being in range, and a whole # of minutes.
# If it is, its integer value is returned.  Else ValueError is raised.
def _check_utc_offset(name, offset):
    assert name in ("utcoffset", "dst")
    if offset is None:
        return
    if not isinstance(offset, timedelta):
        raise TypeError("tzinfo.%s() must return None "
                        "or timedelta, not '%s'" % (name, type(offset)))
    if offset % timedelta(minutes=1) or offset.microseconds:
        raise ValueError("tzinfo.%s() must return a whole number "
                         "of minutes, got %s" % (name, offset))
    if not -timedelta(1) < offset < timedelta(1):
        raise ValueError("%s()=%s, must be must be strictly between"
                         " -timedelta(hours=24) and timedelta(hours=24)"
                         % (name, offset))

def _check_date_fields(year, month, day):
    if not isinstance(year, int):
        raise TypeError('int expected')
    if not MINYEAR <= year <= MAXYEAR:
        raise ValueError('year must be in %d..%d' % (MINYEAR, MAXYEAR), year)
    if not 1 <= month <= 12:
        raise ValueError('month must be in 1..12', month)
    dim = _days_in_month(year, month)
    if not 1 <= day <= dim:
        raise ValueError('day must be in 1..%d' % dim, day)

def _check_time_fields(hour, minute, second, microsecond):
    if not isinstance(hour, int):
        raise TypeError('int expected')
    if not 0 <= hour <= 23:
        raise ValueError('hour must be in 0..23', hour)
    if not 0 <= minute <= 59:
        raise ValueError('minute must be in 0..59', minute)
    if not 0 <= second <= 59:
        raise ValueError('second must be in 0..59', second)
    if not 0 <= microsecond <= 999999:
        raise ValueError('microsecond must be in 0..999999', microsecond)

def _check_tzinfo_arg(tz):
    if tz is not None and not isinstance(tz, tzinfo):
        raise TypeError("tzinfo argument must be None or of a tzinfo subclass")

def _cmperror(x, y):
    raise TypeError("can't compare '%s' to '%s'" % (
                    type(x).__name__, type(y).__name__))

def _divide_and_round(a, b):
    """divide a by b and round result to the nearest integer

    When the ratio is exactly half-way between two integers,
    the even integer is returned.
    """
    # Based on the reference implementation for divmod_near
    # in Objects/longobject.c.
    q, r = divmod(a, b)
    # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
    # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
    # positive, 2 * r < b if b negative.
    r *= 2
    greater_than_half = r > b if b > 0 else r < b
    if greater_than_half or r == b and q % 2 == 1:
        q += 1

    return q

class timedelta:
    """Represent the difference between two datetime objects.

    Supported operators:

    - add, subtract timedelta
    - unary plus, minus, abs
    - compare to timedelta
    - multiply, divide by int

    In addition, datetime supports subtraction of two datetime objects
    returning a timedelta, and addition or subtraction of a datetime
    and a timedelta giving a datetime.

    Representation: (days, seconds, microseconds).  Why?  Because I
    felt like it.
    """
    __slots__ = '_days', '_seconds', '_microseconds'

    def __new__(cls, days=0, seconds=0, microseconds=0,
                milliseconds=0, minutes=0, hours=0, weeks=0):
        # Doing this efficiently and accurately in C is going to be difficult
        # and error-prone, due to ubiquitous overflow possibilities, and that
        # C double doesn't have enough bits of precision to represent
        # microseconds over 10K years faithfully.  The code here tries to make
        # explicit where go-fast assumptions can be relied on, in order to
        # guide the C implementation; it's way more convoluted than speed-
        # ignoring auto-overflow-to-long idiomatic Python could be.

        # XXX Check that all inputs are ints or floats.

        # Final values, all integer.
        # s and us fit in 32-bit signed ints; d isn't bounded.
        d = s = us = 0

        # Normalize everything to days, seconds, microseconds.
        days += weeks*7
        seconds += minutes*60 + hours*3600
        microseconds += milliseconds*1000

        # Get rid of all fractions, and normalize s and us.
        # Take a deep breath <wink>.
        if isinstance(days, float):
            dayfrac, days = _math.modf(days)
            daysecondsfrac, daysecondswhole = _math.modf(dayfrac * (24.*3600.))
            assert daysecondswhole == int(daysecondswhole)  # can't overflow
            s = int(daysecondswhole)
            assert days == int(days)
            d = int(days)
        else:
            daysecondsfrac = 0.0
            d = days
        assert isinstance(daysecondsfrac, float)
        assert abs(daysecondsfrac) <= 1.0
        assert isinstance(d, int)
        assert abs(s) <= 24 * 3600
        # days isn't referenced again before redefinition

        if isinstance(seconds, float):
            secondsfrac, seconds = _math.modf(seconds)
            assert seconds == int(seconds)
            seconds = int(seconds)
            secondsfrac += daysecondsfrac
            assert abs(secondsfrac) <= 2.0
        else:
            secondsfrac = daysecondsfrac
        # daysecondsfrac isn't referenced again
        assert isinstance(secondsfrac, float)
        assert abs(secondsfrac) <= 2.0

        assert isinstance(seconds, int)
        days, seconds = divmod(seconds, 24*3600)
        d += days
        s += int(seconds)    # can't overflow
        assert isinstance(s, int)
        assert abs(s) <= 2 * 24 * 3600
        # seconds isn't referenced again before redefinition

        usdouble = secondsfrac * 1e6
        assert abs(usdouble) < 2.1e6    # exact value not critical
        # secondsfrac isn't referenced again

        if isinstance(microseconds, float):
            microseconds += usdouble
            microseconds = round(microseconds, 0)
            seconds, microseconds = divmod(microseconds, 1e6)
            assert microseconds == int(microseconds)
            assert seconds == int(seconds)
            days, seconds = divmod(seconds, 24.*3600.)
            assert days == int(days)
            assert seconds == int(seconds)
            d += int(days)
            s += int(seconds)   # can't overflow
            assert isinstance(s, int)
            assert abs(s) <= 3 * 24 * 3600
        else:
            seconds, microseconds = divmod(microseconds, 1000000)
            days, seconds = divmod(seconds, 24*3600)
            d += days
            s += int(seconds)    # can't overflow
            assert isinstance(s, int)
            assert abs(s) <= 3 * 24 * 3600
            microseconds = float(microseconds)
            microseconds += usdouble
            microseconds = round(microseconds, 0)
        assert abs(s) <= 3 * 24 * 3600
        assert abs(microseconds) < 3.1e6

        # Just a little bit of carrying possible for microseconds and seconds.
        assert isinstance(microseconds, float)
        assert int(microseconds) == microseconds
        us = int(microseconds)
        seconds, us = divmod(us, 1000000)
        s += seconds    # cant't overflow
        assert isinstance(s, int)
        days, s = divmod(s, 24*3600)
        d += days

        assert isinstance(d, int)
        assert isinstance(s, int) and 0 <= s < 24*3600
        assert isinstance(us, int) and 0 <= us < 1000000

        self = object.__new__(cls)

        self._days = d
        self._seconds = s
        self._microseconds = us
        if abs(d) > 999999999:
            raise OverflowError("timedelta # of days is too large: %d" % d)

        return self

    def __repr__(self):
        if self._microseconds:
            return "%s(%d, %d, %d)" % ('datetime.' + self.__class__.__name__,
                                       self._days,
                                       self._seconds,
                                       self._microseconds)
        if self._seconds:
            return "%s(%d, %d)" % ('datetime.' + self.__class__.__name__,
                                   self._days,
                                   self._seconds)
        return "%s(%d)" % ('datetime.' + self.__class__.__name__, self._days)

    def __str__(self):
        mm, ss = divmod(self._seconds, 60)
        hh, mm = divmod(mm, 60)
        s = "%d:%02d:%02d" % (hh, mm, ss)
        if self._days:
            def plural(n):
                return n, abs(n) != 1 and "s" or ""
            s = ("%d day%s, " % plural(self._days)) + s
        if self._microseconds:
            s = s + ".%06d" % self._microseconds
        return s

    def total_seconds(self):
        """Total seconds in the duration."""
        return ((self.days * 86400 + self.seconds)*10**6 +
                self.microseconds) / 10**6

    # Read-only field accessors
    @property
    def days(self):
        """days"""
        return self._days

    @property
    def seconds(self):
        """seconds"""
        return self._seconds

    @property
    def microseconds(self):
        """microseconds"""
        return self._microseconds

    def __add__(self, other):
        if isinstance(other, timedelta):
            # for CPython compatibility, we cannot use
            # our __class__ here, but need a real timedelta
            return timedelta(self._days + other._days,
                             self._seconds + other._seconds,
                             self._microseconds + other._microseconds)
        return NotImplemented

    __radd__ = __add__

    def __sub__(self, other):
        if isinstance(other, timedelta):
            # for CPython compatibility, we cannot use
            # our __class__ here, but need a real timedelta
            return timedelta(self._days - other._days,
                             self._seconds - other._seconds,
                             self._microseconds - other._microseconds)
        return NotImplemented

    def __rsub__(self, other):
        if isinstance(other, timedelta):
            return -self + other
        return NotImplemented

    def __neg__(self):
        # for CPython compatibility, we cannot use
        # our __class__ here, but need a real timedelta
        return timedelta(-self._days,
                         -self._seconds,
                         -self._microseconds)

    def __pos__(self):
        return self

    def __abs__(self):
        if self._days < 0:
            return -self
        else:
            return self

    def __mul__(self, other):
        if isinstance(other, int):
            # for CPython compatibility, we cannot use
            # our __class__ here, but need a real timedelta
            return timedelta(self._days * other,
                             self._seconds * other,
                             self._microseconds * other)
        if isinstance(other, float):
            usec = self._to_microseconds()
            a, b = other.as_integer_ratio()
            return timedelta(0, 0, _divide_and_round(usec * a, b))
        return NotImplemented

    __rmul__ = __mul__

    def _to_microseconds(self):
        return ((self._days * (24*3600) + self._seconds) * 1000000 +
                self._microseconds)

    def __floordiv__(self, other):
        if not isinstance(other, (int, timedelta)):
            return NotImplemented
        usec = self._to_microseconds()
        if isinstance(other, timedelta):
            return usec // other._to_microseconds()
        if isinstance(other, int):
            return timedelta(0, 0, usec // other)

    def __truediv__(self, other):
        if not isinstance(other, (int, float, timedelta)):
            return NotImplemented
        usec = self._to_microseconds()
        if isinstance(other, timedelta):
            return usec / other._to_microseconds()
        if isinstance(other, int):
            return timedelta(0, 0, _divide_and_round(usec, other))
        if isinstance(other, float):
            a, b = other.as_integer_ratio()
            return timedelta(0, 0, _divide_and_round(b * usec, a))

    def __mod__(self, other):
        if isinstance(other, timedelta):
            r = self._to_microseconds() % other._to_microseconds()
            return timedelta(0, 0, r)
        return NotImplemented

    def __divmod__(self, other):
        if isinstance(other, timedelta):
            q, r = divmod(self._to_microseconds(),
                          other._to_microseconds())
            return q, timedelta(0, 0, r)
        return NotImplemented

    # Comparisons of timedelta objects with other.

    def __eq__(self, other):
        if isinstance(other, timedelta):
            return self._cmp(other) == 0
        else:
            return False

    def __ne__(self, other):
        if isinstance(other, timedelta):
            return self._cmp(other) != 0
        else:
            return True

    def __le__(self, other):
        if isinstance(other, timedelta):
            return self._cmp(other) <= 0
        else:
            _cmperror(self, other)

    def __lt__(self, other):
        if isinstance(other, timedelta):
            return self._cmp(other) < 0
        else:
            _cmperror(self, other)

    def __ge__(self, other):
        if isinstance(other, timedelta):
            return self._cmp(other) >= 0
        else:
            _cmperror(self, other)

    def __gt__(self, other):
        if isinstance(other, timedelta):
            return self._cmp(other) > 0
        else:
            _cmperror(self, other)

    def _cmp(self, other):
        assert isinstance(other, timedelta)
        return _cmp(self._getstate(), other._getstate())

    def __hash__(self):
        return hash(self._getstate())

    def __bool__(self):
        return (self._days != 0 or
                self._seconds != 0 or
                self._microseconds != 0)

    # Pickle support.

    def _getstate(self):
        return (self._days, self._seconds, self._microseconds)

    def __reduce__(self):
        return (self.__class__, self._getstate())

timedelta.min = timedelta(-999999999)
timedelta.max = timedelta(days=999999999, hours=23, minutes=59, seconds=59,
                          microseconds=999999)
timedelta.resolution = timedelta(microseconds=1)

class date:
    """Concrete date type.

    Constructors:

    __new__()
    fromtimestamp()
    today()
    fromordinal()

    Operators:

    __repr__, __str__
    __eq__, __le__, __lt__, __ge__, __gt__, __hash__
    __add__, __radd__, __sub__ (add/radd only with timedelta arg)

    Methods:

    timetuple()
    toordinal()
    weekday()
    isoweekday(), isocalendar(), isoformat()
    ctime()
    strftime()

    Properties (readonly):
    year, month, day
    """
    __slots__ = '_year', '_month', '_day'

    def __new__(cls, year, month=None, day=None):
        """Constructor.

        Arguments:

        year, month, day (required, base 1)
        """
        if (isinstance(year, bytes) and len(year) == 4 and
            1 <= year[2] <= 12 and month is None):  # Month is sane
            # Pickle support
            self = object.__new__(cls)
            self.__setstate(year)
            return self
        _check_date_fields(year, month, day)
        self = object.__new__(cls)
        self._year = year
        self._month = month
        self._day = day
        return self

    # Additional constructors

    @classmethod
    def fromtimestamp(cls, t):
        "Construct a date from a POSIX timestamp (like time.time())."
        y, m, d, hh, mm, ss, weekday, jday, dst = _time.localtime(t)
        return cls(y, m, d)

    @classmethod
    def today(cls):
        "Construct a date from time.time()."
        t = _time.time()
        return cls.fromtimestamp(t)

    @classmethod
    def fromordinal(cls, n):
        """Contruct a date from a proleptic Gregorian ordinal.

        January 1 of year 1 is day 1.  Only the year, month and day are
        non-zero in the result.
        """
        y, m, d = _ord2ymd(n)
        return cls(y, m, d)

    # Conversions to string

    def __repr__(self):
        """Convert to formal string, for repr().

        >>> dt = datetime(2010, 1, 1)
        >>> repr(dt)
        'datetime.datetime(2010, 1, 1, 0, 0)'

        >>> dt = datetime(2010, 1, 1, tzinfo=timezone.utc)
        >>> repr(dt)
        'datetime.datetime(2010, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)'
        """
        return "%s(%d, %d, %d)" % ('datetime.' + self.__class__.__name__,
                                   self._year,
                                   self._month,
                                   self._day)
    # XXX These shouldn't depend on time.localtime(), because that
    # clips the usable dates to [1970 .. 2038).  At least ctime() is
    # easily done without using strftime() -- that's better too because
    # strftime("%c", ...) is locale specific.


    def ctime(self):
        "Return ctime() style string."
        weekday = self.toordinal() % 7 or 7
        return "%s %s %2d 00:00:00 %04d" % (
            _DAYNAMES[weekday],
            _MONTHNAMES[self._month],
            self._day, self._year)

    def strftime(self, fmt):
        "Format using strftime()."
        return _wrap_strftime(self, fmt, self.timetuple())

    def __format__(self, fmt):
        if len(fmt) != 0:
            return self.strftime(fmt)
        return str(self)

    def isoformat(self):
        """Return the date formatted according to ISO.

        This is 'YYYY-MM-DD'.

        References:
        - http://www.w3.org/TR/NOTE-datetime
        - http://www.cl.cam.ac.uk/~mgk25/iso-time.html
        """
        return "%04d-%02d-%02d" % (self._year, self._month, self._day)

    __str__ = isoformat

    # Read-only field accessors
    @property
    def year(self):
        """year (1-9999)"""
        return self._year

    @property
    def month(self):
        """month (1-12)"""
        return self._month

    @property
    def day(self):
        """day (1-31)"""
        return self._day

    # Standard conversions, __eq__, __le__, __lt__, __ge__, __gt__,
    # __hash__ (and helpers)

    def timetuple(self):
        "Return local time tuple compatible with time.localtime()."
        return _build_struct_time(self._year, self._month, self._day,
                                  0, 0, 0, -1)

    def toordinal(self):
        """Return proleptic Gregorian ordinal for the year, month and day.

        January 1 of year 1 is day 1.  Only the year, month and day values
        contribute to the result.
        """
        return _ymd2ord(self._year, self._month, self._day)

    def replace(self, year=None, month=None, day=None):
        """Return a new date with new values for the specified fields."""
        if year is None:
            year = self._year
        if month is None:
            month = self._month
        if day is None:
            day = self._day
        _check_date_fields(year, month, day)
        return date(year, month, day)

    # Comparisons of date objects with other.

    def __eq__(self, other):
        if isinstance(other, date):
            return self._cmp(other) == 0
        return NotImplemented

    def __ne__(self, other):
        if isinstance(other, date):
            return self._cmp(other) != 0
        return NotImplemented

    def __le__(self, other):
        if isinstance(other, date):
            return self._cmp(other) <= 0
        return NotImplemented

    def __lt__(self, other):
        if isinstance(other, date):
            return self._cmp(other) < 0
        return NotImplemented

    def __ge__(self, other):
        if isinstance(other, date):
            return self._cmp(other) >= 0
        return NotImplemented

    def __gt__(self, other):
        if isinstance(other, date):
            return self._cmp(other) > 0
        return NotImplemented

    def _cmp(self, other):
        assert isinstance(other, date)
        y, m, d = self._year, self._month, self._day
        y2, m2, d2 = other._year, other._month, other._day
        return _cmp((y, m, d), (y2, m2, d2))

    def __hash__(self):
        "Hash."
        return hash(self._getstate())

    # Computations

    def __add__(self, other):
        "Add a date to a timedelta."
        if isinstance(other, timedelta):
            o = self.toordinal() + other.days
            if 0 < o <= _MAXORDINAL:
                return date.fromordinal(o)
            raise OverflowError("result out of range")
        return NotImplemented

    __radd__ = __add__

    def __sub__(self, other):
        """Subtract two dates, or a date and a timedelta."""
        if isinstance(other, timedelta):
            return self + timedelta(-other.days)
        if isinstance(other, date):
            days1 = self.toordinal()
            days2 = other.toordinal()
            return timedelta(days1 - days2)
        return NotImplemented

    def weekday(self):
        "Return day of the week, where Monday == 0 ... Sunday == 6."
        return (self.toordinal() + 6) % 7

    # Day-of-the-week and week-of-the-year, according to ISO

    def isoweekday(self):
        "Return day of the week, where Monday == 1 ... Sunday == 7."
        # 1-Jan-0001 is a Monday
        return self.toordinal() % 7 or 7

    def isocalendar(self):
        """Return a 3-tuple containing ISO year, week number, and weekday.

        The first ISO week of the year is the (Mon-Sun) week
        containing the year's first Thursday; everything else derives
        from that.

        The first week is 1; Monday is 1 ... Sunday is 7.

        ISO calendar algorithm taken from
        http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm
        """
        year = self._year
        week1monday = _isoweek1monday(year)
        today = _ymd2ord(self._year, self._month, self._day)
        # Internally, week and day have origin 0
        week, day = divmod(today - week1monday, 7)
        if week < 0:
            year -= 1
            week1monday = _isoweek1monday(year)
            week, day = divmod(today - week1monday, 7)
        elif week >= 52:
            if today >= _isoweek1monday(year+1):
                year += 1
                week = 0
        return year, week+1, day+1

    # Pickle support.

    def _getstate(self):
        yhi, ylo = divmod(self._year, 256)
        return bytes([yhi, ylo, self._month, self._day]),

    def __setstate(self, string):
        if len(string) != 4 or not (1 <= string[2] <= 12):
            raise TypeError("not enough arguments")
        yhi, ylo, self._month, self._day = string
        self._year = yhi * 256 + ylo

    def __reduce__(self):
        return (self.__class__, self._getstate())

_date_class = date  # so functions w/ args named "date" can get at the class

date.min = date(1, 1, 1)
date.max = date(9999, 12, 31)
date.resolution = timedelta(days=1)

class tzinfo:
    """Abstract base class for time zone info classes.

    Subclasses must override the name(), utcoffset() and dst() methods.
    """
    __slots__ = ()
    def tzname(self, dt):
        "datetime -> string name of time zone."
        raise NotImplementedError("tzinfo subclass must override tzname()")

    def utcoffset(self, dt):
        "datetime -> minutes east of UTC (negative for west of UTC)"
        raise NotImplementedError("tzinfo subclass must override utcoffset()")

    def dst(self, dt):
        """datetime -> DST offset in minutes east of UTC.

        Return 0 if DST not in effect.  utcoffset() must include the DST
        offset.
        """
        raise NotImplementedError("tzinfo subclass must override dst()")

    def fromutc(self, dt):
        "datetime in UTC -> datetime in local time."

        if not isinstance(dt, datetime):
            raise TypeError("fromutc() requires a datetime argument")
        if dt.tzinfo is not self:
            raise ValueError("dt.tzinfo is not self")

        dtoff = dt.utcoffset()
        if dtoff is None:
            raise ValueError("fromutc() requires a non-None utcoffset() "
                             "result")

        # See the long comment block at the end of this file for an
        # explanation of this algorithm.
        dtdst = dt.dst()
        if dtdst is None:
            raise ValueError("fromutc() requires a non-None dst() result")
        delta = dtoff - dtdst
        if delta:
            dt += delta
            dtdst = dt.dst()
            if dtdst is None:
                raise ValueError("fromutc(): dt.dst gave inconsistent "
                                 "results; cannot convert")
        return dt + dtdst

    # Pickle support.

    def __reduce__(self):
        getinitargs = getattr(self, "__getinitargs__", None)
        if getinitargs:
            args = getinitargs()
        else:
            args = ()
        getstate = getattr(self, "__getstate__", None)
        if getstate:
            state = getstate()
        else:
            state = getattr(self, "__dict__", None) or None
        if state is None:
            return (self.__class__, args)
        else:
            return (self.__class__, args, state)

_tzinfo_class = tzinfo

class time:
    """Time with time zone.

    Constructors:

    __new__()

    Operators:

    __repr__, __str__
    __eq__, __le__, __lt__, __ge__, __gt__, __hash__

    Methods:

    strftime()
    isoformat()
    utcoffset()
    tzname()
    dst()

    Properties (readonly):
    hour, minute, second, microsecond, tzinfo
    """

    def __new__(cls, hour=0, minute=0, second=0, microsecond=0, tzinfo=None):
        """Constructor.

        Arguments:

        hour, minute (required)
        second, microsecond (default to zero)
        tzinfo (default to None)
        """
        self = object.__new__(cls)
        if isinstance(hour, bytes) and len(hour) == 6:
            # Pickle support
            self.__setstate(hour, minute or None)
            return self
        _check_tzinfo_arg(tzinfo)
        _check_time_fields(hour, minute, second, microsecond)
        self._hour = hour
        self._minute = minute
        self._second = second
        self._microsecond = microsecond
        self._tzinfo = tzinfo
        return self

    # Read-only field accessors
    @property
    def hour(self):
        """hour (0-23)"""
        return self._hour

    @property
    def minute(self):
        """minute (0-59)"""
        return self._minute

    @property
    def second(self):
        """second (0-59)"""
        return self._second

    @property
    def microsecond(self):
        """microsecond (0-999999)"""
        return self._microsecond

    @property
    def tzinfo(self):
        """timezone info object"""
        return self._tzinfo

    # Standard conversions, __hash__ (and helpers)

    # Comparisons of time objects with other.

    def __eq__(self, other):
        if isinstance(other, time):
            return self._cmp(other, allow_mixed=True) == 0
        else:
            return False

    def __ne__(self, other):
        if isinstance(other, time):
            return self._cmp(other, allow_mixed=True) != 0
        else:
            return True

    def __le__(self, other):
        if isinstance(other, time):
            return self._cmp(other) <= 0
        else:
            _cmperror(self, other)

    def __lt__(self, other):
        if isinstance(other, time):
            return self._cmp(other) < 0
        else:
            _cmperror(self, other)

    def __ge__(self, other):
        if isinstance(other, time):
            return self._cmp(other) >= 0
        else:
            _cmperror(self, other)

    def __gt__(self, other):
        if isinstance(other, time):
            return self._cmp(other) > 0
        else:
            _cmperror(self, other)

    def _cmp(self, other, allow_mixed=False):
        assert isinstance(other, time)
        mytz = self._tzinfo
        ottz = other._tzinfo
        myoff = otoff = None

        if mytz is ottz:
            base_compare = True
        else:
            myoff = self.utcoffset()
            otoff = other.utcoffset()
            base_compare = myoff == otoff

        if base_compare:
            return _cmp((self._hour, self._minute, self._second,
                         self._microsecond),
                       (other._hour, other._minute, other._second,
                        other._microsecond))
        if myoff is None or otoff is None:
            if allow_mixed:
                return 2 # arbitrary non-zero value
            else:
                raise TypeError("cannot compare naive and aware times")
        myhhmm = self._hour * 60 + self._minute - myoff//timedelta(minutes=1)
        othhmm = other._hour * 60 + other._minute - otoff//timedelta(minutes=1)
        return _cmp((myhhmm, self._second, self._microsecond),
                    (othhmm, other._second, other._microsecond))

    def __hash__(self):
        """Hash."""
        tzoff = self.utcoffset()
        if not tzoff: # zero or None
            return hash(self._getstate()[0])
        h, m = divmod(timedelta(hours=self.hour, minutes=self.minute) - tzoff,
                      timedelta(hours=1))
        assert not m % timedelta(minutes=1), "whole minute"
        m //= timedelta(minutes=1)
        if 0 <= h < 24:
            return hash(time(h, m, self.second, self.microsecond))
        return hash((h, m, self.second, self.microsecond))

    # Conversion to string

    def _tzstr(self, sep=":"):
        """Return formatted timezone offset (+xx:xx) or None."""
        off = self.utcoffset()
        if off is not None:
            if off.days < 0:
                sign = "-"
                off = -off
            else:
                sign = "+"
            hh, mm = divmod(off, timedelta(hours=1))
            assert not mm % timedelta(minutes=1), "whole minute"
            mm //= timedelta(minutes=1)
            assert 0 <= hh < 24
            off = "%s%02d%s%02d" % (sign, hh, sep, mm)
        return off

    def __repr__(self):
        """Convert to formal string, for repr()."""
        if self._microsecond != 0:
            s = ", %d, %d" % (self._second, self._microsecond)
        elif self._second != 0:
            s = ", %d" % self._second
        else:
            s = ""
        s= "%s(%d, %d%s)" % ('datetime.' + self.__class__.__name__,
                             self._hour, self._minute, s)
        if self._tzinfo is not None:
            assert s[-1:] == ")"
            s = s[:-1] + ", tzinfo=%r" % self._tzinfo + ")"
        return s

    def isoformat(self):
        """Return the time formatted according to ISO.

        This is 'HH:MM:SS.mmmmmm+zz:zz', or 'HH:MM:SS+zz:zz' if
        self.microsecond == 0.
        """
        s = _format_time(self._hour, self._minute, self._second,
                         self._microsecond)
        tz = self._tzstr()
        if tz:
            s += tz
        return s

    __str__ = isoformat

    def strftime(self, fmt):
        """Format using strftime().  The date part of the timestamp passed
        to underlying strftime should not be used.
        """
        # The year must be >= 1000 else Python's strftime implementation
        # can raise a bogus exception.
        timetuple = (1900, 1, 1,
                     self._hour, self._minute, self._second,
                     0, 1, -1)
        return _wrap_strftime(self, fmt, timetuple)

    def __format__(self, fmt):
        if len(fmt) != 0:
            return self.strftime(fmt)
        return str(self)

    # Timezone functions

    def utcoffset(self):
        """Return the timezone offset in minutes east of UTC (negative west of
        UTC)."""
        if self._tzinfo is None:
            return None
        offset = self._tzinfo.utcoffset(None)
        _check_utc_offset("utcoffset", offset)
        return offset

    def tzname(self):
        """Return the timezone name.

        Note that the name is 100% informational -- there's no requirement that
        it mean anything in particular. For example, "GMT", "UTC", "-500",
        "-5:00", "EDT", "US/Eastern", "America/New York" are all valid replies.
        """
        if self._tzinfo is None:
            return None
        name = self._tzinfo.tzname(None)
        _check_tzname(name)
        return name

    def dst(self):
        """Return 0 if DST is not in effect, or the DST offset (in minutes
        eastward) if DST is in effect.

        This is purely informational; the DST offset has already been added to
        the UTC offset returned by utcoffset() if applicable, so there's no
        need to consult dst() unless you're interested in displaying the DST
        info.
        """
        if self._tzinfo is None:
            return None
        offset = self._tzinfo.dst(None)
        _check_utc_offset("dst", offset)
        return offset

    def replace(self, hour=None, minute=None, second=None, microsecond=None,
                tzinfo=True):
        """Return a new time with new values for the specified fields."""
        if hour is None:
            hour = self.hour
        if minute is None:
            minute = self.minute
        if second is None:
            second = self.second
        if microsecond is None:
            microsecond = self.microsecond
        if tzinfo is True:
            tzinfo = self.tzinfo
        _check_time_fields(hour, minute, second, microsecond)
        _check_tzinfo_arg(tzinfo)
        return time(hour, minute, second, microsecond, tzinfo)

    def __bool__(self):
        if self.second or self.microsecond:
            return True
        offset = self.utcoffset() or timedelta(0)
        return timedelta(hours=self.hour, minutes=self.minute) != offset

    # Pickle support.

    def _getstate(self):
        us2, us3 = divmod(self._microsecond, 256)
        us1, us2 = divmod(us2, 256)
        basestate = bytes([self._hour, self._minute, self._second,
                           us1, us2, us3])
        if self._tzinfo is None:
            return (basestate,)
        else:
            return (basestate, self._tzinfo)

    def __setstate(self, string, tzinfo):
        if len(string) != 6 or string[0] >= 24:
            raise TypeError("an integer is required")
        (self._hour, self._minute, self._second,
         us1, us2, us3) = string
        self._microsecond = (((us1 << 8) | us2) << 8) | us3
        if tzinfo is None or isinstance(tzinfo, _tzinfo_class):
            self._tzinfo = tzinfo
        else:
            raise TypeError("bad tzinfo state arg %r" % tzinfo)

    def __reduce__(self):
        return (time, self._getstate())

_time_class = time  # so functions w/ args named "time" can get at the class

time.min = time(0, 0, 0)
time.max = time(23, 59, 59, 999999)
time.resolution = timedelta(microseconds=1)

class datetime(date):
    """datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])

    The year, month and day arguments are required. tzinfo may be None, or an
    instance of a tzinfo subclass. The remaining arguments may be ints.
    """

    __slots__ = date.__slots__ + (
        '_hour', '_minute', '_second',
        '_microsecond', '_tzinfo')
    def __new__(cls, year, month=None, day=None, hour=0, minute=0, second=0,
                microsecond=0, tzinfo=None):
        if isinstance(year, bytes) and len(year) == 10:
            # Pickle support
            self = date.__new__(cls, year[:4])
            self.__setstate(year, month)
            return self
        _check_tzinfo_arg(tzinfo)
        _check_time_fields(hour, minute, second, microsecond)
        self = date.__new__(cls, year, month, day)
        self._hour = hour
        self._minute = minute
        self._second = second
        self._microsecond = microsecond
        self._tzinfo = tzinfo
        return self

    # Read-only field accessors
    @property
    def hour(self):
        """hour (0-23)"""
        return self._hour

    @property
    def minute(self):
        """minute (0-59)"""
        return self._minute

    @property
    def second(self):
        """second (0-59)"""
        return self._second

    @property
    def microsecond(self):
        """microsecond (0-999999)"""
        return self._microsecond

    @property
    def tzinfo(self):
        """timezone info object"""
        return self._tzinfo

    @classmethod
    def _fromtimestamp(cls, t, utc, tz):
        """Construct a datetime from a POSIX timestamp (like time.time()).

        A timezone info object may be passed in as well.
        """
        frac, t = _math.modf(t)
        us = round(frac * 1e6)
        if us >= 1000000:
            t += 1
            us -= 1000000
        elif us < 0:
            t -= 1
            us += 1000000

        converter = _time.gmtime if utc else _time.localtime
        y, m, d, hh, mm, ss, weekday, jday, dst = converter(t)
        ss = min(ss, 59)    # clamp out leap seconds if the platform has them
        return cls(y, m, d, hh, mm, ss, us, tz)

    @classmethod
    def fromtimestamp(cls, t, tz=None):
        """Construct a datetime from a POSIX timestamp (like time.time()).

        A timezone info object may be passed in as well.
        """
        _check_tzinfo_arg(tz)

        result = cls._fromtimestamp(t, tz is not None, tz)
        if tz is not None:
            result = tz.fromutc(result)
        return result

    @classmethod
    def utcfromtimestamp(cls, t):
        """Construct a naive UTC datetime from a POSIX timestamp."""
        return cls._fromtimestamp(t, True, None)

    # XXX This is supposed to do better than we *can* do by using time.time(),
    # XXX if the platform supports a more accurate way.  The C implementation
    # XXX uses gettimeofday on platforms that have it, but that isn't
    # XXX available from Python.  So now() may return different results
    # XXX across the implementations.
    @classmethod
    def now(cls, tz=None):
        "Construct a datetime from time.time() and optional time zone info."
        t = _time.time()
        return cls.fromtimestamp(t, tz)

    @classmethod
    def utcnow(cls):
        "Construct a UTC datetime from time.time()."
        t = _time.time()
        return cls.utcfromtimestamp(t)

    @classmethod
    def combine(cls, date, time):
        "Construct a datetime from a given date and a given time."
        if not isinstance(date, _date_class):
            raise TypeError("date argument must be a date instance")
        if not isinstance(time, _time_class):
            raise TypeError("time argument must be a time instance")
        return cls(date.year, date.month, date.day,
                   time.hour, time.minute, time.second, time.microsecond,
                   time.tzinfo)

    def timetuple(self):
        "Return local time tuple compatible with time.localtime()."
        dst = self.dst()
        if dst is None:
            dst = -1
        elif dst:
            dst = 1
        else:
            dst = 0
        return _build_struct_time(self.year, self.month, self.day,
                                  self.hour, self.minute, self.second,
                                  dst)

    def timestamp(self):
        "Return POSIX timestamp as float"
        if self._tzinfo is None:
            return _time.mktime((self.year, self.month, self.day,
                                 self.hour, self.minute, self.second,
                                 -1, -1, -1)) + self.microsecond / 1e6
        else:
            return (self - _EPOCH).total_seconds()

    def utctimetuple(self):
        "Return UTC time tuple compatible with time.gmtime()."
        offset = self.utcoffset()
        if offset:
            self -= offset
        y, m, d = self.year, self.month, self.day
        hh, mm, ss = self.hour, self.minute, self.second
        return _build_struct_time(y, m, d, hh, mm, ss, 0)

    def date(self):
        "Return the date part."
        return date(self._year, self._month, self._day)

    def time(self):
        "Return the time part, with tzinfo None."
        return time(self.hour, self.minute, self.second, self.microsecond)

    def timetz(self):
        "Return the time part, with same tzinfo."
        return time(self.hour, self.minute, self.second, self.microsecond,
                    self._tzinfo)

    def replace(self, year=None, month=None, day=None, hour=None,
                minute=None, second=None, microsecond=None, tzinfo=True):
        """Return a new datetime with new values for the specified fields."""
        if year is None:
            year = self.year
        if month is None:
            month = self.month
        if day is None:
            day = self.day
        if hour is None:
            hour = self.hour
        if minute is None:
            minute = self.minute
        if second is None:
            second = self.second
        if microsecond is None:
            microsecond = self.microsecond
        if tzinfo is True:
            tzinfo = self.tzinfo
        _check_date_fields(year, month, day)
        _check_time_fields(hour, minute, second, microsecond)
        _check_tzinfo_arg(tzinfo)
        return datetime(year, month, day, hour, minute, second,
                          microsecond, tzinfo)

    def astimezone(self, tz=None):
        if tz is None:
            if self.tzinfo is None:
                raise ValueError("astimezone() requires an aware datetime")
            ts = (self - _EPOCH) // timedelta(seconds=1)
            localtm = _time.localtime(ts)
            local = datetime(*localtm[:6])
            try:
                # Extract TZ data if available
                gmtoff = localtm.tm_gmtoff
                zone = localtm.tm_zone
            except AttributeError:
                # Compute UTC offset and compare with the value implied
                # by tm_isdst.  If the values match, use the zone name
                # implied by tm_isdst.
                delta = local - datetime(*_time.gmtime(ts)[:6])
                dst = _time.daylight and localtm.tm_isdst > 0
                gmtoff = -(_time.altzone if dst else _time.timezone)
                if delta == timedelta(seconds=gmtoff):
                    tz = timezone(delta, _time.tzname[dst])
                else:
                    tz = timezone(delta)
            else:
                tz = timezone(timedelta(seconds=gmtoff), zone)

        elif not isinstance(tz, tzinfo):
            raise TypeError("tz argument must be an instance of tzinfo")

        mytz = self.tzinfo
        if mytz is None:
            raise ValueError("astimezone() requires an aware datetime")

        if tz is mytz:
            return self

        # Convert self to UTC, and attach the new time zone object.
        myoffset = self.utcoffset()
        if myoffset is None:
            raise ValueError("astimezone() requires an aware datetime")
        utc = (self - myoffset).replace(tzinfo=tz)

        # Convert from UTC to tz's local time.
        return tz.fromutc(utc)

    # Ways to produce a string.

    def ctime(self):
        "Return ctime() style string."
        weekday = self.toordinal() % 7 or 7
        return "%s %s %2d %02d:%02d:%02d %04d" % (
            _DAYNAMES[weekday],
            _MONTHNAMES[self._month],
            self._day,
            self._hour, self._minute, self._second,
            self._year)

    def isoformat(self, sep='T'):
        """Return the time formatted according to ISO.

        This is 'YYYY-MM-DD HH:MM:SS.mmmmmm', or 'YYYY-MM-DD HH:MM:SS' if
        self.microsecond == 0.

        If self.tzinfo is not None, the UTC offset is also attached, giving
        'YYYY-MM-DD HH:MM:SS.mmmmmm+HH:MM' or 'YYYY-MM-DD HH:MM:SS+HH:MM'.

        Optional argument sep specifies the separator between date and
        time, default 'T'.
        """
        s = ("%04d-%02d-%02d%c" % (self._year, self._month, self._day,
                                  sep) +
                _format_time(self._hour, self._minute, self._second,
                             self._microsecond))
        off = self.utcoffset()
        if off is not None:
            if off.days < 0:
                sign = "-"
                off = -off
            else:
                sign = "+"
            hh, mm = divmod(off, timedelta(hours=1))
            assert not mm % timedelta(minutes=1), "whole minute"
            mm //= timedelta(minutes=1)
            s += "%s%02d:%02d" % (sign, hh, mm)
        return s

    def __repr__(self):
        """Convert to formal string, for repr()."""
        L = [self._year, self._month, self._day, # These are never zero
             self._hour, self._minute, self._second, self._microsecond]
        if L[-1] == 0:
            del L[-1]
        if L[-1] == 0:
            del L[-1]
        s = ", ".join(map(str, L))
        s = "%s(%s)" % ('datetime.' + self.__class__.__name__, s)
        if self._tzinfo is not None:
            assert s[-1:] == ")"
            s = s[:-1] + ", tzinfo=%r" % self._tzinfo + ")"
        return s

    def __str__(self):
        "Convert to string, for str()."
        return self.isoformat(sep=' ')

    @classmethod
    def strptime(cls, date_string, format):
        'string, format -> new datetime parsed from a string (like time.strptime()).'
        import _strptime
        return _strptime._strptime_datetime(cls, date_string, format)

    def utcoffset(self):
        """Return the timezone offset in minutes east of UTC (negative west of
        UTC)."""
        if self._tzinfo is None:
            return None
        offset = self._tzinfo.utcoffset(self)
        _check_utc_offset("utcoffset", offset)
        return offset

    def tzname(self):
        """Return the timezone name.

        Note that the name is 100% informational -- there's no requirement that
        it mean anything in particular. For example, "GMT", "UTC", "-500",
        "-5:00", "EDT", "US/Eastern", "America/New York" are all valid replies.
        """
        name = _call_tzinfo_method(self._tzinfo, "tzname", self)
        _check_tzname(name)
        return name

    def dst(self):
        """Return 0 if DST is not in effect, or the DST offset (in minutes
        eastward) if DST is in effect.

        This is purely informational; the DST offset has already been added to
        the UTC offset returned by utcoffset() if applicable, so there's no
        need to consult dst() unless you're interested in displaying the DST
        info.
        """
        if self._tzinfo is None:
            return None
        offset = self._tzinfo.dst(self)
        _check_utc_offset("dst", offset)
        return offset

    # Comparisons of datetime objects with other.

    def __eq__(self, other):
        if isinstance(other, datetime):
            return self._cmp(other, allow_mixed=True) == 0
        elif not isinstance(other, date):
            return NotImplemented
        else:
            return False

    def __ne__(self, other):
        if isinstance(other, datetime):
            return self._cmp(other, allow_mixed=True) != 0
        elif not isinstance(other, date):
            return NotImplemented
        else:
            return True

    def __le__(self, other):
        if isinstance(other, datetime):
            return self._cmp(other) <= 0
        elif not isinstance(other, date):
            return NotImplemented
        else:
            _cmperror(self, other)

    def __lt__(self, other):
        if isinstance(other, datetime):
            return self._cmp(other) < 0
        elif not isinstance(other, date):
            return NotImplemented
        else:
            _cmperror(self, other)

    def __ge__(self, other):
        if isinstance(other, datetime):
            return self._cmp(other) >= 0
        elif not isinstance(other, date):
            return NotImplemented
        else:
            _cmperror(self, other)

    def __gt__(self, other):
        if isinstance(other, datetime):
            return self._cmp(other) > 0
        elif not isinstance(other, date):
            return NotImplemented
        else:
            _cmperror(self, other)

    def _cmp(self, other, allow_mixed=False):
        assert isinstance(other, datetime)
        mytz = self._tzinfo
        ottz = other._tzinfo
        myoff = otoff = None

        if mytz is ottz:
            base_compare = True
        else:
            myoff = self.utcoffset()
            otoff = other.utcoffset()
            base_compare = myoff == otoff

        if base_compare:
            return _cmp((self._year, self._month, self._day,
                         self._hour, self._minute, self._second,
                         self._microsecond),
                       (other._year, other._month, other._day,
                        other._hour, other._minute, other._second,
                        other._microsecond))
        if myoff is None or otoff is None:
            if allow_mixed:
                return 2 # arbitrary non-zero value
            else:
                raise TypeError("cannot compare naive and aware datetimes")
        # XXX What follows could be done more efficiently...
        diff = self - other     # this will take offsets into account
        if diff.days < 0:
            return -1
        return diff and 1 or 0

    def __add__(self, other):
        "Add a datetime and a timedelta."
        if not isinstance(other, timedelta):
            return NotImplemented
        delta = timedelta(self.toordinal(),
                          hours=self._hour,
                          minutes=self._minute,
                          seconds=self._second,
                          microseconds=self._microsecond)
        delta += other
        hour, rem = divmod(delta.seconds, 3600)
        minute, second = divmod(rem, 60)
        if 0 < delta.days <= _MAXORDINAL:
            return datetime.combine(date.fromordinal(delta.days),
                                    time(hour, minute, second,
                                         delta.microseconds,
                                         tzinfo=self._tzinfo))
        raise OverflowError("result out of range")

    __radd__ = __add__

    def __sub__(self, other):
        "Subtract two datetimes, or a datetime and a timedelta."
        if not isinstance(other, datetime):
            if isinstance(other, timedelta):
                return self + -other
            return NotImplemented

        days1 = self.toordinal()
        days2 = other.toordinal()
        secs1 = self._second + self._minute * 60 + self._hour * 3600
        secs2 = other._second + other._minute * 60 + other._hour * 3600
        base = timedelta(days1 - days2,
                         secs1 - secs2,
                         self._microsecond - other._microsecond)
        if self._tzinfo is other._tzinfo:
            return base
        myoff = self.utcoffset()
        otoff = other.utcoffset()
        if myoff == otoff:
            return base
        if myoff is None or otoff is None:
            raise TypeError("cannot mix naive and timezone-aware time")
        return base + otoff - myoff

    def __hash__(self):
        tzoff = self.utcoffset()
        if tzoff is None:
            return hash(self._getstate()[0])
        days = _ymd2ord(self.year, self.month, self.day)
        seconds = self.hour * 3600 + self.minute * 60 + self.second
        return hash(timedelta(days, seconds, self.microsecond) - tzoff)

    # Pickle support.

    def _getstate(self):
        yhi, ylo = divmod(self._year, 256)
        us2, us3 = divmod(self._microsecond, 256)
        us1, us2 = divmod(us2, 256)
        basestate = bytes([yhi, ylo, self._month, self._day,
                           self._hour, self._minute, self._second,
                           us1, us2, us3])
        if self._tzinfo is None:
            return (basestate,)
        else:
            return (basestate, self._tzinfo)

    def __setstate(self, string, tzinfo):
        (yhi, ylo, self._month, self._day, self._hour,
         self._minute, self._second, us1, us2, us3) = string
        self._year = yhi * 256 + ylo
        self._microsecond = (((us1 << 8) | us2) << 8) | us3
        if tzinfo is None or isinstance(tzinfo, _tzinfo_class):
            self._tzinfo = tzinfo
        else:
            raise TypeError("bad tzinfo state arg %r" % tzinfo)

    def __reduce__(self):
        return (self.__class__, self._getstate())


datetime.min = datetime(1, 1, 1)
datetime.max = datetime(9999, 12, 31, 23, 59, 59, 999999)
datetime.resolution = timedelta(microseconds=1)


def _isoweek1monday(year):
    # Helper to calculate the day number of the Monday starting week 1
    # XXX This could be done more efficiently
    THURSDAY = 3
    firstday = _ymd2ord(year, 1, 1)
    firstweekday = (firstday + 6) % 7 # See weekday() above
    week1monday = firstday - firstweekday
    if firstweekday > THURSDAY:
        week1monday += 7
    return week1monday

class timezone(tzinfo):
    __slots__ = '_offset', '_name'

    # Sentinel value to disallow None
    _Omitted = object()
    def __new__(cls, offset, name=_Omitted):
        if not isinstance(offset, timedelta):
            raise TypeError("offset must be a timedelta")
        if name is cls._Omitted:
            if not offset:
                return cls.utc
            name = None
        elif not isinstance(name, str):
            raise TypeError("name must be a string")
        if not cls._minoffset <= offset <= cls._maxoffset:
            raise ValueError("offset must be a timedelta"
                             " strictly between -timedelta(hours=24) and"
                             " timedelta(hours=24).")
        if (offset.microseconds != 0 or
            offset.seconds % 60 != 0):
            raise ValueError("offset must be a timedelta"
                             " representing a whole number of minutes")
        return cls._create(offset, name)

    @classmethod
    def _create(cls, offset, name=None):
        self = tzinfo.__new__(cls)
        self._offset = offset
        self._name = name
        return self

    def __getinitargs__(self):
        """pickle support"""
        if self._name is None:
            return (self._offset,)
        return (self._offset, self._name)

    def __eq__(self, other):
        if type(other) != timezone:
            return False
        return self._offset == other._offset

    def __hash__(self):
        return hash(self._offset)

    def __repr__(self):
        """Convert to formal string, for repr().

        >>> tz = timezone.utc
        >>> repr(tz)
        'datetime.timezone.utc'
        >>> tz = timezone(timedelta(hours=-5), 'EST')
        >>> repr(tz)
        "datetime.timezone(datetime.timedelta(-1, 68400), 'EST')"
        """
        if self is self.utc:
            return 'datetime.timezone.utc'
        if self._name is None:
            return "%s(%r)" % ('datetime.' + self.__class__.__name__,
                               self._offset)
        return "%s(%r, %r)" % ('datetime.' + self.__class__.__name__,
                               self._offset, self._name)

    def __str__(self):
        return self.tzname(None)

    def utcoffset(self, dt):
        if isinstance(dt, datetime) or dt is None:
            return self._offset
        raise TypeError("utcoffset() argument must be a datetime instance"
                        " or None")

    def tzname(self, dt):
        if isinstance(dt, datetime) or dt is None:
            if self._name is None:
                return self._name_from_offset(self._offset)
            return self._name
        raise TypeError("tzname() argument must be a datetime instance"
                        " or None")

    def dst(self, dt):
        if isinstance(dt, datetime) or dt is None:
            return None
        raise TypeError("dst() argument must be a datetime instance"
                        " or None")

    def fromutc(self, dt):
        if isinstance(dt, datetime):
            if dt.tzinfo is not self:
                raise ValueError("fromutc: dt.tzinfo "
                                 "is not self")
            return dt + self._offset
        raise TypeError("fromutc() argument must be a datetime instance"
                        " or None")

    _maxoffset = timedelta(hours=23, minutes=59)
    _minoffset = -_maxoffset

    @staticmethod
    def _name_from_offset(delta):
        if delta < timedelta(0):
            sign = '-'
            delta = -delta
        else:
            sign = '+'
        hours, rest = divmod(delta, timedelta(hours=1))
        minutes = rest // timedelta(minutes=1)
        return 'UTC{}{:02d}:{:02d}'.format(sign, hours, minutes)

timezone.utc = timezone._create(timedelta(0))
timezone.min = timezone._create(timezone._minoffset)
timezone.max = timezone._create(timezone._maxoffset)
_EPOCH = datetime(1970, 1, 1, tzinfo=timezone.utc)

# Some time zone algebra.  For a datetime x, let
#     x.n = x stripped of its timezone -- its naive time.
#     x.o = x.utcoffset(), and assuming that doesn't raise an exception or
#           return None
#     x.d = x.dst(), and assuming that doesn't raise an exception or
#           return None
#     x.s = x's standard offset, x.o - x.d
#
# Now some derived rules, where k is a duration (timedelta).
#
# 1. x.o = x.s + x.d
#    This follows from the definition of x.s.
#
# 2. If x and y have the same tzinfo member, x.s = y.s.
#    This is actually a requirement, an assumption we need to make about
#    sane tzinfo classes.
#
# 3. The naive UTC time corresponding to x is x.n - x.o.
#    This is again a requirement for a sane tzinfo class.
#
# 4. (x+k).s = x.s
#    This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
#
# 5. (x+k).n = x.n + k
#    Again follows from how arithmetic is defined.
#
# Now we can explain tz.fromutc(x).  Let's assume it's an interesting case
# (meaning that the various tzinfo methods exist, and don't blow up or return
# None when called).
#
# The function wants to return a datetime y with timezone tz, equivalent to x.
# x is already in UTC.
#
# By #3, we want
#
#     y.n - y.o = x.n                             [1]
#
# The algorithm starts by attaching tz to x.n, and calling that y.  So
# x.n = y.n at the start.  Then it wants to add a duration k to y, so that [1]
# becomes true; in effect, we want to solve [2] for k:
#
#    (y+k).n - (y+k).o = x.n                      [2]
#
# By #1, this is the same as
#
#    (y+k).n - ((y+k).s + (y+k).d) = x.n          [3]
#
# By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
# Substituting that into [3],
#
#    x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
#    k - (y+k).s - (y+k).d = 0; rearranging,
#    k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
#    k = y.s - (y+k).d
#
# On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
# approximate k by ignoring the (y+k).d term at first.  Note that k can't be
# very large, since all offset-returning methods return a duration of magnitude
# less than 24 hours.  For that reason, if y is firmly in std time, (y+k).d must
# be 0, so ignoring it has no consequence then.
#
# In any case, the new value is
#
#     z = y + y.s                                 [4]
#
# It's helpful to step back at look at [4] from a higher level:  it's simply
# mapping from UTC to tz's standard time.
#
# At this point, if
#
#     z.n - z.o = x.n                             [5]
#
# we have an equivalent time, and are almost done.  The insecurity here is
# at the start of daylight time.  Picture US Eastern for concreteness.  The wall
# time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
# sense then.  The docs ask that an Eastern tzinfo class consider such a time to
# be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
# on the day DST starts.  We want to return the 1:MM EST spelling because that's
# the only spelling that makes sense on the local wall clock.
#
# In fact, if [5] holds at this point, we do have the standard-time spelling,
# but that takes a bit of proof.  We first prove a stronger result.  What's the
# difference between the LHS and RHS of [5]?  Let
#
#     diff = x.n - (z.n - z.o)                    [6]
#
# Now
#     z.n =                       by [4]
#     (y + y.s).n =               by #5
#     y.n + y.s =                 since y.n = x.n
#     x.n + y.s =                 since z and y are have the same tzinfo member,
#                                     y.s = z.s by #2
#     x.n + z.s
#
# Plugging that back into [6] gives
#
#     diff =
#     x.n - ((x.n + z.s) - z.o) =     expanding
#     x.n - x.n - z.s + z.o =         cancelling
#     - z.s + z.o =                   by #2
#     z.d
#
# So diff = z.d.
#
# If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
# spelling we wanted in the endcase described above.  We're done.  Contrarily,
# if z.d = 0, then we have a UTC equivalent, and are also done.
#
# If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
# add to z (in effect, z is in tz's standard time, and we need to shift the
# local clock into tz's daylight time).
#
# Let
#
#     z' = z + z.d = z + diff                     [7]
#
# and we can again ask whether
#
#     z'.n - z'.o = x.n                           [8]
#
# If so, we're done.  If not, the tzinfo class is insane, according to the
# assumptions we've made.  This also requires a bit of proof.  As before, let's
# compute the difference between the LHS and RHS of [8] (and skipping some of
# the justifications for the kinds of substitutions we've done several times
# already):
#
#     diff' = x.n - (z'.n - z'.o) =           replacing z'.n via [7]
#             x.n  - (z.n + diff - z'.o) =    replacing diff via [6]
#             x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
#             x.n - z.n - x.n + z.n - z.o + z'.o =    cancel x.n
#             - z.n + z.n - z.o + z'.o =              cancel z.n
#             - z.o + z'.o =                      #1 twice
#             -z.s - z.d + z'.s + z'.d =          z and z' have same tzinfo
#             z'.d - z.d
#
# So z' is UTC-equivalent to x iff z'.d = z.d at this point.  If they are equal,
# we've found the UTC-equivalent so are done.  In fact, we stop with [7] and
# return z', not bothering to compute z'.d.
#
# How could z.d and z'd differ?  z' = z + z.d [7], so merely moving z' by
# a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
# would have to change the result dst() returns:  we start in DST, and moving
# a little further into it takes us out of DST.
#
# There isn't a sane case where this can happen.  The closest it gets is at
# the end of DST, where there's an hour in UTC with no spelling in a hybrid
# tzinfo class.  In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT.  During
# that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
# UTC) because the docs insist on that, but 0:MM is taken as being in daylight
# time (4:MM UTC).  There is no local time mapping to 5:MM UTC.  The local
# clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
# standard time.  Since that's what the local clock *does*, we want to map both
# UTC hours 5:MM and 6:MM to 1:MM Eastern.  The result is ambiguous
# in local time, but so it goes -- it's the way the local clock works.
#
# When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
# so z=0:MM.  z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
# z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
# (correctly) concludes that z' is not UTC-equivalent to x.
#
# Because we know z.d said z was in daylight time (else [5] would have held and
# we would have stopped then), and we know z.d != z'.d (else [8] would have held
# and we have stopped then), and there are only 2 possible values dst() can
# return in Eastern, it follows that z'.d must be 0 (which it is in the example,
# but the reasoning doesn't depend on the example -- it depends on there being
# two possible dst() outcomes, one zero and the other non-zero).  Therefore
# z' must be in standard time, and is the spelling we want in this case.
#
# Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
# concerned (because it takes z' as being in standard time rather than the
# daylight time we intend here), but returning it gives the real-life "local
# clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
# tz.
#
# When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
# the 1:MM standard time spelling we want.
#
# So how can this break?  One of the assumptions must be violated.  Two
# possibilities:
#
# 1) [2] effectively says that y.s is invariant across all y belong to a given
#    time zone.  This isn't true if, for political reasons or continental drift,
#    a region decides to change its base offset from UTC.
#
# 2) There may be versions of "double daylight" time where the tail end of
#    the analysis gives up a step too early.  I haven't thought about that
#    enough to say.
#
# In any case, it's clear that the default fromutc() is strong enough to handle
# "almost all" time zones:  so long as the standard offset is invariant, it
# doesn't matter if daylight time transition points change from year to year, or
# if daylight time is skipped in some years; it doesn't matter how large or
# small dst() may get within its bounds; and it doesn't even matter if some
# perverse time zone returns a negative dst()).  So a breaking case must be
# pretty bizarre, and a tzinfo subclass can override fromutc() if it is.

try:
    from _datetime import *
except ImportError:
    pass
else:
    # Clean up unused names
    del (_DAYNAMES, _DAYS_BEFORE_MONTH, _DAYS_IN_MONTH,
         _DI100Y, _DI400Y, _DI4Y, _MAXORDINAL, _MONTHNAMES,
         _build_struct_time, _call_tzinfo_method, _check_date_fields,
         _check_time_fields, _check_tzinfo_arg, _check_tzname,
         _check_utc_offset, _cmp, _cmperror, _date_class, _days_before_month,
         _days_before_year, _days_in_month, _format_time, _is_leap,
         _isoweek1monday, _math, _ord2ymd, _time, _time_class, _tzinfo_class,
         _wrap_strftime, _ymd2ord)
    # XXX Since import * above excludes names that start with _,
    # docstring does not get overwritten. In the future, it may be
    # appropriate to maintain a single module level docstring and
    # remove the following line.
    from _datetime import __doc__
lib\decimal.py
# Copyright (c) 2004 Python Software Foundation.
# All rights reserved.

# Written by Eric Price <eprice at tjhsst.edu>
#    and Facundo Batista <facundo at taniquetil.com.ar>
#    and Raymond Hettinger <python at rcn.com>
#    and Aahz <aahz at pobox.com>
#    and Tim Peters

# This module should be kept in sync with the latest updates of the
# IBM specification as it evolves.  Those updates will be treated
# as bug fixes (deviation from the spec is a compatibility, usability
# bug) and will be backported.  At this point the spec is stabilizing
# and the updates are becoming fewer, smaller, and less significant.

"""
This is an implementation of decimal floating point arithmetic based on
the General Decimal Arithmetic Specification:

    http://speleotrove.com/decimal/decarith.html

and IEEE standard 854-1987:

    http://en.wikipedia.org/wiki/IEEE_854-1987

Decimal floating point has finite precision with arbitrarily large bounds.

The purpose of this module is to support arithmetic using familiar
"schoolhouse" rules and to avoid some of the tricky representation
issues associated with binary floating point.  The package is especially
useful for financial applications or for contexts where users have
expectations that are at odds with binary floating point (for instance,
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected
Decimal('0.00')).

Here are some examples of using the decimal module:

>>> from decimal import *
>>> setcontext(ExtendedContext)
>>> Decimal(0)
Decimal('0')
>>> Decimal('1')
Decimal('1')
>>> Decimal('-.0123')
Decimal('-0.0123')
>>> Decimal(123456)
Decimal('123456')
>>> Decimal('123.45e12345678')
Decimal('1.2345E+12345680')
>>> Decimal('1.33') + Decimal('1.27')
Decimal('2.60')
>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
Decimal('-2.20')
>>> dig = Decimal(1)
>>> print(dig / Decimal(3))
0.333333333
>>> getcontext().prec = 18
>>> print(dig / Decimal(3))
0.333333333333333333
>>> print(dig.sqrt())
1
>>> print(Decimal(3).sqrt())
1.73205080756887729
>>> print(Decimal(3) ** 123)
4.85192780976896427E+58
>>> inf = Decimal(1) / Decimal(0)
>>> print(inf)
Infinity
>>> neginf = Decimal(-1) / Decimal(0)
>>> print(neginf)
-Infinity
>>> print(neginf + inf)
NaN
>>> print(neginf * inf)
-Infinity
>>> print(dig / 0)
Infinity
>>> getcontext().traps[DivisionByZero] = 1
>>> print(dig / 0)
Traceback (most recent call last):
  ...
  ...
  ...
decimal.DivisionByZero: x / 0
>>> c = Context()
>>> c.traps[InvalidOperation] = 0
>>> print(c.flags[InvalidOperation])
0
>>> c.divide(Decimal(0), Decimal(0))
Decimal('NaN')
>>> c.traps[InvalidOperation] = 1
>>> print(c.flags[InvalidOperation])
1
>>> c.flags[InvalidOperation] = 0
>>> print(c.flags[InvalidOperation])
0
>>> print(c.divide(Decimal(0), Decimal(0)))
Traceback (most recent call last):
  ...
  ...
  ...
decimal.InvalidOperation: 0 / 0
>>> print(c.flags[InvalidOperation])
1
>>> c.flags[InvalidOperation] = 0
>>> c.traps[InvalidOperation] = 0
>>> print(c.divide(Decimal(0), Decimal(0)))
NaN
>>> print(c.flags[InvalidOperation])
1
>>>
"""

__all__ = [
    # Two major classes
    'Decimal', 'Context',

    # Named tuple representation
    'DecimalTuple',

    # Contexts
    'DefaultContext', 'BasicContext', 'ExtendedContext',

    # Exceptions
    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
    'FloatOperation',

    # Exceptional conditions that trigger InvalidOperation
    'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined',

    # Constants for use in setting up contexts
    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',

    # Functions for manipulating contexts
    'setcontext', 'getcontext', 'localcontext',

    # Limits for the C version for compatibility
    'MAX_PREC',  'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY',

    # C version: compile time choice that enables the thread local context
    'HAVE_THREADS'
]

__version__ = '1.70'    # Highest version of the spec this complies with
                        # See http://speleotrove.com/decimal/
__libmpdec_version__ = "2.4.1" # compatible libmpdec version

import math as _math
import numbers as _numbers
import sys

is_cli = sys.implementation.name == 'ironpython'

try:
    from collections import namedtuple as _namedtuple
    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
except ImportError:
    DecimalTuple = lambda *args: args

# Rounding
ROUND_DOWN = 'ROUND_DOWN'
ROUND_HALF_UP = 'ROUND_HALF_UP'
ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
ROUND_CEILING = 'ROUND_CEILING'
ROUND_FLOOR = 'ROUND_FLOOR'
ROUND_UP = 'ROUND_UP'
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
ROUND_05UP = 'ROUND_05UP'

# Compatibility with the C version
HAVE_THREADS = True
if sys.maxsize == 2**63-1:
    MAX_PREC = 999999999999999999
    MAX_EMAX = 999999999999999999
    MIN_EMIN = -999999999999999999
else:
    MAX_PREC = 425000000
    MAX_EMAX = 425000000
    MIN_EMIN = -425000000

MIN_ETINY = MIN_EMIN - (MAX_PREC-1)

# Errors

class DecimalException(ArithmeticError):
    """Base exception class.

    Used exceptions derive from this.
    If an exception derives from another exception besides this (such as
    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
    called if the others are present.  This isn't actually used for
    anything, though.

    handle  -- Called when context._raise_error is called and the
               trap_enabler is not set.  First argument is self, second is the
               context.  More arguments can be given, those being after
               the explanation in _raise_error (For example,
               context._raise_error(NewError, '(-x)!', self._sign) would
               call NewError().handle(context, self._sign).)

    To define a new exception, it should be sufficient to have it derive
    from DecimalException.
    """
    def handle(self, context, *args):
        pass


class Clamped(DecimalException):
    """Exponent of a 0 changed to fit bounds.

    This occurs and signals clamped if the exponent of a result has been
    altered in order to fit the constraints of a specific concrete
    representation.  This may occur when the exponent of a zero result would
    be outside the bounds of a representation, or when a large normal
    number would have an encoded exponent that cannot be represented.  In
    this latter case, the exponent is reduced to fit and the corresponding
    number of zero digits are appended to the coefficient ("fold-down").
    """

class InvalidOperation(DecimalException):
    """An invalid operation was performed.

    Various bad things cause this:

    Something creates a signaling NaN
    -INF + INF
    0 * (+-)INF
    (+-)INF / (+-)INF
    x % 0
    (+-)INF % x
    x._rescale( non-integer )
    sqrt(-x) , x > 0
    0 ** 0
    x ** (non-integer)
    x ** (+-)INF
    An operand is invalid

    The result of the operation after these is a quiet positive NaN,
    except when the cause is a signaling NaN, in which case the result is
    also a quiet NaN, but with the original sign, and an optional
    diagnostic information.
    """
    def handle(self, context, *args):
        if args:
            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
            return ans._fix_nan(context)
        return _NaN

class ConversionSyntax(InvalidOperation):
    """Trying to convert badly formed string.

    This occurs and signals invalid-operation if an string is being
    converted to a number and it does not conform to the numeric string
    syntax.  The result is [0,qNaN].
    """
    def handle(self, context, *args):
        return _NaN

class DivisionByZero(DecimalException, ZeroDivisionError):
    """Division by 0.

    This occurs and signals division-by-zero if division of a finite number
    by zero was attempted (during a divide-integer or divide operation, or a
    power operation with negative right-hand operand), and the dividend was
    not zero.

    The result of the operation is [sign,inf], where sign is the exclusive
    or of the signs of the operands for divide, or is 1 for an odd power of
    -0, for power.
    """

    def handle(self, context, sign, *args):
        return _SignedInfinity[sign]

class DivisionImpossible(InvalidOperation):
    """Cannot perform the division adequately.

    This occurs and signals invalid-operation if the integer result of a
    divide-integer or remainder operation had too many digits (would be
    longer than precision).  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return _NaN

class DivisionUndefined(InvalidOperation, ZeroDivisionError):
    """Undefined result of division.

    This occurs and signals invalid-operation if division by zero was
    attempted (during a divide-integer, divide, or remainder operation), and
    the dividend is also zero.  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return _NaN

class Inexact(DecimalException):
    """Had to round, losing information.

    This occurs and signals inexact whenever the result of an operation is
    not exact (that is, it needed to be rounded and any discarded digits
    were non-zero), or if an overflow or underflow condition occurs.  The
    result in all cases is unchanged.

    The inexact signal may be tested (or trapped) to determine if a given
    operation (or sequence of operations) was inexact.
    """

class InvalidContext(InvalidOperation):
    """Invalid context.  Unknown rounding, for example.

    This occurs and signals invalid-operation if an invalid context was
    detected during an operation.  This can occur if contexts are not checked
    on creation and either the precision exceeds the capability of the
    underlying concrete representation or an unknown or unsupported rounding
    was specified.  These aspects of the context need only be checked when
    the values are required to be used.  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return _NaN

class Rounded(DecimalException):
    """Number got rounded (not  necessarily changed during rounding).

    This occurs and signals rounded whenever the result of an operation is
    rounded (that is, some zero or non-zero digits were discarded from the
    coefficient), or if an overflow or underflow condition occurs.  The
    result in all cases is unchanged.

    The rounded signal may be tested (or trapped) to determine if a given
    operation (or sequence of operations) caused a loss of precision.
    """

class Subnormal(DecimalException):
    """Exponent < Emin before rounding.

    This occurs and signals subnormal whenever the result of a conversion or
    operation is subnormal (that is, its adjusted exponent is less than
    Emin, before any rounding).  The result in all cases is unchanged.

    The subnormal signal may be tested (or trapped) to determine if a given
    or operation (or sequence of operations) yielded a subnormal result.
    """

class Overflow(Inexact, Rounded):
    """Numerical overflow.

    This occurs and signals overflow if the adjusted exponent of a result
    (from a conversion or from an operation that is not an attempt to divide
    by zero), after rounding, would be greater than the largest value that
    can be handled by the implementation (the value Emax).

    The result depends on the rounding mode:

    For round-half-up and round-half-even (and for round-half-down and
    round-up, if implemented), the result of the operation is [sign,inf],
    where sign is the sign of the intermediate result.  For round-down, the
    result is the largest finite number that can be represented in the
    current precision, with the sign of the intermediate result.  For
    round-ceiling, the result is the same as for round-down if the sign of
    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
    the result is the same as for round-down if the sign of the intermediate
    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
    will also be raised.
    """

    def handle(self, context, sign, *args):
        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
                                ROUND_HALF_DOWN, ROUND_UP):
            return _SignedInfinity[sign]
        if sign == 0:
            if context.rounding == ROUND_CEILING:
                return _SignedInfinity[sign]
            return _dec_from_triple(sign, '9'*context.prec,
                            context.Emax-context.prec+1)
        if sign == 1:
            if context.rounding == ROUND_FLOOR:
                return _SignedInfinity[sign]
            return _dec_from_triple(sign, '9'*context.prec,
                             context.Emax-context.prec+1)


class Underflow(Inexact, Rounded, Subnormal):
    """Numerical underflow with result rounded to 0.

    This occurs and signals underflow if a result is inexact and the
    adjusted exponent of the result would be smaller (more negative) than
    the smallest value that can be handled by the implementation (the value
    Emin).  That is, the result is both inexact and subnormal.

    The result after an underflow will be a subnormal number rounded, if
    necessary, so that its exponent is not less than Etiny.  This may result
    in 0 with the sign of the intermediate result and an exponent of Etiny.

    In all cases, Inexact, Rounded, and Subnormal will also be raised.
    """

class FloatOperation(DecimalException, TypeError):
    """Enable stricter semantics for mixing floats and Decimals.

    If the signal is not trapped (default), mixing floats and Decimals is
    permitted in the Decimal() constructor, context.create_decimal() and
    all comparison operators. Both conversion and comparisons are exact.
    Any occurrence of a mixed operation is silently recorded by setting
    FloatOperation in the context flags.  Explicit conversions with
    Decimal.from_float() or context.create_decimal_from_float() do not
    set the flag.

    Otherwise (the signal is trapped), only equality comparisons and explicit
    conversions are silent. All other mixed operations raise FloatOperation.
    """

# List of public traps and flags
_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
            Underflow, InvalidOperation, Subnormal, FloatOperation]

# Map conditions (per the spec) to signals
_condition_map = {ConversionSyntax:InvalidOperation,
                  DivisionImpossible:InvalidOperation,
                  DivisionUndefined:InvalidOperation,
                  InvalidContext:InvalidOperation}

# Valid rounding modes
_rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING,
                   ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP)

##### Context Functions ##################################################

# The getcontext() and setcontext() function manage access to a thread-local
# current context.  Py2.4 offers direct support for thread locals.  If that
# is not available, use threading.current_thread() which is slower but will
# work for older Pythons.  If threads are not part of the build, create a
# mock threading object with threading.local() returning the module namespace.

try:
    import threading
except ImportError:
    # Python was compiled without threads; create a mock object instead
    class MockThreading(object):
        def local(self, sys=sys):
            return sys.modules[__name__]
    threading = MockThreading()
    del MockThreading

try:
    threading.local

except AttributeError:

    # To fix reloading, force it to create a new context
    # Old contexts have different exceptions in their dicts, making problems.
    if hasattr(threading.current_thread(), '__decimal_context__'):
        del threading.current_thread().__decimal_context__

    def setcontext(context):
        """Set this thread's context to context."""
        if context in (DefaultContext, BasicContext, ExtendedContext):
            context = context.copy()
            context.clear_flags()
        threading.current_thread().__decimal_context__ = context

    def getcontext():
        """Returns this thread's context.

        If this thread does not yet have a context, returns
        a new context and sets this thread's context.
        New contexts are copies of DefaultContext.
        """
        try:
            return threading.current_thread().__decimal_context__
        except AttributeError:
            context = Context()
            threading.current_thread().__decimal_context__ = context
            return context

else:

    local = threading.local()
    if hasattr(local, '__decimal_context__'):
        del local.__decimal_context__

    def getcontext(_local=local):
        """Returns this thread's context.

        If this thread does not yet have a context, returns
        a new context and sets this thread's context.
        New contexts are copies of DefaultContext.
        """
        try:
            return _local.__decimal_context__
        except AttributeError:
            context = Context()
            _local.__decimal_context__ = context
            return context

    def setcontext(context, _local=local):
        """Set this thread's context to context."""
        if context in (DefaultContext, BasicContext, ExtendedContext):
            context = context.copy()
            context.clear_flags()
        _local.__decimal_context__ = context

    del threading, local        # Don't contaminate the namespace

def localcontext(ctx=None):
    """Return a context manager for a copy of the supplied context

    Uses a copy of the current context if no context is specified
    The returned context manager creates a local decimal context
    in a with statement:
        def sin(x):
             with localcontext() as ctx:
                 ctx.prec += 2
                 # Rest of sin calculation algorithm
                 # uses a precision 2 greater than normal
             return +s  # Convert result to normal precision

         def sin(x):
             with localcontext(ExtendedContext):
                 # Rest of sin calculation algorithm
                 # uses the Extended Context from the
                 # General Decimal Arithmetic Specification
             return +s  # Convert result to normal context

    >>> setcontext(DefaultContext)
    >>> print(getcontext().prec)
    28
    >>> with localcontext():
    ...     ctx = getcontext()
    ...     ctx.prec += 2
    ...     print(ctx.prec)
    ...
    30
    >>> with localcontext(ExtendedContext):
    ...     print(getcontext().prec)
    ...
    9
    >>> print(getcontext().prec)
    28
    """
    if ctx is None: ctx = getcontext()
    return _ContextManager(ctx)


##### Decimal class #######################################################

# Do not subclass Decimal from numbers.Real and do not register it as such
# (because Decimals are not interoperable with floats).  See the notes in
# numbers.py for more detail.

class Decimal(object):
    """Floating point class for decimal arithmetic."""

    __slots__ = ('_exp','_int','_sign', '_is_special')
    # Generally, the value of the Decimal instance is given by
    #  (-1)**_sign * _int * 10**_exp
    # Special values are signified by _is_special == True

    # We're immutable, so use __new__ not __init__
    def __new__(cls, value="0", context=None):
        """Create a decimal point instance.

        >>> Decimal('3.14')              # string input
        Decimal('3.14')
        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
        Decimal('3.14')
        >>> Decimal(314)                 # int
        Decimal('314')
        >>> Decimal(Decimal(314))        # another decimal instance
        Decimal('314')
        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
        Decimal('3.14')
        """

        # Note that the coefficient, self._int, is actually stored as
        # a string rather than as a tuple of digits.  This speeds up
        # the "digits to integer" and "integer to digits" conversions
        # that are used in almost every arithmetic operation on
        # Decimals.  This is an internal detail: the as_tuple function
        # and the Decimal constructor still deal with tuples of
        # digits.

        self = object.__new__(cls)

        if is_cli:
            import System
            if isinstance(value, System.Decimal):
                value = str(value)

        # From a string
        # REs insist on real strings, so we can too.
        if isinstance(value, str):
            m = _parser(value.strip())
            if m is None:
                if context is None:
                    context = getcontext()
                return context._raise_error(ConversionSyntax,
                                "Invalid literal for Decimal: %r" % value)

            if m.group('sign') == "-":
                self._sign = 1
            else:
                self._sign = 0
            intpart = m.group('int')
            if intpart is not None:
                # finite number
                fracpart = m.group('frac') or ''
                exp = int(m.group('exp') or '0')
                self._int = str(int(intpart+fracpart))
                self._exp = exp - len(fracpart)
                self._is_special = False
            else:
                diag = m.group('diag')
                if diag is not None:
                    # NaN
                    self._int = str(int(diag or '0')).lstrip('0')
                    if m.group('signal'):
                        self._exp = 'N'
                    else:
                        self._exp = 'n'
                else:
                    # infinity
                    self._int = '0'
                    self._exp = 'F'
                self._is_special = True
            return self

        # From an integer
        if isinstance(value, int):
            if value >= 0:
                self._sign = 0
            else:
                self._sign = 1
            self._exp = 0
            self._int = str(abs(value))
            self._is_special = False
            return self

        # From another decimal
        if isinstance(value, Decimal):
            self._exp  = value._exp
            self._sign = value._sign
            self._int  = value._int
            self._is_special  = value._is_special
            return self

        # From an internal working value
        if isinstance(value, _WorkRep):
            self._sign = value.sign
            self._int = str(value.int)
            self._exp = int(value.exp)
            self._is_special = False
            return self

        # tuple/list conversion (possibly from as_tuple())
        if isinstance(value, (list,tuple)):
            if len(value) != 3:
                raise ValueError('Invalid tuple size in creation of Decimal '
                                 'from list or tuple.  The list or tuple '
                                 'should have exactly three elements.')
            # process sign.  The isinstance test rejects floats
            if not (isinstance(value[0], int) and value[0] in (0,1)):
                raise ValueError("Invalid sign.  The first value in the tuple "
                                 "should be an integer; either 0 for a "
                                 "positive number or 1 for a negative number.")
            self._sign = value[0]
            if value[2] == 'F':
                # infinity: value[1] is ignored
                self._int = '0'
                self._exp = value[2]
                self._is_special = True
            else:
                # process and validate the digits in value[1]
                digits = []
                for digit in value[1]:
                    if isinstance(digit, int) and 0 <= digit <= 9:
                        # skip leading zeros
                        if digits or digit != 0:
                            digits.append(digit)
                    else:
                        raise ValueError("The second value in the tuple must "
                                         "be composed of integers in the range "
                                         "0 through 9.")
                if value[2] in ('n', 'N'):
                    # NaN: digits form the diagnostic
                    self._int = ''.join(map(str, digits))
                    self._exp = value[2]
                    self._is_special = True
                elif isinstance(value[2], int):
                    # finite number: digits give the coefficient
                    self._int = ''.join(map(str, digits or [0]))
                    self._exp = value[2]
                    self._is_special = False
                else:
                    raise ValueError("The third value in the tuple must "
                                     "be an integer, or one of the "
                                     "strings 'F', 'n', 'N'.")
            return self

        if isinstance(value, float):
            if context is None:
                context = getcontext()
            context._raise_error(FloatOperation,
                "strict semantics for mixing floats and Decimals are "
                "enabled")
            value = Decimal.from_float(value)
            self._exp  = value._exp
            self._sign = value._sign
            self._int  = value._int
            self._is_special  = value._is_special
            return self

        raise TypeError("Cannot convert %r to Decimal" % value)

    @classmethod
    def from_float(cls, f):
        """Converts a float to a decimal number, exactly.

        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
        Since 0.1 is not exactly representable in binary floating point, the
        value is stored as the nearest representable value which is
        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
        is 0.1000000000000000055511151231257827021181583404541015625.

        >>> Decimal.from_float(0.1)
        Decimal('0.1000000000000000055511151231257827021181583404541015625')
        >>> Decimal.from_float(float('nan'))
        Decimal('NaN')
        >>> Decimal.from_float(float('inf'))
        Decimal('Infinity')
        >>> Decimal.from_float(-float('inf'))
        Decimal('-Infinity')
        >>> Decimal.from_float(-0.0)
        Decimal('-0')

        """
        if isinstance(f, int):                # handle integer inputs
            return cls(f)
        if not isinstance(f, float):
            raise TypeError("argument must be int or float.")
        if _math.isinf(f) or _math.isnan(f):
            return cls(repr(f))
        if _math.copysign(1.0, f) == 1.0:
            sign = 0
        else:
            sign = 1
        n, d = abs(f).as_integer_ratio()
        k = d.bit_length() - 1
        result = _dec_from_triple(sign, str(n*5**k), -k)
        if cls is Decimal:
            return result
        else:
            return cls(result)

    def _isnan(self):
        """Returns whether the number is not actually one.

        0 if a number
        1 if NaN
        2 if sNaN
        """
        if self._is_special:
            exp = self._exp
            if exp == 'n':
                return 1
            elif exp == 'N':
                return 2
        return 0

    def _isinfinity(self):
        """Returns whether the number is infinite

        0 if finite or not a number
        1 if +INF
        -1 if -INF
        """
        if self._exp == 'F':
            if self._sign:
                return -1
            return 1
        return 0

    def _check_nans(self, other=None, context=None):
        """Returns whether the number is not actually one.

        if self, other are sNaN, signal
        if self, other are NaN return nan
        return 0

        Done before operations.
        """

        self_is_nan = self._isnan()
        if other is None:
            other_is_nan = False
        else:
            other_is_nan = other._isnan()

        if self_is_nan or other_is_nan:
            if context is None:
                context = getcontext()

            if self_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        self)
            if other_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        other)
            if self_is_nan:
                return self._fix_nan(context)

            return other._fix_nan(context)
        return 0

    def _compare_check_nans(self, other, context):
        """Version of _check_nans used for the signaling comparisons
        compare_signal, __le__, __lt__, __ge__, __gt__.

        Signal InvalidOperation if either self or other is a (quiet
        or signaling) NaN.  Signaling NaNs take precedence over quiet
        NaNs.

        Return 0 if neither operand is a NaN.

        """
        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            if self.is_snan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving sNaN',
                                            self)
            elif other.is_snan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving sNaN',
                                            other)
            elif self.is_qnan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving NaN',
                                            self)
            elif other.is_qnan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving NaN',
                                            other)
        return 0

    def __bool__(self):
        """Return True if self is nonzero; otherwise return False.

        NaNs and infinities are considered nonzero.
        """
        return self._is_special or self._int != '0'

    def _cmp(self, other):
        """Compare the two non-NaN decimal instances self and other.

        Returns -1 if self < other, 0 if self == other and 1
        if self > other.  This routine is for internal use only."""

        if self._is_special or other._is_special:
            self_inf = self._isinfinity()
            other_inf = other._isinfinity()
            if self_inf == other_inf:
                return 0
            elif self_inf < other_inf:
                return -1
            else:
                return 1

        # check for zeros;  Decimal('0') == Decimal('-0')
        if not self:
            if not other:
                return 0
            else:
                return -((-1)**other._sign)
        if not other:
            return (-1)**self._sign

        # If different signs, neg one is less
        if other._sign < self._sign:
            return -1
        if self._sign < other._sign:
            return 1

        self_adjusted = self.adjusted()
        other_adjusted = other.adjusted()
        if self_adjusted == other_adjusted:
            self_padded = self._int + '0'*(self._exp - other._exp)
            other_padded = other._int + '0'*(other._exp - self._exp)
            if self_padded == other_padded:
                return 0
            elif self_padded < other_padded:
                return -(-1)**self._sign
            else:
                return (-1)**self._sign
        elif self_adjusted > other_adjusted:
            return (-1)**self._sign
        else: # self_adjusted < other_adjusted
            return -((-1)**self._sign)

    # Note: The Decimal standard doesn't cover rich comparisons for
    # Decimals.  In particular, the specification is silent on the
    # subject of what should happen for a comparison involving a NaN.
    # We take the following approach:
    #
    #   == comparisons involving a quiet NaN always return False
    #   != comparisons involving a quiet NaN always return True
    #   == or != comparisons involving a signaling NaN signal
    #      InvalidOperation, and return False or True as above if the
    #      InvalidOperation is not trapped.
    #   <, >, <= and >= comparisons involving a (quiet or signaling)
    #      NaN signal InvalidOperation, and return False if the
    #      InvalidOperation is not trapped.
    #
    # This behavior is designed to conform as closely as possible to
    # that specified by IEEE 754.

    def __eq__(self, other, context=None):
        self, other = _convert_for_comparison(self, other, equality_op=True)
        if other is NotImplemented:
            return other
        if self._check_nans(other, context):
            return False
        return self._cmp(other) == 0

    def __ne__(self, other, context=None):
        self, other = _convert_for_comparison(self, other, equality_op=True)
        if other is NotImplemented:
            return other
        if self._check_nans(other, context):
            return True
        return self._cmp(other) != 0


    def __lt__(self, other, context=None):
        self, other = _convert_for_comparison(self, other)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) < 0

    def __le__(self, other, context=None):
        self, other = _convert_for_comparison(self, other)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) <= 0

    def __gt__(self, other, context=None):
        self, other = _convert_for_comparison(self, other)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) > 0

    def __ge__(self, other, context=None):
        self, other = _convert_for_comparison(self, other)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) >= 0

    def compare(self, other, context=None):
        """Compare self to other.  Return a decimal value:

        a or b is a NaN ==> Decimal('NaN')
        a < b           ==> Decimal('-1')
        a == b          ==> Decimal('0')
        a > b           ==> Decimal('1')
        """
        other = _convert_other(other, raiseit=True)

        # Compare(NaN, NaN) = NaN
        if (self._is_special or other and other._is_special):
            ans = self._check_nans(other, context)
            if ans:
                return ans

        return Decimal(self._cmp(other))

    def __hash__(self):
        """x.__hash__() <==> hash(x)"""

        # In order to make sure that the hash of a Decimal instance
        # agrees with the hash of a numerically equal integer, float
        # or Fraction, we follow the rules for numeric hashes outlined
        # in the documentation.  (See library docs, 'Built-in Types').
        if self._is_special:
            if self.is_snan():
                raise TypeError('Cannot hash a signaling NaN value.')
            elif self.is_nan():
                return _PyHASH_NAN
            else:
                if self._sign:
                    return -_PyHASH_INF
                else:
                    return _PyHASH_INF

        if self._exp >= 0:
            exp_hash = pow(10, self._exp, _PyHASH_MODULUS)
        else:
            exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS)
        hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS
        ans = hash_ if self >= 0 else -hash_
        return -2 if ans == -1 else ans

    def as_tuple(self):
        """Represents the number as a triple tuple.

        To show the internals exactly as they are.
        """
        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)

    def __repr__(self):
        """Represents the number as an instance of Decimal."""
        # Invariant:  eval(repr(d)) == d
        return "Decimal('%s')" % str(self)

    def __str__(self, eng=False, context=None):
        """Return string representation of the number in scientific notation.

        Captures all of the information in the underlying representation.
        """

        sign = ['', '-'][self._sign]
        if self._is_special:
            if self._exp == 'F':
                return sign + 'Infinity'
            elif self._exp == 'n':
                return sign + 'NaN' + self._int
            else: # self._exp == 'N'
                return sign + 'sNaN' + self._int

        # number of digits of self._int to left of decimal point
        leftdigits = self._exp + len(self._int)

        # dotplace is number of digits of self._int to the left of the
        # decimal point in the mantissa of the output string (that is,
        # after adjusting the exponent)
        if self._exp <= 0 and leftdigits > -6:
            # no exponent required
            dotplace = leftdigits
        elif not eng:
            # usual scientific notation: 1 digit on left of the point
            dotplace = 1
        elif self._int == '0':
            # engineering notation, zero
            dotplace = (leftdigits + 1) % 3 - 1
        else:
            # engineering notation, nonzero
            dotplace = (leftdigits - 1) % 3 + 1

        if dotplace <= 0:
            intpart = '0'
            fracpart = '.' + '0'*(-dotplace) + self._int
        elif dotplace >= len(self._int):
            intpart = self._int+'0'*(dotplace-len(self._int))
            fracpart = ''
        else:
            intpart = self._int[:dotplace]
            fracpart = '.' + self._int[dotplace:]
        if leftdigits == dotplace:
            exp = ''
        else:
            if context is None:
                context = getcontext()
            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)

        return sign + intpart + fracpart + exp

    def to_eng_string(self, context=None):
        """Convert to engineering-type string.

        Engineering notation has an exponent which is a multiple of 3, so there
        are up to 3 digits left of the decimal place.

        Same rules for when in exponential and when as a value as in __str__.
        """
        return self.__str__(eng=True, context=context)

    def __neg__(self, context=None):
        """Returns a copy with the sign switched.

        Rounds, if it has reason.
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if context is None:
            context = getcontext()

        if not self and context.rounding != ROUND_FLOOR:
            # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
            # in ROUND_FLOOR rounding mode.
            ans = self.copy_abs()
        else:
            ans = self.copy_negate()

        return ans._fix(context)

    def __pos__(self, context=None):
        """Returns a copy, unless it is a sNaN.

        Rounds the number (if more then precision digits)
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if context is None:
            context = getcontext()

        if not self and context.rounding != ROUND_FLOOR:
            # + (-0) = 0, except in ROUND_FLOOR rounding mode.
            ans = self.copy_abs()
        else:
            ans = Decimal(self)

        return ans._fix(context)

    def __abs__(self, round=True, context=None):
        """Returns the absolute value of self.

        If the keyword argument 'round' is false, do not round.  The
        expression self.__abs__(round=False) is equivalent to
        self.copy_abs().
        """
        if not round:
            return self.copy_abs()

        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if self._sign:
            ans = self.__neg__(context=context)
        else:
            ans = self.__pos__(context=context)

        return ans

    def __add__(self, other, context=None):
        """Returns self + other.

        -INF + INF (or the reverse) cause InvalidOperation errors.
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity():
                # If both INF, same sign => same as both, opposite => error.
                if self._sign != other._sign and other._isinfinity():
                    return context._raise_error(InvalidOperation, '-INF + INF')
                return Decimal(self)
            if other._isinfinity():
                return Decimal(other)  # Can't both be infinity here

        exp = min(self._exp, other._exp)
        negativezero = 0
        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
            # If the answer is 0, the sign should be negative, in this case.
            negativezero = 1

        if not self and not other:
            sign = min(self._sign, other._sign)
            if negativezero:
                sign = 1
            ans = _dec_from_triple(sign, '0', exp)
            ans = ans._fix(context)
            return ans
        if not self:
            exp = max(exp, other._exp - context.prec-1)
            ans = other._rescale(exp, context.rounding)
            ans = ans._fix(context)
            return ans
        if not other:
            exp = max(exp, self._exp - context.prec-1)
            ans = self._rescale(exp, context.rounding)
            ans = ans._fix(context)
            return ans

        op1 = _WorkRep(self)
        op2 = _WorkRep(other)
        op1, op2 = _normalize(op1, op2, context.prec)

        result = _WorkRep()
        if op1.sign != op2.sign:
            # Equal and opposite
            if op1.int == op2.int:
                ans = _dec_from_triple(negativezero, '0', exp)
                ans = ans._fix(context)
                return ans
            if op1.int < op2.int:
                op1, op2 = op2, op1
                # OK, now abs(op1) > abs(op2)
            if op1.sign == 1:
                result.sign = 1
                op1.sign, op2.sign = op2.sign, op1.sign
            else:
                result.sign = 0
                # So we know the sign, and op1 > 0.
        elif op1.sign == 1:
            result.sign = 1
            op1.sign, op2.sign = (0, 0)
        else:
            result.sign = 0
        # Now, op1 > abs(op2) > 0

        if op2.sign == 0:
            result.int = op1.int + op2.int
        else:
            result.int = op1.int - op2.int

        result.exp = op1.exp
        ans = Decimal(result)
        ans = ans._fix(context)
        return ans

    __radd__ = __add__

    def __sub__(self, other, context=None):
        """Return self - other"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context=context)
            if ans:
                return ans

        # self - other is computed as self + other.copy_negate()
        return self.__add__(other.copy_negate(), context=context)

    def __rsub__(self, other, context=None):
        """Return other - self"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        return other.__sub__(self, context=context)

    def __mul__(self, other, context=None):
        """Return self * other.

        (+-) INF * 0 (or its reverse) raise InvalidOperation.
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        resultsign = self._sign ^ other._sign

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity():
                if not other:
                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
                return _SignedInfinity[resultsign]

            if other._isinfinity():
                if not self:
                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
                return _SignedInfinity[resultsign]

        resultexp = self._exp + other._exp

        # Special case for multiplying by zero
        if not self or not other:
            ans = _dec_from_triple(resultsign, '0', resultexp)
            # Fixing in case the exponent is out of bounds
            ans = ans._fix(context)
            return ans

        # Special case for multiplying by power of 10
        if self._int == '1':
            ans = _dec_from_triple(resultsign, other._int, resultexp)
            ans = ans._fix(context)
            return ans
        if other._int == '1':
            ans = _dec_from_triple(resultsign, self._int, resultexp)
            ans = ans._fix(context)
            return ans

        op1 = _WorkRep(self)
        op2 = _WorkRep(other)

        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
        ans = ans._fix(context)

        return ans
    __rmul__ = __mul__

    def __truediv__(self, other, context=None):
        """Return self / other."""
        other = _convert_other(other)
        if other is NotImplemented:
            return NotImplemented

        if context is None:
            context = getcontext()

        sign = self._sign ^ other._sign

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity() and other._isinfinity():
                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')

            if self._isinfinity():
                return _SignedInfinity[sign]

            if other._isinfinity():
                context._raise_error(Clamped, 'Division by infinity')
                return _dec_from_triple(sign, '0', context.Etiny())

        # Special cases for zeroes
        if not other:
            if not self:
                return context._raise_error(DivisionUndefined, '0 / 0')
            return context._raise_error(DivisionByZero, 'x / 0', sign)

        if not self:
            exp = self._exp - other._exp
            coeff = 0
        else:
            # OK, so neither = 0, INF or NaN
            shift = len(other._int) - len(self._int) + context.prec + 1
            exp = self._exp - other._exp - shift
            op1 = _WorkRep(self)
            op2 = _WorkRep(other)
            if shift >= 0:
                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
            else:
                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
            if remainder:
                # result is not exact; adjust to ensure correct rounding
                if coeff % 5 == 0:
                    coeff += 1
            else:
                # result is exact; get as close to ideal exponent as possible
                ideal_exp = self._exp - other._exp
                while exp < ideal_exp and coeff % 10 == 0:
                    coeff //= 10
                    exp += 1

        ans = _dec_from_triple(sign, str(coeff), exp)
        return ans._fix(context)

    def _divide(self, other, context):
        """Return (self // other, self % other), to context.prec precision.

        Assumes that neither self nor other is a NaN, that self is not
        infinite and that other is nonzero.
        """
        sign = self._sign ^ other._sign
        if other._isinfinity():
            ideal_exp = self._exp
        else:
            ideal_exp = min(self._exp, other._exp)

        expdiff = self.adjusted() - other.adjusted()
        if not self or other._isinfinity() or expdiff <= -2:
            return (_dec_from_triple(sign, '0', 0),
                    self._rescale(ideal_exp, context.rounding))
        if expdiff <= context.prec:
            op1 = _WorkRep(self)
            op2 = _WorkRep(other)
            if op1.exp >= op2.exp:
                op1.int *= 10**(op1.exp - op2.exp)
            else:
                op2.int *= 10**(op2.exp - op1.exp)
            q, r = divmod(op1.int, op2.int)
            if q < 10**context.prec:
                return (_dec_from_triple(sign, str(q), 0),
                        _dec_from_triple(self._sign, str(r), ideal_exp))

        # Here the quotient is too large to be representable
        ans = context._raise_error(DivisionImpossible,
                                   'quotient too large in //, % or divmod')
        return ans, ans

    def __rtruediv__(self, other, context=None):
        """Swaps self/other and returns __truediv__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__truediv__(self, context=context)

    def __divmod__(self, other, context=None):
        """
        Return (self // other, self % other)
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return (ans, ans)

        sign = self._sign ^ other._sign
        if self._isinfinity():
            if other._isinfinity():
                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
                return ans, ans
            else:
                return (_SignedInfinity[sign],
                        context._raise_error(InvalidOperation, 'INF % x'))

        if not other:
            if not self:
                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
                return ans, ans
            else:
                return (context._raise_error(DivisionByZero, 'x // 0', sign),
                        context._raise_error(InvalidOperation, 'x % 0'))

        quotient, remainder = self._divide(other, context)
        remainder = remainder._fix(context)
        return quotient, remainder

    def __rdivmod__(self, other, context=None):
        """Swaps self/other and returns __divmod__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__divmod__(self, context=context)

    def __mod__(self, other, context=None):
        """
        self % other
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if self._isinfinity():
            return context._raise_error(InvalidOperation, 'INF % x')
        elif not other:
            if self:
                return context._raise_error(InvalidOperation, 'x % 0')
            else:
                return context._raise_error(DivisionUndefined, '0 % 0')

        remainder = self._divide(other, context)[1]
        remainder = remainder._fix(context)
        return remainder

    def __rmod__(self, other, context=None):
        """Swaps self/other and returns __mod__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__mod__(self, context=context)

    def remainder_near(self, other, context=None):
        """
        Remainder nearest to 0-  abs(remainder-near) <= other/2
        """
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        # self == +/-infinity -> InvalidOperation
        if self._isinfinity():
            return context._raise_error(InvalidOperation,
                                        'remainder_near(infinity, x)')

        # other == 0 -> either InvalidOperation or DivisionUndefined
        if not other:
            if self:
                return context._raise_error(InvalidOperation,
                                            'remainder_near(x, 0)')
            else:
                return context._raise_error(DivisionUndefined,
                                            'remainder_near(0, 0)')

        # other = +/-infinity -> remainder = self
        if other._isinfinity():
            ans = Decimal(self)
            return ans._fix(context)

        # self = 0 -> remainder = self, with ideal exponent
        ideal_exponent = min(self._exp, other._exp)
        if not self:
            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
            return ans._fix(context)

        # catch most cases of large or small quotient
        expdiff = self.adjusted() - other.adjusted()
        if expdiff >= context.prec + 1:
            # expdiff >= prec+1 => abs(self/other) > 10**prec
            return context._raise_error(DivisionImpossible)
        if expdiff <= -2:
            # expdiff <= -2 => abs(self/other) < 0.1
            ans = self._rescale(ideal_exponent, context.rounding)
            return ans._fix(context)

        # adjust both arguments to have the same exponent, then divide
        op1 = _WorkRep(self)
        op2 = _WorkRep(other)
        if op1.exp >= op2.exp:
            op1.int *= 10**(op1.exp - op2.exp)
        else:
            op2.int *= 10**(op2.exp - op1.exp)
        q, r = divmod(op1.int, op2.int)
        # remainder is r*10**ideal_exponent; other is +/-op2.int *
        # 10**ideal_exponent.   Apply correction to ensure that
        # abs(remainder) <= abs(other)/2
        if 2*r + (q&1) > op2.int:
            r -= op2.int
            q += 1

        if q >= 10**context.prec:
            return context._raise_error(DivisionImpossible)

        # result has same sign as self unless r is negative
        sign = self._sign
        if r < 0:
            sign = 1-sign
            r = -r

        ans = _dec_from_triple(sign, str(r), ideal_exponent)
        return ans._fix(context)

    def __floordiv__(self, other, context=None):
        """self // other"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if self._isinfinity():
            if other._isinfinity():
                return context._raise_error(InvalidOperation, 'INF // INF')
            else:
                return _SignedInfinity[self._sign ^ other._sign]

        if not other:
            if self:
                return context._raise_error(DivisionByZero, 'x // 0',
                                            self._sign ^ other._sign)
            else:
                return context._raise_error(DivisionUndefined, '0 // 0')

        return self._divide(other, context)[0]

    def __rfloordiv__(self, other, context=None):
        """Swaps self/other and returns __floordiv__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__floordiv__(self, context=context)

    def __float__(self):
        """Float representation."""
        if self._isnan():
            if self.is_snan():
                raise ValueError("Cannot convert signaling NaN to float")
            s = "-nan" if self._sign else "nan"
        else:
            s = str(self)
        return float(s)

    def __int__(self):
        """Converts self to an int, truncating if necessary."""
        if self._is_special:
            if self._isnan():
                raise ValueError("Cannot convert NaN to integer")
            elif self._isinfinity():
                raise OverflowError("Cannot convert infinity to integer")
        s = (-1)**self._sign
        if self._exp >= 0:
            return s*int(self._int)*10**self._exp
        else:
            return s*int(self._int[:self._exp] or '0')

    __trunc__ = __int__

    def real(self):
        return self
    real = property(real)

    def imag(self):
        return Decimal(0)
    imag = property(imag)

    def conjugate(self):
        return self

    def __complex__(self):
        return complex(float(self))

    def _fix_nan(self, context):
        """Decapitate the payload of a NaN to fit the context"""
        payload = self._int

        # maximum length of payload is precision if clamp=0,
        # precision-1 if clamp=1.
        max_payload_len = context.prec - context.clamp
        if len(payload) > max_payload_len:
            payload = payload[len(payload)-max_payload_len:].lstrip('0')
            return _dec_from_triple(self._sign, payload, self._exp, True)
        return Decimal(self)

    def _fix(self, context):
        """Round if it is necessary to keep self within prec precision.

        Rounds and fixes the exponent.  Does not raise on a sNaN.

        Arguments:
        self - Decimal instance
        context - context used.
        """

        if self._is_special:
            if self._isnan():
                # decapitate payload if necessary
                return self._fix_nan(context)
            else:
                # self is +/-Infinity; return unaltered
                return Decimal(self)

        # if self is zero then exponent should be between Etiny and
        # Emax if clamp==0, and between Etiny and Etop if clamp==1.
        Etiny = context.Etiny()
        Etop = context.Etop()
        if not self:
            exp_max = [context.Emax, Etop][context.clamp]
            new_exp = min(max(self._exp, Etiny), exp_max)
            if new_exp != self._exp:
                context._raise_error(Clamped)
                return _dec_from_triple(self._sign, '0', new_exp)
            else:
                return Decimal(self)

        # exp_min is the smallest allowable exponent of the result,
        # equal to max(self.adjusted()-context.prec+1, Etiny)
        exp_min = len(self._int) + self._exp - context.prec
        if exp_min > Etop:
            # overflow: exp_min > Etop iff self.adjusted() > Emax
            ans = context._raise_error(Overflow, 'above Emax', self._sign)
            context._raise_error(Inexact)
            context._raise_error(Rounded)
            return ans

        self_is_subnormal = exp_min < Etiny
        if self_is_subnormal:
            exp_min = Etiny

        # round if self has too many digits
        if self._exp < exp_min:
            digits = len(self._int) + self._exp - exp_min
            if digits < 0:
                self = _dec_from_triple(self._sign, '1', exp_min-1)
                digits = 0
            rounding_method = self._pick_rounding_function[context.rounding]
            changed = rounding_method(self, digits)
            coeff = self._int[:digits] or '0'
            if changed > 0:
                coeff = str(int(coeff)+1)
                if len(coeff) > context.prec:
                    coeff = coeff[:-1]
                    exp_min += 1

            # check whether the rounding pushed the exponent out of range
            if exp_min > Etop:
                ans = context._raise_error(Overflow, 'above Emax', self._sign)
            else:
                ans = _dec_from_triple(self._sign, coeff, exp_min)

            # raise the appropriate signals, taking care to respect
            # the precedence described in the specification
            if changed and self_is_subnormal:
                context._raise_error(Underflow)
            if self_is_subnormal:
                context._raise_error(Subnormal)
            if changed:
                context._raise_error(Inexact)
            context._raise_error(Rounded)
            if not ans:
                # raise Clamped on underflow to 0
                context._raise_error(Clamped)
            return ans

        if self_is_subnormal:
            context._raise_error(Subnormal)

        # fold down if clamp == 1 and self has too few digits
        if context.clamp == 1 and self._exp > Etop:
            context._raise_error(Clamped)
            self_padded = self._int + '0'*(self._exp - Etop)
            return _dec_from_triple(self._sign, self_padded, Etop)

        # here self was representable to begin with; return unchanged
        return Decimal(self)

    # for each of the rounding functions below:
    #   self is a finite, nonzero Decimal
    #   prec is an integer satisfying 0 <= prec < len(self._int)
    #
    # each function returns either -1, 0, or 1, as follows:
    #   1 indicates that self should be rounded up (away from zero)
    #   0 indicates that self should be truncated, and that all the
    #     digits to be truncated are zeros (so the value is unchanged)
    #  -1 indicates that there are nonzero digits to be truncated

    def _round_down(self, prec):
        """Also known as round-towards-0, truncate."""
        if _all_zeros(self._int, prec):
            return 0
        else:
            return -1

    def _round_up(self, prec):
        """Rounds away from 0."""
        return -self._round_down(prec)

    def _round_half_up(self, prec):
        """Rounds 5 up (away from 0)"""
        if self._int[prec] in '56789':
            return 1
        elif _all_zeros(self._int, prec):
            return 0
        else:
            return -1

    def _round_half_down(self, prec):
        """Round 5 down"""
        if _exact_half(self._int, prec):
            return -1
        else:
            return self._round_half_up(prec)

    def _round_half_even(self, prec):
        """Round 5 to even, rest to nearest."""
        if _exact_half(self._int, prec) and \
                (prec == 0 or self._int[prec-1] in '02468'):
            return -1
        else:
            return self._round_half_up(prec)

    def _round_ceiling(self, prec):
        """Rounds up (not away from 0 if negative.)"""
        if self._sign:
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    def _round_floor(self, prec):
        """Rounds down (not towards 0 if negative)"""
        if not self._sign:
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    def _round_05up(self, prec):
        """Round down unless digit prec-1 is 0 or 5."""
        if prec and self._int[prec-1] not in '05':
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    _pick_rounding_function = dict(
        ROUND_DOWN = _round_down,
        ROUND_UP = _round_up,
        ROUND_HALF_UP = _round_half_up,
        ROUND_HALF_DOWN = _round_half_down,
        ROUND_HALF_EVEN = _round_half_even,
        ROUND_CEILING = _round_ceiling,
        ROUND_FLOOR = _round_floor,
        ROUND_05UP = _round_05up,
    )

    def __round__(self, n=None):
        """Round self to the nearest integer, or to a given precision.

        If only one argument is supplied, round a finite Decimal
        instance self to the nearest integer.  If self is infinite or
        a NaN then a Python exception is raised.  If self is finite
        and lies exactly halfway between two integers then it is
        rounded to the integer with even last digit.

        >>> round(Decimal('123.456'))
        123
        >>> round(Decimal('-456.789'))
        -457
        >>> round(Decimal('-3.0'))
        -3
        >>> round(Decimal('2.5'))
        2
        >>> round(Decimal('3.5'))
        4
        >>> round(Decimal('Inf'))
        Traceback (most recent call last):
          ...
        OverflowError: cannot round an infinity
        >>> round(Decimal('NaN'))
        Traceback (most recent call last):
          ...
        ValueError: cannot round a NaN

        If a second argument n is supplied, self is rounded to n
        decimal places using the rounding mode for the current
        context.

        For an integer n, round(self, -n) is exactly equivalent to
        self.quantize(Decimal('1En')).

        >>> round(Decimal('123.456'), 0)
        Decimal('123')
        >>> round(Decimal('123.456'), 2)
        Decimal('123.46')
        >>> round(Decimal('123.456'), -2)
        Decimal('1E+2')
        >>> round(Decimal('-Infinity'), 37)
        Decimal('NaN')
        >>> round(Decimal('sNaN123'), 0)
        Decimal('NaN123')

        """
        if n is not None:
            # two-argument form: use the equivalent quantize call
            if not isinstance(n, int):
                raise TypeError('Second argument to round should be integral')
            exp = _dec_from_triple(0, '1', -n)
            return self.quantize(exp)

        # one-argument form
        if self._is_special:
            if self.is_nan():
                raise ValueError("cannot round a NaN")
            else:
                raise OverflowError("cannot round an infinity")
        return int(self._rescale(0, ROUND_HALF_EVEN))

    def __floor__(self):
        """Return the floor of self, as an integer.

        For a finite Decimal instance self, return the greatest
        integer n such that n <= self.  If self is infinite or a NaN
        then a Python exception is raised.

        """
        if self._is_special:
            if self.is_nan():
                raise ValueError("cannot round a NaN")
            else:
                raise OverflowError("cannot round an infinity")
        return int(self._rescale(0, ROUND_FLOOR))

    def __ceil__(self):
        """Return the ceiling of self, as an integer.

        For a finite Decimal instance self, return the least integer n
        such that n >= self.  If self is infinite or a NaN then a
        Python exception is raised.

        """
        if self._is_special:
            if self.is_nan():
                raise ValueError("cannot round a NaN")
            else:
                raise OverflowError("cannot round an infinity")
        return int(self._rescale(0, ROUND_CEILING))

    def fma(self, other, third, context=None):
        """Fused multiply-add.

        Returns self*other+third with no rounding of the intermediate
        product self*other.

        self and other are multiplied together, with no rounding of
        the result.  The third operand is then added to the result,
        and a single final rounding is performed.
        """

        other = _convert_other(other, raiseit=True)
        third = _convert_other(third, raiseit=True)

        # compute product; raise InvalidOperation if either operand is
        # a signaling NaN or if the product is zero times infinity.
        if self._is_special or other._is_special:
            if context is None:
                context = getcontext()
            if self._exp == 'N':
                return context._raise_error(InvalidOperation, 'sNaN', self)
            if other._exp == 'N':
                return context._raise_error(InvalidOperation, 'sNaN', other)
            if self._exp == 'n':
                product = self
            elif other._exp == 'n':
                product = other
            elif self._exp == 'F':
                if not other:
                    return context._raise_error(InvalidOperation,
                                                'INF * 0 in fma')
                product = _SignedInfinity[self._sign ^ other._sign]
            elif other._exp == 'F':
                if not self:
                    return context._raise_error(InvalidOperation,
                                                '0 * INF in fma')
                product = _SignedInfinity[self._sign ^ other._sign]
        else:
            product = _dec_from_triple(self._sign ^ other._sign,
                                       str(int(self._int) * int(other._int)),
                                       self._exp + other._exp)

        return product.__add__(third, context)

    def _power_modulo(self, other, modulo, context=None):
        """Three argument version of __pow__"""

        other = _convert_other(other)
        if other is NotImplemented:
            return other
        modulo = _convert_other(modulo)
        if modulo is NotImplemented:
            return modulo

        if context is None:
            context = getcontext()

        # deal with NaNs: if there are any sNaNs then first one wins,
        # (i.e. behaviour for NaNs is identical to that of fma)
        self_is_nan = self._isnan()
        other_is_nan = other._isnan()
        modulo_is_nan = modulo._isnan()
        if self_is_nan or other_is_nan or modulo_is_nan:
            if self_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        self)
            if other_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        other)
            if modulo_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        modulo)
            if self_is_nan:
                return self._fix_nan(context)
            if other_is_nan:
                return other._fix_nan(context)
            return modulo._fix_nan(context)

        # check inputs: we apply same restrictions as Python's pow()
        if not (self._isinteger() and
                other._isinteger() and
                modulo._isinteger()):
            return context._raise_error(InvalidOperation,
                                        'pow() 3rd argument not allowed '
                                        'unless all arguments are integers')
        if other < 0:
            return context._raise_error(InvalidOperation,
                                        'pow() 2nd argument cannot be '
                                        'negative when 3rd argument specified')
        if not modulo:
            return context._raise_error(InvalidOperation,
                                        'pow() 3rd argument cannot be 0')

        # additional restriction for decimal: the modulus must be less
        # than 10**prec in absolute value
        if modulo.adjusted() >= context.prec:
            return context._raise_error(InvalidOperation,
                                        'insufficient precision: pow() 3rd '
                                        'argument must not have more than '
                                        'precision digits')

        # define 0**0 == NaN, for consistency with two-argument pow
        # (even though it hurts!)
        if not other and not self:
            return context._raise_error(InvalidOperation,
                                        'at least one of pow() 1st argument '
                                        'and 2nd argument must be nonzero ;'
                                        '0**0 is not defined')

        # compute sign of result
        if other._iseven():
            sign = 0
        else:
            sign = self._sign

        # convert modulo to a Python integer, and self and other to
        # Decimal integers (i.e. force their exponents to be >= 0)
        modulo = abs(int(modulo))
        base = _WorkRep(self.to_integral_value())
        exponent = _WorkRep(other.to_integral_value())

        # compute result using integer pow()
        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
        for i in range(exponent.exp):
            base = pow(base, 10, modulo)
        base = pow(base, exponent.int, modulo)

        return _dec_from_triple(sign, str(base), 0)

    def _power_exact(self, other, p):
        """Attempt to compute self**other exactly.

        Given Decimals self and other and an integer p, attempt to
        compute an exact result for the power self**other, with p
        digits of precision.  Return None if self**other is not
        exactly representable in p digits.

        Assumes that elimination of special cases has already been
        performed: self and other must both be nonspecial; self must
        be positive and not numerically equal to 1; other must be
        nonzero.  For efficiency, other._exp should not be too large,
        so that 10**abs(other._exp) is a feasible calculation."""

        # In the comments below, we write x for the value of self and y for the
        # value of other.  Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
        # and yc positive integers not divisible by 10.

        # The main purpose of this method is to identify the *failure*
        # of x**y to be exactly representable with as little effort as
        # possible.  So we look for cheap and easy tests that
        # eliminate the possibility of x**y being exact.  Only if all
        # these tests are passed do we go on to actually compute x**y.

        # Here's the main idea.  Express y as a rational number m/n, with m and
        # n relatively prime and n>0.  Then for x**y to be exactly
        # representable (at *any* precision), xc must be the nth power of a
        # positive integer and xe must be divisible by n.  If y is negative
        # then additionally xc must be a power of either 2 or 5, hence a power
        # of 2**n or 5**n.
        #
        # There's a limit to how small |y| can be: if y=m/n as above
        # then:
        #
        #  (1) if xc != 1 then for the result to be representable we
        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
        #      representable.
        #
        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
        #      |y| < 1/|xe| then the result is not representable.
        #
        # Note that since x is not equal to 1, at least one of (1) and
        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
        #
        # There's also a limit to how large y can be, at least if it's
        # positive: the normalized result will have coefficient xc**y,
        # so if it's representable then xc**y < 10**p, and y <
        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
        # not exactly representable.

        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
        # so |y| < 1/xe and the result is not representable.
        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
        # < 1/nbits(xc).

        x = _WorkRep(self)
        xc, xe = x.int, x.exp
        while xc % 10 == 0:
            xc //= 10
            xe += 1

        y = _WorkRep(other)
        yc, ye = y.int, y.exp
        while yc % 10 == 0:
            yc //= 10
            ye += 1

        # case where xc == 1: result is 10**(xe*y), with xe*y
        # required to be an integer
        if xc == 1:
            xe *= yc
            # result is now 10**(xe * 10**ye);  xe * 10**ye must be integral
            while xe % 10 == 0:
                xe //= 10
                ye += 1
            if ye < 0:
                return None
            exponent = xe * 10**ye
            if y.sign == 1:
                exponent = -exponent
            # if other is a nonnegative integer, use ideal exponent
            if other._isinteger() and other._sign == 0:
                ideal_exponent = self._exp*int(other)
                zeros = min(exponent-ideal_exponent, p-1)
            else:
                zeros = 0
            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)

        # case where y is negative: xc must be either a power
        # of 2 or a power of 5.
        if y.sign == 1:
            last_digit = xc % 10
            if last_digit in (2,4,6,8):
                # quick test for power of 2
                if xc & -xc != xc:
                    return None
                # now xc is a power of 2; e is its exponent
                e = _nbits(xc)-1

                # We now have:
                #
                #   x = 2**e * 10**xe, e > 0, and y < 0.
                #
                # The exact result is:
                #
                #   x**y = 5**(-e*y) * 10**(e*y + xe*y)
                #
                # provided that both e*y and xe*y are integers.  Note that if
                # 5**(-e*y) >= 10**p, then the result can't be expressed
                # exactly with p digits of precision.
                #
                # Using the above, we can guard against large values of ye.
                # 93/65 is an upper bound for log(10)/log(5), so if
                #
                #   ye >= len(str(93*p//65))
                #
                # then
                #
                #   -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
                #
                # so 5**(-e*y) >= 10**p, and the coefficient of the result
                # can't be expressed in p digits.

                # emax >= largest e such that 5**e < 10**p.
                emax = p*93//65
                if ye >= len(str(emax)):
                    return None

                # Find -e*y and -xe*y; both must be integers
                e = _decimal_lshift_exact(e * yc, ye)
                xe = _decimal_lshift_exact(xe * yc, ye)
                if e is None or xe is None:
                    return None

                if e > emax:
                    return None
                xc = 5**e

            elif last_digit == 5:
                # e >= log_5(xc) if xc is a power of 5; we have
                # equality all the way up to xc=5**2658
                e = _nbits(xc)*28//65
                xc, remainder = divmod(5**e, xc)
                if remainder:
                    return None
                while xc % 5 == 0:
                    xc //= 5
                    e -= 1

                # Guard against large values of ye, using the same logic as in
                # the 'xc is a power of 2' branch.  10/3 is an upper bound for
                # log(10)/log(2).
                emax = p*10//3
                if ye >= len(str(emax)):
                    return None

                e = _decimal_lshift_exact(e * yc, ye)
                xe = _decimal_lshift_exact(xe * yc, ye)
                if e is None or xe is None:
                    return None

                if e > emax:
                    return None
                xc = 2**e
            else:
                return None

            if xc >= 10**p:
                return None
            xe = -e-xe
            return _dec_from_triple(0, str(xc), xe)

        # now y is positive; find m and n such that y = m/n
        if ye >= 0:
            m, n = yc*10**ye, 1
        else:
            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
                return None
            xc_bits = _nbits(xc)
            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
                return None
            m, n = yc, 10**(-ye)
            while m % 2 == n % 2 == 0:
                m //= 2
                n //= 2
            while m % 5 == n % 5 == 0:
                m //= 5
                n //= 5

        # compute nth root of xc*10**xe
        if n > 1:
            # if 1 < xc < 2**n then xc isn't an nth power
            if xc != 1 and xc_bits <= n:
                return None

            xe, rem = divmod(xe, n)
            if rem != 0:
                return None

            # compute nth root of xc using Newton's method
            a = 1 << -(-_nbits(xc)//n) # initial estimate
            while True:
                q, r = divmod(xc, a**(n-1))
                if a <= q:
                    break
                else:
                    a = (a*(n-1) + q)//n
            if not (a == q and r == 0):
                return None
            xc = a

        # now xc*10**xe is the nth root of the original xc*10**xe
        # compute mth power of xc*10**xe

        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
        # 10**p and the result is not representable.
        if xc > 1 and m > p*100//_log10_lb(xc):
            return None
        xc = xc**m
        xe *= m
        if xc > 10**p:
            return None

        # by this point the result *is* exactly representable
        # adjust the exponent to get as close as possible to the ideal
        # exponent, if necessary
        str_xc = str(xc)
        if other._isinteger() and other._sign == 0:
            ideal_exponent = self._exp*int(other)
            zeros = min(xe-ideal_exponent, p-len(str_xc))
        else:
            zeros = 0
        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)

    def __pow__(self, other, modulo=None, context=None):
        """Return self ** other [ % modulo].

        With two arguments, compute self**other.

        With three arguments, compute (self**other) % modulo.  For the
        three argument form, the following restrictions on the
        arguments hold:

         - all three arguments must be integral
         - other must be nonnegative
         - either self or other (or both) must be nonzero
         - modulo must be nonzero and must have at most p digits,
           where p is the context precision.

        If any of these restrictions is violated the InvalidOperation
        flag is raised.

        The result of pow(self, other, modulo) is identical to the
        result that would be obtained by computing (self**other) %
        modulo with unbounded precision, but is computed more
        efficiently.  It is always exact.
        """

        if modulo is not None:
            return self._power_modulo(other, modulo, context)

        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        # either argument is a NaN => result is NaN
        ans = self._check_nans(other, context)
        if ans:
            return ans

        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
        if not other:
            if not self:
                return context._raise_error(InvalidOperation, '0 ** 0')
            else:
                return _One

        # result has sign 1 iff self._sign is 1 and other is an odd integer
        result_sign = 0
        if self._sign == 1:
            if other._isinteger():
                if not other._iseven():
                    result_sign = 1
            else:
                # -ve**noninteger = NaN
                # (-0)**noninteger = 0**noninteger
                if self:
                    return context._raise_error(InvalidOperation,
                        'x ** y with x negative and y not an integer')
            # negate self, without doing any unwanted rounding
            self = self.copy_negate()

        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
        if not self:
            if other._sign == 0:
                return _dec_from_triple(result_sign, '0', 0)
            else:
                return _SignedInfinity[result_sign]

        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
        if self._isinfinity():
            if other._sign == 0:
                return _SignedInfinity[result_sign]
            else:
                return _dec_from_triple(result_sign, '0', 0)

        # 1**other = 1, but the choice of exponent and the flags
        # depend on the exponent of self, and on whether other is a
        # positive integer, a negative integer, or neither
        if self == _One:
            if other._isinteger():
                # exp = max(self._exp*max(int(other), 0),
                # 1-context.prec) but evaluating int(other) directly
                # is dangerous until we know other is small (other
                # could be 1e999999999)
                if other._sign == 1:
                    multiplier = 0
                elif other > context.prec:
                    multiplier = context.prec
                else:
                    multiplier = int(other)

                exp = self._exp * multiplier
                if exp < 1-context.prec:
                    exp = 1-context.prec
                    context._raise_error(Rounded)
            else:
                context._raise_error(Inexact)
                context._raise_error(Rounded)
                exp = 1-context.prec

            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)

        # compute adjusted exponent of self
        self_adj = self.adjusted()

        # self ** infinity is infinity if self > 1, 0 if self < 1
        # self ** -infinity is infinity if self < 1, 0 if self > 1
        if other._isinfinity():
            if (other._sign == 0) == (self_adj < 0):
                return _dec_from_triple(result_sign, '0', 0)
            else:
                return _SignedInfinity[result_sign]

        # from here on, the result always goes through the call
        # to _fix at the end of this function.
        ans = None
        exact = False

        # crude test to catch cases of extreme overflow/underflow.  If
        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
        # self**other >= 10**(Emax+1), so overflow occurs.  The test
        # for underflow is similar.
        bound = self._log10_exp_bound() + other.adjusted()
        if (self_adj >= 0) == (other._sign == 0):
            # self > 1 and other +ve, or self < 1 and other -ve
            # possibility of overflow
            if bound >= len(str(context.Emax)):
                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
        else:
            # self > 1 and other -ve, or self < 1 and other +ve
            # possibility of underflow to 0
            Etiny = context.Etiny()
            if bound >= len(str(-Etiny)):
                ans = _dec_from_triple(result_sign, '1', Etiny-1)

        # try for an exact result with precision +1
        if ans is None:
            ans = self._power_exact(other, context.prec + 1)
            if ans is not None:
                if result_sign == 1:
                    ans = _dec_from_triple(1, ans._int, ans._exp)
                exact = True

        # usual case: inexact result, x**y computed directly as exp(y*log(x))
        if ans is None:
            p = context.prec
            x = _WorkRep(self)
            xc, xe = x.int, x.exp
            y = _WorkRep(other)
            yc, ye = y.int, y.exp
            if y.sign == 1:
                yc = -yc

            # compute correctly rounded result:  start with precision +3,
            # then increase precision until result is unambiguously roundable
            extra = 3
            while True:
                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
                if coeff % (5*10**(len(str(coeff))-p-1)):
                    break
                extra += 3

            ans = _dec_from_triple(result_sign, str(coeff), exp)

        # unlike exp, ln and log10, the power function respects the
        # rounding mode; no need to switch to ROUND_HALF_EVEN here

        # There's a difficulty here when 'other' is not an integer and
        # the result is exact.  In this case, the specification
        # requires that the Inexact flag be raised (in spite of
        # exactness), but since the result is exact _fix won't do this
        # for us.  (Correspondingly, the Underflow signal should also
        # be raised for subnormal results.)  We can't directly raise
        # these signals either before or after calling _fix, since
        # that would violate the precedence for signals.  So we wrap
        # the ._fix call in a temporary context, and reraise
        # afterwards.
        if exact and not other._isinteger():
            # pad with zeros up to length context.prec+1 if necessary; this
            # ensures that the Rounded signal will be raised.
            if len(ans._int) <= context.prec:
                expdiff = context.prec + 1 - len(ans._int)
                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
                                       ans._exp-expdiff)

            # create a copy of the current context, with cleared flags/traps
            newcontext = context.copy()
            newcontext.clear_flags()
            for exception in _signals:
                newcontext.traps[exception] = 0

            # round in the new context
            ans = ans._fix(newcontext)

            # raise Inexact, and if necessary, Underflow
            newcontext._raise_error(Inexact)
            if newcontext.flags[Subnormal]:
                newcontext._raise_error(Underflow)

            # propagate signals to the original context; _fix could
            # have raised any of Overflow, Underflow, Subnormal,
            # Inexact, Rounded, Clamped.  Overflow needs the correct
            # arguments.  Note that the order of the exceptions is
            # important here.
            if newcontext.flags[Overflow]:
                context._raise_error(Overflow, 'above Emax', ans._sign)
            for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
                if newcontext.flags[exception]:
                    context._raise_error(exception)

        else:
            ans = ans._fix(context)

        return ans

    def __rpow__(self, other, context=None):
        """Swaps self/other and returns __pow__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__pow__(self, context=context)

    def normalize(self, context=None):
        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""

        if context is None:
            context = getcontext()

        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        dup = self._fix(context)
        if dup._isinfinity():
            return dup

        if not dup:
            return _dec_from_triple(dup._sign, '0', 0)
        exp_max = [context.Emax, context.Etop()][context.clamp]
        end = len(dup._int)
        exp = dup._exp
        while dup._int[end-1] == '0' and exp < exp_max:
            exp += 1
            end -= 1
        return _dec_from_triple(dup._sign, dup._int[:end], exp)

    def quantize(self, exp, rounding=None, context=None, watchexp=True):
        """Quantize self so its exponent is the same as that of exp.

        Similar to self._rescale(exp._exp) but with error checking.
        """
        exp = _convert_other(exp, raiseit=True)

        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding

        if self._is_special or exp._is_special:
            ans = self._check_nans(exp, context)
            if ans:
                return ans

            if exp._isinfinity() or self._isinfinity():
                if exp._isinfinity() and self._isinfinity():
                    return Decimal(self)  # if both are inf, it is OK
                return context._raise_error(InvalidOperation,
                                        'quantize with one INF')

        # if we're not watching exponents, do a simple rescale
        if not watchexp:
            ans = self._rescale(exp._exp, rounding)
            # raise Inexact and Rounded where appropriate
            if ans._exp > self._exp:
                context._raise_error(Rounded)
                if ans != self:
                    context._raise_error(Inexact)
            return ans

        # exp._exp should be between Etiny and Emax
        if not (context.Etiny() <= exp._exp <= context.Emax):
            return context._raise_error(InvalidOperation,
                   'target exponent out of bounds in quantize')

        if not self:
            ans = _dec_from_triple(self._sign, '0', exp._exp)
            return ans._fix(context)

        self_adjusted = self.adjusted()
        if self_adjusted > context.Emax:
            return context._raise_error(InvalidOperation,
                                        'exponent of quantize result too large for current context')
        if self_adjusted - exp._exp + 1 > context.prec:
            return context._raise_error(InvalidOperation,
                                        'quantize result has too many digits for current context')

        ans = self._rescale(exp._exp, rounding)
        if ans.adjusted() > context.Emax:
            return context._raise_error(InvalidOperation,
                                        'exponent of quantize result too large for current context')
        if len(ans._int) > context.prec:
            return context._raise_error(InvalidOperation,
                                        'quantize result has too many digits for current context')

        # raise appropriate flags
        if ans and ans.adjusted() < context.Emin:
            context._raise_error(Subnormal)
        if ans._exp > self._exp:
            if ans != self:
                context._raise_error(Inexact)
            context._raise_error(Rounded)

        # call to fix takes care of any necessary folddown, and
        # signals Clamped if necessary
        ans = ans._fix(context)
        return ans

    def same_quantum(self, other, context=None):
        """Return True if self and other have the same exponent; otherwise
        return False.

        If either operand is a special value, the following rules are used:
           * return True if both operands are infinities
           * return True if both operands are NaNs
           * otherwise, return False.
        """
        other = _convert_other(other, raiseit=True)
        if self._is_special or other._is_special:
            return (self.is_nan() and other.is_nan() or
                    self.is_infinite() and other.is_infinite())
        return self._exp == other._exp

    def _rescale(self, exp, rounding):
        """Rescale self so that the exponent is exp, either by padding with zeros
        or by truncating digits, using the given rounding mode.

        Specials are returned without change.  This operation is
        quiet: it raises no flags, and uses no information from the
        context.

        exp = exp to scale to (an integer)
        rounding = rounding mode
        """
        if self._is_special:
            return Decimal(self)
        if not self:
            return _dec_from_triple(self._sign, '0', exp)

        if self._exp >= exp:
            # pad answer with zeros if necessary
            return _dec_from_triple(self._sign,
                                        self._int + '0'*(self._exp - exp), exp)

        # too many digits; round and lose data.  If self.adjusted() <
        # exp-1, replace self by 10**(exp-1) before rounding
        digits = len(self._int) + self._exp - exp
        if digits < 0:
            self = _dec_from_triple(self._sign, '1', exp-1)
            digits = 0
        this_function = self._pick_rounding_function[rounding]
        changed = this_function(self, digits)
        coeff = self._int[:digits] or '0'
        if changed == 1:
            coeff = str(int(coeff)+1)
        return _dec_from_triple(self._sign, coeff, exp)

    def _round(self, places, rounding):
        """Round a nonzero, nonspecial Decimal to a fixed number of
        significant figures, using the given rounding mode.

        Infinities, NaNs and zeros are returned unaltered.

        This operation is quiet: it raises no flags, and uses no
        information from the context.

        """
        if places <= 0:
            raise ValueError("argument should be at least 1 in _round")
        if self._is_special or not self:
            return Decimal(self)
        ans = self._rescale(self.adjusted()+1-places, rounding)
        # it can happen that the rescale alters the adjusted exponent;
        # for example when rounding 99.97 to 3 significant figures.
        # When this happens we end up with an extra 0 at the end of
        # the number; a second rescale fixes this.
        if ans.adjusted() != self.adjusted():
            ans = ans._rescale(ans.adjusted()+1-places, rounding)
        return ans

    def to_integral_exact(self, rounding=None, context=None):
        """Rounds to a nearby integer.

        If no rounding mode is specified, take the rounding mode from
        the context.  This method raises the Rounded and Inexact flags
        when appropriate.

        See also: to_integral_value, which does exactly the same as
        this method except that it doesn't raise Inexact or Rounded.
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans
            return Decimal(self)
        if self._exp >= 0:
            return Decimal(self)
        if not self:
            return _dec_from_triple(self._sign, '0', 0)
        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding
        ans = self._rescale(0, rounding)
        if ans != self:
            context._raise_error(Inexact)
        context._raise_error(Rounded)
        return ans

    def to_integral_value(self, rounding=None, context=None):
        """Rounds to the nearest integer, without raising inexact, rounded."""
        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans
            return Decimal(self)
        if self._exp >= 0:
            return Decimal(self)
        else:
            return self._rescale(0, rounding)

    # the method name changed, but we provide also the old one, for compatibility
    to_integral = to_integral_value

    def sqrt(self, context=None):
        """Return the square root of self."""
        if context is None:
            context = getcontext()

        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

            if self._isinfinity() and self._sign == 0:
                return Decimal(self)

        if not self:
            # exponent = self._exp // 2.  sqrt(-0) = -0
            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
            return ans._fix(context)

        if self._sign == 1:
            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')

        # At this point self represents a positive number.  Let p be
        # the desired precision and express self in the form c*100**e
        # with c a positive real number and e an integer, c and e
        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
        # <= sqrt(c) < 10**p, so the closest representable Decimal at
        # precision p is n*10**e where n = round_half_even(sqrt(c)),
        # the closest integer to sqrt(c) with the even integer chosen
        # in the case of a tie.
        #
        # To ensure correct rounding in all cases, we use the
        # following trick: we compute the square root to an extra
        # place (precision p+1 instead of precision p), rounding down.
        # Then, if the result is inexact and its last digit is 0 or 5,
        # we increase the last digit to 1 or 6 respectively; if it's
        # exact we leave the last digit alone.  Now the final round to
        # p places (or fewer in the case of underflow) will round
        # correctly and raise the appropriate flags.

        # use an extra digit of precision
        prec = context.prec+1

        # write argument in the form c*100**e where e = self._exp//2
        # is the 'ideal' exponent, to be used if the square root is
        # exactly representable.  l is the number of 'digits' of c in
        # base 100, so that 100**(l-1) <= c < 100**l.
        op = _WorkRep(self)
        e = op.exp >> 1
        if op.exp & 1:
            c = op.int * 10
            l = (len(self._int) >> 1) + 1
        else:
            c = op.int
            l = len(self._int)+1 >> 1

        # rescale so that c has exactly prec base 100 'digits'
        shift = prec-l
        if shift >= 0:
            c *= 100**shift
            exact = True
        else:
            c, remainder = divmod(c, 100**-shift)
            exact = not remainder
        e -= shift

        # find n = floor(sqrt(c)) using Newton's method
        n = 10**prec
        while True:
            q = c//n
            if n <= q:
                break
            else:
                n = n + q >> 1
        exact = exact and n*n == c

        if exact:
            # result is exact; rescale to use ideal exponent e
            if shift >= 0:
                # assert n % 10**shift == 0
                n //= 10**shift
            else:
                n *= 10**-shift
            e += shift
        else:
            # result is not exact; fix last digit as described above
            if n % 5 == 0:
                n += 1

        ans = _dec_from_triple(0, str(n), e)

        # round, and fit to current context
        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding

        return ans

    def max(self, other, context=None):
        """Returns the larger value.

        Like max(self, other) except if one is not a number, returns
        NaN (and signals if one is sNaN).  Also rounds.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn == 0:
                    return self._fix(context)
                if sn == 1 and on == 0:
                    return other._fix(context)
                return self._check_nans(other, context)

        c = self._cmp(other)
        if c == 0:
            # If both operands are finite and equal in numerical value
            # then an ordering is applied:
            #
            # If the signs differ then max returns the operand with the
            # positive sign and min returns the operand with the negative sign
            #
            # If the signs are the same then the exponent is used to select
            # the result.  This is exactly the ordering used in compare_total.
            c = self.compare_total(other)

        if c == -1:
            ans = other
        else:
            ans = self

        return ans._fix(context)

    def min(self, other, context=None):
        """Returns the smaller value.

        Like min(self, other) except if one is not a number, returns
        NaN (and signals if one is sNaN).  Also rounds.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn == 0:
                    return self._fix(context)
                if sn == 1 and on == 0:
                    return other._fix(context)
                return self._check_nans(other, context)

        c = self._cmp(other)
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = self
        else:
            ans = other

        return ans._fix(context)

    def _isinteger(self):
        """Returns whether self is an integer"""
        if self._is_special:
            return False
        if self._exp >= 0:
            return True
        rest = self._int[self._exp:]
        return rest == '0'*len(rest)

    def _iseven(self):
        """Returns True if self is even.  Assumes self is an integer."""
        if not self or self._exp > 0:
            return True
        return self._int[-1+self._exp] in '02468'

    def adjusted(self):
        """Return the adjusted exponent of self"""
        try:
            return self._exp + len(self._int) - 1
        # If NaN or Infinity, self._exp is string
        except TypeError:
            return 0

    def canonical(self):
        """Returns the same Decimal object.

        As we do not have different encodings for the same number, the
        received object already is in its canonical form.
        """
        return self

    def compare_signal(self, other, context=None):
        """Compares self to the other operand numerically.

        It's pretty much like compare(), but all NaNs signal, with signaling
        NaNs taking precedence over quiet NaNs.
        """
        other = _convert_other(other, raiseit = True)
        ans = self._compare_check_nans(other, context)
        if ans:
            return ans
        return self.compare(other, context=context)

    def compare_total(self, other, context=None):
        """Compares self to other using the abstract representations.

        This is not like the standard compare, which use their numerical
        value. Note that a total ordering is defined for all possible abstract
        representations.
        """
        other = _convert_other(other, raiseit=True)

        # if one is negative and the other is positive, it's easy
        if self._sign and not other._sign:
            return _NegativeOne
        if not self._sign and other._sign:
            return _One
        sign = self._sign

        # let's handle both NaN types
        self_nan = self._isnan()
        other_nan = other._isnan()
        if self_nan or other_nan:
            if self_nan == other_nan:
                # compare payloads as though they're integers
                self_key = len(self._int), self._int
                other_key = len(other._int), other._int
                if self_key < other_key:
                    if sign:
                        return _One
                    else:
                        return _NegativeOne
                if self_key > other_key:
                    if sign:
                        return _NegativeOne
                    else:
                        return _One
                return _Zero

            if sign:
                if self_nan == 1:
                    return _NegativeOne
                if other_nan == 1:
                    return _One
                if self_nan == 2:
                    return _NegativeOne
                if other_nan == 2:
                    return _One
            else:
                if self_nan == 1:
                    return _One
                if other_nan == 1:
                    return _NegativeOne
                if self_nan == 2:
                    return _One
                if other_nan == 2:
                    return _NegativeOne

        if self < other:
            return _NegativeOne
        if self > other:
            return _One

        if self._exp < other._exp:
            if sign:
                return _One
            else:
                return _NegativeOne
        if self._exp > other._exp:
            if sign:
                return _NegativeOne
            else:
                return _One
        return _Zero


    def compare_total_mag(self, other, context=None):
        """Compares self to other using abstract repr., ignoring sign.

        Like compare_total, but with operand's sign ignored and assumed to be 0.
        """
        other = _convert_other(other, raiseit=True)

        s = self.copy_abs()
        o = other.copy_abs()
        return s.compare_total(o)

    def copy_abs(self):
        """Returns a copy with the sign set to 0. """
        return _dec_from_triple(0, self._int, self._exp, self._is_special)

    def copy_negate(self):
        """Returns a copy with the sign inverted."""
        if self._sign:
            return _dec_from_triple(0, self._int, self._exp, self._is_special)
        else:
            return _dec_from_triple(1, self._int, self._exp, self._is_special)

    def copy_sign(self, other, context=None):
        """Returns self with the sign of other."""
        other = _convert_other(other, raiseit=True)
        return _dec_from_triple(other._sign, self._int,
                                self._exp, self._is_special)

    def exp(self, context=None):
        """Returns e ** self."""

        if context is None:
            context = getcontext()

        # exp(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # exp(-Infinity) = 0
        if self._isinfinity() == -1:
            return _Zero

        # exp(0) = 1
        if not self:
            return _One

        # exp(Infinity) = Infinity
        if self._isinfinity() == 1:
            return Decimal(self)

        # the result is now guaranteed to be inexact (the true
        # mathematical result is transcendental). There's no need to
        # raise Rounded and Inexact here---they'll always be raised as
        # a result of the call to _fix.
        p = context.prec
        adj = self.adjusted()

        # we only need to do any computation for quite a small range
        # of adjusted exponents---for example, -29 <= adj <= 10 for
        # the default context.  For smaller exponent the result is
        # indistinguishable from 1 at the given precision, while for
        # larger exponent the result either overflows or underflows.
        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
            # overflow
            ans = _dec_from_triple(0, '1', context.Emax+1)
        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
            # underflow to 0
            ans = _dec_from_triple(0, '1', context.Etiny()-1)
        elif self._sign == 0 and adj < -p:
            # p+1 digits; final round will raise correct flags
            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
        elif self._sign == 1 and adj < -p-1:
            # p+1 digits; final round will raise correct flags
            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
        # general case
        else:
            op = _WorkRep(self)
            c, e = op.int, op.exp
            if op.sign == 1:
                c = -c

            # compute correctly rounded result: increase precision by
            # 3 digits at a time until we get an unambiguously
            # roundable result
            extra = 3
            while True:
                coeff, exp = _dexp(c, e, p+extra)
                if coeff % (5*10**(len(str(coeff))-p-1)):
                    break
                extra += 3

            ans = _dec_from_triple(0, str(coeff), exp)

        # at this stage, ans should round correctly with *any*
        # rounding mode, not just with ROUND_HALF_EVEN
        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding

        return ans

    def is_canonical(self):
        """Return True if self is canonical; otherwise return False.

        Currently, the encoding of a Decimal instance is always
        canonical, so this method returns True for any Decimal.
        """
        return True

    def is_finite(self):
        """Return True if self is finite; otherwise return False.

        A Decimal instance is considered finite if it is neither
        infinite nor a NaN.
        """
        return not self._is_special

    def is_infinite(self):
        """Return True if self is infinite; otherwise return False."""
        return self._exp == 'F'

    def is_nan(self):
        """Return True if self is a qNaN or sNaN; otherwise return False."""
        return self._exp in ('n', 'N')

    def is_normal(self, context=None):
        """Return True if self is a normal number; otherwise return False."""
        if self._is_special or not self:
            return False
        if context is None:
            context = getcontext()
        return context.Emin <= self.adjusted()

    def is_qnan(self):
        """Return True if self is a quiet NaN; otherwise return False."""
        return self._exp == 'n'

    def is_signed(self):
        """Return True if self is negative; otherwise return False."""
        return self._sign == 1

    def is_snan(self):
        """Return True if self is a signaling NaN; otherwise return False."""
        return self._exp == 'N'

    def is_subnormal(self, context=None):
        """Return True if self is subnormal; otherwise return False."""
        if self._is_special or not self:
            return False
        if context is None:
            context = getcontext()
        return self.adjusted() < context.Emin

    def is_zero(self):
        """Return True if self is a zero; otherwise return False."""
        return not self._is_special and self._int == '0'

    def _ln_exp_bound(self):
        """Compute a lower bound for the adjusted exponent of self.ln().
        In other words, compute r such that self.ln() >= 10**r.  Assumes
        that self is finite and positive and that self != 1.
        """

        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
        adj = self._exp + len(self._int) - 1
        if adj >= 1:
            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
            return len(str(adj*23//10)) - 1
        if adj <= -2:
            # argument <= 0.1
            return len(str((-1-adj)*23//10)) - 1
        op = _WorkRep(self)
        c, e = op.int, op.exp
        if adj == 0:
            # 1 < self < 10
            num = str(c-10**-e)
            den = str(c)
            return len(num) - len(den) - (num < den)
        # adj == -1, 0.1 <= self < 1
        return e + len(str(10**-e - c)) - 1


    def ln(self, context=None):
        """Returns the natural (base e) logarithm of self."""

        if context is None:
            context = getcontext()

        # ln(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # ln(0.0) == -Infinity
        if not self:
            return _NegativeInfinity

        # ln(Infinity) = Infinity
        if self._isinfinity() == 1:
            return _Infinity

        # ln(1.0) == 0.0
        if self == _One:
            return _Zero

        # ln(negative) raises InvalidOperation
        if self._sign == 1:
            return context._raise_error(InvalidOperation,
                                        'ln of a negative value')

        # result is irrational, so necessarily inexact
        op = _WorkRep(self)
        c, e = op.int, op.exp
        p = context.prec

        # correctly rounded result: repeatedly increase precision by 3
        # until we get an unambiguously roundable result
        places = p - self._ln_exp_bound() + 2 # at least p+3 places
        while True:
            coeff = _dlog(c, e, places)
            # assert len(str(abs(coeff)))-p >= 1
            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
                break
            places += 3
        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)

        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding
        return ans

    def _log10_exp_bound(self):
        """Compute a lower bound for the adjusted exponent of self.log10().
        In other words, find r such that self.log10() >= 10**r.
        Assumes that self is finite and positive and that self != 1.
        """

        # For x >= 10 or x < 0.1 we only need a bound on the integer
        # part of log10(self), and this comes directly from the
        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0

        adj = self._exp + len(self._int) - 1
        if adj >= 1:
            # self >= 10
            return len(str(adj))-1
        if adj <= -2:
            # self < 0.1
            return len(str(-1-adj))-1
        op = _WorkRep(self)
        c, e = op.int, op.exp
        if adj == 0:
            # 1 < self < 10
            num = str(c-10**-e)
            den = str(231*c)
            return len(num) - len(den) - (num < den) + 2
        # adj == -1, 0.1 <= self < 1
        num = str(10**-e-c)
        return len(num) + e - (num < "231") - 1

    def log10(self, context=None):
        """Returns the base 10 logarithm of self."""

        if context is None:
            context = getcontext()

        # log10(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # log10(0.0) == -Infinity
        if not self:
            return _NegativeInfinity

        # log10(Infinity) = Infinity
        if self._isinfinity() == 1:
            return _Infinity

        # log10(negative or -Infinity) raises InvalidOperation
        if self._sign == 1:
            return context._raise_error(InvalidOperation,
                                        'log10 of a negative value')

        # log10(10**n) = n
        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
            # answer may need rounding
            ans = Decimal(self._exp + len(self._int) - 1)
        else:
            # result is irrational, so necessarily inexact
            op = _WorkRep(self)
            c, e = op.int, op.exp
            p = context.prec

            # correctly rounded result: repeatedly increase precision
            # until result is unambiguously roundable
            places = p-self._log10_exp_bound()+2
            while True:
                coeff = _dlog10(c, e, places)
                # assert len(str(abs(coeff)))-p >= 1
                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
                    break
                places += 3
            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)

        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding
        return ans

    def logb(self, context=None):
        """ Returns the exponent of the magnitude of self's MSD.

        The result is the integer which is the exponent of the magnitude
        of the most significant digit of self (as though it were truncated
        to a single digit while maintaining the value of that digit and
        without limiting the resulting exponent).
        """
        # logb(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        if context is None:
            context = getcontext()

        # logb(+/-Inf) = +Inf
        if self._isinfinity():
            return _Infinity

        # logb(0) = -Inf, DivisionByZero
        if not self:
            return context._raise_error(DivisionByZero, 'logb(0)', 1)

        # otherwise, simply return the adjusted exponent of self, as a
        # Decimal.  Note that no attempt is made to fit the result
        # into the current context.
        ans = Decimal(self.adjusted())
        return ans._fix(context)

    def _islogical(self):
        """Return True if self is a logical operand.

        For being logical, it must be a finite number with a sign of 0,
        an exponent of 0, and a coefficient whose digits must all be
        either 0 or 1.
        """
        if self._sign != 0 or self._exp != 0:
            return False
        for dig in self._int:
            if dig not in '01':
                return False
        return True

    def _fill_logical(self, context, opa, opb):
        dif = context.prec - len(opa)
        if dif > 0:
            opa = '0'*dif + opa
        elif dif < 0:
            opa = opa[-context.prec:]
        dif = context.prec - len(opb)
        if dif > 0:
            opb = '0'*dif + opb
        elif dif < 0:
            opb = opb[-context.prec:]
        return opa, opb

    def logical_and(self, other, context=None):
        """Applies an 'and' operation between self and other's digits."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def logical_invert(self, context=None):
        """Invert all its digits."""
        if context is None:
            context = getcontext()
        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
                                context)

    def logical_or(self, other, context=None):
        """Applies an 'or' operation between self and other's digits."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def logical_xor(self, other, context=None):
        """Applies an 'xor' operation between self and other's digits."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def max_mag(self, other, context=None):
        """Compares the values numerically with their sign ignored."""
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn == 0:
                    return self._fix(context)
                if sn == 1 and on == 0:
                    return other._fix(context)
                return self._check_nans(other, context)

        c = self.copy_abs()._cmp(other.copy_abs())
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = other
        else:
            ans = self

        return ans._fix(context)

    def min_mag(self, other, context=None):
        """Compares the values numerically with their sign ignored."""
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn == 0:
                    return self._fix(context)
                if sn == 1 and on == 0:
                    return other._fix(context)
                return self._check_nans(other, context)

        c = self.copy_abs()._cmp(other.copy_abs())
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = self
        else:
            ans = other

        return ans._fix(context)

    def next_minus(self, context=None):
        """Returns the largest representable number smaller than itself."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(context=context)
        if ans:
            return ans

        if self._isinfinity() == -1:
            return _NegativeInfinity
        if self._isinfinity() == 1:
            return _dec_from_triple(0, '9'*context.prec, context.Etop())

        context = context.copy()
        context._set_rounding(ROUND_FLOOR)
        context._ignore_all_flags()
        new_self = self._fix(context)
        if new_self != self:
            return new_self
        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
                            context)

    def next_plus(self, context=None):
        """Returns the smallest representable number larger than itself."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(context=context)
        if ans:
            return ans

        if self._isinfinity() == 1:
            return _Infinity
        if self._isinfinity() == -1:
            return _dec_from_triple(1, '9'*context.prec, context.Etop())

        context = context.copy()
        context._set_rounding(ROUND_CEILING)
        context._ignore_all_flags()
        new_self = self._fix(context)
        if new_self != self:
            return new_self
        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
                            context)

    def next_toward(self, other, context=None):
        """Returns the number closest to self, in the direction towards other.

        The result is the closest representable number to self
        (excluding self) that is in the direction towards other,
        unless both have the same value.  If the two operands are
        numerically equal, then the result is a copy of self with the
        sign set to be the same as the sign of other.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        comparison = self._cmp(other)
        if comparison == 0:
            return self.copy_sign(other)

        if comparison == -1:
            ans = self.next_plus(context)
        else: # comparison == 1
            ans = self.next_minus(context)

        # decide which flags to raise using value of ans
        if ans._isinfinity():
            context._raise_error(Overflow,
                                 'Infinite result from next_toward',
                                 ans._sign)
            context._raise_error(Inexact)
            context._raise_error(Rounded)
        elif ans.adjusted() < context.Emin:
            context._raise_error(Underflow)
            context._raise_error(Subnormal)
            context._raise_error(Inexact)
            context._raise_error(Rounded)
            # if precision == 1 then we don't raise Clamped for a
            # result 0E-Etiny.
            if not ans:
                context._raise_error(Clamped)

        return ans

    def number_class(self, context=None):
        """Returns an indication of the class of self.

        The class is one of the following strings:
          sNaN
          NaN
          -Infinity
          -Normal
          -Subnormal
          -Zero
          +Zero
          +Subnormal
          +Normal
          +Infinity
        """
        if self.is_snan():
            return "sNaN"
        if self.is_qnan():
            return "NaN"
        inf = self._isinfinity()
        if inf == 1:
            return "+Infinity"
        if inf == -1:
            return "-Infinity"
        if self.is_zero():
            if self._sign:
                return "-Zero"
            else:
                return "+Zero"
        if context is None:
            context = getcontext()
        if self.is_subnormal(context=context):
            if self._sign:
                return "-Subnormal"
            else:
                return "+Subnormal"
        # just a normal, regular, boring number, :)
        if self._sign:
            return "-Normal"
        else:
            return "+Normal"

    def radix(self):
        """Just returns 10, as this is Decimal, :)"""
        return Decimal(10)

    def rotate(self, other, context=None):
        """Returns a rotated copy of self, value-of-other times."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        if not (-context.prec <= int(other) <= context.prec):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        # get values, pad if necessary
        torot = int(other)
        rotdig = self._int
        topad = context.prec - len(rotdig)
        if topad > 0:
            rotdig = '0'*topad + rotdig
        elif topad < 0:
            rotdig = rotdig[-topad:]

        # let's rotate!
        rotated = rotdig[torot:] + rotdig[:torot]
        return _dec_from_triple(self._sign,
                                rotated.lstrip('0') or '0', self._exp)

    def scaleb(self, other, context=None):
        """Returns self operand after adding the second value to its exp."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        liminf = -2 * (context.Emax + context.prec)
        limsup =  2 * (context.Emax + context.prec)
        if not (liminf <= int(other) <= limsup):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
        d = d._fix(context)
        return d

    def shift(self, other, context=None):
        """Returns a shifted copy of self, value-of-other times."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        if not (-context.prec <= int(other) <= context.prec):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        # get values, pad if necessary
        torot = int(other)
        rotdig = self._int
        topad = context.prec - len(rotdig)
        if topad > 0:
            rotdig = '0'*topad + rotdig
        elif topad < 0:
            rotdig = rotdig[-topad:]

        # let's shift!
        if torot < 0:
            shifted = rotdig[:torot]
        else:
            shifted = rotdig + '0'*torot
            shifted = shifted[-context.prec:]

        return _dec_from_triple(self._sign,
                                    shifted.lstrip('0') or '0', self._exp)

    # Support for pickling, copy, and deepcopy
    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) is Decimal:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(str(self))

    def __deepcopy__(self, memo):
        if type(self) is Decimal:
            return self     # My components are also immutable
        return self.__class__(str(self))

    # PEP 3101 support.  the _localeconv keyword argument should be
    # considered private: it's provided for ease of testing only.
    def __format__(self, specifier, context=None, _localeconv=None):
        """Format a Decimal instance according to the given specifier.

        The specifier should be a standard format specifier, with the
        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
        'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
        type is omitted it defaults to 'g' or 'G', depending on the
        value of context.capitals.
        """

        # Note: PEP 3101 says that if the type is not present then
        # there should be at least one digit after the decimal point.
        # We take the liberty of ignoring this requirement for
        # Decimal---it's presumably there to make sure that
        # format(float, '') behaves similarly to str(float).
        if context is None:
            context = getcontext()

        spec = _parse_format_specifier(specifier, _localeconv=_localeconv)

        # special values don't care about the type or precision
        if self._is_special:
            sign = _format_sign(self._sign, spec)
            body = str(self.copy_abs())
            if spec['type'] == '%':
                body += '%'
            return _format_align(sign, body, spec)

        # a type of None defaults to 'g' or 'G', depending on context
        if spec['type'] is None:
            spec['type'] = ['g', 'G'][context.capitals]

        # if type is '%', adjust exponent of self accordingly
        if spec['type'] == '%':
            self = _dec_from_triple(self._sign, self._int, self._exp+2)

        # round if necessary, taking rounding mode from the context
        rounding = context.rounding
        precision = spec['precision']
        if precision is not None:
            if spec['type'] in 'eE':
                self = self._round(precision+1, rounding)
            elif spec['type'] in 'fF%':
                self = self._rescale(-precision, rounding)
            elif spec['type'] in 'gG' and len(self._int) > precision:
                self = self._round(precision, rounding)
        # special case: zeros with a positive exponent can't be
        # represented in fixed point; rescale them to 0e0.
        if not self and self._exp > 0 and spec['type'] in 'fF%':
            self = self._rescale(0, rounding)

        # figure out placement of the decimal point
        leftdigits = self._exp + len(self._int)
        if spec['type'] in 'eE':
            if not self and precision is not None:
                dotplace = 1 - precision
            else:
                dotplace = 1
        elif spec['type'] in 'fF%':
            dotplace = leftdigits
        elif spec['type'] in 'gG':
            if self._exp <= 0 and leftdigits > -6:
                dotplace = leftdigits
            else:
                dotplace = 1

        # find digits before and after decimal point, and get exponent
        if dotplace < 0:
            intpart = '0'
            fracpart = '0'*(-dotplace) + self._int
        elif dotplace > len(self._int):
            intpart = self._int + '0'*(dotplace-len(self._int))
            fracpart = ''
        else:
            intpart = self._int[:dotplace] or '0'
            fracpart = self._int[dotplace:]
        exp = leftdigits-dotplace

        # done with the decimal-specific stuff;  hand over the rest
        # of the formatting to the _format_number function
        return _format_number(self._sign, intpart, fracpart, exp, spec)

def _dec_from_triple(sign, coefficient, exponent, special=False):
    """Create a decimal instance directly, without any validation,
    normalization (e.g. removal of leading zeros) or argument
    conversion.

    This function is for *internal use only*.
    """

    self = object.__new__(Decimal)
    self._sign = sign
    self._int = coefficient
    self._exp = exponent
    self._is_special = special

    return self

# Register Decimal as a kind of Number (an abstract base class).
# However, do not register it as Real (because Decimals are not
# interoperable with floats).
_numbers.Number.register(Decimal)


##### Context class #######################################################

class _ContextManager(object):
    """Context manager class to support localcontext().

      Sets a copy of the supplied context in __enter__() and restores
      the previous decimal context in __exit__()
    """
    def __init__(self, new_context):
        self.new_context = new_context.copy()
    def __enter__(self):
        self.saved_context = getcontext()
        setcontext(self.new_context)
        return self.new_context
    def __exit__(self, t, v, tb):
        setcontext(self.saved_context)

class Context(object):
    """Contains the context for a Decimal instance.

    Contains:
    prec - precision (for use in rounding, division, square roots..)
    rounding - rounding type (how you round)
    traps - If traps[exception] = 1, then the exception is
                    raised when it is caused.  Otherwise, a value is
                    substituted in.
    flags  - When an exception is caused, flags[exception] is set.
             (Whether or not the trap_enabler is set)
             Should be reset by user of Decimal instance.
    Emin -   Minimum exponent
    Emax -   Maximum exponent
    capitals -      If 1, 1*10^1 is printed as 1E+1.
                    If 0, printed as 1e1
    clamp -  If 1, change exponents if too high (Default 0)
    """

    def __init__(self, prec=None, rounding=None, Emin=None, Emax=None,
                       capitals=None, clamp=None, flags=None, traps=None,
                       _ignored_flags=None):
        # Set defaults; for everything except flags and _ignored_flags,
        # inherit from DefaultContext.
        try:
            dc = DefaultContext
        except NameError:
            pass

        self.prec = prec if prec is not None else dc.prec
        self.rounding = rounding if rounding is not None else dc.rounding
        self.Emin = Emin if Emin is not None else dc.Emin
        self.Emax = Emax if Emax is not None else dc.Emax
        self.capitals = capitals if capitals is not None else dc.capitals
        self.clamp = clamp if clamp is not None else dc.clamp

        if _ignored_flags is None:
            self._ignored_flags = []
        else:
            self._ignored_flags = _ignored_flags

        if traps is None:
            self.traps = dc.traps.copy()
        elif not isinstance(traps, dict):
            self.traps = dict((s, int(s in traps)) for s in _signals + traps)
        else:
            self.traps = traps

        if flags is None:
            self.flags = dict.fromkeys(_signals, 0)
        elif not isinstance(flags, dict):
            self.flags = dict((s, int(s in flags)) for s in _signals + flags)
        else:
            self.flags = flags

    def _set_integer_check(self, name, value, vmin, vmax):
        if not isinstance(value, int):
            raise TypeError("%s must be an integer" % name)
        if vmin == '-inf':
            if value > vmax:
                raise ValueError("%s must be in [%s, %d]. got: %s" % (name, vmin, vmax, value))
        elif vmax == 'inf':
            if value < vmin:
                raise ValueError("%s must be in [%d, %s]. got: %s" % (name, vmin, vmax, value))
        else:
            if value < vmin or value > vmax:
                raise ValueError("%s must be in [%d, %d]. got %s" % (name, vmin, vmax, value))
        return object.__setattr__(self, name, value)

    def _set_signal_dict(self, name, d):
        if not isinstance(d, dict):
            raise TypeError("%s must be a signal dict" % d)
        for key in d:
            if not key in _signals:
                raise KeyError("%s is not a valid signal dict" % d)
        for key in _signals:
            if not key in d:
                raise KeyError("%s is not a valid signal dict" % d)
        return object.__setattr__(self, name, d)

    def __setattr__(self, name, value):
        if name == 'prec':
            return self._set_integer_check(name, value, 1, 'inf')
        elif name == 'Emin':
            return self._set_integer_check(name, value, '-inf', 0)
        elif name == 'Emax':
            return self._set_integer_check(name, value, 0, 'inf')
        elif name == 'capitals':
            return self._set_integer_check(name, value, 0, 1)
        elif name == 'clamp':
            return self._set_integer_check(name, value, 0, 1)
        elif name == 'rounding':
            if not value in _rounding_modes:
                # raise TypeError even for strings to have consistency
                # among various implementations.
                raise TypeError("%s: invalid rounding mode" % value)
            return object.__setattr__(self, name, value)
        elif name == 'flags' or name == 'traps':
            return self._set_signal_dict(name, value)
        elif name == '_ignored_flags':
            return object.__setattr__(self, name, value)
        else:
            raise AttributeError(
                "'decimal.Context' object has no attribute '%s'" % name)

    def __delattr__(self, name):
        raise AttributeError("%s cannot be deleted" % name)

    # Support for pickling, copy, and deepcopy
    def __reduce__(self):
        flags = [sig for sig, v in self.flags.items() if v]
        traps = [sig for sig, v in self.traps.items() if v]
        return (self.__class__,
                (self.prec, self.rounding, self.Emin, self.Emax,
                 self.capitals, self.clamp, flags, traps))

    def __repr__(self):
        """Show the current context."""
        s = []
        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, '
                 'clamp=%(clamp)d'
                 % vars(self))
        names = [f.__name__ for f, v in self.flags.items() if v]
        s.append('flags=[' + ', '.join(names) + ']')
        names = [t.__name__ for t, v in self.traps.items() if v]
        s.append('traps=[' + ', '.join(names) + ']')
        return ', '.join(s) + ')'

    def clear_flags(self):
        """Reset all flags to zero"""
        for flag in self.flags:
            self.flags[flag] = 0

    def clear_traps(self):
        """Reset all traps to zero"""
        for flag in self.traps:
            self.traps[flag] = 0

    def _shallow_copy(self):
        """Returns a shallow copy from self."""
        nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
                     self.capitals, self.clamp, self.flags, self.traps,
                     self._ignored_flags)
        return nc

    def copy(self):
        """Returns a deep copy from self."""
        nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
                     self.capitals, self.clamp,
                     self.flags.copy(), self.traps.copy(),
                     self._ignored_flags)
        return nc
    __copy__ = copy

    def _raise_error(self, condition, explanation = None, *args):
        """Handles an error

        If the flag is in _ignored_flags, returns the default response.
        Otherwise, it sets the flag, then, if the corresponding
        trap_enabler is set, it reraises the exception.  Otherwise, it returns
        the default value after setting the flag.
        """
        error = _condition_map.get(condition, condition)
        if error in self._ignored_flags:
            # Don't touch the flag
            return error().handle(self, *args)

        self.flags[error] = 1
        if not self.traps[error]:
            # The errors define how to handle themselves.
            return condition().handle(self, *args)

        # Errors should only be risked on copies of the context
        # self._ignored_flags = []
        raise error(explanation)

    def _ignore_all_flags(self):
        """Ignore all flags, if they are raised"""
        return self._ignore_flags(*_signals)

    def _ignore_flags(self, *flags):
        """Ignore the flags, if they are raised"""
        # Do not mutate-- This way, copies of a context leave the original
        # alone.
        self._ignored_flags = (self._ignored_flags + list(flags))
        return list(flags)

    def _regard_flags(self, *flags):
        """Stop ignoring the flags, if they are raised"""
        if flags and isinstance(flags[0], (tuple,list)):
            flags = flags[0]
        for flag in flags:
            self._ignored_flags.remove(flag)

    # We inherit object.__hash__, so we must deny this explicitly
    __hash__ = None

    def Etiny(self):
        """Returns Etiny (= Emin - prec + 1)"""
        return int(self.Emin - self.prec + 1)

    def Etop(self):
        """Returns maximum exponent (= Emax - prec + 1)"""
        return int(self.Emax - self.prec + 1)

    def _set_rounding(self, type):
        """Sets the rounding type.

        Sets the rounding type, and returns the current (previous)
        rounding type.  Often used like:

        context = context.copy()
        # so you don't change the calling context
        # if an error occurs in the middle.
        rounding = context._set_rounding(ROUND_UP)
        val = self.__sub__(other, context=context)
        context._set_rounding(rounding)

        This will make it round up for that operation.
        """
        rounding = self.rounding
        self.rounding= type
        return rounding

    def create_decimal(self, num='0'):
        """Creates a new Decimal instance but using self as context.

        This method implements the to-number operation of the
        IBM Decimal specification."""

        if isinstance(num, str) and num != num.strip():
            return self._raise_error(ConversionSyntax,
                                     "no trailing or leading whitespace is "
                                     "permitted.")

        d = Decimal(num, context=self)
        if d._isnan() and len(d._int) > self.prec - self.clamp:
            return self._raise_error(ConversionSyntax,
                                     "diagnostic info too long in NaN")
        return d._fix(self)

    def create_decimal_from_float(self, f):
        """Creates a new Decimal instance from a float but rounding using self
        as the context.

        >>> context = Context(prec=5, rounding=ROUND_DOWN)
        >>> context.create_decimal_from_float(3.1415926535897932)
        Decimal('3.1415')
        >>> context = Context(prec=5, traps=[Inexact])
        >>> context.create_decimal_from_float(3.1415926535897932)
        Traceback (most recent call last):
            ...
        decimal.Inexact: None

        """
        d = Decimal.from_float(f)       # An exact conversion
        return d._fix(self)             # Apply the context rounding

    # Methods
    def abs(self, a):
        """Returns the absolute value of the operand.

        If the operand is negative, the result is the same as using the minus
        operation on the operand.  Otherwise, the result is the same as using
        the plus operation on the operand.

        >>> ExtendedContext.abs(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.abs(Decimal('-100'))
        Decimal('100')
        >>> ExtendedContext.abs(Decimal('101.5'))
        Decimal('101.5')
        >>> ExtendedContext.abs(Decimal('-101.5'))
        Decimal('101.5')
        >>> ExtendedContext.abs(-1)
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.__abs__(context=self)

    def add(self, a, b):
        """Return the sum of the two operands.

        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
        Decimal('19.00')
        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
        Decimal('1.02E+4')
        >>> ExtendedContext.add(1, Decimal(2))
        Decimal('3')
        >>> ExtendedContext.add(Decimal(8), 5)
        Decimal('13')
        >>> ExtendedContext.add(5, 5)
        Decimal('10')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__add__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def _apply(self, a):
        return str(a._fix(self))

    def canonical(self, a):
        """Returns the same Decimal object.

        As we do not have different encodings for the same number, the
        received object already is in its canonical form.

        >>> ExtendedContext.canonical(Decimal('2.50'))
        Decimal('2.50')
        """
        if not isinstance(a, Decimal):
            raise TypeError("canonical requires a Decimal as an argument.")
        return a.canonical()

    def compare(self, a, b):
        """Compares values numerically.

        If the signs of the operands differ, a value representing each operand
        ('-1' if the operand is less than zero, '0' if the operand is zero or
        negative zero, or '1' if the operand is greater than zero) is used in
        place of that operand for the comparison instead of the actual
        operand.

        The comparison is then effected by subtracting the second operand from
        the first and then returning a value according to the result of the
        subtraction: '-1' if the result is less than zero, '0' if the result is
        zero or negative zero, or '1' if the result is greater than zero.

        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
        Decimal('0')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
        Decimal('0')
        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
        Decimal('1')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
        Decimal('1')
        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
        Decimal('-1')
        >>> ExtendedContext.compare(1, 2)
        Decimal('-1')
        >>> ExtendedContext.compare(Decimal(1), 2)
        Decimal('-1')
        >>> ExtendedContext.compare(1, Decimal(2))
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.compare(b, context=self)

    def compare_signal(self, a, b):
        """Compares the values of the two operands numerically.

        It's pretty much like compare(), but all NaNs signal, with signaling
        NaNs taking precedence over quiet NaNs.

        >>> c = ExtendedContext
        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
        Decimal('-1')
        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
        Decimal('0')
        >>> c.flags[InvalidOperation] = 0
        >>> print(c.flags[InvalidOperation])
        0
        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
        Decimal('NaN')
        >>> print(c.flags[InvalidOperation])
        1
        >>> c.flags[InvalidOperation] = 0
        >>> print(c.flags[InvalidOperation])
        0
        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
        Decimal('NaN')
        >>> print(c.flags[InvalidOperation])
        1
        >>> c.compare_signal(-1, 2)
        Decimal('-1')
        >>> c.compare_signal(Decimal(-1), 2)
        Decimal('-1')
        >>> c.compare_signal(-1, Decimal(2))
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.compare_signal(b, context=self)

    def compare_total(self, a, b):
        """Compares two operands using their abstract representation.

        This is not like the standard compare, which use their numerical
        value. Note that a total ordering is defined for all possible abstract
        representations.

        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
        Decimal('0')
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
        Decimal('1')
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(1, 2)
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal(1), 2)
        Decimal('-1')
        >>> ExtendedContext.compare_total(1, Decimal(2))
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.compare_total(b)

    def compare_total_mag(self, a, b):
        """Compares two operands using their abstract representation ignoring sign.

        Like compare_total, but with operand's sign ignored and assumed to be 0.
        """
        a = _convert_other(a, raiseit=True)
        return a.compare_total_mag(b)

    def copy_abs(self, a):
        """Returns a copy of the operand with the sign set to 0.

        >>> ExtendedContext.copy_abs(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.copy_abs(Decimal('-100'))
        Decimal('100')
        >>> ExtendedContext.copy_abs(-1)
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.copy_abs()

    def copy_decimal(self, a):
        """Returns a copy of the decimal object.

        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
        Decimal('-1.00')
        >>> ExtendedContext.copy_decimal(1)
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return Decimal(a)

    def copy_negate(self, a):
        """Returns a copy of the operand with the sign inverted.

        >>> ExtendedContext.copy_negate(Decimal('101.5'))
        Decimal('-101.5')
        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
        Decimal('101.5')
        >>> ExtendedContext.copy_negate(1)
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.copy_negate()

    def copy_sign(self, a, b):
        """Copies the second operand's sign to the first one.

        In detail, it returns a copy of the first operand with the sign
        equal to the sign of the second operand.

        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
        Decimal('1.50')
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
        Decimal('1.50')
        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
        Decimal('-1.50')
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
        Decimal('-1.50')
        >>> ExtendedContext.copy_sign(1, -2)
        Decimal('-1')
        >>> ExtendedContext.copy_sign(Decimal(1), -2)
        Decimal('-1')
        >>> ExtendedContext.copy_sign(1, Decimal(-2))
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.copy_sign(b)

    def divide(self, a, b):
        """Decimal division in a specified context.

        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
        Decimal('0.333333333')
        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
        Decimal('0.666666667')
        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
        Decimal('2.5')
        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
        Decimal('0.1')
        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
        Decimal('1')
        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
        Decimal('4.00')
        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
        Decimal('1.20')
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
        Decimal('10')
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
        Decimal('1000')
        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
        Decimal('1.20E+6')
        >>> ExtendedContext.divide(5, 5)
        Decimal('1')
        >>> ExtendedContext.divide(Decimal(5), 5)
        Decimal('1')
        >>> ExtendedContext.divide(5, Decimal(5))
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__truediv__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def divide_int(self, a, b):
        """Divides two numbers and returns the integer part of the result.

        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
        Decimal('0')
        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
        Decimal('3')
        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
        Decimal('3')
        >>> ExtendedContext.divide_int(10, 3)
        Decimal('3')
        >>> ExtendedContext.divide_int(Decimal(10), 3)
        Decimal('3')
        >>> ExtendedContext.divide_int(10, Decimal(3))
        Decimal('3')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__floordiv__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def divmod(self, a, b):
        """Return (a // b, a % b).

        >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
        (Decimal('2'), Decimal('2'))
        >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(8, 4)
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(Decimal(8), 4)
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(8, Decimal(4))
        (Decimal('2'), Decimal('0'))
        """
        a = _convert_other(a, raiseit=True)
        r = a.__divmod__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def exp(self, a):
        """Returns e ** a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.exp(Decimal('-Infinity'))
        Decimal('0')
        >>> c.exp(Decimal('-1'))
        Decimal('0.367879441')
        >>> c.exp(Decimal('0'))
        Decimal('1')
        >>> c.exp(Decimal('1'))
        Decimal('2.71828183')
        >>> c.exp(Decimal('0.693147181'))
        Decimal('2.00000000')
        >>> c.exp(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.exp(10)
        Decimal('22026.4658')
        """
        a =_convert_other(a, raiseit=True)
        return a.exp(context=self)

    def fma(self, a, b, c):
        """Returns a multiplied by b, plus c.

        The first two operands are multiplied together, using multiply,
        the third operand is then added to the result of that
        multiplication, using add, all with only one final rounding.

        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
        Decimal('22')
        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
        Decimal('-8')
        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
        Decimal('1.38435736E+12')
        >>> ExtendedContext.fma(1, 3, 4)
        Decimal('7')
        >>> ExtendedContext.fma(1, Decimal(3), 4)
        Decimal('7')
        >>> ExtendedContext.fma(1, 3, Decimal(4))
        Decimal('7')
        """
        a = _convert_other(a, raiseit=True)
        return a.fma(b, c, context=self)

    def is_canonical(self, a):
        """Return True if the operand is canonical; otherwise return False.

        Currently, the encoding of a Decimal instance is always
        canonical, so this method returns True for any Decimal.

        >>> ExtendedContext.is_canonical(Decimal('2.50'))
        True
        """
        if not isinstance(a, Decimal):
            raise TypeError("is_canonical requires a Decimal as an argument.")
        return a.is_canonical()

    def is_finite(self, a):
        """Return True if the operand is finite; otherwise return False.

        A Decimal instance is considered finite if it is neither
        infinite nor a NaN.

        >>> ExtendedContext.is_finite(Decimal('2.50'))
        True
        >>> ExtendedContext.is_finite(Decimal('-0.3'))
        True
        >>> ExtendedContext.is_finite(Decimal('0'))
        True
        >>> ExtendedContext.is_finite(Decimal('Inf'))
        False
        >>> ExtendedContext.is_finite(Decimal('NaN'))
        False
        >>> ExtendedContext.is_finite(1)
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.is_finite()

    def is_infinite(self, a):
        """Return True if the operand is infinite; otherwise return False.

        >>> ExtendedContext.is_infinite(Decimal('2.50'))
        False
        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
        True
        >>> ExtendedContext.is_infinite(Decimal('NaN'))
        False
        >>> ExtendedContext.is_infinite(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_infinite()

    def is_nan(self, a):
        """Return True if the operand is a qNaN or sNaN;
        otherwise return False.

        >>> ExtendedContext.is_nan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_nan(Decimal('NaN'))
        True
        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
        True
        >>> ExtendedContext.is_nan(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_nan()

    def is_normal(self, a):
        """Return True if the operand is a normal number;
        otherwise return False.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.is_normal(Decimal('2.50'))
        True
        >>> c.is_normal(Decimal('0.1E-999'))
        False
        >>> c.is_normal(Decimal('0.00'))
        False
        >>> c.is_normal(Decimal('-Inf'))
        False
        >>> c.is_normal(Decimal('NaN'))
        False
        >>> c.is_normal(1)
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.is_normal(context=self)

    def is_qnan(self, a):
        """Return True if the operand is a quiet NaN; otherwise return False.

        >>> ExtendedContext.is_qnan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_qnan(Decimal('NaN'))
        True
        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
        False
        >>> ExtendedContext.is_qnan(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_qnan()

    def is_signed(self, a):
        """Return True if the operand is negative; otherwise return False.

        >>> ExtendedContext.is_signed(Decimal('2.50'))
        False
        >>> ExtendedContext.is_signed(Decimal('-12'))
        True
        >>> ExtendedContext.is_signed(Decimal('-0'))
        True
        >>> ExtendedContext.is_signed(8)
        False
        >>> ExtendedContext.is_signed(-8)
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.is_signed()

    def is_snan(self, a):
        """Return True if the operand is a signaling NaN;
        otherwise return False.

        >>> ExtendedContext.is_snan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_snan(Decimal('NaN'))
        False
        >>> ExtendedContext.is_snan(Decimal('sNaN'))
        True
        >>> ExtendedContext.is_snan(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_snan()

    def is_subnormal(self, a):
        """Return True if the operand is subnormal; otherwise return False.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.is_subnormal(Decimal('2.50'))
        False
        >>> c.is_subnormal(Decimal('0.1E-999'))
        True
        >>> c.is_subnormal(Decimal('0.00'))
        False
        >>> c.is_subnormal(Decimal('-Inf'))
        False
        >>> c.is_subnormal(Decimal('NaN'))
        False
        >>> c.is_subnormal(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_subnormal(context=self)

    def is_zero(self, a):
        """Return True if the operand is a zero; otherwise return False.

        >>> ExtendedContext.is_zero(Decimal('0'))
        True
        >>> ExtendedContext.is_zero(Decimal('2.50'))
        False
        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
        True
        >>> ExtendedContext.is_zero(1)
        False
        >>> ExtendedContext.is_zero(0)
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.is_zero()

    def ln(self, a):
        """Returns the natural (base e) logarithm of the operand.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.ln(Decimal('0'))
        Decimal('-Infinity')
        >>> c.ln(Decimal('1.000'))
        Decimal('0')
        >>> c.ln(Decimal('2.71828183'))
        Decimal('1.00000000')
        >>> c.ln(Decimal('10'))
        Decimal('2.30258509')
        >>> c.ln(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.ln(1)
        Decimal('0')
        """
        a = _convert_other(a, raiseit=True)
        return a.ln(context=self)

    def log10(self, a):
        """Returns the base 10 logarithm of the operand.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.log10(Decimal('0'))
        Decimal('-Infinity')
        >>> c.log10(Decimal('0.001'))
        Decimal('-3')
        >>> c.log10(Decimal('1.000'))
        Decimal('0')
        >>> c.log10(Decimal('2'))
        Decimal('0.301029996')
        >>> c.log10(Decimal('10'))
        Decimal('1')
        >>> c.log10(Decimal('70'))
        Decimal('1.84509804')
        >>> c.log10(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.log10(0)
        Decimal('-Infinity')
        >>> c.log10(1)
        Decimal('0')
        """
        a = _convert_other(a, raiseit=True)
        return a.log10(context=self)

    def logb(self, a):
        """ Returns the exponent of the magnitude of the operand's MSD.

        The result is the integer which is the exponent of the magnitude
        of the most significant digit of the operand (as though the
        operand were truncated to a single digit while maintaining the
        value of that digit and without limiting the resulting exponent).

        >>> ExtendedContext.logb(Decimal('250'))
        Decimal('2')
        >>> ExtendedContext.logb(Decimal('2.50'))
        Decimal('0')
        >>> ExtendedContext.logb(Decimal('0.03'))
        Decimal('-2')
        >>> ExtendedContext.logb(Decimal('0'))
        Decimal('-Infinity')
        >>> ExtendedContext.logb(1)
        Decimal('0')
        >>> ExtendedContext.logb(10)
        Decimal('1')
        >>> ExtendedContext.logb(100)
        Decimal('2')
        """
        a = _convert_other(a, raiseit=True)
        return a.logb(context=self)

    def logical_and(self, a, b):
        """Applies the logical operation 'and' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
        Decimal('1000')
        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
        Decimal('10')
        >>> ExtendedContext.logical_and(110, 1101)
        Decimal('100')
        >>> ExtendedContext.logical_and(Decimal(110), 1101)
        Decimal('100')
        >>> ExtendedContext.logical_and(110, Decimal(1101))
        Decimal('100')
        """
        a = _convert_other(a, raiseit=True)
        return a.logical_and(b, context=self)

    def logical_invert(self, a):
        """Invert all the digits in the operand.

        The operand must be a logical number.

        >>> ExtendedContext.logical_invert(Decimal('0'))
        Decimal('111111111')
        >>> ExtendedContext.logical_invert(Decimal('1'))
        Decimal('111111110')
        >>> ExtendedContext.logical_invert(Decimal('111111111'))
        Decimal('0')
        >>> ExtendedContext.logical_invert(Decimal('101010101'))
        Decimal('10101010')
        >>> ExtendedContext.logical_invert(1101)
        Decimal('111110010')
        """
        a = _convert_other(a, raiseit=True)
        return a.logical_invert(context=self)

    def logical_or(self, a, b):
        """Applies the logical operation 'or' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
        Decimal('1110')
        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
        Decimal('1110')
        >>> ExtendedContext.logical_or(110, 1101)
        Decimal('1111')
        >>> ExtendedContext.logical_or(Decimal(110), 1101)
        Decimal('1111')
        >>> ExtendedContext.logical_or(110, Decimal(1101))
        Decimal('1111')
        """
        a = _convert_other(a, raiseit=True)
        return a.logical_or(b, context=self)

    def logical_xor(self, a, b):
        """Applies the logical operation 'xor' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
        Decimal('1')
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
        Decimal('0')
        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
        Decimal('110')
        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
        Decimal('1101')
        >>> ExtendedContext.logical_xor(110, 1101)
        Decimal('1011')
        >>> ExtendedContext.logical_xor(Decimal(110), 1101)
        Decimal('1011')
        >>> ExtendedContext.logical_xor(110, Decimal(1101))
        Decimal('1011')
        """
        a = _convert_other(a, raiseit=True)
        return a.logical_xor(b, context=self)

    def max(self, a, b):
        """max compares two values numerically and returns the maximum.

        If either operand is a NaN then the general rules apply.
        Otherwise, the operands are compared as though by the compare
        operation.  If they are numerically equal then the left-hand operand
        is chosen as the result.  Otherwise the maximum (closer to positive
        infinity) of the two operands is chosen as the result.

        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
        Decimal('3')
        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
        Decimal('3')
        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.max(1, 2)
        Decimal('2')
        >>> ExtendedContext.max(Decimal(1), 2)
        Decimal('2')
        >>> ExtendedContext.max(1, Decimal(2))
        Decimal('2')
        """
        a = _convert_other(a, raiseit=True)
        return a.max(b, context=self)

    def max_mag(self, a, b):
        """Compares the values numerically with their sign ignored.

        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
        Decimal('-10')
        >>> ExtendedContext.max_mag(1, -2)
        Decimal('-2')
        >>> ExtendedContext.max_mag(Decimal(1), -2)
        Decimal('-2')
        >>> ExtendedContext.max_mag(1, Decimal(-2))
        Decimal('-2')
        """
        a = _convert_other(a, raiseit=True)
        return a.max_mag(b, context=self)

    def min(self, a, b):
        """min compares two values numerically and returns the minimum.

        If either operand is a NaN then the general rules apply.
        Otherwise, the operands are compared as though by the compare
        operation.  If they are numerically equal then the left-hand operand
        is chosen as the result.  Otherwise the minimum (closer to negative
        infinity) of the two operands is chosen as the result.

        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
        Decimal('2')
        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
        Decimal('-10')
        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
        Decimal('1.0')
        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.min(1, 2)
        Decimal('1')
        >>> ExtendedContext.min(Decimal(1), 2)
        Decimal('1')
        >>> ExtendedContext.min(1, Decimal(29))
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.min(b, context=self)

    def min_mag(self, a, b):
        """Compares the values numerically with their sign ignored.

        >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
        Decimal('-2')
        >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
        Decimal('-3')
        >>> ExtendedContext.min_mag(1, -2)
        Decimal('1')
        >>> ExtendedContext.min_mag(Decimal(1), -2)
        Decimal('1')
        >>> ExtendedContext.min_mag(1, Decimal(-2))
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.min_mag(b, context=self)

    def minus(self, a):
        """Minus corresponds to unary prefix minus in Python.

        The operation is evaluated using the same rules as subtract; the
        operation minus(a) is calculated as subtract('0', a) where the '0'
        has the same exponent as the operand.

        >>> ExtendedContext.minus(Decimal('1.3'))
        Decimal('-1.3')
        >>> ExtendedContext.minus(Decimal('-1.3'))
        Decimal('1.3')
        >>> ExtendedContext.minus(1)
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.__neg__(context=self)

    def multiply(self, a, b):
        """multiply multiplies two operands.

        If either operand is a special value then the general rules apply.
        Otherwise, the operands are multiplied together
        ('long multiplication'), resulting in a number which may be as long as
        the sum of the lengths of the two operands.

        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
        Decimal('3.60')
        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
        Decimal('21')
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
        Decimal('0.72')
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
        Decimal('-0.0')
        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
        Decimal('4.28135971E+11')
        >>> ExtendedContext.multiply(7, 7)
        Decimal('49')
        >>> ExtendedContext.multiply(Decimal(7), 7)
        Decimal('49')
        >>> ExtendedContext.multiply(7, Decimal(7))
        Decimal('49')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__mul__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def next_minus(self, a):
        """Returns the largest representable number smaller than a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> ExtendedContext.next_minus(Decimal('1'))
        Decimal('0.999999999')
        >>> c.next_minus(Decimal('1E-1007'))
        Decimal('0E-1007')
        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
        Decimal('-1.00000004')
        >>> c.next_minus(Decimal('Infinity'))
        Decimal('9.99999999E+999')
        >>> c.next_minus(1)
        Decimal('0.999999999')
        """
        a = _convert_other(a, raiseit=True)
        return a.next_minus(context=self)

    def next_plus(self, a):
        """Returns the smallest representable number larger than a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> ExtendedContext.next_plus(Decimal('1'))
        Decimal('1.00000001')
        >>> c.next_plus(Decimal('-1E-1007'))
        Decimal('-0E-1007')
        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
        Decimal('-1.00000002')
        >>> c.next_plus(Decimal('-Infinity'))
        Decimal('-9.99999999E+999')
        >>> c.next_plus(1)
        Decimal('1.00000001')
        """
        a = _convert_other(a, raiseit=True)
        return a.next_plus(context=self)

    def next_toward(self, a, b):
        """Returns the number closest to a, in direction towards b.

        The result is the closest representable number from the first
        operand (but not the first operand) that is in the direction
        towards the second operand, unless the operands have the same
        value.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.next_toward(Decimal('1'), Decimal('2'))
        Decimal('1.00000001')
        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
        Decimal('-0E-1007')
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
        Decimal('-1.00000002')
        >>> c.next_toward(Decimal('1'), Decimal('0'))
        Decimal('0.999999999')
        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
        Decimal('0E-1007')
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
        Decimal('-1.00000004')
        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
        Decimal('-0.00')
        >>> c.next_toward(0, 1)
        Decimal('1E-1007')
        >>> c.next_toward(Decimal(0), 1)
        Decimal('1E-1007')
        >>> c.next_toward(0, Decimal(1))
        Decimal('1E-1007')
        """
        a = _convert_other(a, raiseit=True)
        return a.next_toward(b, context=self)

    def normalize(self, a):
        """normalize reduces an operand to its simplest form.

        Essentially a plus operation with all trailing zeros removed from the
        result.

        >>> ExtendedContext.normalize(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.normalize(Decimal('-2.0'))
        Decimal('-2')
        >>> ExtendedContext.normalize(Decimal('1.200'))
        Decimal('1.2')
        >>> ExtendedContext.normalize(Decimal('-120'))
        Decimal('-1.2E+2')
        >>> ExtendedContext.normalize(Decimal('120.00'))
        Decimal('1.2E+2')
        >>> ExtendedContext.normalize(Decimal('0.00'))
        Decimal('0')
        >>> ExtendedContext.normalize(6)
        Decimal('6')
        """
        a = _convert_other(a, raiseit=True)
        return a.normalize(context=self)

    def number_class(self, a):
        """Returns an indication of the class of the operand.

        The class is one of the following strings:
          -sNaN
          -NaN
          -Infinity
          -Normal
          -Subnormal
          -Zero
          +Zero
          +Subnormal
          +Normal
          +Infinity

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.number_class(Decimal('Infinity'))
        '+Infinity'
        >>> c.number_class(Decimal('1E-10'))
        '+Normal'
        >>> c.number_class(Decimal('2.50'))
        '+Normal'
        >>> c.number_class(Decimal('0.1E-999'))
        '+Subnormal'
        >>> c.number_class(Decimal('0'))
        '+Zero'
        >>> c.number_class(Decimal('-0'))
        '-Zero'
        >>> c.number_class(Decimal('-0.1E-999'))
        '-Subnormal'
        >>> c.number_class(Decimal('-1E-10'))
        '-Normal'
        >>> c.number_class(Decimal('-2.50'))
        '-Normal'
        >>> c.number_class(Decimal('-Infinity'))
        '-Infinity'
        >>> c.number_class(Decimal('NaN'))
        'NaN'
        >>> c.number_class(Decimal('-NaN'))
        'NaN'
        >>> c.number_class(Decimal('sNaN'))
        'sNaN'
        >>> c.number_class(123)
        '+Normal'
        """
        a = _convert_other(a, raiseit=True)
        return a.number_class(context=self)

    def plus(self, a):
        """Plus corresponds to unary prefix plus in Python.

        The operation is evaluated using the same rules as add; the
        operation plus(a) is calculated as add('0', a) where the '0'
        has the same exponent as the operand.

        >>> ExtendedContext.plus(Decimal('1.3'))
        Decimal('1.3')
        >>> ExtendedContext.plus(Decimal('-1.3'))
        Decimal('-1.3')
        >>> ExtendedContext.plus(-1)
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.__pos__(context=self)

    def power(self, a, b, modulo=None):
        """Raises a to the power of b, to modulo if given.

        With two arguments, compute a**b.  If a is negative then b
        must be integral.  The result will be inexact unless b is
        integral and the result is finite and can be expressed exactly
        in 'precision' digits.

        With three arguments, compute (a**b) % modulo.  For the
        three argument form, the following restrictions on the
        arguments hold:

         - all three arguments must be integral
         - b must be nonnegative
         - at least one of a or b must be nonzero
         - modulo must be nonzero and have at most 'precision' digits

        The result of pow(a, b, modulo) is identical to the result
        that would be obtained by computing (a**b) % modulo with
        unbounded precision, but is computed more efficiently.  It is
        always exact.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.power(Decimal('2'), Decimal('3'))
        Decimal('8')
        >>> c.power(Decimal('-2'), Decimal('3'))
        Decimal('-8')
        >>> c.power(Decimal('2'), Decimal('-3'))
        Decimal('0.125')
        >>> c.power(Decimal('1.7'), Decimal('8'))
        Decimal('69.7575744')
        >>> c.power(Decimal('10'), Decimal('0.301029996'))
        Decimal('2.00000000')
        >>> c.power(Decimal('Infinity'), Decimal('-1'))
        Decimal('0')
        >>> c.power(Decimal('Infinity'), Decimal('0'))
        Decimal('1')
        >>> c.power(Decimal('Infinity'), Decimal('1'))
        Decimal('Infinity')
        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
        Decimal('-0')
        >>> c.power(Decimal('-Infinity'), Decimal('0'))
        Decimal('1')
        >>> c.power(Decimal('-Infinity'), Decimal('1'))
        Decimal('-Infinity')
        >>> c.power(Decimal('-Infinity'), Decimal('2'))
        Decimal('Infinity')
        >>> c.power(Decimal('0'), Decimal('0'))
        Decimal('NaN')

        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
        Decimal('11')
        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
        Decimal('-11')
        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
        Decimal('1')
        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
        Decimal('11')
        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
        Decimal('11729830')
        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
        Decimal('-0')
        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
        Decimal('1')
        >>> ExtendedContext.power(7, 7)
        Decimal('823543')
        >>> ExtendedContext.power(Decimal(7), 7)
        Decimal('823543')
        >>> ExtendedContext.power(7, Decimal(7), 2)
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__pow__(b, modulo, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def quantize(self, a, b):
        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.

        The coefficient of the result is derived from that of the left-hand
        operand.  It may be rounded using the current rounding setting (if the
        exponent is being increased), multiplied by a positive power of ten (if
        the exponent is being decreased), or is unchanged (if the exponent is
        already equal to that of the right-hand operand).

        Unlike other operations, if the length of the coefficient after the
        quantize operation would be greater than precision then an Invalid
        operation condition is raised.  This guarantees that, unless there is
        an error condition, the exponent of the result of a quantize is always
        equal to that of the right-hand operand.

        Also unlike other operations, quantize will never raise Underflow, even
        if the result is subnormal and inexact.

        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
        Decimal('2.170')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
        Decimal('2.17')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
        Decimal('2.2')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
        Decimal('2')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
        Decimal('0E+1')
        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
        Decimal('-Infinity')
        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
        Decimal('-0')
        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
        Decimal('-0E+5')
        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
        Decimal('217.0')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
        Decimal('217')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
        Decimal('2.2E+2')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
        Decimal('2E+2')
        >>> ExtendedContext.quantize(1, 2)
        Decimal('1')
        >>> ExtendedContext.quantize(Decimal(1), 2)
        Decimal('1')
        >>> ExtendedContext.quantize(1, Decimal(2))
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.quantize(b, context=self)

    def radix(self):
        """Just returns 10, as this is Decimal, :)

        >>> ExtendedContext.radix()
        Decimal('10')
        """
        return Decimal(10)

    def remainder(self, a, b):
        """Returns the remainder from integer division.

        The result is the residue of the dividend after the operation of
        calculating integer division as described for divide-integer, rounded
        to precision digits if necessary.  The sign of the result, if
        non-zero, is the same as that of the original dividend.

        This operation will fail under the same conditions as integer division
        (that is, if integer division on the same two operands would fail, the
        remainder cannot be calculated).

        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
        Decimal('2.1')
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
        Decimal('1')
        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
        Decimal('0.2')
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
        Decimal('0.1')
        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
        Decimal('1.0')
        >>> ExtendedContext.remainder(22, 6)
        Decimal('4')
        >>> ExtendedContext.remainder(Decimal(22), 6)
        Decimal('4')
        >>> ExtendedContext.remainder(22, Decimal(6))
        Decimal('4')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__mod__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def remainder_near(self, a, b):
        """Returns to be "a - b * n", where n is the integer nearest the exact
        value of "x / b" (if two integers are equally near then the even one
        is chosen).  If the result is equal to 0 then its sign will be the
        sign of a.

        This operation will fail under the same conditions as integer division
        (that is, if integer division on the same two operands would fail, the
        remainder cannot be calculated).

        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
        Decimal('-0.9')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
        Decimal('-2')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
        Decimal('1')
        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
        Decimal('0.2')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
        Decimal('0.1')
        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
        Decimal('-0.3')
        >>> ExtendedContext.remainder_near(3, 11)
        Decimal('3')
        >>> ExtendedContext.remainder_near(Decimal(3), 11)
        Decimal('3')
        >>> ExtendedContext.remainder_near(3, Decimal(11))
        Decimal('3')
        """
        a = _convert_other(a, raiseit=True)
        return a.remainder_near(b, context=self)

    def rotate(self, a, b):
        """Returns a rotated copy of a, b times.

        The coefficient of the result is a rotated copy of the digits in
        the coefficient of the first operand.  The number of places of
        rotation is taken from the absolute value of the second operand,
        with the rotation being to the left if the second operand is
        positive or to the right otherwise.

        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
        Decimal('400000003')
        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
        Decimal('12')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
        Decimal('891234567')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
        Decimal('123456789')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
        Decimal('345678912')
        >>> ExtendedContext.rotate(1333333, 1)
        Decimal('13333330')
        >>> ExtendedContext.rotate(Decimal(1333333), 1)
        Decimal('13333330')
        >>> ExtendedContext.rotate(1333333, Decimal(1))
        Decimal('13333330')
        """
        a = _convert_other(a, raiseit=True)
        return a.rotate(b, context=self)

    def same_quantum(self, a, b):
        """Returns True if the two operands have the same exponent.

        The result is never affected by either the sign or the coefficient of
        either operand.

        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
        False
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
        True
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
        False
        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
        True
        >>> ExtendedContext.same_quantum(10000, -1)
        True
        >>> ExtendedContext.same_quantum(Decimal(10000), -1)
        True
        >>> ExtendedContext.same_quantum(10000, Decimal(-1))
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.same_quantum(b)

    def scaleb (self, a, b):
        """Returns the first operand after adding the second value its exp.

        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
        Decimal('0.0750')
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
        Decimal('7.50')
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
        Decimal('7.50E+3')
        >>> ExtendedContext.scaleb(1, 4)
        Decimal('1E+4')
        >>> ExtendedContext.scaleb(Decimal(1), 4)
        Decimal('1E+4')
        >>> ExtendedContext.scaleb(1, Decimal(4))
        Decimal('1E+4')
        """
        a = _convert_other(a, raiseit=True)
        return a.scaleb(b, context=self)

    def shift(self, a, b):
        """Returns a shifted copy of a, b times.

        The coefficient of the result is a shifted copy of the digits
        in the coefficient of the first operand.  The number of places
        to shift is taken from the absolute value of the second operand,
        with the shift being to the left if the second operand is
        positive or to the right otherwise.  Digits shifted into the
        coefficient are zeros.

        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
        Decimal('400000000')
        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
        Decimal('0')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
        Decimal('1234567')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
        Decimal('123456789')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
        Decimal('345678900')
        >>> ExtendedContext.shift(88888888, 2)
        Decimal('888888800')
        >>> ExtendedContext.shift(Decimal(88888888), 2)
        Decimal('888888800')
        >>> ExtendedContext.shift(88888888, Decimal(2))
        Decimal('888888800')
        """
        a = _convert_other(a, raiseit=True)
        return a.shift(b, context=self)

    def sqrt(self, a):
        """Square root of a non-negative number to context precision.

        If the result must be inexact, it is rounded using the round-half-even
        algorithm.

        >>> ExtendedContext.sqrt(Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.sqrt(Decimal('-0'))
        Decimal('-0')
        >>> ExtendedContext.sqrt(Decimal('0.39'))
        Decimal('0.624499800')
        >>> ExtendedContext.sqrt(Decimal('100'))
        Decimal('10')
        >>> ExtendedContext.sqrt(Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.sqrt(Decimal('1.0'))
        Decimal('1.0')
        >>> ExtendedContext.sqrt(Decimal('1.00'))
        Decimal('1.0')
        >>> ExtendedContext.sqrt(Decimal('7'))
        Decimal('2.64575131')
        >>> ExtendedContext.sqrt(Decimal('10'))
        Decimal('3.16227766')
        >>> ExtendedContext.sqrt(2)
        Decimal('1.41421356')
        >>> ExtendedContext.prec
        9
        """
        a = _convert_other(a, raiseit=True)
        return a.sqrt(context=self)

    def subtract(self, a, b):
        """Return the difference between the two operands.

        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
        Decimal('0.23')
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
        Decimal('0.00')
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
        Decimal('-0.77')
        >>> ExtendedContext.subtract(8, 5)
        Decimal('3')
        >>> ExtendedContext.subtract(Decimal(8), 5)
        Decimal('3')
        >>> ExtendedContext.subtract(8, Decimal(5))
        Decimal('3')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__sub__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def to_eng_string(self, a):
        """Converts a number to a string, using scientific notation.

        The operation is not affected by the context.
        """
        a = _convert_other(a, raiseit=True)
        return a.to_eng_string(context=self)

    def to_sci_string(self, a):
        """Converts a number to a string, using scientific notation.

        The operation is not affected by the context.
        """
        a = _convert_other(a, raiseit=True)
        return a.__str__(context=self)

    def to_integral_exact(self, a):
        """Rounds to an integer.

        When the operand has a negative exponent, the result is the same
        as using the quantize() operation using the given operand as the
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
        of the operand as the precision setting; Inexact and Rounded flags
        are allowed in this operation.  The rounding mode is taken from the
        context.

        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
        Decimal('2')
        >>> ExtendedContext.to_integral_exact(Decimal('100'))
        Decimal('100')
        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
        Decimal('100')
        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
        Decimal('102')
        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
        Decimal('-102')
        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
        Decimal('1.0E+6')
        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
        Decimal('7.89E+77')
        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
        Decimal('-Infinity')
        """
        a = _convert_other(a, raiseit=True)
        return a.to_integral_exact(context=self)

    def to_integral_value(self, a):
        """Rounds to an integer.

        When the operand has a negative exponent, the result is the same
        as using the quantize() operation using the given operand as the
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
        of the operand as the precision setting, except that no flags will
        be set.  The rounding mode is taken from the context.

        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
        Decimal('2')
        >>> ExtendedContext.to_integral_value(Decimal('100'))
        Decimal('100')
        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
        Decimal('100')
        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
        Decimal('102')
        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
        Decimal('-102')
        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
        Decimal('1.0E+6')
        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
        Decimal('7.89E+77')
        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
        Decimal('-Infinity')
        """
        a = _convert_other(a, raiseit=True)
        return a.to_integral_value(context=self)

    # the method name changed, but we provide also the old one, for compatibility
    to_integral = to_integral_value

class _WorkRep(object):
    __slots__ = ('sign','int','exp')
    # sign: 0 or 1
    # int:  int
    # exp:  None, int, or string

    def __init__(self, value=None):
        if value is None:
            self.sign = None
            self.int = 0
            self.exp = None
        elif isinstance(value, Decimal):
            self.sign = value._sign
            self.int = int(value._int)
            self.exp = value._exp
        else:
            # assert isinstance(value, tuple)
            self.sign = value[0]
            self.int = value[1]
            self.exp = value[2]

    def __repr__(self):
        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)

    __str__ = __repr__



def _normalize(op1, op2, prec = 0):
    """Normalizes op1, op2 to have the same exp and length of coefficient.

    Done during addition.
    """
    if op1.exp < op2.exp:
        tmp = op2
        other = op1
    else:
        tmp = op1
        other = op2

    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
    # Then adding 10**exp to tmp has the same effect (after rounding)
    # as adding any positive quantity smaller than 10**exp; similarly
    # for subtraction.  So if other is smaller than 10**exp we replace
    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
    tmp_len = len(str(tmp.int))
    other_len = len(str(other.int))
    exp = tmp.exp + min(-1, tmp_len - prec - 2)
    if other_len + other.exp - 1 < exp:
        other.int = 1
        other.exp = exp

    tmp.int *= 10 ** (tmp.exp - other.exp)
    tmp.exp = other.exp
    return op1, op2

##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####

_nbits = int.bit_length

def _decimal_lshift_exact(n, e):
    """ Given integers n and e, return n * 10**e if it's an integer, else None.

    The computation is designed to avoid computing large powers of 10
    unnecessarily.

    >>> _decimal_lshift_exact(3, 4)
    30000
    >>> _decimal_lshift_exact(300, -999999999)  # returns None

    """
    if n == 0:
        return 0
    elif e >= 0:
        return n * 10**e
    else:
        # val_n = largest power of 10 dividing n.
        str_n = str(abs(n))
        val_n = len(str_n) - len(str_n.rstrip('0'))
        return None if val_n < -e else n // 10**-e

def _sqrt_nearest(n, a):
    """Closest integer to the square root of the positive integer n.  a is
    an initial approximation to the square root.  Any positive integer
    will do for a, but the closer a is to the square root of n the
    faster convergence will be.

    """
    if n <= 0 or a <= 0:
        raise ValueError("Both arguments to _sqrt_nearest should be positive.")

    b=0
    while a != b:
        b, a = a, a--n//a>>1
    return a

def _rshift_nearest(x, shift):
    """Given an integer x and a nonnegative integer shift, return closest
    integer to x / 2**shift; use round-to-even in case of a tie.

    """
    b, q = 1 << shift, x >> shift
    return q + (2*(x & (b-1)) + (q&1) > b)

def _div_nearest(a, b):
    """Closest integer to a/b, a and b positive integers; rounds to even
    in the case of a tie.

    """
    q, r = divmod(a, b)
    return q + (2*r + (q&1) > b)

def _ilog(x, M, L = 8):
    """Integer approximation to M*log(x/M), with absolute error boundable
    in terms only of x/M.

    Given positive integers x and M, return an integer approximation to
    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
    between the approximation and the exact result is at most 22.  For
    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
    both cases these are upper bounds on the error; it will usually be
    much smaller."""

    # The basic algorithm is the following: let log1p be the function
    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
    # the reduction
    #
    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
    #
    # repeatedly until the argument to log1p is small (< 2**-L in
    # absolute value).  For small y we can use the Taylor series
    # expansion
    #
    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
    #
    # truncating at T such that y**T is small enough.  The whole
    # computation is carried out in a form of fixed-point arithmetic,
    # with a real number z being represented by an integer
    # approximation to z*M.  To avoid loss of precision, the y below
    # is actually an integer approximation to 2**R*y*M, where R is the
    # number of reductions performed so far.

    y = x-M
    # argument reduction; R = number of reductions performed
    R = 0
    while (R <= L and abs(y) << L-R >= M or
           R > L and abs(y) >> R-L >= M):
        y = _div_nearest((M*y) << 1,
                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
        R += 1

    # Taylor series with T terms
    T = -int(-10*len(str(M))//(3*L))
    yshift = _rshift_nearest(y, R)
    w = _div_nearest(M, T)
    for k in range(T-1, 0, -1):
        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)

    return _div_nearest(w*y, M)

def _dlog10(c, e, p):
    """Given integers c, e and p with c > 0, p >= 0, compute an integer
    approximation to 10**p * log10(c*10**e), with an absolute error of
    at most 1.  Assumes that c*10**e is not exactly 1."""

    # increase precision by 2; compensate for this by dividing
    # final result by 100
    p += 2

    # write c*10**e as d*10**f with either:
    #   f >= 0 and 1 <= d <= 10, or
    #   f <= 0 and 0.1 <= d <= 1.
    # Thus for c*10**e close to 1, f = 0
    l = len(str(c))
    f = e+l - (e+l >= 1)

    if p > 0:
        M = 10**p
        k = e+p-f
        if k >= 0:
            c *= 10**k
        else:
            c = _div_nearest(c, 10**-k)

        log_d = _ilog(c, M) # error < 5 + 22 = 27
        log_10 = _log10_digits(p) # error < 1
        log_d = _div_nearest(log_d*M, log_10)
        log_tenpower = f*M # exact
    else:
        log_d = 0  # error < 2.31
        log_tenpower = _div_nearest(f, 10**-p) # error < 0.5

    return _div_nearest(log_tenpower+log_d, 100)

def _dlog(c, e, p):
    """Given integers c, e and p with c > 0, compute an integer
    approximation to 10**p * log(c*10**e), with an absolute error of
    at most 1.  Assumes that c*10**e is not exactly 1."""

    # Increase precision by 2. The precision increase is compensated
    # for at the end with a division by 100.
    p += 2

    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
    # as 10**p * log(d) + 10**p*f * log(10).
    l = len(str(c))
    f = e+l - (e+l >= 1)

    # compute approximation to 10**p*log(d), with error < 27
    if p > 0:
        k = e+p-f
        if k >= 0:
            c *= 10**k
        else:
            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c

        # _ilog magnifies existing error in c by a factor of at most 10
        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
    else:
        # p <= 0: just approximate the whole thing by 0; error < 2.31
        log_d = 0

    # compute approximation to f*10**p*log(10), with error < 11.
    if f:
        extra = len(str(abs(f)))-1
        if p + extra >= 0:
            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
        else:
            f_log_ten = 0
    else:
        f_log_ten = 0

    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
    return _div_nearest(f_log_ten + log_d, 100)

class _Log10Memoize(object):
    """Class to compute, store, and allow retrieval of, digits of the
    constant log(10) = 2.302585....  This constant is needed by
    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
    def __init__(self):
        self.digits = "23025850929940456840179914546843642076011014886"

    def getdigits(self, p):
        """Given an integer p >= 0, return floor(10**p)*log(10).

        For example, self.getdigits(3) returns 2302.
        """
        # digits are stored as a string, for quick conversion to
        # integer in the case that we've already computed enough
        # digits; the stored digits should always be correct
        # (truncated, not rounded to nearest).
        if p < 0:
            raise ValueError("p should be nonnegative")

        if p >= len(self.digits):
            # compute p+3, p+6, p+9, ... digits; continue until at
            # least one of the extra digits is nonzero
            extra = 3
            while True:
                # compute p+extra digits, correct to within 1ulp
                M = 10**(p+extra+2)
                digits = str(_div_nearest(_ilog(10*M, M), 100))
                if digits[-extra:] != '0'*extra:
                    break
                extra += 3
            # keep all reliable digits so far; remove trailing zeros
            # and next nonzero digit
            self.digits = digits.rstrip('0')[:-1]
        return int(self.digits[:p+1])

_log10_digits = _Log10Memoize().getdigits

def _iexp(x, M, L=8):
    """Given integers x and M, M > 0, such that x/M is small in absolute
    value, compute an integer approximation to M*exp(x/M).  For 0 <=
    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
    is usually much smaller)."""

    # Algorithm: to compute exp(z) for a real number z, first divide z
    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
    # series
    #
    #     expm1(x) = x + x**2/2! + x**3/3! + ...
    #
    # Now use the identity
    #
    #     expm1(2x) = expm1(x)*(expm1(x)+2)
    #
    # R times to compute the sequence expm1(z/2**R),
    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).

    # Find R such that x/2**R/M <= 2**-L
    R = _nbits((x<<L)//M)

    # Taylor series.  (2**L)**T > M
    T = -int(-10*len(str(M))//(3*L))
    y = _div_nearest(x, T)
    Mshift = M<<R
    for i in range(T-1, 0, -1):
        y = _div_nearest(x*(Mshift + y), Mshift * i)

    # Expansion
    for k in range(R-1, -1, -1):
        Mshift = M<<(k+2)
        y = _div_nearest(y*(y+Mshift), Mshift)

    return M+y

def _dexp(c, e, p):
    """Compute an approximation to exp(c*10**e), with p decimal places of
    precision.

    Returns integers d, f such that:

      10**(p-1) <= d <= 10**p, and
      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f

    In other words, d*10**f is an approximation to exp(c*10**e) with p
    digits of precision, and with an error in d of at most 1.  This is
    almost, but not quite, the same as the error being < 1ulp: when d
    = 10**(p-1) the error could be up to 10 ulp."""

    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
    p += 2

    # compute log(10) with extra precision = adjusted exponent of c*10**e
    extra = max(0, e + len(str(c)) - 1)
    q = p + extra

    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
    # rounding down
    shift = e+q
    if shift >= 0:
        cshift = c*10**shift
    else:
        cshift = c//10**-shift
    quot, rem = divmod(cshift, _log10_digits(q))

    # reduce remainder back to original precision
    rem = _div_nearest(rem, 10**extra)

    # error in result of _iexp < 120;  error after division < 0.62
    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3

def _dpower(xc, xe, yc, ye, p):
    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:

      10**(p-1) <= c <= 10**p, and
      (c-1)*10**e < x**y < (c+1)*10**e

    in other words, c*10**e is an approximation to x**y with p digits
    of precision, and with an error in c of at most 1.  (This is
    almost, but not quite, the same as the error being < 1ulp: when c
    == 10**(p-1) we can only guarantee error < 10ulp.)

    We assume that: x is positive and not equal to 1, and y is nonzero.
    """

    # Find b such that 10**(b-1) <= |y| <= 10**b
    b = len(str(abs(yc))) + ye

    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
    lxc = _dlog(xc, xe, p+b+1)

    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
    shift = ye-b
    if shift >= 0:
        pc = lxc*yc*10**shift
    else:
        pc = _div_nearest(lxc*yc, 10**-shift)

    if pc == 0:
        # we prefer a result that isn't exactly 1; this makes it
        # easier to compute a correctly rounded result in __pow__
        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
            coeff, exp = 10**(p-1)+1, 1-p
        else:
            coeff, exp = 10**p-1, -p
    else:
        coeff, exp = _dexp(pc, -(p+1), p+1)
        coeff = _div_nearest(coeff, 10)
        exp += 1

    return coeff, exp

def _log10_lb(c, correction = {
        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
        '6': 23, '7': 16, '8': 10, '9': 5}):
    """Compute a lower bound for 100*log10(c) for a positive integer c."""
    if c <= 0:
        raise ValueError("The argument to _log10_lb should be nonnegative.")
    str_c = str(c)
    return 100*len(str_c) - correction[str_c[0]]

##### Helper Functions ####################################################

def _convert_other(other, raiseit=False, allow_float=False):
    """Convert other to Decimal.

    Verifies that it's ok to use in an implicit construction.
    If allow_float is true, allow conversion from float;  this
    is used in the comparison methods (__eq__ and friends).

    """
    if isinstance(other, Decimal):
        return other
    if isinstance(other, int):
        return Decimal(other)
    if allow_float and isinstance(other, float):
        return Decimal.from_float(other)

    if raiseit:
        raise TypeError("Unable to convert %s to Decimal" % other)
    return NotImplemented

def _convert_for_comparison(self, other, equality_op=False):
    """Given a Decimal instance self and a Python object other, return
    a pair (s, o) of Decimal instances such that "s op o" is
    equivalent to "self op other" for any of the 6 comparison
    operators "op".

    """
    if isinstance(other, Decimal):
        return self, other

    # Comparison with a Rational instance (also includes integers):
    # self op n/d <=> self*d op n (for n and d integers, d positive).
    # A NaN or infinity can be left unchanged without affecting the
    # comparison result.
    if isinstance(other, _numbers.Rational):
        if not self._is_special:
            self = _dec_from_triple(self._sign,
                                    str(int(self._int) * other.denominator),
                                    self._exp)
        return self, Decimal(other.numerator)

    # Comparisons with float and complex types.  == and != comparisons
    # with complex numbers should succeed, returning either True or False
    # as appropriate.  Other comparisons return NotImplemented.
    if equality_op and isinstance(other, _numbers.Complex) and other.imag == 0:
        other = other.real
    if isinstance(other, float):
        context = getcontext()
        if equality_op:
            context.flags[FloatOperation] = 1
        else:
            context._raise_error(FloatOperation,
                "strict semantics for mixing floats and Decimals are enabled")
        return self, Decimal.from_float(other)
    return NotImplemented, NotImplemented


##### Setup Specific Contexts ############################################

# The default context prototype used by Context()
# Is mutable, so that new contexts can have different default values

DefaultContext = Context(
        prec=28, rounding=ROUND_HALF_EVEN,
        traps=[DivisionByZero, Overflow, InvalidOperation],
        flags=[],
        Emax=999999,
        Emin=-999999,
        capitals=1,
        clamp=0
)

# Pre-made alternate contexts offered by the specification
# Don't change these; the user should be able to select these
# contexts and be able to reproduce results from other implementations
# of the spec.

BasicContext = Context(
        prec=9, rounding=ROUND_HALF_UP,
        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
        flags=[],
)

ExtendedContext = Context(
        prec=9, rounding=ROUND_HALF_EVEN,
        traps=[],
        flags=[],
)


##### crud for parsing strings #############################################
#
# Regular expression used for parsing numeric strings.  Additional
# comments:
#
# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
# whitespace.  But note that the specification disallows whitespace in
# a numeric string.
#
# 2. For finite numbers (not infinities and NaNs) the body of the
# number between the optional sign and the optional exponent must have
# at least one decimal digit, possibly after the decimal point.  The
# lookahead expression '(?=\d|\.\d)' checks this.

import re
_parser = re.compile(r"""        # A numeric string consists of:
#    \s*
    (?P<sign>[-+])?              # an optional sign, followed by either...
    (
        (?=\d|\.\d)              # ...a number (with at least one digit)
        (?P<int>\d*)             # having a (possibly empty) integer part
        (\.(?P<frac>\d*))?       # followed by an optional fractional part
        (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or...
    |
        Inf(inity)?              # ...an infinity, or...
    |
        (?P<signal>s)?           # ...an (optionally signaling)
        NaN                      # NaN
        (?P<diag>\d*)            # with (possibly empty) diagnostic info.
    )
#    \s*
    \Z
""", re.VERBOSE | re.IGNORECASE).match

_all_zeros = re.compile('0*$').match
_exact_half = re.compile('50*$').match

##### PEP3101 support functions ##############################################
# The functions in this section have little to do with the Decimal
# class, and could potentially be reused or adapted for other pure
# Python numeric classes that want to implement __format__
#
# A format specifier for Decimal looks like:
#
#   [[fill]align][sign][#][0][minimumwidth][,][.precision][type]

_parse_format_specifier_regex = re.compile(r"""\A
(?:
   (?P<fill>.)?
   (?P<align>[<>=^])
)?
(?P<sign>[-+ ])?
(?P<alt>\#)?
(?P<zeropad>0)?
(?P<minimumwidth>(?!0)\d+)?
(?P<thousands_sep>,)?
(?:\.(?P<precision>0|(?!0)\d+))?
(?P<type>[eEfFgGn%])?
\Z
""", re.VERBOSE|re.DOTALL)

del re

# The locale module is only needed for the 'n' format specifier.  The
# rest of the PEP 3101 code functions quite happily without it, so we
# don't care too much if locale isn't present.
try:
    import locale as _locale
except ImportError:
    pass

def _parse_format_specifier(format_spec, _localeconv=None):
    """Parse and validate a format specifier.

    Turns a standard numeric format specifier into a dict, with the
    following entries:

      fill: fill character to pad field to minimum width
      align: alignment type, either '<', '>', '=' or '^'
      sign: either '+', '-' or ' '
      minimumwidth: nonnegative integer giving minimum width
      zeropad: boolean, indicating whether to pad with zeros
      thousands_sep: string to use as thousands separator, or ''
      grouping: grouping for thousands separators, in format
        used by localeconv
      decimal_point: string to use for decimal point
      precision: nonnegative integer giving precision, or None
      type: one of the characters 'eEfFgG%', or None

    """
    m = _parse_format_specifier_regex.match(format_spec)
    if m is None:
        raise ValueError("Invalid format specifier: " + format_spec)

    # get the dictionary
    format_dict = m.groupdict()

    # zeropad; defaults for fill and alignment.  If zero padding
    # is requested, the fill and align fields should be absent.
    fill = format_dict['fill']
    align = format_dict['align']
    format_dict['zeropad'] = (format_dict['zeropad'] is not None)
    if format_dict['zeropad']:
        if fill is not None:
            raise ValueError("Fill character conflicts with '0'"
                             " in format specifier: " + format_spec)
        if align is not None:
            raise ValueError("Alignment conflicts with '0' in "
                             "format specifier: " + format_spec)
    format_dict['fill'] = fill or ' '
    # PEP 3101 originally specified that the default alignment should
    # be left;  it was later agreed that right-aligned makes more sense
    # for numeric types.  See http://bugs.python.org/issue6857.
    format_dict['align'] = align or '>'

    # default sign handling: '-' for negative, '' for positive
    if format_dict['sign'] is None:
        format_dict['sign'] = '-'

    # minimumwidth defaults to 0; precision remains None if not given
    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
    if format_dict['precision'] is not None:
        format_dict['precision'] = int(format_dict['precision'])

    # if format type is 'g' or 'G' then a precision of 0 makes little
    # sense; convert it to 1.  Same if format type is unspecified.
    if format_dict['precision'] == 0:
        if format_dict['type'] is None or format_dict['type'] in 'gGn':
            format_dict['precision'] = 1

    # determine thousands separator, grouping, and decimal separator, and
    # add appropriate entries to format_dict
    if format_dict['type'] == 'n':
        # apart from separators, 'n' behaves just like 'g'
        format_dict['type'] = 'g'
        if _localeconv is None:
            _localeconv = _locale.localeconv()
        if format_dict['thousands_sep'] is not None:
            raise ValueError("Explicit thousands separator conflicts with "
                             "'n' type in format specifier: " + format_spec)
        format_dict['thousands_sep'] = _localeconv['thousands_sep']
        format_dict['grouping'] = _localeconv['grouping']
        format_dict['decimal_point'] = _localeconv['decimal_point']
    else:
        if format_dict['thousands_sep'] is None:
            format_dict['thousands_sep'] = ''
        format_dict['grouping'] = [3, 0]
        format_dict['decimal_point'] = '.'

    return format_dict

def _format_align(sign, body, spec):
    """Given an unpadded, non-aligned numeric string 'body' and sign
    string 'sign', add padding and alignment conforming to the given
    format specifier dictionary 'spec' (as produced by
    parse_format_specifier).

    """
    # how much extra space do we have to play with?
    minimumwidth = spec['minimumwidth']
    fill = spec['fill']
    padding = fill*(minimumwidth - len(sign) - len(body))

    align = spec['align']
    if align == '<':
        result = sign + body + padding
    elif align == '>':
        result = padding + sign + body
    elif align == '=':
        result = sign + padding + body
    elif align == '^':
        half = len(padding)//2
        result = padding[:half] + sign + body + padding[half:]
    else:
        raise ValueError('Unrecognised alignment field')

    return result

def _group_lengths(grouping):
    """Convert a localeconv-style grouping into a (possibly infinite)
    iterable of integers representing group lengths.

    """
    # The result from localeconv()['grouping'], and the input to this
    # function, should be a list of integers in one of the
    # following three forms:
    #
    #   (1) an empty list, or
    #   (2) nonempty list of positive integers + [0]
    #   (3) list of positive integers + [locale.CHAR_MAX], or

    from itertools import chain, repeat
    if not grouping:
        return []
    elif grouping[-1] == 0 and len(grouping) >= 2:
        return chain(grouping[:-1], repeat(grouping[-2]))
    elif grouping[-1] == _locale.CHAR_MAX:
        return grouping[:-1]
    else:
        raise ValueError('unrecognised format for grouping')

def _insert_thousands_sep(digits, spec, min_width=1):
    """Insert thousands separators into a digit string.

    spec is a dictionary whose keys should include 'thousands_sep' and
    'grouping'; typically it's the result of parsing the format
    specifier using _parse_format_specifier.

    The min_width keyword argument gives the minimum length of the
    result, which will be padded on the left with zeros if necessary.

    If necessary, the zero padding adds an extra '0' on the left to
    avoid a leading thousands separator.  For example, inserting
    commas every three digits in '123456', with min_width=8, gives
    '0,123,456', even though that has length 9.

    """

    sep = spec['thousands_sep']
    grouping = spec['grouping']

    groups = []
    for l in _group_lengths(grouping):
        if l <= 0:
            raise ValueError("group length should be positive")
        # max(..., 1) forces at least 1 digit to the left of a separator
        l = min(max(len(digits), min_width, 1), l)
        groups.append('0'*(l - len(digits)) + digits[-l:])
        digits = digits[:-l]
        min_width -= l
        if not digits and min_width <= 0:
            break
        min_width -= len(sep)
    else:
        l = max(len(digits), min_width, 1)
        groups.append('0'*(l - len(digits)) + digits[-l:])
    return sep.join(reversed(groups))

def _format_sign(is_negative, spec):
    """Determine sign character."""

    if is_negative:
        return '-'
    elif spec['sign'] in ' +':
        return spec['sign']
    else:
        return ''

def _format_number(is_negative, intpart, fracpart, exp, spec):
    """Format a number, given the following data:

    is_negative: true if the number is negative, else false
    intpart: string of digits that must appear before the decimal point
    fracpart: string of digits that must come after the point
    exp: exponent, as an integer
    spec: dictionary resulting from parsing the format specifier

    This function uses the information in spec to:
      insert separators (decimal separator and thousands separators)
      format the sign
      format the exponent
      add trailing '%' for the '%' type
      zero-pad if necessary
      fill and align if necessary
    """

    sign = _format_sign(is_negative, spec)

    if fracpart or spec['alt']:
        fracpart = spec['decimal_point'] + fracpart

    if exp != 0 or spec['type'] in 'eE':
        echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
        fracpart += "{0}{1:+}".format(echar, exp)
    if spec['type'] == '%':
        fracpart += '%'

    if spec['zeropad']:
        min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
    else:
        min_width = 0
    intpart = _insert_thousands_sep(intpart, spec, min_width)

    return _format_align(sign, intpart+fracpart, spec)


##### Useful Constants (internal use only) ################################

# Reusable defaults
_Infinity = Decimal('Inf')
_NegativeInfinity = Decimal('-Inf')
_NaN = Decimal('NaN')
_Zero = Decimal(0)
_One = Decimal(1)
_NegativeOne = Decimal(-1)

# _SignedInfinity[sign] is infinity w/ that sign
_SignedInfinity = (_Infinity, _NegativeInfinity)

# Constants related to the hash implementation;  hash(x) is based
# on the reduction of x modulo _PyHASH_MODULUS
_PyHASH_MODULUS = sys.hash_info.modulus
# hash values to use for positive and negative infinities, and nans
_PyHASH_INF = sys.hash_info.inf
_PyHASH_NAN = sys.hash_info.nan

# _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS
_PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
del sys

try:
    import _decimal
except ImportError:
    pass
else:
    s1 = set(dir())
    s2 = set(dir(_decimal))
    for name in s1 - s2:
        del globals()[name]
    del s1, s2, name
    from _decimal import *

if __name__ == '__main__':
    import doctest, decimal
    doctest.testmod(decimal)
lib\difflib.py
"""
Module difflib -- helpers for computing deltas between objects.

Function get_close_matches(word, possibilities, n=3, cutoff=0.6):
    Use SequenceMatcher to return list of the best "good enough" matches.

Function context_diff(a, b):
    For two lists of strings, return a delta in context diff format.

Function ndiff(a, b):
    Return a delta: the difference between `a` and `b` (lists of strings).

Function restore(delta, which):
    Return one of the two sequences that generated an ndiff delta.

Function unified_diff(a, b):
    For two lists of strings, return a delta in unified diff format.

Class SequenceMatcher:
    A flexible class for comparing pairs of sequences of any type.

Class Differ:
    For producing human-readable deltas from sequences of lines of text.

Class HtmlDiff:
    For producing HTML side by side comparison with change highlights.
"""

__all__ = ['get_close_matches', 'ndiff', 'restore', 'SequenceMatcher',
           'Differ','IS_CHARACTER_JUNK', 'IS_LINE_JUNK', 'context_diff',
           'unified_diff', 'HtmlDiff', 'Match']

import heapq
from collections import namedtuple as _namedtuple

Match = _namedtuple('Match', 'a b size')

def _calculate_ratio(matches, length):
    if length:
        return 2.0 * matches / length
    return 1.0

class SequenceMatcher:

    """
    SequenceMatcher is a flexible class for comparing pairs of sequences of
    any type, so long as the sequence elements are hashable.  The basic
    algorithm predates, and is a little fancier than, an algorithm
    published in the late 1980's by Ratcliff and Obershelp under the
    hyperbolic name "gestalt pattern matching".  The basic idea is to find
    the longest contiguous matching subsequence that contains no "junk"
    elements (R-O doesn't address junk).  The same idea is then applied
    recursively to the pieces of the sequences to the left and to the right
    of the matching subsequence.  This does not yield minimal edit
    sequences, but does tend to yield matches that "look right" to people.

    SequenceMatcher tries to compute a "human-friendly diff" between two
    sequences.  Unlike e.g. UNIX(tm) diff, the fundamental notion is the
    longest *contiguous* & junk-free matching subsequence.  That's what
    catches peoples' eyes.  The Windows(tm) windiff has another interesting
    notion, pairing up elements that appear uniquely in each sequence.
    That, and the method here, appear to yield more intuitive difference
    reports than does diff.  This method appears to be the least vulnerable
    to synching up on blocks of "junk lines", though (like blank lines in
    ordinary text files, or maybe "<P>" lines in HTML files).  That may be
    because this is the only method of the 3 that has a *concept* of
    "junk" <wink>.

    Example, comparing two strings, and considering blanks to be "junk":

    >>> s = SequenceMatcher(lambda x: x == " ",
    ...                     "private Thread currentThread;",
    ...                     "private volatile Thread currentThread;")
    >>>

    .ratio() returns a float in [0, 1], measuring the "similarity" of the
    sequences.  As a rule of thumb, a .ratio() value over 0.6 means the
    sequences are close matches:

    >>> print(round(s.ratio(), 3))
    0.86599999999999999
    >>>

    If you're only interested in where the sequences match,
    .get_matching_blocks() is handy:

    >>> for block in s.get_matching_blocks():
    ...     print("a[%d] and b[%d] match for %d elements" % block)
    a[0] and b[0] match for 8 elements
    a[8] and b[17] match for 21 elements
    a[29] and b[38] match for 0 elements

    Note that the last tuple returned by .get_matching_blocks() is always a
    dummy, (len(a), len(b), 0), and this is the only case in which the last
    tuple element (number of elements matched) is 0.

    If you want to know how to change the first sequence into the second,
    use .get_opcodes():

    >>> for opcode in s.get_opcodes():
    ...     print("%6s a[%d:%d] b[%d:%d]" % opcode)
     equal a[0:8] b[0:8]
    insert a[8:8] b[8:17]
     equal a[8:29] b[17:38]

    See the Differ class for a fancy human-friendly file differencer, which
    uses SequenceMatcher both to compare sequences of lines, and to compare
    sequences of characters within similar (near-matching) lines.

    See also function get_close_matches() in this module, which shows how
    simple code building on SequenceMatcher can be used to do useful work.

    Timing:  Basic R-O is cubic time worst case and quadratic time expected
    case.  SequenceMatcher is quadratic time for the worst case and has
    expected-case behavior dependent in a complicated way on how many
    elements the sequences have in common; best case time is linear.

    Methods:

    __init__(isjunk=None, a='', b='')
        Construct a SequenceMatcher.

    set_seqs(a, b)
        Set the two sequences to be compared.

    set_seq1(a)
        Set the first sequence to be compared.

    set_seq2(b)
        Set the second sequence to be compared.

    find_longest_match(alo, ahi, blo, bhi)
        Find longest matching block in a[alo:ahi] and b[blo:bhi].

    get_matching_blocks()
        Return list of triples describing matching subsequences.

    get_opcodes()
        Return list of 5-tuples describing how to turn a into b.

    ratio()
        Return a measure of the sequences' similarity (float in [0,1]).

    quick_ratio()
        Return an upper bound on .ratio() relatively quickly.

    real_quick_ratio()
        Return an upper bound on ratio() very quickly.
    """

    def __init__(self, isjunk=None, a='', b='', autojunk=True):
        """Construct a SequenceMatcher.

        Optional arg isjunk is None (the default), or a one-argument
        function that takes a sequence element and returns true iff the
        element is junk.  None is equivalent to passing "lambda x: 0", i.e.
        no elements are considered to be junk.  For example, pass
            lambda x: x in " \\t"
        if you're comparing lines as sequences of characters, and don't
        want to synch up on blanks or hard tabs.

        Optional arg a is the first of two sequences to be compared.  By
        default, an empty string.  The elements of a must be hashable.  See
        also .set_seqs() and .set_seq1().

        Optional arg b is the second of two sequences to be compared.  By
        default, an empty string.  The elements of b must be hashable. See
        also .set_seqs() and .set_seq2().

        Optional arg autojunk should be set to False to disable the
        "automatic junk heuristic" that treats popular elements as junk
        (see module documentation for more information).
        """

        # Members:
        # a
        #      first sequence
        # b
        #      second sequence; differences are computed as "what do
        #      we need to do to 'a' to change it into 'b'?"
        # b2j
        #      for x in b, b2j[x] is a list of the indices (into b)
        #      at which x appears; junk and popular elements do not appear
        # fullbcount
        #      for x in b, fullbcount[x] == the number of times x
        #      appears in b; only materialized if really needed (used
        #      only for computing quick_ratio())
        # matching_blocks
        #      a list of (i, j, k) triples, where a[i:i+k] == b[j:j+k];
        #      ascending & non-overlapping in i and in j; terminated by
        #      a dummy (len(a), len(b), 0) sentinel
        # opcodes
        #      a list of (tag, i1, i2, j1, j2) tuples, where tag is
        #      one of
        #          'replace'   a[i1:i2] should be replaced by b[j1:j2]
        #          'delete'    a[i1:i2] should be deleted
        #          'insert'    b[j1:j2] should be inserted
        #          'equal'     a[i1:i2] == b[j1:j2]
        # isjunk
        #      a user-supplied function taking a sequence element and
        #      returning true iff the element is "junk" -- this has
        #      subtle but helpful effects on the algorithm, which I'll
        #      get around to writing up someday <0.9 wink>.
        #      DON'T USE!  Only __chain_b uses this.  Use "in self.bjunk".
        # bjunk
        #      the items in b for which isjunk is True.
        # bpopular
        #      nonjunk items in b treated as junk by the heuristic (if used).

        self.isjunk = isjunk
        self.a = self.b = None
        self.autojunk = autojunk
        self.set_seqs(a, b)

    def set_seqs(self, a, b):
        """Set the two sequences to be compared.

        >>> s = SequenceMatcher()
        >>> s.set_seqs("abcd", "bcde")
        >>> s.ratio()
        0.75
        """

        self.set_seq1(a)
        self.set_seq2(b)

    def set_seq1(self, a):
        """Set the first sequence to be compared.

        The second sequence to be compared is not changed.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.set_seq1("bcde")
        >>> s.ratio()
        1.0
        >>>

        SequenceMatcher computes and caches detailed information about the
        second sequence, so if you want to compare one sequence S against
        many sequences, use .set_seq2(S) once and call .set_seq1(x)
        repeatedly for each of the other sequences.

        See also set_seqs() and set_seq2().
        """

        if a is self.a:
            return
        self.a = a
        self.matching_blocks = self.opcodes = None

    def set_seq2(self, b):
        """Set the second sequence to be compared.

        The first sequence to be compared is not changed.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.set_seq2("abcd")
        >>> s.ratio()
        1.0
        >>>

        SequenceMatcher computes and caches detailed information about the
        second sequence, so if you want to compare one sequence S against
        many sequences, use .set_seq2(S) once and call .set_seq1(x)
        repeatedly for each of the other sequences.

        See also set_seqs() and set_seq1().
        """

        if b is self.b:
            return
        self.b = b
        self.matching_blocks = self.opcodes = None
        self.fullbcount = None
        self.__chain_b()

    # For each element x in b, set b2j[x] to a list of the indices in
    # b where x appears; the indices are in increasing order; note that
    # the number of times x appears in b is len(b2j[x]) ...
    # when self.isjunk is defined, junk elements don't show up in this
    # map at all, which stops the central find_longest_match method
    # from starting any matching block at a junk element ...
    # b2j also does not contain entries for "popular" elements, meaning
    # elements that account for more than 1 + 1% of the total elements, and
    # when the sequence is reasonably large (>= 200 elements); this can
    # be viewed as an adaptive notion of semi-junk, and yields an enormous
    # speedup when, e.g., comparing program files with hundreds of
    # instances of "return NULL;" ...
    # note that this is only called when b changes; so for cross-product
    # kinds of matches, it's best to call set_seq2 once, then set_seq1
    # repeatedly

    def __chain_b(self):
        # Because isjunk is a user-defined (not C) function, and we test
        # for junk a LOT, it's important to minimize the number of calls.
        # Before the tricks described here, __chain_b was by far the most
        # time-consuming routine in the whole module!  If anyone sees
        # Jim Roskind, thank him again for profile.py -- I never would
        # have guessed that.
        # The first trick is to build b2j ignoring the possibility
        # of junk.  I.e., we don't call isjunk at all yet.  Throwing
        # out the junk later is much cheaper than building b2j "right"
        # from the start.
        b = self.b
        self.b2j = b2j = {}

        for i, elt in enumerate(b):
            indices = b2j.setdefault(elt, [])
            indices.append(i)

        # Purge junk elements
        self.bjunk = junk = set()
        isjunk = self.isjunk
        if isjunk:
            for elt in b2j.keys():
                if isjunk(elt):
                    junk.add(elt)
            for elt in junk: # separate loop avoids separate list of keys
                del b2j[elt]

        # Purge popular elements that are not junk
        self.bpopular = popular = set()
        n = len(b)
        if self.autojunk and n >= 200:
            ntest = n // 100 + 1
            for elt, idxs in b2j.items():
                if len(idxs) > ntest:
                    popular.add(elt)
            for elt in popular: # ditto; as fast for 1% deletion
                del b2j[elt]

    def find_longest_match(self, alo, ahi, blo, bhi):
        """Find longest matching block in a[alo:ahi] and b[blo:bhi].

        If isjunk is not defined:

        Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
            alo <= i <= i+k <= ahi
            blo <= j <= j+k <= bhi
        and for all (i',j',k') meeting those conditions,
            k >= k'
            i <= i'
            and if i == i', j <= j'

        In other words, of all maximal matching blocks, return one that
        starts earliest in a, and of all those maximal matching blocks that
        start earliest in a, return the one that starts earliest in b.

        >>> s = SequenceMatcher(None, " abcd", "abcd abcd")
        >>> s.find_longest_match(0, 5, 0, 9)
        Match(a=0, b=4, size=5)

        If isjunk is defined, first the longest matching block is
        determined as above, but with the additional restriction that no
        junk element appears in the block.  Then that block is extended as
        far as possible by matching (only) junk elements on both sides.  So
        the resulting block never matches on junk except as identical junk
        happens to be adjacent to an "interesting" match.

        Here's the same example as before, but considering blanks to be
        junk.  That prevents " abcd" from matching the " abcd" at the tail
        end of the second sequence directly.  Instead only the "abcd" can
        match, and matches the leftmost "abcd" in the second sequence:

        >>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
        >>> s.find_longest_match(0, 5, 0, 9)
        Match(a=1, b=0, size=4)

        If no blocks match, return (alo, blo, 0).

        >>> s = SequenceMatcher(None, "ab", "c")
        >>> s.find_longest_match(0, 2, 0, 1)
        Match(a=0, b=0, size=0)
        """

        # CAUTION:  stripping common prefix or suffix would be incorrect.
        # E.g.,
        #    ab
        #    acab
        # Longest matching block is "ab", but if common prefix is
        # stripped, it's "a" (tied with "b").  UNIX(tm) diff does so
        # strip, so ends up claiming that ab is changed to acab by
        # inserting "ca" in the middle.  That's minimal but unintuitive:
        # "it's obvious" that someone inserted "ac" at the front.
        # Windiff ends up at the same place as diff, but by pairing up
        # the unique 'b's and then matching the first two 'a's.

        a, b, b2j, isbjunk = self.a, self.b, self.b2j, self.bjunk.__contains__
        besti, bestj, bestsize = alo, blo, 0
        # find longest junk-free match
        # during an iteration of the loop, j2len[j] = length of longest
        # junk-free match ending with a[i-1] and b[j]
        j2len = {}
        nothing = []
        for i in range(alo, ahi):
            # look at all instances of a[i] in b; note that because
            # b2j has no junk keys, the loop is skipped if a[i] is junk
            j2lenget = j2len.get
            newj2len = {}
            for j in b2j.get(a[i], nothing):
                # a[i] matches b[j]
                if j < blo:
                    continue
                if j >= bhi:
                    break
                k = newj2len[j] = j2lenget(j-1, 0) + 1
                if k > bestsize:
                    besti, bestj, bestsize = i-k+1, j-k+1, k
            j2len = newj2len

        # Extend the best by non-junk elements on each end.  In particular,
        # "popular" non-junk elements aren't in b2j, which greatly speeds
        # the inner loop above, but also means "the best" match so far
        # doesn't contain any junk *or* popular non-junk elements.
        while besti > alo and bestj > blo and \
              not isbjunk(b[bestj-1]) and \
              a[besti-1] == b[bestj-1]:
            besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
        while besti+bestsize < ahi and bestj+bestsize < bhi and \
              not isbjunk(b[bestj+bestsize]) and \
              a[besti+bestsize] == b[bestj+bestsize]:
            bestsize += 1

        # Now that we have a wholly interesting match (albeit possibly
        # empty!), we may as well suck up the matching junk on each
        # side of it too.  Can't think of a good reason not to, and it
        # saves post-processing the (possibly considerable) expense of
        # figuring out what to do with it.  In the case of an empty
        # interesting match, this is clearly the right thing to do,
        # because no other kind of match is possible in the regions.
        while besti > alo and bestj > blo and \
              isbjunk(b[bestj-1]) and \
              a[besti-1] == b[bestj-1]:
            besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
        while besti+bestsize < ahi and bestj+bestsize < bhi and \
              isbjunk(b[bestj+bestsize]) and \
              a[besti+bestsize] == b[bestj+bestsize]:
            bestsize = bestsize + 1

        return Match(besti, bestj, bestsize)

    def get_matching_blocks(self):
        """Return list of triples describing matching subsequences.

        Each triple is of the form (i, j, n), and means that
        a[i:i+n] == b[j:j+n].  The triples are monotonically increasing in
        i and in j.  New in Python 2.5, it's also guaranteed that if
        (i, j, n) and (i', j', n') are adjacent triples in the list, and
        the second is not the last triple in the list, then i+n != i' or
        j+n != j'.  IOW, adjacent triples never describe adjacent equal
        blocks.

        The last triple is a dummy, (len(a), len(b), 0), and is the only
        triple with n==0.

        >>> s = SequenceMatcher(None, "abxcd", "abcd")
        >>> list(s.get_matching_blocks())
        [Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]
        """

        if self.matching_blocks is not None:
            return self.matching_blocks
        la, lb = len(self.a), len(self.b)

        # This is most naturally expressed as a recursive algorithm, but
        # at least one user bumped into extreme use cases that exceeded
        # the recursion limit on their box.  So, now we maintain a list
        # ('queue`) of blocks we still need to look at, and append partial
        # results to `matching_blocks` in a loop; the matches are sorted
        # at the end.
        queue = [(0, la, 0, lb)]
        matching_blocks = []
        while queue:
            alo, ahi, blo, bhi = queue.pop()
            i, j, k = x = self.find_longest_match(alo, ahi, blo, bhi)
            # a[alo:i] vs b[blo:j] unknown
            # a[i:i+k] same as b[j:j+k]
            # a[i+k:ahi] vs b[j+k:bhi] unknown
            if k:   # if k is 0, there was no matching block
                matching_blocks.append(x)
                if alo < i and blo < j:
                    queue.append((alo, i, blo, j))
                if i+k < ahi and j+k < bhi:
                    queue.append((i+k, ahi, j+k, bhi))
        matching_blocks.sort()

        # It's possible that we have adjacent equal blocks in the
        # matching_blocks list now.  Starting with 2.5, this code was added
        # to collapse them.
        i1 = j1 = k1 = 0
        non_adjacent = []
        for i2, j2, k2 in matching_blocks:
            # Is this block adjacent to i1, j1, k1?
            if i1 + k1 == i2 and j1 + k1 == j2:
                # Yes, so collapse them -- this just increases the length of
                # the first block by the length of the second, and the first
                # block so lengthened remains the block to compare against.
                k1 += k2
            else:
                # Not adjacent.  Remember the first block (k1==0 means it's
                # the dummy we started with), and make the second block the
                # new block to compare against.
                if k1:
                    non_adjacent.append((i1, j1, k1))
                i1, j1, k1 = i2, j2, k2
        if k1:
            non_adjacent.append((i1, j1, k1))

        non_adjacent.append( (la, lb, 0) )
        self.matching_blocks = list(map(Match._make, non_adjacent))
        return self.matching_blocks

    def get_opcodes(self):
        """Return list of 5-tuples describing how to turn a into b.

        Each tuple is of the form (tag, i1, i2, j1, j2).  The first tuple
        has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
        tuple preceding it, and likewise for j1 == the previous j2.

        The tags are strings, with these meanings:

        'replace':  a[i1:i2] should be replaced by b[j1:j2]
        'delete':   a[i1:i2] should be deleted.
                    Note that j1==j2 in this case.
        'insert':   b[j1:j2] should be inserted at a[i1:i1].
                    Note that i1==i2 in this case.
        'equal':    a[i1:i2] == b[j1:j2]

        >>> a = "qabxcd"
        >>> b = "abycdf"
        >>> s = SequenceMatcher(None, a, b)
        >>> for tag, i1, i2, j1, j2 in s.get_opcodes():
        ...    print(("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
        ...           (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])))
         delete a[0:1] (q) b[0:0] ()
          equal a[1:3] (ab) b[0:2] (ab)
        replace a[3:4] (x) b[2:3] (y)
          equal a[4:6] (cd) b[3:5] (cd)
         insert a[6:6] () b[5:6] (f)
        """

        if self.opcodes is not None:
            return self.opcodes
        i = j = 0
        self.opcodes = answer = []
        for ai, bj, size in self.get_matching_blocks():
            # invariant:  we've pumped out correct diffs to change
            # a[:i] into b[:j], and the next matching block is
            # a[ai:ai+size] == b[bj:bj+size].  So we need to pump
            # out a diff to change a[i:ai] into b[j:bj], pump out
            # the matching block, and move (i,j) beyond the match
            tag = ''
            if i < ai and j < bj:
                tag = 'replace'
            elif i < ai:
                tag = 'delete'
            elif j < bj:
                tag = 'insert'
            if tag:
                answer.append( (tag, i, ai, j, bj) )
            i, j = ai+size, bj+size
            # the list of matching blocks is terminated by a
            # sentinel with size 0
            if size:
                answer.append( ('equal', ai, i, bj, j) )
        return answer

    def get_grouped_opcodes(self, n=3):
        """ Isolate change clusters by eliminating ranges with no changes.

        Return a generator of groups with up to n lines of context.
        Each group is in the same format as returned by get_opcodes().

        >>> from pprint import pprint
        >>> a = list(map(str, range(1,40)))
        >>> b = a[:]
        >>> b[8:8] = ['i']     # Make an insertion
        >>> b[20] += 'x'       # Make a replacement
        >>> b[23:28] = []      # Make a deletion
        >>> b[30] += 'y'       # Make another replacement
        >>> pprint(list(SequenceMatcher(None,a,b).get_grouped_opcodes()))
        [[('equal', 5, 8, 5, 8), ('insert', 8, 8, 8, 9), ('equal', 8, 11, 9, 12)],
         [('equal', 16, 19, 17, 20),
          ('replace', 19, 20, 20, 21),
          ('equal', 20, 22, 21, 23),
          ('delete', 22, 27, 23, 23),
          ('equal', 27, 30, 23, 26)],
         [('equal', 31, 34, 27, 30),
          ('replace', 34, 35, 30, 31),
          ('equal', 35, 38, 31, 34)]]
        """

        codes = self.get_opcodes()
        if not codes:
            codes = [("equal", 0, 1, 0, 1)]
        # Fixup leading and trailing groups if they show no changes.
        if codes[0][0] == 'equal':
            tag, i1, i2, j1, j2 = codes[0]
            codes[0] = tag, max(i1, i2-n), i2, max(j1, j2-n), j2
        if codes[-1][0] == 'equal':
            tag, i1, i2, j1, j2 = codes[-1]
            codes[-1] = tag, i1, min(i2, i1+n), j1, min(j2, j1+n)

        nn = n + n
        group = []
        for tag, i1, i2, j1, j2 in codes:
            # End the current group and start a new one whenever
            # there is a large range with no changes.
            if tag == 'equal' and i2-i1 > nn:
                group.append((tag, i1, min(i2, i1+n), j1, min(j2, j1+n)))
                yield group
                group = []
                i1, j1 = max(i1, i2-n), max(j1, j2-n)
            group.append((tag, i1, i2, j1 ,j2))
        if group and not (len(group)==1 and group[0][0] == 'equal'):
            yield group

    def ratio(self):
        """Return a measure of the sequences' similarity (float in [0,1]).

        Where T is the total number of elements in both sequences, and
        M is the number of matches, this is 2.0*M / T.
        Note that this is 1 if the sequences are identical, and 0 if
        they have nothing in common.

        .ratio() is expensive to compute if you haven't already computed
        .get_matching_blocks() or .get_opcodes(), in which case you may
        want to try .quick_ratio() or .real_quick_ratio() first to get an
        upper bound.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.quick_ratio()
        0.75
        >>> s.real_quick_ratio()
        1.0
        """

        matches = sum(triple[-1] for triple in self.get_matching_blocks())
        return _calculate_ratio(matches, len(self.a) + len(self.b))

    def quick_ratio(self):
        """Return an upper bound on ratio() relatively quickly.

        This isn't defined beyond that it is an upper bound on .ratio(), and
        is faster to compute.
        """

        # viewing a and b as multisets, set matches to the cardinality
        # of their intersection; this counts the number of matches
        # without regard to order, so is clearly an upper bound
        if self.fullbcount is None:
            self.fullbcount = fullbcount = {}
            for elt in self.b:
                fullbcount[elt] = fullbcount.get(elt, 0) + 1
        fullbcount = self.fullbcount
        # avail[x] is the number of times x appears in 'b' less the
        # number of times we've seen it in 'a' so far ... kinda
        avail = {}
        availhas, matches = avail.__contains__, 0
        for elt in self.a:
            if availhas(elt):
                numb = avail[elt]
            else:
                numb = fullbcount.get(elt, 0)
            avail[elt] = numb - 1
            if numb > 0:
                matches = matches + 1
        return _calculate_ratio(matches, len(self.a) + len(self.b))

    def real_quick_ratio(self):
        """Return an upper bound on ratio() very quickly.

        This isn't defined beyond that it is an upper bound on .ratio(), and
        is faster to compute than either .ratio() or .quick_ratio().
        """

        la, lb = len(self.a), len(self.b)
        # can't have more matches than the number of elements in the
        # shorter sequence
        return _calculate_ratio(min(la, lb), la + lb)

def get_close_matches(word, possibilities, n=3, cutoff=0.6):
    """Use SequenceMatcher to return list of the best "good enough" matches.

    word is a sequence for which close matches are desired (typically a
    string).

    possibilities is a list of sequences against which to match word
    (typically a list of strings).

    Optional arg n (default 3) is the maximum number of close matches to
    return.  n must be > 0.

    Optional arg cutoff (default 0.6) is a float in [0, 1].  Possibilities
    that don't score at least that similar to word are ignored.

    The best (no more than n) matches among the possibilities are returned
    in a list, sorted by similarity score, most similar first.

    >>> get_close_matches("appel", ["ape", "apple", "peach", "puppy"])
    ['apple', 'ape']
    >>> import keyword as _keyword
    >>> get_close_matches("wheel", _keyword.kwlist)
    ['while']
    >>> get_close_matches("Apple", _keyword.kwlist)
    []
    >>> get_close_matches("accept", _keyword.kwlist)
    ['except']
    """

    if not n >  0:
        raise ValueError("n must be > 0: %r" % (n,))
    if not 0.0 <= cutoff <= 1.0:
        raise ValueError("cutoff must be in [0.0, 1.0]: %r" % (cutoff,))
    result = []
    s = SequenceMatcher()
    s.set_seq2(word)
    for x in possibilities:
        s.set_seq1(x)
        if s.real_quick_ratio() >= cutoff and \
           s.quick_ratio() >= cutoff and \
           s.ratio() >= cutoff:
            result.append((s.ratio(), x))

    # Move the best scorers to head of list
    result = heapq.nlargest(n, result)
    # Strip scores for the best n matches
    return [x for score, x in result]

def _count_leading(line, ch):
    """
    Return number of `ch` characters at the start of `line`.

    Example:

    >>> _count_leading('   abc', ' ')
    3
    """

    i, n = 0, len(line)
    while i < n and line[i] == ch:
        i += 1
    return i

class Differ:
    r"""
    Differ is a class for comparing sequences of lines of text, and
    producing human-readable differences or deltas.  Differ uses
    SequenceMatcher both to compare sequences of lines, and to compare
    sequences of characters within similar (near-matching) lines.

    Each line of a Differ delta begins with a two-letter code:

        '- '    line unique to sequence 1
        '+ '    line unique to sequence 2
        '  '    line common to both sequences
        '? '    line not present in either input sequence

    Lines beginning with '? ' attempt to guide the eye to intraline
    differences, and were not present in either input sequence.  These lines
    can be confusing if the sequences contain tab characters.

    Note that Differ makes no claim to produce a *minimal* diff.  To the
    contrary, minimal diffs are often counter-intuitive, because they synch
    up anywhere possible, sometimes accidental matches 100 pages apart.
    Restricting synch points to contiguous matches preserves some notion of
    locality, at the occasional cost of producing a longer diff.

    Example: Comparing two texts.

    First we set up the texts, sequences of individual single-line strings
    ending with newlines (such sequences can also be obtained from the
    `readlines()` method of file-like objects):

    >>> text1 = '''  1. Beautiful is better than ugly.
    ...   2. Explicit is better than implicit.
    ...   3. Simple is better than complex.
    ...   4. Complex is better than complicated.
    ... '''.splitlines(keepends=True)
    >>> len(text1)
    4
    >>> text1[0][-1]
    '\n'
    >>> text2 = '''  1. Beautiful is better than ugly.
    ...   3.   Simple is better than complex.
    ...   4. Complicated is better than complex.
    ...   5. Flat is better than nested.
    ... '''.splitlines(keepends=True)

    Next we instantiate a Differ object:

    >>> d = Differ()

    Note that when instantiating a Differ object we may pass functions to
    filter out line and character 'junk'.  See Differ.__init__ for details.

    Finally, we compare the two:

    >>> result = list(d.compare(text1, text2))

    'result' is a list of strings, so let's pretty-print it:

    >>> from pprint import pprint as _pprint
    >>> _pprint(result)
    ['    1. Beautiful is better than ugly.\n',
     '-   2. Explicit is better than implicit.\n',
     '-   3. Simple is better than complex.\n',
     '+   3.   Simple is better than complex.\n',
     '?     ++\n',
     '-   4. Complex is better than complicated.\n',
     '?            ^                     ---- ^\n',
     '+   4. Complicated is better than complex.\n',
     '?           ++++ ^                      ^\n',
     '+   5. Flat is better than nested.\n']

    As a single multi-line string it looks like this:

    >>> print(''.join(result), end="")
        1. Beautiful is better than ugly.
    -   2. Explicit is better than implicit.
    -   3. Simple is better than complex.
    +   3.   Simple is better than complex.
    ?     ++
    -   4. Complex is better than complicated.
    ?            ^                     ---- ^
    +   4. Complicated is better than complex.
    ?           ++++ ^                      ^
    +   5. Flat is better than nested.

    Methods:

    __init__(linejunk=None, charjunk=None)
        Construct a text differencer, with optional filters.

    compare(a, b)
        Compare two sequences of lines; generate the resulting delta.
    """

    def __init__(self, linejunk=None, charjunk=None):
        """
        Construct a text differencer, with optional filters.

        The two optional keyword parameters are for filter functions:

        - `linejunk`: A function that should accept a single string argument,
          and return true iff the string is junk. The module-level function
          `IS_LINE_JUNK` may be used to filter out lines without visible
          characters, except for at most one splat ('#').  It is recommended
          to leave linejunk None; as of Python 2.3, the underlying
          SequenceMatcher class has grown an adaptive notion of "noise" lines
          that's better than any static definition the author has ever been
          able to craft.

        - `charjunk`: A function that should accept a string of length 1. The
          module-level function `IS_CHARACTER_JUNK` may be used to filter out
          whitespace characters (a blank or tab; **note**: bad idea to include
          newline in this!).  Use of IS_CHARACTER_JUNK is recommended.
        """

        self.linejunk = linejunk
        self.charjunk = charjunk

    def compare(self, a, b):
        r"""
        Compare two sequences of lines; generate the resulting delta.

        Each sequence must contain individual single-line strings ending with
        newlines. Such sequences can be obtained from the `readlines()` method
        of file-like objects.  The delta generated also consists of newline-
        terminated strings, ready to be printed as-is via the writeline()
        method of a file-like object.

        Example:

        >>> print(''.join(Differ().compare('one\ntwo\nthree\n'.splitlines(True),
        ...                                'ore\ntree\nemu\n'.splitlines(True))),
        ...       end="")
        - one
        ?  ^
        + ore
        ?  ^
        - two
        - three
        ?  -
        + tree
        + emu
        """

        cruncher = SequenceMatcher(self.linejunk, a, b)
        for tag, alo, ahi, blo, bhi in cruncher.get_opcodes():
            if tag == 'replace':
                g = self._fancy_replace(a, alo, ahi, b, blo, bhi)
            elif tag == 'delete':
                g = self._dump('-', a, alo, ahi)
            elif tag == 'insert':
                g = self._dump('+', b, blo, bhi)
            elif tag == 'equal':
                g = self._dump(' ', a, alo, ahi)
            else:
                raise ValueError('unknown tag %r' % (tag,))

            yield from g

    def _dump(self, tag, x, lo, hi):
        """Generate comparison results for a same-tagged range."""
        for i in range(lo, hi):
            yield '%s %s' % (tag, x[i])

    def _plain_replace(self, a, alo, ahi, b, blo, bhi):
        assert alo < ahi and blo < bhi
        # dump the shorter block first -- reduces the burden on short-term
        # memory if the blocks are of very different sizes
        if bhi - blo < ahi - alo:
            first  = self._dump('+', b, blo, bhi)
            second = self._dump('-', a, alo, ahi)
        else:
            first  = self._dump('-', a, alo, ahi)
            second = self._dump('+', b, blo, bhi)

        for g in first, second:
            yield from g

    def _fancy_replace(self, a, alo, ahi, b, blo, bhi):
        r"""
        When replacing one block of lines with another, search the blocks
        for *similar* lines; the best-matching pair (if any) is used as a
        synch point, and intraline difference marking is done on the
        similar pair. Lots of work, but often worth it.

        Example:

        >>> d = Differ()
        >>> results = d._fancy_replace(['abcDefghiJkl\n'], 0, 1,
        ...                            ['abcdefGhijkl\n'], 0, 1)
        >>> print(''.join(results), end="")
        - abcDefghiJkl
        ?    ^  ^  ^
        + abcdefGhijkl
        ?    ^  ^  ^
        """

        # don't synch up unless the lines have a similarity score of at
        # least cutoff; best_ratio tracks the best score seen so far
        best_ratio, cutoff = 0.74, 0.75
        cruncher = SequenceMatcher(self.charjunk)
        eqi, eqj = None, None   # 1st indices of equal lines (if any)

        # search for the pair that matches best without being identical
        # (identical lines must be junk lines, & we don't want to synch up
        # on junk -- unless we have to)
        for j in range(blo, bhi):
            bj = b[j]
            cruncher.set_seq2(bj)
            for i in range(alo, ahi):
                ai = a[i]
                if ai == bj:
                    if eqi is None:
                        eqi, eqj = i, j
                    continue
                cruncher.set_seq1(ai)
                # computing similarity is expensive, so use the quick
                # upper bounds first -- have seen this speed up messy
                # compares by a factor of 3.
                # note that ratio() is only expensive to compute the first
                # time it's called on a sequence pair; the expensive part
                # of the computation is cached by cruncher
                if cruncher.real_quick_ratio() > best_ratio and \
                      cruncher.quick_ratio() > best_ratio and \
                      cruncher.ratio() > best_ratio:
                    best_ratio, best_i, best_j = cruncher.ratio(), i, j
        if best_ratio < cutoff:
            # no non-identical "pretty close" pair
            if eqi is None:
                # no identical pair either -- treat it as a straight replace
                yield from self._plain_replace(a, alo, ahi, b, blo, bhi)
                return
            # no close pair, but an identical pair -- synch up on that
            best_i, best_j, best_ratio = eqi, eqj, 1.0
        else:
            # there's a close pair, so forget the identical pair (if any)
            eqi = None

        # a[best_i] very similar to b[best_j]; eqi is None iff they're not
        # identical

        # pump out diffs from before the synch point
        yield from self._fancy_helper(a, alo, best_i, b, blo, best_j)

        # do intraline marking on the synch pair
        aelt, belt = a[best_i], b[best_j]
        if eqi is None:
            # pump out a '-', '?', '+', '?' quad for the synched lines
            atags = btags = ""
            cruncher.set_seqs(aelt, belt)
            for tag, ai1, ai2, bj1, bj2 in cruncher.get_opcodes():
                la, lb = ai2 - ai1, bj2 - bj1
                if tag == 'replace':
                    atags += '^' * la
                    btags += '^' * lb
                elif tag == 'delete':
                    atags += '-' * la
                elif tag == 'insert':
                    btags += '+' * lb
                elif tag == 'equal':
                    atags += ' ' * la
                    btags += ' ' * lb
                else:
                    raise ValueError('unknown tag %r' % (tag,))
            yield from self._qformat(aelt, belt, atags, btags)
        else:
            # the synch pair is identical
            yield '  ' + aelt

        # pump out diffs from after the synch point
        yield from self._fancy_helper(a, best_i+1, ahi, b, best_j+1, bhi)

    def _fancy_helper(self, a, alo, ahi, b, blo, bhi):
        g = []
        if alo < ahi:
            if blo < bhi:
                g = self._fancy_replace(a, alo, ahi, b, blo, bhi)
            else:
                g = self._dump('-', a, alo, ahi)
        elif blo < bhi:
            g = self._dump('+', b, blo, bhi)

        yield from g

    def _qformat(self, aline, bline, atags, btags):
        r"""
        Format "?" output and deal with leading tabs.

        Example:

        >>> d = Differ()
        >>> results = d._qformat('\tabcDefghiJkl\n', '\tabcdefGhijkl\n',
        ...                      '  ^ ^  ^      ', '  ^ ^  ^      ')
        >>> for line in results: print(repr(line))
        ...
        '- \tabcDefghiJkl\n'
        '? \t ^ ^  ^\n'
        '+ \tabcdefGhijkl\n'
        '? \t ^ ^  ^\n'
        """

        # Can hurt, but will probably help most of the time.
        common = min(_count_leading(aline, "\t"),
                     _count_leading(bline, "\t"))
        common = min(common, _count_leading(atags[:common], " "))
        common = min(common, _count_leading(btags[:common], " "))
        atags = atags[common:].rstrip()
        btags = btags[common:].rstrip()

        yield "- " + aline
        if atags:
            yield "? %s%s\n" % ("\t" * common, atags)

        yield "+ " + bline
        if btags:
            yield "? %s%s\n" % ("\t" * common, btags)

# With respect to junk, an earlier version of ndiff simply refused to
# *start* a match with a junk element.  The result was cases like this:
#     before: private Thread currentThread;
#     after:  private volatile Thread currentThread;
# If you consider whitespace to be junk, the longest contiguous match
# not starting with junk is "e Thread currentThread".  So ndiff reported
# that "e volatil" was inserted between the 't' and the 'e' in "private".
# While an accurate view, to people that's absurd.  The current version
# looks for matching blocks that are entirely junk-free, then extends the
# longest one of those as far as possible but only with matching junk.
# So now "currentThread" is matched, then extended to suck up the
# preceding blank; then "private" is matched, and extended to suck up the
# following blank; then "Thread" is matched; and finally ndiff reports
# that "volatile " was inserted before "Thread".  The only quibble
# remaining is that perhaps it was really the case that " volatile"
# was inserted after "private".  I can live with that <wink>.

import re

def IS_LINE_JUNK(line, pat=re.compile(r"\s*(?:#\s*)?$").match):
    r"""
    Return 1 for ignorable line: iff `line` is blank or contains a single '#'.

    Examples:

    >>> IS_LINE_JUNK('\n')
    True
    >>> IS_LINE_JUNK('  #   \n')
    True
    >>> IS_LINE_JUNK('hello\n')
    False
    """

    return pat(line) is not None

def IS_CHARACTER_JUNK(ch, ws=" \t"):
    r"""
    Return 1 for ignorable character: iff `ch` is a space or tab.

    Examples:

    >>> IS_CHARACTER_JUNK(' ')
    True
    >>> IS_CHARACTER_JUNK('\t')
    True
    >>> IS_CHARACTER_JUNK('\n')
    False
    >>> IS_CHARACTER_JUNK('x')
    False
    """

    return ch in ws


########################################################################
###  Unified Diff
########################################################################

def _format_range_unified(start, stop):
    'Convert range to the "ed" format'
    # Per the diff spec at http://www.unix.org/single_unix_specification/
    beginning = start + 1     # lines start numbering with one
    length = stop - start
    if length == 1:
        return '{}'.format(beginning)
    if not length:
        beginning -= 1        # empty ranges begin at line just before the range
    return '{},{}'.format(beginning, length)

def unified_diff(a, b, fromfile='', tofile='', fromfiledate='',
                 tofiledate='', n=3, lineterm='\n'):
    r"""
    Compare two sequences of lines; generate the delta as a unified diff.

    Unified diffs are a compact way of showing line changes and a few
    lines of context.  The number of context lines is set by 'n' which
    defaults to three.

    By default, the diff control lines (those with ---, +++, or @@) are
    created with a trailing newline.  This is helpful so that inputs
    created from file.readlines() result in diffs that are suitable for
    file.writelines() since both the inputs and outputs have trailing
    newlines.

    For inputs that do not have trailing newlines, set the lineterm
    argument to "" so that the output will be uniformly newline free.

    The unidiff format normally has a header for filenames and modification
    times.  Any or all of these may be specified using strings for
    'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
    The modification times are normally expressed in the ISO 8601 format.

    Example:

    >>> for line in unified_diff('one two three four'.split(),
    ...             'zero one tree four'.split(), 'Original', 'Current',
    ...             '2005-01-26 23:30:50', '2010-04-02 10:20:52',
    ...             lineterm=''):
    ...     print(line)                 # doctest: +NORMALIZE_WHITESPACE
    --- Original        2005-01-26 23:30:50
    +++ Current         2010-04-02 10:20:52
    @@ -1,4 +1,4 @@
    +zero
     one
    -two
    -three
    +tree
     four
    """

    started = False
    for group in SequenceMatcher(None,a,b).get_grouped_opcodes(n):
        if not started:
            started = True
            fromdate = '\t{}'.format(fromfiledate) if fromfiledate else ''
            todate = '\t{}'.format(tofiledate) if tofiledate else ''
            yield '--- {}{}{}'.format(fromfile, fromdate, lineterm)
            yield '+++ {}{}{}'.format(tofile, todate, lineterm)

        first, last = group[0], group[-1]
        file1_range = _format_range_unified(first[1], last[2])
        file2_range = _format_range_unified(first[3], last[4])
        yield '@@ -{} +{} @@{}'.format(file1_range, file2_range, lineterm)

        for tag, i1, i2, j1, j2 in group:
            if tag == 'equal':
                for line in a[i1:i2]:
                    yield ' ' + line
                continue
            if tag in {'replace', 'delete'}:
                for line in a[i1:i2]:
                    yield '-' + line
            if tag in {'replace', 'insert'}:
                for line in b[j1:j2]:
                    yield '+' + line


########################################################################
###  Context Diff
########################################################################

def _format_range_context(start, stop):
    'Convert range to the "ed" format'
    # Per the diff spec at http://www.unix.org/single_unix_specification/
    beginning = start + 1     # lines start numbering with one
    length = stop - start
    if not length:
        beginning -= 1        # empty ranges begin at line just before the range
    if length <= 1:
        return '{}'.format(beginning)
    return '{},{}'.format(beginning, beginning + length - 1)

# See http://www.unix.org/single_unix_specification/
def context_diff(a, b, fromfile='', tofile='',
                 fromfiledate='', tofiledate='', n=3, lineterm='\n'):
    r"""
    Compare two sequences of lines; generate the delta as a context diff.

    Context diffs are a compact way of showing line changes and a few
    lines of context.  The number of context lines is set by 'n' which
    defaults to three.

    By default, the diff control lines (those with *** or ---) are
    created with a trailing newline.  This is helpful so that inputs
    created from file.readlines() result in diffs that are suitable for
    file.writelines() since both the inputs and outputs have trailing
    newlines.

    For inputs that do not have trailing newlines, set the lineterm
    argument to "" so that the output will be uniformly newline free.

    The context diff format normally has a header for filenames and
    modification times.  Any or all of these may be specified using
    strings for 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
    The modification times are normally expressed in the ISO 8601 format.
    If not specified, the strings default to blanks.

    Example:

    >>> print(''.join(context_diff('one\ntwo\nthree\nfour\n'.splitlines(True),
    ...       'zero\none\ntree\nfour\n'.splitlines(True), 'Original', 'Current')),
    ...       end="")
    *** Original
    --- Current
    ***************
    *** 1,4 ****
      one
    ! two
    ! three
      four
    --- 1,4 ----
    + zero
      one
    ! tree
      four
    """

    prefix = dict(insert='+ ', delete='- ', replace='! ', equal='  ')
    started = False
    for group in SequenceMatcher(None,a,b).get_grouped_opcodes(n):
        if not started:
            started = True
            fromdate = '\t{}'.format(fromfiledate) if fromfiledate else ''
            todate = '\t{}'.format(tofiledate) if tofiledate else ''
            yield '*** {}{}{}'.format(fromfile, fromdate, lineterm)
            yield '--- {}{}{}'.format(tofile, todate, lineterm)

        first, last = group[0], group[-1]
        yield '***************' + lineterm

        file1_range = _format_range_context(first[1], last[2])
        yield '*** {} ****{}'.format(file1_range, lineterm)

        if any(tag in {'replace', 'delete'} for tag, _, _, _, _ in group):
            for tag, i1, i2, _, _ in group:
                if tag != 'insert':
                    for line in a[i1:i2]:
                        yield prefix[tag] + line

        file2_range = _format_range_context(first[3], last[4])
        yield '--- {} ----{}'.format(file2_range, lineterm)

        if any(tag in {'replace', 'insert'} for tag, _, _, _, _ in group):
            for tag, _, _, j1, j2 in group:
                if tag != 'delete':
                    for line in b[j1:j2]:
                        yield prefix[tag] + line

def ndiff(a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK):
    r"""
    Compare `a` and `b` (lists of strings); return a `Differ`-style delta.

    Optional keyword parameters `linejunk` and `charjunk` are for filter
    functions (or None):

    - linejunk: A function that should accept a single string argument, and
      return true iff the string is junk.  The default is None, and is
      recommended; as of Python 2.3, an adaptive notion of "noise" lines is
      used that does a good job on its own.

    - charjunk: A function that should accept a string of length 1. The
      default is module-level function IS_CHARACTER_JUNK, which filters out
      whitespace characters (a blank or tab; note: bad idea to include newline
      in this!).

    Tools/scripts/ndiff.py is a command-line front-end to this function.

    Example:

    >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),
    ...              'ore\ntree\nemu\n'.splitlines(keepends=True))
    >>> print(''.join(diff), end="")
    - one
    ?  ^
    + ore
    ?  ^
    - two
    - three
    ?  -
    + tree
    + emu
    """
    return Differ(linejunk, charjunk).compare(a, b)

def _mdiff(fromlines, tolines, context=None, linejunk=None,
           charjunk=IS_CHARACTER_JUNK):
    r"""Returns generator yielding marked up from/to side by side differences.

    Arguments:
    fromlines -- list of text lines to compared to tolines
    tolines -- list of text lines to be compared to fromlines
    context -- number of context lines to display on each side of difference,
               if None, all from/to text lines will be generated.
    linejunk -- passed on to ndiff (see ndiff documentation)
    charjunk -- passed on to ndiff (see ndiff documentation)

    This function returns an iterator which returns a tuple:
    (from line tuple, to line tuple, boolean flag)

    from/to line tuple -- (line num, line text)
        line num -- integer or None (to indicate a context separation)
        line text -- original line text with following markers inserted:
            '\0+' -- marks start of added text
            '\0-' -- marks start of deleted text
            '\0^' -- marks start of changed text
            '\1' -- marks end of added/deleted/changed text

    boolean flag -- None indicates context separation, True indicates
        either "from" or "to" line contains a change, otherwise False.

    This function/iterator was originally developed to generate side by side
    file difference for making HTML pages (see HtmlDiff class for example
    usage).

    Note, this function utilizes the ndiff function to generate the side by
    side difference markup.  Optional ndiff arguments may be passed to this
    function and they in turn will be passed to ndiff.
    """
    import re

    # regular expression for finding intraline change indices
    change_re = re.compile('(\++|\-+|\^+)')

    # create the difference iterator to generate the differences
    diff_lines_iterator = ndiff(fromlines,tolines,linejunk,charjunk)

    def _make_line(lines, format_key, side, num_lines=[0,0]):
        """Returns line of text with user's change markup and line formatting.

        lines -- list of lines from the ndiff generator to produce a line of
                 text from.  When producing the line of text to return, the
                 lines used are removed from this list.
        format_key -- '+' return first line in list with "add" markup around
                          the entire line.
                      '-' return first line in list with "delete" markup around
                          the entire line.
                      '?' return first line in list with add/delete/change
                          intraline markup (indices obtained from second line)
                      None return first line in list with no markup
        side -- indice into the num_lines list (0=from,1=to)
        num_lines -- from/to current line number.  This is NOT intended to be a
                     passed parameter.  It is present as a keyword argument to
                     maintain memory of the current line numbers between calls
                     of this function.

        Note, this function is purposefully not defined at the module scope so
        that data it needs from its parent function (within whose context it
        is defined) does not need to be of module scope.
        """
        num_lines[side] += 1
        # Handle case where no user markup is to be added, just return line of
        # text with user's line format to allow for usage of the line number.
        if format_key is None:
            return (num_lines[side],lines.pop(0)[2:])
        # Handle case of intraline changes
        if format_key == '?':
            text, markers = lines.pop(0), lines.pop(0)
            # find intraline changes (store change type and indices in tuples)
            sub_info = []
            def record_sub_info(match_object,sub_info=sub_info):
                sub_info.append([match_object.group(1)[0],match_object.span()])
                return match_object.group(1)
            change_re.sub(record_sub_info,markers)
            # process each tuple inserting our special marks that won't be
            # noticed by an xml/html escaper.
            for key,(begin,end) in sub_info[::-1]:
                text = text[0:begin]+'\0'+key+text[begin:end]+'\1'+text[end:]
            text = text[2:]
        # Handle case of add/delete entire line
        else:
            text = lines.pop(0)[2:]
            # if line of text is just a newline, insert a space so there is
            # something for the user to highlight and see.
            if not text:
                text = ' '
            # insert marks that won't be noticed by an xml/html escaper.
            text = '\0' + format_key + text + '\1'
        # Return line of text, first allow user's line formatter to do its
        # thing (such as adding the line number) then replace the special
        # marks with what the user's change markup.
        return (num_lines[side],text)

    def _line_iterator():
        """Yields from/to lines of text with a change indication.

        This function is an iterator.  It itself pulls lines from a
        differencing iterator, processes them and yields them.  When it can
        it yields both a "from" and a "to" line, otherwise it will yield one
        or the other.  In addition to yielding the lines of from/to text, a
        boolean flag is yielded to indicate if the text line(s) have
        differences in them.

        Note, this function is purposefully not defined at the module scope so
        that data it needs from its parent function (within whose context it
        is defined) does not need to be of module scope.
        """
        lines = []
        num_blanks_pending, num_blanks_to_yield = 0, 0
        while True:
            # Load up next 4 lines so we can look ahead, create strings which
            # are a concatenation of the first character of each of the 4 lines
            # so we can do some very readable comparisons.
            while len(lines) < 4:
                try:
                    lines.append(next(diff_lines_iterator))
                except StopIteration:
                    lines.append('X')
            s = ''.join([line[0] for line in lines])
            if s.startswith('X'):
                # When no more lines, pump out any remaining blank lines so the
                # corresponding add/delete lines get a matching blank line so
                # all line pairs get yielded at the next level.
                num_blanks_to_yield = num_blanks_pending
            elif s.startswith('-?+?'):
                # simple intraline change
                yield _make_line(lines,'?',0), _make_line(lines,'?',1), True
                continue
            elif s.startswith('--++'):
                # in delete block, add block coming: we do NOT want to get
                # caught up on blank lines yet, just process the delete line
                num_blanks_pending -= 1
                yield _make_line(lines,'-',0), None, True
                continue
            elif s.startswith(('--?+', '--+', '- ')):
                # in delete block and see an intraline change or unchanged line
                # coming: yield the delete line and then blanks
                from_line,to_line = _make_line(lines,'-',0), None
                num_blanks_to_yield,num_blanks_pending = num_blanks_pending-1,0
            elif s.startswith('-+?'):
                # intraline change
                yield _make_line(lines,None,0), _make_line(lines,'?',1), True
                continue
            elif s.startswith('-?+'):
                # intraline change
                yield _make_line(lines,'?',0), _make_line(lines,None,1), True
                continue
            elif s.startswith('-'):
                # delete FROM line
                num_blanks_pending -= 1
                yield _make_line(lines,'-',0), None, True
                continue
            elif s.startswith('+--'):
                # in add block, delete block coming: we do NOT want to get
                # caught up on blank lines yet, just process the add line
                num_blanks_pending += 1
                yield None, _make_line(lines,'+',1), True
                continue
            elif s.startswith(('+ ', '+-')):
                # will be leaving an add block: yield blanks then add line
                from_line, to_line = None, _make_line(lines,'+',1)
                num_blanks_to_yield,num_blanks_pending = num_blanks_pending+1,0
            elif s.startswith('+'):
                # inside an add block, yield the add line
                num_blanks_pending += 1
                yield None, _make_line(lines,'+',1), True
                continue
            elif s.startswith(' '):
                # unchanged text, yield it to both sides
                yield _make_line(lines[:],None,0),_make_line(lines,None,1),False
                continue
            # Catch up on the blank lines so when we yield the next from/to
            # pair, they are lined up.
            while(num_blanks_to_yield < 0):
                num_blanks_to_yield += 1
                yield None,('','\n'),True
            while(num_blanks_to_yield > 0):
                num_blanks_to_yield -= 1
                yield ('','\n'),None,True
            if s.startswith('X'):
                raise StopIteration
            else:
                yield from_line,to_line,True

    def _line_pair_iterator():
        """Yields from/to lines of text with a change indication.

        This function is an iterator.  It itself pulls lines from the line
        iterator.  Its difference from that iterator is that this function
        always yields a pair of from/to text lines (with the change
        indication).  If necessary it will collect single from/to lines
        until it has a matching pair from/to pair to yield.

        Note, this function is purposefully not defined at the module scope so
        that data it needs from its parent function (within whose context it
        is defined) does not need to be of module scope.
        """
        line_iterator = _line_iterator()
        fromlines,tolines=[],[]
        while True:
            # Collecting lines of text until we have a from/to pair
            while (len(fromlines)==0 or len(tolines)==0):
                from_line, to_line, found_diff = next(line_iterator)
                if from_line is not None:
                    fromlines.append((from_line,found_diff))
                if to_line is not None:
                    tolines.append((to_line,found_diff))
            # Once we have a pair, remove them from the collection and yield it
            from_line, fromDiff = fromlines.pop(0)
            to_line, to_diff = tolines.pop(0)
            yield (from_line,to_line,fromDiff or to_diff)

    # Handle case where user does not want context differencing, just yield
    # them up without doing anything else with them.
    line_pair_iterator = _line_pair_iterator()
    if context is None:
        while True:
            yield next(line_pair_iterator)
    # Handle case where user wants context differencing.  We must do some
    # storage of lines until we know for sure that they are to be yielded.
    else:
        context += 1
        lines_to_write = 0
        while True:
            # Store lines up until we find a difference, note use of a
            # circular queue because we only need to keep around what
            # we need for context.
            index, contextLines = 0, [None]*(context)
            found_diff = False
            while(found_diff is False):
                from_line, to_line, found_diff = next(line_pair_iterator)
                i = index % context
                contextLines[i] = (from_line, to_line, found_diff)
                index += 1
            # Yield lines that we have collected so far, but first yield
            # the user's separator.
            if index > context:
                yield None, None, None
                lines_to_write = context
            else:
                lines_to_write = index
                index = 0
            while(lines_to_write):
                i = index % context
                index += 1
                yield contextLines[i]
                lines_to_write -= 1
            # Now yield the context lines after the change
            lines_to_write = context-1
            while(lines_to_write):
                from_line, to_line, found_diff = next(line_pair_iterator)
                # If another change within the context, extend the context
                if found_diff:
                    lines_to_write = context-1
                else:
                    lines_to_write -= 1
                yield from_line, to_line, found_diff


_file_template = """
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
          "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>
    <meta http-equiv="Content-Type"
          content="text/html; charset=ISO-8859-1" />
    <title></title>
    <style type="text/css">%(styles)s
    </style>
</head>

<body>
    %(table)s%(legend)s
</body>

</html>"""

_styles = """
        table.diff {font-family:Courier; border:medium;}
        .diff_header {background-color:#e0e0e0}
        td.diff_header {text-align:right}
        .diff_next {background-color:#c0c0c0}
        .diff_add {background-color:#aaffaa}
        .diff_chg {background-color:#ffff77}
        .diff_sub {background-color:#ffaaaa}"""

_table_template = """
    <table class="diff" id="difflib_chg_%(prefix)s_top"
           cellspacing="0" cellpadding="0" rules="groups" >
        <colgroup></colgroup> <colgroup></colgroup> <colgroup></colgroup>
        <colgroup></colgroup> <colgroup></colgroup> <colgroup></colgroup>
        %(header_row)s
        <tbody>
%(data_rows)s        </tbody>
    </table>"""

_legend = """
    <table class="diff" summary="Legends">
        <tr> <th colspan="2"> Legends </th> </tr>
        <tr> <td> <table border="" summary="Colors">
                      <tr><th> Colors </th> </tr>
                      <tr><td class="diff_add">&nbsp;Added&nbsp;</td></tr>
                      <tr><td class="diff_chg">Changed</td> </tr>
                      <tr><td class="diff_sub">Deleted</td> </tr>
                  </table></td>
             <td> <table border="" summary="Links">
                      <tr><th colspan="2"> Links </th> </tr>
                      <tr><td>(f)irst change</td> </tr>
                      <tr><td>(n)ext change</td> </tr>
                      <tr><td>(t)op</td> </tr>
                  </table></td> </tr>
    </table>"""

class HtmlDiff(object):
    """For producing HTML side by side comparison with change highlights.

    This class can be used to create an HTML table (or a complete HTML file
    containing the table) showing a side by side, line by line comparison
    of text with inter-line and intra-line change highlights.  The table can
    be generated in either full or contextual difference mode.

    The following methods are provided for HTML generation:

    make_table -- generates HTML for a single side by side table
    make_file -- generates complete HTML file with a single side by side table

    See tools/scripts/diff.py for an example usage of this class.
    """

    _file_template = _file_template
    _styles = _styles
    _table_template = _table_template
    _legend = _legend
    _default_prefix = 0

    def __init__(self,tabsize=8,wrapcolumn=None,linejunk=None,
                 charjunk=IS_CHARACTER_JUNK):
        """HtmlDiff instance initializer

        Arguments:
        tabsize -- tab stop spacing, defaults to 8.
        wrapcolumn -- column number where lines are broken and wrapped,
            defaults to None where lines are not wrapped.
        linejunk,charjunk -- keyword arguments passed into ndiff() (used to by
            HtmlDiff() to generate the side by side HTML differences).  See
            ndiff() documentation for argument default values and descriptions.
        """
        self._tabsize = tabsize
        self._wrapcolumn = wrapcolumn
        self._linejunk = linejunk
        self._charjunk = charjunk

    def make_file(self,fromlines,tolines,fromdesc='',todesc='',context=False,
                  numlines=5):
        """Returns HTML file of side by side comparison with change highlights

        Arguments:
        fromlines -- list of "from" lines
        tolines -- list of "to" lines
        fromdesc -- "from" file column header string
        todesc -- "to" file column header string
        context -- set to True for contextual differences (defaults to False
            which shows full differences).
        numlines -- number of context lines.  When context is set True,
            controls number of lines displayed before and after the change.
            When context is False, controls the number of lines to place
            the "next" link anchors before the next change (so click of
            "next" link jumps to just before the change).
        """

        return self._file_template % dict(
            styles = self._styles,
            legend = self._legend,
            table = self.make_table(fromlines,tolines,fromdesc,todesc,
                                    context=context,numlines=numlines))

    def _tab_newline_replace(self,fromlines,tolines):
        """Returns from/to line lists with tabs expanded and newlines removed.

        Instead of tab characters being replaced by the number of spaces
        needed to fill in to the next tab stop, this function will fill
        the space with tab characters.  This is done so that the difference
        algorithms can identify changes in a file when tabs are replaced by
        spaces and vice versa.  At the end of the HTML generation, the tab
        characters will be replaced with a nonbreakable space.
        """
        def expand_tabs(line):
            # hide real spaces
            line = line.replace(' ','\0')
            # expand tabs into spaces
            line = line.expandtabs(self._tabsize)
            # replace spaces from expanded tabs back into tab characters
            # (we'll replace them with markup after we do differencing)
            line = line.replace(' ','\t')
            return line.replace('\0',' ').rstrip('\n')
        fromlines = [expand_tabs(line) for line in fromlines]
        tolines = [expand_tabs(line) for line in tolines]
        return fromlines,tolines

    def _split_line(self,data_list,line_num,text):
        """Builds list of text lines by splitting text lines at wrap point

        This function will determine if the input text line needs to be
        wrapped (split) into separate lines.  If so, the first wrap point
        will be determined and the first line appended to the output
        text line list.  This function is used recursively to handle
        the second part of the split line to further split it.
        """
        # if blank line or context separator, just add it to the output list
        if not line_num:
            data_list.append((line_num,text))
            return

        # if line text doesn't need wrapping, just add it to the output list
        size = len(text)
        max = self._wrapcolumn
        if (size <= max) or ((size -(text.count('\0')*3)) <= max):
            data_list.append((line_num,text))
            return

        # scan text looking for the wrap point, keeping track if the wrap
        # point is inside markers
        i = 0
        n = 0
        mark = ''
        while n < max and i < size:
            if text[i] == '\0':
                i += 1
                mark = text[i]
                i += 1
            elif text[i] == '\1':
                i += 1
                mark = ''
            else:
                i += 1
                n += 1

        # wrap point is inside text, break it up into separate lines
        line1 = text[:i]
        line2 = text[i:]

        # if wrap point is inside markers, place end marker at end of first
        # line and start marker at beginning of second line because each
        # line will have its own table tag markup around it.
        if mark:
            line1 = line1 + '\1'
            line2 = '\0' + mark + line2

        # tack on first line onto the output list
        data_list.append((line_num,line1))

        # use this routine again to wrap the remaining text
        self._split_line(data_list,'>',line2)

    def _line_wrapper(self,diffs):
        """Returns iterator that splits (wraps) mdiff text lines"""

        # pull from/to data and flags from mdiff iterator
        for fromdata,todata,flag in diffs:
            # check for context separators and pass them through
            if flag is None:
                yield fromdata,todata,flag
                continue
            (fromline,fromtext),(toline,totext) = fromdata,todata
            # for each from/to line split it at the wrap column to form
            # list of text lines.
            fromlist,tolist = [],[]
            self._split_line(fromlist,fromline,fromtext)
            self._split_line(tolist,toline,totext)
            # yield from/to line in pairs inserting blank lines as
            # necessary when one side has more wrapped lines
            while fromlist or tolist:
                if fromlist:
                    fromdata = fromlist.pop(0)
                else:
                    fromdata = ('',' ')
                if tolist:
                    todata = tolist.pop(0)
                else:
                    todata = ('',' ')
                yield fromdata,todata,flag

    def _collect_lines(self,diffs):
        """Collects mdiff output into separate lists

        Before storing the mdiff from/to data into a list, it is converted
        into a single line of text with HTML markup.
        """

        fromlist,tolist,flaglist = [],[],[]
        # pull from/to data and flags from mdiff style iterator
        for fromdata,todata,flag in diffs:
            try:
                # store HTML markup of the lines into the lists
                fromlist.append(self._format_line(0,flag,*fromdata))
                tolist.append(self._format_line(1,flag,*todata))
            except TypeError:
                # exceptions occur for lines where context separators go
                fromlist.append(None)
                tolist.append(None)
            flaglist.append(flag)
        return fromlist,tolist,flaglist

    def _format_line(self,side,flag,linenum,text):
        """Returns HTML markup of "from" / "to" text lines

        side -- 0 or 1 indicating "from" or "to" text
        flag -- indicates if difference on line
        linenum -- line number (used for line number column)
        text -- line text to be marked up
        """
        try:
            linenum = '%d' % linenum
            id = ' id="%s%s"' % (self._prefix[side],linenum)
        except TypeError:
            # handle blank lines where linenum is '>' or ''
            id = ''
        # replace those things that would get confused with HTML symbols
        text=text.replace("&","&amp;").replace(">","&gt;").replace("<","&lt;")

        # make space non-breakable so they don't get compressed or line wrapped
        text = text.replace(' ','&nbsp;').rstrip()

        return '<td class="diff_header"%s>%s</td><td nowrap="nowrap">%s</td>' \
               % (id,linenum,text)

    def _make_prefix(self):
        """Create unique anchor prefixes"""

        # Generate a unique anchor prefix so multiple tables
        # can exist on the same HTML page without conflicts.
        fromprefix = "from%d_" % HtmlDiff._default_prefix
        toprefix = "to%d_" % HtmlDiff._default_prefix
        HtmlDiff._default_prefix += 1
        # store prefixes so line format method has access
        self._prefix = [fromprefix,toprefix]

    def _convert_flags(self,fromlist,tolist,flaglist,context,numlines):
        """Makes list of "next" links"""

        # all anchor names will be generated using the unique "to" prefix
        toprefix = self._prefix[1]

        # process change flags, generating middle column of next anchors/links
        next_id = ['']*len(flaglist)
        next_href = ['']*len(flaglist)
        num_chg, in_change = 0, False
        last = 0
        for i,flag in enumerate(flaglist):
            if flag:
                if not in_change:
                    in_change = True
                    last = i
                    # at the beginning of a change, drop an anchor a few lines
                    # (the context lines) before the change for the previous
                    # link
                    i = max([0,i-numlines])
                    next_id[i] = ' id="difflib_chg_%s_%d"' % (toprefix,num_chg)
                    # at the beginning of a change, drop a link to the next
                    # change
                    num_chg += 1
                    next_href[last] = '<a href="#difflib_chg_%s_%d">n</a>' % (
                         toprefix,num_chg)
            else:
                in_change = False
        # check for cases where there is no content to avoid exceptions
        if not flaglist:
            flaglist = [False]
            next_id = ['']
            next_href = ['']
            last = 0
            if context:
                fromlist = ['<td></td><td>&nbsp;No Differences Found&nbsp;</td>']
                tolist = fromlist
            else:
                fromlist = tolist = ['<td></td><td>&nbsp;Empty File&nbsp;</td>']
        # if not a change on first line, drop a link
        if not flaglist[0]:
            next_href[0] = '<a href="#difflib_chg_%s_0">f</a>' % toprefix
        # redo the last link to link to the top
        next_href[last] = '<a href="#difflib_chg_%s_top">t</a>' % (toprefix)

        return fromlist,tolist,flaglist,next_href,next_id

    def make_table(self,fromlines,tolines,fromdesc='',todesc='',context=False,
                   numlines=5):
        """Returns HTML table of side by side comparison with change highlights

        Arguments:
        fromlines -- list of "from" lines
        tolines -- list of "to" lines
        fromdesc -- "from" file column header string
        todesc -- "to" file column header string
        context -- set to True for contextual differences (defaults to False
            which shows full differences).
        numlines -- number of context lines.  When context is set True,
            controls number of lines displayed before and after the change.
            When context is False, controls the number of lines to place
            the "next" link anchors before the next change (so click of
            "next" link jumps to just before the change).
        """

        # make unique anchor prefixes so that multiple tables may exist
        # on the same page without conflict.
        self._make_prefix()

        # change tabs to spaces before it gets more difficult after we insert
        # markup
        fromlines,tolines = self._tab_newline_replace(fromlines,tolines)

        # create diffs iterator which generates side by side from/to data
        if context:
            context_lines = numlines
        else:
            context_lines = None
        diffs = _mdiff(fromlines,tolines,context_lines,linejunk=self._linejunk,
                      charjunk=self._charjunk)

        # set up iterator to wrap lines that exceed desired width
        if self._wrapcolumn:
            diffs = self._line_wrapper(diffs)

        # collect up from/to lines and flags into lists (also format the lines)
        fromlist,tolist,flaglist = self._collect_lines(diffs)

        # process change flags, generating middle column of next anchors/links
        fromlist,tolist,flaglist,next_href,next_id = self._convert_flags(
            fromlist,tolist,flaglist,context,numlines)

        s = []
        fmt = '            <tr><td class="diff_next"%s>%s</td>%s' + \
              '<td class="diff_next">%s</td>%s</tr>\n'
        for i in range(len(flaglist)):
            if flaglist[i] is None:
                # mdiff yields None on separator lines skip the bogus ones
                # generated for the first line
                if i > 0:
                    s.append('        </tbody>        \n        <tbody>\n')
            else:
                s.append( fmt % (next_id[i],next_href[i],fromlist[i],
                                           next_href[i],tolist[i]))
        if fromdesc or todesc:
            header_row = '<thead><tr>%s%s%s%s</tr></thead>' % (
                '<th class="diff_next"><br /></th>',
                '<th colspan="2" class="diff_header">%s</th>' % fromdesc,
                '<th class="diff_next"><br /></th>',
                '<th colspan="2" class="diff_header">%s</th>' % todesc)
        else:
            header_row = ''

        table = self._table_template % dict(
            data_rows=''.join(s),
            header_row=header_row,
            prefix=self._prefix[1])

        return table.replace('\0+','<span class="diff_add">'). \
                     replace('\0-','<span class="diff_sub">'). \
                     replace('\0^','<span class="diff_chg">'). \
                     replace('\1','</span>'). \
                     replace('\t','&nbsp;')

del re

def restore(delta, which):
    r"""
    Generate one of the two sequences that generated a delta.

    Given a `delta` produced by `Differ.compare()` or `ndiff()`, extract
    lines originating from file 1 or 2 (parameter `which`), stripping off line
    prefixes.

    Examples:

    >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),
    ...              'ore\ntree\nemu\n'.splitlines(keepends=True))
    >>> diff = list(diff)
    >>> print(''.join(restore(diff, 1)), end="")
    one
    two
    three
    >>> print(''.join(restore(diff, 2)), end="")
    ore
    tree
    emu
    """
    try:
        tag = {1: "- ", 2: "+ "}[int(which)]
    except KeyError:
        raise ValueError('unknown delta choice (must be 1 or 2): %r'
                           % which)
    prefixes = ("  ", tag)
    for line in delta:
        if line[:2] in prefixes:
            yield line[2:]

def _test():
    import doctest, difflib
    return doctest.testmod(difflib)

if __name__ == "__main__":
    _test()
lib\dis.py
"""Disassembler of Python byte code into mnemonics."""

import sys
import types
import collections
import io

from opcode import *
from opcode import __all__ as _opcodes_all

__all__ = ["code_info", "dis", "disassemble", "distb", "disco",
           "findlinestarts", "findlabels", "show_code",
           "get_instructions", "Instruction", "Bytecode"] + _opcodes_all
del _opcodes_all

_have_code = (types.MethodType, types.FunctionType, types.CodeType, type)

def _try_compile(source, name):
    """Attempts to compile the given source, first as an expression and
       then as a statement if the first approach fails.

       Utility function to accept strings in functions that otherwise
       expect code objects
    """
    try:
        c = compile(source, name, 'eval')
    except SyntaxError:
        c = compile(source, name, 'exec')
    return c

def dis(x=None, *, file=None):
    """Disassemble classes, methods, functions, or code.

    With no argument, disassemble the last traceback.

    """
    if x is None:
        distb(file=file)
        return
    if hasattr(x, '__func__'):  # Method
        x = x.__func__
    if hasattr(x, '__code__'):  # Function
        x = x.__code__
    if hasattr(x, '__dict__'):  # Class or module
        items = sorted(x.__dict__.items())
        for name, x1 in items:
            if isinstance(x1, _have_code):
                print("Disassembly of %s:" % name, file=file)
                try:
                    dis(x1, file=file)
                except TypeError as msg:
                    print("Sorry:", msg, file=file)
                print(file=file)
    elif hasattr(x, 'co_code'): # Code object
        disassemble(x, file=file)
    elif isinstance(x, (bytes, bytearray)): # Raw bytecode
        _disassemble_bytes(x, file=file)
    elif isinstance(x, str):    # Source code
        _disassemble_str(x, file=file)
    else:
        raise TypeError("don't know how to disassemble %s objects" %
                        type(x).__name__)

def distb(tb=None, *, file=None):
    """Disassemble a traceback (default: last traceback)."""
    if tb is None:
        try:
            tb = sys.last_traceback
        except AttributeError:
            raise RuntimeError("no last traceback to disassemble")
        while tb.tb_next: tb = tb.tb_next
    disassemble(tb.tb_frame.f_code, tb.tb_lasti, file=file)

# The inspect module interrogates this dictionary to build its
# list of CO_* constants. It is also used by pretty_flags to
# turn the co_flags field into a human readable list.
COMPILER_FLAG_NAMES = {
     1: "OPTIMIZED",
     2: "NEWLOCALS",
     4: "VARARGS",
     8: "VARKEYWORDS",
    16: "NESTED",
    32: "GENERATOR",
    64: "NOFREE",
}

def pretty_flags(flags):
    """Return pretty representation of code flags."""
    names = []
    for i in range(32):
        flag = 1<<i
        if flags & flag:
            names.append(COMPILER_FLAG_NAMES.get(flag, hex(flag)))
            flags ^= flag
            if not flags:
                break
    else:
        names.append(hex(flags))
    return ", ".join(names)

def _get_code_object(x):
    """Helper to handle methods, functions, strings and raw code objects"""
    if hasattr(x, '__func__'): # Method
        x = x.__func__
    if hasattr(x, '__code__'): # Function
        x = x.__code__
    if isinstance(x, str):     # Source code
        x = _try_compile(x, "<disassembly>")
    if hasattr(x, 'co_code'):  # Code object
        return x
    raise TypeError("don't know how to disassemble %s objects" %
                    type(x).__name__)

def code_info(x):
    """Formatted details of methods, functions, or code."""
    return _format_code_info(_get_code_object(x))

def _format_code_info(co):
    lines = []
    lines.append("Name:              %s" % co.co_name)
    lines.append("Filename:          %s" % co.co_filename)
    lines.append("Argument count:    %s" % co.co_argcount)
    lines.append("Kw-only arguments: %s" % co.co_kwonlyargcount)
    lines.append("Number of locals:  %s" % co.co_nlocals)
    lines.append("Stack size:        %s" % co.co_stacksize)
    lines.append("Flags:             %s" % pretty_flags(co.co_flags))
    if co.co_consts:
        lines.append("Constants:")
        for i_c in enumerate(co.co_consts):
            lines.append("%4d: %r" % i_c)
    if co.co_names:
        lines.append("Names:")
        for i_n in enumerate(co.co_names):
            lines.append("%4d: %s" % i_n)
    if co.co_varnames:
        lines.append("Variable names:")
        for i_n in enumerate(co.co_varnames):
            lines.append("%4d: %s" % i_n)
    if co.co_freevars:
        lines.append("Free variables:")
        for i_n in enumerate(co.co_freevars):
            lines.append("%4d: %s" % i_n)
    if co.co_cellvars:
        lines.append("Cell variables:")
        for i_n in enumerate(co.co_cellvars):
            lines.append("%4d: %s" % i_n)
    return "\n".join(lines)

def show_code(co, *, file=None):
    """Print details of methods, functions, or code to *file*.

    If *file* is not provided, the output is printed on stdout.
    """
    print(code_info(co), file=file)

_Instruction = collections.namedtuple("_Instruction",
     "opname opcode arg argval argrepr offset starts_line is_jump_target")

class Instruction(_Instruction):
    """Details for a bytecode operation

       Defined fields:
         opname - human readable name for operation
         opcode - numeric code for operation
         arg - numeric argument to operation (if any), otherwise None
         argval - resolved arg value (if known), otherwise same as arg
         argrepr - human readable description of operation argument
         offset - start index of operation within bytecode sequence
         starts_line - line started by this opcode (if any), otherwise None
         is_jump_target - True if other code jumps to here, otherwise False
    """

    def _disassemble(self, lineno_width=3, mark_as_current=False):
        """Format instruction details for inclusion in disassembly output

        *lineno_width* sets the width of the line number field (0 omits it)
        *mark_as_current* inserts a '-->' marker arrow as part of the line
        """
        fields = []
        # Column: Source code line number
        if lineno_width:
            if self.starts_line is not None:
                lineno_fmt = "%%%dd" % lineno_width
                fields.append(lineno_fmt % self.starts_line)
            else:
                fields.append(' ' * lineno_width)
        # Column: Current instruction indicator
        if mark_as_current:
            fields.append('-->')
        else:
            fields.append('   ')
        # Column: Jump target marker
        if self.is_jump_target:
            fields.append('>>')
        else:
            fields.append('  ')
        # Column: Instruction offset from start of code sequence
        fields.append(repr(self.offset).rjust(4))
        # Column: Opcode name
        fields.append(self.opname.ljust(20))
        # Column: Opcode argument
        if self.arg is not None:
            fields.append(repr(self.arg).rjust(5))
            # Column: Opcode argument details
            if self.argrepr:
                fields.append('(' + self.argrepr + ')')
        return ' '.join(fields).rstrip()


def get_instructions(x, *, first_line=None):
    """Iterator for the opcodes in methods, functions or code

    Generates a series of Instruction named tuples giving the details of
    each operations in the supplied code.

    If *first_line* is not None, it indicates the line number that should
    be reported for the first source line in the disassembled code.
    Otherwise, the source line information (if any) is taken directly from
    the disassembled code object.
    """
    co = _get_code_object(x)
    cell_names = co.co_cellvars + co.co_freevars
    linestarts = dict(findlinestarts(co))
    if first_line is not None:
        line_offset = first_line - co.co_firstlineno
    else:
        line_offset = 0
    return _get_instructions_bytes(co.co_code, co.co_varnames, co.co_names,
                                   co.co_consts, cell_names, linestarts,
                                   line_offset)

def _get_const_info(const_index, const_list):
    """Helper to get optional details about const references

       Returns the dereferenced constant and its repr if the constant
       list is defined.
       Otherwise returns the constant index and its repr().
    """
    argval = const_index
    if const_list is not None:
        argval = const_list[const_index]
    return argval, repr(argval)

def _get_name_info(name_index, name_list):
    """Helper to get optional details about named references

       Returns the dereferenced name as both value and repr if the name
       list is defined.
       Otherwise returns the name index and its repr().
    """
    argval = name_index
    if name_list is not None:
        argval = name_list[name_index]
        argrepr = argval
    else:
        argrepr = repr(argval)
    return argval, argrepr


def _get_instructions_bytes(code, varnames=None, names=None, constants=None,
                      cells=None, linestarts=None, line_offset=0):
    """Iterate over the instructions in a bytecode string.

    Generates a sequence of Instruction namedtuples giving the details of each
    opcode.  Additional information about the code's runtime environment
    (e.g. variable names, constants) can be specified using optional
    arguments.

    """
    labels = findlabels(code)
    extended_arg = 0
    starts_line = None
    free = None
    # enumerate() is not an option, since we sometimes process
    # multiple elements on a single pass through the loop
    n = len(code)
    i = 0
    while i < n:
        op = code[i]
        offset = i
        if linestarts is not None:
            starts_line = linestarts.get(i, None)
            if starts_line is not None:
                starts_line += line_offset
        is_jump_target = i in labels
        i = i+1
        arg = None
        argval = None
        argrepr = ''
        if op >= HAVE_ARGUMENT:
            arg = code[i] + code[i+1]*256 + extended_arg
            extended_arg = 0
            i = i+2
            if op == EXTENDED_ARG:
                extended_arg = arg*65536
            #  Set argval to the dereferenced value of the argument when
            #  availabe, and argrepr to the string representation of argval.
            #    _disassemble_bytes needs the string repr of the
            #    raw name index for LOAD_GLOBAL, LOAD_CONST, etc.
            argval = arg
            if op in hasconst:
                argval, argrepr = _get_const_info(arg, constants)
            elif op in hasname:
                argval, argrepr = _get_name_info(arg, names)
            elif op in hasjrel:
                argval = i + arg
                argrepr = "to " + repr(argval)
            elif op in haslocal:
                argval, argrepr = _get_name_info(arg, varnames)
            elif op in hascompare:
                argval = cmp_op[arg]
                argrepr = argval
            elif op in hasfree:
                argval, argrepr = _get_name_info(arg, cells)
            elif op in hasnargs:
                argrepr = "%d positional, %d keyword pair" % (code[i-2], code[i-1])
        yield Instruction(opname[op], op,
                          arg, argval, argrepr,
                          offset, starts_line, is_jump_target)

def disassemble(co, lasti=-1, *, file=None):
    """Disassemble a code object."""
    cell_names = co.co_cellvars + co.co_freevars
    linestarts = dict(findlinestarts(co))
    _disassemble_bytes(co.co_code, lasti, co.co_varnames, co.co_names,
                       co.co_consts, cell_names, linestarts, file=file)

def _disassemble_bytes(code, lasti=-1, varnames=None, names=None,
                       constants=None, cells=None, linestarts=None,
                       *, file=None, line_offset=0):
    # Omit the line number column entirely if we have no line number info
    show_lineno = linestarts is not None
    # TODO?: Adjust width upwards if max(linestarts.values()) >= 1000?
    lineno_width = 3 if show_lineno else 0
    for instr in _get_instructions_bytes(code, varnames, names,
                                         constants, cells, linestarts,
                                         line_offset=line_offset):
        new_source_line = (show_lineno and
                           instr.starts_line is not None and
                           instr.offset > 0)
        if new_source_line:
            print(file=file)
        is_current_instr = instr.offset == lasti
        print(instr._disassemble(lineno_width, is_current_instr), file=file)

def _disassemble_str(source, *, file=None):
    """Compile the source string, then disassemble the code object."""
    disassemble(_try_compile(source, '<dis>'), file=file)

disco = disassemble                     # XXX For backwards compatibility

def findlabels(code):
    """Detect all offsets in a byte code which are jump targets.

    Return the list of offsets.

    """
    labels = []
    # enumerate() is not an option, since we sometimes process
    # multiple elements on a single pass through the loop
    n = len(code)
    i = 0
    while i < n:
        op = code[i]
        i = i+1
        if op >= HAVE_ARGUMENT:
            arg = code[i] + code[i+1]*256
            i = i+2
            label = -1
            if op in hasjrel:
                label = i+arg
            elif op in hasjabs:
                label = arg
            if label >= 0:
                if label not in labels:
                    labels.append(label)
    return labels

def findlinestarts(code):
    """Find the offsets in a byte code which are start of lines in the source.

    Generate pairs (offset, lineno) as described in Python/compile.c.

    """
    byte_increments = list(code.co_lnotab[0::2])
    line_increments = list(code.co_lnotab[1::2])

    lastlineno = None
    lineno = code.co_firstlineno
    addr = 0
    for byte_incr, line_incr in zip(byte_increments, line_increments):
        if byte_incr:
            if lineno != lastlineno:
                yield (addr, lineno)
                lastlineno = lineno
            addr += byte_incr
        lineno += line_incr
    if lineno != lastlineno:
        yield (addr, lineno)

class Bytecode:
    """The bytecode operations of a piece of code

    Instantiate this with a function, method, string of code, or a code object
    (as returned by compile()).

    Iterating over this yields the bytecode operations as Instruction instances.
    """
    def __init__(self, x, *, first_line=None, current_offset=None):
        self.codeobj = co = _get_code_object(x)
        if first_line is None:
            self.first_line = co.co_firstlineno
            self._line_offset = 0
        else:
            self.first_line = first_line
            self._line_offset = first_line - co.co_firstlineno
        self._cell_names = co.co_cellvars + co.co_freevars
        self._linestarts = dict(findlinestarts(co))
        self._original_object = x
        self.current_offset = current_offset

    def __iter__(self):
        co = self.codeobj
        return _get_instructions_bytes(co.co_code, co.co_varnames, co.co_names,
                                       co.co_consts, self._cell_names,
                                       self._linestarts,
                                       line_offset=self._line_offset)

    def __repr__(self):
        return "{}({!r})".format(self.__class__.__name__,
                                 self._original_object)

    @classmethod
    def from_traceback(cls, tb):
        """ Construct a Bytecode from the given traceback """
        while tb.tb_next:
            tb = tb.tb_next
        return cls(tb.tb_frame.f_code, current_offset=tb.tb_lasti)

    def info(self):
        """Return formatted information about the code object."""
        return _format_code_info(self.codeobj)

    def dis(self):
        """Return a formatted view of the bytecode operations."""
        co = self.codeobj
        if self.current_offset is not None:
            offset = self.current_offset
        else:
            offset = -1
        with io.StringIO() as output:
            _disassemble_bytes(co.co_code, varnames=co.co_varnames,
                               names=co.co_names, constants=co.co_consts,
                               cells=self._cell_names,
                               linestarts=self._linestarts,
                               line_offset=self._line_offset,
                               file=output,
                               lasti=offset)
            return output.getvalue()


def _test():
    """Simple test program to disassemble a file."""
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('infile', type=argparse.FileType(), nargs='?', default='-')
    args = parser.parse_args()
    with args.infile as infile:
        source = infile.read()
    code = compile(source, args.infile.name, "exec")
    dis(code)

if __name__ == "__main__":
    _test()
lib\doctest.py
# Module doctest.
# Released to the public domain 16-Jan-2001, by Tim Peters ([email protected]).
# Major enhancements and refactoring by:
#     Jim Fulton
#     Edward Loper

# Provided as-is; use at your own risk; no warranty; no promises; enjoy!

r"""Module doctest -- a framework for running examples in docstrings.

In simplest use, end each module M to be tested with:

def _test():
    import doctest
    doctest.testmod()

if __name__ == "__main__":
    _test()

Then running the module as a script will cause the examples in the
docstrings to get executed and verified:

python M.py

This won't display anything unless an example fails, in which case the
failing example(s) and the cause(s) of the failure(s) are printed to stdout
(why not stderr? because stderr is a lame hack <0.2 wink>), and the final
line of output is "Test failed.".

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to stdout, along
with assorted summaries at the end.

You can force verbose mode by passing "verbose=True" to testmod, or prohibit
it by passing "verbose=False".  In either of those cases, sys.argv is not
examined by testmod.

There are a variety of other ways to run doctests, including integration
with the unittest framework, and support for running non-Python text
files containing doctests.  There are also many ways to override parts
of doctest's default behaviors.  See the Library Reference Manual for
details.
"""

__docformat__ = 'reStructuredText en'

__all__ = [
    # 0, Option Flags
    'register_optionflag',
    'DONT_ACCEPT_TRUE_FOR_1',
    'DONT_ACCEPT_BLANKLINE',
    'NORMALIZE_WHITESPACE',
    'ELLIPSIS',
    'SKIP',
    'IGNORE_EXCEPTION_DETAIL',
    'COMPARISON_FLAGS',
    'REPORT_UDIFF',
    'REPORT_CDIFF',
    'REPORT_NDIFF',
    'REPORT_ONLY_FIRST_FAILURE',
    'REPORTING_FLAGS',
    'FAIL_FAST',
    # 1. Utility Functions
    # 2. Example & DocTest
    'Example',
    'DocTest',
    # 3. Doctest Parser
    'DocTestParser',
    # 4. Doctest Finder
    'DocTestFinder',
    # 5. Doctest Runner
    'DocTestRunner',
    'OutputChecker',
    'DocTestFailure',
    'UnexpectedException',
    'DebugRunner',
    # 6. Test Functions
    'testmod',
    'testfile',
    'run_docstring_examples',
    # 7. Unittest Support
    'DocTestSuite',
    'DocFileSuite',
    'set_unittest_reportflags',
    # 8. Debugging Support
    'script_from_examples',
    'testsource',
    'debug_src',
    'debug',
]

import __future__
import argparse
import difflib
import inspect
import linecache
import os
import pdb
import re
import sys
import traceback
import unittest
from io import StringIO
from collections import namedtuple

TestResults = namedtuple('TestResults', 'failed attempted')

# There are 4 basic classes:
#  - Example: a <source, want> pair, plus an intra-docstring line number.
#  - DocTest: a collection of examples, parsed from a docstring, plus
#    info about where the docstring came from (name, filename, lineno).
#  - DocTestFinder: extracts DocTests from a given object's docstring and
#    its contained objects' docstrings.
#  - DocTestRunner: runs DocTest cases, and accumulates statistics.
#
# So the basic picture is:
#
#                             list of:
# +------+                   +---------+                   +-------+
# |object| --DocTestFinder-> | DocTest | --DocTestRunner-> |results|
# +------+                   +---------+                   +-------+
#                            | Example |
#                            |   ...   |
#                            | Example |
#                            +---------+

# Option constants.

OPTIONFLAGS_BY_NAME = {}
def register_optionflag(name):
    # Create a new flag unless `name` is already known.
    return OPTIONFLAGS_BY_NAME.setdefault(name, 1 << len(OPTIONFLAGS_BY_NAME))

DONT_ACCEPT_TRUE_FOR_1 = register_optionflag('DONT_ACCEPT_TRUE_FOR_1')
DONT_ACCEPT_BLANKLINE = register_optionflag('DONT_ACCEPT_BLANKLINE')
NORMALIZE_WHITESPACE = register_optionflag('NORMALIZE_WHITESPACE')
ELLIPSIS = register_optionflag('ELLIPSIS')
SKIP = register_optionflag('SKIP')
IGNORE_EXCEPTION_DETAIL = register_optionflag('IGNORE_EXCEPTION_DETAIL')

COMPARISON_FLAGS = (DONT_ACCEPT_TRUE_FOR_1 |
                    DONT_ACCEPT_BLANKLINE |
                    NORMALIZE_WHITESPACE |
                    ELLIPSIS |
                    SKIP |
                    IGNORE_EXCEPTION_DETAIL)

REPORT_UDIFF = register_optionflag('REPORT_UDIFF')
REPORT_CDIFF = register_optionflag('REPORT_CDIFF')
REPORT_NDIFF = register_optionflag('REPORT_NDIFF')
REPORT_ONLY_FIRST_FAILURE = register_optionflag('REPORT_ONLY_FIRST_FAILURE')
FAIL_FAST = register_optionflag('FAIL_FAST')

REPORTING_FLAGS = (REPORT_UDIFF |
                   REPORT_CDIFF |
                   REPORT_NDIFF |
                   REPORT_ONLY_FIRST_FAILURE |
                   FAIL_FAST)

# Special string markers for use in `want` strings:
BLANKLINE_MARKER = '<BLANKLINE>'
ELLIPSIS_MARKER = '...'

######################################################################
## Table of Contents
######################################################################
#  1. Utility Functions
#  2. Example & DocTest -- store test cases
#  3. DocTest Parser -- extracts examples from strings
#  4. DocTest Finder -- extracts test cases from objects
#  5. DocTest Runner -- runs test cases
#  6. Test Functions -- convenient wrappers for testing
#  7. Unittest Support
#  8. Debugging Support
#  9. Example Usage

######################################################################
## 1. Utility Functions
######################################################################

def _extract_future_flags(globs):
    """
    Return the compiler-flags associated with the future features that
    have been imported into the given namespace (globs).
    """
    flags = 0
    for fname in __future__.all_feature_names:
        feature = globs.get(fname, None)
        if feature is getattr(__future__, fname):
            flags |= feature.compiler_flag
    return flags

def _normalize_module(module, depth=2):
    """
    Return the module specified by `module`.  In particular:
      - If `module` is a module, then return module.
      - If `module` is a string, then import and return the
        module with that name.
      - If `module` is None, then return the calling module.
        The calling module is assumed to be the module of
        the stack frame at the given depth in the call stack.
    """
    if inspect.ismodule(module):
        return module
    elif isinstance(module, str):
        return __import__(module, globals(), locals(), ["*"])
    elif module is None:
        return sys.modules[sys._getframe(depth).f_globals['__name__']]
    else:
        raise TypeError("Expected a module, string, or None")

def _load_testfile(filename, package, module_relative, encoding):
    if module_relative:
        package = _normalize_module(package, 3)
        filename = _module_relative_path(package, filename)
        if getattr(package, '__loader__', None) is not None:
            if hasattr(package.__loader__, 'get_data'):
                file_contents = package.__loader__.get_data(filename)
                file_contents = file_contents.decode(encoding)
                # get_data() opens files as 'rb', so one must do the equivalent
                # conversion as universal newlines would do.
                return file_contents.replace(os.linesep, '\n'), filename
    with open(filename, encoding=encoding) as f:
        return f.read(), filename

def _indent(s, indent=4):
    """
    Add the given number of space characters to the beginning of
    every non-blank line in `s`, and return the result.
    """
    # This regexp matches the start of non-blank lines:
    return re.sub('(?m)^(?!$)', indent*' ', s)

def _exception_traceback(exc_info):
    """
    Return a string containing a traceback message for the given
    exc_info tuple (as returned by sys.exc_info()).
    """
    # Get a traceback message.
    excout = StringIO()
    exc_type, exc_val, exc_tb = exc_info
    traceback.print_exception(exc_type, exc_val, exc_tb, file=excout)
    return excout.getvalue()

# Override some StringIO methods.
class _SpoofOut(StringIO):
    def getvalue(self):
        result = StringIO.getvalue(self)
        # If anything at all was written, make sure there's a trailing
        # newline.  There's no way for the expected output to indicate
        # that a trailing newline is missing.
        if result and not result.endswith("\n"):
            result += "\n"
        return result

    def truncate(self, size=None):
        self.seek(size)
        StringIO.truncate(self)

# Worst-case linear-time ellipsis matching.
def _ellipsis_match(want, got):
    """
    Essentially the only subtle case:
    >>> _ellipsis_match('aa...aa', 'aaa')
    False
    """
    if ELLIPSIS_MARKER not in want:
        return want == got

    # Find "the real" strings.
    ws = want.split(ELLIPSIS_MARKER)
    assert len(ws) >= 2

    # Deal with exact matches possibly needed at one or both ends.
    startpos, endpos = 0, len(got)
    w = ws[0]
    if w:   # starts with exact match
        if got.startswith(w):
            startpos = len(w)
            del ws[0]
        else:
            return False
    w = ws[-1]
    if w:   # ends with exact match
        if got.endswith(w):
            endpos -= len(w)
            del ws[-1]
        else:
            return False

    if startpos > endpos:
        # Exact end matches required more characters than we have, as in
        # _ellipsis_match('aa...aa', 'aaa')
        return False

    # For the rest, we only need to find the leftmost non-overlapping
    # match for each piece.  If there's no overall match that way alone,
    # there's no overall match period.
    for w in ws:
        # w may be '' at times, if there are consecutive ellipses, or
        # due to an ellipsis at the start or end of `want`.  That's OK.
        # Search for an empty string succeeds, and doesn't change startpos.
        startpos = got.find(w, startpos, endpos)
        if startpos < 0:
            return False
        startpos += len(w)

    return True

def _comment_line(line):
    "Return a commented form of the given line"
    line = line.rstrip()
    if line:
        return '# '+line
    else:
        return '#'

def _strip_exception_details(msg):
    # Support for IGNORE_EXCEPTION_DETAIL.
    # Get rid of everything except the exception name; in particular, drop
    # the possibly dotted module path (if any) and the exception message (if
    # any).  We assume that a colon is never part of a dotted name, or of an
    # exception name.
    # E.g., given
    #    "foo.bar.MyError: la di da"
    # return "MyError"
    # Or for "abc.def" or "abc.def:\n" return "def".

    start, end = 0, len(msg)
    # The exception name must appear on the first line.
    i = msg.find("\n")
    if i >= 0:
        end = i
    # retain up to the first colon (if any)
    i = msg.find(':', 0, end)
    if i >= 0:
        end = i
    # retain just the exception name
    i = msg.rfind('.', 0, end)
    if i >= 0:
        start = i+1
    return msg[start: end]

class _OutputRedirectingPdb(pdb.Pdb):
    """
    A specialized version of the python debugger that redirects stdout
    to a given stream when interacting with the user.  Stdout is *not*
    redirected when traced code is executed.
    """
    def __init__(self, out):
        self.__out = out
        self.__debugger_used = False
        # do not play signal games in the pdb
        pdb.Pdb.__init__(self, stdout=out, nosigint=True)
        # still use input() to get user input
        self.use_rawinput = 1

    def set_trace(self, frame=None):
        self.__debugger_used = True
        if frame is None:
            frame = sys._getframe().f_back
        pdb.Pdb.set_trace(self, frame)

    def set_continue(self):
        # Calling set_continue unconditionally would break unit test
        # coverage reporting, as Bdb.set_continue calls sys.settrace(None).
        if self.__debugger_used:
            pdb.Pdb.set_continue(self)

    def trace_dispatch(self, *args):
        # Redirect stdout to the given stream.
        save_stdout = sys.stdout
        sys.stdout = self.__out
        # Call Pdb's trace dispatch method.
        try:
            return pdb.Pdb.trace_dispatch(self, *args)
        finally:
            sys.stdout = save_stdout

# [XX] Normalize with respect to os.path.pardir?
def _module_relative_path(module, path):
    if not inspect.ismodule(module):
        raise TypeError('Expected a module: %r' % module)
    if path.startswith('/'):
        raise ValueError('Module-relative files may not have absolute paths')

    # Find the base directory for the path.
    if hasattr(module, '__file__'):
        # A normal module/package
        basedir = os.path.split(module.__file__)[0]
    elif module.__name__ == '__main__':
        # An interactive session.
        if len(sys.argv)>0 and sys.argv[0] != '':
            basedir = os.path.split(sys.argv[0])[0]
        else:
            basedir = os.curdir
    else:
        # A module w/o __file__ (this includes builtins)
        raise ValueError("Can't resolve paths relative to the module " +
                         module + " (it has no __file__)")

    # Combine the base directory and the path.
    return os.path.join(basedir, *(path.split('/')))

######################################################################
## 2. Example & DocTest
######################################################################
## - An "example" is a <source, want> pair, where "source" is a
##   fragment of source code, and "want" is the expected output for
##   "source."  The Example class also includes information about
##   where the example was extracted from.
##
## - A "doctest" is a collection of examples, typically extracted from
##   a string (such as an object's docstring).  The DocTest class also
##   includes information about where the string was extracted from.

class Example:
    """
    A single doctest example, consisting of source code and expected
    output.  `Example` defines the following attributes:

      - source: A single Python statement, always ending with a newline.
        The constructor adds a newline if needed.

      - want: The expected output from running the source code (either
        from stdout, or a traceback in case of exception).  `want` ends
        with a newline unless it's empty, in which case it's an empty
        string.  The constructor adds a newline if needed.

      - exc_msg: The exception message generated by the example, if
        the example is expected to generate an exception; or `None` if
        it is not expected to generate an exception.  This exception
        message is compared against the return value of
        `traceback.format_exception_only()`.  `exc_msg` ends with a
        newline unless it's `None`.  The constructor adds a newline
        if needed.

      - lineno: The line number within the DocTest string containing
        this Example where the Example begins.  This line number is
        zero-based, with respect to the beginning of the DocTest.

      - indent: The example's indentation in the DocTest string.
        I.e., the number of space characters that precede the
        example's first prompt.

      - options: A dictionary mapping from option flags to True or
        False, which is used to override default options for this
        example.  Any option flags not contained in this dictionary
        are left at their default value (as specified by the
        DocTestRunner's optionflags).  By default, no options are set.
    """
    def __init__(self, source, want, exc_msg=None, lineno=0, indent=0,
                 options=None):
        # Normalize inputs.
        if not source.endswith('\n'):
            source += '\n'
        if want and not want.endswith('\n'):
            want += '\n'
        if exc_msg is not None and not exc_msg.endswith('\n'):
            exc_msg += '\n'
        # Store properties.
        self.source = source
        self.want = want
        self.lineno = lineno
        self.indent = indent
        if options is None: options = {}
        self.options = options
        self.exc_msg = exc_msg

    def __eq__(self, other):
        if type(self) is not type(other):
            return NotImplemented

        return self.source == other.source and \
               self.want == other.want and \
               self.lineno == other.lineno and \
               self.indent == other.indent and \
               self.options == other.options and \
               self.exc_msg == other.exc_msg

    def __hash__(self):
        return hash((self.source, self.want, self.lineno, self.indent,
                     self.exc_msg))

class DocTest:
    """
    A collection of doctest examples that should be run in a single
    namespace.  Each `DocTest` defines the following attributes:

      - examples: the list of examples.

      - globs: The namespace (aka globals) that the examples should
        be run in.

      - name: A name identifying the DocTest (typically, the name of
        the object whose docstring this DocTest was extracted from).

      - filename: The name of the file that this DocTest was extracted
        from, or `None` if the filename is unknown.

      - lineno: The line number within filename where this DocTest
        begins, or `None` if the line number is unavailable.  This
        line number is zero-based, with respect to the beginning of
        the file.

      - docstring: The string that the examples were extracted from,
        or `None` if the string is unavailable.
    """
    def __init__(self, examples, globs, name, filename, lineno, docstring):
        """
        Create a new DocTest containing the given examples.  The
        DocTest's globals are initialized with a copy of `globs`.
        """
        assert not isinstance(examples, str), \
               "DocTest no longer accepts str; use DocTestParser instead"
        self.examples = examples
        self.docstring = docstring
        self.globs = globs.copy()
        self.name = name
        self.filename = filename
        self.lineno = lineno

    def __repr__(self):
        if len(self.examples) == 0:
            examples = 'no examples'
        elif len(self.examples) == 1:
            examples = '1 example'
        else:
            examples = '%d examples' % len(self.examples)
        return ('<DocTest %s from %s:%s (%s)>' %
                (self.name, self.filename, self.lineno, examples))

    def __eq__(self, other):
        if type(self) is not type(other):
            return NotImplemented

        return self.examples == other.examples and \
               self.docstring == other.docstring and \
               self.globs == other.globs and \
               self.name == other.name and \
               self.filename == other.filename and \
               self.lineno == other.lineno

    def __hash__(self):
        return hash((self.docstring, self.name, self.filename, self.lineno))

    # This lets us sort tests by name:
    def __lt__(self, other):
        if not isinstance(other, DocTest):
            return NotImplemented
        return ((self.name, self.filename, self.lineno, id(self))
                <
                (other.name, other.filename, other.lineno, id(other)))

######################################################################
## 3. DocTestParser
######################################################################

class DocTestParser:
    """
    A class used to parse strings containing doctest examples.
    """
    # This regular expression is used to find doctest examples in a
    # string.  It defines three groups: `source` is the source code
    # (including leading indentation and prompts); `indent` is the
    # indentation of the first (PS1) line of the source code; and
    # `want` is the expected output (including leading indentation).
    _EXAMPLE_RE = re.compile(r'''
        # Source consists of a PS1 line followed by zero or more PS2 lines.
        (?P<source>
            (?:^(?P<indent> [ ]*) >>>    .*)    # PS1 line
            (?:\n           [ ]*  \.\.\. .*)*)  # PS2 lines
        \n?
        # Want consists of any non-blank lines that do not start with PS1.
        (?P<want> (?:(?![ ]*$)    # Not a blank line
                     (?![ ]*>>>)  # Not a line starting with PS1
                     .+$\n?       # But any other line
                  )*)
        ''', re.MULTILINE | re.VERBOSE)

    # A regular expression for handling `want` strings that contain
    # expected exceptions.  It divides `want` into three pieces:
    #    - the traceback header line (`hdr`)
    #    - the traceback stack (`stack`)
    #    - the exception message (`msg`), as generated by
    #      traceback.format_exception_only()
    # `msg` may have multiple lines.  We assume/require that the
    # exception message is the first non-indented line starting with a word
    # character following the traceback header line.
    _EXCEPTION_RE = re.compile(r"""
        # Grab the traceback header.  Different versions of Python have
        # said different things on the first traceback line.
        ^(?P<hdr> Traceback\ \(
            (?: most\ recent\ call\ last
            |   innermost\ last
            ) \) :
        )
        \s* $                # toss trailing whitespace on the header.
        (?P<stack> .*?)      # don't blink: absorb stuff until...
        ^ (?P<msg> \w+ .*)   #     a line *starts* with alphanum.
        """, re.VERBOSE | re.MULTILINE | re.DOTALL)

    # A callable returning a true value iff its argument is a blank line
    # or contains a single comment.
    _IS_BLANK_OR_COMMENT = re.compile(r'^[ ]*(#.*)?$').match

    def parse(self, string, name='<string>'):
        """
        Divide the given string into examples and intervening text,
        and return them as a list of alternating Examples and strings.
        Line numbers for the Examples are 0-based.  The optional
        argument `name` is a name identifying this string, and is only
        used for error messages.
        """
        string = string.expandtabs()
        # If all lines begin with the same indentation, then strip it.
        min_indent = self._min_indent(string)
        if min_indent > 0:
            string = '\n'.join([l[min_indent:] for l in string.split('\n')])

        output = []
        charno, lineno = 0, 0
        # Find all doctest examples in the string:
        for m in self._EXAMPLE_RE.finditer(string):
            # Add the pre-example text to `output`.
            output.append(string[charno:m.start()])
            # Update lineno (lines before this example)
            lineno += string.count('\n', charno, m.start())
            # Extract info from the regexp match.
            (source, options, want, exc_msg) = \
                     self._parse_example(m, name, lineno)
            # Create an Example, and add it to the list.
            if not self._IS_BLANK_OR_COMMENT(source):
                output.append( Example(source, want, exc_msg,
                                    lineno=lineno,
                                    indent=min_indent+len(m.group('indent')),
                                    options=options) )
            # Update lineno (lines inside this example)
            lineno += string.count('\n', m.start(), m.end())
            # Update charno.
            charno = m.end()
        # Add any remaining post-example text to `output`.
        output.append(string[charno:])
        return output

    def get_doctest(self, string, globs, name, filename, lineno):
        """
        Extract all doctest examples from the given string, and
        collect them into a `DocTest` object.

        `globs`, `name`, `filename`, and `lineno` are attributes for
        the new `DocTest` object.  See the documentation for `DocTest`
        for more information.
        """
        return DocTest(self.get_examples(string, name), globs,
                       name, filename, lineno, string)

    def get_examples(self, string, name='<string>'):
        """
        Extract all doctest examples from the given string, and return
        them as a list of `Example` objects.  Line numbers are
        0-based, because it's most common in doctests that nothing
        interesting appears on the same line as opening triple-quote,
        and so the first interesting line is called \"line 1\" then.

        The optional argument `name` is a name identifying this
        string, and is only used for error messages.
        """
        return [x for x in self.parse(string, name)
                if isinstance(x, Example)]

    def _parse_example(self, m, name, lineno):
        """
        Given a regular expression match from `_EXAMPLE_RE` (`m`),
        return a pair `(source, want)`, where `source` is the matched
        example's source code (with prompts and indentation stripped);
        and `want` is the example's expected output (with indentation
        stripped).

        `name` is the string's name, and `lineno` is the line number
        where the example starts; both are used for error messages.
        """
        # Get the example's indentation level.
        indent = len(m.group('indent'))

        # Divide source into lines; check that they're properly
        # indented; and then strip their indentation & prompts.
        source_lines = m.group('source').split('\n')
        self._check_prompt_blank(source_lines, indent, name, lineno)
        self._check_prefix(source_lines[1:], ' '*indent + '.', name, lineno)
        source = '\n'.join([sl[indent+4:] for sl in source_lines])

        # Divide want into lines; check that it's properly indented; and
        # then strip the indentation.  Spaces before the last newline should
        # be preserved, so plain rstrip() isn't good enough.
        want = m.group('want')
        want_lines = want.split('\n')
        if len(want_lines) > 1 and re.match(r' *$', want_lines[-1]):
            del want_lines[-1]  # forget final newline & spaces after it
        self._check_prefix(want_lines, ' '*indent, name,
                           lineno + len(source_lines))
        want = '\n'.join([wl[indent:] for wl in want_lines])

        # If `want` contains a traceback message, then extract it.
        m = self._EXCEPTION_RE.match(want)
        if m:
            exc_msg = m.group('msg')
        else:
            exc_msg = None

        # Extract options from the source.
        options = self._find_options(source, name, lineno)

        return source, options, want, exc_msg

    # This regular expression looks for option directives in the
    # source code of an example.  Option directives are comments
    # starting with "doctest:".  Warning: this may give false
    # positives for string-literals that contain the string
    # "#doctest:".  Eliminating these false positives would require
    # actually parsing the string; but we limit them by ignoring any
    # line containing "#doctest:" that is *followed* by a quote mark.
    _OPTION_DIRECTIVE_RE = re.compile(r'#\s*doctest:\s*([^\n\'"]*)$',
                                      re.MULTILINE)

    def _find_options(self, source, name, lineno):
        """
        Return a dictionary containing option overrides extracted from
        option directives in the given source string.

        `name` is the string's name, and `lineno` is the line number
        where the example starts; both are used for error messages.
        """
        options = {}
        # (note: with the current regexp, this will match at most once:)
        for m in self._OPTION_DIRECTIVE_RE.finditer(source):
            option_strings = m.group(1).replace(',', ' ').split()
            for option in option_strings:
                if (option[0] not in '+-' or
                    option[1:] not in OPTIONFLAGS_BY_NAME):
                    raise ValueError('line %r of the doctest for %s '
                                     'has an invalid option: %r' %
                                     (lineno+1, name, option))
                flag = OPTIONFLAGS_BY_NAME[option[1:]]
                options[flag] = (option[0] == '+')
        if options and self._IS_BLANK_OR_COMMENT(source):
            raise ValueError('line %r of the doctest for %s has an option '
                             'directive on a line with no example: %r' %
                             (lineno, name, source))
        return options

    # This regular expression finds the indentation of every non-blank
    # line in a string.
    _INDENT_RE = re.compile('^([ ]*)(?=\S)', re.MULTILINE)

    def _min_indent(self, s):
        "Return the minimum indentation of any non-blank line in `s`"
        indents = [len(indent) for indent in self._INDENT_RE.findall(s)]
        if len(indents) > 0:
            return min(indents)
        else:
            return 0

    def _check_prompt_blank(self, lines, indent, name, lineno):
        """
        Given the lines of a source string (including prompts and
        leading indentation), check to make sure that every prompt is
        followed by a space character.  If any line is not followed by
        a space character, then raise ValueError.
        """
        for i, line in enumerate(lines):
            if len(line) >= indent+4 and line[indent+3] != ' ':
                raise ValueError('line %r of the docstring for %s '
                                 'lacks blank after %s: %r' %
                                 (lineno+i+1, name,
                                  line[indent:indent+3], line))

    def _check_prefix(self, lines, prefix, name, lineno):
        """
        Check that every line in the given list starts with the given
        prefix; if any line does not, then raise a ValueError.
        """
        for i, line in enumerate(lines):
            if line and not line.startswith(prefix):
                raise ValueError('line %r of the docstring for %s has '
                                 'inconsistent leading whitespace: %r' %
                                 (lineno+i+1, name, line))


######################################################################
## 4. DocTest Finder
######################################################################

class DocTestFinder:
    """
    A class used to extract the DocTests that are relevant to a given
    object, from its docstring and the docstrings of its contained
    objects.  Doctests can currently be extracted from the following
    object types: modules, functions, classes, methods, staticmethods,
    classmethods, and properties.
    """

    def __init__(self, verbose=False, parser=DocTestParser(),
                 recurse=True, exclude_empty=True):
        """
        Create a new doctest finder.

        The optional argument `parser` specifies a class or
        function that should be used to create new DocTest objects (or
        objects that implement the same interface as DocTest).  The
        signature for this factory function should match the signature
        of the DocTest constructor.

        If the optional argument `recurse` is false, then `find` will
        only examine the given object, and not any contained objects.

        If the optional argument `exclude_empty` is false, then `find`
        will include tests for objects with empty docstrings.
        """
        self._parser = parser
        self._verbose = verbose
        self._recurse = recurse
        self._exclude_empty = exclude_empty

    def find(self, obj, name=None, module=None, globs=None, extraglobs=None):
        """
        Return a list of the DocTests that are defined by the given
        object's docstring, or by any of its contained objects'
        docstrings.

        The optional parameter `module` is the module that contains
        the given object.  If the module is not specified or is None, then
        the test finder will attempt to automatically determine the
        correct module.  The object's module is used:

            - As a default namespace, if `globs` is not specified.
            - To prevent the DocTestFinder from extracting DocTests
              from objects that are imported from other modules.
            - To find the name of the file containing the object.
            - To help find the line number of the object within its
              file.

        Contained objects whose module does not match `module` are ignored.

        If `module` is False, no attempt to find the module will be made.
        This is obscure, of use mostly in tests:  if `module` is False, or
        is None but cannot be found automatically, then all objects are
        considered to belong to the (non-existent) module, so all contained
        objects will (recursively) be searched for doctests.

        The globals for each DocTest is formed by combining `globs`
        and `extraglobs` (bindings in `extraglobs` override bindings
        in `globs`).  A new copy of the globals dictionary is created
        for each DocTest.  If `globs` is not specified, then it
        defaults to the module's `__dict__`, if specified, or {}
        otherwise.  If `extraglobs` is not specified, then it defaults
        to {}.

        """
        # If name was not specified, then extract it from the object.
        if name is None:
            name = getattr(obj, '__name__', None)
            if name is None:
                raise ValueError("DocTestFinder.find: name must be given "
                        "when obj.__name__ doesn't exist: %r" %
                                 (type(obj),))

        # Find the module that contains the given object (if obj is
        # a module, then module=obj.).  Note: this may fail, in which
        # case module will be None.
        if module is False:
            module = None
        elif module is None:
            module = inspect.getmodule(obj)

        # Read the module's source code.  This is used by
        # DocTestFinder._find_lineno to find the line number for a
        # given object's docstring.
        try:
            file = inspect.getsourcefile(obj)
        except TypeError:
            source_lines = None
        else:
            if not file:
                # Check to see if it's one of our special internal "files"
                # (see __patched_linecache_getlines).
                file = inspect.getfile(obj)
                if not file[0]+file[-2:] == '<]>': file = None
            if file is None:
                source_lines = None
            else:
                if module is not None:
                    # Supply the module globals in case the module was
                    # originally loaded via a PEP 302 loader and
                    # file is not a valid filesystem path
                    source_lines = linecache.getlines(file, module.__dict__)
                else:
                    # No access to a loader, so assume it's a normal
                    # filesystem path
                    source_lines = linecache.getlines(file)
                if not source_lines:
                    source_lines = None

        # Initialize globals, and merge in extraglobs.
        if globs is None:
            if module is None:
                globs = {}
            else:
                globs = module.__dict__.copy()
        else:
            globs = globs.copy()
        if extraglobs is not None:
            globs.update(extraglobs)
        if '__name__' not in globs:
            globs['__name__'] = '__main__'  # provide a default module name

        # Recursively explore `obj`, extracting DocTests.
        tests = []
        self._find(tests, obj, name, module, source_lines, globs, {})
        # Sort the tests by alpha order of names, for consistency in
        # verbose-mode output.  This was a feature of doctest in Pythons
        # <= 2.3 that got lost by accident in 2.4.  It was repaired in
        # 2.4.4 and 2.5.
        tests.sort()
        return tests

    def _from_module(self, module, object):
        """
        Return true if the given object is defined in the given
        module.
        """
        if module is None:
            return True
        elif inspect.getmodule(object) is not None:
            return module is inspect.getmodule(object)
        elif inspect.isfunction(object):
            return module.__dict__ is object.__globals__
        elif inspect.ismethoddescriptor(object):
            if hasattr(object, '__objclass__'):
                obj_mod = object.__objclass__.__module__
            elif hasattr(object, '__module__'):
                obj_mod = object.__module__
            else:
                return True # [XX] no easy way to tell otherwise
            return module.__name__ == obj_mod
        elif inspect.isclass(object):
            return module.__name__ == object.__module__
        elif hasattr(object, '__module__'):
            return module.__name__ == object.__module__
        elif isinstance(object, property):
            return True # [XX] no way not be sure.
        else:
            raise ValueError("object must be a class or function")

    def _find(self, tests, obj, name, module, source_lines, globs, seen):
        """
        Find tests for the given object and any contained objects, and
        add them to `tests`.
        """
        if self._verbose:
            print('Finding tests in %s' % name)

        # If we've already processed this object, then ignore it.
        if id(obj) in seen:
            return
        seen[id(obj)] = 1

        # Find a test for this object, and add it to the list of tests.
        test = self._get_test(obj, name, module, globs, source_lines)
        if test is not None:
            tests.append(test)

        # Look for tests in a module's contained objects.
        if inspect.ismodule(obj) and self._recurse:
            for valname, val in obj.__dict__.items():
                valname = '%s.%s' % (name, valname)
                # Recurse to functions & classes.
                if ((inspect.isroutine(val) or inspect.isclass(val)) and
                    self._from_module(module, val)):
                    self._find(tests, val, valname, module, source_lines,
                               globs, seen)

        # Look for tests in a module's __test__ dictionary.
        if inspect.ismodule(obj) and self._recurse:
            for valname, val in getattr(obj, '__test__', {}).items():
                if not isinstance(valname, str):
                    raise ValueError("DocTestFinder.find: __test__ keys "
                                     "must be strings: %r" %
                                     (type(valname),))
                if not (inspect.isroutine(val) or inspect.isclass(val) or
                        inspect.ismodule(val) or isinstance(val, str)):
                    raise ValueError("DocTestFinder.find: __test__ values "
                                     "must be strings, functions, methods, "
                                     "classes, or modules: %r" %
                                     (type(val),))
                valname = '%s.__test__.%s' % (name, valname)
                self._find(tests, val, valname, module, source_lines,
                           globs, seen)

        # Look for tests in a class's contained objects.
        if inspect.isclass(obj) and self._recurse:
            for valname, val in obj.__dict__.items():
                # Special handling for staticmethod/classmethod.
                if isinstance(val, staticmethod):
                    val = getattr(obj, valname)
                if isinstance(val, classmethod):
                    val = getattr(obj, valname).__func__

                # Recurse to methods, properties, and nested classes.
                if ((inspect.isroutine(val) or inspect.isclass(val) or
                      isinstance(val, property)) and
                      self._from_module(module, val)):
                    valname = '%s.%s' % (name, valname)
                    self._find(tests, val, valname, module, source_lines,
                               globs, seen)

    def _get_test(self, obj, name, module, globs, source_lines):
        """
        Return a DocTest for the given object, if it defines a docstring;
        otherwise, return None.
        """
        # Extract the object's docstring.  If it doesn't have one,
        # then return None (no test for this object).
        if isinstance(obj, str):
            docstring = obj
        else:
            try:
                if obj.__doc__ is None:
                    docstring = ''
                else:
                    docstring = obj.__doc__
                    if not isinstance(docstring, str):
                        docstring = str(docstring)
            except (TypeError, AttributeError):
                docstring = ''

        # Find the docstring's location in the file.
        lineno = self._find_lineno(obj, source_lines)

        # Don't bother if the docstring is empty.
        if self._exclude_empty and not docstring:
            return None

        # Return a DocTest for this object.
        if module is None:
            filename = None
        else:
            filename = getattr(module, '__file__', module.__name__)
            if filename[-4:] in (".pyc", ".pyo"):
                filename = filename[:-1]
        return self._parser.get_doctest(docstring, globs, name,
                                        filename, lineno)

    def _find_lineno(self, obj, source_lines):
        """
        Return a line number of the given object's docstring.  Note:
        this method assumes that the object has a docstring.
        """
        lineno = None

        # Find the line number for modules.
        if inspect.ismodule(obj):
            lineno = 0

        # Find the line number for classes.
        # Note: this could be fooled if a class is defined multiple
        # times in a single file.
        if inspect.isclass(obj):
            if source_lines is None:
                return None
            pat = re.compile(r'^\s*class\s*%s\b' %
                             getattr(obj, '__name__', '-'))
            for i, line in enumerate(source_lines):
                if pat.match(line):
                    lineno = i
                    break

        # Find the line number for functions & methods.
        if inspect.ismethod(obj): obj = obj.__func__
        if inspect.isfunction(obj): obj = obj.__code__
        if inspect.istraceback(obj): obj = obj.tb_frame
        if inspect.isframe(obj): obj = obj.f_code
        if inspect.iscode(obj):
            lineno = getattr(obj, 'co_firstlineno', None)-1

        # Find the line number where the docstring starts.  Assume
        # that it's the first line that begins with a quote mark.
        # Note: this could be fooled by a multiline function
        # signature, where a continuation line begins with a quote
        # mark.
        if lineno is not None:
            if source_lines is None:
                return lineno+1
            pat = re.compile('(^|.*:)\s*\w*("|\')')
            for lineno in range(lineno, len(source_lines)):
                if pat.match(source_lines[lineno]):
                    return lineno

        # We couldn't find the line number.
        return None

######################################################################
## 5. DocTest Runner
######################################################################

class DocTestRunner:
    """
    A class used to run DocTest test cases, and accumulate statistics.
    The `run` method is used to process a single DocTest case.  It
    returns a tuple `(f, t)`, where `t` is the number of test cases
    tried, and `f` is the number of test cases that failed.

        >>> tests = DocTestFinder().find(_TestClass)
        >>> runner = DocTestRunner(verbose=False)
        >>> tests.sort(key = lambda test: test.name)
        >>> for test in tests:
        ...     print(test.name, '->', runner.run(test))
        _TestClass -> TestResults(failed=0, attempted=2)
        _TestClass.__init__ -> TestResults(failed=0, attempted=2)
        _TestClass.get -> TestResults(failed=0, attempted=2)
        _TestClass.square -> TestResults(failed=0, attempted=1)

    The `summarize` method prints a summary of all the test cases that
    have been run by the runner, and returns an aggregated `(f, t)`
    tuple:

        >>> runner.summarize(verbose=1)
        4 items passed all tests:
           2 tests in _TestClass
           2 tests in _TestClass.__init__
           2 tests in _TestClass.get
           1 tests in _TestClass.square
        7 tests in 4 items.
        7 passed and 0 failed.
        Test passed.
        TestResults(failed=0, attempted=7)

    The aggregated number of tried examples and failed examples is
    also available via the `tries` and `failures` attributes:

        >>> runner.tries
        7
        >>> runner.failures
        0

    The comparison between expected outputs and actual outputs is done
    by an `OutputChecker`.  This comparison may be customized with a
    number of option flags; see the documentation for `testmod` for
    more information.  If the option flags are insufficient, then the
    comparison may also be customized by passing a subclass of
    `OutputChecker` to the constructor.

    The test runner's display output can be controlled in two ways.
    First, an output function (`out) can be passed to
    `TestRunner.run`; this function will be called with strings that
    should be displayed.  It defaults to `sys.stdout.write`.  If
    capturing the output is not sufficient, then the display output
    can be also customized by subclassing DocTestRunner, and
    overriding the methods `report_start`, `report_success`,
    `report_unexpected_exception`, and `report_failure`.
    """
    # This divider string is used to separate failure messages, and to
    # separate sections of the summary.
    DIVIDER = "*" * 70

    def __init__(self, checker=None, verbose=None, optionflags=0):
        """
        Create a new test runner.

        Optional keyword arg `checker` is the `OutputChecker` that
        should be used to compare the expected outputs and actual
        outputs of doctest examples.

        Optional keyword arg 'verbose' prints lots of stuff if true,
        only failures if false; by default, it's true iff '-v' is in
        sys.argv.

        Optional argument `optionflags` can be used to control how the
        test runner compares expected output to actual output, and how
        it displays failures.  See the documentation for `testmod` for
        more information.
        """
        self._checker = checker or OutputChecker()
        if verbose is None:
            verbose = '-v' in sys.argv
        self._verbose = verbose
        self.optionflags = optionflags
        self.original_optionflags = optionflags

        # Keep track of the examples we've run.
        self.tries = 0
        self.failures = 0
        self._name2ft = {}

        # Create a fake output target for capturing doctest output.
        self._fakeout = _SpoofOut()

    #/////////////////////////////////////////////////////////////////
    # Reporting methods
    #/////////////////////////////////////////////////////////////////

    def report_start(self, out, test, example):
        """
        Report that the test runner is about to process the given
        example.  (Only displays a message if verbose=True)
        """
        if self._verbose:
            if example.want:
                out('Trying:\n' + _indent(example.source) +
                    'Expecting:\n' + _indent(example.want))
            else:
                out('Trying:\n' + _indent(example.source) +
                    'Expecting nothing\n')

    def report_success(self, out, test, example, got):
        """
        Report that the given example ran successfully.  (Only
        displays a message if verbose=True)
        """
        if self._verbose:
            out("ok\n")

    def report_failure(self, out, test, example, got):
        """
        Report that the given example failed.
        """
        out(self._failure_header(test, example) +
            self._checker.output_difference(example, got, self.optionflags))

    def report_unexpected_exception(self, out, test, example, exc_info):
        """
        Report that the given example raised an unexpected exception.
        """
        out(self._failure_header(test, example) +
            'Exception raised:\n' + _indent(_exception_traceback(exc_info)))

    def _failure_header(self, test, example):
        out = [self.DIVIDER]
        if test.filename:
            if test.lineno is not None and example.lineno is not None:
                lineno = test.lineno + example.lineno + 1
            else:
                lineno = '?'
            out.append('File "%s", line %s, in %s' %
                       (test.filename, lineno, test.name))
        else:
            out.append('Line %s, in %s' % (example.lineno+1, test.name))
        out.append('Failed example:')
        source = example.source
        out.append(_indent(source))
        return '\n'.join(out)

    #/////////////////////////////////////////////////////////////////
    # DocTest Running
    #/////////////////////////////////////////////////////////////////

    def __run(self, test, compileflags, out):
        """
        Run the examples in `test`.  Write the outcome of each example
        with one of the `DocTestRunner.report_*` methods, using the
        writer function `out`.  `compileflags` is the set of compiler
        flags that should be used to execute examples.  Return a tuple
        `(f, t)`, where `t` is the number of examples tried, and `f`
        is the number of examples that failed.  The examples are run
        in the namespace `test.globs`.
        """
        # Keep track of the number of failures and tries.
        failures = tries = 0

        # Save the option flags (since option directives can be used
        # to modify them).
        original_optionflags = self.optionflags

        SUCCESS, FAILURE, BOOM = range(3) # `outcome` state

        check = self._checker.check_output

        # Process each example.
        for examplenum, example in enumerate(test.examples):

            # If REPORT_ONLY_FIRST_FAILURE is set, then suppress
            # reporting after the first failure.
            quiet = (self.optionflags & REPORT_ONLY_FIRST_FAILURE and
                     failures > 0)

            # Merge in the example's options.
            self.optionflags = original_optionflags
            if example.options:
                for (optionflag, val) in example.options.items():
                    if val:
                        self.optionflags |= optionflag
                    else:
                        self.optionflags &= ~optionflag

            # If 'SKIP' is set, then skip this example.
            if self.optionflags & SKIP:
                continue

            # Record that we started this example.
            tries += 1
            if not quiet:
                self.report_start(out, test, example)

            # Use a special filename for compile(), so we can retrieve
            # the source code during interactive debugging (see
            # __patched_linecache_getlines).
            filename = '<doctest %s[%d]>' % (test.name, examplenum)

            # Run the example in the given context (globs), and record
            # any exception that gets raised.  (But don't intercept
            # keyboard interrupts.)
            try:
                # Don't blink!  This is where the user's code gets run.
                exec(compile(example.source, filename, "single",
                             compileflags, 1), test.globs)
                self.debugger.set_continue() # ==== Example Finished ====
                exception = None
            except KeyboardInterrupt:
                raise
            except:
                exception = sys.exc_info()
                self.debugger.set_continue() # ==== Example Finished ====

            got = self._fakeout.getvalue()  # the actual output
            self._fakeout.truncate(0)
            outcome = FAILURE   # guilty until proved innocent or insane

            # If the example executed without raising any exceptions,
            # verify its output.
            if exception is None:
                if check(example.want, got, self.optionflags):
                    outcome = SUCCESS

            # The example raised an exception:  check if it was expected.
            else:
                exc_msg = traceback.format_exception_only(*exception[:2])[-1]
                if not quiet:
                    got += _exception_traceback(exception)

                # If `example.exc_msg` is None, then we weren't expecting
                # an exception.
                if example.exc_msg is None:
                    outcome = BOOM

                # We expected an exception:  see whether it matches.
                elif check(example.exc_msg, exc_msg, self.optionflags):
                    outcome = SUCCESS

                # Another chance if they didn't care about the detail.
                elif self.optionflags & IGNORE_EXCEPTION_DETAIL:
                    if check(_strip_exception_details(example.exc_msg),
                             _strip_exception_details(exc_msg),
                             self.optionflags):
                        outcome = SUCCESS

            # Report the outcome.
            if outcome is SUCCESS:
                if not quiet:
                    self.report_success(out, test, example, got)
            elif outcome is FAILURE:
                if not quiet:
                    self.report_failure(out, test, example, got)
                failures += 1
            elif outcome is BOOM:
                if not quiet:
                    self.report_unexpected_exception(out, test, example,
                                                     exception)
                failures += 1
            else:
                assert False, ("unknown outcome", outcome)

            if failures and self.optionflags & FAIL_FAST:
                break

        # Restore the option flags (in case they were modified)
        self.optionflags = original_optionflags

        # Record and return the number of failures and tries.
        self.__record_outcome(test, failures, tries)
        return TestResults(failures, tries)

    def __record_outcome(self, test, f, t):
        """
        Record the fact that the given DocTest (`test`) generated `f`
        failures out of `t` tried examples.
        """
        f2, t2 = self._name2ft.get(test.name, (0,0))
        self._name2ft[test.name] = (f+f2, t+t2)
        self.failures += f
        self.tries += t

    __LINECACHE_FILENAME_RE = re.compile(r'<doctest '
                                         r'(?P<name>.+)'
                                         r'\[(?P<examplenum>\d+)\]>$')
    def __patched_linecache_getlines(self, filename, module_globals=None):
        m = self.__LINECACHE_FILENAME_RE.match(filename)
        if m and m.group('name') == self.test.name:
            example = self.test.examples[int(m.group('examplenum'))]
            return example.source.splitlines(keepends=True)
        else:
            return self.save_linecache_getlines(filename, module_globals)

    def run(self, test, compileflags=None, out=None, clear_globs=True):
        """
        Run the examples in `test`, and display the results using the
        writer function `out`.

        The examples are run in the namespace `test.globs`.  If
        `clear_globs` is true (the default), then this namespace will
        be cleared after the test runs, to help with garbage
        collection.  If you would like to examine the namespace after
        the test completes, then use `clear_globs=False`.

        `compileflags` gives the set of flags that should be used by
        the Python compiler when running the examples.  If not
        specified, then it will default to the set of future-import
        flags that apply to `globs`.

        The output of each example is checked using
        `DocTestRunner.check_output`, and the results are formatted by
        the `DocTestRunner.report_*` methods.
        """
        self.test = test

        if compileflags is None:
            compileflags = _extract_future_flags(test.globs)

        save_stdout = sys.stdout
        if out is None:
            encoding = save_stdout.encoding
            if encoding is None or encoding.lower() == 'utf-8':
                out = save_stdout.write
            else:
                # Use backslashreplace error handling on write
                def out(s):
                    s = str(s.encode(encoding, 'backslashreplace'), encoding)
                    save_stdout.write(s)
        sys.stdout = self._fakeout

        # Patch pdb.set_trace to restore sys.stdout during interactive
        # debugging (so it's not still redirected to self._fakeout).
        # Note that the interactive output will go to *our*
        # save_stdout, even if that's not the real sys.stdout; this
        # allows us to write test cases for the set_trace behavior.
        save_trace = sys.gettrace()
        save_set_trace = pdb.set_trace
        self.debugger = _OutputRedirectingPdb(save_stdout)
        self.debugger.reset()
        pdb.set_trace = self.debugger.set_trace

        # Patch linecache.getlines, so we can see the example's source
        # when we're inside the debugger.
        self.save_linecache_getlines = linecache.getlines
        linecache.getlines = self.__patched_linecache_getlines

        # Make sure sys.displayhook just prints the value to stdout
        save_displayhook = sys.displayhook
        sys.displayhook = sys.__displayhook__

        try:
            return self.__run(test, compileflags, out)
        finally:
            sys.stdout = save_stdout
            pdb.set_trace = save_set_trace
            sys.settrace(save_trace)
            linecache.getlines = self.save_linecache_getlines
            sys.displayhook = save_displayhook
            if clear_globs:
                test.globs.clear()
                import builtins
                builtins._ = None

    #/////////////////////////////////////////////////////////////////
    # Summarization
    #/////////////////////////////////////////////////////////////////
    def summarize(self, verbose=None):
        """
        Print a summary of all the test cases that have been run by
        this DocTestRunner, and return a tuple `(f, t)`, where `f` is
        the total number of failed examples, and `t` is the total
        number of tried examples.

        The optional `verbose` argument controls how detailed the
        summary is.  If the verbosity is not specified, then the
        DocTestRunner's verbosity is used.
        """
        if verbose is None:
            verbose = self._verbose
        notests = []
        passed = []
        failed = []
        totalt = totalf = 0
        for x in self._name2ft.items():
            name, (f, t) = x
            assert f <= t
            totalt += t
            totalf += f
            if t == 0:
                notests.append(name)
            elif f == 0:
                passed.append( (name, t) )
            else:
                failed.append(x)
        if verbose:
            if notests:
                print(len(notests), "items had no tests:")
                notests.sort()
                for thing in notests:
                    print("   ", thing)
            if passed:
                print(len(passed), "items passed all tests:")
                passed.sort()
                for thing, count in passed:
                    print(" %3d tests in %s" % (count, thing))
        if failed:
            print(self.DIVIDER)
            print(len(failed), "items had failures:")
            failed.sort()
            for thing, (f, t) in failed:
                print(" %3d of %3d in %s" % (f, t, thing))
        if verbose:
            print(totalt, "tests in", len(self._name2ft), "items.")
            print(totalt - totalf, "passed and", totalf, "failed.")
        if totalf:
            print("***Test Failed***", totalf, "failures.")
        elif verbose:
            print("Test passed.")
        return TestResults(totalf, totalt)

    #/////////////////////////////////////////////////////////////////
    # Backward compatibility cruft to maintain doctest.master.
    #/////////////////////////////////////////////////////////////////
    def merge(self, other):
        d = self._name2ft
        for name, (f, t) in other._name2ft.items():
            if name in d:
                # Don't print here by default, since doing
                #     so breaks some of the buildbots
                #print("*** DocTestRunner.merge: '" + name + "' in both" \
                #    " testers; summing outcomes.")
                f2, t2 = d[name]
                f = f + f2
                t = t + t2
            d[name] = f, t

class OutputChecker:
    """
    A class used to check the whether the actual output from a doctest
    example matches the expected output.  `OutputChecker` defines two
    methods: `check_output`, which compares a given pair of outputs,
    and returns true if they match; and `output_difference`, which
    returns a string describing the differences between two outputs.
    """
    def _toAscii(self, s):
        """
        Convert string to hex-escaped ASCII string.
        """
        return str(s.encode('ASCII', 'backslashreplace'), "ASCII")

    def check_output(self, want, got, optionflags):
        """
        Return True iff the actual output from an example (`got`)
        matches the expected output (`want`).  These strings are
        always considered to match if they are identical; but
        depending on what option flags the test runner is using,
        several non-exact match types are also possible.  See the
        documentation for `TestRunner` for more information about
        option flags.
        """

        # If `want` contains hex-escaped character such as "\u1234",
        # then `want` is a string of six characters(e.g. [\,u,1,2,3,4]).
        # On the other hand, `got` could be another sequence of
        # characters such as [\u1234], so `want` and `got` should
        # be folded to hex-escaped ASCII string to compare.
        got = self._toAscii(got)
        want = self._toAscii(want)

        # Handle the common case first, for efficiency:
        # if they're string-identical, always return true.
        if got == want:
            return True

        # The values True and False replaced 1 and 0 as the return
        # value for boolean comparisons in Python 2.3.
        if not (optionflags & DONT_ACCEPT_TRUE_FOR_1):
            if (got,want) == ("True\n", "1\n"):
                return True
            if (got,want) == ("False\n", "0\n"):
                return True

        # <BLANKLINE> can be used as a special sequence to signify a
        # blank line, unless the DONT_ACCEPT_BLANKLINE flag is used.
        if not (optionflags & DONT_ACCEPT_BLANKLINE):
            # Replace <BLANKLINE> in want with a blank line.
            want = re.sub('(?m)^%s\s*?$' % re.escape(BLANKLINE_MARKER),
                          '', want)
            # If a line in got contains only spaces, then remove the
            # spaces.
            got = re.sub('(?m)^\s*?$', '', got)
            if got == want:
                return True

        # This flag causes doctest to ignore any differences in the
        # contents of whitespace strings.  Note that this can be used
        # in conjunction with the ELLIPSIS flag.
        if optionflags & NORMALIZE_WHITESPACE:
            got = ' '.join(got.split())
            want = ' '.join(want.split())
            if got == want:
                return True

        # The ELLIPSIS flag says to let the sequence "..." in `want`
        # match any substring in `got`.
        if optionflags & ELLIPSIS:
            if _ellipsis_match(want, got):
                return True

        # We didn't find any match; return false.
        return False

    # Should we do a fancy diff?
    def _do_a_fancy_diff(self, want, got, optionflags):
        # Not unless they asked for a fancy diff.
        if not optionflags & (REPORT_UDIFF |
                              REPORT_CDIFF |
                              REPORT_NDIFF):
            return False

        # If expected output uses ellipsis, a meaningful fancy diff is
        # too hard ... or maybe not.  In two real-life failures Tim saw,
        # a diff was a major help anyway, so this is commented out.
        # [todo] _ellipsis_match() knows which pieces do and don't match,
        # and could be the basis for a kick-ass diff in this case.
        ##if optionflags & ELLIPSIS and ELLIPSIS_MARKER in want:
        ##    return False

        # ndiff does intraline difference marking, so can be useful even
        # for 1-line differences.
        if optionflags & REPORT_NDIFF:
            return True

        # The other diff types need at least a few lines to be helpful.
        return want.count('\n') > 2 and got.count('\n') > 2

    def output_difference(self, example, got, optionflags):
        """
        Return a string describing the differences between the
        expected output for a given example (`example`) and the actual
        output (`got`).  `optionflags` is the set of option flags used
        to compare `want` and `got`.
        """
        want = example.want
        # If <BLANKLINE>s are being used, then replace blank lines
        # with <BLANKLINE> in the actual output string.
        if not (optionflags & DONT_ACCEPT_BLANKLINE):
            got = re.sub('(?m)^[ ]*(?=\n)', BLANKLINE_MARKER, got)

        # Check if we should use diff.
        if self._do_a_fancy_diff(want, got, optionflags):
            # Split want & got into lines.
            want_lines = want.splitlines(keepends=True)
            got_lines = got.splitlines(keepends=True)
            # Use difflib to find their differences.
            if optionflags & REPORT_UDIFF:
                diff = difflib.unified_diff(want_lines, got_lines, n=2)
                diff = list(diff)[2:] # strip the diff header
                kind = 'unified diff with -expected +actual'
            elif optionflags & REPORT_CDIFF:
                diff = difflib.context_diff(want_lines, got_lines, n=2)
                diff = list(diff)[2:] # strip the diff header
                kind = 'context diff with expected followed by actual'
            elif optionflags & REPORT_NDIFF:
                engine = difflib.Differ(charjunk=difflib.IS_CHARACTER_JUNK)
                diff = list(engine.compare(want_lines, got_lines))
                kind = 'ndiff with -expected +actual'
            else:
                assert 0, 'Bad diff option'
            # Remove trailing whitespace on diff output.
            diff = [line.rstrip() + '\n' for line in diff]
            return 'Differences (%s):\n' % kind + _indent(''.join(diff))

        # If we're not using diff, then simply list the expected
        # output followed by the actual output.
        if want and got:
            return 'Expected:\n%sGot:\n%s' % (_indent(want), _indent(got))
        elif want:
            return 'Expected:\n%sGot nothing\n' % _indent(want)
        elif got:
            return 'Expected nothing\nGot:\n%s' % _indent(got)
        else:
            return 'Expected nothing\nGot nothing\n'

class DocTestFailure(Exception):
    """A DocTest example has failed in debugging mode.

    The exception instance has variables:

    - test: the DocTest object being run

    - example: the Example object that failed

    - got: the actual output
    """
    def __init__(self, test, example, got):
        self.test = test
        self.example = example
        self.got = got

    def __str__(self):
        return str(self.test)

class UnexpectedException(Exception):
    """A DocTest example has encountered an unexpected exception

    The exception instance has variables:

    - test: the DocTest object being run

    - example: the Example object that failed

    - exc_info: the exception info
    """
    def __init__(self, test, example, exc_info):
        self.test = test
        self.example = example
        self.exc_info = exc_info

    def __str__(self):
        return str(self.test)

class DebugRunner(DocTestRunner):
    r"""Run doc tests but raise an exception as soon as there is a failure.

       If an unexpected exception occurs, an UnexpectedException is raised.
       It contains the test, the example, and the original exception:

         >>> runner = DebugRunner(verbose=False)
         >>> test = DocTestParser().get_doctest('>>> raise KeyError\n42',
         ...                                    {}, 'foo', 'foo.py', 0)
         >>> try:
         ...     runner.run(test)
         ... except UnexpectedException as f:
         ...     failure = f

         >>> failure.test is test
         True

         >>> failure.example.want
         '42\n'

         >>> exc_info = failure.exc_info
         >>> raise exc_info[1] # Already has the traceback
         Traceback (most recent call last):
         ...
         KeyError

       We wrap the original exception to give the calling application
       access to the test and example information.

       If the output doesn't match, then a DocTestFailure is raised:

         >>> test = DocTestParser().get_doctest('''
         ...      >>> x = 1
         ...      >>> x
         ...      2
         ...      ''', {}, 'foo', 'foo.py', 0)

         >>> try:
         ...    runner.run(test)
         ... except DocTestFailure as f:
         ...    failure = f

       DocTestFailure objects provide access to the test:

         >>> failure.test is test
         True

       As well as to the example:

         >>> failure.example.want
         '2\n'

       and the actual output:

         >>> failure.got
         '1\n'

       If a failure or error occurs, the globals are left intact:

         >>> del test.globs['__builtins__']
         >>> test.globs
         {'x': 1}

         >>> test = DocTestParser().get_doctest('''
         ...      >>> x = 2
         ...      >>> raise KeyError
         ...      ''', {}, 'foo', 'foo.py', 0)

         >>> runner.run(test)
         Traceback (most recent call last):
         ...
         doctest.UnexpectedException: <DocTest foo from foo.py:0 (2 examples)>

         >>> del test.globs['__builtins__']
         >>> test.globs
         {'x': 2}

       But the globals are cleared if there is no error:

         >>> test = DocTestParser().get_doctest('''
         ...      >>> x = 2
         ...      ''', {}, 'foo', 'foo.py', 0)

         >>> runner.run(test)
         TestResults(failed=0, attempted=1)

         >>> test.globs
         {}

       """

    def run(self, test, compileflags=None, out=None, clear_globs=True):
        r = DocTestRunner.run(self, test, compileflags, out, False)
        if clear_globs:
            test.globs.clear()
        return r

    def report_unexpected_exception(self, out, test, example, exc_info):
        raise UnexpectedException(test, example, exc_info)

    def report_failure(self, out, test, example, got):
        raise DocTestFailure(test, example, got)

######################################################################
## 6. Test Functions
######################################################################
# These should be backwards compatible.

# For backward compatibility, a global instance of a DocTestRunner
# class, updated by testmod.
master = None

def testmod(m=None, name=None, globs=None, verbose=None,
            report=True, optionflags=0, extraglobs=None,
            raise_on_error=False, exclude_empty=False):
    """m=None, name=None, globs=None, verbose=None, report=True,
       optionflags=0, extraglobs=None, raise_on_error=False,
       exclude_empty=False

    Test examples in docstrings in functions and classes reachable
    from module m (or the current module if m is not supplied), starting
    with m.__doc__.

    Also test examples reachable from dict m.__test__ if it exists and is
    not None.  m.__test__ maps names to functions, classes and strings;
    function and class docstrings are tested even if the name is private;
    strings are tested directly, as if they were docstrings.

    Return (#failures, #tests).

    See help(doctest) for an overview.

    Optional keyword arg "name" gives the name of the module; by default
    use m.__name__.

    Optional keyword arg "globs" gives a dict to be used as the globals
    when executing examples; by default, use m.__dict__.  A copy of this
    dict is actually used for each docstring, so that each docstring's
    examples start with a clean slate.

    Optional keyword arg "extraglobs" gives a dictionary that should be
    merged into the globals that are used to execute examples.  By
    default, no extra globals are used.  This is new in 2.4.

    Optional keyword arg "verbose" prints lots of stuff if true, prints
    only failures if false; by default, it's true iff "-v" is in sys.argv.

    Optional keyword arg "report" prints a summary at the end when true,
    else prints nothing at the end.  In verbose mode, the summary is
    detailed, else very brief (in fact, empty if all tests passed).

    Optional keyword arg "optionflags" or's together module constants,
    and defaults to 0.  This is new in 2.3.  Possible values (see the
    docs for details):

        DONT_ACCEPT_TRUE_FOR_1
        DONT_ACCEPT_BLANKLINE
        NORMALIZE_WHITESPACE
        ELLIPSIS
        SKIP
        IGNORE_EXCEPTION_DETAIL
        REPORT_UDIFF
        REPORT_CDIFF
        REPORT_NDIFF
        REPORT_ONLY_FIRST_FAILURE

    Optional keyword arg "raise_on_error" raises an exception on the
    first unexpected exception or failure. This allows failures to be
    post-mortem debugged.

    Advanced tomfoolery:  testmod runs methods of a local instance of
    class doctest.Tester, then merges the results into (or creates)
    global Tester instance doctest.master.  Methods of doctest.master
    can be called directly too, if you want to do something unusual.
    Passing report=0 to testmod is especially useful then, to delay
    displaying a summary.  Invoke doctest.master.summarize(verbose)
    when you're done fiddling.
    """
    global master

    # If no module was given, then use __main__.
    if m is None:
        # DWA - m will still be None if this wasn't invoked from the command
        # line, in which case the following TypeError is about as good an error
        # as we should expect
        m = sys.modules.get('__main__')

    # Check that we were actually given a module.
    if not inspect.ismodule(m):
        raise TypeError("testmod: module required; %r" % (m,))

    # If no name was given, then use the module's name.
    if name is None:
        name = m.__name__

    # Find, parse, and run all tests in the given module.
    finder = DocTestFinder(exclude_empty=exclude_empty)

    if raise_on_error:
        runner = DebugRunner(verbose=verbose, optionflags=optionflags)
    else:
        runner = DocTestRunner(verbose=verbose, optionflags=optionflags)

    for test in finder.find(m, name, globs=globs, extraglobs=extraglobs):
        runner.run(test)

    if report:
        runner.summarize()

    if master is None:
        master = runner
    else:
        master.merge(runner)

    return TestResults(runner.failures, runner.tries)

def testfile(filename, module_relative=True, name=None, package=None,
             globs=None, verbose=None, report=True, optionflags=0,
             extraglobs=None, raise_on_error=False, parser=DocTestParser(),
             encoding=None):
    """
    Test examples in the given file.  Return (#failures, #tests).

    Optional keyword arg "module_relative" specifies how filenames
    should be interpreted:

      - If "module_relative" is True (the default), then "filename"
         specifies a module-relative path.  By default, this path is
         relative to the calling module's directory; but if the
         "package" argument is specified, then it is relative to that
         package.  To ensure os-independence, "filename" should use
         "/" characters to separate path segments, and should not
         be an absolute path (i.e., it may not begin with "/").

      - If "module_relative" is False, then "filename" specifies an
        os-specific path.  The path may be absolute or relative (to
        the current working directory).

    Optional keyword arg "name" gives the name of the test; by default
    use the file's basename.

    Optional keyword argument "package" is a Python package or the
    name of a Python package whose directory should be used as the
    base directory for a module relative filename.  If no package is
    specified, then the calling module's directory is used as the base
    directory for module relative filenames.  It is an error to
    specify "package" if "module_relative" is False.

    Optional keyword arg "globs" gives a dict to be used as the globals
    when executing examples; by default, use {}.  A copy of this dict
    is actually used for each docstring, so that each docstring's
    examples start with a clean slate.

    Optional keyword arg "extraglobs" gives a dictionary that should be
    merged into the globals that are used to execute examples.  By
    default, no extra globals are used.

    Optional keyword arg "verbose" prints lots of stuff if true, prints
    only failures if false; by default, it's true iff "-v" is in sys.argv.

    Optional keyword arg "report" prints a summary at the end when true,
    else prints nothing at the end.  In verbose mode, the summary is
    detailed, else very brief (in fact, empty if all tests passed).

    Optional keyword arg "optionflags" or's together module constants,
    and defaults to 0.  Possible values (see the docs for details):

        DONT_ACCEPT_TRUE_FOR_1
        DONT_ACCEPT_BLANKLINE
        NORMALIZE_WHITESPACE
        ELLIPSIS
        SKIP
        IGNORE_EXCEPTION_DETAIL
        REPORT_UDIFF
        REPORT_CDIFF
        REPORT_NDIFF
        REPORT_ONLY_FIRST_FAILURE

    Optional keyword arg "raise_on_error" raises an exception on the
    first unexpected exception or failure. This allows failures to be
    post-mortem debugged.

    Optional keyword arg "parser" specifies a DocTestParser (or
    subclass) that should be used to extract tests from the files.

    Optional keyword arg "encoding" specifies an encoding that should
    be used to convert the file to unicode.

    Advanced tomfoolery:  testmod runs methods of a local instance of
    class doctest.Tester, then merges the results into (or creates)
    global Tester instance doctest.master.  Methods of doctest.master
    can be called directly too, if you want to do something unusual.
    Passing report=0 to testmod is especially useful then, to delay
    displaying a summary.  Invoke doctest.master.summarize(verbose)
    when you're done fiddling.
    """
    global master

    if package and not module_relative:
        raise ValueError("Package may only be specified for module-"
                         "relative paths.")

    # Relativize the path
    text, filename = _load_testfile(filename, package, module_relative,
                                    encoding or "utf-8")

    # If no name was given, then use the file's name.
    if name is None:
        name = os.path.basename(filename)

    # Assemble the globals.
    if globs is None:
        globs = {}
    else:
        globs = globs.copy()
    if extraglobs is not None:
        globs.update(extraglobs)
    if '__name__' not in globs:
        globs['__name__'] = '__main__'

    if raise_on_error:
        runner = DebugRunner(verbose=verbose, optionflags=optionflags)
    else:
        runner = DocTestRunner(verbose=verbose, optionflags=optionflags)

    # Read the file, convert it to a test, and run it.
    test = parser.get_doctest(text, globs, name, filename, 0)
    runner.run(test)

    if report:
        runner.summarize()

    if master is None:
        master = runner
    else:
        master.merge(runner)

    return TestResults(runner.failures, runner.tries)

def run_docstring_examples(f, globs, verbose=False, name="NoName",
                           compileflags=None, optionflags=0):
    """
    Test examples in the given object's docstring (`f`), using `globs`
    as globals.  Optional argument `name` is used in failure messages.
    If the optional argument `verbose` is true, then generate output
    even if there are no failures.

    `compileflags` gives the set of flags that should be used by the
    Python compiler when running the examples.  If not specified, then
    it will default to the set of future-import flags that apply to
    `globs`.

    Optional keyword arg `optionflags` specifies options for the
    testing and output.  See the documentation for `testmod` for more
    information.
    """
    # Find, parse, and run all tests in the given module.
    finder = DocTestFinder(verbose=verbose, recurse=False)
    runner = DocTestRunner(verbose=verbose, optionflags=optionflags)
    for test in finder.find(f, name, globs=globs):
        runner.run(test, compileflags=compileflags)

######################################################################
## 7. Unittest Support
######################################################################

_unittest_reportflags = 0

def set_unittest_reportflags(flags):
    """Sets the unittest option flags.

    The old flag is returned so that a runner could restore the old
    value if it wished to:

      >>> import doctest
      >>> old = doctest._unittest_reportflags
      >>> doctest.set_unittest_reportflags(REPORT_NDIFF |
      ...                          REPORT_ONLY_FIRST_FAILURE) == old
      True

      >>> doctest._unittest_reportflags == (REPORT_NDIFF |
      ...                                   REPORT_ONLY_FIRST_FAILURE)
      True

    Only reporting flags can be set:

      >>> doctest.set_unittest_reportflags(ELLIPSIS)
      Traceback (most recent call last):
      ...
      ValueError: ('Only reporting flags allowed', 8)

      >>> doctest.set_unittest_reportflags(old) == (REPORT_NDIFF |
      ...                                   REPORT_ONLY_FIRST_FAILURE)
      True
    """
    global _unittest_reportflags

    if (flags & REPORTING_FLAGS) != flags:
        raise ValueError("Only reporting flags allowed", flags)
    old = _unittest_reportflags
    _unittest_reportflags = flags
    return old


class DocTestCase(unittest.TestCase):

    def __init__(self, test, optionflags=0, setUp=None, tearDown=None,
                 checker=None):

        unittest.TestCase.__init__(self)
        self._dt_optionflags = optionflags
        self._dt_checker = checker
        self._dt_test = test
        self._dt_setUp = setUp
        self._dt_tearDown = tearDown

    def setUp(self):
        test = self._dt_test

        if self._dt_setUp is not None:
            self._dt_setUp(test)

    def tearDown(self):
        test = self._dt_test

        if self._dt_tearDown is not None:
            self._dt_tearDown(test)

        test.globs.clear()

    def runTest(self):
        test = self._dt_test
        old = sys.stdout
        new = StringIO()
        optionflags = self._dt_optionflags

        if not (optionflags & REPORTING_FLAGS):
            # The option flags don't include any reporting flags,
            # so add the default reporting flags
            optionflags |= _unittest_reportflags

        runner = DocTestRunner(optionflags=optionflags,
                               checker=self._dt_checker, verbose=False)

        try:
            runner.DIVIDER = "-"*70
            failures, tries = runner.run(
                test, out=new.write, clear_globs=False)
        finally:
            sys.stdout = old

        if failures:
            raise self.failureException(self.format_failure(new.getvalue()))

    def format_failure(self, err):
        test = self._dt_test
        if test.lineno is None:
            lineno = 'unknown line number'
        else:
            lineno = '%s' % test.lineno
        lname = '.'.join(test.name.split('.')[-1:])
        return ('Failed doctest test for %s\n'
                '  File "%s", line %s, in %s\n\n%s'
                % (test.name, test.filename, lineno, lname, err)
                )

    def debug(self):
        r"""Run the test case without results and without catching exceptions

           The unit test framework includes a debug method on test cases
           and test suites to support post-mortem debugging.  The test code
           is run in such a way that errors are not caught.  This way a
           caller can catch the errors and initiate post-mortem debugging.

           The DocTestCase provides a debug method that raises
           UnexpectedException errors if there is an unexpected
           exception:

             >>> test = DocTestParser().get_doctest('>>> raise KeyError\n42',
             ...                {}, 'foo', 'foo.py', 0)
             >>> case = DocTestCase(test)
             >>> try:
             ...     case.debug()
             ... except UnexpectedException as f:
             ...     failure = f

           The UnexpectedException contains the test, the example, and
           the original exception:

             >>> failure.test is test
             True

             >>> failure.example.want
             '42\n'

             >>> exc_info = failure.exc_info
             >>> raise exc_info[1] # Already has the traceback
             Traceback (most recent call last):
             ...
             KeyError

           If the output doesn't match, then a DocTestFailure is raised:

             >>> test = DocTestParser().get_doctest('''
             ...      >>> x = 1
             ...      >>> x
             ...      2
             ...      ''', {}, 'foo', 'foo.py', 0)
             >>> case = DocTestCase(test)

             >>> try:
             ...    case.debug()
             ... except DocTestFailure as f:
             ...    failure = f

           DocTestFailure objects provide access to the test:

             >>> failure.test is test
             True

           As well as to the example:

             >>> failure.example.want
             '2\n'

           and the actual output:

             >>> failure.got
             '1\n'

           """

        self.setUp()
        runner = DebugRunner(optionflags=self._dt_optionflags,
                             checker=self._dt_checker, verbose=False)
        runner.run(self._dt_test, clear_globs=False)
        self.tearDown()

    def id(self):
        return self._dt_test.name

    def __eq__(self, other):
        if type(self) is not type(other):
            return NotImplemented

        return self._dt_test == other._dt_test and \
               self._dt_optionflags == other._dt_optionflags and \
               self._dt_setUp == other._dt_setUp and \
               self._dt_tearDown == other._dt_tearDown and \
               self._dt_checker == other._dt_checker

    def __hash__(self):
        return hash((self._dt_optionflags, self._dt_setUp, self._dt_tearDown,
                     self._dt_checker))

    def __repr__(self):
        name = self._dt_test.name.split('.')
        return "%s (%s)" % (name[-1], '.'.join(name[:-1]))

    __str__ = __repr__

    def shortDescription(self):
        return "Doctest: " + self._dt_test.name

class SkipDocTestCase(DocTestCase):
    def __init__(self, module):
        self.module = module
        DocTestCase.__init__(self, None)

    def setUp(self):
        self.skipTest("DocTestSuite will not work with -O2 and above")

    def test_skip(self):
        pass

    def shortDescription(self):
        return "Skipping tests from %s" % self.module.__name__

    __str__ = shortDescription


class _DocTestSuite(unittest.TestSuite):

    def _removeTestAtIndex(self, index):
        pass


def DocTestSuite(module=None, globs=None, extraglobs=None, test_finder=None,
                 **options):
    """
    Convert doctest tests for a module to a unittest test suite.

    This converts each documentation string in a module that
    contains doctest tests to a unittest test case.  If any of the
    tests in a doc string fail, then the test case fails.  An exception
    is raised showing the name of the file containing the test and a
    (sometimes approximate) line number.

    The `module` argument provides the module to be tested.  The argument
    can be either a module or a module name.

    If no argument is given, the calling module is used.

    A number of options may be provided as keyword arguments:

    setUp
      A set-up function.  This is called before running the
      tests in each file. The setUp function will be passed a DocTest
      object.  The setUp function can access the test globals as the
      globs attribute of the test passed.

    tearDown
      A tear-down function.  This is called after running the
      tests in each file.  The tearDown function will be passed a DocTest
      object.  The tearDown function can access the test globals as the
      globs attribute of the test passed.

    globs
      A dictionary containing initial global variables for the tests.

    optionflags
       A set of doctest option flags expressed as an integer.
    """

    if test_finder is None:
        test_finder = DocTestFinder()

    module = _normalize_module(module)
    tests = test_finder.find(module, globs=globs, extraglobs=extraglobs)

    if not tests and sys.flags.optimize >=2:
        # Skip doctests when running with -O2
        suite = _DocTestSuite()
        suite.addTest(SkipDocTestCase(module))
        return suite
    elif not tests:
        # Why do we want to do this? Because it reveals a bug that might
        # otherwise be hidden.
        # It is probably a bug that this exception is not also raised if the
        # number of doctest examples in tests is zero (i.e. if no doctest
        # examples were found).  However, we should probably not be raising
        # an exception at all here, though it is too late to make this change
        # for a maintenance release.  See also issue #14649.
        raise ValueError(module, "has no docstrings")

    tests.sort()
    suite = _DocTestSuite()

    for test in tests:
        if len(test.examples) == 0:
            continue
        if not test.filename:
            filename = module.__file__
            if filename[-4:] in (".pyc", ".pyo"):
                filename = filename[:-1]
            test.filename = filename
        suite.addTest(DocTestCase(test, **options))

    return suite

class DocFileCase(DocTestCase):

    def id(self):
        return '_'.join(self._dt_test.name.split('.'))

    def __repr__(self):
        return self._dt_test.filename
    __str__ = __repr__

    def format_failure(self, err):
        return ('Failed doctest test for %s\n  File "%s", line 0\n\n%s'
                % (self._dt_test.name, self._dt_test.filename, err)
                )

def DocFileTest(path, module_relative=True, package=None,
                globs=None, parser=DocTestParser(),
                encoding=None, **options):
    if globs is None:
        globs = {}
    else:
        globs = globs.copy()

    if package and not module_relative:
        raise ValueError("Package may only be specified for module-"
                         "relative paths.")

    # Relativize the path.
    doc, path = _load_testfile(path, package, module_relative,
                               encoding or "utf-8")

    if "__file__" not in globs:
        globs["__file__"] = path

    # Find the file and read it.
    name = os.path.basename(path)

    # Convert it to a test, and wrap it in a DocFileCase.
    test = parser.get_doctest(doc, globs, name, path, 0)
    return DocFileCase(test, **options)

def DocFileSuite(*paths, **kw):
    """A unittest suite for one or more doctest files.

    The path to each doctest file is given as a string; the
    interpretation of that string depends on the keyword argument
    "module_relative".

    A number of options may be provided as keyword arguments:

    module_relative
      If "module_relative" is True, then the given file paths are
      interpreted as os-independent module-relative paths.  By
      default, these paths are relative to the calling module's
      directory; but if the "package" argument is specified, then
      they are relative to that package.  To ensure os-independence,
      "filename" should use "/" characters to separate path
      segments, and may not be an absolute path (i.e., it may not
      begin with "/").

      If "module_relative" is False, then the given file paths are
      interpreted as os-specific paths.  These paths may be absolute
      or relative (to the current working directory).

    package
      A Python package or the name of a Python package whose directory
      should be used as the base directory for module relative paths.
      If "package" is not specified, then the calling module's
      directory is used as the base directory for module relative
      filenames.  It is an error to specify "package" if
      "module_relative" is False.

    setUp
      A set-up function.  This is called before running the
      tests in each file. The setUp function will be passed a DocTest
      object.  The setUp function can access the test globals as the
      globs attribute of the test passed.

    tearDown
      A tear-down function.  This is called after running the
      tests in each file.  The tearDown function will be passed a DocTest
      object.  The tearDown function can access the test globals as the
      globs attribute of the test passed.

    globs
      A dictionary containing initial global variables for the tests.

    optionflags
      A set of doctest option flags expressed as an integer.

    parser
      A DocTestParser (or subclass) that should be used to extract
      tests from the files.

    encoding
      An encoding that will be used to convert the files to unicode.
    """
    suite = _DocTestSuite()

    # We do this here so that _normalize_module is called at the right
    # level.  If it were called in DocFileTest, then this function
    # would be the caller and we might guess the package incorrectly.
    if kw.get('module_relative', True):
        kw['package'] = _normalize_module(kw.get('package'))

    for path in paths:
        suite.addTest(DocFileTest(path, **kw))

    return suite

######################################################################
## 8. Debugging Support
######################################################################

def script_from_examples(s):
    r"""Extract script from text with examples.

       Converts text with examples to a Python script.  Example input is
       converted to regular code.  Example output and all other words
       are converted to comments:

       >>> text = '''
       ...       Here are examples of simple math.
       ...
       ...           Python has super accurate integer addition
       ...
       ...           >>> 2 + 2
       ...           5
       ...
       ...           And very friendly error messages:
       ...
       ...           >>> 1/0
       ...           To Infinity
       ...           And
       ...           Beyond
       ...
       ...           You can use logic if you want:
       ...
       ...           >>> if 0:
       ...           ...    blah
       ...           ...    blah
       ...           ...
       ...
       ...           Ho hum
       ...           '''

       >>> print(script_from_examples(text))
       # Here are examples of simple math.
       #
       #     Python has super accurate integer addition
       #
       2 + 2
       # Expected:
       ## 5
       #
       #     And very friendly error messages:
       #
       1/0
       # Expected:
       ## To Infinity
       ## And
       ## Beyond
       #
       #     You can use logic if you want:
       #
       if 0:
          blah
          blah
       #
       #     Ho hum
       <BLANKLINE>
       """
    output = []
    for piece in DocTestParser().parse(s):
        if isinstance(piece, Example):
            # Add the example's source code (strip trailing NL)
            output.append(piece.source[:-1])
            # Add the expected output:
            want = piece.want
            if want:
                output.append('# Expected:')
                output += ['## '+l for l in want.split('\n')[:-1]]
        else:
            # Add non-example text.
            output += [_comment_line(l)
                       for l in piece.split('\n')[:-1]]

    # Trim junk on both ends.
    while output and output[-1] == '#':
        output.pop()
    while output and output[0] == '#':
        output.pop(0)
    # Combine the output, and return it.
    # Add a courtesy newline to prevent exec from choking (see bug #1172785)
    return '\n'.join(output) + '\n'

def testsource(module, name):
    """Extract the test sources from a doctest docstring as a script.

    Provide the module (or dotted name of the module) containing the
    test to be debugged and the name (within the module) of the object
    with the doc string with tests to be debugged.
    """
    module = _normalize_module(module)
    tests = DocTestFinder().find(module)
    test = [t for t in tests if t.name == name]
    if not test:
        raise ValueError(name, "not found in tests")
    test = test[0]
    testsrc = script_from_examples(test.docstring)
    return testsrc

def debug_src(src, pm=False, globs=None):
    """Debug a single doctest docstring, in argument `src`'"""
    testsrc = script_from_examples(src)
    debug_script(testsrc, pm, globs)

def debug_script(src, pm=False, globs=None):
    "Debug a test script.  `src` is the script, as a string."
    import pdb

    if globs:
        globs = globs.copy()
    else:
        globs = {}

    if pm:
        try:
            exec(src, globs, globs)
        except:
            print(sys.exc_info()[1])
            p = pdb.Pdb(nosigint=True)
            p.reset()
            p.interaction(None, sys.exc_info()[2])
    else:
        pdb.Pdb(nosigint=True).run("exec(%r)" % src, globs, globs)

def debug(module, name, pm=False):
    """Debug a single doctest docstring.

    Provide the module (or dotted name of the module) containing the
    test to be debugged and the name (within the module) of the object
    with the docstring with tests to be debugged.
    """
    module = _normalize_module(module)
    testsrc = testsource(module, name)
    debug_script(testsrc, pm, module.__dict__)

######################################################################
## 9. Example Usage
######################################################################
class _TestClass:
    """
    A pointless class, for sanity-checking of docstring testing.

    Methods:
        square()
        get()

    >>> _TestClass(13).get() + _TestClass(-12).get()
    1
    >>> hex(_TestClass(13).square().get())
    '0xa9'
    """

    def __init__(self, val):
        """val -> _TestClass object with associated value val.

        >>> t = _TestClass(123)
        >>> print(t.get())
        123
        """

        self.val = val

    def square(self):
        """square() -> square TestClass's associated value

        >>> _TestClass(13).square().get()
        169
        """

        self.val = self.val ** 2
        return self

    def get(self):
        """get() -> return TestClass's associated value.

        >>> x = _TestClass(-42)
        >>> print(x.get())
        -42
        """

        return self.val

__test__ = {"_TestClass": _TestClass,
            "string": r"""
                      Example of a string object, searched as-is.
                      >>> x = 1; y = 2
                      >>> x + y, x * y
                      (3, 2)
                      """,

            "bool-int equivalence": r"""
                                    In 2.2, boolean expressions displayed
                                    0 or 1.  By default, we still accept
                                    them.  This can be disabled by passing
                                    DONT_ACCEPT_TRUE_FOR_1 to the new
                                    optionflags argument.
                                    >>> 4 == 4
                                    1
                                    >>> 4 == 4
                                    True
                                    >>> 4 > 4
                                    0
                                    >>> 4 > 4
                                    False
                                    """,

            "blank lines": r"""
                Blank lines can be marked with <BLANKLINE>:
                    >>> print('foo\n\nbar\n')
                    foo
                    <BLANKLINE>
                    bar
                    <BLANKLINE>
            """,

            "ellipsis": r"""
                If the ellipsis flag is used, then '...' can be used to
                elide substrings in the desired output:
                    >>> print(list(range(1000))) #doctest: +ELLIPSIS
                    [0, 1, 2, ..., 999]
            """,

            "whitespace normalization": r"""
                If the whitespace normalization flag is used, then
                differences in whitespace are ignored.
                    >>> print(list(range(30))) #doctest: +NORMALIZE_WHITESPACE
                    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
                     15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
                     27, 28, 29]
            """,
           }


def _test():
    parser = argparse.ArgumentParser(description="doctest runner")
    parser.add_argument('-v', '--verbose', action='store_true', default=False,
                        help='print very verbose output for all tests')
    parser.add_argument('-o', '--option', action='append',
                        choices=OPTIONFLAGS_BY_NAME.keys(), default=[],
                        help=('specify a doctest option flag to apply'
                              ' to the test run; may be specified more'
                              ' than once to apply multiple options'))
    parser.add_argument('-f', '--fail-fast', action='store_true',
                        help=('stop running tests after first failure (this'
                              ' is a shorthand for -o FAIL_FAST, and is'
                              ' in addition to any other -o options)'))
    parser.add_argument('file', nargs='+',
                        help='file containing the tests to run')
    args = parser.parse_args()
    testfiles = args.file
    # Verbose used to be handled by the "inspect argv" magic in DocTestRunner,
    # but since we are using argparse we are passing it manually now.
    verbose = args.verbose
    options = 0
    for option in args.option:
        options |= OPTIONFLAGS_BY_NAME[option]
    if args.fail_fast:
        options |= FAIL_FAST
    for filename in testfiles:
        if filename.endswith(".py"):
            # It is a module -- insert its dir into sys.path and try to
            # import it. If it is part of a package, that possibly
            # won't work because of package imports.
            dirname, filename = os.path.split(filename)
            sys.path.insert(0, dirname)
            m = __import__(filename[:-3])
            del sys.path[0]
            failures, _ = testmod(m, verbose=verbose, optionflags=options)
        else:
            failures, _ = testfile(filename, module_relative=False,
                                     verbose=verbose, optionflags=options)
        if failures:
            return 1
    return 0


if __name__ == "__main__":
    sys.exit(_test())
lib\dummy_threading.py
"""Faux ``threading`` version using ``dummy_thread`` instead of ``thread``.

The module ``_dummy_threading`` is added to ``sys.modules`` in order
to not have ``threading`` considered imported.  Had ``threading`` been
directly imported it would have made all subsequent imports succeed
regardless of whether ``_thread`` was available which is not desired.

"""
from sys import modules as sys_modules

import _dummy_thread

# Declaring now so as to not have to nest ``try``s to get proper clean-up.
holding_thread = False
holding_threading = False
holding__threading_local = False

try:
    # Could have checked if ``_thread`` was not in sys.modules and gone
    # a different route, but decided to mirror technique used with
    # ``threading`` below.
    if '_thread' in sys_modules:
        held_thread = sys_modules['_thread']
        holding_thread = True
    # Must have some module named ``_thread`` that implements its API
    # in order to initially import ``threading``.
    sys_modules['_thread'] = sys_modules['_dummy_thread']

    if 'threading' in sys_modules:
        # If ``threading`` is already imported, might as well prevent
        # trying to import it more than needed by saving it if it is
        # already imported before deleting it.
        held_threading = sys_modules['threading']
        holding_threading = True
        del sys_modules['threading']

    if '_threading_local' in sys_modules:
        # If ``_threading_local`` is already imported, might as well prevent
        # trying to import it more than needed by saving it if it is
        # already imported before deleting it.
        held__threading_local = sys_modules['_threading_local']
        holding__threading_local = True
        del sys_modules['_threading_local']

    import threading
    # Need a copy of the code kept somewhere...
    sys_modules['_dummy_threading'] = sys_modules['threading']
    del sys_modules['threading']
    sys_modules['_dummy__threading_local'] = sys_modules['_threading_local']
    del sys_modules['_threading_local']
    from _dummy_threading import *
    from _dummy_threading import __all__

finally:
    # Put back ``threading`` if we overwrote earlier

    if holding_threading:
        sys_modules['threading'] = held_threading
        del held_threading
    del holding_threading

    # Put back ``_threading_local`` if we overwrote earlier

    if holding__threading_local:
        sys_modules['_threading_local'] = held__threading_local
        del held__threading_local
    del holding__threading_local

    # Put back ``thread`` if we overwrote, else del the entry we made
    if holding_thread:
        sys_modules['_thread'] = held_thread
        del held_thread
    else:
        del sys_modules['_thread']
    del holding_thread

    del _dummy_thread
    del sys_modules
lib\enum.py
import sys
from collections import OrderedDict
from types import MappingProxyType, DynamicClassAttribute

__all__ = ['Enum', 'IntEnum', 'unique']


def _is_descriptor(obj):
    """Returns True if obj is a descriptor, False otherwise."""
    return (
            hasattr(obj, '__get__') or
            hasattr(obj, '__set__') or
            hasattr(obj, '__delete__'))


def _is_dunder(name):
    """Returns True if a __dunder__ name, False otherwise."""
    return (name[:2] == name[-2:] == '__' and
            name[2:3] != '_' and
            name[-3:-2] != '_' and
            len(name) > 4)


def _is_sunder(name):
    """Returns True if a _sunder_ name, False otherwise."""
    return (name[0] == name[-1] == '_' and
            name[1:2] != '_' and
            name[-2:-1] != '_' and
            len(name) > 2)


def _make_class_unpicklable(cls):
    """Make the given class un-picklable."""
    def _break_on_call_reduce(self, proto):
        raise TypeError('%r cannot be pickled' % self)
    cls.__reduce_ex__ = _break_on_call_reduce
    cls.__module__ = '<unknown>'


class _EnumDict(dict):
    """Track enum member order and ensure member names are not reused.

    EnumMeta will use the names found in self._member_names as the
    enumeration member names.

    """
    def __init__(self):
        super().__init__()
        self._member_names = []

    def __setitem__(self, key, value):
        """Changes anything not dundered or not a descriptor.

        If an enum member name is used twice, an error is raised; duplicate
        values are not checked for.

        Single underscore (sunder) names are reserved.

        """
        if _is_sunder(key):
            raise ValueError('_names_ are reserved for future Enum use')
        elif _is_dunder(key):
            pass
        elif key in self._member_names:
            # descriptor overwriting an enum?
            raise TypeError('Attempted to reuse key: %r' % key)
        elif not _is_descriptor(value):
            if key in self:
                # enum overwriting a descriptor?
                raise TypeError('Key already defined as: %r' % self[key])
            self._member_names.append(key)
        super().__setitem__(key, value)



# Dummy value for Enum as EnumMeta explicitly checks for it, but of course
# until EnumMeta finishes running the first time the Enum class doesn't exist.
# This is also why there are checks in EnumMeta like `if Enum is not None`
Enum = None


class EnumMeta(type):
    """Metaclass for Enum"""
    @classmethod
    def __prepare__(metacls, cls, bases):
        return _EnumDict()

    def __new__(metacls, cls, bases, classdict):
        # an Enum class is final once enumeration items have been defined; it
        # cannot be mixed with other types (int, float, etc.) if it has an
        # inherited __new__ unless a new __new__ is defined (or the resulting
        # class will fail).
        member_type, first_enum = metacls._get_mixins_(bases)
        __new__, save_new, use_args = metacls._find_new_(classdict, member_type,
                                                        first_enum)

        # save enum items into separate mapping so they don't get baked into
        # the new class
        members = {k: classdict[k] for k in classdict._member_names}
        for name in classdict._member_names:
            del classdict[name]

        # check for illegal enum names (any others?)
        invalid_names = set(members) & {'mro', }
        if invalid_names:
            raise ValueError('Invalid enum member name: {0}'.format(
                ','.join(invalid_names)))

        # create our new Enum type
        enum_class = super().__new__(metacls, cls, bases, classdict)
        enum_class._member_names_ = []               # names in definition order
        enum_class._member_map_ = OrderedDict()      # name->value map
        enum_class._member_type_ = member_type

        # Reverse value->name map for hashable values.
        enum_class._value2member_map_ = {}

        # If a custom type is mixed into the Enum, and it does not know how
        # to pickle itself, pickle.dumps will succeed but pickle.loads will
        # fail.  Rather than have the error show up later and possibly far
        # from the source, sabotage the pickle protocol for this class so
        # that pickle.dumps also fails.
        #
        # However, if the new class implements its own __reduce_ex__, do not
        # sabotage -- it's on them to make sure it works correctly.  We use
        # __reduce_ex__ instead of any of the others as it is preferred by
        # pickle over __reduce__, and it handles all pickle protocols.
        if '__reduce_ex__' not in classdict:
            if member_type is not object:
                methods = ('__getnewargs_ex__', '__getnewargs__',
                        '__reduce_ex__', '__reduce__')
                if not any(m in member_type.__dict__ for m in methods):
                    _make_class_unpicklable(enum_class)

        # instantiate them, checking for duplicates as we go
        # we instantiate first instead of checking for duplicates first in case
        # a custom __new__ is doing something funky with the values -- such as
        # auto-numbering ;)
        for member_name in classdict._member_names:
            value = members[member_name]
            if not isinstance(value, tuple):
                args = (value, )
            else:
                args = value
            if member_type is tuple:   # special case for tuple enums
                args = (args, )     # wrap it one more time
            if not use_args:
                enum_member = __new__(enum_class)
                if not hasattr(enum_member, '_value_'):
                    enum_member._value_ = value
            else:
                enum_member = __new__(enum_class, *args)
                if not hasattr(enum_member, '_value_'):
                    enum_member._value_ = member_type(*args)
            value = enum_member._value_
            enum_member._name_ = member_name
            enum_member.__objclass__ = enum_class
            enum_member.__init__(*args)
            # If another member with the same value was already defined, the
            # new member becomes an alias to the existing one.
            for name, canonical_member in enum_class._member_map_.items():
                if canonical_member._value_ == enum_member._value_:
                    enum_member = canonical_member
                    break
            else:
                # Aliases don't appear in member names (only in __members__).
                enum_class._member_names_.append(member_name)
            enum_class._member_map_[member_name] = enum_member
            try:
                # This may fail if value is not hashable. We can't add the value
                # to the map, and by-value lookups for this value will be
                # linear.
                enum_class._value2member_map_[value] = enum_member
            except TypeError:
                pass

        # double check that repr and friends are not the mixin's or various
        # things break (such as pickle)
        for name in ('__repr__', '__str__', '__format__', '__reduce_ex__'):
            class_method = getattr(enum_class, name)
            obj_method = getattr(member_type, name, None)
            enum_method = getattr(first_enum, name, None)
            if obj_method is not None and obj_method is class_method:
                setattr(enum_class, name, enum_method)

        # replace any other __new__ with our own (as long as Enum is not None,
        # anyway) -- again, this is to support pickle
        if Enum is not None:
            # if the user defined their own __new__, save it before it gets
            # clobbered in case they subclass later
            if save_new:
                enum_class.__new_member__ = __new__
            enum_class.__new__ = Enum.__new__
        return enum_class

    def __bool__(self):
        """
        classes/types should always be True.
        """
        return True

    def __call__(cls, value, names=None, *, module=None, qualname=None, type=None):
        """Either returns an existing member, or creates a new enum class.

        This method is used both when an enum class is given a value to match
        to an enumeration member (i.e. Color(3)) and for the functional API
        (i.e. Color = Enum('Color', names='red green blue')).

        When used for the functional API:

        `value` will be the name of the new class.

        `names` should be either a string of white-space/comma delimited names
        (values will start at 1), or an iterator/mapping of name, value pairs.

        `module` should be set to the module this class is being created in;
        if it is not set, an attempt to find that module will be made, but if
        it fails the class will not be picklable.

        `qualname` should be set to the actual location this class can be found
        at in its module; by default it is set to the global scope.  If this is
        not correct, unpickling will fail in some circumstances.

        `type`, if set, will be mixed in as the first base class.

        """
        if names is None:  # simple value lookup
            return cls.__new__(cls, value)
        # otherwise, functional API: we're creating a new Enum type
        return cls._create_(value, names, module=module, qualname=qualname, type=type)

    def __contains__(cls, member):
        return isinstance(member, cls) and member._name_ in cls._member_map_

    def __delattr__(cls, attr):
        # nicer error message when someone tries to delete an attribute
        # (see issue19025).
        if attr in cls._member_map_:
            raise AttributeError(
                    "%s: cannot delete Enum member." % cls.__name__)
        super().__delattr__(attr)

    def __dir__(self):
        return (['__class__', '__doc__', '__members__', '__module__'] +
                self._member_names_)

    def __getattr__(cls, name):
        """Return the enum member matching `name`

        We use __getattr__ instead of descriptors or inserting into the enum
        class' __dict__ in order to support `name` and `value` being both
        properties for enum members (which live in the class' __dict__) and
        enum members themselves.

        """
        if _is_dunder(name):
            raise AttributeError(name)
        try:
            return cls._member_map_[name]
        except KeyError:
            raise AttributeError(name) from None

    def __getitem__(cls, name):
        return cls._member_map_[name]

    def __iter__(cls):
        return (cls._member_map_[name] for name in cls._member_names_)

    def __len__(cls):
        return len(cls._member_names_)

    @property
    def __members__(cls):
        """Returns a mapping of member name->value.

        This mapping lists all enum members, including aliases. Note that this
        is a read-only view of the internal mapping.

        """
        return MappingProxyType(cls._member_map_)

    def __repr__(cls):
        return "<enum %r>" % cls.__name__

    def __reversed__(cls):
        return (cls._member_map_[name] for name in reversed(cls._member_names_))

    def __setattr__(cls, name, value):
        """Block attempts to reassign Enum members.

        A simple assignment to the class namespace only changes one of the
        several possible ways to get an Enum member from the Enum class,
        resulting in an inconsistent Enumeration.

        """
        member_map = cls.__dict__.get('_member_map_', {})
        if name in member_map:
            raise AttributeError('Cannot reassign members.')
        super().__setattr__(name, value)

    def _create_(cls, class_name, names=None, *, module=None, qualname=None, type=None):
        """Convenience method to create a new Enum class.

        `names` can be:

        * A string containing member names, separated either with spaces or
          commas.  Values are auto-numbered from 1.
        * An iterable of member names.  Values are auto-numbered from 1.
        * An iterable of (member name, value) pairs.
        * A mapping of member name -> value.

        """
        metacls = cls.__class__
        bases = (cls, ) if type is None else (type, cls)
        classdict = metacls.__prepare__(class_name, bases)

        # special processing needed for names?
        if isinstance(names, str):
            names = names.replace(',', ' ').split()
        if isinstance(names, (tuple, list)) and isinstance(names[0], str):
            names = [(e, i) for (i, e) in enumerate(names, 1)]

        # Here, names is either an iterable of (name, value) or a mapping.
        for item in names:
            if isinstance(item, str):
                member_name, member_value = item, names[item]
            else:
                member_name, member_value = item
            classdict[member_name] = member_value
        enum_class = metacls.__new__(metacls, class_name, bases, classdict)

        # TODO: replace the frame hack if a blessed way to know the calling
        # module is ever developed
        if module is None:
            try:
                module = sys._getframe(2).f_globals['__name__']
            except (AttributeError, ValueError) as exc:
                pass
        if module is None:
            _make_class_unpicklable(enum_class)
        else:
            enum_class.__module__ = module
        if qualname is not None:
            enum_class.__qualname__ = qualname

        return enum_class

    @staticmethod
    def _get_mixins_(bases):
        """Returns the type for creating enum members, and the first inherited
        enum class.

        bases: the tuple of bases that was given to __new__

        """
        if not bases:
            return object, Enum

        # double check that we are not subclassing a class with existing
        # enumeration members; while we're at it, see if any other data
        # type has been mixed in so we can use the correct __new__
        member_type = first_enum = None
        for base in bases:
            if  (base is not Enum and
                    issubclass(base, Enum) and
                    base._member_names_):
                raise TypeError("Cannot extend enumerations")
        # base is now the last base in bases
        if not issubclass(base, Enum):
            raise TypeError("new enumerations must be created as "
                    "`ClassName([mixin_type,] enum_type)`")

        # get correct mix-in type (either mix-in type of Enum subclass, or
        # first base if last base is Enum)
        if not issubclass(bases[0], Enum):
            member_type = bases[0]     # first data type
            first_enum = bases[-1]  # enum type
        else:
            for base in bases[0].__mro__:
                # most common: (IntEnum, int, Enum, object)
                # possible:    (<Enum 'AutoIntEnum'>, <Enum 'IntEnum'>,
                #               <class 'int'>, <Enum 'Enum'>,
                #               <class 'object'>)
                if issubclass(base, Enum):
                    if first_enum is None:
                        first_enum = base
                else:
                    if member_type is None:
                        member_type = base

        return member_type, first_enum

    @staticmethod
    def _find_new_(classdict, member_type, first_enum):
        """Returns the __new__ to be used for creating the enum members.

        classdict: the class dictionary given to __new__
        member_type: the data type whose __new__ will be used by default
        first_enum: enumeration to check for an overriding __new__

        """
        # now find the correct __new__, checking to see of one was defined
        # by the user; also check earlier enum classes in case a __new__ was
        # saved as __new_member__
        __new__ = classdict.get('__new__', None)

        # should __new__ be saved as __new_member__ later?
        save_new = __new__ is not None

        if __new__ is None:
            # check all possibles for __new_member__ before falling back to
            # __new__
            for method in ('__new_member__', '__new__'):
                for possible in (member_type, first_enum):
                    target = getattr(possible, method, None)
                    if target not in {
                            None,
                            None.__new__,
                            object.__new__,
                            Enum.__new__,
                            }:
                        __new__ = target
                        break
                if __new__ is not None:
                    break
            else:
                __new__ = object.__new__

        # if a non-object.__new__ is used then whatever value/tuple was
        # assigned to the enum member name will be passed to __new__ and to the
        # new enum member's __init__
        if __new__ is object.__new__:
            use_args = False
        else:
            use_args = True

        return __new__, save_new, use_args


class Enum(metaclass=EnumMeta):
    """Generic enumeration.

    Derive from this class to define new enumerations.

    """
    def __new__(cls, value):
        # all enum instances are actually created during class construction
        # without calling this method; this method is called by the metaclass'
        # __call__ (i.e. Color(3) ), and by pickle
        if type(value) is cls:
            # For lookups like Color(Color.red)
            return value
        # by-value search for a matching enum member
        # see if it's in the reverse mapping (for hashable values)
        try:
            if value in cls._value2member_map_:
                return cls._value2member_map_[value]
        except TypeError:
            # not there, now do long search -- O(n) behavior
            for member in cls._member_map_.values():
                if member._value_ == value:
                    return member
        raise ValueError("%r is not a valid %s" % (value, cls.__name__))

    def __repr__(self):
        return "<%s.%s: %r>" % (
                self.__class__.__name__, self._name_, self._value_)

    def __str__(self):
        return "%s.%s" % (self.__class__.__name__, self._name_)

    def __dir__(self):
        added_behavior = [
                m
                for cls in self.__class__.mro()
                for m in cls.__dict__
                if m[0] != '_'
                ]
        return (['__class__', '__doc__', '__module__', 'name', 'value'] +
                added_behavior)

    def __format__(self, format_spec):
        # mixed-in Enums should use the mixed-in type's __format__, otherwise
        # we can get strange results with the Enum name showing up instead of
        # the value

        # pure Enum branch
        if self._member_type_ is object:
            cls = str
            val = str(self)
        # mix-in branch
        else:
            cls = self._member_type_
            val = self._value_
        return cls.__format__(val, format_spec)

    def __hash__(self):
        return hash(self._name_)

    def __reduce_ex__(self, proto):
        return self.__class__, (self._value_, )

    # DynamicClassAttribute is used to provide access to the `name` and
    # `value` properties of enum members while keeping some measure of
    # protection from modification, while still allowing for an enumeration
    # to have members named `name` and `value`.  This works because enumeration
    # members are not set directly on the enum class -- __getattr__ is
    # used to look them up.

    @DynamicClassAttribute
    def name(self):
        """The name of the Enum member."""
        return self._name_

    @DynamicClassAttribute
    def value(self):
        """The value of the Enum member."""
        return self._value_

    @classmethod
    def _convert(cls, name, module, filter, source=None):
        """
        Create a new Enum subclass that replaces a collection of global constants
        """
        # convert all constants from source (or module) that pass filter() to
        # a new Enum called name, and export the enum and its members back to
        # module;
        # also, replace the __reduce_ex__ method so unpickling works in
        # previous Python versions
        module_globals = vars(sys.modules[module])
        if source:
            source = vars(source)
        else:
            source = module_globals
        members = {name: value for name, value in source.items()
                if filter(name)}
        cls = cls(name, members, module=module)
        cls.__reduce_ex__ = _reduce_ex_by_name
        module_globals.update(cls.__members__)
        module_globals[name] = cls
        return cls


class IntEnum(int, Enum):
    """Enum where members are also (and must be) ints"""


def _reduce_ex_by_name(self, proto):
    return self.name

def unique(enumeration):
    """Class decorator for enumerations ensuring unique member values."""
    duplicates = []
    for name, member in enumeration.__members__.items():
        if name != member.name:
            duplicates.append((name, member.name))
    if duplicates:
        alias_details = ', '.join(
                ["%s -> %s" % (alias, name) for (alias, name) in duplicates])
        raise ValueError('duplicate values found in %r: %s' %
                (enumeration, alias_details))
    return enumeration
lib\filecmp.py
"""Utilities for comparing files and directories.

Classes:
    dircmp

Functions:
    cmp(f1, f2, shallow=True) -> int
    cmpfiles(a, b, common) -> ([], [], [])
    clear_cache()

"""

import os
import stat
from itertools import filterfalse

__all__ = ['clear_cache', 'cmp', 'dircmp', 'cmpfiles', 'DEFAULT_IGNORES']

_cache = {}
BUFSIZE = 8*1024

DEFAULT_IGNORES = [
    'RCS', 'CVS', 'tags', '.git', '.hg', '.bzr', '_darcs', '__pycache__']

def clear_cache():
    """Clear the filecmp cache."""
    _cache.clear()

def cmp(f1, f2, shallow=True):
    """Compare two files.

    Arguments:

    f1 -- First file name

    f2 -- Second file name

    shallow -- Just check stat signature (do not read the files).
               defaults to True.

    Return value:

    True if the files are the same, False otherwise.

    This function uses a cache for past comparisons and the results,
    with cache entries invalidated if their stat information
    changes.  The cache may be cleared by calling clear_cache().

    """

    s1 = _sig(os.stat(f1))
    s2 = _sig(os.stat(f2))
    if s1[0] != stat.S_IFREG or s2[0] != stat.S_IFREG:
        return False
    if shallow and s1 == s2:
        return True
    if s1[1] != s2[1]:
        return False

    outcome = _cache.get((f1, f2, s1, s2))
    if outcome is None:
        outcome = _do_cmp(f1, f2)
        if len(_cache) > 100:      # limit the maximum size of the cache
            clear_cache()
        _cache[f1, f2, s1, s2] = outcome
    return outcome

def _sig(st):
    return (stat.S_IFMT(st.st_mode),
            st.st_size,
            st.st_mtime)

def _do_cmp(f1, f2):
    bufsize = BUFSIZE
    with open(f1, 'rb') as fp1, open(f2, 'rb') as fp2:
        while True:
            b1 = fp1.read(bufsize)
            b2 = fp2.read(bufsize)
            if b1 != b2:
                return False
            if not b1:
                return True

# Directory comparison class.
#
class dircmp:
    """A class that manages the comparison of 2 directories.

    dircmp(a, b, ignore=None, hide=None)
      A and B are directories.
      IGNORE is a list of names to ignore,
        defaults to DEFAULT_IGNORES.
      HIDE is a list of names to hide,
        defaults to [os.curdir, os.pardir].

    High level usage:
      x = dircmp(dir1, dir2)
      x.report() -> prints a report on the differences between dir1 and dir2
       or
      x.report_partial_closure() -> prints report on differences between dir1
            and dir2, and reports on common immediate subdirectories.
      x.report_full_closure() -> like report_partial_closure,
            but fully recursive.

    Attributes:
     left_list, right_list: The files in dir1 and dir2,
        filtered by hide and ignore.
     common: a list of names in both dir1 and dir2.
     left_only, right_only: names only in dir1, dir2.
     common_dirs: subdirectories in both dir1 and dir2.
     common_files: files in both dir1 and dir2.
     common_funny: names in both dir1 and dir2 where the type differs between
        dir1 and dir2, or the name is not stat-able.
     same_files: list of identical files.
     diff_files: list of filenames which differ.
     funny_files: list of files which could not be compared.
     subdirs: a dictionary of dircmp objects, keyed by names in common_dirs.
     """

    def __init__(self, a, b, ignore=None, hide=None): # Initialize
        self.left = a
        self.right = b
        if hide is None:
            self.hide = [os.curdir, os.pardir] # Names never to be shown
        else:
            self.hide = hide
        if ignore is None:
            self.ignore = DEFAULT_IGNORES
        else:
            self.ignore = ignore

    def phase0(self): # Compare everything except common subdirectories
        self.left_list = _filter(os.listdir(self.left),
                                 self.hide+self.ignore)
        self.right_list = _filter(os.listdir(self.right),
                                  self.hide+self.ignore)
        self.left_list.sort()
        self.right_list.sort()

    def phase1(self): # Compute common names
        a = dict(zip(map(os.path.normcase, self.left_list), self.left_list))
        b = dict(zip(map(os.path.normcase, self.right_list), self.right_list))
        self.common = list(map(a.__getitem__, filter(b.__contains__, a)))
        self.left_only = list(map(a.__getitem__, filterfalse(b.__contains__, a)))
        self.right_only = list(map(b.__getitem__, filterfalse(a.__contains__, b)))

    def phase2(self): # Distinguish files, directories, funnies
        self.common_dirs = []
        self.common_files = []
        self.common_funny = []

        for x in self.common:
            a_path = os.path.join(self.left, x)
            b_path = os.path.join(self.right, x)

            ok = 1
            try:
                a_stat = os.stat(a_path)
            except OSError as why:
                # print('Can\'t stat', a_path, ':', why.args[1])
                ok = 0
            try:
                b_stat = os.stat(b_path)
            except OSError as why:
                # print('Can\'t stat', b_path, ':', why.args[1])
                ok = 0

            if ok:
                a_type = stat.S_IFMT(a_stat.st_mode)
                b_type = stat.S_IFMT(b_stat.st_mode)
                if a_type != b_type:
                    self.common_funny.append(x)
                elif stat.S_ISDIR(a_type):
                    self.common_dirs.append(x)
                elif stat.S_ISREG(a_type):
                    self.common_files.append(x)
                else:
                    self.common_funny.append(x)
            else:
                self.common_funny.append(x)

    def phase3(self): # Find out differences between common files
        xx = cmpfiles(self.left, self.right, self.common_files)
        self.same_files, self.diff_files, self.funny_files = xx

    def phase4(self): # Find out differences between common subdirectories
        # A new dircmp object is created for each common subdirectory,
        # these are stored in a dictionary indexed by filename.
        # The hide and ignore properties are inherited from the parent
        self.subdirs = {}
        for x in self.common_dirs:
            a_x = os.path.join(self.left, x)
            b_x = os.path.join(self.right, x)
            self.subdirs[x]  = dircmp(a_x, b_x, self.ignore, self.hide)

    def phase4_closure(self): # Recursively call phase4() on subdirectories
        self.phase4()
        for sd in self.subdirs.values():
            sd.phase4_closure()

    def report(self): # Print a report on the differences between a and b
        # Output format is purposely lousy
        print('diff', self.left, self.right)
        if self.left_only:
            self.left_only.sort()
            print('Only in', self.left, ':', self.left_only)
        if self.right_only:
            self.right_only.sort()
            print('Only in', self.right, ':', self.right_only)
        if self.same_files:
            self.same_files.sort()
            print('Identical files :', self.same_files)
        if self.diff_files:
            self.diff_files.sort()
            print('Differing files :', self.diff_files)
        if self.funny_files:
            self.funny_files.sort()
            print('Trouble with common files :', self.funny_files)
        if self.common_dirs:
            self.common_dirs.sort()
            print('Common subdirectories :', self.common_dirs)
        if self.common_funny:
            self.common_funny.sort()
            print('Common funny cases :', self.common_funny)

    def report_partial_closure(self): # Print reports on self and on subdirs
        self.report()
        for sd in self.subdirs.values():
            print()
            sd.report()

    def report_full_closure(self): # Report on self and subdirs recursively
        self.report()
        for sd in self.subdirs.values():
            print()
            sd.report_full_closure()

    methodmap = dict(subdirs=phase4,
                     same_files=phase3, diff_files=phase3, funny_files=phase3,
                     common_dirs = phase2, common_files=phase2, common_funny=phase2,
                     common=phase1, left_only=phase1, right_only=phase1,
                     left_list=phase0, right_list=phase0)

    def __getattr__(self, attr):
        if attr not in self.methodmap:
            raise AttributeError(attr)
        self.methodmap[attr](self)
        return getattr(self, attr)

def cmpfiles(a, b, common, shallow=True):
    """Compare common files in two directories.

    a, b -- directory names
    common -- list of file names found in both directories
    shallow -- if true, do comparison based solely on stat() information

    Returns a tuple of three lists:
      files that compare equal
      files that are different
      filenames that aren't regular files.

    """
    res = ([], [], [])
    for x in common:
        ax = os.path.join(a, x)
        bx = os.path.join(b, x)
        res[_cmp(ax, bx, shallow)].append(x)
    return res


# Compare two files.
# Return:
#       0 for equal
#       1 for different
#       2 for funny cases (can't stat, etc.)
#
def _cmp(a, b, sh, abs=abs, cmp=cmp):
    try:
        return not abs(cmp(a, b, sh))
    except OSError:
        return 2


# Return a copy with items that occur in skip removed.
#
def _filter(flist, skip):
    return list(filterfalse(skip.__contains__, flist))


# Demonstration and testing.
#
def demo():
    import sys
    import getopt
    options, args = getopt.getopt(sys.argv[1:], 'r')
    if len(args) != 2:
        raise getopt.GetoptError('need exactly two args', None)
    dd = dircmp(args[0], args[1])
    if ('-r', '') in options:
        dd.report_full_closure()
    else:
        dd.report()

if __name__ == '__main__':
    demo()
lib\fileinput.py
"""Helper class to quickly write a loop over all standard input files.

Typical use is:

    import fileinput
    for line in fileinput.input():
        process(line)

This iterates over the lines of all files listed in sys.argv[1:],
defaulting to sys.stdin if the list is empty.  If a filename is '-' it
is also replaced by sys.stdin.  To specify an alternative list of
filenames, pass it as the argument to input().  A single file name is
also allowed.

Functions filename(), lineno() return the filename and cumulative line
number of the line that has just been read; filelineno() returns its
line number in the current file; isfirstline() returns true iff the
line just read is the first line of its file; isstdin() returns true
iff the line was read from sys.stdin.  Function nextfile() closes the
current file so that the next iteration will read the first line from
the next file (if any); lines not read from the file will not count
towards the cumulative line count; the filename is not changed until
after the first line of the next file has been read.  Function close()
closes the sequence.

Before any lines have been read, filename() returns None and both line
numbers are zero; nextfile() has no effect.  After all lines have been
read, filename() and the line number functions return the values
pertaining to the last line read; nextfile() has no effect.

All files are opened in text mode by default, you can override this by
setting the mode parameter to input() or FileInput.__init__().
If an I/O error occurs during opening or reading a file, the OSError
exception is raised.

If sys.stdin is used more than once, the second and further use will
return no lines, except perhaps for interactive use, or if it has been
explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their
presence in the list of filenames is noticeable at all is when the
last file opened is empty.

It is possible that the last line of a file doesn't end in a newline
character; otherwise lines are returned including the trailing
newline.

Class FileInput is the implementation; its methods filename(),
lineno(), fileline(), isfirstline(), isstdin(), nextfile() and close()
correspond to the functions in the module.  In addition it has a
readline() method which returns the next input line, and a
__getitem__() method which implements the sequence behavior.  The
sequence must be accessed in strictly sequential order; sequence
access and readline() cannot be mixed.

Optional in-place filtering: if the keyword argument inplace=1 is
passed to input() or to the FileInput constructor, the file is moved
to a backup file and standard output is directed to the input file.
This makes it possible to write a filter that rewrites its input file
in place.  If the keyword argument backup=".<some extension>" is also
given, it specifies the extension for the backup file, and the backup
file remains around; by default, the extension is ".bak" and it is
deleted when the output file is closed.  In-place filtering is
disabled when standard input is read.  XXX The current implementation
does not work for MS-DOS 8+3 filesystems.

Performance: this module is unfortunately one of the slower ways of
processing large numbers of input lines.  Nevertheless, a significant
speed-up has been obtained by using readlines(bufsize) instead of
readline().  A new keyword argument, bufsize=N, is present on the
input() function and the FileInput() class to override the default
buffer size.

XXX Possible additions:

- optional getopt argument processing
- isatty()
- read(), read(size), even readlines()

"""

import sys, os

__all__ = ["input", "close", "nextfile", "filename", "lineno", "filelineno",
           "isfirstline", "isstdin", "FileInput"]

_state = None

DEFAULT_BUFSIZE = 8*1024

def input(files=None, inplace=False, backup="", bufsize=0,
          mode="r", openhook=None):
    """Return an instance of the FileInput class, which can be iterated.

    The parameters are passed to the constructor of the FileInput class.
    The returned instance, in addition to being an iterator,
    keeps global state for the functions of this module,.
    """
    global _state
    if _state and _state._file:
        raise RuntimeError("input() already active")
    _state = FileInput(files, inplace, backup, bufsize, mode, openhook)
    return _state

def close():
    """Close the sequence."""
    global _state
    state = _state
    _state = None
    if state:
        state.close()

def nextfile():
    """
    Close the current file so that the next iteration will read the first
    line from the next file (if any); lines not read from the file will
    not count towards the cumulative line count. The filename is not
    changed until after the first line of the next file has been read.
    Before the first line has been read, this function has no effect;
    it cannot be used to skip the first file. After the last line of the
    last file has been read, this function has no effect.
    """
    if not _state:
        raise RuntimeError("no active input()")
    return _state.nextfile()

def filename():
    """
    Return the name of the file currently being read.
    Before the first line has been read, returns None.
    """
    if not _state:
        raise RuntimeError("no active input()")
    return _state.filename()

def lineno():
    """
    Return the cumulative line number of the line that has just been read.
    Before the first line has been read, returns 0. After the last line
    of the last file has been read, returns the line number of that line.
    """
    if not _state:
        raise RuntimeError("no active input()")
    return _state.lineno()

def filelineno():
    """
    Return the line number in the current file. Before the first line
    has been read, returns 0. After the last line of the last file has
    been read, returns the line number of that line within the file.
    """
    if not _state:
        raise RuntimeError("no active input()")
    return _state.filelineno()

def fileno():
    """
    Return the file number of the current file. When no file is currently
    opened, returns -1.
    """
    if not _state:
        raise RuntimeError("no active input()")
    return _state.fileno()

def isfirstline():
    """
    Returns true the line just read is the first line of its file,
    otherwise returns false.
    """
    if not _state:
        raise RuntimeError("no active input()")
    return _state.isfirstline()

def isstdin():
    """
    Returns true if the last line was read from sys.stdin,
    otherwise returns false.
    """
    if not _state:
        raise RuntimeError("no active input()")
    return _state.isstdin()

class FileInput:
    """FileInput([files[, inplace[, backup[, bufsize, [, mode[, openhook]]]]]])

    Class FileInput is the implementation of the module; its methods
    filename(), lineno(), fileline(), isfirstline(), isstdin(), fileno(),
    nextfile() and close() correspond to the functions of the same name
    in the module.
    In addition it has a readline() method which returns the next
    input line, and a __getitem__() method which implements the
    sequence behavior. The sequence must be accessed in strictly
    sequential order; random access and readline() cannot be mixed.
    """

    def __init__(self, files=None, inplace=False, backup="", bufsize=0,
                 mode="r", openhook=None):
        if isinstance(files, str):
            files = (files,)
        else:
            if files is None:
                files = sys.argv[1:]
            if not files:
                files = ('-',)
            else:
                files = tuple(files)
        self._files = files
        self._inplace = inplace
        self._backup = backup
        self._bufsize = bufsize or DEFAULT_BUFSIZE
        self._savestdout = None
        self._output = None
        self._filename = None
        self._lineno = 0
        self._filelineno = 0
        self._file = None
        self._isstdin = False
        self._backupfilename = None
        self._buffer = []
        self._bufindex = 0
        # restrict mode argument to reading modes
        if mode not in ('r', 'rU', 'U', 'rb'):
            raise ValueError("FileInput opening mode must be one of "
                             "'r', 'rU', 'U' and 'rb'")
        if 'U' in mode:
            import warnings
            warnings.warn("'U' mode is deprecated",
                          DeprecationWarning, 2)
        self._mode = mode
        if openhook:
            if inplace:
                raise ValueError("FileInput cannot use an opening hook in inplace mode")
            if not callable(openhook):
                raise ValueError("FileInput openhook must be callable")
        self._openhook = openhook

    def __del__(self):
        self.close()

    def close(self):
        try:
            self.nextfile()
        finally:
            self._files = ()

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        self.close()

    def __iter__(self):
        return self

    def __next__(self):
        try:
            line = self._buffer[self._bufindex]
        except IndexError:
            pass
        else:
            self._bufindex += 1
            self._lineno += 1
            self._filelineno += 1
            return line
        line = self.readline()
        if not line:
            raise StopIteration
        return line

    def __getitem__(self, i):
        if i != self._lineno:
            raise RuntimeError("accessing lines out of order")
        try:
            return self.__next__()
        except StopIteration:
            raise IndexError("end of input reached")

    def nextfile(self):
        savestdout = self._savestdout
        self._savestdout = 0
        if savestdout:
            sys.stdout = savestdout

        output = self._output
        self._output = 0
        try:
            if output:
                output.close()
        finally:
            file = self._file
            self._file = 0
            try:
                if file and not self._isstdin:
                    file.close()
            finally:
                backupfilename = self._backupfilename
                self._backupfilename = 0
                if backupfilename and not self._backup:
                    try: os.unlink(backupfilename)
                    except OSError: pass

                self._isstdin = False
                self._buffer = []
                self._bufindex = 0

    def readline(self):
        try:
            line = self._buffer[self._bufindex]
        except IndexError:
            pass
        else:
            self._bufindex += 1
            self._lineno += 1
            self._filelineno += 1
            return line
        if not self._file:
            if not self._files:
                if 'b' in self._mode:
                    return b''
                else:
                    return ''
            self._filename = self._files[0]
            self._files = self._files[1:]
            self._filelineno = 0
            self._file = None
            self._isstdin = False
            self._backupfilename = 0
            if self._filename == '-':
                self._filename = '<stdin>'
                if 'b' in self._mode:
                    self._file = sys.stdin.buffer
                else:
                    self._file = sys.stdin
                self._isstdin = True
            else:
                if self._inplace:
                    self._backupfilename = (
                        self._filename + (self._backup or ".bak"))
                    try:
                        os.unlink(self._backupfilename)
                    except OSError:
                        pass
                    # The next few lines may raise OSError
                    os.rename(self._filename, self._backupfilename)
                    self._file = open(self._backupfilename, self._mode)
                    try:
                        perm = os.fstat(self._file.fileno()).st_mode
                    except OSError:
                        self._output = open(self._filename, "w")
                    else:
                        mode = os.O_CREAT | os.O_WRONLY | os.O_TRUNC
                        if hasattr(os, 'O_BINARY'):
                            mode |= os.O_BINARY

                        fd = os.open(self._filename, mode, perm)
                        self._output = os.fdopen(fd, "w")
                        try:
                            if hasattr(os, 'chmod'):
                                os.chmod(self._filename, perm)
                        except OSError:
                            pass
                    self._savestdout = sys.stdout
                    sys.stdout = self._output
                else:
                    # This may raise OSError
                    if self._openhook:
                        self._file = self._openhook(self._filename, self._mode)
                    else:
                        self._file = open(self._filename, self._mode)
        self._buffer = self._file.readlines(self._bufsize)
        self._bufindex = 0
        if not self._buffer:
            self.nextfile()
        # Recursive call
        return self.readline()

    def filename(self):
        return self._filename

    def lineno(self):
        return self._lineno

    def filelineno(self):
        return self._filelineno

    def fileno(self):
        if self._file:
            try:
                return self._file.fileno()
            except ValueError:
                return -1
        else:
            return -1

    def isfirstline(self):
        return self._filelineno == 1

    def isstdin(self):
        return self._isstdin


def hook_compressed(filename, mode):
    ext = os.path.splitext(filename)[1]
    if ext == '.gz':
        import gzip
        return gzip.open(filename, mode)
    elif ext == '.bz2':
        import bz2
        return bz2.BZ2File(filename, mode)
    else:
        return open(filename, mode)


def hook_encoded(encoding):
    def openhook(filename, mode):
        return open(filename, mode, encoding=encoding)
    return openhook


def _test():
    import getopt
    inplace = False
    backup = False
    opts, args = getopt.getopt(sys.argv[1:], "ib:")
    for o, a in opts:
        if o == '-i': inplace = True
        if o == '-b': backup = a
    for line in input(args, inplace=inplace, backup=backup):
        if line[-1:] == '\n': line = line[:-1]
        if line[-1:] == '\r': line = line[:-1]
        print("%d: %s[%d]%s %s" % (lineno(), filename(), filelineno(),
                                   isfirstline() and "*" or "", line))
    print("%d: %s[%d]" % (lineno(), filename(), filelineno()))

if __name__ == '__main__':
    _test()
lib\fnmatch.py
"""Filename matching with shell patterns.

fnmatch(FILENAME, PATTERN) matches according to the local convention.
fnmatchcase(FILENAME, PATTERN) always takes case in account.

The functions operate by translating the pattern into a regular
expression.  They cache the compiled regular expressions for speed.

The function translate(PATTERN) returns a regular expression
corresponding to PATTERN.  (It does not compile it.)
"""
import os
import posixpath
import re
import functools

__all__ = ["filter", "fnmatch", "fnmatchcase", "translate"]

def fnmatch(name, pat):
    """Test whether FILENAME matches PATTERN.

    Patterns are Unix shell style:

    *       matches everything
    ?       matches any single character
    [seq]   matches any character in seq
    [!seq]  matches any char not in seq

    An initial period in FILENAME is not special.
    Both FILENAME and PATTERN are first case-normalized
    if the operating system requires it.
    If you don't want this, use fnmatchcase(FILENAME, PATTERN).
    """
    name = os.path.normcase(name)
    pat = os.path.normcase(pat)
    return fnmatchcase(name, pat)

@functools.lru_cache(maxsize=256, typed=True)
def _compile_pattern(pat):
    if isinstance(pat, bytes):
        pat_str = str(pat, 'ISO-8859-1')
        res_str = translate(pat_str)
        res = bytes(res_str, 'ISO-8859-1')
    else:
        res = translate(pat)
    return re.compile(res).match

def filter(names, pat):
    """Return the subset of the list NAMES that match PAT."""
    result = []
    pat = os.path.normcase(pat)
    match = _compile_pattern(pat)
    if os.path is posixpath:
        # normcase on posix is NOP. Optimize it away from the loop.
        for name in names:
            if match(name):
                result.append(name)
    else:
        for name in names:
            if match(os.path.normcase(name)):
                result.append(name)
    return result

def fnmatchcase(name, pat):
    """Test whether FILENAME matches PATTERN, including case.

    This is a version of fnmatch() which doesn't case-normalize
    its arguments.
    """
    match = _compile_pattern(pat)
    return match(name) is not None


def translate(pat):
    """Translate a shell PATTERN to a regular expression.

    There is no way to quote meta-characters.
    """

    i, n = 0, len(pat)
    res = ''
    while i < n:
        c = pat[i]
        i = i+1
        if c == '*':
            res = res + '.*'
        elif c == '?':
            res = res + '.'
        elif c == '[':
            j = i
            if j < n and pat[j] == '!':
                j = j+1
            if j < n and pat[j] == ']':
                j = j+1
            while j < n and pat[j] != ']':
                j = j+1
            if j >= n:
                res = res + '\\['
            else:
                stuff = pat[i:j].replace('\\','\\\\')
                i = j+1
                if stuff[0] == '!':
                    stuff = '^' + stuff[1:]
                elif stuff[0] == '^':
                    stuff = '\\' + stuff
                res = '%s[%s]' % (res, stuff)
        else:
            res = res + re.escape(c)
    return res + '\Z(?ms)'
lib\formatter.py
"""Generic output formatting.

Formatter objects transform an abstract flow of formatting events into
specific output events on writer objects. Formatters manage several stack
structures to allow various properties of a writer object to be changed and
restored; writers need not be able to handle relative changes nor any sort
of ``change back'' operation. Specific writer properties which may be
controlled via formatter objects are horizontal alignment, font, and left
margin indentations. A mechanism is provided which supports providing
arbitrary, non-exclusive style settings to a writer as well. Additional
interfaces facilitate formatting events which are not reversible, such as
paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as
file formats, are supported as well as physical devices. The provided
implementations all work with abstract devices. The interface makes
available mechanisms for setting the properties which formatter objects
manage and inserting data into the output.
"""

import sys
import warnings
warnings.warn('the formatter module is deprecated and will be removed in '
              'Python 3.6', PendingDeprecationWarning)


AS_IS = None


class NullFormatter:
    """A formatter which does nothing.

    If the writer parameter is omitted, a NullWriter instance is created.
    No methods of the writer are called by NullFormatter instances.

    Implementations should inherit from this class if implementing a writer
    interface but don't need to inherit any implementation.

    """

    def __init__(self, writer=None):
        if writer is None:
            writer = NullWriter()
        self.writer = writer
    def end_paragraph(self, blankline): pass
    def add_line_break(self): pass
    def add_hor_rule(self, *args, **kw): pass
    def add_label_data(self, format, counter, blankline=None): pass
    def add_flowing_data(self, data): pass
    def add_literal_data(self, data): pass
    def flush_softspace(self): pass
    def push_alignment(self, align): pass
    def pop_alignment(self): pass
    def push_font(self, x): pass
    def pop_font(self): pass
    def push_margin(self, margin): pass
    def pop_margin(self): pass
    def set_spacing(self, spacing): pass
    def push_style(self, *styles): pass
    def pop_style(self, n=1): pass
    def assert_line_data(self, flag=1): pass


class AbstractFormatter:
    """The standard formatter.

    This implementation has demonstrated wide applicability to many writers,
    and may be used directly in most circumstances.  It has been used to
    implement a full-featured World Wide Web browser.

    """

    #  Space handling policy:  blank spaces at the boundary between elements
    #  are handled by the outermost context.  "Literal" data is not checked
    #  to determine context, so spaces in literal data are handled directly
    #  in all circumstances.

    def __init__(self, writer):
        self.writer = writer            # Output device
        self.align = None               # Current alignment
        self.align_stack = []           # Alignment stack
        self.font_stack = []            # Font state
        self.margin_stack = []          # Margin state
        self.spacing = None             # Vertical spacing state
        self.style_stack = []           # Other state, e.g. color
        self.nospace = 1                # Should leading space be suppressed
        self.softspace = 0              # Should a space be inserted
        self.para_end = 1               # Just ended a paragraph
        self.parskip = 0                # Skipped space between paragraphs?
        self.hard_break = 1             # Have a hard break
        self.have_label = 0

    def end_paragraph(self, blankline):
        if not self.hard_break:
            self.writer.send_line_break()
            self.have_label = 0
        if self.parskip < blankline and not self.have_label:
            self.writer.send_paragraph(blankline - self.parskip)
            self.parskip = blankline
            self.have_label = 0
        self.hard_break = self.nospace = self.para_end = 1
        self.softspace = 0

    def add_line_break(self):
        if not (self.hard_break or self.para_end):
            self.writer.send_line_break()
            self.have_label = self.parskip = 0
        self.hard_break = self.nospace = 1
        self.softspace = 0

    def add_hor_rule(self, *args, **kw):
        if not self.hard_break:
            self.writer.send_line_break()
        self.writer.send_hor_rule(*args, **kw)
        self.hard_break = self.nospace = 1
        self.have_label = self.para_end = self.softspace = self.parskip = 0

    def add_label_data(self, format, counter, blankline = None):
        if self.have_label or not self.hard_break:
            self.writer.send_line_break()
        if not self.para_end:
            self.writer.send_paragraph((blankline and 1) or 0)
        if isinstance(format, str):
            self.writer.send_label_data(self.format_counter(format, counter))
        else:
            self.writer.send_label_data(format)
        self.nospace = self.have_label = self.hard_break = self.para_end = 1
        self.softspace = self.parskip = 0

    def format_counter(self, format, counter):
        label = ''
        for c in format:
            if c == '1':
                label = label + ('%d' % counter)
            elif c in 'aA':
                if counter > 0:
                    label = label + self.format_letter(c, counter)
            elif c in 'iI':
                if counter > 0:
                    label = label + self.format_roman(c, counter)
            else:
                label = label + c
        return label

    def format_letter(self, case, counter):
        label = ''
        while counter > 0:
            counter, x = divmod(counter-1, 26)
            # This makes a strong assumption that lowercase letters
            # and uppercase letters form two contiguous blocks, with
            # letters in order!
            s = chr(ord(case) + x)
            label = s + label
        return label

    def format_roman(self, case, counter):
        ones = ['i', 'x', 'c', 'm']
        fives = ['v', 'l', 'd']
        label, index = '', 0
        # This will die of IndexError when counter is too big
        while counter > 0:
            counter, x = divmod(counter, 10)
            if x == 9:
                label = ones[index] + ones[index+1] + label
            elif x == 4:
                label = ones[index] + fives[index] + label
            else:
                if x >= 5:
                    s = fives[index]
                    x = x-5
                else:
                    s = ''
                s = s + ones[index]*x
                label = s + label
            index = index + 1
        if case == 'I':
            return label.upper()
        return label

    def add_flowing_data(self, data):
        if not data: return
        prespace = data[:1].isspace()
        postspace = data[-1:].isspace()
        data = " ".join(data.split())
        if self.nospace and not data:
            return
        elif prespace or self.softspace:
            if not data:
                if not self.nospace:
                    self.softspace = 1
                    self.parskip = 0
                return
            if not self.nospace:
                data = ' ' + data
        self.hard_break = self.nospace = self.para_end = \
                          self.parskip = self.have_label = 0
        self.softspace = postspace
        self.writer.send_flowing_data(data)

    def add_literal_data(self, data):
        if not data: return
        if self.softspace:
            self.writer.send_flowing_data(" ")
        self.hard_break = data[-1:] == '\n'
        self.nospace = self.para_end = self.softspace = \
                       self.parskip = self.have_label = 0
        self.writer.send_literal_data(data)

    def flush_softspace(self):
        if self.softspace:
            self.hard_break = self.para_end = self.parskip = \
                              self.have_label = self.softspace = 0
            self.nospace = 1
            self.writer.send_flowing_data(' ')

    def push_alignment(self, align):
        if align and align != self.align:
            self.writer.new_alignment(align)
            self.align = align
            self.align_stack.append(align)
        else:
            self.align_stack.append(self.align)

    def pop_alignment(self):
        if self.align_stack:
            del self.align_stack[-1]
        if self.align_stack:
            self.align = align = self.align_stack[-1]
            self.writer.new_alignment(align)
        else:
            self.align = None
            self.writer.new_alignment(None)

    def push_font(self, font):
        size, i, b, tt = font
        if self.softspace:
            self.hard_break = self.para_end = self.softspace = 0
            self.nospace = 1
            self.writer.send_flowing_data(' ')
        if self.font_stack:
            csize, ci, cb, ctt = self.font_stack[-1]
            if size is AS_IS: size = csize
            if i is AS_IS: i = ci
            if b is AS_IS: b = cb
            if tt is AS_IS: tt = ctt
        font = (size, i, b, tt)
        self.font_stack.append(font)
        self.writer.new_font(font)

    def pop_font(self):
        if self.font_stack:
            del self.font_stack[-1]
        if self.font_stack:
            font = self.font_stack[-1]
        else:
            font = None
        self.writer.new_font(font)

    def push_margin(self, margin):
        self.margin_stack.append(margin)
        fstack = [m for m in self.margin_stack if m]
        if not margin and fstack:
            margin = fstack[-1]
        self.writer.new_margin(margin, len(fstack))

    def pop_margin(self):
        if self.margin_stack:
            del self.margin_stack[-1]
        fstack = [m for m in self.margin_stack if m]
        if fstack:
            margin = fstack[-1]
        else:
            margin = None
        self.writer.new_margin(margin, len(fstack))

    def set_spacing(self, spacing):
        self.spacing = spacing
        self.writer.new_spacing(spacing)

    def push_style(self, *styles):
        if self.softspace:
            self.hard_break = self.para_end = self.softspace = 0
            self.nospace = 1
            self.writer.send_flowing_data(' ')
        for style in styles:
            self.style_stack.append(style)
        self.writer.new_styles(tuple(self.style_stack))

    def pop_style(self, n=1):
        del self.style_stack[-n:]
        self.writer.new_styles(tuple(self.style_stack))

    def assert_line_data(self, flag=1):
        self.nospace = self.hard_break = not flag
        self.para_end = self.parskip = self.have_label = 0


class NullWriter:
    """Minimal writer interface to use in testing & inheritance.

    A writer which only provides the interface definition; no actions are
    taken on any methods.  This should be the base class for all writers
    which do not need to inherit any implementation methods.

    """
    def __init__(self): pass
    def flush(self): pass
    def new_alignment(self, align): pass
    def new_font(self, font): pass
    def new_margin(self, margin, level): pass
    def new_spacing(self, spacing): pass
    def new_styles(self, styles): pass
    def send_paragraph(self, blankline): pass
    def send_line_break(self): pass
    def send_hor_rule(self, *args, **kw): pass
    def send_label_data(self, data): pass
    def send_flowing_data(self, data): pass
    def send_literal_data(self, data): pass


class AbstractWriter(NullWriter):
    """A writer which can be used in debugging formatters, but not much else.

    Each method simply announces itself by printing its name and
    arguments on standard output.

    """

    def new_alignment(self, align):
        print("new_alignment(%r)" % (align,))

    def new_font(self, font):
        print("new_font(%r)" % (font,))

    def new_margin(self, margin, level):
        print("new_margin(%r, %d)" % (margin, level))

    def new_spacing(self, spacing):
        print("new_spacing(%r)" % (spacing,))

    def new_styles(self, styles):
        print("new_styles(%r)" % (styles,))

    def send_paragraph(self, blankline):
        print("send_paragraph(%r)" % (blankline,))

    def send_line_break(self):
        print("send_line_break()")

    def send_hor_rule(self, *args, **kw):
        print("send_hor_rule()")

    def send_label_data(self, data):
        print("send_label_data(%r)" % (data,))

    def send_flowing_data(self, data):
        print("send_flowing_data(%r)" % (data,))

    def send_literal_data(self, data):
        print("send_literal_data(%r)" % (data,))


class DumbWriter(NullWriter):
    """Simple writer class which writes output on the file object passed in
    as the file parameter or, if file is omitted, on standard output.  The
    output is simply word-wrapped to the number of columns specified by
    the maxcol parameter.  This class is suitable for reflowing a sequence
    of paragraphs.

    """

    def __init__(self, file=None, maxcol=72):
        self.file = file or sys.stdout
        self.maxcol = maxcol
        NullWriter.__init__(self)
        self.reset()

    def reset(self):
        self.col = 0
        self.atbreak = 0

    def send_paragraph(self, blankline):
        self.file.write('\n'*blankline)
        self.col = 0
        self.atbreak = 0

    def send_line_break(self):
        self.file.write('\n')
        self.col = 0
        self.atbreak = 0

    def send_hor_rule(self, *args, **kw):
        self.file.write('\n')
        self.file.write('-'*self.maxcol)
        self.file.write('\n')
        self.col = 0
        self.atbreak = 0

    def send_literal_data(self, data):
        self.file.write(data)
        i = data.rfind('\n')
        if i >= 0:
            self.col = 0
            data = data[i+1:]
        data = data.expandtabs()
        self.col = self.col + len(data)
        self.atbreak = 0

    def send_flowing_data(self, data):
        if not data: return
        atbreak = self.atbreak or data[0].isspace()
        col = self.col
        maxcol = self.maxcol
        write = self.file.write
        for word in data.split():
            if atbreak:
                if col + len(word) >= maxcol:
                    write('\n')
                    col = 0
                else:
                    write(' ')
                    col = col + 1
            write(word)
            col = col + len(word)
            atbreak = 1
        self.col = col
        self.atbreak = data[-1].isspace()


def test(file = None):
    w = DumbWriter()
    f = AbstractFormatter(w)
    if file is not None:
        fp = open(file)
    elif sys.argv[1:]:
        fp = open(sys.argv[1])
    else:
        fp = sys.stdin
    try:
        for line in fp:
            if line == '\n':
                f.end_paragraph(1)
            else:
                f.add_flowing_data(line)
    finally:
        if fp is not sys.stdin:
            fp.close()
    f.end_paragraph(0)


if __name__ == '__main__':
    test()
lib\fractions.py
# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.

"""Fraction, infinite-precision, real numbers."""

from decimal import Decimal
import math
import numbers
import operator
import re
import sys

__all__ = ['Fraction', 'gcd']



def gcd(a, b):
    """Calculate the Greatest Common Divisor of a and b.

    Unless b==0, the result will have the same sign as b (so that when
    b is divided by it, the result comes out positive).
    """
    while b:
        a, b = b, a%b
    return a

# Constants related to the hash implementation;  hash(x) is based
# on the reduction of x modulo the prime _PyHASH_MODULUS.
_PyHASH_MODULUS = sys.hash_info.modulus
# Value to be used for rationals that reduce to infinity modulo
# _PyHASH_MODULUS.
_PyHASH_INF = sys.hash_info.inf

_RATIONAL_FORMAT = re.compile(r"""
    \A\s*                      # optional whitespace at the start, then
    (?P<sign>[-+]?)            # an optional sign, then
    (?=\d|\.\d)                # lookahead for digit or .digit
    (?P<num>\d*)               # numerator (possibly empty)
    (?:                        # followed by
       (?:/(?P<denom>\d+))?    # an optional denominator
    |                          # or
       (?:\.(?P<decimal>\d*))? # an optional fractional part
       (?:E(?P<exp>[-+]?\d+))? # and optional exponent
    )
    \s*\Z                      # and optional whitespace to finish
""", re.VERBOSE | re.IGNORECASE)


class Fraction(numbers.Rational):
    """This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    """

    __slots__ = ('_numerator', '_denominator')

    # We're immutable, so use __new__ not __init__
    def __new__(cls, numerator=0, denominator=None):
        """Constructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        """
        self = super(Fraction, cls).__new__(cls)

        if denominator is None:
            if isinstance(numerator, numbers.Rational):
                self._numerator = numerator.numerator
                self._denominator = numerator.denominator
                return self

            elif isinstance(numerator, float):
                # Exact conversion from float
                value = Fraction.from_float(numerator)
                self._numerator = value._numerator
                self._denominator = value._denominator
                return self

            elif isinstance(numerator, Decimal):
                value = Fraction.from_decimal(numerator)
                self._numerator = value._numerator
                self._denominator = value._denominator
                return self

            elif isinstance(numerator, str):
                # Handle construction from strings.
                m = _RATIONAL_FORMAT.match(numerator)
                if m is None:
                    raise ValueError('Invalid literal for Fraction: %r' %
                                     numerator)
                numerator = int(m.group('num') or '0')
                denom = m.group('denom')
                if denom:
                    denominator = int(denom)
                else:
                    denominator = 1
                    decimal = m.group('decimal')
                    if decimal:
                        scale = 10**len(decimal)
                        numerator = numerator * scale + int(decimal)
                        denominator *= scale
                    exp = m.group('exp')
                    if exp:
                        exp = int(exp)
                        if exp >= 0:
                            numerator *= 10**exp
                        else:
                            denominator *= 10**-exp
                if m.group('sign') == '-':
                    numerator = -numerator

            else:
                raise TypeError("argument should be a string "
                                "or a Rational instance")

        elif (isinstance(numerator, numbers.Rational) and
            isinstance(denominator, numbers.Rational)):
            numerator, denominator = (
                numerator.numerator * denominator.denominator,
                denominator.numerator * numerator.denominator
                )
        else:
            raise TypeError("both arguments should be "
                            "Rational instances")

        if denominator == 0:
            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
        g = gcd(numerator, denominator)
        self._numerator = numerator // g
        self._denominator = denominator // g
        return self

    @classmethod
    def from_float(cls, f):
        """Converts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        """
        if isinstance(f, numbers.Integral):
            return cls(f)
        elif not isinstance(f, float):
            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
                            (cls.__name__, f, type(f).__name__))
        if math.isnan(f):
            raise ValueError("Cannot convert %r to %s." % (f, cls.__name__))
        if math.isinf(f):
            raise OverflowError("Cannot convert %r to %s." % (f, cls.__name__))
        return cls(*f.as_integer_ratio())

    @classmethod
    def from_decimal(cls, dec):
        """Converts a finite Decimal instance to a rational number, exactly."""
        from decimal import Decimal
        if isinstance(dec, numbers.Integral):
            dec = Decimal(int(dec))
        elif not isinstance(dec, Decimal):
            raise TypeError(
                "%s.from_decimal() only takes Decimals, not %r (%s)" %
                (cls.__name__, dec, type(dec).__name__))
        if dec.is_infinite():
            raise OverflowError(
                "Cannot convert %s to %s." % (dec, cls.__name__))
        if dec.is_nan():
            raise ValueError("Cannot convert %s to %s." % (dec, cls.__name__))
        sign, digits, exp = dec.as_tuple()
        digits = int(''.join(map(str, digits)))
        if sign:
            digits = -digits
        if exp >= 0:
            return cls(digits * 10 ** exp)
        else:
            return cls(digits, 10 ** -exp)

    def limit_denominator(self, max_denominator=1000000):
        """Closest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        """
        # Algorithm notes: For any real number x, define a *best upper
        # approximation* to x to be a rational number p/q such that:
        #
        #   (1) p/q >= x, and
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
        #
        # Define *best lower approximation* similarly.  Then it can be
        # proved that a rational number is a best upper or lower
        # approximation to x if, and only if, it is a convergent or
        # semiconvergent of the (unique shortest) continued fraction
        # associated to x.
        #
        # To find a best rational approximation with denominator <= M,
        # we find the best upper and lower approximations with
        # denominator <= M and take whichever of these is closer to x.
        # In the event of a tie, the bound with smaller denominator is
        # chosen.  If both denominators are equal (which can happen
        # only when max_denominator == 1 and self is midway between
        # two integers) the lower bound---i.e., the floor of self, is
        # taken.

        if max_denominator < 1:
            raise ValueError("max_denominator should be at least 1")
        if self._denominator <= max_denominator:
            return Fraction(self)

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = self._numerator, self._denominator
        while True:
            a = n//d
            q2 = q0+a*q1
            if q2 > max_denominator:
                break
            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
            n, d = d, n-a*d

        k = (max_denominator-q0)//q1
        bound1 = Fraction(p0+k*p1, q0+k*q1)
        bound2 = Fraction(p1, q1)
        if abs(bound2 - self) <= abs(bound1-self):
            return bound2
        else:
            return bound1

    @property
    def numerator(a):
        return a._numerator

    @property
    def denominator(a):
        return a._denominator

    def __repr__(self):
        """repr(self)"""
        return ('Fraction(%s, %s)' % (self._numerator, self._denominator))

    def __str__(self):
        """str(self)"""
        if self._denominator == 1:
            return str(self._numerator)
        else:
            return '%s/%s' % (self._numerator, self._denominator)

    def _operator_fallbacks(monomorphic_operator, fallback_operator):
        """Generates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        """
        def forward(a, b):
            if isinstance(b, (int, Fraction)):
                return monomorphic_operator(a, b)
            elif isinstance(b, float):
                return fallback_operator(float(a), b)
            elif isinstance(b, complex):
                return fallback_operator(complex(a), b)
            else:
                return NotImplemented
        forward.__name__ = '__' + fallback_operator.__name__ + '__'
        forward.__doc__ = monomorphic_operator.__doc__

        def reverse(b, a):
            if isinstance(a, numbers.Rational):
                # Includes ints.
                return monomorphic_operator(a, b)
            elif isinstance(a, numbers.Real):
                return fallback_operator(float(a), float(b))
            elif isinstance(a, numbers.Complex):
                return fallback_operator(complex(a), complex(b))
            else:
                return NotImplemented
        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
        reverse.__doc__ = monomorphic_operator.__doc__

        return forward, reverse

    def _add(a, b):
        """a + b"""
        return Fraction(a.numerator * b.denominator +
                        b.numerator * a.denominator,
                        a.denominator * b.denominator)

    __add__, __radd__ = _operator_fallbacks(_add, operator.add)

    def _sub(a, b):
        """a - b"""
        return Fraction(a.numerator * b.denominator -
                        b.numerator * a.denominator,
                        a.denominator * b.denominator)

    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)

    def _mul(a, b):
        """a * b"""
        return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)

    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)

    def _div(a, b):
        """a / b"""
        return Fraction(a.numerator * b.denominator,
                        a.denominator * b.numerator)

    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)

    def __floordiv__(a, b):
        """a // b"""
        return math.floor(a / b)

    def __rfloordiv__(b, a):
        """a // b"""
        return math.floor(a / b)

    def __mod__(a, b):
        """a % b"""
        div = a // b
        return a - b * div

    def __rmod__(b, a):
        """a % b"""
        div = a // b
        return a - b * div

    def __pow__(a, b):
        """a ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        """
        if isinstance(b, numbers.Rational):
            if b.denominator == 1:
                power = b.numerator
                if power >= 0:
                    return Fraction(a._numerator ** power,
                                    a._denominator ** power)
                else:
                    return Fraction(a._denominator ** -power,
                                    a._numerator ** -power)
            else:
                # A fractional power will generally produce an
                # irrational number.
                return float(a) ** float(b)
        else:
            return float(a) ** b

    def __rpow__(b, a):
        """a ** b"""
        if b._denominator == 1 and b._numerator >= 0:
            # If a is an int, keep it that way if possible.
            return a ** b._numerator

        if isinstance(a, numbers.Rational):
            return Fraction(a.numerator, a.denominator) ** b

        if b._denominator == 1:
            return a ** b._numerator

        return a ** float(b)

    def __pos__(a):
        """+a: Coerces a subclass instance to Fraction"""
        return Fraction(a._numerator, a._denominator)

    def __neg__(a):
        """-a"""
        return Fraction(-a._numerator, a._denominator)

    def __abs__(a):
        """abs(a)"""
        return Fraction(abs(a._numerator), a._denominator)

    def __trunc__(a):
        """trunc(a)"""
        if a._numerator < 0:
            return -(-a._numerator // a._denominator)
        else:
            return a._numerator // a._denominator

    def __floor__(a):
        """Will be math.floor(a) in 3.0."""
        return a.numerator // a.denominator

    def __ceil__(a):
        """Will be math.ceil(a) in 3.0."""
        # The negations cleverly convince floordiv to return the ceiling.
        return -(-a.numerator // a.denominator)

    def __round__(self, ndigits=None):
        """Will be round(self, ndigits) in 3.0.

        Rounds half toward even.
        """
        if ndigits is None:
            floor, remainder = divmod(self.numerator, self.denominator)
            if remainder * 2 < self.denominator:
                return floor
            elif remainder * 2 > self.denominator:
                return floor + 1
            # Deal with the half case:
            elif floor % 2 == 0:
                return floor
            else:
                return floor + 1
        shift = 10**abs(ndigits)
        # See _operator_fallbacks.forward to check that the results of
        # these operations will always be Fraction and therefore have
        # round().
        if ndigits > 0:
            return Fraction(round(self * shift), shift)
        else:
            return Fraction(round(self / shift) * shift)

    def __hash__(self):
        """hash(self)"""

        # XXX since this method is expensive, consider caching the result

        # In order to make sure that the hash of a Fraction agrees
        # with the hash of a numerically equal integer, float or
        # Decimal instance, we follow the rules for numeric hashes
        # outlined in the documentation.  (See library docs, 'Built-in
        # Types').

        # dinv is the inverse of self._denominator modulo the prime
        # _PyHASH_MODULUS, or 0 if self._denominator is divisible by
        # _PyHASH_MODULUS.
        dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
        if not dinv:
            hash_ = _PyHASH_INF
        else:
            hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS
        result = hash_ if self >= 0 else -hash_
        return -2 if result == -1 else result

    def __eq__(a, b):
        """a == b"""
        if isinstance(b, numbers.Rational):
            return (a._numerator == b.numerator and
                    a._denominator == b.denominator)
        if isinstance(b, numbers.Complex) and b.imag == 0:
            b = b.real
        if isinstance(b, float):
            if math.isnan(b) or math.isinf(b):
                # comparisons with an infinity or nan should behave in
                # the same way for any finite a, so treat a as zero.
                return 0.0 == b
            else:
                return a == a.from_float(b)
        else:
            # Since a doesn't know how to compare with b, let's give b
            # a chance to compare itself with a.
            return NotImplemented

    def _richcmp(self, other, op):
        """Helper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        """
        # convert other to a Rational instance where reasonable.
        if isinstance(other, numbers.Rational):
            return op(self._numerator * other.denominator,
                      self._denominator * other.numerator)
        if isinstance(other, float):
            if math.isnan(other) or math.isinf(other):
                return op(0.0, other)
            else:
                return op(self, self.from_float(other))
        else:
            return NotImplemented

    def __lt__(a, b):
        """a < b"""
        return a._richcmp(b, operator.lt)

    def __gt__(a, b):
        """a > b"""
        return a._richcmp(b, operator.gt)

    def __le__(a, b):
        """a <= b"""
        return a._richcmp(b, operator.le)

    def __ge__(a, b):
        """a >= b"""
        return a._richcmp(b, operator.ge)

    def __bool__(a):
        """a != 0"""
        return a._numerator != 0

    # support for pickling, copy, and deepcopy

    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) == Fraction:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(self._numerator, self._denominator)

    def __deepcopy__(self, memo):
        if type(self) == Fraction:
            return self     # My components are also immutable
        return self.__class__(self._numerator, self._denominator)
lib\ftplib.py
"""An FTP client class and some helper functions.

Based on RFC 959: File Transfer Protocol (FTP), by J. Postel and J. Reynolds

Example:

>>> from ftplib import FTP
>>> ftp = FTP('ftp.python.org') # connect to host, default port
>>> ftp.login() # default, i.e.: user anonymous, passwd anonymous@
'230 Guest login ok, access restrictions apply.'
>>> ftp.retrlines('LIST') # list directory contents
total 9
drwxr-xr-x   8 root     wheel        1024 Jan  3  1994 .
drwxr-xr-x   8 root     wheel        1024 Jan  3  1994 ..
drwxr-xr-x   2 root     wheel        1024 Jan  3  1994 bin
drwxr-xr-x   2 root     wheel        1024 Jan  3  1994 etc
d-wxrwxr-x   2 ftp      wheel        1024 Sep  5 13:43 incoming
drwxr-xr-x   2 root     wheel        1024 Nov 17  1993 lib
drwxr-xr-x   6 1094     wheel        1024 Sep 13 19:07 pub
drwxr-xr-x   3 root     wheel        1024 Jan  3  1994 usr
-rw-r--r--   1 root     root          312 Aug  1  1994 welcome.msg
'226 Transfer complete.'
>>> ftp.quit()
'221 Goodbye.'
>>>

A nice test that reveals some of the network dialogue would be:
python ftplib.py -d localhost -l -p -l
"""

#
# Changes and improvements suggested by Steve Majewski.
# Modified by Jack to work on the mac.
# Modified by Siebren to support docstrings and PASV.
# Modified by Phil Schwartz to add storbinary and storlines callbacks.
# Modified by Giampaolo Rodola' to add TLS support.
#

import os
import sys
import socket
import warnings
from socket import _GLOBAL_DEFAULT_TIMEOUT

__all__ = ["FTP", "Netrc"]

# Magic number from <socket.h>
MSG_OOB = 0x1                           # Process data out of band


# The standard FTP server control port
FTP_PORT = 21
# The sizehint parameter passed to readline() calls
MAXLINE = 8192


# Exception raised when an error or invalid response is received
class Error(Exception): pass
class error_reply(Error): pass          # unexpected [123]xx reply
class error_temp(Error): pass           # 4xx errors
class error_perm(Error): pass           # 5xx errors
class error_proto(Error): pass          # response does not begin with [1-5]


# All exceptions (hopefully) that may be raised here and that aren't
# (always) programming errors on our side
all_errors = (Error, OSError, EOFError)


# Line terminators (we always output CRLF, but accept any of CRLF, CR, LF)
CRLF = '\r\n'
B_CRLF = b'\r\n'

# The class itself
class FTP:

    '''An FTP client class.

    To create a connection, call the class using these arguments:
            host, user, passwd, acct, timeout

    The first four arguments are all strings, and have default value ''.
    timeout must be numeric and defaults to None if not passed,
    meaning that no timeout will be set on any ftp socket(s)
    If a timeout is passed, then this is now the default timeout for all ftp
    socket operations for this instance.

    Then use self.connect() with optional host and port argument.

    To download a file, use ftp.retrlines('RETR ' + filename),
    or ftp.retrbinary() with slightly different arguments.
    To upload a file, use ftp.storlines() or ftp.storbinary(),
    which have an open file as argument (see their definitions
    below for details).
    The download/upload functions first issue appropriate TYPE
    and PORT or PASV commands.
    '''

    debugging = 0
    host = ''
    port = FTP_PORT
    maxline = MAXLINE
    sock = None
    file = None
    welcome = None
    passiveserver = 1
    encoding = "latin-1"

    # Initialization method (called by class instantiation).
    # Initialize host to localhost, port to standard ftp port
    # Optional arguments are host (for connect()),
    # and user, passwd, acct (for login())
    def __init__(self, host='', user='', passwd='', acct='',
                 timeout=_GLOBAL_DEFAULT_TIMEOUT, source_address=None):
        self.source_address = source_address
        self.timeout = timeout
        if host:
            self.connect(host)
            if user:
                self.login(user, passwd, acct)

    def __enter__(self):
        return self

    # Context management protocol: try to quit() if active
    def __exit__(self, *args):
        if self.sock is not None:
            try:
                self.quit()
            except (OSError, EOFError):
                pass
            finally:
                if self.sock is not None:
                    self.close()

    def connect(self, host='', port=0, timeout=-999, source_address=None):
        '''Connect to host.  Arguments are:
         - host: hostname to connect to (string, default previous host)
         - port: port to connect to (integer, default previous port)
         - timeout: the timeout to set against the ftp socket(s)
         - source_address: a 2-tuple (host, port) for the socket to bind
           to as its source address before connecting.
        '''
        if host != '':
            self.host = host
        if port > 0:
            self.port = port
        if timeout != -999:
            self.timeout = timeout
        if source_address is not None:
            self.source_address = source_address
        self.sock = socket.create_connection((self.host, self.port), self.timeout,
                                             source_address=self.source_address)
        self.af = self.sock.family
        self.file = self.sock.makefile('r', encoding=self.encoding)
        self.welcome = self.getresp()
        return self.welcome

    def getwelcome(self):
        '''Get the welcome message from the server.
        (this is read and squirreled away by connect())'''
        if self.debugging:
            print('*welcome*', self.sanitize(self.welcome))
        return self.welcome

    def set_debuglevel(self, level):
        '''Set the debugging level.
        The required argument level means:
        0: no debugging output (default)
        1: print commands and responses but not body text etc.
        2: also print raw lines read and sent before stripping CR/LF'''
        self.debugging = level
    debug = set_debuglevel

    def set_pasv(self, val):
        '''Use passive or active mode for data transfers.
        With a false argument, use the normal PORT mode,
        With a true argument, use the PASV command.'''
        self.passiveserver = val

    # Internal: "sanitize" a string for printing
    def sanitize(self, s):
        if s[:5] in {'pass ', 'PASS '}:
            i = len(s.rstrip('\r\n'))
            s = s[:5] + '*'*(i-5) + s[i:]
        return repr(s)

    # Internal: send one line to the server, appending CRLF
    def putline(self, line):
        if '\r' in line or '\n' in line:
            raise ValueError('an illegal newline character should not be contained')
        line = line + CRLF
        if self.debugging > 1:
            print('*put*', self.sanitize(line))
        self.sock.sendall(line.encode(self.encoding))

    # Internal: send one command to the server (through putline())
    def putcmd(self, line):
        if self.debugging: print('*cmd*', self.sanitize(line))
        self.putline(line)

    # Internal: return one line from the server, stripping CRLF.
    # Raise EOFError if the connection is closed
    def getline(self):
        line = self.file.readline(self.maxline + 1)
        if len(line) > self.maxline:
            raise Error("got more than %d bytes" % self.maxline)
        if self.debugging > 1:
            print('*get*', self.sanitize(line))
        if not line:
            raise EOFError
        if line[-2:] == CRLF:
            line = line[:-2]
        elif line[-1:] in CRLF:
            line = line[:-1]
        return line

    # Internal: get a response from the server, which may possibly
    # consist of multiple lines.  Return a single string with no
    # trailing CRLF.  If the response consists of multiple lines,
    # these are separated by '\n' characters in the string
    def getmultiline(self):
        line = self.getline()
        if line[3:4] == '-':
            code = line[:3]
            while 1:
                nextline = self.getline()
                line = line + ('\n' + nextline)
                if nextline[:3] == code and \
                        nextline[3:4] != '-':
                    break
        return line

    # Internal: get a response from the server.
    # Raise various errors if the response indicates an error
    def getresp(self):
        resp = self.getmultiline()
        if self.debugging:
            print('*resp*', self.sanitize(resp))
        self.lastresp = resp[:3]
        c = resp[:1]
        if c in {'1', '2', '3'}:
            return resp
        if c == '4':
            raise error_temp(resp)
        if c == '5':
            raise error_perm(resp)
        raise error_proto(resp)

    def voidresp(self):
        """Expect a response beginning with '2'."""
        resp = self.getresp()
        if resp[:1] != '2':
            raise error_reply(resp)
        return resp

    def abort(self):
        '''Abort a file transfer.  Uses out-of-band data.
        This does not follow the procedure from the RFC to send Telnet
        IP and Synch; that doesn't seem to work with the servers I've
        tried.  Instead, just send the ABOR command as OOB data.'''
        line = b'ABOR' + B_CRLF
        if self.debugging > 1:
            print('*put urgent*', self.sanitize(line))
        self.sock.sendall(line, MSG_OOB)
        resp = self.getmultiline()
        if resp[:3] not in {'426', '225', '226'}:
            raise error_proto(resp)
        return resp

    def sendcmd(self, cmd):
        '''Send a command and return the response.'''
        self.putcmd(cmd)
        return self.getresp()

    def voidcmd(self, cmd):
        """Send a command and expect a response beginning with '2'."""
        self.putcmd(cmd)
        return self.voidresp()

    def sendport(self, host, port):
        '''Send a PORT command with the current host and the given
        port number.
        '''
        hbytes = host.split('.')
        pbytes = [repr(port//256), repr(port%256)]
        bytes = hbytes + pbytes
        cmd = 'PORT ' + ','.join(bytes)
        return self.voidcmd(cmd)

    def sendeprt(self, host, port):
        '''Send an EPRT command with the current host and the given port number.'''
        af = 0
        if self.af == socket.AF_INET:
            af = 1
        if self.af == socket.AF_INET6:
            af = 2
        if af == 0:
            raise error_proto('unsupported address family')
        fields = ['', repr(af), host, repr(port), '']
        cmd = 'EPRT ' + '|'.join(fields)
        return self.voidcmd(cmd)

    def makeport(self):
        '''Create a new socket and send a PORT command for it.'''
        err = None
        sock = None
        for res in socket.getaddrinfo(None, 0, self.af, socket.SOCK_STREAM, 0, socket.AI_PASSIVE):
            af, socktype, proto, canonname, sa = res
            try:
                sock = socket.socket(af, socktype, proto)
                sock.bind(sa)
            except OSError as _:
                err = _
                if sock:
                    sock.close()
                sock = None
                continue
            break
        if sock is None:
            if err is not None:
                raise err
            else:
                raise OSError("getaddrinfo returns an empty list")
        sock.listen(1)
        port = sock.getsockname()[1] # Get proper port
        host = self.sock.getsockname()[0] # Get proper host
        if self.af == socket.AF_INET:
            resp = self.sendport(host, port)
        else:
            resp = self.sendeprt(host, port)
        if self.timeout is not _GLOBAL_DEFAULT_TIMEOUT:
            sock.settimeout(self.timeout)
        return sock

    def makepasv(self):
        if self.af == socket.AF_INET:
            host, port = parse227(self.sendcmd('PASV'))
        else:
            host, port = parse229(self.sendcmd('EPSV'), self.sock.getpeername())
        return host, port

    def ntransfercmd(self, cmd, rest=None):
        """Initiate a transfer over the data connection.

        If the transfer is active, send a port command and the
        transfer command, and accept the connection.  If the server is
        passive, send a pasv command, connect to it, and start the
        transfer command.  Either way, return the socket for the
        connection and the expected size of the transfer.  The
        expected size may be None if it could not be determined.

        Optional `rest' argument can be a string that is sent as the
        argument to a REST command.  This is essentially a server
        marker used to tell the server to skip over any data up to the
        given marker.
        """
        size = None
        if self.passiveserver:
            host, port = self.makepasv()
            conn = socket.create_connection((host, port), self.timeout,
                                            source_address=self.source_address)
            try:
                if rest is not None:
                    self.sendcmd("REST %s" % rest)
                resp = self.sendcmd(cmd)
                # Some servers apparently send a 200 reply to
                # a LIST or STOR command, before the 150 reply
                # (and way before the 226 reply). This seems to
                # be in violation of the protocol (which only allows
                # 1xx or error messages for LIST), so we just discard
                # this response.
                if resp[0] == '2':
                    resp = self.getresp()
                if resp[0] != '1':
                    raise error_reply(resp)
            except:
                conn.close()
                raise
        else:
            with self.makeport() as sock:
                if rest is not None:
                    self.sendcmd("REST %s" % rest)
                resp = self.sendcmd(cmd)
                # See above.
                if resp[0] == '2':
                    resp = self.getresp()
                if resp[0] != '1':
                    raise error_reply(resp)
                conn, sockaddr = sock.accept()
                if self.timeout is not _GLOBAL_DEFAULT_TIMEOUT:
                    conn.settimeout(self.timeout)
        if resp[:3] == '150':
            # this is conditional in case we received a 125
            size = parse150(resp)
        return conn, size

    def transfercmd(self, cmd, rest=None):
        """Like ntransfercmd() but returns only the socket."""
        return self.ntransfercmd(cmd, rest)[0]

    def login(self, user = '', passwd = '', acct = ''):
        '''Login, default anonymous.'''
        if not user:
            user = 'anonymous'
        if not passwd:
            passwd = ''
        if not acct:
            acct = ''
        if user == 'anonymous' and passwd in {'', '-'}:
            # If there is no anonymous ftp password specified
            # then we'll just use anonymous@
            # We don't send any other thing because:
            # - We want to remain anonymous
            # - We want to stop SPAM
            # - We don't want to let ftp sites to discriminate by the user,
            #   host or country.
            passwd = passwd + 'anonymous@'
        resp = self.sendcmd('USER ' + user)
        if resp[0] == '3':
            resp = self.sendcmd('PASS ' + passwd)
        if resp[0] == '3':
            resp = self.sendcmd('ACCT ' + acct)
        if resp[0] != '2':
            raise error_reply(resp)
        return resp

    def retrbinary(self, cmd, callback, blocksize=8192, rest=None):
        """Retrieve data in binary mode.  A new port is created for you.

        Args:
          cmd: A RETR command.
          callback: A single parameter callable to be called on each
                    block of data read.
          blocksize: The maximum number of bytes to read from the
                     socket at one time.  [default: 8192]
          rest: Passed to transfercmd().  [default: None]

        Returns:
          The response code.
        """
        self.voidcmd('TYPE I')
        with self.transfercmd(cmd, rest) as conn:
            while 1:
                data = conn.recv(blocksize)
                if not data:
                    break
                callback(data)
            # shutdown ssl layer
            if _SSLSocket is not None and isinstance(conn, _SSLSocket):
                conn.unwrap()
        return self.voidresp()

    def retrlines(self, cmd, callback = None):
        """Retrieve data in line mode.  A new port is created for you.

        Args:
          cmd: A RETR, LIST, or NLST command.
          callback: An optional single parameter callable that is called
                    for each line with the trailing CRLF stripped.
                    [default: print_line()]

        Returns:
          The response code.
        """
        if callback is None:
            callback = print_line
        resp = self.sendcmd('TYPE A')
        with self.transfercmd(cmd) as conn, \
                 conn.makefile('r', encoding=self.encoding) as fp:
            while 1:
                line = fp.readline(self.maxline + 1)
                if len(line) > self.maxline:
                    raise Error("got more than %d bytes" % self.maxline)
                if self.debugging > 2:
                    print('*retr*', repr(line))
                if not line:
                    break
                if line[-2:] == CRLF:
                    line = line[:-2]
                elif line[-1:] == '\n':
                    line = line[:-1]
                callback(line)
            # shutdown ssl layer
            if _SSLSocket is not None and isinstance(conn, _SSLSocket):
                conn.unwrap()
        return self.voidresp()

    def storbinary(self, cmd, fp, blocksize=8192, callback=None, rest=None):
        """Store a file in binary mode.  A new port is created for you.

        Args:
          cmd: A STOR command.
          fp: A file-like object with a read(num_bytes) method.
          blocksize: The maximum data size to read from fp and send over
                     the connection at once.  [default: 8192]
          callback: An optional single parameter callable that is called on
                    each block of data after it is sent.  [default: None]
          rest: Passed to transfercmd().  [default: None]

        Returns:
          The response code.
        """
        self.voidcmd('TYPE I')
        with self.transfercmd(cmd, rest) as conn:
            while 1:
                buf = fp.read(blocksize)
                if not buf:
                    break
                conn.sendall(buf)
                if callback:
                    callback(buf)
            # shutdown ssl layer
            if _SSLSocket is not None and isinstance(conn, _SSLSocket):
                conn.unwrap()
        return self.voidresp()

    def storlines(self, cmd, fp, callback=None):
        """Store a file in line mode.  A new port is created for you.

        Args:
          cmd: A STOR command.
          fp: A file-like object with a readline() method.
          callback: An optional single parameter callable that is called on
                    each line after it is sent.  [default: None]

        Returns:
          The response code.
        """
        self.voidcmd('TYPE A')
        with self.transfercmd(cmd) as conn:
            while 1:
                buf = fp.readline(self.maxline + 1)
                if len(buf) > self.maxline:
                    raise Error("got more than %d bytes" % self.maxline)
                if not buf:
                    break
                if buf[-2:] != B_CRLF:
                    if buf[-1] in B_CRLF: buf = buf[:-1]
                    buf = buf + B_CRLF
                conn.sendall(buf)
                if callback:
                    callback(buf)
            # shutdown ssl layer
            if _SSLSocket is not None and isinstance(conn, _SSLSocket):
                conn.unwrap()
        return self.voidresp()

    def acct(self, password):
        '''Send new account name.'''
        cmd = 'ACCT ' + password
        return self.voidcmd(cmd)

    def nlst(self, *args):
        '''Return a list of files in a given directory (default the current).'''
        cmd = 'NLST'
        for arg in args:
            cmd = cmd + (' ' + arg)
        files = []
        self.retrlines(cmd, files.append)
        return files

    def dir(self, *args):
        '''List a directory in long form.
        By default list current directory to stdout.
        Optional last argument is callback function; all
        non-empty arguments before it are concatenated to the
        LIST command.  (This *should* only be used for a pathname.)'''
        cmd = 'LIST'
        func = None
        if args[-1:] and type(args[-1]) != type(''):
            args, func = args[:-1], args[-1]
        for arg in args:
            if arg:
                cmd = cmd + (' ' + arg)
        self.retrlines(cmd, func)

    def mlsd(self, path="", facts=[]):
        '''List a directory in a standardized format by using MLSD
        command (RFC-3659). If path is omitted the current directory
        is assumed. "facts" is a list of strings representing the type
        of information desired (e.g. ["type", "size", "perm"]).

        Return a generator object yielding a tuple of two elements
        for every file found in path.
        First element is the file name, the second one is a dictionary
        including a variable number of "facts" depending on the server
        and whether "facts" argument has been provided.
        '''
        if facts:
            self.sendcmd("OPTS MLST " + ";".join(facts) + ";")
        if path:
            cmd = "MLSD %s" % path
        else:
            cmd = "MLSD"
        lines = []
        self.retrlines(cmd, lines.append)
        for line in lines:
            facts_found, _, name = line.rstrip(CRLF).partition(' ')
            entry = {}
            for fact in facts_found[:-1].split(";"):
                key, _, value = fact.partition("=")
                entry[key.lower()] = value
            yield (name, entry)

    def rename(self, fromname, toname):
        '''Rename a file.'''
        resp = self.sendcmd('RNFR ' + fromname)
        if resp[0] != '3':
            raise error_reply(resp)
        return self.voidcmd('RNTO ' + toname)

    def delete(self, filename):
        '''Delete a file.'''
        resp = self.sendcmd('DELE ' + filename)
        if resp[:3] in {'250', '200'}:
            return resp
        else:
            raise error_reply(resp)

    def cwd(self, dirname):
        '''Change to a directory.'''
        if dirname == '..':
            try:
                return self.voidcmd('CDUP')
            except error_perm as msg:
                if msg.args[0][:3] != '500':
                    raise
        elif dirname == '':
            dirname = '.'  # does nothing, but could return error
        cmd = 'CWD ' + dirname
        return self.voidcmd(cmd)

    def size(self, filename):
        '''Retrieve the size of a file.'''
        # The SIZE command is defined in RFC-3659
        resp = self.sendcmd('SIZE ' + filename)
        if resp[:3] == '213':
            s = resp[3:].strip()
            return int(s)

    def mkd(self, dirname):
        '''Make a directory, return its full pathname.'''
        resp = self.voidcmd('MKD ' + dirname)
        # fix around non-compliant implementations such as IIS shipped
        # with Windows server 2003
        if not resp.startswith('257'):
            return ''
        return parse257(resp)

    def rmd(self, dirname):
        '''Remove a directory.'''
        return self.voidcmd('RMD ' + dirname)

    def pwd(self):
        '''Return current working directory.'''
        resp = self.voidcmd('PWD')
        # fix around non-compliant implementations such as IIS shipped
        # with Windows server 2003
        if not resp.startswith('257'):
            return ''
        return parse257(resp)

    def quit(self):
        '''Quit, and close the connection.'''
        resp = self.voidcmd('QUIT')
        self.close()
        return resp

    def close(self):
        '''Close the connection without assuming anything about it.'''
        try:
            file = self.file
            self.file = None
            if file is not None:
                file.close()
        finally:
            sock = self.sock
            self.sock = None
            if sock is not None:
                sock.close()

try:
    import ssl
except ImportError:
    _SSLSocket = None
else:
    _SSLSocket = ssl.SSLSocket

    class FTP_TLS(FTP):
        '''A FTP subclass which adds TLS support to FTP as described
        in RFC-4217.

        Connect as usual to port 21 implicitly securing the FTP control
        connection before authenticating.

        Securing the data connection requires user to explicitly ask
        for it by calling prot_p() method.

        Usage example:
        >>> from ftplib import FTP_TLS
        >>> ftps = FTP_TLS('ftp.python.org')
        >>> ftps.login()  # login anonymously previously securing control channel
        '230 Guest login ok, access restrictions apply.'
        >>> ftps.prot_p()  # switch to secure data connection
        '200 Protection level set to P'
        >>> ftps.retrlines('LIST')  # list directory content securely
        total 9
        drwxr-xr-x   8 root     wheel        1024 Jan  3  1994 .
        drwxr-xr-x   8 root     wheel        1024 Jan  3  1994 ..
        drwxr-xr-x   2 root     wheel        1024 Jan  3  1994 bin
        drwxr-xr-x   2 root     wheel        1024 Jan  3  1994 etc
        d-wxrwxr-x   2 ftp      wheel        1024 Sep  5 13:43 incoming
        drwxr-xr-x   2 root     wheel        1024 Nov 17  1993 lib
        drwxr-xr-x   6 1094     wheel        1024 Sep 13 19:07 pub
        drwxr-xr-x   3 root     wheel        1024 Jan  3  1994 usr
        -rw-r--r--   1 root     root          312 Aug  1  1994 welcome.msg
        '226 Transfer complete.'
        >>> ftps.quit()
        '221 Goodbye.'
        >>>
        '''
        ssl_version = ssl.PROTOCOL_SSLv23

        def __init__(self, host='', user='', passwd='', acct='', keyfile=None,
                     certfile=None, context=None,
                     timeout=_GLOBAL_DEFAULT_TIMEOUT, source_address=None):
            if context is not None and keyfile is not None:
                raise ValueError("context and keyfile arguments are mutually "
                                 "exclusive")
            if context is not None and certfile is not None:
                raise ValueError("context and certfile arguments are mutually "
                                 "exclusive")
            self.keyfile = keyfile
            self.certfile = certfile
            if context is None:
                context = ssl._create_stdlib_context(self.ssl_version,
                                                     certfile=certfile,
                                                     keyfile=keyfile)
            self.context = context
            self._prot_p = False
            FTP.__init__(self, host, user, passwd, acct, timeout, source_address)

        def login(self, user='', passwd='', acct='', secure=True):
            if secure and not isinstance(self.sock, ssl.SSLSocket):
                self.auth()
            return FTP.login(self, user, passwd, acct)

        def auth(self):
            '''Set up secure control connection by using TLS/SSL.'''
            if isinstance(self.sock, ssl.SSLSocket):
                raise ValueError("Already using TLS")
            if self.ssl_version >= ssl.PROTOCOL_SSLv23:
                resp = self.voidcmd('AUTH TLS')
            else:
                resp = self.voidcmd('AUTH SSL')
            self.sock = self.context.wrap_socket(self.sock,
                                                 server_hostname=self.host)
            self.file = self.sock.makefile(mode='r', encoding=self.encoding)
            return resp

        def ccc(self):
            '''Switch back to a clear-text control connection.'''
            if not isinstance(self.sock, ssl.SSLSocket):
                raise ValueError("not using TLS")
            resp = self.voidcmd('CCC')
            self.sock = self.sock.unwrap()
            return resp

        def prot_p(self):
            '''Set up secure data connection.'''
            # PROT defines whether or not the data channel is to be protected.
            # Though RFC-2228 defines four possible protection levels,
            # RFC-4217 only recommends two, Clear and Private.
            # Clear (PROT C) means that no security is to be used on the
            # data-channel, Private (PROT P) means that the data-channel
            # should be protected by TLS.
            # PBSZ command MUST still be issued, but must have a parameter of
            # '0' to indicate that no buffering is taking place and the data
            # connection should not be encapsulated.
            self.voidcmd('PBSZ 0')
            resp = self.voidcmd('PROT P')
            self._prot_p = True
            return resp

        def prot_c(self):
            '''Set up clear text data connection.'''
            resp = self.voidcmd('PROT C')
            self._prot_p = False
            return resp

        # --- Overridden FTP methods

        def ntransfercmd(self, cmd, rest=None):
            conn, size = FTP.ntransfercmd(self, cmd, rest)
            if self._prot_p:
                conn = self.context.wrap_socket(conn,
                                                server_hostname=self.host)
            return conn, size

        def abort(self):
            # overridden as we can't pass MSG_OOB flag to sendall()
            line = b'ABOR' + B_CRLF
            self.sock.sendall(line)
            resp = self.getmultiline()
            if resp[:3] not in {'426', '225', '226'}:
                raise error_proto(resp)
            return resp

    __all__.append('FTP_TLS')
    all_errors = (Error, OSError, EOFError, ssl.SSLError)


_150_re = None

def parse150(resp):
    '''Parse the '150' response for a RETR request.
    Returns the expected transfer size or None; size is not guaranteed to
    be present in the 150 message.
    '''
    if resp[:3] != '150':
        raise error_reply(resp)
    global _150_re
    if _150_re is None:
        import re
        _150_re = re.compile(
            "150 .* \((\d+) bytes\)", re.IGNORECASE | re.ASCII)
    m = _150_re.match(resp)
    if not m:
        return None
    return int(m.group(1))


_227_re = None

def parse227(resp):
    '''Parse the '227' response for a PASV request.
    Raises error_proto if it does not contain '(h1,h2,h3,h4,p1,p2)'
    Return ('host.addr.as.numbers', port#) tuple.'''

    if resp[:3] != '227':
        raise error_reply(resp)
    global _227_re
    if _227_re is None:
        import re
        _227_re = re.compile(r'(\d+),(\d+),(\d+),(\d+),(\d+),(\d+)', re.ASCII)
    m = _227_re.search(resp)
    if not m:
        raise error_proto(resp)
    numbers = m.groups()
    host = '.'.join(numbers[:4])
    port = (int(numbers[4]) << 8) + int(numbers[5])
    return host, port


def parse229(resp, peer):
    '''Parse the '229' response for an EPSV request.
    Raises error_proto if it does not contain '(|||port|)'
    Return ('host.addr.as.numbers', port#) tuple.'''

    if resp[:3] != '229':
        raise error_reply(resp)
    left = resp.find('(')
    if left < 0: raise error_proto(resp)
    right = resp.find(')', left + 1)
    if right < 0:
        raise error_proto(resp) # should contain '(|||port|)'
    if resp[left + 1] != resp[right - 1]:
        raise error_proto(resp)
    parts = resp[left + 1:right].split(resp[left+1])
    if len(parts) != 5:
        raise error_proto(resp)
    host = peer[0]
    port = int(parts[3])
    return host, port


def parse257(resp):
    '''Parse the '257' response for a MKD or PWD request.
    This is a response to a MKD or PWD request: a directory name.
    Returns the directoryname in the 257 reply.'''

    if resp[:3] != '257':
        raise error_reply(resp)
    if resp[3:5] != ' "':
        return '' # Not compliant to RFC 959, but UNIX ftpd does this
    dirname = ''
    i = 5
    n = len(resp)
    while i < n:
        c = resp[i]
        i = i+1
        if c == '"':
            if i >= n or resp[i] != '"':
                break
            i = i+1
        dirname = dirname + c
    return dirname


def print_line(line):
    '''Default retrlines callback to print a line.'''
    print(line)


def ftpcp(source, sourcename, target, targetname = '', type = 'I'):
    '''Copy file from one FTP-instance to another.'''
    if not targetname:
        targetname = sourcename
    type = 'TYPE ' + type
    source.voidcmd(type)
    target.voidcmd(type)
    sourcehost, sourceport = parse227(source.sendcmd('PASV'))
    target.sendport(sourcehost, sourceport)
    # RFC 959: the user must "listen" [...] BEFORE sending the
    # transfer request.
    # So: STOR before RETR, because here the target is a "user".
    treply = target.sendcmd('STOR ' + targetname)
    if treply[:3] not in {'125', '150'}:
        raise error_proto  # RFC 959
    sreply = source.sendcmd('RETR ' + sourcename)
    if sreply[:3] not in {'125', '150'}:
        raise error_proto  # RFC 959
    source.voidresp()
    target.voidresp()


class Netrc:
    """Class to parse & provide access to 'netrc' format files.

    See the netrc(4) man page for information on the file format.

    WARNING: This class is obsolete -- use module netrc instead.

    """
    __defuser = None
    __defpasswd = None
    __defacct = None

    def __init__(self, filename=None):
        warnings.warn("This class is deprecated, use the netrc module instead",
                      DeprecationWarning, 2)
        if filename is None:
            if "HOME" in os.environ:
                filename = os.path.join(os.environ["HOME"],
                                        ".netrc")
            else:
                raise OSError("specify file to load or set $HOME")
        self.__hosts = {}
        self.__macros = {}
        fp = open(filename, "r")
        in_macro = 0
        while 1:
            line = fp.readline()
            if not line:
                break
            if in_macro and line.strip():
                macro_lines.append(line)
                continue
            elif in_macro:
                self.__macros[macro_name] = tuple(macro_lines)
                in_macro = 0
            words = line.split()
            host = user = passwd = acct = None
            default = 0
            i = 0
            while i < len(words):
                w1 = words[i]
                if i+1 < len(words):
                    w2 = words[i + 1]
                else:
                    w2 = None
                if w1 == 'default':
                    default = 1
                elif w1 == 'machine' and w2:
                    host = w2.lower()
                    i = i + 1
                elif w1 == 'login' and w2:
                    user = w2
                    i = i + 1
                elif w1 == 'password' and w2:
                    passwd = w2
                    i = i + 1
                elif w1 == 'account' and w2:
                    acct = w2
                    i = i + 1
                elif w1 == 'macdef' and w2:
                    macro_name = w2
                    macro_lines = []
                    in_macro = 1
                    break
                i = i + 1
            if default:
                self.__defuser = user or self.__defuser
                self.__defpasswd = passwd or self.__defpasswd
                self.__defacct = acct or self.__defacct
            if host:
                if host in self.__hosts:
                    ouser, opasswd, oacct = \
                           self.__hosts[host]
                    user = user or ouser
                    passwd = passwd or opasswd
                    acct = acct or oacct
                self.__hosts[host] = user, passwd, acct
        fp.close()

    def get_hosts(self):
        """Return a list of hosts mentioned in the .netrc file."""
        return self.__hosts.keys()

    def get_account(self, host):
        """Returns login information for the named host.

        The return value is a triple containing userid,
        password, and the accounting field.

        """
        host = host.lower()
        user = passwd = acct = None
        if host in self.__hosts:
            user, passwd, acct = self.__hosts[host]
        user = user or self.__defuser
        passwd = passwd or self.__defpasswd
        acct = acct or self.__defacct
        return user, passwd, acct

    def get_macros(self):
        """Return a list of all defined macro names."""
        return self.__macros.keys()

    def get_macro(self, macro):
        """Return a sequence of lines which define a named macro."""
        return self.__macros[macro]



def test():
    '''Test program.
    Usage: ftp [-d] [-r[file]] host [-l[dir]] [-d[dir]] [-p] [file] ...

    -d dir
    -l list
    -p password
    '''

    if len(sys.argv) < 2:
        print(test.__doc__)
        sys.exit(0)

    debugging = 0
    rcfile = None
    while sys.argv[1] == '-d':
        debugging = debugging+1
        del sys.argv[1]
    if sys.argv[1][:2] == '-r':
        # get name of alternate ~/.netrc file:
        rcfile = sys.argv[1][2:]
        del sys.argv[1]
    host = sys.argv[1]
    ftp = FTP(host)
    ftp.set_debuglevel(debugging)
    userid = passwd = acct = ''
    try:
        netrc = Netrc(rcfile)
    except OSError:
        if rcfile is not None:
            sys.stderr.write("Could not open account file"
                             " -- using anonymous login.")
    else:
        try:
            userid, passwd, acct = netrc.get_account(host)
        except KeyError:
            # no account for host
            sys.stderr.write(
                    "No account -- using anonymous login.")
    ftp.login(userid, passwd, acct)
    for file in sys.argv[2:]:
        if file[:2] == '-l':
            ftp.dir(file[2:])
        elif file[:2] == '-d':
            cmd = 'CWD'
            if file[2:]: cmd = cmd + ' ' + file[2:]
            resp = ftp.sendcmd(cmd)
        elif file == '-p':
            ftp.set_pasv(not ftp.passiveserver)
        else:
            ftp.retrbinary('RETR ' + file, \
                           sys.stdout.write, 1024)
    ftp.quit()


if __name__ == '__main__':
    test()
lib\functools.py
"""functools.py - Tools for working with functions and callable objects
"""
# Python module wrapper for _functools C module
# to allow utilities written in Python to be added
# to the functools module.
# Written by Nick Coghlan <ncoghlan at gmail.com>,
# Raymond Hettinger <python at rcn.com>,
# and Łukasz Langa <lukasz at langa.pl>.
#   Copyright (C) 2006-2013 Python Software Foundation.
# See C source code for _functools credits/copyright

__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
           'total_ordering', 'cmp_to_key', 'lru_cache', 'reduce', 'partial',
           'partialmethod', 'singledispatch']

try:
    from _functools import reduce
except ImportError:
    pass
from abc import get_cache_token
from collections import namedtuple
from types import MappingProxyType
from weakref import WeakKeyDictionary
try:
    from _thread import RLock
except:
    class RLock:
        'Dummy reentrant lock for builds without threads'
        def __enter__(self): pass
        def __exit__(self, exctype, excinst, exctb): pass


################################################################################
### update_wrapper() and wraps() decorator
################################################################################

# update_wrapper() and wraps() are tools to help write
# wrapper functions that can handle naive introspection

WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
                       '__annotations__')
WRAPPER_UPDATES = ('__dict__',)
def update_wrapper(wrapper,
                   wrapped,
                   assigned = WRAPPER_ASSIGNMENTS,
                   updated = WRAPPER_UPDATES):
    """Update a wrapper function to look like the wrapped function

       wrapper is the function to be updated
       wrapped is the original function
       assigned is a tuple naming the attributes assigned directly
       from the wrapped function to the wrapper function (defaults to
       functools.WRAPPER_ASSIGNMENTS)
       updated is a tuple naming the attributes of the wrapper that
       are updated with the corresponding attribute from the wrapped
       function (defaults to functools.WRAPPER_UPDATES)
    """
    for attr in assigned:
        try:
            value = getattr(wrapped, attr)
        except AttributeError:
            pass
        else:
            setattr(wrapper, attr, value)
    for attr in updated:
        getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
    # Issue #17482: set __wrapped__ last so we don't inadvertently copy it
    # from the wrapped function when updating __dict__
    wrapper.__wrapped__ = wrapped
    # Return the wrapper so this can be used as a decorator via partial()
    return wrapper

def wraps(wrapped,
          assigned = WRAPPER_ASSIGNMENTS,
          updated = WRAPPER_UPDATES):
    """Decorator factory to apply update_wrapper() to a wrapper function

       Returns a decorator that invokes update_wrapper() with the decorated
       function as the wrapper argument and the arguments to wraps() as the
       remaining arguments. Default arguments are as for update_wrapper().
       This is a convenience function to simplify applying partial() to
       update_wrapper().
    """
    return partial(update_wrapper, wrapped=wrapped,
                   assigned=assigned, updated=updated)


################################################################################
### total_ordering class decorator
################################################################################

# The total ordering functions all invoke the root magic method directly
# rather than using the corresponding operator.  This avoids possible
# infinite recursion that could occur when the operator dispatch logic
# detects a NotImplemented result and then calls a reflected method.

def _gt_from_lt(self, other):
    'Return a > b.  Computed by @total_ordering from (not a < b) and (a != b).'
    op_result = self.__lt__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return not op_result and self != other

def _le_from_lt(self, other):
    'Return a <= b.  Computed by @total_ordering from (a < b) or (a == b).'
    op_result = self.__lt__(other)
    return op_result or self == other

def _ge_from_lt(self, other):
    'Return a >= b.  Computed by @total_ordering from (not a < b).'
    op_result = self.__lt__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return not op_result

def _ge_from_le(self, other):
    'Return a >= b.  Computed by @total_ordering from (not a <= b) or (a == b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return not op_result or self == other

def _lt_from_le(self, other):
    'Return a < b.  Computed by @total_ordering from (a <= b) and (a != b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return op_result and self != other

def _gt_from_le(self, other):
    'Return a > b.  Computed by @total_ordering from (not a <= b).'
    op_result = self.__le__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return not op_result

def _lt_from_gt(self, other):
    'Return a < b.  Computed by @total_ordering from (not a > b) and (a != b).'
    op_result = self.__gt__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return not op_result and self != other

def _ge_from_gt(self, other):
    'Return a >= b.  Computed by @total_ordering from (a > b) or (a == b).'
    op_result = self.__gt__(other)
    return op_result or self == other

def _le_from_gt(self, other):
    'Return a <= b.  Computed by @total_ordering from (not a > b).'
    op_result = self.__gt__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return not op_result

def _le_from_ge(self, other):
    'Return a <= b.  Computed by @total_ordering from (not a >= b) or (a == b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return not op_result or self == other

def _gt_from_ge(self, other):
    'Return a > b.  Computed by @total_ordering from (a >= b) and (a != b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return op_result and self != other

def _lt_from_ge(self, other):
    'Return a < b.  Computed by @total_ordering from (not a >= b).'
    op_result = self.__ge__(other)
    if op_result is NotImplemented:
        return NotImplemented
    return not op_result

def total_ordering(cls):
    """Class decorator that fills in missing ordering methods"""
    convert = {
        '__lt__': [('__gt__', _gt_from_lt),
                   ('__le__', _le_from_lt),
                   ('__ge__', _ge_from_lt)],
        '__le__': [('__ge__', _ge_from_le),
                   ('__lt__', _lt_from_le),
                   ('__gt__', _gt_from_le)],
        '__gt__': [('__lt__', _lt_from_gt),
                   ('__ge__', _ge_from_gt),
                   ('__le__', _le_from_gt)],
        '__ge__': [('__le__', _le_from_ge),
                   ('__gt__', _gt_from_ge),
                   ('__lt__', _lt_from_ge)]
    }
    # Find user-defined comparisons (not those inherited from object).
    roots = [op for op in convert if getattr(cls, op, None) is not getattr(object, op, None)]
    if not roots:
        raise ValueError('must define at least one ordering operation: < > <= >=')
    root = max(roots)       # prefer __lt__ to __le__ to __gt__ to __ge__
    for opname, opfunc in convert[root]:
        if opname not in roots:
            opfunc.__name__ = opname
            setattr(cls, opname, opfunc)
    return cls


################################################################################
### cmp_to_key() function converter
################################################################################

def cmp_to_key(mycmp):
    """Convert a cmp= function into a key= function"""
    class K(object):
        __slots__ = ['obj']
        def __init__(self, obj):
            self.obj = obj
        def __lt__(self, other):
            return mycmp(self.obj, other.obj) < 0
        def __gt__(self, other):
            return mycmp(self.obj, other.obj) > 0
        def __eq__(self, other):
            return mycmp(self.obj, other.obj) == 0
        def __le__(self, other):
            return mycmp(self.obj, other.obj) <= 0
        def __ge__(self, other):
            return mycmp(self.obj, other.obj) >= 0
        def __ne__(self, other):
            return mycmp(self.obj, other.obj) != 0
        __hash__ = None
    return K

try:
    from _functools import cmp_to_key
except ImportError:
    pass


################################################################################
### partial() argument application
################################################################################

# Purely functional, no descriptor behaviour
def partial(func, *args, **keywords):
    """New function with partial application of the given arguments
    and keywords.
    """
    def newfunc(*fargs, **fkeywords):
        newkeywords = keywords.copy()
        newkeywords.update(fkeywords)
        return func(*(args + fargs), **newkeywords)
    newfunc.func = func
    newfunc.args = args
    newfunc.keywords = keywords
    return newfunc

try:
    from _functools import partial
except ImportError:
    pass

# Descriptor version
class partialmethod(object):
    """Method descriptor with partial application of the given arguments
    and keywords.

    Supports wrapping existing descriptors and handles non-descriptor
    callables as instance methods.
    """

    def __init__(self, func, *args, **keywords):
        if not callable(func) and not hasattr(func, "__get__"):
            raise TypeError("{!r} is not callable or a descriptor"
                                 .format(func))

        # func could be a descriptor like classmethod which isn't callable,
        # so we can't inherit from partial (it verifies func is callable)
        if isinstance(func, partialmethod):
            # flattening is mandatory in order to place cls/self before all
            # other arguments
            # it's also more efficient since only one function will be called
            self.func = func.func
            self.args = func.args + args
            self.keywords = func.keywords.copy()
            self.keywords.update(keywords)
        else:
            self.func = func
            self.args = args
            self.keywords = keywords

    def __repr__(self):
        args = ", ".join(map(repr, self.args))
        keywords = ", ".join("{}={!r}".format(k, v)
                                 for k, v in self.keywords.items())
        format_string = "{module}.{cls}({func}, {args}, {keywords})"
        return format_string.format(module=self.__class__.__module__,
                                    cls=self.__class__.__name__,
                                    func=self.func,
                                    args=args,
                                    keywords=keywords)

    def _make_unbound_method(self):
        def _method(*args, **keywords):
            call_keywords = self.keywords.copy()
            call_keywords.update(keywords)
            cls_or_self, *rest = args
            call_args = (cls_or_self,) + self.args + tuple(rest)
            return self.func(*call_args, **call_keywords)
        _method.__isabstractmethod__ = self.__isabstractmethod__
        _method._partialmethod = self
        return _method

    def __get__(self, obj, cls):
        get = getattr(self.func, "__get__", None)
        result = None
        if get is not None:
            new_func = get(obj, cls)
            if new_func is not self.func:
                # Assume __get__ returning something new indicates the
                # creation of an appropriate callable
                result = partial(new_func, *self.args, **self.keywords)
                try:
                    result.__self__ = new_func.__self__
                except AttributeError:
                    pass
        if result is None:
            # If the underlying descriptor didn't do anything, treat this
            # like an instance method
            result = self._make_unbound_method().__get__(obj, cls)
        return result

    @property
    def __isabstractmethod__(self):
        return getattr(self.func, "__isabstractmethod__", False)


################################################################################
### LRU Cache function decorator
################################################################################

_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])

class _HashedSeq(list):
    """ This class guarantees that hash() will be called no more than once
        per element.  This is important because the lru_cache() will hash
        the key multiple times on a cache miss.

    """

    __slots__ = 'hashvalue'

    def __init__(self, tup, hash=hash):
        self[:] = tup
        self.hashvalue = hash(tup)

    def __hash__(self):
        return self.hashvalue

def _make_key(args, kwds, typed,
             kwd_mark = (object(),),
             fasttypes = {int, str, frozenset, type(None)},
             sorted=sorted, tuple=tuple, type=type, len=len):
    """Make a cache key from optionally typed positional and keyword arguments

    The key is constructed in a way that is flat as possible rather than
    as a nested structure that would take more memory.

    If there is only a single argument and its data type is known to cache
    its hash value, then that argument is returned without a wrapper.  This
    saves space and improves lookup speed.

    """
    key = args
    if kwds:
        sorted_items = sorted(kwds.items())
        key += kwd_mark
        for item in sorted_items:
            key += item
    if typed:
        key += tuple(type(v) for v in args)
        if kwds:
            key += tuple(type(v) for k, v in sorted_items)
    elif len(key) == 1 and type(key[0]) in fasttypes:
        return key[0]
    return _HashedSeq(key)

def lru_cache(maxsize=128, typed=False):
    """Least-recently-used cache decorator.

    If *maxsize* is set to None, the LRU features are disabled and the cache
    can grow without bound.

    If *typed* is True, arguments of different types will be cached separately.
    For example, f(3.0) and f(3) will be treated as distinct calls with
    distinct results.

    Arguments to the cached function must be hashable.

    View the cache statistics named tuple (hits, misses, maxsize, currsize)
    with f.cache_info().  Clear the cache and statistics with f.cache_clear().
    Access the underlying function with f.__wrapped__.

    See:  http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

    """

    # Users should only access the lru_cache through its public API:
    #       cache_info, cache_clear, and f.__wrapped__
    # The internals of the lru_cache are encapsulated for thread safety and
    # to allow the implementation to change (including a possible C version).

    # Early detection of an erroneous call to @lru_cache without any arguments
    # resulting in the inner function being passed to maxsize instead of an
    # integer or None.
    if maxsize is not None and not isinstance(maxsize, int):
        raise TypeError('Expected maxsize to be an integer or None')

    # Constants shared by all lru cache instances:
    sentinel = object()          # unique object used to signal cache misses
    make_key = _make_key         # build a key from the function arguments
    PREV, NEXT, KEY, RESULT = 0, 1, 2, 3   # names for the link fields

    def decorating_function(user_function):
        cache = {}
        hits = misses = 0
        full = False
        cache_get = cache.get    # bound method to lookup a key or return None
        lock = RLock()           # because linkedlist updates aren't threadsafe
        root = []                # root of the circular doubly linked list
        root[:] = [root, root, None, None]     # initialize by pointing to self

        if maxsize == 0:

            def wrapper(*args, **kwds):
                # No caching -- just a statistics update after a successful call
                nonlocal misses
                result = user_function(*args, **kwds)
                misses += 1
                return result

        elif maxsize is None:

            def wrapper(*args, **kwds):
                # Simple caching without ordering or size limit
                nonlocal hits, misses
                key = make_key(args, kwds, typed)
                result = cache_get(key, sentinel)
                if result is not sentinel:
                    hits += 1
                    return result
                result = user_function(*args, **kwds)
                cache[key] = result
                misses += 1
                return result

        else:

            def wrapper(*args, **kwds):
                # Size limited caching that tracks accesses by recency
                nonlocal root, hits, misses, full
                key = make_key(args, kwds, typed)
                with lock:
                    link = cache_get(key)
                    if link is not None:
                        # Move the link to the front of the circular queue
                        link_prev, link_next, _key, result = link
                        link_prev[NEXT] = link_next
                        link_next[PREV] = link_prev
                        last = root[PREV]
                        last[NEXT] = root[PREV] = link
                        link[PREV] = last
                        link[NEXT] = root
                        hits += 1
                        return result
                result = user_function(*args, **kwds)
                with lock:
                    if key in cache:
                        # Getting here means that this same key was added to the
                        # cache while the lock was released.  Since the link
                        # update is already done, we need only return the
                        # computed result and update the count of misses.
                        pass
                    elif full:
                        # Use the old root to store the new key and result.
                        oldroot = root
                        oldroot[KEY] = key
                        oldroot[RESULT] = result
                        # Empty the oldest link and make it the new root.
                        # Keep a reference to the old key and old result to
                        # prevent their ref counts from going to zero during the
                        # update. That will prevent potentially arbitrary object
                        # clean-up code (i.e. __del__) from running while we're
                        # still adjusting the links.
                        root = oldroot[NEXT]
                        oldkey = root[KEY]
                        oldresult = root[RESULT]
                        root[KEY] = root[RESULT] = None
                        # Now update the cache dictionary.
                        del cache[oldkey]
                        # Save the potentially reentrant cache[key] assignment
                        # for last, after the root and links have been put in
                        # a consistent state.
                        cache[key] = oldroot
                    else:
                        # Put result in a new link at the front of the queue.
                        last = root[PREV]
                        link = [last, root, key, result]
                        last[NEXT] = root[PREV] = cache[key] = link
                        full = (len(cache) >= maxsize)
                    misses += 1
                return result

        def cache_info():
            """Report cache statistics"""
            with lock:
                return _CacheInfo(hits, misses, maxsize, len(cache))

        def cache_clear():
            """Clear the cache and cache statistics"""
            nonlocal hits, misses, full
            with lock:
                cache.clear()
                root[:] = [root, root, None, None]
                hits = misses = 0
                full = False

        wrapper.cache_info = cache_info
        wrapper.cache_clear = cache_clear
        return update_wrapper(wrapper, user_function)

    return decorating_function


################################################################################
### singledispatch() - single-dispatch generic function decorator
################################################################################

def _c3_merge(sequences):
    """Merges MROs in *sequences* to a single MRO using the C3 algorithm.

    Adapted from http://www.python.org/download/releases/2.3/mro/.

    """
    result = []
    while True:
        sequences = [s for s in sequences if s]   # purge empty sequences
        if not sequences:
            return result
        for s1 in sequences:   # find merge candidates among seq heads
            candidate = s1[0]
            for s2 in sequences:
                if candidate in s2[1:]:
                    candidate = None
                    break      # reject the current head, it appears later
            else:
                break
        if candidate is None:
            raise RuntimeError("Inconsistent hierarchy")
        result.append(candidate)
        # remove the chosen candidate
        for seq in sequences:
            if seq[0] == candidate:
                del seq[0]

def _c3_mro(cls, abcs=None):
    """Computes the method resolution order using extended C3 linearization.

    If no *abcs* are given, the algorithm works exactly like the built-in C3
    linearization used for method resolution.

    If given, *abcs* is a list of abstract base classes that should be inserted
    into the resulting MRO. Unrelated ABCs are ignored and don't end up in the
    result. The algorithm inserts ABCs where their functionality is introduced,
    i.e. issubclass(cls, abc) returns True for the class itself but returns
    False for all its direct base classes. Implicit ABCs for a given class
    (either registered or inferred from the presence of a special method like
    __len__) are inserted directly after the last ABC explicitly listed in the
    MRO of said class. If two implicit ABCs end up next to each other in the
    resulting MRO, their ordering depends on the order of types in *abcs*.

    """
    for i, base in enumerate(reversed(cls.__bases__)):
        if hasattr(base, '__abstractmethods__'):
            boundary = len(cls.__bases__) - i
            break   # Bases up to the last explicit ABC are considered first.
    else:
        boundary = 0
    abcs = list(abcs) if abcs else []
    explicit_bases = list(cls.__bases__[:boundary])
    abstract_bases = []
    other_bases = list(cls.__bases__[boundary:])
    for base in abcs:
        if issubclass(cls, base) and not any(
                issubclass(b, base) for b in cls.__bases__
            ):
            # If *cls* is the class that introduces behaviour described by
            # an ABC *base*, insert said ABC to its MRO.
            abstract_bases.append(base)
    for base in abstract_bases:
        abcs.remove(base)
    explicit_c3_mros = [_c3_mro(base, abcs=abcs) for base in explicit_bases]
    abstract_c3_mros = [_c3_mro(base, abcs=abcs) for base in abstract_bases]
    other_c3_mros = [_c3_mro(base, abcs=abcs) for base in other_bases]
    return _c3_merge(
        [[cls]] +
        explicit_c3_mros + abstract_c3_mros + other_c3_mros +
        [explicit_bases] + [abstract_bases] + [other_bases]
    )

def _compose_mro(cls, types):
    """Calculates the method resolution order for a given class *cls*.

    Includes relevant abstract base classes (with their respective bases) from
    the *types* iterable. Uses a modified C3 linearization algorithm.

    """
    bases = set(cls.__mro__)
    # Remove entries which are already present in the __mro__ or unrelated.
    def is_related(typ):
        return (typ not in bases and hasattr(typ, '__mro__')
                                 and issubclass(cls, typ))
    types = [n for n in types if is_related(n)]
    # Remove entries which are strict bases of other entries (they will end up
    # in the MRO anyway.
    def is_strict_base(typ):
        for other in types:
            if typ != other and typ in other.__mro__:
                return True
        return False
    types = [n for n in types if not is_strict_base(n)]
    # Subclasses of the ABCs in *types* which are also implemented by
    # *cls* can be used to stabilize ABC ordering.
    type_set = set(types)
    mro = []
    for typ in types:
        found = []
        for sub in typ.__subclasses__():
            if sub not in bases and issubclass(cls, sub):
                found.append([s for s in sub.__mro__ if s in type_set])
        if not found:
            mro.append(typ)
            continue
        # Favor subclasses with the biggest number of useful bases
        found.sort(key=len, reverse=True)
        for sub in found:
            for subcls in sub:
                if subcls not in mro:
                    mro.append(subcls)
    return _c3_mro(cls, abcs=mro)

def _find_impl(cls, registry):
    """Returns the best matching implementation from *registry* for type *cls*.

    Where there is no registered implementation for a specific type, its method
    resolution order is used to find a more generic implementation.

    Note: if *registry* does not contain an implementation for the base
    *object* type, this function may return None.

    """
    mro = _compose_mro(cls, registry.keys())
    match = None
    for t in mro:
        if match is not None:
            # If *match* is an implicit ABC but there is another unrelated,
            # equally matching implicit ABC, refuse the temptation to guess.
            if (t in registry and t not in cls.__mro__
                              and match not in cls.__mro__
                              and not issubclass(match, t)):
                raise RuntimeError("Ambiguous dispatch: {} or {}".format(
                    match, t))
            break
        if t in registry:
            match = t
    return registry.get(match)

def singledispatch(func):
    """Single-dispatch generic function decorator.

    Transforms a function into a generic function, which can have different
    behaviours depending upon the type of its first argument. The decorated
    function acts as the default implementation, and additional
    implementations can be registered using the register() attribute of the
    generic function.

    """
    registry = {}
    dispatch_cache = WeakKeyDictionary()
    cache_token = None

    def dispatch(cls):
        """generic_func.dispatch(cls) -> <function implementation>

        Runs the dispatch algorithm to return the best available implementation
        for the given *cls* registered on *generic_func*.

        """
        nonlocal cache_token
        if cache_token is not None:
            current_token = get_cache_token()
            if cache_token != current_token:
                dispatch_cache.clear()
                cache_token = current_token
        try:
            impl = dispatch_cache[cls]
        except KeyError:
            try:
                impl = registry[cls]
            except KeyError:
                impl = _find_impl(cls, registry)
            dispatch_cache[cls] = impl
        return impl

    def register(cls, func=None):
        """generic_func.register(cls, func) -> func

        Registers a new implementation for the given *cls* on a *generic_func*.

        """
        nonlocal cache_token
        if func is None:
            return lambda f: register(cls, f)
        registry[cls] = func
        if cache_token is None and hasattr(cls, '__abstractmethods__'):
            cache_token = get_cache_token()
        dispatch_cache.clear()
        return func

    def wrapper(*args, **kw):
        return dispatch(args[0].__class__)(*args, **kw)

    registry[object] = func
    wrapper.register = register
    wrapper.dispatch = dispatch
    wrapper.registry = MappingProxyType(registry)
    wrapper._clear_cache = dispatch_cache.clear
    update_wrapper(wrapper, func)
    return wrapper
lib\genericpath.py
"""
Path operations common to more than one OS
Do not use directly.  The OS specific modules import the appropriate
functions from this module themselves.
"""
import os
import stat

__all__ = ['commonprefix', 'exists', 'getatime', 'getctime', 'getmtime',
           'getsize', 'isdir', 'isfile', 'samefile', 'sameopenfile',
           'samestat']


# Does a path exist?
# This is false for dangling symbolic links on systems that support them.
def exists(path):
    """Test whether a path exists.  Returns False for broken symbolic links"""
    try:
        os.stat(path)
    except OSError:
        return False
    return True


# This follows symbolic links, so both islink() and isdir() can be true
# for the same path on systems that support symlinks
def isfile(path):
    """Test whether a path is a regular file"""
    try:
        st = os.stat(path)
    except OSError:
        return False
    return stat.S_ISREG(st.st_mode)


# Is a path a directory?
# This follows symbolic links, so both islink() and isdir()
# can be true for the same path on systems that support symlinks
def isdir(s):
    """Return true if the pathname refers to an existing directory."""
    try:
        st = os.stat(s)
    except OSError:
        return False
    return stat.S_ISDIR(st.st_mode)


def getsize(filename):
    """Return the size of a file, reported by os.stat()."""
    return os.stat(filename).st_size


def getmtime(filename):
    """Return the last modification time of a file, reported by os.stat()."""
    return os.stat(filename).st_mtime


def getatime(filename):
    """Return the last access time of a file, reported by os.stat()."""
    return os.stat(filename).st_atime


def getctime(filename):
    """Return the metadata change time of a file, reported by os.stat()."""
    return os.stat(filename).st_ctime


# Return the longest prefix of all list elements.
def commonprefix(m):
    "Given a list of pathnames, returns the longest common leading component"
    if not m: return ''
    s1 = min(m)
    s2 = max(m)
    for i, c in enumerate(s1):
        if c != s2[i]:
            return s1[:i]
    return s1

# Are two stat buffers (obtained from stat, fstat or lstat)
# describing the same file?
def samestat(s1, s2):
    """Test whether two stat buffers reference the same file"""
    return (s1.st_ino == s2.st_ino and
            s1.st_dev == s2.st_dev)


# Are two filenames really pointing to the same file?
def samefile(f1, f2):
    """Test whether two pathnames reference the same actual file"""
    s1 = os.stat(f1)
    s2 = os.stat(f2)
    return samestat(s1, s2)


# Are two open files really referencing the same file?
# (Not necessarily the same file descriptor!)
def sameopenfile(fp1, fp2):
    """Test whether two open file objects reference the same file"""
    s1 = os.fstat(fp1)
    s2 = os.fstat(fp2)
    return samestat(s1, s2)


# Split a path in root and extension.
# The extension is everything starting at the last dot in the last
# pathname component; the root is everything before that.
# It is always true that root + ext == p.

# Generic implementation of splitext, to be parametrized with
# the separators
def _splitext(p, sep, altsep, extsep):
    """Split the extension from a pathname.

    Extension is everything from the last dot to the end, ignoring
    leading dots.  Returns "(root, ext)"; ext may be empty."""
    # NOTE: This code must work for text and bytes strings.

    sepIndex = p.rfind(sep)
    if altsep:
        altsepIndex = p.rfind(altsep)
        sepIndex = max(sepIndex, altsepIndex)

    dotIndex = p.rfind(extsep)
    if dotIndex > sepIndex:
        # skip all leading dots
        filenameIndex = sepIndex + 1
        while filenameIndex < dotIndex:
            if p[filenameIndex:filenameIndex+1] != extsep:
                return p[:dotIndex], p[dotIndex:]
            filenameIndex += 1

    return p, p[:0]
lib\getopt.py
"""Parser for command line options.

This module helps scripts to parse the command line arguments in
sys.argv.  It supports the same conventions as the Unix getopt()
function (including the special meanings of arguments of the form `-'
and `--').  Long options similar to those supported by GNU software
may be used as well via an optional third argument.  This module
provides two functions and an exception:

getopt() -- Parse command line options
gnu_getopt() -- Like getopt(), but allow option and non-option arguments
to be intermixed.
GetoptError -- exception (class) raised with 'opt' attribute, which is the
option involved with the exception.
"""

# Long option support added by Lars Wirzenius <[email protected]>.
#
# Gerrit Holl <[email protected]> moved the string-based exceptions
# to class-based exceptions.
#
# Peter Åstrand <[email protected]> added gnu_getopt().
#
# TODO for gnu_getopt():
#
# - GNU getopt_long_only mechanism
# - allow the caller to specify ordering
# - RETURN_IN_ORDER option
# - GNU extension with '-' as first character of option string
# - optional arguments, specified by double colons
# - an option string with a W followed by semicolon should
#   treat "-W foo" as "--foo"

__all__ = ["GetoptError","error","getopt","gnu_getopt"]

import os
try:
    from gettext import gettext as _
except ImportError:
    # Bootstrapping Python: gettext's dependencies not built yet
    def _(s): return s

class GetoptError(Exception):
    opt = ''
    msg = ''
    def __init__(self, msg, opt=''):
        self.msg = msg
        self.opt = opt
        Exception.__init__(self, msg, opt)

    def __str__(self):
        return self.msg

error = GetoptError # backward compatibility

def getopt(args, shortopts, longopts = []):
    """getopt(args, options[, long_options]) -> opts, args

    Parses command line options and parameter list.  args is the
    argument list to be parsed, without the leading reference to the
    running program.  Typically, this means "sys.argv[1:]".  shortopts
    is the string of option letters that the script wants to
    recognize, with options that require an argument followed by a
    colon (i.e., the same format that Unix getopt() uses).  If
    specified, longopts is a list of strings with the names of the
    long options which should be supported.  The leading '--'
    characters should not be included in the option name.  Options
    which require an argument should be followed by an equal sign
    ('=').

    The return value consists of two elements: the first is a list of
    (option, value) pairs; the second is the list of program arguments
    left after the option list was stripped (this is a trailing slice
    of the first argument).  Each option-and-value pair returned has
    the option as its first element, prefixed with a hyphen (e.g.,
    '-x'), and the option argument as its second element, or an empty
    string if the option has no argument.  The options occur in the
    list in the same order in which they were found, thus allowing
    multiple occurrences.  Long and short options may be mixed.

    """

    opts = []
    if type(longopts) == type(""):
        longopts = [longopts]
    else:
        longopts = list(longopts)
    while args and args[0].startswith('-') and args[0] != '-':
        if args[0] == '--':
            args = args[1:]
            break
        if args[0].startswith('--'):
            opts, args = do_longs(opts, args[0][2:], longopts, args[1:])
        else:
            opts, args = do_shorts(opts, args[0][1:], shortopts, args[1:])

    return opts, args

def gnu_getopt(args, shortopts, longopts = []):
    """getopt(args, options[, long_options]) -> opts, args

    This function works like getopt(), except that GNU style scanning
    mode is used by default. This means that option and non-option
    arguments may be intermixed. The getopt() function stops
    processing options as soon as a non-option argument is
    encountered.

    If the first character of the option string is `+', or if the
    environment variable POSIXLY_CORRECT is set, then option
    processing stops as soon as a non-option argument is encountered.

    """

    opts = []
    prog_args = []
    if isinstance(longopts, str):
        longopts = [longopts]
    else:
        longopts = list(longopts)

    # Allow options after non-option arguments?
    if shortopts.startswith('+'):
        shortopts = shortopts[1:]
        all_options_first = True
    elif os.environ.get("POSIXLY_CORRECT"):
        all_options_first = True
    else:
        all_options_first = False

    while args:
        if args[0] == '--':
            prog_args += args[1:]
            break

        if args[0][:2] == '--':
            opts, args = do_longs(opts, args[0][2:], longopts, args[1:])
        elif args[0][:1] == '-' and args[0] != '-':
            opts, args = do_shorts(opts, args[0][1:], shortopts, args[1:])
        else:
            if all_options_first:
                prog_args += args
                break
            else:
                prog_args.append(args[0])
                args = args[1:]

    return opts, prog_args

def do_longs(opts, opt, longopts, args):
    try:
        i = opt.index('=')
    except ValueError:
        optarg = None
    else:
        opt, optarg = opt[:i], opt[i+1:]

    has_arg, opt = long_has_args(opt, longopts)
    if has_arg:
        if optarg is None:
            if not args:
                raise GetoptError(_('option --%s requires argument') % opt, opt)
            optarg, args = args[0], args[1:]
    elif optarg is not None:
        raise GetoptError(_('option --%s must not have an argument') % opt, opt)
    opts.append(('--' + opt, optarg or ''))
    return opts, args

# Return:
#   has_arg?
#   full option name
def long_has_args(opt, longopts):
    possibilities = [o for o in longopts if o.startswith(opt)]
    if not possibilities:
        raise GetoptError(_('option --%s not recognized') % opt, opt)
    # Is there an exact match?
    if opt in possibilities:
        return False, opt
    elif opt + '=' in possibilities:
        return True, opt
    # No exact match, so better be unique.
    if len(possibilities) > 1:
        # XXX since possibilities contains all valid continuations, might be
        # nice to work them into the error msg
        raise GetoptError(_('option --%s not a unique prefix') % opt, opt)
    assert len(possibilities) == 1
    unique_match = possibilities[0]
    has_arg = unique_match.endswith('=')
    if has_arg:
        unique_match = unique_match[:-1]
    return has_arg, unique_match

def do_shorts(opts, optstring, shortopts, args):
    while optstring != '':
        opt, optstring = optstring[0], optstring[1:]
        if short_has_arg(opt, shortopts):
            if optstring == '':
                if not args:
                    raise GetoptError(_('option -%s requires argument') % opt,
                                      opt)
                optstring, args = args[0], args[1:]
            optarg, optstring = optstring, ''
        else:
            optarg = ''
        opts.append(('-' + opt, optarg))
    return opts, args

def short_has_arg(opt, shortopts):
    for i in range(len(shortopts)):
        if opt == shortopts[i] != ':':
            return shortopts.startswith(':', i+1)
    raise GetoptError(_('option -%s not recognized') % opt, opt)

if __name__ == '__main__':
    import sys
    print(getopt(sys.argv[1:], "a:b", ["alpha=", "beta"]))
lib\getpass.py
"""Utilities to get a password and/or the current user name.

getpass(prompt[, stream]) - Prompt for a password, with echo turned off.
getuser() - Get the user name from the environment or password database.

GetPassWarning - This UserWarning is issued when getpass() cannot prevent
                 echoing of the password contents while reading.

On Windows, the msvcrt module will be used.
On the Mac EasyDialogs.AskPassword is used, if available.

"""

# Authors: Piers Lauder (original)
#          Guido van Rossum (Windows support and cleanup)
#          Gregory P. Smith (tty support & GetPassWarning)

import contextlib
import io
import os
import sys
import warnings

__all__ = ["getpass","getuser","GetPassWarning"]


class GetPassWarning(UserWarning): pass


def unix_getpass(prompt='Password: ', stream=None):
    """Prompt for a password, with echo turned off.

    Args:
      prompt: Written on stream to ask for the input.  Default: 'Password: '
      stream: A writable file object to display the prompt.  Defaults to
              the tty.  If no tty is available defaults to sys.stderr.
    Returns:
      The seKr3t input.
    Raises:
      EOFError: If our input tty or stdin was closed.
      GetPassWarning: When we were unable to turn echo off on the input.

    Always restores terminal settings before returning.
    """
    passwd = None
    with contextlib.ExitStack() as stack:
        try:
            # Always try reading and writing directly on the tty first.
            fd = os.open('/dev/tty', os.O_RDWR|os.O_NOCTTY)
            tty = io.FileIO(fd, 'w+')
            stack.enter_context(tty)
            input = io.TextIOWrapper(tty)
            stack.enter_context(input)
            if not stream:
                stream = input
        except OSError as e:
            # If that fails, see if stdin can be controlled.
            stack.close()
            try:
                fd = sys.stdin.fileno()
            except (AttributeError, ValueError):
                fd = None
                passwd = fallback_getpass(prompt, stream)
            input = sys.stdin
            if not stream:
                stream = sys.stderr

        if fd is not None:
            try:
                old = termios.tcgetattr(fd)     # a copy to save
                new = old[:]
                new[3] &= ~termios.ECHO  # 3 == 'lflags'
                tcsetattr_flags = termios.TCSAFLUSH
                if hasattr(termios, 'TCSASOFT'):
                    tcsetattr_flags |= termios.TCSASOFT
                try:
                    termios.tcsetattr(fd, tcsetattr_flags, new)
                    passwd = _raw_input(prompt, stream, input=input)
                finally:
                    termios.tcsetattr(fd, tcsetattr_flags, old)
                    stream.flush()  # issue7208
            except termios.error:
                if passwd is not None:
                    # _raw_input succeeded.  The final tcsetattr failed.  Reraise
                    # instead of leaving the terminal in an unknown state.
                    raise
                # We can't control the tty or stdin.  Give up and use normal IO.
                # fallback_getpass() raises an appropriate warning.
                if stream is not input:
                    # clean up unused file objects before blocking
                    stack.close()
                passwd = fallback_getpass(prompt, stream)

        stream.write('\n')
        return passwd


def win_getpass(prompt='Password: ', stream=None):
    """Prompt for password with echo off, using Windows getch()."""
    if sys.stdin is not sys.__stdin__:
        return fallback_getpass(prompt, stream)
    import msvcrt
    for c in prompt:
        msvcrt.putwch(c)
    pw = ""
    while 1:
        c = msvcrt.getwch()
        if c == '\r' or c == '\n':
            break
        if c == '\003':
            raise KeyboardInterrupt
        if c == '\b':
            pw = pw[:-1]
        else:
            pw = pw + c
    msvcrt.putwch('\r')
    msvcrt.putwch('\n')
    return pw


def fallback_getpass(prompt='Password: ', stream=None):
    warnings.warn("Can not control echo on the terminal.", GetPassWarning,
                  stacklevel=2)
    if not stream:
        stream = sys.stderr
    print("Warning: Password input may be echoed.", file=stream)
    return _raw_input(prompt, stream)


def _raw_input(prompt="", stream=None, input=None):
    # This doesn't save the string in the GNU readline history.
    if not stream:
        stream = sys.stderr
    if not input:
        input = sys.stdin
    prompt = str(prompt)
    if prompt:
        try:
            stream.write(prompt)
        except UnicodeEncodeError:
            # Use replace error handler to get as much as possible printed.
            prompt = prompt.encode(stream.encoding, 'replace')
            prompt = prompt.decode(stream.encoding)
            stream.write(prompt)
        stream.flush()
    # NOTE: The Python C API calls flockfile() (and unlock) during readline.
    line = input.readline()
    if not line:
        raise EOFError
    if line[-1] == '\n':
        line = line[:-1]
    return line


def getuser():
    """Get the username from the environment or password database.

    First try various environment variables, then the password
    database.  This works on Windows as long as USERNAME is set.

    """

    for name in ('LOGNAME', 'USER', 'LNAME', 'USERNAME'):
        user = os.environ.get(name)
        if user:
            return user

    # If this fails, the exception will "explain" why
    import pwd
    return pwd.getpwuid(os.getuid())[0]

# Bind the name getpass to the appropriate function
try:
    import termios
    # it's possible there is an incompatible termios from the
    # McMillan Installer, make sure we have a UNIX-compatible termios
    termios.tcgetattr, termios.tcsetattr
except (ImportError, AttributeError):
    try:
        import msvcrt
    except ImportError:
        getpass = fallback_getpass
    else:
        getpass = win_getpass
else:
    getpass = unix_getpass
lib\gettext.py
"""Internationalization and localization support.

This module provides internationalization (I18N) and localization (L10N)
support for your Python programs by providing an interface to the GNU gettext
message catalog library.

I18N refers to the operation by which a program is made aware of multiple
languages.  L10N refers to the adaptation of your program, once
internationalized, to the local language and cultural habits.

"""

# This module represents the integration of work, contributions, feedback, and
# suggestions from the following people:
#
# Martin von Loewis, who wrote the initial implementation of the underlying
# C-based libintlmodule (later renamed _gettext), along with a skeletal
# gettext.py implementation.
#
# Peter Funk, who wrote fintl.py, a fairly complete wrapper around intlmodule,
# which also included a pure-Python implementation to read .mo files if
# intlmodule wasn't available.
#
# James Henstridge, who also wrote a gettext.py module, which has some
# interesting, but currently unsupported experimental features: the notion of
# a Catalog class and instances, and the ability to add to a catalog file via
# a Python API.
#
# Barry Warsaw integrated these modules, wrote the .install() API and code,
# and conformed all C and Python code to Python's coding standards.
#
# Francois Pinard and Marc-Andre Lemburg also contributed valuably to this
# module.
#
# J. David Ibanez implemented plural forms. Bruno Haible fixed some bugs.
#
# TODO:
# - Lazy loading of .mo files.  Currently the entire catalog is loaded into
#   memory, but that's probably bad for large translated programs.  Instead,
#   the lexical sort of original strings in GNU .mo files should be exploited
#   to do binary searches and lazy initializations.  Or you might want to use
#   the undocumented double-hash algorithm for .mo files with hash tables, but
#   you'll need to study the GNU gettext code to do this.
#
# - Support Solaris .mo file formats.  Unfortunately, we've been unable to
#   find this format documented anywhere.


import locale, copy, io, os, re, struct, sys
from errno import ENOENT


__all__ = ['NullTranslations', 'GNUTranslations', 'Catalog',
           'find', 'translation', 'install', 'textdomain', 'bindtextdomain',
           'bind_textdomain_codeset',
           'dgettext', 'dngettext', 'gettext', 'lgettext', 'ldgettext',
           'ldngettext', 'lngettext', 'ngettext',
           ]

_default_localedir = os.path.join(sys.base_prefix, 'share', 'locale')

# Expression parsing for plural form selection.
#
# The gettext library supports a small subset of C syntax.  The only
# incompatible difference is that integer literals starting with zero are
# decimal.
#
# https://www.gnu.org/software/gettext/manual/gettext.html#Plural-forms
# http://git.savannah.gnu.org/cgit/gettext.git/tree/gettext-runtime/intl/plural.y

_token_pattern = re.compile(r"""
        (?P<WHITESPACES>[ \t]+)                    | # spaces and horizontal tabs
        (?P<NUMBER>[0-9]+\b)                       | # decimal integer
        (?P<NAME>n\b)                              | # only n is allowed
        (?P<PARENTHESIS>[()])                      |
        (?P<OPERATOR>[-*/%+?:]|[><!]=?|==|&&|\|\|) | # !, *, /, %, +, -, <, >,
                                                     # <=, >=, ==, !=, &&, ||,
                                                     # ? :
                                                     # unary and bitwise ops
                                                     # not allowed
        (?P<INVALID>\w+|.)                           # invalid token
    """, re.VERBOSE|re.DOTALL)

def _tokenize(plural):
    for mo in re.finditer(_token_pattern, plural):
        kind = mo.lastgroup
        if kind == 'WHITESPACES':
            continue
        value = mo.group(kind)
        if kind == 'INVALID':
            raise ValueError('invalid token in plural form: %s' % value)
        yield value
    yield ''

def _error(value):
    if value:
        return ValueError('unexpected token in plural form: %s' % value)
    else:
        return ValueError('unexpected end of plural form')

_binary_ops = (
    ('||',),
    ('&&',),
    ('==', '!='),
    ('<', '>', '<=', '>='),
    ('+', '-'),
    ('*', '/', '%'),
)
_binary_ops = {op: i for i, ops in enumerate(_binary_ops, 1) for op in ops}
_c2py_ops = {'||': 'or', '&&': 'and', '/': '//'}

def _parse(tokens, priority=-1):
    result = ''
    nexttok = next(tokens)
    while nexttok == '!':
        result += 'not '
        nexttok = next(tokens)

    if nexttok == '(':
        sub, nexttok = _parse(tokens)
        result = '%s(%s)' % (result, sub)
        if nexttok != ')':
            raise ValueError('unbalanced parenthesis in plural form')
    elif nexttok == 'n':
        result = '%s%s' % (result, nexttok)
    else:
        try:
            value = int(nexttok, 10)
        except ValueError:
            raise _error(nexttok) from None
        result = '%s%d' % (result, value)
    nexttok = next(tokens)

    j = 100
    while nexttok in _binary_ops:
        i = _binary_ops[nexttok]
        if i < priority:
            break
        # Break chained comparisons
        if i in (3, 4) and j in (3, 4):  # '==', '!=', '<', '>', '<=', '>='
            result = '(%s)' % result
        # Replace some C operators by their Python equivalents
        op = _c2py_ops.get(nexttok, nexttok)
        right, nexttok = _parse(tokens, i + 1)
        result = '%s %s %s' % (result, op, right)
        j = i
    if j == priority == 4:  # '<', '>', '<=', '>='
        result = '(%s)' % result

    if nexttok == '?' and priority <= 0:
        if_true, nexttok = _parse(tokens, 0)
        if nexttok != ':':
            raise _error(nexttok)
        if_false, nexttok = _parse(tokens)
        result = '%s if %s else %s' % (if_true, result, if_false)
        if priority == 0:
            result = '(%s)' % result

    return result, nexttok

def _as_int(n):
    try:
        i = round(n)
    except TypeError:
        raise TypeError('Plural value must be an integer, got %s' %
                        (n.__class__.__name__,)) from None
    return n

def c2py(plural):
    """Gets a C expression as used in PO files for plural forms and returns a
    Python function that implements an equivalent expression.
    """

    if len(plural) > 1000:
        raise ValueError('plural form expression is too long')
    try:
        result, nexttok = _parse(_tokenize(plural))
        if nexttok:
            raise _error(nexttok)

        depth = 0
        for c in result:
            if c == '(':
                depth += 1
                if depth > 20:
                    # Python compiler limit is about 90.
                    # The most complex example has 2.
                    raise ValueError('plural form expression is too complex')
            elif c == ')':
                depth -= 1

        ns = {'_as_int': _as_int}
        exec('''if True:
            def func(n):
                if not isinstance(n, int):
                    n = _as_int(n)
                return int(%s)
            ''' % result, ns)
        return ns['func']
    except RuntimeError:
        # Recursion error can be raised in _parse() or exec().
        raise ValueError('plural form expression is too complex')


def _expand_lang(loc):
    loc = locale.normalize(loc)
    COMPONENT_CODESET   = 1 << 0
    COMPONENT_TERRITORY = 1 << 1
    COMPONENT_MODIFIER  = 1 << 2
    # split up the locale into its base components
    mask = 0
    pos = loc.find('@')
    if pos >= 0:
        modifier = loc[pos:]
        loc = loc[:pos]
        mask |= COMPONENT_MODIFIER
    else:
        modifier = ''
    pos = loc.find('.')
    if pos >= 0:
        codeset = loc[pos:]
        loc = loc[:pos]
        mask |= COMPONENT_CODESET
    else:
        codeset = ''
    pos = loc.find('_')
    if pos >= 0:
        territory = loc[pos:]
        loc = loc[:pos]
        mask |= COMPONENT_TERRITORY
    else:
        territory = ''
    language = loc
    ret = []
    for i in range(mask+1):
        if not (i & ~mask):  # if all components for this combo exist ...
            val = language
            if i & COMPONENT_TERRITORY: val += territory
            if i & COMPONENT_CODESET:   val += codeset
            if i & COMPONENT_MODIFIER:  val += modifier
            ret.append(val)
    ret.reverse()
    return ret



class NullTranslations:
    def __init__(self, fp=None):
        self._info = {}
        self._charset = None
        self._output_charset = None
        self._fallback = None
        if fp is not None:
            self._parse(fp)

    def _parse(self, fp):
        pass

    def add_fallback(self, fallback):
        if self._fallback:
            self._fallback.add_fallback(fallback)
        else:
            self._fallback = fallback

    def gettext(self, message):
        if self._fallback:
            return self._fallback.gettext(message)
        return message

    def lgettext(self, message):
        if self._fallback:
            return self._fallback.lgettext(message)
        return message

    def ngettext(self, msgid1, msgid2, n):
        if self._fallback:
            return self._fallback.ngettext(msgid1, msgid2, n)
        if n == 1:
            return msgid1
        else:
            return msgid2

    def lngettext(self, msgid1, msgid2, n):
        if self._fallback:
            return self._fallback.lngettext(msgid1, msgid2, n)
        if n == 1:
            return msgid1
        else:
            return msgid2

    def info(self):
        return self._info

    def charset(self):
        return self._charset

    def output_charset(self):
        return self._output_charset

    def set_output_charset(self, charset):
        self._output_charset = charset

    def install(self, names=None):
        import builtins
        builtins.__dict__['_'] = self.gettext
        if hasattr(names, "__contains__"):
            if "gettext" in names:
                builtins.__dict__['gettext'] = builtins.__dict__['_']
            if "ngettext" in names:
                builtins.__dict__['ngettext'] = self.ngettext
            if "lgettext" in names:
                builtins.__dict__['lgettext'] = self.lgettext
            if "lngettext" in names:
                builtins.__dict__['lngettext'] = self.lngettext


class GNUTranslations(NullTranslations):
    # Magic number of .mo files
    LE_MAGIC = 0x950412de
    BE_MAGIC = 0xde120495

    def _parse(self, fp):
        """Override this method to support alternative .mo formats."""
        unpack = struct.unpack
        filename = getattr(fp, 'name', '')
        # Parse the .mo file header, which consists of 5 little endian 32
        # bit words.
        self._catalog = catalog = {}
        self.plural = lambda n: int(n != 1) # germanic plural by default
        buf = fp.read()
        buflen = len(buf)
        # Are we big endian or little endian?
        magic = unpack('<I', buf[:4])[0]
        if magic == self.LE_MAGIC:
            version, msgcount, masteridx, transidx = unpack('<4I', buf[4:20])
            ii = '<II'
        elif magic == self.BE_MAGIC:
            version, msgcount, masteridx, transidx = unpack('>4I', buf[4:20])
            ii = '>II'
        else:
            raise OSError(0, 'Bad magic number', filename)
        # Now put all messages from the .mo file buffer into the catalog
        # dictionary.
        for i in range(0, msgcount):
            mlen, moff = unpack(ii, buf[masteridx:masteridx+8])
            mend = moff + mlen
            tlen, toff = unpack(ii, buf[transidx:transidx+8])
            tend = toff + tlen
            if mend < buflen and tend < buflen:
                msg = buf[moff:mend]
                tmsg = buf[toff:tend]
            else:
                raise OSError(0, 'File is corrupt', filename)
            # See if we're looking at GNU .mo conventions for metadata
            if mlen == 0:
                # Catalog description
                lastk = None
                for b_item in tmsg.split('\n'.encode("ascii")):
                    item = b_item.decode().strip()
                    if not item:
                        continue
                    k = v = None
                    if ':' in item:
                        k, v = item.split(':', 1)
                        k = k.strip().lower()
                        v = v.strip()
                        self._info[k] = v
                        lastk = k
                    elif lastk:
                        self._info[lastk] += '\n' + item
                    if k == 'content-type':
                        self._charset = v.split('charset=')[1]
                    elif k == 'plural-forms':
                        v = v.split(';')
                        plural = v[1].split('plural=')[1]
                        self.plural = c2py(plural)
            # Note: we unconditionally convert both msgids and msgstrs to
            # Unicode using the character encoding specified in the charset
            # parameter of the Content-Type header.  The gettext documentation
            # strongly encourages msgids to be us-ascii, but some applications
            # require alternative encodings (e.g. Zope's ZCML and ZPT).  For
            # traditional gettext applications, the msgid conversion will
            # cause no problems since us-ascii should always be a subset of
            # the charset encoding.  We may want to fall back to 8-bit msgids
            # if the Unicode conversion fails.
            charset = self._charset or 'ascii'
            if b'\x00' in msg:
                # Plural forms
                msgid1, msgid2 = msg.split(b'\x00')
                tmsg = tmsg.split(b'\x00')
                msgid1 = str(msgid1, charset)
                for i, x in enumerate(tmsg):
                    catalog[(msgid1, i)] = str(x, charset)
            else:
                catalog[str(msg, charset)] = str(tmsg, charset)
            # advance to next entry in the seek tables
            masteridx += 8
            transidx += 8

    def lgettext(self, message):
        missing = object()
        tmsg = self._catalog.get(message, missing)
        if tmsg is missing:
            if self._fallback:
                return self._fallback.lgettext(message)
            return message
        if self._output_charset:
            return tmsg.encode(self._output_charset)
        return tmsg.encode(locale.getpreferredencoding())

    def lngettext(self, msgid1, msgid2, n):
        try:
            tmsg = self._catalog[(msgid1, self.plural(n))]
            if self._output_charset:
                return tmsg.encode(self._output_charset)
            return tmsg.encode(locale.getpreferredencoding())
        except KeyError:
            if self._fallback:
                return self._fallback.lngettext(msgid1, msgid2, n)
            if n == 1:
                return msgid1
            else:
                return msgid2

    def gettext(self, message):
        missing = object()
        tmsg = self._catalog.get(message, missing)
        if tmsg is missing:
            if self._fallback:
                return self._fallback.gettext(message)
            return message
        return tmsg

    def ngettext(self, msgid1, msgid2, n):
        try:
            tmsg = self._catalog[(msgid1, self.plural(n))]
        except KeyError:
            if self._fallback:
                return self._fallback.ngettext(msgid1, msgid2, n)
            if n == 1:
                tmsg = msgid1
            else:
                tmsg = msgid2
        return tmsg


# Locate a .mo file using the gettext strategy
def find(domain, localedir=None, languages=None, all=False):
    # Get some reasonable defaults for arguments that were not supplied
    if localedir is None:
        localedir = _default_localedir
    if languages is None:
        languages = []
        for envar in ('LANGUAGE', 'LC_ALL', 'LC_MESSAGES', 'LANG'):
            val = os.environ.get(envar)
            if val:
                languages = val.split(':')
                break
        if 'C' not in languages:
            languages.append('C')
    # now normalize and expand the languages
    nelangs = []
    for lang in languages:
        for nelang in _expand_lang(lang):
            if nelang not in nelangs:
                nelangs.append(nelang)
    # select a language
    if all:
        result = []
    else:
        result = None
    for lang in nelangs:
        if lang == 'C':
            break
        mofile = os.path.join(localedir, lang, 'LC_MESSAGES', '%s.mo' % domain)
        if os.path.exists(mofile):
            if all:
                result.append(mofile)
            else:
                return mofile
    return result



# a mapping between absolute .mo file path and Translation object
_translations = {}

def translation(domain, localedir=None, languages=None,
                class_=None, fallback=False, codeset=None):
    if class_ is None:
        class_ = GNUTranslations
    mofiles = find(domain, localedir, languages, all=True)
    if not mofiles:
        if fallback:
            return NullTranslations()
        raise OSError(ENOENT, 'No translation file found for domain', domain)
    # Avoid opening, reading, and parsing the .mo file after it's been done
    # once.
    result = None
    for mofile in mofiles:
        key = (class_, os.path.abspath(mofile))
        t = _translations.get(key)
        if t is None:
            with open(mofile, 'rb') as fp:
                t = _translations.setdefault(key, class_(fp))
        # Copy the translation object to allow setting fallbacks and
        # output charset. All other instance data is shared with the
        # cached object.
        t = copy.copy(t)
        if codeset:
            t.set_output_charset(codeset)
        if result is None:
            result = t
        else:
            result.add_fallback(t)
    return result


def install(domain, localedir=None, codeset=None, names=None):
    t = translation(domain, localedir, fallback=True, codeset=codeset)
    t.install(names)



# a mapping b/w domains and locale directories
_localedirs = {}
# a mapping b/w domains and codesets
_localecodesets = {}
# current global domain, `messages' used for compatibility w/ GNU gettext
_current_domain = 'messages'


def textdomain(domain=None):
    global _current_domain
    if domain is not None:
        _current_domain = domain
    return _current_domain


def bindtextdomain(domain, localedir=None):
    global _localedirs
    if localedir is not None:
        _localedirs[domain] = localedir
    return _localedirs.get(domain, _default_localedir)


def bind_textdomain_codeset(domain, codeset=None):
    global _localecodesets
    if codeset is not None:
        _localecodesets[domain] = codeset
    return _localecodesets.get(domain)


def dgettext(domain, message):
    try:
        t = translation(domain, _localedirs.get(domain, None),
                        codeset=_localecodesets.get(domain))
    except OSError:
        return message
    return t.gettext(message)

def ldgettext(domain, message):
    try:
        t = translation(domain, _localedirs.get(domain, None),
                        codeset=_localecodesets.get(domain))
    except OSError:
        return message
    return t.lgettext(message)

def dngettext(domain, msgid1, msgid2, n):
    try:
        t = translation(domain, _localedirs.get(domain, None),
                        codeset=_localecodesets.get(domain))
    except OSError:
        if n == 1:
            return msgid1
        else:
            return msgid2
    return t.ngettext(msgid1, msgid2, n)

def ldngettext(domain, msgid1, msgid2, n):
    try:
        t = translation(domain, _localedirs.get(domain, None),
                        codeset=_localecodesets.get(domain))
    except OSError:
        if n == 1:
            return msgid1
        else:
            return msgid2
    return t.lngettext(msgid1, msgid2, n)

def gettext(message):
    return dgettext(_current_domain, message)

def lgettext(message):
    return ldgettext(_current_domain, message)

def ngettext(msgid1, msgid2, n):
    return dngettext(_current_domain, msgid1, msgid2, n)

def lngettext(msgid1, msgid2, n):
    return ldngettext(_current_domain, msgid1, msgid2, n)

# dcgettext() has been deemed unnecessary and is not implemented.

# James Henstridge's Catalog constructor from GNOME gettext.  Documented usage
# was:
#
#    import gettext
#    cat = gettext.Catalog(PACKAGE, localedir=LOCALEDIR)
#    _ = cat.gettext
#    print _('Hello World')

# The resulting catalog object currently don't support access through a
# dictionary API, which was supported (but apparently unused) in GNOME
# gettext.

Catalog = translation
lib\glob.py
"""Filename globbing utility."""

import os
import re
import fnmatch

__all__ = ["glob", "iglob"]

def glob(pathname):
    """Return a list of paths matching a pathname pattern.

    The pattern may contain simple shell-style wildcards a la
    fnmatch. However, unlike fnmatch, filenames starting with a
    dot are special cases that are not matched by '*' and '?'
    patterns.

    """
    return list(iglob(pathname))

def iglob(pathname):
    """Return an iterator which yields the paths matching a pathname pattern.

    The pattern may contain simple shell-style wildcards a la
    fnmatch. However, unlike fnmatch, filenames starting with a
    dot are special cases that are not matched by '*' and '?'
    patterns.

    """
    dirname, basename = os.path.split(pathname)
    if not has_magic(pathname):
        if basename:
            if os.path.lexists(pathname):
                yield pathname
        else:
            # Patterns ending with a slash should match only directories
            if os.path.isdir(dirname):
                yield pathname
        return
    if not dirname:
        yield from glob1(None, basename)
        return
    # `os.path.split()` returns the argument itself as a dirname if it is a
    # drive or UNC path.  Prevent an infinite recursion if a drive or UNC path
    # contains magic characters (i.e. r'\\?\C:').
    if dirname != pathname and has_magic(dirname):
        dirs = iglob(dirname)
    else:
        dirs = [dirname]
    if has_magic(basename):
        glob_in_dir = glob1
    else:
        glob_in_dir = glob0
    for dirname in dirs:
        for name in glob_in_dir(dirname, basename):
            yield os.path.join(dirname, name)

# These 2 helper functions non-recursively glob inside a literal directory.
# They return a list of basenames. `glob1` accepts a pattern while `glob0`
# takes a literal basename (so it only has to check for its existence).

def glob1(dirname, pattern):
    if not dirname:
        if isinstance(pattern, bytes):
            dirname = bytes(os.curdir, 'ASCII')
        else:
            dirname = os.curdir
    try:
        names = os.listdir(dirname)
    except OSError:
        return []
    if not _ishidden(pattern):
        names = [x for x in names if not _ishidden(x)]
    return fnmatch.filter(names, pattern)

def glob0(dirname, basename):
    if not basename:
        # `os.path.split()` returns an empty basename for paths ending with a
        # directory separator.  'q*x/' should match only directories.
        if os.path.isdir(dirname):
            return [basename]
    else:
        if os.path.lexists(os.path.join(dirname, basename)):
            return [basename]
    return []


magic_check = re.compile('([*?[])')
magic_check_bytes = re.compile(b'([*?[])')

def has_magic(s):
    if isinstance(s, bytes):
        match = magic_check_bytes.search(s)
    else:
        match = magic_check.search(s)
    return match is not None

def _ishidden(path):
    return path[0] in ('.', b'.'[0])

def escape(pathname):
    """Escape all special characters.
    """
    # Escaping is done by wrapping any of "*?[" between square brackets.
    # Metacharacters do not work in the drive part and shouldn't be escaped.
    drive, pathname = os.path.splitdrive(pathname)
    if isinstance(pathname, bytes):
        pathname = magic_check_bytes.sub(br'[\1]', pathname)
    else:
        pathname = magic_check.sub(r'[\1]', pathname)
    return drive + pathname
lib\gzip.py
"""Functions that read and write gzipped files.

The user of the file doesn't have to worry about the compression,
but random access is not allowed."""

# based on Andrew Kuchling's minigzip.py distributed with the zlib module

import struct, sys, time, os
import zlib
import builtins
import io

__all__ = ["GzipFile", "open", "compress", "decompress"]

FTEXT, FHCRC, FEXTRA, FNAME, FCOMMENT = 1, 2, 4, 8, 16

READ, WRITE = 1, 2

def open(filename, mode="rb", compresslevel=9,
         encoding=None, errors=None, newline=None):
    """Open a gzip-compressed file in binary or text mode.

    The filename argument can be an actual filename (a str or bytes object), or
    an existing file object to read from or write to.

    The mode argument can be "r", "rb", "w", "wb", "x", "xb", "a" or "ab" for
    binary mode, or "rt", "wt", "xt" or "at" for text mode. The default mode is
    "rb", and the default compresslevel is 9.

    For binary mode, this function is equivalent to the GzipFile constructor:
    GzipFile(filename, mode, compresslevel). In this case, the encoding, errors
    and newline arguments must not be provided.

    For text mode, a GzipFile object is created, and wrapped in an
    io.TextIOWrapper instance with the specified encoding, error handling
    behavior, and line ending(s).

    """
    if "t" in mode:
        if "b" in mode:
            raise ValueError("Invalid mode: %r" % (mode,))
    else:
        if encoding is not None:
            raise ValueError("Argument 'encoding' not supported in binary mode")
        if errors is not None:
            raise ValueError("Argument 'errors' not supported in binary mode")
        if newline is not None:
            raise ValueError("Argument 'newline' not supported in binary mode")

    gz_mode = mode.replace("t", "")
    if isinstance(filename, (str, bytes)):
        binary_file = GzipFile(filename, gz_mode, compresslevel)
    elif hasattr(filename, "read") or hasattr(filename, "write"):
        binary_file = GzipFile(None, gz_mode, compresslevel, filename)
    else:
        raise TypeError("filename must be a str or bytes object, or a file")

    if "t" in mode:
        return io.TextIOWrapper(binary_file, encoding, errors, newline)
    else:
        return binary_file

def write32u(output, value):
    # The L format writes the bit pattern correctly whether signed
    # or unsigned.
    output.write(struct.pack("<L", value))

class _PaddedFile:
    """Minimal read-only file object that prepends a string to the contents
    of an actual file. Shouldn't be used outside of gzip.py, as it lacks
    essential functionality."""

    def __init__(self, f, prepend=b''):
        self._buffer = prepend
        self._length = len(prepend)
        self.file = f
        self._read = 0

    def read(self, size):
        if self._read is None:
            return self.file.read(size)
        if self._read + size <= self._length:
            read = self._read
            self._read += size
            return self._buffer[read:self._read]
        else:
            read = self._read
            self._read = None
            return self._buffer[read:] + \
                   self.file.read(size-self._length+read)

    def prepend(self, prepend=b'', readprevious=False):
        if self._read is None:
            self._buffer = prepend
        elif readprevious and len(prepend) <= self._read:
            self._read -= len(prepend)
            return
        else:
            self._buffer = self._buffer[self._read:] + prepend
        self._length = len(self._buffer)
        self._read = 0

    def unused(self):
        if self._read is None:
            return b''
        return self._buffer[self._read:]

    def seek(self, offset, whence=0):
        # This is only ever called with offset=whence=0
        if whence == 1 and self._read is not None:
            if 0 <= offset + self._read <= self._length:
                self._read += offset
                return
            else:
                offset += self._length - self._read
        self._read = None
        self._buffer = None
        return self.file.seek(offset, whence)

    def __getattr__(self, name):
        return getattr(self.file, name)


class GzipFile(io.BufferedIOBase):
    """The GzipFile class simulates most of the methods of a file object with
    the exception of the readinto() and truncate() methods.

    This class only supports opening files in binary mode. If you need to open a
    compressed file in text mode, use the gzip.open() function.

    """

    myfileobj = None
    max_read_chunk = 10 * 1024 * 1024   # 10Mb

    def __init__(self, filename=None, mode=None,
                 compresslevel=9, fileobj=None, mtime=None):
        """Constructor for the GzipFile class.

        At least one of fileobj and filename must be given a
        non-trivial value.

        The new class instance is based on fileobj, which can be a regular
        file, an io.BytesIO object, or any other object which simulates a file.
        It defaults to None, in which case filename is opened to provide
        a file object.

        When fileobj is not None, the filename argument is only used to be
        included in the gzip file header, which may includes the original
        filename of the uncompressed file.  It defaults to the filename of
        fileobj, if discernible; otherwise, it defaults to the empty string,
        and in this case the original filename is not included in the header.

        The mode argument can be any of 'r', 'rb', 'a', 'ab', 'w', 'wb', 'x', or
        'xb' depending on whether the file will be read or written.  The default
        is the mode of fileobj if discernible; otherwise, the default is 'rb'.
        A mode of 'r' is equivalent to one of 'rb', and similarly for 'w' and
        'wb', 'a' and 'ab', and 'x' and 'xb'.

        The compresslevel argument is an integer from 0 to 9 controlling the
        level of compression; 1 is fastest and produces the least compression,
        and 9 is slowest and produces the most compression. 0 is no compression
        at all. The default is 9.

        The mtime argument is an optional numeric timestamp to be written
        to the stream when compressing.  All gzip compressed streams
        are required to contain a timestamp.  If omitted or None, the
        current time is used.  This module ignores the timestamp when
        decompressing; however, some programs, such as gunzip, make use
        of it.  The format of the timestamp is the same as that of the
        return value of time.time() and of the st_mtime member of the
        object returned by os.stat().

        """

        if mode and ('t' in mode or 'U' in mode):
            raise ValueError("Invalid mode: {!r}".format(mode))
        if mode and 'b' not in mode:
            mode += 'b'
        if fileobj is None:
            fileobj = self.myfileobj = builtins.open(filename, mode or 'rb')
        if filename is None:
            filename = getattr(fileobj, 'name', '')
            if not isinstance(filename, (str, bytes)):
                filename = ''
        if mode is None:
            mode = getattr(fileobj, 'mode', 'rb')

        if mode.startswith('r'):
            self.mode = READ
            # Set flag indicating start of a new member
            self._new_member = True
            # Buffer data read from gzip file. extrastart is offset in
            # stream where buffer starts. extrasize is number of
            # bytes remaining in buffer from current stream position.
            self.extrabuf = b""
            self.extrasize = 0
            self.extrastart = 0
            self.name = filename
            # Starts small, scales exponentially
            self.min_readsize = 100
            fileobj = _PaddedFile(fileobj)

        elif mode.startswith(('w', 'a', 'x')):
            self.mode = WRITE
            self._init_write(filename)
            self.compress = zlib.compressobj(compresslevel,
                                             zlib.DEFLATED,
                                             -zlib.MAX_WBITS,
                                             zlib.DEF_MEM_LEVEL,
                                             0)
        else:
            raise ValueError("Invalid mode: {!r}".format(mode))

        self.fileobj = fileobj
        self.offset = 0
        self.mtime = mtime

        if self.mode == WRITE:
            self._write_gzip_header()

    @property
    def filename(self):
        import warnings
        warnings.warn("use the name attribute", DeprecationWarning, 2)
        if self.mode == WRITE and self.name[-3:] != ".gz":
            return self.name + ".gz"
        return self.name

    def __repr__(self):
        fileobj = self.fileobj
        if isinstance(fileobj, _PaddedFile):
            fileobj = fileobj.file
        s = repr(fileobj)
        return '<gzip ' + s[1:-1] + ' ' + hex(id(self)) + '>'

    def _check_closed(self):
        """Raises a ValueError if the underlying file object has been closed.

        """
        if self.closed:
            raise ValueError('I/O operation on closed file.')

    def _init_write(self, filename):
        self.name = filename
        self.crc = zlib.crc32(b"") & 0xffffffff
        self.size = 0
        self.writebuf = []
        self.bufsize = 0

    def _write_gzip_header(self):
        self.fileobj.write(b'\037\213')             # magic header
        self.fileobj.write(b'\010')                 # compression method
        try:
            # RFC 1952 requires the FNAME field to be Latin-1. Do not
            # include filenames that cannot be represented that way.
            fname = os.path.basename(self.name)
            if not isinstance(fname, bytes):
                fname = fname.encode('latin-1')
            if fname.endswith(b'.gz'):
                fname = fname[:-3]
        except UnicodeEncodeError:
            fname = b''
        flags = 0
        if fname:
            flags = FNAME
        self.fileobj.write(chr(flags).encode('latin-1'))
        mtime = self.mtime
        if mtime is None:
            mtime = time.time()
        write32u(self.fileobj, int(mtime))
        self.fileobj.write(b'\002')
        self.fileobj.write(b'\377')
        if fname:
            self.fileobj.write(fname + b'\000')

    def _init_read(self):
        self.crc = zlib.crc32(b"") & 0xffffffff
        self.size = 0

    def _read_exact(self, n):
        data = self.fileobj.read(n)
        while len(data) < n:
            b = self.fileobj.read(n - len(data))
            if not b:
                raise EOFError("Compressed file ended before the "
                               "end-of-stream marker was reached")
            data += b
        return data

    def _read_gzip_header(self):
        magic = self.fileobj.read(2)
        if magic == b'':
            return False

        if magic != b'\037\213':
            raise OSError('Not a gzipped file')

        method, flag, self.mtime = struct.unpack("<BBIxx", self._read_exact(8))
        if method != 8:
            raise OSError('Unknown compression method')

        if flag & FEXTRA:
            # Read & discard the extra field, if present
            extra_len, = struct.unpack("<H", self._read_exact(2))
            self._read_exact(extra_len)
        if flag & FNAME:
            # Read and discard a null-terminated string containing the filename
            while True:
                s = self.fileobj.read(1)
                if not s or s==b'\000':
                    break
        if flag & FCOMMENT:
            # Read and discard a null-terminated string containing a comment
            while True:
                s = self.fileobj.read(1)
                if not s or s==b'\000':
                    break
        if flag & FHCRC:
            self._read_exact(2)     # Read & discard the 16-bit header CRC

        unused = self.fileobj.unused()
        if unused:
            uncompress = self.decompress.decompress(unused)
            self._add_read_data(uncompress)
        return True

    def write(self,data):
        self._check_closed()
        if self.mode != WRITE:
            import errno
            raise OSError(errno.EBADF, "write() on read-only GzipFile object")

        if self.fileobj is None:
            raise ValueError("write() on closed GzipFile object")

        # Convert data type if called by io.BufferedWriter.
        if isinstance(data, memoryview):
            data = data.tobytes()

        if len(data) > 0:
            self.fileobj.write(self.compress.compress(data))
            self.size += len(data)
            self.crc = zlib.crc32(data, self.crc) & 0xffffffff
            self.offset += len(data)

        return len(data)

    def read(self, size=-1):
        self._check_closed()
        if self.mode != READ:
            import errno
            raise OSError(errno.EBADF, "read() on write-only GzipFile object")

        if self.extrasize <= 0 and self.fileobj is None:
            return b''

        readsize = 1024
        if size < 0:        # get the whole thing
            while self._read(readsize):
                readsize = min(self.max_read_chunk, readsize * 2)
            size = self.extrasize
        else:               # just get some more of it
            while size > self.extrasize:
                if not self._read(readsize):
                    if size > self.extrasize:
                        size = self.extrasize
                    break
                readsize = min(self.max_read_chunk, readsize * 2)

        offset = self.offset - self.extrastart
        chunk = self.extrabuf[offset: offset + size]
        self.extrasize = self.extrasize - size

        self.offset += size
        return chunk

    def read1(self, size=-1):
        self._check_closed()
        if self.mode != READ:
            import errno
            raise OSError(errno.EBADF, "read1() on write-only GzipFile object")

        if self.extrasize <= 0 and self.fileobj is None:
            return b''

        # For certain input data, a single call to _read() may not return
        # any data. In this case, retry until we get some data or reach EOF.
        while self.extrasize <= 0 and self._read():
            pass
        if size < 0 or size > self.extrasize:
            size = self.extrasize

        offset = self.offset - self.extrastart
        chunk = self.extrabuf[offset: offset + size]
        self.extrasize -= size
        self.offset += size
        return chunk

    def peek(self, n):
        if self.mode != READ:
            import errno
            raise OSError(errno.EBADF, "peek() on write-only GzipFile object")

        # Do not return ridiculously small buffers, for one common idiom
        # is to call peek(1) and expect more bytes in return.
        if n < 100:
            n = 100
        if self.extrasize == 0:
            if self.fileobj is None:
                return b''
            # Ensure that we don't return b"" if we haven't reached EOF.
            # 1024 is the same buffering heuristic used in read()
            while self.extrasize == 0 and self._read(max(n, 1024)):
                pass
        offset = self.offset - self.extrastart
        remaining = self.extrasize
        assert remaining == len(self.extrabuf) - offset
        return self.extrabuf[offset:offset + n]

    def _unread(self, buf):
        self.extrasize = len(buf) + self.extrasize
        self.offset -= len(buf)

    def _read(self, size=1024):
        if self.fileobj is None:
            return False

        if self._new_member:
            # If the _new_member flag is set, we have to
            # jump to the next member, if there is one.
            self._init_read()
            if not self._read_gzip_header():
                return False
            self.decompress = zlib.decompressobj(-zlib.MAX_WBITS)
            self._new_member = False

        # Read a chunk of data from the file
        buf = self.fileobj.read(size)

        # If the EOF has been reached, flush the decompression object
        # and mark this object as finished.

        if buf == b"":
            uncompress = self.decompress.flush()
            # Prepend the already read bytes to the fileobj to they can be
            # seen by _read_eof()
            self.fileobj.prepend(self.decompress.unused_data, True)
            self._read_eof()
            self._add_read_data( uncompress )
            return False

        uncompress = self.decompress.decompress(buf)
        self._add_read_data( uncompress )

        if self.decompress.unused_data != b"":
            # Ending case: we've come to the end of a member in the file,
            # so seek back to the start of the unused data, finish up
            # this member, and read a new gzip header.
            # Prepend the already read bytes to the fileobj to they can be
            # seen by _read_eof() and _read_gzip_header()
            self.fileobj.prepend(self.decompress.unused_data, True)
            # Check the CRC and file size, and set the flag so we read
            # a new member on the next call
            self._read_eof()
            self._new_member = True
        return True

    def _add_read_data(self, data):
        self.crc = zlib.crc32(data, self.crc) & 0xffffffff
        offset = self.offset - self.extrastart
        self.extrabuf = self.extrabuf[offset:] + data
        self.extrasize = self.extrasize + len(data)
        self.extrastart = self.offset
        self.size = self.size + len(data)

    def _read_eof(self):
        # We've read to the end of the file
        # We check the that the computed CRC and size of the
        # uncompressed data matches the stored values.  Note that the size
        # stored is the true file size mod 2**32.
        crc32, isize = struct.unpack("<II", self._read_exact(8))
        if crc32 != self.crc:
            raise OSError("CRC check failed %s != %s" % (hex(crc32),
                                                         hex(self.crc)))
        elif isize != (self.size & 0xffffffff):
            raise OSError("Incorrect length of data produced")

        # Gzip files can be padded with zeroes and still have archives.
        # Consume all zero bytes and set the file position to the first
        # non-zero byte. See http://www.gzip.org/#faq8
        c = b"\x00"
        while c == b"\x00":
            c = self.fileobj.read(1)
        if c:
            self.fileobj.prepend(c, True)

    @property
    def closed(self):
        return self.fileobj is None

    def close(self):
        fileobj = self.fileobj
        if fileobj is None:
            return
        self.fileobj = None
        try:
            if self.mode == WRITE:
                fileobj.write(self.compress.flush())
                write32u(fileobj, self.crc)
                # self.size may exceed 2GB, or even 4GB
                write32u(fileobj, self.size & 0xffffffff)
        finally:
            myfileobj = self.myfileobj
            if myfileobj:
                self.myfileobj = None
                myfileobj.close()

    def flush(self,zlib_mode=zlib.Z_SYNC_FLUSH):
        self._check_closed()
        if self.mode == WRITE:
            # Ensure the compressor's buffer is flushed
            self.fileobj.write(self.compress.flush(zlib_mode))
            self.fileobj.flush()

    def fileno(self):
        """Invoke the underlying file object's fileno() method.

        This will raise AttributeError if the underlying file object
        doesn't support fileno().
        """
        return self.fileobj.fileno()

    def rewind(self):
        '''Return the uncompressed stream file position indicator to the
        beginning of the file'''
        if self.mode != READ:
            raise OSError("Can't rewind in write mode")
        self.fileobj.seek(0)
        self._new_member = True
        self.extrabuf = b""
        self.extrasize = 0
        self.extrastart = 0
        self.offset = 0

    def readable(self):
        return self.mode == READ

    def writable(self):
        return self.mode == WRITE

    def seekable(self):
        return True

    def seek(self, offset, whence=0):
        if whence:
            if whence == 1:
                offset = self.offset + offset
            else:
                raise ValueError('Seek from end not supported')
        if self.mode == WRITE:
            if offset < self.offset:
                raise OSError('Negative seek in write mode')
            count = offset - self.offset
            chunk = bytes(1024)
            for i in range(count // 1024):
                self.write(chunk)
            self.write(bytes(count % 1024))
        elif self.mode == READ:
            if offset < self.offset:
                # for negative seek, rewind and do positive seek
                self.rewind()
            count = offset - self.offset
            for i in range(count // 1024):
                self.read(1024)
            self.read(count % 1024)

        return self.offset

    def readline(self, size=-1):
        if size < 0:
            # Shortcut common case - newline found in buffer.
            offset = self.offset - self.extrastart
            i = self.extrabuf.find(b'\n', offset) + 1
            if i > 0:
                self.extrasize -= i - offset
                self.offset += i - offset
                return self.extrabuf[offset: i]

            size = sys.maxsize
            readsize = self.min_readsize
        else:
            readsize = size
        bufs = []
        while size != 0:
            c = self.read(readsize)
            i = c.find(b'\n')

            # We set i=size to break out of the loop under two
            # conditions: 1) there's no newline, and the chunk is
            # larger than size, or 2) there is a newline, but the
            # resulting line would be longer than 'size'.
            if (size <= i) or (i == -1 and len(c) > size):
                i = size - 1

            if i >= 0 or c == b'':
                bufs.append(c[:i + 1])    # Add portion of last chunk
                self._unread(c[i + 1:])   # Push back rest of chunk
                break

            # Append chunk to list, decrease 'size',
            bufs.append(c)
            size = size - len(c)
            readsize = min(size, readsize * 2)
        if readsize > self.min_readsize:
            self.min_readsize = min(readsize, self.min_readsize * 2, 512)
        return b''.join(bufs) # Return resulting line


def compress(data, compresslevel=9):
    """Compress data in one shot and return the compressed string.
    Optional argument is the compression level, in range of 0-9.
    """
    buf = io.BytesIO()
    with GzipFile(fileobj=buf, mode='wb', compresslevel=compresslevel) as f:
        f.write(data)
    return buf.getvalue()

def decompress(data):
    """Decompress a gzip compressed string in one shot.
    Return the decompressed string.
    """
    with GzipFile(fileobj=io.BytesIO(data)) as f:
        return f.read()


def _test():
    # Act like gzip; with -d, act like gunzip.
    # The input file is not deleted, however, nor are any other gzip
    # options or features supported.
    args = sys.argv[1:]
    decompress = args and args[0] == "-d"
    if decompress:
        args = args[1:]
    if not args:
        args = ["-"]
    for arg in args:
        if decompress:
            if arg == "-":
                f = GzipFile(filename="", mode="rb", fileobj=sys.stdin.buffer)
                g = sys.stdout.buffer
            else:
                if arg[-3:] != ".gz":
                    print("filename doesn't end in .gz:", repr(arg))
                    continue
                f = open(arg, "rb")
                g = builtins.open(arg[:-3], "wb")
        else:
            if arg == "-":
                f = sys.stdin.buffer
                g = GzipFile(filename="", mode="wb", fileobj=sys.stdout.buffer)
            else:
                f = builtins.open(arg, "rb")
                g = open(arg + ".gz", "wb")
        while True:
            chunk = f.read(1024)
            if not chunk:
                break
            g.write(chunk)
        if g is not sys.stdout.buffer:
            g.close()
        if f is not sys.stdin.buffer:
            f.close()

if __name__ == '__main__':
    _test()
lib\hashlib.py
#.  Copyright (C) 2005-2010   Gregory P. Smith ([email protected])
#  Licensed to PSF under a Contributor Agreement.
#

__doc__ = """hashlib module - A common interface to many hash functions.

new(name, data=b'') - returns a new hash object implementing the
                      given hash function; initializing the hash
                      using the given binary data.

Named constructor functions are also available, these are faster
than using new(name):

md5(), sha1(), sha224(), sha256(), sha384(), and sha512()

More algorithms may be available on your platform but the above are guaranteed
to exist.  See the algorithms_guaranteed and algorithms_available attributes
to find out what algorithm names can be passed to new().

NOTE: If you want the adler32 or crc32 hash functions they are available in
the zlib module.

Choose your hash function wisely.  Some have known collision weaknesses.
sha384 and sha512 will be slow on 32 bit platforms.

Hash objects have these methods:
 - update(arg): Update the hash object with the bytes in arg. Repeated calls
                are equivalent to a single call with the concatenation of all
                the arguments.
 - digest():    Return the digest of the bytes passed to the update() method
                so far.
 - hexdigest(): Like digest() except the digest is returned as a unicode
                object of double length, containing only hexadecimal digits.
 - copy():      Return a copy (clone) of the hash object. This can be used to
                efficiently compute the digests of strings that share a common
                initial substring.

For example, to obtain the digest of the string 'Nobody inspects the
spammish repetition':

    >>> import hashlib
    >>> m = hashlib.md5()
    >>> m.update(b"Nobody inspects")
    >>> m.update(b" the spammish repetition")
    >>> m.digest()
    b'\\xbbd\\x9c\\x83\\xdd\\x1e\\xa5\\xc9\\xd9\\xde\\xc9\\xa1\\x8d\\xf0\\xff\\xe9'

More condensed:

    >>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
    'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

"""

# This tuple and __get_builtin_constructor() must be modified if a new
# always available algorithm is added.
__always_supported = ('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512')

algorithms_guaranteed = set(__always_supported)
algorithms_available = set(__always_supported)

__all__ = __always_supported + ('new', 'algorithms_guaranteed',
                                'algorithms_available', 'pbkdf2_hmac')


__builtin_constructor_cache = {}

def __get_builtin_constructor(name):
    cache = __builtin_constructor_cache
    constructor = cache.get(name)
    if constructor is not None:
        return constructor
    try:
        if name in ('SHA1', 'sha1'):
            import _sha1
            cache['SHA1'] = cache['sha1'] = _sha1.sha1
        elif name in ('MD5', 'md5'):
            import _md5
            cache['MD5'] = cache['md5'] = _md5.md5
        elif name in ('SHA256', 'sha256', 'SHA224', 'sha224'):
            import _sha256
            cache['SHA224'] = cache['sha224'] = _sha256.sha224
            cache['SHA256'] = cache['sha256'] = _sha256.sha256
        elif name in ('SHA512', 'sha512', 'SHA384', 'sha384'):
            import _sha512
            cache['SHA384'] = cache['sha384'] = _sha512.sha384
            cache['SHA512'] = cache['sha512'] = _sha512.sha512
    except ImportError:
        pass  # no extension module, this hash is unsupported.

    constructor = cache.get(name)
    if constructor is not None:
        return constructor

    raise ValueError('unsupported hash type ' + name)


def __get_openssl_constructor(name):
    try:
        f = getattr(_hashlib, 'openssl_' + name)
        # Allow the C module to raise ValueError.  The function will be
        # defined but the hash not actually available thanks to OpenSSL.
        f()
        # Use the C function directly (very fast)
        return f
    except (AttributeError, ValueError):
        return __get_builtin_constructor(name)


def __py_new(name, data=b''):
    """new(name, data=b'') - Return a new hashing object using the named algorithm;
    optionally initialized with data (which must be bytes).
    """
    return __get_builtin_constructor(name)(data)


def __hash_new(name, data=b''):
    """new(name, data=b'') - Return a new hashing object using the named algorithm;
    optionally initialized with data (which must be bytes).
    """
    try:
        return _hashlib.new(name, data)
    except ValueError:
        # If the _hashlib module (OpenSSL) doesn't support the named
        # hash, try using our builtin implementations.
        # This allows for SHA224/256 and SHA384/512 support even though
        # the OpenSSL library prior to 0.9.8 doesn't provide them.
        return __get_builtin_constructor(name)(data)


try:
    import _hashlib
    new = __hash_new
    __get_hash = __get_openssl_constructor
    algorithms_available = algorithms_available.union(
            _hashlib.openssl_md_meth_names)
except ImportError:
    new = __py_new
    __get_hash = __get_builtin_constructor

try:
    # OpenSSL's PKCS5_PBKDF2_HMAC requires OpenSSL 1.0+ with HMAC and SHA
    from _hashlib import pbkdf2_hmac
except ImportError:
    _trans_5C = bytes((x ^ 0x5C) for x in range(256))
    _trans_36 = bytes((x ^ 0x36) for x in range(256))

    def pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None):
        """Password based key derivation function 2 (PKCS #5 v2.0)

        This Python implementations based on the hmac module about as fast
        as OpenSSL's PKCS5_PBKDF2_HMAC for short passwords and much faster
        for long passwords.
        """
        if not isinstance(hash_name, str):
            raise TypeError(hash_name)

        if not isinstance(password, (bytes, bytearray)):
            password = bytes(memoryview(password))
        if not isinstance(salt, (bytes, bytearray)):
            salt = bytes(memoryview(salt))

        # Fast inline HMAC implementation
        inner = new(hash_name)
        outer = new(hash_name)
        blocksize = getattr(inner, 'block_size', 64)
        if len(password) > blocksize:
            password = new(hash_name, password).digest()
        password = password + b'\x00' * (blocksize - len(password))
        inner.update(password.translate(_trans_36))
        outer.update(password.translate(_trans_5C))

        def prf(msg, inner=inner, outer=outer):
            # PBKDF2_HMAC uses the password as key. We can re-use the same
            # digest objects and just update copies to skip initialization.
            icpy = inner.copy()
            ocpy = outer.copy()
            icpy.update(msg)
            ocpy.update(icpy.digest())
            return ocpy.digest()

        if iterations < 1:
            raise ValueError(iterations)
        if dklen is None:
            dklen = outer.digest_size
        if dklen < 1:
            raise ValueError(dklen)

        dkey = b''
        loop = 1
        from_bytes = int.from_bytes
        while len(dkey) < dklen:
            prev = prf(salt + loop.to_bytes(4, 'big'))
            # endianess doesn't matter here as long to / from use the same
            rkey = int.from_bytes(prev, 'big')
            for i in range(iterations - 1):
                prev = prf(prev)
                # rkey = rkey ^ prev
                rkey ^= from_bytes(prev, 'big')
            loop += 1
            dkey += rkey.to_bytes(inner.digest_size, 'big')

        return dkey[:dklen]


for __func_name in __always_supported:
    # try them all, some may not work due to the OpenSSL
    # version not supporting that algorithm.
    try:
        globals()[__func_name] = __get_hash(__func_name)
    except ValueError:
        import logging
        logging.exception('code for hash %s was not found.', __func_name)

# Cleanup locals()
del __always_supported, __func_name, __get_hash
del __py_new, __hash_new, __get_openssl_constructor
lib\heapq.py
"""Heap queue algorithm (a.k.a. priority queue).

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0.  For the sake of comparison,
non-existing elements are considered to be infinite.  The interesting
property of a heap is that a[0] is always its smallest element.

Usage:

heap = []            # creates an empty heap
heappush(heap, item) # pushes a new item on the heap
item = heappop(heap) # pops the smallest item from the heap
item = heap[0]       # smallest item on the heap without popping it
heapify(x)           # transforms list into a heap, in-place, in linear time
item = heapreplace(heap, item) # pops and returns smallest item, and adds
                               # new item; the heap size is unchanged

Our API differs from textbook heap algorithms as follows:

- We use 0-based indexing.  This makes the relationship between the
  index for a node and the indexes for its children slightly less
  obvious, but is more suitable since Python uses 0-based indexing.

- Our heappop() method returns the smallest item, not the largest.

These two make it possible to view the heap as a regular Python list
without surprises: heap[0] is the smallest item, and heap.sort()
maintains the heap invariant!
"""

# Original code by Kevin O'Connor, augmented by Tim Peters and Raymond Hettinger

__about__ = """Heap queues

[explanation by François Pinard]

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0.  For the sake of comparison,
non-existing elements are considered to be infinite.  The interesting
property of a heap is that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory
representation for a tournament.  The numbers below are `k', not a[k]:

                                   0

                  1                                 2

          3               4                5               6

      7       8       9       10      11      12      13      14

    15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30


In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In
an usual binary tournament we see in sports, each cell is the winner
over the two cells it tops, and we can trace the winner down the tree
to see all opponents s/he had.  However, in many computer applications
of such tournaments, we do not need to trace the history of a winner.
To be more memory efficient, when a winner is promoted, we try to
replace it by something else at a lower level, and the rule becomes
that a cell and the two cells it tops contain three different items,
but the top cell "wins" over the two topped cells.

If this heap invariant is protected at all time, index 0 is clearly
the overall winner.  The simplest algorithmic way to remove it and
find the "next" winner is to move some loser (let's say cell 30 in the
diagram above) into the 0 position, and then percolate this new 0 down
the tree, exchanging values, until the invariant is re-established.
This is clearly logarithmic on the total number of items in the tree.
By iterating over all items, you get an O(n ln n) sort.

A nice feature of this sort is that you can efficiently insert new
items while the sort is going on, provided that the inserted items are
not "better" than the last 0'th element you extracted.  This is
especially useful in simulation contexts, where the tree holds all
incoming events, and the "win" condition means the smallest scheduled
time.  When an event schedule other events for execution, they are
scheduled into the future, so they can easily go into the heap.  So, a
heap is a good structure for implementing schedulers (this is what I
used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively
studied, and heaps are good for this, as they are reasonably speedy,
the speed is almost constant, and the worst case is not much different
than the average case.  However, there are other representations which
are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts.  You most probably all
know that a big sort implies producing "runs" (which are pre-sorted
sequences, which size is usually related to the amount of CPU memory),
followed by a merging passes for these runs, which merging is often
very cleverly organised[1].  It is very important that the initial
sort produces the longest runs possible.  Tournaments are a good way
to that.  If, using all the memory available to hold a tournament, you
replace and percolate items that happen to fit the current run, you'll
produce runs which are twice the size of the memory for random input,
and much better for input fuzzily ordered.

Moreover, if you output the 0'th item on disk and get an input which
may not fit in the current tournament (because the value "wins" over
the last output value), it cannot fit in the heap, so the size of the
heap decreases.  The freed memory could be cleverly reused immediately
for progressively building a second heap, which grows at exactly the
same rate the first heap is melting.  When the first heap completely
vanishes, you switch heaps and start a new run.  Clever and quite
effective!

In a word, heaps are useful memory structures to know.  I use them in
a few applications, and I think it is good to keep a `heap' module
around. :-)

--------------------
[1] The disk balancing algorithms which are current, nowadays, are
more annoying than clever, and this is a consequence of the seeking
capabilities of the disks.  On devices which cannot seek, like big
tape drives, the story was quite different, and one had to be very
clever to ensure (far in advance) that each tape movement will be the
most effective possible (that is, will best participate at
"progressing" the merge).  Some tapes were even able to read
backwards, and this was also used to avoid the rewinding time.
Believe me, real good tape sorts were quite spectacular to watch!
From all times, sorting has always been a Great Art! :-)
"""

__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge',
           'nlargest', 'nsmallest', 'heappushpop']

from itertools import islice, count, tee, chain

def heappush(heap, item):
    """Push item onto heap, maintaining the heap invariant."""
    heap.append(item)
    _siftdown(heap, 0, len(heap)-1)

def heappop(heap):
    """Pop the smallest item off the heap, maintaining the heap invariant."""
    lastelt = heap.pop()    # raises appropriate IndexError if heap is empty
    if heap:
        returnitem = heap[0]
        heap[0] = lastelt
        _siftup(heap, 0)
    else:
        returnitem = lastelt
    return returnitem

def heapreplace(heap, item):
    """Pop and return the current smallest value, and add the new item.

    This is more efficient than heappop() followed by heappush(), and can be
    more appropriate when using a fixed-size heap.  Note that the value
    returned may be larger than item!  That constrains reasonable uses of
    this routine unless written as part of a conditional replacement:

        if item > heap[0]:
            item = heapreplace(heap, item)
    """
    returnitem = heap[0]    # raises appropriate IndexError if heap is empty
    heap[0] = item
    _siftup(heap, 0)
    return returnitem

def heappushpop(heap, item):
    """Fast version of a heappush followed by a heappop."""
    if heap and heap[0] < item:
        item, heap[0] = heap[0], item
        _siftup(heap, 0)
    return item

def heapify(x):
    """Transform list into a heap, in-place, in O(len(x)) time."""
    n = len(x)
    # Transform bottom-up.  The largest index there's any point to looking at
    # is the largest with a child index in-range, so must have 2*i + 1 < n,
    # or i < (n-1)/2.  If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
    # j-1 is the largest, which is n//2 - 1.  If n is odd = 2*j+1, this is
    # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
    for i in reversed(range(n//2)):
        _siftup(x, i)

def _heappushpop_max(heap, item):
    """Maxheap version of a heappush followed by a heappop."""
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        _siftup_max(heap, 0)
    return item

def _heapify_max(x):
    """Transform list into a maxheap, in-place, in O(len(x)) time."""
    n = len(x)
    for i in reversed(range(n//2)):
        _siftup_max(x, i)

def nlargest(n, iterable):
    """Find the n largest elements in a dataset.

    Equivalent to:  sorted(iterable, reverse=True)[:n]
    """
    if n < 0:
        return []
    it = iter(iterable)
    result = list(islice(it, n))
    if not result:
        return result
    heapify(result)
    _heappushpop = heappushpop
    for elem in it:
        _heappushpop(result, elem)
    result.sort(reverse=True)
    return result

def nsmallest(n, iterable):
    """Find the n smallest elements in a dataset.

    Equivalent to:  sorted(iterable)[:n]
    """
    if n < 0:
        return []
    it = iter(iterable)
    result = list(islice(it, n))
    if not result:
        return result
    _heapify_max(result)
    _heappushpop = _heappushpop_max
    for elem in it:
        _heappushpop(result, elem)
    result.sort()
    return result

# 'heap' is a heap at all indices >= startpos, except possibly for pos.  pos
# is the index of a leaf with a possibly out-of-order value.  Restore the
# heap invariant.
def _siftdown(heap, startpos, pos):
    newitem = heap[pos]
    # Follow the path to the root, moving parents down until finding a place
    # newitem fits.
    while pos > startpos:
        parentpos = (pos - 1) >> 1
        parent = heap[parentpos]
        if newitem < parent:
            heap[pos] = parent
            pos = parentpos
            continue
        break
    heap[pos] = newitem

# The child indices of heap index pos are already heaps, and we want to make
# a heap at index pos too.  We do this by bubbling the smaller child of
# pos up (and so on with that child's children, etc) until hitting a leaf,
# then using _siftdown to move the oddball originally at index pos into place.
#
# We *could* break out of the loop as soon as we find a pos where newitem <=
# both its children, but turns out that's not a good idea, and despite that
# many books write the algorithm that way.  During a heap pop, the last array
# element is sifted in, and that tends to be large, so that comparing it
# against values starting from the root usually doesn't pay (= usually doesn't
# get us out of the loop early).  See Knuth, Volume 3, where this is
# explained and quantified in an exercise.
#
# Cutting the # of comparisons is important, since these routines have no
# way to extract "the priority" from an array element, so that intelligence
# is likely to be hiding in custom comparison methods, or in array elements
# storing (priority, record) tuples.  Comparisons are thus potentially
# expensive.
#
# On random arrays of length 1000, making this change cut the number of
# comparisons made by heapify() a little, and those made by exhaustive
# heappop() a lot, in accord with theory.  Here are typical results from 3
# runs (3 just to demonstrate how small the variance is):
#
# Compares needed by heapify     Compares needed by 1000 heappops
# --------------------------     --------------------------------
# 1837 cut to 1663               14996 cut to 8680
# 1855 cut to 1659               14966 cut to 8678
# 1847 cut to 1660               15024 cut to 8703
#
# Building the heap by using heappush() 1000 times instead required
# 2198, 2148, and 2219 compares:  heapify() is more efficient, when
# you can use it.
#
# The total compares needed by list.sort() on the same lists were 8627,
# 8627, and 8632 (this should be compared to the sum of heapify() and
# heappop() compares):  list.sort() is (unsurprisingly!) more efficient
# for sorting.

def _siftup(heap, pos):
    endpos = len(heap)
    startpos = pos
    newitem = heap[pos]
    # Bubble up the smaller child until hitting a leaf.
    childpos = 2*pos + 1    # leftmost child position
    while childpos < endpos:
        # Set childpos to index of smaller child.
        rightpos = childpos + 1
        if rightpos < endpos and not heap[childpos] < heap[rightpos]:
            childpos = rightpos
        # Move the smaller child up.
        heap[pos] = heap[childpos]
        pos = childpos
        childpos = 2*pos + 1
    # The leaf at pos is empty now.  Put newitem there, and bubble it up
    # to its final resting place (by sifting its parents down).
    heap[pos] = newitem
    _siftdown(heap, startpos, pos)

def _siftdown_max(heap, startpos, pos):
    'Maxheap variant of _siftdown'
    newitem = heap[pos]
    # Follow the path to the root, moving parents down until finding a place
    # newitem fits.
    while pos > startpos:
        parentpos = (pos - 1) >> 1
        parent = heap[parentpos]
        if parent < newitem:
            heap[pos] = parent
            pos = parentpos
            continue
        break
    heap[pos] = newitem

def _siftup_max(heap, pos):
    'Maxheap variant of _siftup'
    endpos = len(heap)
    startpos = pos
    newitem = heap[pos]
    # Bubble up the larger child until hitting a leaf.
    childpos = 2*pos + 1    # leftmost child position
    while childpos < endpos:
        # Set childpos to index of larger child.
        rightpos = childpos + 1
        if rightpos < endpos and not heap[rightpos] < heap[childpos]:
            childpos = rightpos
        # Move the larger child up.
        heap[pos] = heap[childpos]
        pos = childpos
        childpos = 2*pos + 1
    # The leaf at pos is empty now.  Put newitem there, and bubble it up
    # to its final resting place (by sifting its parents down).
    heap[pos] = newitem
    _siftdown_max(heap, startpos, pos)

# If available, use C implementation
try:
    from _heapq import *
except ImportError:
    pass

def merge(*iterables):
    '''Merge multiple sorted inputs into a single sorted output.

    Similar to sorted(itertools.chain(*iterables)) but returns a generator,
    does not pull the data into memory all at once, and assumes that each of
    the input streams is already sorted (smallest to largest).

    >>> list(merge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
    [0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]

    '''
    _heappop, _heapreplace, _StopIteration = heappop, heapreplace, StopIteration
    _len = len

    h = []
    h_append = h.append
    for itnum, it in enumerate(map(iter, iterables)):
        try:
            next = it.__next__
            h_append([next(), itnum, next])
        except _StopIteration:
            pass
    heapify(h)

    while _len(h) > 1:
        try:
            while True:
                v, itnum, next = s = h[0]
                yield v
                s[0] = next()               # raises StopIteration when exhausted
                _heapreplace(h, s)          # restore heap condition
        except _StopIteration:
            _heappop(h)                     # remove empty iterator
    if h:
        # fast case when only a single iterator remains
        v, itnum, next = h[0]
        yield v
        yield from next.__self__

# Extend the implementations of nsmallest and nlargest to use a key= argument
_nsmallest = nsmallest
def nsmallest(n, iterable, key=None):
    """Find the n smallest elements in a dataset.

    Equivalent to:  sorted(iterable, key=key)[:n]
    """
    # Short-cut for n==1 is to use min() when len(iterable)>0
    if n == 1:
        it = iter(iterable)
        head = list(islice(it, 1))
        if not head:
            return []
        if key is None:
            return [min(chain(head, it))]
        return [min(chain(head, it), key=key)]

    # When n>=size, it's faster to use sorted()
    try:
        size = len(iterable)
    except (TypeError, AttributeError):
        pass
    else:
        if n >= size:
            return sorted(iterable, key=key)[:n]

    # When key is none, use simpler decoration
    if key is None:
        it = zip(iterable, count())                         # decorate
        result = _nsmallest(n, it)
        return [r[0] for r in result]                       # undecorate

    # General case, slowest method
    in1, in2 = tee(iterable)
    it = zip(map(key, in1), count(), in2)                   # decorate
    result = _nsmallest(n, it)
    return [r[2] for r in result]                           # undecorate

_nlargest = nlargest
def nlargest(n, iterable, key=None):
    """Find the n largest elements in a dataset.

    Equivalent to:  sorted(iterable, key=key, reverse=True)[:n]
    """

    # Short-cut for n==1 is to use max() when len(iterable)>0
    if n == 1:
        it = iter(iterable)
        head = list(islice(it, 1))
        if not head:
            return []
        if key is None:
            return [max(chain(head, it))]
        return [max(chain(head, it), key=key)]

    # When n>=size, it's faster to use sorted()
    try:
        size = len(iterable)
    except (TypeError, AttributeError):
        pass
    else:
        if n >= size:
            return sorted(iterable, key=key, reverse=True)[:n]

    # When key is none, use simpler decoration
    if key is None:
        it = zip(iterable, count(0,-1))                     # decorate
        result = _nlargest(n, it)
        return [r[0] for r in result]                       # undecorate

    # General case, slowest method
    in1, in2 = tee(iterable)
    it = zip(map(key, in1), count(0,-1), in2)               # decorate
    result = _nlargest(n, it)
    return [r[2] for r in result]                           # undecorate

if __name__ == "__main__":
    # Simple sanity test
    heap = []
    data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    for item in data:
        heappush(heap, item)
    sort = []
    while heap:
        sort.append(heappop(heap))
    print(sort)

    import doctest
    doctest.testmod()
lib\hmac.py
"""HMAC (Keyed-Hashing for Message Authentication) Python module.

Implements the HMAC algorithm as described by RFC 2104.
"""

import warnings as _warnings
from _operator import _compare_digest as compare_digest
import hashlib as _hashlib

trans_5C = bytes((x ^ 0x5C) for x in range(256))
trans_36 = bytes((x ^ 0x36) for x in range(256))

# The size of the digests returned by HMAC depends on the underlying
# hashing module used.  Use digest_size from the instance of HMAC instead.
digest_size = None



class HMAC:
    """RFC 2104 HMAC class.  Also complies with RFC 4231.

    This supports the API for Cryptographic Hash Functions (PEP 247).
    """
    blocksize = 64  # 512-bit HMAC; can be changed in subclasses.

    def __init__(self, key, msg = None, digestmod = None):
        """Create a new HMAC object.

        key:       key for the keyed hash object.
        msg:       Initial input for the hash, if provided.
        digestmod: A module supporting PEP 247.  *OR*
                   A hashlib constructor returning a new hash object. *OR*
                   A hash name suitable for hashlib.new().
                   Defaults to hashlib.md5.
                   Implicit default to hashlib.md5 is deprecated and will be
                   removed in Python 3.6.

        Note: key and msg must be a bytes or bytearray objects.
        """

        if not isinstance(key, (bytes, bytearray)):
            raise TypeError("key: expected bytes or bytearray, but got %r" % type(key).__name__)

        if digestmod is None:
            _warnings.warn("HMAC() without an explicit digestmod argument "
                           "is deprecated.", PendingDeprecationWarning, 2)
            digestmod = _hashlib.md5

        if callable(digestmod):
            self.digest_cons = digestmod
        elif isinstance(digestmod, str):
            self.digest_cons = lambda d=b'': _hashlib.new(digestmod, d)
        else:
            self.digest_cons = lambda d=b'': digestmod.new(d)

        self.outer = self.digest_cons()
        self.inner = self.digest_cons()
        self.digest_size = self.inner.digest_size

        if hasattr(self.inner, 'block_size'):
            blocksize = self.inner.block_size
            if blocksize < 16:
                _warnings.warn('block_size of %d seems too small; using our '
                               'default of %d.' % (blocksize, self.blocksize),
                               RuntimeWarning, 2)
                blocksize = self.blocksize
        else:
            _warnings.warn('No block_size attribute on given digest object; '
                           'Assuming %d.' % (self.blocksize),
                           RuntimeWarning, 2)
            blocksize = self.blocksize

        # self.blocksize is the default blocksize. self.block_size is
        # effective block size as well as the public API attribute.
        self.block_size = blocksize

        if len(key) > blocksize:
            key = self.digest_cons(key).digest()

        key = key + bytes(blocksize - len(key))
        self.outer.update(key.translate(trans_5C))
        self.inner.update(key.translate(trans_36))
        if msg is not None:
            self.update(msg)

    @property
    def name(self):
        return "hmac-" + self.inner.name

    def update(self, msg):
        """Update this hashing object with the string msg.
        """
        self.inner.update(msg)

    def copy(self):
        """Return a separate copy of this hashing object.

        An update to this copy won't affect the original object.
        """
        # Call __new__ directly to avoid the expensive __init__.
        other = self.__class__.__new__(self.__class__)
        other.digest_cons = self.digest_cons
        other.digest_size = self.digest_size
        other.inner = self.inner.copy()
        other.outer = self.outer.copy()
        return other

    def _current(self):
        """Return a hash object for the current state.

        To be used only internally with digest() and hexdigest().
        """
        h = self.outer.copy()
        h.update(self.inner.digest())
        return h

    def digest(self):
        """Return the hash value of this hashing object.

        This returns a string containing 8-bit data.  The object is
        not altered in any way by this function; you can continue
        updating the object after calling this function.
        """
        h = self._current()
        return h.digest()

    def hexdigest(self):
        """Like digest(), but returns a string of hexadecimal digits instead.
        """
        h = self._current()
        return h.hexdigest()

def new(key, msg = None, digestmod = None):
    """Create a new hashing object and return it.

    key: The starting key for the hash.
    msg: if available, will immediately be hashed into the object's starting
    state.

    You can now feed arbitrary strings into the object using its update()
    method, and can ask for the hash value at any time by calling its digest()
    method.
    """
    return HMAC(key, msg, digestmod)
lib\imaplib.py
"""IMAP4 client.

Based on RFC 2060.

Public class:           IMAP4
Public variable:        Debug
Public functions:       Internaldate2tuple
                        Int2AP
                        ParseFlags
                        Time2Internaldate
"""

# Author: Piers Lauder <[email protected]> December 1997.
#
# Authentication code contributed by Donn Cave <[email protected]> June 1998.
# String method conversion by ESR, February 2001.
# GET/SETACL contributed by Anthony Baxter <[email protected]> April 2001.
# IMAP4_SSL contributed by Tino Lange <[email protected]> March 2002.
# GET/SETQUOTA contributed by Andreas Zeidler <[email protected]> June 2002.
# PROXYAUTH contributed by Rick Holbert <[email protected]> November 2002.
# GET/SETANNOTATION contributed by Tomas Lindroos <[email protected]> June 2005.

__version__ = "2.58"

import binascii, errno, random, re, socket, subprocess, sys, time, calendar
from datetime import datetime, timezone, timedelta
from io import DEFAULT_BUFFER_SIZE

try:
    import ssl
    HAVE_SSL = True
except ImportError:
    HAVE_SSL = False

__all__ = ["IMAP4", "IMAP4_stream", "Internaldate2tuple",
           "Int2AP", "ParseFlags", "Time2Internaldate"]

#       Globals

CRLF = b'\r\n'
Debug = 0
IMAP4_PORT = 143
IMAP4_SSL_PORT = 993
AllowedVersions = ('IMAP4REV1', 'IMAP4')        # Most recent first

# Maximal line length when calling readline(). This is to prevent
# reading arbitrary length lines. RFC 3501 and 2060 (IMAP 4rev1)
# don't specify a line length. RFC 2683 suggests limiting client
# command lines to 1000 octets and that servers should be prepared
# to accept command lines up to 8000 octets, so we used to use 10K here.
# In the modern world (eg: gmail) the response to, for example, a
# search command can be quite large, so we now use 1M.
_MAXLINE = 1000000


#       Commands

Commands = {
        # name            valid states
        'APPEND':       ('AUTH', 'SELECTED'),
        'AUTHENTICATE': ('NONAUTH',),
        'CAPABILITY':   ('NONAUTH', 'AUTH', 'SELECTED', 'LOGOUT'),
        'CHECK':        ('SELECTED',),
        'CLOSE':        ('SELECTED',),
        'COPY':         ('SELECTED',),
        'CREATE':       ('AUTH', 'SELECTED'),
        'DELETE':       ('AUTH', 'SELECTED'),
        'DELETEACL':    ('AUTH', 'SELECTED'),
        'EXAMINE':      ('AUTH', 'SELECTED'),
        'EXPUNGE':      ('SELECTED',),
        'FETCH':        ('SELECTED',),
        'GETACL':       ('AUTH', 'SELECTED'),
        'GETANNOTATION':('AUTH', 'SELECTED'),
        'GETQUOTA':     ('AUTH', 'SELECTED'),
        'GETQUOTAROOT': ('AUTH', 'SELECTED'),
        'MYRIGHTS':     ('AUTH', 'SELECTED'),
        'LIST':         ('AUTH', 'SELECTED'),
        'LOGIN':        ('NONAUTH',),
        'LOGOUT':       ('NONAUTH', 'AUTH', 'SELECTED', 'LOGOUT'),
        'LSUB':         ('AUTH', 'SELECTED'),
        'NAMESPACE':    ('AUTH', 'SELECTED'),
        'NOOP':         ('NONAUTH', 'AUTH', 'SELECTED', 'LOGOUT'),
        'PARTIAL':      ('SELECTED',),                                  # NB: obsolete
        'PROXYAUTH':    ('AUTH',),
        'RENAME':       ('AUTH', 'SELECTED'),
        'SEARCH':       ('SELECTED',),
        'SELECT':       ('AUTH', 'SELECTED'),
        'SETACL':       ('AUTH', 'SELECTED'),
        'SETANNOTATION':('AUTH', 'SELECTED'),
        'SETQUOTA':     ('AUTH', 'SELECTED'),
        'SORT':         ('SELECTED',),
        'STARTTLS':     ('NONAUTH',),
        'STATUS':       ('AUTH', 'SELECTED'),
        'STORE':        ('SELECTED',),
        'SUBSCRIBE':    ('AUTH', 'SELECTED'),
        'THREAD':       ('SELECTED',),
        'UID':          ('SELECTED',),
        'UNSUBSCRIBE':  ('AUTH', 'SELECTED'),
        }

#       Patterns to match server responses

Continuation = re.compile(br'\+( (?P<data>.*))?')
Flags = re.compile(br'.*FLAGS \((?P<flags>[^\)]*)\)')
InternalDate = re.compile(br'.*INTERNALDATE "'
        br'(?P<day>[ 0123][0-9])-(?P<mon>[A-Z][a-z][a-z])-(?P<year>[0-9][0-9][0-9][0-9])'
        br' (?P<hour>[0-9][0-9]):(?P<min>[0-9][0-9]):(?P<sec>[0-9][0-9])'
        br' (?P<zonen>[-+])(?P<zoneh>[0-9][0-9])(?P<zonem>[0-9][0-9])'
        br'"')
Literal = re.compile(br'.*{(?P<size>\d+)}$', re.ASCII)
MapCRLF = re.compile(br'\r\n|\r|\n')
Response_code = re.compile(br'\[(?P<type>[A-Z-]+)( (?P<data>[^\]]*))?\]')
Untagged_response = re.compile(br'\* (?P<type>[A-Z-]+)( (?P<data>.*))?')
Untagged_status = re.compile(
    br'\* (?P<data>\d+) (?P<type>[A-Z-]+)( (?P<data2>.*))?', re.ASCII)



class IMAP4:

    """IMAP4 client class.

    Instantiate with: IMAP4([host[, port]])

            host - host's name (default: localhost);
            port - port number (default: standard IMAP4 port).

    All IMAP4rev1 commands are supported by methods of the same
    name (in lower-case).

    All arguments to commands are converted to strings, except for
    AUTHENTICATE, and the last argument to APPEND which is passed as
    an IMAP4 literal.  If necessary (the string contains any
    non-printing characters or white-space and isn't enclosed with
    either parentheses or double quotes) each string is quoted.
    However, the 'password' argument to the LOGIN command is always
    quoted.  If you want to avoid having an argument string quoted
    (eg: the 'flags' argument to STORE) then enclose the string in
    parentheses (eg: "(\Deleted)").

    Each command returns a tuple: (type, [data, ...]) where 'type'
    is usually 'OK' or 'NO', and 'data' is either the text from the
    tagged response, or untagged results from command. Each 'data'
    is either a string, or a tuple. If a tuple, then the first part
    is the header of the response, and the second part contains
    the data (ie: 'literal' value).

    Errors raise the exception class <instance>.error("<reason>").
    IMAP4 server errors raise <instance>.abort("<reason>"),
    which is a sub-class of 'error'. Mailbox status changes
    from READ-WRITE to READ-ONLY raise the exception class
    <instance>.readonly("<reason>"), which is a sub-class of 'abort'.

    "error" exceptions imply a program error.
    "abort" exceptions imply the connection should be reset, and
            the command re-tried.
    "readonly" exceptions imply the command should be re-tried.

    Note: to use this module, you must read the RFCs pertaining to the
    IMAP4 protocol, as the semantics of the arguments to each IMAP4
    command are left to the invoker, not to mention the results. Also,
    most IMAP servers implement a sub-set of the commands available here.
    """

    class error(Exception): pass    # Logical errors - debug required
    class abort(error): pass        # Service errors - close and retry
    class readonly(abort): pass     # Mailbox status changed to READ-ONLY

    def __init__(self, host = '', port = IMAP4_PORT):
        self.debug = Debug
        self.state = 'LOGOUT'
        self.literal = None             # A literal argument to a command
        self.tagged_commands = {}       # Tagged commands awaiting response
        self.untagged_responses = {}    # {typ: [data, ...], ...}
        self.continuation_response = '' # Last continuation response
        self.is_readonly = False        # READ-ONLY desired state
        self.tagnum = 0
        self._tls_established = False

        # Open socket to server.

        self.open(host, port)

        try:
            self._connect()
        except Exception:
            try:
                self.shutdown()
            except OSError:
                pass
            raise


    def _connect(self):
        # Create unique tag for this session,
        # and compile tagged response matcher.

        self.tagpre = Int2AP(random.randint(4096, 65535))
        self.tagre = re.compile(br'(?P<tag>'
                        + self.tagpre
                        + br'\d+) (?P<type>[A-Z]+) (?P<data>.*)', re.ASCII)

        # Get server welcome message,
        # request and store CAPABILITY response.

        if __debug__:
            self._cmd_log_len = 10
            self._cmd_log_idx = 0
            self._cmd_log = {}           # Last `_cmd_log_len' interactions
            if self.debug >= 1:
                self._mesg('imaplib version %s' % __version__)
                self._mesg('new IMAP4 connection, tag=%s' % self.tagpre)

        self.welcome = self._get_response()
        if 'PREAUTH' in self.untagged_responses:
            self.state = 'AUTH'
        elif 'OK' in self.untagged_responses:
            self.state = 'NONAUTH'
        else:
            raise self.error(self.welcome)

        self._get_capabilities()
        if __debug__:
            if self.debug >= 3:
                self._mesg('CAPABILITIES: %r' % (self.capabilities,))

        for version in AllowedVersions:
            if not version in self.capabilities:
                continue
            self.PROTOCOL_VERSION = version
            return

        raise self.error('server not IMAP4 compliant')


    def __getattr__(self, attr):
        #       Allow UPPERCASE variants of IMAP4 command methods.
        if attr in Commands:
            return getattr(self, attr.lower())
        raise AttributeError("Unknown IMAP4 command: '%s'" % attr)



    #       Overridable methods


    def _create_socket(self):
        return socket.create_connection((self.host, self.port))

    def open(self, host = '', port = IMAP4_PORT):
        """Setup connection to remote server on "host:port"
            (default: localhost:standard IMAP4 port).
        This connection will be used by the routines:
            read, readline, send, shutdown.
        """
        self.host = host
        self.port = port
        self.sock = self._create_socket()
        self.file = self.sock.makefile('rb')


    def read(self, size):
        """Read 'size' bytes from remote."""
        return self.file.read(size)


    def readline(self):
        """Read line from remote."""
        line = self.file.readline(_MAXLINE + 1)
        if len(line) > _MAXLINE:
            raise self.error("got more than %d bytes" % _MAXLINE)
        return line


    def send(self, data):
        """Send data to remote."""
        self.sock.sendall(data)


    def shutdown(self):
        """Close I/O established in "open"."""
        self.file.close()
        try:
            self.sock.shutdown(socket.SHUT_RDWR)
        except OSError as e:
            # The server might already have closed the connection
            if e.errno != errno.ENOTCONN:
                raise
        finally:
            self.sock.close()


    def socket(self):
        """Return socket instance used to connect to IMAP4 server.

        socket = <instance>.socket()
        """
        return self.sock



    #       Utility methods


    def recent(self):
        """Return most recent 'RECENT' responses if any exist,
        else prompt server for an update using the 'NOOP' command.

        (typ, [data]) = <instance>.recent()

        'data' is None if no new messages,
        else list of RECENT responses, most recent last.
        """
        name = 'RECENT'
        typ, dat = self._untagged_response('OK', [None], name)
        if dat[-1]:
            return typ, dat
        typ, dat = self.noop()  # Prod server for response
        return self._untagged_response(typ, dat, name)


    def response(self, code):
        """Return data for response 'code' if received, or None.

        Old value for response 'code' is cleared.

        (code, [data]) = <instance>.response(code)
        """
        return self._untagged_response(code, [None], code.upper())



    #       IMAP4 commands


    def append(self, mailbox, flags, date_time, message):
        """Append message to named mailbox.

        (typ, [data]) = <instance>.append(mailbox, flags, date_time, message)

                All args except `message' can be None.
        """
        name = 'APPEND'
        if not mailbox:
            mailbox = 'INBOX'
        if flags:
            if (flags[0],flags[-1]) != ('(',')'):
                flags = '(%s)' % flags
        else:
            flags = None
        if date_time:
            date_time = Time2Internaldate(date_time)
        else:
            date_time = None
        self.literal = MapCRLF.sub(CRLF, message)
        return self._simple_command(name, mailbox, flags, date_time)


    def authenticate(self, mechanism, authobject):
        """Authenticate command - requires response processing.

        'mechanism' specifies which authentication mechanism is to
        be used - it must appear in <instance>.capabilities in the
        form AUTH=<mechanism>.

        'authobject' must be a callable object:

                data = authobject(response)

        It will be called to process server continuation responses; the
        response argument it is passed will be a bytes.  It should return bytes
        data that will be base64 encoded and sent to the server.  It should
        return None if the client abort response '*' should be sent instead.
        """
        mech = mechanism.upper()
        # XXX: shouldn't this code be removed, not commented out?
        #cap = 'AUTH=%s' % mech
        #if not cap in self.capabilities:       # Let the server decide!
        #    raise self.error("Server doesn't allow %s authentication." % mech)
        self.literal = _Authenticator(authobject).process
        typ, dat = self._simple_command('AUTHENTICATE', mech)
        if typ != 'OK':
            raise self.error(dat[-1])
        self.state = 'AUTH'
        return typ, dat


    def capability(self):
        """(typ, [data]) = <instance>.capability()
        Fetch capabilities list from server."""

        name = 'CAPABILITY'
        typ, dat = self._simple_command(name)
        return self._untagged_response(typ, dat, name)


    def check(self):
        """Checkpoint mailbox on server.

        (typ, [data]) = <instance>.check()
        """
        return self._simple_command('CHECK')


    def close(self):
        """Close currently selected mailbox.

        Deleted messages are removed from writable mailbox.
        This is the recommended command before 'LOGOUT'.

        (typ, [data]) = <instance>.close()
        """
        try:
            typ, dat = self._simple_command('CLOSE')
        finally:
            self.state = 'AUTH'
        return typ, dat


    def copy(self, message_set, new_mailbox):
        """Copy 'message_set' messages onto end of 'new_mailbox'.

        (typ, [data]) = <instance>.copy(message_set, new_mailbox)
        """
        return self._simple_command('COPY', message_set, new_mailbox)


    def create(self, mailbox):
        """Create new mailbox.

        (typ, [data]) = <instance>.create(mailbox)
        """
        return self._simple_command('CREATE', mailbox)


    def delete(self, mailbox):
        """Delete old mailbox.

        (typ, [data]) = <instance>.delete(mailbox)
        """
        return self._simple_command('DELETE', mailbox)

    def deleteacl(self, mailbox, who):
        """Delete the ACLs (remove any rights) set for who on mailbox.

        (typ, [data]) = <instance>.deleteacl(mailbox, who)
        """
        return self._simple_command('DELETEACL', mailbox, who)

    def expunge(self):
        """Permanently remove deleted items from selected mailbox.

        Generates 'EXPUNGE' response for each deleted message.

        (typ, [data]) = <instance>.expunge()

        'data' is list of 'EXPUNGE'd message numbers in order received.
        """
        name = 'EXPUNGE'
        typ, dat = self._simple_command(name)
        return self._untagged_response(typ, dat, name)


    def fetch(self, message_set, message_parts):
        """Fetch (parts of) messages.

        (typ, [data, ...]) = <instance>.fetch(message_set, message_parts)

        'message_parts' should be a string of selected parts
        enclosed in parentheses, eg: "(UID BODY[TEXT])".

        'data' are tuples of message part envelope and data.
        """
        name = 'FETCH'
        typ, dat = self._simple_command(name, message_set, message_parts)
        return self._untagged_response(typ, dat, name)


    def getacl(self, mailbox):
        """Get the ACLs for a mailbox.

        (typ, [data]) = <instance>.getacl(mailbox)
        """
        typ, dat = self._simple_command('GETACL', mailbox)
        return self._untagged_response(typ, dat, 'ACL')


    def getannotation(self, mailbox, entry, attribute):
        """(typ, [data]) = <instance>.getannotation(mailbox, entry, attribute)
        Retrieve ANNOTATIONs."""

        typ, dat = self._simple_command('GETANNOTATION', mailbox, entry, attribute)
        return self._untagged_response(typ, dat, 'ANNOTATION')


    def getquota(self, root):
        """Get the quota root's resource usage and limits.

        Part of the IMAP4 QUOTA extension defined in rfc2087.

        (typ, [data]) = <instance>.getquota(root)
        """
        typ, dat = self._simple_command('GETQUOTA', root)
        return self._untagged_response(typ, dat, 'QUOTA')


    def getquotaroot(self, mailbox):
        """Get the list of quota roots for the named mailbox.

        (typ, [[QUOTAROOT responses...], [QUOTA responses]]) = <instance>.getquotaroot(mailbox)
        """
        typ, dat = self._simple_command('GETQUOTAROOT', mailbox)
        typ, quota = self._untagged_response(typ, dat, 'QUOTA')
        typ, quotaroot = self._untagged_response(typ, dat, 'QUOTAROOT')
        return typ, [quotaroot, quota]


    def list(self, directory='""', pattern='*'):
        """List mailbox names in directory matching pattern.

        (typ, [data]) = <instance>.list(directory='""', pattern='*')

        'data' is list of LIST responses.
        """
        name = 'LIST'
        typ, dat = self._simple_command(name, directory, pattern)
        return self._untagged_response(typ, dat, name)


    def login(self, user, password):
        """Identify client using plaintext password.

        (typ, [data]) = <instance>.login(user, password)

        NB: 'password' will be quoted.
        """
        typ, dat = self._simple_command('LOGIN', user, self._quote(password))
        if typ != 'OK':
            raise self.error(dat[-1])
        self.state = 'AUTH'
        return typ, dat


    def login_cram_md5(self, user, password):
        """ Force use of CRAM-MD5 authentication.

        (typ, [data]) = <instance>.login_cram_md5(user, password)
        """
        self.user, self.password = user, password
        return self.authenticate('CRAM-MD5', self._CRAM_MD5_AUTH)


    def _CRAM_MD5_AUTH(self, challenge):
        """ Authobject to use with CRAM-MD5 authentication. """
        import hmac
        pwd = (self.password.encode('ASCII') if isinstance(self.password, str)
                                             else self.password)
        return self.user + " " + hmac.HMAC(pwd, challenge, 'md5').hexdigest()


    def logout(self):
        """Shutdown connection to server.

        (typ, [data]) = <instance>.logout()

        Returns server 'BYE' response.
        """
        self.state = 'LOGOUT'
        try: typ, dat = self._simple_command('LOGOUT')
        except: typ, dat = 'NO', ['%s: %s' % sys.exc_info()[:2]]
        self.shutdown()
        if 'BYE' in self.untagged_responses:
            return 'BYE', self.untagged_responses['BYE']
        return typ, dat


    def lsub(self, directory='""', pattern='*'):
        """List 'subscribed' mailbox names in directory matching pattern.

        (typ, [data, ...]) = <instance>.lsub(directory='""', pattern='*')

        'data' are tuples of message part envelope and data.
        """
        name = 'LSUB'
        typ, dat = self._simple_command(name, directory, pattern)
        return self._untagged_response(typ, dat, name)

    def myrights(self, mailbox):
        """Show my ACLs for a mailbox (i.e. the rights that I have on mailbox).

        (typ, [data]) = <instance>.myrights(mailbox)
        """
        typ,dat = self._simple_command('MYRIGHTS', mailbox)
        return self._untagged_response(typ, dat, 'MYRIGHTS')

    def namespace(self):
        """ Returns IMAP namespaces ala rfc2342

        (typ, [data, ...]) = <instance>.namespace()
        """
        name = 'NAMESPACE'
        typ, dat = self._simple_command(name)
        return self._untagged_response(typ, dat, name)


    def noop(self):
        """Send NOOP command.

        (typ, [data]) = <instance>.noop()
        """
        if __debug__:
            if self.debug >= 3:
                self._dump_ur(self.untagged_responses)
        return self._simple_command('NOOP')


    def partial(self, message_num, message_part, start, length):
        """Fetch truncated part of a message.

        (typ, [data, ...]) = <instance>.partial(message_num, message_part, start, length)

        'data' is tuple of message part envelope and data.
        """
        name = 'PARTIAL'
        typ, dat = self._simple_command(name, message_num, message_part, start, length)
        return self._untagged_response(typ, dat, 'FETCH')


    def proxyauth(self, user):
        """Assume authentication as "user".

        Allows an authorised administrator to proxy into any user's
        mailbox.

        (typ, [data]) = <instance>.proxyauth(user)
        """

        name = 'PROXYAUTH'
        return self._simple_command('PROXYAUTH', user)


    def rename(self, oldmailbox, newmailbox):
        """Rename old mailbox name to new.

        (typ, [data]) = <instance>.rename(oldmailbox, newmailbox)
        """
        return self._simple_command('RENAME', oldmailbox, newmailbox)


    def search(self, charset, *criteria):
        """Search mailbox for matching messages.

        (typ, [data]) = <instance>.search(charset, criterion, ...)

        'data' is space separated list of matching message numbers.
        """
        name = 'SEARCH'
        if charset:
            typ, dat = self._simple_command(name, 'CHARSET', charset, *criteria)
        else:
            typ, dat = self._simple_command(name, *criteria)
        return self._untagged_response(typ, dat, name)


    def select(self, mailbox='INBOX', readonly=False):
        """Select a mailbox.

        Flush all untagged responses.

        (typ, [data]) = <instance>.select(mailbox='INBOX', readonly=False)

        'data' is count of messages in mailbox ('EXISTS' response).

        Mandated responses are ('FLAGS', 'EXISTS', 'RECENT', 'UIDVALIDITY'), so
        other responses should be obtained via <instance>.response('FLAGS') etc.
        """
        self.untagged_responses = {}    # Flush old responses.
        self.is_readonly = readonly
        if readonly:
            name = 'EXAMINE'
        else:
            name = 'SELECT'
        typ, dat = self._simple_command(name, mailbox)
        if typ != 'OK':
            self.state = 'AUTH'     # Might have been 'SELECTED'
            return typ, dat
        self.state = 'SELECTED'
        if 'READ-ONLY' in self.untagged_responses \
                and not readonly:
            if __debug__:
                if self.debug >= 1:
                    self._dump_ur(self.untagged_responses)
            raise self.readonly('%s is not writable' % mailbox)
        return typ, self.untagged_responses.get('EXISTS', [None])


    def setacl(self, mailbox, who, what):
        """Set a mailbox acl.

        (typ, [data]) = <instance>.setacl(mailbox, who, what)
        """
        return self._simple_command('SETACL', mailbox, who, what)


    def setannotation(self, *args):
        """(typ, [data]) = <instance>.setannotation(mailbox[, entry, attribute]+)
        Set ANNOTATIONs."""

        typ, dat = self._simple_command('SETANNOTATION', *args)
        return self._untagged_response(typ, dat, 'ANNOTATION')


    def setquota(self, root, limits):
        """Set the quota root's resource limits.

        (typ, [data]) = <instance>.setquota(root, limits)
        """
        typ, dat = self._simple_command('SETQUOTA', root, limits)
        return self._untagged_response(typ, dat, 'QUOTA')


    def sort(self, sort_criteria, charset, *search_criteria):
        """IMAP4rev1 extension SORT command.

        (typ, [data]) = <instance>.sort(sort_criteria, charset, search_criteria, ...)
        """
        name = 'SORT'
        #if not name in self.capabilities:      # Let the server decide!
        #       raise self.error('unimplemented extension command: %s' % name)
        if (sort_criteria[0],sort_criteria[-1]) != ('(',')'):
            sort_criteria = '(%s)' % sort_criteria
        typ, dat = self._simple_command(name, sort_criteria, charset, *search_criteria)
        return self._untagged_response(typ, dat, name)


    def starttls(self, ssl_context=None):
        name = 'STARTTLS'
        if not HAVE_SSL:
            raise self.error('SSL support missing')
        if self._tls_established:
            raise self.abort('TLS session already established')
        if name not in self.capabilities:
            raise self.abort('TLS not supported by server')
        # Generate a default SSL context if none was passed.
        if ssl_context is None:
            ssl_context = ssl._create_stdlib_context()
        typ, dat = self._simple_command(name)
        if typ == 'OK':
            self.sock = ssl_context.wrap_socket(self.sock,
                                                server_hostname=self.host)
            self.file = self.sock.makefile('rb')
            self._tls_established = True
            self._get_capabilities()
        else:
            raise self.error("Couldn't establish TLS session")
        return self._untagged_response(typ, dat, name)


    def status(self, mailbox, names):
        """Request named status conditions for mailbox.

        (typ, [data]) = <instance>.status(mailbox, names)
        """
        name = 'STATUS'
        #if self.PROTOCOL_VERSION == 'IMAP4':   # Let the server decide!
        #    raise self.error('%s unimplemented in IMAP4 (obtain IMAP4rev1 server, or re-code)' % name)
        typ, dat = self._simple_command(name, mailbox, names)
        return self._untagged_response(typ, dat, name)


    def store(self, message_set, command, flags):
        """Alters flag dispositions for messages in mailbox.

        (typ, [data]) = <instance>.store(message_set, command, flags)
        """
        if (flags[0],flags[-1]) != ('(',')'):
            flags = '(%s)' % flags  # Avoid quoting the flags
        typ, dat = self._simple_command('STORE', message_set, command, flags)
        return self._untagged_response(typ, dat, 'FETCH')


    def subscribe(self, mailbox):
        """Subscribe to new mailbox.

        (typ, [data]) = <instance>.subscribe(mailbox)
        """
        return self._simple_command('SUBSCRIBE', mailbox)


    def thread(self, threading_algorithm, charset, *search_criteria):
        """IMAPrev1 extension THREAD command.

        (type, [data]) = <instance>.thread(threading_algorithm, charset, search_criteria, ...)
        """
        name = 'THREAD'
        typ, dat = self._simple_command(name, threading_algorithm, charset, *search_criteria)
        return self._untagged_response(typ, dat, name)


    def uid(self, command, *args):
        """Execute "command arg ..." with messages identified by UID,
                rather than message number.

        (typ, [data]) = <instance>.uid(command, arg1, arg2, ...)

        Returns response appropriate to 'command'.
        """
        command = command.upper()
        if not command in Commands:
            raise self.error("Unknown IMAP4 UID command: %s" % command)
        if self.state not in Commands[command]:
            raise self.error("command %s illegal in state %s, "
                             "only allowed in states %s" %
                             (command, self.state,
                              ', '.join(Commands[command])))
        name = 'UID'
        typ, dat = self._simple_command(name, command, *args)
        if command in ('SEARCH', 'SORT', 'THREAD'):
            name = command
        else:
            name = 'FETCH'
        return self._untagged_response(typ, dat, name)


    def unsubscribe(self, mailbox):
        """Unsubscribe from old mailbox.

        (typ, [data]) = <instance>.unsubscribe(mailbox)
        """
        return self._simple_command('UNSUBSCRIBE', mailbox)


    def xatom(self, name, *args):
        """Allow simple extension commands
                notified by server in CAPABILITY response.

        Assumes command is legal in current state.

        (typ, [data]) = <instance>.xatom(name, arg, ...)

        Returns response appropriate to extension command `name'.
        """
        name = name.upper()
        #if not name in self.capabilities:      # Let the server decide!
        #    raise self.error('unknown extension command: %s' % name)
        if not name in Commands:
            Commands[name] = (self.state,)
        return self._simple_command(name, *args)



    #       Private methods


    def _append_untagged(self, typ, dat):
        if dat is None:
            dat = b''
        ur = self.untagged_responses
        if __debug__:
            if self.debug >= 5:
                self._mesg('untagged_responses[%s] %s += ["%r"]' %
                        (typ, len(ur.get(typ,'')), dat))
        if typ in ur:
            ur[typ].append(dat)
        else:
            ur[typ] = [dat]


    def _check_bye(self):
        bye = self.untagged_responses.get('BYE')
        if bye:
            raise self.abort(bye[-1].decode('ascii', 'replace'))


    def _command(self, name, *args):

        if self.state not in Commands[name]:
            self.literal = None
            raise self.error("command %s illegal in state %s, "
                             "only allowed in states %s" %
                             (name, self.state,
                              ', '.join(Commands[name])))

        for typ in ('OK', 'NO', 'BAD'):
            if typ in self.untagged_responses:
                del self.untagged_responses[typ]

        if 'READ-ONLY' in self.untagged_responses \
        and not self.is_readonly:
            raise self.readonly('mailbox status changed to READ-ONLY')

        tag = self._new_tag()
        name = bytes(name, 'ASCII')
        data = tag + b' ' + name
        for arg in args:
            if arg is None: continue
            if isinstance(arg, str):
                arg = bytes(arg, "ASCII")
            data = data + b' ' + arg

        literal = self.literal
        if literal is not None:
            self.literal = None
            if type(literal) is type(self._command):
                literator = literal
            else:
                literator = None
                data = data + bytes(' {%s}' % len(literal), 'ASCII')

        if __debug__:
            if self.debug >= 4:
                self._mesg('> %r' % data)
            else:
                self._log('> %r' % data)

        try:
            self.send(data + CRLF)
        except OSError as val:
            raise self.abort('socket error: %s' % val)

        if literal is None:
            return tag

        while 1:
            # Wait for continuation response

            while self._get_response():
                if self.tagged_commands[tag]:   # BAD/NO?
                    return tag

            # Send literal

            if literator:
                literal = literator(self.continuation_response)

            if __debug__:
                if self.debug >= 4:
                    self._mesg('write literal size %s' % len(literal))

            try:
                self.send(literal)
                self.send(CRLF)
            except OSError as val:
                raise self.abort('socket error: %s' % val)

            if not literator:
                break

        return tag


    def _command_complete(self, name, tag):
        # BYE is expected after LOGOUT
        if name != 'LOGOUT':
            self._check_bye()
        try:
            typ, data = self._get_tagged_response(tag)
        except self.abort as val:
            raise self.abort('command: %s => %s' % (name, val))
        except self.error as val:
            raise self.error('command: %s => %s' % (name, val))
        if name != 'LOGOUT':
            self._check_bye()
        if typ == 'BAD':
            raise self.error('%s command error: %s %s' % (name, typ, data))
        return typ, data


    def _get_capabilities(self):
        typ, dat = self.capability()
        if dat == [None]:
            raise self.error('no CAPABILITY response from server')
        dat = str(dat[-1], "ASCII")
        dat = dat.upper()
        self.capabilities = tuple(dat.split())


    def _get_response(self):

        # Read response and store.
        #
        # Returns None for continuation responses,
        # otherwise first response line received.

        resp = self._get_line()

        # Command completion response?

        if self._match(self.tagre, resp):
            tag = self.mo.group('tag')
            if not tag in self.tagged_commands:
                raise self.abort('unexpected tagged response: %s' % resp)

            typ = self.mo.group('type')
            typ = str(typ, 'ASCII')
            dat = self.mo.group('data')
            self.tagged_commands[tag] = (typ, [dat])
        else:
            dat2 = None

            # '*' (untagged) responses?

            if not self._match(Untagged_response, resp):
                if self._match(Untagged_status, resp):
                    dat2 = self.mo.group('data2')

            if self.mo is None:
                # Only other possibility is '+' (continuation) response...

                if self._match(Continuation, resp):
                    self.continuation_response = self.mo.group('data')
                    return None     # NB: indicates continuation

                raise self.abort("unexpected response: '%s'" % resp)

            typ = self.mo.group('type')
            typ = str(typ, 'ascii')
            dat = self.mo.group('data')
            if dat is None: dat = b''        # Null untagged response
            if dat2: dat = dat + b' ' + dat2

            # Is there a literal to come?

            while self._match(Literal, dat):

                # Read literal direct from connection.

                size = int(self.mo.group('size'))
                if __debug__:
                    if self.debug >= 4:
                        self._mesg('read literal size %s' % size)
                data = self.read(size)

                # Store response with literal as tuple

                self._append_untagged(typ, (dat, data))

                # Read trailer - possibly containing another literal

                dat = self._get_line()

            self._append_untagged(typ, dat)

        # Bracketed response information?

        if typ in ('OK', 'NO', 'BAD') and self._match(Response_code, dat):
            typ = self.mo.group('type')
            typ = str(typ, "ASCII")
            self._append_untagged(typ, self.mo.group('data'))

        if __debug__:
            if self.debug >= 1 and typ in ('NO', 'BAD', 'BYE'):
                self._mesg('%s response: %r' % (typ, dat))

        return resp


    def _get_tagged_response(self, tag):

        while 1:
            result = self.tagged_commands[tag]
            if result is not None:
                del self.tagged_commands[tag]
                return result

            # If we've seen a BYE at this point, the socket will be
            # closed, so report the BYE now.

            self._check_bye()

            # Some have reported "unexpected response" exceptions.
            # Note that ignoring them here causes loops.
            # Instead, send me details of the unexpected response and
            # I'll update the code in `_get_response()'.

            try:
                self._get_response()
            except self.abort as val:
                if __debug__:
                    if self.debug >= 1:
                        self.print_log()
                raise


    def _get_line(self):

        line = self.readline()
        if not line:
            raise self.abort('socket error: EOF')

        # Protocol mandates all lines terminated by CRLF
        if not line.endswith(b'\r\n'):
            raise self.abort('socket error: unterminated line: %r' % line)

        line = line[:-2]
        if __debug__:
            if self.debug >= 4:
                self._mesg('< %r' % line)
            else:
                self._log('< %r' % line)
        return line


    def _match(self, cre, s):

        # Run compiled regular expression match method on 's'.
        # Save result, return success.

        self.mo = cre.match(s)
        if __debug__:
            if self.mo is not None and self.debug >= 5:
                self._mesg("\tmatched r'%r' => %r" % (cre.pattern, self.mo.groups()))
        return self.mo is not None


    def _new_tag(self):

        tag = self.tagpre + bytes(str(self.tagnum), 'ASCII')
        self.tagnum = self.tagnum + 1
        self.tagged_commands[tag] = None
        return tag


    def _quote(self, arg):

        arg = arg.replace('\\', '\\\\')
        arg = arg.replace('"', '\\"')

        return '"' + arg + '"'


    def _simple_command(self, name, *args):

        return self._command_complete(name, self._command(name, *args))


    def _untagged_response(self, typ, dat, name):
        if typ == 'NO':
            return typ, dat
        if not name in self.untagged_responses:
            return typ, [None]
        data = self.untagged_responses.pop(name)
        if __debug__:
            if self.debug >= 5:
                self._mesg('untagged_responses[%s] => %s' % (name, data))
        return typ, data


    if __debug__:

        def _mesg(self, s, secs=None):
            if secs is None:
                secs = time.time()
            tm = time.strftime('%M:%S', time.localtime(secs))
            sys.stderr.write('  %s.%02d %s\n' % (tm, (secs*100)%100, s))
            sys.stderr.flush()

        def _dump_ur(self, dict):
            # Dump untagged responses (in `dict').
            l = dict.items()
            if not l: return
            t = '\n\t\t'
            l = map(lambda x:'%s: "%s"' % (x[0], x[1][0] and '" "'.join(x[1]) or ''), l)
            self._mesg('untagged responses dump:%s%s' % (t, t.join(l)))

        def _log(self, line):
            # Keep log of last `_cmd_log_len' interactions for debugging.
            self._cmd_log[self._cmd_log_idx] = (line, time.time())
            self._cmd_log_idx += 1
            if self._cmd_log_idx >= self._cmd_log_len:
                self._cmd_log_idx = 0

        def print_log(self):
            self._mesg('last %d IMAP4 interactions:' % len(self._cmd_log))
            i, n = self._cmd_log_idx, self._cmd_log_len
            while n:
                try:
                    self._mesg(*self._cmd_log[i])
                except:
                    pass
                i += 1
                if i >= self._cmd_log_len:
                    i = 0
                n -= 1


if HAVE_SSL:

    class IMAP4_SSL(IMAP4):

        """IMAP4 client class over SSL connection

        Instantiate with: IMAP4_SSL([host[, port[, keyfile[, certfile[, ssl_context]]]]])

                host - host's name (default: localhost);
                port - port number (default: standard IMAP4 SSL port);
                keyfile - PEM formatted file that contains your private key (default: None);
                certfile - PEM formatted certificate chain file (default: None);
                ssl_context - a SSLContext object that contains your certificate chain
                              and private key (default: None)
                Note: if ssl_context is provided, then parameters keyfile or
                certfile should not be set otherwise ValueError is raised.

        for more documentation see the docstring of the parent class IMAP4.
        """


        def __init__(self, host='', port=IMAP4_SSL_PORT, keyfile=None, certfile=None, ssl_context=None):
            if ssl_context is not None and keyfile is not None:
                raise ValueError("ssl_context and keyfile arguments are mutually "
                                 "exclusive")
            if ssl_context is not None and certfile is not None:
                raise ValueError("ssl_context and certfile arguments are mutually "
                                 "exclusive")

            self.keyfile = keyfile
            self.certfile = certfile
            if ssl_context is None:
                ssl_context = ssl._create_stdlib_context(certfile=certfile,
                                                         keyfile=keyfile)
            self.ssl_context = ssl_context
            IMAP4.__init__(self, host, port)

        def _create_socket(self):
            sock = IMAP4._create_socket(self)
            return self.ssl_context.wrap_socket(sock,
                                                server_hostname=self.host)

        def open(self, host='', port=IMAP4_SSL_PORT):
            """Setup connection to remote server on "host:port".
                (default: localhost:standard IMAP4 SSL port).
            This connection will be used by the routines:
                read, readline, send, shutdown.
            """
            IMAP4.open(self, host, port)

    __all__.append("IMAP4_SSL")


class IMAP4_stream(IMAP4):

    """IMAP4 client class over a stream

    Instantiate with: IMAP4_stream(command)

            where "command" is a string that can be passed to subprocess.Popen()

    for more documentation see the docstring of the parent class IMAP4.
    """


    def __init__(self, command):
        self.command = command
        IMAP4.__init__(self)


    def open(self, host = None, port = None):
        """Setup a stream connection.
        This connection will be used by the routines:
            read, readline, send, shutdown.
        """
        self.host = None        # For compatibility with parent class
        self.port = None
        self.sock = None
        self.file = None
        self.process = subprocess.Popen(self.command,
            bufsize=DEFAULT_BUFFER_SIZE,
            stdin=subprocess.PIPE, stdout=subprocess.PIPE,
            shell=True, close_fds=True)
        self.writefile = self.process.stdin
        self.readfile = self.process.stdout

    def read(self, size):
        """Read 'size' bytes from remote."""
        return self.readfile.read(size)


    def readline(self):
        """Read line from remote."""
        return self.readfile.readline()


    def send(self, data):
        """Send data to remote."""
        self.writefile.write(data)
        self.writefile.flush()


    def shutdown(self):
        """Close I/O established in "open"."""
        self.readfile.close()
        self.writefile.close()
        self.process.wait()



class _Authenticator:

    """Private class to provide en/decoding
            for base64-based authentication conversation.
    """

    def __init__(self, mechinst):
        self.mech = mechinst    # Callable object to provide/process data

    def process(self, data):
        ret = self.mech(self.decode(data))
        if ret is None:
            return b'*'     # Abort conversation
        return self.encode(ret)

    def encode(self, inp):
        #
        #  Invoke binascii.b2a_base64 iteratively with
        #  short even length buffers, strip the trailing
        #  line feed from the result and append.  "Even"
        #  means a number that factors to both 6 and 8,
        #  so when it gets to the end of the 8-bit input
        #  there's no partial 6-bit output.
        #
        oup = b''
        if isinstance(inp, str):
            inp = inp.encode('ASCII')
        while inp:
            if len(inp) > 48:
                t = inp[:48]
                inp = inp[48:]
            else:
                t = inp
                inp = b''
            e = binascii.b2a_base64(t)
            if e:
                oup = oup + e[:-1]
        return oup

    def decode(self, inp):
        if not inp:
            return b''
        return binascii.a2b_base64(inp)

Months = ' Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec'.split(' ')
Mon2num = {s.encode():n+1 for n, s in enumerate(Months[1:])}

def Internaldate2tuple(resp):
    """Parse an IMAP4 INTERNALDATE string.

    Return corresponding local time.  The return value is a
    time.struct_time tuple or None if the string has wrong format.
    """

    mo = InternalDate.match(resp)
    if not mo:
        return None

    mon = Mon2num[mo.group('mon')]
    zonen = mo.group('zonen')

    day = int(mo.group('day'))
    year = int(mo.group('year'))
    hour = int(mo.group('hour'))
    min = int(mo.group('min'))
    sec = int(mo.group('sec'))
    zoneh = int(mo.group('zoneh'))
    zonem = int(mo.group('zonem'))

    # INTERNALDATE timezone must be subtracted to get UT

    zone = (zoneh*60 + zonem)*60
    if zonen == b'-':
        zone = -zone

    tt = (year, mon, day, hour, min, sec, -1, -1, -1)
    utc = calendar.timegm(tt) - zone

    return time.localtime(utc)



def Int2AP(num):

    """Convert integer to A-P string representation."""

    val = b''; AP = b'ABCDEFGHIJKLMNOP'
    num = int(abs(num))
    while num:
        num, mod = divmod(num, 16)
        val = AP[mod:mod+1] + val
    return val



def ParseFlags(resp):

    """Convert IMAP4 flags response to python tuple."""

    mo = Flags.match(resp)
    if not mo:
        return ()

    return tuple(mo.group('flags').split())


def Time2Internaldate(date_time):

    """Convert date_time to IMAP4 INTERNALDATE representation.

    Return string in form: '"DD-Mmm-YYYY HH:MM:SS +HHMM"'.  The
    date_time argument can be a number (int or float) representing
    seconds since epoch (as returned by time.time()), a 9-tuple
    representing local time, an instance of time.struct_time (as
    returned by time.localtime()), an aware datetime instance or a
    double-quoted string.  In the last case, it is assumed to already
    be in the correct format.
    """
    if isinstance(date_time, (int, float)):
        dt = datetime.fromtimestamp(date_time,
                                    timezone.utc).astimezone()
    elif isinstance(date_time, tuple):
        try:
            gmtoff = date_time.tm_gmtoff
        except AttributeError:
            if time.daylight:
                dst = date_time[8]
                if dst == -1:
                    dst = time.localtime(time.mktime(date_time))[8]
                gmtoff = -(time.timezone, time.altzone)[dst]
            else:
                gmtoff = -time.timezone
        delta = timedelta(seconds=gmtoff)
        dt = datetime(*date_time[:6], tzinfo=timezone(delta))
    elif isinstance(date_time, datetime):
        if date_time.tzinfo is None:
            raise ValueError("date_time must be aware")
        dt = date_time
    elif isinstance(date_time, str) and (date_time[0],date_time[-1]) == ('"','"'):
        return date_time        # Assume in correct format
    else:
        raise ValueError("date_time not of a known type")
    fmt = '"%d-{}-%Y %H:%M:%S %z"'.format(Months[dt.month])
    return dt.strftime(fmt)



if __name__ == '__main__':

    # To test: invoke either as 'python imaplib.py [IMAP4_server_hostname]'
    # or 'python imaplib.py -s "rsh IMAP4_server_hostname exec /etc/rimapd"'
    # to test the IMAP4_stream class

    import getopt, getpass

    try:
        optlist, args = getopt.getopt(sys.argv[1:], 'd:s:')
    except getopt.error as val:
        optlist, args = (), ()

    stream_command = None
    for opt,val in optlist:
        if opt == '-d':
            Debug = int(val)
        elif opt == '-s':
            stream_command = val
            if not args: args = (stream_command,)

    if not args: args = ('',)

    host = args[0]

    USER = getpass.getuser()
    PASSWD = getpass.getpass("IMAP password for %s on %s: " % (USER, host or "localhost"))

    test_mesg = 'From: %(user)s@localhost%(lf)sSubject: IMAP4 test%(lf)s%(lf)sdata...%(lf)s' % {'user':USER, 'lf':'\n'}
    test_seq1 = (
    ('login', (USER, PASSWD)),
    ('create', ('/tmp/xxx 1',)),
    ('rename', ('/tmp/xxx 1', '/tmp/yyy')),
    ('CREATE', ('/tmp/yyz 2',)),
    ('append', ('/tmp/yyz 2', None, None, test_mesg)),
    ('list', ('/tmp', 'yy*')),
    ('select', ('/tmp/yyz 2',)),
    ('search', (None, 'SUBJECT', 'test')),
    ('fetch', ('1', '(FLAGS INTERNALDATE RFC822)')),
    ('store', ('1', 'FLAGS', '(\Deleted)')),
    ('namespace', ()),
    ('expunge', ()),
    ('recent', ()),
    ('close', ()),
    )

    test_seq2 = (
    ('select', ()),
    ('response',('UIDVALIDITY',)),
    ('uid', ('SEARCH', 'ALL')),
    ('response', ('EXISTS',)),
    ('append', (None, None, None, test_mesg)),
    ('recent', ()),
    ('logout', ()),
    )

    def run(cmd, args):
        M._mesg('%s %s' % (cmd, args))
        typ, dat = getattr(M, cmd)(*args)
        M._mesg('%s => %s %s' % (cmd, typ, dat))
        if typ == 'NO': raise dat[0]
        return dat

    try:
        if stream_command:
            M = IMAP4_stream(stream_command)
        else:
            M = IMAP4(host)
        if M.state == 'AUTH':
            test_seq1 = test_seq1[1:]   # Login not needed
        M._mesg('PROTOCOL_VERSION = %s' % M.PROTOCOL_VERSION)
        M._mesg('CAPABILITIES = %r' % (M.capabilities,))

        for cmd,args in test_seq1:
            run(cmd, args)

        for ml in run('list', ('/tmp/', 'yy%')):
            mo = re.match(r'.*"([^"]+)"$', ml)
            if mo: path = mo.group(1)
            else: path = ml.split()[-1]
            run('delete', (path,))

        for cmd,args in test_seq2:
            dat = run(cmd, args)

            if (cmd,args) != ('uid', ('SEARCH', 'ALL')):
                continue

            uid = dat[-1].split()
            if not uid: continue
            run('uid', ('FETCH', '%s' % uid[-1],
                    '(FLAGS INTERNALDATE RFC822.SIZE RFC822.HEADER RFC822.TEXT)'))

        print('\nAll tests OK.')

    except:
        print('\nTests failed.')

        if not Debug:
            print('''
If you would like to see debugging output,
try: %s -d5
''' % sys.argv[0])

        raise
lib\imghdr.py
"""Recognize image file formats based on their first few bytes."""

__all__ = ["what"]

#-------------------------#
# Recognize image headers #
#-------------------------#

def what(file, h=None):
    f = None
    try:
        if h is None:
            if isinstance(file, str):
                f = open(file, 'rb')
                h = f.read(32)
            else:
                location = file.tell()
                h = file.read(32)
                file.seek(location)
        for tf in tests:
            res = tf(h, f)
            if res:
                return res
    finally:
        if f: f.close()
    return None


#---------------------------------#
# Subroutines per image file type #
#---------------------------------#

tests = []

def test_jpeg(h, f):
    """JPEG data in JFIF or Exif format"""
    if h[6:10] in (b'JFIF', b'Exif'):
        return 'jpeg'

tests.append(test_jpeg)

def test_png(h, f):
    if h.startswith(b'\211PNG\r\n\032\n'):
        return 'png'

tests.append(test_png)

def test_gif(h, f):
    """GIF ('87 and '89 variants)"""
    if h[:6] in (b'GIF87a', b'GIF89a'):
        return 'gif'

tests.append(test_gif)

def test_tiff(h, f):
    """TIFF (can be in Motorola or Intel byte order)"""
    if h[:2] in (b'MM', b'II'):
        return 'tiff'

tests.append(test_tiff)

def test_rgb(h, f):
    """SGI image library"""
    if h.startswith(b'\001\332'):
        return 'rgb'

tests.append(test_rgb)

def test_pbm(h, f):
    """PBM (portable bitmap)"""
    if len(h) >= 3 and \
        h[0] == ord(b'P') and h[1] in b'14' and h[2] in b' \t\n\r':
        return 'pbm'

tests.append(test_pbm)

def test_pgm(h, f):
    """PGM (portable graymap)"""
    if len(h) >= 3 and \
        h[0] == ord(b'P') and h[1] in b'25' and h[2] in b' \t\n\r':
        return 'pgm'

tests.append(test_pgm)

def test_ppm(h, f):
    """PPM (portable pixmap)"""
    if len(h) >= 3 and \
        h[0] == ord(b'P') and h[1] in b'36' and h[2] in b' \t\n\r':
        return 'ppm'

tests.append(test_ppm)

def test_rast(h, f):
    """Sun raster file"""
    if h.startswith(b'\x59\xA6\x6A\x95'):
        return 'rast'

tests.append(test_rast)

def test_xbm(h, f):
    """X bitmap (X10 or X11)"""
    if h.startswith(b'#define '):
        return 'xbm'

tests.append(test_xbm)

def test_bmp(h, f):
    if h.startswith(b'BM'):
        return 'bmp'

tests.append(test_bmp)

#--------------------#
# Small test program #
#--------------------#

def test():
    import sys
    recursive = 0
    if sys.argv[1:] and sys.argv[1] == '-r':
        del sys.argv[1:2]
        recursive = 1
    try:
        if sys.argv[1:]:
            testall(sys.argv[1:], recursive, 1)
        else:
            testall(['.'], recursive, 1)
    except KeyboardInterrupt:
        sys.stderr.write('\n[Interrupted]\n')
        sys.exit(1)

def testall(list, recursive, toplevel):
    import sys
    import os
    for filename in list:
        if os.path.isdir(filename):
            print(filename + '/:', end=' ')
            if recursive or toplevel:
                print('recursing down:')
                import glob
                names = glob.glob(os.path.join(filename, '*'))
                testall(names, recursive, 0)
            else:
                print('*** directory (use -r) ***')
        else:
            print(filename + ':', end=' ')
            sys.stdout.flush()
            try:
                print(what(filename))
            except OSError:
                print('*** not found ***')

if __name__ == '__main__':
    test()
lib\imp.py
"""This module provides the components needed to build your own __import__
function.  Undocumented functions are obsolete.

In most cases it is preferred you consider using the importlib module's
functionality over this module.

"""
# (Probably) need to stay in _imp
from _imp import (lock_held, acquire_lock, release_lock,
                  get_frozen_object, is_frozen_package,
                  init_builtin, init_frozen, is_builtin, is_frozen,
                  _fix_co_filename)
try:
    from _imp import load_dynamic
except ImportError:
    # Platform doesn't support dynamic loading.
    load_dynamic = None

from importlib._bootstrap import SourcelessFileLoader, _ERR_MSG, _SpecMethods

from importlib import machinery
from importlib import util
import importlib
import os
import sys
import tokenize
import types
import warnings

warnings.warn("the imp module is deprecated in favour of importlib; "
              "see the module's documentation for alternative uses",
              PendingDeprecationWarning)

# DEPRECATED
SEARCH_ERROR = 0
PY_SOURCE = 1
PY_COMPILED = 2
C_EXTENSION = 3
PY_RESOURCE = 4
PKG_DIRECTORY = 5
C_BUILTIN = 6
PY_FROZEN = 7
PY_CODERESOURCE = 8
IMP_HOOK = 9


def new_module(name):
    """**DEPRECATED**

    Create a new module.

    The module is not entered into sys.modules.

    """
    return types.ModuleType(name)


def get_magic():
    """**DEPRECATED**

    Return the magic number for .pyc or .pyo files.
    """
    return util.MAGIC_NUMBER


def get_tag():
    """Return the magic tag for .pyc or .pyo files."""
    return sys.implementation.cache_tag


def cache_from_source(path, debug_override=None):
    """**DEPRECATED**

    Given the path to a .py file, return the path to its .pyc/.pyo file.

    The .py file does not need to exist; this simply returns the path to the
    .pyc/.pyo file calculated as if the .py file were imported.  The extension
    will be .pyc unless sys.flags.optimize is non-zero, then it will be .pyo.

    If debug_override is not None, then it must be a boolean and is used in
    place of sys.flags.optimize.

    If sys.implementation.cache_tag is None then NotImplementedError is raised.

    """
    return util.cache_from_source(path, debug_override)


def source_from_cache(path):
    """**DEPRECATED**

    Given the path to a .pyc./.pyo file, return the path to its .py file.

    The .pyc/.pyo file does not need to exist; this simply returns the path to
    the .py file calculated to correspond to the .pyc/.pyo file.  If path does
    not conform to PEP 3147 format, ValueError will be raised. If
    sys.implementation.cache_tag is None then NotImplementedError is raised.

    """
    return util.source_from_cache(path)


def get_suffixes():
    """**DEPRECATED**"""
    extensions = [(s, 'rb', C_EXTENSION) for s in machinery.EXTENSION_SUFFIXES]
    source = [(s, 'r', PY_SOURCE) for s in machinery.SOURCE_SUFFIXES]
    bytecode = [(s, 'rb', PY_COMPILED) for s in machinery.BYTECODE_SUFFIXES]

    return extensions + source + bytecode


class NullImporter:

    """**DEPRECATED**

    Null import object.

    """

    def __init__(self, path):
        if path == '':
            raise ImportError('empty pathname', path='')
        elif os.path.isdir(path):
            raise ImportError('existing directory', path=path)

    def find_module(self, fullname):
        """Always returns None."""
        return None


class _HackedGetData:

    """Compatibility support for 'file' arguments of various load_*()
    functions."""

    def __init__(self, fullname, path, file=None):
        super().__init__(fullname, path)
        self.file = file

    def get_data(self, path):
        """Gross hack to contort loader to deal w/ load_*()'s bad API."""
        if self.file and path == self.path:
            if not self.file.closed:
                file = self.file
            else:
                self.file = file = open(self.path, 'r')

            with file:
                # Technically should be returning bytes, but
                # SourceLoader.get_code() just passed what is returned to
                # compile() which can handle str. And converting to bytes would
                # require figuring out the encoding to decode to and
                # tokenize.detect_encoding() only accepts bytes.
                return file.read()
        else:
            return super().get_data(path)


class _LoadSourceCompatibility(_HackedGetData, machinery.SourceFileLoader):

    """Compatibility support for implementing load_source()."""


def load_source(name, pathname, file=None):
    loader = _LoadSourceCompatibility(name, pathname, file)
    spec = util.spec_from_file_location(name, pathname, loader=loader)
    methods = _SpecMethods(spec)
    if name in sys.modules:
        module = methods.exec(sys.modules[name])
    else:
        module = methods.load()
    # To allow reloading to potentially work, use a non-hacked loader which
    # won't rely on a now-closed file object.
    module.__loader__ = machinery.SourceFileLoader(name, pathname)
    module.__spec__.loader = module.__loader__
    return module


class _LoadCompiledCompatibility(_HackedGetData, SourcelessFileLoader):

    """Compatibility support for implementing load_compiled()."""


def load_compiled(name, pathname, file=None):
    """**DEPRECATED**"""
    loader = _LoadCompiledCompatibility(name, pathname, file)
    spec = util.spec_from_file_location(name, pathname, loader=loader)
    methods = _SpecMethods(spec)
    if name in sys.modules:
        module = methods.exec(sys.modules[name])
    else:
        module = methods.load()
    # To allow reloading to potentially work, use a non-hacked loader which
    # won't rely on a now-closed file object.
    module.__loader__ = SourcelessFileLoader(name, pathname)
    module.__spec__.loader = module.__loader__
    return module


def load_package(name, path):
    """**DEPRECATED**"""
    if os.path.isdir(path):
        extensions = (machinery.SOURCE_SUFFIXES[:] +
                      machinery.BYTECODE_SUFFIXES[:])
        for extension in extensions:
            path = os.path.join(path, '__init__'+extension)
            if os.path.exists(path):
                break
        else:
            raise ValueError('{!r} is not a package'.format(path))
    spec = util.spec_from_file_location(name, path,
                                        submodule_search_locations=[])
    methods = _SpecMethods(spec)
    if name in sys.modules:
        return methods.exec(sys.modules[name])
    else:
        return methods.load()


def load_module(name, file, filename, details):
    """**DEPRECATED**

    Load a module, given information returned by find_module().

    The module name must include the full package name, if any.

    """
    suffix, mode, type_ = details
    if mode and (not mode.startswith(('r', 'U')) or '+' in mode):
        raise ValueError('invalid file open mode {!r}'.format(mode))
    elif file is None and type_ in {PY_SOURCE, PY_COMPILED}:
        msg = 'file object required for import (type code {})'.format(type_)
        raise ValueError(msg)
    elif type_ == PY_SOURCE:
        return load_source(name, filename, file)
    elif type_ == PY_COMPILED:
        return load_compiled(name, filename, file)
    elif type_ == C_EXTENSION and load_dynamic is not None:
        if file is None:
            with open(filename, 'rb') as opened_file:
                return load_dynamic(name, filename, opened_file)
        else:
            return load_dynamic(name, filename, file)
    elif type_ == PKG_DIRECTORY:
        return load_package(name, filename)
    elif type_ == C_BUILTIN:
        return init_builtin(name)
    elif type_ == PY_FROZEN:
        return init_frozen(name)
    else:
        msg =  "Don't know how to import {} (type code {})".format(name, type_)
        raise ImportError(msg, name=name)


def find_module(name, path=None):
    """**DEPRECATED**

    Search for a module.

    If path is omitted or None, search for a built-in, frozen or special
    module and continue search in sys.path. The module name cannot
    contain '.'; to search for a submodule of a package, pass the
    submodule name and the package's __path__.

    """
    if not isinstance(name, str):
        raise TypeError("'name' must be a str, not {}".format(type(name)))
    elif not isinstance(path, (type(None), list)):
        # Backwards-compatibility
        raise RuntimeError("'list' must be None or a list, "
                           "not {}".format(type(name)))

    if path is None:
        if is_builtin(name):
            return None, None, ('', '', C_BUILTIN)
        elif is_frozen(name):
            return None, None, ('', '', PY_FROZEN)
        else:
            path = sys.path

    for entry in path:
        package_directory = os.path.join(entry, name)
        for suffix in ['.py', machinery.BYTECODE_SUFFIXES[0]]:
            package_file_name = '__init__' + suffix
            file_path = os.path.join(package_directory, package_file_name)
            if os.path.isfile(file_path):
                return None, package_directory, ('', '', PKG_DIRECTORY)
        for suffix, mode, type_ in get_suffixes():
            file_name = name + suffix
            file_path = os.path.join(entry, file_name)
            if os.path.isfile(file_path):
                break
        else:
            continue
        break  # Break out of outer loop when breaking out of inner loop.
    else:
        raise ImportError(_ERR_MSG.format(name), name=name)

    encoding = None
    if 'b' not in mode:
        with open(file_path, 'rb') as file:
            encoding = tokenize.detect_encoding(file.readline)[0]
    file = open(file_path, mode, encoding=encoding)
    return file, file_path, (suffix, mode, type_)


def reload(module):
    """**DEPRECATED**

    Reload the module and return it.

    The module must have been successfully imported before.

    """
    return importlib.reload(module)
lib\inspect.py
"""Get useful information from live Python objects.

This module encapsulates the interface provided by the internal special
attributes (co_*, im_*, tb_*, etc.) in a friendlier fashion.
It also provides some help for examining source code and class layout.

Here are some of the useful functions provided by this module:

    ismodule(), isclass(), ismethod(), isfunction(), isgeneratorfunction(),
        isgenerator(), istraceback(), isframe(), iscode(), isbuiltin(),
        isroutine() - check object types
    getmembers() - get members of an object that satisfy a given condition

    getfile(), getsourcefile(), getsource() - find an object's source code
    getdoc(), getcomments() - get documentation on an object
    getmodule() - determine the module that an object came from
    getclasstree() - arrange classes so as to represent their hierarchy

    getargspec(), getargvalues(), getcallargs() - get info about function arguments
    getfullargspec() - same, with support for Python-3000 features
    formatargspec(), formatargvalues() - format an argument spec
    getouterframes(), getinnerframes() - get info about frames
    currentframe() - get the current stack frame
    stack(), trace() - get info about frames on the stack or in a traceback

    signature() - get a Signature object for the callable
"""

# This module is in the public domain.  No warranties.

__author__ = ('Ka-Ping Yee <[email protected]>',
              'Yury Selivanov <[email protected]>')

import ast
import importlib.machinery
import itertools
import linecache
import os
import re
import sys
import tokenize
import token
import types
import warnings
import functools
import builtins
from operator import attrgetter
from collections import namedtuple, OrderedDict

# Create constants for the compiler flags in Include/code.h
# We try to get them from dis to avoid duplication, but fall
# back to hard-coding so the dependency is optional
try:
    from dis import COMPILER_FLAG_NAMES as _flag_names
except ImportError:
    CO_OPTIMIZED, CO_NEWLOCALS = 0x1, 0x2
    CO_VARARGS, CO_VARKEYWORDS = 0x4, 0x8
    CO_NESTED, CO_GENERATOR, CO_NOFREE = 0x10, 0x20, 0x40
else:
    mod_dict = globals()
    for k, v in _flag_names.items():
        mod_dict["CO_" + v] = k

# See Include/object.h
TPFLAGS_IS_ABSTRACT = 1 << 20

# ----------------------------------------------------------- type-checking
def ismodule(object):
    """Return true if the object is a module.

    Module objects provide these attributes:
        __cached__      pathname to byte compiled file
        __doc__         documentation string
        __file__        filename (missing for built-in modules)"""
    return isinstance(object, types.ModuleType)

def isclass(object):
    """Return true if the object is a class.

    Class objects provide these attributes:
        __doc__         documentation string
        __module__      name of module in which this class was defined"""
    return isinstance(object, type)

def ismethod(object):
    """Return true if the object is an instance method.

    Instance method objects provide these attributes:
        __doc__         documentation string
        __name__        name with which this method was defined
        __func__        function object containing implementation of method
        __self__        instance to which this method is bound"""
    return isinstance(object, types.MethodType)

def ismethoddescriptor(object):
    """Return true if the object is a method descriptor.

    But not if ismethod() or isclass() or isfunction() are true.

    This is new in Python 2.2, and, for example, is true of int.__add__.
    An object passing this test has a __get__ attribute but not a __set__
    attribute, but beyond that the set of attributes varies.  __name__ is
    usually sensible, and __doc__ often is.

    Methods implemented via descriptors that also pass one of the other
    tests return false from the ismethoddescriptor() test, simply because
    the other tests promise more -- you can, e.g., count on having the
    __func__ attribute (etc) when an object passes ismethod()."""
    if isclass(object) or ismethod(object) or isfunction(object):
        # mutual exclusion
        return False
    tp = type(object)
    return hasattr(tp, "__get__") and not hasattr(tp, "__set__")

def isdatadescriptor(object):
    """Return true if the object is a data descriptor.

    Data descriptors have both a __get__ and a __set__ attribute.  Examples are
    properties (defined in Python) and getsets and members (defined in C).
    Typically, data descriptors will also have __name__ and __doc__ attributes
    (properties, getsets, and members have both of these attributes), but this
    is not guaranteed."""
    if isclass(object) or ismethod(object) or isfunction(object):
        # mutual exclusion
        return False
    tp = type(object)
    return hasattr(tp, "__set__") and hasattr(tp, "__get__")

if hasattr(types, 'MemberDescriptorType'):
    # CPython and equivalent
    def ismemberdescriptor(object):
        """Return true if the object is a member descriptor.

        Member descriptors are specialized descriptors defined in extension
        modules."""
        return isinstance(object, types.MemberDescriptorType)
else:
    # Other implementations
    def ismemberdescriptor(object):
        """Return true if the object is a member descriptor.

        Member descriptors are specialized descriptors defined in extension
        modules."""
        return False

if hasattr(types, 'GetSetDescriptorType'):
    # CPython and equivalent
    def isgetsetdescriptor(object):
        """Return true if the object is a getset descriptor.

        getset descriptors are specialized descriptors defined in extension
        modules."""
        return isinstance(object, types.GetSetDescriptorType)
else:
    # Other implementations
    def isgetsetdescriptor(object):
        """Return true if the object is a getset descriptor.

        getset descriptors are specialized descriptors defined in extension
        modules."""
        return False

def isfunction(object):
    """Return true if the object is a user-defined function.

    Function objects provide these attributes:
        __doc__         documentation string
        __name__        name with which this function was defined
        __code__        code object containing compiled function bytecode
        __defaults__    tuple of any default values for arguments
        __globals__     global namespace in which this function was defined
        __annotations__ dict of parameter annotations
        __kwdefaults__  dict of keyword only parameters with defaults"""
    return isinstance(object, types.FunctionType)

def isgeneratorfunction(object):
    """Return true if the object is a user-defined generator function.

    Generator function objects provides same attributes as functions.

    See help(isfunction) for attributes listing."""
    return bool((isfunction(object) or ismethod(object)) and
                object.__code__.co_flags & CO_GENERATOR)

def isgenerator(object):
    """Return true if the object is a generator.

    Generator objects provide these attributes:
        __iter__        defined to support iteration over container
        close           raises a new GeneratorExit exception inside the
                        generator to terminate the iteration
        gi_code         code object
        gi_frame        frame object or possibly None once the generator has
                        been exhausted
        gi_running      set to 1 when generator is executing, 0 otherwise
        next            return the next item from the container
        send            resumes the generator and "sends" a value that becomes
                        the result of the current yield-expression
        throw           used to raise an exception inside the generator"""
    return isinstance(object, types.GeneratorType)

def istraceback(object):
    """Return true if the object is a traceback.

    Traceback objects provide these attributes:
        tb_frame        frame object at this level
        tb_lasti        index of last attempted instruction in bytecode
        tb_lineno       current line number in Python source code
        tb_next         next inner traceback object (called by this level)"""
    return isinstance(object, types.TracebackType)

def isframe(object):
    """Return true if the object is a frame object.

    Frame objects provide these attributes:
        f_back          next outer frame object (this frame's caller)
        f_builtins      built-in namespace seen by this frame
        f_code          code object being executed in this frame
        f_globals       global namespace seen by this frame
        f_lasti         index of last attempted instruction in bytecode
        f_lineno        current line number in Python source code
        f_locals        local namespace seen by this frame
        f_trace         tracing function for this frame, or None"""
    return isinstance(object, types.FrameType)

def iscode(object):
    """Return true if the object is a code object.

    Code objects provide these attributes:
        co_argcount     number of arguments (not including * or ** args)
        co_code         string of raw compiled bytecode
        co_consts       tuple of constants used in the bytecode
        co_filename     name of file in which this code object was created
        co_firstlineno  number of first line in Python source code
        co_flags        bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
        co_lnotab       encoded mapping of line numbers to bytecode indices
        co_name         name with which this code object was defined
        co_names        tuple of names of local variables
        co_nlocals      number of local variables
        co_stacksize    virtual machine stack space required
        co_varnames     tuple of names of arguments and local variables"""
    return isinstance(object, types.CodeType)

def isbuiltin(object):
    """Return true if the object is a built-in function or method.

    Built-in functions and methods provide these attributes:
        __doc__         documentation string
        __name__        original name of this function or method
        __self__        instance to which a method is bound, or None"""
    return isinstance(object, types.BuiltinFunctionType)

def isroutine(object):
    """Return true if the object is any kind of function or method."""
    return (isbuiltin(object)
            or isfunction(object)
            or ismethod(object)
            or ismethoddescriptor(object))

def isabstract(object):
    """Return true if the object is an abstract base class (ABC)."""
    return bool(isinstance(object, type) and object.__flags__ & TPFLAGS_IS_ABSTRACT)

def getmembers(object, predicate=None):
    """Return all members of an object as (name, value) pairs sorted by name.
    Optionally, only return members that satisfy a given predicate."""
    if isclass(object):
        mro = (object,) + getmro(object)
    else:
        mro = ()
    results = []
    processed = set()
    names = dir(object)
    # :dd any DynamicClassAttributes to the list of names if object is a class;
    # this may result in duplicate entries if, for example, a virtual
    # attribute with the same name as a DynamicClassAttribute exists
    try:
        for base in object.__bases__:
            for k, v in base.__dict__.items():
                if isinstance(v, types.DynamicClassAttribute):
                    names.append(k)
    except AttributeError:
        pass
    for key in names:
        # First try to get the value via getattr.  Some descriptors don't
        # like calling their __get__ (see bug #1785), so fall back to
        # looking in the __dict__.
        try:
            value = getattr(object, key)
            # handle the duplicate key
            if key in processed:
                raise AttributeError
        except AttributeError:
            for base in mro:
                if key in base.__dict__:
                    value = base.__dict__[key]
                    break
            else:
                # could be a (currently) missing slot member, or a buggy
                # __dir__; discard and move on
                continue
        if not predicate or predicate(value):
            results.append((key, value))
        processed.add(key)
    results.sort(key=lambda pair: pair[0])
    return results

Attribute = namedtuple('Attribute', 'name kind defining_class object')

def classify_class_attrs(cls):
    """Return list of attribute-descriptor tuples.

    For each name in dir(cls), the return list contains a 4-tuple
    with these elements:

        0. The name (a string).

        1. The kind of attribute this is, one of these strings:
               'class method'    created via classmethod()
               'static method'   created via staticmethod()
               'property'        created via property()
               'method'          any other flavor of method or descriptor
               'data'            not a method

        2. The class which defined this attribute (a class).

        3. The object as obtained by calling getattr; if this fails, or if the
           resulting object does not live anywhere in the class' mro (including
           metaclasses) then the object is looked up in the defining class's
           dict (found by walking the mro).

    If one of the items in dir(cls) is stored in the metaclass it will now
    be discovered and not have None be listed as the class in which it was
    defined.  Any items whose home class cannot be discovered are skipped.
    """

    mro = getmro(cls)
    metamro = getmro(type(cls)) # for attributes stored in the metaclass
    metamro = tuple([cls for cls in metamro if cls not in (type, object)])
    class_bases = (cls,) + mro
    all_bases = class_bases + metamro
    names = dir(cls)
    # :dd any DynamicClassAttributes to the list of names;
    # this may result in duplicate entries if, for example, a virtual
    # attribute with the same name as a DynamicClassAttribute exists.
    for base in mro:
        for k, v in base.__dict__.items():
            if isinstance(v, types.DynamicClassAttribute):
                names.append(k)
    result = []
    processed = set()

    for name in names:
        # Get the object associated with the name, and where it was defined.
        # Normal objects will be looked up with both getattr and directly in
        # its class' dict (in case getattr fails [bug #1785], and also to look
        # for a docstring).
        # For DynamicClassAttributes on the second pass we only look in the
        # class's dict.
        #
        # Getting an obj from the __dict__ sometimes reveals more than
        # using getattr.  Static and class methods are dramatic examples.
        homecls = None
        get_obj = None
        dict_obj = None
        if name not in processed:
            try:
                if name == '__dict__':
                    raise Exception("__dict__ is special, don't want the proxy")
                get_obj = getattr(cls, name)
            except Exception as exc:
                pass
            else:
                homecls = getattr(get_obj, "__objclass__", homecls)
                if homecls not in class_bases:
                    # if the resulting object does not live somewhere in the
                    # mro, drop it and search the mro manually
                    homecls = None
                    last_cls = None
                    # first look in the classes
                    for srch_cls in class_bases:
                        srch_obj = getattr(srch_cls, name, None)
                        if srch_obj is get_obj:
                            last_cls = srch_cls
                    # then check the metaclasses
                    for srch_cls in metamro:
                        try:
                            srch_obj = srch_cls.__getattr__(cls, name)
                        except AttributeError:
                            continue
                        if srch_obj is get_obj:
                            last_cls = srch_cls
                    if last_cls is not None:
                        homecls = last_cls
        for base in all_bases:
            if name in base.__dict__:
                dict_obj = base.__dict__[name]
                if homecls not in metamro:
                    homecls = base
                break
        if homecls is None:
            # unable to locate the attribute anywhere, most likely due to
            # buggy custom __dir__; discard and move on
            continue
        obj = get_obj if get_obj is not None else dict_obj
        # Classify the object or its descriptor.
        if isinstance(dict_obj, staticmethod):
            kind = "static method"
            obj = dict_obj
        elif isinstance(dict_obj, classmethod):
            kind = "class method"
            obj = dict_obj
        elif isinstance(dict_obj, property):
            kind = "property"
            obj = dict_obj
        elif isroutine(obj):
            kind = "method"
        else:
            kind = "data"
        result.append(Attribute(name, kind, homecls, obj))
        processed.add(name)
    return result

# ----------------------------------------------------------- class helpers

def getmro(cls):
    "Return tuple of base classes (including cls) in method resolution order."
    return cls.__mro__

# -------------------------------------------------------- function helpers

def unwrap(func, *, stop=None):
    """Get the object wrapped by *func*.

   Follows the chain of :attr:`__wrapped__` attributes returning the last
   object in the chain.

   *stop* is an optional callback accepting an object in the wrapper chain
   as its sole argument that allows the unwrapping to be terminated early if
   the callback returns a true value. If the callback never returns a true
   value, the last object in the chain is returned as usual. For example,
   :func:`signature` uses this to stop unwrapping if any object in the
   chain has a ``__signature__`` attribute defined.

   :exc:`ValueError` is raised if a cycle is encountered.

    """
    if stop is None:
        def _is_wrapper(f):
            return hasattr(f, '__wrapped__')
    else:
        def _is_wrapper(f):
            return hasattr(f, '__wrapped__') and not stop(f)
    f = func  # remember the original func for error reporting
    memo = {id(f)} # Memoise by id to tolerate non-hashable objects
    while _is_wrapper(func):
        func = func.__wrapped__
        id_func = id(func)
        if id_func in memo:
            raise ValueError('wrapper loop when unwrapping {!r}'.format(f))
        memo.add(id_func)
    return func

# -------------------------------------------------- source code extraction
def indentsize(line):
    """Return the indent size, in spaces, at the start of a line of text."""
    expline = line.expandtabs()
    return len(expline) - len(expline.lstrip())

def getdoc(object):
    """Get the documentation string for an object.

    All tabs are expanded to spaces.  To clean up docstrings that are
    indented to line up with blocks of code, any whitespace than can be
    uniformly removed from the second line onwards is removed."""
    try:
        doc = object.__doc__
    except AttributeError:
        return None
    if not isinstance(doc, str):
        return None
    return cleandoc(doc)

def cleandoc(doc):
    """Clean up indentation from docstrings.

    Any whitespace that can be uniformly removed from the second line
    onwards is removed."""
    try:
        lines = doc.expandtabs().split('\n')
    except UnicodeError:
        return None
    else:
        # Find minimum indentation of any non-blank lines after first line.
        margin = sys.maxsize
        for line in lines[1:]:
            content = len(line.lstrip())
            if content:
                indent = len(line) - content
                margin = min(margin, indent)
        # Remove indentation.
        if lines:
            lines[0] = lines[0].lstrip()
        if margin < sys.maxsize:
            for i in range(1, len(lines)): lines[i] = lines[i][margin:]
        # Remove any trailing or leading blank lines.
        while lines and not lines[-1]:
            lines.pop()
        while lines and not lines[0]:
            lines.pop(0)
        return '\n'.join(lines)

def getfile(object):
    """Work out which source or compiled file an object was defined in."""
    if ismodule(object):
        if hasattr(object, '__file__'):
            return object.__file__
        raise TypeError('{!r} is a built-in module'.format(object))
    if isclass(object):
        if hasattr(object, '__module__'):
            object = sys.modules.get(object.__module__)
            if hasattr(object, '__file__'):
                return object.__file__
        raise TypeError('{!r} is a built-in class'.format(object))
    if ismethod(object):
        object = object.__func__
    if isfunction(object):
        object = object.__code__
    if istraceback(object):
        object = object.tb_frame
    if isframe(object):
        object = object.f_code
    if iscode(object):
        return object.co_filename
    raise TypeError('{!r} is not a module, class, method, '
                    'function, traceback, frame, or code object'.format(object))

ModuleInfo = namedtuple('ModuleInfo', 'name suffix mode module_type')

def getmoduleinfo(path):
    """Get the module name, suffix, mode, and module type for a given file."""
    warnings.warn('inspect.getmoduleinfo() is deprecated', DeprecationWarning,
                  2)
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', PendingDeprecationWarning)
        import imp
    filename = os.path.basename(path)
    suffixes = [(-len(suffix), suffix, mode, mtype)
                    for suffix, mode, mtype in imp.get_suffixes()]
    suffixes.sort() # try longest suffixes first, in case they overlap
    for neglen, suffix, mode, mtype in suffixes:
        if filename[neglen:] == suffix:
            return ModuleInfo(filename[:neglen], suffix, mode, mtype)

def getmodulename(path):
    """Return the module name for a given file, or None."""
    fname = os.path.basename(path)
    # Check for paths that look like an actual module file
    suffixes = [(-len(suffix), suffix)
                    for suffix in importlib.machinery.all_suffixes()]
    suffixes.sort() # try longest suffixes first, in case they overlap
    for neglen, suffix in suffixes:
        if fname.endswith(suffix):
            return fname[:neglen]
    return None

def getsourcefile(object):
    """Return the filename that can be used to locate an object's source.
    Return None if no way can be identified to get the source.
    """
    filename = getfile(object)
    all_bytecode_suffixes = importlib.machinery.DEBUG_BYTECODE_SUFFIXES[:]
    all_bytecode_suffixes += importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES[:]
    if any(filename.endswith(s) for s in all_bytecode_suffixes):
        filename = (os.path.splitext(filename)[0] +
                    importlib.machinery.SOURCE_SUFFIXES[0])
    elif any(filename.endswith(s) for s in
                 importlib.machinery.EXTENSION_SUFFIXES):
        return None
    if os.path.exists(filename):
        return filename
    # only return a non-existent filename if the module has a PEP 302 loader
    if getattr(getmodule(object, filename), '__loader__', None) is not None:
        return filename
    # or it is in the linecache
    if filename in linecache.cache:
        return filename

def getabsfile(object, _filename=None):
    """Return an absolute path to the source or compiled file for an object.

    The idea is for each object to have a unique origin, so this routine
    normalizes the result as much as possible."""
    if _filename is None:
        _filename = getsourcefile(object) or getfile(object)
    return os.path.normcase(os.path.abspath(_filename))

modulesbyfile = {}
_filesbymodname = {}

def getmodule(object, _filename=None):
    """Return the module an object was defined in, or None if not found."""
    if ismodule(object):
        return object
    if hasattr(object, '__module__'):
        return sys.modules.get(object.__module__)
    # Try the filename to modulename cache
    if _filename is not None and _filename in modulesbyfile:
        return sys.modules.get(modulesbyfile[_filename])
    # Try the cache again with the absolute file name
    try:
        file = getabsfile(object, _filename)
    except TypeError:
        return None
    if file in modulesbyfile:
        return sys.modules.get(modulesbyfile[file])
    # Update the filename to module name cache and check yet again
    # Copy sys.modules in order to cope with changes while iterating
    for modname, module in list(sys.modules.items()):
        if ismodule(module) and hasattr(module, '__file__'):
            f = module.__file__
            if f == _filesbymodname.get(modname, None):
                # Have already mapped this module, so skip it
                continue
            _filesbymodname[modname] = f
            f = getabsfile(module)
            # Always map to the name the module knows itself by
            modulesbyfile[f] = modulesbyfile[
                os.path.realpath(f)] = module.__name__
    if file in modulesbyfile:
        return sys.modules.get(modulesbyfile[file])
    # Check the main module
    main = sys.modules['__main__']
    if not hasattr(object, '__name__'):
        return None
    if hasattr(main, object.__name__):
        mainobject = getattr(main, object.__name__)
        if mainobject is object:
            return main
    # Check builtins
    builtin = sys.modules['builtins']
    if hasattr(builtin, object.__name__):
        builtinobject = getattr(builtin, object.__name__)
        if builtinobject is object:
            return builtin

def findsource(object):
    """Return the entire source file and starting line number for an object.

    The argument may be a module, class, method, function, traceback, frame,
    or code object.  The source code is returned as a list of all the lines
    in the file and the line number indexes a line in that list.  An OSError
    is raised if the source code cannot be retrieved."""

    file = getsourcefile(object)
    if file:
        # Invalidate cache if needed.
        linecache.checkcache(file)
    else:
        file = getfile(object)
        # Allow filenames in form of "<something>" to pass through.
        # `doctest` monkeypatches `linecache` module to enable
        # inspection, so let `linecache.getlines` to be called.
        if not (file.startswith('<') and file.endswith('>')):
            raise OSError('source code not available')

    module = getmodule(object, file)
    if module:
        lines = linecache.getlines(file, module.__dict__)
    else:
        lines = linecache.getlines(file)
    if not lines:
        raise OSError('could not get source code')

    if ismodule(object):
        return lines, 0

    if isclass(object):
        name = object.__name__
        pat = re.compile(r'^(\s*)class\s*' + name + r'\b')
        # make some effort to find the best matching class definition:
        # use the one with the least indentation, which is the one
        # that's most probably not inside a function definition.
        candidates = []
        for i in range(len(lines)):
            match = pat.match(lines[i])
            if match:
                # if it's at toplevel, it's already the best one
                if lines[i][0] == 'c':
                    return lines, i
                # else add whitespace to candidate list
                candidates.append((match.group(1), i))
        if candidates:
            # this will sort by whitespace, and by line number,
            # less whitespace first
            candidates.sort()
            return lines, candidates[0][1]
        else:
            raise OSError('could not find class definition')

    if ismethod(object):
        object = object.__func__
    if isfunction(object):
        object = object.__code__
    if istraceback(object):
        object = object.tb_frame
    if isframe(object):
        object = object.f_code
    if iscode(object):
        if not hasattr(object, 'co_firstlineno'):
            raise OSError('could not find function definition')
        lnum = object.co_firstlineno - 1
        pat = re.compile(r'^(\s*def\s)|(.*(?<!\w)lambda(:|\s))|^(\s*@)')
        while lnum > 0:
            if pat.match(lines[lnum]): break
            lnum = lnum - 1
        return lines, lnum
    raise OSError('could not find code object')

def getcomments(object):
    """Get lines of comments immediately preceding an object's source code.

    Returns None when source can't be found.
    """
    try:
        lines, lnum = findsource(object)
    except (OSError, TypeError):
        return None

    if ismodule(object):
        # Look for a comment block at the top of the file.
        start = 0
        if lines and lines[0][:2] == '#!': start = 1
        while start < len(lines) and lines[start].strip() in ('', '#'):
            start = start + 1
        if start < len(lines) and lines[start][:1] == '#':
            comments = []
            end = start
            while end < len(lines) and lines[end][:1] == '#':
                comments.append(lines[end].expandtabs())
                end = end + 1
            return ''.join(comments)

    # Look for a preceding block of comments at the same indentation.
    elif lnum > 0:
        indent = indentsize(lines[lnum])
        end = lnum - 1
        if end >= 0 and lines[end].lstrip()[:1] == '#' and \
            indentsize(lines[end]) == indent:
            comments = [lines[end].expandtabs().lstrip()]
            if end > 0:
                end = end - 1
                comment = lines[end].expandtabs().lstrip()
                while comment[:1] == '#' and indentsize(lines[end]) == indent:
                    comments[:0] = [comment]
                    end = end - 1
                    if end < 0: break
                    comment = lines[end].expandtabs().lstrip()
            while comments and comments[0].strip() == '#':
                comments[:1] = []
            while comments and comments[-1].strip() == '#':
                comments[-1:] = []
            return ''.join(comments)

class EndOfBlock(Exception): pass

class BlockFinder:
    """Provide a tokeneater() method to detect the end of a code block."""
    def __init__(self):
        self.indent = 0
        self.islambda = False
        self.started = False
        self.passline = False
        self.last = 1

    def tokeneater(self, type, token, srowcol, erowcol, line):
        if not self.started:
            # look for the first "def", "class" or "lambda"
            if token in ("def", "class", "lambda"):
                if token == "lambda":
                    self.islambda = True
                self.started = True
            self.passline = True    # skip to the end of the line
        elif type == tokenize.NEWLINE:
            self.passline = False   # stop skipping when a NEWLINE is seen
            self.last = srowcol[0]
            if self.islambda:       # lambdas always end at the first NEWLINE
                raise EndOfBlock
        elif self.passline:
            pass
        elif type == tokenize.INDENT:
            self.indent = self.indent + 1
            self.passline = True
        elif type == tokenize.DEDENT:
            self.indent = self.indent - 1
            # the end of matching indent/dedent pairs end a block
            # (note that this only works for "def"/"class" blocks,
            #  not e.g. for "if: else:" or "try: finally:" blocks)
            if self.indent <= 0:
                raise EndOfBlock
        elif self.indent == 0 and type not in (tokenize.COMMENT, tokenize.NL):
            # any other token on the same indentation level end the previous
            # block as well, except the pseudo-tokens COMMENT and NL.
            raise EndOfBlock

def getblock(lines):
    """Extract the block of code at the top of the given list of lines."""
    blockfinder = BlockFinder()
    try:
        tokens = tokenize.generate_tokens(iter(lines).__next__)
        for _token in tokens:
            blockfinder.tokeneater(*_token)
    except (EndOfBlock, IndentationError):
        pass
    return lines[:blockfinder.last]

def getsourcelines(object):
    """Return a list of source lines and starting line number for an object.

    The argument may be a module, class, method, function, traceback, frame,
    or code object.  The source code is returned as a list of the lines
    corresponding to the object and the line number indicates where in the
    original source file the first line of code was found.  An OSError is
    raised if the source code cannot be retrieved."""
    lines, lnum = findsource(object)

    if ismodule(object): return lines, 0
    else: return getblock(lines[lnum:]), lnum + 1

def getsource(object):
    """Return the text of the source code for an object.

    The argument may be a module, class, method, function, traceback, frame,
    or code object.  The source code is returned as a single string.  An
    OSError is raised if the source code cannot be retrieved."""
    lines, lnum = getsourcelines(object)
    return ''.join(lines)

# --------------------------------------------------- class tree extraction
def walktree(classes, children, parent):
    """Recursive helper function for getclasstree()."""
    results = []
    classes.sort(key=attrgetter('__module__', '__name__'))
    for c in classes:
        results.append((c, c.__bases__))
        if c in children:
            results.append(walktree(children[c], children, c))
    return results

def getclasstree(classes, unique=False):
    """Arrange the given list of classes into a hierarchy of nested lists.

    Where a nested list appears, it contains classes derived from the class
    whose entry immediately precedes the list.  Each entry is a 2-tuple
    containing a class and a tuple of its base classes.  If the 'unique'
    argument is true, exactly one entry appears in the returned structure
    for each class in the given list.  Otherwise, classes using multiple
    inheritance and their descendants will appear multiple times."""
    children = {}
    roots = []
    for c in classes:
        if c.__bases__:
            for parent in c.__bases__:
                if not parent in children:
                    children[parent] = []
                if c not in children[parent]:
                    children[parent].append(c)
                if unique and parent in classes: break
        elif c not in roots:
            roots.append(c)
    for parent in children:
        if parent not in classes:
            roots.append(parent)
    return walktree(roots, children, None)

# ------------------------------------------------ argument list extraction
Arguments = namedtuple('Arguments', 'args, varargs, varkw')

def getargs(co):
    """Get information about the arguments accepted by a code object.

    Three things are returned: (args, varargs, varkw), where
    'args' is the list of argument names. Keyword-only arguments are
    appended. 'varargs' and 'varkw' are the names of the * and **
    arguments or None."""
    args, varargs, kwonlyargs, varkw = _getfullargs(co)
    return Arguments(args + kwonlyargs, varargs, varkw)

def _getfullargs(co):
    """Get information about the arguments accepted by a code object.

    Four things are returned: (args, varargs, kwonlyargs, varkw), where
    'args' and 'kwonlyargs' are lists of argument names, and 'varargs'
    and 'varkw' are the names of the * and ** arguments or None."""

    if not iscode(co):
        raise TypeError('{!r} is not a code object'.format(co))

    nargs = co.co_argcount
    names = co.co_varnames
    nkwargs = co.co_kwonlyargcount
    args = list(names[:nargs])
    kwonlyargs = list(names[nargs:nargs+nkwargs])
    step = 0

    nargs += nkwargs
    varargs = None
    if co.co_flags & CO_VARARGS:
        varargs = co.co_varnames[nargs]
        nargs = nargs + 1
    varkw = None
    if co.co_flags & CO_VARKEYWORDS:
        varkw = co.co_varnames[nargs]
    return args, varargs, kwonlyargs, varkw


ArgSpec = namedtuple('ArgSpec', 'args varargs keywords defaults')

def getargspec(func):
    """Get the names and default values of a function's arguments.

    A tuple of four things is returned: (args, varargs, varkw, defaults).
    'args' is a list of the argument names.
    'args' will include keyword-only argument names.
    'varargs' and 'varkw' are the names of the * and ** arguments or None.
    'defaults' is an n-tuple of the default values of the last n arguments.

    Use the getfullargspec() API for Python-3000 code, as annotations
    and keyword arguments are supported. getargspec() will raise ValueError
    if the func has either annotations or keyword arguments.
    """

    args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, ann = \
        getfullargspec(func)
    if kwonlyargs or ann:
        raise ValueError("Function has keyword-only arguments or annotations"
                         ", use getfullargspec() API which can support them")
    return ArgSpec(args, varargs, varkw, defaults)

FullArgSpec = namedtuple('FullArgSpec',
    'args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations')

def getfullargspec(func):
    """Get the names and default values of a callable object's arguments.

    A tuple of seven things is returned:
    (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults annotations).
    'args' is a list of the argument names.
    'varargs' and 'varkw' are the names of the * and ** arguments or None.
    'defaults' is an n-tuple of the default values of the last n arguments.
    'kwonlyargs' is a list of keyword-only argument names.
    'kwonlydefaults' is a dictionary mapping names from kwonlyargs to defaults.
    'annotations' is a dictionary mapping argument names to annotations.

    The first four items in the tuple correspond to getargspec().
    """

    try:
        # Re: `skip_bound_arg=False`
        #
        # There is a notable difference in behaviour between getfullargspec
        # and Signature: the former always returns 'self' parameter for bound
        # methods, whereas the Signature always shows the actual calling
        # signature of the passed object.
        #
        # To simulate this behaviour, we "unbind" bound methods, to trick
        # inspect.signature to always return their first parameter ("self",
        # usually)

        # Re: `follow_wrapper_chains=False`
        #
        # getfullargspec() historically ignored __wrapped__ attributes,
        # so we ensure that remains the case in 3.3+

        sig = _signature_internal(func,
                                  follow_wrapper_chains=False,
                                  skip_bound_arg=False)
    except Exception as ex:
        # Most of the times 'signature' will raise ValueError.
        # But, it can also raise AttributeError, and, maybe something
        # else. So to be fully backwards compatible, we catch all
        # possible exceptions here, and reraise a TypeError.
        raise TypeError('unsupported callable') from ex

    args = []
    varargs = None
    varkw = None
    kwonlyargs = []
    defaults = ()
    annotations = {}
    defaults = ()
    kwdefaults = {}

    if sig.return_annotation is not sig.empty:
        annotations['return'] = sig.return_annotation

    for param in sig.parameters.values():
        kind = param.kind
        name = param.name

        if kind is _POSITIONAL_ONLY:
            args.append(name)
        elif kind is _POSITIONAL_OR_KEYWORD:
            args.append(name)
            if param.default is not param.empty:
                defaults += (param.default,)
        elif kind is _VAR_POSITIONAL:
            varargs = name
        elif kind is _KEYWORD_ONLY:
            kwonlyargs.append(name)
            if param.default is not param.empty:
                kwdefaults[name] = param.default
        elif kind is _VAR_KEYWORD:
            varkw = name

        if param.annotation is not param.empty:
            annotations[name] = param.annotation

    if not kwdefaults:
        # compatibility with 'func.__kwdefaults__'
        kwdefaults = None

    if not defaults:
        # compatibility with 'func.__defaults__'
        defaults = None

    return FullArgSpec(args, varargs, varkw, defaults,
                       kwonlyargs, kwdefaults, annotations)


ArgInfo = namedtuple('ArgInfo', 'args varargs keywords locals')

def getargvalues(frame):
    """Get information about arguments passed into a particular frame.

    A tuple of four things is returned: (args, varargs, varkw, locals).
    'args' is a list of the argument names.
    'varargs' and 'varkw' are the names of the * and ** arguments or None.
    'locals' is the locals dictionary of the given frame."""
    args, varargs, varkw = getargs(frame.f_code)
    return ArgInfo(args, varargs, varkw, frame.f_locals)

def formatannotation(annotation, base_module=None):
    if isinstance(annotation, type):
        if annotation.__module__ in ('builtins', base_module):
            return annotation.__name__
        return annotation.__module__+'.'+annotation.__name__
    return repr(annotation)

def formatannotationrelativeto(object):
    module = getattr(object, '__module__', None)
    def _formatannotation(annotation):
        return formatannotation(annotation, module)
    return _formatannotation

def formatargspec(args, varargs=None, varkw=None, defaults=None,
                  kwonlyargs=(), kwonlydefaults={}, annotations={},
                  formatarg=str,
                  formatvarargs=lambda name: '*' + name,
                  formatvarkw=lambda name: '**' + name,
                  formatvalue=lambda value: '=' + repr(value),
                  formatreturns=lambda text: ' -> ' + text,
                  formatannotation=formatannotation):
    """Format an argument spec from the values returned by getargspec
    or getfullargspec.

    The first seven arguments are (args, varargs, varkw, defaults,
    kwonlyargs, kwonlydefaults, annotations).  The other five arguments
    are the corresponding optional formatting functions that are called to
    turn names and values into strings.  The last argument is an optional
    function to format the sequence of arguments."""
    def formatargandannotation(arg):
        result = formatarg(arg)
        if arg in annotations:
            result += ': ' + formatannotation(annotations[arg])
        return result
    specs = []
    if defaults:
        firstdefault = len(args) - len(defaults)
    for i, arg in enumerate(args):
        spec = formatargandannotation(arg)
        if defaults and i >= firstdefault:
            spec = spec + formatvalue(defaults[i - firstdefault])
        specs.append(spec)
    if varargs is not None:
        specs.append(formatvarargs(formatargandannotation(varargs)))
    else:
        if kwonlyargs:
            specs.append('*')
    if kwonlyargs:
        for kwonlyarg in kwonlyargs:
            spec = formatargandannotation(kwonlyarg)
            if kwonlydefaults and kwonlyarg in kwonlydefaults:
                spec += formatvalue(kwonlydefaults[kwonlyarg])
            specs.append(spec)
    if varkw is not None:
        specs.append(formatvarkw(formatargandannotation(varkw)))
    result = '(' + ', '.join(specs) + ')'
    if 'return' in annotations:
        result += formatreturns(formatannotation(annotations['return']))
    return result

def formatargvalues(args, varargs, varkw, locals,
                    formatarg=str,
                    formatvarargs=lambda name: '*' + name,
                    formatvarkw=lambda name: '**' + name,
                    formatvalue=lambda value: '=' + repr(value)):
    """Format an argument spec from the 4 values returned by getargvalues.

    The first four arguments are (args, varargs, varkw, locals).  The
    next four arguments are the corresponding optional formatting functions
    that are called to turn names and values into strings.  The ninth
    argument is an optional function to format the sequence of arguments."""
    def convert(name, locals=locals,
                formatarg=formatarg, formatvalue=formatvalue):
        return formatarg(name) + formatvalue(locals[name])
    specs = []
    for i in range(len(args)):
        specs.append(convert(args[i]))
    if varargs:
        specs.append(formatvarargs(varargs) + formatvalue(locals[varargs]))
    if varkw:
        specs.append(formatvarkw(varkw) + formatvalue(locals[varkw]))
    return '(' + ', '.join(specs) + ')'

def _missing_arguments(f_name, argnames, pos, values):
    names = [repr(name) for name in argnames if name not in values]
    missing = len(names)
    if missing == 1:
        s = names[0]
    elif missing == 2:
        s = "{} and {}".format(*names)
    else:
        tail = ", {} and {}".format(*names[-2:])
        del names[-2:]
        s = ", ".join(names) + tail
    raise TypeError("%s() missing %i required %s argument%s: %s" %
                    (f_name, missing,
                      "positional" if pos else "keyword-only",
                      "" if missing == 1 else "s", s))

def _too_many(f_name, args, kwonly, varargs, defcount, given, values):
    atleast = len(args) - defcount
    kwonly_given = len([arg for arg in kwonly if arg in values])
    if varargs:
        plural = atleast != 1
        sig = "at least %d" % (atleast,)
    elif defcount:
        plural = True
        sig = "from %d to %d" % (atleast, len(args))
    else:
        plural = len(args) != 1
        sig = str(len(args))
    kwonly_sig = ""
    if kwonly_given:
        msg = " positional argument%s (and %d keyword-only argument%s)"
        kwonly_sig = (msg % ("s" if given != 1 else "", kwonly_given,
                             "s" if kwonly_given != 1 else ""))
    raise TypeError("%s() takes %s positional argument%s but %d%s %s given" %
            (f_name, sig, "s" if plural else "", given, kwonly_sig,
             "was" if given == 1 and not kwonly_given else "were"))

def getcallargs(*func_and_positional, **named):
    """Get the mapping of arguments to values.

    A dict is returned, with keys the function argument names (including the
    names of the * and ** arguments, if any), and values the respective bound
    values from 'positional' and 'named'."""
    func = func_and_positional[0]
    positional = func_and_positional[1:]
    spec = getfullargspec(func)
    args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, ann = spec
    f_name = func.__name__
    arg2value = {}


    if ismethod(func) and func.__self__ is not None:
        # implicit 'self' (or 'cls' for classmethods) argument
        positional = (func.__self__,) + positional
    num_pos = len(positional)
    num_args = len(args)
    num_defaults = len(defaults) if defaults else 0

    n = min(num_pos, num_args)
    for i in range(n):
        arg2value[args[i]] = positional[i]
    if varargs:
        arg2value[varargs] = tuple(positional[n:])
    possible_kwargs = set(args + kwonlyargs)
    if varkw:
        arg2value[varkw] = {}
    for kw, value in named.items():
        if kw not in possible_kwargs:
            if not varkw:
                raise TypeError("%s() got an unexpected keyword argument %r" %
                                (f_name, kw))
            arg2value[varkw][kw] = value
            continue
        if kw in arg2value:
            raise TypeError("%s() got multiple values for argument %r" %
                            (f_name, kw))
        arg2value[kw] = value
    if num_pos > num_args and not varargs:
        _too_many(f_name, args, kwonlyargs, varargs, num_defaults,
                   num_pos, arg2value)
    if num_pos < num_args:
        req = args[:num_args - num_defaults]
        for arg in req:
            if arg not in arg2value:
                _missing_arguments(f_name, req, True, arg2value)
        for i, arg in enumerate(args[num_args - num_defaults:]):
            if arg not in arg2value:
                arg2value[arg] = defaults[i]
    missing = 0
    for kwarg in kwonlyargs:
        if kwarg not in arg2value:
            if kwonlydefaults and kwarg in kwonlydefaults:
                arg2value[kwarg] = kwonlydefaults[kwarg]
            else:
                missing += 1
    if missing:
        _missing_arguments(f_name, kwonlyargs, False, arg2value)
    return arg2value

ClosureVars = namedtuple('ClosureVars', 'nonlocals globals builtins unbound')

def getclosurevars(func):
    """
    Get the mapping of free variables to their current values.

    Returns a named tuple of dicts mapping the current nonlocal, global
    and builtin references as seen by the body of the function. A final
    set of unbound names that could not be resolved is also provided.
    """

    if ismethod(func):
        func = func.__func__

    if not isfunction(func):
        raise TypeError("'{!r}' is not a Python function".format(func))

    code = func.__code__
    # Nonlocal references are named in co_freevars and resolved
    # by looking them up in __closure__ by positional index
    if func.__closure__ is None:
        nonlocal_vars = {}
    else:
        nonlocal_vars = {
            var : cell.cell_contents
            for var, cell in zip(code.co_freevars, func.__closure__)
       }

    # Global and builtin references are named in co_names and resolved
    # by looking them up in __globals__ or __builtins__
    global_ns = func.__globals__
    builtin_ns = global_ns.get("__builtins__", builtins.__dict__)
    if ismodule(builtin_ns):
        builtin_ns = builtin_ns.__dict__
    global_vars = {}
    builtin_vars = {}
    unbound_names = set()
    for name in code.co_names:
        if name in ("None", "True", "False"):
            # Because these used to be builtins instead of keywords, they
            # may still show up as name references. We ignore them.
            continue
        try:
            global_vars[name] = global_ns[name]
        except KeyError:
            try:
                builtin_vars[name] = builtin_ns[name]
            except KeyError:
                unbound_names.add(name)

    return ClosureVars(nonlocal_vars, global_vars,
                       builtin_vars, unbound_names)

# -------------------------------------------------- stack frame extraction

Traceback = namedtuple('Traceback', 'filename lineno function code_context index')

def getframeinfo(frame, context=1):
    """Get information about a frame or traceback object.

    A tuple of five things is returned: the filename, the line number of
    the current line, the function name, a list of lines of context from
    the source code, and the index of the current line within that list.
    The optional second argument specifies the number of lines of context
    to return, which are centered around the current line."""
    if istraceback(frame):
        lineno = frame.tb_lineno
        frame = frame.tb_frame
    else:
        lineno = frame.f_lineno
    if not isframe(frame):
        raise TypeError('{!r} is not a frame or traceback object'.format(frame))

    filename = getsourcefile(frame) or getfile(frame)
    if context > 0:
        start = lineno - 1 - context//2
        try:
            lines, lnum = findsource(frame)
        except OSError:
            lines = index = None
        else:
            start = max(start, 1)
            start = max(0, min(start, len(lines) - context))
            lines = lines[start:start+context]
            index = lineno - 1 - start
    else:
        lines = index = None

    return Traceback(filename, lineno, frame.f_code.co_name, lines, index)

def getlineno(frame):
    """Get the line number from a frame object, allowing for optimization."""
    # FrameType.f_lineno is now a descriptor that grovels co_lnotab
    return frame.f_lineno

def getouterframes(frame, context=1):
    """Get a list of records for a frame and all higher (calling) frames.

    Each record contains a frame object, filename, line number, function
    name, a list of lines of context, and index within the context."""
    framelist = []
    while frame:
        framelist.append((frame,) + getframeinfo(frame, context))
        frame = frame.f_back
    return framelist

def getinnerframes(tb, context=1):
    """Get a list of records for a traceback's frame and all lower frames.

    Each record contains a frame object, filename, line number, function
    name, a list of lines of context, and index within the context."""
    framelist = []
    while tb:
        framelist.append((tb.tb_frame,) + getframeinfo(tb, context))
        tb = tb.tb_next
    return framelist

def currentframe():
    """Return the frame of the caller or None if this is not possible."""
    return sys._getframe(1) if hasattr(sys, "_getframe") else None

def stack(context=1):
    """Return a list of records for the stack above the caller's frame."""
    return getouterframes(sys._getframe(1), context)

def trace(context=1):
    """Return a list of records for the stack below the current exception."""
    return getinnerframes(sys.exc_info()[2], context)


# ------------------------------------------------ static version of getattr

_sentinel = object()

def _static_getmro(klass):
    return type.__dict__['__mro__'].__get__(klass)

def _check_instance(obj, attr):
    instance_dict = {}
    try:
        instance_dict = object.__getattribute__(obj, "__dict__")
    except AttributeError:
        pass
    return dict.get(instance_dict, attr, _sentinel)


def _check_class(klass, attr):
    for entry in _static_getmro(klass):
        if _shadowed_dict(type(entry)) is _sentinel:
            try:
                return entry.__dict__[attr]
            except KeyError:
                pass
    return _sentinel

def _is_type(obj):
    try:
        _static_getmro(obj)
    except TypeError:
        return False
    return True

def _shadowed_dict(klass):
    dict_attr = type.__dict__["__dict__"]
    for entry in _static_getmro(klass):
        try:
            class_dict = dict_attr.__get__(entry)["__dict__"]
        except KeyError:
            pass
        else:
            if not (type(class_dict) is types.GetSetDescriptorType and
                    class_dict.__name__ == "__dict__" and
                    class_dict.__objclass__ is entry):
                return class_dict
    return _sentinel

def getattr_static(obj, attr, default=_sentinel):
    """Retrieve attributes without triggering dynamic lookup via the
       descriptor protocol,  __getattr__ or __getattribute__.

       Note: this function may not be able to retrieve all attributes
       that getattr can fetch (like dynamically created attributes)
       and may find attributes that getattr can't (like descriptors
       that raise AttributeError). It can also return descriptor objects
       instead of instance members in some cases. See the
       documentation for details.
    """
    instance_result = _sentinel
    if not _is_type(obj):
        klass = type(obj)
        dict_attr = _shadowed_dict(klass)
        if (dict_attr is _sentinel or
            type(dict_attr) is types.MemberDescriptorType):
            instance_result = _check_instance(obj, attr)
    else:
        klass = obj

    klass_result = _check_class(klass, attr)

    if instance_result is not _sentinel and klass_result is not _sentinel:
        if (_check_class(type(klass_result), '__get__') is not _sentinel and
            _check_class(type(klass_result), '__set__') is not _sentinel):
            return klass_result

    if instance_result is not _sentinel:
        return instance_result
    if klass_result is not _sentinel:
        return klass_result

    if obj is klass:
        # for types we check the metaclass too
        for entry in _static_getmro(type(klass)):
            if _shadowed_dict(type(entry)) is _sentinel:
                try:
                    return entry.__dict__[attr]
                except KeyError:
                    pass
    if default is not _sentinel:
        return default
    raise AttributeError(attr)


# ------------------------------------------------ generator introspection

GEN_CREATED = 'GEN_CREATED'
GEN_RUNNING = 'GEN_RUNNING'
GEN_SUSPENDED = 'GEN_SUSPENDED'
GEN_CLOSED = 'GEN_CLOSED'

def getgeneratorstate(generator):
    """Get current state of a generator-iterator.

    Possible states are:
      GEN_CREATED: Waiting to start execution.
      GEN_RUNNING: Currently being executed by the interpreter.
      GEN_SUSPENDED: Currently suspended at a yield expression.
      GEN_CLOSED: Execution has completed.
    """
    if generator.gi_running:
        return GEN_RUNNING
    if generator.gi_frame is None:
        return GEN_CLOSED
    if generator.gi_frame.f_lasti == -1:
        return GEN_CREATED
    return GEN_SUSPENDED


def getgeneratorlocals(generator):
    """
    Get the mapping of generator local variables to their current values.

    A dict is returned, with the keys the local variable names and values the
    bound values."""

    if not isgenerator(generator):
        raise TypeError("'{!r}' is not a Python generator".format(generator))

    frame = getattr(generator, "gi_frame", None)
    if frame is not None:
        return generator.gi_frame.f_locals
    else:
        return {}

###############################################################################
### Function Signature Object (PEP 362)
###############################################################################


_WrapperDescriptor = type(type.__call__)
_MethodWrapper = type(all.__call__)
_ClassMethodWrapper = type(int.__dict__['from_bytes'])

_NonUserDefinedCallables = (_WrapperDescriptor,
                            _MethodWrapper,
                            _ClassMethodWrapper,
                            types.BuiltinFunctionType)


def _signature_get_user_defined_method(cls, method_name):
    try:
        meth = getattr(cls, method_name)
    except AttributeError:
        return
    else:
        if not isinstance(meth, _NonUserDefinedCallables):
            # Once '__signature__' will be added to 'C'-level
            # callables, this check won't be necessary
            return meth


def _signature_get_partial(wrapped_sig, partial, extra_args=()):
    # Internal helper to calculate how 'wrapped_sig' signature will
    # look like after applying a 'functools.partial' object (or alike)
    # on it.

    old_params = wrapped_sig.parameters
    new_params = OrderedDict(old_params.items())

    partial_args = partial.args or ()
    partial_keywords = partial.keywords or {}

    if extra_args:
        partial_args = extra_args + partial_args

    try:
        ba = wrapped_sig.bind_partial(*partial_args, **partial_keywords)
    except TypeError as ex:
        msg = 'partial object {!r} has incorrect arguments'.format(partial)
        raise ValueError(msg) from ex


    transform_to_kwonly = False
    for param_name, param in old_params.items():
        try:
            arg_value = ba.arguments[param_name]
        except KeyError:
            pass
        else:
            if param.kind is _POSITIONAL_ONLY:
                # If positional-only parameter is bound by partial,
                # it effectively disappears from the signature
                new_params.pop(param_name)
                continue

            if param.kind is _POSITIONAL_OR_KEYWORD:
                if param_name in partial_keywords:
                    # This means that this parameter, and all parameters
                    # after it should be keyword-only (and var-positional
                    # should be removed). Here's why. Consider the following
                    # function:
                    #     foo(a, b, *args, c):
                    #         pass
                    #
                    # "partial(foo, a='spam')" will have the following
                    # signature: "(*, a='spam', b, c)". Because attempting
                    # to call that partial with "(10, 20)" arguments will
                    # raise a TypeError, saying that "a" argument received
                    # multiple values.
                    transform_to_kwonly = True
                    # Set the new default value
                    new_params[param_name] = param.replace(default=arg_value)
                else:
                    # was passed as a positional argument
                    new_params.pop(param.name)
                    continue

            if param.kind is _KEYWORD_ONLY:
                # Set the new default value
                new_params[param_name] = param.replace(default=arg_value)

        if transform_to_kwonly:
            assert param.kind is not _POSITIONAL_ONLY

            if param.kind is _POSITIONAL_OR_KEYWORD:
                new_param = new_params[param_name].replace(kind=_KEYWORD_ONLY)
                new_params[param_name] = new_param
                new_params.move_to_end(param_name)
            elif param.kind in (_KEYWORD_ONLY, _VAR_KEYWORD):
                new_params.move_to_end(param_name)
            elif param.kind is _VAR_POSITIONAL:
                new_params.pop(param.name)

    return wrapped_sig.replace(parameters=new_params.values())


def _signature_bound_method(sig):
    # Internal helper to transform signatures for unbound
    # functions to bound methods

    params = tuple(sig.parameters.values())

    if not params or params[0].kind in (_VAR_KEYWORD, _KEYWORD_ONLY):
        raise ValueError('invalid method signature')

    kind = params[0].kind
    if kind in (_POSITIONAL_OR_KEYWORD, _POSITIONAL_ONLY):
        # Drop first parameter:
        # '(p1, p2[, ...])' -> '(p2[, ...])'
        params = params[1:]
    else:
        if kind is not _VAR_POSITIONAL:
            # Unless we add a new parameter type we never
            # get here
            raise ValueError('invalid argument type')
        # It's a var-positional parameter.
        # Do nothing. '(*args[, ...])' -> '(*args[, ...])'

    return sig.replace(parameters=params)


def _signature_is_builtin(obj):
    # Internal helper to test if `obj` is a callable that might
    # support Argument Clinic's __text_signature__ protocol.
    return (isbuiltin(obj) or
            ismethoddescriptor(obj) or
            isinstance(obj, _NonUserDefinedCallables) or
            # Can't test 'isinstance(type)' here, as it would
            # also be True for regular python classes
            obj in (type, object))


def _signature_is_functionlike(obj):
    # Internal helper to test if `obj` is a duck type of FunctionType.
    # A good example of such objects are functions compiled with
    # Cython, which have all attributes that a pure Python function
    # would have, but have their code statically compiled.

    if not callable(obj) or isclass(obj):
        # All function-like objects are obviously callables,
        # and not classes.
        return False

    name = getattr(obj, '__name__', None)
    code = getattr(obj, '__code__', None)
    defaults = getattr(obj, '__defaults__', _void) # Important to use _void ...
    kwdefaults = getattr(obj, '__kwdefaults__', _void) # ... and not None here
    annotations = getattr(obj, '__annotations__', None)

    return (isinstance(code, types.CodeType) and
            isinstance(name, str) and
            (defaults is None or isinstance(defaults, tuple)) and
            (kwdefaults is None or isinstance(kwdefaults, dict)) and
            isinstance(annotations, dict))


def _signature_get_bound_param(spec):
    # Internal helper to get first parameter name from a
    # __text_signature__ of a builtin method, which should
    # be in the following format: '($param1, ...)'.
    # Assumptions are that the first argument won't have
    # a default value or an annotation.

    assert spec.startswith('($')

    pos = spec.find(',')
    if pos == -1:
        pos = spec.find(')')

    cpos = spec.find(':')
    assert cpos == -1 or cpos > pos

    cpos = spec.find('=')
    assert cpos == -1 or cpos > pos

    return spec[2:pos]


def _signature_strip_non_python_syntax(signature):
    """
    Takes a signature in Argument Clinic's extended signature format.
    Returns a tuple of three things:
      * that signature re-rendered in standard Python syntax,
      * the index of the "self" parameter (generally 0), or None if
        the function does not have a "self" parameter, and
      * the index of the last "positional only" parameter,
        or None if the signature has no positional-only parameters.
    """

    if not signature:
        return signature, None, None

    self_parameter = None
    last_positional_only = None

    lines = [l.encode('ascii') for l in signature.split('\n')]
    generator = iter(lines).__next__
    token_stream = tokenize.tokenize(generator)

    delayed_comma = False
    skip_next_comma = False
    text = []
    add = text.append

    current_parameter = 0
    OP = token.OP
    ERRORTOKEN = token.ERRORTOKEN

    # token stream always starts with ENCODING token, skip it
    t = next(token_stream)
    assert t.type == tokenize.ENCODING

    for t in token_stream:
        type, string = t.type, t.string

        if type == OP:
            if string == ',':
                if skip_next_comma:
                    skip_next_comma = False
                else:
                    assert not delayed_comma
                    delayed_comma = True
                    current_parameter += 1
                continue

            if string == '/':
                assert not skip_next_comma
                assert last_positional_only is None
                skip_next_comma = True
                last_positional_only = current_parameter - 1
                continue

        if (type == ERRORTOKEN) and (string == '$'):
            assert self_parameter is None
            self_parameter = current_parameter
            continue

        if delayed_comma:
            delayed_comma = False
            if not ((type == OP) and (string == ')')):
                add(', ')
        add(string)
        if (string == ','):
            add(' ')
    clean_signature = ''.join(text)
    return clean_signature, self_parameter, last_positional_only


def _signature_fromstr(cls, obj, s, skip_bound_arg=True):
    # Internal helper to parse content of '__text_signature__'
    # and return a Signature based on it
    Parameter = cls._parameter_cls

    clean_signature, self_parameter, last_positional_only = \
        _signature_strip_non_python_syntax(s)

    program = "def foo" + clean_signature + ": pass"

    try:
        module = ast.parse(program)
    except SyntaxError:
        module = None

    if not isinstance(module, ast.Module):
        raise ValueError("{!r} builtin has invalid signature".format(obj))

    f = module.body[0]

    parameters = []
    empty = Parameter.empty
    invalid = object()

    module = None
    module_dict = {}
    module_name = getattr(obj, '__module__', None)
    if module_name:
        module = sys.modules.get(module_name, None)
        if module:
            module_dict = module.__dict__
    sys_module_dict = sys.modules

    def parse_name(node):
        assert isinstance(node, ast.arg)
        if node.annotation != None:
            raise ValueError("Annotations are not currently supported")
        return node.arg

    def wrap_value(s):
        try:
            value = eval(s, module_dict)
        except NameError:
            try:
                value = eval(s, sys_module_dict)
            except NameError:
                raise RuntimeError()

        if isinstance(value, str):
            return ast.Str(value)
        if isinstance(value, (int, float)):
            return ast.Num(value)
        if isinstance(value, bytes):
            return ast.Bytes(value)
        if value in (True, False, None):
            return ast.NameConstant(value)
        raise RuntimeError()

    class RewriteSymbolics(ast.NodeTransformer):
        def visit_Attribute(self, node):
            a = []
            n = node
            while isinstance(n, ast.Attribute):
                a.append(n.attr)
                n = n.value
            if not isinstance(n, ast.Name):
                raise RuntimeError()
            a.append(n.id)
            value = ".".join(reversed(a))
            return wrap_value(value)

        def visit_Name(self, node):
            if not isinstance(node.ctx, ast.Load):
                raise ValueError()
            return wrap_value(node.id)

    def p(name_node, default_node, default=empty):
        name = parse_name(name_node)
        if name is invalid:
            return None
        if default_node and default_node is not _empty:
            try:
                default_node = RewriteSymbolics().visit(default_node)
                o = ast.literal_eval(default_node)
            except ValueError:
                o = invalid
            if o is invalid:
                return None
            default = o if o is not invalid else default
        parameters.append(Parameter(name, kind, default=default, annotation=empty))

    # non-keyword-only parameters
    args = reversed(f.args.args)
    defaults = reversed(f.args.defaults)
    iter = itertools.zip_longest(args, defaults, fillvalue=None)
    if last_positional_only is not None:
        kind = Parameter.POSITIONAL_ONLY
    else:
        kind = Parameter.POSITIONAL_OR_KEYWORD
    for i, (name, default) in enumerate(reversed(list(iter))):
        p(name, default)
        if i == last_positional_only:
            kind = Parameter.POSITIONAL_OR_KEYWORD

    # *args
    if f.args.vararg:
        kind = Parameter.VAR_POSITIONAL
        p(f.args.vararg, empty)

    # keyword-only arguments
    kind = Parameter.KEYWORD_ONLY
    for name, default in zip(f.args.kwonlyargs, f.args.kw_defaults):
        p(name, default)

    # **kwargs
    if f.args.kwarg:
        kind = Parameter.VAR_KEYWORD
        p(f.args.kwarg, empty)

    if self_parameter is not None:
        # Possibly strip the bound argument:
        #    - We *always* strip first bound argument if
        #      it is a module.
        #    - We don't strip first bound argument if
        #      skip_bound_arg is False.
        assert parameters
        _self = getattr(obj, '__self__', None)
        self_isbound = _self is not None
        self_ismodule = ismodule(_self)
        if self_isbound and (self_ismodule or skip_bound_arg):
            parameters.pop(0)
        else:
            # for builtins, self parameter is always positional-only!
            p = parameters[0].replace(kind=Parameter.POSITIONAL_ONLY)
            parameters[0] = p

    return cls(parameters, return_annotation=cls.empty)


def _signature_from_builtin(cls, func, skip_bound_arg=True):
    # Internal helper function to get signature for
    # builtin callables
    if not _signature_is_builtin(func):
        raise TypeError("{!r} is not a Python builtin "
                        "function".format(func))

    s = getattr(func, "__text_signature__", None)
    if not s:
        raise ValueError("no signature found for builtin {!r}".format(func))

    return _signature_fromstr(cls, func, s, skip_bound_arg)


def _signature_internal(obj, follow_wrapper_chains=True, skip_bound_arg=True):

    if not callable(obj):
        raise TypeError('{!r} is not a callable object'.format(obj))

    if isinstance(obj, types.MethodType):
        # In this case we skip the first parameter of the underlying
        # function (usually `self` or `cls`).
        sig = _signature_internal(obj.__func__,
                                  follow_wrapper_chains,
                                  skip_bound_arg)
        if skip_bound_arg:
            return _signature_bound_method(sig)
        else:
            return sig

    # Was this function wrapped by a decorator?
    if follow_wrapper_chains:
        obj = unwrap(obj, stop=(lambda f: hasattr(f, "__signature__")))
        if isinstance(obj, types.MethodType):
            # If the unwrapped object is a *method*, we might want to
            # skip its first parameter (self).
            # See test_signature_wrapped_bound_method for details.
            return _signature_internal(
                obj,
                follow_wrapper_chains=follow_wrapper_chains,
                skip_bound_arg=skip_bound_arg)

    try:
        sig = obj.__signature__
    except AttributeError:
        pass
    else:
        if sig is not None:
            if not isinstance(sig, Signature):
                raise TypeError(
                    'unexpected object {!r} in __signature__ '
                    'attribute'.format(sig))
            return sig

    try:
        partialmethod = obj._partialmethod
    except AttributeError:
        pass
    else:
        if isinstance(partialmethod, functools.partialmethod):
            # Unbound partialmethod (see functools.partialmethod)
            # This means, that we need to calculate the signature
            # as if it's a regular partial object, but taking into
            # account that the first positional argument
            # (usually `self`, or `cls`) will not be passed
            # automatically (as for boundmethods)

            wrapped_sig = _signature_internal(partialmethod.func,
                                              follow_wrapper_chains,
                                              skip_bound_arg)
            sig = _signature_get_partial(wrapped_sig, partialmethod, (None,))

            first_wrapped_param = tuple(wrapped_sig.parameters.values())[0]
            new_params = (first_wrapped_param,) + tuple(sig.parameters.values())

            return sig.replace(parameters=new_params)

    if isfunction(obj) or _signature_is_functionlike(obj):
        # If it's a pure Python function, or an object that is duck type
        # of a Python function (Cython functions, for instance), then:
        return Signature.from_function(obj)

    if _signature_is_builtin(obj):
        return _signature_from_builtin(Signature, obj,
                                       skip_bound_arg=skip_bound_arg)

    if isinstance(obj, functools.partial):
        wrapped_sig = _signature_internal(obj.func,
                                          follow_wrapper_chains,
                                          skip_bound_arg)
        return _signature_get_partial(wrapped_sig, obj)

    sig = None
    if isinstance(obj, type):
        # obj is a class or a metaclass

        # First, let's see if it has an overloaded __call__ defined
        # in its metaclass
        call = _signature_get_user_defined_method(type(obj), '__call__')
        if call is not None:
            sig = _signature_internal(call,
                                      follow_wrapper_chains,
                                      skip_bound_arg)
        else:
            # Now we check if the 'obj' class has a '__new__' method
            new = _signature_get_user_defined_method(obj, '__new__')
            if new is not None:
                sig = _signature_internal(new,
                                          follow_wrapper_chains,
                                          skip_bound_arg)
            else:
                # Finally, we should have at least __init__ implemented
                init = _signature_get_user_defined_method(obj, '__init__')
                if init is not None:
                    sig = _signature_internal(init,
                                              follow_wrapper_chains,
                                              skip_bound_arg)

        if sig is None:
            # At this point we know, that `obj` is a class, with no user-
            # defined '__init__', '__new__', or class-level '__call__'

            for base in obj.__mro__[:-1]:
                # Since '__text_signature__' is implemented as a
                # descriptor that extracts text signature from the
                # class docstring, if 'obj' is derived from a builtin
                # class, its own '__text_signature__' may be 'None'.
                # Therefore, we go through the MRO (except the last
                # class in there, which is 'object') to find the first
                # class with non-empty text signature.
                try:
                    text_sig = base.__text_signature__
                except AttributeError:
                    pass
                else:
                    if text_sig:
                        # If 'obj' class has a __text_signature__ attribute:
                        # return a signature based on it
                        return _signature_fromstr(Signature, obj, text_sig)

            # No '__text_signature__' was found for the 'obj' class.
            # Last option is to check if its '__init__' is
            # object.__init__ or type.__init__.
            if type not in obj.__mro__:
                # We have a class (not metaclass), but no user-defined
                # __init__ or __new__ for it
                if obj.__init__ is object.__init__:
                    # Return a signature of 'object' builtin.
                    return signature(object)

    elif not isinstance(obj, _NonUserDefinedCallables):
        # An object with __call__
        # We also check that the 'obj' is not an instance of
        # _WrapperDescriptor or _MethodWrapper to avoid
        # infinite recursion (and even potential segfault)
        call = _signature_get_user_defined_method(type(obj), '__call__')
        if call is not None:
            try:
                sig = _signature_internal(call,
                                          follow_wrapper_chains,
                                          skip_bound_arg)
            except ValueError as ex:
                msg = 'no signature found for {!r}'.format(obj)
                raise ValueError(msg) from ex

    if sig is not None:
        # For classes and objects we skip the first parameter of their
        # __call__, __new__, or __init__ methods
        if skip_bound_arg:
            return _signature_bound_method(sig)
        else:
            return sig

    if isinstance(obj, types.BuiltinFunctionType):
        # Raise a nicer error message for builtins
        msg = 'no signature found for builtin function {!r}'.format(obj)
        raise ValueError(msg)

    raise ValueError('callable {!r} is not supported by signature'.format(obj))

def signature(obj):
    '''Get a signature object for the passed callable.'''
    return _signature_internal(obj)


class _void:
    '''A private marker - used in Parameter & Signature'''


class _empty:
    pass


class _ParameterKind(int):
    def __new__(self, *args, name):
        obj = int.__new__(self, *args)
        obj._name = name
        return obj

    def __str__(self):
        return self._name

    def __repr__(self):
        return '<_ParameterKind: {!r}>'.format(self._name)


_POSITIONAL_ONLY        = _ParameterKind(0, name='POSITIONAL_ONLY')
_POSITIONAL_OR_KEYWORD  = _ParameterKind(1, name='POSITIONAL_OR_KEYWORD')
_VAR_POSITIONAL         = _ParameterKind(2, name='VAR_POSITIONAL')
_KEYWORD_ONLY           = _ParameterKind(3, name='KEYWORD_ONLY')
_VAR_KEYWORD            = _ParameterKind(4, name='VAR_KEYWORD')


class Parameter:
    '''Represents a parameter in a function signature.

    Has the following public attributes:

    * name : str
        The name of the parameter as a string.
    * default : object
        The default value for the parameter if specified.  If the
        parameter has no default value, this attribute is set to
        `Parameter.empty`.
    * annotation
        The annotation for the parameter if specified.  If the
        parameter has no annotation, this attribute is set to
        `Parameter.empty`.
    * kind : str
        Describes how argument values are bound to the parameter.
        Possible values: `Parameter.POSITIONAL_ONLY`,
        `Parameter.POSITIONAL_OR_KEYWORD`, `Parameter.VAR_POSITIONAL`,
        `Parameter.KEYWORD_ONLY`, `Parameter.VAR_KEYWORD`.
    '''

    __slots__ = ('_name', '_kind', '_default', '_annotation')

    POSITIONAL_ONLY         = _POSITIONAL_ONLY
    POSITIONAL_OR_KEYWORD   = _POSITIONAL_OR_KEYWORD
    VAR_POSITIONAL          = _VAR_POSITIONAL
    KEYWORD_ONLY            = _KEYWORD_ONLY
    VAR_KEYWORD             = _VAR_KEYWORD

    empty = _empty

    def __init__(self, name, kind, *, default=_empty, annotation=_empty):

        if kind not in (_POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD,
                        _VAR_POSITIONAL, _KEYWORD_ONLY, _VAR_KEYWORD):
            raise ValueError("invalid value for 'Parameter.kind' attribute")
        self._kind = kind

        if default is not _empty:
            if kind in (_VAR_POSITIONAL, _VAR_KEYWORD):
                msg = '{} parameters cannot have default values'.format(kind)
                raise ValueError(msg)
        self._default = default
        self._annotation = annotation

        if name is _empty:
            raise ValueError('name is a required attribute for Parameter')

        if not isinstance(name, str):
            raise TypeError("name must be a str, not a {!r}".format(name))

        if not name.isidentifier():
            raise ValueError('{!r} is not a valid parameter name'.format(name))

        self._name = name

    @property
    def name(self):
        return self._name

    @property
    def default(self):
        return self._default

    @property
    def annotation(self):
        return self._annotation

    @property
    def kind(self):
        return self._kind

    def replace(self, *, name=_void, kind=_void,
                annotation=_void, default=_void):
        '''Creates a customized copy of the Parameter.'''

        if name is _void:
            name = self._name

        if kind is _void:
            kind = self._kind

        if annotation is _void:
            annotation = self._annotation

        if default is _void:
            default = self._default

        return type(self)(name, kind, default=default, annotation=annotation)

    def __str__(self):
        kind = self.kind
        formatted = self._name

        # Add annotation and default value
        if self._annotation is not _empty:
            formatted = '{}:{}'.format(formatted,
                                       formatannotation(self._annotation))

        if self._default is not _empty:
            formatted = '{}={}'.format(formatted, repr(self._default))

        if kind == _VAR_POSITIONAL:
            formatted = '*' + formatted
        elif kind == _VAR_KEYWORD:
            formatted = '**' + formatted

        return formatted

    def __repr__(self):
        return '<{} at {:#x} {!r}>'.format(self.__class__.__name__,
                                           id(self), self.name)

    def __eq__(self, other):
        if not isinstance(other, Parameter):
            return NotImplemented
        return (self._name == other._name and
                self._kind == other._kind and
                self._default == other._default and
                self._annotation == other._annotation)


class BoundArguments:
    '''Result of `Signature.bind` call.  Holds the mapping of arguments
    to the function's parameters.

    Has the following public attributes:

    * arguments : OrderedDict
        An ordered mutable mapping of parameters' names to arguments' values.
        Does not contain arguments' default values.
    * signature : Signature
        The Signature object that created this instance.
    * args : tuple
        Tuple of positional arguments values.
    * kwargs : dict
        Dict of keyword arguments values.
    '''

    def __init__(self, signature, arguments):
        self.arguments = arguments
        self._signature = signature

    @property
    def signature(self):
        return self._signature

    @property
    def args(self):
        args = []
        for param_name, param in self._signature.parameters.items():
            if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY):
                break

            try:
                arg = self.arguments[param_name]
            except KeyError:
                # We're done here. Other arguments
                # will be mapped in 'BoundArguments.kwargs'
                break
            else:
                if param.kind == _VAR_POSITIONAL:
                    # *args
                    args.extend(arg)
                else:
                    # plain argument
                    args.append(arg)

        return tuple(args)

    @property
    def kwargs(self):
        kwargs = {}
        kwargs_started = False
        for param_name, param in self._signature.parameters.items():
            if not kwargs_started:
                if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY):
                    kwargs_started = True
                else:
                    if param_name not in self.arguments:
                        kwargs_started = True
                        continue

            if not kwargs_started:
                continue

            try:
                arg = self.arguments[param_name]
            except KeyError:
                pass
            else:
                if param.kind == _VAR_KEYWORD:
                    # **kwargs
                    kwargs.update(arg)
                else:
                    # plain keyword argument
                    kwargs[param_name] = arg

        return kwargs

    def __eq__(self, other):
        if not isinstance(other, BoundArguments):
            return NotImplemented
        return (self.signature == other.signature and
                self.arguments == other.arguments)


class Signature:
    '''A Signature object represents the overall signature of a function.
    It stores a Parameter object for each parameter accepted by the
    function, as well as information specific to the function itself.

    A Signature object has the following public attributes and methods:

    * parameters : OrderedDict
        An ordered mapping of parameters' names to the corresponding
        Parameter objects (keyword-only arguments are in the same order
        as listed in `code.co_varnames`).
    * return_annotation : object
        The annotation for the return type of the function if specified.
        If the function has no annotation for its return type, this
        attribute is set to `Signature.empty`.
    * bind(*args, **kwargs) -> BoundArguments
        Creates a mapping from positional and keyword arguments to
        parameters.
    * bind_partial(*args, **kwargs) -> BoundArguments
        Creates a partial mapping from positional and keyword arguments
        to parameters (simulating 'functools.partial' behavior.)
    '''

    __slots__ = ('_return_annotation', '_parameters')

    _parameter_cls = Parameter
    _bound_arguments_cls = BoundArguments

    empty = _empty

    def __init__(self, parameters=None, *, return_annotation=_empty,
                 __validate_parameters__=True):
        '''Constructs Signature from the given list of Parameter
        objects and 'return_annotation'.  All arguments are optional.
        '''

        if parameters is None:
            params = OrderedDict()
        else:
            if __validate_parameters__:
                params = OrderedDict()
                top_kind = _POSITIONAL_ONLY
                kind_defaults = False

                for idx, param in enumerate(parameters):
                    kind = param.kind
                    name = param.name

                    if kind < top_kind:
                        msg = 'wrong parameter order: {!r} before {!r}'
                        msg = msg.format(top_kind, kind)
                        raise ValueError(msg)
                    elif kind > top_kind:
                        kind_defaults = False
                        top_kind = kind

                    if kind in (_POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD):
                        if param.default is _empty:
                            if kind_defaults:
                                # No default for this parameter, but the
                                # previous parameter of the same kind had
                                # a default
                                msg = 'non-default argument follows default ' \
                                      'argument'
                                raise ValueError(msg)
                        else:
                            # There is a default for this parameter.
                            kind_defaults = True

                    if name in params:
                        msg = 'duplicate parameter name: {!r}'.format(name)
                        raise ValueError(msg)

                    params[name] = param
            else:
                params = OrderedDict(((param.name, param)
                                                for param in parameters))

        self._parameters = types.MappingProxyType(params)
        self._return_annotation = return_annotation

    @classmethod
    def from_function(cls, func):
        '''Constructs Signature for the given python function'''

        is_duck_function = False
        if not isfunction(func):
            if _signature_is_functionlike(func):
                is_duck_function = True
            else:
                # If it's not a pure Python function, and not a duck type
                # of pure function:
                raise TypeError('{!r} is not a Python function'.format(func))

        Parameter = cls._parameter_cls

        # Parameter information.
        func_code = func.__code__
        pos_count = func_code.co_argcount
        arg_names = func_code.co_varnames
        positional = tuple(arg_names[:pos_count])
        keyword_only_count = func_code.co_kwonlyargcount
        keyword_only = arg_names[pos_count:(pos_count + keyword_only_count)]
        annotations = func.__annotations__
        defaults = func.__defaults__
        kwdefaults = func.__kwdefaults__

        if defaults:
            pos_default_count = len(defaults)
        else:
            pos_default_count = 0

        parameters = []

        # Non-keyword-only parameters w/o defaults.
        non_default_count = pos_count - pos_default_count
        for name in positional[:non_default_count]:
            annotation = annotations.get(name, _empty)
            parameters.append(Parameter(name, annotation=annotation,
                                        kind=_POSITIONAL_OR_KEYWORD))

        # ... w/ defaults.
        for offset, name in enumerate(positional[non_default_count:]):
            annotation = annotations.get(name, _empty)
            parameters.append(Parameter(name, annotation=annotation,
                                        kind=_POSITIONAL_OR_KEYWORD,
                                        default=defaults[offset]))

        # *args
        if func_code.co_flags & CO_VARARGS:
            name = arg_names[pos_count + keyword_only_count]
            annotation = annotations.get(name, _empty)
            parameters.append(Parameter(name, annotation=annotation,
                                        kind=_VAR_POSITIONAL))

        # Keyword-only parameters.
        for name in keyword_only:
            default = _empty
            if kwdefaults is not None:
                default = kwdefaults.get(name, _empty)

            annotation = annotations.get(name, _empty)
            parameters.append(Parameter(name, annotation=annotation,
                                        kind=_KEYWORD_ONLY,
                                        default=default))
        # **kwargs
        if func_code.co_flags & CO_VARKEYWORDS:
            index = pos_count + keyword_only_count
            if func_code.co_flags & CO_VARARGS:
                index += 1

            name = arg_names[index]
            annotation = annotations.get(name, _empty)
            parameters.append(Parameter(name, annotation=annotation,
                                        kind=_VAR_KEYWORD))

        # Is 'func' is a pure Python function - don't validate the
        # parameters list (for correct order and defaults), it should be OK.
        return cls(parameters,
                   return_annotation=annotations.get('return', _empty),
                   __validate_parameters__=is_duck_function)

    @classmethod
    def from_builtin(cls, func):
        return _signature_from_builtin(cls, func)

    @property
    def parameters(self):
        return self._parameters

    @property
    def return_annotation(self):
        return self._return_annotation

    def replace(self, *, parameters=_void, return_annotation=_void):
        '''Creates a customized copy of the Signature.
        Pass 'parameters' and/or 'return_annotation' arguments
        to override them in the new copy.
        '''

        if parameters is _void:
            parameters = self.parameters.values()

        if return_annotation is _void:
            return_annotation = self._return_annotation

        return type(self)(parameters,
                          return_annotation=return_annotation)

    def __eq__(self, other):
        if not isinstance(other, Signature):
            return NotImplemented
        if (self.return_annotation != other.return_annotation or
            len(self.parameters) != len(other.parameters)):
            return False

        other_positions = {param: idx
                           for idx, param in enumerate(other.parameters.keys())}

        for idx, (param_name, param) in enumerate(self.parameters.items()):
            if param.kind == _KEYWORD_ONLY:
                try:
                    other_param = other.parameters[param_name]
                except KeyError:
                    return False
                else:
                    if param != other_param:
                        return False
            else:
                try:
                    other_idx = other_positions[param_name]
                except KeyError:
                    return False
                else:
                    if (idx != other_idx or
                                    param != other.parameters[param_name]):
                        return False

        return True

    def _bind(self, args, kwargs, *, partial=False):
        '''Private method.  Don't use directly.'''

        arguments = OrderedDict()

        parameters = iter(self.parameters.values())
        parameters_ex = ()
        arg_vals = iter(args)

        while True:
            # Let's iterate through the positional arguments and corresponding
            # parameters
            try:
                arg_val = next(arg_vals)
            except StopIteration:
                # No more positional arguments
                try:
                    param = next(parameters)
                except StopIteration:
                    # No more parameters. That's it. Just need to check that
                    # we have no `kwargs` after this while loop
                    break
                else:
                    if param.kind == _VAR_POSITIONAL:
                        # That's OK, just empty *args.  Let's start parsing
                        # kwargs
                        break
                    elif param.name in kwargs:
                        if param.kind == _POSITIONAL_ONLY:
                            msg = '{arg!r} parameter is positional only, ' \
                                  'but was passed as a keyword'
                            msg = msg.format(arg=param.name)
                            raise TypeError(msg) from None
                        parameters_ex = (param,)
                        break
                    elif (param.kind == _VAR_KEYWORD or
                                                param.default is not _empty):
                        # That's fine too - we have a default value for this
                        # parameter.  So, lets start parsing `kwargs`, starting
                        # with the current parameter
                        parameters_ex = (param,)
                        break
                    else:
                        # No default, not VAR_KEYWORD, not VAR_POSITIONAL,
                        # not in `kwargs`
                        if partial:
                            parameters_ex = (param,)
                            break
                        else:
                            msg = '{arg!r} parameter lacking default value'
                            msg = msg.format(arg=param.name)
                            raise TypeError(msg) from None
            else:
                # We have a positional argument to process
                try:
                    param = next(parameters)
                except StopIteration:
                    raise TypeError('too many positional arguments') from None
                else:
                    if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY):
                        # Looks like we have no parameter for this positional
                        # argument
                        raise TypeError('too many positional arguments')

                    if param.kind == _VAR_POSITIONAL:
                        # We have an '*args'-like argument, let's fill it with
                        # all positional arguments we have left and move on to
                        # the next phase
                        values = [arg_val]
                        values.extend(arg_vals)
                        arguments[param.name] = tuple(values)
                        break

                    if param.name in kwargs:
                        raise TypeError('multiple values for argument '
                                        '{arg!r}'.format(arg=param.name))

                    arguments[param.name] = arg_val

        # Now, we iterate through the remaining parameters to process
        # keyword arguments
        kwargs_param = None
        for param in itertools.chain(parameters_ex, parameters):
            if param.kind == _VAR_KEYWORD:
                # Memorize that we have a '**kwargs'-like parameter
                kwargs_param = param
                continue

            if param.kind == _VAR_POSITIONAL:
                # Named arguments don't refer to '*args'-like parameters.
                # We only arrive here if the positional arguments ended
                # before reaching the last parameter before *args.
                continue

            param_name = param.name
            try:
                arg_val = kwargs.pop(param_name)
            except KeyError:
                # We have no value for this parameter.  It's fine though,
                # if it has a default value, or it is an '*args'-like
                # parameter, left alone by the processing of positional
                # arguments.
                if (not partial and param.kind != _VAR_POSITIONAL and
                                                    param.default is _empty):
                    raise TypeError('{arg!r} parameter lacking default value'. \
                                    format(arg=param_name)) from None

            else:
                if param.kind == _POSITIONAL_ONLY:
                    # This should never happen in case of a properly built
                    # Signature object (but let's have this check here
                    # to ensure correct behaviour just in case)
                    raise TypeError('{arg!r} parameter is positional only, '
                                    'but was passed as a keyword'. \
                                    format(arg=param.name))

                arguments[param_name] = arg_val

        if kwargs:
            if kwargs_param is not None:
                # Process our '**kwargs'-like parameter
                arguments[kwargs_param.name] = kwargs
            else:
                raise TypeError('too many keyword arguments')

        return self._bound_arguments_cls(self, arguments)

    def bind(*args, **kwargs):
        '''Get a BoundArguments object, that maps the passed `args`
        and `kwargs` to the function's signature.  Raises `TypeError`
        if the passed arguments can not be bound.
        '''
        return args[0]._bind(args[1:], kwargs)

    def bind_partial(*args, **kwargs):
        '''Get a BoundArguments object, that partially maps the
        passed `args` and `kwargs` to the function's signature.
        Raises `TypeError` if the passed arguments can not be bound.
        '''
        return args[0]._bind(args[1:], kwargs, partial=True)

    def __str__(self):
        result = []
        render_pos_only_separator = False
        render_kw_only_separator = True
        for param in self.parameters.values():
            formatted = str(param)

            kind = param.kind

            if kind == _POSITIONAL_ONLY:
                render_pos_only_separator = True
            elif render_pos_only_separator:
                # It's not a positional-only parameter, and the flag
                # is set to 'True' (there were pos-only params before.)
                result.append('/')
                render_pos_only_separator = False

            if kind == _VAR_POSITIONAL:
                # OK, we have an '*args'-like parameter, so we won't need
                # a '*' to separate keyword-only arguments
                render_kw_only_separator = False
            elif kind == _KEYWORD_ONLY and render_kw_only_separator:
                # We have a keyword-only parameter to render and we haven't
                # rendered an '*args'-like parameter before, so add a '*'
                # separator to the parameters list ("foo(arg1, *, arg2)" case)
                result.append('*')
                # This condition should be only triggered once, so
                # reset the flag
                render_kw_only_separator = False

            result.append(formatted)

        if render_pos_only_separator:
            # There were only positional-only parameters, hence the
            # flag was not reset to 'False'
            result.append('/')

        rendered = '({})'.format(', '.join(result))

        if self.return_annotation is not _empty:
            anno = formatannotation(self.return_annotation)
            rendered += ' -> {}'.format(anno)

        return rendered

def _main():
    """ Logic for inspecting an object given at command line """
    import argparse
    import importlib

    parser = argparse.ArgumentParser()
    parser.add_argument(
        'object',
         help="The object to be analysed. "
              "It supports the 'module:qualname' syntax")
    parser.add_argument(
        '-d', '--details', action='store_true',
        help='Display info about the module rather than its source code')

    args = parser.parse_args()

    target = args.object
    mod_name, has_attrs, attrs = target.partition(":")
    try:
        obj = module = importlib.import_module(mod_name)
    except Exception as exc:
        msg = "Failed to import {} ({}: {})".format(mod_name,
                                                    type(exc).__name__,
                                                    exc)
        print(msg, file=sys.stderr)
        exit(2)

    if has_attrs:
        parts = attrs.split(".")
        obj = module
        for part in parts:
            obj = getattr(obj, part)

    if module.__name__ in sys.builtin_module_names:
        print("Can't get info for builtin modules.", file=sys.stderr)
        exit(1)

    if args.details:
        print('Target: {}'.format(target))
        print('Origin: {}'.format(getsourcefile(module)))
        print('Cached: {}'.format(module.__cached__))
        if obj is module:
            print('Loader: {}'.format(repr(module.__loader__)))
            if hasattr(module, '__path__'):
                print('Submodule search path: {}'.format(module.__path__))
        else:
            try:
                __, lineno = findsource(obj)
            except Exception:
                pass
            else:
                print('Line: {}'.format(lineno))

        print('\n')
    else:
        print(getsource(obj))


if __name__ == "__main__":
    _main()
lib\io.py
"""The io module provides the Python interfaces to stream handling. The
builtin open function is defined in this module.

At the top of the I/O hierarchy is the abstract base class IOBase. It
defines the basic interface to a stream. Note, however, that there is no
separation between reading and writing to streams; implementations are
allowed to raise an OSError if they do not support a given operation.

Extending IOBase is RawIOBase which deals simply with the reading and
writing of raw bytes to a stream. FileIO subclasses RawIOBase to provide
an interface to OS files.

BufferedIOBase deals with buffering on a raw byte stream (RawIOBase). Its
subclasses, BufferedWriter, BufferedReader, and BufferedRWPair buffer
streams that are readable, writable, and both respectively.
BufferedRandom provides a buffered interface to random access
streams. BytesIO is a simple stream of in-memory bytes.

Another IOBase subclass, TextIOBase, deals with the encoding and decoding
of streams into text. TextIOWrapper, which extends it, is a buffered text
interface to a buffered raw stream (`BufferedIOBase`). Finally, StringIO
is an in-memory stream for text.

Argument names are not part of the specification, and only the arguments
of open() are intended to be used as keyword arguments.

data:

DEFAULT_BUFFER_SIZE

   An int containing the default buffer size used by the module's buffered
   I/O classes. open() uses the file's blksize (as obtained by os.stat) if
   possible.
"""
# New I/O library conforming to PEP 3116.

__author__ = ("Guido van Rossum <[email protected]>, "
              "Mike Verdone <[email protected]>, "
              "Mark Russell <[email protected]>, "
              "Antoine Pitrou <[email protected]>, "
              "Amaury Forgeot d'Arc <[email protected]>, "
              "Benjamin Peterson <[email protected]>")

__all__ = ["BlockingIOError", "open", "IOBase", "RawIOBase", "FileIO",
           "BytesIO", "StringIO", "BufferedIOBase",
           "BufferedReader", "BufferedWriter", "BufferedRWPair",
           "BufferedRandom", "TextIOBase", "TextIOWrapper",
           "UnsupportedOperation", "SEEK_SET", "SEEK_CUR", "SEEK_END"]


import _io
import abc

from _io import (DEFAULT_BUFFER_SIZE, BlockingIOError, UnsupportedOperation,
                 open, FileIO, BytesIO, StringIO, BufferedReader,
                 BufferedWriter, BufferedRWPair, BufferedRandom,
                 IncrementalNewlineDecoder, TextIOWrapper)

OpenWrapper = _io.open # for compatibility with _pyio

# Pretend this exception was created here.
UnsupportedOperation.__module__ = "io"

# for seek()
SEEK_SET = 0
SEEK_CUR = 1
SEEK_END = 2

# Declaring ABCs in C is tricky so we do it here.
# Method descriptions and default implementations are inherited from the C
# version however.
class IOBase(_io._IOBase, metaclass=abc.ABCMeta):
    __doc__ = _io._IOBase.__doc__

class RawIOBase(_io._RawIOBase, IOBase):
    __doc__ = _io._RawIOBase.__doc__

class BufferedIOBase(_io._BufferedIOBase, IOBase):
    __doc__ = _io._BufferedIOBase.__doc__

class TextIOBase(_io._TextIOBase, IOBase):
    __doc__ = _io._TextIOBase.__doc__

RawIOBase.register(FileIO)

for klass in (BytesIO, BufferedReader, BufferedWriter, BufferedRandom,
              BufferedRWPair):
    BufferedIOBase.register(klass)

for klass in (StringIO, TextIOWrapper):
    TextIOBase.register(klass)
del klass
lib\ipaddress.py
# Copyright 2007 Google Inc.
#  Licensed to PSF under a Contributor Agreement.

"""A fast, lightweight IPv4/IPv6 manipulation library in Python.

This library is used to create/poke/manipulate IPv4 and IPv6 addresses
and networks.

"""

__version__ = '1.0'


import functools

IPV4LENGTH = 32
IPV6LENGTH = 128

class AddressValueError(ValueError):
    """A Value Error related to the address."""


class NetmaskValueError(ValueError):
    """A Value Error related to the netmask."""


def ip_address(address):
    """Take an IP string/int and return an object of the correct type.

    Args:
        address: A string or integer, the IP address.  Either IPv4 or
          IPv6 addresses may be supplied; integers less than 2**32 will
          be considered to be IPv4 by default.

    Returns:
        An IPv4Address or IPv6Address object.

    Raises:
        ValueError: if the *address* passed isn't either a v4 or a v6
          address

    """
    try:
        return IPv4Address(address)
    except (AddressValueError, NetmaskValueError):
        pass

    try:
        return IPv6Address(address)
    except (AddressValueError, NetmaskValueError):
        pass

    raise ValueError('%r does not appear to be an IPv4 or IPv6 address' %
                     address)


def ip_network(address, strict=True):
    """Take an IP string/int and return an object of the correct type.

    Args:
        address: A string or integer, the IP network.  Either IPv4 or
          IPv6 networks may be supplied; integers less than 2**32 will
          be considered to be IPv4 by default.

    Returns:
        An IPv4Network or IPv6Network object.

    Raises:
        ValueError: if the string passed isn't either a v4 or a v6
          address. Or if the network has host bits set.

    """
    try:
        return IPv4Network(address, strict)
    except (AddressValueError, NetmaskValueError):
        pass

    try:
        return IPv6Network(address, strict)
    except (AddressValueError, NetmaskValueError):
        pass

    raise ValueError('%r does not appear to be an IPv4 or IPv6 network' %
                     address)


def ip_interface(address):
    """Take an IP string/int and return an object of the correct type.

    Args:
        address: A string or integer, the IP address.  Either IPv4 or
          IPv6 addresses may be supplied; integers less than 2**32 will
          be considered to be IPv4 by default.

    Returns:
        An IPv4Interface or IPv6Interface object.

    Raises:
        ValueError: if the string passed isn't either a v4 or a v6
          address.

    Notes:
        The IPv?Interface classes describe an Address on a particular
        Network, so they're basically a combination of both the Address
        and Network classes.

    """
    try:
        return IPv4Interface(address)
    except (AddressValueError, NetmaskValueError):
        pass

    try:
        return IPv6Interface(address)
    except (AddressValueError, NetmaskValueError):
        pass

    raise ValueError('%r does not appear to be an IPv4 or IPv6 interface' %
                     address)


def v4_int_to_packed(address):
    """Represent an address as 4 packed bytes in network (big-endian) order.

    Args:
        address: An integer representation of an IPv4 IP address.

    Returns:
        The integer address packed as 4 bytes in network (big-endian) order.

    Raises:
        ValueError: If the integer is negative or too large to be an
          IPv4 IP address.

    """
    try:
        return address.to_bytes(4, 'big')
    except:
        raise ValueError("Address negative or too large for IPv4")


def v6_int_to_packed(address):
    """Represent an address as 16 packed bytes in network (big-endian) order.

    Args:
        address: An integer representation of an IPv6 IP address.

    Returns:
        The integer address packed as 16 bytes in network (big-endian) order.

    """
    try:
        return address.to_bytes(16, 'big')
    except:
        raise ValueError("Address negative or too large for IPv6")


def _split_optional_netmask(address):
    """Helper to split the netmask and raise AddressValueError if needed"""
    addr = str(address).split('/')
    if len(addr) > 2:
        raise AddressValueError("Only one '/' permitted in %r" % address)
    return addr


def _find_address_range(addresses):
    """Find a sequence of IPv#Address.

    Args:
        addresses: a list of IPv#Address objects.

    Returns:
        A tuple containing the first and last IP addresses in the sequence.

    """
    first = last = addresses[0]
    for ip in addresses[1:]:
        if ip._ip == last._ip + 1:
            last = ip
        else:
            break
    return (first, last)


def _count_righthand_zero_bits(number, bits):
    """Count the number of zero bits on the right hand side.

    Args:
        number: an integer.
        bits: maximum number of bits to count.

    Returns:
        The number of zero bits on the right hand side of the number.

    """
    if number == 0:
        return bits
    for i in range(bits):
        if (number >> i) & 1:
            return i
    # All bits of interest were zero, even if there are more in the number
    return bits


def summarize_address_range(first, last):
    """Summarize a network range given the first and last IP addresses.

    Example:
        >>> list(summarize_address_range(IPv4Address('192.0.2.0'),
        ...                              IPv4Address('192.0.2.130')))
        ...                                #doctest: +NORMALIZE_WHITESPACE
        [IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/31'),
         IPv4Network('192.0.2.130/32')]

    Args:
        first: the first IPv4Address or IPv6Address in the range.
        last: the last IPv4Address or IPv6Address in the range.

    Returns:
        An iterator of the summarized IPv(4|6) network objects.

    Raise:
        TypeError:
            If the first and last objects are not IP addresses.
            If the first and last objects are not the same version.
        ValueError:
            If the last object is not greater than the first.
            If the version of the first address is not 4 or 6.

    """
    if (not (isinstance(first, _BaseAddress) and
             isinstance(last, _BaseAddress))):
        raise TypeError('first and last must be IP addresses, not networks')
    if first.version != last.version:
        raise TypeError("%s and %s are not of the same version" % (
                         first, last))
    if first > last:
        raise ValueError('last IP address must be greater than first')

    if first.version == 4:
        ip = IPv4Network
    elif first.version == 6:
        ip = IPv6Network
    else:
        raise ValueError('unknown IP version')

    ip_bits = first._max_prefixlen
    first_int = first._ip
    last_int = last._ip
    while first_int <= last_int:
        nbits = min(_count_righthand_zero_bits(first_int, ip_bits),
                    (last_int - first_int + 1).bit_length() - 1)
        net = ip('%s/%d' % (first, ip_bits - nbits))
        yield net
        first_int += 1 << nbits
        if first_int - 1 == ip._ALL_ONES:
            break
        first = first.__class__(first_int)


def _collapse_addresses_recursive(addresses):
    """Loops through the addresses, collapsing concurrent netblocks.

    Example:

        ip1 = IPv4Network('192.0.2.0/26')
        ip2 = IPv4Network('192.0.2.64/26')
        ip3 = IPv4Network('192.0.2.128/26')
        ip4 = IPv4Network('192.0.2.192/26')

        _collapse_addresses_recursive([ip1, ip2, ip3, ip4]) ->
          [IPv4Network('192.0.2.0/24')]

        This shouldn't be called directly; it is called via
          collapse_addresses([]).

    Args:
        addresses: A list of IPv4Network's or IPv6Network's

    Returns:
        A list of IPv4Network's or IPv6Network's depending on what we were
        passed.

    """
    while True:
        last_addr = None
        ret_array = []
        optimized = False

        for cur_addr in addresses:
            if not ret_array:
                last_addr = cur_addr
                ret_array.append(cur_addr)
            elif (cur_addr.network_address >= last_addr.network_address and
                cur_addr.broadcast_address <= last_addr.broadcast_address):
                optimized = True
            elif cur_addr == list(last_addr.supernet().subnets())[1]:
                ret_array[-1] = last_addr = last_addr.supernet()
                optimized = True
            else:
                last_addr = cur_addr
                ret_array.append(cur_addr)

        addresses = ret_array
        if not optimized:
            return addresses


def collapse_addresses(addresses):
    """Collapse a list of IP objects.

    Example:
        collapse_addresses([IPv4Network('192.0.2.0/25'),
                            IPv4Network('192.0.2.128/25')]) ->
                           [IPv4Network('192.0.2.0/24')]

    Args:
        addresses: An iterator of IPv4Network or IPv6Network objects.

    Returns:
        An iterator of the collapsed IPv(4|6)Network objects.

    Raises:
        TypeError: If passed a list of mixed version objects.

    """
    i = 0
    addrs = []
    ips = []
    nets = []

    # split IP addresses and networks
    for ip in addresses:
        if isinstance(ip, _BaseAddress):
            if ips and ips[-1]._version != ip._version:
                raise TypeError("%s and %s are not of the same version" % (
                                 ip, ips[-1]))
            ips.append(ip)
        elif ip._prefixlen == ip._max_prefixlen:
            if ips and ips[-1]._version != ip._version:
                raise TypeError("%s and %s are not of the same version" % (
                                 ip, ips[-1]))
            try:
                ips.append(ip.ip)
            except AttributeError:
                ips.append(ip.network_address)
        else:
            if nets and nets[-1]._version != ip._version:
                raise TypeError("%s and %s are not of the same version" % (
                                 ip, nets[-1]))
            nets.append(ip)

    # sort and dedup
    ips = sorted(set(ips))
    nets = sorted(set(nets))

    while i < len(ips):
        (first, last) = _find_address_range(ips[i:])
        i = ips.index(last) + 1
        addrs.extend(summarize_address_range(first, last))

    return iter(_collapse_addresses_recursive(sorted(
        addrs + nets, key=_BaseNetwork._get_networks_key)))


def get_mixed_type_key(obj):
    """Return a key suitable for sorting between networks and addresses.

    Address and Network objects are not sortable by default; they're
    fundamentally different so the expression

        IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24')

    doesn't make any sense.  There are some times however, where you may wish
    to have ipaddress sort these for you anyway. If you need to do this, you
    can use this function as the key= argument to sorted().

    Args:
      obj: either a Network or Address object.
    Returns:
      appropriate key.

    """
    if isinstance(obj, _BaseNetwork):
        return obj._get_networks_key()
    elif isinstance(obj, _BaseAddress):
        return obj._get_address_key()
    return NotImplemented


class _IPAddressBase:

    """The mother class."""

    @property
    def exploded(self):
        """Return the longhand version of the IP address as a string."""
        return self._explode_shorthand_ip_string()

    @property
    def compressed(self):
        """Return the shorthand version of the IP address as a string."""
        return str(self)

    @property
    def version(self):
        msg = '%200s has no version specified' % (type(self),)
        raise NotImplementedError(msg)

    def _check_int_address(self, address):
        if address < 0:
            msg = "%d (< 0) is not permitted as an IPv%d address"
            raise AddressValueError(msg % (address, self._version))
        if address > self._ALL_ONES:
            msg = "%d (>= 2**%d) is not permitted as an IPv%d address"
            raise AddressValueError(msg % (address, self._max_prefixlen,
                                           self._version))

    def _check_packed_address(self, address, expected_len):
        address_len = len(address)
        if address_len != expected_len:
            msg = "%r (len %d != %d) is not permitted as an IPv%d address"
            raise AddressValueError(msg % (address, address_len,
                                           expected_len, self._version))

    def _ip_int_from_prefix(self, prefixlen):
        """Turn the prefix length into a bitwise netmask

        Args:
            prefixlen: An integer, the prefix length.

        Returns:
            An integer.

        """
        return self._ALL_ONES ^ (self._ALL_ONES >> prefixlen)

    def _prefix_from_ip_int(self, ip_int):
        """Return prefix length from the bitwise netmask.

        Args:
            ip_int: An integer, the netmask in expanded bitwise format

        Returns:
            An integer, the prefix length.

        Raises:
            ValueError: If the input intermingles zeroes & ones
        """
        trailing_zeroes = _count_righthand_zero_bits(ip_int,
                                                     self._max_prefixlen)
        prefixlen = self._max_prefixlen - trailing_zeroes
        leading_ones = ip_int >> trailing_zeroes
        all_ones = (1 << prefixlen) - 1
        if leading_ones != all_ones:
            byteslen = self._max_prefixlen // 8
            details = ip_int.to_bytes(byteslen, 'big')
            msg = 'Netmask pattern %r mixes zeroes & ones'
            raise ValueError(msg % details)
        return prefixlen

    def _report_invalid_netmask(self, netmask_str):
        msg = '%r is not a valid netmask' % netmask_str
        raise NetmaskValueError(msg) from None

    def _prefix_from_prefix_string(self, prefixlen_str):
        """Return prefix length from a numeric string

        Args:
            prefixlen_str: The string to be converted

        Returns:
            An integer, the prefix length.

        Raises:
            NetmaskValueError: If the input is not a valid netmask
        """
        # int allows a leading +/- as well as surrounding whitespace,
        # so we ensure that isn't the case
        if not _BaseV4._DECIMAL_DIGITS.issuperset(prefixlen_str):
            self._report_invalid_netmask(prefixlen_str)
        try:
            prefixlen = int(prefixlen_str)
        except ValueError:
            self._report_invalid_netmask(prefixlen_str)
        if not (0 <= prefixlen <= self._max_prefixlen):
            self._report_invalid_netmask(prefixlen_str)
        return prefixlen

    def _prefix_from_ip_string(self, ip_str):
        """Turn a netmask/hostmask string into a prefix length

        Args:
            ip_str: The netmask/hostmask to be converted

        Returns:
            An integer, the prefix length.

        Raises:
            NetmaskValueError: If the input is not a valid netmask/hostmask
        """
        # Parse the netmask/hostmask like an IP address.
        try:
            ip_int = self._ip_int_from_string(ip_str)
        except AddressValueError:
            self._report_invalid_netmask(ip_str)

        # Try matching a netmask (this would be /1*0*/ as a bitwise regexp).
        # Note that the two ambiguous cases (all-ones and all-zeroes) are
        # treated as netmasks.
        try:
            return self._prefix_from_ip_int(ip_int)
        except ValueError:
            pass

        # Invert the bits, and try matching a /0+1+/ hostmask instead.
        ip_int ^= self._ALL_ONES
        try:
            return self._prefix_from_ip_int(ip_int)
        except ValueError:
            self._report_invalid_netmask(ip_str)


@functools.total_ordering
class _BaseAddress(_IPAddressBase):

    """A generic IP object.

    This IP class contains the version independent methods which are
    used by single IP addresses.
    """

    def __init__(self, address):
        if (not isinstance(address, bytes)
            and '/' in str(address)):
            raise AddressValueError("Unexpected '/' in %r" % address)

    def __int__(self):
        return self._ip

    def __eq__(self, other):
        try:
            return (self._ip == other._ip
                    and self._version == other._version)
        except AttributeError:
            return NotImplemented

    def __lt__(self, other):
        if not isinstance(other, _BaseAddress):
            return NotImplemented
        if self._version != other._version:
            raise TypeError('%s and %s are not of the same version' % (
                             self, other))
        if self._ip != other._ip:
            return self._ip < other._ip
        return False

    # Shorthand for Integer addition and subtraction. This is not
    # meant to ever support addition/subtraction of addresses.
    def __add__(self, other):
        if not isinstance(other, int):
            return NotImplemented
        return self.__class__(int(self) + other)

    def __sub__(self, other):
        if not isinstance(other, int):
            return NotImplemented
        return self.__class__(int(self) - other)

    def __repr__(self):
        return '%s(%r)' % (self.__class__.__name__, str(self))

    def __str__(self):
        return str(self._string_from_ip_int(self._ip))

    def __hash__(self):
        return hash(hex(int(self._ip)))

    def _get_address_key(self):
        return (self._version, self)


@functools.total_ordering
class _BaseNetwork(_IPAddressBase):

    """A generic IP network object.

    This IP class contains the version independent methods which are
    used by networks.

    """
    def __init__(self, address):
        self._cache = {}

    def __repr__(self):
        return '%s(%r)' % (self.__class__.__name__, str(self))

    def __str__(self):
        return '%s/%d' % (self.network_address, self.prefixlen)

    def hosts(self):
        """Generate Iterator over usable hosts in a network.

        This is like __iter__ except it doesn't return the network
        or broadcast addresses.

        """
        network = int(self.network_address)
        broadcast = int(self.broadcast_address)
        for x in range(network + 1, broadcast):
            yield self._address_class(x)

    def __iter__(self):
        network = int(self.network_address)
        broadcast = int(self.broadcast_address)
        for x in range(network, broadcast + 1):
            yield self._address_class(x)

    def __getitem__(self, n):
        network = int(self.network_address)
        broadcast = int(self.broadcast_address)
        if n >= 0:
            if network + n > broadcast:
                raise IndexError
            return self._address_class(network + n)
        else:
            n += 1
            if broadcast + n < network:
                raise IndexError
            return self._address_class(broadcast + n)

    def __lt__(self, other):
        if not isinstance(other, _BaseNetwork):
            return NotImplemented
        if self._version != other._version:
            raise TypeError('%s and %s are not of the same version' % (
                             self, other))
        if self.network_address != other.network_address:
            return self.network_address < other.network_address
        if self.netmask != other.netmask:
            return self.netmask < other.netmask
        return False

    def __eq__(self, other):
        try:
            return (self._version == other._version and
                    self.network_address == other.network_address and
                    int(self.netmask) == int(other.netmask))
        except AttributeError:
            return NotImplemented

    def __hash__(self):
        return hash(int(self.network_address) ^ int(self.netmask))

    def __contains__(self, other):
        # always false if one is v4 and the other is v6.
        if self._version != other._version:
            return False
        # dealing with another network.
        if isinstance(other, _BaseNetwork):
            return False
        # dealing with another address
        else:
            # address
            return (int(self.network_address) <= int(other._ip) <=
                    int(self.broadcast_address))

    def overlaps(self, other):
        """Tell if self is partly contained in other."""
        return self.network_address in other or (
            self.broadcast_address in other or (
                other.network_address in self or (
                    other.broadcast_address in self)))

    @property
    def broadcast_address(self):
        x = self._cache.get('broadcast_address')
        if x is None:
            x = self._address_class(int(self.network_address) |
                                    int(self.hostmask))
            self._cache['broadcast_address'] = x
        return x

    @property
    def hostmask(self):
        x = self._cache.get('hostmask')
        if x is None:
            x = self._address_class(int(self.netmask) ^ self._ALL_ONES)
            self._cache['hostmask'] = x
        return x

    @property
    def with_prefixlen(self):
        return '%s/%d' % (self.network_address, self._prefixlen)

    @property
    def with_netmask(self):
        return '%s/%s' % (self.network_address, self.netmask)

    @property
    def with_hostmask(self):
        return '%s/%s' % (self.network_address, self.hostmask)

    @property
    def num_addresses(self):
        """Number of hosts in the current subnet."""
        return int(self.broadcast_address) - int(self.network_address) + 1

    @property
    def _address_class(self):
        # Returning bare address objects (rather than interfaces) allows for
        # more consistent behaviour across the network address, broadcast
        # address and individual host addresses.
        msg = '%200s has no associated address class' % (type(self),)
        raise NotImplementedError(msg)

    @property
    def prefixlen(self):
        return self._prefixlen

    def address_exclude(self, other):
        """Remove an address from a larger block.

        For example:

            addr1 = ip_network('192.0.2.0/28')
            addr2 = ip_network('192.0.2.1/32')
            addr1.address_exclude(addr2) =
                [IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'),
                IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29')]

        or IPv6:

            addr1 = ip_network('2001:db8::1/32')
            addr2 = ip_network('2001:db8::1/128')
            addr1.address_exclude(addr2) =
                [ip_network('2001:db8::1/128'),
                ip_network('2001:db8::2/127'),
                ip_network('2001:db8::4/126'),
                ip_network('2001:db8::8/125'),
                ...
                ip_network('2001:db8:8000::/33')]

        Args:
            other: An IPv4Network or IPv6Network object of the same type.

        Returns:
            An iterator of the IPv(4|6)Network objects which is self
            minus other.

        Raises:
            TypeError: If self and other are of differing address
              versions, or if other is not a network object.
            ValueError: If other is not completely contained by self.

        """
        if not self._version == other._version:
            raise TypeError("%s and %s are not of the same version" % (
                             self, other))

        if not isinstance(other, _BaseNetwork):
            raise TypeError("%s is not a network object" % other)

        if not (other.network_address >= self.network_address and
                other.broadcast_address <= self.broadcast_address):
            raise ValueError('%s not contained in %s' % (other, self))
        if other == self:
            raise StopIteration

        # Make sure we're comparing the network of other.
        other = other.__class__('%s/%s' % (other.network_address,
                                           other.prefixlen))

        s1, s2 = self.subnets()
        while s1 != other and s2 != other:
            if (other.network_address >= s1.network_address and
                other.broadcast_address <= s1.broadcast_address):
                yield s2
                s1, s2 = s1.subnets()
            elif (other.network_address >= s2.network_address and
                  other.broadcast_address <= s2.broadcast_address):
                yield s1
                s1, s2 = s2.subnets()
            else:
                # If we got here, there's a bug somewhere.
                raise AssertionError('Error performing exclusion: '
                                     's1: %s s2: %s other: %s' %
                                     (s1, s2, other))
        if s1 == other:
            yield s2
        elif s2 == other:
            yield s1
        else:
            # If we got here, there's a bug somewhere.
            raise AssertionError('Error performing exclusion: '
                                 's1: %s s2: %s other: %s' %
                                 (s1, s2, other))

    def compare_networks(self, other):
        """Compare two IP objects.

        This is only concerned about the comparison of the integer
        representation of the network addresses.  This means that the
        host bits aren't considered at all in this method.  If you want
        to compare host bits, you can easily enough do a
        'HostA._ip < HostB._ip'

        Args:
            other: An IP object.

        Returns:
            If the IP versions of self and other are the same, returns:

            -1 if self < other:
              eg: IPv4Network('192.0.2.0/25') < IPv4Network('192.0.2.128/25')
              IPv6Network('2001:db8::1000/124') <
                  IPv6Network('2001:db8::2000/124')
            0 if self == other
              eg: IPv4Network('192.0.2.0/24') == IPv4Network('192.0.2.0/24')
              IPv6Network('2001:db8::1000/124') ==
                  IPv6Network('2001:db8::1000/124')
            1 if self > other
              eg: IPv4Network('192.0.2.128/25') > IPv4Network('192.0.2.0/25')
                  IPv6Network('2001:db8::2000/124') >
                      IPv6Network('2001:db8::1000/124')

          Raises:
              TypeError if the IP versions are different.

        """
        # does this need to raise a ValueError?
        if self._version != other._version:
            raise TypeError('%s and %s are not of the same type' % (
                             self, other))
        # self._version == other._version below here:
        if self.network_address < other.network_address:
            return -1
        if self.network_address > other.network_address:
            return 1
        # self.network_address == other.network_address below here:
        if self.netmask < other.netmask:
            return -1
        if self.netmask > other.netmask:
            return 1
        return 0

    def _get_networks_key(self):
        """Network-only key function.

        Returns an object that identifies this address' network and
        netmask. This function is a suitable "key" argument for sorted()
        and list.sort().

        """
        return (self._version, self.network_address, self.netmask)

    def subnets(self, prefixlen_diff=1, new_prefix=None):
        """The subnets which join to make the current subnet.

        In the case that self contains only one IP
        (self._prefixlen == 32 for IPv4 or self._prefixlen == 128
        for IPv6), yield an iterator with just ourself.

        Args:
            prefixlen_diff: An integer, the amount the prefix length
              should be increased by. This should not be set if
              new_prefix is also set.
            new_prefix: The desired new prefix length. This must be a
              larger number (smaller prefix) than the existing prefix.
              This should not be set if prefixlen_diff is also set.

        Returns:
            An iterator of IPv(4|6) objects.

        Raises:
            ValueError: The prefixlen_diff is too small or too large.
                OR
            prefixlen_diff and new_prefix are both set or new_prefix
              is a smaller number than the current prefix (smaller
              number means a larger network)

        """
        if self._prefixlen == self._max_prefixlen:
            yield self
            return

        if new_prefix is not None:
            if new_prefix < self._prefixlen:
                raise ValueError('new prefix must be longer')
            if prefixlen_diff != 1:
                raise ValueError('cannot set prefixlen_diff and new_prefix')
            prefixlen_diff = new_prefix - self._prefixlen

        if prefixlen_diff < 0:
            raise ValueError('prefix length diff must be > 0')
        new_prefixlen = self._prefixlen + prefixlen_diff

        if new_prefixlen > self._max_prefixlen:
            raise ValueError(
                'prefix length diff %d is invalid for netblock %s' % (
                    new_prefixlen, self))

        first = self.__class__('%s/%s' %
                                 (self.network_address,
                                  self._prefixlen + prefixlen_diff))

        yield first
        current = first
        while True:
            broadcast = current.broadcast_address
            if broadcast == self.broadcast_address:
                return
            new_addr = self._address_class(int(broadcast) + 1)
            current = self.__class__('%s/%s' % (new_addr,
                                                new_prefixlen))

            yield current

    def supernet(self, prefixlen_diff=1, new_prefix=None):
        """The supernet containing the current network.

        Args:
            prefixlen_diff: An integer, the amount the prefix length of
              the network should be decreased by.  For example, given a
              /24 network and a prefixlen_diff of 3, a supernet with a
              /21 netmask is returned.

        Returns:
            An IPv4 network object.

        Raises:
            ValueError: If self.prefixlen - prefixlen_diff < 0. I.e., you have
              a negative prefix length.
                OR
            If prefixlen_diff and new_prefix are both set or new_prefix is a
              larger number than the current prefix (larger number means a
              smaller network)

        """
        if self._prefixlen == 0:
            return self

        if new_prefix is not None:
            if new_prefix > self._prefixlen:
                raise ValueError('new prefix must be shorter')
            if prefixlen_diff != 1:
                raise ValueError('cannot set prefixlen_diff and new_prefix')
            prefixlen_diff = self._prefixlen - new_prefix

        if self.prefixlen - prefixlen_diff < 0:
            raise ValueError(
                'current prefixlen is %d, cannot have a prefixlen_diff of %d' %
                (self.prefixlen, prefixlen_diff))
        # TODO (pmoody): optimize this.
        t = self.__class__('%s/%d' % (self.network_address,
                                      self.prefixlen - prefixlen_diff),
                                     strict=False)
        return t.__class__('%s/%d' % (t.network_address, t.prefixlen))

    @property
    def is_multicast(self):
        """Test if the address is reserved for multicast use.

        Returns:
            A boolean, True if the address is a multicast address.
            See RFC 2373 2.7 for details.

        """
        return (self.network_address.is_multicast and
                self.broadcast_address.is_multicast)

    @property
    def is_reserved(self):
        """Test if the address is otherwise IETF reserved.

        Returns:
            A boolean, True if the address is within one of the
            reserved IPv6 Network ranges.

        """
        return (self.network_address.is_reserved and
                self.broadcast_address.is_reserved)

    @property
    def is_link_local(self):
        """Test if the address is reserved for link-local.

        Returns:
            A boolean, True if the address is reserved per RFC 4291.

        """
        return (self.network_address.is_link_local and
                self.broadcast_address.is_link_local)

    @property
    def is_private(self):
        """Test if this address is allocated for private networks.

        Returns:
            A boolean, True if the address is reserved per
            iana-ipv4-special-registry or iana-ipv6-special-registry.

        """
        return (self.network_address.is_private and
                self.broadcast_address.is_private)

    @property
    def is_global(self):
        """Test if this address is allocated for public networks.

        Returns:
            A boolean, True if the address is not reserved per
            iana-ipv4-special-registry or iana-ipv6-special-registry.

        """
        return not self.is_private

    @property
    def is_unspecified(self):
        """Test if the address is unspecified.

        Returns:
            A boolean, True if this is the unspecified address as defined in
            RFC 2373 2.5.2.

        """
        return (self.network_address.is_unspecified and
                self.broadcast_address.is_unspecified)

    @property
    def is_loopback(self):
        """Test if the address is a loopback address.

        Returns:
            A boolean, True if the address is a loopback address as defined in
            RFC 2373 2.5.3.

        """
        return (self.network_address.is_loopback and
                self.broadcast_address.is_loopback)


class _BaseV4:

    """Base IPv4 object.

    The following methods are used by IPv4 objects in both single IP
    addresses and networks.

    """

    # Equivalent to 255.255.255.255 or 32 bits of 1's.
    _ALL_ONES = (2**IPV4LENGTH) - 1
    _DECIMAL_DIGITS = frozenset('0123456789')

    # the valid octets for host and netmasks. only useful for IPv4.
    _valid_mask_octets = frozenset((255, 254, 252, 248, 240, 224, 192, 128, 0))

    def __init__(self, address):
        self._version = 4
        self._max_prefixlen = IPV4LENGTH

    def _explode_shorthand_ip_string(self):
        return str(self)

    def _ip_int_from_string(self, ip_str):
        """Turn the given IP string into an integer for comparison.

        Args:
            ip_str: A string, the IP ip_str.

        Returns:
            The IP ip_str as an integer.

        Raises:
            AddressValueError: if ip_str isn't a valid IPv4 Address.

        """
        if not ip_str:
            raise AddressValueError('Address cannot be empty')

        octets = ip_str.split('.')
        if len(octets) != 4:
            raise AddressValueError("Expected 4 octets in %r" % ip_str)

        try:
            return int.from_bytes(map(self._parse_octet, octets), 'big')
        except ValueError as exc:
            raise AddressValueError("%s in %r" % (exc, ip_str)) from None

    def _parse_octet(self, octet_str):
        """Convert a decimal octet into an integer.

        Args:
            octet_str: A string, the number to parse.

        Returns:
            The octet as an integer.

        Raises:
            ValueError: if the octet isn't strictly a decimal from [0..255].

        """
        if not octet_str:
            raise ValueError("Empty octet not permitted")
        # Whitelist the characters, since int() allows a lot of bizarre stuff.
        if not self._DECIMAL_DIGITS.issuperset(octet_str):
            msg = "Only decimal digits permitted in %r"
            raise ValueError(msg % octet_str)
        # We do the length check second, since the invalid character error
        # is likely to be more informative for the user
        if len(octet_str) > 3:
            msg = "At most 3 characters permitted in %r"
            raise ValueError(msg % octet_str)
        # Convert to integer (we know digits are legal)
        octet_int = int(octet_str, 10)
        # Any octets that look like they *might* be written in octal,
        # and which don't look exactly the same in both octal and
        # decimal are rejected as ambiguous
        if octet_int > 7 and octet_str[0] == '0':
            msg = "Ambiguous (octal/decimal) value in %r not permitted"
            raise ValueError(msg % octet_str)
        if octet_int > 255:
            raise ValueError("Octet %d (> 255) not permitted" % octet_int)
        return octet_int

    def _string_from_ip_int(self, ip_int):
        """Turns a 32-bit integer into dotted decimal notation.

        Args:
            ip_int: An integer, the IP address.

        Returns:
            The IP address as a string in dotted decimal notation.

        """
        return '.'.join(map(str, ip_int.to_bytes(4, 'big')))

    def _is_valid_netmask(self, netmask):
        """Verify that the netmask is valid.

        Args:
            netmask: A string, either a prefix or dotted decimal
              netmask.

        Returns:
            A boolean, True if the prefix represents a valid IPv4
            netmask.

        """
        mask = netmask.split('.')
        if len(mask) == 4:
            try:
                for x in mask:
                    if int(x) not in self._valid_mask_octets:
                        return False
            except ValueError:
                # Found something that isn't an integer or isn't valid
                return False
            for idx, y in enumerate(mask):
                if idx > 0 and y > mask[idx - 1]:
                    return False
            return True
        try:
            netmask = int(netmask)
        except ValueError:
            return False
        return 0 <= netmask <= self._max_prefixlen

    def _is_hostmask(self, ip_str):
        """Test if the IP string is a hostmask (rather than a netmask).

        Args:
            ip_str: A string, the potential hostmask.

        Returns:
            A boolean, True if the IP string is a hostmask.

        """
        bits = ip_str.split('.')
        try:
            parts = [x for x in map(int, bits) if x in self._valid_mask_octets]
        except ValueError:
            return False
        if len(parts) != len(bits):
            return False
        if parts[0] < parts[-1]:
            return True
        return False

    @property
    def max_prefixlen(self):
        return self._max_prefixlen

    @property
    def version(self):
        return self._version


class IPv4Address(_BaseV4, _BaseAddress):

    """Represent and manipulate single IPv4 Addresses."""

    def __init__(self, address):

        """
        Args:
            address: A string or integer representing the IP

              Additionally, an integer can be passed, so
              IPv4Address('192.0.2.1') == IPv4Address(3221225985).
              or, more generally
              IPv4Address(int(IPv4Address('192.0.2.1'))) ==
                IPv4Address('192.0.2.1')

        Raises:
            AddressValueError: If ipaddress isn't a valid IPv4 address.

        """
        _BaseAddress.__init__(self, address)
        _BaseV4.__init__(self, address)

        # Efficient constructor from integer.
        if isinstance(address, int):
            self._check_int_address(address)
            self._ip = address
            return

        # Constructing from a packed address
        if isinstance(address, bytes):
            self._check_packed_address(address, 4)
            self._ip = int.from_bytes(address, 'big')
            return

        # Assume input argument to be string or any object representation
        # which converts into a formatted IP string.
        addr_str = str(address)
        self._ip = self._ip_int_from_string(addr_str)

    @property
    def packed(self):
        """The binary representation of this address."""
        return v4_int_to_packed(self._ip)

    @property
    def is_reserved(self):
        """Test if the address is otherwise IETF reserved.

         Returns:
             A boolean, True if the address is within the
             reserved IPv4 Network range.

        """
        reserved_network = IPv4Network('240.0.0.0/4')
        return self in reserved_network

    @property
    @functools.lru_cache()
    def is_private(self):
        """Test if this address is allocated for private networks.

        Returns:
            A boolean, True if the address is reserved per
            iana-ipv4-special-registry.

        """
        return (self in IPv4Network('0.0.0.0/8') or
                self in IPv4Network('10.0.0.0/8') or
                self in IPv4Network('127.0.0.0/8') or
                self in IPv4Network('169.254.0.0/16') or
                self in IPv4Network('172.16.0.0/12') or
                self in IPv4Network('192.0.0.0/29') or
                self in IPv4Network('192.0.0.170/31') or
                self in IPv4Network('192.0.2.0/24') or
                self in IPv4Network('192.168.0.0/16') or
                self in IPv4Network('198.18.0.0/15') or
                self in IPv4Network('198.51.100.0/24') or
                self in IPv4Network('203.0.113.0/24') or
                self in IPv4Network('240.0.0.0/4') or
                self in IPv4Network('255.255.255.255/32'))


    @property
    def is_multicast(self):
        """Test if the address is reserved for multicast use.

        Returns:
            A boolean, True if the address is multicast.
            See RFC 3171 for details.

        """
        multicast_network = IPv4Network('224.0.0.0/4')
        return self in multicast_network

    @property
    def is_unspecified(self):
        """Test if the address is unspecified.

        Returns:
            A boolean, True if this is the unspecified address as defined in
            RFC 5735 3.

        """
        unspecified_address = IPv4Address('0.0.0.0')
        return self == unspecified_address

    @property
    def is_loopback(self):
        """Test if the address is a loopback address.

        Returns:
            A boolean, True if the address is a loopback per RFC 3330.

        """
        loopback_network = IPv4Network('127.0.0.0/8')
        return self in loopback_network

    @property
    def is_link_local(self):
        """Test if the address is reserved for link-local.

        Returns:
            A boolean, True if the address is link-local per RFC 3927.

        """
        linklocal_network = IPv4Network('169.254.0.0/16')
        return self in linklocal_network


class IPv4Interface(IPv4Address):

    def __init__(self, address):
        if isinstance(address, (bytes, int)):
            IPv4Address.__init__(self, address)
            self.network = IPv4Network(self._ip)
            self._prefixlen = self._max_prefixlen
            return

        addr = _split_optional_netmask(address)
        IPv4Address.__init__(self, addr[0])

        self.network = IPv4Network(address, strict=False)
        self._prefixlen = self.network._prefixlen

        self.netmask = self.network.netmask
        self.hostmask = self.network.hostmask

    def __str__(self):
        return '%s/%d' % (self._string_from_ip_int(self._ip),
                          self.network.prefixlen)

    def __eq__(self, other):
        address_equal = IPv4Address.__eq__(self, other)
        if not address_equal or address_equal is NotImplemented:
            return address_equal
        try:
            return self.network == other.network
        except AttributeError:
            # An interface with an associated network is NOT the
            # same as an unassociated address. That's why the hash
            # takes the extra info into account.
            return False

    def __lt__(self, other):
        address_less = IPv4Address.__lt__(self, other)
        if address_less is NotImplemented:
            return NotImplemented
        try:
            return self.network < other.network
        except AttributeError:
            # We *do* allow addresses and interfaces to be sorted. The
            # unassociated address is considered less than all interfaces.
            return False

    def __hash__(self):
        return self._ip ^ self._prefixlen ^ int(self.network.network_address)

    @property
    def ip(self):
        return IPv4Address(self._ip)

    @property
    def with_prefixlen(self):
        return '%s/%s' % (self._string_from_ip_int(self._ip),
                          self._prefixlen)

    @property
    def with_netmask(self):
        return '%s/%s' % (self._string_from_ip_int(self._ip),
                          self.netmask)

    @property
    def with_hostmask(self):
        return '%s/%s' % (self._string_from_ip_int(self._ip),
                          self.hostmask)


class IPv4Network(_BaseV4, _BaseNetwork):

    """This class represents and manipulates 32-bit IPv4 network + addresses..

    Attributes: [examples for IPv4Network('192.0.2.0/27')]
        .network_address: IPv4Address('192.0.2.0')
        .hostmask: IPv4Address('0.0.0.31')
        .broadcast_address: IPv4Address('192.0.2.32')
        .netmask: IPv4Address('255.255.255.224')
        .prefixlen: 27

    """
    # Class to use when creating address objects
    _address_class = IPv4Address

    def __init__(self, address, strict=True):

        """Instantiate a new IPv4 network object.

        Args:
            address: A string or integer representing the IP [& network].
              '192.0.2.0/24'
              '192.0.2.0/255.255.255.0'
              '192.0.0.2/0.0.0.255'
              are all functionally the same in IPv4. Similarly,
              '192.0.2.1'
              '192.0.2.1/255.255.255.255'
              '192.0.2.1/32'
              are also functionally equivalent. That is to say, failing to
              provide a subnetmask will create an object with a mask of /32.

              If the mask (portion after the / in the argument) is given in
              dotted quad form, it is treated as a netmask if it starts with a
              non-zero field (e.g. /255.0.0.0 == /8) and as a hostmask if it
              starts with a zero field (e.g. 0.255.255.255 == /8), with the
              single exception of an all-zero mask which is treated as a
              netmask == /0. If no mask is given, a default of /32 is used.

              Additionally, an integer can be passed, so
              IPv4Network('192.0.2.1') == IPv4Network(3221225985)
              or, more generally
              IPv4Interface(int(IPv4Interface('192.0.2.1'))) ==
                IPv4Interface('192.0.2.1')

        Raises:
            AddressValueError: If ipaddress isn't a valid IPv4 address.
            NetmaskValueError: If the netmask isn't valid for
              an IPv4 address.
            ValueError: If strict is True and a network address is not
              supplied.

        """

        _BaseV4.__init__(self, address)
        _BaseNetwork.__init__(self, address)

        # Constructing from a packed address
        if isinstance(address, bytes):
            self.network_address = IPv4Address(address)
            self._prefixlen = self._max_prefixlen
            self.netmask = IPv4Address(self._ALL_ONES)
            #fixme: address/network test here
            return

        # Efficient constructor from integer.
        if isinstance(address, int):
            self.network_address = IPv4Address(address)
            self._prefixlen = self._max_prefixlen
            self.netmask = IPv4Address(self._ALL_ONES)
            #fixme: address/network test here.
            return

        # Assume input argument to be string or any object representation
        # which converts into a formatted IP prefix string.
        addr = _split_optional_netmask(address)
        self.network_address = IPv4Address(self._ip_int_from_string(addr[0]))

        if len(addr) == 2:
            try:
                # Check for a netmask in prefix length form
                self._prefixlen = self._prefix_from_prefix_string(addr[1])
            except NetmaskValueError:
                # Check for a netmask or hostmask in dotted-quad form.
                # This may raise NetmaskValueError.
                self._prefixlen = self._prefix_from_ip_string(addr[1])
        else:
            self._prefixlen = self._max_prefixlen
        self.netmask = IPv4Address(self._ip_int_from_prefix(self._prefixlen))

        if strict:
            if (IPv4Address(int(self.network_address) & int(self.netmask)) !=
                self.network_address):
                raise ValueError('%s has host bits set' % self)
        self.network_address = IPv4Address(int(self.network_address) &
                                           int(self.netmask))

        if self._prefixlen == (self._max_prefixlen - 1):
            self.hosts = self.__iter__

    @property
    @functools.lru_cache()
    def is_global(self):
        """Test if this address is allocated for public networks.

        Returns:
            A boolean, True if the address is not reserved per
            iana-ipv4-special-registry.

        """
        return (not (self.network_address in IPv4Network('100.64.0.0/10') and
                    self.broadcast_address in IPv4Network('100.64.0.0/10')) and
                not self.is_private)



class _BaseV6:

    """Base IPv6 object.

    The following methods are used by IPv6 objects in both single IP
    addresses and networks.

    """

    _ALL_ONES = (2**IPV6LENGTH) - 1
    _HEXTET_COUNT = 8
    _HEX_DIGITS = frozenset('0123456789ABCDEFabcdef')

    def __init__(self, address):
        self._version = 6
        self._max_prefixlen = IPV6LENGTH

    def _ip_int_from_string(self, ip_str):
        """Turn an IPv6 ip_str into an integer.

        Args:
            ip_str: A string, the IPv6 ip_str.

        Returns:
            An int, the IPv6 address

        Raises:
            AddressValueError: if ip_str isn't a valid IPv6 Address.

        """
        if not ip_str:
            raise AddressValueError('Address cannot be empty')

        parts = ip_str.split(':')

        # An IPv6 address needs at least 2 colons (3 parts).
        _min_parts = 3
        if len(parts) < _min_parts:
            msg = "At least %d parts expected in %r" % (_min_parts, ip_str)
            raise AddressValueError(msg)

        # If the address has an IPv4-style suffix, convert it to hexadecimal.
        if '.' in parts[-1]:
            try:
                ipv4_int = IPv4Address(parts.pop())._ip
            except AddressValueError as exc:
                raise AddressValueError("%s in %r" % (exc, ip_str)) from None
            parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF))
            parts.append('%x' % (ipv4_int & 0xFFFF))

        # An IPv6 address can't have more than 8 colons (9 parts).
        # The extra colon comes from using the "::" notation for a single
        # leading or trailing zero part.
        _max_parts = self._HEXTET_COUNT + 1
        if len(parts) > _max_parts:
            msg = "At most %d colons permitted in %r" % (_max_parts-1, ip_str)
            raise AddressValueError(msg)

        # Disregarding the endpoints, find '::' with nothing in between.
        # This indicates that a run of zeroes has been skipped.
        skip_index = None
        for i in range(1, len(parts) - 1):
            if not parts[i]:
                if skip_index is not None:
                    # Can't have more than one '::'
                    msg = "At most one '::' permitted in %r" % ip_str
                    raise AddressValueError(msg)
                skip_index = i

        # parts_hi is the number of parts to copy from above/before the '::'
        # parts_lo is the number of parts to copy from below/after the '::'
        if skip_index is not None:
            # If we found a '::', then check if it also covers the endpoints.
            parts_hi = skip_index
            parts_lo = len(parts) - skip_index - 1
            if not parts[0]:
                parts_hi -= 1
                if parts_hi:
                    msg = "Leading ':' only permitted as part of '::' in %r"
                    raise AddressValueError(msg % ip_str)  # ^: requires ^::
            if not parts[-1]:
                parts_lo -= 1
                if parts_lo:
                    msg = "Trailing ':' only permitted as part of '::' in %r"
                    raise AddressValueError(msg % ip_str)  # :$ requires ::$
            parts_skipped = self._HEXTET_COUNT - (parts_hi + parts_lo)
            if parts_skipped < 1:
                msg = "Expected at most %d other parts with '::' in %r"
                raise AddressValueError(msg % (self._HEXTET_COUNT-1, ip_str))
        else:
            # Otherwise, allocate the entire address to parts_hi.  The
            # endpoints could still be empty, but _parse_hextet() will check
            # for that.
            if len(parts) != self._HEXTET_COUNT:
                msg = "Exactly %d parts expected without '::' in %r"
                raise AddressValueError(msg % (self._HEXTET_COUNT, ip_str))
            if not parts[0]:
                msg = "Leading ':' only permitted as part of '::' in %r"
                raise AddressValueError(msg % ip_str)  # ^: requires ^::
            if not parts[-1]:
                msg = "Trailing ':' only permitted as part of '::' in %r"
                raise AddressValueError(msg % ip_str)  # :$ requires ::$
            parts_hi = len(parts)
            parts_lo = 0
            parts_skipped = 0

        try:
            # Now, parse the hextets into a 128-bit integer.
            ip_int = 0
            for i in range(parts_hi):
                ip_int <<= 16
                ip_int |= self._parse_hextet(parts[i])
            ip_int <<= 16 * parts_skipped
            for i in range(-parts_lo, 0):
                ip_int <<= 16
                ip_int |= self._parse_hextet(parts[i])
            return ip_int
        except ValueError as exc:
            raise AddressValueError("%s in %r" % (exc, ip_str)) from None

    def _parse_hextet(self, hextet_str):
        """Convert an IPv6 hextet string into an integer.

        Args:
            hextet_str: A string, the number to parse.

        Returns:
            The hextet as an integer.

        Raises:
            ValueError: if the input isn't strictly a hex number from
              [0..FFFF].

        """
        # Whitelist the characters, since int() allows a lot of bizarre stuff.
        if not self._HEX_DIGITS.issuperset(hextet_str):
            raise ValueError("Only hex digits permitted in %r" % hextet_str)
        # We do the length check second, since the invalid character error
        # is likely to be more informative for the user
        if len(hextet_str) > 4:
            msg = "At most 4 characters permitted in %r"
            raise ValueError(msg % hextet_str)
        # Length check means we can skip checking the integer value
        return int(hextet_str, 16)

    def _compress_hextets(self, hextets):
        """Compresses a list of hextets.

        Compresses a list of strings, replacing the longest continuous
        sequence of "0" in the list with "" and adding empty strings at
        the beginning or at the end of the string such that subsequently
        calling ":".join(hextets) will produce the compressed version of
        the IPv6 address.

        Args:
            hextets: A list of strings, the hextets to compress.

        Returns:
            A list of strings.

        """
        best_doublecolon_start = -1
        best_doublecolon_len = 0
        doublecolon_start = -1
        doublecolon_len = 0
        for index, hextet in enumerate(hextets):
            if hextet == '0':
                doublecolon_len += 1
                if doublecolon_start == -1:
                    # Start of a sequence of zeros.
                    doublecolon_start = index
                if doublecolon_len > best_doublecolon_len:
                    # This is the longest sequence of zeros so far.
                    best_doublecolon_len = doublecolon_len
                    best_doublecolon_start = doublecolon_start
            else:
                doublecolon_len = 0
                doublecolon_start = -1

        if best_doublecolon_len > 1:
            best_doublecolon_end = (best_doublecolon_start +
                                    best_doublecolon_len)
            # For zeros at the end of the address.
            if best_doublecolon_end == len(hextets):
                hextets += ['']
            hextets[best_doublecolon_start:best_doublecolon_end] = ['']
            # For zeros at the beginning of the address.
            if best_doublecolon_start == 0:
                hextets = [''] + hextets

        return hextets

    def _string_from_ip_int(self, ip_int=None):
        """Turns a 128-bit integer into hexadecimal notation.

        Args:
            ip_int: An integer, the IP address.

        Returns:
            A string, the hexadecimal representation of the address.

        Raises:
            ValueError: The address is bigger than 128 bits of all ones.

        """
        if ip_int is None:
            ip_int = int(self._ip)

        if ip_int > self._ALL_ONES:
            raise ValueError('IPv6 address is too large')

        hex_str = '%032x' % ip_int
        hextets = ['%x' % int(hex_str[x:x+4], 16) for x in range(0, 32, 4)]

        hextets = self._compress_hextets(hextets)
        return ':'.join(hextets)

    def _explode_shorthand_ip_string(self):
        """Expand a shortened IPv6 address.

        Args:
            ip_str: A string, the IPv6 address.

        Returns:
            A string, the expanded IPv6 address.

        """
        if isinstance(self, IPv6Network):
            ip_str = str(self.network_address)
        elif isinstance(self, IPv6Interface):
            ip_str = str(self.ip)
        else:
            ip_str = str(self)

        ip_int = self._ip_int_from_string(ip_str)
        hex_str = '%032x' % ip_int
        parts = [hex_str[x:x+4] for x in range(0, 32, 4)]
        if isinstance(self, (_BaseNetwork, IPv6Interface)):
            return '%s/%d' % (':'.join(parts), self._prefixlen)
        return ':'.join(parts)

    @property
    def max_prefixlen(self):
        return self._max_prefixlen

    @property
    def version(self):
        return self._version


class IPv6Address(_BaseV6, _BaseAddress):

    """Represent and manipulate single IPv6 Addresses."""

    def __init__(self, address):
        """Instantiate a new IPv6 address object.

        Args:
            address: A string or integer representing the IP

              Additionally, an integer can be passed, so
              IPv6Address('2001:db8::') ==
                IPv6Address(42540766411282592856903984951653826560)
              or, more generally
              IPv6Address(int(IPv6Address('2001:db8::'))) ==
                IPv6Address('2001:db8::')

        Raises:
            AddressValueError: If address isn't a valid IPv6 address.

        """
        _BaseAddress.__init__(self, address)
        _BaseV6.__init__(self, address)

        # Efficient constructor from integer.
        if isinstance(address, int):
            self._check_int_address(address)
            self._ip = address
            return

        # Constructing from a packed address
        if isinstance(address, bytes):
            self._check_packed_address(address, 16)
            self._ip = int.from_bytes(address, 'big')
            return

        # Assume input argument to be string or any object representation
        # which converts into a formatted IP string.
        addr_str = str(address)
        self._ip = self._ip_int_from_string(addr_str)

    @property
    def packed(self):
        """The binary representation of this address."""
        return v6_int_to_packed(self._ip)

    @property
    def is_multicast(self):
        """Test if the address is reserved for multicast use.

        Returns:
            A boolean, True if the address is a multicast address.
            See RFC 2373 2.7 for details.

        """
        multicast_network = IPv6Network('ff00::/8')
        return self in multicast_network

    @property
    def is_reserved(self):
        """Test if the address is otherwise IETF reserved.

        Returns:
            A boolean, True if the address is within one of the
            reserved IPv6 Network ranges.

        """
        reserved_networks = [IPv6Network('::/8'), IPv6Network('100::/8'),
                             IPv6Network('200::/7'), IPv6Network('400::/6'),
                             IPv6Network('800::/5'), IPv6Network('1000::/4'),
                             IPv6Network('4000::/3'), IPv6Network('6000::/3'),
                             IPv6Network('8000::/3'), IPv6Network('A000::/3'),
                             IPv6Network('C000::/3'), IPv6Network('E000::/4'),
                             IPv6Network('F000::/5'), IPv6Network('F800::/6'),
                             IPv6Network('FE00::/9')]

        return any(self in x for x in reserved_networks)

    @property
    def is_link_local(self):
        """Test if the address is reserved for link-local.

        Returns:
            A boolean, True if the address is reserved per RFC 4291.

        """
        linklocal_network = IPv6Network('fe80::/10')
        return self in linklocal_network

    @property
    def is_site_local(self):
        """Test if the address is reserved for site-local.

        Note that the site-local address space has been deprecated by RFC 3879.
        Use is_private to test if this address is in the space of unique local
        addresses as defined by RFC 4193.

        Returns:
            A boolean, True if the address is reserved per RFC 3513 2.5.6.

        """
        sitelocal_network = IPv6Network('fec0::/10')
        return self in sitelocal_network

    @property
    @functools.lru_cache()
    def is_private(self):
        """Test if this address is allocated for private networks.

        Returns:
            A boolean, True if the address is reserved per
            iana-ipv6-special-registry.

        """
        return (self in IPv6Network('::1/128') or
                self in IPv6Network('::/128') or
                self in IPv6Network('::ffff:0:0/96') or
                self in IPv6Network('100::/64') or
                self in IPv6Network('2001::/23') or
                self in IPv6Network('2001:2::/48') or
                self in IPv6Network('2001:db8::/32') or
                self in IPv6Network('2001:10::/28') or
                self in IPv6Network('fc00::/7') or
                self in IPv6Network('fe80::/10'))

    @property
    def is_global(self):
        """Test if this address is allocated for public networks.

        Returns:
            A boolean, true if the address is not reserved per
            iana-ipv6-special-registry.

        """
        return not self.is_private

    @property
    def is_unspecified(self):
        """Test if the address is unspecified.

        Returns:
            A boolean, True if this is the unspecified address as defined in
            RFC 2373 2.5.2.

        """
        return self._ip == 0

    @property
    def is_loopback(self):
        """Test if the address is a loopback address.

        Returns:
            A boolean, True if the address is a loopback address as defined in
            RFC 2373 2.5.3.

        """
        return self._ip == 1

    @property
    def ipv4_mapped(self):
        """Return the IPv4 mapped address.

        Returns:
            If the IPv6 address is a v4 mapped address, return the
            IPv4 mapped address. Return None otherwise.

        """
        if (self._ip >> 32) != 0xFFFF:
            return None
        return IPv4Address(self._ip & 0xFFFFFFFF)

    @property
    def teredo(self):
        """Tuple of embedded teredo IPs.

        Returns:
            Tuple of the (server, client) IPs or None if the address
            doesn't appear to be a teredo address (doesn't start with
            2001::/32)

        """
        if (self._ip >> 96) != 0x20010000:
            return None
        return (IPv4Address((self._ip >> 64) & 0xFFFFFFFF),
                IPv4Address(~self._ip & 0xFFFFFFFF))

    @property
    def sixtofour(self):
        """Return the IPv4 6to4 embedded address.

        Returns:
            The IPv4 6to4-embedded address if present or None if the
            address doesn't appear to contain a 6to4 embedded address.

        """
        if (self._ip >> 112) != 0x2002:
            return None
        return IPv4Address((self._ip >> 80) & 0xFFFFFFFF)


class IPv6Interface(IPv6Address):

    def __init__(self, address):
        if isinstance(address, (bytes, int)):
            IPv6Address.__init__(self, address)
            self.network = IPv6Network(self._ip)
            self._prefixlen = self._max_prefixlen
            return

        addr = _split_optional_netmask(address)
        IPv6Address.__init__(self, addr[0])
        self.network = IPv6Network(address, strict=False)
        self.netmask = self.network.netmask
        self._prefixlen = self.network._prefixlen
        self.hostmask = self.network.hostmask

    def __str__(self):
        return '%s/%d' % (self._string_from_ip_int(self._ip),
                          self.network.prefixlen)

    def __eq__(self, other):
        address_equal = IPv6Address.__eq__(self, other)
        if not address_equal or address_equal is NotImplemented:
            return address_equal
        try:
            return self.network == other.network
        except AttributeError:
            # An interface with an associated network is NOT the
            # same as an unassociated address. That's why the hash
            # takes the extra info into account.
            return False

    def __lt__(self, other):
        address_less = IPv6Address.__lt__(self, other)
        if address_less is NotImplemented:
            return NotImplemented
        try:
            return self.network < other.network
        except AttributeError:
            # We *do* allow addresses and interfaces to be sorted. The
            # unassociated address is considered less than all interfaces.
            return False

    def __hash__(self):
        return self._ip ^ self._prefixlen ^ int(self.network.network_address)

    @property
    def ip(self):
        return IPv6Address(self._ip)

    @property
    def with_prefixlen(self):
        return '%s/%s' % (self._string_from_ip_int(self._ip),
                          self._prefixlen)

    @property
    def with_netmask(self):
        return '%s/%s' % (self._string_from_ip_int(self._ip),
                          self.netmask)

    @property
    def with_hostmask(self):
        return '%s/%s' % (self._string_from_ip_int(self._ip),
                          self.hostmask)

    @property
    def is_unspecified(self):
        return self._ip == 0 and self.network.is_unspecified

    @property
    def is_loopback(self):
        return self._ip == 1 and self.network.is_loopback


class IPv6Network(_BaseV6, _BaseNetwork):

    """This class represents and manipulates 128-bit IPv6 networks.

    Attributes: [examples for IPv6('2001:db8::1000/124')]
        .network_address: IPv6Address('2001:db8::1000')
        .hostmask: IPv6Address('::f')
        .broadcast_address: IPv6Address('2001:db8::100f')
        .netmask: IPv6Address('ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff0')
        .prefixlen: 124

    """

    # Class to use when creating address objects
    _address_class = IPv6Address

    def __init__(self, address, strict=True):
        """Instantiate a new IPv6 Network object.

        Args:
            address: A string or integer representing the IPv6 network or the
              IP and prefix/netmask.
              '2001:db8::/128'
              '2001:db8:0000:0000:0000:0000:0000:0000/128'
              '2001:db8::'
              are all functionally the same in IPv6.  That is to say,
              failing to provide a subnetmask will create an object with
              a mask of /128.

              Additionally, an integer can be passed, so
              IPv6Network('2001:db8::') ==
                IPv6Network(42540766411282592856903984951653826560)
              or, more generally
              IPv6Network(int(IPv6Network('2001:db8::'))) ==
                IPv6Network('2001:db8::')

            strict: A boolean. If true, ensure that we have been passed
              A true network address, eg, 2001:db8::1000/124 and not an
              IP address on a network, eg, 2001:db8::1/124.

        Raises:
            AddressValueError: If address isn't a valid IPv6 address.
            NetmaskValueError: If the netmask isn't valid for
              an IPv6 address.
            ValueError: If strict was True and a network address was not
              supplied.

        """
        _BaseV6.__init__(self, address)
        _BaseNetwork.__init__(self, address)

        # Efficient constructor from integer.
        if isinstance(address, int):
            self.network_address = IPv6Address(address)
            self._prefixlen = self._max_prefixlen
            self.netmask = IPv6Address(self._ALL_ONES)
            return

        # Constructing from a packed address
        if isinstance(address, bytes):
            self.network_address = IPv6Address(address)
            self._prefixlen = self._max_prefixlen
            self.netmask = IPv6Address(self._ALL_ONES)
            return

        # Assume input argument to be string or any object representation
        # which converts into a formatted IP prefix string.
        addr = _split_optional_netmask(address)

        self.network_address = IPv6Address(self._ip_int_from_string(addr[0]))

        if len(addr) == 2:
            # This may raise NetmaskValueError
            self._prefixlen = self._prefix_from_prefix_string(addr[1])
        else:
            self._prefixlen = self._max_prefixlen

        self.netmask = IPv6Address(self._ip_int_from_prefix(self._prefixlen))
        if strict:
            if (IPv6Address(int(self.network_address) & int(self.netmask)) !=
                self.network_address):
                raise ValueError('%s has host bits set' % self)
        self.network_address = IPv6Address(int(self.network_address) &
                                           int(self.netmask))

        if self._prefixlen == (self._max_prefixlen - 1):
            self.hosts = self.__iter__

    def hosts(self):
        """Generate Iterator over usable hosts in a network.

          This is like __iter__ except it doesn't return the
          Subnet-Router anycast address.

        """
        network = int(self.network_address)
        broadcast = int(self.broadcast_address)
        for x in range(network + 1, broadcast + 1):
            yield self._address_class(x)

    @property
    def is_site_local(self):
        """Test if the address is reserved for site-local.

        Note that the site-local address space has been deprecated by RFC 3879.
        Use is_private to test if this address is in the space of unique local
        addresses as defined by RFC 4193.

        Returns:
            A boolean, True if the address is reserved per RFC 3513 2.5.6.

        """
        return (self.network_address.is_site_local and
                self.broadcast_address.is_site_local)
lib\keyword.py
#! /usr/bin/env python3

"""Keywords (from "graminit.c")

This file is automatically generated; please don't muck it up!

To update the symbols in this file, 'cd' to the top directory of
the python source tree after building the interpreter and run:

    ./python Lib/keyword.py
"""

__all__ = ["iskeyword", "kwlist"]

kwlist = [
#--start keywords--
        'False',
        'None',
        'True',
        'and',
        'as',
        'assert',
        'break',
        'class',
        'continue',
        'def',
        'del',
        'elif',
        'else',
        'except',
        'finally',
        'for',
        'from',
        'global',
        'if',
        'import',
        'in',
        'is',
        'lambda',
        'nonlocal',
        'not',
        'or',
        'pass',
        'raise',
        'return',
        'try',
        'while',
        'with',
        'yield',
#--end keywords--
        ]

iskeyword = frozenset(kwlist).__contains__

def main():
    import sys, re

    args = sys.argv[1:]
    iptfile = args and args[0] or "Python/graminit.c"
    if len(args) > 1: optfile = args[1]
    else: optfile = "Lib/keyword.py"

    # load the output skeleton from the target, taking care to preserve its
    # newline convention.
    with open(optfile, newline='') as fp:
        format = fp.readlines()
    nl = format[0][len(format[0].strip()):] if format else '\n'

    # scan the source file for keywords
    with open(iptfile) as fp:
        strprog = re.compile('"([^"]+)"')
        lines = []
        for line in fp:
            if '{1, "' in line:
                match = strprog.search(line)
                if match:
                    lines.append("        '" + match.group(1) + "'," + nl)
    lines.sort()

    # insert the lines of keywords into the skeleton
    try:
        start = format.index("#--start keywords--" + nl) + 1
        end = format.index("#--end keywords--" + nl)
        format[start:end] = lines
    except ValueError:
        sys.stderr.write("target does not contain format markers\n")
        sys.exit(1)

    # write the output file
    with open(optfile, 'w', newline='') as fp:
        fp.writelines(format)

if __name__ == "__main__":
    main()
lib\linecache.py
"""Cache lines from Python source files.

This is intended to read lines from modules imported -- hence if a filename
is not found, it will look down the module search path for a file by
that name.
"""

import sys
import os
import tokenize

__all__ = ["getline", "clearcache", "checkcache"]

def getline(filename, lineno, module_globals=None):
    lines = getlines(filename, module_globals)
    if 1 <= lineno <= len(lines):
        return lines[lineno-1]
    else:
        return ''


# The cache

cache = {} # The cache


def clearcache():
    """Clear the cache entirely."""

    global cache
    cache = {}


def getlines(filename, module_globals=None):
    """Get the lines for a Python source file from the cache.
    Update the cache if it doesn't contain an entry for this file already."""

    if filename in cache:
        return cache[filename][2]

    try:
        return updatecache(filename, module_globals)
    except MemoryError:
        clearcache()
        return []


def checkcache(filename=None):
    """Discard cache entries that are out of date.
    (This is not checked upon each call!)"""

    if filename is None:
        filenames = list(cache.keys())
    else:
        if filename in cache:
            filenames = [filename]
        else:
            return

    for filename in filenames:
        size, mtime, lines, fullname = cache[filename]
        if mtime is None:
            continue   # no-op for files loaded via a __loader__
        try:
            stat = os.stat(fullname)
        except OSError:
            del cache[filename]
            continue
        if size != stat.st_size or mtime != stat.st_mtime:
            del cache[filename]


def updatecache(filename, module_globals=None):
    """Update a cache entry and return its list of lines.
    If something's wrong, print a message, discard the cache entry,
    and return an empty list."""

    if filename in cache:
        del cache[filename]
    if not filename or (filename.startswith('<') and filename.endswith('>')):
        return []

    fullname = filename
    try:
        stat = os.stat(fullname)
    except OSError:
        basename = filename

        # Try for a __loader__, if available
        if module_globals and '__loader__' in module_globals:
            name = module_globals.get('__name__')
            loader = module_globals['__loader__']
            get_source = getattr(loader, 'get_source', None)

            if name and get_source:
                try:
                    data = get_source(name)
                except (ImportError, OSError):
                    pass
                else:
                    if data is None:
                        # No luck, the PEP302 loader cannot find the source
                        # for this module.
                        return []
                    cache[filename] = (
                        len(data), None,
                        [line+'\n' for line in data.splitlines()], fullname
                    )
                    return cache[filename][2]

        # Try looking through the module search path, which is only useful
        # when handling a relative filename.
        if os.path.isabs(filename):
            return []

        for dirname in sys.path:
            try:
                fullname = os.path.join(dirname, basename)
            except (TypeError, AttributeError):
                # Not sufficiently string-like to do anything useful with.
                continue
            try:
                stat = os.stat(fullname)
                break
            except OSError:
                pass
        else:
            return []
    try:
        with tokenize.open(fullname) as fp:
            lines = fp.readlines()
    except OSError:
        return []
    if lines and not lines[-1].endswith('\n'):
        lines[-1] += '\n'
    size, mtime = stat.st_size, stat.st_mtime
    cache[filename] = size, mtime, lines, fullname
    return lines
lib\locale.py
""" Locale support.

    The module provides low-level access to the C lib's locale APIs
    and adds high level number formatting APIs as well as a locale
    aliasing engine to complement these.

    The aliasing engine includes support for many commonly used locale
    names and maps them to values suitable for passing to the C lib's
    setlocale() function. It also includes default encodings for all
    supported locale names.

"""

import sys
import encodings
import encodings.aliases
import re
import collections
from builtins import str as _builtin_str
import functools

# Try importing the _locale module.
#
# If this fails, fall back on a basic 'C' locale emulation.

# Yuck:  LC_MESSAGES is non-standard:  can't tell whether it exists before
# trying the import.  So __all__ is also fiddled at the end of the file.
__all__ = ["getlocale", "getdefaultlocale", "getpreferredencoding", "Error",
           "setlocale", "resetlocale", "localeconv", "strcoll", "strxfrm",
           "str", "atof", "atoi", "format", "format_string", "currency",
           "normalize", "LC_CTYPE", "LC_COLLATE", "LC_TIME", "LC_MONETARY",
           "LC_NUMERIC", "LC_ALL", "CHAR_MAX"]

def _strcoll(a,b):
    """ strcoll(string,string) -> int.
        Compares two strings according to the locale.
    """
    return (a > b) - (a < b)

def _strxfrm(s):
    """ strxfrm(string) -> string.
        Returns a string that behaves for cmp locale-aware.
    """
    return s

try:

    from _locale import *

except ImportError:

    # Locale emulation

    CHAR_MAX = 127
    LC_ALL = 6
    LC_COLLATE = 3
    LC_CTYPE = 0
    LC_MESSAGES = 5
    LC_MONETARY = 4
    LC_NUMERIC = 1
    LC_TIME = 2
    Error = ValueError

    def localeconv():
        """ localeconv() -> dict.
            Returns numeric and monetary locale-specific parameters.
        """
        # 'C' locale default values
        return {'grouping': [127],
                'currency_symbol': '',
                'n_sign_posn': 127,
                'p_cs_precedes': 127,
                'n_cs_precedes': 127,
                'mon_grouping': [],
                'n_sep_by_space': 127,
                'decimal_point': '.',
                'negative_sign': '',
                'positive_sign': '',
                'p_sep_by_space': 127,
                'int_curr_symbol': '',
                'p_sign_posn': 127,
                'thousands_sep': '',
                'mon_thousands_sep': '',
                'frac_digits': 127,
                'mon_decimal_point': '',
                'int_frac_digits': 127}

    def setlocale(category, value=None):
        """ setlocale(integer,string=None) -> string.
            Activates/queries locale processing.
        """
        if value not in (None, '', 'C'):
            raise Error('_locale emulation only supports "C" locale')
        return 'C'

# These may or may not exist in _locale, so be sure to set them.
if 'strxfrm' not in globals():
    strxfrm = _strxfrm
if 'strcoll' not in globals():
    strcoll = _strcoll


_localeconv = localeconv

# With this dict, you can override some items of localeconv's return value.
# This is useful for testing purposes.
_override_localeconv = {}

@functools.wraps(_localeconv)
def localeconv():
    d = _localeconv()
    if _override_localeconv:
        d.update(_override_localeconv)
    return d


### Number formatting APIs

# Author: Martin von Loewis
# improved by Georg Brandl

# Iterate over grouping intervals
def _grouping_intervals(grouping):
    last_interval = None
    for interval in grouping:
        # if grouping is -1, we are done
        if interval == CHAR_MAX:
            return
        # 0: re-use last group ad infinitum
        if interval == 0:
            if last_interval is None:
                raise ValueError("invalid grouping")
            while True:
                yield last_interval
        yield interval
        last_interval = interval

#perform the grouping from right to left
def _group(s, monetary=False):
    conv = localeconv()
    thousands_sep = conv[monetary and 'mon_thousands_sep' or 'thousands_sep']
    grouping = conv[monetary and 'mon_grouping' or 'grouping']
    if not grouping:
        return (s, 0)
    if s[-1] == ' ':
        stripped = s.rstrip()
        right_spaces = s[len(stripped):]
        s = stripped
    else:
        right_spaces = ''
    left_spaces = ''
    groups = []
    for interval in _grouping_intervals(grouping):
        if not s or s[-1] not in "0123456789":
            # only non-digit characters remain (sign, spaces)
            left_spaces = s
            s = ''
            break
        groups.append(s[-interval:])
        s = s[:-interval]
    if s:
        groups.append(s)
    groups.reverse()
    return (
        left_spaces + thousands_sep.join(groups) + right_spaces,
        len(thousands_sep) * (len(groups) - 1)
    )

# Strip a given amount of excess padding from the given string
def _strip_padding(s, amount):
    lpos = 0
    while amount and s[lpos] == ' ':
        lpos += 1
        amount -= 1
    rpos = len(s) - 1
    while amount and s[rpos] == ' ':
        rpos -= 1
        amount -= 1
    return s[lpos:rpos+1]

_percent_re = re.compile(r'%(?:\((?P<key>.*?)\))?'
                         r'(?P<modifiers>[-#0-9 +*.hlL]*?)[eEfFgGdiouxXcrs%]')

def format(percent, value, grouping=False, monetary=False, *additional):
    """Returns the locale-aware substitution of a %? specifier
    (percent).

    additional is for format strings which contain one or more
    '*' modifiers."""
    # this is only for one-percent-specifier strings and this should be checked
    match = _percent_re.match(percent)
    if not match or len(match.group())!= len(percent):
        raise ValueError(("format() must be given exactly one %%char "
                         "format specifier, %s not valid") % repr(percent))
    return _format(percent, value, grouping, monetary, *additional)

def _format(percent, value, grouping=False, monetary=False, *additional):
    if additional:
        formatted = percent % ((value,) + additional)
    else:
        formatted = percent % value
    # floats and decimal ints need special action!
    if percent[-1] in 'eEfFgG':
        seps = 0
        parts = formatted.split('.')
        if grouping:
            parts[0], seps = _group(parts[0], monetary=monetary)
        decimal_point = localeconv()[monetary and 'mon_decimal_point'
                                              or 'decimal_point']
        formatted = decimal_point.join(parts)
        if seps:
            formatted = _strip_padding(formatted, seps)
    elif percent[-1] in 'diu':
        seps = 0
        if grouping:
            formatted, seps = _group(formatted, monetary=monetary)
        if seps:
            formatted = _strip_padding(formatted, seps)
    return formatted

def format_string(f, val, grouping=False):
    """Formats a string in the same way that the % formatting would use,
    but takes the current locale into account.
    Grouping is applied if the third parameter is true."""
    percents = list(_percent_re.finditer(f))
    new_f = _percent_re.sub('%s', f)

    if isinstance(val, collections.Mapping):
        new_val = []
        for perc in percents:
            if perc.group()[-1]=='%':
                new_val.append('%')
            else:
                new_val.append(format(perc.group(), val, grouping))
    else:
        if not isinstance(val, tuple):
            val = (val,)
        new_val = []
        i = 0
        for perc in percents:
            if perc.group()[-1]=='%':
                new_val.append('%')
            else:
                starcount = perc.group('modifiers').count('*')
                new_val.append(_format(perc.group(),
                                      val[i],
                                      grouping,
                                      False,
                                      *val[i+1:i+1+starcount]))
                i += (1 + starcount)
    val = tuple(new_val)

    return new_f % val

def currency(val, symbol=True, grouping=False, international=False):
    """Formats val according to the currency settings
    in the current locale."""
    conv = localeconv()

    # check for illegal values
    digits = conv[international and 'int_frac_digits' or 'frac_digits']
    if digits == 127:
        raise ValueError("Currency formatting is not possible using "
                         "the 'C' locale.")

    s = format('%%.%if' % digits, abs(val), grouping, monetary=True)
    # '<' and '>' are markers if the sign must be inserted between symbol and value
    s = '<' + s + '>'

    if symbol:
        smb = conv[international and 'int_curr_symbol' or 'currency_symbol']
        precedes = conv[val<0 and 'n_cs_precedes' or 'p_cs_precedes']
        separated = conv[val<0 and 'n_sep_by_space' or 'p_sep_by_space']

        if precedes:
            s = smb + (separated and ' ' or '') + s
        else:
            s = s + (separated and ' ' or '') + smb

    sign_pos = conv[val<0 and 'n_sign_posn' or 'p_sign_posn']
    sign = conv[val<0 and 'negative_sign' or 'positive_sign']

    if sign_pos == 0:
        s = '(' + s + ')'
    elif sign_pos == 1:
        s = sign + s
    elif sign_pos == 2:
        s = s + sign
    elif sign_pos == 3:
        s = s.replace('<', sign)
    elif sign_pos == 4:
        s = s.replace('>', sign)
    else:
        # the default if nothing specified;
        # this should be the most fitting sign position
        s = sign + s

    return s.replace('<', '').replace('>', '')

def str(val):
    """Convert float to integer, taking the locale into account."""
    return format("%.12g", val)

def atof(string, func=float):
    "Parses a string as a float according to the locale settings."
    #First, get rid of the grouping
    ts = localeconv()['thousands_sep']
    if ts:
        string = string.replace(ts, '')
    #next, replace the decimal point with a dot
    dd = localeconv()['decimal_point']
    if dd:
        string = string.replace(dd, '.')
    #finally, parse the string
    return func(string)

def atoi(str):
    "Converts a string to an integer according to the locale settings."
    return atof(str, int)

def _test():
    setlocale(LC_ALL, "")
    #do grouping
    s1 = format("%d", 123456789,1)
    print(s1, "is", atoi(s1))
    #standard formatting
    s1 = str(3.14)
    print(s1, "is", atof(s1))

### Locale name aliasing engine

# Author: Marc-Andre Lemburg, [email protected]
# Various tweaks by Fredrik Lundh <[email protected]>

# store away the low-level version of setlocale (it's
# overridden below)
_setlocale = setlocale

def _replace_encoding(code, encoding):
    if '.' in code:
        langname = code[:code.index('.')]
    else:
        langname = code
    # Convert the encoding to a C lib compatible encoding string
    norm_encoding = encodings.normalize_encoding(encoding)
    #print('norm encoding: %r' % norm_encoding)
    norm_encoding = encodings.aliases.aliases.get(norm_encoding.lower(),
                                                  norm_encoding)
    #print('aliased encoding: %r' % norm_encoding)
    encoding = norm_encoding
    norm_encoding = norm_encoding.lower()
    if norm_encoding in locale_encoding_alias:
        encoding = locale_encoding_alias[norm_encoding]
    else:
        norm_encoding = norm_encoding.replace('_', '')
        norm_encoding = norm_encoding.replace('-', '')
        if norm_encoding in locale_encoding_alias:
            encoding = locale_encoding_alias[norm_encoding]
    #print('found encoding %r' % encoding)
    return langname + '.' + encoding

def _append_modifier(code, modifier):
    if modifier == 'euro':
        if '.' not in code:
            return code + '.ISO8859-15'
        _, _, encoding = code.partition('.')
        if encoding in ('ISO8859-15', 'UTF-8'):
            return code
        if encoding == 'ISO8859-1':
            return _replace_encoding(code, 'ISO8859-15')
    return code + '@' + modifier

def normalize(localename):

    """ Returns a normalized locale code for the given locale
        name.

        The returned locale code is formatted for use with
        setlocale().

        If normalization fails, the original name is returned
        unchanged.

        If the given encoding is not known, the function defaults to
        the default encoding for the locale code just like setlocale()
        does.

    """
    # Normalize the locale name and extract the encoding and modifier
    code = localename.lower()
    if ':' in code:
        # ':' is sometimes used as encoding delimiter.
        code = code.replace(':', '.')
    if '@' in code:
        code, modifier = code.split('@', 1)
    else:
        modifier = ''
    if '.' in code:
        langname, encoding = code.split('.')[:2]
    else:
        langname = code
        encoding = ''

    # First lookup: fullname (possibly with encoding and modifier)
    lang_enc = langname
    if encoding:
        norm_encoding = encoding.replace('-', '')
        norm_encoding = norm_encoding.replace('_', '')
        lang_enc += '.' + norm_encoding
    lookup_name = lang_enc
    if modifier:
        lookup_name += '@' + modifier
    code = locale_alias.get(lookup_name, None)
    if code is not None:
        return code
    #print('first lookup failed')

    if modifier:
        # Second try: fullname without modifier (possibly with encoding)
        code = locale_alias.get(lang_enc, None)
        if code is not None:
            #print('lookup without modifier succeeded')
            if '@' not in code:
                return _append_modifier(code, modifier)
            if code.split('@', 1)[1].lower() == modifier:
                return code
        #print('second lookup failed')

    if encoding:
        # Third try: langname (without encoding, possibly with modifier)
        lookup_name = langname
        if modifier:
            lookup_name += '@' + modifier
        code = locale_alias.get(lookup_name, None)
        if code is not None:
            #print('lookup without encoding succeeded')
            if '@' not in code:
                return _replace_encoding(code, encoding)
            code, modifier = code.split('@', 1)
            return _replace_encoding(code, encoding) + '@' + modifier

        if modifier:
            # Fourth try: langname (without encoding and modifier)
            code = locale_alias.get(langname, None)
            if code is not None:
                #print('lookup without modifier and encoding succeeded')
                if '@' not in code:
                    code = _replace_encoding(code, encoding)
                    return _append_modifier(code, modifier)
                code, defmod = code.split('@', 1)
                if defmod.lower() == modifier:
                    return _replace_encoding(code, encoding) + '@' + defmod

    return localename

def _parse_localename(localename):

    """ Parses the locale code for localename and returns the
        result as tuple (language code, encoding).

        The localename is normalized and passed through the locale
        alias engine. A ValueError is raised in case the locale name
        cannot be parsed.

        The language code corresponds to RFC 1766.  code and encoding
        can be None in case the values cannot be determined or are
        unknown to this implementation.

    """
    code = normalize(localename)
    if '@' in code:
        # Deal with locale modifiers
        code, modifier = code.split('@', 1)
        if modifier == 'euro' and '.' not in code:
            # Assume Latin-9 for @euro locales. This is bogus,
            # since some systems may use other encodings for these
            # locales. Also, we ignore other modifiers.
            return code, 'iso-8859-15'

    if '.' in code:
        return tuple(code.split('.')[:2])
    elif code == 'C':
        return None, None
    raise ValueError('unknown locale: %s' % localename)

def _build_localename(localetuple):

    """ Builds a locale code from the given tuple (language code,
        encoding).

        No aliasing or normalizing takes place.

    """
    try:
        language, encoding = localetuple

        if language is None:
            language = 'C'
        if encoding is None:
            return language
        else:
            return language + '.' + encoding
    except (TypeError, ValueError):
        raise TypeError('Locale must be None, a string, or an iterable of two strings -- language code, encoding.')

def getdefaultlocale(envvars=('LC_ALL', 'LC_CTYPE', 'LANG', 'LANGUAGE')):

    """ Tries to determine the default locale settings and returns
        them as tuple (language code, encoding).

        According to POSIX, a program which has not called
        setlocale(LC_ALL, "") runs using the portable 'C' locale.
        Calling setlocale(LC_ALL, "") lets it use the default locale as
        defined by the LANG variable. Since we don't want to interfere
        with the current locale setting we thus emulate the behavior
        in the way described above.

        To maintain compatibility with other platforms, not only the
        LANG variable is tested, but a list of variables given as
        envvars parameter. The first found to be defined will be
        used. envvars defaults to the search path used in GNU gettext;
        it must always contain the variable name 'LANG'.

        Except for the code 'C', the language code corresponds to RFC
        1766.  code and encoding can be None in case the values cannot
        be determined.

    """

    try:
        # check if it's supported by the _locale module
        import _locale
        code, encoding = _locale._getdefaultlocale()
    except (ImportError, AttributeError):
        pass
    else:
        # make sure the code/encoding values are valid
        if sys.platform == "win32" and code and code[:2] == "0x":
            # map windows language identifier to language name
            code = windows_locale.get(int(code, 0))
        # ...add other platform-specific processing here, if
        # necessary...
        return code, encoding

    # fall back on POSIX behaviour
    import os
    lookup = os.environ.get
    for variable in envvars:
        localename = lookup(variable,None)
        if localename:
            if variable == 'LANGUAGE':
                localename = localename.split(':')[0]
            break
    else:
        localename = 'C'
    return _parse_localename(localename)


def getlocale(category=LC_CTYPE):

    """ Returns the current setting for the given locale category as
        tuple (language code, encoding).

        category may be one of the LC_* value except LC_ALL. It
        defaults to LC_CTYPE.

        Except for the code 'C', the language code corresponds to RFC
        1766.  code and encoding can be None in case the values cannot
        be determined.

    """
    localename = _setlocale(category)
    if category == LC_ALL and ';' in localename:
        raise TypeError('category LC_ALL is not supported')
    return _parse_localename(localename)

def setlocale(category, locale=None):

    """ Set the locale for the given category.  The locale can be
        a string, an iterable of two strings (language code and encoding),
        or None.

        Iterables are converted to strings using the locale aliasing
        engine.  Locale strings are passed directly to the C lib.

        category may be given as one of the LC_* values.

    """
    if locale and not isinstance(locale, _builtin_str):
        # convert to string
        locale = normalize(_build_localename(locale))
    return _setlocale(category, locale)

def resetlocale(category=LC_ALL):

    """ Sets the locale for category to the default setting.

        The default setting is determined by calling
        getdefaultlocale(). category defaults to LC_ALL.

    """
    _setlocale(category, _build_localename(getdefaultlocale()))

if sys.platform.startswith("win"):
    # On Win32, this will return the ANSI code page
    def getpreferredencoding(do_setlocale = True):
        """Return the charset that the user is likely using."""
        if sys.flags.utf8_mode:
            return 'UTF-8'
        import _bootlocale
        return _bootlocale.getpreferredencoding(False)
else:
    # On Unix, if CODESET is available, use that.
    try:
        CODESET
    except NameError:
        # Fall back to parsing environment variables :-(
        def getpreferredencoding(do_setlocale = True):
            """Return the charset that the user is likely using,
            by looking at environment variables."""
            if sys.flags.utf8_mode:
                return 'UTF-8'
            res = getdefaultlocale()[1]
            if res is None:
                # LANG not set, default conservatively to ASCII
                res = 'ascii'
            return res
    else:
        def getpreferredencoding(do_setlocale = True):
            """Return the charset that the user is likely using,
            according to the system configuration."""
            if sys.flags.utf8_mode:
                return 'UTF-8'
            import _bootlocale
            if do_setlocale:
                oldloc = setlocale(LC_CTYPE)
                try:
                    setlocale(LC_CTYPE, "")
                except Error:
                    pass
            result = _bootlocale.getpreferredencoding(False)
            if do_setlocale:
                setlocale(LC_CTYPE, oldloc)
            return result


### Database
#
# The following data was extracted from the locale.alias file which
# comes with X11 and then hand edited removing the explicit encoding
# definitions and adding some more aliases. The file is usually
# available as /usr/lib/X11/locale/locale.alias.
#

#
# The local_encoding_alias table maps lowercase encoding alias names
# to C locale encoding names (case-sensitive). Note that normalize()
# first looks up the encoding in the encodings.aliases dictionary and
# then applies this mapping to find the correct C lib name for the
# encoding.
#
locale_encoding_alias = {

    # Mappings for non-standard encoding names used in locale names
    '437':                          'C',
    'c':                            'C',
    'en':                           'ISO8859-1',
    'jis':                          'JIS7',
    'jis7':                         'JIS7',
    'ajec':                         'eucJP',
    'koi8c':                        'KOI8-C',
    'microsoftcp1251':              'CP1251',
    'microsoftcp1255':              'CP1255',
    'microsoftcp1256':              'CP1256',
    '88591':                        'ISO8859-1',
    '88592':                        'ISO8859-2',
    '88595':                        'ISO8859-5',
    '885915':                       'ISO8859-15',

    # Mappings from Python codec names to C lib encoding names
    'ascii':                        'ISO8859-1',
    'latin_1':                      'ISO8859-1',
    'iso8859_1':                    'ISO8859-1',
    'iso8859_10':                   'ISO8859-10',
    'iso8859_11':                   'ISO8859-11',
    'iso8859_13':                   'ISO8859-13',
    'iso8859_14':                   'ISO8859-14',
    'iso8859_15':                   'ISO8859-15',
    'iso8859_16':                   'ISO8859-16',
    'iso8859_2':                    'ISO8859-2',
    'iso8859_3':                    'ISO8859-3',
    'iso8859_4':                    'ISO8859-4',
    'iso8859_5':                    'ISO8859-5',
    'iso8859_6':                    'ISO8859-6',
    'iso8859_7':                    'ISO8859-7',
    'iso8859_8':                    'ISO8859-8',
    'iso8859_9':                    'ISO8859-9',
    'iso2022_jp':                   'JIS7',
    'shift_jis':                    'SJIS',
    'tactis':                       'TACTIS',
    'euc_jp':                       'eucJP',
    'euc_kr':                       'eucKR',
    'utf_8':                        'UTF-8',
    'koi8_r':                       'KOI8-R',
    'koi8_u':                       'KOI8-U',
    'cp1251':                       'CP1251',
    'cp1255':                       'CP1255',
    'cp1256':                       'CP1256',

    # XXX This list is still incomplete. If you know more
    # mappings, please file a bug report. Thanks.
}

for k, v in sorted(locale_encoding_alias.items()):
    k = k.replace('_', '')
    locale_encoding_alias.setdefault(k, v)

#
# The locale_alias table maps lowercase alias names to C locale names
# (case-sensitive). Encodings are always separated from the locale
# name using a dot ('.'); they should only be given in case the
# language name is needed to interpret the given encoding alias
# correctly (CJK codes often have this need).
#
# Note that the normalize() function which uses this tables
# removes '_' and '-' characters from the encoding part of the
# locale name before doing the lookup. This saves a lot of
# space in the table.
#
# MAL 2004-12-10:
# Updated alias mapping to most recent locale.alias file
# from X.org distribution using makelocalealias.py.
#
# These are the differences compared to the old mapping (Python 2.4
# and older):
#
#    updated 'bg' -> 'bg_BG.ISO8859-5' to 'bg_BG.CP1251'
#    updated 'bg_bg' -> 'bg_BG.ISO8859-5' to 'bg_BG.CP1251'
#    updated 'bulgarian' -> 'bg_BG.ISO8859-5' to 'bg_BG.CP1251'
#    updated 'cz' -> 'cz_CZ.ISO8859-2' to 'cs_CZ.ISO8859-2'
#    updated 'cz_cz' -> 'cz_CZ.ISO8859-2' to 'cs_CZ.ISO8859-2'
#    updated 'czech' -> 'cs_CS.ISO8859-2' to 'cs_CZ.ISO8859-2'
#    updated 'dutch' -> 'nl_BE.ISO8859-1' to 'nl_NL.ISO8859-1'
#    updated 'et' -> 'et_EE.ISO8859-4' to 'et_EE.ISO8859-15'
#    updated 'et_ee' -> 'et_EE.ISO8859-4' to 'et_EE.ISO8859-15'
#    updated 'fi' -> 'fi_FI.ISO8859-1' to 'fi_FI.ISO8859-15'
#    updated 'fi_fi' -> 'fi_FI.ISO8859-1' to 'fi_FI.ISO8859-15'
#    updated 'iw' -> 'iw_IL.ISO8859-8' to 'he_IL.ISO8859-8'
#    updated 'iw_il' -> 'iw_IL.ISO8859-8' to 'he_IL.ISO8859-8'
#    updated 'japanese' -> 'ja_JP.SJIS' to 'ja_JP.eucJP'
#    updated 'lt' -> 'lt_LT.ISO8859-4' to 'lt_LT.ISO8859-13'
#    updated 'lv' -> 'lv_LV.ISO8859-4' to 'lv_LV.ISO8859-13'
#    updated 'sl' -> 'sl_CS.ISO8859-2' to 'sl_SI.ISO8859-2'
#    updated 'slovene' -> 'sl_CS.ISO8859-2' to 'sl_SI.ISO8859-2'
#    updated 'th_th' -> 'th_TH.TACTIS' to 'th_TH.ISO8859-11'
#    updated 'zh_cn' -> 'zh_CN.eucCN' to 'zh_CN.gb2312'
#    updated 'zh_cn.big5' -> 'zh_TW.eucTW' to 'zh_TW.big5'
#    updated 'zh_tw' -> 'zh_TW.eucTW' to 'zh_TW.big5'
#
# MAL 2008-05-30:
# Updated alias mapping to most recent locale.alias file
# from X.org distribution using makelocalealias.py.
#
# These are the differences compared to the old mapping (Python 2.5
# and older):
#
#    updated 'cs_cs.iso88592' -> 'cs_CZ.ISO8859-2' to 'cs_CS.ISO8859-2'
#    updated 'serbocroatian' -> 'sh_YU.ISO8859-2' to 'sr_CS.ISO8859-2'
#    updated 'sh' -> 'sh_YU.ISO8859-2' to 'sr_CS.ISO8859-2'
#    updated 'sh_hr.iso88592' -> 'sh_HR.ISO8859-2' to 'hr_HR.ISO8859-2'
#    updated 'sh_sp' -> 'sh_YU.ISO8859-2' to 'sr_CS.ISO8859-2'
#    updated 'sh_yu' -> 'sh_YU.ISO8859-2' to 'sr_CS.ISO8859-2'
#    updated 'sp' -> 'sp_YU.ISO8859-5' to 'sr_CS.ISO8859-5'
#    updated 'sp_yu' -> 'sp_YU.ISO8859-5' to 'sr_CS.ISO8859-5'
#    updated 'sr' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5'
#    updated 'sr@cyrillic' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5'
#    updated 'sr_sp' -> 'sr_SP.ISO8859-2' to 'sr_CS.ISO8859-2'
#    updated 'sr_yu' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5'
#    updated 'sr_yu.cp1251@cyrillic' -> 'sr_YU.CP1251' to 'sr_CS.CP1251'
#    updated 'sr_yu.iso88592' -> 'sr_YU.ISO8859-2' to 'sr_CS.ISO8859-2'
#    updated 'sr_yu.iso88595' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5'
#    updated 'sr_yu.iso88595@cyrillic' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5'
#    updated 'sr_yu.microsoftcp1251@cyrillic' -> 'sr_YU.CP1251' to 'sr_CS.CP1251'
#    updated 'sr_yu.utf8@cyrillic' -> 'sr_YU.UTF-8' to 'sr_CS.UTF-8'
#    updated 'sr_yu@cyrillic' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5'
#
# AP 2010-04-12:
# Updated alias mapping to most recent locale.alias file
# from X.org distribution using makelocalealias.py.
#
# These are the differences compared to the old mapping (Python 2.6.5
# and older):
#
#    updated 'ru' -> 'ru_RU.ISO8859-5' to 'ru_RU.UTF-8'
#    updated 'ru_ru' -> 'ru_RU.ISO8859-5' to 'ru_RU.UTF-8'
#    updated 'serbocroatian' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin'
#    updated 'sh' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin'
#    updated 'sh_yu' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin'
#    updated 'sr' -> 'sr_CS.ISO8859-5' to 'sr_RS.UTF-8'
#    updated 'sr@cyrillic' -> 'sr_CS.ISO8859-5' to 'sr_RS.UTF-8'
#    updated 'sr@latn' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin'
#    updated 'sr_cs.utf8@latn' -> 'sr_CS.UTF-8' to 'sr_RS.UTF-8@latin'
#    updated 'sr_cs@latn' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin'
#    updated 'sr_yu' -> 'sr_CS.ISO8859-5' to 'sr_RS.UTF-8@latin'
#    updated 'sr_yu.utf8@cyrillic' -> 'sr_CS.UTF-8' to 'sr_RS.UTF-8'
#    updated 'sr_yu@cyrillic' -> 'sr_CS.ISO8859-5' to 'sr_RS.UTF-8'
#
# SS 2013-12-20:
# Updated alias mapping to most recent locale.alias file
# from X.org distribution using makelocalealias.py.
#
# These are the differences compared to the old mapping (Python 3.3.3
# and older):
#
#    updated 'a3' -> 'a3_AZ.KOI8-C' to 'az_AZ.KOI8-C'
#    updated 'a3_az' -> 'a3_AZ.KOI8-C' to 'az_AZ.KOI8-C'
#    updated 'a3_az.koi8c' -> 'a3_AZ.KOI8-C' to 'az_AZ.KOI8-C'
#    updated 'cs_cs.iso88592' -> 'cs_CS.ISO8859-2' to 'cs_CZ.ISO8859-2'
#    updated 'hebrew' -> 'iw_IL.ISO8859-8' to 'he_IL.ISO8859-8'
#    updated 'hebrew.iso88598' -> 'iw_IL.ISO8859-8' to 'he_IL.ISO8859-8'
#    updated 'sd' -> '[email protected]' to 'sd_IN.UTF-8'
#    updated 'sr@latn' -> 'sr_RS.UTF-8@latin' to 'sr_CS.UTF-8@latin'
#    updated 'sr_cs' -> 'sr_RS.UTF-8' to 'sr_CS.UTF-8'
#    updated 'sr_cs.utf8@latn' -> 'sr_RS.UTF-8@latin' to 'sr_CS.UTF-8@latin'
#    updated 'sr_cs@latn' -> 'sr_RS.UTF-8@latin' to 'sr_CS.UTF-8@latin'
#
# SS 2014-10-01:
# Updated alias mapping with glibc 2.19 supported locales.

locale_alias = {
    'a3':                                   'az_AZ.KOI8-C',
    'a3_az':                                'az_AZ.KOI8-C',
    'a3_az.koic':                           'az_AZ.KOI8-C',
    'aa_dj':                                'aa_DJ.ISO8859-1',
    'aa_er':                                'aa_ER.UTF-8',
    'aa_et':                                'aa_ET.UTF-8',
    'af':                                   'af_ZA.ISO8859-1',
    'af_za':                                'af_ZA.ISO8859-1',
    'am':                                   'am_ET.UTF-8',
    'am_et':                                'am_ET.UTF-8',
    'american':                             'en_US.ISO8859-1',
    'an_es':                                'an_ES.ISO8859-15',
    'ar':                                   'ar_AA.ISO8859-6',
    'ar_aa':                                'ar_AA.ISO8859-6',
    'ar_ae':                                'ar_AE.ISO8859-6',
    'ar_bh':                                'ar_BH.ISO8859-6',
    'ar_dz':                                'ar_DZ.ISO8859-6',
    'ar_eg':                                'ar_EG.ISO8859-6',
    'ar_in':                                'ar_IN.UTF-8',
    'ar_iq':                                'ar_IQ.ISO8859-6',
    'ar_jo':                                'ar_JO.ISO8859-6',
    'ar_kw':                                'ar_KW.ISO8859-6',
    'ar_lb':                                'ar_LB.ISO8859-6',
    'ar_ly':                                'ar_LY.ISO8859-6',
    'ar_ma':                                'ar_MA.ISO8859-6',
    'ar_om':                                'ar_OM.ISO8859-6',
    'ar_qa':                                'ar_QA.ISO8859-6',
    'ar_sa':                                'ar_SA.ISO8859-6',
    'ar_sd':                                'ar_SD.ISO8859-6',
    'ar_sy':                                'ar_SY.ISO8859-6',
    'ar_tn':                                'ar_TN.ISO8859-6',
    'ar_ye':                                'ar_YE.ISO8859-6',
    'arabic':                               'ar_AA.ISO8859-6',
    'as':                                   'as_IN.UTF-8',
    'as_in':                                'as_IN.UTF-8',
    'ast_es':                               'ast_ES.ISO8859-15',
    'ayc_pe':                               'ayc_PE.UTF-8',
    'az':                                   'az_AZ.ISO8859-9E',
    'az_az':                                'az_AZ.ISO8859-9E',
    'az_az.iso88599e':                      'az_AZ.ISO8859-9E',
    'be':                                   'be_BY.CP1251',
    'be@latin':                             'be_BY.UTF-8@latin',
    'be_bg.utf8':                           'bg_BG.UTF-8',
    'be_by':                                'be_BY.CP1251',
    'be_by@latin':                          'be_BY.UTF-8@latin',
    'bem_zm':                               'bem_ZM.UTF-8',
    'ber_dz':                               'ber_DZ.UTF-8',
    'ber_ma':                               'ber_MA.UTF-8',
    'bg':                                   'bg_BG.CP1251',
    'bg_bg':                                'bg_BG.CP1251',
    'bho_in':                               'bho_IN.UTF-8',
    'bn_bd':                                'bn_BD.UTF-8',
    'bn_in':                                'bn_IN.UTF-8',
    'bo_cn':                                'bo_CN.UTF-8',
    'bo_in':                                'bo_IN.UTF-8',
    'bokmal':                               'nb_NO.ISO8859-1',
    'bokm\xe5l':                            'nb_NO.ISO8859-1',
    'br':                                   'br_FR.ISO8859-1',
    'br_fr':                                'br_FR.ISO8859-1',
    'brx_in':                               'brx_IN.UTF-8',
    'bs':                                   'bs_BA.ISO8859-2',
    'bs_ba':                                'bs_BA.ISO8859-2',
    'bulgarian':                            'bg_BG.CP1251',
    'byn_er':                               'byn_ER.UTF-8',
    'c':                                    'C',
    'c-french':                             'fr_CA.ISO8859-1',
    'c.ascii':                              'C',
    'c.en':                                 'C',
    'c.iso88591':                           'en_US.ISO8859-1',
    'c.utf8':                               'en_US.UTF-8',
    'c_c':                                  'C',
    'c_c.c':                                'C',
    'ca':                                   'ca_ES.ISO8859-1',
    'ca_ad':                                'ca_AD.ISO8859-1',
    'ca_es':                                'ca_ES.ISO8859-1',
    'ca_es@valencia':                       'ca_ES.ISO8859-15@valencia',
    'ca_fr':                                'ca_FR.ISO8859-1',
    'ca_it':                                'ca_IT.ISO8859-1',
    'catalan':                              'ca_ES.ISO8859-1',
    'cextend':                              'en_US.ISO8859-1',
    'chinese-s':                            'zh_CN.eucCN',
    'chinese-t':                            'zh_TW.eucTW',
    'crh_ua':                               'crh_UA.UTF-8',
    'croatian':                             'hr_HR.ISO8859-2',
    'cs':                                   'cs_CZ.ISO8859-2',
    'cs_cs':                                'cs_CZ.ISO8859-2',
    'cs_cz':                                'cs_CZ.ISO8859-2',
    'csb_pl':                               'csb_PL.UTF-8',
    'cv_ru':                                'cv_RU.UTF-8',
    'cy':                                   'cy_GB.ISO8859-1',
    'cy_gb':                                'cy_GB.ISO8859-1',
    'cz':                                   'cs_CZ.ISO8859-2',
    'cz_cz':                                'cs_CZ.ISO8859-2',
    'czech':                                'cs_CZ.ISO8859-2',
    'da':                                   'da_DK.ISO8859-1',
    'da_dk':                                'da_DK.ISO8859-1',
    'danish':                               'da_DK.ISO8859-1',
    'dansk':                                'da_DK.ISO8859-1',
    'de':                                   'de_DE.ISO8859-1',
    'de_at':                                'de_AT.ISO8859-1',
    'de_be':                                'de_BE.ISO8859-1',
    'de_ch':                                'de_CH.ISO8859-1',
    'de_de':                                'de_DE.ISO8859-1',
    'de_li.utf8':                           'de_LI.UTF-8',
    'de_lu':                                'de_LU.ISO8859-1',
    'deutsch':                              'de_DE.ISO8859-1',
    'doi_in':                               'doi_IN.UTF-8',
    'dutch':                                'nl_NL.ISO8859-1',
    'dutch.iso88591':                       'nl_BE.ISO8859-1',
    'dv_mv':                                'dv_MV.UTF-8',
    'dz_bt':                                'dz_BT.UTF-8',
    'ee':                                   'ee_EE.ISO8859-4',
    'ee_ee':                                'ee_EE.ISO8859-4',
    'eesti':                                'et_EE.ISO8859-1',
    'el':                                   'el_GR.ISO8859-7',
    'el_cy':                                'el_CY.ISO8859-7',
    'el_gr':                                'el_GR.ISO8859-7',
    'el_gr@euro':                           'el_GR.ISO8859-15',
    'en':                                   'en_US.ISO8859-1',
    'en_ag':                                'en_AG.UTF-8',
    'en_au':                                'en_AU.ISO8859-1',
    'en_be':                                'en_BE.ISO8859-1',
    'en_bw':                                'en_BW.ISO8859-1',
    'en_ca':                                'en_CA.ISO8859-1',
    'en_dk':                                'en_DK.ISO8859-1',
    'en_dl.utf8':                           'en_DL.UTF-8',
    'en_gb':                                'en_GB.ISO8859-1',
    'en_hk':                                'en_HK.ISO8859-1',
    'en_ie':                                'en_IE.ISO8859-1',
    'en_in':                                'en_IN.ISO8859-1',
    'en_ng':                                'en_NG.UTF-8',
    'en_nz':                                'en_NZ.ISO8859-1',
    'en_ph':                                'en_PH.ISO8859-1',
    'en_sg':                                'en_SG.ISO8859-1',
    'en_uk':                                'en_GB.ISO8859-1',
    'en_us':                                'en_US.ISO8859-1',
    'en_us@euro@euro':                      'en_US.ISO8859-15',
    'en_za':                                'en_ZA.ISO8859-1',
    'en_zm':                                'en_ZM.UTF-8',
    'en_zw':                                'en_ZW.ISO8859-1',
    'en_zw.utf8':                           'en_ZS.UTF-8',
    'eng_gb':                               'en_GB.ISO8859-1',
    'english':                              'en_EN.ISO8859-1',
    'english_uk':                           'en_GB.ISO8859-1',
    'english_united-states':                'en_US.ISO8859-1',
    'english_united-states.437':            'C',
    'english_us':                           'en_US.ISO8859-1',
    'eo':                                   'eo_XX.ISO8859-3',
    'eo.utf8':                              'eo.UTF-8',
    'eo_eo':                                'eo_EO.ISO8859-3',
    'eo_us.utf8':                           'eo_US.UTF-8',
    'eo_xx':                                'eo_XX.ISO8859-3',
    'es':                                   'es_ES.ISO8859-1',
    'es_ar':                                'es_AR.ISO8859-1',
    'es_bo':                                'es_BO.ISO8859-1',
    'es_cl':                                'es_CL.ISO8859-1',
    'es_co':                                'es_CO.ISO8859-1',
    'es_cr':                                'es_CR.ISO8859-1',
    'es_cu':                                'es_CU.UTF-8',
    'es_do':                                'es_DO.ISO8859-1',
    'es_ec':                                'es_EC.ISO8859-1',
    'es_es':                                'es_ES.ISO8859-1',
    'es_gt':                                'es_GT.ISO8859-1',
    'es_hn':                                'es_HN.ISO8859-1',
    'es_mx':                                'es_MX.ISO8859-1',
    'es_ni':                                'es_NI.ISO8859-1',
    'es_pa':                                'es_PA.ISO8859-1',
    'es_pe':                                'es_PE.ISO8859-1',
    'es_pr':                                'es_PR.ISO8859-1',
    'es_py':                                'es_PY.ISO8859-1',
    'es_sv':                                'es_SV.ISO8859-1',
    'es_us':                                'es_US.ISO8859-1',
    'es_uy':                                'es_UY.ISO8859-1',
    'es_ve':                                'es_VE.ISO8859-1',
    'estonian':                             'et_EE.ISO8859-1',
    'et':                                   'et_EE.ISO8859-15',
    'et_ee':                                'et_EE.ISO8859-15',
    'eu':                                   'eu_ES.ISO8859-1',
    'eu_es':                                'eu_ES.ISO8859-1',
    'eu_fr':                                'eu_FR.ISO8859-1',
    'fa':                                   'fa_IR.UTF-8',
    'fa_ir':                                'fa_IR.UTF-8',
    'fa_ir.isiri3342':                      'fa_IR.ISIRI-3342',
    'ff_sn':                                'ff_SN.UTF-8',
    'fi':                                   'fi_FI.ISO8859-15',
    'fi_fi':                                'fi_FI.ISO8859-15',
    'fil_ph':                               'fil_PH.UTF-8',
    'finnish':                              'fi_FI.ISO8859-1',
    'fo':                                   'fo_FO.ISO8859-1',
    'fo_fo':                                'fo_FO.ISO8859-1',
    'fr':                                   'fr_FR.ISO8859-1',
    'fr_be':                                'fr_BE.ISO8859-1',
    'fr_ca':                                'fr_CA.ISO8859-1',
    'fr_ch':                                'fr_CH.ISO8859-1',
    'fr_fr':                                'fr_FR.ISO8859-1',
    'fr_lu':                                'fr_LU.ISO8859-1',
    'fran\xe7ais':                          'fr_FR.ISO8859-1',
    'fre_fr':                               'fr_FR.ISO8859-1',
    'french':                               'fr_FR.ISO8859-1',
    'french.iso88591':                      'fr_CH.ISO8859-1',
    'french_france':                        'fr_FR.ISO8859-1',
    'fur_it':                               'fur_IT.UTF-8',
    'fy_de':                                'fy_DE.UTF-8',
    'fy_nl':                                'fy_NL.UTF-8',
    'ga':                                   'ga_IE.ISO8859-1',
    'ga_ie':                                'ga_IE.ISO8859-1',
    'galego':                               'gl_ES.ISO8859-1',
    'galician':                             'gl_ES.ISO8859-1',
    'gd':                                   'gd_GB.ISO8859-1',
    'gd_gb':                                'gd_GB.ISO8859-1',
    'ger_de':                               'de_DE.ISO8859-1',
    'german':                               'de_DE.ISO8859-1',
    'german.iso88591':                      'de_CH.ISO8859-1',
    'german_germany':                       'de_DE.ISO8859-1',
    'gez_er':                               'gez_ER.UTF-8',
    'gez_et':                               'gez_ET.UTF-8',
    'gl':                                   'gl_ES.ISO8859-1',
    'gl_es':                                'gl_ES.ISO8859-1',
    'greek':                                'el_GR.ISO8859-7',
    'gu_in':                                'gu_IN.UTF-8',
    'gv':                                   'gv_GB.ISO8859-1',
    'gv_gb':                                'gv_GB.ISO8859-1',
    'ha_ng':                                'ha_NG.UTF-8',
    'he':                                   'he_IL.ISO8859-8',
    'he_il':                                'he_IL.ISO8859-8',
    'hebrew':                               'he_IL.ISO8859-8',
    'hi':                                   'hi_IN.ISCII-DEV',
    'hi_in':                                'hi_IN.ISCII-DEV',
    'hi_in.isciidev':                       'hi_IN.ISCII-DEV',
    'hne':                                  'hne_IN.UTF-8',
    'hne_in':                               'hne_IN.UTF-8',
    'hr':                                   'hr_HR.ISO8859-2',
    'hr_hr':                                'hr_HR.ISO8859-2',
    'hrvatski':                             'hr_HR.ISO8859-2',
    'hsb_de':                               'hsb_DE.ISO8859-2',
    'ht_ht':                                'ht_HT.UTF-8',
    'hu':                                   'hu_HU.ISO8859-2',
    'hu_hu':                                'hu_HU.ISO8859-2',
    'hungarian':                            'hu_HU.ISO8859-2',
    'hy_am':                                'hy_AM.UTF-8',
    'hy_am.armscii8':                       'hy_AM.ARMSCII_8',
    'ia':                                   'ia.UTF-8',
    'ia_fr':                                'ia_FR.UTF-8',
    'icelandic':                            'is_IS.ISO8859-1',
    'id':                                   'id_ID.ISO8859-1',
    'id_id':                                'id_ID.ISO8859-1',
    'ig_ng':                                'ig_NG.UTF-8',
    'ik_ca':                                'ik_CA.UTF-8',
    'in':                                   'id_ID.ISO8859-1',
    'in_id':                                'id_ID.ISO8859-1',
    'is':                                   'is_IS.ISO8859-1',
    'is_is':                                'is_IS.ISO8859-1',
    'iso-8859-1':                           'en_US.ISO8859-1',
    'iso-8859-15':                          'en_US.ISO8859-15',
    'iso8859-1':                            'en_US.ISO8859-1',
    'iso8859-15':                           'en_US.ISO8859-15',
    'iso_8859_1':                           'en_US.ISO8859-1',
    'iso_8859_15':                          'en_US.ISO8859-15',
    'it':                                   'it_IT.ISO8859-1',
    'it_ch':                                'it_CH.ISO8859-1',
    'it_it':                                'it_IT.ISO8859-1',
    'italian':                              'it_IT.ISO8859-1',
    'iu':                                   'iu_CA.NUNACOM-8',
    'iu_ca':                                'iu_CA.NUNACOM-8',
    'iu_ca.nunacom8':                       'iu_CA.NUNACOM-8',
    'iw':                                   'he_IL.ISO8859-8',
    'iw_il':                                'he_IL.ISO8859-8',
    'iw_il.utf8':                           'iw_IL.UTF-8',
    'ja':                                   'ja_JP.eucJP',
    'ja_jp':                                'ja_JP.eucJP',
    'ja_jp.euc':                            'ja_JP.eucJP',
    'ja_jp.mscode':                         'ja_JP.SJIS',
    'ja_jp.pck':                            'ja_JP.SJIS',
    'japan':                                'ja_JP.eucJP',
    'japanese':                             'ja_JP.eucJP',
    'japanese-euc':                         'ja_JP.eucJP',
    'japanese.euc':                         'ja_JP.eucJP',
    'jp_jp':                                'ja_JP.eucJP',
    'ka':                                   'ka_GE.GEORGIAN-ACADEMY',
    'ka_ge':                                'ka_GE.GEORGIAN-ACADEMY',
    'ka_ge.georgianacademy':                'ka_GE.GEORGIAN-ACADEMY',
    'ka_ge.georgianps':                     'ka_GE.GEORGIAN-PS',
    'ka_ge.georgianrs':                     'ka_GE.GEORGIAN-ACADEMY',
    'kk_kz':                                'kk_KZ.RK1048',
    'kl':                                   'kl_GL.ISO8859-1',
    'kl_gl':                                'kl_GL.ISO8859-1',
    'km_kh':                                'km_KH.UTF-8',
    'kn':                                   'kn_IN.UTF-8',
    'kn_in':                                'kn_IN.UTF-8',
    'ko':                                   'ko_KR.eucKR',
    'ko_kr':                                'ko_KR.eucKR',
    'ko_kr.euc':                            'ko_KR.eucKR',
    'kok_in':                               'kok_IN.UTF-8',
    'korean':                               'ko_KR.eucKR',
    'korean.euc':                           'ko_KR.eucKR',
    'ks':                                   'ks_IN.UTF-8',
    'ks_in':                                'ks_IN.UTF-8',
    '[email protected]':                'ks_IN.UTF-8@devanagari',
    'ku_tr':                                'ku_TR.ISO8859-9',
    'kw':                                   'kw_GB.ISO8859-1',
    'kw_gb':                                'kw_GB.ISO8859-1',
    'ky':                                   'ky_KG.UTF-8',
    'ky_kg':                                'ky_KG.UTF-8',
    'lb_lu':                                'lb_LU.UTF-8',
    'lg_ug':                                'lg_UG.ISO8859-10',
    'li_be':                                'li_BE.UTF-8',
    'li_nl':                                'li_NL.UTF-8',
    'lij_it':                               'lij_IT.UTF-8',
    'lithuanian':                           'lt_LT.ISO8859-13',
    'lo':                                   'lo_LA.MULELAO-1',
    'lo_la':                                'lo_LA.MULELAO-1',
    'lo_la.cp1133':                         'lo_LA.IBM-CP1133',
    'lo_la.ibmcp1133':                      'lo_LA.IBM-CP1133',
    'lo_la.mulelao1':                       'lo_LA.MULELAO-1',
    'lt':                                   'lt_LT.ISO8859-13',
    'lt_lt':                                'lt_LT.ISO8859-13',
    'lv':                                   'lv_LV.ISO8859-13',
    'lv_lv':                                'lv_LV.ISO8859-13',
    'mag_in':                               'mag_IN.UTF-8',
    'mai':                                  'mai_IN.UTF-8',
    'mai_in':                               'mai_IN.UTF-8',
    'mg_mg':                                'mg_MG.ISO8859-15',
    'mhr_ru':                               'mhr_RU.UTF-8',
    'mi':                                   'mi_NZ.ISO8859-1',
    'mi_nz':                                'mi_NZ.ISO8859-1',
    'mk':                                   'mk_MK.ISO8859-5',
    'mk_mk':                                'mk_MK.ISO8859-5',
    'ml':                                   'ml_IN.UTF-8',
    'ml_in':                                'ml_IN.UTF-8',
    'mn_mn':                                'mn_MN.UTF-8',
    'mni_in':                               'mni_IN.UTF-8',
    'mr':                                   'mr_IN.UTF-8',
    'mr_in':                                'mr_IN.UTF-8',
    'ms':                                   'ms_MY.ISO8859-1',
    'ms_my':                                'ms_MY.ISO8859-1',
    'mt':                                   'mt_MT.ISO8859-3',
    'mt_mt':                                'mt_MT.ISO8859-3',
    'my_mm':                                'my_MM.UTF-8',
    'nan_tw@latin':                         'nan_TW.UTF-8@latin',
    'nb':                                   'nb_NO.ISO8859-1',
    'nb_no':                                'nb_NO.ISO8859-1',
    'nds_de':                               'nds_DE.UTF-8',
    'nds_nl':                               'nds_NL.UTF-8',
    'ne_np':                                'ne_NP.UTF-8',
    'nhn_mx':                               'nhn_MX.UTF-8',
    'niu_nu':                               'niu_NU.UTF-8',
    'niu_nz':                               'niu_NZ.UTF-8',
    'nl':                                   'nl_NL.ISO8859-1',
    'nl_aw':                                'nl_AW.UTF-8',
    'nl_be':                                'nl_BE.ISO8859-1',
    'nl_nl':                                'nl_NL.ISO8859-1',
    'nn':                                   'nn_NO.ISO8859-1',
    'nn_no':                                'nn_NO.ISO8859-1',
    'no':                                   'no_NO.ISO8859-1',
    'no@nynorsk':                           'ny_NO.ISO8859-1',
    'no_no':                                'no_NO.ISO8859-1',
    'no_no.iso88591@bokmal':                'no_NO.ISO8859-1',
    'no_no.iso88591@nynorsk':               'no_NO.ISO8859-1',
    'norwegian':                            'no_NO.ISO8859-1',
    'nr':                                   'nr_ZA.ISO8859-1',
    'nr_za':                                'nr_ZA.ISO8859-1',
    'nso':                                  'nso_ZA.ISO8859-15',
    'nso_za':                               'nso_ZA.ISO8859-15',
    'ny':                                   'ny_NO.ISO8859-1',
    'ny_no':                                'ny_NO.ISO8859-1',
    'nynorsk':                              'nn_NO.ISO8859-1',
    'oc':                                   'oc_FR.ISO8859-1',
    'oc_fr':                                'oc_FR.ISO8859-1',
    'om_et':                                'om_ET.UTF-8',
    'om_ke':                                'om_KE.ISO8859-1',
    'or':                                   'or_IN.UTF-8',
    'or_in':                                'or_IN.UTF-8',
    'os_ru':                                'os_RU.UTF-8',
    'pa':                                   'pa_IN.UTF-8',
    'pa_in':                                'pa_IN.UTF-8',
    'pa_pk':                                'pa_PK.UTF-8',
    'pap_an':                               'pap_AN.UTF-8',
    'pd':                                   'pd_US.ISO8859-1',
    'pd_de':                                'pd_DE.ISO8859-1',
    'pd_us':                                'pd_US.ISO8859-1',
    'ph':                                   'ph_PH.ISO8859-1',
    'ph_ph':                                'ph_PH.ISO8859-1',
    'pl':                                   'pl_PL.ISO8859-2',
    'pl_pl':                                'pl_PL.ISO8859-2',
    'polish':                               'pl_PL.ISO8859-2',
    'portuguese':                           'pt_PT.ISO8859-1',
    'portuguese_brazil':                    'pt_BR.ISO8859-1',
    'posix':                                'C',
    'posix-utf2':                           'C',
    'pp':                                   'pp_AN.ISO8859-1',
    'pp_an':                                'pp_AN.ISO8859-1',
    'ps_af':                                'ps_AF.UTF-8',
    'pt':                                   'pt_PT.ISO8859-1',
    'pt_br':                                'pt_BR.ISO8859-1',
    'pt_pt':                                'pt_PT.ISO8859-1',
    'ro':                                   'ro_RO.ISO8859-2',
    'ro_ro':                                'ro_RO.ISO8859-2',
    'romanian':                             'ro_RO.ISO8859-2',
    'ru':                                   'ru_RU.UTF-8',
    'ru_ru':                                'ru_RU.UTF-8',
    'ru_ua':                                'ru_UA.KOI8-U',
    'rumanian':                             'ro_RO.ISO8859-2',
    'russian':                              'ru_RU.ISO8859-5',
    'rw':                                   'rw_RW.ISO8859-1',
    'rw_rw':                                'rw_RW.ISO8859-1',
    'sa_in':                                'sa_IN.UTF-8',
    'sat_in':                               'sat_IN.UTF-8',
    'sc_it':                                'sc_IT.UTF-8',
    'sd':                                   'sd_IN.UTF-8',
    'sd_in':                                'sd_IN.UTF-8',
    '[email protected]':                'sd_IN.UTF-8@devanagari',
    'sd_pk':                                'sd_PK.UTF-8',
    'se_no':                                'se_NO.UTF-8',
    'serbocroatian':                        'sr_RS.UTF-8@latin',
    'sh':                                   'sr_RS.UTF-8@latin',
    'sh_ba.iso88592@bosnia':                'sr_CS.ISO8859-2',
    'sh_hr':                                'sh_HR.ISO8859-2',
    'sh_hr.iso88592':                       'hr_HR.ISO8859-2',
    'sh_sp':                                'sr_CS.ISO8859-2',
    'sh_yu':                                'sr_RS.UTF-8@latin',
    'shs_ca':                               'shs_CA.UTF-8',
    'si':                                   'si_LK.UTF-8',
    'si_lk':                                'si_LK.UTF-8',
    'sid_et':                               'sid_ET.UTF-8',
    'sinhala':                              'si_LK.UTF-8',
    'sk':                                   'sk_SK.ISO8859-2',
    'sk_sk':                                'sk_SK.ISO8859-2',
    'sl':                                   'sl_SI.ISO8859-2',
    'sl_cs':                                'sl_CS.ISO8859-2',
    'sl_si':                                'sl_SI.ISO8859-2',
    'slovak':                               'sk_SK.ISO8859-2',
    'slovene':                              'sl_SI.ISO8859-2',
    'slovenian':                            'sl_SI.ISO8859-2',
    'so_dj':                                'so_DJ.ISO8859-1',
    'so_et':                                'so_ET.UTF-8',
    'so_ke':                                'so_KE.ISO8859-1',
    'so_so':                                'so_SO.ISO8859-1',
    'sp':                                   'sr_CS.ISO8859-5',
    'sp_yu':                                'sr_CS.ISO8859-5',
    'spanish':                              'es_ES.ISO8859-1',
    'spanish_spain':                        'es_ES.ISO8859-1',
    'sq':                                   'sq_AL.ISO8859-2',
    'sq_al':                                'sq_AL.ISO8859-2',
    'sq_mk':                                'sq_MK.UTF-8',
    'sr':                                   'sr_RS.UTF-8',
    'sr@cyrillic':                          'sr_RS.UTF-8',
    'sr@latn':                              'sr_CS.UTF-8@latin',
    'sr_cs':                                'sr_CS.UTF-8',
    'sr_cs.iso88592@latn':                  'sr_CS.ISO8859-2',
    'sr_cs@latn':                           'sr_CS.UTF-8@latin',
    'sr_me':                                'sr_ME.UTF-8',
    'sr_rs':                                'sr_RS.UTF-8',
    'sr_rs@latn':                           'sr_RS.UTF-8@latin',
    'sr_sp':                                'sr_CS.ISO8859-2',
    'sr_yu':                                'sr_RS.UTF-8@latin',
    'sr_yu.cp1251@cyrillic':                'sr_CS.CP1251',
    'sr_yu.iso88592':                       'sr_CS.ISO8859-2',
    'sr_yu.iso88595':                       'sr_CS.ISO8859-5',
    'sr_yu.iso88595@cyrillic':              'sr_CS.ISO8859-5',
    'sr_yu.microsoftcp1251@cyrillic':       'sr_CS.CP1251',
    'sr_yu.utf8':                           'sr_RS.UTF-8',
    'sr_yu.utf8@cyrillic':                  'sr_RS.UTF-8',
    'sr_yu@cyrillic':                       'sr_RS.UTF-8',
    'ss':                                   'ss_ZA.ISO8859-1',
    'ss_za':                                'ss_ZA.ISO8859-1',
    'st':                                   'st_ZA.ISO8859-1',
    'st_za':                                'st_ZA.ISO8859-1',
    'sv':                                   'sv_SE.ISO8859-1',
    'sv_fi':                                'sv_FI.ISO8859-1',
    'sv_se':                                'sv_SE.ISO8859-1',
    'sw_ke':                                'sw_KE.UTF-8',
    'sw_tz':                                'sw_TZ.UTF-8',
    'swedish':                              'sv_SE.ISO8859-1',
    'szl_pl':                               'szl_PL.UTF-8',
    'ta':                                   'ta_IN.TSCII-0',
    'ta_in':                                'ta_IN.TSCII-0',
    'ta_in.tscii':                          'ta_IN.TSCII-0',
    'ta_in.tscii0':                         'ta_IN.TSCII-0',
    'ta_lk':                                'ta_LK.UTF-8',
    'te':                                   'te_IN.UTF-8',
    'te_in':                                'te_IN.UTF-8',
    'tg':                                   'tg_TJ.KOI8-C',
    'tg_tj':                                'tg_TJ.KOI8-C',
    'th':                                   'th_TH.ISO8859-11',
    'th_th':                                'th_TH.ISO8859-11',
    'th_th.tactis':                         'th_TH.TIS620',
    'th_th.tis620':                         'th_TH.TIS620',
    'thai':                                 'th_TH.ISO8859-11',
    'ti_er':                                'ti_ER.UTF-8',
    'ti_et':                                'ti_ET.UTF-8',
    'tig_er':                               'tig_ER.UTF-8',
    'tk_tm':                                'tk_TM.UTF-8',
    'tl':                                   'tl_PH.ISO8859-1',
    'tl_ph':                                'tl_PH.ISO8859-1',
    'tn':                                   'tn_ZA.ISO8859-15',
    'tn_za':                                'tn_ZA.ISO8859-15',
    'tr':                                   'tr_TR.ISO8859-9',
    'tr_cy':                                'tr_CY.ISO8859-9',
    'tr_tr':                                'tr_TR.ISO8859-9',
    'ts':                                   'ts_ZA.ISO8859-1',
    'ts_za':                                'ts_ZA.ISO8859-1',
    'tt':                                   'tt_RU.TATAR-CYR',
    'tt_ru':                                'tt_RU.TATAR-CYR',
    'tt_ru.tatarcyr':                       'tt_RU.TATAR-CYR',
    'tt_ru@iqtelif':                        'tt_RU.UTF-8@iqtelif',
    'turkish':                              'tr_TR.ISO8859-9',
    'ug_cn':                                'ug_CN.UTF-8',
    'uk':                                   'uk_UA.KOI8-U',
    'uk_ua':                                'uk_UA.KOI8-U',
    'univ':                                 'en_US.utf',
    'universal':                            'en_US.utf',
    'universal.utf8@ucs4':                  'en_US.UTF-8',
    'unm_us':                               'unm_US.UTF-8',
    'ur':                                   'ur_PK.CP1256',
    'ur_in':                                'ur_IN.UTF-8',
    'ur_pk':                                'ur_PK.CP1256',
    'uz':                                   'uz_UZ.UTF-8',
    'uz_uz':                                'uz_UZ.UTF-8',
    'uz_uz@cyrillic':                       'uz_UZ.UTF-8',
    've':                                   've_ZA.UTF-8',
    've_za':                                've_ZA.UTF-8',
    'vi':                                   'vi_VN.TCVN',
    'vi_vn':                                'vi_VN.TCVN',
    'vi_vn.tcvn':                           'vi_VN.TCVN',
    'vi_vn.tcvn5712':                       'vi_VN.TCVN',
    'vi_vn.viscii':                         'vi_VN.VISCII',
    'vi_vn.viscii111':                      'vi_VN.VISCII',
    'wa':                                   'wa_BE.ISO8859-1',
    'wa_be':                                'wa_BE.ISO8859-1',
    'wae_ch':                               'wae_CH.UTF-8',
    'wal_et':                               'wal_ET.UTF-8',
    'wo_sn':                                'wo_SN.UTF-8',
    'xh':                                   'xh_ZA.ISO8859-1',
    'xh_za':                                'xh_ZA.ISO8859-1',
    'yi':                                   'yi_US.CP1255',
    'yi_us':                                'yi_US.CP1255',
    'yo_ng':                                'yo_NG.UTF-8',
    'yue_hk':                               'yue_HK.UTF-8',
    'zh':                                   'zh_CN.eucCN',
    'zh_cn':                                'zh_CN.gb2312',
    'zh_cn.big5':                           'zh_TW.big5',
    'zh_cn.euc':                            'zh_CN.eucCN',
    'zh_hk':                                'zh_HK.big5hkscs',
    'zh_hk.big5hk':                         'zh_HK.big5hkscs',
    'zh_sg':                                'zh_SG.GB2312',
    'zh_sg.gbk':                            'zh_SG.GBK',
    'zh_tw':                                'zh_TW.big5',
    'zh_tw.euc':                            'zh_TW.eucTW',
    'zh_tw.euctw':                          'zh_TW.eucTW',
    'zu':                                   'zu_ZA.ISO8859-1',
    'zu_za':                                'zu_ZA.ISO8859-1',
}

#
# This maps Windows language identifiers to locale strings.
#
# This list has been updated from
# http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_238z.asp
# to include every locale up to Windows Vista.
#
# NOTE: this mapping is incomplete.  If your language is missing, please
# submit a bug report to the Python bug tracker at http://bugs.python.org/
# Make sure you include the missing language identifier and the suggested
# locale code.
#

windows_locale = {
    0x0436: "af_ZA", # Afrikaans
    0x041c: "sq_AL", # Albanian
    0x0484: "gsw_FR",# Alsatian - France
    0x045e: "am_ET", # Amharic - Ethiopia
    0x0401: "ar_SA", # Arabic - Saudi Arabia
    0x0801: "ar_IQ", # Arabic - Iraq
    0x0c01: "ar_EG", # Arabic - Egypt
    0x1001: "ar_LY", # Arabic - Libya
    0x1401: "ar_DZ", # Arabic - Algeria
    0x1801: "ar_MA", # Arabic - Morocco
    0x1c01: "ar_TN", # Arabic - Tunisia
    0x2001: "ar_OM", # Arabic - Oman
    0x2401: "ar_YE", # Arabic - Yemen
    0x2801: "ar_SY", # Arabic - Syria
    0x2c01: "ar_JO", # Arabic - Jordan
    0x3001: "ar_LB", # Arabic - Lebanon
    0x3401: "ar_KW", # Arabic - Kuwait
    0x3801: "ar_AE", # Arabic - United Arab Emirates
    0x3c01: "ar_BH", # Arabic - Bahrain
    0x4001: "ar_QA", # Arabic - Qatar
    0x042b: "hy_AM", # Armenian
    0x044d: "as_IN", # Assamese - India
    0x042c: "az_AZ", # Azeri - Latin
    0x082c: "az_AZ", # Azeri - Cyrillic
    0x046d: "ba_RU", # Bashkir
    0x042d: "eu_ES", # Basque - Russia
    0x0423: "be_BY", # Belarusian
    0x0445: "bn_IN", # Begali
    0x201a: "bs_BA", # Bosnian - Cyrillic
    0x141a: "bs_BA", # Bosnian - Latin
    0x047e: "br_FR", # Breton - France
    0x0402: "bg_BG", # Bulgarian
#    0x0455: "my_MM", # Burmese - Not supported
    0x0403: "ca_ES", # Catalan
    0x0004: "zh_CHS",# Chinese - Simplified
    0x0404: "zh_TW", # Chinese - Taiwan
    0x0804: "zh_CN", # Chinese - PRC
    0x0c04: "zh_HK", # Chinese - Hong Kong S.A.R.
    0x1004: "zh_SG", # Chinese - Singapore
    0x1404: "zh_MO", # Chinese - Macao S.A.R.
    0x7c04: "zh_CHT",# Chinese - Traditional
    0x0483: "co_FR", # Corsican - France
    0x041a: "hr_HR", # Croatian
    0x101a: "hr_BA", # Croatian - Bosnia
    0x0405: "cs_CZ", # Czech
    0x0406: "da_DK", # Danish
    0x048c: "gbz_AF",# Dari - Afghanistan
    0x0465: "div_MV",# Divehi - Maldives
    0x0413: "nl_NL", # Dutch - The Netherlands
    0x0813: "nl_BE", # Dutch - Belgium
    0x0409: "en_US", # English - United States
    0x0809: "en_GB", # English - United Kingdom
    0x0c09: "en_AU", # English - Australia
    0x1009: "en_CA", # English - Canada
    0x1409: "en_NZ", # English - New Zealand
    0x1809: "en_IE", # English - Ireland
    0x1c09: "en_ZA", # English - South Africa
    0x2009: "en_JA", # English - Jamaica
    0x2409: "en_CB", # English - Carribbean
    0x2809: "en_BZ", # English - Belize
    0x2c09: "en_TT", # English - Trinidad
    0x3009: "en_ZW", # English - Zimbabwe
    0x3409: "en_PH", # English - Philippines
    0x4009: "en_IN", # English - India
    0x4409: "en_MY", # English - Malaysia
    0x4809: "en_IN", # English - Singapore
    0x0425: "et_EE", # Estonian
    0x0438: "fo_FO", # Faroese
    0x0464: "fil_PH",# Filipino
    0x040b: "fi_FI", # Finnish
    0x040c: "fr_FR", # French - France
    0x080c: "fr_BE", # French - Belgium
    0x0c0c: "fr_CA", # French - Canada
    0x100c: "fr_CH", # French - Switzerland
    0x140c: "fr_LU", # French - Luxembourg
    0x180c: "fr_MC", # French - Monaco
    0x0462: "fy_NL", # Frisian - Netherlands
    0x0456: "gl_ES", # Galician
    0x0437: "ka_GE", # Georgian
    0x0407: "de_DE", # German - Germany
    0x0807: "de_CH", # German - Switzerland
    0x0c07: "de_AT", # German - Austria
    0x1007: "de_LU", # German - Luxembourg
    0x1407: "de_LI", # German - Liechtenstein
    0x0408: "el_GR", # Greek
    0x046f: "kl_GL", # Greenlandic - Greenland
    0x0447: "gu_IN", # Gujarati
    0x0468: "ha_NG", # Hausa - Latin
    0x040d: "he_IL", # Hebrew
    0x0439: "hi_IN", # Hindi
    0x040e: "hu_HU", # Hungarian
    0x040f: "is_IS", # Icelandic
    0x0421: "id_ID", # Indonesian
    0x045d: "iu_CA", # Inuktitut - Syllabics
    0x085d: "iu_CA", # Inuktitut - Latin
    0x083c: "ga_IE", # Irish - Ireland
    0x0410: "it_IT", # Italian - Italy
    0x0810: "it_CH", # Italian - Switzerland
    0x0411: "ja_JP", # Japanese
    0x044b: "kn_IN", # Kannada - India
    0x043f: "kk_KZ", # Kazakh
    0x0453: "kh_KH", # Khmer - Cambodia
    0x0486: "qut_GT",# K'iche - Guatemala
    0x0487: "rw_RW", # Kinyarwanda - Rwanda
    0x0457: "kok_IN",# Konkani
    0x0412: "ko_KR", # Korean
    0x0440: "ky_KG", # Kyrgyz
    0x0454: "lo_LA", # Lao - Lao PDR
    0x0426: "lv_LV", # Latvian
    0x0427: "lt_LT", # Lithuanian
    0x082e: "dsb_DE",# Lower Sorbian - Germany
    0x046e: "lb_LU", # Luxembourgish
    0x042f: "mk_MK", # FYROM Macedonian
    0x043e: "ms_MY", # Malay - Malaysia
    0x083e: "ms_BN", # Malay - Brunei Darussalam
    0x044c: "ml_IN", # Malayalam - India
    0x043a: "mt_MT", # Maltese
    0x0481: "mi_NZ", # Maori
    0x047a: "arn_CL",# Mapudungun
    0x044e: "mr_IN", # Marathi
    0x047c: "moh_CA",# Mohawk - Canada
    0x0450: "mn_MN", # Mongolian - Cyrillic
    0x0850: "mn_CN", # Mongolian - PRC
    0x0461: "ne_NP", # Nepali
    0x0414: "nb_NO", # Norwegian - Bokmal
    0x0814: "nn_NO", # Norwegian - Nynorsk
    0x0482: "oc_FR", # Occitan - France
    0x0448: "or_IN", # Oriya - India
    0x0463: "ps_AF", # Pashto - Afghanistan
    0x0429: "fa_IR", # Persian
    0x0415: "pl_PL", # Polish
    0x0416: "pt_BR", # Portuguese - Brazil
    0x0816: "pt_PT", # Portuguese - Portugal
    0x0446: "pa_IN", # Punjabi
    0x046b: "quz_BO",# Quechua (Bolivia)
    0x086b: "quz_EC",# Quechua (Ecuador)
    0x0c6b: "quz_PE",# Quechua (Peru)
    0x0418: "ro_RO", # Romanian - Romania
    0x0417: "rm_CH", # Romansh
    0x0419: "ru_RU", # Russian
    0x243b: "smn_FI",# Sami Finland
    0x103b: "smj_NO",# Sami Norway
    0x143b: "smj_SE",# Sami Sweden
    0x043b: "se_NO", # Sami Northern Norway
    0x083b: "se_SE", # Sami Northern Sweden
    0x0c3b: "se_FI", # Sami Northern Finland
    0x203b: "sms_FI",# Sami Skolt
    0x183b: "sma_NO",# Sami Southern Norway
    0x1c3b: "sma_SE",# Sami Southern Sweden
    0x044f: "sa_IN", # Sanskrit
    0x0c1a: "sr_SP", # Serbian - Cyrillic
    0x1c1a: "sr_BA", # Serbian - Bosnia Cyrillic
    0x081a: "sr_SP", # Serbian - Latin
    0x181a: "sr_BA", # Serbian - Bosnia Latin
    0x045b: "si_LK", # Sinhala - Sri Lanka
    0x046c: "ns_ZA", # Northern Sotho
    0x0432: "tn_ZA", # Setswana - Southern Africa
    0x041b: "sk_SK", # Slovak
    0x0424: "sl_SI", # Slovenian
    0x040a: "es_ES", # Spanish - Spain
    0x080a: "es_MX", # Spanish - Mexico
    0x0c0a: "es_ES", # Spanish - Spain (Modern)
    0x100a: "es_GT", # Spanish - Guatemala
    0x140a: "es_CR", # Spanish - Costa Rica
    0x180a: "es_PA", # Spanish - Panama
    0x1c0a: "es_DO", # Spanish - Dominican Republic
    0x200a: "es_VE", # Spanish - Venezuela
    0x240a: "es_CO", # Spanish - Colombia
    0x280a: "es_PE", # Spanish - Peru
    0x2c0a: "es_AR", # Spanish - Argentina
    0x300a: "es_EC", # Spanish - Ecuador
    0x340a: "es_CL", # Spanish - Chile
    0x380a: "es_UR", # Spanish - Uruguay
    0x3c0a: "es_PY", # Spanish - Paraguay
    0x400a: "es_BO", # Spanish - Bolivia
    0x440a: "es_SV", # Spanish - El Salvador
    0x480a: "es_HN", # Spanish - Honduras
    0x4c0a: "es_NI", # Spanish - Nicaragua
    0x500a: "es_PR", # Spanish - Puerto Rico
    0x540a: "es_US", # Spanish - United States
#    0x0430: "", # Sutu - Not supported
    0x0441: "sw_KE", # Swahili
    0x041d: "sv_SE", # Swedish - Sweden
    0x081d: "sv_FI", # Swedish - Finland
    0x045a: "syr_SY",# Syriac
    0x0428: "tg_TJ", # Tajik - Cyrillic
    0x085f: "tmz_DZ",# Tamazight - Latin
    0x0449: "ta_IN", # Tamil
    0x0444: "tt_RU", # Tatar
    0x044a: "te_IN", # Telugu
    0x041e: "th_TH", # Thai
    0x0851: "bo_BT", # Tibetan - Bhutan
    0x0451: "bo_CN", # Tibetan - PRC
    0x041f: "tr_TR", # Turkish
    0x0442: "tk_TM", # Turkmen - Cyrillic
    0x0480: "ug_CN", # Uighur - Arabic
    0x0422: "uk_UA", # Ukrainian
    0x042e: "wen_DE",# Upper Sorbian - Germany
    0x0420: "ur_PK", # Urdu
    0x0820: "ur_IN", # Urdu - India
    0x0443: "uz_UZ", # Uzbek - Latin
    0x0843: "uz_UZ", # Uzbek - Cyrillic
    0x042a: "vi_VN", # Vietnamese
    0x0452: "cy_GB", # Welsh
    0x0488: "wo_SN", # Wolof - Senegal
    0x0434: "xh_ZA", # Xhosa - South Africa
    0x0485: "sah_RU",# Yakut - Cyrillic
    0x0478: "ii_CN", # Yi - PRC
    0x046a: "yo_NG", # Yoruba - Nigeria
    0x0435: "zu_ZA", # Zulu
}

def _print_locale():

    """ Test function.
    """
    categories = {}
    def _init_categories(categories=categories):
        for k,v in globals().items():
            if k[:3] == 'LC_':
                categories[k] = v
    _init_categories()
    del categories['LC_ALL']

    print('Locale defaults as determined by getdefaultlocale():')
    print('-'*72)
    lang, enc = getdefaultlocale()
    print('Language: ', lang or '(undefined)')
    print('Encoding: ', enc or '(undefined)')
    print()

    print('Locale settings on startup:')
    print('-'*72)
    for name,category in categories.items():
        print(name, '...')
        lang, enc = getlocale(category)
        print('   Language: ', lang or '(undefined)')
        print('   Encoding: ', enc or '(undefined)')
        print()

    print()
    print('Locale settings after calling resetlocale():')
    print('-'*72)
    resetlocale()
    for name,category in categories.items():
        print(name, '...')
        lang, enc = getlocale(category)
        print('   Language: ', lang or '(undefined)')
        print('   Encoding: ', enc or '(undefined)')
        print()

    try:
        setlocale(LC_ALL, "")
    except:
        print('NOTE:')
        print('setlocale(LC_ALL, "") does not support the default locale')
        print('given in the OS environment variables.')
    else:
        print()
        print('Locale settings after calling setlocale(LC_ALL, ""):')
        print('-'*72)
        for name,category in categories.items():
            print(name, '...')
            lang, enc = getlocale(category)
            print('   Language: ', lang or '(undefined)')
            print('   Encoding: ', enc or '(undefined)')
            print()

###

try:
    LC_MESSAGES
except NameError:
    pass
else:
    __all__.append("LC_MESSAGES")

if __name__=='__main__':
    print('Locale aliasing:')
    print()
    _print_locale()
    print()
    print('Number formatting:')
    print()
    _test()
lib\lzma.py
"""Interface to the liblzma compression library.

This module provides a class for reading and writing compressed files,
classes for incremental (de)compression, and convenience functions for
one-shot (de)compression.

These classes and functions support both the XZ and legacy LZMA
container formats, as well as raw compressed data streams.
"""

__all__ = [
    "CHECK_NONE", "CHECK_CRC32", "CHECK_CRC64", "CHECK_SHA256",
    "CHECK_ID_MAX", "CHECK_UNKNOWN",
    "FILTER_LZMA1", "FILTER_LZMA2", "FILTER_DELTA", "FILTER_X86", "FILTER_IA64",
    "FILTER_ARM", "FILTER_ARMTHUMB", "FILTER_POWERPC", "FILTER_SPARC",
    "FORMAT_AUTO", "FORMAT_XZ", "FORMAT_ALONE", "FORMAT_RAW",
    "MF_HC3", "MF_HC4", "MF_BT2", "MF_BT3", "MF_BT4",
    "MODE_FAST", "MODE_NORMAL", "PRESET_DEFAULT", "PRESET_EXTREME",

    "LZMACompressor", "LZMADecompressor", "LZMAFile", "LZMAError",
    "open", "compress", "decompress", "is_check_supported",
]

import builtins
import io
from _lzma import *
from _lzma import _encode_filter_properties, _decode_filter_properties


_MODE_CLOSED   = 0
_MODE_READ     = 1
_MODE_READ_EOF = 2
_MODE_WRITE    = 3

_BUFFER_SIZE = 8192


class LZMAFile(io.BufferedIOBase):

    """A file object providing transparent LZMA (de)compression.

    An LZMAFile can act as a wrapper for an existing file object, or
    refer directly to a named file on disk.

    Note that LZMAFile provides a *binary* file interface - data read
    is returned as bytes, and data to be written must be given as bytes.
    """

    def __init__(self, filename=None, mode="r", *,
                 format=None, check=-1, preset=None, filters=None):
        """Open an LZMA-compressed file in binary mode.

        filename can be either an actual file name (given as a str or
        bytes object), in which case the named file is opened, or it can
        be an existing file object to read from or write to.

        mode can be "r" for reading (default), "w" for (over)writing,
        "x" for creating exclusively, or "a" for appending. These can
        equivalently be given as "rb", "wb", "xb" and "ab" respectively.

        format specifies the container format to use for the file.
        If mode is "r", this defaults to FORMAT_AUTO. Otherwise, the
        default is FORMAT_XZ.

        check specifies the integrity check to use. This argument can
        only be used when opening a file for writing. For FORMAT_XZ,
        the default is CHECK_CRC64. FORMAT_ALONE and FORMAT_RAW do not
        support integrity checks - for these formats, check must be
        omitted, or be CHECK_NONE.

        When opening a file for reading, the *preset* argument is not
        meaningful, and should be omitted. The *filters* argument should
        also be omitted, except when format is FORMAT_RAW (in which case
        it is required).

        When opening a file for writing, the settings used by the
        compressor can be specified either as a preset compression
        level (with the *preset* argument), or in detail as a custom
        filter chain (with the *filters* argument). For FORMAT_XZ and
        FORMAT_ALONE, the default is to use the PRESET_DEFAULT preset
        level. For FORMAT_RAW, the caller must always specify a filter
        chain; the raw compressor does not support preset compression
        levels.

        preset (if provided) should be an integer in the range 0-9,
        optionally OR-ed with the constant PRESET_EXTREME.

        filters (if provided) should be a sequence of dicts. Each dict
        should have an entry for "id" indicating ID of the filter, plus
        additional entries for options to the filter.
        """
        self._fp = None
        self._closefp = False
        self._mode = _MODE_CLOSED
        self._pos = 0
        self._size = -1

        if mode in ("r", "rb"):
            if check != -1:
                raise ValueError("Cannot specify an integrity check "
                                 "when opening a file for reading")
            if preset is not None:
                raise ValueError("Cannot specify a preset compression "
                                 "level when opening a file for reading")
            if format is None:
                format = FORMAT_AUTO
            mode_code = _MODE_READ
            # Save the args to pass to the LZMADecompressor initializer.
            # If the file contains multiple compressed streams, each
            # stream will need a separate decompressor object.
            self._init_args = {"format":format, "filters":filters}
            self._decompressor = LZMADecompressor(**self._init_args)
            self._buffer = b""
            self._buffer_offset = 0
        elif mode in ("w", "wb", "a", "ab", "x", "xb"):
            if format is None:
                format = FORMAT_XZ
            mode_code = _MODE_WRITE
            self._compressor = LZMACompressor(format=format, check=check,
                                              preset=preset, filters=filters)
        else:
            raise ValueError("Invalid mode: {!r}".format(mode))

        if isinstance(filename, (str, bytes)):
            if "b" not in mode:
                mode += "b"
            self._fp = builtins.open(filename, mode)
            self._closefp = True
            self._mode = mode_code
        elif hasattr(filename, "read") or hasattr(filename, "write"):
            self._fp = filename
            self._mode = mode_code
        else:
            raise TypeError("filename must be a str or bytes object, or a file")

    def close(self):
        """Flush and close the file.

        May be called more than once without error. Once the file is
        closed, any other operation on it will raise a ValueError.
        """
        if self._mode == _MODE_CLOSED:
            return
        try:
            if self._mode in (_MODE_READ, _MODE_READ_EOF):
                self._decompressor = None
                self._buffer = b""
            elif self._mode == _MODE_WRITE:
                self._fp.write(self._compressor.flush())
                self._compressor = None
        finally:
            try:
                if self._closefp:
                    self._fp.close()
            finally:
                self._fp = None
                self._closefp = False
                self._mode = _MODE_CLOSED

    @property
    def closed(self):
        """True if this file is closed."""
        return self._mode == _MODE_CLOSED

    def fileno(self):
        """Return the file descriptor for the underlying file."""
        self._check_not_closed()
        return self._fp.fileno()

    def seekable(self):
        """Return whether the file supports seeking."""
        return self.readable() and self._fp.seekable()

    def readable(self):
        """Return whether the file was opened for reading."""
        self._check_not_closed()
        return self._mode in (_MODE_READ, _MODE_READ_EOF)

    def writable(self):
        """Return whether the file was opened for writing."""
        self._check_not_closed()
        return self._mode == _MODE_WRITE

    # Mode-checking helper functions.

    def _check_not_closed(self):
        if self.closed:
            raise ValueError("I/O operation on closed file")

    def _check_can_read(self):
        if self._mode not in (_MODE_READ, _MODE_READ_EOF):
            self._check_not_closed()
            raise io.UnsupportedOperation("File not open for reading")

    def _check_can_write(self):
        if self._mode != _MODE_WRITE:
            self._check_not_closed()
            raise io.UnsupportedOperation("File not open for writing")

    def _check_can_seek(self):
        if self._mode not in (_MODE_READ, _MODE_READ_EOF):
            self._check_not_closed()
            raise io.UnsupportedOperation("Seeking is only supported "
                                          "on files open for reading")
        if not self._fp.seekable():
            raise io.UnsupportedOperation("The underlying file object "
                                          "does not support seeking")

    # Fill the readahead buffer if it is empty. Returns False on EOF.
    def _fill_buffer(self):
        if self._mode == _MODE_READ_EOF:
            return False
        # Depending on the input data, our call to the decompressor may not
        # return any data. In this case, try again after reading another block.
        while self._buffer_offset == len(self._buffer):
            rawblock = (self._decompressor.unused_data or
                        self._fp.read(_BUFFER_SIZE))

            if not rawblock:
                if self._decompressor.eof:
                    self._mode = _MODE_READ_EOF
                    self._size = self._pos
                    return False
                else:
                    raise EOFError("Compressed file ended before the "
                                   "end-of-stream marker was reached")

            if self._decompressor.eof:
                # Continue to next stream.
                self._decompressor = LZMADecompressor(**self._init_args)
                try:
                    self._buffer = self._decompressor.decompress(rawblock)
                except LZMAError:
                    # Trailing data isn't a valid compressed stream; ignore it.
                    self._mode = _MODE_READ_EOF
                    self._size = self._pos
                    return False
            else:
                self._buffer = self._decompressor.decompress(rawblock)
            self._buffer_offset = 0
        return True

    # Read data until EOF.
    # If return_data is false, consume the data without returning it.
    def _read_all(self, return_data=True):
        # The loop assumes that _buffer_offset is 0. Ensure that this is true.
        self._buffer = self._buffer[self._buffer_offset:]
        self._buffer_offset = 0

        blocks = []
        while self._fill_buffer():
            if return_data:
                blocks.append(self._buffer)
            self._pos += len(self._buffer)
            self._buffer = b""
        if return_data:
            return b"".join(blocks)

    # Read a block of up to n bytes.
    # If return_data is false, consume the data without returning it.
    def _read_block(self, n, return_data=True):
        # If we have enough data buffered, return immediately.
        end = self._buffer_offset + n
        if end <= len(self._buffer):
            data = self._buffer[self._buffer_offset : end]
            self._buffer_offset = end
            self._pos += len(data)
            return data if return_data else None

        # The loop assumes that _buffer_offset is 0. Ensure that this is true.
        self._buffer = self._buffer[self._buffer_offset:]
        self._buffer_offset = 0

        blocks = []
        while n > 0 and self._fill_buffer():
            if n < len(self._buffer):
                data = self._buffer[:n]
                self._buffer_offset = n
            else:
                data = self._buffer
                self._buffer = b""
            if return_data:
                blocks.append(data)
            self._pos += len(data)
            n -= len(data)
        if return_data:
            return b"".join(blocks)

    def peek(self, size=-1):
        """Return buffered data without advancing the file position.

        Always returns at least one byte of data, unless at EOF.
        The exact number of bytes returned is unspecified.
        """
        self._check_can_read()
        if not self._fill_buffer():
            return b""
        return self._buffer[self._buffer_offset:]

    def read(self, size=-1):
        """Read up to size uncompressed bytes from the file.

        If size is negative or omitted, read until EOF is reached.
        Returns b"" if the file is already at EOF.
        """
        self._check_can_read()
        if size == 0:
            return b""
        elif size < 0:
            return self._read_all()
        else:
            return self._read_block(size)

    def read1(self, size=-1):
        """Read up to size uncompressed bytes, while trying to avoid
        making multiple reads from the underlying stream.

        Returns b"" if the file is at EOF.
        """
        # Usually, read1() calls _fp.read() at most once. However, sometimes
        # this does not give enough data for the decompressor to make progress.
        # In this case we make multiple reads, to avoid returning b"".
        self._check_can_read()
        if (size == 0 or
            # Only call _fill_buffer() if the buffer is actually empty.
            # This gives a significant speedup if *size* is small.
            (self._buffer_offset == len(self._buffer) and not self._fill_buffer())):
            return b""
        if size > 0:
            data = self._buffer[self._buffer_offset :
                                self._buffer_offset + size]
            self._buffer_offset += len(data)
        else:
            data = self._buffer[self._buffer_offset:]
            self._buffer = b""
            self._buffer_offset = 0
        self._pos += len(data)
        return data

    def readline(self, size=-1):
        """Read a line of uncompressed bytes from the file.

        The terminating newline (if present) is retained. If size is
        non-negative, no more than size bytes will be read (in which
        case the line may be incomplete). Returns b'' if already at EOF.
        """
        self._check_can_read()
        # Shortcut for the common case - the whole line is in the buffer.
        if size < 0:
            end = self._buffer.find(b"\n", self._buffer_offset) + 1
            if end > 0:
                line = self._buffer[self._buffer_offset : end]
                self._buffer_offset = end
                self._pos += len(line)
                return line
        return io.BufferedIOBase.readline(self, size)

    def write(self, data):
        """Write a bytes object to the file.

        Returns the number of uncompressed bytes written, which is
        always len(data). Note that due to buffering, the file on disk
        may not reflect the data written until close() is called.
        """
        self._check_can_write()
        compressed = self._compressor.compress(data)
        self._fp.write(compressed)
        self._pos += len(data)
        return len(data)

    # Rewind the file to the beginning of the data stream.
    def _rewind(self):
        self._fp.seek(0, 0)
        self._mode = _MODE_READ
        self._pos = 0
        self._decompressor = LZMADecompressor(**self._init_args)
        self._buffer = b""
        self._buffer_offset = 0

    def seek(self, offset, whence=0):
        """Change the file position.

        The new position is specified by offset, relative to the
        position indicated by whence. Possible values for whence are:

            0: start of stream (default): offset must not be negative
            1: current stream position
            2: end of stream; offset must not be positive

        Returns the new file position.

        Note that seeking is emulated, sp depending on the parameters,
        this operation may be extremely slow.
        """
        self._check_can_seek()

        # Recalculate offset as an absolute file position.
        if whence == 0:
            pass
        elif whence == 1:
            offset = self._pos + offset
        elif whence == 2:
            # Seeking relative to EOF - we need to know the file's size.
            if self._size < 0:
                self._read_all(return_data=False)
            offset = self._size + offset
        else:
            raise ValueError("Invalid value for whence: {}".format(whence))

        # Make it so that offset is the number of bytes to skip forward.
        if offset < self._pos:
            self._rewind()
        else:
            offset -= self._pos

        # Read and discard data until we reach the desired position.
        self._read_block(offset, return_data=False)

        return self._pos

    def tell(self):
        """Return the current file position."""
        self._check_not_closed()
        return self._pos


def open(filename, mode="rb", *,
         format=None, check=-1, preset=None, filters=None,
         encoding=None, errors=None, newline=None):
    """Open an LZMA-compressed file in binary or text mode.

    filename can be either an actual file name (given as a str or bytes
    object), in which case the named file is opened, or it can be an
    existing file object to read from or write to.

    The mode argument can be "r", "rb" (default), "w", "wb", "x", "xb",
    "a", or "ab" for binary mode, or "rt", "wt", "xt", or "at" for text
    mode.

    The format, check, preset and filters arguments specify the
    compression settings, as for LZMACompressor, LZMADecompressor and
    LZMAFile.

    For binary mode, this function is equivalent to the LZMAFile
    constructor: LZMAFile(filename, mode, ...). In this case, the
    encoding, errors and newline arguments must not be provided.

    For text mode, a LZMAFile object is created, and wrapped in an
    io.TextIOWrapper instance with the specified encoding, error
    handling behavior, and line ending(s).

    """
    if "t" in mode:
        if "b" in mode:
            raise ValueError("Invalid mode: %r" % (mode,))
    else:
        if encoding is not None:
            raise ValueError("Argument 'encoding' not supported in binary mode")
        if errors is not None:
            raise ValueError("Argument 'errors' not supported in binary mode")
        if newline is not None:
            raise ValueError("Argument 'newline' not supported in binary mode")

    lz_mode = mode.replace("t", "")
    binary_file = LZMAFile(filename, lz_mode, format=format, check=check,
                           preset=preset, filters=filters)

    if "t" in mode:
        return io.TextIOWrapper(binary_file, encoding, errors, newline)
    else:
        return binary_file


def compress(data, format=FORMAT_XZ, check=-1, preset=None, filters=None):
    """Compress a block of data.

    Refer to LZMACompressor's docstring for a description of the
    optional arguments *format*, *check*, *preset* and *filters*.

    For incremental compression, use an LZMACompressor instead.
    """
    comp = LZMACompressor(format, check, preset, filters)
    return comp.compress(data) + comp.flush()


def decompress(data, format=FORMAT_AUTO, memlimit=None, filters=None):
    """Decompress a block of data.

    Refer to LZMADecompressor's docstring for a description of the
    optional arguments *format*, *check* and *filters*.

    For incremental decompression, use an LZMADecompressor instead.
    """
    results = []
    while True:
        decomp = LZMADecompressor(format, memlimit, filters)
        try:
            res = decomp.decompress(data)
        except LZMAError:
            if results:
                break  # Leftover data is not a valid LZMA/XZ stream; ignore it.
            else:
                raise  # Error on the first iteration; bail out.
        results.append(res)
        if not decomp.eof:
            raise LZMAError("Compressed data ended before the "
                            "end-of-stream marker was reached")
        data = decomp.unused_data
        if not data:
            break
    return b"".join(results)
lib\macpath.py
"""Pathname and path-related operations for the Macintosh."""

import os
from stat import *
import genericpath
from genericpath import *

__all__ = ["normcase","isabs","join","splitdrive","split","splitext",
           "basename","dirname","commonprefix","getsize","getmtime",
           "getatime","getctime", "islink","exists","lexists","isdir","isfile",
           "expanduser","expandvars","normpath","abspath",
           "curdir","pardir","sep","pathsep","defpath","altsep","extsep",
           "devnull","realpath","supports_unicode_filenames"]

# strings representing various path-related bits and pieces
# These are primarily for export; internally, they are hardcoded.
curdir = ':'
pardir = '::'
extsep = '.'
sep = ':'
pathsep = '\n'
defpath = ':'
altsep = None
devnull = 'Dev:Null'

def _get_colon(path):
    if isinstance(path, bytes):
        return b':'
    else:
        return ':'

# Normalize the case of a pathname.  Dummy in Posix, but <s>.lower() here.

def normcase(path):
    if not isinstance(path, (bytes, str)):
        raise TypeError("normcase() argument must be str or bytes, "
                        "not '{}'".format(path.__class__.__name__))
    return path.lower()


def isabs(s):
    """Return true if a path is absolute.
    On the Mac, relative paths begin with a colon,
    but as a special case, paths with no colons at all are also relative.
    Anything else is absolute (the string up to the first colon is the
    volume name)."""

    colon = _get_colon(s)
    return colon in s and s[:1] != colon


def join(s, *p):
    colon = _get_colon(s)
    path = s
    for t in p:
        if (not path) or isabs(t):
            path = t
            continue
        if t[:1] == colon:
            t = t[1:]
        if colon not in path:
            path = colon + path
        if path[-1:] != colon:
            path = path + colon
        path = path + t
    return path


def split(s):
    """Split a pathname into two parts: the directory leading up to the final
    bit, and the basename (the filename, without colons, in that directory).
    The result (s, t) is such that join(s, t) yields the original argument."""

    colon = _get_colon(s)
    if colon not in s: return s[:0], s
    col = 0
    for i in range(len(s)):
        if s[i:i+1] == colon: col = i + 1
    path, file = s[:col-1], s[col:]
    if path and not colon in path:
        path = path + colon
    return path, file


def splitext(p):
    if isinstance(p, bytes):
        return genericpath._splitext(p, b':', altsep, b'.')
    else:
        return genericpath._splitext(p, sep, altsep, extsep)
splitext.__doc__ = genericpath._splitext.__doc__

def splitdrive(p):
    """Split a pathname into a drive specification and the rest of the
    path.  Useful on DOS/Windows/NT; on the Mac, the drive is always
    empty (don't use the volume name -- it doesn't have the same
    syntactic and semantic oddities as DOS drive letters, such as there
    being a separate current directory per drive)."""

    return p[:0], p


# Short interfaces to split()

def dirname(s): return split(s)[0]
def basename(s): return split(s)[1]

def ismount(s):
    if not isabs(s):
        return False
    components = split(s)
    return len(components) == 2 and not components[1]

def islink(s):
    """Return true if the pathname refers to a symbolic link."""

    try:
        import Carbon.File
        return Carbon.File.ResolveAliasFile(s, 0)[2]
    except:
        return False

# Is `stat`/`lstat` a meaningful difference on the Mac?  This is safe in any
# case.

def lexists(path):
    """Test whether a path exists.  Returns True for broken symbolic links"""

    try:
        st = os.lstat(path)
    except OSError:
        return False
    return True

def expandvars(path):
    """Dummy to retain interface-compatibility with other operating systems."""
    return path


def expanduser(path):
    """Dummy to retain interface-compatibility with other operating systems."""
    return path

class norm_error(Exception):
    """Path cannot be normalized"""

def normpath(s):
    """Normalize a pathname.  Will return the same result for
    equivalent paths."""

    colon = _get_colon(s)

    if colon not in s:
        return colon + s

    comps = s.split(colon)
    i = 1
    while i < len(comps)-1:
        if not comps[i] and comps[i-1]:
            if i > 1:
                del comps[i-1:i+1]
                i = i - 1
            else:
                # best way to handle this is to raise an exception
                raise norm_error('Cannot use :: immediately after volume name')
        else:
            i = i + 1

    s = colon.join(comps)

    # remove trailing ":" except for ":" and "Volume:"
    if s[-1:] == colon and len(comps) > 2 and s != colon*len(s):
        s = s[:-1]
    return s

def abspath(path):
    """Return an absolute path."""
    if not isabs(path):
        if isinstance(path, bytes):
            cwd = os.getcwdb()
        else:
            cwd = os.getcwd()
        path = join(cwd, path)
    return normpath(path)

# realpath is a no-op on systems without islink support
def realpath(path):
    path = abspath(path)
    try:
        import Carbon.File
    except ImportError:
        return path
    if not path:
        return path
    colon = _get_colon(path)
    components = path.split(colon)
    path = components[0] + colon
    for c in components[1:]:
        path = join(path, c)
        try:
            path = Carbon.File.FSResolveAliasFile(path, 1)[0].as_pathname()
        except Carbon.File.Error:
            pass
    return path

supports_unicode_filenames = True
lib\macurl2path.py
"""Macintosh-specific module for conversion between pathnames and URLs.

Do not import directly; use urllib instead."""

import urllib.parse
import os

__all__ = ["url2pathname","pathname2url"]

def url2pathname(pathname):
    """OS-specific conversion from a relative URL of the 'file' scheme
    to a file system path; not recommended for general use."""
    #
    # XXXX The .. handling should be fixed...
    #
    tp = urllib.parse.splittype(pathname)[0]
    if tp and tp != 'file':
        raise RuntimeError('Cannot convert non-local URL to pathname')
    # Turn starting /// into /, an empty hostname means current host
    if pathname[:3] == '///':
        pathname = pathname[2:]
    elif pathname[:2] == '//':
        raise RuntimeError('Cannot convert non-local URL to pathname')
    components = pathname.split('/')
    # Remove . and embedded ..
    i = 0
    while i < len(components):
        if components[i] == '.':
            del components[i]
        elif components[i] == '..' and i > 0 and \
                                  components[i-1] not in ('', '..'):
            del components[i-1:i+1]
            i = i-1
        elif components[i] == '' and i > 0 and components[i-1] != '':
            del components[i]
        else:
            i = i+1
    if not components[0]:
        # Absolute unix path, don't start with colon
        rv = ':'.join(components[1:])
    else:
        # relative unix path, start with colon. First replace
        # leading .. by empty strings (giving ::file)
        i = 0
        while i < len(components) and components[i] == '..':
            components[i] = ''
            i = i + 1
        rv = ':' + ':'.join(components)
    # and finally unquote slashes and other funny characters
    return urllib.parse.unquote(rv)

def pathname2url(pathname):
    """OS-specific conversion from a file system path to a relative URL
    of the 'file' scheme; not recommended for general use."""
    if '/' in pathname:
        raise RuntimeError("Cannot convert pathname containing slashes")
    components = pathname.split(':')
    # Remove empty first and/or last component
    if components[0] == '':
        del components[0]
    if components[-1] == '':
        del components[-1]
    # Replace empty string ('::') by .. (will result in '/../' later)
    for i in range(len(components)):
        if components[i] == '':
            components[i] = '..'
    # Truncate names longer than 31 bytes
    components = map(_pncomp2url, components)

    if os.path.isabs(pathname):
        return '/' + '/'.join(components)
    else:
        return '/'.join(components)

def _pncomp2url(component):
    # We want to quote slashes
    return urllib.parse.quote(component[:31], safe='')
lib\mailbox.py
"""Read/write support for Maildir, mbox, MH, Babyl, and MMDF mailboxes."""

# Notes for authors of new mailbox subclasses:
#
# Remember to fsync() changes to disk before closing a modified file
# or returning from a flush() method.  See functions _sync_flush() and
# _sync_close().

import os
import time
import calendar
import socket
import errno
import copy
import warnings
import email
import email.message
import email.generator
import io
import contextlib
try:
    import fcntl
except ImportError:
    fcntl = None

__all__ = [ 'Mailbox', 'Maildir', 'mbox', 'MH', 'Babyl', 'MMDF',
            'Message', 'MaildirMessage', 'mboxMessage', 'MHMessage',
            'BabylMessage', 'MMDFMessage']

linesep = os.linesep.encode('ascii')

class Mailbox:
    """A group of messages in a particular place."""

    def __init__(self, path, factory=None, create=True):
        """Initialize a Mailbox instance."""
        self._path = os.path.abspath(os.path.expanduser(path))
        self._factory = factory

    def add(self, message):
        """Add message and return assigned key."""
        raise NotImplementedError('Method must be implemented by subclass')

    def remove(self, key):
        """Remove the keyed message; raise KeyError if it doesn't exist."""
        raise NotImplementedError('Method must be implemented by subclass')

    def __delitem__(self, key):
        self.remove(key)

    def discard(self, key):
        """If the keyed message exists, remove it."""
        try:
            self.remove(key)
        except KeyError:
            pass

    def __setitem__(self, key, message):
        """Replace the keyed message; raise KeyError if it doesn't exist."""
        raise NotImplementedError('Method must be implemented by subclass')

    def get(self, key, default=None):
        """Return the keyed message, or default if it doesn't exist."""
        try:
            return self.__getitem__(key)
        except KeyError:
            return default

    def __getitem__(self, key):
        """Return the keyed message; raise KeyError if it doesn't exist."""
        if not self._factory:
            return self.get_message(key)
        else:
            with contextlib.closing(self.get_file(key)) as file:
                return self._factory(file)

    def get_message(self, key):
        """Return a Message representation or raise a KeyError."""
        raise NotImplementedError('Method must be implemented by subclass')

    def get_string(self, key):
        """Return a string representation or raise a KeyError.

        Uses email.message.Message to create a 7bit clean string
        representation of the message."""
        return email.message_from_bytes(self.get_bytes(key)).as_string()

    def get_bytes(self, key):
        """Return a byte string representation or raise a KeyError."""
        raise NotImplementedError('Method must be implemented by subclass')

    def get_file(self, key):
        """Return a file-like representation or raise a KeyError."""
        raise NotImplementedError('Method must be implemented by subclass')

    def iterkeys(self):
        """Return an iterator over keys."""
        raise NotImplementedError('Method must be implemented by subclass')

    def keys(self):
        """Return a list of keys."""
        return list(self.iterkeys())

    def itervalues(self):
        """Return an iterator over all messages."""
        for key in self.iterkeys():
            try:
                value = self[key]
            except KeyError:
                continue
            yield value

    def __iter__(self):
        return self.itervalues()

    def values(self):
        """Return a list of messages. Memory intensive."""
        return list(self.itervalues())

    def iteritems(self):
        """Return an iterator over (key, message) tuples."""
        for key in self.iterkeys():
            try:
                value = self[key]
            except KeyError:
                continue
            yield (key, value)

    def items(self):
        """Return a list of (key, message) tuples. Memory intensive."""
        return list(self.iteritems())

    def __contains__(self, key):
        """Return True if the keyed message exists, False otherwise."""
        raise NotImplementedError('Method must be implemented by subclass')

    def __len__(self):
        """Return a count of messages in the mailbox."""
        raise NotImplementedError('Method must be implemented by subclass')

    def clear(self):
        """Delete all messages."""
        for key in self.keys():
            self.discard(key)

    def pop(self, key, default=None):
        """Delete the keyed message and return it, or default."""
        try:
            result = self[key]
        except KeyError:
            return default
        self.discard(key)
        return result

    def popitem(self):
        """Delete an arbitrary (key, message) pair and return it."""
        for key in self.iterkeys():
            return (key, self.pop(key))     # This is only run once.
        else:
            raise KeyError('No messages in mailbox')

    def update(self, arg=None):
        """Change the messages that correspond to certain keys."""
        if hasattr(arg, 'iteritems'):
            source = arg.iteritems()
        elif hasattr(arg, 'items'):
            source = arg.items()
        else:
            source = arg
        bad_key = False
        for key, message in source:
            try:
                self[key] = message
            except KeyError:
                bad_key = True
        if bad_key:
            raise KeyError('No message with key(s)')

    def flush(self):
        """Write any pending changes to the disk."""
        raise NotImplementedError('Method must be implemented by subclass')

    def lock(self):
        """Lock the mailbox."""
        raise NotImplementedError('Method must be implemented by subclass')

    def unlock(self):
        """Unlock the mailbox if it is locked."""
        raise NotImplementedError('Method must be implemented by subclass')

    def close(self):
        """Flush and close the mailbox."""
        raise NotImplementedError('Method must be implemented by subclass')

    def _string_to_bytes(self, message):
        # If a message is not 7bit clean, we refuse to handle it since it
        # likely came from reading invalid messages in text mode, and that way
        # lies mojibake.
        try:
            return message.encode('ascii')
        except UnicodeError:
            raise ValueError("String input must be ASCII-only; "
                "use bytes or a Message instead")

    # Whether each message must end in a newline
    _append_newline = False

    def _dump_message(self, message, target, mangle_from_=False):
        # This assumes the target file is open in binary mode.
        """Dump message contents to target file."""
        if isinstance(message, email.message.Message):
            buffer = io.BytesIO()
            gen = email.generator.BytesGenerator(buffer, mangle_from_, 0)
            gen.flatten(message)
            buffer.seek(0)
            data = buffer.read()
            data = data.replace(b'\n', linesep)
            target.write(data)
            if self._append_newline and not data.endswith(linesep):
                # Make sure the message ends with a newline
                target.write(linesep)
        elif isinstance(message, (str, bytes, io.StringIO)):
            if isinstance(message, io.StringIO):
                warnings.warn("Use of StringIO input is deprecated, "
                    "use BytesIO instead", DeprecationWarning, 3)
                message = message.getvalue()
            if isinstance(message, str):
                message = self._string_to_bytes(message)
            if mangle_from_:
                message = message.replace(b'\nFrom ', b'\n>From ')
            message = message.replace(b'\n', linesep)
            target.write(message)
            if self._append_newline and not message.endswith(linesep):
                # Make sure the message ends with a newline
                target.write(linesep)
        elif hasattr(message, 'read'):
            if hasattr(message, 'buffer'):
                warnings.warn("Use of text mode files is deprecated, "
                    "use a binary mode file instead", DeprecationWarning, 3)
                message = message.buffer
            lastline = None
            while True:
                line = message.readline()
                # Universal newline support.
                if line.endswith(b'\r\n'):
                    line = line[:-2] + b'\n'
                elif line.endswith(b'\r'):
                    line = line[:-1] + b'\n'
                if not line:
                    break
                if mangle_from_ and line.startswith(b'From '):
                    line = b'>From ' + line[5:]
                line = line.replace(b'\n', linesep)
                target.write(line)
                lastline = line
            if self._append_newline and lastline and not lastline.endswith(linesep):
                # Make sure the message ends with a newline
                target.write(linesep)
        else:
            raise TypeError('Invalid message type: %s' % type(message))


class Maildir(Mailbox):
    """A qmail-style Maildir mailbox."""

    colon = ':'

    def __init__(self, dirname, factory=None, create=True):
        """Initialize a Maildir instance."""
        Mailbox.__init__(self, dirname, factory, create)
        self._paths = {
            'tmp': os.path.join(self._path, 'tmp'),
            'new': os.path.join(self._path, 'new'),
            'cur': os.path.join(self._path, 'cur'),
            }
        if not os.path.exists(self._path):
            if create:
                os.mkdir(self._path, 0o700)
                for path in self._paths.values():
                    os.mkdir(path, 0o700)
            else:
                raise NoSuchMailboxError(self._path)
        self._toc = {}
        self._toc_mtimes = {'cur': 0, 'new': 0}
        self._last_read = 0         # Records last time we read cur/new
        self._skewfactor = 0.1      # Adjust if os/fs clocks are skewing

    def add(self, message):
        """Add message and return assigned key."""
        tmp_file = self._create_tmp()
        try:
            self._dump_message(message, tmp_file)
        except BaseException:
            tmp_file.close()
            os.remove(tmp_file.name)
            raise
        _sync_close(tmp_file)
        if isinstance(message, MaildirMessage):
            subdir = message.get_subdir()
            suffix = self.colon + message.get_info()
            if suffix == self.colon:
                suffix = ''
        else:
            subdir = 'new'
            suffix = ''
        uniq = os.path.basename(tmp_file.name).split(self.colon)[0]
        dest = os.path.join(self._path, subdir, uniq + suffix)
        if isinstance(message, MaildirMessage):
            os.utime(tmp_file.name,
                     (os.path.getatime(tmp_file.name), message.get_date()))
        # No file modification should be done after the file is moved to its
        # final position in order to prevent race conditions with changes
        # from other programs
        try:
            if hasattr(os, 'link'):
                os.link(tmp_file.name, dest)
                os.remove(tmp_file.name)
            else:
                os.rename(tmp_file.name, dest)
        except OSError as e:
            os.remove(tmp_file.name)
            if e.errno == errno.EEXIST:
                raise ExternalClashError('Name clash with existing message: %s'
                                         % dest)
            else:
                raise
        return uniq

    def remove(self, key):
        """Remove the keyed message; raise KeyError if it doesn't exist."""
        os.remove(os.path.join(self._path, self._lookup(key)))

    def discard(self, key):
        """If the keyed message exists, remove it."""
        # This overrides an inapplicable implementation in the superclass.
        try:
            self.remove(key)
        except (KeyError, FileNotFoundError):
            pass

    def __setitem__(self, key, message):
        """Replace the keyed message; raise KeyError if it doesn't exist."""
        old_subpath = self._lookup(key)
        temp_key = self.add(message)
        temp_subpath = self._lookup(temp_key)
        if isinstance(message, MaildirMessage):
            # temp's subdir and suffix were specified by message.
            dominant_subpath = temp_subpath
        else:
            # temp's subdir and suffix were defaults from add().
            dominant_subpath = old_subpath
        subdir = os.path.dirname(dominant_subpath)
        if self.colon in dominant_subpath:
            suffix = self.colon + dominant_subpath.split(self.colon)[-1]
        else:
            suffix = ''
        self.discard(key)
        tmp_path = os.path.join(self._path, temp_subpath)
        new_path = os.path.join(self._path, subdir, key + suffix)
        if isinstance(message, MaildirMessage):
            os.utime(tmp_path,
                     (os.path.getatime(tmp_path), message.get_date()))
        # No file modification should be done after the file is moved to its
        # final position in order to prevent race conditions with changes
        # from other programs
        os.rename(tmp_path, new_path)

    def get_message(self, key):
        """Return a Message representation or raise a KeyError."""
        subpath = self._lookup(key)
        with open(os.path.join(self._path, subpath), 'rb') as f:
            if self._factory:
                msg = self._factory(f)
            else:
                msg = MaildirMessage(f)
        subdir, name = os.path.split(subpath)
        msg.set_subdir(subdir)
        if self.colon in name:
            msg.set_info(name.split(self.colon)[-1])
        msg.set_date(os.path.getmtime(os.path.join(self._path, subpath)))
        return msg

    def get_bytes(self, key):
        """Return a bytes representation or raise a KeyError."""
        with open(os.path.join(self._path, self._lookup(key)), 'rb') as f:
            return f.read().replace(linesep, b'\n')

    def get_file(self, key):
        """Return a file-like representation or raise a KeyError."""
        f = open(os.path.join(self._path, self._lookup(key)), 'rb')
        return _ProxyFile(f)

    def iterkeys(self):
        """Return an iterator over keys."""
        self._refresh()
        for key in self._toc:
            try:
                self._lookup(key)
            except KeyError:
                continue
            yield key

    def __contains__(self, key):
        """Return True if the keyed message exists, False otherwise."""
        self._refresh()
        return key in self._toc

    def __len__(self):
        """Return a count of messages in the mailbox."""
        self._refresh()
        return len(self._toc)

    def flush(self):
        """Write any pending changes to disk."""
        # Maildir changes are always written immediately, so there's nothing
        # to do.
        pass

    def lock(self):
        """Lock the mailbox."""
        return

    def unlock(self):
        """Unlock the mailbox if it is locked."""
        return

    def close(self):
        """Flush and close the mailbox."""
        return

    def list_folders(self):
        """Return a list of folder names."""
        result = []
        for entry in os.listdir(self._path):
            if len(entry) > 1 and entry[0] == '.' and \
               os.path.isdir(os.path.join(self._path, entry)):
                result.append(entry[1:])
        return result

    def get_folder(self, folder):
        """Return a Maildir instance for the named folder."""
        return Maildir(os.path.join(self._path, '.' + folder),
                       factory=self._factory,
                       create=False)

    def add_folder(self, folder):
        """Create a folder and return a Maildir instance representing it."""
        path = os.path.join(self._path, '.' + folder)
        result = Maildir(path, factory=self._factory)
        maildirfolder_path = os.path.join(path, 'maildirfolder')
        if not os.path.exists(maildirfolder_path):
            os.close(os.open(maildirfolder_path, os.O_CREAT | os.O_WRONLY,
                0o666))
        return result

    def remove_folder(self, folder):
        """Delete the named folder, which must be empty."""
        path = os.path.join(self._path, '.' + folder)
        for entry in os.listdir(os.path.join(path, 'new')) + \
                     os.listdir(os.path.join(path, 'cur')):
            if len(entry) < 1 or entry[0] != '.':
                raise NotEmptyError('Folder contains message(s): %s' % folder)
        for entry in os.listdir(path):
            if entry != 'new' and entry != 'cur' and entry != 'tmp' and \
               os.path.isdir(os.path.join(path, entry)):
                raise NotEmptyError("Folder contains subdirectory '%s': %s" %
                                    (folder, entry))
        for root, dirs, files in os.walk(path, topdown=False):
            for entry in files:
                os.remove(os.path.join(root, entry))
            for entry in dirs:
                os.rmdir(os.path.join(root, entry))
        os.rmdir(path)

    def clean(self):
        """Delete old files in "tmp"."""
        now = time.time()
        for entry in os.listdir(os.path.join(self._path, 'tmp')):
            path = os.path.join(self._path, 'tmp', entry)
            if now - os.path.getatime(path) > 129600:   # 60 * 60 * 36
                os.remove(path)

    _count = 1  # This is used to generate unique file names.

    def _create_tmp(self):
        """Create a file in the tmp subdirectory and open and return it."""
        now = time.time()
        hostname = socket.gethostname()
        if '/' in hostname:
            hostname = hostname.replace('/', r'\057')
        if ':' in hostname:
            hostname = hostname.replace(':', r'\072')
        uniq = "%s.M%sP%sQ%s.%s" % (int(now), int(now % 1 * 1e6), os.getpid(),
                                    Maildir._count, hostname)
        path = os.path.join(self._path, 'tmp', uniq)
        try:
            os.stat(path)
        except FileNotFoundError:
            Maildir._count += 1
            try:
                return _create_carefully(path)
            except FileExistsError:
                pass

        # Fall through to here if stat succeeded or open raised EEXIST.
        raise ExternalClashError('Name clash prevented file creation: %s' %
                                 path)

    def _refresh(self):
        """Update table of contents mapping."""
        # If it has been less than two seconds since the last _refresh() call,
        # we have to unconditionally re-read the mailbox just in case it has
        # been modified, because os.path.mtime() has a 2 sec resolution in the
        # most common worst case (FAT) and a 1 sec resolution typically.  This
        # results in a few unnecessary re-reads when _refresh() is called
        # multiple times in that interval, but once the clock ticks over, we
        # will only re-read as needed.  Because the filesystem might be being
        # served by an independent system with its own clock, we record and
        # compare with the mtimes from the filesystem.  Because the other
        # system's clock might be skewing relative to our clock, we add an
        # extra delta to our wait.  The default is one tenth second, but is an
        # instance variable and so can be adjusted if dealing with a
        # particularly skewed or irregular system.
        if time.time() - self._last_read > 2 + self._skewfactor:
            refresh = False
            for subdir in self._toc_mtimes:
                mtime = os.path.getmtime(self._paths[subdir])
                if mtime > self._toc_mtimes[subdir]:
                    refresh = True
                self._toc_mtimes[subdir] = mtime
            if not refresh:
                return
        # Refresh toc
        self._toc = {}
        for subdir in self._toc_mtimes:
            path = self._paths[subdir]
            for entry in os.listdir(path):
                p = os.path.join(path, entry)
                if os.path.isdir(p):
                    continue
                uniq = entry.split(self.colon)[0]
                self._toc[uniq] = os.path.join(subdir, entry)
        self._last_read = time.time()

    def _lookup(self, key):
        """Use TOC to return subpath for given key, or raise a KeyError."""
        try:
            if os.path.exists(os.path.join(self._path, self._toc[key])):
                return self._toc[key]
        except KeyError:
            pass
        self._refresh()
        try:
            return self._toc[key]
        except KeyError:
            raise KeyError('No message with key: %s' % key)

    # This method is for backward compatibility only.
    def next(self):
        """Return the next message in a one-time iteration."""
        if not hasattr(self, '_onetime_keys'):
            self._onetime_keys = self.iterkeys()
        while True:
            try:
                return self[next(self._onetime_keys)]
            except StopIteration:
                return None
            except KeyError:
                continue


class _singlefileMailbox(Mailbox):
    """A single-file mailbox."""

    def __init__(self, path, factory=None, create=True):
        """Initialize a single-file mailbox."""
        Mailbox.__init__(self, path, factory, create)
        try:
            f = open(self._path, 'rb+')
        except OSError as e:
            if e.errno == errno.ENOENT:
                if create:
                    f = open(self._path, 'wb+')
                else:
                    raise NoSuchMailboxError(self._path)
            elif e.errno in (errno.EACCES, errno.EROFS):
                f = open(self._path, 'rb')
            else:
                raise
        self._file = f
        self._toc = None
        self._next_key = 0
        self._pending = False       # No changes require rewriting the file.
        self._pending_sync = False  # No need to sync the file
        self._locked = False
        self._file_length = None    # Used to record mailbox size

    def add(self, message):
        """Add message and return assigned key."""
        self._lookup()
        self._toc[self._next_key] = self._append_message(message)
        self._next_key += 1
        # _append_message appends the message to the mailbox file. We
        # don't need a full rewrite + rename, sync is enough.
        self._pending_sync = True
        return self._next_key - 1

    def remove(self, key):
        """Remove the keyed message; raise KeyError if it doesn't exist."""
        self._lookup(key)
        del self._toc[key]
        self._pending = True

    def __setitem__(self, key, message):
        """Replace the keyed message; raise KeyError if it doesn't exist."""
        self._lookup(key)
        self._toc[key] = self._append_message(message)
        self._pending = True

    def iterkeys(self):
        """Return an iterator over keys."""
        self._lookup()
        yield from self._toc.keys()

    def __contains__(self, key):
        """Return True if the keyed message exists, False otherwise."""
        self._lookup()
        return key in self._toc

    def __len__(self):
        """Return a count of messages in the mailbox."""
        self._lookup()
        return len(self._toc)

    def lock(self):
        """Lock the mailbox."""
        if not self._locked:
            _lock_file(self._file)
            self._locked = True

    def unlock(self):
        """Unlock the mailbox if it is locked."""
        if self._locked:
            _unlock_file(self._file)
            self._locked = False

    def flush(self):
        """Write any pending changes to disk."""
        if not self._pending:
            if self._pending_sync:
                # Messages have only been added, so syncing the file
                # is enough.
                _sync_flush(self._file)
                self._pending_sync = False
            return

        # In order to be writing anything out at all, self._toc must
        # already have been generated (and presumably has been modified
        # by adding or deleting an item).
        assert self._toc is not None

        # Check length of self._file; if it's changed, some other process
        # has modified the mailbox since we scanned it.
        self._file.seek(0, 2)
        cur_len = self._file.tell()
        if cur_len != self._file_length:
            raise ExternalClashError('Size of mailbox file changed '
                                     '(expected %i, found %i)' %
                                     (self._file_length, cur_len))

        new_file = _create_temporary(self._path)
        try:
            new_toc = {}
            self._pre_mailbox_hook(new_file)
            for key in sorted(self._toc.keys()):
                start, stop = self._toc[key]
                self._file.seek(start)
                self._pre_message_hook(new_file)
                new_start = new_file.tell()
                while True:
                    buffer = self._file.read(min(4096,
                                                 stop - self._file.tell()))
                    if not buffer:
                        break
                    new_file.write(buffer)
                new_toc[key] = (new_start, new_file.tell())
                self._post_message_hook(new_file)
            self._file_length = new_file.tell()
        except:
            new_file.close()
            os.remove(new_file.name)
            raise
        _sync_close(new_file)
        # self._file is about to get replaced, so no need to sync.
        self._file.close()
        # Make sure the new file's mode is the same as the old file's
        mode = os.stat(self._path).st_mode
        os.chmod(new_file.name, mode)
        try:
            os.rename(new_file.name, self._path)
        except FileExistsError:
            os.remove(self._path)
            os.rename(new_file.name, self._path)
        self._file = open(self._path, 'rb+')
        self._toc = new_toc
        self._pending = False
        self._pending_sync = False
        if self._locked:
            _lock_file(self._file, dotlock=False)

    def _pre_mailbox_hook(self, f):
        """Called before writing the mailbox to file f."""
        return

    def _pre_message_hook(self, f):
        """Called before writing each message to file f."""
        return

    def _post_message_hook(self, f):
        """Called after writing each message to file f."""
        return

    def close(self):
        """Flush and close the mailbox."""
        try:
            self.flush()
        finally:
            try:
                if self._locked:
                    self.unlock()
            finally:
                self._file.close()  # Sync has been done by self.flush() above.

    def _lookup(self, key=None):
        """Return (start, stop) or raise KeyError."""
        if self._toc is None:
            self._generate_toc()
        if key is not None:
            try:
                return self._toc[key]
            except KeyError:
                raise KeyError('No message with key: %s' % key)

    def _append_message(self, message):
        """Append message to mailbox and return (start, stop) offsets."""
        self._file.seek(0, 2)
        before = self._file.tell()
        if len(self._toc) == 0 and not self._pending:
            # This is the first message, and the _pre_mailbox_hook
            # hasn't yet been called. If self._pending is True,
            # messages have been removed, so _pre_mailbox_hook must
            # have been called already.
            self._pre_mailbox_hook(self._file)
        try:
            self._pre_message_hook(self._file)
            offsets = self._install_message(message)
            self._post_message_hook(self._file)
        except BaseException:
            self._file.truncate(before)
            raise
        self._file.flush()
        self._file_length = self._file.tell()  # Record current length of mailbox
        return offsets



class _mboxMMDF(_singlefileMailbox):
    """An mbox or MMDF mailbox."""

    _mangle_from_ = True

    def get_message(self, key):
        """Return a Message representation or raise a KeyError."""
        start, stop = self._lookup(key)
        self._file.seek(start)
        from_line = self._file.readline().replace(linesep, b'')
        string = self._file.read(stop - self._file.tell())
        msg = self._message_factory(string.replace(linesep, b'\n'))
        msg.set_from(from_line[5:].decode('ascii'))
        return msg

    def get_string(self, key, from_=False):
        """Return a string representation or raise a KeyError."""
        return email.message_from_bytes(
            self.get_bytes(key)).as_string(unixfrom=from_)

    def get_bytes(self, key, from_=False):
        """Return a string representation or raise a KeyError."""
        start, stop = self._lookup(key)
        self._file.seek(start)
        if not from_:
            self._file.readline()
        string = self._file.read(stop - self._file.tell())
        return string.replace(linesep, b'\n')

    def get_file(self, key, from_=False):
        """Return a file-like representation or raise a KeyError."""
        start, stop = self._lookup(key)
        self._file.seek(start)
        if not from_:
            self._file.readline()
        return _PartialFile(self._file, self._file.tell(), stop)

    def _install_message(self, message):
        """Format a message and blindly write to self._file."""
        from_line = None
        if isinstance(message, str):
            message = self._string_to_bytes(message)
        if isinstance(message, bytes) and message.startswith(b'From '):
            newline = message.find(b'\n')
            if newline != -1:
                from_line = message[:newline]
                message = message[newline + 1:]
            else:
                from_line = message
                message = b''
        elif isinstance(message, _mboxMMDFMessage):
            author = message.get_from().encode('ascii')
            from_line = b'From ' + author
        elif isinstance(message, email.message.Message):
            from_line = message.get_unixfrom()  # May be None.
            if from_line is not None:
                from_line = from_line.encode('ascii')
        if from_line is None:
            from_line = b'From MAILER-DAEMON ' + time.asctime(time.gmtime()).encode()
        start = self._file.tell()
        self._file.write(from_line + linesep)
        self._dump_message(message, self._file, self._mangle_from_)
        stop = self._file.tell()
        return (start, stop)


class mbox(_mboxMMDF):
    """A classic mbox mailbox."""

    _mangle_from_ = True

    # All messages must end in a newline character, and
    # _post_message_hooks outputs an empty line between messages.
    _append_newline = True

    def __init__(self, path, factory=None, create=True):
        """Initialize an mbox mailbox."""
        self._message_factory = mboxMessage
        _mboxMMDF.__init__(self, path, factory, create)

    def _post_message_hook(self, f):
        """Called after writing each message to file f."""
        f.write(linesep)

    def _generate_toc(self):
        """Generate key-to-(start, stop) table of contents."""
        starts, stops = [], []
        last_was_empty = False
        self._file.seek(0)
        while True:
            line_pos = self._file.tell()
            line = self._file.readline()
            if line.startswith(b'From '):
                if len(stops) < len(starts):
                    if last_was_empty:
                        stops.append(line_pos - len(linesep))
                    else:
                        # The last line before the "From " line wasn't
                        # blank, but we consider it a start of a
                        # message anyway.
                        stops.append(line_pos)
                starts.append(line_pos)
                last_was_empty = False
            elif not line:
                if last_was_empty:
                    stops.append(line_pos - len(linesep))
                else:
                    stops.append(line_pos)
                break
            elif line == linesep:
                last_was_empty = True
            else:
                last_was_empty = False
        self._toc = dict(enumerate(zip(starts, stops)))
        self._next_key = len(self._toc)
        self._file_length = self._file.tell()


class MMDF(_mboxMMDF):
    """An MMDF mailbox."""

    def __init__(self, path, factory=None, create=True):
        """Initialize an MMDF mailbox."""
        self._message_factory = MMDFMessage
        _mboxMMDF.__init__(self, path, factory, create)

    def _pre_message_hook(self, f):
        """Called before writing each message to file f."""
        f.write(b'\001\001\001\001' + linesep)

    def _post_message_hook(self, f):
        """Called after writing each message to file f."""
        f.write(linesep + b'\001\001\001\001' + linesep)

    def _generate_toc(self):
        """Generate key-to-(start, stop) table of contents."""
        starts, stops = [], []
        self._file.seek(0)
        next_pos = 0
        while True:
            line_pos = next_pos
            line = self._file.readline()
            next_pos = self._file.tell()
            if line.startswith(b'\001\001\001\001' + linesep):
                starts.append(next_pos)
                while True:
                    line_pos = next_pos
                    line = self._file.readline()
                    next_pos = self._file.tell()
                    if line == b'\001\001\001\001' + linesep:
                        stops.append(line_pos - len(linesep))
                        break
                    elif not line:
                        stops.append(line_pos)
                        break
            elif not line:
                break
        self._toc = dict(enumerate(zip(starts, stops)))
        self._next_key = len(self._toc)
        self._file.seek(0, 2)
        self._file_length = self._file.tell()


class MH(Mailbox):
    """An MH mailbox."""

    def __init__(self, path, factory=None, create=True):
        """Initialize an MH instance."""
        Mailbox.__init__(self, path, factory, create)
        if not os.path.exists(self._path):
            if create:
                os.mkdir(self._path, 0o700)
                os.close(os.open(os.path.join(self._path, '.mh_sequences'),
                                 os.O_CREAT | os.O_EXCL | os.O_WRONLY, 0o600))
            else:
                raise NoSuchMailboxError(self._path)
        self._locked = False

    def add(self, message):
        """Add message and return assigned key."""
        keys = self.keys()
        if len(keys) == 0:
            new_key = 1
        else:
            new_key = max(keys) + 1
        new_path = os.path.join(self._path, str(new_key))
        f = _create_carefully(new_path)
        closed = False
        try:
            if self._locked:
                _lock_file(f)
            try:
                try:
                    self._dump_message(message, f)
                except BaseException:
                    # Unlock and close so it can be deleted on Windows
                    if self._locked:
                        _unlock_file(f)
                    _sync_close(f)
                    closed = True
                    os.remove(new_path)
                    raise
                if isinstance(message, MHMessage):
                    self._dump_sequences(message, new_key)
            finally:
                if self._locked:
                    _unlock_file(f)
        finally:
            if not closed:
                _sync_close(f)
        return new_key

    def remove(self, key):
        """Remove the keyed message; raise KeyError if it doesn't exist."""
        path = os.path.join(self._path, str(key))
        try:
            f = open(path, 'rb+')
        except OSError as e:
            if e.errno == errno.ENOENT:
                raise KeyError('No message with key: %s' % key)
            else:
                raise
        else:
            f.close()
            os.remove(path)

    def __setitem__(self, key, message):
        """Replace the keyed message; raise KeyError if it doesn't exist."""
        path = os.path.join(self._path, str(key))
        try:
            f = open(path, 'rb+')
        except OSError as e:
            if e.errno == errno.ENOENT:
                raise KeyError('No message with key: %s' % key)
            else:
                raise
        try:
            if self._locked:
                _lock_file(f)
            try:
                os.close(os.open(path, os.O_WRONLY | os.O_TRUNC))
                self._dump_message(message, f)
                if isinstance(message, MHMessage):
                    self._dump_sequences(message, key)
            finally:
                if self._locked:
                    _unlock_file(f)
        finally:
            _sync_close(f)

    def get_message(self, key):
        """Return a Message representation or raise a KeyError."""
        try:
            if self._locked:
                f = open(os.path.join(self._path, str(key)), 'rb+')
            else:
                f = open(os.path.join(self._path, str(key)), 'rb')
        except OSError as e:
            if e.errno == errno.ENOENT:
                raise KeyError('No message with key: %s' % key)
            else:
                raise
        with f:
            if self._locked:
                _lock_file(f)
            try:
                msg = MHMessage(f)
            finally:
                if self._locked:
                    _unlock_file(f)
        for name, key_list in self.get_sequences().items():
            if key in key_list:
                msg.add_sequence(name)
        return msg

    def get_bytes(self, key):
        """Return a bytes representation or raise a KeyError."""
        try:
            if self._locked:
                f = open(os.path.join(self._path, str(key)), 'rb+')
            else:
                f = open(os.path.join(self._path, str(key)), 'rb')
        except OSError as e:
            if e.errno == errno.ENOENT:
                raise KeyError('No message with key: %s' % key)
            else:
                raise
        with f:
            if self._locked:
                _lock_file(f)
            try:
                return f.read().replace(linesep, b'\n')
            finally:
                if self._locked:
                    _unlock_file(f)

    def get_file(self, key):
        """Return a file-like representation or raise a KeyError."""
        try:
            f = open(os.path.join(self._path, str(key)), 'rb')
        except OSError as e:
            if e.errno == errno.ENOENT:
                raise KeyError('No message with key: %s' % key)
            else:
                raise
        return _ProxyFile(f)

    def iterkeys(self):
        """Return an iterator over keys."""
        return iter(sorted(int(entry) for entry in os.listdir(self._path)
                                      if entry.isdigit()))

    def __contains__(self, key):
        """Return True if the keyed message exists, False otherwise."""
        return os.path.exists(os.path.join(self._path, str(key)))

    def __len__(self):
        """Return a count of messages in the mailbox."""
        return len(list(self.iterkeys()))

    def lock(self):
        """Lock the mailbox."""
        if not self._locked:
            self._file = open(os.path.join(self._path, '.mh_sequences'), 'rb+')
            _lock_file(self._file)
            self._locked = True

    def unlock(self):
        """Unlock the mailbox if it is locked."""
        if self._locked:
            _unlock_file(self._file)
            _sync_close(self._file)
            del self._file
            self._locked = False

    def flush(self):
        """Write any pending changes to the disk."""
        return

    def close(self):
        """Flush and close the mailbox."""
        if self._locked:
            self.unlock()

    def list_folders(self):
        """Return a list of folder names."""
        result = []
        for entry in os.listdir(self._path):
            if os.path.isdir(os.path.join(self._path, entry)):
                result.append(entry)
        return result

    def get_folder(self, folder):
        """Return an MH instance for the named folder."""
        return MH(os.path.join(self._path, folder),
                  factory=self._factory, create=False)

    def add_folder(self, folder):
        """Create a folder and return an MH instance representing it."""
        return MH(os.path.join(self._path, folder),
                  factory=self._factory)

    def remove_folder(self, folder):
        """Delete the named folder, which must be empty."""
        path = os.path.join(self._path, folder)
        entries = os.listdir(path)
        if entries == ['.mh_sequences']:
            os.remove(os.path.join(path, '.mh_sequences'))
        elif entries == []:
            pass
        else:
            raise NotEmptyError('Folder not empty: %s' % self._path)
        os.rmdir(path)

    def get_sequences(self):
        """Return a name-to-key-list dictionary to define each sequence."""
        results = {}
        with open(os.path.join(self._path, '.mh_sequences'), 'r', encoding='ASCII') as f:
            all_keys = set(self.keys())
            for line in f:
                try:
                    name, contents = line.split(':')
                    keys = set()
                    for spec in contents.split():
                        if spec.isdigit():
                            keys.add(int(spec))
                        else:
                            start, stop = (int(x) for x in spec.split('-'))
                            keys.update(range(start, stop + 1))
                    results[name] = [key for key in sorted(keys) \
                                         if key in all_keys]
                    if len(results[name]) == 0:
                        del results[name]
                except ValueError:
                    raise FormatError('Invalid sequence specification: %s' %
                                      line.rstrip())
        return results

    def set_sequences(self, sequences):
        """Set sequences using the given name-to-key-list dictionary."""
        f = open(os.path.join(self._path, '.mh_sequences'), 'r+', encoding='ASCII')
        try:
            os.close(os.open(f.name, os.O_WRONLY | os.O_TRUNC))
            for name, keys in sequences.items():
                if len(keys) == 0:
                    continue
                f.write(name + ':')
                prev = None
                completing = False
                for key in sorted(set(keys)):
                    if key - 1 == prev:
                        if not completing:
                            completing = True
                            f.write('-')
                    elif completing:
                        completing = False
                        f.write('%s %s' % (prev, key))
                    else:
                        f.write(' %s' % key)
                    prev = key
                if completing:
                    f.write(str(prev) + '\n')
                else:
                    f.write('\n')
        finally:
            _sync_close(f)

    def pack(self):
        """Re-name messages to eliminate numbering gaps. Invalidates keys."""
        sequences = self.get_sequences()
        prev = 0
        changes = []
        for key in self.iterkeys():
            if key - 1 != prev:
                changes.append((key, prev + 1))
                if hasattr(os, 'link'):
                    os.link(os.path.join(self._path, str(key)),
                            os.path.join(self._path, str(prev + 1)))
                    os.unlink(os.path.join(self._path, str(key)))
                else:
                    os.rename(os.path.join(self._path, str(key)),
                              os.path.join(self._path, str(prev + 1)))
            prev += 1
        self._next_key = prev + 1
        if len(changes) == 0:
            return
        for name, key_list in sequences.items():
            for old, new in changes:
                if old in key_list:
                    key_list[key_list.index(old)] = new
        self.set_sequences(sequences)

    def _dump_sequences(self, message, key):
        """Inspect a new MHMessage and update sequences appropriately."""
        pending_sequences = message.get_sequences()
        all_sequences = self.get_sequences()
        for name, key_list in all_sequences.items():
            if name in pending_sequences:
                key_list.append(key)
            elif key in key_list:
                del key_list[key_list.index(key)]
        for sequence in pending_sequences:
            if sequence not in all_sequences:
                all_sequences[sequence] = [key]
        self.set_sequences(all_sequences)


class Babyl(_singlefileMailbox):
    """An Rmail-style Babyl mailbox."""

    _special_labels = frozenset(('unseen', 'deleted', 'filed', 'answered',
                                 'forwarded', 'edited', 'resent'))

    def __init__(self, path, factory=None, create=True):
        """Initialize a Babyl mailbox."""
        _singlefileMailbox.__init__(self, path, factory, create)
        self._labels = {}

    def add(self, message):
        """Add message and return assigned key."""
        key = _singlefileMailbox.add(self, message)
        if isinstance(message, BabylMessage):
            self._labels[key] = message.get_labels()
        return key

    def remove(self, key):
        """Remove the keyed message; raise KeyError if it doesn't exist."""
        _singlefileMailbox.remove(self, key)
        if key in self._labels:
            del self._labels[key]

    def __setitem__(self, key, message):
        """Replace the keyed message; raise KeyError if it doesn't exist."""
        _singlefileMailbox.__setitem__(self, key, message)
        if isinstance(message, BabylMessage):
            self._labels[key] = message.get_labels()

    def get_message(self, key):
        """Return a Message representation or raise a KeyError."""
        start, stop = self._lookup(key)
        self._file.seek(start)
        self._file.readline()   # Skip b'1,' line specifying labels.
        original_headers = io.BytesIO()
        while True:
            line = self._file.readline()
            if line == b'*** EOOH ***' + linesep or not line:
                break
            original_headers.write(line.replace(linesep, b'\n'))
        visible_headers = io.BytesIO()
        while True:
            line = self._file.readline()
            if line == linesep or not line:
                break
            visible_headers.write(line.replace(linesep, b'\n'))
        # Read up to the stop, or to the end
        n = stop - self._file.tell()
        assert n >= 0
        body = self._file.read(n)
        body = body.replace(linesep, b'\n')
        msg = BabylMessage(original_headers.getvalue() + body)
        msg.set_visible(visible_headers.getvalue())
        if key in self._labels:
            msg.set_labels(self._labels[key])
        return msg

    def get_bytes(self, key):
        """Return a string representation or raise a KeyError."""
        start, stop = self._lookup(key)
        self._file.seek(start)
        self._file.readline()   # Skip b'1,' line specifying labels.
        original_headers = io.BytesIO()
        while True:
            line = self._file.readline()
            if line == b'*** EOOH ***' + linesep or not line:
                break
            original_headers.write(line.replace(linesep, b'\n'))
        while True:
            line = self._file.readline()
            if line == linesep or not line:
                break
        headers = original_headers.getvalue()
        n = stop - self._file.tell()
        assert n >= 0
        data = self._file.read(n)
        data = data.replace(linesep, b'\n')
        return headers + data

    def get_file(self, key):
        """Return a file-like representation or raise a KeyError."""
        return io.BytesIO(self.get_bytes(key).replace(b'\n', linesep))

    def get_labels(self):
        """Return a list of user-defined labels in the mailbox."""
        self._lookup()
        labels = set()
        for label_list in self._labels.values():
            labels.update(label_list)
        labels.difference_update(self._special_labels)
        return list(labels)

    def _generate_toc(self):
        """Generate key-to-(start, stop) table of contents."""
        starts, stops = [], []
        self._file.seek(0)
        next_pos = 0
        label_lists = []
        while True:
            line_pos = next_pos
            line = self._file.readline()
            next_pos = self._file.tell()
            if line == b'\037\014' + linesep:
                if len(stops) < len(starts):
                    stops.append(line_pos - len(linesep))
                starts.append(next_pos)
                labels = [label.strip() for label
                                        in self._file.readline()[1:].split(b',')
                                        if label.strip()]
                label_lists.append(labels)
            elif line == b'\037' or line == b'\037' + linesep:
                if len(stops) < len(starts):
                    stops.append(line_pos - len(linesep))
            elif not line:
                stops.append(line_pos - len(linesep))
                break
        self._toc = dict(enumerate(zip(starts, stops)))
        self._labels = dict(enumerate(label_lists))
        self._next_key = len(self._toc)
        self._file.seek(0, 2)
        self._file_length = self._file.tell()

    def _pre_mailbox_hook(self, f):
        """Called before writing the mailbox to file f."""
        babyl = b'BABYL OPTIONS:' + linesep
        babyl += b'Version: 5' + linesep
        labels = self.get_labels()
        labels = (label.encode() for label in labels)
        babyl += b'Labels:' + b','.join(labels) + linesep
        babyl += b'\037'
        f.write(babyl)

    def _pre_message_hook(self, f):
        """Called before writing each message to file f."""
        f.write(b'\014' + linesep)

    def _post_message_hook(self, f):
        """Called after writing each message to file f."""
        f.write(linesep + b'\037')

    def _install_message(self, message):
        """Write message contents and return (start, stop)."""
        start = self._file.tell()
        if isinstance(message, BabylMessage):
            special_labels = []
            labels = []
            for label in message.get_labels():
                if label in self._special_labels:
                    special_labels.append(label)
                else:
                    labels.append(label)
            self._file.write(b'1')
            for label in special_labels:
                self._file.write(b', ' + label.encode())
            self._file.write(b',,')
            for label in labels:
                self._file.write(b' ' + label.encode() + b',')
            self._file.write(linesep)
        else:
            self._file.write(b'1,,' + linesep)
        if isinstance(message, email.message.Message):
            orig_buffer = io.BytesIO()
            orig_generator = email.generator.BytesGenerator(orig_buffer, False, 0)
            orig_generator.flatten(message)
            orig_buffer.seek(0)
            while True:
                line = orig_buffer.readline()
                self._file.write(line.replace(b'\n', linesep))
                if line == b'\n' or not line:
                    break
            self._file.write(b'*** EOOH ***' + linesep)
            if isinstance(message, BabylMessage):
                vis_buffer = io.BytesIO()
                vis_generator = email.generator.BytesGenerator(vis_buffer, False, 0)
                vis_generator.flatten(message.get_visible())
                while True:
                    line = vis_buffer.readline()
                    self._file.write(line.replace(b'\n', linesep))
                    if line == b'\n' or not line:
                        break
            else:
                orig_buffer.seek(0)
                while True:
                    line = orig_buffer.readline()
                    self._file.write(line.replace(b'\n', linesep))
                    if line == b'\n' or not line:
                        break
            while True:
                buffer = orig_buffer.read(4096) # Buffer size is arbitrary.
                if not buffer:
                    break
                self._file.write(buffer.replace(b'\n', linesep))
        elif isinstance(message, (bytes, str, io.StringIO)):
            if isinstance(message, io.StringIO):
                warnings.warn("Use of StringIO input is deprecated, "
                    "use BytesIO instead", DeprecationWarning, 3)
                message = message.getvalue()
            if isinstance(message, str):
                message = self._string_to_bytes(message)
            body_start = message.find(b'\n\n') + 2
            if body_start - 2 != -1:
                self._file.write(message[:body_start].replace(b'\n', linesep))
                self._file.write(b'*** EOOH ***' + linesep)
                self._file.write(message[:body_start].replace(b'\n', linesep))
                self._file.write(message[body_start:].replace(b'\n', linesep))
            else:
                self._file.write(b'*** EOOH ***' + linesep + linesep)
                self._file.write(message.replace(b'\n', linesep))
        elif hasattr(message, 'readline'):
            if hasattr(message, 'buffer'):
                warnings.warn("Use of text mode files is deprecated, "
                    "use a binary mode file instead", DeprecationWarning, 3)
                message = message.buffer
            original_pos = message.tell()
            first_pass = True
            while True:
                line = message.readline()
                # Universal newline support.
                if line.endswith(b'\r\n'):
                    line = line[:-2] + b'\n'
                elif line.endswith(b'\r'):
                    line = line[:-1] + b'\n'
                self._file.write(line.replace(b'\n', linesep))
                if line == b'\n' or not line:
                    if first_pass:
                        first_pass = False
                        self._file.write(b'*** EOOH ***' + linesep)
                        message.seek(original_pos)
                    else:
                        break
            while True:
                line = message.readline()
                if not line:
                    break
                # Universal newline support.
                if line.endswith(b'\r\n'):
                    line = line[:-2] + linesep
                elif line.endswith(b'\r'):
                    line = line[:-1] + linesep
                elif line.endswith(b'\n'):
                    line = line[:-1] + linesep
                self._file.write(line)
        else:
            raise TypeError('Invalid message type: %s' % type(message))
        stop = self._file.tell()
        return (start, stop)


class Message(email.message.Message):
    """Message with mailbox-format-specific properties."""

    def __init__(self, message=None):
        """Initialize a Message instance."""
        if isinstance(message, email.message.Message):
            self._become_message(copy.deepcopy(message))
            if isinstance(message, Message):
                message._explain_to(self)
        elif isinstance(message, bytes):
            self._become_message(email.message_from_bytes(message))
        elif isinstance(message, str):
            self._become_message(email.message_from_string(message))
        elif isinstance(message, io.TextIOWrapper):
            self._become_message(email.message_from_file(message))
        elif hasattr(message, "read"):
            self._become_message(email.message_from_binary_file(message))
        elif message is None:
            email.message.Message.__init__(self)
        else:
            raise TypeError('Invalid message type: %s' % type(message))

    def _become_message(self, message):
        """Assume the non-format-specific state of message."""
        type_specific = getattr(message, '_type_specific_attributes', [])
        for name in message.__dict__:
            if name not in type_specific:
                self.__dict__[name] = message.__dict__[name]

    def _explain_to(self, message):
        """Copy format-specific state to message insofar as possible."""
        if isinstance(message, Message):
            return  # There's nothing format-specific to explain.
        else:
            raise TypeError('Cannot convert to specified type')


class MaildirMessage(Message):
    """Message with Maildir-specific properties."""

    _type_specific_attributes = ['_subdir', '_info', '_date']

    def __init__(self, message=None):
        """Initialize a MaildirMessage instance."""
        self._subdir = 'new'
        self._info = ''
        self._date = time.time()
        Message.__init__(self, message)

    def get_subdir(self):
        """Return 'new' or 'cur'."""
        return self._subdir

    def set_subdir(self, subdir):
        """Set subdir to 'new' or 'cur'."""
        if subdir == 'new' or subdir == 'cur':
            self._subdir = subdir
        else:
            raise ValueError("subdir must be 'new' or 'cur': %s" % subdir)

    def get_flags(self):
        """Return as a string the flags that are set."""
        if self._info.startswith('2,'):
            return self._info[2:]
        else:
            return ''

    def set_flags(self, flags):
        """Set the given flags and unset all others."""
        self._info = '2,' + ''.join(sorted(flags))

    def add_flag(self, flag):
        """Set the given flag(s) without changing others."""
        self.set_flags(''.join(set(self.get_flags()) | set(flag)))

    def remove_flag(self, flag):
        """Unset the given string flag(s) without changing others."""
        if self.get_flags():
            self.set_flags(''.join(set(self.get_flags()) - set(flag)))

    def get_date(self):
        """Return delivery date of message, in seconds since the epoch."""
        return self._date

    def set_date(self, date):
        """Set delivery date of message, in seconds since the epoch."""
        try:
            self._date = float(date)
        except ValueError:
            raise TypeError("can't convert to float: %s" % date)

    def get_info(self):
        """Get the message's "info" as a string."""
        return self._info

    def set_info(self, info):
        """Set the message's "info" string."""
        if isinstance(info, str):
            self._info = info
        else:
            raise TypeError('info must be a string: %s' % type(info))

    def _explain_to(self, message):
        """Copy Maildir-specific state to message insofar as possible."""
        if isinstance(message, MaildirMessage):
            message.set_flags(self.get_flags())
            message.set_subdir(self.get_subdir())
            message.set_date(self.get_date())
        elif isinstance(message, _mboxMMDFMessage):
            flags = set(self.get_flags())
            if 'S' in flags:
                message.add_flag('R')
            if self.get_subdir() == 'cur':
                message.add_flag('O')
            if 'T' in flags:
                message.add_flag('D')
            if 'F' in flags:
                message.add_flag('F')
            if 'R' in flags:
                message.add_flag('A')
            message.set_from('MAILER-DAEMON', time.gmtime(self.get_date()))
        elif isinstance(message, MHMessage):
            flags = set(self.get_flags())
            if 'S' not in flags:
                message.add_sequence('unseen')
            if 'R' in flags:
                message.add_sequence('replied')
            if 'F' in flags:
                message.add_sequence('flagged')
        elif isinstance(message, BabylMessage):
            flags = set(self.get_flags())
            if 'S' not in flags:
                message.add_label('unseen')
            if 'T' in flags:
                message.add_label('deleted')
            if 'R' in flags:
                message.add_label('answered')
            if 'P' in flags:
                message.add_label('forwarded')
        elif isinstance(message, Message):
            pass
        else:
            raise TypeError('Cannot convert to specified type: %s' %
                            type(message))


class _mboxMMDFMessage(Message):
    """Message with mbox- or MMDF-specific properties."""

    _type_specific_attributes = ['_from']

    def __init__(self, message=None):
        """Initialize an mboxMMDFMessage instance."""
        self.set_from('MAILER-DAEMON', True)
        if isinstance(message, email.message.Message):
            unixfrom = message.get_unixfrom()
            if unixfrom is not None and unixfrom.startswith('From '):
                self.set_from(unixfrom[5:])
        Message.__init__(self, message)

    def get_from(self):
        """Return contents of "From " line."""
        return self._from

    def set_from(self, from_, time_=None):
        """Set "From " line, formatting and appending time_ if specified."""
        if time_ is not None:
            if time_ is True:
                time_ = time.gmtime()
            from_ += ' ' + time.asctime(time_)
        self._from = from_

    def get_flags(self):
        """Return as a string the flags that are set."""
        return self.get('Status', '') + self.get('X-Status', '')

    def set_flags(self, flags):
        """Set the given flags and unset all others."""
        flags = set(flags)
        status_flags, xstatus_flags = '', ''
        for flag in ('R', 'O'):
            if flag in flags:
                status_flags += flag
                flags.remove(flag)
        for flag in ('D', 'F', 'A'):
            if flag in flags:
                xstatus_flags += flag
                flags.remove(flag)
        xstatus_flags += ''.join(sorted(flags))
        try:
            self.replace_header('Status', status_flags)
        except KeyError:
            self.add_header('Status', status_flags)
        try:
            self.replace_header('X-Status', xstatus_flags)
        except KeyError:
            self.add_header('X-Status', xstatus_flags)

    def add_flag(self, flag):
        """Set the given flag(s) without changing others."""
        self.set_flags(''.join(set(self.get_flags()) | set(flag)))

    def remove_flag(self, flag):
        """Unset the given string flag(s) without changing others."""
        if 'Status' in self or 'X-Status' in self:
            self.set_flags(''.join(set(self.get_flags()) - set(flag)))

    def _explain_to(self, message):
        """Copy mbox- or MMDF-specific state to message insofar as possible."""
        if isinstance(message, MaildirMessage):
            flags = set(self.get_flags())
            if 'O' in flags:
                message.set_subdir('cur')
            if 'F' in flags:
                message.add_flag('F')
            if 'A' in flags:
                message.add_flag('R')
            if 'R' in flags:
                message.add_flag('S')
            if 'D' in flags:
                message.add_flag('T')
            del message['status']
            del message['x-status']
            maybe_date = ' '.join(self.get_from().split()[-5:])
            try:
                message.set_date(calendar.timegm(time.strptime(maybe_date,
                                                      '%a %b %d %H:%M:%S %Y')))
            except (ValueError, OverflowError):
                pass
        elif isinstance(message, _mboxMMDFMessage):
            message.set_flags(self.get_flags())
            message.set_from(self.get_from())
        elif isinstance(message, MHMessage):
            flags = set(self.get_flags())
            if 'R' not in flags:
                message.add_sequence('unseen')
            if 'A' in flags:
                message.add_sequence('replied')
            if 'F' in flags:
                message.add_sequence('flagged')
            del message['status']
            del message['x-status']
        elif isinstance(message, BabylMessage):
            flags = set(self.get_flags())
            if 'R' not in flags:
                message.add_label('unseen')
            if 'D' in flags:
                message.add_label('deleted')
            if 'A' in flags:
                message.add_label('answered')
            del message['status']
            del message['x-status']
        elif isinstance(message, Message):
            pass
        else:
            raise TypeError('Cannot convert to specified type: %s' %
                            type(message))


class mboxMessage(_mboxMMDFMessage):
    """Message with mbox-specific properties."""


class MHMessage(Message):
    """Message with MH-specific properties."""

    _type_specific_attributes = ['_sequences']

    def __init__(self, message=None):
        """Initialize an MHMessage instance."""
        self._sequences = []
        Message.__init__(self, message)

    def get_sequences(self):
        """Return a list of sequences that include the message."""
        return self._sequences[:]

    def set_sequences(self, sequences):
        """Set the list of sequences that include the message."""
        self._sequences = list(sequences)

    def add_sequence(self, sequence):
        """Add sequence to list of sequences including the message."""
        if isinstance(sequence, str):
            if not sequence in self._sequences:
                self._sequences.append(sequence)
        else:
            raise TypeError('sequence type must be str: %s' % type(sequence))

    def remove_sequence(self, sequence):
        """Remove sequence from the list of sequences including the message."""
        try:
            self._sequences.remove(sequence)
        except ValueError:
            pass

    def _explain_to(self, message):
        """Copy MH-specific state to message insofar as possible."""
        if isinstance(message, MaildirMessage):
            sequences = set(self.get_sequences())
            if 'unseen' in sequences:
                message.set_subdir('cur')
            else:
                message.set_subdir('cur')
                message.add_flag('S')
            if 'flagged' in sequences:
                message.add_flag('F')
            if 'replied' in sequences:
                message.add_flag('R')
        elif isinstance(message, _mboxMMDFMessage):
            sequences = set(self.get_sequences())
            if 'unseen' not in sequences:
                message.add_flag('RO')
            else:
                message.add_flag('O')
            if 'flagged' in sequences:
                message.add_flag('F')
            if 'replied' in sequences:
                message.add_flag('A')
        elif isinstance(message, MHMessage):
            for sequence in self.get_sequences():
                message.add_sequence(sequence)
        elif isinstance(message, BabylMessage):
            sequences = set(self.get_sequences())
            if 'unseen' in sequences:
                message.add_label('unseen')
            if 'replied' in sequences:
                message.add_label('answered')
        elif isinstance(message, Message):
            pass
        else:
            raise TypeError('Cannot convert to specified type: %s' %
                            type(message))


class BabylMessage(Message):
    """Message with Babyl-specific properties."""

    _type_specific_attributes = ['_labels', '_visible']

    def __init__(self, message=None):
        """Initialize an BabylMessage instance."""
        self._labels = []
        self._visible = Message()
        Message.__init__(self, message)

    def get_labels(self):
        """Return a list of labels on the message."""
        return self._labels[:]

    def set_labels(self, labels):
        """Set the list of labels on the message."""
        self._labels = list(labels)

    def add_label(self, label):
        """Add label to list of labels on the message."""
        if isinstance(label, str):
            if label not in self._labels:
                self._labels.append(label)
        else:
            raise TypeError('label must be a string: %s' % type(label))

    def remove_label(self, label):
        """Remove label from the list of labels on the message."""
        try:
            self._labels.remove(label)
        except ValueError:
            pass

    def get_visible(self):
        """Return a Message representation of visible headers."""
        return Message(self._visible)

    def set_visible(self, visible):
        """Set the Message representation of visible headers."""
        self._visible = Message(visible)

    def update_visible(self):
        """Update and/or sensibly generate a set of visible headers."""
        for header in self._visible.keys():
            if header in self:
                self._visible.replace_header(header, self[header])
            else:
                del self._visible[header]
        for header in ('Date', 'From', 'Reply-To', 'To', 'CC', 'Subject'):
            if header in self and header not in self._visible:
                self._visible[header] = self[header]

    def _explain_to(self, message):
        """Copy Babyl-specific state to message insofar as possible."""
        if isinstance(message, MaildirMessage):
            labels = set(self.get_labels())
            if 'unseen' in labels:
                message.set_subdir('cur')
            else:
                message.set_subdir('cur')
                message.add_flag('S')
            if 'forwarded' in labels or 'resent' in labels:
                message.add_flag('P')
            if 'answered' in labels:
                message.add_flag('R')
            if 'deleted' in labels:
                message.add_flag('T')
        elif isinstance(message, _mboxMMDFMessage):
            labels = set(self.get_labels())
            if 'unseen' not in labels:
                message.add_flag('RO')
            else:
                message.add_flag('O')
            if 'deleted' in labels:
                message.add_flag('D')
            if 'answered' in labels:
                message.add_flag('A')
        elif isinstance(message, MHMessage):
            labels = set(self.get_labels())
            if 'unseen' in labels:
                message.add_sequence('unseen')
            if 'answered' in labels:
                message.add_sequence('replied')
        elif isinstance(message, BabylMessage):
            message.set_visible(self.get_visible())
            for label in self.get_labels():
                message.add_label(label)
        elif isinstance(message, Message):
            pass
        else:
            raise TypeError('Cannot convert to specified type: %s' %
                            type(message))


class MMDFMessage(_mboxMMDFMessage):
    """Message with MMDF-specific properties."""


class _ProxyFile:
    """A read-only wrapper of a file."""

    def __init__(self, f, pos=None):
        """Initialize a _ProxyFile."""
        self._file = f
        if pos is None:
            self._pos = f.tell()
        else:
            self._pos = pos

    def read(self, size=None):
        """Read bytes."""
        return self._read(size, self._file.read)

    def read1(self, size=None):
        """Read bytes."""
        return self._read(size, self._file.read1)

    def readline(self, size=None):
        """Read a line."""
        return self._read(size, self._file.readline)

    def readlines(self, sizehint=None):
        """Read multiple lines."""
        result = []
        for line in self:
            result.append(line)
            if sizehint is not None:
                sizehint -= len(line)
                if sizehint <= 0:
                    break
        return result

    def __iter__(self):
        """Iterate over lines."""
        while True:
            line = self.readline()
            if not line:
                raise StopIteration
            yield line

    def tell(self):
        """Return the position."""
        return self._pos

    def seek(self, offset, whence=0):
        """Change position."""
        if whence == 1:
            self._file.seek(self._pos)
        self._file.seek(offset, whence)
        self._pos = self._file.tell()

    def close(self):
        """Close the file."""
        if hasattr(self, '_file'):
            if hasattr(self._file, 'close'):
                self._file.close()
            del self._file

    def _read(self, size, read_method):
        """Read size bytes using read_method."""
        if size is None:
            size = -1
        self._file.seek(self._pos)
        result = read_method(size)
        self._pos = self._file.tell()
        return result

    def __enter__(self):
        """Context management protocol support."""
        return self

    def __exit__(self, *exc):
        self.close()

    def readable(self):
        return self._file.readable()

    def writable(self):
        return self._file.writable()

    def seekable(self):
        return self._file.seekable()

    def flush(self):
        return self._file.flush()

    @property
    def closed(self):
        if not hasattr(self, '_file'):
            return True
        if not hasattr(self._file, 'closed'):
            return False
        return self._file.closed


class _PartialFile(_ProxyFile):
    """A read-only wrapper of part of a file."""

    def __init__(self, f, start=None, stop=None):
        """Initialize a _PartialFile."""
        _ProxyFile.__init__(self, f, start)
        self._start = start
        self._stop = stop

    def tell(self):
        """Return the position with respect to start."""
        return _ProxyFile.tell(self) - self._start

    def seek(self, offset, whence=0):
        """Change position, possibly with respect to start or stop."""
        if whence == 0:
            self._pos = self._start
            whence = 1
        elif whence == 2:
            self._pos = self._stop
            whence = 1
        _ProxyFile.seek(self, offset, whence)

    def _read(self, size, read_method):
        """Read size bytes using read_method, honoring start and stop."""
        remaining = self._stop - self._pos
        if remaining <= 0:
            return b''
        if size is None or size < 0 or size > remaining:
            size = remaining
        return _ProxyFile._read(self, size, read_method)

    def close(self):
        # do *not* close the underlying file object for partial files,
        # since it's global to the mailbox object
        if hasattr(self, '_file'):
            del self._file


def _lock_file(f, dotlock=True):
    """Lock file f using lockf and dot locking."""
    dotlock_done = False
    try:
        if fcntl:
            try:
                fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB)
            except OSError as e:
                if e.errno in (errno.EAGAIN, errno.EACCES, errno.EROFS):
                    raise ExternalClashError('lockf: lock unavailable: %s' %
                                             f.name)
                else:
                    raise
        if dotlock:
            try:
                pre_lock = _create_temporary(f.name + '.lock')
                pre_lock.close()
            except OSError as e:
                if e.errno in (errno.EACCES, errno.EROFS):
                    return  # Without write access, just skip dotlocking.
                else:
                    raise
            try:
                if hasattr(os, 'link'):
                    os.link(pre_lock.name, f.name + '.lock')
                    dotlock_done = True
                    os.unlink(pre_lock.name)
                else:
                    os.rename(pre_lock.name, f.name + '.lock')
                    dotlock_done = True
            except FileExistsError:
                os.remove(pre_lock.name)
                raise ExternalClashError('dot lock unavailable: %s' %
                                         f.name)
    except:
        if fcntl:
            fcntl.lockf(f, fcntl.LOCK_UN)
        if dotlock_done:
            os.remove(f.name + '.lock')
        raise

def _unlock_file(f):
    """Unlock file f using lockf and dot locking."""
    if fcntl:
        fcntl.lockf(f, fcntl.LOCK_UN)
    if os.path.exists(f.name + '.lock'):
        os.remove(f.name + '.lock')

def _create_carefully(path):
    """Create a file if it doesn't exist and open for reading and writing."""
    fd = os.open(path, os.O_CREAT | os.O_EXCL | os.O_RDWR, 0o666)
    try:
        return open(path, 'rb+')
    finally:
        os.close(fd)

def _create_temporary(path):
    """Create a temp file based on path and open for reading and writing."""
    return _create_carefully('%s.%s.%s.%s' % (path, int(time.time()),
                                              socket.gethostname(),
                                              os.getpid()))

def _sync_flush(f):
    """Ensure changes to file f are physically on disk."""
    f.flush()
    if hasattr(os, 'fsync'):
        os.fsync(f.fileno())

def _sync_close(f):
    """Close file f, ensuring all changes are physically on disk."""
    _sync_flush(f)
    f.close()


class Error(Exception):
    """Raised for module-specific errors."""

class NoSuchMailboxError(Error):
    """The specified mailbox does not exist and won't be created."""

class NotEmptyError(Error):
    """The specified mailbox is not empty and deletion was requested."""

class ExternalClashError(Error):
    """Another process caused an action to fail."""

class FormatError(Error):
    """A file appears to have an invalid format."""
lib\mailcap.py
"""Mailcap file handling.  See RFC 1524."""

import os

__all__ = ["getcaps","findmatch"]

# Part 1: top-level interface.

def getcaps():
    """Return a dictionary containing the mailcap database.

    The dictionary maps a MIME type (in all lowercase, e.g. 'text/plain')
    to a list of dictionaries corresponding to mailcap entries.  The list
    collects all the entries for that MIME type from all available mailcap
    files.  Each dictionary contains key-value pairs for that MIME type,
    where the viewing command is stored with the key "view".

    """
    caps = {}
    for mailcap in listmailcapfiles():
        try:
            fp = open(mailcap, 'r')
        except OSError:
            continue
        with fp:
            morecaps = readmailcapfile(fp)
        for key, value in morecaps.items():
            if not key in caps:
                caps[key] = value
            else:
                caps[key] = caps[key] + value
    return caps

def listmailcapfiles():
    """Return a list of all mailcap files found on the system."""
    # This is mostly a Unix thing, but we use the OS path separator anyway
    if 'MAILCAPS' in os.environ:
        pathstr = os.environ['MAILCAPS']
        mailcaps = pathstr.split(os.pathsep)
    else:
        if 'HOME' in os.environ:
            home = os.environ['HOME']
        else:
            # Don't bother with getpwuid()
            home = '.' # Last resort
        mailcaps = [home + '/.mailcap', '/etc/mailcap',
                '/usr/etc/mailcap', '/usr/local/etc/mailcap']
    return mailcaps


# Part 2: the parser.

def readmailcapfile(fp):
    """Read a mailcap file and return a dictionary keyed by MIME type.

    Each MIME type is mapped to an entry consisting of a list of
    dictionaries; the list will contain more than one such dictionary
    if a given MIME type appears more than once in the mailcap file.
    Each dictionary contains key-value pairs for that MIME type, where
    the viewing command is stored with the key "view".
    """
    caps = {}
    while 1:
        line = fp.readline()
        if not line: break
        # Ignore comments and blank lines
        if line[0] == '#' or line.strip() == '':
            continue
        nextline = line
        # Join continuation lines
        while nextline[-2:] == '\\\n':
            nextline = fp.readline()
            if not nextline: nextline = '\n'
            line = line[:-2] + nextline
        # Parse the line
        key, fields = parseline(line)
        if not (key and fields):
            continue
        # Normalize the key
        types = key.split('/')
        for j in range(len(types)):
            types[j] = types[j].strip()
        key = '/'.join(types).lower()
        # Update the database
        if key in caps:
            caps[key].append(fields)
        else:
            caps[key] = [fields]
    return caps

def parseline(line):
    """Parse one entry in a mailcap file and return a dictionary.

    The viewing command is stored as the value with the key "view",
    and the rest of the fields produce key-value pairs in the dict.
    """
    fields = []
    i, n = 0, len(line)
    while i < n:
        field, i = parsefield(line, i, n)
        fields.append(field)
        i = i+1 # Skip semicolon
    if len(fields) < 2:
        return None, None
    key, view, rest = fields[0], fields[1], fields[2:]
    fields = {'view': view}
    for field in rest:
        i = field.find('=')
        if i < 0:
            fkey = field
            fvalue = ""
        else:
            fkey = field[:i].strip()
            fvalue = field[i+1:].strip()
        if fkey in fields:
            # Ignore it
            pass
        else:
            fields[fkey] = fvalue
    return key, fields

def parsefield(line, i, n):
    """Separate one key-value pair in a mailcap entry."""
    start = i
    while i < n:
        c = line[i]
        if c == ';':
            break
        elif c == '\\':
            i = i+2
        else:
            i = i+1
    return line[start:i].strip(), i


# Part 3: using the database.

def findmatch(caps, MIMEtype, key='view', filename="/dev/null", plist=[]):
    """Find a match for a mailcap entry.

    Return a tuple containing the command line, and the mailcap entry
    used; (None, None) if no match is found.  This may invoke the
    'test' command of several matching entries before deciding which
    entry to use.

    """
    entries = lookup(caps, MIMEtype, key)
    # XXX This code should somehow check for the needsterminal flag.
    for e in entries:
        if 'test' in e:
            test = subst(e['test'], filename, plist)
            if test and os.system(test) != 0:
                continue
        command = subst(e[key], MIMEtype, filename, plist)
        return command, e
    return None, None

def lookup(caps, MIMEtype, key=None):
    entries = []
    if MIMEtype in caps:
        entries = entries + caps[MIMEtype]
    MIMEtypes = MIMEtype.split('/')
    MIMEtype = MIMEtypes[0] + '/*'
    if MIMEtype in caps:
        entries = entries + caps[MIMEtype]
    if key is not None:
        entries = [e for e in entries if key in e]
    return entries

def subst(field, MIMEtype, filename, plist=[]):
    # XXX Actually, this is Unix-specific
    res = ''
    i, n = 0, len(field)
    while i < n:
        c = field[i]; i = i+1
        if c != '%':
            if c == '\\':
                c = field[i:i+1]; i = i+1
            res = res + c
        else:
            c = field[i]; i = i+1
            if c == '%':
                res = res + c
            elif c == 's':
                res = res + filename
            elif c == 't':
                res = res + MIMEtype
            elif c == '{':
                start = i
                while i < n and field[i] != '}':
                    i = i+1
                name = field[start:i]
                i = i+1
                res = res + findparam(name, plist)
            # XXX To do:
            # %n == number of parts if type is multipart/*
            # %F == list of alternating type and filename for parts
            else:
                res = res + '%' + c
    return res

def findparam(name, plist):
    name = name.lower() + '='
    n = len(name)
    for p in plist:
        if p[:n].lower() == name:
            return p[n:]
    return ''


# Part 4: test program.

def test():
    import sys
    caps = getcaps()
    if not sys.argv[1:]:
        show(caps)
        return
    for i in range(1, len(sys.argv), 2):
        args = sys.argv[i:i+2]
        if len(args) < 2:
            print("usage: mailcap [MIMEtype file] ...")
            return
        MIMEtype = args[0]
        file = args[1]
        command, e = findmatch(caps, MIMEtype, 'view', file)
        if not command:
            print("No viewer found for", type)
        else:
            print("Executing:", command)
            sts = os.system(command)
            if sts:
                print("Exit status:", sts)

def show(caps):
    print("Mailcap files:")
    for fn in listmailcapfiles(): print("\t" + fn)
    print()
    if not caps: caps = getcaps()
    print("Mailcap entries:")
    print()
    ckeys = sorted(caps)
    for type in ckeys:
        print(type)
        entries = caps[type]
        for e in entries:
            keys = sorted(e)
            for k in keys:
                print("  %-15s" % k, e[k])
            print()

if __name__ == '__main__':
    test()
lib\mimetypes.py
"""Guess the MIME type of a file.

This module defines two useful functions:

guess_type(url, strict=True) -- guess the MIME type and encoding of a URL.

guess_extension(type, strict=True) -- guess the extension for a given MIME type.

It also contains the following, for tuning the behavior:

Data:

knownfiles -- list of files to parse
inited -- flag set when init() has been called
suffix_map -- dictionary mapping suffixes to suffixes
encodings_map -- dictionary mapping suffixes to encodings
types_map -- dictionary mapping suffixes to types

Functions:

init([files]) -- parse a list of files, default knownfiles (on Windows, the
  default values are taken from the registry)
read_mime_types(file) -- parse one file, return a dictionary or None
"""

import os
import sys
import posixpath
import urllib.parse
try:
    import winreg as _winreg
except ImportError:
    _winreg = None

__all__ = [
    "guess_type","guess_extension","guess_all_extensions",
    "add_type","read_mime_types","init"
]

knownfiles = [
    "/etc/mime.types",
    "/etc/httpd/mime.types",                    # Mac OS X
    "/etc/httpd/conf/mime.types",               # Apache
    "/etc/apache/mime.types",                   # Apache 1
    "/etc/apache2/mime.types",                  # Apache 2
    "/usr/local/etc/httpd/conf/mime.types",
    "/usr/local/lib/netscape/mime.types",
    "/usr/local/etc/httpd/conf/mime.types",     # Apache 1.2
    "/usr/local/etc/mime.types",                # Apache 1.3
    ]

inited = False
_db = None


class MimeTypes:
    """MIME-types datastore.

    This datastore can handle information from mime.types-style files
    and supports basic determination of MIME type from a filename or
    URL, and can guess a reasonable extension given a MIME type.
    """

    def __init__(self, filenames=(), strict=True):
        if not inited:
            init()
        self.encodings_map = encodings_map.copy()
        self.suffix_map = suffix_map.copy()
        self.types_map = ({}, {}) # dict for (non-strict, strict)
        self.types_map_inv = ({}, {})
        for (ext, type) in types_map.items():
            self.add_type(type, ext, True)
        for (ext, type) in common_types.items():
            self.add_type(type, ext, False)
        for name in filenames:
            self.read(name, strict)

    def add_type(self, type, ext, strict=True):
        """Add a mapping between a type and an extension.

        When the extension is already known, the new
        type will replace the old one. When the type
        is already known the extension will be added
        to the list of known extensions.

        If strict is true, information will be added to
        list of standard types, else to the list of non-standard
        types.
        """
        self.types_map[strict][ext] = type
        exts = self.types_map_inv[strict].setdefault(type, [])
        if ext not in exts:
            exts.append(ext)

    def guess_type(self, url, strict=True):
        """Guess the type of a file based on its URL.

        Return value is a tuple (type, encoding) where type is None if
        the type can't be guessed (no or unknown suffix) or a string
        of the form type/subtype, usable for a MIME Content-type
        header; and encoding is None for no encoding or the name of
        the program used to encode (e.g. compress or gzip).  The
        mappings are table driven.  Encoding suffixes are case
        sensitive; type suffixes are first tried case sensitive, then
        case insensitive.

        The suffixes .tgz, .taz and .tz (case sensitive!) are all
        mapped to '.tar.gz'.  (This is table-driven too, using the
        dictionary suffix_map.)

        Optional `strict' argument when False adds a bunch of commonly found,
        but non-standard types.
        """
        scheme, url = urllib.parse.splittype(url)
        if scheme == 'data':
            # syntax of data URLs:
            # dataurl   := "data:" [ mediatype ] [ ";base64" ] "," data
            # mediatype := [ type "/" subtype ] *( ";" parameter )
            # data      := *urlchar
            # parameter := attribute "=" value
            # type/subtype defaults to "text/plain"
            comma = url.find(',')
            if comma < 0:
                # bad data URL
                return None, None
            semi = url.find(';', 0, comma)
            if semi >= 0:
                type = url[:semi]
            else:
                type = url[:comma]
            if '=' in type or '/' not in type:
                type = 'text/plain'
            return type, None           # never compressed, so encoding is None
        base, ext = posixpath.splitext(url)
        while ext in self.suffix_map:
            base, ext = posixpath.splitext(base + self.suffix_map[ext])
        if ext in self.encodings_map:
            encoding = self.encodings_map[ext]
            base, ext = posixpath.splitext(base)
        else:
            encoding = None
        types_map = self.types_map[True]
        if ext in types_map:
            return types_map[ext], encoding
        elif ext.lower() in types_map:
            return types_map[ext.lower()], encoding
        elif strict:
            return None, encoding
        types_map = self.types_map[False]
        if ext in types_map:
            return types_map[ext], encoding
        elif ext.lower() in types_map:
            return types_map[ext.lower()], encoding
        else:
            return None, encoding

    def guess_all_extensions(self, type, strict=True):
        """Guess the extensions for a file based on its MIME type.

        Return value is a list of strings giving the possible filename
        extensions, including the leading dot ('.').  The extension is not
        guaranteed to have been associated with any particular data stream,
        but would be mapped to the MIME type `type' by guess_type().

        Optional `strict' argument when false adds a bunch of commonly found,
        but non-standard types.
        """
        type = type.lower()
        extensions = self.types_map_inv[True].get(type, [])
        if not strict:
            for ext in self.types_map_inv[False].get(type, []):
                if ext not in extensions:
                    extensions.append(ext)
        return extensions

    def guess_extension(self, type, strict=True):
        """Guess the extension for a file based on its MIME type.

        Return value is a string giving a filename extension,
        including the leading dot ('.').  The extension is not
        guaranteed to have been associated with any particular data
        stream, but would be mapped to the MIME type `type' by
        guess_type().  If no extension can be guessed for `type', None
        is returned.

        Optional `strict' argument when false adds a bunch of commonly found,
        but non-standard types.
        """
        extensions = self.guess_all_extensions(type, strict)
        if not extensions:
            return None
        return extensions[0]

    def read(self, filename, strict=True):
        """
        Read a single mime.types-format file, specified by pathname.

        If strict is true, information will be added to
        list of standard types, else to the list of non-standard
        types.
        """
        with open(filename, encoding='utf-8') as fp:
            self.readfp(fp, strict)

    def readfp(self, fp, strict=True):
        """
        Read a single mime.types-format file.

        If strict is true, information will be added to
        list of standard types, else to the list of non-standard
        types.
        """
        while 1:
            line = fp.readline()
            if not line:
                break
            words = line.split()
            for i in range(len(words)):
                if words[i][0] == '#':
                    del words[i:]
                    break
            if not words:
                continue
            type, suffixes = words[0], words[1:]
            for suff in suffixes:
                self.add_type(type, '.' + suff, strict)

    def read_windows_registry(self, strict=True):
        """
        Load the MIME types database from Windows registry.

        If strict is true, information will be added to
        list of standard types, else to the list of non-standard
        types.
        """

        # Windows only
        if not _winreg:
            return

        def enum_types(mimedb):
            i = 0
            while True:
                try:
                    ctype = _winreg.EnumKey(mimedb, i)
                except EnvironmentError:
                    break
                else:
                    if '\0' not in ctype:
                        yield ctype
                i += 1

        with _winreg.OpenKey(_winreg.HKEY_CLASSES_ROOT, '') as hkcr:
            for subkeyname in enum_types(hkcr):
                # ironpython: code modified to avoid StackOverflowException - https://github.com/IronLanguages/ironpython3/issues/1182
                with _winreg.OpenKey(hkcr, subkeyname) as subkey:
                    # Only check file extensions
                    if not subkeyname.startswith("."):
                        continue
                    try:
                        # raises EnvironmentError if no 'Content Type' value
                        mimetype, datatype = _winreg.QueryValueEx(
                            subkey, 'Content Type')
                    except EnvironmentError:
                        pass
                    else:
                        if datatype != _winreg.REG_SZ:
                            continue
                        self.add_type(mimetype, subkeyname, strict)

def guess_type(url, strict=True):
    """Guess the type of a file based on its URL.

    Return value is a tuple (type, encoding) where type is None if the
    type can't be guessed (no or unknown suffix) or a string of the
    form type/subtype, usable for a MIME Content-type header; and
    encoding is None for no encoding or the name of the program used
    to encode (e.g. compress or gzip).  The mappings are table
    driven.  Encoding suffixes are case sensitive; type suffixes are
    first tried case sensitive, then case insensitive.

    The suffixes .tgz, .taz and .tz (case sensitive!) are all mapped
    to ".tar.gz".  (This is table-driven too, using the dictionary
    suffix_map).

    Optional `strict' argument when false adds a bunch of commonly found, but
    non-standard types.
    """
    if _db is None:
        init()
    return _db.guess_type(url, strict)


def guess_all_extensions(type, strict=True):
    """Guess the extensions for a file based on its MIME type.

    Return value is a list of strings giving the possible filename
    extensions, including the leading dot ('.').  The extension is not
    guaranteed to have been associated with any particular data
    stream, but would be mapped to the MIME type `type' by
    guess_type().  If no extension can be guessed for `type', None
    is returned.

    Optional `strict' argument when false adds a bunch of commonly found,
    but non-standard types.
    """
    if _db is None:
        init()
    return _db.guess_all_extensions(type, strict)

def guess_extension(type, strict=True):
    """Guess the extension for a file based on its MIME type.

    Return value is a string giving a filename extension, including the
    leading dot ('.').  The extension is not guaranteed to have been
    associated with any particular data stream, but would be mapped to the
    MIME type `type' by guess_type().  If no extension can be guessed for
    `type', None is returned.

    Optional `strict' argument when false adds a bunch of commonly found,
    but non-standard types.
    """
    if _db is None:
        init()
    return _db.guess_extension(type, strict)

def add_type(type, ext, strict=True):
    """Add a mapping between a type and an extension.

    When the extension is already known, the new
    type will replace the old one. When the type
    is already known the extension will be added
    to the list of known extensions.

    If strict is true, information will be added to
    list of standard types, else to the list of non-standard
    types.
    """
    if _db is None:
        init()
    return _db.add_type(type, ext, strict)


def init(files=None):
    global suffix_map, types_map, encodings_map, common_types
    global inited, _db
    inited = True    # so that MimeTypes.__init__() doesn't call us again
    db = MimeTypes()
    if files is None:
        if _winreg:
            db.read_windows_registry()
        files = knownfiles
    for file in files:
        if os.path.isfile(file):
            db.read(file)
    encodings_map = db.encodings_map
    suffix_map = db.suffix_map
    types_map = db.types_map[True]
    common_types = db.types_map[False]
    # Make the DB a global variable now that it is fully initialized
    _db = db


def read_mime_types(file):
    try:
        f = open(file)
    except OSError:
        return None
    with f:
        db = MimeTypes()
        db.readfp(f, True)
        return db.types_map[True]


def _default_mime_types():
    global suffix_map
    global encodings_map
    global types_map
    global common_types

    suffix_map = {
        '.svgz': '.svg.gz',
        '.tgz': '.tar.gz',
        '.taz': '.tar.gz',
        '.tz': '.tar.gz',
        '.tbz2': '.tar.bz2',
        '.txz': '.tar.xz',
        }

    encodings_map = {
        '.gz': 'gzip',
        '.Z': 'compress',
        '.bz2': 'bzip2',
        '.xz': 'xz',
        }

    # Before adding new types, make sure they are either registered with IANA,
    # at http://www.iana.org/assignments/media-types
    # or extensions, i.e. using the x- prefix

    # If you add to these, please keep them sorted!
    types_map = {
        '.a'      : 'application/octet-stream',
        '.ai'     : 'application/postscript',
        '.aif'    : 'audio/x-aiff',
        '.aifc'   : 'audio/x-aiff',
        '.aiff'   : 'audio/x-aiff',
        '.au'     : 'audio/basic',
        '.avi'    : 'video/x-msvideo',
        '.bat'    : 'text/plain',
        '.bcpio'  : 'application/x-bcpio',
        '.bin'    : 'application/octet-stream',
        '.bmp'    : 'image/x-ms-bmp',
        '.c'      : 'text/plain',
        # Duplicates :(
        '.cdf'    : 'application/x-cdf',
        '.cdf'    : 'application/x-netcdf',
        '.cpio'   : 'application/x-cpio',
        '.csh'    : 'application/x-csh',
        '.css'    : 'text/css',
        '.dll'    : 'application/octet-stream',
        '.doc'    : 'application/msword',
        '.dot'    : 'application/msword',
        '.dvi'    : 'application/x-dvi',
        '.eml'    : 'message/rfc822',
        '.eps'    : 'application/postscript',
        '.etx'    : 'text/x-setext',
        '.exe'    : 'application/octet-stream',
        '.gif'    : 'image/gif',
        '.gtar'   : 'application/x-gtar',
        '.h'      : 'text/plain',
        '.hdf'    : 'application/x-hdf',
        '.htm'    : 'text/html',
        '.html'   : 'text/html',
        '.ico'    : 'image/vnd.microsoft.icon',
        '.ief'    : 'image/ief',
        '.jpe'    : 'image/jpeg',
        '.jpeg'   : 'image/jpeg',
        '.jpg'    : 'image/jpeg',
        '.js'     : 'application/javascript',
        '.ksh'    : 'text/plain',
        '.latex'  : 'application/x-latex',
        '.m1v'    : 'video/mpeg',
        '.m3u'    : 'application/vnd.apple.mpegurl',
        '.m3u8'   : 'application/vnd.apple.mpegurl',
        '.man'    : 'application/x-troff-man',
        '.me'     : 'application/x-troff-me',
        '.mht'    : 'message/rfc822',
        '.mhtml'  : 'message/rfc822',
        '.mif'    : 'application/x-mif',
        '.mov'    : 'video/quicktime',
        '.movie'  : 'video/x-sgi-movie',
        '.mp2'    : 'audio/mpeg',
        '.mp3'    : 'audio/mpeg',
        '.mp4'    : 'video/mp4',
        '.mpa'    : 'video/mpeg',
        '.mpe'    : 'video/mpeg',
        '.mpeg'   : 'video/mpeg',
        '.mpg'    : 'video/mpeg',
        '.ms'     : 'application/x-troff-ms',
        '.nc'     : 'application/x-netcdf',
        '.nws'    : 'message/rfc822',
        '.o'      : 'application/octet-stream',
        '.obj'    : 'application/octet-stream',
        '.oda'    : 'application/oda',
        '.p12'    : 'application/x-pkcs12',
        '.p7c'    : 'application/pkcs7-mime',
        '.pbm'    : 'image/x-portable-bitmap',
        '.pdf'    : 'application/pdf',
        '.pfx'    : 'application/x-pkcs12',
        '.pgm'    : 'image/x-portable-graymap',
        '.pl'     : 'text/plain',
        '.png'    : 'image/png',
        '.pnm'    : 'image/x-portable-anymap',
        '.pot'    : 'application/vnd.ms-powerpoint',
        '.ppa'    : 'application/vnd.ms-powerpoint',
        '.ppm'    : 'image/x-portable-pixmap',
        '.pps'    : 'application/vnd.ms-powerpoint',
        '.ppt'    : 'application/vnd.ms-powerpoint',
        '.ps'     : 'application/postscript',
        '.pwz'    : 'application/vnd.ms-powerpoint',
        '.py'     : 'text/x-python',
        '.pyc'    : 'application/x-python-code',
        '.pyo'    : 'application/x-python-code',
        '.qt'     : 'video/quicktime',
        '.ra'     : 'audio/x-pn-realaudio',
        '.ram'    : 'application/x-pn-realaudio',
        '.ras'    : 'image/x-cmu-raster',
        '.rdf'    : 'application/xml',
        '.rgb'    : 'image/x-rgb',
        '.roff'   : 'application/x-troff',
        '.rtx'    : 'text/richtext',
        '.sgm'    : 'text/x-sgml',
        '.sgml'   : 'text/x-sgml',
        '.sh'     : 'application/x-sh',
        '.shar'   : 'application/x-shar',
        '.snd'    : 'audio/basic',
        '.so'     : 'application/octet-stream',
        '.src'    : 'application/x-wais-source',
        '.sv4cpio': 'application/x-sv4cpio',
        '.sv4crc' : 'application/x-sv4crc',
        '.svg'    : 'image/svg+xml',
        '.swf'    : 'application/x-shockwave-flash',
        '.t'      : 'application/x-troff',
        '.tar'    : 'application/x-tar',
        '.tcl'    : 'application/x-tcl',
        '.tex'    : 'application/x-tex',
        '.texi'   : 'application/x-texinfo',
        '.texinfo': 'application/x-texinfo',
        '.tif'    : 'image/tiff',
        '.tiff'   : 'image/tiff',
        '.tr'     : 'application/x-troff',
        '.tsv'    : 'text/tab-separated-values',
        '.txt'    : 'text/plain',
        '.ustar'  : 'application/x-ustar',
        '.vcf'    : 'text/x-vcard',
        '.wav'    : 'audio/x-wav',
        '.wiz'    : 'application/msword',
        '.wsdl'   : 'application/xml',
        '.xbm'    : 'image/x-xbitmap',
        '.xlb'    : 'application/vnd.ms-excel',
        # Duplicates :(
        '.xls'    : 'application/excel',
        '.xls'    : 'application/vnd.ms-excel',
        '.xml'    : 'text/xml',
        '.xpdl'   : 'application/xml',
        '.xpm'    : 'image/x-xpixmap',
        '.xsl'    : 'application/xml',
        '.xwd'    : 'image/x-xwindowdump',
        '.zip'    : 'application/zip',
        }

    # These are non-standard types, commonly found in the wild.  They will
    # only match if strict=0 flag is given to the API methods.

    # Please sort these too
    common_types = {
        '.jpg' : 'image/jpg',
        '.mid' : 'audio/midi',
        '.midi': 'audio/midi',
        '.pct' : 'image/pict',
        '.pic' : 'image/pict',
        '.pict': 'image/pict',
        '.rtf' : 'application/rtf',
        '.xul' : 'text/xul'
        }


_default_mime_types()


if __name__ == '__main__':
    import getopt

    USAGE = """\
Usage: mimetypes.py [options] type

Options:
    --help / -h       -- print this message and exit
    --lenient / -l    -- additionally search of some common, but non-standard
                         types.
    --extension / -e  -- guess extension instead of type

More than one type argument may be given.
"""

    def usage(code, msg=''):
        print(USAGE)
        if msg: print(msg)
        sys.exit(code)

    try:
        opts, args = getopt.getopt(sys.argv[1:], 'hle',
                                   ['help', 'lenient', 'extension'])
    except getopt.error as msg:
        usage(1, msg)

    strict = 1
    extension = 0
    for opt, arg in opts:
        if opt in ('-h', '--help'):
            usage(0)
        elif opt in ('-l', '--lenient'):
            strict = 0
        elif opt in ('-e', '--extension'):
            extension = 1
    for gtype in args:
        if extension:
            guess = guess_extension(gtype, strict)
            if not guess: print("I don't know anything about type", gtype)
            else: print(guess)
        else:
            guess, encoding = guess_type(gtype, strict)
            if not guess: print("I don't know anything about type", gtype)
            else: print('type:', guess, 'encoding:', encoding)
lib\modulefinder.py
"""Find modules used by a script, using introspection."""

import dis
import importlib._bootstrap
import importlib.machinery
import marshal
import os
import sys
import types
import struct
import warnings
with warnings.catch_warnings():
    warnings.simplefilter('ignore', PendingDeprecationWarning)
    import imp

# XXX Clean up once str8's cstor matches bytes.
LOAD_CONST = bytes([dis.opname.index('LOAD_CONST')])
IMPORT_NAME = bytes([dis.opname.index('IMPORT_NAME')])
STORE_NAME = bytes([dis.opname.index('STORE_NAME')])
STORE_GLOBAL = bytes([dis.opname.index('STORE_GLOBAL')])
STORE_OPS = [STORE_NAME, STORE_GLOBAL]
HAVE_ARGUMENT = bytes([dis.HAVE_ARGUMENT])

# Modulefinder does a good job at simulating Python's, but it can not
# handle __path__ modifications packages make at runtime.  Therefore there
# is a mechanism whereby you can register extra paths in this map for a
# package, and it will be honored.

# Note this is a mapping is lists of paths.
packagePathMap = {}

# A Public interface
def AddPackagePath(packagename, path):
    packagePathMap.setdefault(packagename, []).append(path)

replacePackageMap = {}

# This ReplacePackage mechanism allows modulefinder to work around
# situations in which a package injects itself under the name
# of another package into sys.modules at runtime by calling
# ReplacePackage("real_package_name", "faked_package_name")
# before running ModuleFinder.

def ReplacePackage(oldname, newname):
    replacePackageMap[oldname] = newname


class Module:

    def __init__(self, name, file=None, path=None):
        self.__name__ = name
        self.__file__ = file
        self.__path__ = path
        self.__code__ = None
        # The set of global names that are assigned to in the module.
        # This includes those names imported through starimports of
        # Python modules.
        self.globalnames = {}
        # The set of starimports this module did that could not be
        # resolved, ie. a starimport from a non-Python module.
        self.starimports = {}

    def __repr__(self):
        s = "Module(%r" % (self.__name__,)
        if self.__file__ is not None:
            s = s + ", %r" % (self.__file__,)
        if self.__path__ is not None:
            s = s + ", %r" % (self.__path__,)
        s = s + ")"
        return s

class ModuleFinder:

    def __init__(self, path=None, debug=0, excludes=[], replace_paths=[]):
        if path is None:
            path = sys.path
        self.path = path
        self.modules = {}
        self.badmodules = {}
        self.debug = debug
        self.indent = 0
        self.excludes = excludes
        self.replace_paths = replace_paths
        self.processed_paths = []   # Used in debugging only

    def msg(self, level, str, *args):
        if level <= self.debug:
            for i in range(self.indent):
                print("   ", end=' ')
            print(str, end=' ')
            for arg in args:
                print(repr(arg), end=' ')
            print()

    def msgin(self, *args):
        level = args[0]
        if level <= self.debug:
            self.indent = self.indent + 1
            self.msg(*args)

    def msgout(self, *args):
        level = args[0]
        if level <= self.debug:
            self.indent = self.indent - 1
            self.msg(*args)

    def run_script(self, pathname):
        self.msg(2, "run_script", pathname)
        with open(pathname) as fp:
            stuff = ("", "r", imp.PY_SOURCE)
            self.load_module('__main__', fp, pathname, stuff)

    def load_file(self, pathname):
        dir, name = os.path.split(pathname)
        name, ext = os.path.splitext(name)
        with open(pathname) as fp:
            stuff = (ext, "r", imp.PY_SOURCE)
            self.load_module(name, fp, pathname, stuff)

    def import_hook(self, name, caller=None, fromlist=None, level=-1):
        self.msg(3, "import_hook", name, caller, fromlist, level)
        parent = self.determine_parent(caller, level=level)
        q, tail = self.find_head_package(parent, name)
        m = self.load_tail(q, tail)
        if not fromlist:
            return q
        if m.__path__:
            self.ensure_fromlist(m, fromlist)
        return None

    def determine_parent(self, caller, level=-1):
        self.msgin(4, "determine_parent", caller, level)
        if not caller or level == 0:
            self.msgout(4, "determine_parent -> None")
            return None
        pname = caller.__name__
        if level >= 1: # relative import
            if caller.__path__:
                level -= 1
            if level == 0:
                parent = self.modules[pname]
                assert parent is caller
                self.msgout(4, "determine_parent ->", parent)
                return parent
            if pname.count(".") < level:
                raise ImportError("relative importpath too deep")
            pname = ".".join(pname.split(".")[:-level])
            parent = self.modules[pname]
            self.msgout(4, "determine_parent ->", parent)
            return parent
        if caller.__path__:
            parent = self.modules[pname]
            assert caller is parent
            self.msgout(4, "determine_parent ->", parent)
            return parent
        if '.' in pname:
            i = pname.rfind('.')
            pname = pname[:i]
            parent = self.modules[pname]
            assert parent.__name__ == pname
            self.msgout(4, "determine_parent ->", parent)
            return parent
        self.msgout(4, "determine_parent -> None")
        return None

    def find_head_package(self, parent, name):
        self.msgin(4, "find_head_package", parent, name)
        if '.' in name:
            i = name.find('.')
            head = name[:i]
            tail = name[i+1:]
        else:
            head = name
            tail = ""
        if parent:
            qname = "%s.%s" % (parent.__name__, head)
        else:
            qname = head
        q = self.import_module(head, qname, parent)
        if q:
            self.msgout(4, "find_head_package ->", (q, tail))
            return q, tail
        if parent:
            qname = head
            parent = None
            q = self.import_module(head, qname, parent)
            if q:
                self.msgout(4, "find_head_package ->", (q, tail))
                return q, tail
        self.msgout(4, "raise ImportError: No module named", qname)
        raise ImportError("No module named " + qname)

    def load_tail(self, q, tail):
        self.msgin(4, "load_tail", q, tail)
        m = q
        while tail:
            i = tail.find('.')
            if i < 0: i = len(tail)
            head, tail = tail[:i], tail[i+1:]
            mname = "%s.%s" % (m.__name__, head)
            m = self.import_module(head, mname, m)
            if not m:
                self.msgout(4, "raise ImportError: No module named", mname)
                raise ImportError("No module named " + mname)
        self.msgout(4, "load_tail ->", m)
        return m

    def ensure_fromlist(self, m, fromlist, recursive=0):
        self.msg(4, "ensure_fromlist", m, fromlist, recursive)
        for sub in fromlist:
            if sub == "*":
                if not recursive:
                    all = self.find_all_submodules(m)
                    if all:
                        self.ensure_fromlist(m, all, 1)
            elif not hasattr(m, sub):
                subname = "%s.%s" % (m.__name__, sub)
                submod = self.import_module(sub, subname, m)
                if not submod:
                    raise ImportError("No module named " + subname)

    def find_all_submodules(self, m):
        if not m.__path__:
            return
        modules = {}
        # 'suffixes' used to be a list hardcoded to [".py", ".pyc", ".pyo"].
        # But we must also collect Python extension modules - although
        # we cannot separate normal dlls from Python extensions.
        suffixes = []
        suffixes += importlib.machinery.EXTENSION_SUFFIXES[:]
        suffixes += importlib.machinery.SOURCE_SUFFIXES[:]
        suffixes += importlib.machinery.BYTECODE_SUFFIXES[:]
        for dir in m.__path__:
            try:
                names = os.listdir(dir)
            except OSError:
                self.msg(2, "can't list directory", dir)
                continue
            for name in names:
                mod = None
                for suff in suffixes:
                    n = len(suff)
                    if name[-n:] == suff:
                        mod = name[:-n]
                        break
                if mod and mod != "__init__":
                    modules[mod] = mod
        return modules.keys()

    def import_module(self, partname, fqname, parent):
        self.msgin(3, "import_module", partname, fqname, parent)
        try:
            m = self.modules[fqname]
        except KeyError:
            pass
        else:
            self.msgout(3, "import_module ->", m)
            return m
        if fqname in self.badmodules:
            self.msgout(3, "import_module -> None")
            return None
        if parent and parent.__path__ is None:
            self.msgout(3, "import_module -> None")
            return None
        try:
            fp, pathname, stuff = self.find_module(partname,
                                                   parent and parent.__path__, parent)
        except ImportError:
            self.msgout(3, "import_module ->", None)
            return None
        try:
            m = self.load_module(fqname, fp, pathname, stuff)
        finally:
            if fp:
                fp.close()
        if parent:
            setattr(parent, partname, m)
        self.msgout(3, "import_module ->", m)
        return m

    def load_module(self, fqname, fp, pathname, file_info):
        suffix, mode, type = file_info
        self.msgin(2, "load_module", fqname, fp and "fp", pathname)
        if type == imp.PKG_DIRECTORY:
            m = self.load_package(fqname, pathname)
            self.msgout(2, "load_module ->", m)
            return m
        if type == imp.PY_SOURCE:
            co = compile(fp.read()+'\n', pathname, 'exec')
        elif type == imp.PY_COMPILED:
            try:
                marshal_data = importlib._bootstrap._validate_bytecode_header(fp.read())
            except ImportError as exc:
                self.msgout(2, "raise ImportError: " + str(exc), pathname)
                raise
            co = marshal.loads(marshal_data)
        else:
            co = None
        m = self.add_module(fqname)
        m.__file__ = pathname
        if co:
            if self.replace_paths:
                co = self.replace_paths_in_code(co)
            m.__code__ = co
            self.scan_code(co, m)
        self.msgout(2, "load_module ->", m)
        return m

    def _add_badmodule(self, name, caller):
        if name not in self.badmodules:
            self.badmodules[name] = {}
        if caller:
            self.badmodules[name][caller.__name__] = 1
        else:
            self.badmodules[name]["-"] = 1

    def _safe_import_hook(self, name, caller, fromlist, level=-1):
        # wrapper for self.import_hook() that won't raise ImportError
        if name in self.badmodules:
            self._add_badmodule(name, caller)
            return
        try:
            self.import_hook(name, caller, level=level)
        except ImportError as msg:
            self.msg(2, "ImportError:", str(msg))
            self._add_badmodule(name, caller)
        else:
            if fromlist:
                for sub in fromlist:
                    if sub in self.badmodules:
                        self._add_badmodule(sub, caller)
                        continue
                    try:
                        self.import_hook(name, caller, [sub], level=level)
                    except ImportError as msg:
                        self.msg(2, "ImportError:", str(msg))
                        fullname = name + "." + sub
                        self._add_badmodule(fullname, caller)

    def scan_opcodes_25(self, co,
                     unpack = struct.unpack):
        # Scan the code, and yield 'interesting' opcode combinations
        # Python 2.5 version (has absolute and relative imports)
        code = co.co_code
        names = co.co_names
        consts = co.co_consts
        LOAD_LOAD_AND_IMPORT = LOAD_CONST + LOAD_CONST + IMPORT_NAME
        while code:
            c = bytes([code[0]])
            if c in STORE_OPS:
                oparg, = unpack('<H', code[1:3])
                yield "store", (names[oparg],)
                code = code[3:]
                continue
            if code[:9:3] == LOAD_LOAD_AND_IMPORT:
                oparg_1, oparg_2, oparg_3 = unpack('<xHxHxH', code[:9])
                level = consts[oparg_1]
                if level == 0: # absolute import
                    yield "absolute_import", (consts[oparg_2], names[oparg_3])
                else: # relative import
                    yield "relative_import", (level, consts[oparg_2], names[oparg_3])
                code = code[9:]
                continue
            if c >= HAVE_ARGUMENT:
                code = code[3:]
            else:
                code = code[1:]

    def scan_code(self, co, m):
        code = co.co_code
        scanner = self.scan_opcodes_25
        for what, args in scanner(co):
            if what == "store":
                name, = args
                m.globalnames[name] = 1
            elif what == "absolute_import":
                fromlist, name = args
                have_star = 0
                if fromlist is not None:
                    if "*" in fromlist:
                        have_star = 1
                    fromlist = [f for f in fromlist if f != "*"]
                self._safe_import_hook(name, m, fromlist, level=0)
                if have_star:
                    # We've encountered an "import *". If it is a Python module,
                    # the code has already been parsed and we can suck out the
                    # global names.
                    mm = None
                    if m.__path__:
                        # At this point we don't know whether 'name' is a
                        # submodule of 'm' or a global module. Let's just try
                        # the full name first.
                        mm = self.modules.get(m.__name__ + "." + name)
                    if mm is None:
                        mm = self.modules.get(name)
                    if mm is not None:
                        m.globalnames.update(mm.globalnames)
                        m.starimports.update(mm.starimports)
                        if mm.__code__ is None:
                            m.starimports[name] = 1
                    else:
                        m.starimports[name] = 1
            elif what == "relative_import":
                level, fromlist, name = args
                if name:
                    self._safe_import_hook(name, m, fromlist, level=level)
                else:
                    parent = self.determine_parent(m, level=level)
                    self._safe_import_hook(parent.__name__, None, fromlist, level=0)
            else:
                # We don't expect anything else from the generator.
                raise RuntimeError(what)

        for c in co.co_consts:
            if isinstance(c, type(co)):
                self.scan_code(c, m)

    def load_package(self, fqname, pathname):
        self.msgin(2, "load_package", fqname, pathname)
        newname = replacePackageMap.get(fqname)
        if newname:
            fqname = newname
        m = self.add_module(fqname)
        m.__file__ = pathname
        m.__path__ = [pathname]

        # As per comment at top of file, simulate runtime __path__ additions.
        m.__path__ = m.__path__ + packagePathMap.get(fqname, [])

        fp, buf, stuff = self.find_module("__init__", m.__path__)
        try:
            self.load_module(fqname, fp, buf, stuff)
            self.msgout(2, "load_package ->", m)
            return m
        finally:
            if fp:
                fp.close()

    def add_module(self, fqname):
        if fqname in self.modules:
            return self.modules[fqname]
        self.modules[fqname] = m = Module(fqname)
        return m

    def find_module(self, name, path, parent=None):
        if parent is not None:
            # assert path is not None
            fullname = parent.__name__+'.'+name
        else:
            fullname = name
        if fullname in self.excludes:
            self.msgout(3, "find_module -> Excluded", fullname)
            raise ImportError(name)

        if path is None:
            if name in sys.builtin_module_names:
                return (None, None, ("", "", imp.C_BUILTIN))

            path = self.path
        return imp.find_module(name, path)

    def report(self):
        """Print a report to stdout, listing the found modules with their
        paths, as well as modules that are missing, or seem to be missing.
        """
        print()
        print("  %-25s %s" % ("Name", "File"))
        print("  %-25s %s" % ("----", "----"))
        # Print modules found
        keys = sorted(self.modules.keys())
        for key in keys:
            m = self.modules[key]
            if m.__path__:
                print("P", end=' ')
            else:
                print("m", end=' ')
            print("%-25s" % key, m.__file__ or "")

        # Print missing modules
        missing, maybe = self.any_missing_maybe()
        if missing:
            print()
            print("Missing modules:")
            for name in missing:
                mods = sorted(self.badmodules[name].keys())
                print("?", name, "imported from", ', '.join(mods))
        # Print modules that may be missing, but then again, maybe not...
        if maybe:
            print()
            print("Submodules that appear to be missing, but could also be", end=' ')
            print("global names in the parent package:")
            for name in maybe:
                mods = sorted(self.badmodules[name].keys())
                print("?", name, "imported from", ', '.join(mods))

    def any_missing(self):
        """Return a list of modules that appear to be missing. Use
        any_missing_maybe() if you want to know which modules are
        certain to be missing, and which *may* be missing.
        """
        missing, maybe = self.any_missing_maybe()
        return missing + maybe

    def any_missing_maybe(self):
        """Return two lists, one with modules that are certainly missing
        and one with modules that *may* be missing. The latter names could
        either be submodules *or* just global names in the package.

        The reason it can't always be determined is that it's impossible to
        tell which names are imported when "from module import *" is done
        with an extension module, short of actually importing it.
        """
        missing = []
        maybe = []
        for name in self.badmodules:
            if name in self.excludes:
                continue
            i = name.rfind(".")
            if i < 0:
                missing.append(name)
                continue
            subname = name[i+1:]
            pkgname = name[:i]
            pkg = self.modules.get(pkgname)
            if pkg is not None:
                if pkgname in self.badmodules[name]:
                    # The package tried to import this module itself and
                    # failed. It's definitely missing.
                    missing.append(name)
                elif subname in pkg.globalnames:
                    # It's a global in the package: definitely not missing.
                    pass
                elif pkg.starimports:
                    # It could be missing, but the package did an "import *"
                    # from a non-Python module, so we simply can't be sure.
                    maybe.append(name)
                else:
                    # It's not a global in the package, the package didn't
                    # do funny star imports, it's very likely to be missing.
                    # The symbol could be inserted into the package from the
                    # outside, but since that's not good style we simply list
                    # it missing.
                    missing.append(name)
            else:
                missing.append(name)
        missing.sort()
        maybe.sort()
        return missing, maybe

    def replace_paths_in_code(self, co):
        new_filename = original_filename = os.path.normpath(co.co_filename)
        for f, r in self.replace_paths:
            if original_filename.startswith(f):
                new_filename = r + original_filename[len(f):]
                break

        if self.debug and original_filename not in self.processed_paths:
            if new_filename != original_filename:
                self.msgout(2, "co_filename %r changed to %r" \
                                    % (original_filename,new_filename,))
            else:
                self.msgout(2, "co_filename %r remains unchanged" \
                                    % (original_filename,))
            self.processed_paths.append(original_filename)

        consts = list(co.co_consts)
        for i in range(len(consts)):
            if isinstance(consts[i], type(co)):
                consts[i] = self.replace_paths_in_code(consts[i])

        return types.CodeType(co.co_argcount, co.co_kwonlyargcount,
                              co.co_nlocals, co.co_stacksize, co.co_flags,
                              co.co_code, tuple(consts), co.co_names,
                              co.co_varnames, new_filename, co.co_name,
                              co.co_firstlineno, co.co_lnotab, co.co_freevars,
                              co.co_cellvars)


def test():
    # Parse command line
    import getopt
    try:
        opts, args = getopt.getopt(sys.argv[1:], "dmp:qx:")
    except getopt.error as msg:
        print(msg)
        return

    # Process options
    debug = 1
    domods = 0
    addpath = []
    exclude = []
    for o, a in opts:
        if o == '-d':
            debug = debug + 1
        if o == '-m':
            domods = 1
        if o == '-p':
            addpath = addpath + a.split(os.pathsep)
        if o == '-q':
            debug = 0
        if o == '-x':
            exclude.append(a)

    # Provide default arguments
    if not args:
        script = "hello.py"
    else:
        script = args[0]

    # Set the path based on sys.path and the script directory
    path = sys.path[:]
    path[0] = os.path.dirname(script)
    path = addpath + path
    if debug > 1:
        print("path:")
        for item in path:
            print("   ", repr(item))

    # Create the module finder and turn its crank
    mf = ModuleFinder(path, debug, exclude)
    for arg in args[1:]:
        if arg == '-m':
            domods = 1
            continue
        if domods:
            if arg[-2:] == '.*':
                mf.import_hook(arg[:-2], None, ["*"])
            else:
                mf.import_hook(arg)
        else:
            mf.load_file(arg)
    mf.run_script(script)
    mf.report()
    return mf  # for -i debugging


if __name__ == '__main__':
    try:
        mf = test()
    except KeyboardInterrupt:
        print("\n[interrupted]")
lib\netrc.py
"""An object-oriented interface to .netrc files."""

# Module and documentation by Eric S. Raymond, 21 Dec 1998

import os, shlex, stat

__all__ = ["netrc", "NetrcParseError"]


class NetrcParseError(Exception):
    """Exception raised on syntax errors in the .netrc file."""
    def __init__(self, msg, filename=None, lineno=None):
        self.filename = filename
        self.lineno = lineno
        self.msg = msg
        Exception.__init__(self, msg)

    def __str__(self):
        return "%s (%s, line %s)" % (self.msg, self.filename, self.lineno)


class netrc:
    def __init__(self, file=None):
        default_netrc = file is None
        if file is None:
            try:
                file = os.path.join(os.environ['HOME'], ".netrc")
            except KeyError:
                raise OSError("Could not find .netrc: $HOME is not set")
        self.hosts = {}
        self.macros = {}
        with open(file) as fp:
            self._parse(file, fp, default_netrc)

    def _parse(self, file, fp, default_netrc):
        lexer = shlex.shlex(fp)
        lexer.wordchars += r"""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""
        lexer.commenters = lexer.commenters.replace('#', '')
        while 1:
            # Look for a machine, default, or macdef top-level keyword
            saved_lineno = lexer.lineno
            toplevel = tt = lexer.get_token()
            if not tt:
                break
            elif tt[0] == '#':
                if lexer.lineno == saved_lineno and len(tt) == 1:
                    lexer.instream.readline()
                continue
            elif tt == 'machine':
                entryname = lexer.get_token()
            elif tt == 'default':
                entryname = 'default'
            elif tt == 'macdef':                # Just skip to end of macdefs
                entryname = lexer.get_token()
                self.macros[entryname] = []
                lexer.whitespace = ' \t'
                while 1:
                    line = lexer.instream.readline()
                    if not line or line == '\012':
                        lexer.whitespace = ' \t\r\n'
                        break
                    self.macros[entryname].append(line)
                continue
            else:
                raise NetrcParseError(
                    "bad toplevel token %r" % tt, file, lexer.lineno)

            # We're looking at start of an entry for a named machine or default.
            login = ''
            account = password = None
            self.hosts[entryname] = {}
            while 1:
                tt = lexer.get_token()
                if (tt.startswith('#') or
                    tt in {'', 'machine', 'default', 'macdef'}):
                    if password:
                        self.hosts[entryname] = (login, account, password)
                        lexer.push_token(tt)
                        break
                    else:
                        raise NetrcParseError(
                            "malformed %s entry %s terminated by %s"
                            % (toplevel, entryname, repr(tt)),
                            file, lexer.lineno)
                elif tt == 'login' or tt == 'user':
                    login = lexer.get_token()
                elif tt == 'account':
                    account = lexer.get_token()
                elif tt == 'password':
                    if os.name == 'posix' and default_netrc:
                        prop = os.fstat(fp.fileno())
                        if prop.st_uid != os.getuid():
                            import pwd
                            try:
                                fowner = pwd.getpwuid(prop.st_uid)[0]
                            except KeyError:
                                fowner = 'uid %s' % prop.st_uid
                            try:
                                user = pwd.getpwuid(os.getuid())[0]
                            except KeyError:
                                user = 'uid %s' % os.getuid()
                            raise NetrcParseError(
                                ("~/.netrc file owner (%s) does not match"
                                 " current user (%s)") % (fowner, user),
                                file, lexer.lineno)
                        if (prop.st_mode & (stat.S_IRWXG | stat.S_IRWXO)):
                            raise NetrcParseError(
                               "~/.netrc access too permissive: access"
                               " permissions must restrict access to only"
                               " the owner", file, lexer.lineno)
                    password = lexer.get_token()
                else:
                    raise NetrcParseError("bad follower token %r" % tt,
                                          file, lexer.lineno)

    def authenticators(self, host):
        """Return a (user, account, password) tuple for given host."""
        if host in self.hosts:
            return self.hosts[host]
        elif 'default' in self.hosts:
            return self.hosts['default']
        else:
            return None

    def __repr__(self):
        """Dump the class data in the format of a .netrc file."""
        rep = ""
        for host in self.hosts.keys():
            attrs = self.hosts[host]
            rep = rep + "machine "+ host + "\n\tlogin " + repr(attrs[0]) + "\n"
            if attrs[1]:
                rep = rep + "account " + repr(attrs[1])
            rep = rep + "\tpassword " + repr(attrs[2]) + "\n"
        for macro in self.macros.keys():
            rep = rep + "macdef " + macro + "\n"
            for line in self.macros[macro]:
                rep = rep + line
            rep = rep + "\n"
        return rep

if __name__ == '__main__':
    print(netrc())
lib\nntplib.py
"""An NNTP client class based on:
- RFC 977: Network News Transfer Protocol
- RFC 2980: Common NNTP Extensions
- RFC 3977: Network News Transfer Protocol (version 2)

Example:

>>> from nntplib import NNTP
>>> s = NNTP('news')
>>> resp, count, first, last, name = s.group('comp.lang.python')
>>> print('Group', name, 'has', count, 'articles, range', first, 'to', last)
Group comp.lang.python has 51 articles, range 5770 to 5821
>>> resp, subs = s.xhdr('subject', '{0}-{1}'.format(first, last))
>>> resp = s.quit()
>>>

Here 'resp' is the server response line.
Error responses are turned into exceptions.

To post an article from a file:
>>> f = open(filename, 'rb') # file containing article, including header
>>> resp = s.post(f)
>>>

For descriptions of all methods, read the comments in the code below.
Note that all arguments and return values representing article numbers
are strings, not numbers, since they are rarely used for calculations.
"""

# RFC 977 by Brian Kantor and Phil Lapsley.
# xover, xgtitle, xpath, date methods by Kevan Heydon

# Incompatible changes from the 2.x nntplib:
# - all commands are encoded as UTF-8 data (using the "surrogateescape"
#   error handler), except for raw message data (POST, IHAVE)
# - all responses are decoded as UTF-8 data (using the "surrogateescape"
#   error handler), except for raw message data (ARTICLE, HEAD, BODY)
# - the `file` argument to various methods is keyword-only
#
# - NNTP.date() returns a datetime object
# - NNTP.newgroups() and NNTP.newnews() take a datetime (or date) object,
#   rather than a pair of (date, time) strings.
# - NNTP.newgroups() and NNTP.list() return a list of GroupInfo named tuples
# - NNTP.descriptions() returns a dict mapping group names to descriptions
# - NNTP.xover() returns a list of dicts mapping field names (header or metadata)
#   to field values; each dict representing a message overview.
# - NNTP.article(), NNTP.head() and NNTP.body() return a (response, ArticleInfo)
#   tuple.
# - the "internal" methods have been marked private (they now start with
#   an underscore)

# Other changes from the 2.x/3.1 nntplib:
# - automatic querying of capabilities at connect
# - New method NNTP.getcapabilities()
# - New method NNTP.over()
# - New helper function decode_header()
# - NNTP.post() and NNTP.ihave() accept file objects, bytes-like objects and
#   arbitrary iterables yielding lines.
# - An extensive test suite :-)

# TODO:
# - return structured data (GroupInfo etc.) everywhere
# - support HDR

# Imports
import re
import socket
import collections
import datetime
import warnings

try:
    import ssl
except ImportError:
    _have_ssl = False
else:
    _have_ssl = True

from email.header import decode_header as _email_decode_header
from socket import _GLOBAL_DEFAULT_TIMEOUT

__all__ = ["NNTP",
           "NNTPError", "NNTPReplyError", "NNTPTemporaryError",
           "NNTPPermanentError", "NNTPProtocolError", "NNTPDataError",
           "decode_header",
           ]

# maximal line length when calling readline(). This is to prevent
# reading arbitrary length lines. RFC 3977 limits NNTP line length to
# 512 characters, including CRLF. We have selected 2048 just to be on
# the safe side.
_MAXLINE = 2048


# Exceptions raised when an error or invalid response is received
class NNTPError(Exception):
    """Base class for all nntplib exceptions"""
    def __init__(self, *args):
        Exception.__init__(self, *args)
        try:
            self.response = args[0]
        except IndexError:
            self.response = 'No response given'

class NNTPReplyError(NNTPError):
    """Unexpected [123]xx reply"""
    pass

class NNTPTemporaryError(NNTPError):
    """4xx errors"""
    pass

class NNTPPermanentError(NNTPError):
    """5xx errors"""
    pass

class NNTPProtocolError(NNTPError):
    """Response does not begin with [1-5]"""
    pass

class NNTPDataError(NNTPError):
    """Error in response data"""
    pass


# Standard port used by NNTP servers
NNTP_PORT = 119
NNTP_SSL_PORT = 563

# Response numbers that are followed by additional text (e.g. article)
_LONGRESP = {
    '100',   # HELP
    '101',   # CAPABILITIES
    '211',   # LISTGROUP   (also not multi-line with GROUP)
    '215',   # LIST
    '220',   # ARTICLE
    '221',   # HEAD, XHDR
    '222',   # BODY
    '224',   # OVER, XOVER
    '225',   # HDR
    '230',   # NEWNEWS
    '231',   # NEWGROUPS
    '282',   # XGTITLE
}

# Default decoded value for LIST OVERVIEW.FMT if not supported
_DEFAULT_OVERVIEW_FMT = [
    "subject", "from", "date", "message-id", "references", ":bytes", ":lines"]

# Alternative names allowed in LIST OVERVIEW.FMT response
_OVERVIEW_FMT_ALTERNATIVES = {
    'bytes': ':bytes',
    'lines': ':lines',
}

# Line terminators (we always output CRLF, but accept any of CRLF, CR, LF)
_CRLF = b'\r\n'

GroupInfo = collections.namedtuple('GroupInfo',
                                   ['group', 'last', 'first', 'flag'])

ArticleInfo = collections.namedtuple('ArticleInfo',
                                     ['number', 'message_id', 'lines'])


# Helper function(s)
def decode_header(header_str):
    """Takes an unicode string representing a munged header value
    and decodes it as a (possibly non-ASCII) readable value."""
    parts = []
    for v, enc in _email_decode_header(header_str):
        if isinstance(v, bytes):
            parts.append(v.decode(enc or 'ascii'))
        else:
            parts.append(v)
    return ''.join(parts)

def _parse_overview_fmt(lines):
    """Parse a list of string representing the response to LIST OVERVIEW.FMT
    and return a list of header/metadata names.
    Raises NNTPDataError if the response is not compliant
    (cf. RFC 3977, section 8.4)."""
    fmt = []
    for line in lines:
        if line[0] == ':':
            # Metadata name (e.g. ":bytes")
            name, _, suffix = line[1:].partition(':')
            name = ':' + name
        else:
            # Header name (e.g. "Subject:" or "Xref:full")
            name, _, suffix = line.partition(':')
        name = name.lower()
        name = _OVERVIEW_FMT_ALTERNATIVES.get(name, name)
        # Should we do something with the suffix?
        fmt.append(name)
    defaults = _DEFAULT_OVERVIEW_FMT
    if len(fmt) < len(defaults):
        raise NNTPDataError("LIST OVERVIEW.FMT response too short")
    if fmt[:len(defaults)] != defaults:
        raise NNTPDataError("LIST OVERVIEW.FMT redefines default fields")
    return fmt

def _parse_overview(lines, fmt, data_process_func=None):
    """Parse the response to an OVER or XOVER command according to the
    overview format `fmt`."""
    n_defaults = len(_DEFAULT_OVERVIEW_FMT)
    overview = []
    for line in lines:
        fields = {}
        article_number, *tokens = line.split('\t')
        article_number = int(article_number)
        for i, token in enumerate(tokens):
            if i >= len(fmt):
                # XXX should we raise an error? Some servers might not
                # support LIST OVERVIEW.FMT and still return additional
                # headers.
                continue
            field_name = fmt[i]
            is_metadata = field_name.startswith(':')
            if i >= n_defaults and not is_metadata:
                # Non-default header names are included in full in the response
                # (unless the field is totally empty)
                h = field_name + ": "
                if token and token[:len(h)].lower() != h:
                    raise NNTPDataError("OVER/XOVER response doesn't include "
                                        "names of additional headers")
                token = token[len(h):] if token else None
            fields[fmt[i]] = token
        overview.append((article_number, fields))
    return overview

def _parse_datetime(date_str, time_str=None):
    """Parse a pair of (date, time) strings, and return a datetime object.
    If only the date is given, it is assumed to be date and time
    concatenated together (e.g. response to the DATE command).
    """
    if time_str is None:
        time_str = date_str[-6:]
        date_str = date_str[:-6]
    hours = int(time_str[:2])
    minutes = int(time_str[2:4])
    seconds = int(time_str[4:])
    year = int(date_str[:-4])
    month = int(date_str[-4:-2])
    day = int(date_str[-2:])
    # RFC 3977 doesn't say how to interpret 2-char years.  Assume that
    # there are no dates before 1970 on Usenet.
    if year < 70:
        year += 2000
    elif year < 100:
        year += 1900
    return datetime.datetime(year, month, day, hours, minutes, seconds)

def _unparse_datetime(dt, legacy=False):
    """Format a date or datetime object as a pair of (date, time) strings
    in the format required by the NEWNEWS and NEWGROUPS commands.  If a
    date object is passed, the time is assumed to be midnight (00h00).

    The returned representation depends on the legacy flag:
    * if legacy is False (the default):
      date has the YYYYMMDD format and time the HHMMSS format
    * if legacy is True:
      date has the YYMMDD format and time the HHMMSS format.
    RFC 3977 compliant servers should understand both formats; therefore,
    legacy is only needed when talking to old servers.
    """
    if not isinstance(dt, datetime.datetime):
        time_str = "000000"
    else:
        time_str = "{0.hour:02d}{0.minute:02d}{0.second:02d}".format(dt)
    y = dt.year
    if legacy:
        y = y % 100
        date_str = "{0:02d}{1.month:02d}{1.day:02d}".format(y, dt)
    else:
        date_str = "{0:04d}{1.month:02d}{1.day:02d}".format(y, dt)
    return date_str, time_str


if _have_ssl:

    def _encrypt_on(sock, context, hostname):
        """Wrap a socket in SSL/TLS. Arguments:
        - sock: Socket to wrap
        - context: SSL context to use for the encrypted connection
        Returns:
        - sock: New, encrypted socket.
        """
        # Generate a default SSL context if none was passed.
        if context is None:
            context = ssl._create_stdlib_context()
        return context.wrap_socket(sock, server_hostname=hostname)


# The classes themselves
class _NNTPBase:
    # UTF-8 is the character set for all NNTP commands and responses: they
    # are automatically encoded (when sending) and decoded (and receiving)
    # by this class.
    # However, some multi-line data blocks can contain arbitrary bytes (for
    # example, latin-1 or utf-16 data in the body of a message). Commands
    # taking (POST, IHAVE) or returning (HEAD, BODY, ARTICLE) raw message
    # data will therefore only accept and produce bytes objects.
    # Furthermore, since there could be non-compliant servers out there,
    # we use 'surrogateescape' as the error handler for fault tolerance
    # and easy round-tripping. This could be useful for some applications
    # (e.g. NNTP gateways).

    encoding = 'utf-8'
    errors = 'surrogateescape'

    def __init__(self, file, host,
                 readermode=None, timeout=_GLOBAL_DEFAULT_TIMEOUT):
        """Initialize an instance.  Arguments:
        - file: file-like object (open for read/write in binary mode)
        - host: hostname of the server
        - readermode: if true, send 'mode reader' command after
                      connecting.
        - timeout: timeout (in seconds) used for socket connections

        readermode is sometimes necessary if you are connecting to an
        NNTP server on the local machine and intend to call
        reader-specific commands, such as `group'.  If you get
        unexpected NNTPPermanentErrors, you might need to set
        readermode.
        """
        self.host = host
        self.file = file
        self.debugging = 0
        self.welcome = self._getresp()

        # Inquire about capabilities (RFC 3977).
        self._caps = None
        self.getcapabilities()

        # 'MODE READER' is sometimes necessary to enable 'reader' mode.
        # However, the order in which 'MODE READER' and 'AUTHINFO' need to
        # arrive differs between some NNTP servers. If _setreadermode() fails
        # with an authorization failed error, it will set this to True;
        # the login() routine will interpret that as a request to try again
        # after performing its normal function.
        # Enable only if we're not already in READER mode anyway.
        self.readermode_afterauth = False
        if readermode and 'READER' not in self._caps:
            self._setreadermode()
            if not self.readermode_afterauth:
                # Capabilities might have changed after MODE READER
                self._caps = None
                self.getcapabilities()

        # RFC 4642 2.2.2: Both the client and the server MUST know if there is
        # a TLS session active.  A client MUST NOT attempt to start a TLS
        # session if a TLS session is already active.
        self.tls_on = False

        # Log in and encryption setup order is left to subclasses.
        self.authenticated = False

    def __enter__(self):
        return self

    def __exit__(self, *args):
        is_connected = lambda: hasattr(self, "file")
        if is_connected():
            try:
                self.quit()
            except (OSError, EOFError):
                pass
            finally:
                if is_connected():
                    self._close()

    def getwelcome(self):
        """Get the welcome message from the server
        (this is read and squirreled away by __init__()).
        If the response code is 200, posting is allowed;
        if it 201, posting is not allowed."""

        if self.debugging: print('*welcome*', repr(self.welcome))
        return self.welcome

    def getcapabilities(self):
        """Get the server capabilities, as read by __init__().
        If the CAPABILITIES command is not supported, an empty dict is
        returned."""
        if self._caps is None:
            self.nntp_version = 1
            self.nntp_implementation = None
            try:
                resp, caps = self.capabilities()
            except (NNTPPermanentError, NNTPTemporaryError):
                # Server doesn't support capabilities
                self._caps = {}
            else:
                self._caps = caps
                if 'VERSION' in caps:
                    # The server can advertise several supported versions,
                    # choose the highest.
                    self.nntp_version = max(map(int, caps['VERSION']))
                if 'IMPLEMENTATION' in caps:
                    self.nntp_implementation = ' '.join(caps['IMPLEMENTATION'])
        return self._caps

    def set_debuglevel(self, level):
        """Set the debugging level.  Argument 'level' means:
        0: no debugging output (default)
        1: print commands and responses but not body text etc.
        2: also print raw lines read and sent before stripping CR/LF"""

        self.debugging = level
    debug = set_debuglevel

    def _putline(self, line):
        """Internal: send one line to the server, appending CRLF.
        The `line` must be a bytes-like object."""
        line = line + _CRLF
        if self.debugging > 1: print('*put*', repr(line))
        self.file.write(line)
        self.file.flush()

    def _putcmd(self, line):
        """Internal: send one command to the server (through _putline()).
        The `line` must be an unicode string."""
        if self.debugging: print('*cmd*', repr(line))
        line = line.encode(self.encoding, self.errors)
        self._putline(line)

    def _getline(self, strip_crlf=True):
        """Internal: return one line from the server, stripping _CRLF.
        Raise EOFError if the connection is closed.
        Returns a bytes object."""
        line = self.file.readline(_MAXLINE +1)
        if len(line) > _MAXLINE:
            raise NNTPDataError('line too long')
        if self.debugging > 1:
            print('*get*', repr(line))
        if not line: raise EOFError
        if strip_crlf:
            if line[-2:] == _CRLF:
                line = line[:-2]
            elif line[-1:] in _CRLF:
                line = line[:-1]
        return line

    def _getresp(self):
        """Internal: get a response from the server.
        Raise various errors if the response indicates an error.
        Returns an unicode string."""
        resp = self._getline()
        if self.debugging: print('*resp*', repr(resp))
        resp = resp.decode(self.encoding, self.errors)
        c = resp[:1]
        if c == '4':
            raise NNTPTemporaryError(resp)
        if c == '5':
            raise NNTPPermanentError(resp)
        if c not in '123':
            raise NNTPProtocolError(resp)
        return resp

    def _getlongresp(self, file=None):
        """Internal: get a response plus following text from the server.
        Raise various errors if the response indicates an error.

        Returns a (response, lines) tuple where `response` is an unicode
        string and `lines` is a list of bytes objects.
        If `file` is a file-like object, it must be open in binary mode.
        """

        openedFile = None
        try:
            # If a string was passed then open a file with that name
            if isinstance(file, (str, bytes)):
                openedFile = file = open(file, "wb")

            resp = self._getresp()
            if resp[:3] not in _LONGRESP:
                raise NNTPReplyError(resp)

            lines = []
            if file is not None:
                # XXX lines = None instead?
                terminators = (b'.' + _CRLF, b'.\n')
                while 1:
                    line = self._getline(False)
                    if line in terminators:
                        break
                    if line.startswith(b'..'):
                        line = line[1:]
                    file.write(line)
            else:
                terminator = b'.'
                while 1:
                    line = self._getline()
                    if line == terminator:
                        break
                    if line.startswith(b'..'):
                        line = line[1:]
                    lines.append(line)
        finally:
            # If this method created the file, then it must close it
            if openedFile:
                openedFile.close()

        return resp, lines

    def _shortcmd(self, line):
        """Internal: send a command and get the response.
        Same return value as _getresp()."""
        self._putcmd(line)
        return self._getresp()

    def _longcmd(self, line, file=None):
        """Internal: send a command and get the response plus following text.
        Same return value as _getlongresp()."""
        self._putcmd(line)
        return self._getlongresp(file)

    def _longcmdstring(self, line, file=None):
        """Internal: send a command and get the response plus following text.
        Same as _longcmd() and _getlongresp(), except that the returned `lines`
        are unicode strings rather than bytes objects.
        """
        self._putcmd(line)
        resp, list = self._getlongresp(file)
        return resp, [line.decode(self.encoding, self.errors)
                      for line in list]

    def _getoverviewfmt(self):
        """Internal: get the overview format. Queries the server if not
        already done, else returns the cached value."""
        try:
            return self._cachedoverviewfmt
        except AttributeError:
            pass
        try:
            resp, lines = self._longcmdstring("LIST OVERVIEW.FMT")
        except NNTPPermanentError:
            # Not supported by server?
            fmt = _DEFAULT_OVERVIEW_FMT[:]
        else:
            fmt = _parse_overview_fmt(lines)
        self._cachedoverviewfmt = fmt
        return fmt

    def _grouplist(self, lines):
        # Parse lines into "group last first flag"
        return [GroupInfo(*line.split()) for line in lines]

    def capabilities(self):
        """Process a CAPABILITIES command.  Not supported by all servers.
        Return:
        - resp: server response if successful
        - caps: a dictionary mapping capability names to lists of tokens
        (for example {'VERSION': ['2'], 'OVER': [], LIST: ['ACTIVE', 'HEADERS'] })
        """
        caps = {}
        resp, lines = self._longcmdstring("CAPABILITIES")
        for line in lines:
            name, *tokens = line.split()
            caps[name] = tokens
        return resp, caps

    def newgroups(self, date, *, file=None):
        """Process a NEWGROUPS command.  Arguments:
        - date: a date or datetime object
        Return:
        - resp: server response if successful
        - list: list of newsgroup names
        """
        if not isinstance(date, (datetime.date, datetime.date)):
            raise TypeError(
                "the date parameter must be a date or datetime object, "
                "not '{:40}'".format(date.__class__.__name__))
        date_str, time_str = _unparse_datetime(date, self.nntp_version < 2)
        cmd = 'NEWGROUPS {0} {1}'.format(date_str, time_str)
        resp, lines = self._longcmdstring(cmd, file)
        return resp, self._grouplist(lines)

    def newnews(self, group, date, *, file=None):
        """Process a NEWNEWS command.  Arguments:
        - group: group name or '*'
        - date: a date or datetime object
        Return:
        - resp: server response if successful
        - list: list of message ids
        """
        if not isinstance(date, (datetime.date, datetime.date)):
            raise TypeError(
                "the date parameter must be a date or datetime object, "
                "not '{:40}'".format(date.__class__.__name__))
        date_str, time_str = _unparse_datetime(date, self.nntp_version < 2)
        cmd = 'NEWNEWS {0} {1} {2}'.format(group, date_str, time_str)
        return self._longcmdstring(cmd, file)

    def list(self, group_pattern=None, *, file=None):
        """Process a LIST or LIST ACTIVE command. Arguments:
        - group_pattern: a pattern indicating which groups to query
        - file: Filename string or file object to store the result in
        Returns:
        - resp: server response if successful
        - list: list of (group, last, first, flag) (strings)
        """
        if group_pattern is not None:
            command = 'LIST ACTIVE ' + group_pattern
        else:
            command = 'LIST'
        resp, lines = self._longcmdstring(command, file)
        return resp, self._grouplist(lines)

    def _getdescriptions(self, group_pattern, return_all):
        line_pat = re.compile('^(?P<group>[^ \t]+)[ \t]+(.*)$')
        # Try the more std (acc. to RFC2980) LIST NEWSGROUPS first
        resp, lines = self._longcmdstring('LIST NEWSGROUPS ' + group_pattern)
        if not resp.startswith('215'):
            # Now the deprecated XGTITLE.  This either raises an error
            # or succeeds with the same output structure as LIST
            # NEWSGROUPS.
            resp, lines = self._longcmdstring('XGTITLE ' + group_pattern)
        groups = {}
        for raw_line in lines:
            match = line_pat.search(raw_line.strip())
            if match:
                name, desc = match.group(1, 2)
                if not return_all:
                    return desc
                groups[name] = desc
        if return_all:
            return resp, groups
        else:
            # Nothing found
            return ''

    def description(self, group):
        """Get a description for a single group.  If more than one
        group matches ('group' is a pattern), return the first.  If no
        group matches, return an empty string.

        This elides the response code from the server, since it can
        only be '215' or '285' (for xgtitle) anyway.  If the response
        code is needed, use the 'descriptions' method.

        NOTE: This neither checks for a wildcard in 'group' nor does
        it check whether the group actually exists."""
        return self._getdescriptions(group, False)

    def descriptions(self, group_pattern):
        """Get descriptions for a range of groups."""
        return self._getdescriptions(group_pattern, True)

    def group(self, name):
        """Process a GROUP command.  Argument:
        - group: the group name
        Returns:
        - resp: server response if successful
        - count: number of articles
        - first: first article number
        - last: last article number
        - name: the group name
        """
        resp = self._shortcmd('GROUP ' + name)
        if not resp.startswith('211'):
            raise NNTPReplyError(resp)
        words = resp.split()
        count = first = last = 0
        n = len(words)
        if n > 1:
            count = words[1]
            if n > 2:
                first = words[2]
                if n > 3:
                    last = words[3]
                    if n > 4:
                        name = words[4].lower()
        return resp, int(count), int(first), int(last), name

    def help(self, *, file=None):
        """Process a HELP command. Argument:
        - file: Filename string or file object to store the result in
        Returns:
        - resp: server response if successful
        - list: list of strings returned by the server in response to the
                HELP command
        """
        return self._longcmdstring('HELP', file)

    def _statparse(self, resp):
        """Internal: parse the response line of a STAT, NEXT, LAST,
        ARTICLE, HEAD or BODY command."""
        if not resp.startswith('22'):
            raise NNTPReplyError(resp)
        words = resp.split()
        art_num = int(words[1])
        message_id = words[2]
        return resp, art_num, message_id

    def _statcmd(self, line):
        """Internal: process a STAT, NEXT or LAST command."""
        resp = self._shortcmd(line)
        return self._statparse(resp)

    def stat(self, message_spec=None):
        """Process a STAT command.  Argument:
        - message_spec: article number or message id (if not specified,
          the current article is selected)
        Returns:
        - resp: server response if successful
        - art_num: the article number
        - message_id: the message id
        """
        if message_spec:
            return self._statcmd('STAT {0}'.format(message_spec))
        else:
            return self._statcmd('STAT')

    def next(self):
        """Process a NEXT command.  No arguments.  Return as for STAT."""
        return self._statcmd('NEXT')

    def last(self):
        """Process a LAST command.  No arguments.  Return as for STAT."""
        return self._statcmd('LAST')

    def _artcmd(self, line, file=None):
        """Internal: process a HEAD, BODY or ARTICLE command."""
        resp, lines = self._longcmd(line, file)
        resp, art_num, message_id = self._statparse(resp)
        return resp, ArticleInfo(art_num, message_id, lines)

    def head(self, message_spec=None, *, file=None):
        """Process a HEAD command.  Argument:
        - message_spec: article number or message id
        - file: filename string or file object to store the headers in
        Returns:
        - resp: server response if successful
        - ArticleInfo: (article number, message id, list of header lines)
        """
        if message_spec is not None:
            cmd = 'HEAD {0}'.format(message_spec)
        else:
            cmd = 'HEAD'
        return self._artcmd(cmd, file)

    def body(self, message_spec=None, *, file=None):
        """Process a BODY command.  Argument:
        - message_spec: article number or message id
        - file: filename string or file object to store the body in
        Returns:
        - resp: server response if successful
        - ArticleInfo: (article number, message id, list of body lines)
        """
        if message_spec is not None:
            cmd = 'BODY {0}'.format(message_spec)
        else:
            cmd = 'BODY'
        return self._artcmd(cmd, file)

    def article(self, message_spec=None, *, file=None):
        """Process an ARTICLE command.  Argument:
        - message_spec: article number or message id
        - file: filename string or file object to store the article in
        Returns:
        - resp: server response if successful
        - ArticleInfo: (article number, message id, list of article lines)
        """
        if message_spec is not None:
            cmd = 'ARTICLE {0}'.format(message_spec)
        else:
            cmd = 'ARTICLE'
        return self._artcmd(cmd, file)

    def slave(self):
        """Process a SLAVE command.  Returns:
        - resp: server response if successful
        """
        return self._shortcmd('SLAVE')

    def xhdr(self, hdr, str, *, file=None):
        """Process an XHDR command (optional server extension).  Arguments:
        - hdr: the header type (e.g. 'subject')
        - str: an article nr, a message id, or a range nr1-nr2
        - file: Filename string or file object to store the result in
        Returns:
        - resp: server response if successful
        - list: list of (nr, value) strings
        """
        pat = re.compile('^([0-9]+) ?(.*)\n?')
        resp, lines = self._longcmdstring('XHDR {0} {1}'.format(hdr, str), file)
        def remove_number(line):
            m = pat.match(line)
            return m.group(1, 2) if m else line
        return resp, [remove_number(line) for line in lines]

    def xover(self, start, end, *, file=None):
        """Process an XOVER command (optional server extension) Arguments:
        - start: start of range
        - end: end of range
        - file: Filename string or file object to store the result in
        Returns:
        - resp: server response if successful
        - list: list of dicts containing the response fields
        """
        resp, lines = self._longcmdstring('XOVER {0}-{1}'.format(start, end),
                                          file)
        fmt = self._getoverviewfmt()
        return resp, _parse_overview(lines, fmt)

    def over(self, message_spec, *, file=None):
        """Process an OVER command.  If the command isn't supported, fall
        back to XOVER. Arguments:
        - message_spec:
            - either a message id, indicating the article to fetch
              information about
            - or a (start, end) tuple, indicating a range of article numbers;
              if end is None, information up to the newest message will be
              retrieved
            - or None, indicating the current article number must be used
        - file: Filename string or file object to store the result in
        Returns:
        - resp: server response if successful
        - list: list of dicts containing the response fields

        NOTE: the "message id" form isn't supported by XOVER
        """
        cmd = 'OVER' if 'OVER' in self._caps else 'XOVER'
        if isinstance(message_spec, (tuple, list)):
            start, end = message_spec
            cmd += ' {0}-{1}'.format(start, end or '')
        elif message_spec is not None:
            cmd = cmd + ' ' + message_spec
        resp, lines = self._longcmdstring(cmd, file)
        fmt = self._getoverviewfmt()
        return resp, _parse_overview(lines, fmt)

    def xgtitle(self, group, *, file=None):
        """Process an XGTITLE command (optional server extension) Arguments:
        - group: group name wildcard (i.e. news.*)
        Returns:
        - resp: server response if successful
        - list: list of (name,title) strings"""
        warnings.warn("The XGTITLE extension is not actively used, "
                      "use descriptions() instead",
                      DeprecationWarning, 2)
        line_pat = re.compile('^([^ \t]+)[ \t]+(.*)$')
        resp, raw_lines = self._longcmdstring('XGTITLE ' + group, file)
        lines = []
        for raw_line in raw_lines:
            match = line_pat.search(raw_line.strip())
            if match:
                lines.append(match.group(1, 2))
        return resp, lines

    def xpath(self, id):
        """Process an XPATH command (optional server extension) Arguments:
        - id: Message id of article
        Returns:
        resp: server response if successful
        path: directory path to article
        """
        warnings.warn("The XPATH extension is not actively used",
                      DeprecationWarning, 2)

        resp = self._shortcmd('XPATH {0}'.format(id))
        if not resp.startswith('223'):
            raise NNTPReplyError(resp)
        try:
            [resp_num, path] = resp.split()
        except ValueError:
            raise NNTPReplyError(resp)
        else:
            return resp, path

    def date(self):
        """Process the DATE command.
        Returns:
        - resp: server response if successful
        - date: datetime object
        """
        resp = self._shortcmd("DATE")
        if not resp.startswith('111'):
            raise NNTPReplyError(resp)
        elem = resp.split()
        if len(elem) != 2:
            raise NNTPDataError(resp)
        date = elem[1]
        if len(date) != 14:
            raise NNTPDataError(resp)
        return resp, _parse_datetime(date, None)

    def _post(self, command, f):
        resp = self._shortcmd(command)
        # Raises a specific exception if posting is not allowed
        if not resp.startswith('3'):
            raise NNTPReplyError(resp)
        if isinstance(f, (bytes, bytearray)):
            f = f.splitlines()
        # We don't use _putline() because:
        # - we don't want additional CRLF if the file or iterable is already
        #   in the right format
        # - we don't want a spurious flush() after each line is written
        for line in f:
            if not line.endswith(_CRLF):
                line = line.rstrip(b"\r\n") + _CRLF
            if line.startswith(b'.'):
                line = b'.' + line
            self.file.write(line)
        self.file.write(b".\r\n")
        self.file.flush()
        return self._getresp()

    def post(self, data):
        """Process a POST command.  Arguments:
        - data: bytes object, iterable or file containing the article
        Returns:
        - resp: server response if successful"""
        return self._post('POST', data)

    def ihave(self, message_id, data):
        """Process an IHAVE command.  Arguments:
        - message_id: message-id of the article
        - data: file containing the article
        Returns:
        - resp: server response if successful
        Note that if the server refuses the article an exception is raised."""
        return self._post('IHAVE {0}'.format(message_id), data)

    def _close(self):
        self.file.close()
        del self.file

    def quit(self):
        """Process a QUIT command and close the socket.  Returns:
        - resp: server response if successful"""
        try:
            resp = self._shortcmd('QUIT')
        finally:
            self._close()
        return resp

    def login(self, user=None, password=None, usenetrc=True):
        if self.authenticated:
            raise ValueError("Already logged in.")
        if not user and not usenetrc:
            raise ValueError(
                "At least one of `user` and `usenetrc` must be specified")
        # If no login/password was specified but netrc was requested,
        # try to get them from ~/.netrc
        # Presume that if .netrc has an entry, NNRP authentication is required.
        try:
            if usenetrc and not user:
                import netrc
                credentials = netrc.netrc()
                auth = credentials.authenticators(self.host)
                if auth:
                    user = auth[0]
                    password = auth[2]
        except OSError:
            pass
        # Perform NNTP authentication if needed.
        if not user:
            return
        resp = self._shortcmd('authinfo user ' + user)
        if resp.startswith('381'):
            if not password:
                raise NNTPReplyError(resp)
            else:
                resp = self._shortcmd('authinfo pass ' + password)
                if not resp.startswith('281'):
                    raise NNTPPermanentError(resp)
        # Capabilities might have changed after login
        self._caps = None
        self.getcapabilities()
        # Attempt to send mode reader if it was requested after login.
        # Only do so if we're not in reader mode already.
        if self.readermode_afterauth and 'READER' not in self._caps:
            self._setreadermode()
            # Capabilities might have changed after MODE READER
            self._caps = None
            self.getcapabilities()

    def _setreadermode(self):
        try:
            self.welcome = self._shortcmd('mode reader')
        except NNTPPermanentError:
            # Error 5xx, probably 'not implemented'
            pass
        except NNTPTemporaryError as e:
            if e.response.startswith('480'):
                # Need authorization before 'mode reader'
                self.readermode_afterauth = True
            else:
                raise

    if _have_ssl:
        def starttls(self, context=None):
            """Process a STARTTLS command. Arguments:
            - context: SSL context to use for the encrypted connection
            """
            # Per RFC 4642, STARTTLS MUST NOT be sent after authentication or if
            # a TLS session already exists.
            if self.tls_on:
                raise ValueError("TLS is already enabled.")
            if self.authenticated:
                raise ValueError("TLS cannot be started after authentication.")
            resp = self._shortcmd('STARTTLS')
            if resp.startswith('382'):
                self.file.close()
                self.sock = _encrypt_on(self.sock, context, self.host)
                self.file = self.sock.makefile("rwb")
                self.tls_on = True
                # Capabilities may change after TLS starts up, so ask for them
                # again.
                self._caps = None
                self.getcapabilities()
            else:
                raise NNTPError("TLS failed to start.")


class NNTP(_NNTPBase):

    def __init__(self, host, port=NNTP_PORT, user=None, password=None,
                 readermode=None, usenetrc=False,
                 timeout=_GLOBAL_DEFAULT_TIMEOUT):
        """Initialize an instance.  Arguments:
        - host: hostname to connect to
        - port: port to connect to (default the standard NNTP port)
        - user: username to authenticate with
        - password: password to use with username
        - readermode: if true, send 'mode reader' command after
                      connecting.
        - usenetrc: allow loading username and password from ~/.netrc file
                    if not specified explicitly
        - timeout: timeout (in seconds) used for socket connections

        readermode is sometimes necessary if you are connecting to an
        NNTP server on the local machine and intend to call
        reader-specific commands, such as `group'.  If you get
        unexpected NNTPPermanentErrors, you might need to set
        readermode.
        """
        self.host = host
        self.port = port
        self.sock = socket.create_connection((host, port), timeout)
        file = None
        try:
            file = self.sock.makefile("rwb")
            _NNTPBase.__init__(self, file, host,
                               readermode, timeout)
            if user or usenetrc:
                self.login(user, password, usenetrc)
        except:
            if file:
                file.close()
            self.sock.close()
            raise

    def _close(self):
        try:
            _NNTPBase._close(self)
        finally:
            self.sock.close()


if _have_ssl:
    class NNTP_SSL(_NNTPBase):

        def __init__(self, host, port=NNTP_SSL_PORT,
                    user=None, password=None, ssl_context=None,
                    readermode=None, usenetrc=False,
                    timeout=_GLOBAL_DEFAULT_TIMEOUT):
            """This works identically to NNTP.__init__, except for the change
            in default port and the `ssl_context` argument for SSL connections.
            """
            self.sock = socket.create_connection((host, port), timeout)
            file = None
            try:
                self.sock = _encrypt_on(self.sock, ssl_context, host)
                file = self.sock.makefile("rwb")
                _NNTPBase.__init__(self, file, host,
                                   readermode=readermode, timeout=timeout)
                if user or usenetrc:
                    self.login(user, password, usenetrc)
            except:
                if file:
                    file.close()
                self.sock.close()
                raise

        def _close(self):
            try:
                _NNTPBase._close(self)
            finally:
                self.sock.close()

    __all__.append("NNTP_SSL")


# Test retrieval when run as a script.
if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser(description="""\
        nntplib built-in demo - display the latest articles in a newsgroup""")
    parser.add_argument('-g', '--group', default='gmane.comp.python.general',
                        help='group to fetch messages from (default: %(default)s)')
    parser.add_argument('-s', '--server', default='news.gmane.org',
                        help='NNTP server hostname (default: %(default)s)')
    parser.add_argument('-p', '--port', default=-1, type=int,
                        help='NNTP port number (default: %s / %s)' % (NNTP_PORT, NNTP_SSL_PORT))
    parser.add_argument('-n', '--nb-articles', default=10, type=int,
                        help='number of articles to fetch (default: %(default)s)')
    parser.add_argument('-S', '--ssl', action='store_true', default=False,
                        help='use NNTP over SSL')
    args = parser.parse_args()

    port = args.port
    if not args.ssl:
        if port == -1:
            port = NNTP_PORT
        s = NNTP(host=args.server, port=port)
    else:
        if port == -1:
            port = NNTP_SSL_PORT
        s = NNTP_SSL(host=args.server, port=port)

    caps = s.getcapabilities()
    if 'STARTTLS' in caps:
        s.starttls()
    resp, count, first, last, name = s.group(args.group)
    print('Group', name, 'has', count, 'articles, range', first, 'to', last)

    def cut(s, lim):
        if len(s) > lim:
            s = s[:lim - 4] + "..."
        return s

    first = str(int(last) - args.nb_articles + 1)
    resp, overviews = s.xover(first, last)
    for artnum, over in overviews:
        author = decode_header(over['from']).split('<', 1)[0]
        subject = decode_header(over['subject'])
        lines = int(over[':lines'])
        print("{:7} {:20} {:42} ({})".format(
              artnum, cut(author, 20), cut(subject, 42), lines)
              )

    s.quit()
lib\ntpath.py
# Module 'ntpath' -- common operations on WinNT/Win95 pathnames
"""Common pathname manipulations, WindowsNT/95 version.

Instead of importing this module directly, import os and refer to this
module as os.path.
"""

import os
import sys
import stat
import genericpath
from genericpath import *

__all__ = ["normcase","isabs","join","splitdrive","split","splitext",
           "basename","dirname","commonprefix","getsize","getmtime",
           "getatime","getctime", "islink","exists","lexists","isdir","isfile",
           "ismount", "expanduser","expandvars","normpath","abspath",
           "splitunc","curdir","pardir","sep","pathsep","defpath","altsep",
           "extsep","devnull","realpath","supports_unicode_filenames","relpath",
           "samefile", "sameopenfile", "samestat",]

# strings representing various path-related bits and pieces
# These are primarily for export; internally, they are hardcoded.
curdir = '.'
pardir = '..'
extsep = '.'
sep = '\\'
pathsep = ';'
altsep = '/'
defpath = '.;C:\\bin'
if 'ce' in sys.builtin_module_names:
    defpath = '\\Windows'
devnull = 'nul'

def _get_empty(path):
    if isinstance(path, bytes):
        return b''
    else:
        return ''

def _get_sep(path):
    if isinstance(path, bytes):
        return b'\\'
    else:
        return '\\'

def _get_altsep(path):
    if isinstance(path, bytes):
        return b'/'
    else:
        return '/'

def _get_bothseps(path):
    if isinstance(path, bytes):
        return b'\\/'
    else:
        return '\\/'

def _get_dot(path):
    if isinstance(path, bytes):
        return b'.'
    else:
        return '.'

def _get_colon(path):
    if isinstance(path, bytes):
        return b':'
    else:
        return ':'

def _get_special(path):
    if isinstance(path, bytes):
        return (b'\\\\.\\', b'\\\\?\\')
    else:
        return ('\\\\.\\', '\\\\?\\')

# Normalize the case of a pathname and map slashes to backslashes.
# Other normalizations (such as optimizing '../' away) are not done
# (this is done by normpath).

def normcase(s):
    """Normalize case of pathname.

    Makes all characters lowercase and all slashes into backslashes."""
    if not isinstance(s, (bytes, str)):
        raise TypeError("normcase() argument must be str or bytes, "
                        "not '{}'".format(s.__class__.__name__))
    return s.replace(_get_altsep(s), _get_sep(s)).lower()


# Return whether a path is absolute.
# Trivial in Posix, harder on Windows.
# For Windows it is absolute if it starts with a slash or backslash (current
# volume), or if a pathname after the volume-letter-and-colon or UNC-resource
# starts with a slash or backslash.

def isabs(s):
    """Test whether a path is absolute"""
    s = splitdrive(s)[1]
    return len(s) > 0 and s[:1] in _get_bothseps(s)


# Join two (or more) paths.
def join(path, *paths):
    sep = _get_sep(path)
    seps = _get_bothseps(path)
    colon = _get_colon(path)
    result_drive, result_path = splitdrive(path)
    for p in paths:
        p_drive, p_path = splitdrive(p)
        if p_path and p_path[0] in seps:
            # Second path is absolute
            if p_drive or not result_drive:
                result_drive = p_drive
            result_path = p_path
            continue
        elif p_drive and p_drive != result_drive:
            if p_drive.lower() != result_drive.lower():
                # Different drives => ignore the first path entirely
                result_drive = p_drive
                result_path = p_path
                continue
            # Same drive in different case
            result_drive = p_drive
        # Second path is relative to the first
        if result_path and result_path[-1] not in seps:
            result_path = result_path + sep
        result_path = result_path + p_path
    ## add separator between UNC and non-absolute path
    if (result_path and result_path[0] not in seps and
        result_drive and result_drive[-1:] != colon):
        return result_drive + sep + result_path
    return result_drive + result_path


# Split a path in a drive specification (a drive letter followed by a
# colon) and the path specification.
# It is always true that drivespec + pathspec == p
def splitdrive(p):
    """Split a pathname into drive/UNC sharepoint and relative path specifiers.
    Returns a 2-tuple (drive_or_unc, path); either part may be empty.

    If you assign
        result = splitdrive(p)
    It is always true that:
        result[0] + result[1] == p

    If the path contained a drive letter, drive_or_unc will contain everything
    up to and including the colon.  e.g. splitdrive("c:/dir") returns ("c:", "/dir")

    If the path contained a UNC path, the drive_or_unc will contain the host name
    and share up to but not including the fourth directory separator character.
    e.g. splitdrive("//host/computer/dir") returns ("//host/computer", "/dir")

    Paths cannot contain both a drive letter and a UNC path.

    """
    empty = _get_empty(p)
    if len(p) > 1:
        sep = _get_sep(p)
        normp = p.replace(_get_altsep(p), sep)
        if (normp[0:2] == sep*2) and (normp[2:3] != sep):
            # is a UNC path:
            # vvvvvvvvvvvvvvvvvvvv drive letter or UNC path
            # \\machine\mountpoint\directory\etc\...
            #           directory ^^^^^^^^^^^^^^^
            index = normp.find(sep, 2)
            if index == -1:
                return empty, p
            index2 = normp.find(sep, index + 1)
            # a UNC path can't have two slashes in a row
            # (after the initial two)
            if index2 == index + 1:
                return empty, p
            if index2 == -1:
                index2 = len(p)
            return p[:index2], p[index2:]
        if normp[1:2] == _get_colon(p):
            return p[:2], p[2:]
    return empty, p


# Parse UNC paths
def splitunc(p):
    """Deprecated since Python 3.1.  Please use splitdrive() instead;
    it now handles UNC paths.

    Split a pathname into UNC mount point and relative path specifiers.

    Return a 2-tuple (unc, rest); either part may be empty.
    If unc is not empty, it has the form '//host/mount' (or similar
    using backslashes).  unc+rest is always the input path.
    Paths containing drive letters never have an UNC part.
    """
    import warnings
    warnings.warn("ntpath.splitunc is deprecated, use ntpath.splitdrive instead",
                  DeprecationWarning, 2)
    drive, path = splitdrive(p)
    if len(drive) == 2:
         # Drive letter present
        return p[:0], p
    return drive, path


# Split a path in head (everything up to the last '/') and tail (the
# rest).  After the trailing '/' is stripped, the invariant
# join(head, tail) == p holds.
# The resulting head won't end in '/' unless it is the root.

def split(p):
    """Split a pathname.

    Return tuple (head, tail) where tail is everything after the final slash.
    Either part may be empty."""

    seps = _get_bothseps(p)
    d, p = splitdrive(p)
    # set i to index beyond p's last slash
    i = len(p)
    while i and p[i-1] not in seps:
        i -= 1
    head, tail = p[:i], p[i:]  # now tail has no slashes
    # remove trailing slashes from head, unless it's all slashes
    head2 = head
    while head2 and head2[-1:] in seps:
        head2 = head2[:-1]
    head = head2 or head
    return d + head, tail


# Split a path in root and extension.
# The extension is everything starting at the last dot in the last
# pathname component; the root is everything before that.
# It is always true that root + ext == p.

def splitext(p):
    return genericpath._splitext(p, _get_sep(p), _get_altsep(p),
                                 _get_dot(p))
splitext.__doc__ = genericpath._splitext.__doc__


# Return the tail (basename) part of a path.

def basename(p):
    """Returns the final component of a pathname"""
    return split(p)[1]


# Return the head (dirname) part of a path.

def dirname(p):
    """Returns the directory component of a pathname"""
    return split(p)[0]

# Is a path a symbolic link?
# This will always return false on systems where os.lstat doesn't exist.

def islink(path):
    """Test whether a path is a symbolic link.
    This will always return false for Windows prior to 6.0.
    """
    try:
        st = os.lstat(path)
    except (OSError, AttributeError):
        return False
    return stat.S_ISLNK(st.st_mode)

# Being true for dangling symbolic links is also useful.

def lexists(path):
    """Test whether a path exists.  Returns True for broken symbolic links"""
    try:
        st = os.lstat(path)
    except OSError:
        return False
    return True

# Is a path a mount point?
# Any drive letter root (eg c:\)
# Any share UNC (eg \\server\share)
# Any volume mounted on a filesystem folder
#
# No one method detects all three situations. Historically we've lexically
# detected drive letter roots and share UNCs. The canonical approach to
# detecting mounted volumes (querying the reparse tag) fails for the most
# common case: drive letter roots. The alternative which uses GetVolumePathName
# fails if the drive letter is the result of a SUBST.
try:
    from nt import _getvolumepathname
except ImportError:
    _getvolumepathname = None
def ismount(path):
    """Test whether a path is a mount point (a drive root, the root of a
    share, or a mounted volume)"""
    seps = _get_bothseps(path)
    path = abspath(path)
    root, rest = splitdrive(path)
    if root and root[0] in seps:
        return (not rest) or (rest in seps)
    if rest in seps:
        return True

    if _getvolumepathname:
        return path.rstrip(seps) == _getvolumepathname(path).rstrip(seps)
    else:
        return False


# Expand paths beginning with '~' or '~user'.
# '~' means $HOME; '~user' means that user's home directory.
# If the path doesn't begin with '~', or if the user or $HOME is unknown,
# the path is returned unchanged (leaving error reporting to whatever
# function is called with the expanded path as argument).
# See also module 'glob' for expansion of *, ? and [...] in pathnames.
# (A function should also be defined to do full *sh-style environment
# variable expansion.)

def expanduser(path):
    """Expand ~ and ~user constructs.

    If user or $HOME is unknown, do nothing."""
    if isinstance(path, bytes):
        tilde = b'~'
    else:
        tilde = '~'
    if not path.startswith(tilde):
        return path
    i, n = 1, len(path)
    while i < n and path[i] not in _get_bothseps(path):
        i += 1

    if 'HOME' in os.environ:
        userhome = os.environ['HOME']
    elif 'USERPROFILE' in os.environ:
        userhome = os.environ['USERPROFILE']
    elif not 'HOMEPATH' in os.environ:
        return path
    else:
        try:
            drive = os.environ['HOMEDRIVE']
        except KeyError:
            drive = ''
        userhome = join(drive, os.environ['HOMEPATH'])

    if isinstance(path, bytes):
        userhome = userhome.encode(sys.getfilesystemencoding())

    if i != 1: #~user
        userhome = join(dirname(userhome), path[1:i])

    return userhome + path[i:]


# Expand paths containing shell variable substitutions.
# The following rules apply:
#       - no expansion within single quotes
#       - '$$' is translated into '$'
#       - '%%' is translated into '%' if '%%' are not seen in %var1%%var2%
#       - ${varname} is accepted.
#       - $varname is accepted.
#       - %varname% is accepted.
#       - varnames can be made out of letters, digits and the characters '_-'
#         (though is not verified in the ${varname} and %varname% cases)
# XXX With COMMAND.COM you can use any characters in a variable name,
# XXX except '^|<>='.

def expandvars(path):
    """Expand shell variables of the forms $var, ${var} and %var%.

    Unknown variables are left unchanged."""
    if isinstance(path, bytes):
        if ord('$') not in path and ord('%') not in path:
            return path
        import string
        varchars = bytes(string.ascii_letters + string.digits + '_-', 'ascii')
        quote = b'\''
        percent = b'%'
        brace = b'{'
        dollar = b'$'
        environ = getattr(os, 'environb', None)
    else:
        if '$' not in path and '%' not in path:
            return path
        import string
        varchars = string.ascii_letters + string.digits + '_-'
        quote = '\''
        percent = '%'
        brace = '{'
        dollar = '$'
        environ = os.environ
    res = path[:0]
    index = 0
    pathlen = len(path)
    while index < pathlen:
        c = path[index:index+1]
        if c == quote:   # no expansion within single quotes
            path = path[index + 1:]
            pathlen = len(path)
            try:
                index = path.index(c)
                res += c + path[:index + 1]
            except ValueError:
                res += c + path
                index = pathlen - 1
        elif c == percent:  # variable or '%'
            if path[index + 1:index + 2] == percent:
                res += c
                index += 1
            else:
                path = path[index+1:]
                pathlen = len(path)
                try:
                    index = path.index(percent)
                except ValueError:
                    res += percent + path
                    index = pathlen - 1
                else:
                    var = path[:index]
                    try:
                        if environ is None:
                            value = os.fsencode(os.environ[os.fsdecode(var)])
                        else:
                            value = environ[var]
                    except KeyError:
                        value = percent + var + percent
                    res += value
        elif c == dollar:  # variable or '$$'
            if path[index + 1:index + 2] == dollar:
                res += c
                index += 1
            elif path[index + 1:index + 2] == brace:
                path = path[index+2:]
                pathlen = len(path)
                try:
                    if isinstance(path, bytes):
                        index = path.index(b'}')
                    else:
                        index = path.index('}')
                except ValueError:
                    if isinstance(path, bytes):
                        res += b'${' + path
                    else:
                        res += '${' + path
                    index = pathlen - 1
                else:
                    var = path[:index]
                    try:
                        if environ is None:
                            value = os.fsencode(os.environ[os.fsdecode(var)])
                        else:
                            value = environ[var]
                    except KeyError:
                        if isinstance(path, bytes):
                            value = b'${' + var + b'}'
                        else:
                            value = '${' + var + '}'
                    res += value
            else:
                var = path[:0]
                index += 1
                c = path[index:index + 1]
                while c and c in varchars:
                    var += c
                    index += 1
                    c = path[index:index + 1]
                try:
                    if environ is None:
                        value = os.fsencode(os.environ[os.fsdecode(var)])
                    else:
                        value = environ[var]
                except KeyError:
                    value = dollar + var
                res += value
                if c:
                    index -= 1
        else:
            res += c
        index += 1
    return res


# Normalize a path, e.g. A//B, A/./B and A/foo/../B all become A\B.
# Previously, this function also truncated pathnames to 8+3 format,
# but as this module is called "ntpath", that's obviously wrong!

def normpath(path):
    """Normalize path, eliminating double slashes, etc."""
    sep = _get_sep(path)
    dotdot = _get_dot(path) * 2
    special_prefixes = _get_special(path)
    if path.startswith(special_prefixes):
        # in the case of paths with these prefixes:
        # \\.\ -> device names
        # \\?\ -> literal paths
        # do not do any normalization, but return the path unchanged
        return path
    path = path.replace(_get_altsep(path), sep)
    prefix, path = splitdrive(path)

    # collapse initial backslashes
    if path.startswith(sep):
        prefix += sep
        path = path.lstrip(sep)

    comps = path.split(sep)
    i = 0
    while i < len(comps):
        if not comps[i] or comps[i] == _get_dot(path):
            del comps[i]
        elif comps[i] == dotdot:
            if i > 0 and comps[i-1] != dotdot:
                del comps[i-1:i+1]
                i -= 1
            elif i == 0 and prefix.endswith(_get_sep(path)):
                del comps[i]
            else:
                i += 1
        else:
            i += 1
    # If the path is now empty, substitute '.'
    if not prefix and not comps:
        comps.append(_get_dot(path))
    return prefix + sep.join(comps)


# Return an absolute path.
try:
    from nt import _getfullpathname

except ImportError: # not running on Windows - mock up something sensible
    def abspath(path):
        """Return the absolute version of a path."""
        if not isabs(path):
            if isinstance(path, bytes):
                cwd = os.getcwdb()
            else:
                cwd = os.getcwd()
            path = join(cwd, path)
        return normpath(path)

else:  # use native Windows method on Windows
    def abspath(path):
        """Return the absolute version of a path."""

        if path: # Empty path must return current working directory.
            try:
                path = _getfullpathname(path)
            except OSError:
                pass # Bad path - return unchanged.
        elif isinstance(path, bytes):
            path = os.getcwdb()
        else:
            path = os.getcwd()
        return normpath(path)

# realpath is a no-op on systems without islink support
realpath = abspath
# Win9x family and earlier have no Unicode filename support.
supports_unicode_filenames = (hasattr(sys, "getwindowsversion") and
                              sys.getwindowsversion()[3] >= 2)

def relpath(path, start=curdir):
    """Return a relative version of a path"""
    sep = _get_sep(path)

    if start is curdir:
        start = _get_dot(path)

    if not path:
        raise ValueError("no path specified")

    start_abs = abspath(normpath(start))
    path_abs = abspath(normpath(path))
    start_drive, start_rest = splitdrive(start_abs)
    path_drive, path_rest = splitdrive(path_abs)
    if normcase(start_drive) != normcase(path_drive):
        error = "path is on mount '{0}', start on mount '{1}'".format(
            path_drive, start_drive)
        raise ValueError(error)

    start_list = [x for x in start_rest.split(sep) if x]
    path_list = [x for x in path_rest.split(sep) if x]
    # Work out how much of the filepath is shared by start and path.
    i = 0
    for e1, e2 in zip(start_list, path_list):
        if normcase(e1) != normcase(e2):
            break
        i += 1

    if isinstance(path, bytes):
        pardir = b'..'
    else:
        pardir = '..'
    rel_list = [pardir] * (len(start_list)-i) + path_list[i:]
    if not rel_list:
        return _get_dot(path)
    return join(*rel_list)


# determine if two files are in fact the same file
try:
    # GetFinalPathNameByHandle is available starting with Windows 6.0.
    # Windows XP and non-Windows OS'es will mock _getfinalpathname.
    if sys.getwindowsversion()[:2] >= (6, 0):
        from nt import _getfinalpathname
    else:
        raise ImportError
except (AttributeError, ImportError):
    # On Windows XP and earlier, two files are the same if their absolute
    # pathnames are the same.
    # Non-Windows operating systems fake this method with an XP
    # approximation.
    def _getfinalpathname(f):
        return normcase(abspath(f))


try:
    # The genericpath.isdir implementation uses os.stat and checks the mode
    # attribute to tell whether or not the path is a directory.
    # This is overkill on Windows - just pass the path to GetFileAttributes
    # and check the attribute from there.
    from nt import _isdir as isdir
except ImportError:
    # Use genericpath.isdir as imported above.
    pass
lib\nturl2path.py
"""Convert a NT pathname to a file URL and vice versa."""

def url2pathname(url):
    """OS-specific conversion from a relative URL of the 'file' scheme
    to a file system path; not recommended for general use."""
    # e.g.
    #   ///C|/foo/bar/spam.foo
    # and
    #   ///C:/foo/bar/spam.foo
    # become
    #   C:\foo\bar\spam.foo
    import string, urllib.parse
    # Windows itself uses ":" even in URLs.
    url = url.replace(':', '|')
    if not '|' in url:
        # No drive specifier, just convert slashes
        if url[:4] == '////':
            # path is something like ////host/path/on/remote/host
            # convert this to \\host\path\on\remote\host
            # (notice halving of slashes at the start of the path)
            url = url[2:]
        components = url.split('/')
        # make sure not to convert quoted slashes :-)
        return urllib.parse.unquote('\\'.join(components))
    comp = url.split('|')
    if len(comp) != 2 or comp[0][-1] not in string.ascii_letters:
        error = 'Bad URL: ' + url
        raise OSError(error)
    drive = comp[0][-1].upper()
    components = comp[1].split('/')
    path = drive + ':'
    for comp in components:
        if comp:
            path = path + '\\' + urllib.parse.unquote(comp)
    # Issue #11474 - handing url such as |c/|
    if path.endswith(':') and url.endswith('/'):
        path += '\\'
    return path

def pathname2url(p):
    """OS-specific conversion from a file system path to a relative URL
    of the 'file' scheme; not recommended for general use."""
    # e.g.
    #   C:\foo\bar\spam.foo
    # becomes
    #   ///C:/foo/bar/spam.foo
    import urllib.parse
    if not ':' in p:
        # No drive specifier, just convert slashes and quote the name
        if p[:2] == '\\\\':
        # path is something like \\host\path\on\remote\host
        # convert this to ////host/path/on/remote/host
        # (notice doubling of slashes at the start of the path)
            p = '\\\\' + p
        components = p.split('\\')
        return urllib.parse.quote('/'.join(components))
    comp = p.split(':')
    if len(comp) != 2 or len(comp[0]) > 1:
        error = 'Bad path: ' + p
        raise OSError(error)

    drive = urllib.parse.quote(comp[0].upper())
    components = comp[1].split('\\')
    path = '///' + drive + ':'
    for comp in components:
        if comp:
            path = path + '/' + urllib.parse.quote(comp)
    return path
lib\numbers.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for numbers, according to PEP 3141.

TODO: Fill out more detailed documentation on the operators."""

from abc import ABCMeta, abstractmethod

__all__ = ["Number", "Complex", "Real", "Rational", "Integral"]

class Number(metaclass=ABCMeta):
    """All numbers inherit from this class.

    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    """
    __slots__ = ()

    # Concrete numeric types must provide their own hash implementation
    __hash__ = None


## Notes on Decimal
## ----------------
## Decimal has all of the methods specified by the Real abc, but it should
## not be registered as a Real because decimals do not interoperate with
## binary floats (i.e.  Decimal('3.14') + 2.71828 is undefined).  But,
## abstract reals are expected to interoperate (i.e. R1 + R2 should be
## expected to work if R1 and R2 are both Reals).

class Complex(Number):
    """Complex defines the operations that work on the builtin complex type.

    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.

    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    """

    __slots__ = ()

    @abstractmethod
    def __complex__(self):
        """Return a builtin complex instance. Called for complex(self)."""

    def __bool__(self):
        """True if self != 0. Called for bool(self)."""
        return self != 0

    @property
    @abstractmethod
    def real(self):
        """Retrieve the real component of this number.

        This should subclass Real.
        """
        raise NotImplementedError

    @property
    @abstractmethod
    def imag(self):
        """Retrieve the imaginary component of this number.

        This should subclass Real.
        """
        raise NotImplementedError

    @abstractmethod
    def __add__(self, other):
        """self + other"""
        raise NotImplementedError

    @abstractmethod
    def __radd__(self, other):
        """other + self"""
        raise NotImplementedError

    @abstractmethod
    def __neg__(self):
        """-self"""
        raise NotImplementedError

    @abstractmethod
    def __pos__(self):
        """+self"""
        raise NotImplementedError

    def __sub__(self, other):
        """self - other"""
        return self + -other

    def __rsub__(self, other):
        """other - self"""
        return -self + other

    @abstractmethod
    def __mul__(self, other):
        """self * other"""
        raise NotImplementedError

    @abstractmethod
    def __rmul__(self, other):
        """other * self"""
        raise NotImplementedError

    @abstractmethod
    def __truediv__(self, other):
        """self / other: Should promote to float when necessary."""
        raise NotImplementedError

    @abstractmethod
    def __rtruediv__(self, other):
        """other / self"""
        raise NotImplementedError

    @abstractmethod
    def __pow__(self, exponent):
        """self**exponent; should promote to float or complex when necessary."""
        raise NotImplementedError

    @abstractmethod
    def __rpow__(self, base):
        """base ** self"""
        raise NotImplementedError

    @abstractmethod
    def __abs__(self):
        """Returns the Real distance from 0. Called for abs(self)."""
        raise NotImplementedError

    @abstractmethod
    def conjugate(self):
        """(x+y*i).conjugate() returns (x-y*i)."""
        raise NotImplementedError

    @abstractmethod
    def __eq__(self, other):
        """self == other"""
        raise NotImplementedError

Complex.register(complex)


class Real(Complex):
    """To Complex, Real adds the operations that work on real numbers.

    In short, those are: a conversion to float, trunc(), divmod,
    %, <, <=, >, and >=.

    Real also provides defaults for the derived operations.
    """

    __slots__ = ()

    @abstractmethod
    def __float__(self):
        """Any Real can be converted to a native float object.

        Called for float(self)."""
        raise NotImplementedError

    @abstractmethod
    def __trunc__(self):
        """trunc(self): Truncates self to an Integral.

        Returns an Integral i such that:
          * i>0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
        i.e. "truncate towards 0".
        """
        raise NotImplementedError

    @abstractmethod
    def __floor__(self):
        """Finds the greatest Integral <= self."""
        raise NotImplementedError

    @abstractmethod
    def __ceil__(self):
        """Finds the least Integral >= self."""
        raise NotImplementedError

    @abstractmethod
    def __round__(self, ndigits=None):
        """Rounds self to ndigits decimal places, defaulting to 0.

        If ndigits is omitted or None, returns an Integral, otherwise
        returns a Real. Rounds half toward even.
        """
        raise NotImplementedError

    def __divmod__(self, other):
        """divmod(self, other): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        """
        return (self // other, self % other)

    def __rdivmod__(self, other):
        """divmod(other, self): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        """
        return (other // self, other % self)

    @abstractmethod
    def __floordiv__(self, other):
        """self // other: The floor() of self/other."""
        raise NotImplementedError

    @abstractmethod
    def __rfloordiv__(self, other):
        """other // self: The floor() of other/self."""
        raise NotImplementedError

    @abstractmethod
    def __mod__(self, other):
        """self % other"""
        raise NotImplementedError

    @abstractmethod
    def __rmod__(self, other):
        """other % self"""
        raise NotImplementedError

    @abstractmethod
    def __lt__(self, other):
        """self < other

        < on Reals defines a total ordering, except perhaps for NaN."""
        raise NotImplementedError

    @abstractmethod
    def __le__(self, other):
        """self <= other"""
        raise NotImplementedError

    # Concrete implementations of Complex abstract methods.
    def __complex__(self):
        """complex(self) == complex(float(self), 0)"""
        return complex(float(self))

    @property
    def real(self):
        """Real numbers are their real component."""
        return +self

    @property
    def imag(self):
        """Real numbers have no imaginary component."""
        return 0

    def conjugate(self):
        """Conjugate is a no-op for Reals."""
        return +self

Real.register(float)


class Rational(Real):
    """.numerator and .denominator should be in lowest terms."""

    __slots__ = ()

    @property
    @abstractmethod
    def numerator(self):
        raise NotImplementedError

    @property
    @abstractmethod
    def denominator(self):
        raise NotImplementedError

    # Concrete implementation of Real's conversion to float.
    def __float__(self):
        """float(self) = self.numerator / self.denominator

        It's important that this conversion use the integer's "true"
        division rather than casting one side to float before dividing
        so that ratios of huge integers convert without overflowing.

        """
        return self.numerator / self.denominator


class Integral(Rational):
    """Integral adds a conversion to int and the bit-string operations."""

    __slots__ = ()

    @abstractmethod
    def __int__(self):
        """int(self)"""
        raise NotImplementedError

    def __index__(self):
        """Called whenever an index is needed, such as in slicing"""
        return int(self)

    @abstractmethod
    def __pow__(self, exponent, modulus=None):
        """self ** exponent % modulus, but maybe faster.

        Accept the modulus argument if you want to support the
        3-argument version of pow(). Raise a TypeError if exponent < 0
        or any argument isn't Integral. Otherwise, just implement the
        2-argument version described in Complex.
        """
        raise NotImplementedError

    @abstractmethod
    def __lshift__(self, other):
        """self << other"""
        raise NotImplementedError

    @abstractmethod
    def __rlshift__(self, other):
        """other << self"""
        raise NotImplementedError

    @abstractmethod
    def __rshift__(self, other):
        """self >> other"""
        raise NotImplementedError

    @abstractmethod
    def __rrshift__(self, other):
        """other >> self"""
        raise NotImplementedError

    @abstractmethod
    def __and__(self, other):
        """self & other"""
        raise NotImplementedError

    @abstractmethod
    def __rand__(self, other):
        """other & self"""
        raise NotImplementedError

    @abstractmethod
    def __xor__(self, other):
        """self ^ other"""
        raise NotImplementedError

    @abstractmethod
    def __rxor__(self, other):
        """other ^ self"""
        raise NotImplementedError

    @abstractmethod
    def __or__(self, other):
        """self | other"""
        raise NotImplementedError

    @abstractmethod
    def __ror__(self, other):
        """other | self"""
        raise NotImplementedError

    @abstractmethod
    def __invert__(self):
        """~self"""
        raise NotImplementedError

    # Concrete implementations of Rational and Real abstract methods.
    def __float__(self):
        """float(self) == float(int(self))"""
        return float(int(self))

    @property
    def numerator(self):
        """Integers are their own numerators."""
        return +self

    @property
    def denominator(self):
        """Integers have a denominator of 1."""
        return 1

Integral.register(int)
lib\opcode.py

"""
opcode module - potentially shared between dis and other modules which
operate on bytecodes (e.g. peephole optimizers).
"""

__all__ = ["cmp_op", "hasconst", "hasname", "hasjrel", "hasjabs",
           "haslocal", "hascompare", "hasfree", "opname", "opmap",
           "HAVE_ARGUMENT", "EXTENDED_ARG", "hasnargs"]

# It's a chicken-and-egg I'm afraid:
# We're imported before _opcode's made.
# With exception unheeded
# (stack_effect is not needed)
# Both our chickens and eggs are allayed.
#     --Larry Hastings, 2013/11/23

try:
    from _opcode import stack_effect
    __all__.append('stack_effect')
except ImportError:
    pass

cmp_op = ('<', '<=', '==', '!=', '>', '>=', 'in', 'not in', 'is',
        'is not', 'exception match', 'BAD')

hasconst = []
hasname = []
hasjrel = []
hasjabs = []
haslocal = []
hascompare = []
hasfree = []
hasnargs = []

opmap = {}
opname = [''] * 256
for op in range(256): opname[op] = '<%r>' % (op,)
del op

def def_op(name, op):
    opname[op] = name
    opmap[name] = op

def name_op(name, op):
    def_op(name, op)
    hasname.append(op)

def jrel_op(name, op):
    def_op(name, op)
    hasjrel.append(op)

def jabs_op(name, op):
    def_op(name, op)
    hasjabs.append(op)

# Instruction opcodes for compiled code
# Blank lines correspond to available opcodes

def_op('POP_TOP', 1)
def_op('ROT_TWO', 2)
def_op('ROT_THREE', 3)
def_op('DUP_TOP', 4)
def_op('DUP_TOP_TWO', 5)

def_op('NOP', 9)
def_op('UNARY_POSITIVE', 10)
def_op('UNARY_NEGATIVE', 11)
def_op('UNARY_NOT', 12)

def_op('UNARY_INVERT', 15)

def_op('BINARY_POWER', 19)
def_op('BINARY_MULTIPLY', 20)

def_op('BINARY_MODULO', 22)
def_op('BINARY_ADD', 23)
def_op('BINARY_SUBTRACT', 24)
def_op('BINARY_SUBSCR', 25)
def_op('BINARY_FLOOR_DIVIDE', 26)
def_op('BINARY_TRUE_DIVIDE', 27)
def_op('INPLACE_FLOOR_DIVIDE', 28)
def_op('INPLACE_TRUE_DIVIDE', 29)

def_op('STORE_MAP', 54)
def_op('INPLACE_ADD', 55)
def_op('INPLACE_SUBTRACT', 56)
def_op('INPLACE_MULTIPLY', 57)

def_op('INPLACE_MODULO', 59)
def_op('STORE_SUBSCR', 60)
def_op('DELETE_SUBSCR', 61)
def_op('BINARY_LSHIFT', 62)
def_op('BINARY_RSHIFT', 63)
def_op('BINARY_AND', 64)
def_op('BINARY_XOR', 65)
def_op('BINARY_OR', 66)
def_op('INPLACE_POWER', 67)
def_op('GET_ITER', 68)

def_op('PRINT_EXPR', 70)
def_op('LOAD_BUILD_CLASS', 71)
def_op('YIELD_FROM', 72)

def_op('INPLACE_LSHIFT', 75)
def_op('INPLACE_RSHIFT', 76)
def_op('INPLACE_AND', 77)
def_op('INPLACE_XOR', 78)
def_op('INPLACE_OR', 79)
def_op('BREAK_LOOP', 80)
def_op('WITH_CLEANUP', 81)

def_op('RETURN_VALUE', 83)
def_op('IMPORT_STAR', 84)

def_op('YIELD_VALUE', 86)
def_op('POP_BLOCK', 87)
def_op('END_FINALLY', 88)
def_op('POP_EXCEPT', 89)

HAVE_ARGUMENT = 90              # Opcodes from here have an argument:

name_op('STORE_NAME', 90)       # Index in name list
name_op('DELETE_NAME', 91)      # ""
def_op('UNPACK_SEQUENCE', 92)   # Number of tuple items
jrel_op('FOR_ITER', 93)
def_op('UNPACK_EX', 94)
name_op('STORE_ATTR', 95)       # Index in name list
name_op('DELETE_ATTR', 96)      # ""
name_op('STORE_GLOBAL', 97)     # ""
name_op('DELETE_GLOBAL', 98)    # ""
def_op('LOAD_CONST', 100)       # Index in const list
hasconst.append(100)
name_op('LOAD_NAME', 101)       # Index in name list
def_op('BUILD_TUPLE', 102)      # Number of tuple items
def_op('BUILD_LIST', 103)       # Number of list items
def_op('BUILD_SET', 104)        # Number of set items
def_op('BUILD_MAP', 105)        # Number of dict entries (upto 255)
name_op('LOAD_ATTR', 106)       # Index in name list
def_op('COMPARE_OP', 107)       # Comparison operator
hascompare.append(107)
name_op('IMPORT_NAME', 108)     # Index in name list
name_op('IMPORT_FROM', 109)     # Index in name list

jrel_op('JUMP_FORWARD', 110)    # Number of bytes to skip
jabs_op('JUMP_IF_FALSE_OR_POP', 111) # Target byte offset from beginning of code
jabs_op('JUMP_IF_TRUE_OR_POP', 112)  # ""
jabs_op('JUMP_ABSOLUTE', 113)        # ""
jabs_op('POP_JUMP_IF_FALSE', 114)    # ""
jabs_op('POP_JUMP_IF_TRUE', 115)     # ""

name_op('LOAD_GLOBAL', 116)     # Index in name list

jabs_op('CONTINUE_LOOP', 119)   # Target address
jrel_op('SETUP_LOOP', 120)      # Distance to target address
jrel_op('SETUP_EXCEPT', 121)    # ""
jrel_op('SETUP_FINALLY', 122)   # ""

def_op('LOAD_FAST', 124)        # Local variable number
haslocal.append(124)
def_op('STORE_FAST', 125)       # Local variable number
haslocal.append(125)
def_op('DELETE_FAST', 126)      # Local variable number
haslocal.append(126)

def_op('RAISE_VARARGS', 130)    # Number of raise arguments (1, 2, or 3)
def_op('CALL_FUNCTION', 131)    # #args + (#kwargs << 8)
hasnargs.append(131)
def_op('MAKE_FUNCTION', 132)    # Number of args with default values
def_op('BUILD_SLICE', 133)      # Number of items
def_op('MAKE_CLOSURE', 134)
def_op('LOAD_CLOSURE', 135)
hasfree.append(135)
def_op('LOAD_DEREF', 136)
hasfree.append(136)
def_op('STORE_DEREF', 137)
hasfree.append(137)
def_op('DELETE_DEREF', 138)
hasfree.append(138)

def_op('CALL_FUNCTION_VAR', 140)     # #args + (#kwargs << 8)
hasnargs.append(140)
def_op('CALL_FUNCTION_KW', 141)      # #args + (#kwargs << 8)
hasnargs.append(141)
def_op('CALL_FUNCTION_VAR_KW', 142)  # #args + (#kwargs << 8)
hasnargs.append(142)

jrel_op('SETUP_WITH', 143)

def_op('LIST_APPEND', 145)
def_op('SET_ADD', 146)
def_op('MAP_ADD', 147)

def_op('LOAD_CLASSDEREF', 148)
hasfree.append(148)

def_op('EXTENDED_ARG', 144)
EXTENDED_ARG = 144

del def_op, name_op, jrel_op, jabs_op
lib\operator.py
"""
Operator Interface

This module exports a set of functions corresponding to the intrinsic
operators of Python.  For example, operator.add(x, y) is equivalent
to the expression x+y.  The function names are those used for special
methods; variants without leading and trailing '__' are also provided
for convenience.

This is the pure Python implementation of the module.
"""

__all__ = ['abs', 'add', 'and_', 'attrgetter', 'concat', 'contains', 'countOf',
           'delitem', 'eq', 'floordiv', 'ge', 'getitem', 'gt', 'iadd', 'iand',
           'iconcat', 'ifloordiv', 'ilshift', 'imod', 'imul', 'index',
           'indexOf', 'inv', 'invert', 'ior', 'ipow', 'irshift', 'is_',
           'is_not', 'isub', 'itemgetter', 'itruediv', 'ixor', 'le',
           'length_hint', 'lshift', 'lt', 'methodcaller', 'mod', 'mul', 'ne',
           'neg', 'not_', 'or_', 'pos', 'pow', 'rshift', 'setitem', 'sub',
           'truediv', 'truth', 'xor']

from builtins import abs as _abs


# Comparison Operations *******************************************************#

def lt(a, b):
    "Same as a < b."
    return a < b

def le(a, b):
    "Same as a <= b."
    return a <= b

def eq(a, b):
    "Same as a == b."
    return a == b

def ne(a, b):
    "Same as a != b."
    return a != b

def ge(a, b):
    "Same as a >= b."
    return a >= b

def gt(a, b):
    "Same as a > b."
    return a > b

# Logical Operations **********************************************************#

def not_(a):
    "Same as not a."
    return not a

def truth(a):
    "Return True if a is true, False otherwise."
    return True if a else False

def is_(a, b):
    "Same as a is b."
    return a is b

def is_not(a, b):
    "Same as a is not b."
    return a is not b

# Mathematical/Bitwise Operations *********************************************#

def abs(a):
    "Same as abs(a)."
    return _abs(a)

def add(a, b):
    "Same as a + b."
    return a + b

def and_(a, b):
    "Same as a & b."
    return a & b

def floordiv(a, b):
    "Same as a // b."
    return a // b

def index(a):
    "Same as a.__index__()."
    return a.__index__()

def inv(a):
    "Same as ~a."
    return ~a
invert = inv

def lshift(a, b):
    "Same as a << b."
    return a << b

def mod(a, b):
    "Same as a % b."
    return a % b

def mul(a, b):
    "Same as a * b."
    return a * b

def neg(a):
    "Same as -a."
    return -a

def or_(a, b):
    "Same as a | b."
    return a | b

def pos(a):
    "Same as +a."
    return +a

def pow(a, b):
    "Same as a ** b."
    return a ** b

def rshift(a, b):
    "Same as a >> b."
    return a >> b

def sub(a, b):
    "Same as a - b."
    return a - b

def truediv(a, b):
    "Same as a / b."
    return a / b

def xor(a, b):
    "Same as a ^ b."
    return a ^ b

# Sequence Operations *********************************************************#

def concat(a, b):
    "Same as a + b, for a and b sequences."
    if not hasattr(a, '__getitem__'):
        msg = "'%s' object can't be concatenated" % type(a).__name__
        raise TypeError(msg)
    return a + b

def contains(a, b):
    "Same as b in a (note reversed operands)."
    return b in a

def countOf(a, b):
    "Return the number of times b occurs in a."
    count = 0
    for i in a:
        if i == b:
            count += 1
    return count

def delitem(a, b):
    "Same as del a[b]."
    del a[b]

def getitem(a, b):
    "Same as a[b]."
    return a[b]

def indexOf(a, b):
    "Return the first index of b in a."
    for i, j in enumerate(a):
        if j == b:
            return i
    else:
        raise ValueError('sequence.index(x): x not in sequence')

def setitem(a, b, c):
    "Same as a[b] = c."
    a[b] = c

def length_hint(obj, default=0):
    """
    Return an estimate of the number of items in obj.
    This is useful for presizing containers when building from an iterable.

    If the object supports len(), the result will be exact. Otherwise, it may
    over- or under-estimate by an arbitrary amount. The result will be an
    integer >= 0.
    """
    if not isinstance(default, int):
        msg = ("'%s' object cannot be interpreted as an integer" %
               type(default).__name__)
        raise TypeError(msg)

    try:
        return len(obj)
    except TypeError:
        pass

    try:
        hint = type(obj).__length_hint__
    except AttributeError:
        return default

    try:
        val = hint(obj)
    except TypeError:
        return default
    if val is NotImplemented:
        return default
    if not isinstance(val, int):
        msg = ('__length_hint__ must be integer, not %s' %
               type(val).__name__)
        raise TypeError(msg)
    if val < 0:
        msg = '__length_hint__() should return >= 0'
        raise ValueError(msg)
    return val

# Generalized Lookup Objects **************************************************#

class attrgetter:
    """
    Return a callable object that fetches the given attribute(s) from its operand.
    After f = attrgetter('name'), the call f(r) returns r.name.
    After g = attrgetter('name', 'date'), the call g(r) returns (r.name, r.date).
    After h = attrgetter('name.first', 'name.last'), the call h(r) returns
    (r.name.first, r.name.last).
    """
    def __init__(self, attr, *attrs):
        if not attrs:
            if not isinstance(attr, str):
                raise TypeError('attribute name must be a string')
            names = attr.split('.')
            def func(obj):
                for name in names:
                    obj = getattr(obj, name)
                return obj
            self._call = func
        else:
            getters = tuple(map(attrgetter, (attr,) + attrs))
            def func(obj):
                return tuple(getter(obj) for getter in getters)
            self._call = func

    def __call__(self, obj):
        return self._call(obj)

class itemgetter:
    """
    Return a callable object that fetches the given item(s) from its operand.
    After f = itemgetter(2), the call f(r) returns r[2].
    After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3])
    """
    def __init__(self, item, *items):
        if not items:
            def func(obj):
                return obj[item]
            self._call = func
        else:
            items = (item,) + items
            def func(obj):
                return tuple(obj[i] for i in items)
            self._call = func

    def __call__(self, obj):
        return self._call(obj)

class methodcaller:
    """
    Return a callable object that calls the given method on its operand.
    After f = methodcaller('name'), the call f(r) returns r.name().
    After g = methodcaller('name', 'date', foo=1), the call g(r) returns
    r.name('date', foo=1).
    """

    def __init__(*args, **kwargs):
        if len(args) < 2:
            msg = "methodcaller needs at least one argument, the method name"
            raise TypeError(msg)
        self = args[0]
        self._name = args[1]
        self._args = args[2:]
        self._kwargs = kwargs

    def __call__(self, obj):
        return getattr(obj, self._name)(*self._args, **self._kwargs)

# In-place Operations *********************************************************#

def iadd(a, b):
    "Same as a += b."
    a += b
    return a

def iand(a, b):
    "Same as a &= b."
    a &= b
    return a

def iconcat(a, b):
    "Same as a += b, for a and b sequences."
    if not hasattr(a, '__getitem__'):
        msg = "'%s' object can't be concatenated" % type(a).__name__
        raise TypeError(msg)
    a += b
    return a

def ifloordiv(a, b):
    "Same as a //= b."
    a //= b
    return a

def ilshift(a, b):
    "Same as a <<= b."
    a <<= b
    return a

def imod(a, b):
    "Same as a %= b."
    a %= b
    return a

def imul(a, b):
    "Same as a *= b."
    a *= b
    return a

def ior(a, b):
    "Same as a |= b."
    a |= b
    return a

def ipow(a, b):
    "Same as a **= b."
    a **=b
    return a

def irshift(a, b):
    "Same as a >>= b."
    a >>= b
    return a

def isub(a, b):
    "Same as a -= b."
    a -= b
    return a

def itruediv(a, b):
    "Same as a /= b."
    a /= b
    return a

def ixor(a, b):
    "Same as a ^= b."
    a ^= b
    return a


try:
    from _operator import *
except ImportError:
    pass
else:
    from _operator import __doc__

# All of these "__func__ = func" assignments have to happen after importing
# from _operator to make sure they're set to the right function
__lt__ = lt
__le__ = le
__eq__ = eq
__ne__ = ne
__ge__ = ge
__gt__ = gt
__not__ = not_
__abs__ = abs
__add__ = add
__and__ = and_
__floordiv__ = floordiv
__index__ = index
__inv__ = inv
__invert__ = invert
__lshift__ = lshift
__mod__ = mod
__mul__ = mul
__neg__ = neg
__or__ = or_
__pos__ = pos
__pow__ = pow
__rshift__ = rshift
__sub__ = sub
__truediv__ = truediv
__xor__ = xor
__concat__ = concat
__contains__ = contains
__delitem__ = delitem
__getitem__ = getitem
__setitem__ = setitem
__iadd__ = iadd
__iand__ = iand
__iconcat__ = iconcat
__ifloordiv__ = ifloordiv
__ilshift__ = ilshift
__imod__ = imod
__imul__ = imul
__ior__ = ior
__ipow__ = ipow
__irshift__ = irshift
__isub__ = isub
__itruediv__ = itruediv
__ixor__ = ixor
lib\optparse.py
"""A powerful, extensible, and easy-to-use option parser.

By Greg Ward <[email protected]>

Originally distributed as Optik.

For support, use the [email protected] mailing list
(http://lists.sourceforge.net/lists/listinfo/optik-users).

Simple usage example:

   from optparse import OptionParser

   parser = OptionParser()
   parser.add_option("-f", "--file", dest="filename",
                     help="write report to FILE", metavar="FILE")
   parser.add_option("-q", "--quiet",
                     action="store_false", dest="verbose", default=True,
                     help="don't print status messages to stdout")

   (options, args) = parser.parse_args()
"""

__version__ = "1.5.3"

__all__ = ['Option',
           'make_option',
           'SUPPRESS_HELP',
           'SUPPRESS_USAGE',
           'Values',
           'OptionContainer',
           'OptionGroup',
           'OptionParser',
           'HelpFormatter',
           'IndentedHelpFormatter',
           'TitledHelpFormatter',
           'OptParseError',
           'OptionError',
           'OptionConflictError',
           'OptionValueError',
           'BadOptionError']

__copyright__ = """
Copyright (c) 2001-2006 Gregory P. Ward.  All rights reserved.
Copyright (c) 2002-2006 Python Software Foundation.  All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

  * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.

  * Neither the name of the author nor the names of its
    contributors may be used to endorse or promote products derived from
    this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""

import sys, os
import textwrap

def _repr(self):
    return "<%s at 0x%x: %s>" % (self.__class__.__name__, id(self), self)


# This file was generated from:
#   Id: option_parser.py 527 2006-07-23 15:21:30Z greg
#   Id: option.py 522 2006-06-11 16:22:03Z gward
#   Id: help.py 527 2006-07-23 15:21:30Z greg
#   Id: errors.py 509 2006-04-20 00:58:24Z gward

try:
    from gettext import gettext, ngettext
except ImportError:
    def gettext(message):
        return message

    def ngettext(singular, plural, n):
        if n == 1:
            return singular
        return plural

_ = gettext


class OptParseError (Exception):
    def __init__(self, msg):
        self.msg = msg

    def __str__(self):
        return self.msg


class OptionError (OptParseError):
    """
    Raised if an Option instance is created with invalid or
    inconsistent arguments.
    """

    def __init__(self, msg, option):
        self.msg = msg
        self.option_id = str(option)

    def __str__(self):
        if self.option_id:
            return "option %s: %s" % (self.option_id, self.msg)
        else:
            return self.msg

class OptionConflictError (OptionError):
    """
    Raised if conflicting options are added to an OptionParser.
    """

class OptionValueError (OptParseError):
    """
    Raised if an invalid option value is encountered on the command
    line.
    """

class BadOptionError (OptParseError):
    """
    Raised if an invalid option is seen on the command line.
    """
    def __init__(self, opt_str):
        self.opt_str = opt_str

    def __str__(self):
        return _("no such option: %s") % self.opt_str

class AmbiguousOptionError (BadOptionError):
    """
    Raised if an ambiguous option is seen on the command line.
    """
    def __init__(self, opt_str, possibilities):
        BadOptionError.__init__(self, opt_str)
        self.possibilities = possibilities

    def __str__(self):
        return (_("ambiguous option: %s (%s?)")
                % (self.opt_str, ", ".join(self.possibilities)))


class HelpFormatter:

    """
    Abstract base class for formatting option help.  OptionParser
    instances should use one of the HelpFormatter subclasses for
    formatting help; by default IndentedHelpFormatter is used.

    Instance attributes:
      parser : OptionParser
        the controlling OptionParser instance
      indent_increment : int
        the number of columns to indent per nesting level
      max_help_position : int
        the maximum starting column for option help text
      help_position : int
        the calculated starting column for option help text;
        initially the same as the maximum
      width : int
        total number of columns for output (pass None to constructor for
        this value to be taken from the $COLUMNS environment variable)
      level : int
        current indentation level
      current_indent : int
        current indentation level (in columns)
      help_width : int
        number of columns available for option help text (calculated)
      default_tag : str
        text to replace with each option's default value, "%default"
        by default.  Set to false value to disable default value expansion.
      option_strings : { Option : str }
        maps Option instances to the snippet of help text explaining
        the syntax of that option, e.g. "-h, --help" or
        "-fFILE, --file=FILE"
      _short_opt_fmt : str
        format string controlling how short options with values are
        printed in help text.  Must be either "%s%s" ("-fFILE") or
        "%s %s" ("-f FILE"), because those are the two syntaxes that
        Optik supports.
      _long_opt_fmt : str
        similar but for long options; must be either "%s %s" ("--file FILE")
        or "%s=%s" ("--file=FILE").
    """

    NO_DEFAULT_VALUE = "none"

    def __init__(self,
                 indent_increment,
                 max_help_position,
                 width,
                 short_first):
        self.parser = None
        self.indent_increment = indent_increment
        if width is None:
            try:
                width = int(os.environ['COLUMNS'])
            except (KeyError, ValueError):
                width = 80
            width -= 2
        self.width = width
        self.help_position = self.max_help_position = \
                min(max_help_position, max(width - 20, indent_increment * 2))
        self.current_indent = 0
        self.level = 0
        self.help_width = None          # computed later
        self.short_first = short_first
        self.default_tag = "%default"
        self.option_strings = {}
        self._short_opt_fmt = "%s %s"
        self._long_opt_fmt = "%s=%s"

    def set_parser(self, parser):
        self.parser = parser

    def set_short_opt_delimiter(self, delim):
        if delim not in ("", " "):
            raise ValueError(
                "invalid metavar delimiter for short options: %r" % delim)
        self._short_opt_fmt = "%s" + delim + "%s"

    def set_long_opt_delimiter(self, delim):
        if delim not in ("=", " "):
            raise ValueError(
                "invalid metavar delimiter for long options: %r" % delim)
        self._long_opt_fmt = "%s" + delim + "%s"

    def indent(self):
        self.current_indent += self.indent_increment
        self.level += 1

    def dedent(self):
        self.current_indent -= self.indent_increment
        assert self.current_indent >= 0, "Indent decreased below 0."
        self.level -= 1

    def format_usage(self, usage):
        raise NotImplementedError("subclasses must implement")

    def format_heading(self, heading):
        raise NotImplementedError("subclasses must implement")

    def _format_text(self, text):
        """
        Format a paragraph of free-form text for inclusion in the
        help output at the current indentation level.
        """
        text_width = max(self.width - self.current_indent, 11)
        indent = " "*self.current_indent
        return textwrap.fill(text,
                             text_width,
                             initial_indent=indent,
                             subsequent_indent=indent)

    def format_description(self, description):
        if description:
            return self._format_text(description) + "\n"
        else:
            return ""

    def format_epilog(self, epilog):
        if epilog:
            return "\n" + self._format_text(epilog) + "\n"
        else:
            return ""


    def expand_default(self, option):
        if self.parser is None or not self.default_tag:
            return option.help

        default_value = self.parser.defaults.get(option.dest)
        if default_value is NO_DEFAULT or default_value is None:
            default_value = self.NO_DEFAULT_VALUE

        return option.help.replace(self.default_tag, str(default_value))

    def format_option(self, option):
        # The help for each option consists of two parts:
        #   * the opt strings and metavars
        #     eg. ("-x", or "-fFILENAME, --file=FILENAME")
        #   * the user-supplied help string
        #     eg. ("turn on expert mode", "read data from FILENAME")
        #
        # If possible, we write both of these on the same line:
        #   -x      turn on expert mode
        #
        # But if the opt string list is too long, we put the help
        # string on a second line, indented to the same column it would
        # start in if it fit on the first line.
        #   -fFILENAME, --file=FILENAME
        #           read data from FILENAME
        result = []
        opts = self.option_strings[option]
        opt_width = self.help_position - self.current_indent - 2
        if len(opts) > opt_width:
            opts = "%*s%s\n" % (self.current_indent, "", opts)
            indent_first = self.help_position
        else:                       # start help on same line as opts
            opts = "%*s%-*s  " % (self.current_indent, "", opt_width, opts)
            indent_first = 0
        result.append(opts)
        if option.help:
            help_text = self.expand_default(option)
            help_lines = textwrap.wrap(help_text, self.help_width)
            result.append("%*s%s\n" % (indent_first, "", help_lines[0]))
            result.extend(["%*s%s\n" % (self.help_position, "", line)
                           for line in help_lines[1:]])
        elif opts[-1] != "\n":
            result.append("\n")
        return "".join(result)

    def store_option_strings(self, parser):
        self.indent()
        max_len = 0
        for opt in parser.option_list:
            strings = self.format_option_strings(opt)
            self.option_strings[opt] = strings
            max_len = max(max_len, len(strings) + self.current_indent)
        self.indent()
        for group in parser.option_groups:
            for opt in group.option_list:
                strings = self.format_option_strings(opt)
                self.option_strings[opt] = strings
                max_len = max(max_len, len(strings) + self.current_indent)
        self.dedent()
        self.dedent()
        self.help_position = min(max_len + 2, self.max_help_position)
        self.help_width = max(self.width - self.help_position, 11)

    def format_option_strings(self, option):
        """Return a comma-separated list of option strings & metavariables."""
        if option.takes_value():
            metavar = option.metavar or option.dest.upper()
            short_opts = [self._short_opt_fmt % (sopt, metavar)
                          for sopt in option._short_opts]
            long_opts = [self._long_opt_fmt % (lopt, metavar)
                         for lopt in option._long_opts]
        else:
            short_opts = option._short_opts
            long_opts = option._long_opts

        if self.short_first:
            opts = short_opts + long_opts
        else:
            opts = long_opts + short_opts

        return ", ".join(opts)

class IndentedHelpFormatter (HelpFormatter):
    """Format help with indented section bodies.
    """

    def __init__(self,
                 indent_increment=2,
                 max_help_position=24,
                 width=None,
                 short_first=1):
        HelpFormatter.__init__(
            self, indent_increment, max_help_position, width, short_first)

    def format_usage(self, usage):
        return _("Usage: %s\n") % usage

    def format_heading(self, heading):
        return "%*s%s:\n" % (self.current_indent, "", heading)


class TitledHelpFormatter (HelpFormatter):
    """Format help with underlined section headers.
    """

    def __init__(self,
                 indent_increment=0,
                 max_help_position=24,
                 width=None,
                 short_first=0):
        HelpFormatter.__init__ (
            self, indent_increment, max_help_position, width, short_first)

    def format_usage(self, usage):
        return "%s  %s\n" % (self.format_heading(_("Usage")), usage)

    def format_heading(self, heading):
        return "%s\n%s\n" % (heading, "=-"[self.level] * len(heading))


def _parse_num(val, type):
    if val[:2].lower() == "0x":         # hexadecimal
        radix = 16
    elif val[:2].lower() == "0b":       # binary
        radix = 2
        val = val[2:] or "0"            # have to remove "0b" prefix
    elif val[:1] == "0":                # octal
        radix = 8
    else:                               # decimal
        radix = 10

    return type(val, radix)

def _parse_int(val):
    return _parse_num(val, int)

_builtin_cvt = { "int" : (_parse_int, _("integer")),
                 "long" : (_parse_int, _("integer")),
                 "float" : (float, _("floating-point")),
                 "complex" : (complex, _("complex")) }

def check_builtin(option, opt, value):
    (cvt, what) = _builtin_cvt[option.type]
    try:
        return cvt(value)
    except ValueError:
        raise OptionValueError(
            _("option %s: invalid %s value: %r") % (opt, what, value))

def check_choice(option, opt, value):
    if value in option.choices:
        return value
    else:
        choices = ", ".join(map(repr, option.choices))
        raise OptionValueError(
            _("option %s: invalid choice: %r (choose from %s)")
            % (opt, value, choices))

# Not supplying a default is different from a default of None,
# so we need an explicit "not supplied" value.
NO_DEFAULT = ("NO", "DEFAULT")


class Option:
    """
    Instance attributes:
      _short_opts : [string]
      _long_opts : [string]

      action : string
      type : string
      dest : string
      default : any
      nargs : int
      const : any
      choices : [string]
      callback : function
      callback_args : (any*)
      callback_kwargs : { string : any }
      help : string
      metavar : string
    """

    # The list of instance attributes that may be set through
    # keyword args to the constructor.
    ATTRS = ['action',
             'type',
             'dest',
             'default',
             'nargs',
             'const',
             'choices',
             'callback',
             'callback_args',
             'callback_kwargs',
             'help',
             'metavar']

    # The set of actions allowed by option parsers.  Explicitly listed
    # here so the constructor can validate its arguments.
    ACTIONS = ("store",
               "store_const",
               "store_true",
               "store_false",
               "append",
               "append_const",
               "count",
               "callback",
               "help",
               "version")

    # The set of actions that involve storing a value somewhere;
    # also listed just for constructor argument validation.  (If
    # the action is one of these, there must be a destination.)
    STORE_ACTIONS = ("store",
                     "store_const",
                     "store_true",
                     "store_false",
                     "append",
                     "append_const",
                     "count")

    # The set of actions for which it makes sense to supply a value
    # type, ie. which may consume an argument from the command line.
    TYPED_ACTIONS = ("store",
                     "append",
                     "callback")

    # The set of actions which *require* a value type, ie. that
    # always consume an argument from the command line.
    ALWAYS_TYPED_ACTIONS = ("store",
                            "append")

    # The set of actions which take a 'const' attribute.
    CONST_ACTIONS = ("store_const",
                     "append_const")

    # The set of known types for option parsers.  Again, listed here for
    # constructor argument validation.
    TYPES = ("string", "int", "long", "float", "complex", "choice")

    # Dictionary of argument checking functions, which convert and
    # validate option arguments according to the option type.
    #
    # Signature of checking functions is:
    #   check(option : Option, opt : string, value : string) -> any
    # where
    #   option is the Option instance calling the checker
    #   opt is the actual option seen on the command-line
    #     (eg. "-a", "--file")
    #   value is the option argument seen on the command-line
    #
    # The return value should be in the appropriate Python type
    # for option.type -- eg. an integer if option.type == "int".
    #
    # If no checker is defined for a type, arguments will be
    # unchecked and remain strings.
    TYPE_CHECKER = { "int"    : check_builtin,
                     "long"   : check_builtin,
                     "float"  : check_builtin,
                     "complex": check_builtin,
                     "choice" : check_choice,
                   }


    # CHECK_METHODS is a list of unbound method objects; they are called
    # by the constructor, in order, after all attributes are
    # initialized.  The list is created and filled in later, after all
    # the methods are actually defined.  (I just put it here because I
    # like to define and document all class attributes in the same
    # place.)  Subclasses that add another _check_*() method should
    # define their own CHECK_METHODS list that adds their check method
    # to those from this class.
    CHECK_METHODS = None


    # -- Constructor/initialization methods ----------------------------

    def __init__(self, *opts, **attrs):
        # Set _short_opts, _long_opts attrs from 'opts' tuple.
        # Have to be set now, in case no option strings are supplied.
        self._short_opts = []
        self._long_opts = []
        opts = self._check_opt_strings(opts)
        self._set_opt_strings(opts)

        # Set all other attrs (action, type, etc.) from 'attrs' dict
        self._set_attrs(attrs)

        # Check all the attributes we just set.  There are lots of
        # complicated interdependencies, but luckily they can be farmed
        # out to the _check_*() methods listed in CHECK_METHODS -- which
        # could be handy for subclasses!  The one thing these all share
        # is that they raise OptionError if they discover a problem.
        for checker in self.CHECK_METHODS:
            checker(self)

    def _check_opt_strings(self, opts):
        # Filter out None because early versions of Optik had exactly
        # one short option and one long option, either of which
        # could be None.
        opts = [opt for opt in opts if opt]
        if not opts:
            raise TypeError("at least one option string must be supplied")
        return opts

    def _set_opt_strings(self, opts):
        for opt in opts:
            if len(opt) < 2:
                raise OptionError(
                    "invalid option string %r: "
                    "must be at least two characters long" % opt, self)
            elif len(opt) == 2:
                if not (opt[0] == "-" and opt[1] != "-"):
                    raise OptionError(
                        "invalid short option string %r: "
                        "must be of the form -x, (x any non-dash char)" % opt,
                        self)
                self._short_opts.append(opt)
            else:
                if not (opt[0:2] == "--" and opt[2] != "-"):
                    raise OptionError(
                        "invalid long option string %r: "
                        "must start with --, followed by non-dash" % opt,
                        self)
                self._long_opts.append(opt)

    def _set_attrs(self, attrs):
        for attr in self.ATTRS:
            if attr in attrs:
                setattr(self, attr, attrs[attr])
                del attrs[attr]
            else:
                if attr == 'default':
                    setattr(self, attr, NO_DEFAULT)
                else:
                    setattr(self, attr, None)
        if attrs:
            attrs = sorted(attrs.keys())
            raise OptionError(
                "invalid keyword arguments: %s" % ", ".join(attrs),
                self)


    # -- Constructor validation methods --------------------------------

    def _check_action(self):
        if self.action is None:
            self.action = "store"
        elif self.action not in self.ACTIONS:
            raise OptionError("invalid action: %r" % self.action, self)

    def _check_type(self):
        if self.type is None:
            if self.action in self.ALWAYS_TYPED_ACTIONS:
                if self.choices is not None:
                    # The "choices" attribute implies "choice" type.
                    self.type = "choice"
                else:
                    # No type given?  "string" is the most sensible default.
                    self.type = "string"
        else:
            # Allow type objects or builtin type conversion functions
            # (int, str, etc.) as an alternative to their names.
            if isinstance(self.type, type):
                self.type = self.type.__name__

            if self.type == "str":
                self.type = "string"

            if self.type not in self.TYPES:
                raise OptionError("invalid option type: %r" % self.type, self)
            if self.action not in self.TYPED_ACTIONS:
                raise OptionError(
                    "must not supply a type for action %r" % self.action, self)

    def _check_choice(self):
        if self.type == "choice":
            if self.choices is None:
                raise OptionError(
                    "must supply a list of choices for type 'choice'", self)
            elif not isinstance(self.choices, (tuple, list)):
                raise OptionError(
                    "choices must be a list of strings ('%s' supplied)"
                    % str(type(self.choices)).split("'")[1], self)
        elif self.choices is not None:
            raise OptionError(
                "must not supply choices for type %r" % self.type, self)

    def _check_dest(self):
        # No destination given, and we need one for this action.  The
        # self.type check is for callbacks that take a value.
        takes_value = (self.action in self.STORE_ACTIONS or
                       self.type is not None)
        if self.dest is None and takes_value:

            # Glean a destination from the first long option string,
            # or from the first short option string if no long options.
            if self._long_opts:
                # eg. "--foo-bar" -> "foo_bar"
                self.dest = self._long_opts[0][2:].replace('-', '_')
            else:
                self.dest = self._short_opts[0][1]

    def _check_const(self):
        if self.action not in self.CONST_ACTIONS and self.const is not None:
            raise OptionError(
                "'const' must not be supplied for action %r" % self.action,
                self)

    def _check_nargs(self):
        if self.action in self.TYPED_ACTIONS:
            if self.nargs is None:
                self.nargs = 1
        elif self.nargs is not None:
            raise OptionError(
                "'nargs' must not be supplied for action %r" % self.action,
                self)

    def _check_callback(self):
        if self.action == "callback":
            if not callable(self.callback):
                raise OptionError(
                    "callback not callable: %r" % self.callback, self)
            if (self.callback_args is not None and
                not isinstance(self.callback_args, tuple)):
                raise OptionError(
                    "callback_args, if supplied, must be a tuple: not %r"
                    % self.callback_args, self)
            if (self.callback_kwargs is not None and
                not isinstance(self.callback_kwargs, dict)):
                raise OptionError(
                    "callback_kwargs, if supplied, must be a dict: not %r"
                    % self.callback_kwargs, self)
        else:
            if self.callback is not None:
                raise OptionError(
                    "callback supplied (%r) for non-callback option"
                    % self.callback, self)
            if self.callback_args is not None:
                raise OptionError(
                    "callback_args supplied for non-callback option", self)
            if self.callback_kwargs is not None:
                raise OptionError(
                    "callback_kwargs supplied for non-callback option", self)


    CHECK_METHODS = [_check_action,
                     _check_type,
                     _check_choice,
                     _check_dest,
                     _check_const,
                     _check_nargs,
                     _check_callback]


    # -- Miscellaneous methods -----------------------------------------

    def __str__(self):
        return "/".join(self._short_opts + self._long_opts)

    __repr__ = _repr

    def takes_value(self):
        return self.type is not None

    def get_opt_string(self):
        if self._long_opts:
            return self._long_opts[0]
        else:
            return self._short_opts[0]


    # -- Processing methods --------------------------------------------

    def check_value(self, opt, value):
        checker = self.TYPE_CHECKER.get(self.type)
        if checker is None:
            return value
        else:
            return checker(self, opt, value)

    def convert_value(self, opt, value):
        if value is not None:
            if self.nargs == 1:
                return self.check_value(opt, value)
            else:
                return tuple([self.check_value(opt, v) for v in value])

    def process(self, opt, value, values, parser):

        # First, convert the value(s) to the right type.  Howl if any
        # value(s) are bogus.
        value = self.convert_value(opt, value)

        # And then take whatever action is expected of us.
        # This is a separate method to make life easier for
        # subclasses to add new actions.
        return self.take_action(
            self.action, self.dest, opt, value, values, parser)

    def take_action(self, action, dest, opt, value, values, parser):
        if action == "store":
            setattr(values, dest, value)
        elif action == "store_const":
            setattr(values, dest, self.const)
        elif action == "store_true":
            setattr(values, dest, True)
        elif action == "store_false":
            setattr(values, dest, False)
        elif action == "append":
            values.ensure_value(dest, []).append(value)
        elif action == "append_const":
            values.ensure_value(dest, []).append(self.const)
        elif action == "count":
            setattr(values, dest, values.ensure_value(dest, 0) + 1)
        elif action == "callback":
            args = self.callback_args or ()
            kwargs = self.callback_kwargs or {}
            self.callback(self, opt, value, parser, *args, **kwargs)
        elif action == "help":
            parser.print_help()
            parser.exit()
        elif action == "version":
            parser.print_version()
            parser.exit()
        else:
            raise ValueError("unknown action %r" % self.action)

        return 1

# class Option


SUPPRESS_HELP = "SUPPRESS"+"HELP"
SUPPRESS_USAGE = "SUPPRESS"+"USAGE"

class Values:

    def __init__(self, defaults=None):
        if defaults:
            for (attr, val) in defaults.items():
                setattr(self, attr, val)

    def __str__(self):
        return str(self.__dict__)

    __repr__ = _repr

    def __eq__(self, other):
        if isinstance(other, Values):
            return self.__dict__ == other.__dict__
        elif isinstance(other, dict):
            return self.__dict__ == other
        else:
            return NotImplemented

    def _update_careful(self, dict):
        """
        Update the option values from an arbitrary dictionary, but only
        use keys from dict that already have a corresponding attribute
        in self.  Any keys in dict without a corresponding attribute
        are silently ignored.
        """
        for attr in dir(self):
            if attr in dict:
                dval = dict[attr]
                if dval is not None:
                    setattr(self, attr, dval)

    def _update_loose(self, dict):
        """
        Update the option values from an arbitrary dictionary,
        using all keys from the dictionary regardless of whether
        they have a corresponding attribute in self or not.
        """
        self.__dict__.update(dict)

    def _update(self, dict, mode):
        if mode == "careful":
            self._update_careful(dict)
        elif mode == "loose":
            self._update_loose(dict)
        else:
            raise ValueError("invalid update mode: %r" % mode)

    def read_module(self, modname, mode="careful"):
        __import__(modname)
        mod = sys.modules[modname]
        self._update(vars(mod), mode)

    def read_file(self, filename, mode="careful"):
        vars = {}
        exec(open(filename).read(), vars)
        self._update(vars, mode)

    def ensure_value(self, attr, value):
        if not hasattr(self, attr) or getattr(self, attr) is None:
            setattr(self, attr, value)
        return getattr(self, attr)


class OptionContainer:

    """
    Abstract base class.

    Class attributes:
      standard_option_list : [Option]
        list of standard options that will be accepted by all instances
        of this parser class (intended to be overridden by subclasses).

    Instance attributes:
      option_list : [Option]
        the list of Option objects contained by this OptionContainer
      _short_opt : { string : Option }
        dictionary mapping short option strings, eg. "-f" or "-X",
        to the Option instances that implement them.  If an Option
        has multiple short option strings, it will appears in this
        dictionary multiple times. [1]
      _long_opt : { string : Option }
        dictionary mapping long option strings, eg. "--file" or
        "--exclude", to the Option instances that implement them.
        Again, a given Option can occur multiple times in this
        dictionary. [1]
      defaults : { string : any }
        dictionary mapping option destination names to default
        values for each destination [1]

    [1] These mappings are common to (shared by) all components of the
        controlling OptionParser, where they are initially created.

    """

    def __init__(self, option_class, conflict_handler, description):
        # Initialize the option list and related data structures.
        # This method must be provided by subclasses, and it must
        # initialize at least the following instance attributes:
        # option_list, _short_opt, _long_opt, defaults.
        self._create_option_list()

        self.option_class = option_class
        self.set_conflict_handler(conflict_handler)
        self.set_description(description)

    def _create_option_mappings(self):
        # For use by OptionParser constructor -- create the master
        # option mappings used by this OptionParser and all
        # OptionGroups that it owns.
        self._short_opt = {}            # single letter -> Option instance
        self._long_opt = {}             # long option -> Option instance
        self.defaults = {}              # maps option dest -> default value


    def _share_option_mappings(self, parser):
        # For use by OptionGroup constructor -- use shared option
        # mappings from the OptionParser that owns this OptionGroup.
        self._short_opt = parser._short_opt
        self._long_opt = parser._long_opt
        self.defaults = parser.defaults

    def set_conflict_handler(self, handler):
        if handler not in ("error", "resolve"):
            raise ValueError("invalid conflict_resolution value %r" % handler)
        self.conflict_handler = handler

    def set_description(self, description):
        self.description = description

    def get_description(self):
        return self.description


    def destroy(self):
        """see OptionParser.destroy()."""
        del self._short_opt
        del self._long_opt
        del self.defaults


    # -- Option-adding methods -----------------------------------------

    def _check_conflict(self, option):
        conflict_opts = []
        for opt in option._short_opts:
            if opt in self._short_opt:
                conflict_opts.append((opt, self._short_opt[opt]))
        for opt in option._long_opts:
            if opt in self._long_opt:
                conflict_opts.append((opt, self._long_opt[opt]))

        if conflict_opts:
            handler = self.conflict_handler
            if handler == "error":
                raise OptionConflictError(
                    "conflicting option string(s): %s"
                    % ", ".join([co[0] for co in conflict_opts]),
                    option)
            elif handler == "resolve":
                for (opt, c_option) in conflict_opts:
                    if opt.startswith("--"):
                        c_option._long_opts.remove(opt)
                        del self._long_opt[opt]
                    else:
                        c_option._short_opts.remove(opt)
                        del self._short_opt[opt]
                    if not (c_option._short_opts or c_option._long_opts):
                        c_option.container.option_list.remove(c_option)

    def add_option(self, *args, **kwargs):
        """add_option(Option)
           add_option(opt_str, ..., kwarg=val, ...)
        """
        if isinstance(args[0], str):
            option = self.option_class(*args, **kwargs)
        elif len(args) == 1 and not kwargs:
            option = args[0]
            if not isinstance(option, Option):
                raise TypeError("not an Option instance: %r" % option)
        else:
            raise TypeError("invalid arguments")

        self._check_conflict(option)

        self.option_list.append(option)
        option.container = self
        for opt in option._short_opts:
            self._short_opt[opt] = option
        for opt in option._long_opts:
            self._long_opt[opt] = option

        if option.dest is not None:     # option has a dest, we need a default
            if option.default is not NO_DEFAULT:
                self.defaults[option.dest] = option.default
            elif option.dest not in self.defaults:
                self.defaults[option.dest] = None

        return option

    def add_options(self, option_list):
        for option in option_list:
            self.add_option(option)

    # -- Option query/removal methods ----------------------------------

    def get_option(self, opt_str):
        return (self._short_opt.get(opt_str) or
                self._long_opt.get(opt_str))

    def has_option(self, opt_str):
        return (opt_str in self._short_opt or
                opt_str in self._long_opt)

    def remove_option(self, opt_str):
        option = self._short_opt.get(opt_str)
        if option is None:
            option = self._long_opt.get(opt_str)
        if option is None:
            raise ValueError("no such option %r" % opt_str)

        for opt in option._short_opts:
            del self._short_opt[opt]
        for opt in option._long_opts:
            del self._long_opt[opt]
        option.container.option_list.remove(option)


    # -- Help-formatting methods ---------------------------------------

    def format_option_help(self, formatter):
        if not self.option_list:
            return ""
        result = []
        for option in self.option_list:
            if not option.help is SUPPRESS_HELP:
                result.append(formatter.format_option(option))
        return "".join(result)

    def format_description(self, formatter):
        return formatter.format_description(self.get_description())

    def format_help(self, formatter):
        result = []
        if self.description:
            result.append(self.format_description(formatter))
        if self.option_list:
            result.append(self.format_option_help(formatter))
        return "\n".join(result)


class OptionGroup (OptionContainer):

    def __init__(self, parser, title, description=None):
        self.parser = parser
        OptionContainer.__init__(
            self, parser.option_class, parser.conflict_handler, description)
        self.title = title

    def _create_option_list(self):
        self.option_list = []
        self._share_option_mappings(self.parser)

    def set_title(self, title):
        self.title = title

    def destroy(self):
        """see OptionParser.destroy()."""
        OptionContainer.destroy(self)
        del self.option_list

    # -- Help-formatting methods ---------------------------------------

    def format_help(self, formatter):
        result = formatter.format_heading(self.title)
        formatter.indent()
        result += OptionContainer.format_help(self, formatter)
        formatter.dedent()
        return result


class OptionParser (OptionContainer):

    """
    Class attributes:
      standard_option_list : [Option]
        list of standard options that will be accepted by all instances
        of this parser class (intended to be overridden by subclasses).

    Instance attributes:
      usage : string
        a usage string for your program.  Before it is displayed
        to the user, "%prog" will be expanded to the name of
        your program (self.prog or os.path.basename(sys.argv[0])).
      prog : string
        the name of the current program (to override
        os.path.basename(sys.argv[0])).
      description : string
        A paragraph of text giving a brief overview of your program.
        optparse reformats this paragraph to fit the current terminal
        width and prints it when the user requests help (after usage,
        but before the list of options).
      epilog : string
        paragraph of help text to print after option help

      option_groups : [OptionGroup]
        list of option groups in this parser (option groups are
        irrelevant for parsing the command-line, but very useful
        for generating help)

      allow_interspersed_args : bool = true
        if true, positional arguments may be interspersed with options.
        Assuming -a and -b each take a single argument, the command-line
          -ablah foo bar -bboo baz
        will be interpreted the same as
          -ablah -bboo -- foo bar baz
        If this flag were false, that command line would be interpreted as
          -ablah -- foo bar -bboo baz
        -- ie. we stop processing options as soon as we see the first
        non-option argument.  (This is the tradition followed by
        Python's getopt module, Perl's Getopt::Std, and other argument-
        parsing libraries, but it is generally annoying to users.)

      process_default_values : bool = true
        if true, option default values are processed similarly to option
        values from the command line: that is, they are passed to the
        type-checking function for the option's type (as long as the
        default value is a string).  (This really only matters if you
        have defined custom types; see SF bug #955889.)  Set it to false
        to restore the behaviour of Optik 1.4.1 and earlier.

      rargs : [string]
        the argument list currently being parsed.  Only set when
        parse_args() is active, and continually trimmed down as
        we consume arguments.  Mainly there for the benefit of
        callback options.
      largs : [string]
        the list of leftover arguments that we have skipped while
        parsing options.  If allow_interspersed_args is false, this
        list is always empty.
      values : Values
        the set of option values currently being accumulated.  Only
        set when parse_args() is active.  Also mainly for callbacks.

    Because of the 'rargs', 'largs', and 'values' attributes,
    OptionParser is not thread-safe.  If, for some perverse reason, you
    need to parse command-line arguments simultaneously in different
    threads, use different OptionParser instances.

    """

    standard_option_list = []

    def __init__(self,
                 usage=None,
                 option_list=None,
                 option_class=Option,
                 version=None,
                 conflict_handler="error",
                 description=None,
                 formatter=None,
                 add_help_option=True,
                 prog=None,
                 epilog=None):
        OptionContainer.__init__(
            self, option_class, conflict_handler, description)
        self.set_usage(usage)
        self.prog = prog
        self.version = version
        self.allow_interspersed_args = True
        self.process_default_values = True
        if formatter is None:
            formatter = IndentedHelpFormatter()
        self.formatter = formatter
        self.formatter.set_parser(self)
        self.epilog = epilog

        # Populate the option list; initial sources are the
        # standard_option_list class attribute, the 'option_list'
        # argument, and (if applicable) the _add_version_option() and
        # _add_help_option() methods.
        self._populate_option_list(option_list,
                                   add_help=add_help_option)

        self._init_parsing_state()


    def destroy(self):
        """
        Declare that you are done with this OptionParser.  This cleans up
        reference cycles so the OptionParser (and all objects referenced by
        it) can be garbage-collected promptly.  After calling destroy(), the
        OptionParser is unusable.
        """
        OptionContainer.destroy(self)
        for group in self.option_groups:
            group.destroy()
        del self.option_list
        del self.option_groups
        del self.formatter


    # -- Private methods -----------------------------------------------
    # (used by our or OptionContainer's constructor)

    def _create_option_list(self):
        self.option_list = []
        self.option_groups = []
        self._create_option_mappings()

    def _add_help_option(self):
        self.add_option("-h", "--help",
                        action="help",
                        help=_("show this help message and exit"))

    def _add_version_option(self):
        self.add_option("--version",
                        action="version",
                        help=_("show program's version number and exit"))

    def _populate_option_list(self, option_list, add_help=True):
        if self.standard_option_list:
            self.add_options(self.standard_option_list)
        if option_list:
            self.add_options(option_list)
        if self.version:
            self._add_version_option()
        if add_help:
            self._add_help_option()

    def _init_parsing_state(self):
        # These are set in parse_args() for the convenience of callbacks.
        self.rargs = None
        self.largs = None
        self.values = None


    # -- Simple modifier methods ---------------------------------------

    def set_usage(self, usage):
        if usage is None:
            self.usage = _("%prog [options]")
        elif usage is SUPPRESS_USAGE:
            self.usage = None
        # For backwards compatibility with Optik 1.3 and earlier.
        elif usage.lower().startswith("usage: "):
            self.usage = usage[7:]
        else:
            self.usage = usage

    def enable_interspersed_args(self):
        """Set parsing to not stop on the first non-option, allowing
        interspersing switches with command arguments. This is the
        default behavior. See also disable_interspersed_args() and the
        class documentation description of the attribute
        allow_interspersed_args."""
        self.allow_interspersed_args = True

    def disable_interspersed_args(self):
        """Set parsing to stop on the first non-option. Use this if
        you have a command processor which runs another command that
        has options of its own and you want to make sure these options
        don't get confused.
        """
        self.allow_interspersed_args = False

    def set_process_default_values(self, process):
        self.process_default_values = process

    def set_default(self, dest, value):
        self.defaults[dest] = value

    def set_defaults(self, **kwargs):
        self.defaults.update(kwargs)

    def _get_all_options(self):
        options = self.option_list[:]
        for group in self.option_groups:
            options.extend(group.option_list)
        return options

    def get_default_values(self):
        if not self.process_default_values:
            # Old, pre-Optik 1.5 behaviour.
            return Values(self.defaults)

        defaults = self.defaults.copy()
        for option in self._get_all_options():
            default = defaults.get(option.dest)
            if isinstance(default, str):
                opt_str = option.get_opt_string()
                defaults[option.dest] = option.check_value(opt_str, default)

        return Values(defaults)


    # -- OptionGroup methods -------------------------------------------

    def add_option_group(self, *args, **kwargs):
        # XXX lots of overlap with OptionContainer.add_option()
        if isinstance(args[0], str):
            group = OptionGroup(self, *args, **kwargs)
        elif len(args) == 1 and not kwargs:
            group = args[0]
            if not isinstance(group, OptionGroup):
                raise TypeError("not an OptionGroup instance: %r" % group)
            if group.parser is not self:
                raise ValueError("invalid OptionGroup (wrong parser)")
        else:
            raise TypeError("invalid arguments")

        self.option_groups.append(group)
        return group

    def get_option_group(self, opt_str):
        option = (self._short_opt.get(opt_str) or
                  self._long_opt.get(opt_str))
        if option and option.container is not self:
            return option.container
        return None


    # -- Option-parsing methods ----------------------------------------

    def _get_args(self, args):
        if args is None:
            return sys.argv[1:]
        else:
            return args[:]              # don't modify caller's list

    def parse_args(self, args=None, values=None):
        """
        parse_args(args : [string] = sys.argv[1:],
                   values : Values = None)
        -> (values : Values, args : [string])

        Parse the command-line options found in 'args' (default:
        sys.argv[1:]).  Any errors result in a call to 'error()', which
        by default prints the usage message to stderr and calls
        sys.exit() with an error message.  On success returns a pair
        (values, args) where 'values' is an Values instance (with all
        your option values) and 'args' is the list of arguments left
        over after parsing options.
        """
        rargs = self._get_args(args)
        if values is None:
            values = self.get_default_values()

        # Store the halves of the argument list as attributes for the
        # convenience of callbacks:
        #   rargs
        #     the rest of the command-line (the "r" stands for
        #     "remaining" or "right-hand")
        #   largs
        #     the leftover arguments -- ie. what's left after removing
        #     options and their arguments (the "l" stands for "leftover"
        #     or "left-hand")
        self.rargs = rargs
        self.largs = largs = []
        self.values = values

        try:
            stop = self._process_args(largs, rargs, values)
        except (BadOptionError, OptionValueError) as err:
            self.error(str(err))

        args = largs + rargs
        return self.check_values(values, args)

    def check_values(self, values, args):
        """
        check_values(values : Values, args : [string])
        -> (values : Values, args : [string])

        Check that the supplied option values and leftover arguments are
        valid.  Returns the option values and leftover arguments
        (possibly adjusted, possibly completely new -- whatever you
        like).  Default implementation just returns the passed-in
        values; subclasses may override as desired.
        """
        return (values, args)

    def _process_args(self, largs, rargs, values):
        """_process_args(largs : [string],
                         rargs : [string],
                         values : Values)

        Process command-line arguments and populate 'values', consuming
        options and arguments from 'rargs'.  If 'allow_interspersed_args' is
        false, stop at the first non-option argument.  If true, accumulate any
        interspersed non-option arguments in 'largs'.
        """
        while rargs:
            arg = rargs[0]
            # We handle bare "--" explicitly, and bare "-" is handled by the
            # standard arg handler since the short arg case ensures that the
            # len of the opt string is greater than 1.
            if arg == "--":
                del rargs[0]
                return
            elif arg[0:2] == "--":
                # process a single long option (possibly with value(s))
                self._process_long_opt(rargs, values)
            elif arg[:1] == "-" and len(arg) > 1:
                # process a cluster of short options (possibly with
                # value(s) for the last one only)
                self._process_short_opts(rargs, values)
            elif self.allow_interspersed_args:
                largs.append(arg)
                del rargs[0]
            else:
                return                  # stop now, leave this arg in rargs

        # Say this is the original argument list:
        # [arg0, arg1, ..., arg(i-1), arg(i), arg(i+1), ..., arg(N-1)]
        #                            ^
        # (we are about to process arg(i)).
        #
        # Then rargs is [arg(i), ..., arg(N-1)] and largs is a *subset* of
        # [arg0, ..., arg(i-1)] (any options and their arguments will have
        # been removed from largs).
        #
        # The while loop will usually consume 1 or more arguments per pass.
        # If it consumes 1 (eg. arg is an option that takes no arguments),
        # then after _process_arg() is done the situation is:
        #
        #   largs = subset of [arg0, ..., arg(i)]
        #   rargs = [arg(i+1), ..., arg(N-1)]
        #
        # If allow_interspersed_args is false, largs will always be
        # *empty* -- still a subset of [arg0, ..., arg(i-1)], but
        # not a very interesting subset!

    def _match_long_opt(self, opt):
        """_match_long_opt(opt : string) -> string

        Determine which long option string 'opt' matches, ie. which one
        it is an unambiguous abbreviation for.  Raises BadOptionError if
        'opt' doesn't unambiguously match any long option string.
        """
        return _match_abbrev(opt, self._long_opt)

    def _process_long_opt(self, rargs, values):
        arg = rargs.pop(0)

        # Value explicitly attached to arg?  Pretend it's the next
        # argument.
        if "=" in arg:
            (opt, next_arg) = arg.split("=", 1)
            rargs.insert(0, next_arg)
            had_explicit_value = True
        else:
            opt = arg
            had_explicit_value = False

        opt = self._match_long_opt(opt)
        option = self._long_opt[opt]
        if option.takes_value():
            nargs = option.nargs
            if len(rargs) < nargs:
                self.error(ngettext(
                    "%(option)s option requires %(number)d argument",
                    "%(option)s option requires %(number)d arguments",
                    nargs) % {"option": opt, "number": nargs})
            elif nargs == 1:
                value = rargs.pop(0)
            else:
                value = tuple(rargs[0:nargs])
                del rargs[0:nargs]

        elif had_explicit_value:
            self.error(_("%s option does not take a value") % opt)

        else:
            value = None

        option.process(opt, value, values, self)

    def _process_short_opts(self, rargs, values):
        arg = rargs.pop(0)
        stop = False
        i = 1
        for ch in arg[1:]:
            opt = "-" + ch
            option = self._short_opt.get(opt)
            i += 1                      # we have consumed a character

            if not option:
                raise BadOptionError(opt)
            if option.takes_value():
                # Any characters left in arg?  Pretend they're the
                # next arg, and stop consuming characters of arg.
                if i < len(arg):
                    rargs.insert(0, arg[i:])
                    stop = True

                nargs = option.nargs
                if len(rargs) < nargs:
                    self.error(ngettext(
                        "%(option)s option requires %(number)d argument",
                        "%(option)s option requires %(number)d arguments",
                        nargs) % {"option": opt, "number": nargs})
                elif nargs == 1:
                    value = rargs.pop(0)
                else:
                    value = tuple(rargs[0:nargs])
                    del rargs[0:nargs]

            else:                       # option doesn't take a value
                value = None

            option.process(opt, value, values, self)

            if stop:
                break


    # -- Feedback methods ----------------------------------------------

    def get_prog_name(self):
        if self.prog is None:
            return os.path.basename(sys.argv[0])
        else:
            return self.prog

    def expand_prog_name(self, s):
        return s.replace("%prog", self.get_prog_name())

    def get_description(self):
        return self.expand_prog_name(self.description)

    def exit(self, status=0, msg=None):
        if msg:
            sys.stderr.write(msg)
        sys.exit(status)

    def error(self, msg):
        """error(msg : string)

        Print a usage message incorporating 'msg' to stderr and exit.
        If you override this in a subclass, it should not return -- it
        should either exit or raise an exception.
        """
        self.print_usage(sys.stderr)
        self.exit(2, "%s: error: %s\n" % (self.get_prog_name(), msg))

    def get_usage(self):
        if self.usage:
            return self.formatter.format_usage(
                self.expand_prog_name(self.usage))
        else:
            return ""

    def print_usage(self, file=None):
        """print_usage(file : file = stdout)

        Print the usage message for the current program (self.usage) to
        'file' (default stdout).  Any occurrence of the string "%prog" in
        self.usage is replaced with the name of the current program
        (basename of sys.argv[0]).  Does nothing if self.usage is empty
        or not defined.
        """
        if self.usage:
            print(self.get_usage(), file=file)

    def get_version(self):
        if self.version:
            return self.expand_prog_name(self.version)
        else:
            return ""

    def print_version(self, file=None):
        """print_version(file : file = stdout)

        Print the version message for this program (self.version) to
        'file' (default stdout).  As with print_usage(), any occurrence
        of "%prog" in self.version is replaced by the current program's
        name.  Does nothing if self.version is empty or undefined.
        """
        if self.version:
            print(self.get_version(), file=file)

    def format_option_help(self, formatter=None):
        if formatter is None:
            formatter = self.formatter
        formatter.store_option_strings(self)
        result = []
        result.append(formatter.format_heading(_("Options")))
        formatter.indent()
        if self.option_list:
            result.append(OptionContainer.format_option_help(self, formatter))
            result.append("\n")
        for group in self.option_groups:
            result.append(group.format_help(formatter))
            result.append("\n")
        formatter.dedent()
        # Drop the last "\n", or the header if no options or option groups:
        return "".join(result[:-1])

    def format_epilog(self, formatter):
        return formatter.format_epilog(self.epilog)

    def format_help(self, formatter=None):
        if formatter is None:
            formatter = self.formatter
        result = []
        if self.usage:
            result.append(self.get_usage() + "\n")
        if self.description:
            result.append(self.format_description(formatter) + "\n")
        result.append(self.format_option_help(formatter))
        result.append(self.format_epilog(formatter))
        return "".join(result)

    def print_help(self, file=None):
        """print_help(file : file = stdout)

        Print an extended help message, listing all options and any
        help text provided with them, to 'file' (default stdout).
        """
        if file is None:
            file = sys.stdout
        file.write(self.format_help())

# class OptionParser


def _match_abbrev(s, wordmap):
    """_match_abbrev(s : string, wordmap : {string : Option}) -> string

    Return the string key in 'wordmap' for which 's' is an unambiguous
    abbreviation.  If 's' is found to be ambiguous or doesn't match any of
    'words', raise BadOptionError.
    """
    # Is there an exact match?
    if s in wordmap:
        return s
    else:
        # Isolate all words with s as a prefix.
        possibilities = [word for word in wordmap.keys()
                         if word.startswith(s)]
        # No exact match, so there had better be just one possibility.
        if len(possibilities) == 1:
            return possibilities[0]
        elif not possibilities:
            raise BadOptionError(s)
        else:
            # More than one possible completion: ambiguous prefix.
            possibilities.sort()
            raise AmbiguousOptionError(s, possibilities)


# Some day, there might be many Option classes.  As of Optik 1.3, the
# preferred way to instantiate Options is indirectly, via make_option(),
# which will become a factory function when there are many Option
# classes.
make_option = Option
lib\os.py
r"""OS routines for NT or Posix depending on what system we're on.

This exports:
  - all functions from posix, nt or ce, e.g. unlink, stat, etc.
  - os.path is either posixpath or ntpath
  - os.name is either 'posix', 'nt' or 'ce'.
  - os.curdir is a string representing the current directory ('.' or ':')
  - os.pardir is a string representing the parent directory ('..' or '::')
  - os.sep is the (or a most common) pathname separator ('/' or ':' or '\\')
  - os.extsep is the extension separator (always '.')
  - os.altsep is the alternate pathname separator (None or '/')
  - os.pathsep is the component separator used in $PATH etc
  - os.linesep is the line separator in text files ('\r' or '\n' or '\r\n')
  - os.defpath is the default search path for executables
  - os.devnull is the file path of the null device ('/dev/null', etc.)

Programs that import and use 'os' stand a better chance of being
portable between different platforms.  Of course, they must then
only use functions that are defined by all platforms (e.g., unlink
and opendir), and leave all pathname manipulation to os.path
(e.g., split and join).
"""

#'

import sys, errno
import stat as st

_names = sys.builtin_module_names

# Note:  more names are added to __all__ later.
__all__ = ["altsep", "curdir", "pardir", "sep", "pathsep", "linesep",
           "defpath", "name", "path", "devnull", "SEEK_SET", "SEEK_CUR",
           "SEEK_END", "fsencode", "fsdecode", "get_exec_path", "fdopen",
           "popen", "extsep"]

def _exists(name):
    return name in globals()

def _get_exports_list(module):
    try:
        return list(module.__all__)
    except AttributeError:
        return [n for n in dir(module) if n[0] != '_']

# Any new dependencies of the os module and/or changes in path separator
# requires updating importlib as well.
if 'posix' in _names:
    name = 'posix'
    linesep = '\n'
    from posix import *
    try:
        from posix import _exit
        __all__.append('_exit')
    except ImportError:
        pass
    import posixpath as path

    try:
        from posix import _have_functions
    except ImportError:
        pass

elif 'nt' in _names:
    name = 'nt'
    linesep = '\r\n'
    from nt import *
    try:
        from nt import _exit
        __all__.append('_exit')
    except ImportError:
        pass
    import ntpath as path

    import nt
    __all__.extend(_get_exports_list(nt))
    del nt

    try:
        from nt import _have_functions
    except ImportError:
        pass

elif 'ce' in _names:
    name = 'ce'
    linesep = '\r\n'
    from ce import *
    try:
        from ce import _exit
        __all__.append('_exit')
    except ImportError:
        pass
    # We can use the standard Windows path.
    import ntpath as path

    import ce
    __all__.extend(_get_exports_list(ce))
    del ce

    try:
        from ce import _have_functions
    except ImportError:
        pass

else:
    raise ImportError('no os specific module found')

sys.modules['os.path'] = path
from os.path import (curdir, pardir, sep, pathsep, defpath, extsep, altsep,
    devnull)

del _names


if _exists("_have_functions"):
    _globals = globals()
    def _add(str, fn):
        if (fn in _globals) and (str in _have_functions):
            _set.add(_globals[fn])

    _set = set()
    _add("HAVE_FACCESSAT",  "access")
    _add("HAVE_FCHMODAT",   "chmod")
    _add("HAVE_FCHOWNAT",   "chown")
    _add("HAVE_FSTATAT",    "stat")
    _add("HAVE_FUTIMESAT",  "utime")
    _add("HAVE_LINKAT",     "link")
    _add("HAVE_MKDIRAT",    "mkdir")
    _add("HAVE_MKFIFOAT",   "mkfifo")
    _add("HAVE_MKNODAT",    "mknod")
    _add("HAVE_OPENAT",     "open")
    _add("HAVE_READLINKAT", "readlink")
    _add("HAVE_RENAMEAT",   "rename")
    _add("HAVE_SYMLINKAT",  "symlink")
    _add("HAVE_UNLINKAT",   "unlink")
    _add("HAVE_UNLINKAT",   "rmdir")
    _add("HAVE_UTIMENSAT",  "utime")
    supports_dir_fd = _set

    _set = set()
    _add("HAVE_FACCESSAT",  "access")
    supports_effective_ids = _set

    _set = set()
    _add("HAVE_FCHDIR",     "chdir")
    _add("HAVE_FCHMOD",     "chmod")
    _add("HAVE_FCHOWN",     "chown")
    _add("HAVE_FDOPENDIR",  "listdir")
    _add("HAVE_FEXECVE",    "execve")
    _set.add(stat) # fstat always works
    _add("HAVE_FTRUNCATE",  "truncate")
    _add("HAVE_FUTIMENS",   "utime")
    _add("HAVE_FUTIMES",    "utime")
    _add("HAVE_FPATHCONF",  "pathconf")
    if _exists("statvfs") and _exists("fstatvfs"): # mac os x10.3
        _add("HAVE_FSTATVFS", "statvfs")
    supports_fd = _set

    _set = set()
    _add("HAVE_FACCESSAT",  "access")
    # Some platforms don't support lchmod().  Often the function exists
    # anyway, as a stub that always returns ENOSUP or perhaps EOPNOTSUPP.
    # (No, I don't know why that's a good design.)  ./configure will detect
    # this and reject it--so HAVE_LCHMOD still won't be defined on such
    # platforms.  This is Very Helpful.
    #
    # However, sometimes platforms without a working lchmod() *do* have
    # fchmodat().  (Examples: Linux kernel 3.2 with glibc 2.15,
    # OpenIndiana 3.x.)  And fchmodat() has a flag that theoretically makes
    # it behave like lchmod().  So in theory it would be a suitable
    # replacement for lchmod().  But when lchmod() doesn't work, fchmodat()'s
    # flag doesn't work *either*.  Sadly ./configure isn't sophisticated
    # enough to detect this condition--it only determines whether or not
    # fchmodat() minimally works.
    #
    # Therefore we simply ignore fchmodat() when deciding whether or not
    # os.chmod supports follow_symlinks.  Just checking lchmod() is
    # sufficient.  After all--if you have a working fchmodat(), your
    # lchmod() almost certainly works too.
    #
    # _add("HAVE_FCHMODAT",   "chmod")
    _add("HAVE_FCHOWNAT",   "chown")
    _add("HAVE_FSTATAT",    "stat")
    _add("HAVE_LCHFLAGS",   "chflags")
    _add("HAVE_LCHMOD",     "chmod")
    if _exists("lchown"): # mac os x10.3
        _add("HAVE_LCHOWN", "chown")
    _add("HAVE_LINKAT",     "link")
    _add("HAVE_LUTIMES",    "utime")
    _add("HAVE_LSTAT",      "stat")
    _add("HAVE_FSTATAT",    "stat")
    _add("HAVE_UTIMENSAT",  "utime")
    _add("MS_WINDOWS",      "stat")
    supports_follow_symlinks = _set

    del _set
    del _have_functions
    del _globals
    del _add


# Python uses fixed values for the SEEK_ constants; they are mapped
# to native constants if necessary in posixmodule.c
# Other possible SEEK values are directly imported from posixmodule.c
SEEK_SET = 0
SEEK_CUR = 1
SEEK_END = 2

# Super directory utilities.
# (Inspired by Eric Raymond; the doc strings are mostly his)

def makedirs(name, mode=0o777, exist_ok=False):
    """makedirs(name [, mode=0o777][, exist_ok=False])

    Super-mkdir; create a leaf directory and all intermediate ones.  Works like
    mkdir, except that any intermediate path segment (not just the rightmost)
    will be created if it does not exist. If the target directory already
    exists, raise an OSError if exist_ok is False. Otherwise no exception is
    raised.  This is recursive.

    """
    head, tail = path.split(name)
    if not tail:
        head, tail = path.split(head)
    if head and tail and not path.exists(head):
        try:
            makedirs(head, mode, exist_ok)
        except FileExistsError:
            # Defeats race condition when another thread created the path
            pass
        cdir = curdir
        if isinstance(tail, bytes):
            cdir = bytes(curdir, 'ASCII')
        if tail == cdir:           # xxx/newdir/. exists if xxx/newdir exists
            return
    try:
        mkdir(name, mode)
    except OSError:
        # Cannot rely on checking for EEXIST, since the operating system
        # could give priority to other errors like EACCES or EROFS
        if not exist_ok or not path.isdir(name):
            raise

def removedirs(name):
    """removedirs(name)

    Super-rmdir; remove a leaf directory and all empty intermediate
    ones.  Works like rmdir except that, if the leaf directory is
    successfully removed, directories corresponding to rightmost path
    segments will be pruned away until either the whole path is
    consumed or an error occurs.  Errors during this latter phase are
    ignored -- they generally mean that a directory was not empty.

    """
    rmdir(name)
    head, tail = path.split(name)
    if not tail:
        head, tail = path.split(head)
    while head and tail:
        try:
            rmdir(head)
        except OSError:
            break
        head, tail = path.split(head)

def renames(old, new):
    """renames(old, new)

    Super-rename; create directories as necessary and delete any left
    empty.  Works like rename, except creation of any intermediate
    directories needed to make the new pathname good is attempted
    first.  After the rename, directories corresponding to rightmost
    path segments of the old name will be pruned until either the
    whole path is consumed or a nonempty directory is found.

    Note: this function can fail with the new directory structure made
    if you lack permissions needed to unlink the leaf directory or
    file.

    """
    head, tail = path.split(new)
    if head and tail and not path.exists(head):
        makedirs(head)
    rename(old, new)
    head, tail = path.split(old)
    if head and tail:
        try:
            removedirs(head)
        except OSError:
            pass

__all__.extend(["makedirs", "removedirs", "renames"])

def walk(top, topdown=True, onerror=None, followlinks=False):
    """Directory tree generator.

    For each directory in the directory tree rooted at top (including top
    itself, but excluding '.' and '..'), yields a 3-tuple

        dirpath, dirnames, filenames

    dirpath is a string, the path to the directory.  dirnames is a list of
    the names of the subdirectories in dirpath (excluding '.' and '..').
    filenames is a list of the names of the non-directory files in dirpath.
    Note that the names in the lists are just names, with no path components.
    To get a full path (which begins with top) to a file or directory in
    dirpath, do os.path.join(dirpath, name).

    If optional arg 'topdown' is true or not specified, the triple for a
    directory is generated before the triples for any of its subdirectories
    (directories are generated top down).  If topdown is false, the triple
    for a directory is generated after the triples for all of its
    subdirectories (directories are generated bottom up).

    When topdown is true, the caller can modify the dirnames list in-place
    (e.g., via del or slice assignment), and walk will only recurse into the
    subdirectories whose names remain in dirnames; this can be used to prune the
    search, or to impose a specific order of visiting.  Modifying dirnames when
    topdown is false is ineffective, since the directories in dirnames have
    already been generated by the time dirnames itself is generated. No matter
    the value of topdown, the list of subdirectories is retrieved before the
    tuples for the directory and its subdirectories are generated.

    By default errors from the os.listdir() call are ignored.  If
    optional arg 'onerror' is specified, it should be a function; it
    will be called with one argument, an OSError instance.  It can
    report the error to continue with the walk, or raise the exception
    to abort the walk.  Note that the filename is available as the
    filename attribute of the exception object.

    By default, os.walk does not follow symbolic links to subdirectories on
    systems that support them.  In order to get this functionality, set the
    optional argument 'followlinks' to true.

    Caution:  if you pass a relative pathname for top, don't change the
    current working directory between resumptions of walk.  walk never
    changes the current directory, and assumes that the client doesn't
    either.

    Example:

    import os
    from os.path import join, getsize
    for root, dirs, files in os.walk('python/Lib/email'):
        print(root, "consumes", end="")
        print(sum([getsize(join(root, name)) for name in files]), end="")
        print("bytes in", len(files), "non-directory files")
        if 'CVS' in dirs:
            dirs.remove('CVS')  # don't visit CVS directories

    """

    islink, join, isdir = path.islink, path.join, path.isdir

    # We may not have read permission for top, in which case we can't
    # get a list of the files the directory contains.  os.walk
    # always suppressed the exception then, rather than blow up for a
    # minor reason when (say) a thousand readable directories are still
    # left to visit.  That logic is copied here.
    try:
        # Note that listdir is global in this module due
        # to earlier import-*.
        names = listdir(top)
    except OSError as err:
        if onerror is not None:
            onerror(err)
        return

    dirs, nondirs = [], []
    for name in names:
        if isdir(join(top, name)):
            dirs.append(name)
        else:
            nondirs.append(name)

    if topdown:
        yield top, dirs, nondirs
    for name in dirs:
        new_path = join(top, name)
        if followlinks or not islink(new_path):
            yield from walk(new_path, topdown, onerror, followlinks)
    if not topdown:
        yield top, dirs, nondirs

__all__.append("walk")

if {open, stat} <= supports_dir_fd and {listdir, stat} <= supports_fd:

    def fwalk(top=".", topdown=True, onerror=None, *, follow_symlinks=False, dir_fd=None):
        """Directory tree generator.

        This behaves exactly like walk(), except that it yields a 4-tuple

            dirpath, dirnames, filenames, dirfd

        `dirpath`, `dirnames` and `filenames` are identical to walk() output,
        and `dirfd` is a file descriptor referring to the directory `dirpath`.

        The advantage of fwalk() over walk() is that it's safe against symlink
        races (when follow_symlinks is False).

        If dir_fd is not None, it should be a file descriptor open to a directory,
          and top should be relative; top will then be relative to that directory.
          (dir_fd is always supported for fwalk.)

        Caution:
        Since fwalk() yields file descriptors, those are only valid until the
        next iteration step, so you should dup() them if you want to keep them
        for a longer period.

        Example:

        import os
        for root, dirs, files, rootfd in os.fwalk('python/Lib/email'):
            print(root, "consumes", end="")
            print(sum([os.stat(name, dir_fd=rootfd).st_size for name in files]),
                  end="")
            print("bytes in", len(files), "non-directory files")
            if 'CVS' in dirs:
                dirs.remove('CVS')  # don't visit CVS directories
        """
        # Note: To guard against symlink races, we use the standard
        # lstat()/open()/fstat() trick.
        orig_st = stat(top, follow_symlinks=False, dir_fd=dir_fd)
        topfd = open(top, O_RDONLY, dir_fd=dir_fd)
        try:
            if (follow_symlinks or (st.S_ISDIR(orig_st.st_mode) and
                                    path.samestat(orig_st, stat(topfd)))):
                yield from _fwalk(topfd, top, topdown, onerror, follow_symlinks)
        finally:
            close(topfd)

    def _fwalk(topfd, toppath, topdown, onerror, follow_symlinks):
        # Note: This uses O(depth of the directory tree) file descriptors: if
        # necessary, it can be adapted to only require O(1) FDs, see issue
        # #13734.

        names = listdir(topfd)
        dirs, nondirs = [], []
        for name in names:
            try:
                # Here, we don't use AT_SYMLINK_NOFOLLOW to be consistent with
                # walk() which reports symlinks to directories as directories.
                # We do however check for symlinks before recursing into
                # a subdirectory.
                if st.S_ISDIR(stat(name, dir_fd=topfd).st_mode):
                    dirs.append(name)
                else:
                    nondirs.append(name)
            except FileNotFoundError:
                try:
                    # Add dangling symlinks, ignore disappeared files
                    if st.S_ISLNK(stat(name, dir_fd=topfd, follow_symlinks=False)
                                .st_mode):
                        nondirs.append(name)
                except FileNotFoundError:
                    continue

        if topdown:
            yield toppath, dirs, nondirs, topfd

        for name in dirs:
            try:
                orig_st = stat(name, dir_fd=topfd, follow_symlinks=follow_symlinks)
                dirfd = open(name, O_RDONLY, dir_fd=topfd)
            except OSError as err:
                if onerror is not None:
                    onerror(err)
                return
            try:
                if follow_symlinks or path.samestat(orig_st, stat(dirfd)):
                    dirpath = path.join(toppath, name)
                    yield from _fwalk(dirfd, dirpath, topdown, onerror, follow_symlinks)
            finally:
                close(dirfd)

        if not topdown:
            yield toppath, dirs, nondirs, topfd

    __all__.append("fwalk")

# Make sure os.environ exists, at least
try:
    environ
except NameError:
    environ = {}

def execl(file, *args):
    """execl(file, *args)

    Execute the executable file with argument list args, replacing the
    current process. """
    execv(file, args)

def execle(file, *args):
    """execle(file, *args, env)

    Execute the executable file with argument list args and
    environment env, replacing the current process. """
    env = args[-1]
    execve(file, args[:-1], env)

def execlp(file, *args):
    """execlp(file, *args)

    Execute the executable file (which is searched for along $PATH)
    with argument list args, replacing the current process. """
    execvp(file, args)

def execlpe(file, *args):
    """execlpe(file, *args, env)

    Execute the executable file (which is searched for along $PATH)
    with argument list args and environment env, replacing the current
    process. """
    env = args[-1]
    execvpe(file, args[:-1], env)

def execvp(file, args):
    """execvp(file, args)

    Execute the executable file (which is searched for along $PATH)
    with argument list args, replacing the current process.
    args may be a list or tuple of strings. """
    _execvpe(file, args)

def execvpe(file, args, env):
    """execvpe(file, args, env)

    Execute the executable file (which is searched for along $PATH)
    with argument list args and environment env , replacing the
    current process.
    args may be a list or tuple of strings. """
    _execvpe(file, args, env)

__all__.extend(["execl","execle","execlp","execlpe","execvp","execvpe"])

def _execvpe(file, args, env=None):
    if env is not None:
        exec_func = execve
        argrest = (args, env)
    else:
        exec_func = execv
        argrest = (args,)
        env = environ

    head, tail = path.split(file)
    if head:
        exec_func(file, *argrest)
        return
    last_exc = saved_exc = None
    saved_tb = None
    path_list = get_exec_path(env)
    if name != 'nt':
        file = fsencode(file)
        path_list = map(fsencode, path_list)
    for dir in path_list:
        fullname = path.join(dir, file)
        try:
            exec_func(fullname, *argrest)
        except OSError as e:
            last_exc = e
            tb = sys.exc_info()[2]
            if (e.errno != errno.ENOENT and e.errno != errno.ENOTDIR
                and saved_exc is None):
                saved_exc = e
                saved_tb = tb
    if saved_exc:
        raise saved_exc.with_traceback(saved_tb)
    raise last_exc.with_traceback(tb)


def get_exec_path(env=None):
    """Returns the sequence of directories that will be searched for the
    named executable (similar to a shell) when launching a process.

    *env* must be an environment variable dict or None.  If *env* is None,
    os.environ will be used.
    """
    # Use a local import instead of a global import to limit the number of
    # modules loaded at startup: the os module is always loaded at startup by
    # Python. It may also avoid a bootstrap issue.
    import warnings

    if env is None:
        env = environ

    # {b'PATH': ...}.get('PATH') and {'PATH': ...}.get(b'PATH') emit a
    # BytesWarning when using python -b or python -bb: ignore the warning
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", BytesWarning)

        try:
            path_list = env.get('PATH')
        except TypeError:
            path_list = None

        if supports_bytes_environ:
            try:
                path_listb = env[b'PATH']
            except (KeyError, TypeError):
                pass
            else:
                if path_list is not None:
                    raise ValueError(
                        "env cannot contain 'PATH' and b'PATH' keys")
                path_list = path_listb

            if path_list is not None and isinstance(path_list, bytes):
                path_list = fsdecode(path_list)

    if path_list is None:
        path_list = defpath
    return path_list.split(pathsep)


# Change environ to automatically call putenv(), unsetenv if they exist.
from _collections_abc import MutableMapping

class _Environ(MutableMapping):
    def __init__(self, data, encodekey, decodekey, encodevalue, decodevalue, putenv, unsetenv):
        self.encodekey = encodekey
        self.decodekey = decodekey
        self.encodevalue = encodevalue
        self.decodevalue = decodevalue
        self.putenv = putenv
        self.unsetenv = unsetenv
        self._data = data

    def __getitem__(self, key):
        try:
            value = self._data[self.encodekey(key)]
        except KeyError:
            # raise KeyError with the original key value
            raise KeyError(key) from None
        return self.decodevalue(value)

    def __setitem__(self, key, value):
        key = self.encodekey(key)
        value = self.encodevalue(value)
        self.putenv(key, value)
        self._data[key] = value

    def __delitem__(self, key):
        encodedkey = self.encodekey(key)
        self.unsetenv(encodedkey)
        try:
            del self._data[encodedkey]
        except KeyError:
            # raise KeyError with the original key value
            raise KeyError(key) from None

    def __iter__(self):
        for key in self._data:
            yield self.decodekey(key)

    def __len__(self):
        return len(self._data)

    def __repr__(self):
        return 'environ({{{}}})'.format(', '.join(
            ('{!r}: {!r}'.format(self.decodekey(key), self.decodevalue(value))
            for key, value in self._data.items())))

    def copy(self):
        return dict(self)

    def setdefault(self, key, value):
        if key not in self:
            self[key] = value
        return self[key]

try:
    _putenv = putenv
except NameError:
    _putenv = lambda key, value: None
else:
    if "putenv" not in __all__:
        __all__.append("putenv")

try:
    _unsetenv = unsetenv
except NameError:
    _unsetenv = lambda key: _putenv(key, "")
else:
    if "unsetenv" not in __all__:
        __all__.append("unsetenv")

def _createenviron():
    if name == 'nt':
        # Where Env Var Names Must Be UPPERCASE
        def check_str(value):
            if not isinstance(value, str):
                raise TypeError("str expected, not %s" % type(value).__name__)
            return value
        encode = check_str
        decode = str
        def encodekey(key):
            return encode(key).upper()
        data = {}
        for key, value in environ.items():
            data[encodekey(key)] = value
    else:
        # Where Env Var Names Can Be Mixed Case
        encoding = sys.getfilesystemencoding()
        def encode(value):
            if not isinstance(value, str):
                raise TypeError("str expected, not %s" % type(value).__name__)
            if sys.implementation.name == "ironpython":
                return value
            return value.encode(encoding, 'surrogateescape')
        def decode(value):
            if sys.implementation.name == "ironpython":
                return value
            return value.decode(encoding, 'surrogateescape')
        encodekey = encode
        data = environ
    return _Environ(data,
        encodekey, decode,
        encode, decode,
        _putenv, _unsetenv)

# unicode environ
environ = _createenviron()
del _createenviron


def getenv(key, default=None):
    """Get an environment variable, return None if it doesn't exist.
    The optional second argument can specify an alternate default.
    key, default and the result are str."""
    return environ.get(key, default)

supports_bytes_environ = (name != 'nt')
__all__.extend(("getenv", "supports_bytes_environ"))

if supports_bytes_environ:
    def _check_bytes(value):
        if not isinstance(value, bytes):
            raise TypeError("bytes expected, not %s" % type(value).__name__)
        return value

    # bytes environ
    environb = _Environ(environ._data,
        _check_bytes, bytes,
        _check_bytes, bytes,
        _putenv, _unsetenv)
    del _check_bytes

    def getenvb(key, default=None):
        """Get an environment variable, return None if it doesn't exist.
        The optional second argument can specify an alternate default.
        key, default and the result are bytes."""
        return environb.get(key, default)

    __all__.extend(("environb", "getenvb"))

def _fscodec():
    encoding = sys.getfilesystemencoding()
    if encoding == 'mbcs':
        errors = 'strict'
    else:
        errors = 'surrogateescape'

    def fsencode(filename):
        """
        Encode filename to the filesystem encoding with 'surrogateescape' error
        handler, return bytes unchanged. On Windows, use 'strict' error handler if
        the file system encoding is 'mbcs' (which is the default encoding).
        """
        if isinstance(filename, bytes):
            return filename
        elif isinstance(filename, str):
            return filename.encode(encoding, errors)
        else:
            raise TypeError("expect bytes or str, not %s" % type(filename).__name__)

    def fsdecode(filename):
        """
        Decode filename from the filesystem encoding with 'surrogateescape' error
        handler, return str unchanged. On Windows, use 'strict' error handler if
        the file system encoding is 'mbcs' (which is the default encoding).
        """
        if isinstance(filename, str):
            return filename
        elif isinstance(filename, bytes):
            return filename.decode(encoding, errors)
        else:
            raise TypeError("expect bytes or str, not %s" % type(filename).__name__)

    return fsencode, fsdecode

fsencode, fsdecode = _fscodec()
del _fscodec

# Supply spawn*() (probably only for Unix)
if _exists("fork") and not _exists("spawnv") and _exists("execv"):

    P_WAIT = 0
    P_NOWAIT = P_NOWAITO = 1

    __all__.extend(["P_WAIT", "P_NOWAIT", "P_NOWAITO"])

    # XXX Should we support P_DETACH?  I suppose it could fork()**2
    # and close the std I/O streams.  Also, P_OVERLAY is the same
    # as execv*()?

    def _spawnvef(mode, file, args, env, func):
        # Internal helper; func is the exec*() function to use
        pid = fork()
        if not pid:
            # Child
            try:
                if env is None:
                    func(file, args)
                else:
                    func(file, args, env)
            except:
                _exit(127)
        else:
            # Parent
            if mode == P_NOWAIT:
                return pid # Caller is responsible for waiting!
            while 1:
                wpid, sts = waitpid(pid, 0)
                if WIFSTOPPED(sts):
                    continue
                elif WIFSIGNALED(sts):
                    return -WTERMSIG(sts)
                elif WIFEXITED(sts):
                    return WEXITSTATUS(sts)
                else:
                    raise OSError("Not stopped, signaled or exited???")

    def spawnv(mode, file, args):
        """spawnv(mode, file, args) -> integer

Execute file with arguments from args in a subprocess.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
        return _spawnvef(mode, file, args, None, execv)

    def spawnve(mode, file, args, env):
        """spawnve(mode, file, args, env) -> integer

Execute file with arguments from args in a subprocess with the
specified environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
        return _spawnvef(mode, file, args, env, execve)

    # Note: spawnvp[e] is't currently supported on Windows

    def spawnvp(mode, file, args):
        """spawnvp(mode, file, args) -> integer

Execute file (which is looked for along $PATH) with arguments from
args in a subprocess.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
        return _spawnvef(mode, file, args, None, execvp)

    def spawnvpe(mode, file, args, env):
        """spawnvpe(mode, file, args, env) -> integer

Execute file (which is looked for along $PATH) with arguments from
args in a subprocess with the supplied environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
        return _spawnvef(mode, file, args, env, execvpe)


    __all__.extend(["spawnv", "spawnve", "spawnvp", "spawnvpe"])


if _exists("spawnv"):
    # These aren't supplied by the basic Windows code
    # but can be easily implemented in Python

    def spawnl(mode, file, *args):
        """spawnl(mode, file, *args) -> integer

Execute file with arguments from args in a subprocess.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
        return spawnv(mode, file, args)

    def spawnle(mode, file, *args):
        """spawnle(mode, file, *args, env) -> integer

Execute file with arguments from args in a subprocess with the
supplied environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
        env = args[-1]
        return spawnve(mode, file, args[:-1], env)


    __all__.extend(["spawnl", "spawnle"])


if _exists("spawnvp"):
    # At the moment, Windows doesn't implement spawnvp[e],
    # so it won't have spawnlp[e] either.
    def spawnlp(mode, file, *args):
        """spawnlp(mode, file, *args) -> integer

Execute file (which is looked for along $PATH) with arguments from
args in a subprocess with the supplied environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
        return spawnvp(mode, file, args)

    def spawnlpe(mode, file, *args):
        """spawnlpe(mode, file, *args, env) -> integer

Execute file (which is looked for along $PATH) with arguments from
args in a subprocess with the supplied environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
        env = args[-1]
        return spawnvpe(mode, file, args[:-1], env)


    __all__.extend(["spawnlp", "spawnlpe"])


# Supply os.popen()
def popen(cmd, mode="r", buffering=-1):
    if not isinstance(cmd, str):
        raise TypeError("invalid cmd type (%s, expected string)" % type(cmd))
    if mode not in ("r", "w"):
        raise ValueError("invalid mode %r" % mode)
    if buffering == 0 or buffering is None:
        raise ValueError("popen() does not support unbuffered streams")
    import subprocess, io
    if mode == "r":
        proc = subprocess.Popen(cmd,
                                shell=True,
                                stdout=subprocess.PIPE,
                                bufsize=buffering)
        return _wrap_close(io.TextIOWrapper(proc.stdout), proc)
    else:
        proc = subprocess.Popen(cmd,
                                shell=True,
                                stdin=subprocess.PIPE,
                                bufsize=buffering)
        return _wrap_close(io.TextIOWrapper(proc.stdin), proc)

# Helper for popen() -- a proxy for a file whose close waits for the process
class _wrap_close:
    def __init__(self, stream, proc):
        self._stream = stream
        self._proc = proc
    def close(self):
        self._stream.close()
        returncode = self._proc.wait()
        if returncode == 0:
            return None
        if name == 'nt':
            return returncode
        else:
            return returncode << 8  # Shift left to match old behavior
    def __enter__(self):
        return self
    def __exit__(self, *args):
        self.close()
    def __getattr__(self, name):
        return getattr(self._stream, name)
    def __iter__(self):
        return iter(self._stream)

# Supply os.fdopen()
def fdopen(fd, *args, **kwargs):
    if not isinstance(fd, int):
        raise TypeError("invalid fd type (%s, expected integer)" % type(fd))
    import io
    return io.open(fd, *args, **kwargs)
lib\pathlib.py
import fnmatch
import functools
import io
import ntpath
import os
import posixpath
import re
import sys
from collections import Sequence
from contextlib import contextmanager
from errno import EINVAL, ENOENT, ENOTDIR
from operator import attrgetter
from stat import S_ISDIR, S_ISLNK, S_ISREG, S_ISSOCK, S_ISBLK, S_ISCHR, S_ISFIFO
from urllib.parse import quote_from_bytes as urlquote_from_bytes


supports_symlinks = True
if os.name == 'nt':
    import nt
    if sys.getwindowsversion()[:2] >= (6, 0):
        from nt import _getfinalpathname
    else:
        supports_symlinks = False
        _getfinalpathname = None
else:
    nt = None


__all__ = [
    "PurePath", "PurePosixPath", "PureWindowsPath",
    "Path", "PosixPath", "WindowsPath",
    ]

#
# Internals
#

def _is_wildcard_pattern(pat):
    # Whether this pattern needs actual matching using fnmatch, or can
    # be looked up directly as a file.
    return "*" in pat or "?" in pat or "[" in pat


class _Flavour(object):
    """A flavour implements a particular (platform-specific) set of path
    semantics."""

    def __init__(self):
        self.join = self.sep.join

    def parse_parts(self, parts):
        parsed = []
        sep = self.sep
        altsep = self.altsep
        drv = root = ''
        it = reversed(parts)
        for part in it:
            if not part:
                continue
            if altsep:
                part = part.replace(altsep, sep)
            drv, root, rel = self.splitroot(part)
            if sep in rel:
                for x in reversed(rel.split(sep)):
                    if x and x != '.':
                        parsed.append(sys.intern(x))
            else:
                if rel and rel != '.':
                    parsed.append(sys.intern(rel))
            if drv or root:
                if not drv:
                    # If no drive is present, try to find one in the previous
                    # parts. This makes the result of parsing e.g.
                    # ("C:", "/", "a") reasonably intuitive.
                    for part in it:
                        if not part:
                            continue
                        if altsep:
                            part = part.replace(altsep, sep)
                        drv = self.splitroot(part)[0]
                        if drv:
                            break
                break
        if drv or root:
            parsed.append(drv + root)
        parsed.reverse()
        return drv, root, parsed

    def join_parsed_parts(self, drv, root, parts, drv2, root2, parts2):
        """
        Join the two paths represented by the respective
        (drive, root, parts) tuples.  Return a new (drive, root, parts) tuple.
        """
        if root2:
            if not drv2 and drv:
                return drv, root2, [drv + root2] + parts2[1:]
        elif drv2:
            if drv2 == drv or self.casefold(drv2) == self.casefold(drv):
                # Same drive => second path is relative to the first
                return drv, root, parts + parts2[1:]
        else:
            # Second path is non-anchored (common case)
            return drv, root, parts + parts2
        return drv2, root2, parts2


class _WindowsFlavour(_Flavour):
    # Reference for Windows paths can be found at
    # http://msdn.microsoft.com/en-us/library/aa365247%28v=vs.85%29.aspx

    sep = '\\'
    altsep = '/'
    has_drv = True
    pathmod = ntpath

    is_supported = (os.name == 'nt')

    drive_letters = (
        set(chr(x) for x in range(ord('a'), ord('z') + 1)) |
        set(chr(x) for x in range(ord('A'), ord('Z') + 1))
    )
    ext_namespace_prefix = '\\\\?\\'

    reserved_names = (
        {'CON', 'PRN', 'AUX', 'NUL'} |
        {'COM%d' % i for i in range(1, 10)} |
        {'LPT%d' % i for i in range(1, 10)}
        )

    # Interesting findings about extended paths:
    # - '\\?\c:\a', '//?/c:\a' and '//?/c:/a' are all supported
    #   but '\\?\c:/a' is not
    # - extended paths are always absolute; "relative" extended paths will
    #   fail.

    def splitroot(self, part, sep=sep):
        first = part[0:1]
        second = part[1:2]
        if (second == sep and first == sep):
            # XXX extended paths should also disable the collapsing of "."
            # components (according to MSDN docs).
            prefix, part = self._split_extended_path(part)
            first = part[0:1]
            second = part[1:2]
        else:
            prefix = ''
        third = part[2:3]
        if (second == sep and first == sep and third != sep):
            # is a UNC path:
            # vvvvvvvvvvvvvvvvvvvvv root
            # \\machine\mountpoint\directory\etc\...
            #            directory ^^^^^^^^^^^^^^
            index = part.find(sep, 2)
            if index != -1:
                index2 = part.find(sep, index + 1)
                # a UNC path can't have two slashes in a row
                # (after the initial two)
                if index2 != index + 1:
                    if index2 == -1:
                        index2 = len(part)
                    if prefix:
                        return prefix + part[1:index2], sep, part[index2+1:]
                    else:
                        return part[:index2], sep, part[index2+1:]
        drv = root = ''
        if second == ':' and first in self.drive_letters:
            drv = part[:2]
            part = part[2:]
            first = third
        if first == sep:
            root = first
            part = part.lstrip(sep)
        return prefix + drv, root, part

    def casefold(self, s):
        return s.lower()

    def casefold_parts(self, parts):
        return [p.lower() for p in parts]

    def resolve(self, path):
        s = str(path)
        if not s:
            return os.getcwd()
        if _getfinalpathname is not None:
            return self._ext_to_normal(_getfinalpathname(s))
        # Means fallback on absolute
        return None

    def _split_extended_path(self, s, ext_prefix=ext_namespace_prefix):
        prefix = ''
        if s.startswith(ext_prefix):
            prefix = s[:4]
            s = s[4:]
            if s.startswith('UNC\\'):
                prefix += s[:3]
                s = '\\' + s[3:]
        return prefix, s

    def _ext_to_normal(self, s):
        # Turn back an extended path into a normal DOS-like path
        return self._split_extended_path(s)[1]

    def is_reserved(self, parts):
        # NOTE: the rules for reserved names seem somewhat complicated
        # (e.g. r"..\NUL" is reserved but not r"foo\NUL").
        # We err on the side of caution and return True for paths which are
        # not considered reserved by Windows.
        if not parts:
            return False
        if parts[0].startswith('\\\\'):
            # UNC paths are never reserved
            return False
        return parts[-1].partition('.')[0].upper() in self.reserved_names

    def make_uri(self, path):
        # Under Windows, file URIs use the UTF-8 encoding.
        drive = path.drive
        if len(drive) == 2 and drive[1] == ':':
            # It's a path on a local drive => 'file:///c:/a/b'
            rest = path.as_posix()[2:].lstrip('/')
            return 'file:///%s/%s' % (
                drive, urlquote_from_bytes(rest.encode('utf-8')))
        else:
            # It's a path on a network drive => 'file://host/share/a/b'
            return 'file:' + urlquote_from_bytes(path.as_posix().encode('utf-8'))


class _PosixFlavour(_Flavour):
    sep = '/'
    altsep = ''
    has_drv = False
    pathmod = posixpath

    is_supported = (os.name != 'nt')

    def splitroot(self, part, sep=sep):
        if part and part[0] == sep:
            stripped_part = part.lstrip(sep)
            # According to POSIX path resolution:
            # http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap04.html#tag_04_11
            # "A pathname that begins with two successive slashes may be
            # interpreted in an implementation-defined manner, although more
            # than two leading slashes shall be treated as a single slash".
            if len(part) - len(stripped_part) == 2:
                return '', sep * 2, stripped_part
            else:
                return '', sep, stripped_part
        else:
            return '', '', part

    def casefold(self, s):
        return s

    def casefold_parts(self, parts):
        return parts

    def resolve(self, path):
        sep = self.sep
        accessor = path._accessor
        seen = {}
        def _resolve(path, rest):
            if rest.startswith(sep):
                path = ''

            for name in rest.split(sep):
                if not name or name == '.':
                    # current dir
                    continue
                if name == '..':
                    # parent dir
                    path, _, _ = path.rpartition(sep)
                    continue
                newpath = path + sep + name
                if newpath in seen:
                    # Already seen this path
                    path = seen[newpath]
                    if path is not None:
                        # use cached value
                        continue
                    # The symlink is not resolved, so we must have a symlink loop.
                    raise RuntimeError("Symlink loop from %r" % newpath)
                # Resolve the symbolic link
                try:
                    target = accessor.readlink(newpath)
                except OSError as e:
                    if e.errno != EINVAL:
                        raise
                    # Not a symlink
                    path = newpath
                else:
                    seen[newpath] = None # not resolved symlink
                    path = _resolve(path, target)
                    seen[newpath] = path # resolved symlink

            return path
        # NOTE: according to POSIX, getcwd() cannot contain path components
        # which are symlinks.
        base = '' if path.is_absolute() else os.getcwd()
        return _resolve(base, str(path)) or sep

    def is_reserved(self, parts):
        return False

    def make_uri(self, path):
        # We represent the path using the local filesystem encoding,
        # for portability to other applications.
        bpath = bytes(path)
        return 'file://' + urlquote_from_bytes(bpath)


_windows_flavour = _WindowsFlavour()
_posix_flavour = _PosixFlavour()


class _Accessor:
    """An accessor implements a particular (system-specific or not) way of
    accessing paths on the filesystem."""


class _NormalAccessor(_Accessor):

    def _wrap_strfunc(strfunc):
        @functools.wraps(strfunc)
        def wrapped(pathobj, *args):
            return strfunc(str(pathobj), *args)
        return staticmethod(wrapped)

    def _wrap_binary_strfunc(strfunc):
        @functools.wraps(strfunc)
        def wrapped(pathobjA, pathobjB, *args):
            return strfunc(str(pathobjA), str(pathobjB), *args)
        return staticmethod(wrapped)

    stat = _wrap_strfunc(os.stat)

    lstat = _wrap_strfunc(os.lstat)

    open = _wrap_strfunc(os.open)

    listdir = _wrap_strfunc(os.listdir)

    chmod = _wrap_strfunc(os.chmod)

    if hasattr(os, "lchmod"):
        lchmod = _wrap_strfunc(os.lchmod)
    else:
        def lchmod(self, pathobj, mode):
            raise NotImplementedError("lchmod() not available on this system")

    mkdir = _wrap_strfunc(os.mkdir)

    unlink = _wrap_strfunc(os.unlink)

    rmdir = _wrap_strfunc(os.rmdir)

    rename = _wrap_binary_strfunc(os.rename)

    replace = _wrap_binary_strfunc(os.replace)

    if nt:
        if supports_symlinks:
            symlink = _wrap_binary_strfunc(os.symlink)
        else:
            def symlink(a, b, target_is_directory):
                raise NotImplementedError("symlink() not available on this system")
    else:
        # Under POSIX, os.symlink() takes two args
        @staticmethod
        def symlink(a, b, target_is_directory):
            return os.symlink(str(a), str(b))

    utime = _wrap_strfunc(os.utime)

    # Helper for resolve()
    def readlink(self, path):
        return os.readlink(path)


_normal_accessor = _NormalAccessor()


#
# Globbing helpers
#

@contextmanager
def _cached(func):
    try:
        func.__cached__
        yield func
    except AttributeError:
        cache = {}
        def wrapper(*args):
            try:
                return cache[args]
            except KeyError:
                value = cache[args] = func(*args)
                return value
        wrapper.__cached__ = True
        try:
            yield wrapper
        finally:
            cache.clear()

def _make_selector(pattern_parts):
    pat = pattern_parts[0]
    child_parts = pattern_parts[1:]
    if pat == '**':
        cls = _RecursiveWildcardSelector
    elif '**' in pat:
        raise ValueError("Invalid pattern: '**' can only be an entire path component")
    elif _is_wildcard_pattern(pat):
        cls = _WildcardSelector
    else:
        cls = _PreciseSelector
    return cls(pat, child_parts)

if hasattr(functools, "lru_cache"):
    _make_selector = functools.lru_cache()(_make_selector)


class _Selector:
    """A selector matches a specific glob pattern part against the children
    of a given path."""

    def __init__(self, child_parts):
        self.child_parts = child_parts
        if child_parts:
            self.successor = _make_selector(child_parts)
        else:
            self.successor = _TerminatingSelector()

    def select_from(self, parent_path):
        """Iterate over all child paths of `parent_path` matched by this
        selector.  This can contain parent_path itself."""
        path_cls = type(parent_path)
        is_dir = path_cls.is_dir
        exists = path_cls.exists
        listdir = parent_path._accessor.listdir
        return self._select_from(parent_path, is_dir, exists, listdir)


class _TerminatingSelector:

    def _select_from(self, parent_path, is_dir, exists, listdir):
        yield parent_path


class _PreciseSelector(_Selector):

    def __init__(self, name, child_parts):
        self.name = name
        _Selector.__init__(self, child_parts)

    def _select_from(self, parent_path, is_dir, exists, listdir):
        try:
            if not is_dir(parent_path):
                return
            path = parent_path._make_child_relpath(self.name)
            if exists(path):
                for p in self.successor._select_from(path, is_dir, exists, listdir):
                    yield p
        except PermissionError:
            return


class _WildcardSelector(_Selector):

    def __init__(self, pat, child_parts):
        self.pat = re.compile(fnmatch.translate(pat))
        _Selector.__init__(self, child_parts)

    def _select_from(self, parent_path, is_dir, exists, listdir):
        try:
            if not is_dir(parent_path):
                return
            cf = parent_path._flavour.casefold
            for name in listdir(parent_path):
                casefolded = cf(name)
                if self.pat.match(casefolded):
                    path = parent_path._make_child_relpath(name)
                    for p in self.successor._select_from(path, is_dir, exists, listdir):
                        yield p
        except PermissionError:
            return



class _RecursiveWildcardSelector(_Selector):

    def __init__(self, pat, child_parts):
        _Selector.__init__(self, child_parts)

    def _iterate_directories(self, parent_path, is_dir, listdir):
        yield parent_path
        try:
            for name in listdir(parent_path):
                path = parent_path._make_child_relpath(name)
                if is_dir(path) and not path.is_symlink():
                    for p in self._iterate_directories(path, is_dir, listdir):
                        yield p
        except PermissionError:
            return

    def _select_from(self, parent_path, is_dir, exists, listdir):
        try:
            if not is_dir(parent_path):
                return
            with _cached(listdir) as listdir:
                yielded = set()
                try:
                    successor_select = self.successor._select_from
                    for starting_point in self._iterate_directories(parent_path, is_dir, listdir):
                        for p in successor_select(starting_point, is_dir, exists, listdir):
                            if p not in yielded:
                                yield p
                                yielded.add(p)
                finally:
                    yielded.clear()
        except PermissionError:
            return


#
# Public API
#

class _PathParents(Sequence):
    """This object provides sequence-like access to the logical ancestors
    of a path.  Don't try to construct it yourself."""
    __slots__ = ('_pathcls', '_drv', '_root', '_parts')

    def __init__(self, path):
        # We don't store the instance to avoid reference cycles
        self._pathcls = type(path)
        self._drv = path._drv
        self._root = path._root
        self._parts = path._parts

    def __len__(self):
        if self._drv or self._root:
            return len(self._parts) - 1
        else:
            return len(self._parts)

    def __getitem__(self, idx):
        if idx < 0 or idx >= len(self):
            raise IndexError(idx)
        return self._pathcls._from_parsed_parts(self._drv, self._root,
                                                self._parts[:-idx - 1])

    def __repr__(self):
        return "<{}.parents>".format(self._pathcls.__name__)


class PurePath(object):
    """PurePath represents a filesystem path and offers operations which
    don't imply any actual filesystem I/O.  Depending on your system,
    instantiating a PurePath will return either a PurePosixPath or a
    PureWindowsPath object.  You can also instantiate either of these classes
    directly, regardless of your system.
    """
    __slots__ = (
        '_drv', '_root', '_parts',
        '_str', '_hash', '_pparts', '_cached_cparts',
    )

    def __new__(cls, *args):
        """Construct a PurePath from one or several strings and or existing
        PurePath objects.  The strings and path objects are combined so as
        to yield a canonicalized path, which is incorporated into the
        new PurePath object.
        """
        if cls is PurePath:
            cls = PureWindowsPath if os.name == 'nt' else PurePosixPath
        return cls._from_parts(args)

    def __reduce__(self):
        # Using the parts tuple helps share interned path parts
        # when pickling related paths.
        return (self.__class__, tuple(self._parts))

    @classmethod
    def _parse_args(cls, args):
        # This is useful when you don't want to create an instance, just
        # canonicalize some constructor arguments.
        parts = []
        for a in args:
            if isinstance(a, PurePath):
                parts += a._parts
            elif isinstance(a, str):
                # Force-cast str subclasses to str (issue #21127)
                parts.append(str(a))
            else:
                raise TypeError(
                    "argument should be a path or str object, not %r"
                    % type(a))
        return cls._flavour.parse_parts(parts)

    @classmethod
    def _from_parts(cls, args, init=True):
        # We need to call _parse_args on the instance, so as to get the
        # right flavour.
        self = object.__new__(cls)
        drv, root, parts = self._parse_args(args)
        self._drv = drv
        self._root = root
        self._parts = parts
        if init:
            self._init()
        return self

    @classmethod
    def _from_parsed_parts(cls, drv, root, parts, init=True):
        self = object.__new__(cls)
        self._drv = drv
        self._root = root
        self._parts = parts
        if init:
            self._init()
        return self

    @classmethod
    def _format_parsed_parts(cls, drv, root, parts):
        if drv or root:
            return drv + root + cls._flavour.join(parts[1:])
        else:
            return cls._flavour.join(parts)

    def _init(self):
        # Overriden in concrete Path
        pass

    def _make_child(self, args):
        drv, root, parts = self._parse_args(args)
        drv, root, parts = self._flavour.join_parsed_parts(
            self._drv, self._root, self._parts, drv, root, parts)
        return self._from_parsed_parts(drv, root, parts)

    def __str__(self):
        """Return the string representation of the path, suitable for
        passing to system calls."""
        try:
            return self._str
        except AttributeError:
            self._str = self._format_parsed_parts(self._drv, self._root,
                                                  self._parts) or '.'
            return self._str

    def as_posix(self):
        """Return the string representation of the path with forward (/)
        slashes."""
        f = self._flavour
        return str(self).replace(f.sep, '/')

    def __bytes__(self):
        """Return the bytes representation of the path.  This is only
        recommended to use under Unix."""
        return os.fsencode(str(self))

    def __repr__(self):
        return "{}({!r})".format(self.__class__.__name__, self.as_posix())

    def as_uri(self):
        """Return the path as a 'file' URI."""
        if not self.is_absolute():
            raise ValueError("relative path can't be expressed as a file URI")
        return self._flavour.make_uri(self)

    @property
    def _cparts(self):
        # Cached casefolded parts, for hashing and comparison
        try:
            return self._cached_cparts
        except AttributeError:
            self._cached_cparts = self._flavour.casefold_parts(self._parts)
            return self._cached_cparts

    def __eq__(self, other):
        if not isinstance(other, PurePath):
            return NotImplemented
        return self._cparts == other._cparts and self._flavour is other._flavour

    def __hash__(self):
        try:
            return self._hash
        except AttributeError:
            self._hash = hash(tuple(self._cparts))
            return self._hash

    def __lt__(self, other):
        if not isinstance(other, PurePath) or self._flavour is not other._flavour:
            return NotImplemented
        return self._cparts < other._cparts

    def __le__(self, other):
        if not isinstance(other, PurePath) or self._flavour is not other._flavour:
            return NotImplemented
        return self._cparts <= other._cparts

    def __gt__(self, other):
        if not isinstance(other, PurePath) or self._flavour is not other._flavour:
            return NotImplemented
        return self._cparts > other._cparts

    def __ge__(self, other):
        if not isinstance(other, PurePath) or self._flavour is not other._flavour:
            return NotImplemented
        return self._cparts >= other._cparts

    drive = property(attrgetter('_drv'),
                     doc="""The drive prefix (letter or UNC path), if any.""")

    root = property(attrgetter('_root'),
                    doc="""The root of the path, if any.""")

    @property
    def anchor(self):
        """The concatenation of the drive and root, or ''."""
        anchor = self._drv + self._root
        return anchor

    @property
    def name(self):
        """The final path component, if any."""
        parts = self._parts
        if len(parts) == (1 if (self._drv or self._root) else 0):
            return ''
        return parts[-1]

    @property
    def suffix(self):
        """The final component's last suffix, if any."""
        name = self.name
        i = name.rfind('.')
        if 0 < i < len(name) - 1:
            return name[i:]
        else:
            return ''

    @property
    def suffixes(self):
        """A list of the final component's suffixes, if any."""
        name = self.name
        if name.endswith('.'):
            return []
        name = name.lstrip('.')
        return ['.' + suffix for suffix in name.split('.')[1:]]

    @property
    def stem(self):
        """The final path component, minus its last suffix."""
        name = self.name
        i = name.rfind('.')
        if 0 < i < len(name) - 1:
            return name[:i]
        else:
            return name

    def with_name(self, name):
        """Return a new path with the file name changed."""
        if not self.name:
            raise ValueError("%r has an empty name" % (self,))
        drv, root, parts = self._flavour.parse_parts((name,))
        if (not name or name[-1] in [self._flavour.sep, self._flavour.altsep]
            or drv or root or len(parts) != 1):
            raise ValueError("Invalid name %r" % (name))
        return self._from_parsed_parts(self._drv, self._root,
                                       self._parts[:-1] + [name])

    def with_suffix(self, suffix):
        """Return a new path with the file suffix changed (or added, if none)."""
        # XXX if suffix is None, should the current suffix be removed?
        f = self._flavour
        if f.sep in suffix or f.altsep and f.altsep in suffix:
            raise ValueError("Invalid suffix %r" % (suffix))
        if suffix and not suffix.startswith('.') or suffix == '.':
            raise ValueError("Invalid suffix %r" % (suffix))
        name = self.name
        if not name:
            raise ValueError("%r has an empty name" % (self,))
        old_suffix = self.suffix
        if not old_suffix:
            name = name + suffix
        else:
            name = name[:-len(old_suffix)] + suffix
        return self._from_parsed_parts(self._drv, self._root,
                                       self._parts[:-1] + [name])

    def relative_to(self, *other):
        """Return the relative path to another path identified by the passed
        arguments.  If the operation is not possible (because this is not
        a subpath of the other path), raise ValueError.
        """
        # For the purpose of this method, drive and root are considered
        # separate parts, i.e.:
        #   Path('c:/').relative_to('c:')  gives Path('/')
        #   Path('c:/').relative_to('/')   raise ValueError
        if not other:
            raise TypeError("need at least one argument")
        parts = self._parts
        drv = self._drv
        root = self._root
        if root:
            abs_parts = [drv, root] + parts[1:]
        else:
            abs_parts = parts
        to_drv, to_root, to_parts = self._parse_args(other)
        if to_root:
            to_abs_parts = [to_drv, to_root] + to_parts[1:]
        else:
            to_abs_parts = to_parts
        n = len(to_abs_parts)
        cf = self._flavour.casefold_parts
        if (root or drv) if n == 0 else cf(abs_parts[:n]) != cf(to_abs_parts):
            formatted = self._format_parsed_parts(to_drv, to_root, to_parts)
            raise ValueError("{!r} does not start with {!r}"
                             .format(str(self), str(formatted)))
        return self._from_parsed_parts('', root if n == 1 else '',
                                       abs_parts[n:])

    @property
    def parts(self):
        """An object providing sequence-like access to the
        components in the filesystem path."""
        # We cache the tuple to avoid building a new one each time .parts
        # is accessed.  XXX is this necessary?
        try:
            return self._pparts
        except AttributeError:
            self._pparts = tuple(self._parts)
            return self._pparts

    def joinpath(self, *args):
        """Combine this path with one or several arguments, and return a
        new path representing either a subpath (if all arguments are relative
        paths) or a totally different path (if one of the arguments is
        anchored).
        """
        return self._make_child(args)

    def __truediv__(self, key):
        return self._make_child((key,))

    def __rtruediv__(self, key):
        return self._from_parts([key] + self._parts)

    @property
    def parent(self):
        """The logical parent of the path."""
        drv = self._drv
        root = self._root
        parts = self._parts
        if len(parts) == 1 and (drv or root):
            return self
        return self._from_parsed_parts(drv, root, parts[:-1])

    @property
    def parents(self):
        """A sequence of this path's logical parents."""
        return _PathParents(self)

    def is_absolute(self):
        """True if the path is absolute (has both a root and, if applicable,
        a drive)."""
        if not self._root:
            return False
        return not self._flavour.has_drv or bool(self._drv)

    def is_reserved(self):
        """Return True if the path contains one of the special names reserved
        by the system, if any."""
        return self._flavour.is_reserved(self._parts)

    def match(self, path_pattern):
        """
        Return True if this path matches the given pattern.
        """
        cf = self._flavour.casefold
        path_pattern = cf(path_pattern)
        drv, root, pat_parts = self._flavour.parse_parts((path_pattern,))
        if not pat_parts:
            raise ValueError("empty pattern")
        if drv and drv != cf(self._drv):
            return False
        if root and root != cf(self._root):
            return False
        parts = self._cparts
        if drv or root:
            if len(pat_parts) != len(parts):
                return False
            pat_parts = pat_parts[1:]
        elif len(pat_parts) > len(parts):
            return False
        for part, pat in zip(reversed(parts), reversed(pat_parts)):
            if not fnmatch.fnmatchcase(part, pat):
                return False
        return True


class PurePosixPath(PurePath):
    _flavour = _posix_flavour
    __slots__ = ()


class PureWindowsPath(PurePath):
    _flavour = _windows_flavour
    __slots__ = ()


# Filesystem-accessing classes


class Path(PurePath):
    __slots__ = (
        '_accessor',
        '_closed',
    )

    def __new__(cls, *args, **kwargs):
        if cls is Path:
            cls = WindowsPath if os.name == 'nt' else PosixPath
        self = cls._from_parts(args, init=False)
        if not self._flavour.is_supported:
            raise NotImplementedError("cannot instantiate %r on your system"
                                      % (cls.__name__,))
        self._init()
        return self

    def _init(self,
              # Private non-constructor arguments
              template=None,
              ):
        self._closed = False
        if template is not None:
            self._accessor = template._accessor
        else:
            self._accessor = _normal_accessor

    def _make_child_relpath(self, part):
        # This is an optimization used for dir walking.  `part` must be
        # a single part relative to this path.
        parts = self._parts + [part]
        return self._from_parsed_parts(self._drv, self._root, parts)

    def __enter__(self):
        if self._closed:
            self._raise_closed()
        return self

    def __exit__(self, t, v, tb):
        self._closed = True

    def _raise_closed(self):
        raise ValueError("I/O operation on closed path")

    def _opener(self, name, flags, mode=0o666):
        # A stub for the opener argument to built-in open()
        return self._accessor.open(self, flags, mode)

    def _raw_open(self, flags, mode=0o777):
        """
        Open the file pointed by this path and return a file descriptor,
        as os.open() does.
        """
        if self._closed:
            self._raise_closed()
        return self._accessor.open(self, flags, mode)

    # Public API

    @classmethod
    def cwd(cls):
        """Return a new path pointing to the current working directory
        (as returned by os.getcwd()).
        """
        return cls(os.getcwd())

    def iterdir(self):
        """Iterate over the files in this directory.  Does not yield any
        result for the special paths '.' and '..'.
        """
        if self._closed:
            self._raise_closed()
        for name in self._accessor.listdir(self):
            if name in {'.', '..'}:
                # Yielding a path object for these makes little sense
                continue
            yield self._make_child_relpath(name)
            if self._closed:
                self._raise_closed()

    def glob(self, pattern):
        """Iterate over this subtree and yield all existing files (of any
        kind, including directories) matching the given pattern.
        """
        pattern = self._flavour.casefold(pattern)
        drv, root, pattern_parts = self._flavour.parse_parts((pattern,))
        if drv or root:
            raise NotImplementedError("Non-relative patterns are unsupported")
        selector = _make_selector(tuple(pattern_parts))
        for p in selector.select_from(self):
            yield p

    def rglob(self, pattern):
        """Recursively yield all existing files (of any kind, including
        directories) matching the given pattern, anywhere in this subtree.
        """
        pattern = self._flavour.casefold(pattern)
        drv, root, pattern_parts = self._flavour.parse_parts((pattern,))
        if drv or root:
            raise NotImplementedError("Non-relative patterns are unsupported")
        selector = _make_selector(("**",) + tuple(pattern_parts))
        for p in selector.select_from(self):
            yield p

    def absolute(self):
        """Return an absolute version of this path.  This function works
        even if the path doesn't point to anything.

        No normalization is done, i.e. all '.' and '..' will be kept along.
        Use resolve() to get the canonical path to a file.
        """
        # XXX untested yet!
        if self._closed:
            self._raise_closed()
        if self.is_absolute():
            return self
        # FIXME this must defer to the specific flavour (and, under Windows,
        # use nt._getfullpathname())
        obj = self._from_parts([os.getcwd()] + self._parts, init=False)
        obj._init(template=self)
        return obj

    def resolve(self):
        """
        Make the path absolute, resolving all symlinks on the way and also
        normalizing it (for example turning slashes into backslashes under
        Windows).
        """
        if self._closed:
            self._raise_closed()
        s = self._flavour.resolve(self)
        if s is None:
            # No symlink resolution => for consistency, raise an error if
            # the path doesn't exist or is forbidden
            self.stat()
            s = str(self.absolute())
        # Now we have no symlinks in the path, it's safe to normalize it.
        normed = self._flavour.pathmod.normpath(s)
        obj = self._from_parts((normed,), init=False)
        obj._init(template=self)
        return obj

    def stat(self):
        """
        Return the result of the stat() system call on this path, like
        os.stat() does.
        """
        return self._accessor.stat(self)

    def owner(self):
        """
        Return the login name of the file owner.
        """
        import pwd
        return pwd.getpwuid(self.stat().st_uid).pw_name

    def group(self):
        """
        Return the group name of the file gid.
        """
        import grp
        return grp.getgrgid(self.stat().st_gid).gr_name

    def open(self, mode='r', buffering=-1, encoding=None,
             errors=None, newline=None):
        """
        Open the file pointed by this path and return a file object, as
        the built-in open() function does.
        """
        if self._closed:
            self._raise_closed()
        return io.open(str(self), mode, buffering, encoding, errors, newline,
                       opener=self._opener)

    def touch(self, mode=0o666, exist_ok=True):
        """
        Create this file with the given access mode, if it doesn't exist.
        """
        if self._closed:
            self._raise_closed()
        if exist_ok:
            # First try to bump modification time
            # Implementation note: GNU touch uses the UTIME_NOW option of
            # the utimensat() / futimens() functions.
            try:
                self._accessor.utime(self, None)
            except OSError:
                # Avoid exception chaining
                pass
            else:
                return
        flags = os.O_CREAT | os.O_WRONLY
        if not exist_ok:
            flags |= os.O_EXCL
        fd = self._raw_open(flags, mode)
        os.close(fd)

    def mkdir(self, mode=0o777, parents=False):
        if self._closed:
            self._raise_closed()
        if not parents:
            self._accessor.mkdir(self, mode)
        else:
            try:
                self._accessor.mkdir(self, mode)
            except OSError as e:
                if e.errno != ENOENT:
                    raise
                self.parent.mkdir(parents=True)
                self._accessor.mkdir(self, mode)

    def chmod(self, mode):
        """
        Change the permissions of the path, like os.chmod().
        """
        if self._closed:
            self._raise_closed()
        self._accessor.chmod(self, mode)

    def lchmod(self, mode):
        """
        Like chmod(), except if the path points to a symlink, the symlink's
        permissions are changed, rather than its target's.
        """
        if self._closed:
            self._raise_closed()
        self._accessor.lchmod(self, mode)

    def unlink(self):
        """
        Remove this file or link.
        If the path is a directory, use rmdir() instead.
        """
        if self._closed:
            self._raise_closed()
        self._accessor.unlink(self)

    def rmdir(self):
        """
        Remove this directory.  The directory must be empty.
        """
        if self._closed:
            self._raise_closed()
        self._accessor.rmdir(self)

    def lstat(self):
        """
        Like stat(), except if the path points to a symlink, the symlink's
        status information is returned, rather than its target's.
        """
        if self._closed:
            self._raise_closed()
        return self._accessor.lstat(self)

    def rename(self, target):
        """
        Rename this path to the given path.
        """
        if self._closed:
            self._raise_closed()
        self._accessor.rename(self, target)

    def replace(self, target):
        """
        Rename this path to the given path, clobbering the existing
        destination if it exists.
        """
        if self._closed:
            self._raise_closed()
        self._accessor.replace(self, target)

    def symlink_to(self, target, target_is_directory=False):
        """
        Make this path a symlink pointing to the given path.
        Note the order of arguments (self, target) is the reverse of os.symlink's.
        """
        if self._closed:
            self._raise_closed()
        self._accessor.symlink(target, self, target_is_directory)

    # Convenience functions for querying the stat results

    def exists(self):
        """
        Whether this path exists.
        """
        try:
            self.stat()
        except OSError as e:
            if e.errno not in (ENOENT, ENOTDIR):
                raise
            return False
        return True

    def is_dir(self):
        """
        Whether this path is a directory.
        """
        try:
            return S_ISDIR(self.stat().st_mode)
        except OSError as e:
            if e.errno not in (ENOENT, ENOTDIR):
                raise
            # Path doesn't exist or is a broken symlink
            # (see https://bitbucket.org/pitrou/pathlib/issue/12/)
            return False

    def is_file(self):
        """
        Whether this path is a regular file (also True for symlinks pointing
        to regular files).
        """
        try:
            return S_ISREG(self.stat().st_mode)
        except OSError as e:
            if e.errno not in (ENOENT, ENOTDIR):
                raise
            # Path doesn't exist or is a broken symlink
            # (see https://bitbucket.org/pitrou/pathlib/issue/12/)
            return False

    def is_symlink(self):
        """
        Whether this path is a symbolic link.
        """
        try:
            return S_ISLNK(self.lstat().st_mode)
        except OSError as e:
            if e.errno not in (ENOENT, ENOTDIR):
                raise
            # Path doesn't exist
            return False

    def is_block_device(self):
        """
        Whether this path is a block device.
        """
        try:
            return S_ISBLK(self.stat().st_mode)
        except OSError as e:
            if e.errno not in (ENOENT, ENOTDIR):
                raise
            # Path doesn't exist or is a broken symlink
            # (see https://bitbucket.org/pitrou/pathlib/issue/12/)
            return False

    def is_char_device(self):
        """
        Whether this path is a character device.
        """
        try:
            return S_ISCHR(self.stat().st_mode)
        except OSError as e:
            if e.errno not in (ENOENT, ENOTDIR):
                raise
            # Path doesn't exist or is a broken symlink
            # (see https://bitbucket.org/pitrou/pathlib/issue/12/)
            return False

    def is_fifo(self):
        """
        Whether this path is a FIFO.
        """
        try:
            return S_ISFIFO(self.stat().st_mode)
        except OSError as e:
            if e.errno not in (ENOENT, ENOTDIR):
                raise
            # Path doesn't exist or is a broken symlink
            # (see https://bitbucket.org/pitrou/pathlib/issue/12/)
            return False

    def is_socket(self):
        """
        Whether this path is a socket.
        """
        try:
            return S_ISSOCK(self.stat().st_mode)
        except OSError as e:
            if e.errno not in (ENOENT, ENOTDIR):
                raise
            # Path doesn't exist or is a broken symlink
            # (see https://bitbucket.org/pitrou/pathlib/issue/12/)
            return False


class PosixPath(Path, PurePosixPath):
    __slots__ = ()

class WindowsPath(Path, PureWindowsPath):
    __slots__ = ()
lib\pdb.py
#! /usr/bin/env python3

"""
The Python Debugger Pdb
=======================

To use the debugger in its simplest form:

        >>> import pdb
        >>> pdb.run('<a statement>')

The debugger's prompt is '(Pdb) '.  This will stop in the first
function call in <a statement>.

Alternatively, if a statement terminated with an unhandled exception,
you can use pdb's post-mortem facility to inspect the contents of the
traceback:

        >>> <a statement>
        <exception traceback>
        >>> import pdb
        >>> pdb.pm()

The commands recognized by the debugger are listed in the next
section.  Most can be abbreviated as indicated; e.g., h(elp) means
that 'help' can be typed as 'h' or 'help' (but not as 'he' or 'hel',
nor as 'H' or 'Help' or 'HELP').  Optional arguments are enclosed in
square brackets.  Alternatives in the command syntax are separated
by a vertical bar (|).

A blank line repeats the previous command literally, except for
'list', where it lists the next 11 lines.

Commands that the debugger doesn't recognize are assumed to be Python
statements and are executed in the context of the program being
debugged.  Python statements can also be prefixed with an exclamation
point ('!').  This is a powerful way to inspect the program being
debugged; it is even possible to change variables or call functions.
When an exception occurs in such a statement, the exception name is
printed but the debugger's state is not changed.

The debugger supports aliases, which can save typing.  And aliases can
have parameters (see the alias help entry) which allows one a certain
level of adaptability to the context under examination.

Multiple commands may be entered on a single line, separated by the
pair ';;'.  No intelligence is applied to separating the commands; the
input is split at the first ';;', even if it is in the middle of a
quoted string.

If a file ".pdbrc" exists in your home directory or in the current
directory, it is read in and executed as if it had been typed at the
debugger prompt.  This is particularly useful for aliases.  If both
files exist, the one in the home directory is read first and aliases
defined there can be overriden by the local file.

Aside from aliases, the debugger is not directly programmable; but it
is implemented as a class from which you can derive your own debugger
class, which you can make as fancy as you like.


Debugger commands
=================

"""
# NOTE: the actual command documentation is collected from docstrings of the
# commands and is appended to __doc__ after the class has been defined.

import os
import re
import sys
import cmd
import bdb
import dis
import code
import glob
import pprint
import signal
import inspect
import traceback
import linecache


class Restart(Exception):
    """Causes a debugger to be restarted for the debugged python program."""
    pass

__all__ = ["run", "pm", "Pdb", "runeval", "runctx", "runcall", "set_trace",
           "post_mortem", "help"]

def find_function(funcname, filename):
    cre = re.compile(r'def\s+%s\s*[(]' % re.escape(funcname))
    try:
        fp = open(filename)
    except OSError:
        return None
    # consumer of this info expects the first line to be 1
    with fp:
        for lineno, line in enumerate(fp, start=1):
            if cre.match(line):
                return funcname, filename, lineno
    return None

def getsourcelines(obj):
    lines, lineno = inspect.findsource(obj)
    if inspect.isframe(obj) and obj.f_globals is obj.f_locals:
        # must be a module frame: do not try to cut a block out of it
        return lines, 1
    elif inspect.ismodule(obj):
        return lines, 1
    return inspect.getblock(lines[lineno:]), lineno+1

def lasti2lineno(code, lasti):
    linestarts = list(dis.findlinestarts(code))
    linestarts.reverse()
    for i, lineno in linestarts:
        if lasti >= i:
            return lineno
    return 0


class _rstr(str):
    """String that doesn't quote its repr."""
    def __repr__(self):
        return self


# Interaction prompt line will separate file and call info from code
# text using value of line_prefix string.  A newline and arrow may
# be to your liking.  You can set it once pdb is imported using the
# command "pdb.line_prefix = '\n% '".
# line_prefix = ': '    # Use this to get the old situation back
line_prefix = '\n-> '   # Probably a better default

class Pdb(bdb.Bdb, cmd.Cmd):

    def __init__(self, completekey='tab', stdin=None, stdout=None, skip=None,
                 nosigint=False):
        bdb.Bdb.__init__(self, skip=skip)
        cmd.Cmd.__init__(self, completekey, stdin, stdout)
        if stdout:
            self.use_rawinput = 0
        self.prompt = '(Pdb) '
        self.aliases = {}
        self.displaying = {}
        self.mainpyfile = ''
        self._wait_for_mainpyfile = False
        self.tb_lineno = {}
        # Try to load readline if it exists
        try:
            import readline
            # remove some common file name delimiters
            readline.set_completer_delims(' \t\n`@#$%^&*()=+[{]}\\|;:\'",<>?')
        except ImportError:
            pass
        self.allow_kbdint = False
        self.nosigint = nosigint

        # Read $HOME/.pdbrc and ./.pdbrc
        self.rcLines = []
        if 'HOME' in os.environ:
            envHome = os.environ['HOME']
            try:
                with open(os.path.join(envHome, ".pdbrc")) as rcFile:
                    self.rcLines.extend(rcFile)
            except OSError:
                pass
        try:
            with open(".pdbrc") as rcFile:
                self.rcLines.extend(rcFile)
        except OSError:
            pass

        self.commands = {} # associates a command list to breakpoint numbers
        self.commands_doprompt = {} # for each bp num, tells if the prompt
                                    # must be disp. after execing the cmd list
        self.commands_silent = {} # for each bp num, tells if the stack trace
                                  # must be disp. after execing the cmd list
        self.commands_defining = False # True while in the process of defining
                                       # a command list
        self.commands_bnum = None # The breakpoint number for which we are
                                  # defining a list

    def sigint_handler(self, signum, frame):
        if self.allow_kbdint:
            raise KeyboardInterrupt
        self.message("\nProgram interrupted. (Use 'cont' to resume).")
        self.set_step()
        self.set_trace(frame)
        # restore previous signal handler
        signal.signal(signal.SIGINT, self._previous_sigint_handler)

    def reset(self):
        bdb.Bdb.reset(self)
        self.forget()

    def forget(self):
        self.lineno = None
        self.stack = []
        self.curindex = 0
        self.curframe = None
        self.tb_lineno.clear()

    def setup(self, f, tb):
        self.forget()
        self.stack, self.curindex = self.get_stack(f, tb)
        while tb:
            # when setting up post-mortem debugging with a traceback, save all
            # the original line numbers to be displayed along the current line
            # numbers (which can be different, e.g. due to finally clauses)
            lineno = lasti2lineno(tb.tb_frame.f_code, tb.tb_lasti)
            self.tb_lineno[tb.tb_frame] = lineno
            tb = tb.tb_next
        self.curframe = self.stack[self.curindex][0]
        # The f_locals dictionary is updated from the actual frame
        # locals whenever the .f_locals accessor is called, so we
        # cache it here to ensure that modifications are not overwritten.
        self.curframe_locals = self.curframe.f_locals
        return self.execRcLines()

    # Can be executed earlier than 'setup' if desired
    def execRcLines(self):
        if not self.rcLines:
            return
        # local copy because of recursion
        rcLines = self.rcLines
        rcLines.reverse()
        # execute every line only once
        self.rcLines = []
        while rcLines:
            line = rcLines.pop().strip()
            if line and line[0] != '#':
                if self.onecmd(line):
                    # if onecmd returns True, the command wants to exit
                    # from the interaction, save leftover rc lines
                    # to execute before next interaction
                    self.rcLines += reversed(rcLines)
                    return True

    # Override Bdb methods

    def user_call(self, frame, argument_list):
        """This method is called when there is the remote possibility
        that we ever need to stop in this function."""
        if self._wait_for_mainpyfile:
            return
        if self.stop_here(frame):
            self.message('--Call--')
            self.interaction(frame, None)

    def user_line(self, frame):
        """This function is called when we stop or break at this line."""
        if self._wait_for_mainpyfile:
            if (self.mainpyfile != self.canonic(frame.f_code.co_filename)
                or frame.f_lineno <= 0):
                return
            self._wait_for_mainpyfile = False
        if self.bp_commands(frame):
            self.interaction(frame, None)

    def bp_commands(self, frame):
        """Call every command that was set for the current active breakpoint
        (if there is one).

        Returns True if the normal interaction function must be called,
        False otherwise."""
        # self.currentbp is set in bdb in Bdb.break_here if a breakpoint was hit
        if getattr(self, "currentbp", False) and \
               self.currentbp in self.commands:
            currentbp = self.currentbp
            self.currentbp = 0
            lastcmd_back = self.lastcmd
            self.setup(frame, None)
            for line in self.commands[currentbp]:
                self.onecmd(line)
            self.lastcmd = lastcmd_back
            if not self.commands_silent[currentbp]:
                self.print_stack_entry(self.stack[self.curindex])
            if self.commands_doprompt[currentbp]:
                self._cmdloop()
            self.forget()
            return
        return 1

    def user_return(self, frame, return_value):
        """This function is called when a return trap is set here."""
        if self._wait_for_mainpyfile:
            return
        frame.f_locals['__return__'] = return_value
        self.message('--Return--')
        self.interaction(frame, None)

    def user_exception(self, frame, exc_info):
        """This function is called if an exception occurs,
        but only if we are to stop at or just below this level."""
        if self._wait_for_mainpyfile:
            return
        exc_type, exc_value, exc_traceback = exc_info
        frame.f_locals['__exception__'] = exc_type, exc_value

        # An 'Internal StopIteration' exception is an exception debug event
        # issued by the interpreter when handling a subgenerator run with
        # 'yield from' or a generator controled by a for loop. No exception has
        # actually occurred in this case. The debugger uses this debug event to
        # stop when the debuggee is returning from such generators.
        prefix = 'Internal ' if (not exc_traceback
                                    and exc_type is StopIteration) else ''
        self.message('%s%s' % (prefix,
            traceback.format_exception_only(exc_type, exc_value)[-1].strip()))
        self.interaction(frame, exc_traceback)

    # General interaction function
    def _cmdloop(self):
        while True:
            try:
                # keyboard interrupts allow for an easy way to cancel
                # the current command, so allow them during interactive input
                self.allow_kbdint = True
                self.cmdloop()
                self.allow_kbdint = False
                break
            except KeyboardInterrupt:
                self.message('--KeyboardInterrupt--')

    # Called before loop, handles display expressions
    def preloop(self):
        displaying = self.displaying.get(self.curframe)
        if displaying:
            for expr, oldvalue in displaying.items():
                newvalue = self._getval_except(expr)
                # check for identity first; this prevents custom __eq__ to
                # be called at every loop, and also prevents instances whose
                # fields are changed to be displayed
                if newvalue is not oldvalue and newvalue != oldvalue:
                    displaying[expr] = newvalue
                    self.message('display %s: %r  [old: %r]' %
                                 (expr, newvalue, oldvalue))

    def interaction(self, frame, traceback):
        if self.setup(frame, traceback):
            # no interaction desired at this time (happens if .pdbrc contains
            # a command like "continue")
            self.forget()
            return
        self.print_stack_entry(self.stack[self.curindex])
        self._cmdloop()
        self.forget()

    def displayhook(self, obj):
        """Custom displayhook for the exec in default(), which prevents
        assignment of the _ variable in the builtins.
        """
        # reproduce the behavior of the standard displayhook, not printing None
        if obj is not None:
            self.message(repr(obj))

    def default(self, line):
        if line[:1] == '!': line = line[1:]
        locals = self.curframe_locals
        globals = self.curframe.f_globals
        try:
            code = compile(line + '\n', '<stdin>', 'single')
            save_stdout = sys.stdout
            save_stdin = sys.stdin
            save_displayhook = sys.displayhook
            try:
                sys.stdin = self.stdin
                sys.stdout = self.stdout
                sys.displayhook = self.displayhook
                exec(code, globals, locals)
            finally:
                sys.stdout = save_stdout
                sys.stdin = save_stdin
                sys.displayhook = save_displayhook
        except:
            exc_info = sys.exc_info()[:2]
            self.error(traceback.format_exception_only(*exc_info)[-1].strip())

    def precmd(self, line):
        """Handle alias expansion and ';;' separator."""
        if not line.strip():
            return line
        args = line.split()
        while args[0] in self.aliases:
            line = self.aliases[args[0]]
            ii = 1
            for tmpArg in args[1:]:
                line = line.replace("%" + str(ii),
                                      tmpArg)
                ii += 1
            line = line.replace("%*", ' '.join(args[1:]))
            args = line.split()
        # split into ';;' separated commands
        # unless it's an alias command
        if args[0] != 'alias':
            marker = line.find(';;')
            if marker >= 0:
                # queue up everything after marker
                next = line[marker+2:].lstrip()
                self.cmdqueue.append(next)
                line = line[:marker].rstrip()
        return line

    def onecmd(self, line):
        """Interpret the argument as though it had been typed in response
        to the prompt.

        Checks whether this line is typed at the normal prompt or in
        a breakpoint command list definition.
        """
        if not self.commands_defining:
            return cmd.Cmd.onecmd(self, line)
        else:
            return self.handle_command_def(line)

    def handle_command_def(self, line):
        """Handles one command line during command list definition."""
        cmd, arg, line = self.parseline(line)
        if not cmd:
            return
        if cmd == 'silent':
            self.commands_silent[self.commands_bnum] = True
            return # continue to handle other cmd def in the cmd list
        elif cmd == 'end':
            self.cmdqueue = []
            return 1 # end of cmd list
        cmdlist = self.commands[self.commands_bnum]
        if arg:
            cmdlist.append(cmd+' '+arg)
        else:
            cmdlist.append(cmd)
        # Determine if we must stop
        try:
            func = getattr(self, 'do_' + cmd)
        except AttributeError:
            func = self.default
        # one of the resuming commands
        if func.__name__ in self.commands_resuming:
            self.commands_doprompt[self.commands_bnum] = False
            self.cmdqueue = []
            return 1
        return

    # interface abstraction functions

    def message(self, msg):
        print(msg, file=self.stdout)

    def error(self, msg):
        print('***', msg, file=self.stdout)

    # Generic completion functions.  Individual complete_foo methods can be
    # assigned below to one of these functions.

    def _complete_location(self, text, line, begidx, endidx):
        # Complete a file/module/function location for break/tbreak/clear.
        if line.strip().endswith((':', ',')):
            # Here comes a line number or a condition which we can't complete.
            return []
        # First, try to find matching functions (i.e. expressions).
        try:
            ret = self._complete_expression(text, line, begidx, endidx)
        except Exception:
            ret = []
        # Then, try to complete file names as well.
        globs = glob.glob(text + '*')
        for fn in globs:
            if os.path.isdir(fn):
                ret.append(fn + '/')
            elif os.path.isfile(fn) and fn.lower().endswith(('.py', '.pyw')):
                ret.append(fn + ':')
        return ret

    def _complete_bpnumber(self, text, line, begidx, endidx):
        # Complete a breakpoint number.  (This would be more helpful if we could
        # display additional info along with the completions, such as file/line
        # of the breakpoint.)
        return [str(i) for i, bp in enumerate(bdb.Breakpoint.bpbynumber)
                if bp is not None and str(i).startswith(text)]

    def _complete_expression(self, text, line, begidx, endidx):
        # Complete an arbitrary expression.
        if not self.curframe:
            return []
        # Collect globals and locals.  It is usually not really sensible to also
        # complete builtins, and they clutter the namespace quite heavily, so we
        # leave them out.
        ns = self.curframe.f_globals.copy()
        ns.update(self.curframe_locals)
        if '.' in text:
            # Walk an attribute chain up to the last part, similar to what
            # rlcompleter does.  This will bail if any of the parts are not
            # simple attribute access, which is what we want.
            dotted = text.split('.')
            try:
                obj = ns[dotted[0]]
                for part in dotted[1:-1]:
                    obj = getattr(obj, part)
            except (KeyError, AttributeError):
                return []
            prefix = '.'.join(dotted[:-1]) + '.'
            return [prefix + n for n in dir(obj) if n.startswith(dotted[-1])]
        else:
            # Complete a simple name.
            return [n for n in ns.keys() if n.startswith(text)]

    # Command definitions, called by cmdloop()
    # The argument is the remaining string on the command line
    # Return true to exit from the command loop

    def do_commands(self, arg):
        """commands [bpnumber]
        (com) ...
        (com) end
        (Pdb)

        Specify a list of commands for breakpoint number bpnumber.
        The commands themselves are entered on the following lines.
        Type a line containing just 'end' to terminate the commands.
        The commands are executed when the breakpoint is hit.

        To remove all commands from a breakpoint, type commands and
        follow it immediately with end; that is, give no commands.

        With no bpnumber argument, commands refers to the last
        breakpoint set.

        You can use breakpoint commands to start your program up
        again.  Simply use the continue command, or step, or any other
        command that resumes execution.

        Specifying any command resuming execution (currently continue,
        step, next, return, jump, quit and their abbreviations)
        terminates the command list (as if that command was
        immediately followed by end).  This is because any time you
        resume execution (even with a simple next or step), you may
        encounter another breakpoint -- which could have its own
        command list, leading to ambiguities about which list to
        execute.

        If you use the 'silent' command in the command list, the usual
        message about stopping at a breakpoint is not printed.  This
        may be desirable for breakpoints that are to print a specific
        message and then continue.  If none of the other commands
        print anything, you will see no sign that the breakpoint was
        reached.
        """
        if not arg:
            bnum = len(bdb.Breakpoint.bpbynumber) - 1
        else:
            try:
                bnum = int(arg)
            except:
                self.error("Usage: commands [bnum]\n        ...\n        end")
                return
        self.commands_bnum = bnum
        # Save old definitions for the case of a keyboard interrupt.
        if bnum in self.commands:
            old_command_defs = (self.commands[bnum],
                                self.commands_doprompt[bnum],
                                self.commands_silent[bnum])
        else:
            old_command_defs = None
        self.commands[bnum] = []
        self.commands_doprompt[bnum] = True
        self.commands_silent[bnum] = False

        prompt_back = self.prompt
        self.prompt = '(com) '
        self.commands_defining = True
        try:
            self.cmdloop()
        except KeyboardInterrupt:
            # Restore old definitions.
            if old_command_defs:
                self.commands[bnum] = old_command_defs[0]
                self.commands_doprompt[bnum] = old_command_defs[1]
                self.commands_silent[bnum] = old_command_defs[2]
            else:
                del self.commands[bnum]
                del self.commands_doprompt[bnum]
                del self.commands_silent[bnum]
            self.error('command definition aborted, old commands restored')
        finally:
            self.commands_defining = False
            self.prompt = prompt_back

    complete_commands = _complete_bpnumber

    def do_break(self, arg, temporary = 0):
        """b(reak) [ ([filename:]lineno | function) [, condition] ]
        Without argument, list all breaks.

        With a line number argument, set a break at this line in the
        current file.  With a function name, set a break at the first
        executable line of that function.  If a second argument is
        present, it is a string specifying an expression which must
        evaluate to true before the breakpoint is honored.

        The line number may be prefixed with a filename and a colon,
        to specify a breakpoint in another file (probably one that
        hasn't been loaded yet).  The file is searched for on
        sys.path; the .py suffix may be omitted.
        """
        if not arg:
            if self.breaks:  # There's at least one
                self.message("Num Type         Disp Enb   Where")
                for bp in bdb.Breakpoint.bpbynumber:
                    if bp:
                        self.message(bp.bpformat())
            return
        # parse arguments; comma has lowest precedence
        # and cannot occur in filename
        filename = None
        lineno = None
        cond = None
        comma = arg.find(',')
        if comma > 0:
            # parse stuff after comma: "condition"
            cond = arg[comma+1:].lstrip()
            arg = arg[:comma].rstrip()
        # parse stuff before comma: [filename:]lineno | function
        colon = arg.rfind(':')
        funcname = None
        if colon >= 0:
            filename = arg[:colon].rstrip()
            f = self.lookupmodule(filename)
            if not f:
                self.error('%r not found from sys.path' % filename)
                return
            else:
                filename = f
            arg = arg[colon+1:].lstrip()
            try:
                lineno = int(arg)
            except ValueError:
                self.error('Bad lineno: %s' % arg)
                return
        else:
            # no colon; can be lineno or function
            try:
                lineno = int(arg)
            except ValueError:
                try:
                    func = eval(arg,
                                self.curframe.f_globals,
                                self.curframe_locals)
                except:
                    func = arg
                try:
                    if hasattr(func, '__func__'):
                        func = func.__func__
                    code = func.__code__
                    #use co_name to identify the bkpt (function names
                    #could be aliased, but co_name is invariant)
                    funcname = code.co_name
                    lineno = code.co_firstlineno
                    filename = code.co_filename
                except:
                    # last thing to try
                    (ok, filename, ln) = self.lineinfo(arg)
                    if not ok:
                        self.error('The specified object %r is not a function '
                                   'or was not found along sys.path.' % arg)
                        return
                    funcname = ok # ok contains a function name
                    lineno = int(ln)
        if not filename:
            filename = self.defaultFile()
        # Check for reasonable breakpoint
        line = self.checkline(filename, lineno)
        if line:
            # now set the break point
            err = self.set_break(filename, line, temporary, cond, funcname)
            if err:
                self.error(err)
            else:
                bp = self.get_breaks(filename, line)[-1]
                self.message("Breakpoint %d at %s:%d" %
                             (bp.number, bp.file, bp.line))

    # To be overridden in derived debuggers
    def defaultFile(self):
        """Produce a reasonable default."""
        filename = self.curframe.f_code.co_filename
        if filename == '<string>' and self.mainpyfile:
            filename = self.mainpyfile
        return filename

    do_b = do_break

    complete_break = _complete_location
    complete_b = _complete_location

    def do_tbreak(self, arg):
        """tbreak [ ([filename:]lineno | function) [, condition] ]
        Same arguments as break, but sets a temporary breakpoint: it
        is automatically deleted when first hit.
        """
        self.do_break(arg, 1)

    complete_tbreak = _complete_location

    def lineinfo(self, identifier):
        failed = (None, None, None)
        # Input is identifier, may be in single quotes
        idstring = identifier.split("'")
        if len(idstring) == 1:
            # not in single quotes
            id = idstring[0].strip()
        elif len(idstring) == 3:
            # quoted
            id = idstring[1].strip()
        else:
            return failed
        if id == '': return failed
        parts = id.split('.')
        # Protection for derived debuggers
        if parts[0] == 'self':
            del parts[0]
            if len(parts) == 0:
                return failed
        # Best first guess at file to look at
        fname = self.defaultFile()
        if len(parts) == 1:
            item = parts[0]
        else:
            # More than one part.
            # First is module, second is method/class
            f = self.lookupmodule(parts[0])
            if f:
                fname = f
            item = parts[1]
        answer = find_function(item, fname)
        return answer or failed

    def checkline(self, filename, lineno):
        """Check whether specified line seems to be executable.

        Return `lineno` if it is, 0 if not (e.g. a docstring, comment, blank
        line or EOF). Warning: testing is not comprehensive.
        """
        # this method should be callable before starting debugging, so default
        # to "no globals" if there is no current frame
        globs = self.curframe.f_globals if hasattr(self, 'curframe') else None
        line = linecache.getline(filename, lineno, globs)
        if not line:
            self.message('End of file')
            return 0
        line = line.strip()
        # Don't allow setting breakpoint at a blank line
        if (not line or (line[0] == '#') or
             (line[:3] == '"""') or line[:3] == "'''"):
            self.error('Blank or comment')
            return 0
        return lineno

    def do_enable(self, arg):
        """enable bpnumber [bpnumber ...]
        Enables the breakpoints given as a space separated list of
        breakpoint numbers.
        """
        args = arg.split()
        for i in args:
            try:
                bp = self.get_bpbynumber(i)
            except ValueError as err:
                self.error(err)
            else:
                bp.enable()
                self.message('Enabled %s' % bp)

    complete_enable = _complete_bpnumber

    def do_disable(self, arg):
        """disable bpnumber [bpnumber ...]
        Disables the breakpoints given as a space separated list of
        breakpoint numbers.  Disabling a breakpoint means it cannot
        cause the program to stop execution, but unlike clearing a
        breakpoint, it remains in the list of breakpoints and can be
        (re-)enabled.
        """
        args = arg.split()
        for i in args:
            try:
                bp = self.get_bpbynumber(i)
            except ValueError as err:
                self.error(err)
            else:
                bp.disable()
                self.message('Disabled %s' % bp)

    complete_disable = _complete_bpnumber

    def do_condition(self, arg):
        """condition bpnumber [condition]
        Set a new condition for the breakpoint, an expression which
        must evaluate to true before the breakpoint is honored.  If
        condition is absent, any existing condition is removed; i.e.,
        the breakpoint is made unconditional.
        """
        args = arg.split(' ', 1)
        try:
            cond = args[1]
        except IndexError:
            cond = None
        try:
            bp = self.get_bpbynumber(args[0].strip())
        except IndexError:
            self.error('Breakpoint number expected')
        except ValueError as err:
            self.error(err)
        else:
            bp.cond = cond
            if not cond:
                self.message('Breakpoint %d is now unconditional.' % bp.number)
            else:
                self.message('New condition set for breakpoint %d.' % bp.number)

    complete_condition = _complete_bpnumber

    def do_ignore(self, arg):
        """ignore bpnumber [count]
        Set the ignore count for the given breakpoint number.  If
        count is omitted, the ignore count is set to 0.  A breakpoint
        becomes active when the ignore count is zero.  When non-zero,
        the count is decremented each time the breakpoint is reached
        and the breakpoint is not disabled and any associated
        condition evaluates to true.
        """
        args = arg.split()
        try:
            count = int(args[1].strip())
        except:
            count = 0
        try:
            bp = self.get_bpbynumber(args[0].strip())
        except IndexError:
            self.error('Breakpoint number expected')
        except ValueError as err:
            self.error(err)
        else:
            bp.ignore = count
            if count > 0:
                if count > 1:
                    countstr = '%d crossings' % count
                else:
                    countstr = '1 crossing'
                self.message('Will ignore next %s of breakpoint %d.' %
                             (countstr, bp.number))
            else:
                self.message('Will stop next time breakpoint %d is reached.'
                             % bp.number)

    complete_ignore = _complete_bpnumber

    def do_clear(self, arg):
        """cl(ear) filename:lineno\ncl(ear) [bpnumber [bpnumber...]]
        With a space separated list of breakpoint numbers, clear
        those breakpoints.  Without argument, clear all breaks (but
        first ask confirmation).  With a filename:lineno argument,
        clear all breaks at that line in that file.
        """
        if not arg:
            try:
                reply = input('Clear all breaks? ')
            except EOFError:
                reply = 'no'
            reply = reply.strip().lower()
            if reply in ('y', 'yes'):
                bplist = [bp for bp in bdb.Breakpoint.bpbynumber if bp]
                self.clear_all_breaks()
                for bp in bplist:
                    self.message('Deleted %s' % bp)
            return
        if ':' in arg:
            # Make sure it works for "clear C:\foo\bar.py:12"
            i = arg.rfind(':')
            filename = arg[:i]
            arg = arg[i+1:]
            try:
                lineno = int(arg)
            except ValueError:
                err = "Invalid line number (%s)" % arg
            else:
                bplist = self.get_breaks(filename, lineno)
                err = self.clear_break(filename, lineno)
            if err:
                self.error(err)
            else:
                for bp in bplist:
                    self.message('Deleted %s' % bp)
            return
        numberlist = arg.split()
        for i in numberlist:
            try:
                bp = self.get_bpbynumber(i)
            except ValueError as err:
                self.error(err)
            else:
                self.clear_bpbynumber(i)
                self.message('Deleted %s' % bp)
    do_cl = do_clear # 'c' is already an abbreviation for 'continue'

    complete_clear = _complete_location
    complete_cl = _complete_location

    def do_where(self, arg):
        """w(here)
        Print a stack trace, with the most recent frame at the bottom.
        An arrow indicates the "current frame", which determines the
        context of most commands.  'bt' is an alias for this command.
        """
        self.print_stack_trace()
    do_w = do_where
    do_bt = do_where

    def _select_frame(self, number):
        assert 0 <= number < len(self.stack)
        self.curindex = number
        self.curframe = self.stack[self.curindex][0]
        self.curframe_locals = self.curframe.f_locals
        self.print_stack_entry(self.stack[self.curindex])
        self.lineno = None

    def do_up(self, arg):
        """u(p) [count]
        Move the current frame count (default one) levels up in the
        stack trace (to an older frame).
        """
        if self.curindex == 0:
            self.error('Oldest frame')
            return
        try:
            count = int(arg or 1)
        except ValueError:
            self.error('Invalid frame count (%s)' % arg)
            return
        if count < 0:
            newframe = 0
        else:
            newframe = max(0, self.curindex - count)
        self._select_frame(newframe)
    do_u = do_up

    def do_down(self, arg):
        """d(own) [count]
        Move the current frame count (default one) levels down in the
        stack trace (to a newer frame).
        """
        if self.curindex + 1 == len(self.stack):
            self.error('Newest frame')
            return
        try:
            count = int(arg or 1)
        except ValueError:
            self.error('Invalid frame count (%s)' % arg)
            return
        if count < 0:
            newframe = len(self.stack) - 1
        else:
            newframe = min(len(self.stack) - 1, self.curindex + count)
        self._select_frame(newframe)
    do_d = do_down

    def do_until(self, arg):
        """unt(il) [lineno]
        Without argument, continue execution until the line with a
        number greater than the current one is reached.  With a line
        number, continue execution until a line with a number greater
        or equal to that is reached.  In both cases, also stop when
        the current frame returns.
        """
        if arg:
            try:
                lineno = int(arg)
            except ValueError:
                self.error('Error in argument: %r' % arg)
                return
            if lineno <= self.curframe.f_lineno:
                self.error('"until" line number is smaller than current '
                           'line number')
                return
        else:
            lineno = None
        self.set_until(self.curframe, lineno)
        return 1
    do_unt = do_until

    def do_step(self, arg):
        """s(tep)
        Execute the current line, stop at the first possible occasion
        (either in a function that is called or in the current
        function).
        """
        self.set_step()
        return 1
    do_s = do_step

    def do_next(self, arg):
        """n(ext)
        Continue execution until the next line in the current function
        is reached or it returns.
        """
        self.set_next(self.curframe)
        return 1
    do_n = do_next

    def do_run(self, arg):
        """run [args...]
        Restart the debugged python program. If a string is supplied
        it is split with "shlex", and the result is used as the new
        sys.argv.  History, breakpoints, actions and debugger options
        are preserved.  "restart" is an alias for "run".
        """
        if arg:
            import shlex
            argv0 = sys.argv[0:1]
            sys.argv = shlex.split(arg)
            sys.argv[:0] = argv0
        # this is caught in the main debugger loop
        raise Restart

    do_restart = do_run

    def do_return(self, arg):
        """r(eturn)
        Continue execution until the current function returns.
        """
        self.set_return(self.curframe)
        return 1
    do_r = do_return

    def do_continue(self, arg):
        """c(ont(inue))
        Continue execution, only stop when a breakpoint is encountered.
        """
        if not self.nosigint:
            try:
                self._previous_sigint_handler = \
                    signal.signal(signal.SIGINT, self.sigint_handler)
            except ValueError:
                # ValueError happens when do_continue() is invoked from
                # a non-main thread in which case we just continue without
                # SIGINT set. Would printing a message here (once) make
                # sense?
                pass
        self.set_continue()
        return 1
    do_c = do_cont = do_continue

    def do_jump(self, arg):
        """j(ump) lineno
        Set the next line that will be executed.  Only available in
        the bottom-most frame.  This lets you jump back and execute
        code again, or jump forward to skip code that you don't want
        to run.

        It should be noted that not all jumps are allowed -- for
        instance it is not possible to jump into the middle of a
        for loop or out of a finally clause.
        """
        if self.curindex + 1 != len(self.stack):
            self.error('You can only jump within the bottom frame')
            return
        try:
            arg = int(arg)
        except ValueError:
            self.error("The 'jump' command requires a line number")
        else:
            try:
                # Do the jump, fix up our copy of the stack, and display the
                # new position
                self.curframe.f_lineno = arg
                self.stack[self.curindex] = self.stack[self.curindex][0], arg
                self.print_stack_entry(self.stack[self.curindex])
            except ValueError as e:
                self.error('Jump failed: %s' % e)
    do_j = do_jump

    def do_debug(self, arg):
        """debug code
        Enter a recursive debugger that steps through the code
        argument (which is an arbitrary expression or statement to be
        executed in the current environment).
        """
        sys.settrace(None)
        globals = self.curframe.f_globals
        locals = self.curframe_locals
        p = Pdb(self.completekey, self.stdin, self.stdout)
        p.prompt = "(%s) " % self.prompt.strip()
        self.message("ENTERING RECURSIVE DEBUGGER")
        sys.call_tracing(p.run, (arg, globals, locals))
        self.message("LEAVING RECURSIVE DEBUGGER")
        sys.settrace(self.trace_dispatch)
        self.lastcmd = p.lastcmd

    complete_debug = _complete_expression

    def do_quit(self, arg):
        """q(uit)\nexit
        Quit from the debugger. The program being executed is aborted.
        """
        self._user_requested_quit = True
        self.set_quit()
        return 1

    do_q = do_quit
    do_exit = do_quit

    def do_EOF(self, arg):
        """EOF
        Handles the receipt of EOF as a command.
        """
        self.message('')
        self._user_requested_quit = True
        self.set_quit()
        return 1

    def do_args(self, arg):
        """a(rgs)
        Print the argument list of the current function.
        """
        co = self.curframe.f_code
        dict = self.curframe_locals
        n = co.co_argcount
        if co.co_flags & 4: n = n+1
        if co.co_flags & 8: n = n+1
        for i in range(n):
            name = co.co_varnames[i]
            if name in dict:
                self.message('%s = %r' % (name, dict[name]))
            else:
                self.message('%s = *** undefined ***' % (name,))
    do_a = do_args

    def do_retval(self, arg):
        """retval
        Print the return value for the last return of a function.
        """
        if '__return__' in self.curframe_locals:
            self.message(repr(self.curframe_locals['__return__']))
        else:
            self.error('Not yet returned!')
    do_rv = do_retval

    def _getval(self, arg):
        try:
            return eval(arg, self.curframe.f_globals, self.curframe_locals)
        except:
            exc_info = sys.exc_info()[:2]
            self.error(traceback.format_exception_only(*exc_info)[-1].strip())
            raise

    def _getval_except(self, arg, frame=None):
        try:
            if frame is None:
                return eval(arg, self.curframe.f_globals, self.curframe_locals)
            else:
                return eval(arg, frame.f_globals, frame.f_locals)
        except:
            exc_info = sys.exc_info()[:2]
            err = traceback.format_exception_only(*exc_info)[-1].strip()
            return _rstr('** raised %s **' % err)

    def do_p(self, arg):
        """p expression
        Print the value of the expression.
        """
        try:
            self.message(repr(self._getval(arg)))
        except:
            pass

    def do_pp(self, arg):
        """pp expression
        Pretty-print the value of the expression.
        """
        try:
            self.message(pprint.pformat(self._getval(arg)))
        except:
            pass

    complete_print = _complete_expression
    complete_p = _complete_expression
    complete_pp = _complete_expression

    def do_list(self, arg):
        """l(ist) [first [,last] | .]

        List source code for the current file.  Without arguments,
        list 11 lines around the current line or continue the previous
        listing.  With . as argument, list 11 lines around the current
        line.  With one argument, list 11 lines starting at that line.
        With two arguments, list the given range; if the second
        argument is less than the first, it is a count.

        The current line in the current frame is indicated by "->".
        If an exception is being debugged, the line where the
        exception was originally raised or propagated is indicated by
        ">>", if it differs from the current line.
        """
        self.lastcmd = 'list'
        last = None
        if arg and arg != '.':
            try:
                if ',' in arg:
                    first, last = arg.split(',')
                    first = int(first.strip())
                    last = int(last.strip())
                    if last < first:
                        # assume it's a count
                        last = first + last
                else:
                    first = int(arg.strip())
                    first = max(1, first - 5)
            except ValueError:
                self.error('Error in argument: %r' % arg)
                return
        elif self.lineno is None or arg == '.':
            first = max(1, self.curframe.f_lineno - 5)
        else:
            first = self.lineno + 1
        if last is None:
            last = first + 10
        filename = self.curframe.f_code.co_filename
        breaklist = self.get_file_breaks(filename)
        try:
            lines = linecache.getlines(filename, self.curframe.f_globals)
            self._print_lines(lines[first-1:last], first, breaklist,
                              self.curframe)
            self.lineno = min(last, len(lines))
            if len(lines) < last:
                self.message('[EOF]')
        except KeyboardInterrupt:
            pass
    do_l = do_list

    def do_longlist(self, arg):
        """longlist | ll
        List the whole source code for the current function or frame.
        """
        filename = self.curframe.f_code.co_filename
        breaklist = self.get_file_breaks(filename)
        try:
            lines, lineno = getsourcelines(self.curframe)
        except OSError as err:
            self.error(err)
            return
        self._print_lines(lines, lineno, breaklist, self.curframe)
    do_ll = do_longlist

    def do_source(self, arg):
        """source expression
        Try to get source code for the given object and display it.
        """
        try:
            obj = self._getval(arg)
        except:
            return
        try:
            lines, lineno = getsourcelines(obj)
        except (OSError, TypeError) as err:
            self.error(err)
            return
        self._print_lines(lines, lineno)

    complete_source = _complete_expression

    def _print_lines(self, lines, start, breaks=(), frame=None):
        """Print a range of lines."""
        if frame:
            current_lineno = frame.f_lineno
            exc_lineno = self.tb_lineno.get(frame, -1)
        else:
            current_lineno = exc_lineno = -1
        for lineno, line in enumerate(lines, start):
            s = str(lineno).rjust(3)
            if len(s) < 4:
                s += ' '
            if lineno in breaks:
                s += 'B'
            else:
                s += ' '
            if lineno == current_lineno:
                s += '->'
            elif lineno == exc_lineno:
                s += '>>'
            self.message(s + '\t' + line.rstrip())

    def do_whatis(self, arg):
        """whatis arg
        Print the type of the argument.
        """
        try:
            value = self._getval(arg)
        except:
            # _getval() already printed the error
            return
        code = None
        # Is it a function?
        try:
            code = value.__code__
        except Exception:
            pass
        if code:
            self.message('Function %s' % code.co_name)
            return
        # Is it an instance method?
        try:
            code = value.__func__.__code__
        except Exception:
            pass
        if code:
            self.message('Method %s' % code.co_name)
            return
        # Is it a class?
        if value.__class__ is type:
            self.message('Class %s.%s' % (value.__module__, value.__name__))
            return
        # None of the above...
        self.message(type(value))

    complete_whatis = _complete_expression

    def do_display(self, arg):
        """display [expression]

        Display the value of the expression if it changed, each time execution
        stops in the current frame.

        Without expression, list all display expressions for the current frame.
        """
        if not arg:
            self.message('Currently displaying:')
            for item in self.displaying.get(self.curframe, {}).items():
                self.message('%s: %r' % item)
        else:
            val = self._getval_except(arg)
            self.displaying.setdefault(self.curframe, {})[arg] = val
            self.message('display %s: %r' % (arg, val))

    complete_display = _complete_expression

    def do_undisplay(self, arg):
        """undisplay [expression]

        Do not display the expression any more in the current frame.

        Without expression, clear all display expressions for the current frame.
        """
        if arg:
            try:
                del self.displaying.get(self.curframe, {})[arg]
            except KeyError:
                self.error('not displaying %s' % arg)
        else:
            self.displaying.pop(self.curframe, None)

    def complete_undisplay(self, text, line, begidx, endidx):
        return [e for e in self.displaying.get(self.curframe, {})
                if e.startswith(text)]

    def do_interact(self, arg):
        """interact

        Start an interactive interpreter whose global namespace
        contains all the (global and local) names found in the current scope.
        """
        ns = self.curframe.f_globals.copy()
        ns.update(self.curframe_locals)
        code.interact("*interactive*", local=ns)

    def do_alias(self, arg):
        """alias [name [command [parameter parameter ...] ]]
        Create an alias called 'name' that executes 'command'.  The
        command must *not* be enclosed in quotes.  Replaceable
        parameters can be indicated by %1, %2, and so on, while %* is
        replaced by all the parameters.  If no command is given, the
        current alias for name is shown. If no name is given, all
        aliases are listed.

        Aliases may be nested and can contain anything that can be
        legally typed at the pdb prompt.  Note!  You *can* override
        internal pdb commands with aliases!  Those internal commands
        are then hidden until the alias is removed.  Aliasing is
        recursively applied to the first word of the command line; all
        other words in the line are left alone.

        As an example, here are two useful aliases (especially when
        placed in the .pdbrc file):

        # Print instance variables (usage "pi classInst")
        alias pi for k in %1.__dict__.keys(): print("%1.",k,"=",%1.__dict__[k])
        # Print instance variables in self
        alias ps pi self
        """
        args = arg.split()
        if len(args) == 0:
            keys = sorted(self.aliases.keys())
            for alias in keys:
                self.message("%s = %s" % (alias, self.aliases[alias]))
            return
        if args[0] in self.aliases and len(args) == 1:
            self.message("%s = %s" % (args[0], self.aliases[args[0]]))
        else:
            self.aliases[args[0]] = ' '.join(args[1:])

    def do_unalias(self, arg):
        """unalias name
        Delete the specified alias.
        """
        args = arg.split()
        if len(args) == 0: return
        if args[0] in self.aliases:
            del self.aliases[args[0]]

    def complete_unalias(self, text, line, begidx, endidx):
        return [a for a in self.aliases if a.startswith(text)]

    # List of all the commands making the program resume execution.
    commands_resuming = ['do_continue', 'do_step', 'do_next', 'do_return',
                         'do_quit', 'do_jump']

    # Print a traceback starting at the top stack frame.
    # The most recently entered frame is printed last;
    # this is different from dbx and gdb, but consistent with
    # the Python interpreter's stack trace.
    # It is also consistent with the up/down commands (which are
    # compatible with dbx and gdb: up moves towards 'main()'
    # and down moves towards the most recent stack frame).

    def print_stack_trace(self):
        try:
            for frame_lineno in self.stack:
                self.print_stack_entry(frame_lineno)
        except KeyboardInterrupt:
            pass

    def print_stack_entry(self, frame_lineno, prompt_prefix=line_prefix):
        frame, lineno = frame_lineno
        if frame is self.curframe:
            prefix = '> '
        else:
            prefix = '  '
        self.message(prefix +
                     self.format_stack_entry(frame_lineno, prompt_prefix))

    # Provide help

    def do_help(self, arg):
        """h(elp)
        Without argument, print the list of available commands.
        With a command name as argument, print help about that command.
        "help pdb" shows the full pdb documentation.
        "help exec" gives help on the ! command.
        """
        if not arg:
            return cmd.Cmd.do_help(self, arg)
        try:
            try:
                topic = getattr(self, 'help_' + arg)
                return topic()
            except AttributeError:
                command = getattr(self, 'do_' + arg)
        except AttributeError:
            self.error('No help for %r' % arg)
        else:
            if sys.flags.optimize >= 2:
                self.error('No help for %r; please do not run Python with -OO '
                           'if you need command help' % arg)
                return
            self.message(command.__doc__.rstrip())

    do_h = do_help

    def help_exec(self):
        """(!) statement
        Execute the (one-line) statement in the context of the current
        stack frame.  The exclamation point can be omitted unless the
        first word of the statement resembles a debugger command.  To
        assign to a global variable you must always prefix the command
        with a 'global' command, e.g.:
        (Pdb) global list_options; list_options = ['-l']
        (Pdb)
        """
        self.message((self.help_exec.__doc__ or '').strip())

    def help_pdb(self):
        help()

    # other helper functions

    def lookupmodule(self, filename):
        """Helper function for break/clear parsing -- may be overridden.

        lookupmodule() translates (possibly incomplete) file or module name
        into an absolute file name.
        """
        if os.path.isabs(filename) and  os.path.exists(filename):
            return filename
        f = os.path.join(sys.path[0], filename)
        if  os.path.exists(f) and self.canonic(f) == self.mainpyfile:
            return f
        root, ext = os.path.splitext(filename)
        if ext == '':
            filename = filename + '.py'
        if os.path.isabs(filename):
            return filename
        for dirname in sys.path:
            while os.path.islink(dirname):
                dirname = os.readlink(dirname)
            fullname = os.path.join(dirname, filename)
            if os.path.exists(fullname):
                return fullname
        return None

    def _runscript(self, filename):
        # The script has to run in __main__ namespace (or imports from
        # __main__ will break).
        #
        # So we clear up the __main__ and set several special variables
        # (this gets rid of pdb's globals and cleans old variables on restarts).
        import __main__
        __main__.__dict__.clear()
        __main__.__dict__.update({"__name__"    : "__main__",
                                  "__file__"    : filename,
                                  "__builtins__": __builtins__,
                                 })

        # When bdb sets tracing, a number of call and line events happens
        # BEFORE debugger even reaches user's code (and the exact sequence of
        # events depends on python version). So we take special measures to
        # avoid stopping before we reach the main script (see user_line and
        # user_call for details).
        self._wait_for_mainpyfile = True
        self.mainpyfile = self.canonic(filename)
        self._user_requested_quit = False
        with open(filename, "rb") as fp:
            statement = "exec(compile(%r, %r, 'exec'))" % \
                        (fp.read(), self.mainpyfile)
        self.run(statement)

# Collect all command help into docstring, if not run with -OO

if __doc__ is not None:
    # unfortunately we can't guess this order from the class definition
    _help_order = [
        'help', 'where', 'down', 'up', 'break', 'tbreak', 'clear', 'disable',
        'enable', 'ignore', 'condition', 'commands', 'step', 'next', 'until',
        'jump', 'return', 'retval', 'run', 'continue', 'list', 'longlist',
        'args', 'p', 'pp', 'whatis', 'source', 'display', 'undisplay',
        'interact', 'alias', 'unalias', 'debug', 'quit',
    ]

    for _command in _help_order:
        __doc__ += getattr(Pdb, 'do_' + _command).__doc__.strip() + '\n\n'
    __doc__ += Pdb.help_exec.__doc__

    del _help_order, _command


# Simplified interface

def run(statement, globals=None, locals=None):
    Pdb().run(statement, globals, locals)

def runeval(expression, globals=None, locals=None):
    return Pdb().runeval(expression, globals, locals)

def runctx(statement, globals, locals):
    # B/W compatibility
    run(statement, globals, locals)

def runcall(*args, **kwds):
    return Pdb().runcall(*args, **kwds)

def set_trace():
    Pdb().set_trace(sys._getframe().f_back)

# Post-Mortem interface

def post_mortem(t=None):
    # handling the default
    if t is None:
        # sys.exc_info() returns (type, value, traceback) if an exception is
        # being handled, otherwise it returns None
        t = sys.exc_info()[2]
    if t is None:
        raise ValueError("A valid traceback must be passed if no "
                         "exception is being handled")

    p = Pdb()
    p.reset()
    p.interaction(None, t)

def pm():
    post_mortem(sys.last_traceback)


# Main program for testing

TESTCMD = 'import x; x.main()'

def test():
    run(TESTCMD)

# print help
def help():
    import pydoc
    pydoc.pager(__doc__)

_usage = """\
usage: pdb.py [-c command] ... pyfile [arg] ...

Debug the Python program given by pyfile.

Initial commands are read from .pdbrc files in your home directory
and in the current directory, if they exist.  Commands supplied with
-c are executed after commands from .pdbrc files.

To let the script run until an exception occurs, use "-c continue".
To let the script run up to a given line X in the debugged file, use
"-c 'until X'"."""

def main():
    import getopt

    opts, args = getopt.getopt(sys.argv[1:], 'hc:', ['--help', '--command='])

    if not args:
        print(_usage)
        sys.exit(2)

    commands = []
    for opt, optarg in opts:
        if opt in ['-h', '--help']:
            print(_usage)
            sys.exit()
        elif opt in ['-c', '--command']:
            commands.append(optarg)

    mainpyfile = args[0]     # Get script filename
    if not os.path.exists(mainpyfile):
        print('Error:', mainpyfile, 'does not exist')
        sys.exit(1)

    sys.argv[:] = args      # Hide "pdb.py" and pdb options from argument list

    # Replace pdb's dir with script's dir in front of module search path.
    sys.path[0] = os.path.dirname(mainpyfile)

    # Note on saving/restoring sys.argv: it's a good idea when sys.argv was
    # modified by the script being debugged. It's a bad idea when it was
    # changed by the user from the command line. There is a "restart" command
    # which allows explicit specification of command line arguments.
    pdb = Pdb()
    pdb.rcLines.extend(commands)
    while True:
        try:
            pdb._runscript(mainpyfile)
            if pdb._user_requested_quit:
                break
            print("The program finished and will be restarted")
        except Restart:
            print("Restarting", mainpyfile, "with arguments:")
            print("\t" + " ".join(args))
        except SystemExit:
            # In most cases SystemExit does not warrant a post-mortem session.
            print("The program exited via sys.exit(). Exit status:", end=' ')
            print(sys.exc_info()[1])
        except SyntaxError:
            traceback.print_exc()
            sys.exit(1)
        except:
            traceback.print_exc()
            print("Uncaught exception. Entering post mortem debugging")
            print("Running 'cont' or 'step' will restart the program")
            t = sys.exc_info()[2]
            pdb.interaction(None, t)
            print("Post mortem debugger finished. The " + mainpyfile +
                  " will be restarted")


# When invoked as main program, invoke the debugger on a script
if __name__ == '__main__':
    import pdb
    pdb.main()
lib\pickle.py
"""Create portable serialized representations of Python objects.

See module copyreg for a mechanism for registering custom picklers.
See module pickletools source for extensive comments.

Classes:

    Pickler
    Unpickler

Functions:

    dump(object, file)
    dumps(object) -> string
    load(file) -> object
    loads(string) -> object

Misc variables:

    __version__
    format_version
    compatible_formats

"""

from types import FunctionType
from copyreg import dispatch_table
from copyreg import _extension_registry, _inverted_registry, _extension_cache
from itertools import islice
import sys
from sys import maxsize
from struct import pack, unpack
import re
import io
import codecs
import _compat_pickle

__all__ = ["PickleError", "PicklingError", "UnpicklingError", "Pickler",
           "Unpickler", "dump", "dumps", "load", "loads"]

# Shortcut for use in isinstance testing
bytes_types = (bytes, bytearray)

# These are purely informational; no code uses these.
format_version = "4.0"                  # File format version we write
compatible_formats = ["1.0",            # Original protocol 0
                      "1.1",            # Protocol 0 with INST added
                      "1.2",            # Original protocol 1
                      "1.3",            # Protocol 1 with BINFLOAT added
                      "2.0",            # Protocol 2
                      "3.0",            # Protocol 3
                      "4.0",            # Protocol 4
                      ]                 # Old format versions we can read

# This is the highest protocol number we know how to read.
HIGHEST_PROTOCOL = 4

# The protocol we write by default.  May be less than HIGHEST_PROTOCOL.
# We intentionally write a protocol that Python 2.x cannot read;
# there are too many issues with that.
DEFAULT_PROTOCOL = 3

class PickleError(Exception):
    """A common base class for the other pickling exceptions."""
    pass

class PicklingError(PickleError):
    """This exception is raised when an unpicklable object is passed to the
    dump() method.

    """
    pass

class UnpicklingError(PickleError):
    """This exception is raised when there is a problem unpickling an object,
    such as a security violation.

    Note that other exceptions may also be raised during unpickling, including
    (but not necessarily limited to) AttributeError, EOFError, ImportError,
    and IndexError.

    """
    pass

# An instance of _Stop is raised by Unpickler.load_stop() in response to
# the STOP opcode, passing the object that is the result of unpickling.
class _Stop(Exception):
    def __init__(self, value):
        self.value = value

# Jython has PyStringMap; it's a dict subclass with string keys
try:
    from org.python.core import PyStringMap
except ImportError:
    PyStringMap = None

# Pickle opcodes.  See pickletools.py for extensive docs.  The listing
# here is in kind-of alphabetical order of 1-character pickle code.
# pickletools groups them by purpose.

MARK           = b'('   # push special markobject on stack
STOP           = b'.'   # every pickle ends with STOP
POP            = b'0'   # discard topmost stack item
POP_MARK       = b'1'   # discard stack top through topmost markobject
DUP            = b'2'   # duplicate top stack item
FLOAT          = b'F'   # push float object; decimal string argument
INT            = b'I'   # push integer or bool; decimal string argument
BININT         = b'J'   # push four-byte signed int
BININT1        = b'K'   # push 1-byte unsigned int
LONG           = b'L'   # push long; decimal string argument
BININT2        = b'M'   # push 2-byte unsigned int
NONE           = b'N'   # push None
PERSID         = b'P'   # push persistent object; id is taken from string arg
BINPERSID      = b'Q'   #  "       "         "  ;  "  "   "     "  stack
REDUCE         = b'R'   # apply callable to argtuple, both on stack
STRING         = b'S'   # push string; NL-terminated string argument
BINSTRING      = b'T'   # push string; counted binary string argument
SHORT_BINSTRING= b'U'   #  "     "   ;    "      "       "      " < 256 bytes
UNICODE        = b'V'   # push Unicode string; raw-unicode-escaped'd argument
BINUNICODE     = b'X'   #   "     "       "  ; counted UTF-8 string argument
APPEND         = b'a'   # append stack top to list below it
BUILD          = b'b'   # call __setstate__ or __dict__.update()
GLOBAL         = b'c'   # push self.find_class(modname, name); 2 string args
DICT           = b'd'   # build a dict from stack items
EMPTY_DICT     = b'}'   # push empty dict
APPENDS        = b'e'   # extend list on stack by topmost stack slice
GET            = b'g'   # push item from memo on stack; index is string arg
BINGET         = b'h'   #   "    "    "    "   "   "  ;   "    " 1-byte arg
INST           = b'i'   # build & push class instance
LONG_BINGET    = b'j'   # push item from memo on stack; index is 4-byte arg
LIST           = b'l'   # build list from topmost stack items
EMPTY_LIST     = b']'   # push empty list
OBJ            = b'o'   # build & push class instance
PUT            = b'p'   # store stack top in memo; index is string arg
BINPUT         = b'q'   #   "     "    "   "   " ;   "    " 1-byte arg
LONG_BINPUT    = b'r'   #   "     "    "   "   " ;   "    " 4-byte arg
SETITEM        = b's'   # add key+value pair to dict
TUPLE          = b't'   # build tuple from topmost stack items
EMPTY_TUPLE    = b')'   # push empty tuple
SETITEMS       = b'u'   # modify dict by adding topmost key+value pairs
BINFLOAT       = b'G'   # push float; arg is 8-byte float encoding

TRUE           = b'I01\n'  # not an opcode; see INT docs in pickletools.py
FALSE          = b'I00\n'  # not an opcode; see INT docs in pickletools.py

# Protocol 2

PROTO          = b'\x80'  # identify pickle protocol
NEWOBJ         = b'\x81'  # build object by applying cls.__new__ to argtuple
EXT1           = b'\x82'  # push object from extension registry; 1-byte index
EXT2           = b'\x83'  # ditto, but 2-byte index
EXT4           = b'\x84'  # ditto, but 4-byte index
TUPLE1         = b'\x85'  # build 1-tuple from stack top
TUPLE2         = b'\x86'  # build 2-tuple from two topmost stack items
TUPLE3         = b'\x87'  # build 3-tuple from three topmost stack items
NEWTRUE        = b'\x88'  # push True
NEWFALSE       = b'\x89'  # push False
LONG1          = b'\x8a'  # push long from < 256 bytes
LONG4          = b'\x8b'  # push really big long

_tuplesize2code = [EMPTY_TUPLE, TUPLE1, TUPLE2, TUPLE3]

# Protocol 3 (Python 3.x)

BINBYTES       = b'B'   # push bytes; counted binary string argument
SHORT_BINBYTES = b'C'   #  "     "   ;    "      "       "      " < 256 bytes

# Protocol 4
SHORT_BINUNICODE = b'\x8c'  # push short string; UTF-8 length < 256 bytes
BINUNICODE8      = b'\x8d'  # push very long string
BINBYTES8        = b'\x8e'  # push very long bytes string
EMPTY_SET        = b'\x8f'  # push empty set on the stack
ADDITEMS         = b'\x90'  # modify set by adding topmost stack items
FROZENSET        = b'\x91'  # build frozenset from topmost stack items
NEWOBJ_EX        = b'\x92'  # like NEWOBJ but work with keyword only arguments
STACK_GLOBAL     = b'\x93'  # same as GLOBAL but using names on the stacks
MEMOIZE          = b'\x94'  # store top of the stack in memo
FRAME            = b'\x95'  # indicate the beginning of a new frame

__all__.extend([x for x in dir() if re.match("[A-Z][A-Z0-9_]+$", x)])


class _Framer:

    _FRAME_SIZE_TARGET = 64 * 1024

    def __init__(self, file_write):
        self.file_write = file_write
        self.current_frame = None

    def start_framing(self):
        self.current_frame = io.BytesIO()

    def end_framing(self):
        if self.current_frame and self.current_frame.tell() > 0:
            self.commit_frame(force=True)
            self.current_frame = None

    def commit_frame(self, force=False):
        if self.current_frame:
            f = self.current_frame
            if f.tell() >= self._FRAME_SIZE_TARGET or force:
                with f.getbuffer() as data:
                    n = len(data)
                    write = self.file_write
                    write(FRAME)
                    write(pack("<Q", n))
                    write(data)
                f.seek(0)
                f.truncate()

    def write(self, data):
        if self.current_frame:
            return self.current_frame.write(data)
        else:
            return self.file_write(data)


class _Unframer:

    def __init__(self, file_read, file_readline, file_tell=None):
        self.file_read = file_read
        self.file_readline = file_readline
        self.current_frame = None

    def read(self, n):
        if self.current_frame:
            data = self.current_frame.read(n)
            if not data and n != 0:
                self.current_frame = None
                return self.file_read(n)
            if len(data) < n:
                raise UnpicklingError(
                    "pickle exhausted before end of frame")
            return data
        else:
            return self.file_read(n)

    def readline(self):
        if self.current_frame:
            data = self.current_frame.readline()
            if not data:
                self.current_frame = None
                return self.file_readline()
            if data[-1] != b'\n'[0]:
                raise UnpicklingError(
                    "pickle exhausted before end of frame")
            return data
        else:
            return self.file_readline()

    def load_frame(self, frame_size):
        if self.current_frame and self.current_frame.read() != b'':
            raise UnpicklingError(
                "beginning of a new frame before end of current frame")
        self.current_frame = io.BytesIO(self.file_read(frame_size))


# Tools used for pickling.

def _getattribute(obj, name, allow_qualname=False):
    dotted_path = name.split(".")
    if not allow_qualname and len(dotted_path) > 1:
        raise AttributeError("Can't get qualified attribute {!r} on {!r}; " +
                             "use protocols >= 4 to enable support"
                             .format(name, obj))
    for subpath in dotted_path:
        if subpath == '<locals>':
            raise AttributeError("Can't get local attribute {!r} on {!r}"
                                 .format(name, obj))
        try:
            obj = getattr(obj, subpath)
        except AttributeError:
            raise AttributeError("Can't get attribute {!r} on {!r}"
                                 .format(name, obj))
    return obj

def whichmodule(obj, name, allow_qualname=False):
    """Find the module an object belong to."""
    module_name = getattr(obj, '__module__', None)
    if module_name is not None:
        return module_name
    # Protect the iteration by using a list copy of sys.modules against dynamic
    # modules that trigger imports of other modules upon calls to getattr.
    for module_name, module in list(sys.modules.items()):
        if module_name == '__main__' or module is None:
            continue
        try:
            if _getattribute(module, name, allow_qualname) is obj:
                return module_name
        except AttributeError:
            pass
    return '__main__'

def encode_long(x):
    r"""Encode a long to a two's complement little-endian binary string.
    Note that 0 is a special case, returning an empty string, to save a
    byte in the LONG1 pickling context.

    >>> encode_long(0)
    b''
    >>> encode_long(255)
    b'\xff\x00'
    >>> encode_long(32767)
    b'\xff\x7f'
    >>> encode_long(-256)
    b'\x00\xff'
    >>> encode_long(-32768)
    b'\x00\x80'
    >>> encode_long(-128)
    b'\x80'
    >>> encode_long(127)
    b'\x7f'
    >>>
    """
    if x == 0:
        return b''
    nbytes = (x.bit_length() >> 3) + 1
    result = x.to_bytes(nbytes, byteorder='little', signed=True)
    if x < 0 and nbytes > 1:
        if result[-1] == 0xff and (result[-2] & 0x80) != 0:
            result = result[:-1]
    return result

def decode_long(data):
    r"""Decode a long from a two's complement little-endian binary string.

    >>> decode_long(b'')
    0
    >>> decode_long(b"\xff\x00")
    255
    >>> decode_long(b"\xff\x7f")
    32767
    >>> decode_long(b"\x00\xff")
    -256
    >>> decode_long(b"\x00\x80")
    -32768
    >>> decode_long(b"\x80")
    -128
    >>> decode_long(b"\x7f")
    127
    """
    return int.from_bytes(data, byteorder='little', signed=True)


# Pickling machinery

class _Pickler:

    def __init__(self, file, protocol=None, *, fix_imports=True):
        """This takes a binary file for writing a pickle data stream.

        The optional *protocol* argument tells the pickler to use the
        given protocol; supported protocols are 0, 1, 2, 3 and 4.  The
        default protocol is 3; a backward-incompatible protocol designed
        for Python 3.

        Specifying a negative protocol version selects the highest
        protocol version supported.  The higher the protocol used, the
        more recent the version of Python needed to read the pickle
        produced.

        The *file* argument must have a write() method that accepts a
        single bytes argument. It can thus be a file object opened for
        binary writing, an io.BytesIO instance, or any other custom
        object that meets this interface.

        If *fix_imports* is True and *protocol* is less than 3, pickle
        will try to map the new Python 3 names to the old module names
        used in Python 2, so that the pickle data stream is readable
        with Python 2.
        """
        if protocol is None:
            protocol = DEFAULT_PROTOCOL
        if protocol < 0:
            protocol = HIGHEST_PROTOCOL
        elif not 0 <= protocol <= HIGHEST_PROTOCOL:
            raise ValueError("pickle protocol must be <= %d" % HIGHEST_PROTOCOL)
        try:
            self._file_write = file.write
        except AttributeError:
            raise TypeError("file must have a 'write' attribute")
        self.framer = _Framer(self._file_write)
        self.write = self.framer.write
        self.memo = {}
        self.proto = int(protocol)
        self.bin = protocol >= 1
        self.fast = 0
        self.fix_imports = fix_imports and protocol < 3

    def clear_memo(self):
        """Clears the pickler's "memo".

        The memo is the data structure that remembers which objects the
        pickler has already seen, so that shared or recursive objects
        are pickled by reference and not by value.  This method is
        useful when re-using picklers.
        """
        self.memo.clear()

    def dump(self, obj):
        """Write a pickled representation of obj to the open file."""
        # Check whether Pickler was initialized correctly. This is
        # only needed to mimic the behavior of _pickle.Pickler.dump().
        if not hasattr(self, "_file_write"):
            raise PicklingError("Pickler.__init__() was not called by "
                                "%s.__init__()" % (self.__class__.__name__,))
        if self.proto >= 2:
            self.write(PROTO + pack("<B", self.proto))
        if self.proto >= 4:
            self.framer.start_framing()
        self.save(obj)
        self.write(STOP)
        self.framer.end_framing()

    def memoize(self, obj):
        """Store an object in the memo."""

        # The Pickler memo is a dictionary mapping object ids to 2-tuples
        # that contain the Unpickler memo key and the object being memoized.
        # The memo key is written to the pickle and will become
        # the key in the Unpickler's memo.  The object is stored in the
        # Pickler memo so that transient objects are kept alive during
        # pickling.

        # The use of the Unpickler memo length as the memo key is just a
        # convention.  The only requirement is that the memo values be unique.
        # But there appears no advantage to any other scheme, and this
        # scheme allows the Unpickler memo to be implemented as a plain (but
        # growable) array, indexed by memo key.
        if self.fast:
            return
        assert id(obj) not in self.memo
        idx = len(self.memo)
        self.write(self.put(idx))
        self.memo[id(obj)] = idx, obj

    # Return a PUT (BINPUT, LONG_BINPUT) opcode string, with argument i.
    def put(self, idx):
        if self.proto >= 4:
            return MEMOIZE
        elif self.bin:
            if idx < 256:
                return BINPUT + pack("<B", idx)
            else:
                return LONG_BINPUT + pack("<I", idx)
        else:
            return PUT + repr(idx).encode("ascii") + b'\n'

    # Return a GET (BINGET, LONG_BINGET) opcode string, with argument i.
    def get(self, i):
        if self.bin:
            if i < 256:
                return BINGET + pack("<B", i)
            else:
                return LONG_BINGET + pack("<I", i)

        return GET + repr(i).encode("ascii") + b'\n'

    def save(self, obj, save_persistent_id=True):
        self.framer.commit_frame()

        # Check for persistent id (defined by a subclass)
        pid = self.persistent_id(obj)
        if pid is not None and save_persistent_id:
            self.save_pers(pid)
            return

        # Check the memo
        x = self.memo.get(id(obj))
        if x is not None:
            self.write(self.get(x[0]))
            return

        # Check the type dispatch table
        t = type(obj)
        f = self.dispatch.get(t)
        if f is not None:
            f(self, obj) # Call unbound method with explicit self
            return

        # Check private dispatch table if any, or else copyreg.dispatch_table
        reduce = getattr(self, 'dispatch_table', dispatch_table).get(t)
        if reduce is not None:
            rv = reduce(obj)
        else:
            # Check for a class with a custom metaclass; treat as regular class
            try:
                issc = issubclass(t, type)
            except TypeError: # t is not a class (old Boost; see SF #502085)
                issc = False
            if issc:
                self.save_global(obj)
                return

            # Check for a __reduce_ex__ method, fall back to __reduce__
            reduce = getattr(obj, "__reduce_ex__", None)
            if reduce is not None:
                rv = reduce(self.proto)
            else:
                reduce = getattr(obj, "__reduce__", None)
                if reduce is not None:
                    rv = reduce()
                else:
                    raise PicklingError("Can't pickle %r object: %r" %
                                        (t.__name__, obj))

        # Check for string returned by reduce(), meaning "save as global"
        if isinstance(rv, str):
            self.save_global(obj, rv)
            return

        # Assert that reduce() returned a tuple
        if not isinstance(rv, tuple):
            raise PicklingError("%s must return string or tuple" % reduce)

        # Assert that it returned an appropriately sized tuple
        l = len(rv)
        if not (2 <= l <= 5):
            raise PicklingError("Tuple returned by %s must have "
                                "two to five elements" % reduce)

        # Save the reduce() output and finally memoize the object
        self.save_reduce(obj=obj, *rv)

    def persistent_id(self, obj):
        # This exists so a subclass can override it
        return None

    def save_pers(self, pid):
        # Save a persistent id reference
        if self.bin:
            self.save(pid, save_persistent_id=False)
            self.write(BINPERSID)
        else:
            self.write(PERSID + str(pid).encode("ascii") + b'\n')

    def save_reduce(self, func, args, state=None, listitems=None,
                    dictitems=None, obj=None):
        # This API is called by some subclasses

        if not isinstance(args, tuple):
            raise PicklingError("args from save_reduce() must be a tuple")
        if not callable(func):
            raise PicklingError("func from save_reduce() must be callable")

        save = self.save
        write = self.write

        func_name = getattr(func, "__name__", "")
        if self.proto >= 4 and func_name == "__newobj_ex__":
            cls, args, kwargs = args
            if not hasattr(cls, "__new__"):
                raise PicklingError("args[0] from {} args has no __new__"
                                    .format(func_name))
            if obj is not None and cls is not obj.__class__:
                raise PicklingError("args[0] from {} args has the wrong class"
                                    .format(func_name))
            save(cls)
            save(args)
            save(kwargs)
            write(NEWOBJ_EX)
        elif self.proto >= 2 and func_name == "__newobj__":
            # A __reduce__ implementation can direct protocol 2 or newer to
            # use the more efficient NEWOBJ opcode, while still
            # allowing protocol 0 and 1 to work normally.  For this to
            # work, the function returned by __reduce__ should be
            # called __newobj__, and its first argument should be a
            # class.  The implementation for __newobj__
            # should be as follows, although pickle has no way to
            # verify this:
            #
            # def __newobj__(cls, *args):
            #     return cls.__new__(cls, *args)
            #
            # Protocols 0 and 1 will pickle a reference to __newobj__,
            # while protocol 2 (and above) will pickle a reference to
            # cls, the remaining args tuple, and the NEWOBJ code,
            # which calls cls.__new__(cls, *args) at unpickling time
            # (see load_newobj below).  If __reduce__ returns a
            # three-tuple, the state from the third tuple item will be
            # pickled regardless of the protocol, calling __setstate__
            # at unpickling time (see load_build below).
            #
            # Note that no standard __newobj__ implementation exists;
            # you have to provide your own.  This is to enforce
            # compatibility with Python 2.2 (pickles written using
            # protocol 0 or 1 in Python 2.3 should be unpicklable by
            # Python 2.2).
            cls = args[0]
            if not hasattr(cls, "__new__"):
                raise PicklingError(
                    "args[0] from __newobj__ args has no __new__")
            if obj is not None and cls is not obj.__class__:
                raise PicklingError(
                    "args[0] from __newobj__ args has the wrong class")
            args = args[1:]
            save(cls)
            save(args)
            write(NEWOBJ)
        else:
            save(func)
            save(args)
            write(REDUCE)

        if obj is not None:
            # If the object is already in the memo, this means it is
            # recursive. In this case, throw away everything we put on the
            # stack, and fetch the object back from the memo.
            if id(obj) in self.memo:
                write(POP + self.get(self.memo[id(obj)][0]))
            else:
                self.memoize(obj)

        # More new special cases (that work with older protocols as
        # well): when __reduce__ returns a tuple with 4 or 5 items,
        # the 4th and 5th item should be iterators that provide list
        # items and dict items (as (key, value) tuples), or None.

        if listitems is not None:
            self._batch_appends(listitems)

        if dictitems is not None:
            self._batch_setitems(dictitems)

        if state is not None:
            save(state)
            write(BUILD)

    # Methods below this point are dispatched through the dispatch table

    dispatch = {}

    def save_none(self, obj):
        self.write(NONE)
    dispatch[type(None)] = save_none

    def save_bool(self, obj):
        if self.proto >= 2:
            self.write(NEWTRUE if obj else NEWFALSE)
        else:
            self.write(TRUE if obj else FALSE)
    dispatch[bool] = save_bool

    def save_long(self, obj):
        if self.bin:
            # If the int is small enough to fit in a signed 4-byte 2's-comp
            # format, we can store it more efficiently than the general
            # case.
            # First one- and two-byte unsigned ints:
            if obj >= 0:
                if obj <= 0xff:
                    self.write(BININT1 + pack("<B", obj))
                    return
                if obj <= 0xffff:
                    self.write(BININT2 + pack("<H", obj))
                    return
            # Next check for 4-byte signed ints:
            if -0x80000000 <= obj <= 0x7fffffff:
                self.write(BININT + pack("<i", obj))
                return
        if self.proto >= 2:
            encoded = encode_long(obj)
            n = len(encoded)
            if n < 256:
                self.write(LONG1 + pack("<B", n) + encoded)
            else:
                self.write(LONG4 + pack("<i", n) + encoded)
            return
        self.write(LONG + repr(obj).encode("ascii") + b'L\n')
    dispatch[int] = save_long

    def save_float(self, obj):
        if self.bin:
            self.write(BINFLOAT + pack('>d', obj))
        else:
            self.write(FLOAT + repr(obj).encode("ascii") + b'\n')
    dispatch[float] = save_float

    def save_bytes(self, obj):
        if self.proto < 3:
            if not obj: # bytes object is empty
                self.save_reduce(bytes, (), obj=obj)
            else:
                self.save_reduce(codecs.encode,
                                 (str(obj, 'latin1'), 'latin1'), obj=obj)
            return
        n = len(obj)
        if n <= 0xff:
            self.write(SHORT_BINBYTES + pack("<B", n) + obj)
        elif n > 0xffffffff and self.proto >= 4:
            self.write(BINBYTES8 + pack("<Q", n) + obj)
        else:
            self.write(BINBYTES + pack("<I", n) + obj)
        self.memoize(obj)
    dispatch[bytes] = save_bytes

    def save_str(self, obj):
        if self.bin:
            encoded = obj.encode('utf-8', 'surrogatepass')
            n = len(encoded)
            if n <= 0xff and self.proto >= 4:
                self.write(SHORT_BINUNICODE + pack("<B", n) + encoded)
            elif n > 0xffffffff and self.proto >= 4:
                self.write(BINUNICODE8 + pack("<Q", n) + encoded)
            else:
                self.write(BINUNICODE + pack("<I", n) + encoded)
        else:
            obj = obj.replace("\\", "\\u005c")
            obj = obj.replace("\n", "\\u000a")
            self.write(UNICODE + obj.encode('raw-unicode-escape') +
                       b'\n')
        self.memoize(obj)
    dispatch[str] = save_str

    def save_tuple(self, obj):
        if not obj: # tuple is empty
            if self.bin:
                self.write(EMPTY_TUPLE)
            else:
                self.write(MARK + TUPLE)
            return

        n = len(obj)
        save = self.save
        memo = self.memo
        if n <= 3 and self.proto >= 2:
            for element in obj:
                save(element)
            # Subtle.  Same as in the big comment below.
            if id(obj) in memo:
                get = self.get(memo[id(obj)][0])
                self.write(POP * n + get)
            else:
                self.write(_tuplesize2code[n])
                self.memoize(obj)
            return

        # proto 0 or proto 1 and tuple isn't empty, or proto > 1 and tuple
        # has more than 3 elements.
        write = self.write
        write(MARK)
        for element in obj:
            save(element)

        if id(obj) in memo:
            # Subtle.  d was not in memo when we entered save_tuple(), so
            # the process of saving the tuple's elements must have saved
            # the tuple itself:  the tuple is recursive.  The proper action
            # now is to throw away everything we put on the stack, and
            # simply GET the tuple (it's already constructed).  This check
            # could have been done in the "for element" loop instead, but
            # recursive tuples are a rare thing.
            get = self.get(memo[id(obj)][0])
            if self.bin:
                write(POP_MARK + get)
            else:   # proto 0 -- POP_MARK not available
                write(POP * (n+1) + get)
            return

        # No recursion.
        write(TUPLE)
        self.memoize(obj)

    dispatch[tuple] = save_tuple

    def save_list(self, obj):
        if self.bin:
            self.write(EMPTY_LIST)
        else:   # proto 0 -- can't use EMPTY_LIST
            self.write(MARK + LIST)

        self.memoize(obj)
        self._batch_appends(obj)

    dispatch[list] = save_list

    _BATCHSIZE = 1000

    def _batch_appends(self, items):
        # Helper to batch up APPENDS sequences
        save = self.save
        write = self.write

        if not self.bin:
            for x in items:
                save(x)
                write(APPEND)
            return

        it = iter(items)
        while True:
            tmp = list(islice(it, self._BATCHSIZE))
            n = len(tmp)
            if n > 1:
                write(MARK)
                for x in tmp:
                    save(x)
                write(APPENDS)
            elif n:
                save(tmp[0])
                write(APPEND)
            # else tmp is empty, and we're done
            if n < self._BATCHSIZE:
                return

    def save_dict(self, obj):
        if self.bin:
            self.write(EMPTY_DICT)
        else:   # proto 0 -- can't use EMPTY_DICT
            self.write(MARK + DICT)

        self.memoize(obj)
        self._batch_setitems(obj.items())

    dispatch[dict] = save_dict
    if PyStringMap is not None:
        dispatch[PyStringMap] = save_dict

    def _batch_setitems(self, items):
        # Helper to batch up SETITEMS sequences; proto >= 1 only
        save = self.save
        write = self.write

        if not self.bin:
            for k, v in items:
                save(k)
                save(v)
                write(SETITEM)
            return

        it = iter(items)
        while True:
            tmp = list(islice(it, self._BATCHSIZE))
            n = len(tmp)
            if n > 1:
                write(MARK)
                for k, v in tmp:
                    save(k)
                    save(v)
                write(SETITEMS)
            elif n:
                k, v = tmp[0]
                save(k)
                save(v)
                write(SETITEM)
            # else tmp is empty, and we're done
            if n < self._BATCHSIZE:
                return

    def save_set(self, obj):
        save = self.save
        write = self.write

        if self.proto < 4:
            self.save_reduce(set, (list(obj),), obj=obj)
            return

        write(EMPTY_SET)
        self.memoize(obj)

        it = iter(obj)
        while True:
            batch = list(islice(it, self._BATCHSIZE))
            n = len(batch)
            if n > 0:
                write(MARK)
                for item in batch:
                    save(item)
                write(ADDITEMS)
            if n < self._BATCHSIZE:
                return
    dispatch[set] = save_set

    def save_frozenset(self, obj):
        save = self.save
        write = self.write

        if self.proto < 4:
            self.save_reduce(frozenset, (list(obj),), obj=obj)
            return

        write(MARK)
        for item in obj:
            save(item)

        if id(obj) in self.memo:
            # If the object is already in the memo, this means it is
            # recursive. In this case, throw away everything we put on the
            # stack, and fetch the object back from the memo.
            write(POP_MARK + self.get(self.memo[id(obj)][0]))
            return

        write(FROZENSET)
        self.memoize(obj)
    dispatch[frozenset] = save_frozenset

    def save_global(self, obj, name=None):
        write = self.write
        memo = self.memo

        if name is None and self.proto >= 4:
            name = getattr(obj, '__qualname__', None)
        if name is None:
            name = obj.__name__

        module_name = whichmodule(obj, name, allow_qualname=self.proto >= 4)
        try:
            __import__(module_name, level=0)
            module = sys.modules[module_name]
            obj2 = _getattribute(module, name, allow_qualname=self.proto >= 4)
        except (ImportError, KeyError, AttributeError):
            raise PicklingError(
                "Can't pickle %r: it's not found as %s.%s" %
                (obj, module_name, name))
        else:
            if obj2 is not obj:
                raise PicklingError(
                    "Can't pickle %r: it's not the same object as %s.%s" %
                    (obj, module_name, name))

        if self.proto >= 2:
            code = _extension_registry.get((module_name, name))
            if code:
                assert code > 0
                if code <= 0xff:
                    write(EXT1 + pack("<B", code))
                elif code <= 0xffff:
                    write(EXT2 + pack("<H", code))
                else:
                    write(EXT4 + pack("<i", code))
                return
        # Non-ASCII identifiers are supported only with protocols >= 3.
        if self.proto >= 4:
            self.save(module_name)
            self.save(name)
            write(STACK_GLOBAL)
        elif self.proto >= 3:
            write(GLOBAL + bytes(module_name, "utf-8") + b'\n' +
                  bytes(name, "utf-8") + b'\n')
        else:
            if self.fix_imports:
                r_name_mapping = _compat_pickle.REVERSE_NAME_MAPPING
                r_import_mapping = _compat_pickle.REVERSE_IMPORT_MAPPING
                if (module_name, name) in r_name_mapping:
                    module_name, name = r_name_mapping[(module_name, name)]
                elif module_name in r_import_mapping:
                    module_name = r_import_mapping[module_name]
            try:
                write(GLOBAL + bytes(module_name, "ascii") + b'\n' +
                      bytes(name, "ascii") + b'\n')
            except UnicodeEncodeError:
                raise PicklingError(
                    "can't pickle global identifier '%s.%s' using "
                    "pickle protocol %i" % (module, name, self.proto))

        self.memoize(obj)

    def save_type(self, obj):
        if obj is type(None):
            return self.save_reduce(type, (None,), obj=obj)
        elif obj is type(NotImplemented):
            return self.save_reduce(type, (NotImplemented,), obj=obj)
        elif obj is type(...):
            return self.save_reduce(type, (...,), obj=obj)
        return self.save_global(obj)

    dispatch[FunctionType] = save_global
    dispatch[type] = save_type


# Unpickling machinery

class _Unpickler:

    def __init__(self, file, *, fix_imports=True,
                 encoding="ASCII", errors="strict"):
        """This takes a binary file for reading a pickle data stream.

        The protocol version of the pickle is detected automatically, so
        no proto argument is needed.

        The argument *file* must have two methods, a read() method that
        takes an integer argument, and a readline() method that requires
        no arguments.  Both methods should return bytes.  Thus *file*
        can be a binary file object opened for reading, an io.BytesIO
        object, or any other custom object that meets this interface.

        The file-like object must have two methods, a read() method
        that takes an integer argument, and a readline() method that
        requires no arguments.  Both methods should return bytes.
        Thus file-like object can be a binary file object opened for
        reading, a BytesIO object, or any other custom object that
        meets this interface.

        Optional keyword arguments are *fix_imports*, *encoding* and
        *errors*, which are used to control compatiblity support for
        pickle stream generated by Python 2.  If *fix_imports* is True,
        pickle will try to map the old Python 2 names to the new names
        used in Python 3.  The *encoding* and *errors* tell pickle how
        to decode 8-bit string instances pickled by Python 2; these
        default to 'ASCII' and 'strict', respectively. *encoding* can be
        'bytes' to read theses 8-bit string instances as bytes objects.
        """
        self._file_readline = file.readline
        self._file_read = file.read
        self.memo = {}
        self.encoding = encoding
        self.errors = errors
        self.proto = 0
        self.fix_imports = fix_imports

    def load(self):
        """Read a pickled object representation from the open file.

        Return the reconstituted object hierarchy specified in the file.
        """
        # Check whether Unpickler was initialized correctly. This is
        # only needed to mimic the behavior of _pickle.Unpickler.dump().
        if not hasattr(self, "_file_read"):
            raise UnpicklingError("Unpickler.__init__() was not called by "
                                  "%s.__init__()" % (self.__class__.__name__,))
        self._unframer = _Unframer(self._file_read, self._file_readline)
        self.read = self._unframer.read
        self.readline = self._unframer.readline
        self.mark = object() # any new unique object
        self.stack = []
        self.append = self.stack.append
        self.proto = 0
        read = self.read
        dispatch = self.dispatch
        try:
            while True:
                key = read(1)
                if not key:
                    raise EOFError
                assert isinstance(key, bytes_types)
                dispatch[key[0]](self)
        except _Stop as stopinst:
            return stopinst.value

    # Return largest index k such that self.stack[k] is self.mark.
    # If the stack doesn't contain a mark, eventually raises IndexError.
    # This could be sped by maintaining another stack, of indices at which
    # the mark appears.  For that matter, the latter stack would suffice,
    # and we wouldn't need to push mark objects on self.stack at all.
    # Doing so is probably a good thing, though, since if the pickle is
    # corrupt (or hostile) we may get a clue from finding self.mark embedded
    # in unpickled objects.
    def marker(self):
        stack = self.stack
        mark = self.mark
        k = len(stack)-1
        while stack[k] is not mark: k = k-1
        return k

    def persistent_load(self, pid):
        raise UnpicklingError("unsupported persistent id encountered")

    dispatch = {}

    def load_proto(self):
        proto = self.read(1)[0]
        if not 0 <= proto <= HIGHEST_PROTOCOL:
            raise ValueError("unsupported pickle protocol: %d" % proto)
        self.proto = proto
    dispatch[PROTO[0]] = load_proto

    def load_frame(self):
        frame_size, = unpack('<Q', self.read(8))
        if frame_size > sys.maxsize:
            raise ValueError("frame size > sys.maxsize: %d" % frame_size)
        self._unframer.load_frame(frame_size)
    dispatch[FRAME[0]] = load_frame

    def load_persid(self):
        pid = self.readline()[:-1].decode("ascii")
        self.append(self.persistent_load(pid))
    dispatch[PERSID[0]] = load_persid

    def load_binpersid(self):
        pid = self.stack.pop()
        self.append(self.persistent_load(pid))
    dispatch[BINPERSID[0]] = load_binpersid

    def load_none(self):
        self.append(None)
    dispatch[NONE[0]] = load_none

    def load_false(self):
        self.append(False)
    dispatch[NEWFALSE[0]] = load_false

    def load_true(self):
        self.append(True)
    dispatch[NEWTRUE[0]] = load_true

    def load_int(self):
        data = self.readline()
        if data == FALSE[1:]:
            val = False
        elif data == TRUE[1:]:
            val = True
        else:
            val = int(data, 0)
        self.append(val)
    dispatch[INT[0]] = load_int

    def load_binint(self):
        self.append(unpack('<i', self.read(4))[0])
    dispatch[BININT[0]] = load_binint

    def load_binint1(self):
        self.append(self.read(1)[0])
    dispatch[BININT1[0]] = load_binint1

    def load_binint2(self):
        self.append(unpack('<H', self.read(2))[0])
    dispatch[BININT2[0]] = load_binint2

    def load_long(self):
        val = self.readline()[:-1]
        if val and val[-1] == b'L'[0]:
            val = val[:-1]
        self.append(int(val, 0))
    dispatch[LONG[0]] = load_long

    def load_long1(self):
        n = self.read(1)[0]
        data = self.read(n)
        self.append(decode_long(data))
    dispatch[LONG1[0]] = load_long1

    def load_long4(self):
        n, = unpack('<i', self.read(4))
        if n < 0:
            # Corrupt or hostile pickle -- we never write one like this
            raise UnpicklingError("LONG pickle has negative byte count")
        data = self.read(n)
        self.append(decode_long(data))
    dispatch[LONG4[0]] = load_long4

    def load_float(self):
        self.append(float(self.readline()[:-1]))
    dispatch[FLOAT[0]] = load_float

    def load_binfloat(self):
        self.append(unpack('>d', self.read(8))[0])
    dispatch[BINFLOAT[0]] = load_binfloat

    def _decode_string(self, value):
        # Used to allow strings from Python 2 to be decoded either as
        # bytes or Unicode strings.  This should be used only with the
        # STRING, BINSTRING and SHORT_BINSTRING opcodes.
        if self.encoding == "bytes":
            return value
        else:
            return value.decode(self.encoding, self.errors)

    def load_string(self):
        data = self.readline()[:-1]
        # Strip outermost quotes
        if len(data) >= 2 and data[0] == data[-1] and data[0] in b'"\'':
            data = data[1:-1]
        else:
            raise UnpicklingError("the STRING opcode argument must be quoted")
        self.append(self._decode_string(codecs.escape_decode(data)[0]))
    dispatch[STRING[0]] = load_string

    def load_binstring(self):
        # Deprecated BINSTRING uses signed 32-bit length
        len, = unpack('<i', self.read(4))
        if len < 0:
            raise UnpicklingError("BINSTRING pickle has negative byte count")
        data = self.read(len)
        self.append(self._decode_string(data))
    dispatch[BINSTRING[0]] = load_binstring

    def load_binbytes(self):
        len, = unpack('<I', self.read(4))
        if len > maxsize:
            raise UnpicklingError("BINBYTES exceeds system's maximum size "
                                  "of %d bytes" % maxsize)
        self.append(self.read(len))
    dispatch[BINBYTES[0]] = load_binbytes

    def load_unicode(self):
        self.append(str(self.readline()[:-1], 'raw-unicode-escape'))
    dispatch[UNICODE[0]] = load_unicode

    def load_binunicode(self):
        len, = unpack('<I', self.read(4))
        if len > maxsize:
            raise UnpicklingError("BINUNICODE exceeds system's maximum size "
                                  "of %d bytes" % maxsize)
        self.append(str(self.read(len), 'utf-8', 'surrogatepass'))
    dispatch[BINUNICODE[0]] = load_binunicode

    def load_binunicode8(self):
        len, = unpack('<Q', self.read(8))
        if len > maxsize:
            raise UnpicklingError("BINUNICODE8 exceeds system's maximum size "
                                  "of %d bytes" % maxsize)
        self.append(str(self.read(len), 'utf-8', 'surrogatepass'))
    dispatch[BINUNICODE8[0]] = load_binunicode8

    def load_binbytes8(self):
        len, = unpack('<Q', self.read(8))
        if len > maxsize:
            raise UnpicklingError("BINBYTES8 exceeds system's maximum size "
                                  "of %d bytes" % maxsize)
        self.append(self.read(len))
    dispatch[BINBYTES8[0]] = load_binbytes8

    def load_short_binstring(self):
        len = self.read(1)[0]
        data = self.read(len)
        self.append(self._decode_string(data))
    dispatch[SHORT_BINSTRING[0]] = load_short_binstring

    def load_short_binbytes(self):
        len = self.read(1)[0]
        self.append(self.read(len))
    dispatch[SHORT_BINBYTES[0]] = load_short_binbytes

    def load_short_binunicode(self):
        len = self.read(1)[0]
        self.append(str(self.read(len), 'utf-8', 'surrogatepass'))
    dispatch[SHORT_BINUNICODE[0]] = load_short_binunicode

    def load_tuple(self):
        k = self.marker()
        self.stack[k:] = [tuple(self.stack[k+1:])]
    dispatch[TUPLE[0]] = load_tuple

    def load_empty_tuple(self):
        self.append(())
    dispatch[EMPTY_TUPLE[0]] = load_empty_tuple

    def load_tuple1(self):
        self.stack[-1] = (self.stack[-1],)
    dispatch[TUPLE1[0]] = load_tuple1

    def load_tuple2(self):
        self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
    dispatch[TUPLE2[0]] = load_tuple2

    def load_tuple3(self):
        self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
    dispatch[TUPLE3[0]] = load_tuple3

    def load_empty_list(self):
        self.append([])
    dispatch[EMPTY_LIST[0]] = load_empty_list

    def load_empty_dictionary(self):
        self.append({})
    dispatch[EMPTY_DICT[0]] = load_empty_dictionary

    def load_empty_set(self):
        self.append(set())
    dispatch[EMPTY_SET[0]] = load_empty_set

    def load_frozenset(self):
        k = self.marker()
        self.stack[k:] = [frozenset(self.stack[k+1:])]
    dispatch[FROZENSET[0]] = load_frozenset

    def load_list(self):
        k = self.marker()
        self.stack[k:] = [self.stack[k+1:]]
    dispatch[LIST[0]] = load_list

    def load_dict(self):
        k = self.marker()
        items = self.stack[k+1:]
        d = {items[i]: items[i+1]
             for i in range(0, len(items), 2)}
        self.stack[k:] = [d]
    dispatch[DICT[0]] = load_dict

    # INST and OBJ differ only in how they get a class object.  It's not
    # only sensible to do the rest in a common routine, the two routines
    # previously diverged and grew different bugs.
    # klass is the class to instantiate, and k points to the topmost mark
    # object, following which are the arguments for klass.__init__.
    def _instantiate(self, klass, k):
        args = tuple(self.stack[k+1:])
        del self.stack[k:]
        if (args or not isinstance(klass, type) or
            hasattr(klass, "__getinitargs__")):
            try:
                value = klass(*args)
            except TypeError as err:
                raise TypeError("in constructor for %s: %s" %
                                (klass.__name__, str(err)), sys.exc_info()[2])
        else:
            value = klass.__new__(klass)
        self.append(value)

    def load_inst(self):
        module = self.readline()[:-1].decode("ascii")
        name = self.readline()[:-1].decode("ascii")
        klass = self.find_class(module, name)
        self._instantiate(klass, self.marker())
    dispatch[INST[0]] = load_inst

    def load_obj(self):
        # Stack is ... markobject classobject arg1 arg2 ...
        k = self.marker()
        klass = self.stack.pop(k+1)
        self._instantiate(klass, k)
    dispatch[OBJ[0]] = load_obj

    def load_newobj(self):
        args = self.stack.pop()
        cls = self.stack.pop()
        obj = cls.__new__(cls, *args)
        self.append(obj)
    dispatch[NEWOBJ[0]] = load_newobj

    def load_newobj_ex(self):
        kwargs = self.stack.pop()
        args = self.stack.pop()
        cls = self.stack.pop()
        obj = cls.__new__(cls, *args, **kwargs)
        self.append(obj)
    dispatch[NEWOBJ_EX[0]] = load_newobj_ex

    def load_global(self):
        module = self.readline()[:-1].decode("utf-8")
        name = self.readline()[:-1].decode("utf-8")
        klass = self.find_class(module, name)
        self.append(klass)
    dispatch[GLOBAL[0]] = load_global

    def load_stack_global(self):
        name = self.stack.pop()
        module = self.stack.pop()
        if type(name) is not str or type(module) is not str:
            raise UnpicklingError("STACK_GLOBAL requires str")
        self.append(self.find_class(module, name))
    dispatch[STACK_GLOBAL[0]] = load_stack_global

    def load_ext1(self):
        code = self.read(1)[0]
        self.get_extension(code)
    dispatch[EXT1[0]] = load_ext1

    def load_ext2(self):
        code, = unpack('<H', self.read(2))
        self.get_extension(code)
    dispatch[EXT2[0]] = load_ext2

    def load_ext4(self):
        code, = unpack('<i', self.read(4))
        self.get_extension(code)
    dispatch[EXT4[0]] = load_ext4

    def get_extension(self, code):
        nil = []
        obj = _extension_cache.get(code, nil)
        if obj is not nil:
            self.append(obj)
            return
        key = _inverted_registry.get(code)
        if not key:
            if code <= 0: # note that 0 is forbidden
                # Corrupt or hostile pickle.
                raise UnpicklingError("EXT specifies code <= 0")
            raise ValueError("unregistered extension code %d" % code)
        obj = self.find_class(*key)
        _extension_cache[code] = obj
        self.append(obj)

    def find_class(self, module, name):
        # Subclasses may override this.
        if self.proto < 3 and self.fix_imports:
            if (module, name) in _compat_pickle.NAME_MAPPING:
                module, name = _compat_pickle.NAME_MAPPING[(module, name)]
            elif module in _compat_pickle.IMPORT_MAPPING:
                module = _compat_pickle.IMPORT_MAPPING[module]
        __import__(module, level=0)
        return _getattribute(sys.modules[module], name,
                             allow_qualname=self.proto >= 4)

    def load_reduce(self):
        stack = self.stack
        args = stack.pop()
        func = stack[-1]
        stack[-1] = func(*args)
    dispatch[REDUCE[0]] = load_reduce

    def load_pop(self):
        del self.stack[-1]
    dispatch[POP[0]] = load_pop

    def load_pop_mark(self):
        k = self.marker()
        del self.stack[k:]
    dispatch[POP_MARK[0]] = load_pop_mark

    def load_dup(self):
        self.append(self.stack[-1])
    dispatch[DUP[0]] = load_dup

    def load_get(self):
        i = int(self.readline()[:-1])
        self.append(self.memo[i])
    dispatch[GET[0]] = load_get

    def load_binget(self):
        i = self.read(1)[0]
        self.append(self.memo[i])
    dispatch[BINGET[0]] = load_binget

    def load_long_binget(self):
        i, = unpack('<I', self.read(4))
        self.append(self.memo[i])
    dispatch[LONG_BINGET[0]] = load_long_binget

    def load_put(self):
        i = int(self.readline()[:-1])
        if i < 0:
            raise ValueError("negative PUT argument")
        self.memo[i] = self.stack[-1]
    dispatch[PUT[0]] = load_put

    def load_binput(self):
        i = self.read(1)[0]
        if i < 0:
            raise ValueError("negative BINPUT argument")
        self.memo[i] = self.stack[-1]
    dispatch[BINPUT[0]] = load_binput

    def load_long_binput(self):
        i, = unpack('<I', self.read(4))
        if i > maxsize:
            raise ValueError("negative LONG_BINPUT argument")
        self.memo[i] = self.stack[-1]
    dispatch[LONG_BINPUT[0]] = load_long_binput

    def load_memoize(self):
        memo = self.memo
        memo[len(memo)] = self.stack[-1]
    dispatch[MEMOIZE[0]] = load_memoize

    def load_append(self):
        stack = self.stack
        value = stack.pop()
        list = stack[-1]
        list.append(value)
    dispatch[APPEND[0]] = load_append

    def load_appends(self):
        stack = self.stack
        mark = self.marker()
        list_obj = stack[mark - 1]
        items = stack[mark + 1:]
        if isinstance(list_obj, list):
            list_obj.extend(items)
        else:
            append = list_obj.append
            for item in items:
                append(item)
        del stack[mark:]
    dispatch[APPENDS[0]] = load_appends

    def load_setitem(self):
        stack = self.stack
        value = stack.pop()
        key = stack.pop()
        dict = stack[-1]
        dict[key] = value
    dispatch[SETITEM[0]] = load_setitem

    def load_setitems(self):
        stack = self.stack
        mark = self.marker()
        dict = stack[mark - 1]
        for i in range(mark + 1, len(stack), 2):
            dict[stack[i]] = stack[i + 1]

        del stack[mark:]
    dispatch[SETITEMS[0]] = load_setitems

    def load_additems(self):
        stack = self.stack
        mark = self.marker()
        set_obj = stack[mark - 1]
        items = stack[mark + 1:]
        if isinstance(set_obj, set):
            set_obj.update(items)
        else:
            add = set_obj.add
            for item in items:
                add(item)
        del stack[mark:]
    dispatch[ADDITEMS[0]] = load_additems

    def load_build(self):
        stack = self.stack
        state = stack.pop()
        inst = stack[-1]
        setstate = getattr(inst, "__setstate__", None)
        if setstate is not None:
            setstate(state)
            return
        slotstate = None
        if isinstance(state, tuple) and len(state) == 2:
            state, slotstate = state
        if state:
            inst_dict = inst.__dict__
            intern = sys.intern
            for k, v in state.items():
                if type(k) is str:
                    inst_dict[intern(k)] = v
                else:
                    inst_dict[k] = v
        if slotstate:
            for k, v in slotstate.items():
                setattr(inst, k, v)
    dispatch[BUILD[0]] = load_build

    def load_mark(self):
        self.append(self.mark)
    dispatch[MARK[0]] = load_mark

    def load_stop(self):
        value = self.stack.pop()
        raise _Stop(value)
    dispatch[STOP[0]] = load_stop


# Shorthands

def _dump(obj, file, protocol=None, *, fix_imports=True):
    _Pickler(file, protocol, fix_imports=fix_imports).dump(obj)

def _dumps(obj, protocol=None, *, fix_imports=True):
    f = io.BytesIO()
    _Pickler(f, protocol, fix_imports=fix_imports).dump(obj)
    res = f.getvalue()
    assert isinstance(res, bytes_types)
    return res

def _load(file, *, fix_imports=True, encoding="ASCII", errors="strict"):
    return _Unpickler(file, fix_imports=fix_imports,
                     encoding=encoding, errors=errors).load()

def _loads(s, *, fix_imports=True, encoding="ASCII", errors="strict"):
    if isinstance(s, str):
        raise TypeError("Can't load pickle from unicode string")
    file = io.BytesIO(s)
    return _Unpickler(file, fix_imports=fix_imports,
                      encoding=encoding, errors=errors).load()

# Use the faster _pickle if possible
try:
    from _pickle import (
        PickleError,
        PicklingError,
        UnpicklingError,
        Pickler,
        Unpickler,
        dump,
        dumps,
        load,
        loads
    )
except ImportError:
    Pickler, Unpickler = _Pickler, _Unpickler
    dump, dumps, load, loads = _dump, _dumps, _load, _loads

# Doctest
def _test():
    import doctest
    return doctest.testmod()

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(
        description='display contents of the pickle files')
    parser.add_argument(
        'pickle_file', type=argparse.FileType('br'),
        nargs='*', help='the pickle file')
    parser.add_argument(
        '-t', '--test', action='store_true',
        help='run self-test suite')
    parser.add_argument(
        '-v', action='store_true',
        help='run verbosely; only affects self-test run')
    args = parser.parse_args()
    if args.test:
        _test()
    else:
        if not args.pickle_file:
            parser.print_help()
        else:
            import pprint
            for f in args.pickle_file:
                obj = load(f)
                pprint.pprint(obj)
lib\pickletools.py
'''"Executable documentation" for the pickle module.

Extensive comments about the pickle protocols and pickle-machine opcodes
can be found here.  Some functions meant for external use:

genops(pickle)
   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.

dis(pickle, out=None, memo=None, indentlevel=4)
   Print a symbolic disassembly of a pickle.
'''

import codecs
import io
import pickle
import re
import sys

__all__ = ['dis', 'genops', 'optimize']

bytes_types = pickle.bytes_types

# Other ideas:
#
# - A pickle verifier:  read a pickle and check it exhaustively for
#   well-formedness.  dis() does a lot of this already.
#
# - A protocol identifier:  examine a pickle and return its protocol number
#   (== the highest .proto attr value among all the opcodes in the pickle).
#   dis() already prints this info at the end.
#
# - A pickle optimizer:  for example, tuple-building code is sometimes more
#   elaborate than necessary, catering for the possibility that the tuple
#   is recursive.  Or lots of times a PUT is generated that's never accessed
#   by a later GET.


# "A pickle" is a program for a virtual pickle machine (PM, but more accurately
# called an unpickling machine).  It's a sequence of opcodes, interpreted by the
# PM, building an arbitrarily complex Python object.
#
# For the most part, the PM is very simple:  there are no looping, testing, or
# conditional instructions, no arithmetic and no function calls.  Opcodes are
# executed once each, from first to last, until a STOP opcode is reached.
#
# The PM has two data areas, "the stack" and "the memo".
#
# Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
# integer object on the stack, whose value is gotten from a decimal string
# literal immediately following the INT opcode in the pickle bytestream.  Other
# opcodes take Python objects off the stack.  The result of unpickling is
# whatever object is left on the stack when the final STOP opcode is executed.
#
# The memo is simply an array of objects, or it can be implemented as a dict
# mapping little integers to objects.  The memo serves as the PM's "long term
# memory", and the little integers indexing the memo are akin to variable
# names.  Some opcodes pop a stack object into the memo at a given index,
# and others push a memo object at a given index onto the stack again.
#
# At heart, that's all the PM has.  Subtleties arise for these reasons:
#
# + Object identity.  Objects can be arbitrarily complex, and subobjects
#   may be shared (for example, the list [a, a] refers to the same object a
#   twice).  It can be vital that unpickling recreate an isomorphic object
#   graph, faithfully reproducing sharing.
#
# + Recursive objects.  For example, after "L = []; L.append(L)", L is a
#   list, and L[0] is the same list.  This is related to the object identity
#   point, and some sequences of pickle opcodes are subtle in order to
#   get the right result in all cases.
#
# + Things pickle doesn't know everything about.  Examples of things pickle
#   does know everything about are Python's builtin scalar and container
#   types, like ints and tuples.  They generally have opcodes dedicated to
#   them.  For things like module references and instances of user-defined
#   classes, pickle's knowledge is limited.  Historically, many enhancements
#   have been made to the pickle protocol in order to do a better (faster,
#   and/or more compact) job on those.
#
# + Backward compatibility and micro-optimization.  As explained below,
#   pickle opcodes never go away, not even when better ways to do a thing
#   get invented.  The repertoire of the PM just keeps growing over time.
#   For example, protocol 0 had two opcodes for building Python integers (INT
#   and LONG), protocol 1 added three more for more-efficient pickling of short
#   integers, and protocol 2 added two more for more-efficient pickling of
#   long integers (before protocol 2, the only ways to pickle a Python long
#   took time quadratic in the number of digits, for both pickling and
#   unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
#   wearying complication.
#
#
# Pickle protocols:
#
# For compatibility, the meaning of a pickle opcode never changes.  Instead new
# pickle opcodes get added, and each version's unpickler can handle all the
# pickle opcodes in all protocol versions to date.  So old pickles continue to
# be readable forever.  The pickler can generally be told to restrict itself to
# the subset of opcodes available under previous protocol versions too, so that
# users can create pickles under the current version readable by older
# versions.  However, a pickle does not contain its version number embedded
# within it.  If an older unpickler tries to read a pickle using a later
# protocol, the result is most likely an exception due to seeing an unknown (in
# the older unpickler) opcode.
#
# The original pickle used what's now called "protocol 0", and what was called
# "text mode" before Python 2.3.  The entire pickle bytestream is made up of
# printable 7-bit ASCII characters, plus the newline character, in protocol 0.
# That's why it was called text mode.  Protocol 0 is small and elegant, but
# sometimes painfully inefficient.
#
# The second major set of additions is now called "protocol 1", and was called
# "binary mode" before Python 2.3.  This added many opcodes with arguments
# consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
# bytes.  Binary mode pickles can be substantially smaller than equivalent
# text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
# int as 4 bytes following the opcode, which is cheaper to unpickle than the
# (perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
# a number of opcodes that operate on many stack elements at once (like APPENDS
# and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
#
# The third major set of additions came in Python 2.3, and is called "protocol
# 2".  This added:
#
# - A better way to pickle instances of new-style classes (NEWOBJ).
#
# - A way for a pickle to identify its protocol (PROTO).
#
# - Time- and space- efficient pickling of long ints (LONG{1,4}).
#
# - Shortcuts for small tuples (TUPLE{1,2,3}}.
#
# - Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
#
# - The "extension registry", a vector of popular objects that can be pushed
#   efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
#   the registry contents are predefined (there's nothing akin to the memo's
#   PUT).
#
# Another independent change with Python 2.3 is the abandonment of any
# pretense that it might be safe to load pickles received from untrusted
# parties -- no sufficient security analysis has been done to guarantee
# this and there isn't a use case that warrants the expense of such an
# analysis.
#
# To this end, all tests for __safe_for_unpickling__ or for
# copyreg.safe_constructors are removed from the unpickling code.
# References to these variables in the descriptions below are to be seen
# as describing unpickling in Python 2.2 and before.


# Meta-rule:  Descriptions are stored in instances of descriptor objects,
# with plain constructors.  No meta-language is defined from which
# descriptors could be constructed.  If you want, e.g., XML, write a little
# program to generate XML from the objects.

##############################################################################
# Some pickle opcodes have an argument, following the opcode in the
# bytestream.  An argument is of a specific type, described by an instance
# of ArgumentDescriptor.  These are not to be confused with arguments taken
# off the stack -- ArgumentDescriptor applies only to arguments embedded in
# the opcode stream, immediately following an opcode.

# Represents the number of bytes consumed by an argument delimited by the
# next newline character.
UP_TO_NEWLINE = -1

# Represents the number of bytes consumed by a two-argument opcode where
# the first argument gives the number of bytes in the second argument.
TAKEN_FROM_ARGUMENT1  = -2   # num bytes is 1-byte unsigned int
TAKEN_FROM_ARGUMENT4  = -3   # num bytes is 4-byte signed little-endian int
TAKEN_FROM_ARGUMENT4U = -4   # num bytes is 4-byte unsigned little-endian int
TAKEN_FROM_ARGUMENT8U = -5   # num bytes is 8-byte unsigned little-endian int

class ArgumentDescriptor(object):
    __slots__ = (
        # name of descriptor record, also a module global name; a string
        'name',

        # length of argument, in bytes; an int; UP_TO_NEWLINE and
        # TAKEN_FROM_ARGUMENT{1,4,8} are negative values for variable-length
        # cases
        'n',

        # a function taking a file-like object, reading this kind of argument
        # from the object at the current position, advancing the current
        # position by n bytes, and returning the value of the argument
        'reader',

        # human-readable docs for this arg descriptor; a string
        'doc',
    )

    def __init__(self, name, n, reader, doc):
        assert isinstance(name, str)
        self.name = name

        assert isinstance(n, int) and (n >= 0 or
                                       n in (UP_TO_NEWLINE,
                                             TAKEN_FROM_ARGUMENT1,
                                             TAKEN_FROM_ARGUMENT4,
                                             TAKEN_FROM_ARGUMENT4U,
                                             TAKEN_FROM_ARGUMENT8U))
        self.n = n

        self.reader = reader

        assert isinstance(doc, str)
        self.doc = doc

from struct import unpack as _unpack

def read_uint1(f):
    r"""
    >>> import io
    >>> read_uint1(io.BytesIO(b'\xff'))
    255
    """

    data = f.read(1)
    if data:
        return data[0]
    raise ValueError("not enough data in stream to read uint1")

uint1 = ArgumentDescriptor(
            name='uint1',
            n=1,
            reader=read_uint1,
            doc="One-byte unsigned integer.")


def read_uint2(f):
    r"""
    >>> import io
    >>> read_uint2(io.BytesIO(b'\xff\x00'))
    255
    >>> read_uint2(io.BytesIO(b'\xff\xff'))
    65535
    """

    data = f.read(2)
    if len(data) == 2:
        return _unpack("<H", data)[0]
    raise ValueError("not enough data in stream to read uint2")

uint2 = ArgumentDescriptor(
            name='uint2',
            n=2,
            reader=read_uint2,
            doc="Two-byte unsigned integer, little-endian.")


def read_int4(f):
    r"""
    >>> import io
    >>> read_int4(io.BytesIO(b'\xff\x00\x00\x00'))
    255
    >>> read_int4(io.BytesIO(b'\x00\x00\x00\x80')) == -(2**31)
    True
    """

    data = f.read(4)
    if len(data) == 4:
        return _unpack("<i", data)[0]
    raise ValueError("not enough data in stream to read int4")

int4 = ArgumentDescriptor(
           name='int4',
           n=4,
           reader=read_int4,
           doc="Four-byte signed integer, little-endian, 2's complement.")


def read_uint4(f):
    r"""
    >>> import io
    >>> read_uint4(io.BytesIO(b'\xff\x00\x00\x00'))
    255
    >>> read_uint4(io.BytesIO(b'\x00\x00\x00\x80')) == 2**31
    True
    """

    data = f.read(4)
    if len(data) == 4:
        return _unpack("<I", data)[0]
    raise ValueError("not enough data in stream to read uint4")

uint4 = ArgumentDescriptor(
            name='uint4',
            n=4,
            reader=read_uint4,
            doc="Four-byte unsigned integer, little-endian.")


def read_uint8(f):
    r"""
    >>> import io
    >>> read_uint8(io.BytesIO(b'\xff\x00\x00\x00\x00\x00\x00\x00'))
    255
    >>> read_uint8(io.BytesIO(b'\xff' * 8)) == 2**64-1
    True
    """

    data = f.read(8)
    if len(data) == 8:
        return _unpack("<Q", data)[0]
    raise ValueError("not enough data in stream to read uint8")

uint8 = ArgumentDescriptor(
            name='uint8',
            n=8,
            reader=read_uint8,
            doc="Eight-byte unsigned integer, little-endian.")


def read_stringnl(f, decode=True, stripquotes=True):
    r"""
    >>> import io
    >>> read_stringnl(io.BytesIO(b"'abcd'\nefg\n"))
    'abcd'

    >>> read_stringnl(io.BytesIO(b"\n"))
    Traceback (most recent call last):
    ...
    ValueError: no string quotes around b''

    >>> read_stringnl(io.BytesIO(b"\n"), stripquotes=False)
    ''

    >>> read_stringnl(io.BytesIO(b"''\n"))
    ''

    >>> read_stringnl(io.BytesIO(b'"abcd"'))
    Traceback (most recent call last):
    ...
    ValueError: no newline found when trying to read stringnl

    Embedded escapes are undone in the result.
    >>> read_stringnl(io.BytesIO(br"'a\n\\b\x00c\td'" + b"\n'e'"))
    'a\n\\b\x00c\td'
    """

    data = f.readline()
    if not data.endswith(b'\n'):
        raise ValueError("no newline found when trying to read stringnl")
    data = data[:-1]    # lose the newline

    if stripquotes:
        for q in (b'"', b"'"):
            if data.startswith(q):
                if not data.endswith(q):
                    raise ValueError("strinq quote %r not found at both "
                                     "ends of %r" % (q, data))
                data = data[1:-1]
                break
        else:
            raise ValueError("no string quotes around %r" % data)

    if decode:
        data = codecs.escape_decode(data)[0].decode("ascii")
    return data

stringnl = ArgumentDescriptor(
               name='stringnl',
               n=UP_TO_NEWLINE,
               reader=read_stringnl,
               doc="""A newline-terminated string.

                   This is a repr-style string, with embedded escapes, and
                   bracketing quotes.
                   """)

def read_stringnl_noescape(f):
    return read_stringnl(f, stripquotes=False)

stringnl_noescape = ArgumentDescriptor(
                        name='stringnl_noescape',
                        n=UP_TO_NEWLINE,
                        reader=read_stringnl_noescape,
                        doc="""A newline-terminated string.

                        This is a str-style string, without embedded escapes,
                        or bracketing quotes.  It should consist solely of
                        printable ASCII characters.
                        """)

def read_stringnl_noescape_pair(f):
    r"""
    >>> import io
    >>> read_stringnl_noescape_pair(io.BytesIO(b"Queue\nEmpty\njunk"))
    'Queue Empty'
    """

    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))

stringnl_noescape_pair = ArgumentDescriptor(
                             name='stringnl_noescape_pair',
                             n=UP_TO_NEWLINE,
                             reader=read_stringnl_noescape_pair,
                             doc="""A pair of newline-terminated strings.

                             These are str-style strings, without embedded
                             escapes, or bracketing quotes.  They should
                             consist solely of printable ASCII characters.
                             The pair is returned as a single string, with
                             a single blank separating the two strings.
                             """)


def read_string1(f):
    r"""
    >>> import io
    >>> read_string1(io.BytesIO(b"\x00"))
    ''
    >>> read_string1(io.BytesIO(b"\x03abcdef"))
    'abc'
    """

    n = read_uint1(f)
    assert n >= 0
    data = f.read(n)
    if len(data) == n:
        return data.decode("latin-1")
    raise ValueError("expected %d bytes in a string1, but only %d remain" %
                     (n, len(data)))

string1 = ArgumentDescriptor(
              name="string1",
              n=TAKEN_FROM_ARGUMENT1,
              reader=read_string1,
              doc="""A counted string.

              The first argument is a 1-byte unsigned int giving the number
              of bytes in the string, and the second argument is that many
              bytes.
              """)


def read_string4(f):
    r"""
    >>> import io
    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x00abc"))
    ''
    >>> read_string4(io.BytesIO(b"\x03\x00\x00\x00abcdef"))
    'abc'
    >>> read_string4(io.BytesIO(b"\x00\x00\x00\x03abcdef"))
    Traceback (most recent call last):
    ...
    ValueError: expected 50331648 bytes in a string4, but only 6 remain
    """

    n = read_int4(f)
    if n < 0:
        raise ValueError("string4 byte count < 0: %d" % n)
    data = f.read(n)
    if len(data) == n:
        return data.decode("latin-1")
    raise ValueError("expected %d bytes in a string4, but only %d remain" %
                     (n, len(data)))

string4 = ArgumentDescriptor(
              name="string4",
              n=TAKEN_FROM_ARGUMENT4,
              reader=read_string4,
              doc="""A counted string.

              The first argument is a 4-byte little-endian signed int giving
              the number of bytes in the string, and the second argument is
              that many bytes.
              """)


def read_bytes1(f):
    r"""
    >>> import io
    >>> read_bytes1(io.BytesIO(b"\x00"))
    b''
    >>> read_bytes1(io.BytesIO(b"\x03abcdef"))
    b'abc'
    """

    n = read_uint1(f)
    assert n >= 0
    data = f.read(n)
    if len(data) == n:
        return data
    raise ValueError("expected %d bytes in a bytes1, but only %d remain" %
                     (n, len(data)))

bytes1 = ArgumentDescriptor(
              name="bytes1",
              n=TAKEN_FROM_ARGUMENT1,
              reader=read_bytes1,
              doc="""A counted bytes string.

              The first argument is a 1-byte unsigned int giving the number
              of bytes in the string, and the second argument is that many
              bytes.
              """)


def read_bytes1(f):
    r"""
    >>> import io
    >>> read_bytes1(io.BytesIO(b"\x00"))
    b''
    >>> read_bytes1(io.BytesIO(b"\x03abcdef"))
    b'abc'
    """

    n = read_uint1(f)
    assert n >= 0
    data = f.read(n)
    if len(data) == n:
        return data
    raise ValueError("expected %d bytes in a bytes1, but only %d remain" %
                     (n, len(data)))

bytes1 = ArgumentDescriptor(
              name="bytes1",
              n=TAKEN_FROM_ARGUMENT1,
              reader=read_bytes1,
              doc="""A counted bytes string.

              The first argument is a 1-byte unsigned int giving the number
              of bytes, and the second argument is that many bytes.
              """)


def read_bytes4(f):
    r"""
    >>> import io
    >>> read_bytes4(io.BytesIO(b"\x00\x00\x00\x00abc"))
    b''
    >>> read_bytes4(io.BytesIO(b"\x03\x00\x00\x00abcdef"))
    b'abc'
    >>> read_bytes4(io.BytesIO(b"\x00\x00\x00\x03abcdef"))
    Traceback (most recent call last):
    ...
    ValueError: expected 50331648 bytes in a bytes4, but only 6 remain
    """

    n = read_uint4(f)
    assert n >= 0
    if n > sys.maxsize:
        raise ValueError("bytes4 byte count > sys.maxsize: %d" % n)
    data = f.read(n)
    if len(data) == n:
        return data
    raise ValueError("expected %d bytes in a bytes4, but only %d remain" %
                     (n, len(data)))

bytes4 = ArgumentDescriptor(
              name="bytes4",
              n=TAKEN_FROM_ARGUMENT4U,
              reader=read_bytes4,
              doc="""A counted bytes string.

              The first argument is a 4-byte little-endian unsigned int giving
              the number of bytes, and the second argument is that many bytes.
              """)


def read_bytes8(f):
    r"""
    >>> import io, struct, sys
    >>> read_bytes8(io.BytesIO(b"\x00\x00\x00\x00\x00\x00\x00\x00abc"))
    b''
    >>> read_bytes8(io.BytesIO(b"\x03\x00\x00\x00\x00\x00\x00\x00abcdef"))
    b'abc'
    >>> bigsize8 = struct.pack("<Q", sys.maxsize//3)
    >>> read_bytes8(io.BytesIO(bigsize8 + b"abcdef"))  #doctest: +ELLIPSIS
    Traceback (most recent call last):
    ...
    ValueError: expected ... bytes in a bytes8, but only 6 remain
    """

    n = read_uint8(f)
    assert n >= 0
    if n > sys.maxsize:
        raise ValueError("bytes8 byte count > sys.maxsize: %d" % n)
    data = f.read(n)
    if len(data) == n:
        return data
    raise ValueError("expected %d bytes in a bytes8, but only %d remain" %
                     (n, len(data)))

bytes8 = ArgumentDescriptor(
              name="bytes8",
              n=TAKEN_FROM_ARGUMENT8U,
              reader=read_bytes8,
              doc="""A counted bytes string.

              The first argument is a 8-byte little-endian unsigned int giving
              the number of bytes, and the second argument is that many bytes.
              """)

def read_unicodestringnl(f):
    r"""
    >>> import io
    >>> read_unicodestringnl(io.BytesIO(b"abc\\uabcd\njunk")) == 'abc\uabcd'
    True
    """

    data = f.readline()
    if not data.endswith(b'\n'):
        raise ValueError("no newline found when trying to read "
                         "unicodestringnl")
    data = data[:-1]    # lose the newline
    return str(data, 'raw-unicode-escape')

unicodestringnl = ArgumentDescriptor(
                      name='unicodestringnl',
                      n=UP_TO_NEWLINE,
                      reader=read_unicodestringnl,
                      doc="""A newline-terminated Unicode string.

                      This is raw-unicode-escape encoded, so consists of
                      printable ASCII characters, and may contain embedded
                      escape sequences.
                      """)


def read_unicodestring1(f):
    r"""
    >>> import io
    >>> s = 'abcd\uabcd'
    >>> enc = s.encode('utf-8')
    >>> enc
    b'abcd\xea\xaf\x8d'
    >>> n = bytes([len(enc)])  # little-endian 1-byte length
    >>> t = read_unicodestring1(io.BytesIO(n + enc + b'junk'))
    >>> s == t
    True

    >>> read_unicodestring1(io.BytesIO(n + enc[:-1]))
    Traceback (most recent call last):
    ...
    ValueError: expected 7 bytes in a unicodestring1, but only 6 remain
    """

    n = read_uint1(f)
    assert n >= 0
    data = f.read(n)
    if len(data) == n:
        return str(data, 'utf-8', 'surrogatepass')
    raise ValueError("expected %d bytes in a unicodestring1, but only %d "
                     "remain" % (n, len(data)))

unicodestring1 = ArgumentDescriptor(
                    name="unicodestring1",
                    n=TAKEN_FROM_ARGUMENT1,
                    reader=read_unicodestring1,
                    doc="""A counted Unicode string.

                    The first argument is a 1-byte little-endian signed int
                    giving the number of bytes in the string, and the second
                    argument-- the UTF-8 encoding of the Unicode string --
                    contains that many bytes.
                    """)


def read_unicodestring4(f):
    r"""
    >>> import io
    >>> s = 'abcd\uabcd'
    >>> enc = s.encode('utf-8')
    >>> enc
    b'abcd\xea\xaf\x8d'
    >>> n = bytes([len(enc), 0, 0, 0])  # little-endian 4-byte length
    >>> t = read_unicodestring4(io.BytesIO(n + enc + b'junk'))
    >>> s == t
    True

    >>> read_unicodestring4(io.BytesIO(n + enc[:-1]))
    Traceback (most recent call last):
    ...
    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
    """

    n = read_uint4(f)
    assert n >= 0
    if n > sys.maxsize:
        raise ValueError("unicodestring4 byte count > sys.maxsize: %d" % n)
    data = f.read(n)
    if len(data) == n:
        return str(data, 'utf-8', 'surrogatepass')
    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
                     "remain" % (n, len(data)))

unicodestring4 = ArgumentDescriptor(
                    name="unicodestring4",
                    n=TAKEN_FROM_ARGUMENT4U,
                    reader=read_unicodestring4,
                    doc="""A counted Unicode string.

                    The first argument is a 4-byte little-endian signed int
                    giving the number of bytes in the string, and the second
                    argument-- the UTF-8 encoding of the Unicode string --
                    contains that many bytes.
                    """)


def read_unicodestring8(f):
    r"""
    >>> import io
    >>> s = 'abcd\uabcd'
    >>> enc = s.encode('utf-8')
    >>> enc
    b'abcd\xea\xaf\x8d'
    >>> n = bytes([len(enc)]) + bytes(7)  # little-endian 8-byte length
    >>> t = read_unicodestring8(io.BytesIO(n + enc + b'junk'))
    >>> s == t
    True

    >>> read_unicodestring8(io.BytesIO(n + enc[:-1]))
    Traceback (most recent call last):
    ...
    ValueError: expected 7 bytes in a unicodestring8, but only 6 remain
    """

    n = read_uint8(f)
    assert n >= 0
    if n > sys.maxsize:
        raise ValueError("unicodestring8 byte count > sys.maxsize: %d" % n)
    data = f.read(n)
    if len(data) == n:
        return str(data, 'utf-8', 'surrogatepass')
    raise ValueError("expected %d bytes in a unicodestring8, but only %d "
                     "remain" % (n, len(data)))

unicodestring8 = ArgumentDescriptor(
                    name="unicodestring8",
                    n=TAKEN_FROM_ARGUMENT8U,
                    reader=read_unicodestring8,
                    doc="""A counted Unicode string.

                    The first argument is a 8-byte little-endian signed int
                    giving the number of bytes in the string, and the second
                    argument-- the UTF-8 encoding of the Unicode string --
                    contains that many bytes.
                    """)


def read_decimalnl_short(f):
    r"""
    >>> import io
    >>> read_decimalnl_short(io.BytesIO(b"1234\n56"))
    1234

    >>> read_decimalnl_short(io.BytesIO(b"1234L\n56"))
    Traceback (most recent call last):
    ...
    ValueError: invalid literal for int() with base 10: b'1234L'
    """

    s = read_stringnl(f, decode=False, stripquotes=False)

    # There's a hack for True and False here.
    if s == b"00":
        return False
    elif s == b"01":
        return True

    return int(s)

def read_decimalnl_long(f):
    r"""
    >>> import io

    >>> read_decimalnl_long(io.BytesIO(b"1234L\n56"))
    1234

    >>> read_decimalnl_long(io.BytesIO(b"123456789012345678901234L\n6"))
    123456789012345678901234
    """

    s = read_stringnl(f, decode=False, stripquotes=False)
    if s[-1:] == b'L':
        s = s[:-1]
    return int(s)


decimalnl_short = ArgumentDescriptor(
                      name='decimalnl_short',
                      n=UP_TO_NEWLINE,
                      reader=read_decimalnl_short,
                      doc="""A newline-terminated decimal integer literal.

                          This never has a trailing 'L', and the integer fit
                          in a short Python int on the box where the pickle
                          was written -- but there's no guarantee it will fit
                          in a short Python int on the box where the pickle
                          is read.
                          """)

decimalnl_long = ArgumentDescriptor(
                     name='decimalnl_long',
                     n=UP_TO_NEWLINE,
                     reader=read_decimalnl_long,
                     doc="""A newline-terminated decimal integer literal.

                         This has a trailing 'L', and can represent integers
                         of any size.
                         """)


def read_floatnl(f):
    r"""
    >>> import io
    >>> read_floatnl(io.BytesIO(b"-1.25\n6"))
    -1.25
    """
    s = read_stringnl(f, decode=False, stripquotes=False)
    return float(s)

floatnl = ArgumentDescriptor(
              name='floatnl',
              n=UP_TO_NEWLINE,
              reader=read_floatnl,
              doc="""A newline-terminated decimal floating literal.

              In general this requires 17 significant digits for roundtrip
              identity, and pickling then unpickling infinities, NaNs, and
              minus zero doesn't work across boxes, or on some boxes even
              on itself (e.g., Windows can't read the strings it produces
              for infinities or NaNs).
              """)

def read_float8(f):
    r"""
    >>> import io, struct
    >>> raw = struct.pack(">d", -1.25)
    >>> raw
    b'\xbf\xf4\x00\x00\x00\x00\x00\x00'
    >>> read_float8(io.BytesIO(raw + b"\n"))
    -1.25
    """

    data = f.read(8)
    if len(data) == 8:
        return _unpack(">d", data)[0]
    raise ValueError("not enough data in stream to read float8")


float8 = ArgumentDescriptor(
             name='float8',
             n=8,
             reader=read_float8,
             doc="""An 8-byte binary representation of a float, big-endian.

             The format is unique to Python, and shared with the struct
             module (format string '>d') "in theory" (the struct and pickle
             implementations don't share the code -- they should).  It's
             strongly related to the IEEE-754 double format, and, in normal
             cases, is in fact identical to the big-endian 754 double format.
             On other boxes the dynamic range is limited to that of a 754
             double, and "add a half and chop" rounding is used to reduce
             the precision to 53 bits.  However, even on a 754 box,
             infinities, NaNs, and minus zero may not be handled correctly
             (may not survive roundtrip pickling intact).
             """)

# Protocol 2 formats

from pickle import decode_long

def read_long1(f):
    r"""
    >>> import io
    >>> read_long1(io.BytesIO(b"\x00"))
    0
    >>> read_long1(io.BytesIO(b"\x02\xff\x00"))
    255
    >>> read_long1(io.BytesIO(b"\x02\xff\x7f"))
    32767
    >>> read_long1(io.BytesIO(b"\x02\x00\xff"))
    -256
    >>> read_long1(io.BytesIO(b"\x02\x00\x80"))
    -32768
    """

    n = read_uint1(f)
    data = f.read(n)
    if len(data) != n:
        raise ValueError("not enough data in stream to read long1")
    return decode_long(data)

long1 = ArgumentDescriptor(
    name="long1",
    n=TAKEN_FROM_ARGUMENT1,
    reader=read_long1,
    doc="""A binary long, little-endian, using 1-byte size.

    This first reads one byte as an unsigned size, then reads that
    many bytes and interprets them as a little-endian 2's-complement long.
    If the size is 0, that's taken as a shortcut for the long 0L.
    """)

def read_long4(f):
    r"""
    >>> import io
    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x00"))
    255
    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\xff\x7f"))
    32767
    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\xff"))
    -256
    >>> read_long4(io.BytesIO(b"\x02\x00\x00\x00\x00\x80"))
    -32768
    >>> read_long1(io.BytesIO(b"\x00\x00\x00\x00"))
    0
    """

    n = read_int4(f)
    if n < 0:
        raise ValueError("long4 byte count < 0: %d" % n)
    data = f.read(n)
    if len(data) != n:
        raise ValueError("not enough data in stream to read long4")
    return decode_long(data)

long4 = ArgumentDescriptor(
    name="long4",
    n=TAKEN_FROM_ARGUMENT4,
    reader=read_long4,
    doc="""A binary representation of a long, little-endian.

    This first reads four bytes as a signed size (but requires the
    size to be >= 0), then reads that many bytes and interprets them
    as a little-endian 2's-complement long.  If the size is 0, that's taken
    as a shortcut for the int 0, although LONG1 should really be used
    then instead (and in any case where # of bytes < 256).
    """)


##############################################################################
# Object descriptors.  The stack used by the pickle machine holds objects,
# and in the stack_before and stack_after attributes of OpcodeInfo
# descriptors we need names to describe the various types of objects that can
# appear on the stack.

class StackObject(object):
    __slots__ = (
        # name of descriptor record, for info only
        'name',

        # type of object, or tuple of type objects (meaning the object can
        # be of any type in the tuple)
        'obtype',

        # human-readable docs for this kind of stack object; a string
        'doc',
    )

    def __init__(self, name, obtype, doc):
        assert isinstance(name, str)
        self.name = name

        assert isinstance(obtype, type) or isinstance(obtype, tuple)
        if isinstance(obtype, tuple):
            for contained in obtype:
                assert isinstance(contained, type)
        self.obtype = obtype

        assert isinstance(doc, str)
        self.doc = doc

    def __repr__(self):
        return self.name


pyint = pylong = StackObject(
    name='int',
    obtype=int,
    doc="A Python integer object.")

pyinteger_or_bool = StackObject(
    name='int_or_bool',
    obtype=(int, bool),
    doc="A Python integer or boolean object.")

pybool = StackObject(
    name='bool',
    obtype=bool,
    doc="A Python boolean object.")

pyfloat = StackObject(
    name='float',
    obtype=float,
    doc="A Python float object.")

pybytes_or_str = pystring = StackObject(
    name='bytes_or_str',
    obtype=(bytes, str),
    doc="A Python bytes or (Unicode) string object.")

pybytes = StackObject(
    name='bytes',
    obtype=bytes,
    doc="A Python bytes object.")

pyunicode = StackObject(
    name='str',
    obtype=str,
    doc="A Python (Unicode) string object.")

pynone = StackObject(
    name="None",
    obtype=type(None),
    doc="The Python None object.")

pytuple = StackObject(
    name="tuple",
    obtype=tuple,
    doc="A Python tuple object.")

pylist = StackObject(
    name="list",
    obtype=list,
    doc="A Python list object.")

pydict = StackObject(
    name="dict",
    obtype=dict,
    doc="A Python dict object.")

pyset = StackObject(
    name="set",
    obtype=set,
    doc="A Python set object.")

pyfrozenset = StackObject(
    name="frozenset",
    obtype=set,
    doc="A Python frozenset object.")

anyobject = StackObject(
    name='any',
    obtype=object,
    doc="Any kind of object whatsoever.")

markobject = StackObject(
    name="mark",
    obtype=StackObject,
    doc="""'The mark' is a unique object.

Opcodes that operate on a variable number of objects
generally don't embed the count of objects in the opcode,
or pull it off the stack.  Instead the MARK opcode is used
to push a special marker object on the stack, and then
some other opcodes grab all the objects from the top of
the stack down to (but not including) the topmost marker
object.
""")

stackslice = StackObject(
    name="stackslice",
    obtype=StackObject,
    doc="""An object representing a contiguous slice of the stack.

This is used in conjunction with markobject, to represent all
of the stack following the topmost markobject.  For example,
the POP_MARK opcode changes the stack from

    [..., markobject, stackslice]
to
    [...]

No matter how many object are on the stack after the topmost
markobject, POP_MARK gets rid of all of them (including the
topmost markobject too).
""")

##############################################################################
# Descriptors for pickle opcodes.

class OpcodeInfo(object):

    __slots__ = (
        # symbolic name of opcode; a string
        'name',

        # the code used in a bytestream to represent the opcode; a
        # one-character string
        'code',

        # If the opcode has an argument embedded in the byte string, an
        # instance of ArgumentDescriptor specifying its type.  Note that
        # arg.reader(s) can be used to read and decode the argument from
        # the bytestream s, and arg.doc documents the format of the raw
        # argument bytes.  If the opcode doesn't have an argument embedded
        # in the bytestream, arg should be None.
        'arg',

        # what the stack looks like before this opcode runs; a list
        'stack_before',

        # what the stack looks like after this opcode runs; a list
        'stack_after',

        # the protocol number in which this opcode was introduced; an int
        'proto',

        # human-readable docs for this opcode; a string
        'doc',
    )

    def __init__(self, name, code, arg,
                 stack_before, stack_after, proto, doc):
        assert isinstance(name, str)
        self.name = name

        assert isinstance(code, str)
        assert len(code) == 1
        self.code = code

        assert arg is None or isinstance(arg, ArgumentDescriptor)
        self.arg = arg

        assert isinstance(stack_before, list)
        for x in stack_before:
            assert isinstance(x, StackObject)
        self.stack_before = stack_before

        assert isinstance(stack_after, list)
        for x in stack_after:
            assert isinstance(x, StackObject)
        self.stack_after = stack_after

        assert isinstance(proto, int) and 0 <= proto <= pickle.HIGHEST_PROTOCOL
        self.proto = proto

        assert isinstance(doc, str)
        self.doc = doc

I = OpcodeInfo
opcodes = [

    # Ways to spell integers.

    I(name='INT',
      code='I',
      arg=decimalnl_short,
      stack_before=[],
      stack_after=[pyinteger_or_bool],
      proto=0,
      doc="""Push an integer or bool.

      The argument is a newline-terminated decimal literal string.

      The intent may have been that this always fit in a short Python int,
      but INT can be generated in pickles written on a 64-bit box that
      require a Python long on a 32-bit box.  The difference between this
      and LONG then is that INT skips a trailing 'L', and produces a short
      int whenever possible.

      Another difference is due to that, when bool was introduced as a
      distinct type in 2.3, builtin names True and False were also added to
      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
      Leading zeroes are never produced for a genuine integer.  The 2.3
      (and later) unpicklers special-case these and return bool instead;
      earlier unpicklers ignore the leading "0" and return the int.
      """),

    I(name='BININT',
      code='J',
      arg=int4,
      stack_before=[],
      stack_after=[pyint],
      proto=1,
      doc="""Push a four-byte signed integer.

      This handles the full range of Python (short) integers on a 32-bit
      box, directly as binary bytes (1 for the opcode and 4 for the integer).
      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
      BININT1 or BININT2 saves space.
      """),

    I(name='BININT1',
      code='K',
      arg=uint1,
      stack_before=[],
      stack_after=[pyint],
      proto=1,
      doc="""Push a one-byte unsigned integer.

      This is a space optimization for pickling very small non-negative ints,
      in range(256).
      """),

    I(name='BININT2',
      code='M',
      arg=uint2,
      stack_before=[],
      stack_after=[pyint],
      proto=1,
      doc="""Push a two-byte unsigned integer.

      This is a space optimization for pickling small positive ints, in
      range(256, 2**16).  Integers in range(256) can also be pickled via
      BININT2, but BININT1 instead saves a byte.
      """),

    I(name='LONG',
      code='L',
      arg=decimalnl_long,
      stack_before=[],
      stack_after=[pyint],
      proto=0,
      doc="""Push a long integer.

      The same as INT, except that the literal ends with 'L', and always
      unpickles to a Python long.  There doesn't seem a real purpose to the
      trailing 'L'.

      Note that LONG takes time quadratic in the number of digits when
      unpickling (this is simply due to the nature of decimal->binary
      conversion).  Proto 2 added linear-time (in C; still quadratic-time
      in Python) LONG1 and LONG4 opcodes.
      """),

    I(name="LONG1",
      code='\x8a',
      arg=long1,
      stack_before=[],
      stack_after=[pyint],
      proto=2,
      doc="""Long integer using one-byte length.

      A more efficient encoding of a Python long; the long1 encoding
      says it all."""),

    I(name="LONG4",
      code='\x8b',
      arg=long4,
      stack_before=[],
      stack_after=[pyint],
      proto=2,
      doc="""Long integer using found-byte length.

      A more efficient encoding of a Python long; the long4 encoding
      says it all."""),

    # Ways to spell strings (8-bit, not Unicode).

    I(name='STRING',
      code='S',
      arg=stringnl,
      stack_before=[],
      stack_after=[pybytes_or_str],
      proto=0,
      doc="""Push a Python string object.

      The argument is a repr-style string, with bracketing quote characters,
      and perhaps embedded escapes.  The argument extends until the next
      newline character.  These are usually decoded into a str instance
      using the encoding given to the Unpickler constructor. or the default,
      'ASCII'.  If the encoding given was 'bytes' however, they will be
      decoded as bytes object instead.
      """),

    I(name='BINSTRING',
      code='T',
      arg=string4,
      stack_before=[],
      stack_after=[pybytes_or_str],
      proto=1,
      doc="""Push a Python string object.

      There are two arguments: the first is a 4-byte little-endian
      signed int giving the number of bytes in the string, and the
      second is that many bytes, which are taken literally as the string
      content.  These are usually decoded into a str instance using the
      encoding given to the Unpickler constructor. or the default,
      'ASCII'.  If the encoding given was 'bytes' however, they will be
      decoded as bytes object instead.
      """),

    I(name='SHORT_BINSTRING',
      code='U',
      arg=string1,
      stack_before=[],
      stack_after=[pybytes_or_str],
      proto=1,
      doc="""Push a Python string object.

      There are two arguments: the first is a 1-byte unsigned int giving
      the number of bytes in the string, and the second is that many
      bytes, which are taken literally as the string content.  These are
      usually decoded into a str instance using the encoding given to
      the Unpickler constructor. or the default, 'ASCII'.  If the
      encoding given was 'bytes' however, they will be decoded as bytes
      object instead.
      """),

    # Bytes (protocol 3 only; older protocols don't support bytes at all)

    I(name='BINBYTES',
      code='B',
      arg=bytes4,
      stack_before=[],
      stack_after=[pybytes],
      proto=3,
      doc="""Push a Python bytes object.

      There are two arguments:  the first is a 4-byte little-endian unsigned int
      giving the number of bytes, and the second is that many bytes, which are
      taken literally as the bytes content.
      """),

    I(name='SHORT_BINBYTES',
      code='C',
      arg=bytes1,
      stack_before=[],
      stack_after=[pybytes],
      proto=3,
      doc="""Push a Python bytes object.

      There are two arguments:  the first is a 1-byte unsigned int giving
      the number of bytes, and the second is that many bytes, which are taken
      literally as the string content.
      """),

    I(name='BINBYTES8',
      code='\x8e',
      arg=bytes8,
      stack_before=[],
      stack_after=[pybytes],
      proto=4,
      doc="""Push a Python bytes object.

      There are two arguments:  the first is a 8-byte unsigned int giving
      the number of bytes in the string, and the second is that many bytes,
      which are taken literally as the string content.
      """),

    # Ways to spell None.

    I(name='NONE',
      code='N',
      arg=None,
      stack_before=[],
      stack_after=[pynone],
      proto=0,
      doc="Push None on the stack."),

    # Ways to spell bools, starting with proto 2.  See INT for how this was
    # done before proto 2.

    I(name='NEWTRUE',
      code='\x88',
      arg=None,
      stack_before=[],
      stack_after=[pybool],
      proto=2,
      doc="""True.

      Push True onto the stack."""),

    I(name='NEWFALSE',
      code='\x89',
      arg=None,
      stack_before=[],
      stack_after=[pybool],
      proto=2,
      doc="""True.

      Push False onto the stack."""),

    # Ways to spell Unicode strings.

    I(name='UNICODE',
      code='V',
      arg=unicodestringnl,
      stack_before=[],
      stack_after=[pyunicode],
      proto=0,  # this may be pure-text, but it's a later addition
      doc="""Push a Python Unicode string object.

      The argument is a raw-unicode-escape encoding of a Unicode string,
      and so may contain embedded escape sequences.  The argument extends
      until the next newline character.
      """),

    I(name='SHORT_BINUNICODE',
      code='\x8c',
      arg=unicodestring1,
      stack_before=[],
      stack_after=[pyunicode],
      proto=4,
      doc="""Push a Python Unicode string object.

      There are two arguments:  the first is a 1-byte little-endian signed int
      giving the number of bytes in the string.  The second is that many
      bytes, and is the UTF-8 encoding of the Unicode string.
      """),

    I(name='BINUNICODE',
      code='X',
      arg=unicodestring4,
      stack_before=[],
      stack_after=[pyunicode],
      proto=1,
      doc="""Push a Python Unicode string object.

      There are two arguments:  the first is a 4-byte little-endian unsigned int
      giving the number of bytes in the string.  The second is that many
      bytes, and is the UTF-8 encoding of the Unicode string.
      """),

    I(name='BINUNICODE8',
      code='\x8d',
      arg=unicodestring8,
      stack_before=[],
      stack_after=[pyunicode],
      proto=4,
      doc="""Push a Python Unicode string object.

      There are two arguments:  the first is a 8-byte little-endian signed int
      giving the number of bytes in the string.  The second is that many
      bytes, and is the UTF-8 encoding of the Unicode string.
      """),

    # Ways to spell floats.

    I(name='FLOAT',
      code='F',
      arg=floatnl,
      stack_before=[],
      stack_after=[pyfloat],
      proto=0,
      doc="""Newline-terminated decimal float literal.

      The argument is repr(a_float), and in general requires 17 significant
      digits for roundtrip conversion to be an identity (this is so for
      IEEE-754 double precision values, which is what Python float maps to
      on most boxes).

      In general, FLOAT cannot be used to transport infinities, NaNs, or
      minus zero across boxes (or even on a single box, if the platform C
      library can't read the strings it produces for such things -- Windows
      is like that), but may do less damage than BINFLOAT on boxes with
      greater precision or dynamic range than IEEE-754 double.
      """),

    I(name='BINFLOAT',
      code='G',
      arg=float8,
      stack_before=[],
      stack_after=[pyfloat],
      proto=1,
      doc="""Float stored in binary form, with 8 bytes of data.

      This generally requires less than half the space of FLOAT encoding.
      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
      minus zero, raises an exception if the exponent exceeds the range of
      an IEEE-754 double, and retains no more than 53 bits of precision (if
      there are more than that, "add a half and chop" rounding is used to
      cut it back to 53 significant bits).
      """),

    # Ways to build lists.

    I(name='EMPTY_LIST',
      code=']',
      arg=None,
      stack_before=[],
      stack_after=[pylist],
      proto=1,
      doc="Push an empty list."),

    I(name='APPEND',
      code='a',
      arg=None,
      stack_before=[pylist, anyobject],
      stack_after=[pylist],
      proto=0,
      doc="""Append an object to a list.

      Stack before:  ... pylist anyobject
      Stack after:   ... pylist+[anyobject]

      although pylist is really extended in-place.
      """),

    I(name='APPENDS',
      code='e',
      arg=None,
      stack_before=[pylist, markobject, stackslice],
      stack_after=[pylist],
      proto=1,
      doc="""Extend a list by a slice of stack objects.

      Stack before:  ... pylist markobject stackslice
      Stack after:   ... pylist+stackslice

      although pylist is really extended in-place.
      """),

    I(name='LIST',
      code='l',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[pylist],
      proto=0,
      doc="""Build a list out of the topmost stack slice, after markobject.

      All the stack entries following the topmost markobject are placed into
      a single Python list, which single list object replaces all of the
      stack from the topmost markobject onward.  For example,

      Stack before: ... markobject 1 2 3 'abc'
      Stack after:  ... [1, 2, 3, 'abc']
      """),

    # Ways to build tuples.

    I(name='EMPTY_TUPLE',
      code=')',
      arg=None,
      stack_before=[],
      stack_after=[pytuple],
      proto=1,
      doc="Push an empty tuple."),

    I(name='TUPLE',
      code='t',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[pytuple],
      proto=0,
      doc="""Build a tuple out of the topmost stack slice, after markobject.

      All the stack entries following the topmost markobject are placed into
      a single Python tuple, which single tuple object replaces all of the
      stack from the topmost markobject onward.  For example,

      Stack before: ... markobject 1 2 3 'abc'
      Stack after:  ... (1, 2, 3, 'abc')
      """),

    I(name='TUPLE1',
      code='\x85',
      arg=None,
      stack_before=[anyobject],
      stack_after=[pytuple],
      proto=2,
      doc="""Build a one-tuple out of the topmost item on the stack.

      This code pops one value off the stack and pushes a tuple of
      length 1 whose one item is that value back onto it.  In other
      words:

          stack[-1] = tuple(stack[-1:])
      """),

    I(name='TUPLE2',
      code='\x86',
      arg=None,
      stack_before=[anyobject, anyobject],
      stack_after=[pytuple],
      proto=2,
      doc="""Build a two-tuple out of the top two items on the stack.

      This code pops two values off the stack and pushes a tuple of
      length 2 whose items are those values back onto it.  In other
      words:

          stack[-2:] = [tuple(stack[-2:])]
      """),

    I(name='TUPLE3',
      code='\x87',
      arg=None,
      stack_before=[anyobject, anyobject, anyobject],
      stack_after=[pytuple],
      proto=2,
      doc="""Build a three-tuple out of the top three items on the stack.

      This code pops three values off the stack and pushes a tuple of
      length 3 whose items are those values back onto it.  In other
      words:

          stack[-3:] = [tuple(stack[-3:])]
      """),

    # Ways to build dicts.

    I(name='EMPTY_DICT',
      code='}',
      arg=None,
      stack_before=[],
      stack_after=[pydict],
      proto=1,
      doc="Push an empty dict."),

    I(name='DICT',
      code='d',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[pydict],
      proto=0,
      doc="""Build a dict out of the topmost stack slice, after markobject.

      All the stack entries following the topmost markobject are placed into
      a single Python dict, which single dict object replaces all of the
      stack from the topmost markobject onward.  The stack slice alternates
      key, value, key, value, ....  For example,

      Stack before: ... markobject 1 2 3 'abc'
      Stack after:  ... {1: 2, 3: 'abc'}
      """),

    I(name='SETITEM',
      code='s',
      arg=None,
      stack_before=[pydict, anyobject, anyobject],
      stack_after=[pydict],
      proto=0,
      doc="""Add a key+value pair to an existing dict.

      Stack before:  ... pydict key value
      Stack after:   ... pydict

      where pydict has been modified via pydict[key] = value.
      """),

    I(name='SETITEMS',
      code='u',
      arg=None,
      stack_before=[pydict, markobject, stackslice],
      stack_after=[pydict],
      proto=1,
      doc="""Add an arbitrary number of key+value pairs to an existing dict.

      The slice of the stack following the topmost markobject is taken as
      an alternating sequence of keys and values, added to the dict
      immediately under the topmost markobject.  Everything at and after the
      topmost markobject is popped, leaving the mutated dict at the top
      of the stack.

      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
      Stack after:   ... pydict

      where pydict has been modified via pydict[key_i] = value_i for i in
      1, 2, ..., n, and in that order.
      """),

    # Ways to build sets

    I(name='EMPTY_SET',
      code='\x8f',
      arg=None,
      stack_before=[],
      stack_after=[pyset],
      proto=4,
      doc="Push an empty set."),

    I(name='ADDITEMS',
      code='\x90',
      arg=None,
      stack_before=[pyset, markobject, stackslice],
      stack_after=[pyset],
      proto=4,
      doc="""Add an arbitrary number of items to an existing set.

      The slice of the stack following the topmost markobject is taken as
      a sequence of items, added to the set immediately under the topmost
      markobject.  Everything at and after the topmost markobject is popped,
      leaving the mutated set at the top of the stack.

      Stack before:  ... pyset markobject item_1 ... item_n
      Stack after:   ... pyset

      where pyset has been modified via pyset.add(item_i) = item_i for i in
      1, 2, ..., n, and in that order.
      """),

    # Way to build frozensets

    I(name='FROZENSET',
      code='\x91',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[pyfrozenset],
      proto=4,
      doc="""Build a frozenset out of the topmost slice, after markobject.

      All the stack entries following the topmost markobject are placed into
      a single Python frozenset, which single frozenset object replaces all
      of the stack from the topmost markobject onward.  For example,

      Stack before: ... markobject 1 2 3
      Stack after:  ... frozenset({1, 2, 3})
      """),

    # Stack manipulation.

    I(name='POP',
      code='0',
      arg=None,
      stack_before=[anyobject],
      stack_after=[],
      proto=0,
      doc="Discard the top stack item, shrinking the stack by one item."),

    I(name='DUP',
      code='2',
      arg=None,
      stack_before=[anyobject],
      stack_after=[anyobject, anyobject],
      proto=0,
      doc="Push the top stack item onto the stack again, duplicating it."),

    I(name='MARK',
      code='(',
      arg=None,
      stack_before=[],
      stack_after=[markobject],
      proto=0,
      doc="""Push markobject onto the stack.

      markobject is a unique object, used by other opcodes to identify a
      region of the stack containing a variable number of objects for them
      to work on.  See markobject.doc for more detail.
      """),

    I(name='POP_MARK',
      code='1',
      arg=None,
      stack_before=[markobject, stackslice],
      stack_after=[],
      proto=1,
      doc="""Pop all the stack objects at and above the topmost markobject.

      When an opcode using a variable number of stack objects is done,
      POP_MARK is used to remove those objects, and to remove the markobject
      that delimited their starting position on the stack.
      """),

    # Memo manipulation.  There are really only two operations (get and put),
    # each in all-text, "short binary", and "long binary" flavors.

    I(name='GET',
      code='g',
      arg=decimalnl_short,
      stack_before=[],
      stack_after=[anyobject],
      proto=0,
      doc="""Read an object from the memo and push it on the stack.

      The index of the memo object to push is given by the newline-terminated
      decimal string following.  BINGET and LONG_BINGET are space-optimized
      versions.
      """),

    I(name='BINGET',
      code='h',
      arg=uint1,
      stack_before=[],
      stack_after=[anyobject],
      proto=1,
      doc="""Read an object from the memo and push it on the stack.

      The index of the memo object to push is given by the 1-byte unsigned
      integer following.
      """),

    I(name='LONG_BINGET',
      code='j',
      arg=uint4,
      stack_before=[],
      stack_after=[anyobject],
      proto=1,
      doc="""Read an object from the memo and push it on the stack.

      The index of the memo object to push is given by the 4-byte unsigned
      little-endian integer following.
      """),

    I(name='PUT',
      code='p',
      arg=decimalnl_short,
      stack_before=[],
      stack_after=[],
      proto=0,
      doc="""Store the stack top into the memo.  The stack is not popped.

      The index of the memo location to write into is given by the newline-
      terminated decimal string following.  BINPUT and LONG_BINPUT are
      space-optimized versions.
      """),

    I(name='BINPUT',
      code='q',
      arg=uint1,
      stack_before=[],
      stack_after=[],
      proto=1,
      doc="""Store the stack top into the memo.  The stack is not popped.

      The index of the memo location to write into is given by the 1-byte
      unsigned integer following.
      """),

    I(name='LONG_BINPUT',
      code='r',
      arg=uint4,
      stack_before=[],
      stack_after=[],
      proto=1,
      doc="""Store the stack top into the memo.  The stack is not popped.

      The index of the memo location to write into is given by the 4-byte
      unsigned little-endian integer following.
      """),

    I(name='MEMOIZE',
      code='\x94',
      arg=None,
      stack_before=[anyobject],
      stack_after=[anyobject],
      proto=4,
      doc="""Store the stack top into the memo.  The stack is not popped.

      The index of the memo location to write is the number of
      elements currently present in the memo.
      """),

    # Access the extension registry (predefined objects).  Akin to the GET
    # family.

    I(name='EXT1',
      code='\x82',
      arg=uint1,
      stack_before=[],
      stack_after=[anyobject],
      proto=2,
      doc="""Extension code.

      This code and the similar EXT2 and EXT4 allow using a registry
      of popular objects that are pickled by name, typically classes.
      It is envisioned that through a global negotiation and
      registration process, third parties can set up a mapping between
      ints and object names.

      In order to guarantee pickle interchangeability, the extension
      code registry ought to be global, although a range of codes may
      be reserved for private use.

      EXT1 has a 1-byte integer argument.  This is used to index into the
      extension registry, and the object at that index is pushed on the stack.
      """),

    I(name='EXT2',
      code='\x83',
      arg=uint2,
      stack_before=[],
      stack_after=[anyobject],
      proto=2,
      doc="""Extension code.

      See EXT1.  EXT2 has a two-byte integer argument.
      """),

    I(name='EXT4',
      code='\x84',
      arg=int4,
      stack_before=[],
      stack_after=[anyobject],
      proto=2,
      doc="""Extension code.

      See EXT1.  EXT4 has a four-byte integer argument.
      """),

    # Push a class object, or module function, on the stack, via its module
    # and name.

    I(name='GLOBAL',
      code='c',
      arg=stringnl_noescape_pair,
      stack_before=[],
      stack_after=[anyobject],
      proto=0,
      doc="""Push a global object (module.attr) on the stack.

      Two newline-terminated strings follow the GLOBAL opcode.  The first is
      taken as a module name, and the second as a class name.  The class
      object module.class is pushed on the stack.  More accurately, the
      object returned by self.find_class(module, class) is pushed on the
      stack, so unpickling subclasses can override this form of lookup.
      """),

    I(name='STACK_GLOBAL',
      code='\x93',
      arg=None,
      stack_before=[pyunicode, pyunicode],
      stack_after=[anyobject],
      proto=4,
      doc="""Push a global object (module.attr) on the stack.
      """),

    # Ways to build objects of classes pickle doesn't know about directly
    # (user-defined classes).  I despair of documenting this accurately
    # and comprehensibly -- you really have to read the pickle code to
    # find all the special cases.

    I(name='REDUCE',
      code='R',
      arg=None,
      stack_before=[anyobject, anyobject],
      stack_after=[anyobject],
      proto=0,
      doc="""Push an object built from a callable and an argument tuple.

      The opcode is named to remind of the __reduce__() method.

      Stack before: ... callable pytuple
      Stack after:  ... callable(*pytuple)

      The callable and the argument tuple are the first two items returned
      by a __reduce__ method.  Applying the callable to the argtuple is
      supposed to reproduce the original object, or at least get it started.
      If the __reduce__ method returns a 3-tuple, the last component is an
      argument to be passed to the object's __setstate__, and then the REDUCE
      opcode is followed by code to create setstate's argument, and then a
      BUILD opcode to apply  __setstate__ to that argument.

      If not isinstance(callable, type), REDUCE complains unless the
      callable has been registered with the copyreg module's
      safe_constructors dict, or the callable has a magic
      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
      why it does this, but I've sure seen this complaint often enough when
      I didn't want to <wink>.
      """),

    I(name='BUILD',
      code='b',
      arg=None,
      stack_before=[anyobject, anyobject],
      stack_after=[anyobject],
      proto=0,
      doc="""Finish building an object, via __setstate__ or dict update.

      Stack before: ... anyobject argument
      Stack after:  ... anyobject

      where anyobject may have been mutated, as follows:

      If the object has a __setstate__ method,

          anyobject.__setstate__(argument)

      is called.

      Else the argument must be a dict, the object must have a __dict__, and
      the object is updated via

          anyobject.__dict__.update(argument)
      """),

    I(name='INST',
      code='i',
      arg=stringnl_noescape_pair,
      stack_before=[markobject, stackslice],
      stack_after=[anyobject],
      proto=0,
      doc="""Build a class instance.

      This is the protocol 0 version of protocol 1's OBJ opcode.
      INST is followed by two newline-terminated strings, giving a
      module and class name, just as for the GLOBAL opcode (and see
      GLOBAL for more details about that).  self.find_class(module, name)
      is used to get a class object.

      In addition, all the objects on the stack following the topmost
      markobject are gathered into a tuple and popped (along with the
      topmost markobject), just as for the TUPLE opcode.

      Now it gets complicated.  If all of these are true:

        + The argtuple is empty (markobject was at the top of the stack
          at the start).

        + The class object does not have a __getinitargs__ attribute.

      then we want to create an old-style class instance without invoking
      its __init__() method (pickle has waffled on this over the years; not
      calling __init__() is current wisdom).  In this case, an instance of
      an old-style dummy class is created, and then we try to rebind its
      __class__ attribute to the desired class object.  If this succeeds,
      the new instance object is pushed on the stack, and we're done.

      Else (the argtuple is not empty, it's not an old-style class object,
      or the class object does have a __getinitargs__ attribute), the code
      first insists that the class object have a __safe_for_unpickling__
      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
      it doesn't matter whether this attribute has a true or false value, it
      only matters whether it exists (XXX this is a bug).  If
      __safe_for_unpickling__ doesn't exist, UnpicklingError is raised.

      Else (the class object does have a __safe_for_unpickling__ attr),
      the class object obtained from INST's arguments is applied to the
      argtuple obtained from the stack, and the resulting instance object
      is pushed on the stack.

      NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
      NOTE:  the distinction between old-style and new-style classes does
             not make sense in Python 3.
      """),

    I(name='OBJ',
      code='o',
      arg=None,
      stack_before=[markobject, anyobject, stackslice],
      stack_after=[anyobject],
      proto=1,
      doc="""Build a class instance.

      This is the protocol 1 version of protocol 0's INST opcode, and is
      very much like it.  The major difference is that the class object
      is taken off the stack, allowing it to be retrieved from the memo
      repeatedly if several instances of the same class are created.  This
      can be much more efficient (in both time and space) than repeatedly
      embedding the module and class names in INST opcodes.

      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
      the class object is taken off the stack, immediately above the
      topmost markobject:

      Stack before: ... markobject classobject stackslice
      Stack after:  ... new_instance_object

      As for INST, the remainder of the stack above the markobject is
      gathered into an argument tuple, and then the logic seems identical,
      except that no __safe_for_unpickling__ check is done (XXX this is
      a bug).  See INST for the gory details.

      NOTE:  In Python 2.3, INST and OBJ are identical except for how they
      get the class object.  That was always the intent; the implementations
      had diverged for accidental reasons.
      """),

    I(name='NEWOBJ',
      code='\x81',
      arg=None,
      stack_before=[anyobject, anyobject],
      stack_after=[anyobject],
      proto=2,
      doc="""Build an object instance.

      The stack before should be thought of as containing a class
      object followed by an argument tuple (the tuple being the stack
      top).  Call these cls and args.  They are popped off the stack,
      and the value returned by cls.__new__(cls, *args) is pushed back
      onto the stack.
      """),

    I(name='NEWOBJ_EX',
      code='\x92',
      arg=None,
      stack_before=[anyobject, anyobject, anyobject],
      stack_after=[anyobject],
      proto=4,
      doc="""Build an object instance.

      The stack before should be thought of as containing a class
      object followed by an argument tuple and by a keyword argument dict
      (the dict being the stack top).  Call these cls and args.  They are
      popped off the stack, and the value returned by
      cls.__new__(cls, *args, *kwargs) is  pushed back  onto the stack.
      """),

    # Machine control.

    I(name='PROTO',
      code='\x80',
      arg=uint1,
      stack_before=[],
      stack_after=[],
      proto=2,
      doc="""Protocol version indicator.

      For protocol 2 and above, a pickle must start with this opcode.
      The argument is the protocol version, an int in range(2, 256).
      """),

    I(name='STOP',
      code='.',
      arg=None,
      stack_before=[anyobject],
      stack_after=[],
      proto=0,
      doc="""Stop the unpickling machine.

      Every pickle ends with this opcode.  The object at the top of the stack
      is popped, and that's the result of unpickling.  The stack should be
      empty then.
      """),

    # Framing support.

    I(name='FRAME',
      code='\x95',
      arg=uint8,
      stack_before=[],
      stack_after=[],
      proto=4,
      doc="""Indicate the beginning of a new frame.

      The unpickler may use this opcode to safely prefetch data from its
      underlying stream.
      """),

    # Ways to deal with persistent IDs.

    I(name='PERSID',
      code='P',
      arg=stringnl_noescape,
      stack_before=[],
      stack_after=[anyobject],
      proto=0,
      doc="""Push an object identified by a persistent ID.

      The pickle module doesn't define what a persistent ID means.  PERSID's
      argument is a newline-terminated str-style (no embedded escapes, no
      bracketing quote characters) string, which *is* "the persistent ID".
      The unpickler passes this string to self.persistent_load().  Whatever
      object that returns is pushed on the stack.  There is no implementation
      of persistent_load() in Python's unpickler:  it must be supplied by an
      unpickler subclass.
      """),

    I(name='BINPERSID',
      code='Q',
      arg=None,
      stack_before=[anyobject],
      stack_after=[anyobject],
      proto=1,
      doc="""Push an object identified by a persistent ID.

      Like PERSID, except the persistent ID is popped off the stack (instead
      of being a string embedded in the opcode bytestream).  The persistent
      ID is passed to self.persistent_load(), and whatever object that
      returns is pushed on the stack.  See PERSID for more detail.
      """),
]
del I

# Verify uniqueness of .name and .code members.
name2i = {}
code2i = {}

for i, d in enumerate(opcodes):
    if d.name in name2i:
        raise ValueError("repeated name %r at indices %d and %d" %
                         (d.name, name2i[d.name], i))
    if d.code in code2i:
        raise ValueError("repeated code %r at indices %d and %d" %
                         (d.code, code2i[d.code], i))

    name2i[d.name] = i
    code2i[d.code] = i

del name2i, code2i, i, d

##############################################################################
# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
# Also ensure we've got the same stuff as pickle.py, although the
# introspection here is dicey.

code2op = {}
for d in opcodes:
    code2op[d.code] = d
del d

def assure_pickle_consistency(verbose=False):

    copy = code2op.copy()
    for name in pickle.__all__:
        if not re.match("[A-Z][A-Z0-9_]+$", name):
            if verbose:
                print("skipping %r: it doesn't look like an opcode name" % name)
            continue
        picklecode = getattr(pickle, name)
        if not isinstance(picklecode, bytes) or len(picklecode) != 1:
            if verbose:
                print(("skipping %r: value %r doesn't look like a pickle "
                       "code" % (name, picklecode)))
            continue
        picklecode = picklecode.decode("latin-1")
        if picklecode in copy:
            if verbose:
                print("checking name %r w/ code %r for consistency" % (
                      name, picklecode))
            d = copy[picklecode]
            if d.name != name:
                raise ValueError("for pickle code %r, pickle.py uses name %r "
                                 "but we're using name %r" % (picklecode,
                                                              name,
                                                              d.name))
            # Forget this one.  Any left over in copy at the end are a problem
            # of a different kind.
            del copy[picklecode]
        else:
            raise ValueError("pickle.py appears to have a pickle opcode with "
                             "name %r and code %r, but we don't" %
                             (name, picklecode))
    if copy:
        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
        for code, d in copy.items():
            msg.append("    name %r with code %r" % (d.name, code))
        raise ValueError("\n".join(msg))

assure_pickle_consistency()
del assure_pickle_consistency

##############################################################################
# A pickle opcode generator.

def _genops(data, yield_end_pos=False):
    if isinstance(data, bytes_types):
        data = io.BytesIO(data)

    if hasattr(data, "tell"):
        getpos = data.tell
    else:
        getpos = lambda: None

    while True:
        pos = getpos()
        code = data.read(1)
        opcode = code2op.get(code.decode("latin-1"))
        if opcode is None:
            if code == b"":
                raise ValueError("pickle exhausted before seeing STOP")
            else:
                raise ValueError("at position %s, opcode %r unknown" % (
                                 "<unknown>" if pos is None else pos,
                                 code))
        if opcode.arg is None:
            arg = None
        else:
            arg = opcode.arg.reader(data)
        if yield_end_pos:
            yield opcode, arg, pos, getpos()
        else:
            yield opcode, arg, pos
        if code == b'.':
            assert opcode.name == 'STOP'
            break

def genops(pickle):
    """Generate all the opcodes in a pickle.

    'pickle' is a file-like object, or string, containing the pickle.

    Each opcode in the pickle is generated, from the current pickle position,
    stopping after a STOP opcode is delivered.  A triple is generated for
    each opcode:

        opcode, arg, pos

    opcode is an OpcodeInfo record, describing the current opcode.

    If the opcode has an argument embedded in the pickle, arg is its decoded
    value, as a Python object.  If the opcode doesn't have an argument, arg
    is None.

    If the pickle has a tell() method, pos was the value of pickle.tell()
    before reading the current opcode.  If the pickle is a bytes object,
    it's wrapped in a BytesIO object, and the latter's tell() result is
    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
    to query its current position) pos is None.
    """
    return _genops(pickle)

##############################################################################
# A pickle optimizer.

def optimize(p):
    'Optimize a pickle string by removing unused PUT opcodes'
    put = 'PUT'
    get = 'GET'
    oldids = set()          # set of all PUT ids
    newids = {}             # set of ids used by a GET opcode
    opcodes = []            # (op, idx) or (pos, end_pos)
    proto = 0
    protoheader = b''
    for opcode, arg, pos, end_pos in _genops(p, yield_end_pos=True):
        if 'PUT' in opcode.name:
            oldids.add(arg)
            opcodes.append((put, arg))
        elif opcode.name == 'MEMOIZE':
            idx = len(oldids)
            oldids.add(idx)
            opcodes.append((put, idx))
        elif 'FRAME' in opcode.name:
            pass
        elif 'GET' in opcode.name:
            if opcode.proto > proto:
                proto = opcode.proto
            newids[arg] = None
            opcodes.append((get, arg))
        elif opcode.name == 'PROTO':
            if arg > proto:
                proto = arg
            if pos == 0:
                protoheader = p[pos: end_pos]
            else:
                opcodes.append((pos, end_pos))
        else:
            opcodes.append((pos, end_pos))
    del oldids

    # Copy the opcodes except for PUTS without a corresponding GET
    out = io.BytesIO()
    # Write the PROTO header before any framing
    out.write(protoheader)
    pickler = pickle._Pickler(out, proto)
    if proto >= 4:
        pickler.framer.start_framing()
    idx = 0
    for op, arg in opcodes:
        if op is put:
            if arg not in newids:
                continue
            data = pickler.put(idx)
            newids[arg] = idx
            idx += 1
        elif op is get:
            data = pickler.get(newids[arg])
        else:
            data = p[op:arg]
        pickler.framer.commit_frame()
        pickler.write(data)
    pickler.framer.end_framing()
    return out.getvalue()

##############################################################################
# A symbolic pickle disassembler.

def dis(pickle, out=None, memo=None, indentlevel=4, annotate=0):
    """Produce a symbolic disassembly of a pickle.

    'pickle' is a file-like object, or string, containing a (at least one)
    pickle.  The pickle is disassembled from the current position, through
    the first STOP opcode encountered.

    Optional arg 'out' is a file-like object to which the disassembly is
    printed.  It defaults to sys.stdout.

    Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
    may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
    Passing the same memo object to another dis() call then allows disassembly
    to proceed across multiple pickles that were all created by the same
    pickler with the same memo.  Ordinarily you don't need to worry about this.

    Optional arg 'indentlevel' is the number of blanks by which to indent
    a new MARK level.  It defaults to 4.

    Optional arg 'annotate' if nonzero instructs dis() to add short
    description of the opcode on each line of disassembled output.
    The value given to 'annotate' must be an integer and is used as a
    hint for the column where annotation should start.  The default
    value is 0, meaning no annotations.

    In addition to printing the disassembly, some sanity checks are made:

    + All embedded opcode arguments "make sense".

    + Explicit and implicit pop operations have enough items on the stack.

    + When an opcode implicitly refers to a markobject, a markobject is
      actually on the stack.

    + A memo entry isn't referenced before it's defined.

    + The markobject isn't stored in the memo.

    + A memo entry isn't redefined.
    """

    # Most of the hair here is for sanity checks, but most of it is needed
    # anyway to detect when a protocol 0 POP takes a MARK off the stack
    # (which in turn is needed to indent MARK blocks correctly).

    stack = []          # crude emulation of unpickler stack
    if memo is None:
        memo = {}       # crude emulation of unpickler memo
    maxproto = -1       # max protocol number seen
    markstack = []      # bytecode positions of MARK opcodes
    indentchunk = ' ' * indentlevel
    errormsg = None
    annocol = annotate  # column hint for annotations
    for opcode, arg, pos in genops(pickle):
        if pos is not None:
            print("%5d:" % pos, end=' ', file=out)

        line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
                              indentchunk * len(markstack),
                              opcode.name)

        maxproto = max(maxproto, opcode.proto)
        before = opcode.stack_before    # don't mutate
        after = opcode.stack_after      # don't mutate
        numtopop = len(before)

        # See whether a MARK should be popped.
        markmsg = None
        if markobject in before or (opcode.name == "POP" and
                                    stack and
                                    stack[-1] is markobject):
            assert markobject not in after
            if __debug__:
                if markobject in before:
                    assert before[-1] is stackslice
            if markstack:
                markpos = markstack.pop()
                if markpos is None:
                    markmsg = "(MARK at unknown opcode offset)"
                else:
                    markmsg = "(MARK at %d)" % markpos
                # Pop everything at and after the topmost markobject.
                while stack[-1] is not markobject:
                    stack.pop()
                stack.pop()
                # Stop later code from popping too much.
                try:
                    numtopop = before.index(markobject)
                except ValueError:
                    assert opcode.name == "POP"
                    numtopop = 0
            else:
                errormsg = markmsg = "no MARK exists on stack"

        # Check for correct memo usage.
        if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT", "MEMOIZE"):
            if opcode.name == "MEMOIZE":
                memo_idx = len(memo)
            else:
                assert arg is not None
                memo_idx = arg
            if memo_idx in memo:
                errormsg = "memo key %r already defined" % arg
            elif not stack:
                errormsg = "stack is empty -- can't store into memo"
            elif stack[-1] is markobject:
                errormsg = "can't store markobject in the memo"
            else:
                memo[memo_idx] = stack[-1]
        elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
            if arg in memo:
                assert len(after) == 1
                after = [memo[arg]]     # for better stack emulation
            else:
                errormsg = "memo key %r has never been stored into" % arg

        if arg is not None or markmsg:
            # make a mild effort to align arguments
            line += ' ' * (10 - len(opcode.name))
            if arg is not None:
                line += ' ' + repr(arg)
            if markmsg:
                line += ' ' + markmsg
        if annotate:
            line += ' ' * (annocol - len(line))
            # make a mild effort to align annotations
            annocol = len(line)
            if annocol > 50:
                annocol = annotate
            line += ' ' + opcode.doc.split('\n', 1)[0]
        print(line, file=out)

        if errormsg:
            # Note that we delayed complaining until the offending opcode
            # was printed.
            raise ValueError(errormsg)

        # Emulate the stack effects.
        if len(stack) < numtopop:
            raise ValueError("tries to pop %d items from stack with "
                             "only %d items" % (numtopop, len(stack)))
        if numtopop:
            del stack[-numtopop:]
        if markobject in after:
            assert markobject not in before
            markstack.append(pos)

        stack.extend(after)

    print("highest protocol among opcodes =", maxproto, file=out)
    if stack:
        raise ValueError("stack not empty after STOP: %r" % stack)

# For use in the doctest, simply as an example of a class to pickle.
class _Example:
    def __init__(self, value):
        self.value = value

_dis_test = r"""
>>> import pickle
>>> x = [1, 2, (3, 4), {b'abc': "def"}]
>>> pkl0 = pickle.dumps(x, 0)
>>> dis(pkl0)
    0: (    MARK
    1: l        LIST       (MARK at 0)
    2: p    PUT        0
    5: L    LONG       1
    9: a    APPEND
   10: L    LONG       2
   14: a    APPEND
   15: (    MARK
   16: L        LONG       3
   20: L        LONG       4
   24: t        TUPLE      (MARK at 15)
   25: p    PUT        1
   28: a    APPEND
   29: (    MARK
   30: d        DICT       (MARK at 29)
   31: p    PUT        2
   34: c    GLOBAL     '_codecs encode'
   50: p    PUT        3
   53: (    MARK
   54: V        UNICODE    'abc'
   59: p        PUT        4
   62: V        UNICODE    'latin1'
   70: p        PUT        5
   73: t        TUPLE      (MARK at 53)
   74: p    PUT        6
   77: R    REDUCE
   78: p    PUT        7
   81: V    UNICODE    'def'
   86: p    PUT        8
   89: s    SETITEM
   90: a    APPEND
   91: .    STOP
highest protocol among opcodes = 0

Try again with a "binary" pickle.

>>> pkl1 = pickle.dumps(x, 1)
>>> dis(pkl1)
    0: ]    EMPTY_LIST
    1: q    BINPUT     0
    3: (    MARK
    4: K        BININT1    1
    6: K        BININT1    2
    8: (        MARK
    9: K            BININT1    3
   11: K            BININT1    4
   13: t            TUPLE      (MARK at 8)
   14: q        BINPUT     1
   16: }        EMPTY_DICT
   17: q        BINPUT     2
   19: c        GLOBAL     '_codecs encode'
   35: q        BINPUT     3
   37: (        MARK
   38: X            BINUNICODE 'abc'
   46: q            BINPUT     4
   48: X            BINUNICODE 'latin1'
   59: q            BINPUT     5
   61: t            TUPLE      (MARK at 37)
   62: q        BINPUT     6
   64: R        REDUCE
   65: q        BINPUT     7
   67: X        BINUNICODE 'def'
   75: q        BINPUT     8
   77: s        SETITEM
   78: e        APPENDS    (MARK at 3)
   79: .    STOP
highest protocol among opcodes = 1

Exercise the INST/OBJ/BUILD family.

>>> import pickletools
>>> dis(pickle.dumps(pickletools.dis, 0))
    0: c    GLOBAL     'pickletools dis'
   17: p    PUT        0
   20: .    STOP
highest protocol among opcodes = 0

>>> from pickletools import _Example
>>> x = [_Example(42)] * 2
>>> dis(pickle.dumps(x, 0))
    0: (    MARK
    1: l        LIST       (MARK at 0)
    2: p    PUT        0
    5: c    GLOBAL     'copy_reg _reconstructor'
   30: p    PUT        1
   33: (    MARK
   34: c        GLOBAL     'pickletools _Example'
   56: p        PUT        2
   59: c        GLOBAL     '__builtin__ object'
   79: p        PUT        3
   82: N        NONE
   83: t        TUPLE      (MARK at 33)
   84: p    PUT        4
   87: R    REDUCE
   88: p    PUT        5
   91: (    MARK
   92: d        DICT       (MARK at 91)
   93: p    PUT        6
   96: V    UNICODE    'value'
  103: p    PUT        7
  106: L    LONG       42
  111: s    SETITEM
  112: b    BUILD
  113: a    APPEND
  114: g    GET        5
  117: a    APPEND
  118: .    STOP
highest protocol among opcodes = 0

>>> dis(pickle.dumps(x, 1))
    0: ]    EMPTY_LIST
    1: q    BINPUT     0
    3: (    MARK
    4: c        GLOBAL     'copy_reg _reconstructor'
   29: q        BINPUT     1
   31: (        MARK
   32: c            GLOBAL     'pickletools _Example'
   54: q            BINPUT     2
   56: c            GLOBAL     '__builtin__ object'
   76: q            BINPUT     3
   78: N            NONE
   79: t            TUPLE      (MARK at 31)
   80: q        BINPUT     4
   82: R        REDUCE
   83: q        BINPUT     5
   85: }        EMPTY_DICT
   86: q        BINPUT     6
   88: X        BINUNICODE 'value'
   98: q        BINPUT     7
  100: K        BININT1    42
  102: s        SETITEM
  103: b        BUILD
  104: h        BINGET     5
  106: e        APPENDS    (MARK at 3)
  107: .    STOP
highest protocol among opcodes = 1

Try "the canonical" recursive-object test.

>>> L = []
>>> T = L,
>>> L.append(T)
>>> L[0] is T
True
>>> T[0] is L
True
>>> L[0][0] is L
True
>>> T[0][0] is T
True
>>> dis(pickle.dumps(L, 0))
    0: (    MARK
    1: l        LIST       (MARK at 0)
    2: p    PUT        0
    5: (    MARK
    6: g        GET        0
    9: t        TUPLE      (MARK at 5)
   10: p    PUT        1
   13: a    APPEND
   14: .    STOP
highest protocol among opcodes = 0

>>> dis(pickle.dumps(L, 1))
    0: ]    EMPTY_LIST
    1: q    BINPUT     0
    3: (    MARK
    4: h        BINGET     0
    6: t        TUPLE      (MARK at 3)
    7: q    BINPUT     1
    9: a    APPEND
   10: .    STOP
highest protocol among opcodes = 1

Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
has to emulate the stack in order to realize that the POP opcode at 16 gets
rid of the MARK at 0.

>>> dis(pickle.dumps(T, 0))
    0: (    MARK
    1: (        MARK
    2: l            LIST       (MARK at 1)
    3: p        PUT        0
    6: (        MARK
    7: g            GET        0
   10: t            TUPLE      (MARK at 6)
   11: p        PUT        1
   14: a        APPEND
   15: 0        POP
   16: 0        POP        (MARK at 0)
   17: g    GET        1
   20: .    STOP
highest protocol among opcodes = 0

>>> dis(pickle.dumps(T, 1))
    0: (    MARK
    1: ]        EMPTY_LIST
    2: q        BINPUT     0
    4: (        MARK
    5: h            BINGET     0
    7: t            TUPLE      (MARK at 4)
    8: q        BINPUT     1
   10: a        APPEND
   11: 1        POP_MARK   (MARK at 0)
   12: h    BINGET     1
   14: .    STOP
highest protocol among opcodes = 1

Try protocol 2.

>>> dis(pickle.dumps(L, 2))
    0: \x80 PROTO      2
    2: ]    EMPTY_LIST
    3: q    BINPUT     0
    5: h    BINGET     0
    7: \x85 TUPLE1
    8: q    BINPUT     1
   10: a    APPEND
   11: .    STOP
highest protocol among opcodes = 2

>>> dis(pickle.dumps(T, 2))
    0: \x80 PROTO      2
    2: ]    EMPTY_LIST
    3: q    BINPUT     0
    5: h    BINGET     0
    7: \x85 TUPLE1
    8: q    BINPUT     1
   10: a    APPEND
   11: 0    POP
   12: h    BINGET     1
   14: .    STOP
highest protocol among opcodes = 2

Try protocol 3 with annotations:

>>> dis(pickle.dumps(T, 3), annotate=1)
    0: \x80 PROTO      3 Protocol version indicator.
    2: ]    EMPTY_LIST   Push an empty list.
    3: q    BINPUT     0 Store the stack top into the memo.  The stack is not popped.
    5: h    BINGET     0 Read an object from the memo and push it on the stack.
    7: \x85 TUPLE1       Build a one-tuple out of the topmost item on the stack.
    8: q    BINPUT     1 Store the stack top into the memo.  The stack is not popped.
   10: a    APPEND       Append an object to a list.
   11: 0    POP          Discard the top stack item, shrinking the stack by one item.
   12: h    BINGET     1 Read an object from the memo and push it on the stack.
   14: .    STOP         Stop the unpickling machine.
highest protocol among opcodes = 2

"""

_memo_test = r"""
>>> import pickle
>>> import io
>>> f = io.BytesIO()
>>> p = pickle.Pickler(f, 2)
>>> x = [1, 2, 3]
>>> p.dump(x)
>>> p.dump(x)
>>> f.seek(0)
0
>>> memo = {}
>>> dis(f, memo=memo)
    0: \x80 PROTO      2
    2: ]    EMPTY_LIST
    3: q    BINPUT     0
    5: (    MARK
    6: K        BININT1    1
    8: K        BININT1    2
   10: K        BININT1    3
   12: e        APPENDS    (MARK at 5)
   13: .    STOP
highest protocol among opcodes = 2
>>> dis(f, memo=memo)
   14: \x80 PROTO      2
   16: h    BINGET     0
   18: .    STOP
highest protocol among opcodes = 2
"""

__test__ = {'disassembler_test': _dis_test,
            'disassembler_memo_test': _memo_test,
           }

def _test():
    import doctest
    return doctest.testmod()

if __name__ == "__main__":
    import sys, argparse
    parser = argparse.ArgumentParser(
        description='disassemble one or more pickle files')
    parser.add_argument(
        'pickle_file', type=argparse.FileType('br'),
        nargs='*', help='the pickle file')
    parser.add_argument(
        '-o', '--output', default=sys.stdout, type=argparse.FileType('w'),
        help='the file where the output should be written')
    parser.add_argument(
        '-m', '--memo', action='store_true',
        help='preserve memo between disassemblies')
    parser.add_argument(
        '-l', '--indentlevel', default=4, type=int,
        help='the number of blanks by which to indent a new MARK level')
    parser.add_argument(
        '-a', '--annotate',  action='store_true',
        help='annotate each line with a short opcode description')
    parser.add_argument(
        '-p', '--preamble', default="==> {name} <==",
        help='if more than one pickle file is specified, print this before'
        ' each disassembly')
    parser.add_argument(
        '-t', '--test', action='store_true',
        help='run self-test suite')
    parser.add_argument(
        '-v', action='store_true',
        help='run verbosely; only affects self-test run')
    args = parser.parse_args()
    if args.test:
        _test()
    else:
        annotate = 30 if args.annotate else 0
        if not args.pickle_file:
            parser.print_help()
        elif len(args.pickle_file) == 1:
            dis(args.pickle_file[0], args.output, None,
                args.indentlevel, annotate)
        else:
            memo = {} if args.memo else None
            for f in args.pickle_file:
                preamble = args.preamble.format(name=f.name)
                args.output.write(preamble + '\n')
                dis(f, args.output, memo, args.indentlevel, annotate)
lib\pipes.py
"""Conversion pipeline templates.

The problem:
------------

Suppose you have some data that you want to convert to another format,
such as from GIF image format to PPM image format.  Maybe the
conversion involves several steps (e.g. piping it through compress or
uuencode).  Some of the conversion steps may require that their input
is a disk file, others may be able to read standard input; similar for
their output.  The input to the entire conversion may also be read
from a disk file or from an open file, and similar for its output.

The module lets you construct a pipeline template by sticking one or
more conversion steps together.  It will take care of creating and
removing temporary files if they are necessary to hold intermediate
data.  You can then use the template to do conversions from many
different sources to many different destinations.  The temporary
file names used are different each time the template is used.

The templates are objects so you can create templates for many
different conversion steps and store them in a dictionary, for
instance.


Directions:
-----------

To create a template:
    t = Template()

To add a conversion step to a template:
   t.append(command, kind)
where kind is a string of two characters: the first is '-' if the
command reads its standard input or 'f' if it requires a file; the
second likewise for the output. The command must be valid /bin/sh
syntax.  If input or output files are required, they are passed as
$IN and $OUT; otherwise, it must be  possible to use the command in
a pipeline.

To add a conversion step at the beginning:
   t.prepend(command, kind)

To convert a file to another file using a template:
  sts = t.copy(infile, outfile)
If infile or outfile are the empty string, standard input is read or
standard output is written, respectively.  The return value is the
exit status of the conversion pipeline.

To open a file for reading or writing through a conversion pipeline:
   fp = t.open(file, mode)
where mode is 'r' to read the file, or 'w' to write it -- just like
for the built-in function open() or for os.popen().

To create a new template object initialized to a given one:
   t2 = t.clone()
"""                                     # '


import re
import os
import tempfile
# we import the quote function rather than the module for backward compat
# (quote used to be an undocumented but used function in pipes)
from shlex import quote

__all__ = ["Template"]

# Conversion step kinds

FILEIN_FILEOUT = 'ff'                   # Must read & write real files
STDIN_FILEOUT  = '-f'                   # Must write a real file
FILEIN_STDOUT  = 'f-'                   # Must read a real file
STDIN_STDOUT   = '--'                   # Normal pipeline element
SOURCE         = '.-'                   # Must be first, writes stdout
SINK           = '-.'                   # Must be last, reads stdin

stepkinds = [FILEIN_FILEOUT, STDIN_FILEOUT, FILEIN_STDOUT, STDIN_STDOUT, \
             SOURCE, SINK]


class Template:
    """Class representing a pipeline template."""

    def __init__(self):
        """Template() returns a fresh pipeline template."""
        self.debugging = 0
        self.reset()

    def __repr__(self):
        """t.__repr__() implements repr(t)."""
        return '<Template instance, steps=%r>' % (self.steps,)

    def reset(self):
        """t.reset() restores a pipeline template to its initial state."""
        self.steps = []

    def clone(self):
        """t.clone() returns a new pipeline template with identical
        initial state as the current one."""
        t = Template()
        t.steps = self.steps[:]
        t.debugging = self.debugging
        return t

    def debug(self, flag):
        """t.debug(flag) turns debugging on or off."""
        self.debugging = flag

    def append(self, cmd, kind):
        """t.append(cmd, kind) adds a new step at the end."""
        if type(cmd) is not type(''):
            raise TypeError('Template.append: cmd must be a string')
        if kind not in stepkinds:
            raise ValueError('Template.append: bad kind %r' % (kind,))
        if kind == SOURCE:
            raise ValueError('Template.append: SOURCE can only be prepended')
        if self.steps and self.steps[-1][1] == SINK:
            raise ValueError('Template.append: already ends with SINK')
        if kind[0] == 'f' and not re.search(r'\$IN\b', cmd):
            raise ValueError('Template.append: missing $IN in cmd')
        if kind[1] == 'f' and not re.search(r'\$OUT\b', cmd):
            raise ValueError('Template.append: missing $OUT in cmd')
        self.steps.append((cmd, kind))

    def prepend(self, cmd, kind):
        """t.prepend(cmd, kind) adds a new step at the front."""
        if type(cmd) is not type(''):
            raise TypeError('Template.prepend: cmd must be a string')
        if kind not in stepkinds:
            raise ValueError('Template.prepend: bad kind %r' % (kind,))
        if kind == SINK:
            raise ValueError('Template.prepend: SINK can only be appended')
        if self.steps and self.steps[0][1] == SOURCE:
            raise ValueError('Template.prepend: already begins with SOURCE')
        if kind[0] == 'f' and not re.search(r'\$IN\b', cmd):
            raise ValueError('Template.prepend: missing $IN in cmd')
        if kind[1] == 'f' and not re.search(r'\$OUT\b', cmd):
            raise ValueError('Template.prepend: missing $OUT in cmd')
        self.steps.insert(0, (cmd, kind))

    def open(self, file, rw):
        """t.open(file, rw) returns a pipe or file object open for
        reading or writing; the file is the other end of the pipeline."""
        if rw == 'r':
            return self.open_r(file)
        if rw == 'w':
            return self.open_w(file)
        raise ValueError('Template.open: rw must be \'r\' or \'w\', not %r'
                         % (rw,))

    def open_r(self, file):
        """t.open_r(file) and t.open_w(file) implement
        t.open(file, 'r') and t.open(file, 'w') respectively."""
        if not self.steps:
            return open(file, 'r')
        if self.steps[-1][1] == SINK:
            raise ValueError('Template.open_r: pipeline ends width SINK')
        cmd = self.makepipeline(file, '')
        return os.popen(cmd, 'r')

    def open_w(self, file):
        if not self.steps:
            return open(file, 'w')
        if self.steps[0][1] == SOURCE:
            raise ValueError('Template.open_w: pipeline begins with SOURCE')
        cmd = self.makepipeline('', file)
        return os.popen(cmd, 'w')

    def copy(self, infile, outfile):
        return os.system(self.makepipeline(infile, outfile))

    def makepipeline(self, infile, outfile):
        cmd = makepipeline(infile, self.steps, outfile)
        if self.debugging:
            print(cmd)
            cmd = 'set -x; ' + cmd
        return cmd


def makepipeline(infile, steps, outfile):
    # Build a list with for each command:
    # [input filename or '', command string, kind, output filename or '']

    list = []
    for cmd, kind in steps:
        list.append(['', cmd, kind, ''])
    #
    # Make sure there is at least one step
    #
    if not list:
        list.append(['', 'cat', '--', ''])
    #
    # Take care of the input and output ends
    #
    [cmd, kind] = list[0][1:3]
    if kind[0] == 'f' and not infile:
        list.insert(0, ['', 'cat', '--', ''])
    list[0][0] = infile
    #
    [cmd, kind] = list[-1][1:3]
    if kind[1] == 'f' and not outfile:
        list.append(['', 'cat', '--', ''])
    list[-1][-1] = outfile
    #
    # Invent temporary files to connect stages that need files
    #
    garbage = []
    for i in range(1, len(list)):
        lkind = list[i-1][2]
        rkind = list[i][2]
        if lkind[1] == 'f' or rkind[0] == 'f':
            (fd, temp) = tempfile.mkstemp()
            os.close(fd)
            garbage.append(temp)
            list[i-1][-1] = list[i][0] = temp
    #
    for item in list:
        [inf, cmd, kind, outf] = item
        if kind[1] == 'f':
            cmd = 'OUT=' + quote(outf) + '; ' + cmd
        if kind[0] == 'f':
            cmd = 'IN=' + quote(inf) + '; ' + cmd
        if kind[0] == '-' and inf:
            cmd = cmd + ' <' + quote(inf)
        if kind[1] == '-' and outf:
            cmd = cmd + ' >' + quote(outf)
        item[1] = cmd
    #
    cmdlist = list[0][1]
    for item in list[1:]:
        [cmd, kind] = item[1:3]
        if item[0] == '':
            if 'f' in kind:
                cmd = '{ ' + cmd + '; }'
            cmdlist = cmdlist + ' |\n' + cmd
        else:
            cmdlist = cmdlist + '\n' + cmd
    #
    if garbage:
        rmcmd = 'rm -f'
        for file in garbage:
            rmcmd = rmcmd + ' ' + quote(file)
        trapcmd = 'trap ' + quote(rmcmd + '; exit') + ' 1 2 3 13 14 15'
        cmdlist = trapcmd + '\n' + cmdlist + '\n' + rmcmd
    #
    return cmdlist
lib\pkgutil.py
"""Utilities to support packages."""

from functools import singledispatch as simplegeneric
import importlib
import importlib.util
import importlib.machinery
import os
import os.path
import sys
from types import ModuleType
import warnings

__all__ = [
    'get_importer', 'iter_importers', 'get_loader', 'find_loader',
    'walk_packages', 'iter_modules', 'get_data',
    'ImpImporter', 'ImpLoader', 'read_code', 'extend_path',
]


def _get_spec(finder, name):
    """Return the finder-specific module spec."""
    # Works with legacy finders.
    try:
        find_spec = finder.find_spec
    except AttributeError:
        loader = finder.find_module(name)
        if loader is None:
            return None
        return importlib.util.spec_from_loader(name, loader)
    else:
        return find_spec(name)


def read_code(stream):
    # This helper is needed in order for the PEP 302 emulation to
    # correctly handle compiled files
    import marshal

    magic = stream.read(4)
    if magic != importlib.util.MAGIC_NUMBER:
        return None

    stream.read(8) # Skip timestamp and size
    return marshal.load(stream)


def walk_packages(path=None, prefix='', onerror=None):
    """Yields (module_loader, name, ispkg) for all modules recursively
    on path, or, if path is None, all accessible modules.

    'path' should be either None or a list of paths to look for
    modules in.

    'prefix' is a string to output on the front of every module name
    on output.

    Note that this function must import all *packages* (NOT all
    modules!) on the given path, in order to access the __path__
    attribute to find submodules.

    'onerror' is a function which gets called with one argument (the
    name of the package which was being imported) if any exception
    occurs while trying to import a package.  If no onerror function is
    supplied, ImportErrors are caught and ignored, while all other
    exceptions are propagated, terminating the search.

    Examples:

    # list all modules python can access
    walk_packages()

    # list all submodules of ctypes
    walk_packages(ctypes.__path__, ctypes.__name__+'.')
    """

    def seen(p, m={}):
        if p in m:
            return True
        m[p] = True

    for importer, name, ispkg in iter_modules(path, prefix):
        yield importer, name, ispkg

        if ispkg:
            try:
                __import__(name)
            except ImportError:
                if onerror is not None:
                    onerror(name)
            except Exception:
                if onerror is not None:
                    onerror(name)
                else:
                    raise
            else:
                path = getattr(sys.modules[name], '__path__', None) or []

                # don't traverse path items we've seen before
                path = [p for p in path if not seen(p)]

                yield from walk_packages(path, name+'.', onerror)


def iter_modules(path=None, prefix=''):
    """Yields (module_loader, name, ispkg) for all submodules on path,
    or, if path is None, all top-level modules on sys.path.

    'path' should be either None or a list of paths to look for
    modules in.

    'prefix' is a string to output on the front of every module name
    on output.
    """

    if path is None:
        importers = iter_importers()
    else:
        importers = map(get_importer, path)

    yielded = {}
    for i in importers:
        for name, ispkg in iter_importer_modules(i, prefix):
            if name not in yielded:
                yielded[name] = 1
                yield i, name, ispkg


@simplegeneric
def iter_importer_modules(importer, prefix=''):
    if not hasattr(importer, 'iter_modules'):
        return []
    return importer.iter_modules(prefix)


# Implement a file walker for the normal importlib path hook
def _iter_file_finder_modules(importer, prefix=''):
    if importer.path is None or not os.path.isdir(importer.path):
        return

    yielded = {}
    import inspect
    try:
        filenames = os.listdir(importer.path)
    except OSError:
        # ignore unreadable directories like import does
        filenames = []
    filenames.sort()  # handle packages before same-named modules

    for fn in filenames:
        modname = inspect.getmodulename(fn)
        if modname=='__init__' or modname in yielded:
            continue

        path = os.path.join(importer.path, fn)
        ispkg = False

        if not modname and os.path.isdir(path) and '.' not in fn:
            modname = fn
            try:
                dircontents = os.listdir(path)
            except OSError:
                # ignore unreadable directories like import does
                dircontents = []
            for fn in dircontents:
                subname = inspect.getmodulename(fn)
                if subname=='__init__':
                    ispkg = True
                    break
            else:
                continue    # not a package

        if modname and '.' not in modname:
            yielded[modname] = 1
            yield prefix + modname, ispkg

iter_importer_modules.register(
    importlib.machinery.FileFinder, _iter_file_finder_modules)


def _import_imp():
    global imp
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', PendingDeprecationWarning)
        imp = importlib.import_module('imp')

class ImpImporter:
    """PEP 302 Importer that wraps Python's "classic" import algorithm

    ImpImporter(dirname) produces a PEP 302 importer that searches that
    directory.  ImpImporter(None) produces a PEP 302 importer that searches
    the current sys.path, plus any modules that are frozen or built-in.

    Note that ImpImporter does not currently support being used by placement
    on sys.meta_path.
    """

    def __init__(self, path=None):
        global imp
        warnings.warn("This emulation is deprecated, use 'importlib' instead",
             DeprecationWarning)
        _import_imp()
        self.path = path

    def find_module(self, fullname, path=None):
        # Note: we ignore 'path' argument since it is only used via meta_path
        subname = fullname.split(".")[-1]
        if subname != fullname and self.path is None:
            return None
        if self.path is None:
            path = None
        else:
            path = [os.path.realpath(self.path)]
        try:
            file, filename, etc = imp.find_module(subname, path)
        except ImportError:
            return None
        return ImpLoader(fullname, file, filename, etc)

    def iter_modules(self, prefix=''):
        if self.path is None or not os.path.isdir(self.path):
            return

        yielded = {}
        import inspect
        try:
            filenames = os.listdir(self.path)
        except OSError:
            # ignore unreadable directories like import does
            filenames = []
        filenames.sort()  # handle packages before same-named modules

        for fn in filenames:
            modname = inspect.getmodulename(fn)
            if modname=='__init__' or modname in yielded:
                continue

            path = os.path.join(self.path, fn)
            ispkg = False

            if not modname and os.path.isdir(path) and '.' not in fn:
                modname = fn
                try:
                    dircontents = os.listdir(path)
                except OSError:
                    # ignore unreadable directories like import does
                    dircontents = []
                for fn in dircontents:
                    subname = inspect.getmodulename(fn)
                    if subname=='__init__':
                        ispkg = True
                        break
                else:
                    continue    # not a package

            if modname and '.' not in modname:
                yielded[modname] = 1
                yield prefix + modname, ispkg


class ImpLoader:
    """PEP 302 Loader that wraps Python's "classic" import algorithm
    """
    code = source = None

    def __init__(self, fullname, file, filename, etc):
        warnings.warn("This emulation is deprecated, use 'importlib' instead",
                      DeprecationWarning)
        _import_imp()
        self.file = file
        self.filename = filename
        self.fullname = fullname
        self.etc = etc

    def load_module(self, fullname):
        self._reopen()
        try:
            mod = imp.load_module(fullname, self.file, self.filename, self.etc)
        finally:
            if self.file:
                self.file.close()
        # Note: we don't set __loader__ because we want the module to look
        # normal; i.e. this is just a wrapper for standard import machinery
        return mod

    def get_data(self, pathname):
        with open(pathname, "rb") as file:
            return file.read()

    def _reopen(self):
        if self.file and self.file.closed:
            mod_type = self.etc[2]
            if mod_type==imp.PY_SOURCE:
                self.file = open(self.filename, 'r')
            elif mod_type in (imp.PY_COMPILED, imp.C_EXTENSION):
                self.file = open(self.filename, 'rb')

    def _fix_name(self, fullname):
        if fullname is None:
            fullname = self.fullname
        elif fullname != self.fullname:
            raise ImportError("Loader for module %s cannot handle "
                              "module %s" % (self.fullname, fullname))
        return fullname

    def is_package(self, fullname):
        fullname = self._fix_name(fullname)
        return self.etc[2]==imp.PKG_DIRECTORY

    def get_code(self, fullname=None):
        fullname = self._fix_name(fullname)
        if self.code is None:
            mod_type = self.etc[2]
            if mod_type==imp.PY_SOURCE:
                source = self.get_source(fullname)
                self.code = compile(source, self.filename, 'exec')
            elif mod_type==imp.PY_COMPILED:
                self._reopen()
                try:
                    self.code = read_code(self.file)
                finally:
                    self.file.close()
            elif mod_type==imp.PKG_DIRECTORY:
                self.code = self._get_delegate().get_code()
        return self.code

    def get_source(self, fullname=None):
        fullname = self._fix_name(fullname)
        if self.source is None:
            mod_type = self.etc[2]
            if mod_type==imp.PY_SOURCE:
                self._reopen()
                try:
                    self.source = self.file.read()
                finally:
                    self.file.close()
            elif mod_type==imp.PY_COMPILED:
                if os.path.exists(self.filename[:-1]):
                    with open(self.filename[:-1], 'r') as f:
                        self.source = f.read()
            elif mod_type==imp.PKG_DIRECTORY:
                self.source = self._get_delegate().get_source()
        return self.source

    def _get_delegate(self):
        finder = ImpImporter(self.filename)
        spec = _get_spec(finder, '__init__')
        return spec.loader

    def get_filename(self, fullname=None):
        fullname = self._fix_name(fullname)
        mod_type = self.etc[2]
        if mod_type==imp.PKG_DIRECTORY:
            return self._get_delegate().get_filename()
        elif mod_type in (imp.PY_SOURCE, imp.PY_COMPILED, imp.C_EXTENSION):
            return self.filename
        return None


try:
    import zipimport
    from zipimport import zipimporter

    def iter_zipimport_modules(importer, prefix=''):
        dirlist = sorted(zipimport._zip_directory_cache[importer.archive])
        _prefix = importer.prefix
        plen = len(_prefix)
        yielded = {}
        import inspect
        for fn in dirlist:
            if not fn.startswith(_prefix):
                continue

            fn = fn[plen:].split(os.sep)

            if len(fn)==2 and fn[1].startswith('__init__.py'):
                if fn[0] not in yielded:
                    yielded[fn[0]] = 1
                    yield fn[0], True

            if len(fn)!=1:
                continue

            modname = inspect.getmodulename(fn[0])
            if modname=='__init__':
                continue

            if modname and '.' not in modname and modname not in yielded:
                yielded[modname] = 1
                yield prefix + modname, False

    iter_importer_modules.register(zipimporter, iter_zipimport_modules)

except ImportError:
    pass


def get_importer(path_item):
    """Retrieve a PEP 302 importer for the given path item

    The returned importer is cached in sys.path_importer_cache
    if it was newly created by a path hook.

    The cache (or part of it) can be cleared manually if a
    rescan of sys.path_hooks is necessary.
    """
    try:
        importer = sys.path_importer_cache[path_item]
    except KeyError:
        for path_hook in sys.path_hooks:
            try:
                importer = path_hook(path_item)
                sys.path_importer_cache.setdefault(path_item, importer)
                break
            except ImportError:
                pass
        else:
            importer = None
    return importer


def iter_importers(fullname=""):
    """Yield PEP 302 importers for the given module name

    If fullname contains a '.', the importers will be for the package
    containing fullname, otherwise they will be all registered top level
    importers (i.e. those on both sys.meta_path and sys.path_hooks).

    If the named module is in a package, that package is imported as a side
    effect of invoking this function.

    If no module name is specified, all top level importers are produced.
    """
    if fullname.startswith('.'):
        msg = "Relative module name {!r} not supported".format(fullname)
        raise ImportError(msg)
    if '.' in fullname:
        # Get the containing package's __path__
        pkg_name = fullname.rpartition(".")[0]
        pkg = importlib.import_module(pkg_name)
        path = getattr(pkg, '__path__', None)
        if path is None:
            return
    else:
        yield from sys.meta_path
        path = sys.path
    for item in path:
        yield get_importer(item)


def get_loader(module_or_name):
    """Get a PEP 302 "loader" object for module_or_name

    Returns None if the module cannot be found or imported.
    If the named module is not already imported, its containing package
    (if any) is imported, in order to establish the package __path__.
    """
    if module_or_name in sys.modules:
        module_or_name = sys.modules[module_or_name]
        if module_or_name is None:
            return None
    if isinstance(module_or_name, ModuleType):
        module = module_or_name
        loader = getattr(module, '__loader__', None)
        if loader is not None:
            return loader
        if getattr(module, '__spec__', None) is None:
            return None
        fullname = module.__name__
    else:
        fullname = module_or_name
    return find_loader(fullname)


def find_loader(fullname):
    """Find a PEP 302 "loader" object for fullname

    This is a backwards compatibility wrapper around
    importlib.util.find_spec that converts most failures to ImportError
    and only returns the loader rather than the full spec
    """
    if fullname.startswith('.'):
        msg = "Relative module name {!r} not supported".format(fullname)
        raise ImportError(msg)
    try:
        spec = importlib.util.find_spec(fullname)
    except (ImportError, AttributeError, TypeError, ValueError) as ex:
        # This hack fixes an impedance mismatch between pkgutil and
        # importlib, where the latter raises other errors for cases where
        # pkgutil previously raised ImportError
        msg = "Error while finding loader for {!r} ({}: {})"
        raise ImportError(msg.format(fullname, type(ex), ex)) from ex
    return spec.loader if spec is not None else None


def extend_path(path, name):
    """Extend a package's path.

    Intended use is to place the following code in a package's __init__.py:

        from pkgutil import extend_path
        __path__ = extend_path(__path__, __name__)

    This will add to the package's __path__ all subdirectories of
    directories on sys.path named after the package.  This is useful
    if one wants to distribute different parts of a single logical
    package as multiple directories.

    It also looks for *.pkg files beginning where * matches the name
    argument.  This feature is similar to *.pth files (see site.py),
    except that it doesn't special-case lines starting with 'import'.
    A *.pkg file is trusted at face value: apart from checking for
    duplicates, all entries found in a *.pkg file are added to the
    path, regardless of whether they are exist the filesystem.  (This
    is a feature.)

    If the input path is not a list (as is the case for frozen
    packages) it is returned unchanged.  The input path is not
    modified; an extended copy is returned.  Items are only appended
    to the copy at the end.

    It is assumed that sys.path is a sequence.  Items of sys.path that
    are not (unicode or 8-bit) strings referring to existing
    directories are ignored.  Unicode items of sys.path that cause
    errors when used as filenames may cause this function to raise an
    exception (in line with os.path.isdir() behavior).
    """

    if not isinstance(path, list):
        # This could happen e.g. when this is called from inside a
        # frozen package.  Return the path unchanged in that case.
        return path

    sname_pkg = name + ".pkg"

    path = path[:] # Start with a copy of the existing path

    parent_package, _, final_name = name.rpartition('.')
    if parent_package:
        try:
            search_path = sys.modules[parent_package].__path__
        except (KeyError, AttributeError):
            # We can't do anything: find_loader() returns None when
            # passed a dotted name.
            return path
    else:
        search_path = sys.path

    for dir in search_path:
        if not isinstance(dir, str):
            continue

        finder = get_importer(dir)
        if finder is not None:
            portions = []
            if hasattr(finder, 'find_spec'):
                spec = finder.find_spec(final_name)
                if spec is not None:
                    portions = spec.submodule_search_locations or []
            # Is this finder PEP 420 compliant?
            elif hasattr(finder, 'find_loader'):
                _, portions = finder.find_loader(final_name)

            for portion in portions:
                # XXX This may still add duplicate entries to path on
                # case-insensitive filesystems
                if portion not in path:
                    path.append(portion)

        # XXX Is this the right thing for subpackages like zope.app?
        # It looks for a file named "zope.app.pkg"
        pkgfile = os.path.join(dir, sname_pkg)
        if os.path.isfile(pkgfile):
            try:
                f = open(pkgfile)
            except OSError as msg:
                sys.stderr.write("Can't open %s: %s\n" %
                                 (pkgfile, msg))
            else:
                with f:
                    for line in f:
                        line = line.rstrip('\n')
                        if not line or line.startswith('#'):
                            continue
                        path.append(line) # Don't check for existence!

    return path


def get_data(package, resource):
    """Get a resource from a package.

    This is a wrapper round the PEP 302 loader get_data API. The package
    argument should be the name of a package, in standard module format
    (foo.bar). The resource argument should be in the form of a relative
    filename, using '/' as the path separator. The parent directory name '..'
    is not allowed, and nor is a rooted name (starting with a '/').

    The function returns a binary string, which is the contents of the
    specified resource.

    For packages located in the filesystem, which have already been imported,
    this is the rough equivalent of

        d = os.path.dirname(sys.modules[package].__file__)
        data = open(os.path.join(d, resource), 'rb').read()

    If the package cannot be located or loaded, or it uses a PEP 302 loader
    which does not support get_data(), then None is returned.
    """

    spec = importlib.util.find_spec(package)
    if spec is None:
        return None
    loader = spec.loader
    if loader is None or not hasattr(loader, 'get_data'):
        return None
    # XXX needs test
    mod = (sys.modules.get(package) or
           importlib._bootstrap._SpecMethods(spec).load())
    if mod is None or not hasattr(mod, '__file__'):
        return None

    # Modify the resource name to be compatible with the loader.get_data
    # signature - an os.path format "filename" starting with the dirname of
    # the package's __file__
    parts = resource.split('/')
    parts.insert(0, os.path.dirname(mod.__file__))
    resource_name = os.path.join(*parts)
    return loader.get_data(resource_name)
lib\platform.py
#!/usr/bin/env python3

""" This module tries to retrieve as much platform-identifying data as
    possible. It makes this information available via function APIs.

    If called from the command line, it prints the platform
    information concatenated as single string to stdout. The output
    format is useable as part of a filename.

"""
#    This module is maintained by Marc-Andre Lemburg <[email protected]>.
#    If you find problems, please submit bug reports/patches via the
#    Python bug tracker (http://bugs.python.org) and assign them to "lemburg".
#
#    Still needed:
#    * more support for WinCE
#    * support for MS-DOS (PythonDX ?)
#    * support for Amiga and other still unsupported platforms running Python
#    * support for additional Linux distributions
#
#    Many thanks to all those who helped adding platform-specific
#    checks (in no particular order):
#
#      Charles G Waldman, David Arnold, Gordon McMillan, Ben Darnell,
#      Jeff Bauer, Cliff Crawford, Ivan Van Laningham, Josef
#      Betancourt, Randall Hopper, Karl Putland, John Farrell, Greg
#      Andruk, Just van Rossum, Thomas Heller, Mark R. Levinson, Mark
#      Hammond, Bill Tutt, Hans Nowak, Uwe Zessin (OpenVMS support),
#      Colin Kong, Trent Mick, Guido van Rossum, Anthony Baxter, Steve
#      Dower
#
#    History:
#
#    <see CVS and SVN checkin messages for history>
#
#    1.0.8 - changed Windows support to read version from kernel32.dll
#    1.0.7 - added DEV_NULL
#    1.0.6 - added linux_distribution()
#    1.0.5 - fixed Java support to allow running the module on Jython
#    1.0.4 - added IronPython support
#    1.0.3 - added normalization of Windows system name
#    1.0.2 - added more Windows support
#    1.0.1 - reformatted to make doc.py happy
#    1.0.0 - reformatted a bit and checked into Python CVS
#    0.8.0 - added sys.version parser and various new access
#            APIs (python_version(), python_compiler(), etc.)
#    0.7.2 - fixed architecture() to use sizeof(pointer) where available
#    0.7.1 - added support for Caldera OpenLinux
#    0.7.0 - some fixes for WinCE; untabified the source file
#    0.6.2 - support for OpenVMS - requires version 1.5.2-V006 or higher and
#            vms_lib.getsyi() configured
#    0.6.1 - added code to prevent 'uname -p' on platforms which are
#            known not to support it
#    0.6.0 - fixed win32_ver() to hopefully work on Win95,98,NT and Win2k;
#            did some cleanup of the interfaces - some APIs have changed
#    0.5.5 - fixed another type in the MacOS code... should have
#            used more coffee today ;-)
#    0.5.4 - fixed a few typos in the MacOS code
#    0.5.3 - added experimental MacOS support; added better popen()
#            workarounds in _syscmd_ver() -- still not 100% elegant
#            though
#    0.5.2 - fixed uname() to return '' instead of 'unknown' in all
#            return values (the system uname command tends to return
#            'unknown' instead of just leaving the field emtpy)
#    0.5.1 - included code for slackware dist; added exception handlers
#            to cover up situations where platforms don't have os.popen
#            (e.g. Mac) or fail on socket.gethostname(); fixed libc
#            detection RE
#    0.5.0 - changed the API names referring to system commands to *syscmd*;
#            added java_ver(); made syscmd_ver() a private
#            API (was system_ver() in previous versions) -- use uname()
#            instead; extended the win32_ver() to also return processor
#            type information
#    0.4.0 - added win32_ver() and modified the platform() output for WinXX
#    0.3.4 - fixed a bug in _follow_symlinks()
#    0.3.3 - fixed popen() and "file" command invokation bugs
#    0.3.2 - added architecture() API and support for it in platform()
#    0.3.1 - fixed syscmd_ver() RE to support Windows NT
#    0.3.0 - added system alias support
#    0.2.3 - removed 'wince' again... oh well.
#    0.2.2 - added 'wince' to syscmd_ver() supported platforms
#    0.2.1 - added cache logic and changed the platform string format
#    0.2.0 - changed the API to use functions instead of module globals
#            since some action take too long to be run on module import
#    0.1.0 - first release
#
#    You can always get the latest version of this module at:
#
#             http://www.egenix.com/files/python/platform.py
#
#    If that URL should fail, try contacting the author.

__copyright__ = """
    Copyright (c) 1999-2000, Marc-Andre Lemburg; mailto:[email protected]
    Copyright (c) 2000-2010, eGenix.com Software GmbH; mailto:[email protected]

    Permission to use, copy, modify, and distribute this software and its
    documentation for any purpose and without fee or royalty is hereby granted,
    provided that the above copyright notice appear in all copies and that
    both that copyright notice and this permission notice appear in
    supporting documentation or portions thereof, including modifications,
    that you make.

    EGENIX.COM SOFTWARE GMBH DISCLAIMS ALL WARRANTIES WITH REGARD TO
    THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
    FITNESS, IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL,
    INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
    FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
    NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
    WITH THE USE OR PERFORMANCE OF THIS SOFTWARE !

"""

__version__ = '1.0.7'

import collections
import sys, os, re, subprocess

### Globals & Constants

# Determine the platform's /dev/null device
try:
    DEV_NULL = os.devnull
except AttributeError:
    # os.devnull was added in Python 2.4, so emulate it for earlier
    # Python versions
    if sys.platform in ('dos', 'win32', 'win16'):
        # Use the old CP/M NUL as device name
        DEV_NULL = 'NUL'
    else:
        # Standard Unix uses /dev/null
        DEV_NULL = '/dev/null'

# Directory to search for configuration information on Unix.
# Constant used by test_platform to test linux_distribution().
_UNIXCONFDIR = '/etc'

### Platform specific APIs

_libc_search = re.compile(b'(__libc_init)'
                          b'|'
                          b'(GLIBC_([0-9.]+))'
                          b'|'
                          br'(libc(_\w+)?\.so(?:\.(\d[0-9.]*))?)', re.ASCII)

def libc_ver(executable=sys.executable, lib='', version='',

             chunksize=16384):

    """ Tries to determine the libc version that the file executable
        (which defaults to the Python interpreter) is linked against.

        Returns a tuple of strings (lib,version) which default to the
        given parameters in case the lookup fails.

        Note that the function has intimate knowledge of how different
        libc versions add symbols to the executable and thus is probably
        only useable for executables compiled using gcc.

        The file is read and scanned in chunks of chunksize bytes.

    """
    if hasattr(os.path, 'realpath'):
        # Python 2.2 introduced os.path.realpath(); it is used
        # here to work around problems with Cygwin not being
        # able to open symlinks for reading
        executable = os.path.realpath(executable)
    f = open(executable, 'rb')
    binary = f.read(chunksize)
    pos = 0
    while 1:
        if b'libc' in binary or b'GLIBC' in binary:
            m = _libc_search.search(binary, pos)
        else:
            m = None
        if not m:
            binary = f.read(chunksize)
            if not binary:
                break
            pos = 0
            continue
        libcinit, glibc, glibcversion, so, threads, soversion = [
            s.decode('latin1') if s is not None else s
            for s in m.groups()]
        if libcinit and not lib:
            lib = 'libc'
        elif glibc:
            if lib != 'glibc':
                lib = 'glibc'
                version = glibcversion
            elif glibcversion > version:
                version = glibcversion
        elif so:
            if lib != 'glibc':
                lib = 'libc'
                if soversion and soversion > version:
                    version = soversion
                if threads and version[-len(threads):] != threads:
                    version = version + threads
        pos = m.end()
    f.close()
    return lib, version

def _dist_try_harder(distname, version, id):

    """ Tries some special tricks to get the distribution
        information in case the default method fails.

        Currently supports older SuSE Linux, Caldera OpenLinux and
        Slackware Linux distributions.

    """
    if os.path.exists('/var/adm/inst-log/info'):
        # SuSE Linux stores distribution information in that file
        distname = 'SuSE'
        for line in open('/var/adm/inst-log/info'):
            tv = line.split()
            if len(tv) == 2:
                tag, value = tv
            else:
                continue
            if tag == 'MIN_DIST_VERSION':
                version = value.strip()
            elif tag == 'DIST_IDENT':
                values = value.split('-')
                id = values[2]
        return distname, version, id

    if os.path.exists('/etc/.installed'):
        # Caldera OpenLinux has some infos in that file (thanks to Colin Kong)
        for line in open('/etc/.installed'):
            pkg = line.split('-')
            if len(pkg) >= 2 and pkg[0] == 'OpenLinux':
                # XXX does Caldera support non Intel platforms ? If yes,
                #     where can we find the needed id ?
                return 'OpenLinux', pkg[1], id

    if os.path.isdir('/usr/lib/setup'):
        # Check for slackware version tag file (thanks to Greg Andruk)
        verfiles = os.listdir('/usr/lib/setup')
        for n in range(len(verfiles)-1, -1, -1):
            if verfiles[n][:14] != 'slack-version-':
                del verfiles[n]
        if verfiles:
            verfiles.sort()
            distname = 'slackware'
            version = verfiles[-1][14:]
            return distname, version, id

    return distname, version, id

_release_filename = re.compile(r'(\w+)[-_](release|version)', re.ASCII)
_lsb_release_version = re.compile(r'(.+)'
                                   ' release '
                                   '([\d.]+)'
                                   '[^(]*(?:\((.+)\))?', re.ASCII)
_release_version = re.compile(r'([^0-9]+)'
                               '(?: release )?'
                               '([\d.]+)'
                               '[^(]*(?:\((.+)\))?', re.ASCII)

# See also http://www.novell.com/coolsolutions/feature/11251.html
# and http://linuxmafia.com/faq/Admin/release-files.html
# and http://data.linux-ntfs.org/rpm/whichrpm
# and http://www.die.net/doc/linux/man/man1/lsb_release.1.html

_supported_dists = (
    'SuSE', 'debian', 'fedora', 'redhat', 'centos',
    'mandrake', 'mandriva', 'rocks', 'slackware', 'yellowdog', 'gentoo',
    'UnitedLinux', 'turbolinux', 'arch', 'mageia')

def _parse_release_file(firstline):

    # Default to empty 'version' and 'id' strings.  Both defaults are used
    # when 'firstline' is empty.  'id' defaults to empty when an id can not
    # be deduced.
    version = ''
    id = ''

    # Parse the first line
    m = _lsb_release_version.match(firstline)
    if m is not None:
        # LSB format: "distro release x.x (codename)"
        return tuple(m.groups())

    # Pre-LSB format: "distro x.x (codename)"
    m = _release_version.match(firstline)
    if m is not None:
        return tuple(m.groups())

    # Unknown format... take the first two words
    l = firstline.strip().split()
    if l:
        version = l[0]
        if len(l) > 1:
            id = l[1]
    return '', version, id

def linux_distribution(distname='', version='', id='',

                       supported_dists=_supported_dists,
                       full_distribution_name=1):

    """ Tries to determine the name of the Linux OS distribution name.

        The function first looks for a distribution release file in
        /etc and then reverts to _dist_try_harder() in case no
        suitable files are found.

        supported_dists may be given to define the set of Linux
        distributions to look for. It defaults to a list of currently
        supported Linux distributions identified by their release file
        name.

        If full_distribution_name is true (default), the full
        distribution read from the OS is returned. Otherwise the short
        name taken from supported_dists is used.

        Returns a tuple (distname, version, id) which default to the
        args given as parameters.

    """
    try:
        etc = os.listdir(_UNIXCONFDIR)
    except OSError:
        # Probably not a Unix system
        return distname, version, id
    etc.sort()
    for file in etc:
        m = _release_filename.match(file)
        if m is not None:
            _distname, dummy = m.groups()
            if _distname in supported_dists:
                distname = _distname
                break
    else:
        return _dist_try_harder(distname, version, id)

    # Read the first line
    with open(os.path.join(_UNIXCONFDIR, file), 'r',
              encoding='utf-8', errors='surrogateescape') as f:
        firstline = f.readline()
    _distname, _version, _id = _parse_release_file(firstline)

    if _distname and full_distribution_name:
        distname = _distname
    if _version:
        version = _version
    if _id:
        id = _id
    return distname, version, id

# To maintain backwards compatibility:

def dist(distname='', version='', id='',

         supported_dists=_supported_dists):

    """ Tries to determine the name of the Linux OS distribution name.

        The function first looks for a distribution release file in
        /etc and then reverts to _dist_try_harder() in case no
        suitable files are found.

        Returns a tuple (distname, version, id) which default to the
        args given as parameters.

    """
    return linux_distribution(distname, version, id,
                              supported_dists=supported_dists,
                              full_distribution_name=0)

def popen(cmd, mode='r', bufsize=-1):

    """ Portable popen() interface.
    """
    import warnings
    warnings.warn('use os.popen instead', DeprecationWarning, stacklevel=2)
    return os.popen(cmd, mode, bufsize)

def _norm_version(version, build=''):

    """ Normalize the version and build strings and return a single
        version string using the format major.minor.build (or patchlevel).
    """
    l = version.split('.')
    if build:
        l.append(build)
    try:
        ints = map(int, l)
    except ValueError:
        strings = l
    else:
        strings = list(map(str, ints))
    version = '.'.join(strings[:3])
    return version

_ver_output = re.compile(r'(?:([\w ]+) ([\w.]+) '
                         '.*'
                         '\[.* ([\d.]+)\])')

# Examples of VER command output:
#
#   Windows 2000:  Microsoft Windows 2000 [Version 5.00.2195]
#   Windows XP:    Microsoft Windows XP [Version 5.1.2600]
#   Windows Vista: Microsoft Windows [Version 6.0.6002]
#
# Note that the "Version" string gets localized on different
# Windows versions.

def _syscmd_ver(system='', release='', version='',

               supported_platforms=('win32', 'win16', 'dos')):

    """ Tries to figure out the OS version used and returns
        a tuple (system, release, version).

        It uses the "ver" shell command for this which is known
        to exists on Windows, DOS. XXX Others too ?

        In case this fails, the given parameters are used as
        defaults.

    """
    if sys.platform not in supported_platforms:
        return system, release, version

    # Try some common cmd strings
    for cmd in ('ver', 'command /c ver', 'cmd /c ver'):
        try:
            pipe = popen(cmd)
            info = pipe.read()
            if pipe.close():
                raise OSError('command failed')
            # XXX How can I suppress shell errors from being written
            #     to stderr ?
        except OSError as why:
            #print 'Command %s failed: %s' % (cmd, why)
            continue
        else:
            break
    else:
        return system, release, version

    # Parse the output
    info = info.strip()
    m = _ver_output.match(info)
    if m is not None:
        system, release, version = m.groups()
        # Strip trailing dots from version and release
        if release[-1] == '.':
            release = release[:-1]
        if version[-1] == '.':
            version = version[:-1]
        # Normalize the version and build strings (eliminating additional
        # zeros)
        version = _norm_version(version)
    return system, release, version

_WIN32_CLIENT_RELEASES = {
    (5, 0): "2000",
    (5, 1): "XP",
    # Strictly, 5.2 client is XP 64-bit, but platform.py historically
    # has always called it 2003 Server
    (5, 2): "2003Server",
    (5, None): "post2003",

    (6, 0): "Vista",
    (6, 1): "7",
    (6, 2): "8",
    (6, 3): "8.1",
    (6, None): "post8.1",

    (10, 0): "10",
    (10, None): "post10",
}

# Server release name lookup will default to client names if necessary
_WIN32_SERVER_RELEASES = {
    (5, 2): "2003Server",

    (6, 0): "2008Server",
    (6, 1): "2008ServerR2",
    (6, 2): "2012Server",
    (6, 3): "2012ServerR2",
    (6, None): "post2012ServerR2",
}

def _get_real_winver(maj, min, build):
    if maj < 6 or (maj == 6 and min < 2):
        return maj, min, build

    from ctypes import (c_buffer, POINTER, byref, create_unicode_buffer,
                        Structure, WinDLL)
    from ctypes.wintypes import DWORD, HANDLE

    class VS_FIXEDFILEINFO(Structure):
        _fields_ = [
            ("dwSignature", DWORD),
            ("dwStrucVersion", DWORD),
            ("dwFileVersionMS", DWORD),
            ("dwFileVersionLS", DWORD),
            ("dwProductVersionMS", DWORD),
            ("dwProductVersionLS", DWORD),
            ("dwFileFlagsMask", DWORD),
            ("dwFileFlags", DWORD),
            ("dwFileOS", DWORD),
            ("dwFileType", DWORD),
            ("dwFileSubtype", DWORD),
            ("dwFileDateMS", DWORD),
            ("dwFileDateLS", DWORD),
        ]

    kernel32 = WinDLL('kernel32')
    version = WinDLL('version')

    # We will immediately double the length up to MAX_PATH, but the
    # path may be longer, so we retry until the returned string is
    # shorter than our buffer.
    name_len = actual_len = 130
    while actual_len == name_len:
        name_len *= 2
        name = create_unicode_buffer(name_len)
        actual_len = kernel32.GetModuleFileNameW(HANDLE(kernel32._handle),
                                                 name, len(name))
        if not actual_len:
            return maj, min, build

    size = version.GetFileVersionInfoSizeW(name, None)
    if not size:
        return maj, min, build

    ver_block = c_buffer(size)
    if (not version.GetFileVersionInfoW(name, None, size, ver_block) or
        not ver_block):
        return maj, min, build

    pvi = POINTER(VS_FIXEDFILEINFO)()
    if not version.VerQueryValueW(ver_block, "", byref(pvi), byref(DWORD())):
        return maj, min, build

    maj = pvi.contents.dwProductVersionMS >> 16
    min = pvi.contents.dwProductVersionMS & 0xFFFF
    build = pvi.contents.dwProductVersionLS >> 16

    return maj, min, build

def win32_ver(release='', version='', csd='', ptype=''):
    try:
        from sys import getwindowsversion
    except ImportError:
        return release, version, csd, ptype
    try:
        from winreg import OpenKeyEx, QueryValueEx, CloseKey, HKEY_LOCAL_MACHINE
    except ImportError:
        from _winreg import OpenKeyEx, QueryValueEx, CloseKey, HKEY_LOCAL_MACHINE

    winver = getwindowsversion()
    maj, min, build = _get_real_winver(*winver[:3])
    version = '{0}.{1}.{2}'.format(maj, min, build)

    release = (_WIN32_CLIENT_RELEASES.get((maj, min)) or
               _WIN32_CLIENT_RELEASES.get((maj, None)) or
               release)

    # getwindowsversion() reflect the compatibility mode Python is
    # running under, and so the service pack value is only going to be
    # valid if the versions match.
    if winver[:2] == (maj, min):
        try:
            csd = 'SP{}'.format(winver.service_pack_major)
        except AttributeError:
            if csd[:13] == 'Service Pack ':
                csd = 'SP' + csd[13:]

    # VER_NT_SERVER = 3
    if getattr(winver, 'product_type', None) == 3:
        release = (_WIN32_SERVER_RELEASES.get((maj, min)) or
                   _WIN32_SERVER_RELEASES.get((maj, None)) or
                   release)

    key = None
    try:
        key = OpenKeyEx(HKEY_LOCAL_MACHINE,
                        r'SOFTWARE\Microsoft\Windows NT\CurrentVersion')
        ptype = QueryValueEx(key, 'CurrentType')[0]
    except:
        pass
    finally:
        if key:
            CloseKey(key)

    return release, version, csd, ptype


def _mac_ver_xml():
    fn = '/System/Library/CoreServices/SystemVersion.plist'
    if not os.path.exists(fn):
        return None

    try:
        import plistlib
    except ImportError:
        return None

    with open(fn, 'rb') as f:
        pl = plistlib.load(f)
    release = pl['ProductVersion']
    versioninfo = ('', '', '')
    machine = os.uname().machine
    if machine in ('ppc', 'Power Macintosh'):
        # Canonical name
        machine = 'PowerPC'

    return release, versioninfo, machine


def mac_ver(release='', versioninfo=('', '', ''), machine=''):

    """ Get MacOS version information and return it as tuple (release,
        versioninfo, machine) with versioninfo being a tuple (version,
        dev_stage, non_release_version).

        Entries which cannot be determined are set to the parameter values
        which default to ''. All tuple entries are strings.
    """

    # First try reading the information from an XML file which should
    # always be present
    info = _mac_ver_xml()
    if info is not None:
        return info

    # If that also doesn't work return the default values
    return release, versioninfo, machine

def _java_getprop(name, default):

    from java.lang import System
    try:
        value = System.getProperty(name)
        if value is None:
            return default
        return value
    except AttributeError:
        return default

def java_ver(release='', vendor='', vminfo=('', '', ''), osinfo=('', '', '')):

    """ Version interface for Jython.

        Returns a tuple (release, vendor, vminfo, osinfo) with vminfo being
        a tuple (vm_name, vm_release, vm_vendor) and osinfo being a
        tuple (os_name, os_version, os_arch).

        Values which cannot be determined are set to the defaults
        given as parameters (which all default to '').

    """
    # Import the needed APIs
    try:
        import java.lang
    except ImportError:
        return release, vendor, vminfo, osinfo

    vendor = _java_getprop('java.vendor', vendor)
    release = _java_getprop('java.version', release)
    vm_name, vm_release, vm_vendor = vminfo
    vm_name = _java_getprop('java.vm.name', vm_name)
    vm_vendor = _java_getprop('java.vm.vendor', vm_vendor)
    vm_release = _java_getprop('java.vm.version', vm_release)
    vminfo = vm_name, vm_release, vm_vendor
    os_name, os_version, os_arch = osinfo
    os_arch = _java_getprop('java.os.arch', os_arch)
    os_name = _java_getprop('java.os.name', os_name)
    os_version = _java_getprop('java.os.version', os_version)
    osinfo = os_name, os_version, os_arch

    return release, vendor, vminfo, osinfo

### System name aliasing

def system_alias(system, release, version):

    """ Returns (system, release, version) aliased to common
        marketing names used for some systems.

        It also does some reordering of the information in some cases
        where it would otherwise cause confusion.

    """
    if system == 'Rhapsody':
        # Apple's BSD derivative
        # XXX How can we determine the marketing release number ?
        return 'MacOS X Server', system+release, version

    elif system == 'SunOS':
        # Sun's OS
        if release < '5':
            # These releases use the old name SunOS
            return system, release, version
        # Modify release (marketing release = SunOS release - 3)
        l = release.split('.')
        if l:
            try:
                major = int(l[0])
            except ValueError:
                pass
            else:
                major = major - 3
                l[0] = str(major)
                release = '.'.join(l)
        if release < '6':
            system = 'Solaris'
        else:
            # XXX Whatever the new SunOS marketing name is...
            system = 'Solaris'

    elif system == 'IRIX64':
        # IRIX reports IRIX64 on platforms with 64-bit support; yet it
        # is really a version and not a different platform, since 32-bit
        # apps are also supported..
        system = 'IRIX'
        if version:
            version = version + ' (64bit)'
        else:
            version = '64bit'

    elif system in ('win32', 'win16'):
        # In case one of the other tricks
        system = 'Windows'

    return system, release, version

### Various internal helpers

def _platform(*args):

    """ Helper to format the platform string in a filename
        compatible format e.g. "system-version-machine".
    """
    # Format the platform string
    platform = '-'.join(x.strip() for x in filter(len, args))

    # Cleanup some possible filename obstacles...
    platform = platform.replace(' ', '_')
    platform = platform.replace('/', '-')
    platform = platform.replace('\\', '-')
    platform = platform.replace(':', '-')
    platform = platform.replace(';', '-')
    platform = platform.replace('"', '-')
    platform = platform.replace('(', '-')
    platform = platform.replace(')', '-')

    # No need to report 'unknown' information...
    platform = platform.replace('unknown', '')

    # Fold '--'s and remove trailing '-'
    while 1:
        cleaned = platform.replace('--', '-')
        if cleaned == platform:
            break
        platform = cleaned
    while platform[-1] == '-':
        platform = platform[:-1]

    return platform

def _node(default=''):

    """ Helper to determine the node name of this machine.
    """
    try:
        import socket
    except ImportError:
        # No sockets...
        return default
    try:
        return socket.gethostname()
    except OSError:
        # Still not working...
        return default

def _follow_symlinks(filepath):

    """ In case filepath is a symlink, follow it until a
        real file is reached.
    """
    filepath = os.path.abspath(filepath)
    while os.path.islink(filepath):
        filepath = os.path.normpath(
            os.path.join(os.path.dirname(filepath), os.readlink(filepath)))
    return filepath

def _syscmd_uname(option, default=''):

    """ Interface to the system's uname command.
    """
    if sys.platform in ('dos', 'win32', 'win16'):
        # XXX Others too ?
        return default
    try:
        f = os.popen('uname %s 2> %s' % (option, DEV_NULL))
    except (AttributeError, OSError):
        return default
    output = f.read().strip()
    rc = f.close()
    if not output or rc:
        return default
    else:
        return output

def _syscmd_file(target, default=''):

    """ Interface to the system's file command.

        The function uses the -b option of the file command to have it
        omit the filename in its output. Follow the symlinks. It returns
        default in case the command should fail.

    """
    if sys.platform in ('dos', 'win32', 'win16'):
        # XXX Others too ?
        return default
    target = _follow_symlinks(target)
    try:
        proc = subprocess.Popen(['file', target],
                stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

    except (AttributeError, OSError):
        return default
    output = proc.communicate()[0].decode('latin-1')
    rc = proc.wait()
    if not output or rc:
        return default
    else:
        return output

### Information about the used architecture

# Default values for architecture; non-empty strings override the
# defaults given as parameters
_default_architecture = {
    'win32': ('', 'WindowsPE'),
    'win16': ('', 'Windows'),
    'dos': ('', 'MSDOS'),
}

def architecture(executable=sys.executable, bits='', linkage=''):

    """ Queries the given executable (defaults to the Python interpreter
        binary) for various architecture information.

        Returns a tuple (bits, linkage) which contains information about
        the bit architecture and the linkage format used for the
        executable. Both values are returned as strings.

        Values that cannot be determined are returned as given by the
        parameter presets. If bits is given as '', the sizeof(pointer)
        (or sizeof(long) on Python version < 1.5.2) is used as
        indicator for the supported pointer size.

        The function relies on the system's "file" command to do the
        actual work. This is available on most if not all Unix
        platforms. On some non-Unix platforms where the "file" command
        does not exist and the executable is set to the Python interpreter
        binary defaults from _default_architecture are used.

    """
    # Use the sizeof(pointer) as default number of bits if nothing
    # else is given as default.
    if not bits:
        import struct
        try:
            size = struct.calcsize('P')
        except struct.error:
            # Older installations can only query longs
            size = struct.calcsize('l')
        bits = str(size*8) + 'bit'

    # Get data from the 'file' system command
    if executable:
        fileout = _syscmd_file(executable, '')
    else:
        fileout = ''

    if not fileout and \
       executable == sys.executable:
        # "file" command did not return anything; we'll try to provide
        # some sensible defaults then...
        if sys.platform in _default_architecture:
            b, l = _default_architecture[sys.platform]
            if b:
                bits = b
            if l:
                linkage = l
        return bits, linkage

    if 'executable' not in fileout:
        # Format not supported
        return bits, linkage

    # Bits
    if '32-bit' in fileout:
        bits = '32bit'
    elif 'N32' in fileout:
        # On Irix only
        bits = 'n32bit'
    elif '64-bit' in fileout:
        bits = '64bit'

    # Linkage
    if 'ELF' in fileout:
        linkage = 'ELF'
    elif 'PE' in fileout:
        # E.g. Windows uses this format
        if 'Windows' in fileout:
            linkage = 'WindowsPE'
        else:
            linkage = 'PE'
    elif 'COFF' in fileout:
        linkage = 'COFF'
    elif 'MS-DOS' in fileout:
        linkage = 'MSDOS'
    else:
        # XXX the A.OUT format also falls under this class...
        pass

    return bits, linkage

### Portable uname() interface

uname_result = collections.namedtuple("uname_result",
                    "system node release version machine processor")

_uname_cache = None

def uname():

    """ Fairly portable uname interface. Returns a tuple
        of strings (system, node, release, version, machine, processor)
        identifying the underlying platform.

        Note that unlike the os.uname function this also returns
        possible processor information as an additional tuple entry.

        Entries which cannot be determined are set to ''.

    """
    global _uname_cache
    no_os_uname = 0

    if _uname_cache is not None:
        return _uname_cache

    processor = ''

    # Get some infos from the builtin os.uname API...
    try:
        system, node, release, version, machine = os.uname()
    except AttributeError:
        no_os_uname = 1

    if no_os_uname or not list(filter(None, (system, node, release, version, machine))):
        # Hmm, no there is either no uname or uname has returned
        #'unknowns'... we'll have to poke around the system then.
        if no_os_uname:
            system = sys.platform
            release = ''
            version = ''
            node = _node()
            machine = ''

        use_syscmd_ver = 1

        # Try win32_ver() on win32 platforms
        if system == 'win32':
            release, version, csd, ptype = win32_ver()
            if release and version:
                use_syscmd_ver = 0
            # Try to use the PROCESSOR_* environment variables
            # available on Win XP and later; see
            # http://support.microsoft.com/kb/888731 and
            # http://www.geocities.com/rick_lively/MANUALS/ENV/MSWIN/PROCESSI.HTM
            if not machine:
                # WOW64 processes mask the native architecture
                if "PROCESSOR_ARCHITEW6432" in os.environ:
                    machine = os.environ.get("PROCESSOR_ARCHITEW6432", '')
                else:
                    machine = os.environ.get('PROCESSOR_ARCHITECTURE', '')
            if not processor:
                processor = os.environ.get('PROCESSOR_IDENTIFIER', machine)

        # Try the 'ver' system command available on some
        # platforms
        if use_syscmd_ver:
            system, release, version = _syscmd_ver(system)
            # Normalize system to what win32_ver() normally returns
            # (_syscmd_ver() tends to return the vendor name as well)
            if system == 'Microsoft Windows':
                system = 'Windows'
            elif system == 'Microsoft' and release == 'Windows':
                # Under Windows Vista and Windows Server 2008,
                # Microsoft changed the output of the ver command. The
                # release is no longer printed.  This causes the
                # system and release to be misidentified.
                system = 'Windows'
                if '6.0' == version[:3]:
                    release = 'Vista'
                else:
                    release = ''

        # In case we still don't know anything useful, we'll try to
        # help ourselves
        if system in ('win32', 'win16'):
            if not version:
                if system == 'win32':
                    version = '32bit'
                else:
                    version = '16bit'
            system = 'Windows'

        elif system[:4] == 'java':
            release, vendor, vminfo, osinfo = java_ver()
            system = 'Java'
            version = ', '.join(vminfo)
            if not version:
                version = vendor

    # System specific extensions
    if system == 'OpenVMS':
        # OpenVMS seems to have release and version mixed up
        if not release or release == '0':
            release = version
            version = ''
        # Get processor information
        try:
            import vms_lib
        except ImportError:
            pass
        else:
            csid, cpu_number = vms_lib.getsyi('SYI$_CPU', 0)
            if (cpu_number >= 128):
                processor = 'Alpha'
            else:
                processor = 'VAX'
    if not processor:
        # Get processor information from the uname system command
        processor = _syscmd_uname('-p', '')

    #If any unknowns still exist, replace them with ''s, which are more portable
    if system == 'unknown':
        system = ''
    if node == 'unknown':
        node = ''
    if release == 'unknown':
        release = ''
    if version == 'unknown':
        version = ''
    if machine == 'unknown':
        machine = ''
    if processor == 'unknown':
        processor = ''

    #  normalize name
    if system == 'Microsoft' and release == 'Windows':
        system = 'Windows'
        release = 'Vista'

    _uname_cache = uname_result(system, node, release, version,
                                machine, processor)
    return _uname_cache

### Direct interfaces to some of the uname() return values

def system():

    """ Returns the system/OS name, e.g. 'Linux', 'Windows' or 'Java'.

        An empty string is returned if the value cannot be determined.

    """
    return uname().system

def node():

    """ Returns the computer's network name (which may not be fully
        qualified)

        An empty string is returned if the value cannot be determined.

    """
    return uname().node

def release():

    """ Returns the system's release, e.g. '2.2.0' or 'NT'

        An empty string is returned if the value cannot be determined.

    """
    return uname().release

def version():

    """ Returns the system's release version, e.g. '#3 on degas'

        An empty string is returned if the value cannot be determined.

    """
    return uname().version

def machine():

    """ Returns the machine type, e.g. 'i386'

        An empty string is returned if the value cannot be determined.

    """
    return uname().machine

def processor():

    """ Returns the (true) processor name, e.g. 'amdk6'

        An empty string is returned if the value cannot be
        determined. Note that many platforms do not provide this
        information or simply return the same value as for machine(),
        e.g.  NetBSD does this.

    """
    return uname().processor

### Various APIs for extracting information from sys.version

_sys_version_parser = re.compile(
    r'([\w.+]+)\s*'
    '\(#?([^,]+),\s*([\w ]+),\s*([\w :]+)\)\s*'
    '\[([^\]]+)\]?', re.ASCII)

_ironpython_sys_version_parser = re.compile(
    r'([\w.+]+)\s*'  # "version<space>"
    r'(?: DEBUG)?\s*' # DEBUG - IronPython DEBUG builds only
    r'\(([^,]+)\)\s*'  # "(fileversion)<space>"
    r'\[([^\]]+)\]?')  # "[compiler]"

_pypy_sys_version_parser = re.compile(
    r'([\w.+]+)\s*'
    '\(#?([^,]+),\s*([\w ]+),\s*([\w :]+)\)\s*'
    '\[PyPy [^\]]+\]?')

_sys_version_cache = {}

def _sys_version(sys_version=None):

    """ Returns a parsed version of Python's sys.version as tuple
        (name, version, branch, revision, buildno, builddate, compiler)
        referring to the Python implementation name, version, branch,
        revision, build number, build date/time as string and the compiler
        identification string.

        Note that unlike the Python sys.version, the returned value
        for the Python version will always include the patchlevel (it
        defaults to '.0').

        The function returns empty strings for tuple entries that
        cannot be determined.

        sys_version may be given to parse an alternative version
        string, e.g. if the version was read from a different Python
        interpreter.

    """
    # Get the Python version
    if sys_version is None:
        sys_version = sys.version

    # Try the cache first
    result = _sys_version_cache.get(sys_version, None)
    if result is not None:
        return result

    # Parse it
    if sys.implementation.name == "ironpython":
        # IronPython
        name = 'IronPython'
        match = _ironpython_sys_version_parser.match(sys_version)
        if match is None:
            raise ValueError(
                'failed to parse IronPython sys.version: %s' %
                repr(sys_version))

        version, _, _ = match.groups()
        buildno = ''
        builddate = ''
        compiler = ''

    elif sys.platform.startswith('java'):
        # Jython
        name = 'Jython'
        match = _sys_version_parser.match(sys_version)
        if match is None:
            raise ValueError(
                'failed to parse Jython sys.version: %s' %
                repr(sys_version))
        version, buildno, builddate, buildtime, _ = match.groups()
        compiler = sys.platform

    elif "PyPy" in sys_version:
        # PyPy
        name = "PyPy"
        match = _pypy_sys_version_parser.match(sys_version)
        if match is None:
            raise ValueError("failed to parse PyPy sys.version: %s" %
                             repr(sys_version))
        version, buildno, builddate, buildtime = match.groups()
        compiler = ""

    else:
        # CPython
        match = _sys_version_parser.match(sys_version)
        if match is None:
            raise ValueError(
                'failed to parse CPython sys.version: %s' %
                repr(sys_version))
        version, buildno, builddate, buildtime, compiler = \
              match.groups()
        name = 'CPython'
        builddate = builddate + ' ' + buildtime

    if hasattr(sys, '_mercurial'):
        _, branch, revision = sys._mercurial
    elif hasattr(sys, 'subversion'):
        # sys.subversion was added in Python 2.5
        _, branch, revision = sys.subversion
    else:
        branch = ''
        revision = ''

    # Add the patchlevel version if missing
    l = version.split('.')
    if len(l) == 2:
        l.append('0')
        version = '.'.join(l)

    # Build and cache the result
    result = (name, version, branch, revision, buildno, builddate, compiler)
    _sys_version_cache[sys_version] = result
    return result

def python_implementation():

    """ Returns a string identifying the Python implementation.

        Currently, the following implementations are identified:
          'CPython' (C implementation of Python),
          'IronPython' (.NET implementation of Python),
          'Jython' (Java implementation of Python),
          'PyPy' (Python implementation of Python).

    """
    return _sys_version()[0]

def python_version():

    """ Returns the Python version as string 'major.minor.patchlevel'

        Note that unlike the Python sys.version, the returned value
        will always include the patchlevel (it defaults to 0).

    """
    return _sys_version()[1]

def python_version_tuple():

    """ Returns the Python version as tuple (major, minor, patchlevel)
        of strings.

        Note that unlike the Python sys.version, the returned value
        will always include the patchlevel (it defaults to 0).

    """
    return tuple(_sys_version()[1].split('.'))

def python_branch():

    """ Returns a string identifying the Python implementation
        branch.

        For CPython this is the Subversion branch from which the
        Python binary was built.

        If not available, an empty string is returned.

    """

    return _sys_version()[2]

def python_revision():

    """ Returns a string identifying the Python implementation
        revision.

        For CPython this is the Subversion revision from which the
        Python binary was built.

        If not available, an empty string is returned.

    """
    return _sys_version()[3]

def python_build():

    """ Returns a tuple (buildno, builddate) stating the Python
        build number and date as strings.

    """
    return _sys_version()[4:6]

def python_compiler():

    """ Returns a string identifying the compiler used for compiling
        Python.

    """
    return _sys_version()[6]

### The Opus Magnum of platform strings :-)

_platform_cache = {}

def platform(aliased=0, terse=0):

    """ Returns a single string identifying the underlying platform
        with as much useful information as possible (but no more :).

        The output is intended to be human readable rather than
        machine parseable. It may look different on different
        platforms and this is intended.

        If "aliased" is true, the function will use aliases for
        various platforms that report system names which differ from
        their common names, e.g. SunOS will be reported as
        Solaris. The system_alias() function is used to implement
        this.

        Setting terse to true causes the function to return only the
        absolute minimum information needed to identify the platform.

    """
    result = _platform_cache.get((aliased, terse), None)
    if result is not None:
        return result

    # Get uname information and then apply platform specific cosmetics
    # to it...
    system, node, release, version, machine, processor = uname()
    if machine == processor:
        processor = ''
    if aliased:
        system, release, version = system_alias(system, release, version)

    if system == 'Windows':
        # MS platforms
        rel, vers, csd, ptype = win32_ver(version)
        if terse:
            platform = _platform(system, release)
        else:
            platform = _platform(system, release, version, csd)

    elif system in ('Linux',):
        # Linux based systems
        distname, distversion, distid = dist('')
        if distname and not terse:
            platform = _platform(system, release, machine, processor,
                                 'with',
                                 distname, distversion, distid)
        else:
            # If the distribution name is unknown check for libc vs. glibc
            libcname, libcversion = libc_ver(sys.executable)
            platform = _platform(system, release, machine, processor,
                                 'with',
                                 libcname+libcversion)
    elif system == 'Java':
        # Java platforms
        r, v, vminfo, (os_name, os_version, os_arch) = java_ver()
        if terse or not os_name:
            platform = _platform(system, release, version)
        else:
            platform = _platform(system, release, version,
                                 'on',
                                 os_name, os_version, os_arch)

    elif system == 'MacOS':
        # MacOS platforms
        if terse:
            platform = _platform(system, release)
        else:
            platform = _platform(system, release, machine)

    else:
        # Generic handler
        if terse:
            platform = _platform(system, release)
        else:
            bits, linkage = architecture(sys.executable)
            platform = _platform(system, release, machine,
                                 processor, bits, linkage)

    _platform_cache[(aliased, terse)] = platform
    return platform

### Command line interface

if __name__ == '__main__':
    # Default is to print the aliased verbose platform string
    terse = ('terse' in sys.argv or '--terse' in sys.argv)
    aliased = (not 'nonaliased' in sys.argv and not '--nonaliased' in sys.argv)
    print(platform(aliased, terse))
    sys.exit(0)
lib\plistlib.py
r"""plistlib.py -- a tool to generate and parse MacOSX .plist files.

The property list (.plist) file format is a simple XML pickle supporting
basic object types, like dictionaries, lists, numbers and strings.
Usually the top level object is a dictionary.

To write out a plist file, use the dump(value, file)
function. 'value' is the top level object, 'file' is
a (writable) file object.

To parse a plist from a file, use the load(file) function,
with a (readable) file object as the only argument. It
returns the top level object (again, usually a dictionary).

To work with plist data in bytes objects, you can use loads()
and dumps().

Values can be strings, integers, floats, booleans, tuples, lists,
dictionaries (but only with string keys), Data, bytes, bytearray, or
datetime.datetime objects.

Generate Plist example:

    pl = dict(
        aString = "Doodah",
        aList = ["A", "B", 12, 32.1, [1, 2, 3]],
        aFloat = 0.1,
        anInt = 728,
        aDict = dict(
            anotherString = "<hello & hi there!>",
            aUnicodeValue = "M\xe4ssig, Ma\xdf",
            aTrueValue = True,
            aFalseValue = False,
        ),
        someData = b"<binary gunk>",
        someMoreData = b"<lots of binary gunk>" * 10,
        aDate = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())),
    )
    with open(fileName, 'wb') as fp:
        dump(pl, fp)

Parse Plist example:

    with open(fileName, 'rb') as fp:
        pl = load(fp)
    print(pl["aKey"])
"""
__all__ = [
    "readPlist", "writePlist", "readPlistFromBytes", "writePlistToBytes",
    "Plist", "Data", "Dict", "FMT_XML", "FMT_BINARY",
    "load", "dump", "loads", "dumps"
]

import binascii
import codecs
import contextlib
import datetime
import enum
from io import BytesIO
import itertools
import os
import re
import struct
from warnings import warn
from xml.parsers.expat import ParserCreate


PlistFormat = enum.Enum('PlistFormat', 'FMT_XML FMT_BINARY', module=__name__)
globals().update(PlistFormat.__members__)


#
#
# Deprecated functionality
#
#


class _InternalDict(dict):

    # This class is needed while Dict is scheduled for deprecation:
    # we only need to warn when a *user* instantiates Dict or when
    # the "attribute notation for dict keys" is used.
    __slots__ = ()

    def __getattr__(self, attr):
        try:
            value = self[attr]
        except KeyError:
            raise AttributeError(attr)
        warn("Attribute access from plist dicts is deprecated, use d[key] "
             "notation instead", DeprecationWarning, 2)
        return value

    def __setattr__(self, attr, value):
        warn("Attribute access from plist dicts is deprecated, use d[key] "
             "notation instead", DeprecationWarning, 2)
        self[attr] = value

    def __delattr__(self, attr):
        try:
            del self[attr]
        except KeyError:
            raise AttributeError(attr)
        warn("Attribute access from plist dicts is deprecated, use d[key] "
             "notation instead", DeprecationWarning, 2)


class Dict(_InternalDict):

    def __init__(self, **kwargs):
        warn("The plistlib.Dict class is deprecated, use builtin dict instead",
             DeprecationWarning, 2)
        super().__init__(**kwargs)


@contextlib.contextmanager
def _maybe_open(pathOrFile, mode):
    if isinstance(pathOrFile, str):
        with open(pathOrFile, mode) as fp:
            yield fp

    else:
        yield pathOrFile


class Plist(_InternalDict):
    """This class has been deprecated. Use dump() and load()
    functions instead, together with regular dict objects.
    """

    def __init__(self, **kwargs):
        warn("The Plist class is deprecated, use the load() and "
             "dump() functions instead", DeprecationWarning, 2)
        super().__init__(**kwargs)

    @classmethod
    def fromFile(cls, pathOrFile):
        """Deprecated. Use the load() function instead."""
        with _maybe_open(pathOrFile, 'rb') as fp:
            value = load(fp)
        plist = cls()
        plist.update(value)
        return plist

    def write(self, pathOrFile):
        """Deprecated. Use the dump() function instead."""
        with _maybe_open(pathOrFile, 'wb') as fp:
            dump(self, fp)


def readPlist(pathOrFile):
    """
    Read a .plist from a path or file. pathOrFile should either
    be a file name, or a readable binary file object.

    This function is deprecated, use load instead.
    """
    warn("The readPlist function is deprecated, use load() instead",
        DeprecationWarning, 2)

    with _maybe_open(pathOrFile, 'rb') as fp:
        return load(fp, fmt=None, use_builtin_types=False,
            dict_type=_InternalDict)

def writePlist(value, pathOrFile):
    """
    Write 'value' to a .plist file. 'pathOrFile' may either be a
    file name or a (writable) file object.

    This function is deprecated, use dump instead.
    """
    warn("The writePlist function is deprecated, use dump() instead",
        DeprecationWarning, 2)
    with _maybe_open(pathOrFile, 'wb') as fp:
        dump(value, fp, fmt=FMT_XML, sort_keys=True, skipkeys=False)


def readPlistFromBytes(data):
    """
    Read a plist data from a bytes object. Return the root object.

    This function is deprecated, use loads instead.
    """
    warn("The readPlistFromBytes function is deprecated, use loads() instead",
        DeprecationWarning, 2)
    return load(BytesIO(data), fmt=None, use_builtin_types=False,
        dict_type=_InternalDict)


def writePlistToBytes(value):
    """
    Return 'value' as a plist-formatted bytes object.

    This function is deprecated, use dumps instead.
    """
    warn("The writePlistToBytes function is deprecated, use dumps() instead",
        DeprecationWarning, 2)
    f = BytesIO()
    dump(value, f, fmt=FMT_XML, sort_keys=True, skipkeys=False)
    return f.getvalue()


class Data:
    """
    Wrapper for binary data.

    This class is deprecated, use a bytes object instead.
    """

    def __init__(self, data):
        if not isinstance(data, bytes):
            raise TypeError("data must be as bytes")
        self.data = data

    @classmethod
    def fromBase64(cls, data):
        # base64.decodebytes just calls binascii.a2b_base64;
        # it seems overkill to use both base64 and binascii.
        return cls(_decode_base64(data))

    def asBase64(self, maxlinelength=76):
        return _encode_base64(self.data, maxlinelength)

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.data == other.data
        elif isinstance(other, str):
            return self.data == other
        else:
            return id(self) == id(other)

    def __repr__(self):
        return "%s(%s)" % (self.__class__.__name__, repr(self.data))

#
#
# End of deprecated functionality
#
#


#
# XML support
#


# XML 'header'
PLISTHEADER = b"""\
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
"""


# Regex to find any control chars, except for \t \n and \r
_controlCharPat = re.compile(
    r"[\x00\x01\x02\x03\x04\x05\x06\x07\x08\x0b\x0c\x0e\x0f"
    r"\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f]")

def _encode_base64(s, maxlinelength=76):
    # copied from base64.encodebytes(), with added maxlinelength argument
    maxbinsize = (maxlinelength//4)*3
    pieces = []
    for i in range(0, len(s), maxbinsize):
        chunk = s[i : i + maxbinsize]
        pieces.append(binascii.b2a_base64(chunk))
    return b''.join(pieces)

def _decode_base64(s):
    if isinstance(s, str):
        return binascii.a2b_base64(s.encode("utf-8"))

    else:
        return binascii.a2b_base64(s)

# Contents should conform to a subset of ISO 8601
# (in particular, YYYY '-' MM '-' DD 'T' HH ':' MM ':' SS 'Z'.  Smaller units
# may be omitted with #  a loss of precision)
_dateParser = re.compile(r"(?P<year>\d\d\d\d)(?:-(?P<month>\d\d)(?:-(?P<day>\d\d)(?:T(?P<hour>\d\d)(?::(?P<minute>\d\d)(?::(?P<second>\d\d))?)?)?)?)?Z", re.ASCII)


def _date_from_string(s):
    order = ('year', 'month', 'day', 'hour', 'minute', 'second')
    gd = _dateParser.match(s).groupdict()
    lst = []
    for key in order:
        val = gd[key]
        if val is None:
            break
        lst.append(int(val))
    return datetime.datetime(*lst)


def _date_to_string(d):
    return '%04d-%02d-%02dT%02d:%02d:%02dZ' % (
        d.year, d.month, d.day,
        d.hour, d.minute, d.second
    )

def _escape(text):
    m = _controlCharPat.search(text)
    if m is not None:
        raise ValueError("strings can't contains control characters; "
                         "use bytes instead")
    text = text.replace("\r\n", "\n")       # convert DOS line endings
    text = text.replace("\r", "\n")         # convert Mac line endings
    text = text.replace("&", "&amp;")       # escape '&'
    text = text.replace("<", "&lt;")        # escape '<'
    text = text.replace(">", "&gt;")        # escape '>'
    return text

class _PlistParser:
    def __init__(self, use_builtin_types, dict_type):
        self.stack = []
        self.current_key = None
        self.root = None
        self._use_builtin_types = use_builtin_types
        self._dict_type = dict_type

    def parse(self, fileobj):
        self.parser = ParserCreate()
        self.parser.StartElementHandler = self.handle_begin_element
        self.parser.EndElementHandler = self.handle_end_element
        self.parser.CharacterDataHandler = self.handle_data
        self.parser.ParseFile(fileobj)
        return self.root

    def handle_begin_element(self, element, attrs):
        self.data = []
        handler = getattr(self, "begin_" + element, None)
        if handler is not None:
            handler(attrs)

    def handle_end_element(self, element):
        handler = getattr(self, "end_" + element, None)
        if handler is not None:
            handler()

    def handle_data(self, data):
        self.data.append(data)

    def add_object(self, value):
        if self.current_key is not None:
            if not isinstance(self.stack[-1], type({})):
                raise ValueError("unexpected element at line %d" %
                                 self.parser.CurrentLineNumber)
            self.stack[-1][self.current_key] = value
            self.current_key = None
        elif not self.stack:
            # this is the root object
            self.root = value
        else:
            if not isinstance(self.stack[-1], type([])):
                raise ValueError("unexpected element at line %d" %
                                 self.parser.CurrentLineNumber)
            self.stack[-1].append(value)

    def get_data(self):
        data = ''.join(self.data)
        self.data = []
        return data

    # element handlers

    def begin_dict(self, attrs):
        d = self._dict_type()
        self.add_object(d)
        self.stack.append(d)

    def end_dict(self):
        if self.current_key:
            raise ValueError("missing value for key '%s' at line %d" %
                             (self.current_key,self.parser.CurrentLineNumber))
        self.stack.pop()

    def end_key(self):
        if self.current_key or not isinstance(self.stack[-1], type({})):
            raise ValueError("unexpected key at line %d" %
                             self.parser.CurrentLineNumber)
        self.current_key = self.get_data()

    def begin_array(self, attrs):
        a = []
        self.add_object(a)
        self.stack.append(a)

    def end_array(self):
        self.stack.pop()

    def end_true(self):
        self.add_object(True)

    def end_false(self):
        self.add_object(False)

    def end_integer(self):
        self.add_object(int(self.get_data()))

    def end_real(self):
        self.add_object(float(self.get_data()))

    def end_string(self):
        self.add_object(self.get_data())

    def end_data(self):
        if self._use_builtin_types:
            self.add_object(_decode_base64(self.get_data()))

        else:
            self.add_object(Data.fromBase64(self.get_data()))

    def end_date(self):
        self.add_object(_date_from_string(self.get_data()))


class _DumbXMLWriter:
    def __init__(self, file, indent_level=0, indent="\t"):
        self.file = file
        self.stack = []
        self._indent_level = indent_level
        self.indent = indent

    def begin_element(self, element):
        self.stack.append(element)
        self.writeln("<%s>" % element)
        self._indent_level += 1

    def end_element(self, element):
        assert self._indent_level > 0
        assert self.stack.pop() == element
        self._indent_level -= 1
        self.writeln("</%s>" % element)

    def simple_element(self, element, value=None):
        if value is not None:
            value = _escape(value)
            self.writeln("<%s>%s</%s>" % (element, value, element))

        else:
            self.writeln("<%s/>" % element)

    def writeln(self, line):
        if line:
            # plist has fixed encoding of utf-8

            # XXX: is this test needed?
            if isinstance(line, str):
                line = line.encode('utf-8')
            self.file.write(self._indent_level * self.indent)
            self.file.write(line)
        self.file.write(b'\n')


class _PlistWriter(_DumbXMLWriter):
    def __init__(
            self, file, indent_level=0, indent=b"\t", writeHeader=1,
            sort_keys=True, skipkeys=False):

        if writeHeader:
            file.write(PLISTHEADER)
        _DumbXMLWriter.__init__(self, file, indent_level, indent)
        self._sort_keys = sort_keys
        self._skipkeys = skipkeys

    def write(self, value):
        self.writeln("<plist version=\"1.0\">")
        self.write_value(value)
        self.writeln("</plist>")

    def write_value(self, value):
        if isinstance(value, str):
            self.simple_element("string", value)

        elif value is True:
            self.simple_element("true")

        elif value is False:
            self.simple_element("false")

        elif isinstance(value, int):
            if -1 << 63 <= value < 1 << 64:
                self.simple_element("integer", "%d" % value)
            else:
                raise OverflowError(value)

        elif isinstance(value, float):
            self.simple_element("real", repr(value))

        elif isinstance(value, dict):
            self.write_dict(value)

        elif isinstance(value, Data):
            self.write_data(value)

        elif isinstance(value, (bytes, bytearray)):
            self.write_bytes(value)

        elif isinstance(value, datetime.datetime):
            self.simple_element("date", _date_to_string(value))

        elif isinstance(value, (tuple, list)):
            self.write_array(value)

        else:
            raise TypeError("unsupported type: %s" % type(value))

    def write_data(self, data):
        self.write_bytes(data.data)

    def write_bytes(self, data):
        self.begin_element("data")
        self._indent_level -= 1
        maxlinelength = max(
            16,
            76 - len(self.indent.replace(b"\t", b" " * 8) * self._indent_level))

        for line in _encode_base64(data, maxlinelength).split(b"\n"):
            if line:
                self.writeln(line)
        self._indent_level += 1
        self.end_element("data")

    def write_dict(self, d):
        if d:
            self.begin_element("dict")
            if self._sort_keys:
                items = sorted(d.items())
            else:
                items = d.items()

            for key, value in items:
                if not isinstance(key, str):
                    if self._skipkeys:
                        continue
                    raise TypeError("keys must be strings")
                self.simple_element("key", key)
                self.write_value(value)
            self.end_element("dict")

        else:
            self.simple_element("dict")

    def write_array(self, array):
        if array:
            self.begin_element("array")
            for value in array:
                self.write_value(value)
            self.end_element("array")

        else:
            self.simple_element("array")


def _is_fmt_xml(header):
    prefixes = (b'<?xml', b'<plist')

    for pfx in prefixes:
        if header.startswith(pfx):
            return True

    # Also check for alternative XML encodings, this is slightly
    # overkill because the Apple tools (and plistlib) will not
    # generate files with these encodings.
    for bom, encoding in (
                (codecs.BOM_UTF8, "utf-8"),
                (codecs.BOM_UTF16_BE, "utf-16-be"),
                (codecs.BOM_UTF16_LE, "utf-16-le"),
                # expat does not support utf-32
                #(codecs.BOM_UTF32_BE, "utf-32-be"),
                #(codecs.BOM_UTF32_LE, "utf-32-le"),
            ):
        if not header.startswith(bom):
            continue

        for start in prefixes:
            prefix = bom + start.decode('ascii').encode(encoding)
            if header[:len(prefix)] == prefix:
                return True

    return False

#
# Binary Plist
#


class InvalidFileException (ValueError):
    def __init__(self, message="Invalid file"):
        ValueError.__init__(self, message)

_BINARY_FORMAT = {1: 'B', 2: 'H', 4: 'L', 8: 'Q'}

_undefined = object()

class _BinaryPlistParser:
    """
    Read or write a binary plist file, following the description of the binary
    format.  Raise InvalidFileException in case of error, otherwise return the
    root object.

    see also: http://opensource.apple.com/source/CF/CF-744.18/CFBinaryPList.c
    """
    def __init__(self, use_builtin_types, dict_type):
        self._use_builtin_types = use_builtin_types
        self._dict_type = dict_type

    def parse(self, fp):
        try:
            # The basic file format:
            # HEADER
            # object...
            # refid->offset...
            # TRAILER
            self._fp = fp
            self._fp.seek(-32, os.SEEK_END)
            trailer = self._fp.read(32)
            if len(trailer) != 32:
                raise InvalidFileException()
            (
                offset_size, self._ref_size, num_objects, top_object,
                offset_table_offset
            ) = struct.unpack('>6xBBQQQ', trailer)
            self._fp.seek(offset_table_offset)
            self._object_offsets = self._read_ints(num_objects, offset_size)
            self._objects = [_undefined] * num_objects
            return self._read_object(top_object)

        except (OSError, IndexError, struct.error):
            raise InvalidFileException()

    def _get_size(self, tokenL):
        """ return the size of the next object."""
        if tokenL == 0xF:
            m = self._fp.read(1)[0] & 0x3
            s = 1 << m
            f = '>' + _BINARY_FORMAT[s]
            return struct.unpack(f, self._fp.read(s))[0]

        return tokenL

    def _read_ints(self, n, size):
        data = self._fp.read(size * n)
        if size in _BINARY_FORMAT:
            return struct.unpack('>' + _BINARY_FORMAT[size] * n, data)
        else:
            return tuple(int.from_bytes(data[i: i + size], 'big')
                         for i in range(0, size * n, size))

    def _read_refs(self, n):
        return self._read_ints(n, self._ref_size)

    def _read_object(self, ref):
        """
        read the object by reference.

        May recursively read sub-objects (content of an array/dict/set)
        """
        result = self._objects[ref]
        if result is not _undefined:
            return result

        offset = self._object_offsets[ref]
        self._fp.seek(offset)
        token = self._fp.read(1)[0]
        tokenH, tokenL = token & 0xF0, token & 0x0F

        if token == 0x00:
            result = None

        elif token == 0x08:
            result = False

        elif token == 0x09:
            result = True

        # The referenced source code also mentions URL (0x0c, 0x0d) and
        # UUID (0x0e), but neither can be generated using the Cocoa libraries.

        elif token == 0x0f:
            result = b''

        elif tokenH == 0x10:  # int
            result = int.from_bytes(self._fp.read(1 << tokenL),
                                    'big', signed=tokenL >= 3)

        elif token == 0x22: # real
            result = struct.unpack('>f', self._fp.read(4))[0]

        elif token == 0x23: # real
            result = struct.unpack('>d', self._fp.read(8))[0]

        elif token == 0x33:  # date
            f = struct.unpack('>d', self._fp.read(8))[0]
            # timestamp 0 of binary plists corresponds to 1/1/2001
            # (year of Mac OS X 10.0), instead of 1/1/1970.
            result = datetime.datetime.utcfromtimestamp(f + (31 * 365 + 8) * 86400)

        elif tokenH == 0x40:  # data
            s = self._get_size(tokenL)
            if self._use_builtin_types:
                result = self._fp.read(s)
            else:
                result = Data(self._fp.read(s))

        elif tokenH == 0x50:  # ascii string
            s = self._get_size(tokenL)
            result =  self._fp.read(s).decode('ascii')
            result = result

        elif tokenH == 0x60:  # unicode string
            s = self._get_size(tokenL)
            result = self._fp.read(s * 2).decode('utf-16be')

        # tokenH == 0x80 is documented as 'UID' and appears to be used for
        # keyed-archiving, not in plists.

        elif tokenH == 0xA0:  # array
            s = self._get_size(tokenL)
            obj_refs = self._read_refs(s)
            result = []
            self._objects[ref] = result
            result.extend(self._read_object(x) for x in obj_refs)

        # tokenH == 0xB0 is documented as 'ordset', but is not actually
        # implemented in the Apple reference code.

        # tokenH == 0xC0 is documented as 'set', but sets cannot be used in
        # plists.

        elif tokenH == 0xD0:  # dict
            s = self._get_size(tokenL)
            key_refs = self._read_refs(s)
            obj_refs = self._read_refs(s)
            result = self._dict_type()
            self._objects[ref] = result
            for k, o in zip(key_refs, obj_refs):
                result[self._read_object(k)] = self._read_object(o)

        else:
            raise InvalidFileException()

        self._objects[ref] = result
        return result

def _count_to_size(count):
    if count < 1 << 8:
        return 1

    elif count < 1 << 16:
        return 2

    elif count << 1 << 32:
        return 4

    else:
        return 8

_scalars = (str, int, float, datetime.datetime, bytes)

class _BinaryPlistWriter (object):
    def __init__(self, fp, sort_keys, skipkeys):
        self._fp = fp
        self._sort_keys = sort_keys
        self._skipkeys = skipkeys

    def write(self, value):

        # Flattened object list:
        self._objlist = []

        # Mappings from object->objectid
        # First dict has (type(object), object) as the key,
        # second dict is used when object is not hashable and
        # has id(object) as the key.
        self._objtable = {}
        self._objidtable = {}

        # Create list of all objects in the plist
        self._flatten(value)

        # Size of object references in serialized containers
        # depends on the number of objects in the plist.
        num_objects = len(self._objlist)
        self._object_offsets = [0]*num_objects
        self._ref_size = _count_to_size(num_objects)

        self._ref_format = _BINARY_FORMAT[self._ref_size]

        # Write file header
        self._fp.write(b'bplist00')

        # Write object list
        for obj in self._objlist:
            self._write_object(obj)

        # Write refnum->object offset table
        top_object = self._getrefnum(value)
        offset_table_offset = self._fp.tell()
        offset_size = _count_to_size(offset_table_offset)
        offset_format = '>' + _BINARY_FORMAT[offset_size] * num_objects
        self._fp.write(struct.pack(offset_format, *self._object_offsets))

        # Write trailer
        sort_version = 0
        trailer = (
            sort_version, offset_size, self._ref_size, num_objects,
            top_object, offset_table_offset
        )
        self._fp.write(struct.pack('>5xBBBQQQ', *trailer))

    def _flatten(self, value):
        # First check if the object is in the object table, not used for
        # containers to ensure that two subcontainers with the same contents
        # will be serialized as distinct values.
        if isinstance(value, _scalars):
            if (type(value), value) in self._objtable:
                return

        elif isinstance(value, Data):
            if (type(value.data), value.data) in self._objtable:
                return

        elif id(value) in self._objidtable:
            return

        # Add to objectreference map
        refnum = len(self._objlist)
        self._objlist.append(value)
        if isinstance(value, _scalars):
            self._objtable[(type(value), value)] = refnum
        elif isinstance(value, Data):
            self._objtable[(type(value.data), value.data)] = refnum
        else:
            self._objidtable[id(value)] = refnum

        # And finally recurse into containers
        if isinstance(value, dict):
            keys = []
            values = []
            items = value.items()
            if self._sort_keys:
                items = sorted(items)

            for k, v in items:
                if not isinstance(k, str):
                    if self._skipkeys:
                        continue
                    raise TypeError("keys must be strings")
                keys.append(k)
                values.append(v)

            for o in itertools.chain(keys, values):
                self._flatten(o)

        elif isinstance(value, (list, tuple)):
            for o in value:
                self._flatten(o)

    def _getrefnum(self, value):
        if isinstance(value, _scalars):
            return self._objtable[(type(value), value)]
        elif isinstance(value, Data):
            return self._objtable[(type(value.data), value.data)]
        else:
            return self._objidtable[id(value)]

    def _write_size(self, token, size):
        if size < 15:
            self._fp.write(struct.pack('>B', token | size))

        elif size < 1 << 8:
            self._fp.write(struct.pack('>BBB', token | 0xF, 0x10, size))

        elif size < 1 << 16:
            self._fp.write(struct.pack('>BBH', token | 0xF, 0x11, size))

        elif size < 1 << 32:
            self._fp.write(struct.pack('>BBL', token | 0xF, 0x12, size))

        else:
            self._fp.write(struct.pack('>BBQ', token | 0xF, 0x13, size))

    def _write_object(self, value):
        ref = self._getrefnum(value)
        self._object_offsets[ref] = self._fp.tell()
        if value is None:
            self._fp.write(b'\x00')

        elif value is False:
            self._fp.write(b'\x08')

        elif value is True:
            self._fp.write(b'\x09')

        elif isinstance(value, int):
            if value < 0:
                try:
                    self._fp.write(struct.pack('>Bq', 0x13, value))
                except struct.error:
                    raise OverflowError(value) from None
            elif value < 1 << 8:
                self._fp.write(struct.pack('>BB', 0x10, value))
            elif value < 1 << 16:
                self._fp.write(struct.pack('>BH', 0x11, value))
            elif value < 1 << 32:
                self._fp.write(struct.pack('>BL', 0x12, value))
            elif value < 1 << 63:
                self._fp.write(struct.pack('>BQ', 0x13, value))
            elif value < 1 << 64:
                self._fp.write(b'\x14' + value.to_bytes(16, 'big', signed=True))
            else:
                raise OverflowError(value)

        elif isinstance(value, float):
            self._fp.write(struct.pack('>Bd', 0x23, value))

        elif isinstance(value, datetime.datetime):
            f = (value - datetime.datetime(2001, 1, 1)).total_seconds()
            self._fp.write(struct.pack('>Bd', 0x33, f))

        elif isinstance(value, Data):
            self._write_size(0x40, len(value.data))
            self._fp.write(value.data)

        elif isinstance(value, (bytes, bytearray)):
            self._write_size(0x40, len(value))
            self._fp.write(value)

        elif isinstance(value, str):
            try:
                t = value.encode('ascii')
                self._write_size(0x50, len(value))
            except UnicodeEncodeError:
                t = value.encode('utf-16be')
                self._write_size(0x60, len(value))

            self._fp.write(t)

        elif isinstance(value, (list, tuple)):
            refs = [self._getrefnum(o) for o in value]
            s = len(refs)
            self._write_size(0xA0, s)
            self._fp.write(struct.pack('>' + self._ref_format * s, *refs))

        elif isinstance(value, dict):
            keyRefs, valRefs = [], []

            if self._sort_keys:
                rootItems = sorted(value.items())
            else:
                rootItems = value.items()

            for k, v in rootItems:
                if not isinstance(k, str):
                    if self._skipkeys:
                        continue
                    raise TypeError("keys must be strings")
                keyRefs.append(self._getrefnum(k))
                valRefs.append(self._getrefnum(v))

            s = len(keyRefs)
            self._write_size(0xD0, s)
            self._fp.write(struct.pack('>' + self._ref_format * s, *keyRefs))
            self._fp.write(struct.pack('>' + self._ref_format * s, *valRefs))

        else:
            raise TypeError(value)


def _is_fmt_binary(header):
    return header[:8] == b'bplist00'


#
# Generic bits
#

_FORMATS={
    FMT_XML: dict(
        detect=_is_fmt_xml,
        parser=_PlistParser,
        writer=_PlistWriter,
    ),
    FMT_BINARY: dict(
        detect=_is_fmt_binary,
        parser=_BinaryPlistParser,
        writer=_BinaryPlistWriter,
    )
}


def load(fp, *, fmt=None, use_builtin_types=True, dict_type=dict):
    """Read a .plist file. 'fp' should be (readable) file object.
    Return the unpacked root object (which usually is a dictionary).
    """
    if fmt is None:
        header = fp.read(32)
        fp.seek(0)
        for info in _FORMATS.values():
            if info['detect'](header):
                P = info['parser']
                break

        else:
            raise InvalidFileException()

    else:
        P = _FORMATS[fmt]['parser']

    p = P(use_builtin_types=use_builtin_types, dict_type=dict_type)
    return p.parse(fp)


def loads(value, *, fmt=None, use_builtin_types=True, dict_type=dict):
    """Read a .plist file from a bytes object.
    Return the unpacked root object (which usually is a dictionary).
    """
    fp = BytesIO(value)
    return load(
        fp, fmt=fmt, use_builtin_types=use_builtin_types, dict_type=dict_type)


def dump(value, fp, *, fmt=FMT_XML, sort_keys=True, skipkeys=False):
    """Write 'value' to a .plist file. 'fp' should be a (writable)
    file object.
    """
    if fmt not in _FORMATS:
        raise ValueError("Unsupported format: %r"%(fmt,))

    writer = _FORMATS[fmt]["writer"](fp, sort_keys=sort_keys, skipkeys=skipkeys)
    writer.write(value)


def dumps(value, *, fmt=FMT_XML, skipkeys=False, sort_keys=True):
    """Return a bytes object with the contents for a .plist file.
    """
    fp = BytesIO()
    dump(value, fp, fmt=fmt, skipkeys=skipkeys, sort_keys=sort_keys)
    return fp.getvalue()
lib\poplib.py
"""A POP3 client class.

Based on the J. Myers POP3 draft, Jan. 96
"""

# Author: David Ascher <[email protected]>
#         [heavily stealing from nntplib.py]
# Updated: Piers Lauder <[email protected]> [Jul '97]
# String method conversion and test jig improvements by ESR, February 2001.
# Added the POP3_SSL class. Methods loosely based on IMAP_SSL. Hector Urtubia <[email protected]> Aug 2003

# Example (see the test function at the end of this file)

# Imports

import errno
import re
import socket

try:
    import ssl
    HAVE_SSL = True
except ImportError:
    HAVE_SSL = False

__all__ = ["POP3","error_proto"]

# Exception raised when an error or invalid response is received:

class error_proto(Exception): pass

# Standard Port
POP3_PORT = 110

# POP SSL PORT
POP3_SSL_PORT = 995

# Line terminators (we always output CRLF, but accept any of CRLF, LFCR, LF)
CR = b'\r'
LF = b'\n'
CRLF = CR+LF

# maximal line length when calling readline(). This is to prevent
# reading arbitrary length lines. RFC 1939 limits POP3 line length to
# 512 characters, including CRLF. We have selected 2048 just to be on
# the safe side.
_MAXLINE = 2048


class POP3:

    """This class supports both the minimal and optional command sets.
    Arguments can be strings or integers (where appropriate)
    (e.g.: retr(1) and retr('1') both work equally well.

    Minimal Command Set:
            USER name               user(name)
            PASS string             pass_(string)
            STAT                    stat()
            LIST [msg]              list(msg = None)
            RETR msg                retr(msg)
            DELE msg                dele(msg)
            NOOP                    noop()
            RSET                    rset()
            QUIT                    quit()

    Optional Commands (some servers support these):
            RPOP name               rpop(name)
            APOP name digest        apop(name, digest)
            TOP msg n               top(msg, n)
            UIDL [msg]              uidl(msg = None)
            CAPA                    capa()
            STLS                    stls()

    Raises one exception: 'error_proto'.

    Instantiate with:
            POP3(hostname, port=110)

    NB:     the POP protocol locks the mailbox from user
            authorization until QUIT, so be sure to get in, suck
            the messages, and quit, each time you access the
            mailbox.

            POP is a line-based protocol, which means large mail
            messages consume lots of python cycles reading them
            line-by-line.

            If it's available on your mail server, use IMAP4
            instead, it doesn't suffer from the two problems
            above.
    """

    encoding = 'UTF-8'

    def __init__(self, host, port=POP3_PORT,
                 timeout=socket._GLOBAL_DEFAULT_TIMEOUT):
        self.host = host
        self.port = port
        self._tls_established = False
        self.sock = self._create_socket(timeout)
        self.file = self.sock.makefile('rb')
        self._debugging = 0
        self.welcome = self._getresp()

    def _create_socket(self, timeout):
        return socket.create_connection((self.host, self.port), timeout)

    def _putline(self, line):
        if self._debugging > 1: print('*put*', repr(line))
        self.sock.sendall(line + CRLF)


    # Internal: send one command to the server (through _putline())

    def _putcmd(self, line):
        if self._debugging: print('*cmd*', repr(line))
        line = bytes(line, self.encoding)
        self._putline(line)


    # Internal: return one line from the server, stripping CRLF.
    # This is where all the CPU time of this module is consumed.
    # Raise error_proto('-ERR EOF') if the connection is closed.

    def _getline(self):
        line = self.file.readline(_MAXLINE + 1)
        if len(line) > _MAXLINE:
            raise error_proto('line too long')

        if self._debugging > 1: print('*get*', repr(line))
        if not line: raise error_proto('-ERR EOF')
        octets = len(line)
        # server can send any combination of CR & LF
        # however, 'readline()' returns lines ending in LF
        # so only possibilities are ...LF, ...CRLF, CR...LF
        if line[-2:] == CRLF:
            return line[:-2], octets
        if line[:1] == CR:
            return line[1:-1], octets
        return line[:-1], octets


    # Internal: get a response from the server.
    # Raise 'error_proto' if the response doesn't start with '+'.

    def _getresp(self):
        resp, o = self._getline()
        if self._debugging > 1: print('*resp*', repr(resp))
        if not resp.startswith(b'+'):
            raise error_proto(resp)
        return resp


    # Internal: get a response plus following text from the server.

    def _getlongresp(self):
        resp = self._getresp()
        list = []; octets = 0
        line, o = self._getline()
        while line != b'.':
            if line.startswith(b'..'):
                o = o-1
                line = line[1:]
            octets = octets + o
            list.append(line)
            line, o = self._getline()
        return resp, list, octets


    # Internal: send a command and get the response

    def _shortcmd(self, line):
        self._putcmd(line)
        return self._getresp()


    # Internal: send a command and get the response plus following text

    def _longcmd(self, line):
        self._putcmd(line)
        return self._getlongresp()


    # These can be useful:

    def getwelcome(self):
        return self.welcome


    def set_debuglevel(self, level):
        self._debugging = level


    # Here are all the POP commands:

    def user(self, user):
        """Send user name, return response

        (should indicate password required).
        """
        return self._shortcmd('USER %s' % user)


    def pass_(self, pswd):
        """Send password, return response

        (response includes message count, mailbox size).

        NB: mailbox is locked by server from here to 'quit()'
        """
        return self._shortcmd('PASS %s' % pswd)


    def stat(self):
        """Get mailbox status.

        Result is tuple of 2 ints (message count, mailbox size)
        """
        retval = self._shortcmd('STAT')
        rets = retval.split()
        if self._debugging: print('*stat*', repr(rets))
        numMessages = int(rets[1])
        sizeMessages = int(rets[2])
        return (numMessages, sizeMessages)


    def list(self, which=None):
        """Request listing, return result.

        Result without a message number argument is in form
        ['response', ['mesg_num octets', ...], octets].

        Result when a message number argument is given is a
        single response: the "scan listing" for that message.
        """
        if which is not None:
            return self._shortcmd('LIST %s' % which)
        return self._longcmd('LIST')


    def retr(self, which):
        """Retrieve whole message number 'which'.

        Result is in form ['response', ['line', ...], octets].
        """
        return self._longcmd('RETR %s' % which)


    def dele(self, which):
        """Delete message number 'which'.

        Result is 'response'.
        """
        return self._shortcmd('DELE %s' % which)


    def noop(self):
        """Does nothing.

        One supposes the response indicates the server is alive.
        """
        return self._shortcmd('NOOP')


    def rset(self):
        """Unmark all messages marked for deletion."""
        return self._shortcmd('RSET')


    def quit(self):
        """Signoff: commit changes on server, unlock mailbox, close connection."""
        resp = self._shortcmd('QUIT')
        self.close()
        return resp

    def close(self):
        """Close the connection without assuming anything about it."""
        try:
            file = self.file
            self.file = None
            if file is not None:
                file.close()
        finally:
            sock = self.sock
            self.sock = None
            if sock is not None:
                try:
                    sock.shutdown(socket.SHUT_RDWR)
                except OSError as e:
                    # The server might already have closed the connection
                    if e.errno != errno.ENOTCONN:
                        raise
                finally:
                    sock.close()

    #__del__ = quit


    # optional commands:

    def rpop(self, user):
        """Not sure what this does."""
        return self._shortcmd('RPOP %s' % user)


    timestamp = re.compile(br'\+OK.[^<]*(<.*>)')

    def apop(self, user, password):
        """Authorisation

        - only possible if server has supplied a timestamp in initial greeting.

        Args:
                user     - mailbox user;
                password - mailbox password.

        NB: mailbox is locked by server from here to 'quit()'
        """
        secret = bytes(password, self.encoding)
        m = self.timestamp.match(self.welcome)
        if not m:
            raise error_proto('-ERR APOP not supported by server')
        import hashlib
        digest = m.group(1)+secret
        digest = hashlib.md5(digest).hexdigest()
        return self._shortcmd('APOP %s %s' % (user, digest))


    def top(self, which, howmuch):
        """Retrieve message header of message number 'which'
        and first 'howmuch' lines of message body.

        Result is in form ['response', ['line', ...], octets].
        """
        return self._longcmd('TOP %s %s' % (which, howmuch))


    def uidl(self, which=None):
        """Return message digest (unique id) list.

        If 'which', result contains unique id for that message
        in the form 'response mesgnum uid', otherwise result is
        the list ['response', ['mesgnum uid', ...], octets]
        """
        if which is not None:
            return self._shortcmd('UIDL %s' % which)
        return self._longcmd('UIDL')


    def capa(self):
        """Return server capabilities (RFC 2449) as a dictionary
        >>> c=poplib.POP3('localhost')
        >>> c.capa()
        {'IMPLEMENTATION': ['Cyrus', 'POP3', 'server', 'v2.2.12'],
         'TOP': [], 'LOGIN-DELAY': ['0'], 'AUTH-RESP-CODE': [],
         'EXPIRE': ['NEVER'], 'USER': [], 'STLS': [], 'PIPELINING': [],
         'UIDL': [], 'RESP-CODES': []}
        >>>

        Really, according to RFC 2449, the cyrus folks should avoid
        having the implementation split into multiple arguments...
        """
        def _parsecap(line):
            lst = line.decode('ascii').split()
            return lst[0], lst[1:]

        caps = {}
        try:
            resp = self._longcmd('CAPA')
            rawcaps = resp[1]
            for capline in rawcaps:
                capnm, capargs = _parsecap(capline)
                caps[capnm] = capargs
        except error_proto as _err:
            raise error_proto('-ERR CAPA not supported by server')
        return caps


    def stls(self, context=None):
        """Start a TLS session on the active connection as specified in RFC 2595.

                context - a ssl.SSLContext
        """
        if not HAVE_SSL:
            raise error_proto('-ERR TLS support missing')
        if self._tls_established:
            raise error_proto('-ERR TLS session already established')
        caps = self.capa()
        if not 'STLS' in caps:
            raise error_proto('-ERR STLS not supported by server')
        if context is None:
            context = ssl._create_stdlib_context()
        resp = self._shortcmd('STLS')
        self.sock = context.wrap_socket(self.sock,
                                        server_hostname=self.host)
        self.file = self.sock.makefile('rb')
        self._tls_established = True
        return resp


if HAVE_SSL:

    class POP3_SSL(POP3):
        """POP3 client class over SSL connection

        Instantiate with: POP3_SSL(hostname, port=995, keyfile=None, certfile=None,
                                   context=None)

               hostname - the hostname of the pop3 over ssl server
               port - port number
               keyfile - PEM formatted file that contains your private key
               certfile - PEM formatted certificate chain file
               context - a ssl.SSLContext

        See the methods of the parent class POP3 for more documentation.
        """

        def __init__(self, host, port=POP3_SSL_PORT, keyfile=None, certfile=None,
                     timeout=socket._GLOBAL_DEFAULT_TIMEOUT, context=None):
            if context is not None and keyfile is not None:
                raise ValueError("context and keyfile arguments are mutually "
                                 "exclusive")
            if context is not None and certfile is not None:
                raise ValueError("context and certfile arguments are mutually "
                                 "exclusive")
            self.keyfile = keyfile
            self.certfile = certfile
            if context is None:
                context = ssl._create_stdlib_context(certfile=certfile,
                                                     keyfile=keyfile)
            self.context = context
            POP3.__init__(self, host, port, timeout)

        def _create_socket(self, timeout):
            sock = POP3._create_socket(self, timeout)
            sock = self.context.wrap_socket(sock,
                                            server_hostname=self.host)
            return sock

        def stls(self, keyfile=None, certfile=None, context=None):
            """The method unconditionally raises an exception since the
            STLS command doesn't make any sense on an already established
            SSL/TLS session.
            """
            raise error_proto('-ERR TLS session already established')

    __all__.append("POP3_SSL")

if __name__ == "__main__":
    import sys
    a = POP3(sys.argv[1])
    print(a.getwelcome())
    a.user(sys.argv[2])
    a.pass_(sys.argv[3])
    a.list()
    (numMsgs, totalSize) = a.stat()
    for i in range(1, numMsgs + 1):
        (header, msg, octets) = a.retr(i)
        print("Message %d:" % i)
        for line in msg:
            print('   ' + line)
        print('-----------------------')
    a.quit()
lib\posixpath.py
"""Common operations on Posix pathnames.

Instead of importing this module directly, import os and refer to
this module as os.path.  The "os.path" name is an alias for this
module on Posix systems; on other systems (e.g. Mac, Windows),
os.path provides the same operations in a manner specific to that
platform, and is an alias to another module (e.g. macpath, ntpath).

Some of this can actually be useful on non-Posix systems too, e.g.
for manipulation of the pathname component of URLs.
"""

import os
import sys
import stat
import genericpath
from genericpath import *

__all__ = ["normcase","isabs","join","splitdrive","split","splitext",
           "basename","dirname","commonprefix","getsize","getmtime",
           "getatime","getctime","islink","exists","lexists","isdir","isfile",
           "ismount", "expanduser","expandvars","normpath","abspath",
           "samefile","sameopenfile","samestat",
           "curdir","pardir","sep","pathsep","defpath","altsep","extsep",
           "devnull","realpath","supports_unicode_filenames","relpath"]

# Strings representing various path-related bits and pieces.
# These are primarily for export; internally, they are hardcoded.
curdir = '.'
pardir = '..'
extsep = '.'
sep = '/'
pathsep = ':'
defpath = ':/bin:/usr/bin'
altsep = None
devnull = '/dev/null'

def _get_sep(path):
    if isinstance(path, bytes):
        return b'/'
    else:
        return '/'

# Normalize the case of a pathname.  Trivial in Posix, string.lower on Mac.
# On MS-DOS this may also turn slashes into backslashes; however, other
# normalizations (such as optimizing '../' away) are not allowed
# (another function should be defined to do that).

def normcase(s):
    """Normalize case of pathname.  Has no effect under Posix"""
    if not isinstance(s, (bytes, str)):
        raise TypeError("normcase() argument must be str or bytes, "
                        "not '{}'".format(s.__class__.__name__))
    return s


# Return whether a path is absolute.
# Trivial in Posix, harder on the Mac or MS-DOS.

def isabs(s):
    """Test whether a path is absolute"""
    sep = _get_sep(s)
    return s.startswith(sep)


# Join pathnames.
# Ignore the previous parts if a part is absolute.
# Insert a '/' unless the first part is empty or already ends in '/'.

def join(a, *p):
    """Join two or more pathname components, inserting '/' as needed.
    If any component is an absolute path, all previous path components
    will be discarded.  An empty last part will result in a path that
    ends with a separator."""
    sep = _get_sep(a)
    path = a
    try:
        for b in p:
            if b.startswith(sep):
                path = b
            elif not path or path.endswith(sep):
                path += b
            else:
                path += sep + b
    except TypeError:
        if all(isinstance(s, (str, bytes)) for s in (a,) + p):
            # Must have a mixture of text and binary data
            raise TypeError("Can't mix strings and bytes in path "
                            "components") from None
        raise
    return path


# Split a path in head (everything up to the last '/') and tail (the
# rest).  If the path ends in '/', tail will be empty.  If there is no
# '/' in the path, head  will be empty.
# Trailing '/'es are stripped from head unless it is the root.

def split(p):
    """Split a pathname.  Returns tuple "(head, tail)" where "tail" is
    everything after the final slash.  Either part may be empty."""
    sep = _get_sep(p)
    i = p.rfind(sep) + 1
    head, tail = p[:i], p[i:]
    if head and head != sep*len(head):
        head = head.rstrip(sep)
    return head, tail


# Split a path in root and extension.
# The extension is everything starting at the last dot in the last
# pathname component; the root is everything before that.
# It is always true that root + ext == p.

def splitext(p):
    if isinstance(p, bytes):
        sep = b'/'
        extsep = b'.'
    else:
        sep = '/'
        extsep = '.'
    return genericpath._splitext(p, sep, None, extsep)
splitext.__doc__ = genericpath._splitext.__doc__

# Split a pathname into a drive specification and the rest of the
# path.  Useful on DOS/Windows/NT; on Unix, the drive is always empty.

def splitdrive(p):
    """Split a pathname into drive and path. On Posix, drive is always
    empty."""
    return p[:0], p


# Return the tail (basename) part of a path, same as split(path)[1].

def basename(p):
    """Returns the final component of a pathname"""
    sep = _get_sep(p)
    i = p.rfind(sep) + 1
    return p[i:]


# Return the head (dirname) part of a path, same as split(path)[0].

def dirname(p):
    """Returns the directory component of a pathname"""
    sep = _get_sep(p)
    i = p.rfind(sep) + 1
    head = p[:i]
    if head and head != sep*len(head):
        head = head.rstrip(sep)
    return head


# Is a path a symbolic link?
# This will always return false on systems where os.lstat doesn't exist.

def islink(path):
    """Test whether a path is a symbolic link"""
    try:
        st = os.lstat(path)
    except (OSError, AttributeError):
        return False
    return stat.S_ISLNK(st.st_mode)

# Being true for dangling symbolic links is also useful.

def lexists(path):
    """Test whether a path exists.  Returns True for broken symbolic links"""
    try:
        os.lstat(path)
    except OSError:
        return False
    return True


# Is a path a mount point?
# (Does this work for all UNIXes?  Is it even guaranteed to work by Posix?)

def ismount(path):
    """Test whether a path is a mount point"""
    try:
        s1 = os.lstat(path)
    except OSError:
        # It doesn't exist -- so not a mount point. :-)
        return False
    else:
        # A symlink can never be a mount point
        if stat.S_ISLNK(s1.st_mode):
            return False

    if isinstance(path, bytes):
        parent = join(path, b'..')
    else:
        parent = join(path, '..')
    try:
        s2 = os.lstat(parent)
    except OSError:
        return False

    dev1 = s1.st_dev
    dev2 = s2.st_dev
    if dev1 != dev2:
        return True     # path/.. on a different device as path
    ino1 = s1.st_ino
    ino2 = s2.st_ino
    if ino1 == ino2:
        return True     # path/.. is the same i-node as path
    return False


# Expand paths beginning with '~' or '~user'.
# '~' means $HOME; '~user' means that user's home directory.
# If the path doesn't begin with '~', or if the user or $HOME is unknown,
# the path is returned unchanged (leaving error reporting to whatever
# function is called with the expanded path as argument).
# See also module 'glob' for expansion of *, ? and [...] in pathnames.
# (A function should also be defined to do full *sh-style environment
# variable expansion.)

def expanduser(path):
    """Expand ~ and ~user constructions.  If user or $HOME is unknown,
    do nothing."""
    if isinstance(path, bytes):
        tilde = b'~'
    else:
        tilde = '~'
    if not path.startswith(tilde):
        return path
    sep = _get_sep(path)
    i = path.find(sep, 1)
    if i < 0:
        i = len(path)
    if i == 1:
        if 'HOME' not in os.environ:
            import pwd
            userhome = pwd.getpwuid(os.getuid()).pw_dir
        else:
            userhome = os.environ['HOME']
    else:
        import pwd
        name = path[1:i]
        if isinstance(name, bytes):
            name = str(name, 'ASCII')
        try:
            pwent = pwd.getpwnam(name)
        except KeyError:
            return path
        userhome = pwent.pw_dir
    if isinstance(path, bytes):
        userhome = os.fsencode(userhome)
        root = b'/'
    else:
        root = '/'
    userhome = userhome.rstrip(root)
    return (userhome + path[i:]) or root


# Expand paths containing shell variable substitutions.
# This expands the forms $variable and ${variable} only.
# Non-existent variables are left unchanged.

_varprog = None
_varprogb = None

def expandvars(path):
    """Expand shell variables of form $var and ${var}.  Unknown variables
    are left unchanged."""
    global _varprog, _varprogb
    if isinstance(path, bytes):
        if b'$' not in path:
            return path
        if not _varprogb:
            import re
            _varprogb = re.compile(br'\$(\w+|\{[^}]*\})', re.ASCII)
        search = _varprogb.search
        start = b'{'
        end = b'}'
        environ = getattr(os, 'environb', None)
    else:
        if '$' not in path:
            return path
        if not _varprog:
            import re
            _varprog = re.compile(r'\$(\w+|\{[^}]*\})', re.ASCII)
        search = _varprog.search
        start = '{'
        end = '}'
        environ = os.environ
    i = 0
    while True:
        m = search(path, i)
        if not m:
            break
        i, j = m.span(0)
        name = m.group(1)
        if name.startswith(start) and name.endswith(end):
            name = name[1:-1]
        try:
            if environ is None:
                value = os.fsencode(os.environ[os.fsdecode(name)])
            else:
                value = environ[name]
        except KeyError:
            i = j
        else:
            tail = path[j:]
            path = path[:i] + value
            i = len(path)
            path += tail
    return path


# Normalize a path, e.g. A//B, A/./B and A/foo/../B all become A/B.
# It should be understood that this may change the meaning of the path
# if it contains symbolic links!

def normpath(path):
    """Normalize path, eliminating double slashes, etc."""
    if isinstance(path, bytes):
        sep = b'/'
        empty = b''
        dot = b'.'
        dotdot = b'..'
    else:
        sep = '/'
        empty = ''
        dot = '.'
        dotdot = '..'
    if path == empty:
        return dot
    initial_slashes = path.startswith(sep)
    # POSIX allows one or two initial slashes, but treats three or more
    # as single slash.
    if (initial_slashes and
        path.startswith(sep*2) and not path.startswith(sep*3)):
        initial_slashes = 2
    comps = path.split(sep)
    new_comps = []
    for comp in comps:
        if comp in (empty, dot):
            continue
        if (comp != dotdot or (not initial_slashes and not new_comps) or
             (new_comps and new_comps[-1] == dotdot)):
            new_comps.append(comp)
        elif new_comps:
            new_comps.pop()
    comps = new_comps
    path = sep.join(comps)
    if initial_slashes:
        path = sep*initial_slashes + path
    return path or dot


def abspath(path):
    """Return an absolute path."""
    if not isabs(path):
        if isinstance(path, bytes):
            cwd = os.getcwdb()
        else:
            cwd = os.getcwd()
        path = join(cwd, path)
    return normpath(path)


# Return a canonical path (i.e. the absolute location of a file on the
# filesystem).

def realpath(filename):
    """Return the canonical path of the specified filename, eliminating any
symbolic links encountered in the path."""
    path, ok = _joinrealpath(filename[:0], filename, {})
    return abspath(path)

# Join two paths, normalizing ang eliminating any symbolic links
# encountered in the second path.
def _joinrealpath(path, rest, seen):
    if isinstance(path, bytes):
        sep = b'/'
        curdir = b'.'
        pardir = b'..'
    else:
        sep = '/'
        curdir = '.'
        pardir = '..'

    if isabs(rest):
        rest = rest[1:]
        path = sep

    while rest:
        name, _, rest = rest.partition(sep)
        if not name or name == curdir:
            # current dir
            continue
        if name == pardir:
            # parent dir
            if path:
                path, name = split(path)
                if name == pardir:
                    path = join(path, pardir, pardir)
            else:
                path = pardir
            continue
        newpath = join(path, name)
        if not islink(newpath):
            path = newpath
            continue
        # Resolve the symbolic link
        if newpath in seen:
            # Already seen this path
            path = seen[newpath]
            if path is not None:
                # use cached value
                continue
            # The symlink is not resolved, so we must have a symlink loop.
            # Return already resolved part + rest of the path unchanged.
            return join(newpath, rest), False
        seen[newpath] = None # not resolved symlink
        path, ok = _joinrealpath(path, os.readlink(newpath), seen)
        if not ok:
            return join(path, rest), False
        seen[newpath] = path # resolved symlink

    return path, True


supports_unicode_filenames = (sys.platform == 'darwin')

def relpath(path, start=None):
    """Return a relative version of a path"""

    if not path:
        raise ValueError("no path specified")

    if isinstance(path, bytes):
        curdir = b'.'
        sep = b'/'
        pardir = b'..'
    else:
        curdir = '.'
        sep = '/'
        pardir = '..'

    if start is None:
        start = curdir

    start_list = [x for x in abspath(start).split(sep) if x]
    path_list = [x for x in abspath(path).split(sep) if x]

    # Work out how much of the filepath is shared by start and path.
    i = len(commonprefix([start_list, path_list]))

    rel_list = [pardir] * (len(start_list)-i) + path_list[i:]
    if not rel_list:
        return curdir
    return join(*rel_list)
lib\pprint.py
#  Author:      Fred L. Drake, Jr.
#               [email protected]
#
#  This is a simple little module I wrote to make life easier.  I didn't
#  see anything quite like it in the library, though I may have overlooked
#  something.  I wrote this when I was trying to read some heavily nested
#  tuples with fairly non-descriptive content.  This is modeled very much
#  after Lisp/Scheme - style pretty-printing of lists.  If you find it
#  useful, thank small children who sleep at night.

"""Support to pretty-print lists, tuples, & dictionaries recursively.

Very simple, but useful, especially in debugging data structures.

Classes
-------

PrettyPrinter()
    Handle pretty-printing operations onto a stream using a configured
    set of formatting parameters.

Functions
---------

pformat()
    Format a Python object into a pretty-printed representation.

pprint()
    Pretty-print a Python object to a stream [default is sys.stdout].

saferepr()
    Generate a 'standard' repr()-like value, but protect against recursive
    data structures.

"""

import re
import sys as _sys
from collections import OrderedDict as _OrderedDict
from io import StringIO as _StringIO

__all__ = ["pprint","pformat","isreadable","isrecursive","saferepr",
           "PrettyPrinter"]


def pprint(object, stream=None, indent=1, width=80, depth=None, *,
           compact=False):
    """Pretty-print a Python object to a stream [default is sys.stdout]."""
    printer = PrettyPrinter(
        stream=stream, indent=indent, width=width, depth=depth,
        compact=compact)
    printer.pprint(object)

def pformat(object, indent=1, width=80, depth=None, *, compact=False):
    """Format a Python object into a pretty-printed representation."""
    return PrettyPrinter(indent=indent, width=width, depth=depth,
                         compact=compact).pformat(object)

def saferepr(object):
    """Version of repr() which can handle recursive data structures."""
    return _safe_repr(object, {}, None, 0)[0]

def isreadable(object):
    """Determine if saferepr(object) is readable by eval()."""
    return _safe_repr(object, {}, None, 0)[1]

def isrecursive(object):
    """Determine if object requires a recursive representation."""
    return _safe_repr(object, {}, None, 0)[2]

class _safe_key:
    """Helper function for key functions when sorting unorderable objects.

    The wrapped-object will fallback to an Py2.x style comparison for
    unorderable types (sorting first comparing the type name and then by
    the obj ids).  Does not work recursively, so dict.items() must have
    _safe_key applied to both the key and the value.

    """

    __slots__ = ['obj']

    def __init__(self, obj):
        self.obj = obj

    def __lt__(self, other):
        try:
            rv = self.obj.__lt__(other.obj)
        except TypeError:
            rv = NotImplemented

        if rv is NotImplemented:
            rv = (str(type(self.obj)), id(self.obj)) < \
                 (str(type(other.obj)), id(other.obj))
        return rv

def _safe_tuple(t):
    "Helper function for comparing 2-tuples"
    return _safe_key(t[0]), _safe_key(t[1])

class PrettyPrinter:
    def __init__(self, indent=1, width=80, depth=None, stream=None, *,
                 compact=False):
        """Handle pretty printing operations onto a stream using a set of
        configured parameters.

        indent
            Number of spaces to indent for each level of nesting.

        width
            Attempted maximum number of columns in the output.

        depth
            The maximum depth to print out nested structures.

        stream
            The desired output stream.  If omitted (or false), the standard
            output stream available at construction will be used.

        compact
            If true, several items will be combined in one line.

        """
        indent = int(indent)
        width = int(width)
        assert indent >= 0, "indent must be >= 0"
        assert depth is None or depth > 0, "depth must be > 0"
        assert width, "width must be != 0"
        self._depth = depth
        self._indent_per_level = indent
        self._width = width
        if stream is not None:
            self._stream = stream
        else:
            self._stream = _sys.stdout
        self._compact = bool(compact)

    def pprint(self, object):
        self._format(object, self._stream, 0, 0, {}, 0)
        self._stream.write("\n")

    def pformat(self, object):
        sio = _StringIO()
        self._format(object, sio, 0, 0, {}, 0)
        return sio.getvalue()

    def isrecursive(self, object):
        return self.format(object, {}, 0, 0)[2]

    def isreadable(self, object):
        s, readable, recursive = self.format(object, {}, 0, 0)
        return readable and not recursive

    def _format(self, object, stream, indent, allowance, context, level):
        level = level + 1
        objid = id(object)
        if objid in context:
            stream.write(_recursion(object))
            self._recursive = True
            self._readable = False
            return
        rep = self._repr(object, context, level - 1)
        typ = type(object)
        max_width = self._width - 1 - indent - allowance
        sepLines = len(rep) > max_width
        write = stream.write

        if sepLines:
            r = getattr(typ, "__repr__", None)
            if issubclass(typ, dict):
                write('{')
                if self._indent_per_level > 1:
                    write((self._indent_per_level - 1) * ' ')
                length = len(object)
                if length:
                    context[objid] = 1
                    indent = indent + self._indent_per_level
                    if issubclass(typ, _OrderedDict):
                        items = list(object.items())
                    else:
                        items = sorted(object.items(), key=_safe_tuple)
                    key, ent = items[0]
                    rep = self._repr(key, context, level)
                    write(rep)
                    write(': ')
                    self._format(ent, stream, indent + len(rep) + 2,
                                  allowance + 1, context, level)
                    if length > 1:
                        for key, ent in items[1:]:
                            rep = self._repr(key, context, level)
                            write(',\n%s%s: ' % (' '*indent, rep))
                            self._format(ent, stream, indent + len(rep) + 2,
                                          allowance + 1, context, level)
                    indent = indent - self._indent_per_level
                    del context[objid]
                write('}')
                return

            if ((issubclass(typ, list) and r is list.__repr__) or
                (issubclass(typ, tuple) and r is tuple.__repr__) or
                (issubclass(typ, set) and r is set.__repr__) or
                (issubclass(typ, frozenset) and r is frozenset.__repr__)
               ):
                length = len(object)
                if issubclass(typ, list):
                    write('[')
                    endchar = ']'
                elif issubclass(typ, tuple):
                    write('(')
                    endchar = ')'
                else:
                    if not length:
                        write(rep)
                        return
                    if typ is set:
                        write('{')
                        endchar = '}'
                    else:
                        write(typ.__name__)
                        write('({')
                        endchar = '})'
                        indent += len(typ.__name__) + 1
                    object = sorted(object, key=_safe_key)
                if self._indent_per_level > 1:
                    write((self._indent_per_level - 1) * ' ')
                if length:
                    context[objid] = 1
                    self._format_items(object, stream,
                                       indent + self._indent_per_level,
                                       allowance + 1, context, level)
                    del context[objid]
                if issubclass(typ, tuple) and length == 1:
                    write(',')
                write(endchar)
                return

            if issubclass(typ, str) and len(object) > 0 and r is str.__repr__:
                chunks = []
                lines = object.splitlines(True)
                if level == 1:
                    indent += 1
                    max_width -= 2
                for i, line in enumerate(lines):
                    rep = repr(line)
                    if len(rep) <= max_width:
                        chunks.append(rep)
                    else:
                        # A list of alternating (non-space, space) strings
                        parts = re.split(r'(\s+)', line) + ['']
                        current = ''
                        for i in range(0, len(parts), 2):
                            part = parts[i] + parts[i+1]
                            candidate = current + part
                            if len(repr(candidate)) > max_width:
                                if current:
                                    chunks.append(repr(current))
                                current = part
                            else:
                                current = candidate
                        if current:
                            chunks.append(repr(current))
                if len(chunks) == 1:
                    write(rep)
                    return
                if level == 1:
                    write('(')
                for i, rep in enumerate(chunks):
                    if i > 0:
                        write('\n' + ' '*indent)
                    write(rep)
                if level == 1:
                    write(')')
                return
        write(rep)

    def _format_items(self, items, stream, indent, allowance, context, level):
        write = stream.write
        delimnl = ',\n' + ' ' * indent
        delim = ''
        width = max_width = self._width - indent - allowance + 2
        for ent in items:
            if self._compact:
                rep = self._repr(ent, context, level)
                w = len(rep) + 2
                if width < w:
                    width = max_width
                    if delim:
                        delim = delimnl
                if width >= w:
                    width -= w
                    write(delim)
                    delim = ', '
                    write(rep)
                    continue
            write(delim)
            delim = delimnl
            self._format(ent, stream, indent, allowance, context, level)

    def _repr(self, object, context, level):
        repr, readable, recursive = self.format(object, context.copy(),
                                                self._depth, level)
        if not readable:
            self._readable = False
        if recursive:
            self._recursive = True
        return repr

    def format(self, object, context, maxlevels, level):
        """Format object for a specific context, returning a string
        and flags indicating whether the representation is 'readable'
        and whether the object represents a recursive construct.
        """
        return _safe_repr(object, context, maxlevels, level)


# Return triple (repr_string, isreadable, isrecursive).

def _safe_repr(object, context, maxlevels, level):
    typ = type(object)
    if typ is str:
        if 'locale' not in _sys.modules:
            return repr(object), True, False
        if "'" in object and '"' not in object:
            closure = '"'
            quotes = {'"': '\\"'}
        else:
            closure = "'"
            quotes = {"'": "\\'"}
        qget = quotes.get
        sio = _StringIO()
        write = sio.write
        for char in object:
            if char.isalpha():
                write(char)
            else:
                write(qget(char, repr(char)[1:-1]))
        return ("%s%s%s" % (closure, sio.getvalue(), closure)), True, False

    r = getattr(typ, "__repr__", None)
    if issubclass(typ, dict) and r is dict.__repr__:
        if not object:
            return "{}", True, False
        objid = id(object)
        if maxlevels and level >= maxlevels:
            return "{...}", False, objid in context
        if objid in context:
            return _recursion(object), False, True
        context[objid] = 1
        readable = True
        recursive = False
        components = []
        append = components.append
        level += 1
        saferepr = _safe_repr
        items = sorted(object.items(), key=_safe_tuple)
        for k, v in items:
            krepr, kreadable, krecur = saferepr(k, context, maxlevels, level)
            vrepr, vreadable, vrecur = saferepr(v, context, maxlevels, level)
            append("%s: %s" % (krepr, vrepr))
            readable = readable and kreadable and vreadable
            if krecur or vrecur:
                recursive = True
        del context[objid]
        return "{%s}" % ", ".join(components), readable, recursive

    if (issubclass(typ, list) and r is list.__repr__) or \
       (issubclass(typ, tuple) and r is tuple.__repr__):
        if issubclass(typ, list):
            if not object:
                return "[]", True, False
            format = "[%s]"
        elif len(object) == 1:
            format = "(%s,)"
        else:
            if not object:
                return "()", True, False
            format = "(%s)"
        objid = id(object)
        if maxlevels and level >= maxlevels:
            return format % "...", False, objid in context
        if objid in context:
            return _recursion(object), False, True
        context[objid] = 1
        readable = True
        recursive = False
        components = []
        append = components.append
        level += 1
        for o in object:
            orepr, oreadable, orecur = _safe_repr(o, context, maxlevels, level)
            append(orepr)
            if not oreadable:
                readable = False
            if orecur:
                recursive = True
        del context[objid]
        return format % ", ".join(components), readable, recursive

    rep = repr(object)
    return rep, (rep and not rep.startswith('<')), False


def _recursion(object):
    return ("<Recursion on %s with id=%s>"
            % (type(object).__name__, id(object)))


def _perfcheck(object=None):
    import time
    if object is None:
        object = [("string", (1, 2), [3, 4], {5: 6, 7: 8})] * 100000
    p = PrettyPrinter()
    t1 = time.time()
    _safe_repr(object, {}, None, 0)
    t2 = time.time()
    p.pformat(object)
    t3 = time.time()
    print("_safe_repr:", t2 - t1)
    print("pformat:", t3 - t2)

if __name__ == "__main__":
    _perfcheck()
lib\profile.py
#! /usr/bin/env python3
#
# Class for profiling python code. rev 1.0  6/2/94
#
# Written by James Roskind
# Based on prior profile module by Sjoerd Mullender...
#   which was hacked somewhat by: Guido van Rossum

"""Class for profiling Python code."""

# Copyright Disney Enterprises, Inc.  All Rights Reserved.
# Licensed to PSF under a Contributor Agreement
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
# either express or implied.  See the License for the specific language
# governing permissions and limitations under the License.


import sys
import os
import time
import marshal
from optparse import OptionParser

__all__ = ["run", "runctx", "Profile"]

# Sample timer for use with
#i_count = 0
#def integer_timer():
#       global i_count
#       i_count = i_count + 1
#       return i_count
#itimes = integer_timer # replace with C coded timer returning integers

class _Utils:
    """Support class for utility functions which are shared by
    profile.py and cProfile.py modules.
    Not supposed to be used directly.
    """

    def __init__(self, profiler):
        self.profiler = profiler

    def run(self, statement, filename, sort):
        prof = self.profiler()
        try:
            prof.run(statement)
        except SystemExit:
            pass
        finally:
            self._show(prof, filename, sort)

    def runctx(self, statement, globals, locals, filename, sort):
        prof = self.profiler()
        try:
            prof.runctx(statement, globals, locals)
        except SystemExit:
            pass
        finally:
            self._show(prof, filename, sort)

    def _show(self, prof, filename, sort):
        if filename is not None:
            prof.dump_stats(filename)
        else:
            prof.print_stats(sort)


#**************************************************************************
# The following are the static member functions for the profiler class
# Note that an instance of Profile() is *not* needed to call them.
#**************************************************************************

def run(statement, filename=None, sort=-1):
    """Run statement under profiler optionally saving results in filename

    This function takes a single argument that can be passed to the
    "exec" statement, and an optional file name.  In all cases this
    routine attempts to "exec" its first argument and gather profiling
    statistics from the execution. If no file name is present, then this
    function automatically prints a simple profiling report, sorted by the
    standard name string (file/line/function-name) that is presented in
    each line.
    """
    return _Utils(Profile).run(statement, filename, sort)

def runctx(statement, globals, locals, filename=None, sort=-1):
    """Run statement under profiler, supplying your own globals and locals,
    optionally saving results in filename.

    statement and filename have the same semantics as profile.run
    """
    return _Utils(Profile).runctx(statement, globals, locals, filename, sort)


class Profile:
    """Profiler class.

    self.cur is always a tuple.  Each such tuple corresponds to a stack
    frame that is currently active (self.cur[-2]).  The following are the
    definitions of its members.  We use this external "parallel stack" to
    avoid contaminating the program that we are profiling. (old profiler
    used to write into the frames local dictionary!!) Derived classes
    can change the definition of some entries, as long as they leave
    [-2:] intact (frame and previous tuple).  In case an internal error is
    detected, the -3 element is used as the function name.

    [ 0] = Time that needs to be charged to the parent frame's function.
           It is used so that a function call will not have to access the
           timing data for the parent frame.
    [ 1] = Total time spent in this frame's function, excluding time in
           subfunctions (this latter is tallied in cur[2]).
    [ 2] = Total time spent in subfunctions, excluding time executing the
           frame's function (this latter is tallied in cur[1]).
    [-3] = Name of the function that corresponds to this frame.
    [-2] = Actual frame that we correspond to (used to sync exception handling).
    [-1] = Our parent 6-tuple (corresponds to frame.f_back).

    Timing data for each function is stored as a 5-tuple in the dictionary
    self.timings[].  The index is always the name stored in self.cur[-3].
    The following are the definitions of the members:

    [0] = The number of times this function was called, not counting direct
          or indirect recursion,
    [1] = Number of times this function appears on the stack, minus one
    [2] = Total time spent internal to this function
    [3] = Cumulative time that this function was present on the stack.  In
          non-recursive functions, this is the total execution time from start
          to finish of each invocation of a function, including time spent in
          all subfunctions.
    [4] = A dictionary indicating for each function name, the number of times
          it was called by us.
    """

    bias = 0  # calibration constant

    def __init__(self, timer=None, bias=None):
        self.timings = {}
        self.cur = None
        self.cmd = ""
        self.c_func_name = ""

        if bias is None:
            bias = self.bias
        self.bias = bias     # Materialize in local dict for lookup speed.

        if not timer:
            self.timer = self.get_time = time.process_time
            self.dispatcher = self.trace_dispatch_i
        else:
            self.timer = timer
            t = self.timer() # test out timer function
            try:
                length = len(t)
            except TypeError:
                self.get_time = timer
                self.dispatcher = self.trace_dispatch_i
            else:
                if length == 2:
                    self.dispatcher = self.trace_dispatch
                else:
                    self.dispatcher = self.trace_dispatch_l
                # This get_time() implementation needs to be defined
                # here to capture the passed-in timer in the parameter
                # list (for performance).  Note that we can't assume
                # the timer() result contains two values in all
                # cases.
                def get_time_timer(timer=timer, sum=sum):
                    return sum(timer())
                self.get_time = get_time_timer
        self.t = self.get_time()
        self.simulate_call('profiler')

    # Heavily optimized dispatch routine for os.times() timer

    def trace_dispatch(self, frame, event, arg):
        timer = self.timer
        t = timer()
        t = t[0] + t[1] - self.t - self.bias

        if event == "c_call":
            self.c_func_name = arg.__name__

        if self.dispatch[event](self, frame,t):
            t = timer()
            self.t = t[0] + t[1]
        else:
            r = timer()
            self.t = r[0] + r[1] - t # put back unrecorded delta

    # Dispatch routine for best timer program (return = scalar, fastest if
    # an integer but float works too -- and time.clock() relies on that).

    def trace_dispatch_i(self, frame, event, arg):
        timer = self.timer
        t = timer() - self.t - self.bias

        if event == "c_call":
            self.c_func_name = arg.__name__

        if self.dispatch[event](self, frame, t):
            self.t = timer()
        else:
            self.t = timer() - t  # put back unrecorded delta

    # Dispatch routine for macintosh (timer returns time in ticks of
    # 1/60th second)

    def trace_dispatch_mac(self, frame, event, arg):
        timer = self.timer
        t = timer()/60.0 - self.t - self.bias

        if event == "c_call":
            self.c_func_name = arg.__name__

        if self.dispatch[event](self, frame, t):
            self.t = timer()/60.0
        else:
            self.t = timer()/60.0 - t  # put back unrecorded delta

    # SLOW generic dispatch routine for timer returning lists of numbers

    def trace_dispatch_l(self, frame, event, arg):
        get_time = self.get_time
        t = get_time() - self.t - self.bias

        if event == "c_call":
            self.c_func_name = arg.__name__

        if self.dispatch[event](self, frame, t):
            self.t = get_time()
        else:
            self.t = get_time() - t # put back unrecorded delta

    # In the event handlers, the first 3 elements of self.cur are unpacked
    # into vrbls w/ 3-letter names.  The last two characters are meant to be
    # mnemonic:
    #     _pt  self.cur[0] "parent time"   time to be charged to parent frame
    #     _it  self.cur[1] "internal time" time spent directly in the function
    #     _et  self.cur[2] "external time" time spent in subfunctions

    def trace_dispatch_exception(self, frame, t):
        rpt, rit, ret, rfn, rframe, rcur = self.cur
        if (rframe is not frame) and rcur:
            return self.trace_dispatch_return(rframe, t)
        self.cur = rpt, rit+t, ret, rfn, rframe, rcur
        return 1


    def trace_dispatch_call(self, frame, t):
        if self.cur and frame.f_back is not self.cur[-2]:
            rpt, rit, ret, rfn, rframe, rcur = self.cur
            if not isinstance(rframe, Profile.fake_frame):
                assert rframe.f_back is frame.f_back, ("Bad call", rfn,
                                                       rframe, rframe.f_back,
                                                       frame, frame.f_back)
                self.trace_dispatch_return(rframe, 0)
                assert (self.cur is None or \
                        frame.f_back is self.cur[-2]), ("Bad call",
                                                        self.cur[-3])
        fcode = frame.f_code
        fn = (fcode.co_filename, fcode.co_firstlineno, fcode.co_name)
        self.cur = (t, 0, 0, fn, frame, self.cur)
        timings = self.timings
        if fn in timings:
            cc, ns, tt, ct, callers = timings[fn]
            timings[fn] = cc, ns + 1, tt, ct, callers
        else:
            timings[fn] = 0, 0, 0, 0, {}
        return 1

    def trace_dispatch_c_call (self, frame, t):
        fn = ("", 0, self.c_func_name)
        self.cur = (t, 0, 0, fn, frame, self.cur)
        timings = self.timings
        if fn in timings:
            cc, ns, tt, ct, callers = timings[fn]
            timings[fn] = cc, ns+1, tt, ct, callers
        else:
            timings[fn] = 0, 0, 0, 0, {}
        return 1

    def trace_dispatch_return(self, frame, t):
        if frame is not self.cur[-2]:
            assert frame is self.cur[-2].f_back, ("Bad return", self.cur[-3])
            self.trace_dispatch_return(self.cur[-2], 0)

        # Prefix "r" means part of the Returning or exiting frame.
        # Prefix "p" means part of the Previous or Parent or older frame.

        rpt, rit, ret, rfn, frame, rcur = self.cur
        rit = rit + t
        frame_total = rit + ret

        ppt, pit, pet, pfn, pframe, pcur = rcur
        self.cur = ppt, pit + rpt, pet + frame_total, pfn, pframe, pcur

        timings = self.timings
        cc, ns, tt, ct, callers = timings[rfn]
        if not ns:
            # This is the only occurrence of the function on the stack.
            # Else this is a (directly or indirectly) recursive call, and
            # its cumulative time will get updated when the topmost call to
            # it returns.
            ct = ct + frame_total
            cc = cc + 1

        if pfn in callers:
            callers[pfn] = callers[pfn] + 1  # hack: gather more
            # stats such as the amount of time added to ct courtesy
            # of this specific call, and the contribution to cc
            # courtesy of this call.
        else:
            callers[pfn] = 1

        timings[rfn] = cc, ns - 1, tt + rit, ct, callers

        return 1


    dispatch = {
        "call": trace_dispatch_call,
        "exception": trace_dispatch_exception,
        "return": trace_dispatch_return,
        "c_call": trace_dispatch_c_call,
        "c_exception": trace_dispatch_return,  # the C function returned
        "c_return": trace_dispatch_return,
        }


    # The next few functions play with self.cmd. By carefully preloading
    # our parallel stack, we can force the profiled result to include
    # an arbitrary string as the name of the calling function.
    # We use self.cmd as that string, and the resulting stats look
    # very nice :-).

    def set_cmd(self, cmd):
        if self.cur[-1]: return   # already set
        self.cmd = cmd
        self.simulate_call(cmd)

    class fake_code:
        def __init__(self, filename, line, name):
            self.co_filename = filename
            self.co_line = line
            self.co_name = name
            self.co_firstlineno = 0

        def __repr__(self):
            return repr((self.co_filename, self.co_line, self.co_name))

    class fake_frame:
        def __init__(self, code, prior):
            self.f_code = code
            self.f_back = prior

    def simulate_call(self, name):
        code = self.fake_code('profile', 0, name)
        if self.cur:
            pframe = self.cur[-2]
        else:
            pframe = None
        frame = self.fake_frame(code, pframe)
        self.dispatch['call'](self, frame, 0)

    # collect stats from pending stack, including getting final
    # timings for self.cmd frame.

    def simulate_cmd_complete(self):
        get_time = self.get_time
        t = get_time() - self.t
        while self.cur[-1]:
            # We *can* cause assertion errors here if
            # dispatch_trace_return checks for a frame match!
            self.dispatch['return'](self, self.cur[-2], t)
            t = 0
        self.t = get_time() - t


    def print_stats(self, sort=-1):
        import pstats
        pstats.Stats(self).strip_dirs().sort_stats(sort). \
                  print_stats()

    def dump_stats(self, file):
        with open(file, 'wb') as f:
            self.create_stats()
            marshal.dump(self.stats, f)

    def create_stats(self):
        self.simulate_cmd_complete()
        self.snapshot_stats()

    def snapshot_stats(self):
        self.stats = {}
        for func, (cc, ns, tt, ct, callers) in self.timings.items():
            callers = callers.copy()
            nc = 0
            for callcnt in callers.values():
                nc += callcnt
            self.stats[func] = cc, nc, tt, ct, callers


    # The following two methods can be called by clients to use
    # a profiler to profile a statement, given as a string.

    def run(self, cmd):
        import __main__
        dict = __main__.__dict__
        return self.runctx(cmd, dict, dict)

    def runctx(self, cmd, globals, locals):
        self.set_cmd(cmd)
        sys.setprofile(self.dispatcher)
        try:
            exec(cmd, globals, locals)
        finally:
            sys.setprofile(None)
        return self

    # This method is more useful to profile a single function call.
    def runcall(self, func, *args, **kw):
        self.set_cmd(repr(func))
        sys.setprofile(self.dispatcher)
        try:
            return func(*args, **kw)
        finally:
            sys.setprofile(None)


    #******************************************************************
    # The following calculates the overhead for using a profiler.  The
    # problem is that it takes a fair amount of time for the profiler
    # to stop the stopwatch (from the time it receives an event).
    # Similarly, there is a delay from the time that the profiler
    # re-starts the stopwatch before the user's code really gets to
    # continue.  The following code tries to measure the difference on
    # a per-event basis.
    #
    # Note that this difference is only significant if there are a lot of
    # events, and relatively little user code per event.  For example,
    # code with small functions will typically benefit from having the
    # profiler calibrated for the current platform.  This *could* be
    # done on the fly during init() time, but it is not worth the
    # effort.  Also note that if too large a value specified, then
    # execution time on some functions will actually appear as a
    # negative number.  It is *normal* for some functions (with very
    # low call counts) to have such negative stats, even if the
    # calibration figure is "correct."
    #
    # One alternative to profile-time calibration adjustments (i.e.,
    # adding in the magic little delta during each event) is to track
    # more carefully the number of events (and cumulatively, the number
    # of events during sub functions) that are seen.  If this were
    # done, then the arithmetic could be done after the fact (i.e., at
    # display time).  Currently, we track only call/return events.
    # These values can be deduced by examining the callees and callers
    # vectors for each functions.  Hence we *can* almost correct the
    # internal time figure at print time (note that we currently don't
    # track exception event processing counts).  Unfortunately, there
    # is currently no similar information for cumulative sub-function
    # time.  It would not be hard to "get all this info" at profiler
    # time.  Specifically, we would have to extend the tuples to keep
    # counts of this in each frame, and then extend the defs of timing
    # tuples to include the significant two figures. I'm a bit fearful
    # that this additional feature will slow the heavily optimized
    # event/time ratio (i.e., the profiler would run slower, fur a very
    # low "value added" feature.)
    #**************************************************************

    def calibrate(self, m, verbose=0):
        if self.__class__ is not Profile:
            raise TypeError("Subclasses must override .calibrate().")

        saved_bias = self.bias
        self.bias = 0
        try:
            return self._calibrate_inner(m, verbose)
        finally:
            self.bias = saved_bias

    def _calibrate_inner(self, m, verbose):
        get_time = self.get_time

        # Set up a test case to be run with and without profiling.  Include
        # lots of calls, because we're trying to quantify stopwatch overhead.
        # Do not raise any exceptions, though, because we want to know
        # exactly how many profile events are generated (one call event, +
        # one return event, per Python-level call).

        def f1(n):
            for i in range(n):
                x = 1

        def f(m, f1=f1):
            for i in range(m):
                f1(100)

        f(m)    # warm up the cache

        # elapsed_noprofile <- time f(m) takes without profiling.
        t0 = get_time()
        f(m)
        t1 = get_time()
        elapsed_noprofile = t1 - t0
        if verbose:
            print("elapsed time without profiling =", elapsed_noprofile)

        # elapsed_profile <- time f(m) takes with profiling.  The difference
        # is profiling overhead, only some of which the profiler subtracts
        # out on its own.
        p = Profile()
        t0 = get_time()
        p.runctx('f(m)', globals(), locals())
        t1 = get_time()
        elapsed_profile = t1 - t0
        if verbose:
            print("elapsed time with profiling =", elapsed_profile)

        # reported_time <- "CPU seconds" the profiler charged to f and f1.
        total_calls = 0.0
        reported_time = 0.0
        for (filename, line, funcname), (cc, ns, tt, ct, callers) in \
                p.timings.items():
            if funcname in ("f", "f1"):
                total_calls += cc
                reported_time += tt

        if verbose:
            print("'CPU seconds' profiler reported =", reported_time)
            print("total # calls =", total_calls)
        if total_calls != m + 1:
            raise ValueError("internal error: total calls = %d" % total_calls)

        # reported_time - elapsed_noprofile = overhead the profiler wasn't
        # able to measure.  Divide by twice the number of calls (since there
        # are two profiler events per call in this test) to get the hidden
        # overhead per event.
        mean = (reported_time - elapsed_noprofile) / 2.0 / total_calls
        if verbose:
            print("mean stopwatch overhead per profile event =", mean)
        return mean

#****************************************************************************

def main():
    usage = "profile.py [-o output_file_path] [-s sort] scriptfile [arg] ..."
    parser = OptionParser(usage=usage)
    parser.allow_interspersed_args = False
    parser.add_option('-o', '--outfile', dest="outfile",
        help="Save stats to <outfile>", default=None)
    parser.add_option('-s', '--sort', dest="sort",
        help="Sort order when printing to stdout, based on pstats.Stats class",
        default=-1)

    if not sys.argv[1:]:
        parser.print_usage()
        sys.exit(2)

    (options, args) = parser.parse_args()
    sys.argv[:] = args

    if len(args) > 0:
        progname = args[0]
        sys.path.insert(0, os.path.dirname(progname))
        with open(progname, 'rb') as fp:
            code = compile(fp.read(), progname, 'exec')
        globs = {
            '__file__': progname,
            '__name__': '__main__',
            '__package__': None,
            '__cached__': None,
        }
        runctx(code, globs, None, options.outfile, options.sort)
    else:
        parser.print_usage()
    return parser

# When invoked as main program, invoke the profiler on a script
if __name__ == '__main__':
    main()
lib\pstats.py
"""Class for printing reports on profiled python code."""

# Written by James Roskind
# Based on prior profile module by Sjoerd Mullender...
#   which was hacked somewhat by: Guido van Rossum

# Copyright Disney Enterprises, Inc.  All Rights Reserved.
# Licensed to PSF under a Contributor Agreement
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
# either express or implied.  See the License for the specific language
# governing permissions and limitations under the License.


import sys
import os
import time
import marshal
import re
from functools import cmp_to_key

__all__ = ["Stats"]

class Stats:
    """This class is used for creating reports from data generated by the
    Profile class.  It is a "friend" of that class, and imports data either
    by direct access to members of Profile class, or by reading in a dictionary
    that was emitted (via marshal) from the Profile class.

    The big change from the previous Profiler (in terms of raw functionality)
    is that an "add()" method has been provided to combine Stats from
    several distinct profile runs.  Both the constructor and the add()
    method now take arbitrarily many file names as arguments.

    All the print methods now take an argument that indicates how many lines
    to print.  If the arg is a floating point number between 0 and 1.0, then
    it is taken as a decimal percentage of the available lines to be printed
    (e.g., .1 means print 10% of all available lines).  If it is an integer,
    it is taken to mean the number of lines of data that you wish to have
    printed.

    The sort_stats() method now processes some additional options (i.e., in
    addition to the old -1, 0, 1, or 2).  It takes an arbitrary number of
    quoted strings to select the sort order.  For example sort_stats('time',
    'name') sorts on the major key of 'internal function time', and on the
    minor key of 'the name of the function'.  Look at the two tables in
    sort_stats() and get_sort_arg_defs(self) for more examples.

    All methods return self, so you can string together commands like:
        Stats('foo', 'goo').strip_dirs().sort_stats('calls').\
                            print_stats(5).print_callers(5)
    """

    def __init__(self, *args, stream=None):
        self.stream = stream or sys.stdout
        if not len(args):
            arg = None
        else:
            arg = args[0]
            args = args[1:]
        self.init(arg)
        self.add(*args)

    def init(self, arg):
        self.all_callees = None  # calc only if needed
        self.files = []
        self.fcn_list = None
        self.total_tt = 0
        self.total_calls = 0
        self.prim_calls = 0
        self.max_name_len = 0
        self.top_level = set()
        self.stats = {}
        self.sort_arg_dict = {}
        self.load_stats(arg)
        try:
            self.get_top_level_stats()
        except Exception:
            print("Invalid timing data %s" %
                  (self.files[-1] if self.files else ''), file=self.stream)
            raise

    def load_stats(self, arg):
        if arg is None:
            self.stats = {}
            return
        elif isinstance(arg, str):
            with open(arg, 'rb') as f:
                self.stats = marshal.load(f)
            try:
                file_stats = os.stat(arg)
                arg = time.ctime(file_stats.st_mtime) + "    " + arg
            except:  # in case this is not unix
                pass
            self.files = [arg]
        elif hasattr(arg, 'create_stats'):
            arg.create_stats()
            self.stats = arg.stats
            arg.stats = {}
        if not self.stats:
            raise TypeError("Cannot create or construct a %r object from %r"
                            % (self.__class__, arg))
        return

    def get_top_level_stats(self):
        for func, (cc, nc, tt, ct, callers) in self.stats.items():
            self.total_calls += nc
            self.prim_calls  += cc
            self.total_tt    += tt
            if ("jprofile", 0, "profiler") in callers:
                self.top_level.add(func)
            if len(func_std_string(func)) > self.max_name_len:
                self.max_name_len = len(func_std_string(func))

    def add(self, *arg_list):
        if not arg_list:
            return self
        for item in reversed(arg_list):
            if type(self) != type(item):
                item = Stats(item)
            self.files += item.files
            self.total_calls += item.total_calls
            self.prim_calls += item.prim_calls
            self.total_tt += item.total_tt
            for func in item.top_level:
                self.top_level.add(func)

            if self.max_name_len < item.max_name_len:
                self.max_name_len = item.max_name_len

            self.fcn_list = None

            for func, stat in item.stats.items():
                if func in self.stats:
                    old_func_stat = self.stats[func]
                else:
                    old_func_stat = (0, 0, 0, 0, {},)
                self.stats[func] = add_func_stats(old_func_stat, stat)
        return self

    def dump_stats(self, filename):
        """Write the profile data to a file we know how to load back."""
        with open(filename, 'wb') as f:
            marshal.dump(self.stats, f)

    # list the tuple indices and directions for sorting,
    # along with some printable description
    sort_arg_dict_default = {
              "calls"     : (((1,-1),              ), "call count"),
              "ncalls"    : (((1,-1),              ), "call count"),
              "cumtime"   : (((3,-1),              ), "cumulative time"),
              "cumulative": (((3,-1),              ), "cumulative time"),
              "file"      : (((4, 1),              ), "file name"),
              "filename"  : (((4, 1),              ), "file name"),
              "line"      : (((5, 1),              ), "line number"),
              "module"    : (((4, 1),              ), "file name"),
              "name"      : (((6, 1),              ), "function name"),
              "nfl"       : (((6, 1),(4, 1),(5, 1),), "name/file/line"),
              "pcalls"    : (((0,-1),              ), "primitive call count"),
              "stdname"   : (((7, 1),              ), "standard name"),
              "time"      : (((2,-1),              ), "internal time"),
              "tottime"   : (((2,-1),              ), "internal time"),
              }

    def get_sort_arg_defs(self):
        """Expand all abbreviations that are unique."""
        if not self.sort_arg_dict:
            self.sort_arg_dict = dict = {}
            bad_list = {}
            for word, tup in self.sort_arg_dict_default.items():
                fragment = word
                while fragment:
                    if not fragment:
                        break
                    if fragment in dict:
                        bad_list[fragment] = 0
                        break
                    dict[fragment] = tup
                    fragment = fragment[:-1]
            for word in bad_list:
                del dict[word]
        return self.sort_arg_dict

    def sort_stats(self, *field):
        if not field:
            self.fcn_list = 0
            return self
        if len(field) == 1 and isinstance(field[0], int):
            # Be compatible with old profiler
            field = [ {-1: "stdname",
                       0:  "calls",
                       1:  "time",
                       2:  "cumulative"}[field[0]] ]

        sort_arg_defs = self.get_sort_arg_defs()
        sort_tuple = ()
        self.sort_type = ""
        connector = ""
        for word in field:
            sort_tuple = sort_tuple + sort_arg_defs[word][0]
            self.sort_type += connector + sort_arg_defs[word][1]
            connector = ", "

        stats_list = []
        for func, (cc, nc, tt, ct, callers) in self.stats.items():
            stats_list.append((cc, nc, tt, ct) + func +
                              (func_std_string(func), func))

        stats_list.sort(key=cmp_to_key(TupleComp(sort_tuple).compare))

        self.fcn_list = fcn_list = []
        for tuple in stats_list:
            fcn_list.append(tuple[-1])
        return self

    def reverse_order(self):
        if self.fcn_list:
            self.fcn_list.reverse()
        return self

    def strip_dirs(self):
        oldstats = self.stats
        self.stats = newstats = {}
        max_name_len = 0
        for func, (cc, nc, tt, ct, callers) in oldstats.items():
            newfunc = func_strip_path(func)
            if len(func_std_string(newfunc)) > max_name_len:
                max_name_len = len(func_std_string(newfunc))
            newcallers = {}
            for func2, caller in callers.items():
                newcallers[func_strip_path(func2)] = caller

            if newfunc in newstats:
                newstats[newfunc] = add_func_stats(
                                        newstats[newfunc],
                                        (cc, nc, tt, ct, newcallers))
            else:
                newstats[newfunc] = (cc, nc, tt, ct, newcallers)
        old_top = self.top_level
        self.top_level = new_top = set()
        for func in old_top:
            new_top.add(func_strip_path(func))

        self.max_name_len = max_name_len

        self.fcn_list = None
        self.all_callees = None
        return self

    def calc_callees(self):
        if self.all_callees:
            return
        self.all_callees = all_callees = {}
        for func, (cc, nc, tt, ct, callers) in self.stats.items():
            if not func in all_callees:
                all_callees[func] = {}
            for func2, caller in callers.items():
                if not func2 in all_callees:
                    all_callees[func2] = {}
                all_callees[func2][func]  = caller
        return

    #******************************************************************
    # The following functions support actual printing of reports
    #******************************************************************

    # Optional "amount" is either a line count, or a percentage of lines.

    def eval_print_amount(self, sel, list, msg):
        new_list = list
        if isinstance(sel, str):
            try:
                rex = re.compile(sel)
            except re.error:
                msg += "   <Invalid regular expression %r>\n" % sel
                return new_list, msg
            new_list = []
            for func in list:
                if rex.search(func_std_string(func)):
                    new_list.append(func)
        else:
            count = len(list)
            if isinstance(sel, float) and 0.0 <= sel < 1.0:
                count = int(count * sel + .5)
                new_list = list[:count]
            elif isinstance(sel, int) and 0 <= sel < count:
                count = sel
                new_list = list[:count]
        if len(list) != len(new_list):
            msg += "   List reduced from %r to %r due to restriction <%r>\n" % (
                len(list), len(new_list), sel)

        return new_list, msg

    def get_print_list(self, sel_list):
        width = self.max_name_len
        if self.fcn_list:
            stat_list = self.fcn_list[:]
            msg = "   Ordered by: " + self.sort_type + '\n'
        else:
            stat_list = list(self.stats.keys())
            msg = "   Random listing order was used\n"

        for selection in sel_list:
            stat_list, msg = self.eval_print_amount(selection, stat_list, msg)

        count = len(stat_list)

        if not stat_list:
            return 0, stat_list
        print(msg, file=self.stream)
        if count < len(self.stats):
            width = 0
            for func in stat_list:
                if  len(func_std_string(func)) > width:
                    width = len(func_std_string(func))
        return width+2, stat_list

    def print_stats(self, *amount):
        for filename in self.files:
            print(filename, file=self.stream)
        if self.files:
            print(file=self.stream)
        indent = ' ' * 8
        for func in self.top_level:
            print(indent, func_get_function_name(func), file=self.stream)

        print(indent, self.total_calls, "function calls", end=' ', file=self.stream)
        if self.total_calls != self.prim_calls:
            print("(%d primitive calls)" % self.prim_calls, end=' ', file=self.stream)
        print("in %.3f seconds" % self.total_tt, file=self.stream)
        print(file=self.stream)
        width, list = self.get_print_list(amount)
        if list:
            self.print_title()
            for func in list:
                self.print_line(func)
            print(file=self.stream)
            print(file=self.stream)
        return self

    def print_callees(self, *amount):
        width, list = self.get_print_list(amount)
        if list:
            self.calc_callees()

            self.print_call_heading(width, "called...")
            for func in list:
                if func in self.all_callees:
                    self.print_call_line(width, func, self.all_callees[func])
                else:
                    self.print_call_line(width, func, {})
            print(file=self.stream)
            print(file=self.stream)
        return self

    def print_callers(self, *amount):
        width, list = self.get_print_list(amount)
        if list:
            self.print_call_heading(width, "was called by...")
            for func in list:
                cc, nc, tt, ct, callers = self.stats[func]
                self.print_call_line(width, func, callers, "<-")
            print(file=self.stream)
            print(file=self.stream)
        return self

    def print_call_heading(self, name_size, column_title):
        print("Function ".ljust(name_size) + column_title, file=self.stream)
        # print sub-header only if we have new-style callers
        subheader = False
        for cc, nc, tt, ct, callers in self.stats.values():
            if callers:
                value = next(iter(callers.values()))
                subheader = isinstance(value, tuple)
                break
        if subheader:
            print(" "*name_size + "    ncalls  tottime  cumtime", file=self.stream)

    def print_call_line(self, name_size, source, call_dict, arrow="->"):
        print(func_std_string(source).ljust(name_size) + arrow, end=' ', file=self.stream)
        if not call_dict:
            print(file=self.stream)
            return
        clist = sorted(call_dict.keys())
        indent = ""
        for func in clist:
            name = func_std_string(func)
            value = call_dict[func]
            if isinstance(value, tuple):
                nc, cc, tt, ct = value
                if nc != cc:
                    substats = '%d/%d' % (nc, cc)
                else:
                    substats = '%d' % (nc,)
                substats = '%s %s %s  %s' % (substats.rjust(7+2*len(indent)),
                                             f8(tt), f8(ct), name)
                left_width = name_size + 1
            else:
                substats = '%s(%r) %s' % (name, value, f8(self.stats[func][3]))
                left_width = name_size + 3
            print(indent*left_width + substats, file=self.stream)
            indent = " "

    def print_title(self):
        print('   ncalls  tottime  percall  cumtime  percall', end=' ', file=self.stream)
        print('filename:lineno(function)', file=self.stream)

    def print_line(self, func):  # hack: should print percentages
        cc, nc, tt, ct, callers = self.stats[func]
        c = str(nc)
        if nc != cc:
            c = c + '/' + str(cc)
        print(c.rjust(9), end=' ', file=self.stream)
        print(f8(tt), end=' ', file=self.stream)
        if nc == 0:
            print(' '*8, end=' ', file=self.stream)
        else:
            print(f8(tt/nc), end=' ', file=self.stream)
        print(f8(ct), end=' ', file=self.stream)
        if cc == 0:
            print(' '*8, end=' ', file=self.stream)
        else:
            print(f8(ct/cc), end=' ', file=self.stream)
        print(func_std_string(func), file=self.stream)

class TupleComp:
    """This class provides a generic function for comparing any two tuples.
    Each instance records a list of tuple-indices (from most significant
    to least significant), and sort direction (ascending or decending) for
    each tuple-index.  The compare functions can then be used as the function
    argument to the system sort() function when a list of tuples need to be
    sorted in the instances order."""

    def __init__(self, comp_select_list):
        self.comp_select_list = comp_select_list

    def compare (self, left, right):
        for index, direction in self.comp_select_list:
            l = left[index]
            r = right[index]
            if l < r:
                return -direction
            if l > r:
                return direction
        return 0


#**************************************************************************
# func_name is a triple (file:string, line:int, name:string)

def func_strip_path(func_name):
    filename, line, name = func_name
    return os.path.basename(filename), line, name

def func_get_function_name(func):
    return func[2]

def func_std_string(func_name): # match what old profile produced
    if func_name[:2] == ('~', 0):
        # special case for built-in functions
        name = func_name[2]
        if name.startswith('<') and name.endswith('>'):
            return '{%s}' % name[1:-1]
        else:
            return name
    else:
        return "%s:%d(%s)" % func_name

#**************************************************************************
# The following functions combine statists for pairs functions.
# The bulk of the processing involves correctly handling "call" lists,
# such as callers and callees.
#**************************************************************************

def add_func_stats(target, source):
    """Add together all the stats for two profile entries."""
    cc, nc, tt, ct, callers = source
    t_cc, t_nc, t_tt, t_ct, t_callers = target
    return (cc+t_cc, nc+t_nc, tt+t_tt, ct+t_ct,
              add_callers(t_callers, callers))

def add_callers(target, source):
    """Combine two caller lists in a single list."""
    new_callers = {}
    for func, caller in target.items():
        new_callers[func] = caller
    for func, caller in source.items():
        if func in new_callers:
            if isinstance(caller, tuple):
                # format used by cProfile
                new_callers[func] = tuple([i[0] + i[1] for i in
                                           zip(caller, new_callers[func])])
            else:
                # format used by profile
                new_callers[func] += caller
        else:
            new_callers[func] = caller
    return new_callers

def count_calls(callers):
    """Sum the caller statistics to get total number of calls received."""
    nc = 0
    for calls in callers.values():
        nc += calls
    return nc

#**************************************************************************
# The following functions support printing of reports
#**************************************************************************

def f8(x):
    return "%8.3f" % x

#**************************************************************************
# Statistics browser added by ESR, April 2001
#**************************************************************************

if __name__ == '__main__':
    import cmd
    try:
        import readline
    except ImportError:
        pass

    class ProfileBrowser(cmd.Cmd):
        def __init__(self, profile=None):
            cmd.Cmd.__init__(self)
            self.prompt = "% "
            self.stats = None
            self.stream = sys.stdout
            if profile is not None:
                self.do_read(profile)

        def generic(self, fn, line):
            args = line.split()
            processed = []
            for term in args:
                try:
                    processed.append(int(term))
                    continue
                except ValueError:
                    pass
                try:
                    frac = float(term)
                    if frac > 1 or frac < 0:
                        print("Fraction argument must be in [0, 1]", file=self.stream)
                        continue
                    processed.append(frac)
                    continue
                except ValueError:
                    pass
                processed.append(term)
            if self.stats:
                getattr(self.stats, fn)(*processed)
            else:
                print("No statistics object is loaded.", file=self.stream)
            return 0
        def generic_help(self):
            print("Arguments may be:", file=self.stream)
            print("* An integer maximum number of entries to print.", file=self.stream)
            print("* A decimal fractional number between 0 and 1, controlling", file=self.stream)
            print("  what fraction of selected entries to print.", file=self.stream)
            print("* A regular expression; only entries with function names", file=self.stream)
            print("  that match it are printed.", file=self.stream)

        def do_add(self, line):
            if self.stats:
                self.stats.add(line)
            else:
                print("No statistics object is loaded.", file=self.stream)
            return 0
        def help_add(self):
            print("Add profile info from given file to current statistics object.", file=self.stream)

        def do_callees(self, line):
            return self.generic('print_callees', line)
        def help_callees(self):
            print("Print callees statistics from the current stat object.", file=self.stream)
            self.generic_help()

        def do_callers(self, line):
            return self.generic('print_callers', line)
        def help_callers(self):
            print("Print callers statistics from the current stat object.", file=self.stream)
            self.generic_help()

        def do_EOF(self, line):
            print("", file=self.stream)
            return 1
        def help_EOF(self):
            print("Leave the profile brower.", file=self.stream)

        def do_quit(self, line):
            return 1
        def help_quit(self):
            print("Leave the profile brower.", file=self.stream)

        def do_read(self, line):
            if line:
                try:
                    self.stats = Stats(line)
                except OSError as err:
                    print(err.args[1], file=self.stream)
                    return
                except Exception as err:
                    print(err.__class__.__name__ + ':', err, file=self.stream)
                    return
                self.prompt = line + "% "
            elif len(self.prompt) > 2:
                line = self.prompt[:-2]
                self.do_read(line)
            else:
                print("No statistics object is current -- cannot reload.", file=self.stream)
            return 0
        def help_read(self):
            print("Read in profile data from a specified file.", file=self.stream)
            print("Without argument, reload the current file.", file=self.stream)

        def do_reverse(self, line):
            if self.stats:
                self.stats.reverse_order()
            else:
                print("No statistics object is loaded.", file=self.stream)
            return 0
        def help_reverse(self):
            print("Reverse the sort order of the profiling report.", file=self.stream)

        def do_sort(self, line):
            if not self.stats:
                print("No statistics object is loaded.", file=self.stream)
                return
            abbrevs = self.stats.get_sort_arg_defs()
            if line and all((x in abbrevs) for x in line.split()):
                self.stats.sort_stats(*line.split())
            else:
                print("Valid sort keys (unique prefixes are accepted):", file=self.stream)
                for (key, value) in Stats.sort_arg_dict_default.items():
                    print("%s -- %s" % (key, value[1]), file=self.stream)
            return 0
        def help_sort(self):
            print("Sort profile data according to specified keys.", file=self.stream)
            print("(Typing `sort' without arguments lists valid keys.)", file=self.stream)
        def complete_sort(self, text, *args):
            return [a for a in Stats.sort_arg_dict_default if a.startswith(text)]

        def do_stats(self, line):
            return self.generic('print_stats', line)
        def help_stats(self):
            print("Print statistics from the current stat object.", file=self.stream)
            self.generic_help()

        def do_strip(self, line):
            if self.stats:
                self.stats.strip_dirs()
            else:
                print("No statistics object is loaded.", file=self.stream)
        def help_strip(self):
            print("Strip leading path information from filenames in the report.", file=self.stream)

        def help_help(self):
            print("Show help for a given command.", file=self.stream)

        def postcmd(self, stop, line):
            if stop:
                return stop
            return None

    if len(sys.argv) > 1:
        initprofile = sys.argv[1]
    else:
        initprofile = None
    try:
        browser = ProfileBrowser(initprofile)
        for profile in sys.argv[2:]:
            browser.do_add(profile)
        print("Welcome to the profile statistics browser.", file=browser.stream)
        browser.cmdloop()
        print("Goodbye.", file=browser.stream)
    except KeyboardInterrupt:
        pass

# That's all, folks.
lib\pty.py
"""Pseudo terminal utilities."""

# Bugs: No signal handling.  Doesn't set slave termios and window size.
#       Only tested on Linux.
# See:  W. Richard Stevens. 1992.  Advanced Programming in the
#       UNIX Environment.  Chapter 19.
# Author: Steen Lumholt -- with additions by Guido.

from select import select
import os
import tty

__all__ = ["openpty","fork","spawn"]

STDIN_FILENO = 0
STDOUT_FILENO = 1
STDERR_FILENO = 2

CHILD = 0

def openpty():
    """openpty() -> (master_fd, slave_fd)
    Open a pty master/slave pair, using os.openpty() if possible."""

    try:
        return os.openpty()
    except (AttributeError, OSError):
        pass
    master_fd, slave_name = _open_terminal()
    slave_fd = slave_open(slave_name)
    return master_fd, slave_fd

def master_open():
    """master_open() -> (master_fd, slave_name)
    Open a pty master and return the fd, and the filename of the slave end.
    Deprecated, use openpty() instead."""

    try:
        master_fd, slave_fd = os.openpty()
    except (AttributeError, OSError):
        pass
    else:
        slave_name = os.ttyname(slave_fd)
        os.close(slave_fd)
        return master_fd, slave_name

    return _open_terminal()

def _open_terminal():
    """Open pty master and return (master_fd, tty_name)."""
    for x in 'pqrstuvwxyzPQRST':
        for y in '0123456789abcdef':
            pty_name = '/dev/pty' + x + y
            try:
                fd = os.open(pty_name, os.O_RDWR)
            except OSError:
                continue
            return (fd, '/dev/tty' + x + y)
    raise OSError('out of pty devices')

def slave_open(tty_name):
    """slave_open(tty_name) -> slave_fd
    Open the pty slave and acquire the controlling terminal, returning
    opened filedescriptor.
    Deprecated, use openpty() instead."""

    result = os.open(tty_name, os.O_RDWR)
    try:
        from fcntl import ioctl, I_PUSH
    except ImportError:
        return result
    try:
        ioctl(result, I_PUSH, "ptem")
        ioctl(result, I_PUSH, "ldterm")
    except OSError:
        pass
    return result

def fork():
    """fork() -> (pid, master_fd)
    Fork and make the child a session leader with a controlling terminal."""

    try:
        pid, fd = os.forkpty()
    except (AttributeError, OSError):
        pass
    else:
        if pid == CHILD:
            try:
                os.setsid()
            except OSError:
                # os.forkpty() already set us session leader
                pass
        return pid, fd

    master_fd, slave_fd = openpty()
    pid = os.fork()
    if pid == CHILD:
        # Establish a new session.
        os.setsid()
        os.close(master_fd)

        # Slave becomes stdin/stdout/stderr of child.
        os.dup2(slave_fd, STDIN_FILENO)
        os.dup2(slave_fd, STDOUT_FILENO)
        os.dup2(slave_fd, STDERR_FILENO)
        if (slave_fd > STDERR_FILENO):
            os.close (slave_fd)

        # Explicitly open the tty to make it become a controlling tty.
        tmp_fd = os.open(os.ttyname(STDOUT_FILENO), os.O_RDWR)
        os.close(tmp_fd)
    else:
        os.close(slave_fd)

    # Parent and child process.
    return pid, master_fd

def _writen(fd, data):
    """Write all the data to a descriptor."""
    while data:
        n = os.write(fd, data)
        data = data[n:]

def _read(fd):
    """Default read function."""
    return os.read(fd, 1024)

def _copy(master_fd, master_read=_read, stdin_read=_read):
    """Parent copy loop.
    Copies
            pty master -> standard output   (master_read)
            standard input -> pty master    (stdin_read)"""
    fds = [master_fd, STDIN_FILENO]
    while True:
        rfds, wfds, xfds = select(fds, [], [])
        if master_fd in rfds:
            data = master_read(master_fd)
            if not data:  # Reached EOF.
                fds.remove(master_fd)
            else:
                os.write(STDOUT_FILENO, data)
        if STDIN_FILENO in rfds:
            data = stdin_read(STDIN_FILENO)
            if not data:
                fds.remove(STDIN_FILENO)
            else:
                _writen(master_fd, data)

def spawn(argv, master_read=_read, stdin_read=_read):
    """Create a spawned process."""
    if type(argv) == type(''):
        argv = (argv,)
    pid, master_fd = fork()
    if pid == CHILD:
        os.execlp(argv[0], *argv)
    try:
        mode = tty.tcgetattr(STDIN_FILENO)
        tty.setraw(STDIN_FILENO)
        restore = 1
    except tty.error:    # This is the same as termios.error
        restore = 0
    try:
        _copy(master_fd, master_read, stdin_read)
    except OSError:
        if restore:
            tty.tcsetattr(STDIN_FILENO, tty.TCSAFLUSH, mode)

    os.close(master_fd)
    return os.waitpid(pid, 0)[1]
lib\pyclbr.py
"""Parse a Python module and describe its classes and methods.

Parse enough of a Python file to recognize imports and class and
method definitions, and to find out the superclasses of a class.

The interface consists of a single function:
        readmodule_ex(module [, path])
where module is the name of a Python module, and path is an optional
list of directories where the module is to be searched.  If present,
path is prepended to the system search path sys.path.  The return
value is a dictionary.  The keys of the dictionary are the names of
the classes defined in the module (including classes that are defined
via the from XXX import YYY construct).  The values are class
instances of the class Class defined here.  One special key/value pair
is present for packages: the key '__path__' has a list as its value
which contains the package search path.

A class is described by the class Class in this module.  Instances
of this class have the following instance variables:
        module -- the module name
        name -- the name of the class
        super -- a list of super classes (Class instances)
        methods -- a dictionary of methods
        file -- the file in which the class was defined
        lineno -- the line in the file on which the class statement occurred
The dictionary of methods uses the method names as keys and the line
numbers on which the method was defined as values.
If the name of a super class is not recognized, the corresponding
entry in the list of super classes is not a class instance but a
string giving the name of the super class.  Since import statements
are recognized and imported modules are scanned as well, this
shouldn't happen often.

A function is described by the class Function in this module.
Instances of this class have the following instance variables:
        module -- the module name
        name -- the name of the class
        file -- the file in which the class was defined
        lineno -- the line in the file on which the class statement occurred
"""

import io
import os
import sys
import importlib.util
import tokenize
from token import NAME, DEDENT, OP
from operator import itemgetter

__all__ = ["readmodule", "readmodule_ex", "Class", "Function"]

_modules = {}                           # cache of modules we've seen

# each Python class is represented by an instance of this class
class Class:
    '''Class to represent a Python class.'''
    def __init__(self, module, name, super, file, lineno):
        self.module = module
        self.name = name
        if super is None:
            super = []
        self.super = super
        self.methods = {}
        self.file = file
        self.lineno = lineno

    def _addmethod(self, name, lineno):
        self.methods[name] = lineno

class Function:
    '''Class to represent a top-level Python function'''
    def __init__(self, module, name, file, lineno):
        self.module = module
        self.name = name
        self.file = file
        self.lineno = lineno

def readmodule(module, path=None):
    '''Backwards compatible interface.

    Call readmodule_ex() and then only keep Class objects from the
    resulting dictionary.'''

    res = {}
    for key, value in _readmodule(module, path or []).items():
        if isinstance(value, Class):
            res[key] = value
    return res

def readmodule_ex(module, path=None):
    '''Read a module file and return a dictionary of classes.

    Search for MODULE in PATH and sys.path, read and parse the
    module and return a dictionary with one entry for each class
    found in the module.
    '''
    return _readmodule(module, path or [])

def _readmodule(module, path, inpackage=None):
    '''Do the hard work for readmodule[_ex].

    If INPACKAGE is given, it must be the dotted name of the package in
    which we are searching for a submodule, and then PATH must be the
    package search path; otherwise, we are searching for a top-level
    module, and PATH is combined with sys.path.
    '''
    # Compute the full module name (prepending inpackage if set)
    if inpackage is not None:
        fullmodule = "%s.%s" % (inpackage, module)
    else:
        fullmodule = module

    # Check in the cache
    if fullmodule in _modules:
        return _modules[fullmodule]

    # Initialize the dict for this module's contents
    dict = {}

    # Check if it is a built-in module; we don't do much for these
    if module in sys.builtin_module_names and inpackage is None:
        _modules[module] = dict
        return dict

    # Check for a dotted module name
    i = module.rfind('.')
    if i >= 0:
        package = module[:i]
        submodule = module[i+1:]
        parent = _readmodule(package, path, inpackage)
        if inpackage is not None:
            package = "%s.%s" % (inpackage, package)
        if not '__path__' in parent:
            raise ImportError('No package named {}'.format(package))
        return _readmodule(submodule, parent['__path__'], package)

    # Search the path for the module
    f = None
    if inpackage is not None:
        search_path = path
    else:
        search_path = path + sys.path
    # XXX This will change once issue19944 lands.
    spec = importlib.util._find_spec_from_path(fullmodule, search_path)
    fname = spec.loader.get_filename(fullmodule)
    _modules[fullmodule] = dict
    if spec.loader.is_package(fullmodule):
        dict['__path__'] = [os.path.dirname(fname)]
    try:
        source = spec.loader.get_source(fullmodule)
        if source is None:
            return dict
    except (AttributeError, ImportError):
        # not Python source, can't do anything with this module
        return dict

    f = io.StringIO(source)

    stack = [] # stack of (class, indent) pairs

    g = tokenize.generate_tokens(f.readline)
    try:
        for tokentype, token, start, _end, _line in g:
            if tokentype == DEDENT:
                lineno, thisindent = start
                # close nested classes and defs
                while stack and stack[-1][1] >= thisindent:
                    del stack[-1]
            elif token == 'def':
                lineno, thisindent = start
                # close previous nested classes and defs
                while stack and stack[-1][1] >= thisindent:
                    del stack[-1]
                tokentype, meth_name, start = next(g)[0:3]
                if tokentype != NAME:
                    continue # Syntax error
                if stack:
                    cur_class = stack[-1][0]
                    if isinstance(cur_class, Class):
                        # it's a method
                        cur_class._addmethod(meth_name, lineno)
                    # else it's a nested def
                else:
                    # it's a function
                    dict[meth_name] = Function(fullmodule, meth_name,
                                               fname, lineno)
                stack.append((None, thisindent)) # Marker for nested fns
            elif token == 'class':
                lineno, thisindent = start
                # close previous nested classes and defs
                while stack and stack[-1][1] >= thisindent:
                    del stack[-1]
                tokentype, class_name, start = next(g)[0:3]
                if tokentype != NAME:
                    continue # Syntax error
                # parse what follows the class name
                tokentype, token, start = next(g)[0:3]
                inherit = None
                if token == '(':
                    names = [] # List of superclasses
                    # there's a list of superclasses
                    level = 1
                    super = [] # Tokens making up current superclass
                    while True:
                        tokentype, token, start = next(g)[0:3]
                        if token in (')', ',') and level == 1:
                            n = "".join(super)
                            if n in dict:
                                # we know this super class
                                n = dict[n]
                            else:
                                c = n.split('.')
                                if len(c) > 1:
                                    # super class is of the form
                                    # module.class: look in module for
                                    # class
                                    m = c[-2]
                                    c = c[-1]
                                    if m in _modules:
                                        d = _modules[m]
                                        if c in d:
                                            n = d[c]
                            names.append(n)
                            super = []
                        if token == '(':
                            level += 1
                        elif token == ')':
                            level -= 1
                            if level == 0:
                                break
                        elif token == ',' and level == 1:
                            pass
                        # only use NAME and OP (== dot) tokens for type name
                        elif tokentype in (NAME, OP) and level == 1:
                            super.append(token)
                        # expressions in the base list are not supported
                    inherit = names
                cur_class = Class(fullmodule, class_name, inherit,
                                  fname, lineno)
                if not stack:
                    dict[class_name] = cur_class
                stack.append((cur_class, thisindent))
            elif token == 'import' and start[1] == 0:
                modules = _getnamelist(g)
                for mod, _mod2 in modules:
                    try:
                        # Recursively read the imported module
                        if inpackage is None:
                            _readmodule(mod, path)
                        else:
                            try:
                                _readmodule(mod, path, inpackage)
                            except ImportError:
                                _readmodule(mod, [])
                    except:
                        # If we can't find or parse the imported module,
                        # too bad -- don't die here.
                        pass
            elif token == 'from' and start[1] == 0:
                mod, token = _getname(g)
                if not mod or token != "import":
                    continue
                names = _getnamelist(g)
                try:
                    # Recursively read the imported module
                    d = _readmodule(mod, path, inpackage)
                except:
                    # If we can't find or parse the imported module,
                    # too bad -- don't die here.
                    continue
                # add any classes that were defined in the imported module
                # to our name space if they were mentioned in the list
                for n, n2 in names:
                    if n in d:
                        dict[n2 or n] = d[n]
                    elif n == '*':
                        # don't add names that start with _
                        for n in d:
                            if n[0] != '_':
                                dict[n] = d[n]
    except StopIteration:
        pass

    f.close()
    return dict

def _getnamelist(g):
    # Helper to get a comma-separated list of dotted names plus 'as'
    # clauses.  Return a list of pairs (name, name2) where name2 is
    # the 'as' name, or None if there is no 'as' clause.
    names = []
    while True:
        name, token = _getname(g)
        if not name:
            break
        if token == 'as':
            name2, token = _getname(g)
        else:
            name2 = None
        names.append((name, name2))
        while token != "," and "\n" not in token:
            token = next(g)[1]
        if token != ",":
            break
    return names

def _getname(g):
    # Helper to get a dotted name, return a pair (name, token) where
    # name is the dotted name, or None if there was no dotted name,
    # and token is the next input token.
    parts = []
    tokentype, token = next(g)[0:2]
    if tokentype != NAME and token != '*':
        return (None, token)
    parts.append(token)
    while True:
        tokentype, token = next(g)[0:2]
        if token != '.':
            break
        tokentype, token = next(g)[0:2]
        if tokentype != NAME:
            break
        parts.append(token)
    return (".".join(parts), token)

def _main():
    # Main program for testing.
    import os
    mod = sys.argv[1]
    if os.path.exists(mod):
        path = [os.path.dirname(mod)]
        mod = os.path.basename(mod)
        if mod.lower().endswith(".py"):
            mod = mod[:-3]
    else:
        path = []
    dict = readmodule_ex(mod, path)
    objs = list(dict.values())
    objs.sort(key=lambda a: getattr(a, 'lineno', 0))
    for obj in objs:
        if isinstance(obj, Class):
            print("class", obj.name, obj.super, obj.lineno)
            methods = sorted(obj.methods.items(), key=itemgetter(1))
            for name, lineno in methods:
                if name != "__path__":
                    print("  def", name, lineno)
        elif isinstance(obj, Function):
            print("def", obj.name, obj.lineno)

if __name__ == "__main__":
    _main()
lib\pydoc.py
#!/usr/bin/env python3
"""Generate Python documentation in HTML or text for interactive use.

At the Python interactive prompt, calling help(thing) on a Python object
documents the object, and calling help() starts up an interactive
help session.

Or, at the shell command line outside of Python:

Run "pydoc <name>" to show documentation on something.  <name> may be
the name of a function, module, package, or a dotted reference to a
class or function within a module or module in a package.  If the
argument contains a path segment delimiter (e.g. slash on Unix,
backslash on Windows) it is treated as the path to a Python source file.

Run "pydoc -k <keyword>" to search for a keyword in the synopsis lines
of all available modules.

Run "pydoc -p <port>" to start an HTTP server on the given port on the
local machine.  Port number 0 can be used to get an arbitrary unused port.

Run "pydoc -b" to start an HTTP server on an arbitrary unused port and
open a Web browser to interactively browse documentation.  The -p option
can be used with the -b option to explicitly specify the server port.

Run "pydoc -w <name>" to write out the HTML documentation for a module
to a file named "<name>.html".

Module docs for core modules are assumed to be in

    http://docs.python.org/X.Y/library/

This can be overridden by setting the PYTHONDOCS environment variable
to a different URL or to a local directory containing the Library
Reference Manual pages.
"""
__all__ = ['help']
__author__ = "Ka-Ping Yee <[email protected]>"
__date__ = "26 February 2001"

__credits__ = """Guido van Rossum, for an excellent programming language.
Tommy Burnette, the original creator of manpy.
Paul Prescod, for all his work on onlinehelp.
Richard Chamberlain, for the first implementation of textdoc.
"""

# Known bugs that can't be fixed here:
#   - synopsis() cannot be prevented from clobbering existing
#     loaded modules.
#   - If the __file__ attribute on a module is a relative path and
#     the current directory is changed with os.chdir(), an incorrect
#     path will be displayed.

import builtins
import importlib._bootstrap
import importlib.machinery
import importlib.util
import inspect
import io
import os
import pkgutil
import platform
import re
import sys
import time
import tokenize
import urllib.parse
import warnings
from collections import deque
from reprlib import Repr
from traceback import format_exception_only


# --------------------------------------------------------- common routines

def pathdirs():
    """Convert sys.path into a list of absolute, existing, unique paths."""
    dirs = []
    normdirs = []
    for dir in sys.path:
        dir = os.path.abspath(dir or '.')
        normdir = os.path.normcase(dir)
        if normdir not in normdirs and os.path.isdir(dir):
            dirs.append(dir)
            normdirs.append(normdir)
    return dirs

def getdoc(object):
    """Get the doc string or comments for an object."""
    result = inspect.getdoc(object) or inspect.getcomments(object)
    return result and re.sub('^ *\n', '', result.rstrip()) or ''

def splitdoc(doc):
    """Split a doc string into a synopsis line (if any) and the rest."""
    lines = doc.strip().split('\n')
    if len(lines) == 1:
        return lines[0], ''
    elif len(lines) >= 2 and not lines[1].rstrip():
        return lines[0], '\n'.join(lines[2:])
    return '', '\n'.join(lines)

def classname(object, modname):
    """Get a class name and qualify it with a module name if necessary."""
    name = object.__name__
    if object.__module__ != modname:
        name = object.__module__ + '.' + name
    return name

def isdata(object):
    """Check if an object is of a type that probably means it's data."""
    return not (inspect.ismodule(object) or inspect.isclass(object) or
                inspect.isroutine(object) or inspect.isframe(object) or
                inspect.istraceback(object) or inspect.iscode(object))

def replace(text, *pairs):
    """Do a series of global replacements on a string."""
    while pairs:
        text = pairs[1].join(text.split(pairs[0]))
        pairs = pairs[2:]
    return text

def cram(text, maxlen):
    """Omit part of a string if needed to make it fit in a maximum length."""
    if len(text) > maxlen:
        pre = max(0, (maxlen-3)//2)
        post = max(0, maxlen-3-pre)
        return text[:pre] + '...' + text[len(text)-post:]
    return text

_re_stripid = re.compile(r' at 0x[0-9a-f]{6,16}(>+)$', re.IGNORECASE)
def stripid(text):
    """Remove the hexadecimal id from a Python object representation."""
    # The behaviour of %p is implementation-dependent in terms of case.
    return _re_stripid.sub(r'\1', text)

def _is_some_method(obj):
    return (inspect.isfunction(obj) or
            inspect.ismethod(obj) or
            inspect.isbuiltin(obj) or
            inspect.ismethoddescriptor(obj))

def _is_bound_method(fn):
    """
    Returns True if fn is a bound method, regardless of whether
    fn was implemented in Python or in C.
    """
    if inspect.ismethod(fn):
        return True
    if inspect.isbuiltin(fn):
        self = getattr(fn, '__self__', None)
        return not (inspect.ismodule(self) or (self is None))
    return False


def allmethods(cl):
    methods = {}
    for key, value in inspect.getmembers(cl, _is_some_method):
        methods[key] = 1
    for base in cl.__bases__:
        methods.update(allmethods(base)) # all your base are belong to us
    for key in methods.keys():
        methods[key] = getattr(cl, key)
    return methods

def _split_list(s, predicate):
    """Split sequence s via predicate, and return pair ([true], [false]).

    The return value is a 2-tuple of lists,
        ([x for x in s if predicate(x)],
         [x for x in s if not predicate(x)])
    """

    yes = []
    no = []
    for x in s:
        if predicate(x):
            yes.append(x)
        else:
            no.append(x)
    return yes, no

def visiblename(name, all=None, obj=None):
    """Decide whether to show documentation on a variable."""
    # Certain special names are redundant or internal.
    # XXX Remove __initializing__?
    if name in {'__author__', '__builtins__', '__cached__', '__credits__',
                '__date__', '__doc__', '__file__', '__spec__',
                '__loader__', '__module__', '__name__', '__package__',
                '__path__', '__qualname__', '__slots__', '__version__'}:
        return 0
    # Private names are hidden, but special names are displayed.
    if name.startswith('__') and name.endswith('__'): return 1
    # Namedtuples have public fields and methods with a single leading underscore
    if name.startswith('_') and hasattr(obj, '_fields'):
        return True
    if all is not None:
        # only document that which the programmer exported in __all__
        return name in all
    else:
        return not name.startswith('_')

def classify_class_attrs(object):
    """Wrap inspect.classify_class_attrs, with fixup for data descriptors."""
    results = []
    for (name, kind, cls, value) in inspect.classify_class_attrs(object):
        if inspect.isdatadescriptor(value):
            kind = 'data descriptor'
        results.append((name, kind, cls, value))
    return results

# ----------------------------------------------------- module manipulation

def ispackage(path):
    """Guess whether a path refers to a package directory."""
    if os.path.isdir(path):
        for ext in ('.py', '.pyc', '.pyo'):
            if os.path.isfile(os.path.join(path, '__init__' + ext)):
                return True
    return False

def source_synopsis(file):
    line = file.readline()
    while line[:1] == '#' or not line.strip():
        line = file.readline()
        if not line: break
    line = line.strip()
    if line[:4] == 'r"""': line = line[1:]
    if line[:3] == '"""':
        line = line[3:]
        if line[-1:] == '\\': line = line[:-1]
        while not line.strip():
            line = file.readline()
            if not line: break
        result = line.split('"""')[0].strip()
    else: result = None
    return result

def synopsis(filename, cache={}):
    """Get the one-line summary out of a module file."""
    mtime = os.stat(filename).st_mtime
    lastupdate, result = cache.get(filename, (None, None))
    if lastupdate is None or lastupdate < mtime:
        # Look for binary suffixes first, falling back to source.
        if filename.endswith(tuple(importlib.machinery.BYTECODE_SUFFIXES)):
            loader_cls = importlib.machinery.SourcelessFileLoader
        elif filename.endswith(tuple(importlib.machinery.EXTENSION_SUFFIXES)):
            loader_cls = importlib.machinery.ExtensionFileLoader
        else:
            loader_cls = None
        # Now handle the choice.
        if loader_cls is None:
            # Must be a source file.
            try:
                file = tokenize.open(filename)
            except OSError:
                # module can't be opened, so skip it
                return None
            # text modules can be directly examined
            with file:
                result = source_synopsis(file)
        else:
            # Must be a binary module, which has to be imported.
            loader = loader_cls('__temp__', filename)
            # XXX We probably don't need to pass in the loader here.
            spec = importlib.util.spec_from_file_location('__temp__', filename,
                                                          loader=loader)
            _spec = importlib._bootstrap._SpecMethods(spec)
            try:
                module = _spec.load()
            except:
                return None
            del sys.modules['__temp__']
            result = module.__doc__.splitlines()[0] if module.__doc__ else None
        # Cache the result.
        cache[filename] = (mtime, result)
    return result

class ErrorDuringImport(Exception):
    """Errors that occurred while trying to import something to document it."""
    def __init__(self, filename, exc_info):
        self.filename = filename
        self.exc, self.value, self.tb = exc_info

    def __str__(self):
        exc = self.exc.__name__
        return 'problem in %s - %s: %s' % (self.filename, exc, self.value)

def importfile(path):
    """Import a Python source file or compiled file given its path."""
    magic = importlib.util.MAGIC_NUMBER
    with open(path, 'rb') as file:
        is_bytecode = magic == file.read(len(magic))
    filename = os.path.basename(path)
    name, ext = os.path.splitext(filename)
    if is_bytecode:
        loader = importlib._bootstrap.SourcelessFileLoader(name, path)
    else:
        loader = importlib._bootstrap.SourceFileLoader(name, path)
    # XXX We probably don't need to pass in the loader here.
    spec = importlib.util.spec_from_file_location(name, path, loader=loader)
    _spec = importlib._bootstrap._SpecMethods(spec)
    try:
        return _spec.load()
    except:
        raise ErrorDuringImport(path, sys.exc_info())

def safeimport(path, forceload=0, cache={}):
    """Import a module; handle errors; return None if the module isn't found.

    If the module *is* found but an exception occurs, it's wrapped in an
    ErrorDuringImport exception and reraised.  Unlike __import__, if a
    package path is specified, the module at the end of the path is returned,
    not the package at the beginning.  If the optional 'forceload' argument
    is 1, we reload the module from disk (unless it's a dynamic extension)."""
    try:
        # If forceload is 1 and the module has been previously loaded from
        # disk, we always have to reload the module.  Checking the file's
        # mtime isn't good enough (e.g. the module could contain a class
        # that inherits from another module that has changed).
        if forceload and path in sys.modules:
            if path not in sys.builtin_module_names:
                # Remove the module from sys.modules and re-import to try
                # and avoid problems with partially loaded modules.
                # Also remove any submodules because they won't appear
                # in the newly loaded module's namespace if they're already
                # in sys.modules.
                subs = [m for m in sys.modules if m.startswith(path + '.')]
                for key in [path] + subs:
                    # Prevent garbage collection.
                    cache[key] = sys.modules[key]
                    del sys.modules[key]
        module = __import__(path)
    except:
        # Did the error occur before or after the module was found?
        (exc, value, tb) = info = sys.exc_info()
        if path in sys.modules:
            # An error occurred while executing the imported module.
            raise ErrorDuringImport(sys.modules[path].__file__, info)
        elif exc is SyntaxError:
            # A SyntaxError occurred before we could execute the module.
            raise ErrorDuringImport(value.filename, info)
        elif exc is ImportError and value.name == path:
            # No such module in the path.
            return None
        else:
            # Some other error occurred during the importing process.
            raise ErrorDuringImport(path, sys.exc_info())
    for part in path.split('.')[1:]:
        try: module = getattr(module, part)
        except AttributeError: return None
    return module

# ---------------------------------------------------- formatter base class

class Doc:

    PYTHONDOCS = os.environ.get("PYTHONDOCS",
                                "http://docs.python.org/%d.%d/library"
                                % sys.version_info[:2])

    def document(self, object, name=None, *args):
        """Generate documentation for an object."""
        args = (object, name) + args
        # 'try' clause is to attempt to handle the possibility that inspect
        # identifies something in a way that pydoc itself has issues handling;
        # think 'super' and how it is a descriptor (which raises the exception
        # by lacking a __name__ attribute) and an instance.
        if inspect.isgetsetdescriptor(object): return self.docdata(*args)
        if inspect.ismemberdescriptor(object): return self.docdata(*args)
        try:
            if inspect.ismodule(object): return self.docmodule(*args)
            if inspect.isclass(object): return self.docclass(*args)
            if inspect.isroutine(object): return self.docroutine(*args)
        except AttributeError:
            pass
        if isinstance(object, property): return self.docproperty(*args)
        return self.docother(*args)

    def fail(self, object, name=None, *args):
        """Raise an exception for unimplemented types."""
        message = "don't know how to document object%s of type %s" % (
            name and ' ' + repr(name), type(object).__name__)
        raise TypeError(message)

    docmodule = docclass = docroutine = docother = docproperty = docdata = fail

    def getdocloc(self, object):
        """Return the location of module docs or None"""

        try:
            file = inspect.getabsfile(object)
        except TypeError:
            file = '(built-in)'

        docloc = os.environ.get("PYTHONDOCS", self.PYTHONDOCS)

        basedir = os.path.join(sys.base_exec_prefix, "lib",
                               "python%d.%d" %  sys.version_info[:2])
        if (isinstance(object, type(os)) and
            (object.__name__ in ('errno', 'exceptions', 'gc', 'imp',
                                 'marshal', 'posix', 'signal', 'sys',
                                 '_thread', 'zipimport') or
             (file.startswith(basedir) and
              not file.startswith(os.path.join(basedir, 'site-packages')))) and
            object.__name__ not in ('xml.etree', 'test.pydoc_mod')):
            if docloc.startswith("http://"):
                docloc = "%s/%s" % (docloc.rstrip("/"), object.__name__)
            else:
                docloc = os.path.join(docloc, object.__name__ + ".html")
        else:
            docloc = None
        return docloc

# -------------------------------------------- HTML documentation generator

class HTMLRepr(Repr):
    """Class for safely making an HTML representation of a Python object."""
    def __init__(self):
        Repr.__init__(self)
        self.maxlist = self.maxtuple = 20
        self.maxdict = 10
        self.maxstring = self.maxother = 100

    def escape(self, text):
        return replace(text, '&', '&amp;', '<', '&lt;', '>', '&gt;')

    def repr(self, object):
        return Repr.repr(self, object)

    def repr1(self, x, level):
        if hasattr(type(x), '__name__'):
            methodname = 'repr_' + '_'.join(type(x).__name__.split())
            if hasattr(self, methodname):
                return getattr(self, methodname)(x, level)
        return self.escape(cram(stripid(repr(x)), self.maxother))

    def repr_string(self, x, level):
        test = cram(x, self.maxstring)
        testrepr = repr(test)
        if '\\' in test and '\\' not in replace(testrepr, r'\\', ''):
            # Backslashes are only literal in the string and are never
            # needed to make any special characters, so show a raw string.
            return 'r' + testrepr[0] + self.escape(test) + testrepr[0]
        return re.sub(r'((\\[\\abfnrtv\'"]|\\[0-9]..|\\x..|\\u....)+)',
                      r'<font color="#c040c0">\1</font>',
                      self.escape(testrepr))

    repr_str = repr_string

    def repr_instance(self, x, level):
        try:
            return self.escape(cram(stripid(repr(x)), self.maxstring))
        except:
            return self.escape('<%s instance>' % x.__class__.__name__)

    repr_unicode = repr_string

class HTMLDoc(Doc):
    """Formatter class for HTML documentation."""

    # ------------------------------------------- HTML formatting utilities

    _repr_instance = HTMLRepr()
    repr = _repr_instance.repr
    escape = _repr_instance.escape

    def page(self, title, contents):
        """Format an HTML page."""
        return '''\
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html><head><title>Python: %s</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head><body bgcolor="#f0f0f8">
%s
</body></html>''' % (title, contents)

    def heading(self, title, fgcol, bgcol, extras=''):
        """Format a page heading."""
        return '''
<table width="100%%" cellspacing=0 cellpadding=2 border=0 summary="heading">
<tr bgcolor="%s">
<td valign=bottom>&nbsp;<br>
<font color="%s" face="helvetica, arial">&nbsp;<br>%s</font></td
><td align=right valign=bottom
><font color="%s" face="helvetica, arial">%s</font></td></tr></table>
    ''' % (bgcol, fgcol, title, fgcol, extras or '&nbsp;')

    def section(self, title, fgcol, bgcol, contents, width=6,
                prelude='', marginalia=None, gap='&nbsp;'):
        """Format a section with a heading."""
        if marginalia is None:
            marginalia = '<tt>' + '&nbsp;' * width + '</tt>'
        result = '''<p>
<table width="100%%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="%s">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="%s" face="helvetica, arial">%s</font></td></tr>
    ''' % (bgcol, fgcol, title)
        if prelude:
            result = result + '''
<tr bgcolor="%s"><td rowspan=2>%s</td>
<td colspan=2>%s</td></tr>
<tr><td>%s</td>''' % (bgcol, marginalia, prelude, gap)
        else:
            result = result + '''
<tr><td bgcolor="%s">%s</td><td>%s</td>''' % (bgcol, marginalia, gap)

        return result + '\n<td width="100%%">%s</td></tr></table>' % contents

    def bigsection(self, title, *args):
        """Format a section with a big heading."""
        title = '<big><strong>%s</strong></big>' % title
        return self.section(title, *args)

    def preformat(self, text):
        """Format literal preformatted text."""
        text = self.escape(text.expandtabs())
        return replace(text, '\n\n', '\n \n', '\n\n', '\n \n',
                             ' ', '&nbsp;', '\n', '<br>\n')

    def multicolumn(self, list, format, cols=4):
        """Format a list of items into a multi-column list."""
        result = ''
        rows = (len(list)+cols-1)//cols
        for col in range(cols):
            result = result + '<td width="%d%%" valign=top>' % (100//cols)
            for i in range(rows*col, rows*col+rows):
                if i < len(list):
                    result = result + format(list[i]) + '<br>\n'
            result = result + '</td>'
        return '<table width="100%%" summary="list"><tr>%s</tr></table>' % result

    def grey(self, text): return '<font color="#909090">%s</font>' % text

    def namelink(self, name, *dicts):
        """Make a link for an identifier, given name-to-URL mappings."""
        for dict in dicts:
            if name in dict:
                return '<a href="%s">%s</a>' % (dict[name], name)
        return name

    def classlink(self, object, modname):
        """Make a link for a class."""
        name, module = object.__name__, sys.modules.get(object.__module__)
        if hasattr(module, name) and getattr(module, name) is object:
            return '<a href="%s.html#%s">%s</a>' % (
                module.__name__, name, classname(object, modname))
        return classname(object, modname)

    def modulelink(self, object):
        """Make a link for a module."""
        return '<a href="%s.html">%s</a>' % (object.__name__, object.__name__)

    def modpkglink(self, modpkginfo):
        """Make a link for a module or package to display in an index."""
        name, path, ispackage, shadowed = modpkginfo
        if shadowed:
            return self.grey(name)
        if path:
            url = '%s.%s.html' % (path, name)
        else:
            url = '%s.html' % name
        if ispackage:
            text = '<strong>%s</strong>&nbsp;(package)' % name
        else:
            text = name
        return '<a href="%s">%s</a>' % (url, text)

    def filelink(self, url, path):
        """Make a link to source file."""
        return '<a href="file:%s">%s</a>' % (url, path)

    def markup(self, text, escape=None, funcs={}, classes={}, methods={}):
        """Mark up some plain text, given a context of symbols to look for.
        Each context dictionary maps object names to anchor names."""
        escape = escape or self.escape
        results = []
        here = 0
        pattern = re.compile(r'\b((http|ftp)://\S+[\w/]|'
                                r'RFC[- ]?(\d+)|'
                                r'PEP[- ]?(\d+)|'
                                r'(self\.)?(\w+))')
        while True:
            match = pattern.search(text, here)
            if not match: break
            start, end = match.span()
            results.append(escape(text[here:start]))

            all, scheme, rfc, pep, selfdot, name = match.groups()
            if scheme:
                url = escape(all).replace('"', '&quot;')
                results.append('<a href="%s">%s</a>' % (url, url))
            elif rfc:
                url = 'http://www.rfc-editor.org/rfc/rfc%d.txt' % int(rfc)
                results.append('<a href="%s">%s</a>' % (url, escape(all)))
            elif pep:
                url = 'http://www.python.org/dev/peps/pep-%04d/' % int(pep)
                results.append('<a href="%s">%s</a>' % (url, escape(all)))
            elif selfdot:
                # Create a link for methods like 'self.method(...)'
                # and use <strong> for attributes like 'self.attr'
                if text[end:end+1] == '(':
                    results.append('self.' + self.namelink(name, methods))
                else:
                    results.append('self.<strong>%s</strong>' % name)
            elif text[end:end+1] == '(':
                results.append(self.namelink(name, methods, funcs, classes))
            else:
                results.append(self.namelink(name, classes))
            here = end
        results.append(escape(text[here:]))
        return ''.join(results)

    # ---------------------------------------------- type-specific routines

    def formattree(self, tree, modname, parent=None):
        """Produce HTML for a class tree as given by inspect.getclasstree()."""
        result = ''
        for entry in tree:
            if type(entry) is type(()):
                c, bases = entry
                result = result + '<dt><font face="helvetica, arial">'
                result = result + self.classlink(c, modname)
                if bases and bases != (parent,):
                    parents = []
                    for base in bases:
                        parents.append(self.classlink(base, modname))
                    result = result + '(' + ', '.join(parents) + ')'
                result = result + '\n</font></dt>'
            elif type(entry) is type([]):
                result = result + '<dd>\n%s</dd>\n' % self.formattree(
                    entry, modname, c)
        return '<dl>\n%s</dl>\n' % result

    def docmodule(self, object, name=None, mod=None, *ignored):
        """Produce HTML documentation for a module object."""
        name = object.__name__ # ignore the passed-in name
        try:
            all = object.__all__
        except AttributeError:
            all = None
        parts = name.split('.')
        links = []
        for i in range(len(parts)-1):
            links.append(
                '<a href="%s.html"><font color="#ffffff">%s</font></a>' %
                ('.'.join(parts[:i+1]), parts[i]))
        linkedname = '.'.join(links + parts[-1:])
        head = '<big><big><strong>%s</strong></big></big>' % linkedname
        try:
            path = inspect.getabsfile(object)
            url = urllib.parse.quote(path)
            filelink = self.filelink(url, path)
        except TypeError:
            filelink = '(built-in)'
        info = []
        if hasattr(object, '__version__'):
            version = str(object.__version__)
            if version[:11] == '$' + 'Revision: ' and version[-1:] == '$':
                version = version[11:-1].strip()
            info.append('version %s' % self.escape(version))
        if hasattr(object, '__date__'):
            info.append(self.escape(str(object.__date__)))
        if info:
            head = head + ' (%s)' % ', '.join(info)
        docloc = self.getdocloc(object)
        if docloc is not None:
            docloc = '<br><a href="%(docloc)s">Module Reference</a>' % locals()
        else:
            docloc = ''
        result = self.heading(
            head, '#ffffff', '#7799ee',
            '<a href=".">index</a><br>' + filelink + docloc)

        modules = inspect.getmembers(object, inspect.ismodule)

        classes, cdict = [], {}
        for key, value in inspect.getmembers(object, inspect.isclass):
            # if __all__ exists, believe it.  Otherwise use old heuristic.
            if (all is not None or
                (inspect.getmodule(value) or object) is object):
                if visiblename(key, all, object):
                    classes.append((key, value))
                    cdict[key] = cdict[value] = '#' + key
        for key, value in classes:
            for base in value.__bases__:
                key, modname = base.__name__, base.__module__
                module = sys.modules.get(modname)
                if modname != name and module and hasattr(module, key):
                    if getattr(module, key) is base:
                        if not key in cdict:
                            cdict[key] = cdict[base] = modname + '.html#' + key
        funcs, fdict = [], {}
        for key, value in inspect.getmembers(object, inspect.isroutine):
            # if __all__ exists, believe it.  Otherwise use old heuristic.
            if (all is not None or
                inspect.isbuiltin(value) or inspect.getmodule(value) is object):
                if visiblename(key, all, object):
                    funcs.append((key, value))
                    fdict[key] = '#-' + key
                    if inspect.isfunction(value): fdict[value] = fdict[key]
        data = []
        for key, value in inspect.getmembers(object, isdata):
            if visiblename(key, all, object):
                data.append((key, value))

        doc = self.markup(getdoc(object), self.preformat, fdict, cdict)
        doc = doc and '<tt>%s</tt>' % doc
        result = result + '<p>%s</p>\n' % doc

        if hasattr(object, '__path__'):
            modpkgs = []
            for importer, modname, ispkg in pkgutil.iter_modules(object.__path__):
                modpkgs.append((modname, name, ispkg, 0))
            modpkgs.sort()
            contents = self.multicolumn(modpkgs, self.modpkglink)
            result = result + self.bigsection(
                'Package Contents', '#ffffff', '#aa55cc', contents)
        elif modules:
            contents = self.multicolumn(
                modules, lambda t: self.modulelink(t[1]))
            result = result + self.bigsection(
                'Modules', '#ffffff', '#aa55cc', contents)

        if classes:
            classlist = [value for (key, value) in classes]
            contents = [
                self.formattree(inspect.getclasstree(classlist, 1), name)]
            for key, value in classes:
                contents.append(self.document(value, key, name, fdict, cdict))
            result = result + self.bigsection(
                'Classes', '#ffffff', '#ee77aa', ' '.join(contents))
        if funcs:
            contents = []
            for key, value in funcs:
                contents.append(self.document(value, key, name, fdict, cdict))
            result = result + self.bigsection(
                'Functions', '#ffffff', '#eeaa77', ' '.join(contents))
        if data:
            contents = []
            for key, value in data:
                contents.append(self.document(value, key))
            result = result + self.bigsection(
                'Data', '#ffffff', '#55aa55', '<br>\n'.join(contents))
        if hasattr(object, '__author__'):
            contents = self.markup(str(object.__author__), self.preformat)
            result = result + self.bigsection(
                'Author', '#ffffff', '#7799ee', contents)
        if hasattr(object, '__credits__'):
            contents = self.markup(str(object.__credits__), self.preformat)
            result = result + self.bigsection(
                'Credits', '#ffffff', '#7799ee', contents)

        return result

    def docclass(self, object, name=None, mod=None, funcs={}, classes={},
                 *ignored):
        """Produce HTML documentation for a class object."""
        realname = object.__name__
        name = name or realname
        bases = object.__bases__

        contents = []
        push = contents.append

        # Cute little class to pump out a horizontal rule between sections.
        class HorizontalRule:
            def __init__(self):
                self.needone = 0
            def maybe(self):
                if self.needone:
                    push('<hr>\n')
                self.needone = 1
        hr = HorizontalRule()

        # List the mro, if non-trivial.
        mro = deque(inspect.getmro(object))
        if len(mro) > 2:
            hr.maybe()
            push('<dl><dt>Method resolution order:</dt>\n')
            for base in mro:
                push('<dd>%s</dd>\n' % self.classlink(base,
                                                      object.__module__))
            push('</dl>\n')

        def spill(msg, attrs, predicate):
            ok, attrs = _split_list(attrs, predicate)
            if ok:
                hr.maybe()
                push(msg)
                for name, kind, homecls, value in ok:
                    try:
                        value = getattr(object, name)
                    except Exception:
                        # Some descriptors may meet a failure in their __get__.
                        # (bug #1785)
                        push(self._docdescriptor(name, value, mod))
                    else:
                        push(self.document(value, name, mod,
                                        funcs, classes, mdict, object))
                    push('\n')
            return attrs

        def spilldescriptors(msg, attrs, predicate):
            ok, attrs = _split_list(attrs, predicate)
            if ok:
                hr.maybe()
                push(msg)
                for name, kind, homecls, value in ok:
                    push(self._docdescriptor(name, value, mod))
            return attrs

        def spilldata(msg, attrs, predicate):
            ok, attrs = _split_list(attrs, predicate)
            if ok:
                hr.maybe()
                push(msg)
                for name, kind, homecls, value in ok:
                    base = self.docother(getattr(object, name), name, mod)
                    if callable(value) or inspect.isdatadescriptor(value):
                        doc = getattr(value, "__doc__", None)
                    else:
                        doc = None
                    if doc is None:
                        push('<dl><dt>%s</dl>\n' % base)
                    else:
                        doc = self.markup(getdoc(value), self.preformat,
                                          funcs, classes, mdict)
                        doc = '<dd><tt>%s</tt>' % doc
                        push('<dl><dt>%s%s</dl>\n' % (base, doc))
                    push('\n')
            return attrs

        attrs = [(name, kind, cls, value)
                 for name, kind, cls, value in classify_class_attrs(object)
                 if visiblename(name, obj=object)]

        mdict = {}
        for key, kind, homecls, value in attrs:
            mdict[key] = anchor = '#' + name + '-' + key
            try:
                value = getattr(object, name)
            except Exception:
                # Some descriptors may meet a failure in their __get__.
                # (bug #1785)
                pass
            try:
                # The value may not be hashable (e.g., a data attr with
                # a dict or list value).
                mdict[value] = anchor
            except TypeError:
                pass

        while attrs:
            if mro:
                thisclass = mro.popleft()
            else:
                thisclass = attrs[0][2]
            attrs, inherited = _split_list(attrs, lambda t: t[2] is thisclass)

            if thisclass is builtins.object:
                attrs = inherited
                continue
            elif thisclass is object:
                tag = 'defined here'
            else:
                tag = 'inherited from %s' % self.classlink(thisclass,
                                                           object.__module__)
            tag += ':<br>\n'

            # Sort attrs by name.
            attrs.sort(key=lambda t: t[0])

            # Pump out the attrs, segregated by kind.
            attrs = spill('Methods %s' % tag, attrs,
                          lambda t: t[1] == 'method')
            attrs = spill('Class methods %s' % tag, attrs,
                          lambda t: t[1] == 'class method')
            attrs = spill('Static methods %s' % tag, attrs,
                          lambda t: t[1] == 'static method')
            attrs = spilldescriptors('Data descriptors %s' % tag, attrs,
                                     lambda t: t[1] == 'data descriptor')
            attrs = spilldata('Data and other attributes %s' % tag, attrs,
                              lambda t: t[1] == 'data')
            assert attrs == []
            attrs = inherited

        contents = ''.join(contents)

        if name == realname:
            title = '<a name="%s">class <strong>%s</strong></a>' % (
                name, realname)
        else:
            title = '<strong>%s</strong> = <a name="%s">class %s</a>' % (
                name, name, realname)
        if bases:
            parents = []
            for base in bases:
                parents.append(self.classlink(base, object.__module__))
            title = title + '(%s)' % ', '.join(parents)
        doc = self.markup(getdoc(object), self.preformat, funcs, classes, mdict)
        doc = doc and '<tt>%s<br>&nbsp;</tt>' % doc

        return self.section(title, '#000000', '#ffc8d8', contents, 3, doc)

    def formatvalue(self, object):
        """Format an argument default value as text."""
        return self.grey('=' + self.repr(object))

    def docroutine(self, object, name=None, mod=None,
                   funcs={}, classes={}, methods={}, cl=None):
        """Produce HTML documentation for a function or method object."""
        realname = object.__name__
        name = name or realname
        anchor = (cl and cl.__name__ or '') + '-' + name
        note = ''
        skipdocs = 0
        if _is_bound_method(object):
            imclass = object.__self__.__class__
            if cl:
                if imclass is not cl:
                    note = ' from ' + self.classlink(imclass, mod)
            else:
                if object.__self__ is not None:
                    note = ' method of %s instance' % self.classlink(
                        object.__self__.__class__, mod)
                else:
                    note = ' unbound %s method' % self.classlink(imclass,mod)

        if name == realname:
            title = '<a name="%s"><strong>%s</strong></a>' % (anchor, realname)
        else:
            if (cl and realname in cl.__dict__ and
                cl.__dict__[realname] is object):
                reallink = '<a href="#%s">%s</a>' % (
                    cl.__name__ + '-' + realname, realname)
                skipdocs = 1
            else:
                reallink = realname
            title = '<a name="%s"><strong>%s</strong></a> = %s' % (
                anchor, name, reallink)
        argspec = None
        if inspect.isroutine(object):
            try:
                signature = inspect.signature(object)
            except (ValueError, TypeError):
                signature = None
            if signature:
                argspec = str(signature)
                if realname == '<lambda>':
                    title = '<strong>%s</strong> <em>lambda</em> ' % name
                    # XXX lambda's won't usually have func_annotations['return']
                    # since the syntax doesn't support but it is possible.
                    # So removing parentheses isn't truly safe.
                    argspec = argspec[1:-1] # remove parentheses
        if not argspec:
            argspec = '(...)'

        decl = title + self.escape(argspec) + (note and self.grey(
               '<font face="helvetica, arial">%s</font>' % note))

        if skipdocs:
            return '<dl><dt>%s</dt></dl>\n' % decl
        else:
            doc = self.markup(
                getdoc(object), self.preformat, funcs, classes, methods)
            doc = doc and '<dd><tt>%s</tt></dd>' % doc
            return '<dl><dt>%s</dt>%s</dl>\n' % (decl, doc)

    def _docdescriptor(self, name, value, mod):
        results = []
        push = results.append

        if name:
            push('<dl><dt><strong>%s</strong></dt>\n' % name)
        if value.__doc__ is not None:
            doc = self.markup(getdoc(value), self.preformat)
            push('<dd><tt>%s</tt></dd>\n' % doc)
        push('</dl>\n')

        return ''.join(results)

    def docproperty(self, object, name=None, mod=None, cl=None):
        """Produce html documentation for a property."""
        return self._docdescriptor(name, object, mod)

    def docother(self, object, name=None, mod=None, *ignored):
        """Produce HTML documentation for a data object."""
        lhs = name and '<strong>%s</strong> = ' % name or ''
        return lhs + self.repr(object)

    def docdata(self, object, name=None, mod=None, cl=None):
        """Produce html documentation for a data descriptor."""
        return self._docdescriptor(name, object, mod)

    def index(self, dir, shadowed=None):
        """Generate an HTML index for a directory of modules."""
        modpkgs = []
        if shadowed is None: shadowed = {}
        for importer, name, ispkg in pkgutil.iter_modules([dir]):
            if any((0xD800 <= ord(ch) <= 0xDFFF) for ch in name):
                # ignore a module if its name contains a surrogate character
                continue
            modpkgs.append((name, '', ispkg, name in shadowed))
            shadowed[name] = 1

        modpkgs.sort()
        contents = self.multicolumn(modpkgs, self.modpkglink)
        return self.bigsection(dir, '#ffffff', '#ee77aa', contents)

# -------------------------------------------- text documentation generator

class TextRepr(Repr):
    """Class for safely making a text representation of a Python object."""
    def __init__(self):
        Repr.__init__(self)
        self.maxlist = self.maxtuple = 20
        self.maxdict = 10
        self.maxstring = self.maxother = 100

    def repr1(self, x, level):
        if hasattr(type(x), '__name__'):
            methodname = 'repr_' + '_'.join(type(x).__name__.split())
            if hasattr(self, methodname):
                return getattr(self, methodname)(x, level)
        return cram(stripid(repr(x)), self.maxother)

    def repr_string(self, x, level):
        test = cram(x, self.maxstring)
        testrepr = repr(test)
        if '\\' in test and '\\' not in replace(testrepr, r'\\', ''):
            # Backslashes are only literal in the string and are never
            # needed to make any special characters, so show a raw string.
            return 'r' + testrepr[0] + test + testrepr[0]
        return testrepr

    repr_str = repr_string

    def repr_instance(self, x, level):
        try:
            return cram(stripid(repr(x)), self.maxstring)
        except:
            return '<%s instance>' % x.__class__.__name__

class TextDoc(Doc):
    """Formatter class for text documentation."""

    # ------------------------------------------- text formatting utilities

    _repr_instance = TextRepr()
    repr = _repr_instance.repr

    def bold(self, text):
        """Format a string in bold by overstriking."""
        return ''.join(ch + '\b' + ch for ch in text)

    def indent(self, text, prefix='    '):
        """Indent text by prepending a given prefix to each line."""
        if not text: return ''
        lines = [prefix + line for line in text.split('\n')]
        if lines: lines[-1] = lines[-1].rstrip()
        return '\n'.join(lines)

    def section(self, title, contents):
        """Format a section with a given heading."""
        clean_contents = self.indent(contents).rstrip()
        return self.bold(title) + '\n' + clean_contents + '\n\n'

    # ---------------------------------------------- type-specific routines

    def formattree(self, tree, modname, parent=None, prefix=''):
        """Render in text a class tree as returned by inspect.getclasstree()."""
        result = ''
        for entry in tree:
            if type(entry) is type(()):
                c, bases = entry
                result = result + prefix + classname(c, modname)
                if bases and bases != (parent,):
                    parents = (classname(c, modname) for c in bases)
                    result = result + '(%s)' % ', '.join(parents)
                result = result + '\n'
            elif type(entry) is type([]):
                result = result + self.formattree(
                    entry, modname, c, prefix + '    ')
        return result

    def docmodule(self, object, name=None, mod=None):
        """Produce text documentation for a given module object."""
        name = object.__name__ # ignore the passed-in name
        synop, desc = splitdoc(getdoc(object))
        result = self.section('NAME', name + (synop and ' - ' + synop))
        all = getattr(object, '__all__', None)
        docloc = self.getdocloc(object)
        if docloc is not None:
            result = result + self.section('MODULE REFERENCE', docloc + """

The following documentation is automatically generated from the Python
source files.  It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations.  When in doubt, consult the module reference at the
location listed above.
""")

        if desc:
            result = result + self.section('DESCRIPTION', desc)

        classes = []
        for key, value in inspect.getmembers(object, inspect.isclass):
            # if __all__ exists, believe it.  Otherwise use old heuristic.
            if (all is not None
                or (inspect.getmodule(value) or object) is object):
                if visiblename(key, all, object):
                    classes.append((key, value))
        funcs = []
        for key, value in inspect.getmembers(object, inspect.isroutine):
            # if __all__ exists, believe it.  Otherwise use old heuristic.
            if (all is not None or
                inspect.isbuiltin(value) or inspect.getmodule(value) is object):
                if visiblename(key, all, object):
                    funcs.append((key, value))
        data = []
        for key, value in inspect.getmembers(object, isdata):
            if visiblename(key, all, object):
                data.append((key, value))

        modpkgs = []
        modpkgs_names = set()
        if hasattr(object, '__path__'):
            for importer, modname, ispkg in pkgutil.iter_modules(object.__path__):
                modpkgs_names.add(modname)
                if ispkg:
                    modpkgs.append(modname + ' (package)')
                else:
                    modpkgs.append(modname)

            modpkgs.sort()
            result = result + self.section(
                'PACKAGE CONTENTS', '\n'.join(modpkgs))

        # Detect submodules as sometimes created by C extensions
        submodules = []
        for key, value in inspect.getmembers(object, inspect.ismodule):
            if value.__name__.startswith(name + '.') and key not in modpkgs_names:
                submodules.append(key)
        if submodules:
            submodules.sort()
            result = result + self.section(
                'SUBMODULES', '\n'.join(submodules))

        if classes:
            classlist = [value for key, value in classes]
            contents = [self.formattree(
                inspect.getclasstree(classlist, 1), name)]
            for key, value in classes:
                contents.append(self.document(value, key, name))
            result = result + self.section('CLASSES', '\n'.join(contents))

        if funcs:
            contents = []
            for key, value in funcs:
                contents.append(self.document(value, key, name))
            result = result + self.section('FUNCTIONS', '\n'.join(contents))

        if data:
            contents = []
            for key, value in data:
                contents.append(self.docother(value, key, name, maxlen=70))
            result = result + self.section('DATA', '\n'.join(contents))

        if hasattr(object, '__version__'):
            version = str(object.__version__)
            if version[:11] == '$' + 'Revision: ' and version[-1:] == '$':
                version = version[11:-1].strip()
            result = result + self.section('VERSION', version)
        if hasattr(object, '__date__'):
            result = result + self.section('DATE', str(object.__date__))
        if hasattr(object, '__author__'):
            result = result + self.section('AUTHOR', str(object.__author__))
        if hasattr(object, '__credits__'):
            result = result + self.section('CREDITS', str(object.__credits__))
        try:
            file = inspect.getabsfile(object)
        except TypeError:
            file = '(built-in)'
        result = result + self.section('FILE', file)
        return result

    def docclass(self, object, name=None, mod=None, *ignored):
        """Produce text documentation for a given class object."""
        realname = object.__name__
        name = name or realname
        bases = object.__bases__

        def makename(c, m=object.__module__):
            return classname(c, m)

        if name == realname:
            title = 'class ' + self.bold(realname)
        else:
            title = self.bold(name) + ' = class ' + realname
        if bases:
            parents = map(makename, bases)
            title = title + '(%s)' % ', '.join(parents)

        doc = getdoc(object)
        contents = doc and [doc + '\n'] or []
        push = contents.append

        # List the mro, if non-trivial.
        mro = deque(inspect.getmro(object))
        if len(mro) > 2:
            push("Method resolution order:")
            for base in mro:
                push('    ' + makename(base))
            push('')

        # Cute little class to pump out a horizontal rule between sections.
        class HorizontalRule:
            def __init__(self):
                self.needone = 0
            def maybe(self):
                if self.needone:
                    push('-' * 70)
                self.needone = 1
        hr = HorizontalRule()

        def spill(msg, attrs, predicate):
            ok, attrs = _split_list(attrs, predicate)
            if ok:
                hr.maybe()
                push(msg)
                for name, kind, homecls, value in ok:
                    try:
                        value = getattr(object, name)
                    except Exception:
                        # Some descriptors may meet a failure in their __get__.
                        # (bug #1785)
                        push(self._docdescriptor(name, value, mod))
                    else:
                        push(self.document(value,
                                        name, mod, object))
            return attrs

        def spilldescriptors(msg, attrs, predicate):
            ok, attrs = _split_list(attrs, predicate)
            if ok:
                hr.maybe()
                push(msg)
                for name, kind, homecls, value in ok:
                    push(self._docdescriptor(name, value, mod))
            return attrs

        def spilldata(msg, attrs, predicate):
            ok, attrs = _split_list(attrs, predicate)
            if ok:
                hr.maybe()
                push(msg)
                for name, kind, homecls, value in ok:
                    if callable(value) or inspect.isdatadescriptor(value):
                        doc = getdoc(value)
                    else:
                        doc = None
                    try:
                        obj = getattr(object, name)
                    except AttributeError:
                        obj = homecls.__dict__[name]
                    push(self.docother(obj, name, mod, maxlen=70, doc=doc) +
                         '\n')
            return attrs

        attrs = [(name, kind, cls, value)
                 for name, kind, cls, value in classify_class_attrs(object)
                 if visiblename(name, obj=object)]

        while attrs:
            if mro:
                thisclass = mro.popleft()
            else:
                thisclass = attrs[0][2]
            attrs, inherited = _split_list(attrs, lambda t: t[2] is thisclass)

            if thisclass is builtins.object:
                attrs = inherited
                continue
            elif thisclass is object:
                tag = "defined here"
            else:
                tag = "inherited from %s" % classname(thisclass,
                                                      object.__module__)
            # Sort attrs by name.
            attrs.sort()

            # Pump out the attrs, segregated by kind.
            attrs = spill("Methods %s:\n" % tag, attrs,
                          lambda t: t[1] == 'method')
            attrs = spill("Class methods %s:\n" % tag, attrs,
                          lambda t: t[1] == 'class method')
            attrs = spill("Static methods %s:\n" % tag, attrs,
                          lambda t: t[1] == 'static method')
            attrs = spilldescriptors("Data descriptors %s:\n" % tag, attrs,
                                     lambda t: t[1] == 'data descriptor')
            attrs = spilldata("Data and other attributes %s:\n" % tag, attrs,
                              lambda t: t[1] == 'data')

            assert attrs == []
            attrs = inherited

        contents = '\n'.join(contents)
        if not contents:
            return title + '\n'
        return title + '\n' + self.indent(contents.rstrip(), ' |  ') + '\n'

    def formatvalue(self, object):
        """Format an argument default value as text."""
        return '=' + self.repr(object)

    def docroutine(self, object, name=None, mod=None, cl=None):
        """Produce text documentation for a function or method object."""
        realname = object.__name__
        name = name or realname
        note = ''
        skipdocs = 0
        if _is_bound_method(object):
            imclass = object.__self__.__class__
            if cl:
                if imclass is not cl:
                    note = ' from ' + classname(imclass, mod)
            else:
                if object.__self__ is not None:
                    note = ' method of %s instance' % classname(
                        object.__self__.__class__, mod)
                else:
                    note = ' unbound %s method' % classname(imclass,mod)

        if name == realname:
            title = self.bold(realname)
        else:
            if (cl and realname in cl.__dict__ and
                cl.__dict__[realname] is object):
                skipdocs = 1
            title = self.bold(name) + ' = ' + realname
        argspec = None

        if inspect.isroutine(object):
            try:
                signature = inspect.signature(object)
            except (ValueError, TypeError):
                signature = None
            if signature:
                argspec = str(signature)
                if realname == '<lambda>':
                    title = self.bold(name) + ' lambda '
                    # XXX lambda's won't usually have func_annotations['return']
                    # since the syntax doesn't support but it is possible.
                    # So removing parentheses isn't truly safe.
                    argspec = argspec[1:-1] # remove parentheses
        if not argspec:
            argspec = '(...)'
        decl = title + argspec + note

        if skipdocs:
            return decl + '\n'
        else:
            doc = getdoc(object) or ''
            return decl + '\n' + (doc and self.indent(doc).rstrip() + '\n')

    def _docdescriptor(self, name, value, mod):
        results = []
        push = results.append

        if name:
            push(self.bold(name))
            push('\n')
        doc = getdoc(value) or ''
        if doc:
            push(self.indent(doc))
            push('\n')
        return ''.join(results)

    def docproperty(self, object, name=None, mod=None, cl=None):
        """Produce text documentation for a property."""
        return self._docdescriptor(name, object, mod)

    def docdata(self, object, name=None, mod=None, cl=None):
        """Produce text documentation for a data descriptor."""
        return self._docdescriptor(name, object, mod)

    def docother(self, object, name=None, mod=None, parent=None, maxlen=None, doc=None):
        """Produce text documentation for a data object."""
        repr = self.repr(object)
        if maxlen:
            line = (name and name + ' = ' or '') + repr
            chop = maxlen - len(line)
            if chop < 0: repr = repr[:chop] + '...'
        line = (name and self.bold(name) + ' = ' or '') + repr
        if doc is not None:
            line += '\n' + self.indent(str(doc))
        return line

class _PlainTextDoc(TextDoc):
    """Subclass of TextDoc which overrides string styling"""
    def bold(self, text):
        return text

# --------------------------------------------------------- user interfaces

def pager(text):
    """The first time this is called, determine what kind of pager to use."""
    global pager
    pager = getpager()
    pager(text)

def getpager():
    """Decide what method to use for paging through text."""
    if not hasattr(sys.stdin, "isatty"):
        return plainpager
    if not hasattr(sys.stdout, "isatty"):
        return plainpager
    if not sys.stdin.isatty() or not sys.stdout.isatty():
        return plainpager
    if 'PAGER' in os.environ:
        if sys.platform == 'win32': # pipes completely broken in Windows
            return lambda text: tempfilepager(plain(text), os.environ['PAGER'])
        elif os.environ.get('TERM') in ('dumb', 'emacs'):
            return lambda text: pipepager(plain(text), os.environ['PAGER'])
        else:
            return lambda text: pipepager(text, os.environ['PAGER'])
    if os.environ.get('TERM') in ('dumb', 'emacs'):
        return plainpager
    if sys.platform == 'win32':
        return lambda text: tempfilepager(plain(text), 'more <')
    if hasattr(os, 'system') and os.system('(less) 2>/dev/null') == 0:
        return lambda text: pipepager(text, 'less')

    import tempfile
    (fd, filename) = tempfile.mkstemp()
    os.close(fd)
    try:
        if hasattr(os, 'system') and os.system('more "%s"' % filename) == 0:
            return lambda text: pipepager(text, 'more')
        else:
            return ttypager
    finally:
        os.unlink(filename)

def plain(text):
    """Remove boldface formatting from text."""
    return re.sub('.\b', '', text)

def pipepager(text, cmd):
    """Page through text by feeding it to another program."""
    import subprocess
    proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE)
    try:
        with io.TextIOWrapper(proc.stdin, errors='backslashreplace') as pipe:
            try:
                pipe.write(text)
            except KeyboardInterrupt:
                # We've hereby abandoned whatever text hasn't been written,
                # but the pager is still in control of the terminal.
                pass
    except OSError:
        pass # Ignore broken pipes caused by quitting the pager program.
    while True:
        try:
            proc.wait()
            break
        except KeyboardInterrupt:
            # Ignore ctl-c like the pager itself does.  Otherwise the pager is
            # left running and the terminal is in raw mode and unusable.
            pass

def tempfilepager(text, cmd):
    """Page through text by invoking a program on a temporary file."""
    import tempfile
    filename = tempfile.mktemp()
    with open(filename, 'w', errors='backslashreplace') as file:
        file.write(text)
    try:
        os.system(cmd + ' "' + filename + '"')
    finally:
        os.unlink(filename)

def _escape_stdout(text):
    # Escape non-encodable characters to avoid encoding errors later
    encoding = getattr(sys.stdout, 'encoding', None) or 'utf-8'
    return text.encode(encoding, 'backslashreplace').decode(encoding)

def ttypager(text):
    """Page through text on a text terminal."""
    lines = plain(_escape_stdout(text)).split('\n')
    try:
        import tty
        fd = sys.stdin.fileno()
        old = tty.tcgetattr(fd)
        tty.setcbreak(fd)
        getchar = lambda: sys.stdin.read(1)
    except (ImportError, AttributeError, io.UnsupportedOperation):
        tty = None
        getchar = lambda: sys.stdin.readline()[:-1][:1]

    try:
        try:
            h = int(os.environ.get('LINES', 0))
        except ValueError:
            h = 0
        if h <= 1:
            h = 25
        r = inc = h - 1
        sys.stdout.write('\n'.join(lines[:inc]) + '\n')
        while lines[r:]:
            sys.stdout.write('-- more --')
            sys.stdout.flush()
            c = getchar()

            if c in ('q', 'Q'):
                sys.stdout.write('\r          \r')
                break
            elif c in ('\r', '\n'):
                sys.stdout.write('\r          \r' + lines[r] + '\n')
                r = r + 1
                continue
            if c in ('b', 'B', '\x1b'):
                r = r - inc - inc
                if r < 0: r = 0
            sys.stdout.write('\n' + '\n'.join(lines[r:r+inc]) + '\n')
            r = r + inc

    finally:
        if tty:
            tty.tcsetattr(fd, tty.TCSAFLUSH, old)

def plainpager(text):
    """Simply print unformatted text.  This is the ultimate fallback."""
    sys.stdout.write(plain(_escape_stdout(text)))

def describe(thing):
    """Produce a short description of the given thing."""
    if inspect.ismodule(thing):
        if thing.__name__ in sys.builtin_module_names:
            return 'built-in module ' + thing.__name__
        if hasattr(thing, '__path__'):
            return 'package ' + thing.__name__
        else:
            return 'module ' + thing.__name__
    if inspect.isbuiltin(thing):
        return 'built-in function ' + thing.__name__
    if inspect.isgetsetdescriptor(thing):
        return 'getset descriptor %s.%s.%s' % (
            thing.__objclass__.__module__, thing.__objclass__.__name__,
            thing.__name__)
    if inspect.ismemberdescriptor(thing):
        return 'member descriptor %s.%s.%s' % (
            thing.__objclass__.__module__, thing.__objclass__.__name__,
            thing.__name__)
    if inspect.isclass(thing):
        return 'class ' + thing.__name__
    if inspect.isfunction(thing):
        return 'function ' + thing.__name__
    if inspect.ismethod(thing):
        return 'method ' + thing.__name__
    return type(thing).__name__

def locate(path, forceload=0):
    """Locate an object by name or dotted path, importing as necessary."""
    parts = [part for part in path.split('.') if part]
    module, n = None, 0
    while n < len(parts):
        nextmodule = safeimport('.'.join(parts[:n+1]), forceload)
        if nextmodule: module, n = nextmodule, n + 1
        else: break
    if module:
        object = module
    else:
        object = builtins
    for part in parts[n:]:
        try:
            object = getattr(object, part)
        except AttributeError:
            return None
    return object

# --------------------------------------- interactive interpreter interface

text = TextDoc()
plaintext = _PlainTextDoc()
html = HTMLDoc()

def resolve(thing, forceload=0):
    """Given an object or a path to an object, get the object and its name."""
    if isinstance(thing, str):
        object = locate(thing, forceload)
        if object is None:
            raise ImportError('no Python documentation found for %r' % thing)
        return object, thing
    else:
        name = getattr(thing, '__name__', None)
        return thing, name if isinstance(name, str) else None

def render_doc(thing, title='Python Library Documentation: %s', forceload=0,
        renderer=None):
    """Render text documentation, given an object or a path to an object."""
    if renderer is None:
        renderer = text
    object, name = resolve(thing, forceload)
    desc = describe(object)
    module = inspect.getmodule(object)
    if name and '.' in name:
        desc += ' in ' + name[:name.rfind('.')]
    elif module and module is not object:
        desc += ' in module ' + module.__name__

    if not (inspect.ismodule(object) or
              inspect.isclass(object) or
              inspect.isroutine(object) or
              inspect.isgetsetdescriptor(object) or
              inspect.ismemberdescriptor(object) or
              isinstance(object, property)):
        # If the passed object is a piece of data or an instance,
        # document its available methods instead of its value.
        object = type(object)
        desc += ' object'
    return title % desc + '\n\n' + renderer.document(object, name)

def doc(thing, title='Python Library Documentation: %s', forceload=0,
        output=None):
    """Display text documentation, given an object or a path to an object."""
    try:
        if output is None:
            pager(render_doc(thing, title, forceload))
        else:
            output.write(render_doc(thing, title, forceload, plaintext))
    except (ImportError, ErrorDuringImport) as value:
        print(value)

def writedoc(thing, forceload=0):
    """Write HTML documentation to a file in the current directory."""
    try:
        object, name = resolve(thing, forceload)
        page = html.page(describe(object), html.document(object, name))
        file = open(name + '.html', 'w', encoding='utf-8')
        file.write(page)
        file.close()
        print('wrote', name + '.html')
    except (ImportError, ErrorDuringImport) as value:
        print(value)

def writedocs(dir, pkgpath='', done=None):
    """Write out HTML documentation for all modules in a directory tree."""
    if done is None: done = {}
    for importer, modname, ispkg in pkgutil.walk_packages([dir], pkgpath):
        writedoc(modname)
    return

class Helper:

    # These dictionaries map a topic name to either an alias, or a tuple
    # (label, seealso-items).  The "label" is the label of the corresponding
    # section in the .rst file under Doc/ and an index into the dictionary
    # in pydoc_data/topics.py.
    #
    # CAUTION: if you change one of these dictionaries, be sure to adapt the
    #          list of needed labels in Doc/tools/pyspecific.py and
    #          regenerate the pydoc_data/topics.py file by running
    #              make pydoc-topics
    #          in Doc/ and copying the output file into the Lib/ directory.

    keywords = {
        'False': '',
        'None': '',
        'True': '',
        'and': 'BOOLEAN',
        'as': 'with',
        'assert': ('assert', ''),
        'break': ('break', 'while for'),
        'class': ('class', 'CLASSES SPECIALMETHODS'),
        'continue': ('continue', 'while for'),
        'def': ('function', ''),
        'del': ('del', 'BASICMETHODS'),
        'elif': 'if',
        'else': ('else', 'while for'),
        'except': 'try',
        'finally': 'try',
        'for': ('for', 'break continue while'),
        'from': 'import',
        'global': ('global', 'nonlocal NAMESPACES'),
        'if': ('if', 'TRUTHVALUE'),
        'import': ('import', 'MODULES'),
        'in': ('in', 'SEQUENCEMETHODS'),
        'is': 'COMPARISON',
        'lambda': ('lambda', 'FUNCTIONS'),
        'nonlocal': ('nonlocal', 'global NAMESPACES'),
        'not': 'BOOLEAN',
        'or': 'BOOLEAN',
        'pass': ('pass', ''),
        'raise': ('raise', 'EXCEPTIONS'),
        'return': ('return', 'FUNCTIONS'),
        'try': ('try', 'EXCEPTIONS'),
        'while': ('while', 'break continue if TRUTHVALUE'),
        'with': ('with', 'CONTEXTMANAGERS EXCEPTIONS yield'),
        'yield': ('yield', ''),
    }
    # Either add symbols to this dictionary or to the symbols dictionary
    # directly: Whichever is easier. They are merged later.
    _symbols_inverse = {
        'STRINGS' : ("'", "'''", "r'", "b'", '"""', '"', 'r"', 'b"'),
        'OPERATORS' : ('+', '-', '*', '**', '/', '//', '%', '<<', '>>', '&',
                       '|', '^', '~', '<', '>', '<=', '>=', '==', '!=', '<>'),
        'COMPARISON' : ('<', '>', '<=', '>=', '==', '!=', '<>'),
        'UNARY' : ('-', '~'),
        'AUGMENTEDASSIGNMENT' : ('+=', '-=', '*=', '/=', '%=', '&=', '|=',
                                '^=', '<<=', '>>=', '**=', '//='),
        'BITWISE' : ('<<', '>>', '&', '|', '^', '~'),
        'COMPLEX' : ('j', 'J')
    }
    symbols = {
        '%': 'OPERATORS FORMATTING',
        '**': 'POWER',
        ',': 'TUPLES LISTS FUNCTIONS',
        '.': 'ATTRIBUTES FLOAT MODULES OBJECTS',
        '...': 'ELLIPSIS',
        ':': 'SLICINGS DICTIONARYLITERALS',
        '@': 'def class',
        '\\': 'STRINGS',
        '_': 'PRIVATENAMES',
        '__': 'PRIVATENAMES SPECIALMETHODS',
        '`': 'BACKQUOTES',
        '(': 'TUPLES FUNCTIONS CALLS',
        ')': 'TUPLES FUNCTIONS CALLS',
        '[': 'LISTS SUBSCRIPTS SLICINGS',
        ']': 'LISTS SUBSCRIPTS SLICINGS'
    }
    for topic, symbols_ in _symbols_inverse.items():
        for symbol in symbols_:
            topics = symbols.get(symbol, topic)
            if topic not in topics:
                topics = topics + ' ' + topic
            symbols[symbol] = topics

    topics = {
        'TYPES': ('types', 'STRINGS UNICODE NUMBERS SEQUENCES MAPPINGS '
                  'FUNCTIONS CLASSES MODULES FILES inspect'),
        'STRINGS': ('strings', 'str UNICODE SEQUENCES STRINGMETHODS '
                    'FORMATTING TYPES'),
        'STRINGMETHODS': ('string-methods', 'STRINGS FORMATTING'),
        'FORMATTING': ('formatstrings', 'OPERATORS'),
        'UNICODE': ('strings', 'encodings unicode SEQUENCES STRINGMETHODS '
                    'FORMATTING TYPES'),
        'NUMBERS': ('numbers', 'INTEGER FLOAT COMPLEX TYPES'),
        'INTEGER': ('integers', 'int range'),
        'FLOAT': ('floating', 'float math'),
        'COMPLEX': ('imaginary', 'complex cmath'),
        'SEQUENCES': ('typesseq', 'STRINGMETHODS FORMATTING range LISTS'),
        'MAPPINGS': 'DICTIONARIES',
        'FUNCTIONS': ('typesfunctions', 'def TYPES'),
        'METHODS': ('typesmethods', 'class def CLASSES TYPES'),
        'CODEOBJECTS': ('bltin-code-objects', 'compile FUNCTIONS TYPES'),
        'TYPEOBJECTS': ('bltin-type-objects', 'types TYPES'),
        'FRAMEOBJECTS': 'TYPES',
        'TRACEBACKS': 'TYPES',
        'NONE': ('bltin-null-object', ''),
        'ELLIPSIS': ('bltin-ellipsis-object', 'SLICINGS'),
        'SPECIALATTRIBUTES': ('specialattrs', ''),
        'CLASSES': ('types', 'class SPECIALMETHODS PRIVATENAMES'),
        'MODULES': ('typesmodules', 'import'),
        'PACKAGES': 'import',
        'EXPRESSIONS': ('operator-summary', 'lambda or and not in is BOOLEAN '
                        'COMPARISON BITWISE SHIFTING BINARY FORMATTING POWER '
                        'UNARY ATTRIBUTES SUBSCRIPTS SLICINGS CALLS TUPLES '
                        'LISTS DICTIONARIES'),
        'OPERATORS': 'EXPRESSIONS',
        'PRECEDENCE': 'EXPRESSIONS',
        'OBJECTS': ('objects', 'TYPES'),
        'SPECIALMETHODS': ('specialnames', 'BASICMETHODS ATTRIBUTEMETHODS '
                           'CALLABLEMETHODS SEQUENCEMETHODS MAPPINGMETHODS '
                           'NUMBERMETHODS CLASSES'),
        'BASICMETHODS': ('customization', 'hash repr str SPECIALMETHODS'),
        'ATTRIBUTEMETHODS': ('attribute-access', 'ATTRIBUTES SPECIALMETHODS'),
        'CALLABLEMETHODS': ('callable-types', 'CALLS SPECIALMETHODS'),
        'SEQUENCEMETHODS': ('sequence-types', 'SEQUENCES SEQUENCEMETHODS '
                             'SPECIALMETHODS'),
        'MAPPINGMETHODS': ('sequence-types', 'MAPPINGS SPECIALMETHODS'),
        'NUMBERMETHODS': ('numeric-types', 'NUMBERS AUGMENTEDASSIGNMENT '
                          'SPECIALMETHODS'),
        'EXECUTION': ('execmodel', 'NAMESPACES DYNAMICFEATURES EXCEPTIONS'),
        'NAMESPACES': ('naming', 'global nonlocal ASSIGNMENT DELETION DYNAMICFEATURES'),
        'DYNAMICFEATURES': ('dynamic-features', ''),
        'SCOPING': 'NAMESPACES',
        'FRAMES': 'NAMESPACES',
        'EXCEPTIONS': ('exceptions', 'try except finally raise'),
        'CONVERSIONS': ('conversions', ''),
        'IDENTIFIERS': ('identifiers', 'keywords SPECIALIDENTIFIERS'),
        'SPECIALIDENTIFIERS': ('id-classes', ''),
        'PRIVATENAMES': ('atom-identifiers', ''),
        'LITERALS': ('atom-literals', 'STRINGS NUMBERS TUPLELITERALS '
                     'LISTLITERALS DICTIONARYLITERALS'),
        'TUPLES': 'SEQUENCES',
        'TUPLELITERALS': ('exprlists', 'TUPLES LITERALS'),
        'LISTS': ('typesseq-mutable', 'LISTLITERALS'),
        'LISTLITERALS': ('lists', 'LISTS LITERALS'),
        'DICTIONARIES': ('typesmapping', 'DICTIONARYLITERALS'),
        'DICTIONARYLITERALS': ('dict', 'DICTIONARIES LITERALS'),
        'ATTRIBUTES': ('attribute-references', 'getattr hasattr setattr ATTRIBUTEMETHODS'),
        'SUBSCRIPTS': ('subscriptions', 'SEQUENCEMETHODS'),
        'SLICINGS': ('slicings', 'SEQUENCEMETHODS'),
        'CALLS': ('calls', 'EXPRESSIONS'),
        'POWER': ('power', 'EXPRESSIONS'),
        'UNARY': ('unary', 'EXPRESSIONS'),
        'BINARY': ('binary', 'EXPRESSIONS'),
        'SHIFTING': ('shifting', 'EXPRESSIONS'),
        'BITWISE': ('bitwise', 'EXPRESSIONS'),
        'COMPARISON': ('comparisons', 'EXPRESSIONS BASICMETHODS'),
        'BOOLEAN': ('booleans', 'EXPRESSIONS TRUTHVALUE'),
        'ASSERTION': 'assert',
        'ASSIGNMENT': ('assignment', 'AUGMENTEDASSIGNMENT'),
        'AUGMENTEDASSIGNMENT': ('augassign', 'NUMBERMETHODS'),
        'DELETION': 'del',
        'RETURNING': 'return',
        'IMPORTING': 'import',
        'CONDITIONAL': 'if',
        'LOOPING': ('compound', 'for while break continue'),
        'TRUTHVALUE': ('truth', 'if while and or not BASICMETHODS'),
        'DEBUGGING': ('debugger', 'pdb'),
        'CONTEXTMANAGERS': ('context-managers', 'with'),
    }

    def __init__(self, input=None, output=None):
        self._input = input
        self._output = output

    input  = property(lambda self: self._input or sys.stdin)
    output = property(lambda self: self._output or sys.stdout)

    def __repr__(self):
        if inspect.stack()[1][3] == '?':
            self()
            return ''
        return '<pydoc.Helper instance>'

    _GoInteractive = object()
    def __call__(self, request=_GoInteractive):
        if request is not self._GoInteractive:
            self.help(request)
        else:
            self.intro()
            self.interact()
            self.output.write('''
You are now leaving help and returning to the Python interpreter.
If you want to ask for help on a particular object directly from the
interpreter, you can type "help(object)".  Executing "help('string')"
has the same effect as typing a particular string at the help> prompt.
''')

    def interact(self):
        self.output.write('\n')
        while True:
            try:
                request = self.getline('help> ')
                if not request: break
            except (KeyboardInterrupt, EOFError):
                break
            request = replace(request, '"', '', "'", '').strip()
            if request.lower() in ('q', 'quit'): break
            self.help(request)

    def getline(self, prompt):
        """Read one line, using input() when appropriate."""
        if self.input is sys.stdin:
            return input(prompt)
        else:
            self.output.write(prompt)
            self.output.flush()
            return self.input.readline()

    def help(self, request):
        if type(request) is type(''):
            request = request.strip()
            if request == 'help': self.intro()
            elif request == 'keywords': self.listkeywords()
            elif request == 'symbols': self.listsymbols()
            elif request == 'topics': self.listtopics()
            elif request == 'modules': self.listmodules()
            elif request[:8] == 'modules ':
                self.listmodules(request.split()[1])
            elif request in self.symbols: self.showsymbol(request)
            elif request in ['True', 'False', 'None']:
                # special case these keywords since they are objects too
                doc(eval(request), 'Help on %s:')
            elif request in self.keywords: self.showtopic(request)
            elif request in self.topics: self.showtopic(request)
            elif request: doc(request, 'Help on %s:', output=self._output)
        elif isinstance(request, Helper): self()
        else: doc(request, 'Help on %s:', output=self._output)
        self.output.write('\n')

    def intro(self):
        self.output.write('''
Welcome to Python %s's help utility!

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://docs.python.org/%s/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules.  To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, symbols, or topics, type
"modules", "keywords", "symbols", or "topics".  Each module also comes
with a one-line summary of what it does; to list the modules whose name
or summary contain a given string such as "spam", type "modules spam".
''' % tuple([sys.version[:3]]*2))

    def list(self, items, columns=4, width=80):
        items = list(sorted(items))
        colw = width // columns
        rows = (len(items) + columns - 1) // columns
        for row in range(rows):
            for col in range(columns):
                i = col * rows + row
                if i < len(items):
                    self.output.write(items[i])
                    if col < columns - 1:
                        self.output.write(' ' + ' ' * (colw - 1 - len(items[i])))
            self.output.write('\n')

    def listkeywords(self):
        self.output.write('''
Here is a list of the Python keywords.  Enter any keyword to get more help.

''')
        self.list(self.keywords.keys())

    def listsymbols(self):
        self.output.write('''
Here is a list of the punctuation symbols which Python assigns special meaning
to. Enter any symbol to get more help.

''')
        self.list(self.symbols.keys())

    def listtopics(self):
        self.output.write('''
Here is a list of available topics.  Enter any topic name to get more help.

''')
        self.list(self.topics.keys())

    def showtopic(self, topic, more_xrefs=''):
        try:
            import pydoc_data.topics
        except ImportError:
            self.output.write('''
Sorry, topic and keyword documentation is not available because the
module "pydoc_data.topics" could not be found.
''')
            return
        target = self.topics.get(topic, self.keywords.get(topic))
        if not target:
            self.output.write('no documentation found for %s\n' % repr(topic))
            return
        if type(target) is type(''):
            return self.showtopic(target, more_xrefs)

        label, xrefs = target
        try:
            doc = pydoc_data.topics.topics[label]
        except KeyError:
            self.output.write('no documentation found for %s\n' % repr(topic))
            return
        pager(doc.strip() + '\n')
        if more_xrefs:
            xrefs = (xrefs or '') + ' ' + more_xrefs
        if xrefs:
            import textwrap
            text = 'Related help topics: ' + ', '.join(xrefs.split()) + '\n'
            wrapped_text = textwrap.wrap(text, 72)
            self.output.write('\n%s\n' % ''.join(wrapped_text))

    def _gettopic(self, topic, more_xrefs=''):
        """Return unbuffered tuple of (topic, xrefs).

        If an error occurs here, the exception is caught and displayed by
        the url handler.

        This function duplicates the showtopic method but returns its
        result directly so it can be formatted for display in an html page.
        """
        try:
            import pydoc_data.topics
        except ImportError:
            return('''
Sorry, topic and keyword documentation is not available because the
module "pydoc_data.topics" could not be found.
''' , '')
        target = self.topics.get(topic, self.keywords.get(topic))
        if not target:
            raise ValueError('could not find topic')
        if isinstance(target, str):
            return self._gettopic(target, more_xrefs)
        label, xrefs = target
        doc = pydoc_data.topics.topics[label]
        if more_xrefs:
            xrefs = (xrefs or '') + ' ' + more_xrefs
        return doc, xrefs

    def showsymbol(self, symbol):
        target = self.symbols[symbol]
        topic, _, xrefs = target.partition(' ')
        self.showtopic(topic, xrefs)

    def listmodules(self, key=''):
        if key:
            self.output.write('''
Here is a list of modules whose name or summary contains '{}'.
If there are any, enter a module name to get more help.

'''.format(key))
            apropos(key)
        else:
            self.output.write('''
Please wait a moment while I gather a list of all available modules...

''')
            modules = {}
            def callback(path, modname, desc, modules=modules):
                if modname and modname[-9:] == '.__init__':
                    modname = modname[:-9] + ' (package)'
                if modname.find('.') < 0:
                    modules[modname] = 1
            def onerror(modname):
                callback(None, modname, None)
            ModuleScanner().run(callback, onerror=onerror)
            self.list(modules.keys())
            self.output.write('''
Enter any module name to get more help.  Or, type "modules spam" to search
for modules whose name or summary contain the string "spam".
''')

help = Helper()

class ModuleScanner:
    """An interruptible scanner that searches module synopses."""

    def run(self, callback, key=None, completer=None, onerror=None):
        if key: key = key.lower()
        self.quit = False
        seen = {}

        for modname in sys.builtin_module_names:
            if modname != '__main__':
                seen[modname] = 1
                if key is None:
                    callback(None, modname, '')
                else:
                    name = __import__(modname).__doc__ or ''
                    desc = name.split('\n')[0]
                    name = modname + ' - ' + desc
                    if name.lower().find(key) >= 0:
                        callback(None, modname, desc)

        for importer, modname, ispkg in pkgutil.walk_packages(onerror=onerror):
            if self.quit:
                break

            if key is None:
                callback(None, modname, '')
            else:
                try:
                    spec = pkgutil._get_spec(importer, modname)
                except SyntaxError:
                    # raised by tests for bad coding cookies or BOM
                    continue
                loader = spec.loader
                if hasattr(loader, 'get_source'):
                    try:
                        source = loader.get_source(modname)
                    except Exception:
                        if onerror:
                            onerror(modname)
                        continue
                    desc = source_synopsis(io.StringIO(source)) or ''
                    if hasattr(loader, 'get_filename'):
                        path = loader.get_filename(modname)
                    else:
                        path = None
                else:
                    _spec = importlib._bootstrap._SpecMethods(spec)
                    try:
                        module = _spec.load()
                    except ImportError:
                        if onerror:
                            onerror(modname)
                        continue
                    desc = module.__doc__.splitlines()[0] if module.__doc__ else ''
                    path = getattr(module,'__file__',None)
                name = modname + ' - ' + desc
                if name.lower().find(key) >= 0:
                    callback(path, modname, desc)

        if completer:
            completer()

def apropos(key):
    """Print all the one-line module summaries that contain a substring."""
    def callback(path, modname, desc):
        if modname[-9:] == '.__init__':
            modname = modname[:-9] + ' (package)'
        print(modname, desc and '- ' + desc)
    def onerror(modname):
        pass
    with warnings.catch_warnings():
        warnings.filterwarnings('ignore') # ignore problems during import
        ModuleScanner().run(callback, key, onerror=onerror)

# --------------------------------------- enhanced Web browser interface

def _start_server(urlhandler, port):
    """Start an HTTP server thread on a specific port.

    Start an HTML/text server thread, so HTML or text documents can be
    browsed dynamically and interactively with a Web browser.  Example use:

        >>> import time
        >>> import pydoc

        Define a URL handler.  To determine what the client is asking
        for, check the URL and content_type.

        Then get or generate some text or HTML code and return it.

        >>> def my_url_handler(url, content_type):
        ...     text = 'the URL sent was: (%s, %s)' % (url, content_type)
        ...     return text

        Start server thread on port 0.
        If you use port 0, the server will pick a random port number.
        You can then use serverthread.port to get the port number.

        >>> port = 0
        >>> serverthread = pydoc._start_server(my_url_handler, port)

        Check that the server is really started.  If it is, open browser
        and get first page.  Use serverthread.url as the starting page.

        >>> if serverthread.serving:
        ...    import webbrowser

        The next two lines are commented out so a browser doesn't open if
        doctest is run on this module.

        #...    webbrowser.open(serverthread.url)
        #True

        Let the server do its thing. We just need to monitor its status.
        Use time.sleep so the loop doesn't hog the CPU.

        >>> starttime = time.time()
        >>> timeout = 1                    #seconds

        This is a short timeout for testing purposes.

        >>> while serverthread.serving:
        ...     time.sleep(.01)
        ...     if serverthread.serving and time.time() - starttime > timeout:
        ...          serverthread.stop()
        ...          break

        Print any errors that may have occurred.

        >>> print(serverthread.error)
        None
   """
    import http.server
    import email.message
    import select
    import threading

    class DocHandler(http.server.BaseHTTPRequestHandler):

        def do_GET(self):
            """Process a request from an HTML browser.

            The URL received is in self.path.
            Get an HTML page from self.urlhandler and send it.
            """
            if self.path.endswith('.css'):
                content_type = 'text/css'
            else:
                content_type = 'text/html'
            self.send_response(200)
            self.send_header('Content-Type', '%s; charset=UTF-8' % content_type)
            self.end_headers()
            self.wfile.write(self.urlhandler(
                self.path, content_type).encode('utf-8'))

        def log_message(self, *args):
            # Don't log messages.
            pass

    class DocServer(http.server.HTTPServer):

        def __init__(self, port, callback):
            self.host = 'localhost'
            self.address = (self.host, port)
            self.callback = callback
            self.base.__init__(self, self.address, self.handler)
            self.quit = False

        def serve_until_quit(self):
            while not self.quit:
                rd, wr, ex = select.select([self.socket.fileno()], [], [], 1)
                if rd:
                    self.handle_request()
            self.server_close()

        def server_activate(self):
            self.base.server_activate(self)
            if self.callback:
                self.callback(self)

    class ServerThread(threading.Thread):

        def __init__(self, urlhandler, port):
            self.urlhandler = urlhandler
            self.port = int(port)
            threading.Thread.__init__(self)
            self.serving = False
            self.error = None

        def run(self):
            """Start the server."""
            try:
                DocServer.base = http.server.HTTPServer
                DocServer.handler = DocHandler
                DocHandler.MessageClass = email.message.Message
                DocHandler.urlhandler = staticmethod(self.urlhandler)
                docsvr = DocServer(self.port, self.ready)
                self.docserver = docsvr
                docsvr.serve_until_quit()
            except Exception as e:
                self.error = e

        def ready(self, server):
            self.serving = True
            self.host = server.host
            self.port = server.server_port
            self.url = 'http://%s:%d/' % (self.host, self.port)

        def stop(self):
            """Stop the server and this thread nicely"""
            self.docserver.quit = True
            self.serving = False
            self.url = None

    thread = ServerThread(urlhandler, port)
    thread.start()
    # Wait until thread.serving is True to make sure we are
    # really up before returning.
    while not thread.error and not thread.serving:
        time.sleep(.01)
    return thread


def _url_handler(url, content_type="text/html"):
    """The pydoc url handler for use with the pydoc server.

    If the content_type is 'text/css', the _pydoc.css style
    sheet is read and returned if it exits.

    If the content_type is 'text/html', then the result of
    get_html_page(url) is returned.
    """
    class _HTMLDoc(HTMLDoc):

        def page(self, title, contents):
            """Format an HTML page."""
            css_path = "pydoc_data/_pydoc.css"
            css_link = (
                '<link rel="stylesheet" type="text/css" href="%s">' %
                css_path)
            return '''\
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html><head><title>Pydoc: %s</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
%s</head><body bgcolor="#f0f0f8">%s<div style="clear:both;padding-top:.5em;">%s</div>
</body></html>''' % (title, css_link, html_navbar(), contents)

        def filelink(self, url, path):
            return '<a href="getfile?key=%s">%s</a>' % (url, path)


    html = _HTMLDoc()

    def html_navbar():
        version = html.escape("%s [%s, %s]" % (platform.python_version(),
                                               platform.python_build()[0],
                                               platform.python_compiler()))
        return """
            <div style='float:left'>
                Python %s<br>%s
            </div>
            <div style='float:right'>
                <div style='text-align:center'>
                  <a href="index.html">Module Index</a>
                  : <a href="topics.html">Topics</a>
                  : <a href="keywords.html">Keywords</a>
                </div>
                <div>
                    <form action="get" style='display:inline;'>
                      <input type=text name=key size=15>
                      <input type=submit value="Get">
                    </form>&nbsp;
                    <form action="search" style='display:inline;'>
                      <input type=text name=key size=15>
                      <input type=submit value="Search">
                    </form>
                </div>
            </div>
            """ % (version, html.escape(platform.platform(terse=True)))

    def html_index():
        """Module Index page."""

        def bltinlink(name):
            return '<a href="%s.html">%s</a>' % (name, name)

        heading = html.heading(
            '<big><big><strong>Index of Modules</strong></big></big>',
            '#ffffff', '#7799ee')
        names = [name for name in sys.builtin_module_names
                 if name != '__main__']
        contents = html.multicolumn(names, bltinlink)
        contents = [heading, '<p>' + html.bigsection(
            'Built-in Modules', '#ffffff', '#ee77aa', contents)]

        seen = {}
        for dir in sys.path:
            contents.append(html.index(dir, seen))

        contents.append(
            '<p align=right><font color="#909090" face="helvetica,'
            'arial"><strong>pydoc</strong> by Ka-Ping Yee'
            '&lt;[email protected]&gt;</font>')
        return 'Index of Modules', ''.join(contents)

    def html_search(key):
        """Search results page."""
        # scan for modules
        search_result = []

        def callback(path, modname, desc):
            if modname[-9:] == '.__init__':
                modname = modname[:-9] + ' (package)'
            search_result.append((modname, desc and '- ' + desc))

        with warnings.catch_warnings():
            warnings.filterwarnings('ignore') # ignore problems during import
            def onerror(modname):
                pass
            ModuleScanner().run(callback, key, onerror=onerror)

        # format page
        def bltinlink(name):
            return '<a href="%s.html">%s</a>' % (name, name)

        results = []
        heading = html.heading(
            '<big><big><strong>Search Results</strong></big></big>',
            '#ffffff', '#7799ee')
        for name, desc in search_result:
            results.append(bltinlink(name) + desc)
        contents = heading + html.bigsection(
            'key = %s' % key, '#ffffff', '#ee77aa', '<br>'.join(results))
        return 'Search Results', contents

    def html_getfile(path):
        """Get and display a source file listing safely."""
        path = urllib.parse.unquote(path)
        with tokenize.open(path) as fp:
            lines = html.escape(fp.read())
        body = '<pre>%s</pre>' % lines
        heading = html.heading(
            '<big><big><strong>File Listing</strong></big></big>',
            '#ffffff', '#7799ee')
        contents = heading + html.bigsection(
            'File: %s' % path, '#ffffff', '#ee77aa', body)
        return 'getfile %s' % path, contents

    def html_topics():
        """Index of topic texts available."""

        def bltinlink(name):
            return '<a href="topic?key=%s">%s</a>' % (name, name)

        heading = html.heading(
            '<big><big><strong>INDEX</strong></big></big>',
            '#ffffff', '#7799ee')
        names = sorted(Helper.topics.keys())

        contents = html.multicolumn(names, bltinlink)
        contents = heading + html.bigsection(
            'Topics', '#ffffff', '#ee77aa', contents)
        return 'Topics', contents

    def html_keywords():
        """Index of keywords."""
        heading = html.heading(
            '<big><big><strong>INDEX</strong></big></big>',
            '#ffffff', '#7799ee')
        names = sorted(Helper.keywords.keys())

        def bltinlink(name):
            return '<a href="topic?key=%s">%s</a>' % (name, name)

        contents = html.multicolumn(names, bltinlink)
        contents = heading + html.bigsection(
            'Keywords', '#ffffff', '#ee77aa', contents)
        return 'Keywords', contents

    def html_topicpage(topic):
        """Topic or keyword help page."""
        buf = io.StringIO()
        htmlhelp = Helper(buf, buf)
        contents, xrefs = htmlhelp._gettopic(topic)
        if topic in htmlhelp.keywords:
            title = 'KEYWORD'
        else:
            title = 'TOPIC'
        heading = html.heading(
            '<big><big><strong>%s</strong></big></big>' % title,
            '#ffffff', '#7799ee')
        contents = '<pre>%s</pre>' % html.markup(contents)
        contents = html.bigsection(topic , '#ffffff','#ee77aa', contents)
        if xrefs:
            xrefs = sorted(xrefs.split())

            def bltinlink(name):
                return '<a href="topic?key=%s">%s</a>' % (name, name)

            xrefs = html.multicolumn(xrefs, bltinlink)
            xrefs = html.section('Related help topics: ',
                                 '#ffffff', '#ee77aa', xrefs)
        return ('%s %s' % (title, topic),
                ''.join((heading, contents, xrefs)))

    def html_getobj(url):
        obj = locate(url, forceload=1)
        if obj is None and url != 'None':
            raise ValueError('could not find object')
        title = describe(obj)
        content = html.document(obj, url)
        return title, content

    def html_error(url, exc):
        heading = html.heading(
            '<big><big><strong>Error</strong></big></big>',
            '#ffffff', '#7799ee')
        contents = '<br>'.join(html.escape(line) for line in
                               format_exception_only(type(exc), exc))
        contents = heading + html.bigsection(url, '#ffffff', '#bb0000',
                                             contents)
        return "Error - %s" % url, contents

    def get_html_page(url):
        """Generate an HTML page for url."""
        complete_url = url
        if url.endswith('.html'):
            url = url[:-5]
        try:
            if url in ("", "index"):
                title, content = html_index()
            elif url == "topics":
                title, content = html_topics()
            elif url == "keywords":
                title, content = html_keywords()
            elif '=' in url:
                op, _, url = url.partition('=')
                if op == "search?key":
                    title, content = html_search(url)
                elif op == "getfile?key":
                    title, content = html_getfile(url)
                elif op == "topic?key":
                    # try topics first, then objects.
                    try:
                        title, content = html_topicpage(url)
                    except ValueError:
                        title, content = html_getobj(url)
                elif op == "get?key":
                    # try objects first, then topics.
                    if url in ("", "index"):
                        title, content = html_index()
                    else:
                        try:
                            title, content = html_getobj(url)
                        except ValueError:
                            title, content = html_topicpage(url)
                else:
                    raise ValueError('bad pydoc url')
            else:
                title, content = html_getobj(url)
        except Exception as exc:
            # Catch any errors and display them in an error page.
            title, content = html_error(complete_url, exc)
        return html.page(title, content)

    if url.startswith('/'):
        url = url[1:]
    if content_type == 'text/css':
        path_here = os.path.dirname(os.path.realpath(__file__))
        css_path = os.path.join(path_here, url)
        with open(css_path) as fp:
            return ''.join(fp.readlines())
    elif content_type == 'text/html':
        return get_html_page(url)
    # Errors outside the url handler are caught by the server.
    raise TypeError('unknown content type %r for url %s' % (content_type, url))


def browse(port=0, *, open_browser=True):
    """Start the enhanced pydoc Web server and open a Web browser.

    Use port '0' to start the server on an arbitrary port.
    Set open_browser to False to suppress opening a browser.
    """
    import webbrowser
    serverthread = _start_server(_url_handler, port)
    if serverthread.error:
        print(serverthread.error)
        return
    if serverthread.serving:
        server_help_msg = 'Server commands: [b]rowser, [q]uit'
        if open_browser:
            webbrowser.open(serverthread.url)
        try:
            print('Server ready at', serverthread.url)
            print(server_help_msg)
            while serverthread.serving:
                cmd = input('server> ')
                cmd = cmd.lower()
                if cmd == 'q':
                    break
                elif cmd == 'b':
                    webbrowser.open(serverthread.url)
                else:
                    print(server_help_msg)
        except (KeyboardInterrupt, EOFError):
            print()
        finally:
            if serverthread.serving:
                serverthread.stop()
                print('Server stopped')


# -------------------------------------------------- command-line interface

def ispath(x):
    return isinstance(x, str) and x.find(os.sep) >= 0

def cli():
    """Command-line interface (looks at sys.argv to decide what to do)."""
    import getopt
    class BadUsage(Exception): pass

    # Scripts don't get the current directory in their path by default
    # unless they are run with the '-m' switch
    if '' not in sys.path:
        scriptdir = os.path.dirname(sys.argv[0])
        if scriptdir in sys.path:
            sys.path.remove(scriptdir)
        sys.path.insert(0, '.')

    try:
        opts, args = getopt.getopt(sys.argv[1:], 'bk:p:w')
        writing = False
        start_server = False
        open_browser = False
        port = None
        for opt, val in opts:
            if opt == '-b':
                start_server = True
                open_browser = True
            if opt == '-k':
                apropos(val)
                return
            if opt == '-p':
                start_server = True
                port = val
            if opt == '-w':
                writing = True

        if start_server:
            if port is None:
                port = 0
            browse(port, open_browser=open_browser)
            return

        if not args: raise BadUsage
        for arg in args:
            if ispath(arg) and not os.path.exists(arg):
                print('file %r does not exist' % arg)
                break
            try:
                if ispath(arg) and os.path.isfile(arg):
                    arg = importfile(arg)
                if writing:
                    if ispath(arg) and os.path.isdir(arg):
                        writedocs(arg)
                    else:
                        writedoc(arg)
                else:
                    help.help(arg)
            except ErrorDuringImport as value:
                print(value)

    except (getopt.error, BadUsage):
        cmd = os.path.splitext(os.path.basename(sys.argv[0]))[0]
        print("""pydoc - the Python documentation tool

{cmd} <name> ...
    Show text documentation on something.  <name> may be the name of a
    Python keyword, topic, function, module, or package, or a dotted
    reference to a class or function within a module or module in a
    package.  If <name> contains a '{sep}', it is used as the path to a
    Python source file to document. If name is 'keywords', 'topics',
    or 'modules', a listing of these things is displayed.

{cmd} -k <keyword>
    Search for a keyword in the synopsis lines of all available modules.

{cmd} -p <port>
    Start an HTTP server on the given port on the local machine.  Port
    number 0 can be used to get an arbitrary unused port.

{cmd} -b
    Start an HTTP server on an arbitrary unused port and open a Web browser
    to interactively browse documentation.  The -p option can be used with
    the -b option to explicitly specify the server port.

{cmd} -w <name> ...
    Write out the HTML documentation for a module to a file in the current
    directory.  If <name> contains a '{sep}', it is treated as a filename; if
    it names a directory, documentation is written for all the contents.
""".format(cmd=cmd, sep=os.sep))

if __name__ == '__main__':
    cli()
lib\py_compile.py
"""Routine to "compile" a .py file to a .pyc (or .pyo) file.

This module has intimate knowledge of the format of .pyc files.
"""

import importlib._bootstrap
import importlib.machinery
import importlib.util
import os
import os.path
import sys
import traceback

__all__ = ["compile", "main", "PyCompileError"]


class PyCompileError(Exception):
    """Exception raised when an error occurs while attempting to
    compile the file.

    To raise this exception, use

        raise PyCompileError(exc_type,exc_value,file[,msg])

    where

        exc_type:   exception type to be used in error message
                    type name can be accesses as class variable
                    'exc_type_name'

        exc_value:  exception value to be used in error message
                    can be accesses as class variable 'exc_value'

        file:       name of file being compiled to be used in error message
                    can be accesses as class variable 'file'

        msg:        string message to be written as error message
                    If no value is given, a default exception message will be
                    given, consistent with 'standard' py_compile output.
                    message (or default) can be accesses as class variable
                    'msg'

    """

    def __init__(self, exc_type, exc_value, file, msg=''):
        exc_type_name = exc_type.__name__
        if exc_type is SyntaxError:
            tbtext = ''.join(traceback.format_exception_only(
                exc_type, exc_value))
            errmsg = tbtext.replace('File "<string>"', 'File "%s"' % file)
        else:
            errmsg = "Sorry: %s: %s" % (exc_type_name,exc_value)

        Exception.__init__(self,msg or errmsg,exc_type_name,exc_value,file)

        self.exc_type_name = exc_type_name
        self.exc_value = exc_value
        self.file = file
        self.msg = msg or errmsg

    def __str__(self):
        return self.msg


def compile(file, cfile=None, dfile=None, doraise=False, optimize=-1):
    """Byte-compile one Python source file to Python bytecode.

    :param file: The source file name.
    :param cfile: The target byte compiled file name.  When not given, this
        defaults to the PEP 3147 location.
    :param dfile: Purported file name, i.e. the file name that shows up in
        error messages.  Defaults to the source file name.
    :param doraise: Flag indicating whether or not an exception should be
        raised when a compile error is found.  If an exception occurs and this
        flag is set to False, a string indicating the nature of the exception
        will be printed, and the function will return to the caller. If an
        exception occurs and this flag is set to True, a PyCompileError
        exception will be raised.
    :param optimize: The optimization level for the compiler.  Valid values
        are -1, 0, 1 and 2.  A value of -1 means to use the optimization
        level of the current interpreter, as given by -O command line options.

    :return: Path to the resulting byte compiled file.

    Note that it isn't necessary to byte-compile Python modules for
    execution efficiency -- Python itself byte-compiles a module when
    it is loaded, and if it can, writes out the bytecode to the
    corresponding .pyc (or .pyo) file.

    However, if a Python installation is shared between users, it is a
    good idea to byte-compile all modules upon installation, since
    other users may not be able to write in the source directories,
    and thus they won't be able to write the .pyc/.pyo file, and then
    they would be byte-compiling every module each time it is loaded.
    This can slow down program start-up considerably.

    See compileall.py for a script/module that uses this module to
    byte-compile all installed files (or all files in selected
    directories).

    Do note that FileExistsError is raised if cfile ends up pointing at a
    non-regular file or symlink. Because the compilation uses a file renaming,
    the resulting file would be regular and thus not the same type of file as
    it was previously.
    """
    if sys.implementation.name == "ironpython": return # not supported on IronPython, so return unconditionally

    if cfile is None:
        if optimize >= 0:
            cfile = importlib.util.cache_from_source(file,
                                                     debug_override=not optimize)
        else:
            cfile = importlib.util.cache_from_source(file)
    if os.path.islink(cfile):
        msg = ('{} is a symlink and will be changed into a regular file if '
               'import writes a byte-compiled file to it')
        raise FileExistsError(msg.format(cfile))
    elif os.path.exists(cfile) and not os.path.isfile(cfile):
        msg = ('{} is a non-regular file and will be changed into a regular '
               'one if import writes a byte-compiled file to it')
        raise FileExistsError(msg.format(cfile))
    loader = importlib.machinery.SourceFileLoader('<py_compile>', file)
    source_bytes = loader.get_data(file)
    try:
        code = loader.source_to_code(source_bytes, dfile or file,
                                     _optimize=optimize)
    except Exception as err:
        py_exc = PyCompileError(err.__class__, err, dfile or file)
        if doraise:
            raise py_exc
        else:
            sys.stderr.write(py_exc.msg + '\n')
            return
    try:
        dirname = os.path.dirname(cfile)
        if dirname:
            os.makedirs(dirname)
    except FileExistsError:
        pass
    source_stats = loader.path_stats(file)
    bytecode = importlib._bootstrap._code_to_bytecode(
            code, source_stats['mtime'], source_stats['size'])
    mode = importlib._bootstrap._calc_mode(file)
    importlib._bootstrap._write_atomic(cfile, bytecode, mode)
    return cfile


def main(args=None):
    """Compile several source files.

    The files named in 'args' (or on the command line, if 'args' is
    not specified) are compiled and the resulting bytecode is cached
    in the normal manner.  This function does not search a directory
    structure to locate source files; it only compiles files named
    explicitly.  If '-' is the only parameter in args, the list of
    files is taken from standard input.

    """
    if args is None:
        args = sys.argv[1:]
    rv = 0
    if args == ['-']:
        while True:
            filename = sys.stdin.readline()
            if not filename:
                break
            filename = filename.rstrip('\n')
            try:
                compile(filename, doraise=True)
            except PyCompileError as error:
                rv = 1
                sys.stderr.write("%s\n" % error.msg)
            except OSError as error:
                rv = 1
                sys.stderr.write("%s\n" % error)
    else:
        for filename in args:
            try:
                compile(filename, doraise=True)
            except PyCompileError as error:
                # return value to indicate at least one failure
                rv = 1
                sys.stderr.write("%s\n" % error.msg)
    return rv

if __name__ == "__main__":
    sys.exit(main())
lib\queue.py
'''A multi-producer, multi-consumer queue.'''

try:
    import threading
except ImportError:
    import dummy_threading as threading
from collections import deque
from heapq import heappush, heappop
try:
    from time import monotonic as time
except ImportError:
    from time import time

__all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue']

class Empty(Exception):
    'Exception raised by Queue.get(block=0)/get_nowait().'
    pass

class Full(Exception):
    'Exception raised by Queue.put(block=0)/put_nowait().'
    pass

class Queue:
    '''Create a queue object with a given maximum size.

    If maxsize is <= 0, the queue size is infinite.
    '''

    def __init__(self, maxsize=0):
        self.maxsize = maxsize
        self._init(maxsize)

        # mutex must be held whenever the queue is mutating.  All methods
        # that acquire mutex must release it before returning.  mutex
        # is shared between the three conditions, so acquiring and
        # releasing the conditions also acquires and releases mutex.
        self.mutex = threading.Lock()

        # Notify not_empty whenever an item is added to the queue; a
        # thread waiting to get is notified then.
        self.not_empty = threading.Condition(self.mutex)

        # Notify not_full whenever an item is removed from the queue;
        # a thread waiting to put is notified then.
        self.not_full = threading.Condition(self.mutex)

        # Notify all_tasks_done whenever the number of unfinished tasks
        # drops to zero; thread waiting to join() is notified to resume
        self.all_tasks_done = threading.Condition(self.mutex)
        self.unfinished_tasks = 0

    def task_done(self):
        '''Indicate that a formerly enqueued task is complete.

        Used by Queue consumer threads.  For each get() used to fetch a task,
        a subsequent call to task_done() tells the queue that the processing
        on the task is complete.

        If a join() is currently blocking, it will resume when all items
        have been processed (meaning that a task_done() call was received
        for every item that had been put() into the queue).

        Raises a ValueError if called more times than there were items
        placed in the queue.
        '''
        with self.all_tasks_done:
            unfinished = self.unfinished_tasks - 1
            if unfinished <= 0:
                if unfinished < 0:
                    raise ValueError('task_done() called too many times')
                self.all_tasks_done.notify_all()
            self.unfinished_tasks = unfinished

    def join(self):
        '''Blocks until all items in the Queue have been gotten and processed.

        The count of unfinished tasks goes up whenever an item is added to the
        queue. The count goes down whenever a consumer thread calls task_done()
        to indicate the item was retrieved and all work on it is complete.

        When the count of unfinished tasks drops to zero, join() unblocks.
        '''
        with self.all_tasks_done:
            while self.unfinished_tasks:
                self.all_tasks_done.wait()

    def qsize(self):
        '''Return the approximate size of the queue (not reliable!).'''
        with self.mutex:
            return self._qsize()

    def empty(self):
        '''Return True if the queue is empty, False otherwise (not reliable!).

        This method is likely to be removed at some point.  Use qsize() == 0
        as a direct substitute, but be aware that either approach risks a race
        condition where a queue can grow before the result of empty() or
        qsize() can be used.

        To create code that needs to wait for all queued tasks to be
        completed, the preferred technique is to use the join() method.
        '''
        with self.mutex:
            return not self._qsize()

    def full(self):
        '''Return True if the queue is full, False otherwise (not reliable!).

        This method is likely to be removed at some point.  Use qsize() >= n
        as a direct substitute, but be aware that either approach risks a race
        condition where a queue can shrink before the result of full() or
        qsize() can be used.
        '''
        with self.mutex:
            return 0 < self.maxsize <= self._qsize()

    def put(self, item, block=True, timeout=None):
        '''Put an item into the queue.

        If optional args 'block' is true and 'timeout' is None (the default),
        block if necessary until a free slot is available. If 'timeout' is
        a non-negative number, it blocks at most 'timeout' seconds and raises
        the Full exception if no free slot was available within that time.
        Otherwise ('block' is false), put an item on the queue if a free slot
        is immediately available, else raise the Full exception ('timeout'
        is ignored in that case).
        '''
        with self.not_full:
            if self.maxsize > 0:
                if not block:
                    if self._qsize() >= self.maxsize:
                        raise Full
                elif timeout is None:
                    while self._qsize() >= self.maxsize:
                        self.not_full.wait()
                elif timeout < 0:
                    raise ValueError("'timeout' must be a non-negative number")
                else:
                    endtime = time() + timeout
                    while self._qsize() >= self.maxsize:
                        remaining = endtime - time()
                        if remaining <= 0.0:
                            raise Full
                        self.not_full.wait(remaining)
            self._put(item)
            self.unfinished_tasks += 1
            self.not_empty.notify()

    def get(self, block=True, timeout=None):
        '''Remove and return an item from the queue.

        If optional args 'block' is true and 'timeout' is None (the default),
        block if necessary until an item is available. If 'timeout' is
        a non-negative number, it blocks at most 'timeout' seconds and raises
        the Empty exception if no item was available within that time.
        Otherwise ('block' is false), return an item if one is immediately
        available, else raise the Empty exception ('timeout' is ignored
        in that case).
        '''
        with self.not_empty:
            if not block:
                if not self._qsize():
                    raise Empty
            elif timeout is None:
                while not self._qsize():
                    self.not_empty.wait()
            elif timeout < 0:
                raise ValueError("'timeout' must be a non-negative number")
            else:
                endtime = time() + timeout
                while not self._qsize():
                    remaining = endtime - time()
                    if remaining <= 0.0:
                        raise Empty
                    self.not_empty.wait(remaining)
            item = self._get()
            self.not_full.notify()
            return item

    def put_nowait(self, item):
        '''Put an item into the queue without blocking.

        Only enqueue the item if a free slot is immediately available.
        Otherwise raise the Full exception.
        '''
        return self.put(item, block=False)

    def get_nowait(self):
        '''Remove and return an item from the queue without blocking.

        Only get an item if one is immediately available. Otherwise
        raise the Empty exception.
        '''
        return self.get(block=False)

    # Override these methods to implement other queue organizations
    # (e.g. stack or priority queue).
    # These will only be called with appropriate locks held

    # Initialize the queue representation
    def _init(self, maxsize):
        self.queue = deque()

    def _qsize(self):
        return len(self.queue)

    # Put a new item in the queue
    def _put(self, item):
        self.queue.append(item)

    # Get an item from the queue
    def _get(self):
        return self.queue.popleft()


class PriorityQueue(Queue):
    '''Variant of Queue that retrieves open entries in priority order (lowest first).

    Entries are typically tuples of the form:  (priority number, data).
    '''

    def _init(self, maxsize):
        self.queue = []

    def _qsize(self):
        return len(self.queue)

    def _put(self, item):
        heappush(self.queue, item)

    def _get(self):
        return heappop(self.queue)


class LifoQueue(Queue):
    '''Variant of Queue that retrieves most recently added entries first.'''

    def _init(self, maxsize):
        self.queue = []

    def _qsize(self):
        return len(self.queue)

    def _put(self, item):
        self.queue.append(item)

    def _get(self):
        return self.queue.pop()
lib\quopri.py
#! /usr/bin/env python3

"""Conversions to/from quoted-printable transport encoding as per RFC 1521."""

# (Dec 1991 version).

__all__ = ["encode", "decode", "encodestring", "decodestring"]

ESCAPE = b'='
MAXLINESIZE = 76
HEX = b'0123456789ABCDEF'
EMPTYSTRING = b''

try:
    from binascii import a2b_qp, b2a_qp
except ImportError:
    a2b_qp = None
    b2a_qp = None


def needsquoting(c, quotetabs, header):
    """Decide whether a particular byte ordinal needs to be quoted.

    The 'quotetabs' flag indicates whether embedded tabs and spaces should be
    quoted.  Note that line-ending tabs and spaces are always encoded, as per
    RFC 1521.
    """
    assert isinstance(c, bytes)
    if c in b' \t':
        return quotetabs
    # if header, we have to escape _ because _ is used to escape space
    if c == b'_':
        return header
    return c == ESCAPE or not (b' ' <= c <= b'~')

def quote(c):
    """Quote a single character."""
    assert isinstance(c, bytes) and len(c)==1
    c = ord(c)
    return ESCAPE + bytes((HEX[c//16], HEX[c%16]))



def encode(input, output, quotetabs, header=False):
    """Read 'input', apply quoted-printable encoding, and write to 'output'.

    'input' and 'output' are binary file objects. The 'quotetabs' flag
    indicates whether embedded tabs and spaces should be quoted. Note that
    line-ending tabs and spaces are always encoded, as per RFC 1521.
    The 'header' flag indicates whether we are encoding spaces as _ as per RFC
    1522."""

    if b2a_qp is not None:
        data = input.read()
        odata = b2a_qp(data, quotetabs=quotetabs, header=header)
        output.write(odata)
        return

    def write(s, output=output, lineEnd=b'\n'):
        # RFC 1521 requires that the line ending in a space or tab must have
        # that trailing character encoded.
        if s and s[-1:] in b' \t':
            output.write(s[:-1] + quote(s[-1:]) + lineEnd)
        elif s == b'.':
            output.write(quote(s) + lineEnd)
        else:
            output.write(s + lineEnd)

    prevline = None
    while 1:
        line = input.readline()
        if not line:
            break
        outline = []
        # Strip off any readline induced trailing newline
        stripped = b''
        if line[-1:] == b'\n':
            line = line[:-1]
            stripped = b'\n'
        # Calculate the un-length-limited encoded line
        for c in line:
            c = bytes((c,))
            if needsquoting(c, quotetabs, header):
                c = quote(c)
            if header and c == b' ':
                outline.append(b'_')
            else:
                outline.append(c)
        # First, write out the previous line
        if prevline is not None:
            write(prevline)
        # Now see if we need any soft line breaks because of RFC-imposed
        # length limitations.  Then do the thisline->prevline dance.
        thisline = EMPTYSTRING.join(outline)
        while len(thisline) > MAXLINESIZE:
            # Don't forget to include the soft line break `=' sign in the
            # length calculation!
            write(thisline[:MAXLINESIZE-1], lineEnd=b'=\n')
            thisline = thisline[MAXLINESIZE-1:]
        # Write out the current line
        prevline = thisline
    # Write out the last line, without a trailing newline
    if prevline is not None:
        write(prevline, lineEnd=stripped)

def encodestring(s, quotetabs=False, header=False):
    if b2a_qp is not None:
        return b2a_qp(s, quotetabs=quotetabs, header=header)
    from io import BytesIO
    infp = BytesIO(s)
    outfp = BytesIO()
    encode(infp, outfp, quotetabs, header)
    return outfp.getvalue()



def decode(input, output, header=False):
    """Read 'input', apply quoted-printable decoding, and write to 'output'.
    'input' and 'output' are binary file objects.
    If 'header' is true, decode underscore as space (per RFC 1522)."""

    if a2b_qp is not None:
        data = input.read()
        odata = a2b_qp(data, header=header)
        output.write(odata)
        return

    new = b''
    while 1:
        line = input.readline()
        if not line: break
        i, n = 0, len(line)
        if n > 0 and line[n-1:n] == b'\n':
            partial = 0; n = n-1
            # Strip trailing whitespace
            while n > 0 and line[n-1:n] in b" \t\r":
                n = n-1
        else:
            partial = 1
        while i < n:
            c = line[i:i+1]
            if c == b'_' and header:
                new = new + b' '; i = i+1
            elif c != ESCAPE:
                new = new + c; i = i+1
            elif i+1 == n and not partial:
                partial = 1; break
            elif i+1 < n and line[i+1:i+2] == ESCAPE:
                new = new + ESCAPE; i = i+2
            elif i+2 < n and ishex(line[i+1:i+2]) and ishex(line[i+2:i+3]):
                new = new + bytes((unhex(line[i+1:i+3]),)); i = i+3
            else: # Bad escape sequence -- leave it in
                new = new + c; i = i+1
        if not partial:
            output.write(new + b'\n')
            new = b''
    if new:
        output.write(new)

def decodestring(s, header=False):
    if a2b_qp is not None:
        return a2b_qp(s, header=header)
    from io import BytesIO
    infp = BytesIO(s)
    outfp = BytesIO()
    decode(infp, outfp, header=header)
    return outfp.getvalue()



# Other helper functions
def ishex(c):
    """Return true if the byte ordinal 'c' is a hexadecimal digit in ASCII."""
    assert isinstance(c, bytes)
    return b'0' <= c <= b'9' or b'a' <= c <= b'f' or b'A' <= c <= b'F'

def unhex(s):
    """Get the integer value of a hexadecimal number."""
    bits = 0
    for c in s:
        c = bytes((c,))
        if b'0' <= c <= b'9':
            i = ord('0')
        elif b'a' <= c <= b'f':
            i = ord('a')-10
        elif b'A' <= c <= b'F':
            i = ord(b'A')-10
        else:
            assert False, "non-hex digit "+repr(c)
        bits = bits*16 + (ord(c) - i)
    return bits



def main():
    import sys
    import getopt
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'td')
    except getopt.error as msg:
        sys.stdout = sys.stderr
        print(msg)
        print("usage: quopri [-t | -d] [file] ...")
        print("-t: quote tabs")
        print("-d: decode; default encode")
        sys.exit(2)
    deco = 0
    tabs = 0
    for o, a in opts:
        if o == '-t': tabs = 1
        if o == '-d': deco = 1
    if tabs and deco:
        sys.stdout = sys.stderr
        print("-t and -d are mutually exclusive")
        sys.exit(2)
    if not args: args = ['-']
    sts = 0
    for file in args:
        if file == '-':
            fp = sys.stdin.buffer
        else:
            try:
                fp = open(file, "rb")
            except OSError as msg:
                sys.stderr.write("%s: can't open (%s)\n" % (file, msg))
                sts = 1
                continue
        try:
            if deco:
                decode(fp, sys.stdout.buffer)
            else:
                encode(fp, sys.stdout.buffer, tabs)
        finally:
            if file != '-':
                fp.close()
    if sts:
        sys.exit(sts)



if __name__ == '__main__':
    main()
lib\random.py
"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from _collections_abc import Set as _Set, Sequence as _Sequence
from hashlib import sha512 as _sha512

__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate", "getrandbits",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods:  random(), seed(), getstate(), and setstate().
    Optionally, implement a getrandbits() method so that randrange()
    can cover arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def seed(self, a=None, version=2):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        For version 2 (the default), all of the bits are used if *a* is a str,
        bytes, or bytearray.  For version 1, the hash() of *a* is used instead.

        If *a* is an int, all bits are used.

        """

        if a is None:
            try:
                # Seed with enough bytes to span the 19937 bit
                # state space for the Mersenne Twister
                a = int.from_bytes(_urandom(2500), 'big')
            except NotImplementedError:
                import time
                a = int(time.time() * 256) # use fractional seconds

        if version == 2:
            if isinstance(a, (str, bytes, bytearray)):
                if isinstance(a, str):
                    a = a.encode()
                a += _sha512(a).digest()
                a = int.from_bytes(a, 'big')

        super().seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super().getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super().setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple(x % (2**32) for x in internalstate)
            except ValueError as e:
                raise TypeError from e
            super().setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
    # longer called; we leave it here because it has been here since random was
    # rewritten back in 2001 and why risk breaking something.
    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError("non-integer arg 1 for randrange()")
        if stop is None:
            if istart > 0:
                return self._randbelow(istart)
            raise ValueError("empty range for randrange()")

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError("non-integer stop for randrange()")
        width = istop - istart
        if step == 1 and width > 0:
            return istart + self._randbelow(width)
        if step == 1:
            raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError("non-integer step for randrange()")
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError("zero step for randrange()")

        if n <= 0:
            raise ValueError("empty range for randrange()")

        return istart + istep*self._randbelow(n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
                   Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
        "Return a random int in the range [0,n).  Raises ValueError if n==0."

        random = self.random
        getrandbits = self.getrandbits
        # Only call self.getrandbits if the original random() builtin method
        # has not been overridden or if a new getrandbits() was supplied.
        if type(random) is BuiltinMethod or type(getrandbits) is Method:
            k = n.bit_length()  # don't use (n-1) here because n can be 1
            r = getrandbits(k)          # 0 <= r < 2**k
            while r >= n:
                r = getrandbits(k)
            return r
        # There's an overriden random() method but no new getrandbits() method,
        # so we can only use random() from here.
        if n >= maxsize:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large.\n"
                "To remove the range limitation, add a getrandbits() method.")
            return int(random() * n)
        rem = maxsize % n
        limit = (maxsize - rem) / maxsize   # int(limit * maxsize) % n == 0
        r = random()
        while r >= limit:
            r = random()
        return int(r*maxsize) % n

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        try:
            i = self._randbelow(len(seq))
        except ValueError:
            raise IndexError('Cannot choose from an empty sequence')
        return seq[i]

    def shuffle(self, x, random=None):
        """Shuffle list x in place, and return None.

        Optional argument random is a 0-argument function returning a
        random float in [0.0, 1.0); if it is the default None, the
        standard random.random will be used.

        """

        if random is None:
            randbelow = self._randbelow
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = randbelow(i+1)
                x[i], x[j] = x[j], x[i]
        else:
            _int = int
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = _int(random() * (i+1))
                x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence or set.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use range as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(range(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        if isinstance(population, _Set):
            population = tuple(population)
        if not isinstance(population, _Sequence):
            raise TypeError("Population must be a sequence or set.  For dicts, use list(d).")
        randbelow = self._randbelow
        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("Sample larger than population")
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize:
            # An n-length list is smaller than a k-length set
            pool = list(population)
            for i in range(k):         # invariant:  non-selected at [0,n-i)
                j = randbelow(n-i)
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            selected = set()
            selected_add = selected.add
            for i in range(k):
                j = randbelow(n)
                while j in selected:
                    j = randbelow(n)
                selected_add(j)
                result[i] = population[j]
        return result

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        try:
            c = 0.5 if mode is None else (mode - low) / (high - low)
        except ZeroDivisionError:
            return low
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * (u * c) ** 0.5

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / u ** (1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * (-_log(u)) ** (1.0/beta)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates an int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        if k != int(k):
            raise TypeError('number of bits should be an integer')
        numbytes = (k + 7) // 8                       # bits / 8 and rounded up
        x = int.from_bytes(_urandom(numbytes), 'big')
        return x >> (numbytes * 8 - k)                # trim excess bits

    def seed(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print(n, 'times', func.__name__)
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.time()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.time()
    print(round(t1-t0, 3), 'sec,', end=' ')
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print('avg %g, stddev %g, min %g, max %g' % \
              (avg, stddev, smallest, largest))


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits

if __name__ == '__main__':
    _test()
lib\re.py
#
# Secret Labs' Regular Expression Engine
#
# re-compatible interface for the sre matching engine
#
# Copyright (c) 1998-2001 by Secret Labs AB.  All rights reserved.
#
# This version of the SRE library can be redistributed under CNRI's
# Python 1.6 license.  For any other use, please contact Secret Labs
# AB ([email protected]).
#
# Portions of this engine have been developed in cooperation with
# CNRI.  Hewlett-Packard provided funding for 1.6 integration and
# other compatibility work.
#

r"""Support for regular expressions (RE).

This module provides regular expression matching operations similar to
those found in Perl.  It supports both 8-bit and Unicode strings; both
the pattern and the strings being processed can contain null bytes and
characters outside the US ASCII range.

Regular expressions can contain both special and ordinary characters.
Most ordinary characters, like "A", "a", or "0", are the simplest
regular expressions; they simply match themselves.  You can
concatenate ordinary characters, so last matches the string 'last'.

The special characters are:
    "."      Matches any character except a newline.
    "^"      Matches the start of the string.
    "$"      Matches the end of the string or just before the newline at
             the end of the string.
    "*"      Matches 0 or more (greedy) repetitions of the preceding RE.
             Greedy means that it will match as many repetitions as possible.
    "+"      Matches 1 or more (greedy) repetitions of the preceding RE.
    "?"      Matches 0 or 1 (greedy) of the preceding RE.
    *?,+?,?? Non-greedy versions of the previous three special characters.
    {m,n}    Matches from m to n repetitions of the preceding RE.
    {m,n}?   Non-greedy version of the above.
    "\\"     Either escapes special characters or signals a special sequence.
    []       Indicates a set of characters.
             A "^" as the first character indicates a complementing set.
    "|"      A|B, creates an RE that will match either A or B.
    (...)    Matches the RE inside the parentheses.
             The contents can be retrieved or matched later in the string.
    (?aiLmsux) Set the A, I, L, M, S, U, or X flag for the RE (see below).
    (?:...)  Non-grouping version of regular parentheses.
    (?P<name>...) The substring matched by the group is accessible by name.
    (?P=name)     Matches the text matched earlier by the group named name.
    (?#...)  A comment; ignored.
    (?=...)  Matches if ... matches next, but doesn't consume the string.
    (?!...)  Matches if ... doesn't match next.
    (?<=...) Matches if preceded by ... (must be fixed length).
    (?<!...) Matches if not preceded by ... (must be fixed length).
    (?(id/name)yes|no) Matches yes pattern if the group with id/name matched,
                       the (optional) no pattern otherwise.

The special sequences consist of "\\" and a character from the list
below.  If the ordinary character is not on the list, then the
resulting RE will match the second character.
    \number  Matches the contents of the group of the same number.
    \A       Matches only at the start of the string.
    \Z       Matches only at the end of the string.
    \b       Matches the empty string, but only at the start or end of a word.
    \B       Matches the empty string, but not at the start or end of a word.
    \d       Matches any decimal digit; equivalent to the set [0-9] in
             bytes patterns or string patterns with the ASCII flag.
             In string patterns without the ASCII flag, it will match the whole
             range of Unicode digits.
    \D       Matches any non-digit character; equivalent to [^\d].
    \s       Matches any whitespace character; equivalent to [ \t\n\r\f\v] in
             bytes patterns or string patterns with the ASCII flag.
             In string patterns without the ASCII flag, it will match the whole
             range of Unicode whitespace characters.
    \S       Matches any non-whitespace character; equivalent to [^\s].
    \w       Matches any alphanumeric character; equivalent to [a-zA-Z0-9_]
             in bytes patterns or string patterns with the ASCII flag.
             In string patterns without the ASCII flag, it will match the
             range of Unicode alphanumeric characters (letters plus digits
             plus underscore).
             With LOCALE, it will match the set [0-9_] plus characters defined
             as letters for the current locale.
    \W       Matches the complement of \w.
    \\       Matches a literal backslash.

This module exports the following functions:
    match     Match a regular expression pattern to the beginning of a string.
    fullmatch Match a regular expression pattern to all of a string.
    search    Search a string for the presence of a pattern.
    sub       Substitute occurrences of a pattern found in a string.
    subn      Same as sub, but also return the number of substitutions made.
    split     Split a string by the occurrences of a pattern.
    findall   Find all occurrences of a pattern in a string.
    finditer  Return an iterator yielding a match object for each match.
    compile   Compile a pattern into a RegexObject.
    purge     Clear the regular expression cache.
    escape    Backslash all non-alphanumerics in a string.

Some of the functions in this module takes flags as optional parameters:
    A  ASCII       For string patterns, make \w, \W, \b, \B, \d, \D
                   match the corresponding ASCII character categories
                   (rather than the whole Unicode categories, which is the
                   default).
                   For bytes patterns, this flag is the only available
                   behaviour and needn't be specified.
    I  IGNORECASE  Perform case-insensitive matching.
    L  LOCALE      Make \w, \W, \b, \B, dependent on the current locale.
    M  MULTILINE   "^" matches the beginning of lines (after a newline)
                   as well as the string.
                   "$" matches the end of lines (before a newline) as well
                   as the end of the string.
    S  DOTALL      "." matches any character at all, including the newline.
    X  VERBOSE     Ignore whitespace and comments for nicer looking RE's.
    U  UNICODE     For compatibility only. Ignored for string patterns (it
                   is the default), and forbidden for bytes patterns.

This module also defines an exception 'error'.

"""

import sys
import sre_compile
import sre_parse
try:
    import _locale
except ImportError:
    _locale = None

# public symbols
__all__ = [ "match", "fullmatch", "search", "sub", "subn", "split", "findall",
    "compile", "purge", "template", "escape", "A", "I", "L", "M", "S", "X",
    "U", "ASCII", "IGNORECASE", "LOCALE", "MULTILINE", "DOTALL", "VERBOSE",
    "UNICODE", "error" ]

__version__ = "2.2.1"

# flags
A = ASCII = sre_compile.SRE_FLAG_ASCII # assume ascii "locale"
I = IGNORECASE = sre_compile.SRE_FLAG_IGNORECASE # ignore case
L = LOCALE = sre_compile.SRE_FLAG_LOCALE # assume current 8-bit locale
U = UNICODE = sre_compile.SRE_FLAG_UNICODE # assume unicode "locale"
M = MULTILINE = sre_compile.SRE_FLAG_MULTILINE # make anchors look for newline
S = DOTALL = sre_compile.SRE_FLAG_DOTALL # make dot match newline
X = VERBOSE = sre_compile.SRE_FLAG_VERBOSE # ignore whitespace and comments

# sre extensions (experimental, don't rely on these)
T = TEMPLATE = sre_compile.SRE_FLAG_TEMPLATE # disable backtracking
DEBUG = sre_compile.SRE_FLAG_DEBUG # dump pattern after compilation

# sre exception
error = sre_compile.error

# --------------------------------------------------------------------
# public interface

def match(pattern, string, flags=0):
    """Try to apply the pattern at the start of the string, returning
    a match object, or None if no match was found."""
    return _compile(pattern, flags).match(string)

def fullmatch(pattern, string, flags=0):
    """Try to apply the pattern to all of the string, returning
    a match object, or None if no match was found."""
    return _compile(pattern, flags).fullmatch(string)

def search(pattern, string, flags=0):
    """Scan through string looking for a match to the pattern, returning
    a match object, or None if no match was found."""
    return _compile(pattern, flags).search(string)

def sub(pattern, repl, string, count=0, flags=0):
    """Return the string obtained by replacing the leftmost
    non-overlapping occurrences of the pattern in string by the
    replacement repl.  repl can be either a string or a callable;
    if a string, backslash escapes in it are processed.  If it is
    a callable, it's passed the match object and must return
    a replacement string to be used."""
    return _compile(pattern, flags).sub(repl, string, count)

def subn(pattern, repl, string, count=0, flags=0):
    """Return a 2-tuple containing (new_string, number).
    new_string is the string obtained by replacing the leftmost
    non-overlapping occurrences of the pattern in the source
    string by the replacement repl.  number is the number of
    substitutions that were made. repl can be either a string or a
    callable; if a string, backslash escapes in it are processed.
    If it is a callable, it's passed the match object and must
    return a replacement string to be used."""
    return _compile(pattern, flags).subn(repl, string, count)

def split(pattern, string, maxsplit=0, flags=0):
    """Split the source string by the occurrences of the pattern,
    returning a list containing the resulting substrings.  If
    capturing parentheses are used in pattern, then the text of all
    groups in the pattern are also returned as part of the resulting
    list.  If maxsplit is nonzero, at most maxsplit splits occur,
    and the remainder of the string is returned as the final element
    of the list."""
    return _compile(pattern, flags).split(string, maxsplit)

def findall(pattern, string, flags=0):
    """Return a list of all non-overlapping matches in the string.

    If one or more capturing groups are present in the pattern, return
    a list of groups; this will be a list of tuples if the pattern
    has more than one group.

    Empty matches are included in the result."""
    return _compile(pattern, flags).findall(string)

if sys.hexversion >= 0x02020000:
    __all__.append("finditer")
    def finditer(pattern, string, flags=0):
        """Return an iterator over all non-overlapping matches in the
        string.  For each match, the iterator returns a match object.

        Empty matches are included in the result."""
        return _compile(pattern, flags).finditer(string)

def compile(pattern, flags=0):
    "Compile a regular expression pattern, returning a pattern object."
    return _compile(pattern, flags)

def purge():
    "Clear the regular expression caches"
    _cache.clear()
    _cache_repl.clear()

def template(pattern, flags=0):
    "Compile a template pattern, returning a pattern object"
    return _compile(pattern, flags|T)

_alphanum_str = frozenset(
    "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890")
_alphanum_bytes = frozenset(
    b"_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890")

def escape(pattern):
    """
    Escape all the characters in pattern except ASCII letters, numbers and '_'.
    """
    if isinstance(pattern, str):
        alphanum = _alphanum_str
        s = list(pattern)
        for i, c in enumerate(pattern):
            if c not in alphanum:
                if c == "\000":
                    s[i] = "\\000"
                else:
                    s[i] = "\\" + c
        return "".join(s)
    else:
        alphanum = _alphanum_bytes
        s = []
        esc = ord(b"\\")
        for c in pattern:
            if c in alphanum:
                s.append(c)
            else:
                if c == 0:
                    s.extend(b"\\000")
                else:
                    s.append(esc)
                    s.append(c)
        return bytes(s)

# --------------------------------------------------------------------
# internals

_cache = {}
_cache_repl = {}

_pattern_type = type(sre_compile.compile("", 0))

_MAXCACHE = 512
def _compile(pattern, flags):
    # internal: compile pattern
    bypass_cache = flags & DEBUG
    if not bypass_cache:
        try:
            p, loc = _cache[type(pattern), pattern, flags]
            if loc is None or loc == _locale.setlocale(_locale.LC_CTYPE):
                return p
        except KeyError:
            pass
    if isinstance(pattern, _pattern_type):
        if flags:
            raise ValueError(
                "Cannot process flags argument with a compiled pattern")
        return pattern
    if not sre_compile.isstring(pattern):
        raise TypeError("first argument must be string or compiled pattern")
    p = sre_compile.compile(pattern, flags)
    if not bypass_cache:
        if len(_cache) >= _MAXCACHE:
            _cache.clear()
        if p.flags & LOCALE:
            if not _locale:
                return p
            loc = _locale.setlocale(_locale.LC_CTYPE)
        else:
            loc = None
        _cache[type(pattern), pattern, flags] = p, loc
    return p

def _compile_repl(repl, pattern):
    # internal: compile replacement pattern
    try:
        return _cache_repl[repl, pattern]
    except KeyError:
        pass
    p = sre_parse.parse_template(repl, pattern)
    if len(_cache_repl) >= _MAXCACHE:
        _cache_repl.clear()
    _cache_repl[repl, pattern] = p
    return p

def _expand(pattern, match, template):
    # internal: match.expand implementation hook
    template = sre_parse.parse_template(template, pattern)
    return sre_parse.expand_template(template, match)

def _subx(pattern, template):
    # internal: pattern.sub/subn implementation helper
    template = _compile_repl(template, pattern)
    if not template[0] and len(template[1]) == 1:
        # literal replacement
        return template[1][0]
    def filter(match, template=template):
        return sre_parse.expand_template(template, match)
    return filter

# register myself for pickling

import copyreg

def _pickle(p):
    return _compile, (p.pattern, p.flags)

copyreg.pickle(_pattern_type, _pickle, _compile)

# --------------------------------------------------------------------
# experimental stuff (see python-dev discussions for details)

class Scanner:
    def __init__(self, lexicon, flags=0):
        from sre_constants import BRANCH, SUBPATTERN
        self.lexicon = lexicon
        # combine phrases into a compound pattern
        p = []
        s = sre_parse.Pattern()
        s.flags = flags
        for phrase, action in lexicon:
            p.append(sre_parse.SubPattern(s, [
                (SUBPATTERN, (len(p)+1, sre_parse.parse(phrase, flags))),
                ]))
        s.groups = len(p)+1
        p = sre_parse.SubPattern(s, [(BRANCH, (None, p))])
        self.scanner = sre_compile.compile(p)
    def scan(self, string):
        result = []
        append = result.append
        match = self.scanner.scanner(string).match
        i = 0
        while 1:
            m = match()
            if not m:
                break
            j = m.end()
            if i == j:
                break
            action = self.lexicon[m.lastindex-1][1]
            if callable(action):
                self.match = m
                action = action(self, m.group())
            if action is not None:
                append(action)
            i = j
        return result, string[i:]
lib\reprlib.py
"""Redo the builtin repr() (representation) but with limits on most sizes."""

__all__ = ["Repr", "repr", "recursive_repr"]

import builtins
from itertools import islice
try:
    from _thread import get_ident
except ImportError:
    from _dummy_thread import get_ident

def recursive_repr(fillvalue='...'):
    'Decorator to make a repr function return fillvalue for a recursive call'

    def decorating_function(user_function):
        repr_running = set()

        def wrapper(self):
            key = id(self), get_ident()
            if key in repr_running:
                return fillvalue
            repr_running.add(key)
            try:
                result = user_function(self)
            finally:
                repr_running.discard(key)
            return result

        # Can't use functools.wraps() here because of bootstrap issues
        wrapper.__module__ = getattr(user_function, '__module__')
        wrapper.__doc__ = getattr(user_function, '__doc__')
        wrapper.__name__ = getattr(user_function, '__name__')
        wrapper.__annotations__ = getattr(user_function, '__annotations__', {})
        return wrapper

    return decorating_function

class Repr:

    def __init__(self):
        self.maxlevel = 6
        self.maxtuple = 6
        self.maxlist = 6
        self.maxarray = 5
        self.maxdict = 4
        self.maxset = 6
        self.maxfrozenset = 6
        self.maxdeque = 6
        self.maxstring = 30
        self.maxlong = 40
        self.maxother = 30

    def repr(self, x):
        return self.repr1(x, self.maxlevel)

    def repr1(self, x, level):
        typename = type(x).__name__
        if ' ' in typename:
            parts = typename.split()
            typename = '_'.join(parts)
        if hasattr(self, 'repr_' + typename):
            return getattr(self, 'repr_' + typename)(x, level)
        else:
            return self.repr_instance(x, level)

    def _repr_iterable(self, x, level, left, right, maxiter, trail=''):
        n = len(x)
        if level <= 0 and n:
            s = '...'
        else:
            newlevel = level - 1
            repr1 = self.repr1
            pieces = [repr1(elem, newlevel) for elem in islice(x, maxiter)]
            if n > maxiter:  pieces.append('...')
            s = ', '.join(pieces)
            if n == 1 and trail:  right = trail + right
        return '%s%s%s' % (left, s, right)

    def repr_tuple(self, x, level):
        return self._repr_iterable(x, level, '(', ')', self.maxtuple, ',')

    def repr_list(self, x, level):
        return self._repr_iterable(x, level, '[', ']', self.maxlist)

    def repr_array(self, x, level):
        header = "array('%s', [" % x.typecode
        return self._repr_iterable(x, level, header, '])', self.maxarray)

    def repr_set(self, x, level):
        x = _possibly_sorted(x)
        return self._repr_iterable(x, level, 'set([', '])', self.maxset)

    def repr_frozenset(self, x, level):
        x = _possibly_sorted(x)
        return self._repr_iterable(x, level, 'frozenset([', '])',
                                   self.maxfrozenset)

    def repr_deque(self, x, level):
        return self._repr_iterable(x, level, 'deque([', '])', self.maxdeque)

    def repr_dict(self, x, level):
        n = len(x)
        if n == 0: return '{}'
        if level <= 0: return '{...}'
        newlevel = level - 1
        repr1 = self.repr1
        pieces = []
        for key in islice(_possibly_sorted(x), self.maxdict):
            keyrepr = repr1(key, newlevel)
            valrepr = repr1(x[key], newlevel)
            pieces.append('%s: %s' % (keyrepr, valrepr))
        if n > self.maxdict: pieces.append('...')
        s = ', '.join(pieces)
        return '{%s}' % (s,)

    def repr_str(self, x, level):
        s = builtins.repr(x[:self.maxstring])
        if len(s) > self.maxstring:
            i = max(0, (self.maxstring-3)//2)
            j = max(0, self.maxstring-3-i)
            s = builtins.repr(x[:i] + x[len(x)-j:])
            s = s[:i] + '...' + s[len(s)-j:]
        return s

    def repr_int(self, x, level):
        s = builtins.repr(x) # XXX Hope this isn't too slow...
        if len(s) > self.maxlong:
            i = max(0, (self.maxlong-3)//2)
            j = max(0, self.maxlong-3-i)
            s = s[:i] + '...' + s[len(s)-j:]
        return s

    def repr_instance(self, x, level):
        try:
            s = builtins.repr(x)
            # Bugs in x.__repr__() can cause arbitrary
            # exceptions -- then make up something
        except Exception:
            return '<%s instance at %x>' % (x.__class__.__name__, id(x))
        if len(s) > self.maxother:
            i = max(0, (self.maxother-3)//2)
            j = max(0, self.maxother-3-i)
            s = s[:i] + '...' + s[len(s)-j:]
        return s


def _possibly_sorted(x):
    # Since not all sequences of items can be sorted and comparison
    # functions may raise arbitrary exceptions, return an unsorted
    # sequence in that case.
    try:
        return sorted(x)
    except Exception:
        return list(x)

aRepr = Repr()
repr = aRepr.repr
lib\rlcompleter.py
"""Word completion for GNU readline.

The completer completes keywords, built-ins and globals in a selectable
namespace (which defaults to __main__); when completing NAME.NAME..., it
evaluates (!) the expression up to the last dot and completes its attributes.

It's very cool to do "import sys" type "sys.", hit the completion key (twice),
and see the list of names defined by the sys module!

Tip: to use the tab key as the completion key, call

    readline.parse_and_bind("tab: complete")

Notes:

- Exceptions raised by the completer function are *ignored* (and generally cause
  the completion to fail).  This is a feature -- since readline sets the tty
  device in raw (or cbreak) mode, printing a traceback wouldn't work well
  without some complicated hoopla to save, reset and restore the tty state.

- The evaluation of the NAME.NAME... form may cause arbitrary application
  defined code to be executed if an object with a __getattr__ hook is found.
  Since it is the responsibility of the application (or the user) to enable this
  feature, I consider this an acceptable risk.  More complicated expressions
  (e.g. function calls or indexing operations) are *not* evaluated.

- When the original stdin is not a tty device, GNU readline is never
  used, and this module (and the readline module) are silently inactive.

"""

import atexit
import builtins
import __main__

__all__ = ["Completer"]

class Completer:
    def __init__(self, namespace = None):
        """Create a new completer for the command line.

        Completer([namespace]) -> completer instance.

        If unspecified, the default namespace where completions are performed
        is __main__ (technically, __main__.__dict__). Namespaces should be
        given as dictionaries.

        Completer instances should be used as the completion mechanism of
        readline via the set_completer() call:

        readline.set_completer(Completer(my_namespace).complete)
        """

        if namespace and not isinstance(namespace, dict):
            raise TypeError('namespace must be a dictionary')

        # Don't bind to namespace quite yet, but flag whether the user wants a
        # specific namespace or to use __main__.__dict__. This will allow us
        # to bind to __main__.__dict__ at completion time, not now.
        if namespace is None:
            self.use_main_ns = 1
        else:
            self.use_main_ns = 0
            self.namespace = namespace

    def complete(self, text, state):
        """Return the next possible completion for 'text'.

        This is called successively with state == 0, 1, 2, ... until it
        returns None.  The completion should begin with 'text'.

        """
        if self.use_main_ns:
            self.namespace = __main__.__dict__

        if not text.strip():
            if state == 0:
                return '\t'
            else:
                return None

        if state == 0:
            if "." in text:
                self.matches = self.attr_matches(text)
            else:
                self.matches = self.global_matches(text)
        try:
            return self.matches[state]
        except IndexError:
            return None

    def _callable_postfix(self, val, word):
        if callable(val):
            word = word + "("
        return word

    def global_matches(self, text):
        """Compute matches when text is a simple name.

        Return a list of all keywords, built-in functions and names currently
        defined in self.namespace that match.

        """
        import keyword
        matches = []
        seen = {"__builtins__"}
        n = len(text)
        for word in keyword.kwlist:
            if word[:n] == text:
                seen.add(word)
                matches.append(word)
        for nspace in [self.namespace, builtins.__dict__]:
            for word, val in nspace.items():
                if word[:n] == text and word not in seen:
                    seen.add(word)
                    matches.append(self._callable_postfix(val, word))
        return matches

    def attr_matches(self, text):
        """Compute matches when text contains a dot.

        Assuming the text is of the form NAME.NAME....[NAME], and is
        evaluable in self.namespace, it will be evaluated and its attributes
        (as revealed by dir()) are used as possible completions.  (For class
        instances, class members are also considered.)

        WARNING: this can still invoke arbitrary C code, if an object
        with a __getattr__ hook is evaluated.

        """
        import re
        m = re.match(r"(\w+(\.\w+)*)\.(\w*)", text)
        if not m:
            return []
        expr, attr = m.group(1, 3)
        try:
            thisobject = eval(expr, self.namespace)
        except Exception:
            return []

        # get the content of the object, except __builtins__
        words = set(dir(thisobject))
        words.discard("__builtins__")

        if hasattr(thisobject, '__class__'):
            words.add('__class__')
            words.update(get_class_members(thisobject.__class__))
        matches = []
        n = len(attr)
        for word in words:
            if word[:n] == attr:
                try:
                    val = getattr(thisobject, word)
                except Exception:
                    continue  # Exclude properties that are not set
                word = self._callable_postfix(val, "%s.%s" % (expr, word))
                matches.append(word)
        matches.sort()
        return matches

def get_class_members(klass):
    ret = dir(klass)
    if hasattr(klass,'__bases__'):
        for base in klass.__bases__:
            ret = ret + get_class_members(base)
    return ret

try:
    import readline
except ImportError:
    pass
else:
    readline.set_completer(Completer().complete)
    # Release references early at shutdown (the readline module's
    # contents are quasi-immortal, and the completer function holds a
    # reference to globals).
    atexit.register(lambda: readline.set_completer(None))
lib\runpy.py
"""runpy.py - locating and running Python code using the module namespace

Provides support for locating and running Python scripts using the Python
module namespace instead of the native filesystem.

This allows Python code to play nicely with non-filesystem based PEP 302
importers when locating support scripts as well as when importing modules.
"""
# Written by Nick Coghlan <ncoghlan at gmail.com>
#    to implement PEP 338 (Executing Modules as Scripts)


import sys
import importlib.machinery # importlib first so we can test #15386 via -m
import importlib.util
import types
from pkgutil import read_code, get_importer

__all__ = [
    "run_module", "run_path",
]

class _TempModule(object):
    """Temporarily replace a module in sys.modules with an empty namespace"""
    def __init__(self, mod_name):
        self.mod_name = mod_name
        self.module = types.ModuleType(mod_name)
        self._saved_module = []

    def __enter__(self):
        mod_name = self.mod_name
        try:
            self._saved_module.append(sys.modules[mod_name])
        except KeyError:
            pass
        sys.modules[mod_name] = self.module
        return self

    def __exit__(self, *args):
        if self._saved_module:
            sys.modules[self.mod_name] = self._saved_module[0]
        else:
            del sys.modules[self.mod_name]
        self._saved_module = []

class _ModifiedArgv0(object):
    def __init__(self, value):
        self.value = value
        self._saved_value = self._sentinel = object()

    def __enter__(self):
        if self._saved_value is not self._sentinel:
            raise RuntimeError("Already preserving saved value")
        self._saved_value = sys.argv[0]
        sys.argv[0] = self.value

    def __exit__(self, *args):
        self.value = self._sentinel
        sys.argv[0] = self._saved_value

# TODO: Replace these helpers with importlib._bootstrap._SpecMethods
def _run_code(code, run_globals, init_globals=None,
              mod_name=None, mod_spec=None,
              pkg_name=None, script_name=None):
    """Helper to run code in nominated namespace"""
    if init_globals is not None:
        run_globals.update(init_globals)
    if mod_spec is None:
        loader = None
        fname = script_name
        cached = None
    else:
        loader = mod_spec.loader
        fname = mod_spec.origin
        cached = mod_spec.cached
        if pkg_name is None:
            pkg_name = mod_spec.parent
    run_globals.update(__name__ = mod_name,
                       __file__ = fname,
                       __cached__ = cached,
                       __doc__ = None,
                       __loader__ = loader,
                       __package__ = pkg_name,
                       __spec__ = mod_spec)
    exec(code, run_globals)
    return run_globals

def _run_module_code(code, init_globals=None,
                    mod_name=None, mod_spec=None,
                    pkg_name=None, script_name=None):
    """Helper to run code in new namespace with sys modified"""
    fname = script_name if mod_spec is None else mod_spec.origin
    with _TempModule(mod_name) as temp_module, _ModifiedArgv0(fname):
        mod_globals = temp_module.module.__dict__
        _run_code(code, mod_globals, init_globals,
                  mod_name, mod_spec, pkg_name, script_name)
    # Copy the globals of the temporary module, as they
    # may be cleared when the temporary module goes away
    return mod_globals.copy()

# Helper to get the loader, code and filename for a module
def _get_module_details(mod_name):
    try:
        spec = importlib.util.find_spec(mod_name)
    except (ImportError, AttributeError, TypeError, ValueError) as ex:
        # This hack fixes an impedance mismatch between pkgutil and
        # importlib, where the latter raises other errors for cases where
        # pkgutil previously raised ImportError
        msg = "Error while finding spec for {!r} ({}: {})"
        raise ImportError(msg.format(mod_name, type(ex), ex)) from ex
    if spec is None:
        raise ImportError("No module named %s" % mod_name)
    if spec.submodule_search_locations is not None:
        if mod_name == "__main__" or mod_name.endswith(".__main__"):
            raise ImportError("Cannot use package as __main__ module")
        try:
            pkg_main_name = mod_name + ".__main__"
            return _get_module_details(pkg_main_name)
        except ImportError as e:
            raise ImportError(("%s; %r is a package and cannot " +
                               "be directly executed") %(e, mod_name))
    loader = spec.loader
    if loader is None:
        raise ImportError("%r is a namespace package and cannot be executed"
                                                                 % mod_name)
    code = loader.get_code(mod_name)
    if code is None:
        raise ImportError("No code object available for %s" % mod_name)
    return mod_name, spec, code

# XXX ncoghlan: Should this be documented and made public?
# (Current thoughts: don't repeat the mistake that lead to its
# creation when run_module() no longer met the needs of
# mainmodule.c, but couldn't be changed because it was public)
def _run_module_as_main(mod_name, alter_argv=True):
    """Runs the designated module in the __main__ namespace

       Note that the executed module will have full access to the
       __main__ namespace. If this is not desirable, the run_module()
       function should be used to run the module code in a fresh namespace.

       At the very least, these variables in __main__ will be overwritten:
           __name__
           __file__
           __cached__
           __loader__
           __package__
    """
    try:
        if alter_argv or mod_name != "__main__": # i.e. -m switch
            mod_name, mod_spec, code = _get_module_details(mod_name)
        else:          # i.e. directory or zipfile execution
            mod_name, mod_spec, code = _get_main_module_details()
    except ImportError as exc:
        # Try to provide a good error message
        # for directories, zip files and the -m switch
        if alter_argv:
            # For -m switch, just display the exception
            info = str(exc)
        else:
            # For directories/zipfiles, let the user
            # know what the code was looking for
            info = "can't find '__main__' module in %r" % sys.argv[0]
        msg = "%s: %s" % (sys.executable, info)
        sys.exit(msg)
    main_globals = sys.modules["__main__"].__dict__
    if alter_argv:
        sys.argv[0] = mod_spec.origin
    return _run_code(code, main_globals, None,
                     "__main__", mod_spec)

def run_module(mod_name, init_globals=None,
               run_name=None, alter_sys=False):
    """Execute a module's code without importing it

       Returns the resulting top level namespace dictionary
    """
    mod_name, mod_spec, code = _get_module_details(mod_name)
    if run_name is None:
        run_name = mod_name
    if alter_sys:
        return _run_module_code(code, init_globals, run_name, mod_spec)
    else:
        # Leave the sys module alone
        return _run_code(code, {}, init_globals, run_name, mod_spec)

def _get_main_module_details():
    # Helper that gives a nicer error message when attempting to
    # execute a zipfile or directory by invoking __main__.py
    # Also moves the standard __main__ out of the way so that the
    # preexisting __loader__ entry doesn't cause issues
    main_name = "__main__"
    saved_main = sys.modules[main_name]
    del sys.modules[main_name]
    try:
        return _get_module_details(main_name)
    except ImportError as exc:
        if main_name in str(exc):
            raise ImportError("can't find %r module in %r" %
                              (main_name, sys.path[0])) from exc
        raise
    finally:
        sys.modules[main_name] = saved_main


def _get_code_from_file(run_name, fname):
    # Check for a compiled file first
    with open(fname, "rb") as f:
        code = read_code(f)
    if code is None:
        # That didn't work, so try it as normal source code
        with open(fname, "rb") as f:
            code = compile(f.read(), fname, 'exec')
    return code, fname

def run_path(path_name, init_globals=None, run_name=None):
    """Execute code located at the specified filesystem location

       Returns the resulting top level namespace dictionary

       The file path may refer directly to a Python script (i.e.
       one that could be directly executed with execfile) or else
       it may refer to a zipfile or directory containing a top
       level __main__.py script.
    """
    if run_name is None:
        run_name = "<run_path>"
    pkg_name = run_name.rpartition(".")[0]
    importer = get_importer(path_name)
    # Trying to avoid importing imp so as to not consume the deprecation warning.
    is_NullImporter = False
    if type(importer).__module__ == 'imp':
        if type(importer).__name__ == 'NullImporter':
            is_NullImporter = True
    if isinstance(importer, type(None)) or is_NullImporter:
        # Not a valid sys.path entry, so run the code directly
        # execfile() doesn't help as we want to allow compiled files
        code, fname = _get_code_from_file(run_name, path_name)
        return _run_module_code(code, init_globals, run_name,
                                pkg_name=pkg_name, script_name=fname)
    else:
        # Importer is defined for path, so add it to
        # the start of sys.path
        sys.path.insert(0, path_name)
        try:
            # Here's where things are a little different from the run_module
            # case. There, we only had to replace the module in sys while the
            # code was running and doing so was somewhat optional. Here, we
            # have no choice and we have to remove it even while we read the
            # code. If we don't do this, a __loader__ attribute in the
            # existing __main__ module may prevent location of the new module.
            mod_name, mod_spec, code = _get_main_module_details()
            with _TempModule(run_name) as temp_module, \
                 _ModifiedArgv0(path_name):
                mod_globals = temp_module.module.__dict__
                return _run_code(code, mod_globals, init_globals,
                                    run_name, mod_spec, pkg_name).copy()
        finally:
            try:
                sys.path.remove(path_name)
            except ValueError:
                pass


if __name__ == "__main__":
    # Run the module specified as the next command line argument
    if len(sys.argv) < 2:
        print("No module specified for execution", file=sys.stderr)
    else:
        del sys.argv[0] # Make the requested module sys.argv[0]
        _run_module_as_main(sys.argv[0])
lib\sched.py
"""A generally useful event scheduler class.

Each instance of this class manages its own queue.
No multi-threading is implied; you are supposed to hack that
yourself, or use a single instance per application.

Each instance is parametrized with two functions, one that is
supposed to return the current time, one that is supposed to
implement a delay.  You can implement real-time scheduling by
substituting time and sleep from built-in module time, or you can
implement simulated time by writing your own functions.  This can
also be used to integrate scheduling with STDWIN events; the delay
function is allowed to modify the queue.  Time can be expressed as
integers or floating point numbers, as long as it is consistent.

Events are specified by tuples (time, priority, action, argument, kwargs).
As in UNIX, lower priority numbers mean higher priority; in this
way the queue can be maintained as a priority queue.  Execution of the
event means calling the action function, passing it the argument
sequence in "argument" (remember that in Python, multiple function
arguments are be packed in a sequence) and keyword parameters in "kwargs".
The action function may be an instance method so it
has another way to reference private data (besides global variables).
"""

# XXX The timefunc and delayfunc should have been defined as methods
# XXX so you can define new kinds of schedulers using subclassing
# XXX instead of having to define a module or class just to hold
# XXX the global state of your particular time and delay functions.

import time
import heapq
from collections import namedtuple
try:
    import threading
except ImportError:
    import dummy_threading as threading
try:
    from time import monotonic as _time
except ImportError:
    from time import time as _time

__all__ = ["scheduler"]

class Event(namedtuple('Event', 'time, priority, action, argument, kwargs')):
    def __eq__(s, o): return (s.time, s.priority) == (o.time, o.priority)
    def __ne__(s, o): return (s.time, s.priority) != (o.time, o.priority)
    def __lt__(s, o): return (s.time, s.priority) <  (o.time, o.priority)
    def __le__(s, o): return (s.time, s.priority) <= (o.time, o.priority)
    def __gt__(s, o): return (s.time, s.priority) >  (o.time, o.priority)
    def __ge__(s, o): return (s.time, s.priority) >= (o.time, o.priority)

_sentinel = object()

class scheduler:

    def __init__(self, timefunc=_time, delayfunc=time.sleep):
        """Initialize a new instance, passing the time and delay
        functions"""
        self._queue = []
        self._lock = threading.RLock()
        self.timefunc = timefunc
        self.delayfunc = delayfunc

    def enterabs(self, time, priority, action, argument=(), kwargs=_sentinel):
        """Enter a new event in the queue at an absolute time.

        Returns an ID for the event which can be used to remove it,
        if necessary.

        """
        if kwargs is _sentinel:
            kwargs = {}
        event = Event(time, priority, action, argument, kwargs)
        with self._lock:
            heapq.heappush(self._queue, event)
        return event # The ID

    def enter(self, delay, priority, action, argument=(), kwargs=_sentinel):
        """A variant that specifies the time as a relative time.

        This is actually the more commonly used interface.

        """
        time = self.timefunc() + delay
        return self.enterabs(time, priority, action, argument, kwargs)

    def cancel(self, event):
        """Remove an event from the queue.

        This must be presented the ID as returned by enter().
        If the event is not in the queue, this raises ValueError.

        """
        with self._lock:
            self._queue.remove(event)
            heapq.heapify(self._queue)

    def empty(self):
        """Check whether the queue is empty."""
        with self._lock:
            return not self._queue

    def run(self, blocking=True):
        """Execute events until the queue is empty.
        If blocking is False executes the scheduled events due to
        expire soonest (if any) and then return the deadline of the
        next scheduled call in the scheduler.

        When there is a positive delay until the first event, the
        delay function is called and the event is left in the queue;
        otherwise, the event is removed from the queue and executed
        (its action function is called, passing it the argument).  If
        the delay function returns prematurely, it is simply
        restarted.

        It is legal for both the delay function and the action
        function to modify the queue or to raise an exception;
        exceptions are not caught but the scheduler's state remains
        well-defined so run() may be called again.

        A questionable hack is added to allow other threads to run:
        just after an event is executed, a delay of 0 is executed, to
        avoid monopolizing the CPU when other threads are also
        runnable.

        """
        # localize variable access to minimize overhead
        # and to improve thread safety
        lock = self._lock
        q = self._queue
        delayfunc = self.delayfunc
        timefunc = self.timefunc
        pop = heapq.heappop
        while True:
            with lock:
                if not q:
                    break
                time, priority, action, argument, kwargs = q[0]
                now = timefunc()
                if time > now:
                    delay = True
                else:
                    delay = False
                    pop(q)
            if delay:
                if not blocking:
                    return time - now
                delayfunc(time - now)
            else:
                action(*argument, **kwargs)
                delayfunc(0)   # Let other threads run

    @property
    def queue(self):
        """An ordered list of upcoming events.

        Events are named tuples with fields for:
            time, priority, action, arguments, kwargs

        """
        # Use heapq to sort the queue rather than using 'sorted(self._queue)'.
        # With heapq, two events scheduled at the same time will show in
        # the actual order they would be retrieved.
        with self._lock:
            events = self._queue[:]
        return list(map(heapq.heappop, [events]*len(events)))
lib\selectors.py
"""Selectors module.

This module allows high-level and efficient I/O multiplexing, built upon the
`select` module primitives.
"""


from abc import ABCMeta, abstractmethod
from collections import namedtuple, Mapping
import math
import select
import sys


# generic events, that must be mapped to implementation-specific ones
EVENT_READ = (1 << 0)
EVENT_WRITE = (1 << 1)


def _fileobj_to_fd(fileobj):
    """Return a file descriptor from a file object.

    Parameters:
    fileobj -- file object or file descriptor

    Returns:
    corresponding file descriptor

    Raises:
    ValueError if the object is invalid
    """
    if isinstance(fileobj, int):
        fd = fileobj
    else:
        try:
            fd = int(fileobj.fileno())
        except (AttributeError, TypeError, ValueError):
            raise ValueError("Invalid file object: "
                             "{!r}".format(fileobj)) from None
    if fd < 0:
        raise ValueError("Invalid file descriptor: {}".format(fd))
    return fd


SelectorKey = namedtuple('SelectorKey', ['fileobj', 'fd', 'events', 'data'])
"""Object used to associate a file object to its backing file descriptor,
selected event mask and attached data."""


class _SelectorMapping(Mapping):
    """Mapping of file objects to selector keys."""

    def __init__(self, selector):
        self._selector = selector

    def __len__(self):
        return len(self._selector._fd_to_key)

    def __getitem__(self, fileobj):
        try:
            fd = self._selector._fileobj_lookup(fileobj)
            return self._selector._fd_to_key[fd]
        except KeyError:
            raise KeyError("{!r} is not registered".format(fileobj)) from None

    def __iter__(self):
        return iter(self._selector._fd_to_key)


class BaseSelector(metaclass=ABCMeta):
    """Selector abstract base class.

    A selector supports registering file objects to be monitored for specific
    I/O events.

    A file object is a file descriptor or any object with a `fileno()` method.
    An arbitrary object can be attached to the file object, which can be used
    for example to store context information, a callback, etc.

    A selector can use various implementations (select(), poll(), epoll()...)
    depending on the platform. The default `Selector` class uses the most
    efficient implementation on the current platform.
    """

    @abstractmethod
    def register(self, fileobj, events, data=None):
        """Register a file object.

        Parameters:
        fileobj -- file object or file descriptor
        events  -- events to monitor (bitwise mask of EVENT_READ|EVENT_WRITE)
        data    -- attached data

        Returns:
        SelectorKey instance

        Raises:
        ValueError if events is invalid
        KeyError if fileobj is already registered
        OSError if fileobj is closed or otherwise is unacceptable to
                the underlying system call (if a system call is made)

        Note:
        OSError may or may not be raised
        """
        raise NotImplementedError

    @abstractmethod
    def unregister(self, fileobj):
        """Unregister a file object.

        Parameters:
        fileobj -- file object or file descriptor

        Returns:
        SelectorKey instance

        Raises:
        KeyError if fileobj is not registered

        Note:
        If fileobj is registered but has since been closed this does
        *not* raise OSError (even if the wrapped syscall does)
        """
        raise NotImplementedError

    def modify(self, fileobj, events, data=None):
        """Change a registered file object monitored events or attached data.

        Parameters:
        fileobj -- file object or file descriptor
        events  -- events to monitor (bitwise mask of EVENT_READ|EVENT_WRITE)
        data    -- attached data

        Returns:
        SelectorKey instance

        Raises:
        Anything that unregister() or register() raises
        """
        self.unregister(fileobj)
        return self.register(fileobj, events, data)

    @abstractmethod
    def select(self, timeout=None):
        """Perform the actual selection, until some monitored file objects are
        ready or a timeout expires.

        Parameters:
        timeout -- if timeout > 0, this specifies the maximum wait time, in
                   seconds
                   if timeout <= 0, the select() call won't block, and will
                   report the currently ready file objects
                   if timeout is None, select() will block until a monitored
                   file object becomes ready

        Returns:
        list of (key, events) for ready file objects
        `events` is a bitwise mask of EVENT_READ|EVENT_WRITE
        """
        raise NotImplementedError

    def close(self):
        """Close the selector.

        This must be called to make sure that any underlying resource is freed.
        """
        pass

    def get_key(self, fileobj):
        """Return the key associated to a registered file object.

        Returns:
        SelectorKey for this file object
        """
        mapping = self.get_map()
        try:
            if mapping is None:
                raise KeyError
            return mapping[fileobj]
        except KeyError:
            raise KeyError("{!r} is not registered".format(fileobj)) from None

    @abstractmethod
    def get_map(self):
        """Return a mapping of file objects to selector keys."""
        raise NotImplementedError

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()


class _BaseSelectorImpl(BaseSelector):
    """Base selector implementation."""

    def __init__(self):
        # this maps file descriptors to keys
        self._fd_to_key = {}
        # read-only mapping returned by get_map()
        self._map = _SelectorMapping(self)

    def _fileobj_lookup(self, fileobj):
        """Return a file descriptor from a file object.

        This wraps _fileobj_to_fd() to do an exhaustive search in case
        the object is invalid but we still have it in our map.  This
        is used by unregister() so we can unregister an object that
        was previously registered even if it is closed.  It is also
        used by _SelectorMapping.
        """
        try:
            return _fileobj_to_fd(fileobj)
        except ValueError:
            # Do an exhaustive search.
            for key in self._fd_to_key.values():
                if key.fileobj is fileobj:
                    return key.fd
            # Raise ValueError after all.
            raise

    def register(self, fileobj, events, data=None):
        if (not events) or (events & ~(EVENT_READ | EVENT_WRITE)):
            raise ValueError("Invalid events: {!r}".format(events))

        key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data)

        if key.fd in self._fd_to_key:
            raise KeyError("{!r} (FD {}) is already registered"
                           .format(fileobj, key.fd))

        self._fd_to_key[key.fd] = key
        return key

    def unregister(self, fileobj):
        try:
            key = self._fd_to_key.pop(self._fileobj_lookup(fileobj))
        except KeyError:
            raise KeyError("{!r} is not registered".format(fileobj)) from None
        return key

    def modify(self, fileobj, events, data=None):
        # TODO: Subclasses can probably optimize this even further.
        try:
            key = self._fd_to_key[self._fileobj_lookup(fileobj)]
        except KeyError:
            raise KeyError("{!r} is not registered".format(fileobj)) from None
        if events != key.events:
            self.unregister(fileobj)
            key = self.register(fileobj, events, data)
        elif data != key.data:
            # Use a shortcut to update the data.
            key = key._replace(data=data)
            self._fd_to_key[key.fd] = key
        return key

    def close(self):
        self._fd_to_key.clear()
        self._map = None

    def get_map(self):
        return self._map

    def _key_from_fd(self, fd):
        """Return the key associated to a given file descriptor.

        Parameters:
        fd -- file descriptor

        Returns:
        corresponding key, or None if not found
        """
        try:
            return self._fd_to_key[fd]
        except KeyError:
            return None


class SelectSelector(_BaseSelectorImpl):
    """Select-based selector."""

    def __init__(self):
        super().__init__()
        self._readers = set()
        self._writers = set()

    def register(self, fileobj, events, data=None):
        key = super().register(fileobj, events, data)
        if events & EVENT_READ:
            self._readers.add(key.fd)
        if events & EVENT_WRITE:
            self._writers.add(key.fd)
        return key

    def unregister(self, fileobj):
        key = super().unregister(fileobj)
        self._readers.discard(key.fd)
        self._writers.discard(key.fd)
        return key

    if sys.platform == 'win32':
        def _select(self, r, w, _, timeout=None):
            r, w, x = select.select(r, w, w, timeout)
            return r, w + x, []
    else:
        _select = select.select

    def select(self, timeout=None):
        timeout = None if timeout is None else max(timeout, 0)
        ready = []
        try:
            r, w, _ = self._select(self._readers, self._writers, [], timeout)
        except InterruptedError:
            return ready
        r = set(r)
        w = set(w)
        for fd in r | w:
            events = 0
            if fd in r:
                events |= EVENT_READ
            if fd in w:
                events |= EVENT_WRITE

            key = self._key_from_fd(fd)
            if key:
                ready.append((key, events & key.events))
        return ready


if hasattr(select, 'poll'):

    class PollSelector(_BaseSelectorImpl):
        """Poll-based selector."""

        def __init__(self):
            super().__init__()
            self._poll = select.poll()

        def register(self, fileobj, events, data=None):
            key = super().register(fileobj, events, data)
            poll_events = 0
            if events & EVENT_READ:
                poll_events |= select.POLLIN
            if events & EVENT_WRITE:
                poll_events |= select.POLLOUT
            self._poll.register(key.fd, poll_events)
            return key

        def unregister(self, fileobj):
            key = super().unregister(fileobj)
            self._poll.unregister(key.fd)
            return key

        def select(self, timeout=None):
            if timeout is None:
                timeout = None
            elif timeout <= 0:
                timeout = 0
            else:
                # poll() has a resolution of 1 millisecond, round away from
                # zero to wait *at least* timeout seconds.
                timeout = math.ceil(timeout * 1e3)
            ready = []
            try:
                fd_event_list = self._poll.poll(timeout)
            except InterruptedError:
                return ready
            for fd, event in fd_event_list:
                events = 0
                if event & ~select.POLLIN:
                    events |= EVENT_WRITE
                if event & ~select.POLLOUT:
                    events |= EVENT_READ

                key = self._key_from_fd(fd)
                if key:
                    ready.append((key, events & key.events))
            return ready


if hasattr(select, 'epoll'):

    class EpollSelector(_BaseSelectorImpl):
        """Epoll-based selector."""

        def __init__(self):
            super().__init__()
            self._epoll = select.epoll()

        def fileno(self):
            return self._epoll.fileno()

        def register(self, fileobj, events, data=None):
            key = super().register(fileobj, events, data)
            epoll_events = 0
            if events & EVENT_READ:
                epoll_events |= select.EPOLLIN
            if events & EVENT_WRITE:
                epoll_events |= select.EPOLLOUT
            try:
                self._epoll.register(key.fd, epoll_events)
            except BaseException:
                super().unregister(fileobj)
                raise
            return key

        def unregister(self, fileobj):
            key = super().unregister(fileobj)
            try:
                self._epoll.unregister(key.fd)
            except OSError:
                # This can happen if the FD was closed since it
                # was registered.
                pass
            return key

        def select(self, timeout=None):
            if timeout is None:
                timeout = -1
            elif timeout <= 0:
                timeout = 0
            else:
                # epoll_wait() has a resolution of 1 millisecond, round away
                # from zero to wait *at least* timeout seconds.
                timeout = math.ceil(timeout * 1e3) * 1e-3

            # epoll_wait() expects `maxevents` to be greater than zero;
            # we want to make sure that `select()` can be called when no
            # FD is registered.
            max_ev = max(len(self._fd_to_key), 1)

            ready = []
            try:
                fd_event_list = self._epoll.poll(timeout, max_ev)
            except InterruptedError:
                return ready
            for fd, event in fd_event_list:
                events = 0
                if event & ~select.EPOLLIN:
                    events |= EVENT_WRITE
                if event & ~select.EPOLLOUT:
                    events |= EVENT_READ

                key = self._key_from_fd(fd)
                if key:
                    ready.append((key, events & key.events))
            return ready

        def close(self):
            try:
                self._epoll.close()
            finally:
                super().close()


if hasattr(select, 'kqueue'):

    class KqueueSelector(_BaseSelectorImpl):
        """Kqueue-based selector."""

        def __init__(self):
            super().__init__()
            self._kqueue = select.kqueue()

        def fileno(self):
            return self._kqueue.fileno()

        def register(self, fileobj, events, data=None):
            key = super().register(fileobj, events, data)
            try:
                if events & EVENT_READ:
                    kev = select.kevent(key.fd, select.KQ_FILTER_READ,
                                        select.KQ_EV_ADD)
                    self._kqueue.control([kev], 0, 0)
                if events & EVENT_WRITE:
                    kev = select.kevent(key.fd, select.KQ_FILTER_WRITE,
                                        select.KQ_EV_ADD)
                    self._kqueue.control([kev], 0, 0)
            except BaseException:
                super().unregister(fileobj)
                raise
            return key

        def unregister(self, fileobj):
            key = super().unregister(fileobj)
            if key.events & EVENT_READ:
                kev = select.kevent(key.fd, select.KQ_FILTER_READ,
                                    select.KQ_EV_DELETE)
                try:
                    self._kqueue.control([kev], 0, 0)
                except OSError:
                    # This can happen if the FD was closed since it
                    # was registered.
                    pass
            if key.events & EVENT_WRITE:
                kev = select.kevent(key.fd, select.KQ_FILTER_WRITE,
                                    select.KQ_EV_DELETE)
                try:
                    self._kqueue.control([kev], 0, 0)
                except OSError:
                    # See comment above.
                    pass
            return key

        def select(self, timeout=None):
            timeout = None if timeout is None else max(timeout, 0)
            max_ev = len(self._fd_to_key)
            ready = []
            try:
                kev_list = self._kqueue.control(None, max_ev, timeout)
            except InterruptedError:
                return ready
            for kev in kev_list:
                fd = kev.ident
                flag = kev.filter
                events = 0
                if flag == select.KQ_FILTER_READ:
                    events |= EVENT_READ
                if flag == select.KQ_FILTER_WRITE:
                    events |= EVENT_WRITE

                key = self._key_from_fd(fd)
                if key:
                    ready.append((key, events & key.events))
            return ready

        def close(self):
            try:
                self._kqueue.close()
            finally:
                super().close()


# Choose the best implementation: roughly, epoll|kqueue > poll > select.
# select() also can't accept a FD > FD_SETSIZE (usually around 1024)
if 'KqueueSelector' in globals():
    DefaultSelector = KqueueSelector
elif 'EpollSelector' in globals():
    DefaultSelector = EpollSelector
elif 'PollSelector' in globals():
    DefaultSelector = PollSelector
else:
    DefaultSelector = SelectSelector
lib\shelve.py
"""Manage shelves of pickled objects.

A "shelf" is a persistent, dictionary-like object.  The difference
with dbm databases is that the values (not the keys!) in a shelf can
be essentially arbitrary Python objects -- anything that the "pickle"
module can handle.  This includes most class instances, recursive data
types, and objects containing lots of shared sub-objects.  The keys
are ordinary strings.

To summarize the interface (key is a string, data is an arbitrary
object):

        import shelve
        d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

        d[key] = data   # store data at key (overwrites old data if
                        # using an existing key)
        data = d[key]   # retrieve a COPY of the data at key (raise
                        # KeyError if no such key) -- NOTE that this
                        # access returns a *copy* of the entry!
        del d[key]      # delete data stored at key (raises KeyError
                        # if no such key)
        flag = key in d # true if the key exists
        list = d.keys() # a list of all existing keys (slow!)

        d.close()       # close it

Dependent on the implementation, closing a persistent dictionary may
or may not be necessary to flush changes to disk.

Normally, d[key] returns a COPY of the entry.  This needs care when
mutable entries are mutated: for example, if d[key] is a list,
        d[key].append(anitem)
does NOT modify the entry d[key] itself, as stored in the persistent
mapping -- it only modifies the copy, which is then immediately
discarded, so that the append has NO effect whatsoever.  To append an
item to d[key] in a way that will affect the persistent mapping, use:
        data = d[key]
        data.append(anitem)
        d[key] = data

To avoid the problem with mutable entries, you may pass the keyword
argument writeback=True in the call to shelve.open.  When you use:
        d = shelve.open(filename, writeback=True)
then d keeps a cache of all entries you access, and writes them all back
to the persistent mapping when you call d.close().  This ensures that
such usage as d[key].append(anitem) works as intended.

However, using keyword argument writeback=True may consume vast amount
of memory for the cache, and it may make d.close() very slow, if you
access many of d's entries after opening it in this way: d has no way to
check which of the entries you access are mutable and/or which ones you
actually mutate, so it must cache, and write back at close, all of the
entries that you access.  You can call d.sync() to write back all the
entries in the cache, and empty the cache (d.sync() also synchronizes
the persistent dictionary on disk, if feasible).
"""

from pickle import Pickler, Unpickler
from io import BytesIO

import collections

__all__ = ["Shelf", "BsdDbShelf", "DbfilenameShelf", "open"]

class _ClosedDict(collections.MutableMapping):
    'Marker for a closed dict.  Access attempts raise a ValueError.'

    def closed(self, *args):
        raise ValueError('invalid operation on closed shelf')
    __iter__ = __len__ = __getitem__ = __setitem__ = __delitem__ = keys = closed

    def __repr__(self):
        return '<Closed Dictionary>'


class Shelf(collections.MutableMapping):
    """Base class for shelf implementations.

    This is initialized with a dictionary-like object.
    See the module's __doc__ string for an overview of the interface.
    """

    def __init__(self, dict, protocol=None, writeback=False,
                 keyencoding="utf-8"):
        self.dict = dict
        if protocol is None:
            protocol = 3
        self._protocol = protocol
        self.writeback = writeback
        self.cache = {}
        self.keyencoding = keyencoding

    def __iter__(self):
        for k in self.dict.keys():
            yield k.decode(self.keyencoding)

    def __len__(self):
        return len(self.dict)

    def __contains__(self, key):
        return key.encode(self.keyencoding) in self.dict

    def get(self, key, default=None):
        if key.encode(self.keyencoding) in self.dict:
            return self[key]
        return default

    def __getitem__(self, key):
        try:
            value = self.cache[key]
        except KeyError:
            f = BytesIO(self.dict[key.encode(self.keyencoding)])
            value = Unpickler(f).load()
            if self.writeback:
                self.cache[key] = value
        return value

    def __setitem__(self, key, value):
        if self.writeback:
            self.cache[key] = value
        f = BytesIO()
        p = Pickler(f, self._protocol)
        p.dump(value)
        self.dict[key.encode(self.keyencoding)] = f.getvalue()

    def __delitem__(self, key):
        del self.dict[key.encode(self.keyencoding)]
        try:
            del self.cache[key]
        except KeyError:
            pass

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        self.close()

    def close(self):
        if self.dict is None:
            return
        try:
            self.sync()
            try:
                self.dict.close()
            except AttributeError:
                pass
        finally:
            # Catch errors that may happen when close is called from __del__
            # because CPython is in interpreter shutdown.
            try:
                self.dict = _ClosedDict()
            except:
                self.dict = None

    def __del__(self):
        if not hasattr(self, 'writeback'):
            # __init__ didn't succeed, so don't bother closing
            # see http://bugs.python.org/issue1339007 for details
            return
        self.close()

    def sync(self):
        if self.writeback and self.cache:
            self.writeback = False
            for key, entry in self.cache.items():
                self[key] = entry
            self.writeback = True
            self.cache = {}
        if hasattr(self.dict, 'sync'):
            self.dict.sync()


class BsdDbShelf(Shelf):
    """Shelf implementation using the "BSD" db interface.

    This adds methods first(), next(), previous(), last() and
    set_location() that have no counterpart in [g]dbm databases.

    The actual database must be opened using one of the "bsddb"
    modules "open" routines (i.e. bsddb.hashopen, bsddb.btopen or
    bsddb.rnopen) and passed to the constructor.

    See the module's __doc__ string for an overview of the interface.
    """

    def __init__(self, dict, protocol=None, writeback=False,
                 keyencoding="utf-8"):
        Shelf.__init__(self, dict, protocol, writeback, keyencoding)

    def set_location(self, key):
        (key, value) = self.dict.set_location(key)
        f = BytesIO(value)
        return (key.decode(self.keyencoding), Unpickler(f).load())

    def next(self):
        (key, value) = next(self.dict)
        f = BytesIO(value)
        return (key.decode(self.keyencoding), Unpickler(f).load())

    def previous(self):
        (key, value) = self.dict.previous()
        f = BytesIO(value)
        return (key.decode(self.keyencoding), Unpickler(f).load())

    def first(self):
        (key, value) = self.dict.first()
        f = BytesIO(value)
        return (key.decode(self.keyencoding), Unpickler(f).load())

    def last(self):
        (key, value) = self.dict.last()
        f = BytesIO(value)
        return (key.decode(self.keyencoding), Unpickler(f).load())


class DbfilenameShelf(Shelf):
    """Shelf implementation using the "dbm" generic dbm interface.

    This is initialized with the filename for the dbm database.
    See the module's __doc__ string for an overview of the interface.
    """

    def __init__(self, filename, flag='c', protocol=None, writeback=False):
        import dbm
        Shelf.__init__(self, dbm.open(filename, flag), protocol, writeback)


def open(filename, flag='c', protocol=None, writeback=False):
    """Open a persistent dictionary for reading and writing.

    The filename parameter is the base filename for the underlying
    database.  As a side-effect, an extension may be added to the
    filename and more than one file may be created.  The optional flag
    parameter has the same interpretation as the flag parameter of
    dbm.open(). The optional protocol parameter specifies the
    version of the pickle protocol (0, 1, or 2).

    See the module's __doc__ string for an overview of the interface.
    """

    return DbfilenameShelf(filename, flag, protocol, writeback)
lib\shlex.py
"""A lexical analyzer class for simple shell-like syntaxes."""

# Module and documentation by Eric S. Raymond, 21 Dec 1998
# Input stacking and error message cleanup added by ESR, March 2000
# push_source() and pop_source() made explicit by ESR, January 2001.
# Posix compliance, split(), string arguments, and
# iterator interface by Gustavo Niemeyer, April 2003.

import os
import re
import sys
from collections import deque

from io import StringIO

__all__ = ["shlex", "split", "quote"]

class shlex:
    "A lexical analyzer class for simple shell-like syntaxes."
    def __init__(self, instream=None, infile=None, posix=False):
        if isinstance(instream, str):
            instream = StringIO(instream)
        if instream is not None:
            self.instream = instream
            self.infile = infile
        else:
            self.instream = sys.stdin
            self.infile = None
        self.posix = posix
        if posix:
            self.eof = None
        else:
            self.eof = ''
        self.commenters = '#'
        self.wordchars = ('abcdfeghijklmnopqrstuvwxyz'
                          'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_')
        if self.posix:
            self.wordchars += ('ßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿ'
                               'ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞ')
        self.whitespace = ' \t\r\n'
        self.whitespace_split = False
        self.quotes = '\'"'
        self.escape = '\\'
        self.escapedquotes = '"'
        self.state = ' '
        self.pushback = deque()
        self.lineno = 1
        self.debug = 0
        self.token = ''
        self.filestack = deque()
        self.source = None
        if self.debug:
            print('shlex: reading from %s, line %d' \
                  % (self.instream, self.lineno))

    def push_token(self, tok):
        "Push a token onto the stack popped by the get_token method"
        if self.debug >= 1:
            print("shlex: pushing token " + repr(tok))
        self.pushback.appendleft(tok)

    def push_source(self, newstream, newfile=None):
        "Push an input source onto the lexer's input source stack."
        if isinstance(newstream, str):
            newstream = StringIO(newstream)
        self.filestack.appendleft((self.infile, self.instream, self.lineno))
        self.infile = newfile
        self.instream = newstream
        self.lineno = 1
        if self.debug:
            if newfile is not None:
                print('shlex: pushing to file %s' % (self.infile,))
            else:
                print('shlex: pushing to stream %s' % (self.instream,))

    def pop_source(self):
        "Pop the input source stack."
        self.instream.close()
        (self.infile, self.instream, self.lineno) = self.filestack.popleft()
        if self.debug:
            print('shlex: popping to %s, line %d' \
                  % (self.instream, self.lineno))
        self.state = ' '

    def get_token(self):
        "Get a token from the input stream (or from stack if it's nonempty)"
        if self.pushback:
            tok = self.pushback.popleft()
            if self.debug >= 1:
                print("shlex: popping token " + repr(tok))
            return tok
        # No pushback.  Get a token.
        raw = self.read_token()
        # Handle inclusions
        if self.source is not None:
            while raw == self.source:
                spec = self.sourcehook(self.read_token())
                if spec:
                    (newfile, newstream) = spec
                    self.push_source(newstream, newfile)
                raw = self.get_token()
        # Maybe we got EOF instead?
        while raw == self.eof:
            if not self.filestack:
                return self.eof
            else:
                self.pop_source()
                raw = self.get_token()
        # Neither inclusion nor EOF
        if self.debug >= 1:
            if raw != self.eof:
                print("shlex: token=" + repr(raw))
            else:
                print("shlex: token=EOF")
        return raw

    def read_token(self):
        quoted = False
        escapedstate = ' '
        while True:
            nextchar = self.instream.read(1)
            if nextchar == '\n':
                self.lineno = self.lineno + 1
            if self.debug >= 3:
                print("shlex: in state", repr(self.state), \
                      "I see character:", repr(nextchar))
            if self.state is None:
                self.token = ''        # past end of file
                break
            elif self.state == ' ':
                if not nextchar:
                    self.state = None  # end of file
                    break
                elif nextchar in self.whitespace:
                    if self.debug >= 2:
                        print("shlex: I see whitespace in whitespace state")
                    if self.token or (self.posix and quoted):
                        break   # emit current token
                    else:
                        continue
                elif nextchar in self.commenters:
                    self.instream.readline()
                    self.lineno = self.lineno + 1
                elif self.posix and nextchar in self.escape:
                    escapedstate = 'a'
                    self.state = nextchar
                elif nextchar in self.wordchars:
                    self.token = nextchar
                    self.state = 'a'
                elif nextchar in self.quotes:
                    if not self.posix:
                        self.token = nextchar
                    self.state = nextchar
                elif self.whitespace_split:
                    self.token = nextchar
                    self.state = 'a'
                else:
                    self.token = nextchar
                    if self.token or (self.posix and quoted):
                        break   # emit current token
                    else:
                        continue
            elif self.state in self.quotes:
                quoted = True
                if not nextchar:      # end of file
                    if self.debug >= 2:
                        print("shlex: I see EOF in quotes state")
                    # XXX what error should be raised here?
                    raise ValueError("No closing quotation")
                if nextchar == self.state:
                    if not self.posix:
                        self.token = self.token + nextchar
                        self.state = ' '
                        break
                    else:
                        self.state = 'a'
                elif self.posix and nextchar in self.escape and \
                     self.state in self.escapedquotes:
                    escapedstate = self.state
                    self.state = nextchar
                else:
                    self.token = self.token + nextchar
            elif self.state in self.escape:
                if not nextchar:      # end of file
                    if self.debug >= 2:
                        print("shlex: I see EOF in escape state")
                    # XXX what error should be raised here?
                    raise ValueError("No escaped character")
                # In posix shells, only the quote itself or the escape
                # character may be escaped within quotes.
                if escapedstate in self.quotes and \
                   nextchar != self.state and nextchar != escapedstate:
                    self.token = self.token + self.state
                self.token = self.token + nextchar
                self.state = escapedstate
            elif self.state == 'a':
                if not nextchar:
                    self.state = None   # end of file
                    break
                elif nextchar in self.whitespace:
                    if self.debug >= 2:
                        print("shlex: I see whitespace in word state")
                    self.state = ' '
                    if self.token or (self.posix and quoted):
                        break   # emit current token
                    else:
                        continue
                elif nextchar in self.commenters:
                    self.instream.readline()
                    self.lineno = self.lineno + 1
                    if self.posix:
                        self.state = ' '
                        if self.token or (self.posix and quoted):
                            break   # emit current token
                        else:
                            continue
                elif self.posix and nextchar in self.quotes:
                    self.state = nextchar
                elif self.posix and nextchar in self.escape:
                    escapedstate = 'a'
                    self.state = nextchar
                elif nextchar in self.wordchars or nextchar in self.quotes \
                    or self.whitespace_split:
                    self.token = self.token + nextchar
                else:
                    self.pushback.appendleft(nextchar)
                    if self.debug >= 2:
                        print("shlex: I see punctuation in word state")
                    self.state = ' '
                    if self.token:
                        break   # emit current token
                    else:
                        continue
        result = self.token
        self.token = ''
        if self.posix and not quoted and result == '':
            result = None
        if self.debug > 1:
            if result:
                print("shlex: raw token=" + repr(result))
            else:
                print("shlex: raw token=EOF")
        return result

    def sourcehook(self, newfile):
        "Hook called on a filename to be sourced."
        if newfile[0] == '"':
            newfile = newfile[1:-1]
        # This implements cpp-like semantics for relative-path inclusion.
        if isinstance(self.infile, str) and not os.path.isabs(newfile):
            newfile = os.path.join(os.path.dirname(self.infile), newfile)
        return (newfile, open(newfile, "r"))

    def error_leader(self, infile=None, lineno=None):
        "Emit a C-compiler-like, Emacs-friendly error-message leader."
        if infile is None:
            infile = self.infile
        if lineno is None:
            lineno = self.lineno
        return "\"%s\", line %d: " % (infile, lineno)

    def __iter__(self):
        return self

    def __next__(self):
        token = self.get_token()
        if token == self.eof:
            raise StopIteration
        return token

def split(s, comments=False, posix=True):
    lex = shlex(s, posix=posix)
    lex.whitespace_split = True
    if not comments:
        lex.commenters = ''
    return list(lex)


_find_unsafe = re.compile(r'[^\w@%+=:,./-]', re.ASCII).search

def quote(s):
    """Return a shell-escaped version of the string *s*."""
    if not s:
        return "''"
    if _find_unsafe(s) is None:
        return s

    # use single quotes, and put single quotes into double quotes
    # the string $'b is then quoted as '$'"'"'b'
    return "'" + s.replace("'", "'\"'\"'") + "'"


def _print_tokens(lexer):
    while 1:
        tt = lexer.get_token()
        if not tt:
            break
        print("Token: " + repr(tt))

if __name__ == '__main__':
    if len(sys.argv) == 1:
        _print_tokens(shlex())
    else:
        fn = sys.argv[1]
        with open(fn) as f:
            _print_tokens(shlex(f, fn))
lib\shutil.py
"""Utility functions for copying and archiving files and directory trees.

XXX The functions here don't copy the resource fork or other metadata on Mac.

"""

import os
import sys
import stat
from os.path import abspath
import fnmatch
import collections
import errno
import tarfile

try:
    import bz2
    del bz2
    _BZ2_SUPPORTED = True
except ImportError:
    _BZ2_SUPPORTED = False

try:
    from pwd import getpwnam
except ImportError:
    getpwnam = None

try:
    from grp import getgrnam
except ImportError:
    getgrnam = None

__all__ = ["copyfileobj", "copyfile", "copymode", "copystat", "copy", "copy2",
           "copytree", "move", "rmtree", "Error", "SpecialFileError",
           "ExecError", "make_archive", "get_archive_formats",
           "register_archive_format", "unregister_archive_format",
           "get_unpack_formats", "register_unpack_format",
           "unregister_unpack_format", "unpack_archive",
           "ignore_patterns", "chown", "which", "get_terminal_size",
           "SameFileError"]
           # disk_usage is added later, if available on the platform

class Error(OSError):
    pass

class SameFileError(Error):
    """Raised when source and destination are the same file."""

class SpecialFileError(OSError):
    """Raised when trying to do a kind of operation (e.g. copying) which is
    not supported on a special file (e.g. a named pipe)"""

class ExecError(OSError):
    """Raised when a command could not be executed"""

class ReadError(OSError):
    """Raised when an archive cannot be read"""

class RegistryError(Exception):
    """Raised when a registry operation with the archiving
    and unpacking registeries fails"""


def copyfileobj(fsrc, fdst, length=16*1024):
    """copy data from file-like object fsrc to file-like object fdst"""
    while 1:
        buf = fsrc.read(length)
        if not buf:
            break
        fdst.write(buf)

def _samefile(src, dst):
    # Macintosh, Unix.
    if hasattr(os.path, 'samefile'):
        try:
            return os.path.samefile(src, dst)
        except OSError:
            return False

    # All other platforms: check for same pathname.
    return (os.path.normcase(os.path.abspath(src)) ==
            os.path.normcase(os.path.abspath(dst)))

def copyfile(src, dst, *, follow_symlinks=True):
    """Copy data from src to dst.

    If follow_symlinks is not set and src is a symbolic link, a new
    symlink will be created instead of copying the file it points to.

    """
    if _samefile(src, dst):
        raise SameFileError("{!r} and {!r} are the same file".format(src, dst))

    for fn in [src, dst]:
        try:
            st = os.stat(fn)
        except OSError:
            # File most likely does not exist
            pass
        else:
            # XXX What about other special files? (sockets, devices...)
            if stat.S_ISFIFO(st.st_mode):
                raise SpecialFileError("`%s` is a named pipe" % fn)

    if not follow_symlinks and os.path.islink(src):
        os.symlink(os.readlink(src), dst)
    else:
        with open(src, 'rb') as fsrc:
            with open(dst, 'wb') as fdst:
                copyfileobj(fsrc, fdst)
    return dst

def copymode(src, dst, *, follow_symlinks=True):
    """Copy mode bits from src to dst.

    If follow_symlinks is not set, symlinks aren't followed if and only
    if both `src` and `dst` are symlinks.  If `lchmod` isn't available
    (e.g. Linux) this method does nothing.

    """
    if not follow_symlinks and os.path.islink(src) and os.path.islink(dst):
        if hasattr(os, 'lchmod'):
            stat_func, chmod_func = os.lstat, os.lchmod
        else:
            return
    elif hasattr(os, 'chmod'):
        stat_func, chmod_func = os.stat, os.chmod
    else:
        return

    st = stat_func(src)
    chmod_func(dst, stat.S_IMODE(st.st_mode))

if hasattr(os, 'listxattr'):
    def _copyxattr(src, dst, *, follow_symlinks=True):
        """Copy extended filesystem attributes from `src` to `dst`.

        Overwrite existing attributes.

        If `follow_symlinks` is false, symlinks won't be followed.

        """

        try:
            names = os.listxattr(src, follow_symlinks=follow_symlinks)
        except OSError as e:
            if e.errno not in (errno.ENOTSUP, errno.ENODATA):
                raise
            return
        for name in names:
            try:
                value = os.getxattr(src, name, follow_symlinks=follow_symlinks)
                os.setxattr(dst, name, value, follow_symlinks=follow_symlinks)
            except OSError as e:
                if e.errno not in (errno.EPERM, errno.ENOTSUP, errno.ENODATA):
                    raise
else:
    def _copyxattr(*args, **kwargs):
        pass

def copystat(src, dst, *, follow_symlinks=True):
    """Copy all stat info (mode bits, atime, mtime, flags) from src to dst.

    If the optional flag `follow_symlinks` is not set, symlinks aren't followed if and
    only if both `src` and `dst` are symlinks.

    """
    def _nop(*args, ns=None, follow_symlinks=None):
        pass

    # follow symlinks (aka don't not follow symlinks)
    follow = follow_symlinks or not (os.path.islink(src) and os.path.islink(dst))
    if follow:
        # use the real function if it exists
        def lookup(name):
            return getattr(os, name, _nop)
    else:
        # use the real function only if it exists
        # *and* it supports follow_symlinks
        def lookup(name):
            fn = getattr(os, name, _nop)
            if fn in os.supports_follow_symlinks:
                return fn
            return _nop

    st = lookup("stat")(src, follow_symlinks=follow)
    mode = stat.S_IMODE(st.st_mode)
    lookup("utime")(dst, ns=(st.st_atime_ns, st.st_mtime_ns),
        follow_symlinks=follow)
    try:
        lookup("chmod")(dst, mode, follow_symlinks=follow)
    except NotImplementedError:
        # if we got a NotImplementedError, it's because
        #   * follow_symlinks=False,
        #   * lchown() is unavailable, and
        #   * either
        #       * fchownat() is unavailable or
        #       * fchownat() doesn't implement AT_SYMLINK_NOFOLLOW.
        #         (it returned ENOSUP.)
        # therefore we're out of options--we simply cannot chown the
        # symlink.  give up, suppress the error.
        # (which is what shutil always did in this circumstance.)
        pass
    if hasattr(st, 'st_flags'):
        try:
            lookup("chflags")(dst, st.st_flags, follow_symlinks=follow)
        except OSError as why:
            for err in 'EOPNOTSUPP', 'ENOTSUP':
                if hasattr(errno, err) and why.errno == getattr(errno, err):
                    break
            else:
                raise
    _copyxattr(src, dst, follow_symlinks=follow)

def copy(src, dst, *, follow_symlinks=True):
    """Copy data and mode bits ("cp src dst"). Return the file's destination.

    The destination may be a directory.

    If follow_symlinks is false, symlinks won't be followed. This
    resembles GNU's "cp -P src dst".

    If source and destination are the same file, a SameFileError will be
    raised.

    """
    if os.path.isdir(dst):
        dst = os.path.join(dst, os.path.basename(src))
    copyfile(src, dst, follow_symlinks=follow_symlinks)
    copymode(src, dst, follow_symlinks=follow_symlinks)
    return dst

def copy2(src, dst, *, follow_symlinks=True):
    """Copy data and all stat info ("cp -p src dst"). Return the file's
    destination."

    The destination may be a directory.

    If follow_symlinks is false, symlinks won't be followed. This
    resembles GNU's "cp -P src dst".

    """
    if os.path.isdir(dst):
        dst = os.path.join(dst, os.path.basename(src))
    copyfile(src, dst, follow_symlinks=follow_symlinks)
    copystat(src, dst, follow_symlinks=follow_symlinks)
    return dst

def ignore_patterns(*patterns):
    """Function that can be used as copytree() ignore parameter.

    Patterns is a sequence of glob-style patterns
    that are used to exclude files"""
    def _ignore_patterns(path, names):
        ignored_names = []
        for pattern in patterns:
            ignored_names.extend(fnmatch.filter(names, pattern))
        return set(ignored_names)
    return _ignore_patterns

def copytree(src, dst, symlinks=False, ignore=None, copy_function=copy2,
             ignore_dangling_symlinks=False):
    """Recursively copy a directory tree.

    The destination directory must not already exist.
    If exception(s) occur, an Error is raised with a list of reasons.

    If the optional symlinks flag is true, symbolic links in the
    source tree result in symbolic links in the destination tree; if
    it is false, the contents of the files pointed to by symbolic
    links are copied. If the file pointed by the symlink doesn't
    exist, an exception will be added in the list of errors raised in
    an Error exception at the end of the copy process.

    You can set the optional ignore_dangling_symlinks flag to true if you
    want to silence this exception. Notice that this has no effect on
    platforms that don't support os.symlink.

    The optional ignore argument is a callable. If given, it
    is called with the `src` parameter, which is the directory
    being visited by copytree(), and `names` which is the list of
    `src` contents, as returned by os.listdir():

        callable(src, names) -> ignored_names

    Since copytree() is called recursively, the callable will be
    called once for each directory that is copied. It returns a
    list of names relative to the `src` directory that should
    not be copied.

    The optional copy_function argument is a callable that will be used
    to copy each file. It will be called with the source path and the
    destination path as arguments. By default, copy2() is used, but any
    function that supports the same signature (like copy()) can be used.

    """
    names = os.listdir(src)
    if ignore is not None:
        ignored_names = ignore(src, names)
    else:
        ignored_names = set()

    os.makedirs(dst)
    errors = []
    for name in names:
        if name in ignored_names:
            continue
        srcname = os.path.join(src, name)
        dstname = os.path.join(dst, name)
        try:
            if os.path.islink(srcname):
                linkto = os.readlink(srcname)
                if symlinks:
                    # We can't just leave it to `copy_function` because legacy
                    # code with a custom `copy_function` may rely on copytree
                    # doing the right thing.
                    os.symlink(linkto, dstname)
                    copystat(srcname, dstname, follow_symlinks=not symlinks)
                else:
                    # ignore dangling symlink if the flag is on
                    if not os.path.exists(linkto) and ignore_dangling_symlinks:
                        continue
                    # otherwise let the copy occurs. copy2 will raise an error
                    if os.path.isdir(srcname):
                        copytree(srcname, dstname, symlinks, ignore,
                                 copy_function)
                    else:
                        copy_function(srcname, dstname)
            elif os.path.isdir(srcname):
                copytree(srcname, dstname, symlinks, ignore, copy_function)
            else:
                # Will raise a SpecialFileError for unsupported file types
                copy_function(srcname, dstname)
        # catch the Error from the recursive copytree so that we can
        # continue with other files
        except Error as err:
            errors.extend(err.args[0])
        except OSError as why:
            errors.append((srcname, dstname, str(why)))
    try:
        copystat(src, dst)
    except OSError as why:
        # Copying file access times may fail on Windows
        if getattr(why, 'winerror', None) is None:
            errors.append((src, dst, str(why)))
    if errors:
        raise Error(errors)
    return dst

# version vulnerable to race conditions
def _rmtree_unsafe(path, onerror):
    try:
        if os.path.islink(path):
            # symlinks to directories are forbidden, see bug #1669
            raise OSError("Cannot call rmtree on a symbolic link")
    except OSError:
        onerror(os.path.islink, path, sys.exc_info())
        # can't continue even if onerror hook returns
        return
    names = []
    try:
        names = os.listdir(path)
    except OSError:
        onerror(os.listdir, path, sys.exc_info())
    for name in names:
        fullname = os.path.join(path, name)
        try:
            mode = os.lstat(fullname).st_mode
        except OSError:
            mode = 0
        if stat.S_ISDIR(mode):
            _rmtree_unsafe(fullname, onerror)
        else:
            try:
                os.unlink(fullname)
            except OSError:
                onerror(os.unlink, fullname, sys.exc_info())
    try:
        os.rmdir(path)
    except OSError:
        onerror(os.rmdir, path, sys.exc_info())

# Version using fd-based APIs to protect against races
def _rmtree_safe_fd(topfd, path, onerror):
    names = []
    try:
        names = os.listdir(topfd)
    except OSError as err:
        err.filename = path
        onerror(os.listdir, path, sys.exc_info())
    for name in names:
        fullname = os.path.join(path, name)
        try:
            orig_st = os.stat(name, dir_fd=topfd, follow_symlinks=False)
            mode = orig_st.st_mode
        except OSError:
            mode = 0
        if stat.S_ISDIR(mode):
            try:
                dirfd = os.open(name, os.O_RDONLY, dir_fd=topfd)
            except OSError:
                onerror(os.open, fullname, sys.exc_info())
            else:
                try:
                    if os.path.samestat(orig_st, os.fstat(dirfd)):
                        _rmtree_safe_fd(dirfd, fullname, onerror)
                        try:
                            os.rmdir(name, dir_fd=topfd)
                        except OSError:
                            onerror(os.rmdir, fullname, sys.exc_info())
                    else:
                        try:
                            # This can only happen if someone replaces
                            # a directory with a symlink after the call to
                            # stat.S_ISDIR above.
                            raise OSError("Cannot call rmtree on a symbolic "
                                          "link")
                        except OSError:
                            onerror(os.path.islink, fullname, sys.exc_info())
                finally:
                    os.close(dirfd)
        else:
            try:
                os.unlink(name, dir_fd=topfd)
            except OSError:
                onerror(os.unlink, fullname, sys.exc_info())

_use_fd_functions = ({os.open, os.stat, os.unlink, os.rmdir} <=
                     os.supports_dir_fd and
                     os.listdir in os.supports_fd and
                     os.stat in os.supports_follow_symlinks)

def rmtree(path, ignore_errors=False, onerror=None):
    """Recursively delete a directory tree.

    If ignore_errors is set, errors are ignored; otherwise, if onerror
    is set, it is called to handle the error with arguments (func,
    path, exc_info) where func is platform and implementation dependent;
    path is the argument to that function that caused it to fail; and
    exc_info is a tuple returned by sys.exc_info().  If ignore_errors
    is false and onerror is None, an exception is raised.

    """
    if ignore_errors:
        def onerror(*args):
            pass
    elif onerror is None:
        def onerror(*args):
            raise
    if _use_fd_functions:
        # While the unsafe rmtree works fine on bytes, the fd based does not.
        if isinstance(path, bytes):
            path = os.fsdecode(path)
        # Note: To guard against symlink races, we use the standard
        # lstat()/open()/fstat() trick.
        try:
            orig_st = os.lstat(path)
        except Exception:
            onerror(os.lstat, path, sys.exc_info())
            return
        try:
            fd = os.open(path, os.O_RDONLY)
        except Exception:
            onerror(os.lstat, path, sys.exc_info())
            return
        try:
            if os.path.samestat(orig_st, os.fstat(fd)):
                _rmtree_safe_fd(fd, path, onerror)
                try:
                    os.rmdir(path)
                except OSError:
                    onerror(os.rmdir, path, sys.exc_info())
            else:
                try:
                    # symlinks to directories are forbidden, see bug #1669
                    raise OSError("Cannot call rmtree on a symbolic link")
                except OSError:
                    onerror(os.path.islink, path, sys.exc_info())
        finally:
            os.close(fd)
    else:
        return _rmtree_unsafe(path, onerror)

# Allow introspection of whether or not the hardening against symlink
# attacks is supported on the current platform
rmtree.avoids_symlink_attacks = _use_fd_functions

def _basename(path):
    # A basename() variant which first strips the trailing slash, if present.
    # Thus we always get the last component of the path, even for directories.
    sep = os.path.sep + (os.path.altsep or '')
    return os.path.basename(path.rstrip(sep))

def move(src, dst):
    """Recursively move a file or directory to another location. This is
    similar to the Unix "mv" command. Return the file or directory's
    destination.

    If the destination is a directory or a symlink to a directory, the source
    is moved inside the directory. The destination path must not already
    exist.

    If the destination already exists but is not a directory, it may be
    overwritten depending on os.rename() semantics.

    If the destination is on our current filesystem, then rename() is used.
    Otherwise, src is copied to the destination and then removed. Symlinks are
    recreated under the new name if os.rename() fails because of cross
    filesystem renames.

    A lot more could be done here...  A look at a mv.c shows a lot of
    the issues this implementation glosses over.

    """
    real_dst = dst
    if os.path.isdir(dst):
        if _samefile(src, dst):
            # We might be on a case insensitive filesystem,
            # perform the rename anyway.
            os.rename(src, dst)
            return

        real_dst = os.path.join(dst, _basename(src))
        if os.path.exists(real_dst):
            raise Error("Destination path '%s' already exists" % real_dst)
    try:
        os.rename(src, real_dst)
    except OSError:
        if os.path.islink(src):
            linkto = os.readlink(src)
            os.symlink(linkto, real_dst)
            os.unlink(src)
        elif os.path.isdir(src):
            if _destinsrc(src, dst):
                raise Error("Cannot move a directory '%s' into itself '%s'." % (src, dst))
            copytree(src, real_dst, symlinks=True)
            rmtree(src)
        else:
            copy2(src, real_dst)
            os.unlink(src)
    return real_dst

def _destinsrc(src, dst):
    src = abspath(src)
    dst = abspath(dst)
    if not src.endswith(os.path.sep):
        src += os.path.sep
    if not dst.endswith(os.path.sep):
        dst += os.path.sep
    return dst.startswith(src)

def _get_gid(name):
    """Returns a gid, given a group name."""
    if getgrnam is None or name is None:
        return None
    try:
        result = getgrnam(name)
    except KeyError:
        result = None
    if result is not None:
        return result[2]
    return None

def _get_uid(name):
    """Returns an uid, given a user name."""
    if getpwnam is None or name is None:
        return None
    try:
        result = getpwnam(name)
    except KeyError:
        result = None
    if result is not None:
        return result[2]
    return None

def _make_tarball(base_name, base_dir, compress="gzip", verbose=0, dry_run=0,
                  owner=None, group=None, logger=None):
    """Create a (possibly compressed) tar file from all the files under
    'base_dir'.

    'compress' must be "gzip" (the default), "bzip2", or None.

    'owner' and 'group' can be used to define an owner and a group for the
    archive that is being built. If not provided, the current owner and group
    will be used.

    The output tar file will be named 'base_name' +  ".tar", possibly plus
    the appropriate compression extension (".gz", or ".bz2").

    Returns the output filename.
    """
    tar_compression = {'gzip': 'gz', None: ''}
    compress_ext = {'gzip': '.gz'}

    if _BZ2_SUPPORTED:
        tar_compression['bzip2'] = 'bz2'
        compress_ext['bzip2'] = '.bz2'

    # flags for compression program, each element of list will be an argument
    if compress is not None and compress not in compress_ext:
        raise ValueError("bad value for 'compress', or compression format not "
                         "supported : {0}".format(compress))

    archive_name = base_name + '.tar' + compress_ext.get(compress, '')
    archive_dir = os.path.dirname(archive_name)

    if archive_dir and not os.path.exists(archive_dir):
        if logger is not None:
            logger.info("creating %s", archive_dir)
        if not dry_run:
            os.makedirs(archive_dir)

    # creating the tarball
    if logger is not None:
        logger.info('Creating tar archive')

    uid = _get_uid(owner)
    gid = _get_gid(group)

    def _set_uid_gid(tarinfo):
        if gid is not None:
            tarinfo.gid = gid
            tarinfo.gname = group
        if uid is not None:
            tarinfo.uid = uid
            tarinfo.uname = owner
        return tarinfo

    if not dry_run:
        tar = tarfile.open(archive_name, 'w|%s' % tar_compression[compress])
        try:
            tar.add(base_dir, filter=_set_uid_gid)
        finally:
            tar.close()

    return archive_name

def _call_external_zip(base_dir, zip_filename, verbose=False, dry_run=False):
    # XXX see if we want to keep an external call here
    if verbose:
        zipoptions = "-r"
    else:
        zipoptions = "-rq"
    from distutils.errors import DistutilsExecError
    from distutils.spawn import spawn
    try:
        spawn(["zip", zipoptions, zip_filename, base_dir], dry_run=dry_run)
    except DistutilsExecError:
        # XXX really should distinguish between "couldn't find
        # external 'zip' command" and "zip failed".
        raise ExecError("unable to create zip file '%s': "
            "could neither import the 'zipfile' module nor "
            "find a standalone zip utility") % zip_filename

def _make_zipfile(base_name, base_dir, verbose=0, dry_run=0, logger=None):
    """Create a zip file from all the files under 'base_dir'.

    The output zip file will be named 'base_name' + ".zip".  Uses either the
    "zipfile" Python module (if available) or the InfoZIP "zip" utility
    (if installed and found on the default search path).  If neither tool is
    available, raises ExecError.  Returns the name of the output zip
    file.
    """
    zip_filename = base_name + ".zip"
    archive_dir = os.path.dirname(base_name)

    if archive_dir and not os.path.exists(archive_dir):
        if logger is not None:
            logger.info("creating %s", archive_dir)
        if not dry_run:
            os.makedirs(archive_dir)

    # If zipfile module is not available, try spawning an external 'zip'
    # command.
    try:
        import zipfile
    except ImportError:
        zipfile = None

    if zipfile is None:
        _call_external_zip(base_dir, zip_filename, verbose, dry_run)
    else:
        if logger is not None:
            logger.info("creating '%s' and adding '%s' to it",
                        zip_filename, base_dir)

        if not dry_run:
            with zipfile.ZipFile(zip_filename, "w",
                                 compression=zipfile.ZIP_DEFLATED) as zf:
                path = os.path.normpath(base_dir)
                zf.write(path, path)
                if logger is not None:
                    logger.info("adding '%s'", path)
                for dirpath, dirnames, filenames in os.walk(base_dir):
                    for name in sorted(dirnames):
                        path = os.path.normpath(os.path.join(dirpath, name))
                        zf.write(path, path)
                        if logger is not None:
                            logger.info("adding '%s'", path)
                    for name in filenames:
                        path = os.path.normpath(os.path.join(dirpath, name))
                        if os.path.isfile(path):
                            zf.write(path, path)
                            if logger is not None:
                                logger.info("adding '%s'", path)

    return zip_filename

_ARCHIVE_FORMATS = {
    'gztar': (_make_tarball, [('compress', 'gzip')], "gzip'ed tar-file"),
    'tar':   (_make_tarball, [('compress', None)], "uncompressed tar file"),
    'zip':   (_make_zipfile, [], "ZIP file")
    }

if _BZ2_SUPPORTED:
    _ARCHIVE_FORMATS['bztar'] = (_make_tarball, [('compress', 'bzip2')],
                                "bzip2'ed tar-file")

def get_archive_formats():
    """Returns a list of supported formats for archiving and unarchiving.

    Each element of the returned sequence is a tuple (name, description)
    """
    formats = [(name, registry[2]) for name, registry in
               _ARCHIVE_FORMATS.items()]
    formats.sort()
    return formats

def register_archive_format(name, function, extra_args=None, description=''):
    """Registers an archive format.

    name is the name of the format. function is the callable that will be
    used to create archives. If provided, extra_args is a sequence of
    (name, value) tuples that will be passed as arguments to the callable.
    description can be provided to describe the format, and will be returned
    by the get_archive_formats() function.
    """
    if extra_args is None:
        extra_args = []
    if not callable(function):
        raise TypeError('The %s object is not callable' % function)
    if not isinstance(extra_args, (tuple, list)):
        raise TypeError('extra_args needs to be a sequence')
    for element in extra_args:
        if not isinstance(element, (tuple, list)) or len(element) !=2:
            raise TypeError('extra_args elements are : (arg_name, value)')

    _ARCHIVE_FORMATS[name] = (function, extra_args, description)

def unregister_archive_format(name):
    del _ARCHIVE_FORMATS[name]

def make_archive(base_name, format, root_dir=None, base_dir=None, verbose=0,
                 dry_run=0, owner=None, group=None, logger=None):
    """Create an archive file (eg. zip or tar).

    'base_name' is the name of the file to create, minus any format-specific
    extension; 'format' is the archive format: one of "zip", "tar", "bztar"
    or "gztar".

    'root_dir' is a directory that will be the root directory of the
    archive; ie. we typically chdir into 'root_dir' before creating the
    archive.  'base_dir' is the directory where we start archiving from;
    ie. 'base_dir' will be the common prefix of all files and
    directories in the archive.  'root_dir' and 'base_dir' both default
    to the current directory.  Returns the name of the archive file.

    'owner' and 'group' are used when creating a tar archive. By default,
    uses the current owner and group.
    """
    save_cwd = os.getcwd()
    if root_dir is not None:
        if logger is not None:
            logger.debug("changing into '%s'", root_dir)
        base_name = os.path.abspath(base_name)
        if not dry_run:
            os.chdir(root_dir)

    if base_dir is None:
        base_dir = os.curdir

    kwargs = {'dry_run': dry_run, 'logger': logger}

    try:
        format_info = _ARCHIVE_FORMATS[format]
    except KeyError:
        raise ValueError("unknown archive format '%s'" % format)

    func = format_info[0]
    for arg, val in format_info[1]:
        kwargs[arg] = val

    if format != 'zip':
        kwargs['owner'] = owner
        kwargs['group'] = group

    try:
        filename = func(base_name, base_dir, **kwargs)
    finally:
        if root_dir is not None:
            if logger is not None:
                logger.debug("changing back to '%s'", save_cwd)
            os.chdir(save_cwd)

    return filename


def get_unpack_formats():
    """Returns a list of supported formats for unpacking.

    Each element of the returned sequence is a tuple
    (name, extensions, description)
    """
    formats = [(name, info[0], info[3]) for name, info in
               _UNPACK_FORMATS.items()]
    formats.sort()
    return formats

def _check_unpack_options(extensions, function, extra_args):
    """Checks what gets registered as an unpacker."""
    # first make sure no other unpacker is registered for this extension
    existing_extensions = {}
    for name, info in _UNPACK_FORMATS.items():
        for ext in info[0]:
            existing_extensions[ext] = name

    for extension in extensions:
        if extension in existing_extensions:
            msg = '%s is already registered for "%s"'
            raise RegistryError(msg % (extension,
                                       existing_extensions[extension]))

    if not callable(function):
        raise TypeError('The registered function must be a callable')


def register_unpack_format(name, extensions, function, extra_args=None,
                           description=''):
    """Registers an unpack format.

    `name` is the name of the format. `extensions` is a list of extensions
    corresponding to the format.

    `function` is the callable that will be
    used to unpack archives. The callable will receive archives to unpack.
    If it's unable to handle an archive, it needs to raise a ReadError
    exception.

    If provided, `extra_args` is a sequence of
    (name, value) tuples that will be passed as arguments to the callable.
    description can be provided to describe the format, and will be returned
    by the get_unpack_formats() function.
    """
    if extra_args is None:
        extra_args = []
    _check_unpack_options(extensions, function, extra_args)
    _UNPACK_FORMATS[name] = extensions, function, extra_args, description

def unregister_unpack_format(name):
    """Removes the pack format from the registery."""
    del _UNPACK_FORMATS[name]

def _ensure_directory(path):
    """Ensure that the parent directory of `path` exists"""
    dirname = os.path.dirname(path)
    if not os.path.isdir(dirname):
        os.makedirs(dirname)

def _unpack_zipfile(filename, extract_dir):
    """Unpack zip `filename` to `extract_dir`
    """
    try:
        import zipfile
    except ImportError:
        raise ReadError('zlib not supported, cannot unpack this archive.')

    if not zipfile.is_zipfile(filename):
        raise ReadError("%s is not a zip file" % filename)

    zip = zipfile.ZipFile(filename)
    try:
        for info in zip.infolist():
            name = info.filename

            # don't extract absolute paths or ones with .. in them
            if name.startswith('/') or '..' in name:
                continue

            target = os.path.join(extract_dir, *name.split('/'))
            if not target:
                continue

            _ensure_directory(target)
            if not name.endswith('/'):
                # file
                data = zip.read(info.filename)
                f = open(target, 'wb')
                try:
                    f.write(data)
                finally:
                    f.close()
                    del data
    finally:
        zip.close()

def _unpack_tarfile(filename, extract_dir):
    """Unpack tar/tar.gz/tar.bz2 `filename` to `extract_dir`
    """
    try:
        tarobj = tarfile.open(filename)
    except tarfile.TarError:
        raise ReadError(
            "%s is not a compressed or uncompressed tar file" % filename)
    try:
        tarobj.extractall(extract_dir)
    finally:
        tarobj.close()

_UNPACK_FORMATS = {
    'gztar': (['.tar.gz', '.tgz'], _unpack_tarfile, [], "gzip'ed tar-file"),
    'tar':   (['.tar'], _unpack_tarfile, [], "uncompressed tar file"),
    'zip':   (['.zip'], _unpack_zipfile, [], "ZIP file")
    }

if _BZ2_SUPPORTED:
    _UNPACK_FORMATS['bztar'] = (['.bz2'], _unpack_tarfile, [],
                                "bzip2'ed tar-file")

def _find_unpack_format(filename):
    for name, info in _UNPACK_FORMATS.items():
        for extension in info[0]:
            if filename.endswith(extension):
                return name
    return None

def unpack_archive(filename, extract_dir=None, format=None):
    """Unpack an archive.

    `filename` is the name of the archive.

    `extract_dir` is the name of the target directory, where the archive
    is unpacked. If not provided, the current working directory is used.

    `format` is the archive format: one of "zip", "tar", or "gztar". Or any
    other registered format. If not provided, unpack_archive will use the
    filename extension and see if an unpacker was registered for that
    extension.

    In case none is found, a ValueError is raised.
    """
    if extract_dir is None:
        extract_dir = os.getcwd()

    if format is not None:
        try:
            format_info = _UNPACK_FORMATS[format]
        except KeyError:
            raise ValueError("Unknown unpack format '{0}'".format(format))

        func = format_info[1]
        func(filename, extract_dir, **dict(format_info[2]))
    else:
        # we need to look at the registered unpackers supported extensions
        format = _find_unpack_format(filename)
        if format is None:
            raise ReadError("Unknown archive format '{0}'".format(filename))

        func = _UNPACK_FORMATS[format][1]
        kwargs = dict(_UNPACK_FORMATS[format][2])
        func(filename, extract_dir, **kwargs)


if hasattr(os, 'statvfs'):

    __all__.append('disk_usage')
    _ntuple_diskusage = collections.namedtuple('usage', 'total used free')

    def disk_usage(path):
        """Return disk usage statistics about the given path.

        Returned value is a named tuple with attributes 'total', 'used' and
        'free', which are the amount of total, used and free space, in bytes.
        """
        st = os.statvfs(path)
        free = st.f_bavail * st.f_frsize
        total = st.f_blocks * st.f_frsize
        used = (st.f_blocks - st.f_bfree) * st.f_frsize
        return _ntuple_diskusage(total, used, free)

elif os.name == 'nt':

    import nt
    __all__.append('disk_usage')
    _ntuple_diskusage = collections.namedtuple('usage', 'total used free')

    def disk_usage(path):
        """Return disk usage statistics about the given path.

        Returned values is a named tuple with attributes 'total', 'used' and
        'free', which are the amount of total, used and free space, in bytes.
        """
        total, free = nt._getdiskusage(path)
        used = total - free
        return _ntuple_diskusage(total, used, free)


def chown(path, user=None, group=None):
    """Change owner user and group of the given path.

    user and group can be the uid/gid or the user/group names, and in that case,
    they are converted to their respective uid/gid.
    """

    if user is None and group is None:
        raise ValueError("user and/or group must be set")

    _user = user
    _group = group

    # -1 means don't change it
    if user is None:
        _user = -1
    # user can either be an int (the uid) or a string (the system username)
    elif isinstance(user, str):
        _user = _get_uid(user)
        if _user is None:
            raise LookupError("no such user: {!r}".format(user))

    if group is None:
        _group = -1
    elif not isinstance(group, int):
        _group = _get_gid(group)
        if _group is None:
            raise LookupError("no such group: {!r}".format(group))

    os.chown(path, _user, _group)

def get_terminal_size(fallback=(80, 24)):
    """Get the size of the terminal window.

    For each of the two dimensions, the environment variable, COLUMNS
    and LINES respectively, is checked. If the variable is defined and
    the value is a positive integer, it is used.

    When COLUMNS or LINES is not defined, which is the common case,
    the terminal connected to sys.__stdout__ is queried
    by invoking os.get_terminal_size.

    If the terminal size cannot be successfully queried, either because
    the system doesn't support querying, or because we are not
    connected to a terminal, the value given in fallback parameter
    is used. Fallback defaults to (80, 24) which is the default
    size used by many terminal emulators.

    The value returned is a named tuple of type os.terminal_size.
    """
    # columns, lines are the working values
    try:
        columns = int(os.environ['COLUMNS'])
    except (KeyError, ValueError):
        columns = 0

    try:
        lines = int(os.environ['LINES'])
    except (KeyError, ValueError):
        lines = 0

    # only query if necessary
    if columns <= 0 or lines <= 0:
        try:
            size = os.get_terminal_size(sys.__stdout__.fileno())
        except (NameError, OSError):
            size = os.terminal_size(fallback)
        if columns <= 0:
            columns = size.columns
        if lines <= 0:
            lines = size.lines

    return os.terminal_size((columns, lines))

def which(cmd, mode=os.F_OK | os.X_OK, path=None):
    """Given a command, mode, and a PATH string, return the path which
    conforms to the given mode on the PATH, or None if there is no such
    file.

    `mode` defaults to os.F_OK | os.X_OK. `path` defaults to the result
    of os.environ.get("PATH"), or can be overridden with a custom search
    path.

    """
    # Check that a given file can be accessed with the correct mode.
    # Additionally check that `file` is not a directory, as on Windows
    # directories pass the os.access check.
    def _access_check(fn, mode):
        return (os.path.exists(fn) and os.access(fn, mode)
                and not os.path.isdir(fn))

    # If we're given a path with a directory part, look it up directly rather
    # than referring to PATH directories. This includes checking relative to the
    # current directory, e.g. ./script
    if os.path.dirname(cmd):
        if _access_check(cmd, mode):
            return cmd
        return None

    if path is None:
        path = os.environ.get("PATH", os.defpath)
    if not path:
        return None
    path = path.split(os.pathsep)

    if sys.platform == "win32":
        # The current directory takes precedence on Windows.
        if not os.curdir in path:
            path.insert(0, os.curdir)

        # PATHEXT is necessary to check on Windows.
        pathext = os.environ.get("PATHEXT", "").split(os.pathsep)
        # See if the given file matches any of the expected path extensions.
        # This will allow us to short circuit when given "python.exe".
        # If it does match, only test that one, otherwise we have to try
        # others.
        if any(cmd.lower().endswith(ext.lower()) for ext in pathext):
            files = [cmd]
        else:
            files = [cmd + ext for ext in pathext]
    else:
        # On other platforms you don't have things like PATHEXT to tell you
        # what file suffixes are executable, so just pass on cmd as-is.
        files = [cmd]

    seen = set()
    for dir in path:
        normdir = os.path.normcase(dir)
        if not normdir in seen:
            seen.add(normdir)
            for thefile in files:
                name = os.path.join(dir, thefile)
                if _access_check(name, mode):
                    return name
    return None
lib\site.py
"""Append module search paths for third-party packages to sys.path.

****************************************************************
* This module is automatically imported during initialization. *
****************************************************************

This will append site-specific paths to the module search path.  On
Unix (including Mac OSX), it starts with sys.prefix and
sys.exec_prefix (if different) and appends
lib/python<version>/site-packages as well as lib/site-python.
On other platforms (such as Windows), it tries each of the
prefixes directly, as well as with lib/site-packages appended.  The
resulting directories, if they exist, are appended to sys.path, and
also inspected for path configuration files.

If a file named "pyvenv.cfg" exists one directory above sys.executable,
sys.prefix and sys.exec_prefix are set to that directory and
it is also checked for site-packages and site-python (sys.base_prefix and
sys.base_exec_prefix will always be the "real" prefixes of the Python
installation). If "pyvenv.cfg" (a bootstrap configuration file) contains
the key "include-system-site-packages" set to anything other than "false"
(case-insensitive), the system-level prefixes will still also be
searched for site-packages; otherwise they won't.

All of the resulting site-specific directories, if they exist, are
appended to sys.path, and also inspected for path configuration
files.

A path configuration file is a file whose name has the form
<package>.pth; its contents are additional directories (one per line)
to be added to sys.path.  Non-existing directories (or
non-directories) are never added to sys.path; no directory is added to
sys.path more than once.  Blank lines and lines beginning with
'#' are skipped. Lines starting with 'import' are executed.

For example, suppose sys.prefix and sys.exec_prefix are set to
/usr/local and there is a directory /usr/local/lib/python2.5/site-packages
with three subdirectories, foo, bar and spam, and two path
configuration files, foo.pth and bar.pth.  Assume foo.pth contains the
following:

  # foo package configuration
  foo
  bar
  bletch

and bar.pth contains:

  # bar package configuration
  bar

Then the following directories are added to sys.path, in this order:

  /usr/local/lib/python2.5/site-packages/bar
  /usr/local/lib/python2.5/site-packages/foo

Note that bletch is omitted because it doesn't exist; bar precedes foo
because bar.pth comes alphabetically before foo.pth; and spam is
omitted because it is not mentioned in either path configuration file.

The readline module is also automatically configured to enable
completion for systems that support it.  This can be overriden in
sitecustomize, usercustomize or PYTHONSTARTUP.

After these operations, an attempt is made to import a module
named sitecustomize, which can perform arbitrary additional
site-specific customizations.  If this import fails with an
ImportError exception, it is silently ignored.
"""

import sys
import os
import builtins
import _sitebuiltins

# Prefixes for site-packages; add additional prefixes like /usr/local here
PREFIXES = [sys.prefix, sys.exec_prefix]
# Enable per user site-packages directory
# set it to False to disable the feature or True to force the feature
ENABLE_USER_SITE = None

# for distutils.commands.install
# These values are initialized by the getuserbase() and getusersitepackages()
# functions, through the main() function when Python starts.
USER_SITE = None
USER_BASE = None


def makepath(*paths):
    dir = os.path.join(*paths)
    try:
        dir = os.path.abspath(dir)
    except OSError:
        pass
    return dir, os.path.normcase(dir)


def abs_paths():
    """Set all module __file__ and __cached__ attributes to an absolute path"""
    for m in set(sys.modules.values()):
        if (getattr(getattr(m, '__loader__', None), '__module__', None) !=
                '_frozen_importlib'):
            continue   # don't mess with a PEP 302-supplied __file__
        try:
            m.__file__ = os.path.abspath(m.__file__)
        except (AttributeError, OSError):
            pass
        try:
            m.__cached__ = os.path.abspath(m.__cached__)
        except (AttributeError, OSError):
            pass


def removeduppaths():
    """ Remove duplicate entries from sys.path along with making them
    absolute"""
    # This ensures that the initial path provided by the interpreter contains
    # only absolute pathnames, even if we're running from the build directory.
    L = []
    known_paths = set()
    for dir in sys.path:
        # Filter out duplicate paths (on case-insensitive file systems also
        # if they only differ in case); turn relative paths into absolute
        # paths.
        dir, dircase = makepath(dir)
        if not dircase in known_paths:
            L.append(dir)
            known_paths.add(dircase)
    sys.path[:] = L
    return known_paths


def _init_pathinfo():
    """Return a set containing all existing directory entries from sys.path"""
    d = set()
    for dir in sys.path:
        try:
            if os.path.isdir(dir):
                dir, dircase = makepath(dir)
                d.add(dircase)
        except TypeError:
            continue
    return d


def addpackage(sitedir, name, known_paths):
    """Process a .pth file within the site-packages directory:
       For each line in the file, either combine it with sitedir to a path
       and add that to known_paths, or execute it if it starts with 'import '.
    """
    if known_paths is None:
        known_paths = _init_pathinfo()
        reset = 1
    else:
        reset = 0
    fullname = os.path.join(sitedir, name)
    try:
        f = open(fullname, "r")
    except OSError:
        return
    with f:
        for n, line in enumerate(f):
            if line.startswith("#"):
                continue
            try:
                if line.startswith(("import ", "import\t")):
                    exec(line)
                    continue
                line = line.rstrip()
                dir, dircase = makepath(sitedir, line)
                if not dircase in known_paths and os.path.exists(dir):
                    sys.path.append(dir)
                    known_paths.add(dircase)
            except Exception:
                print("Error processing line {:d} of {}:\n".format(n+1, fullname),
                      file=sys.stderr)
                import traceback
                for record in traceback.format_exception(*sys.exc_info()):
                    for line in record.splitlines():
                        print('  '+line, file=sys.stderr)
                print("\nRemainder of file ignored", file=sys.stderr)
                break
    if reset:
        known_paths = None
    return known_paths


def addsitedir(sitedir, known_paths=None):
    """Add 'sitedir' argument to sys.path if missing and handle .pth files in
    'sitedir'"""
    if known_paths is None:
        known_paths = _init_pathinfo()
        reset = 1
    else:
        reset = 0
    sitedir, sitedircase = makepath(sitedir)
    if not sitedircase in known_paths:
        sys.path.append(sitedir)        # Add path component
        known_paths.add(sitedircase)
    try:
        names = os.listdir(sitedir)
    except OSError:
        return
    names = [name for name in names if name.endswith(".pth")]
    for name in sorted(names):
        addpackage(sitedir, name, known_paths)
    if reset:
        known_paths = None
    return known_paths


def check_enableusersite():
    """Check if user site directory is safe for inclusion

    The function tests for the command line flag (including environment var),
    process uid/gid equal to effective uid/gid.

    None: Disabled for security reasons
    False: Disabled by user (command line option)
    True: Safe and enabled
    """
    if sys.flags.no_user_site:
        return False

    if hasattr(os, "getuid") and hasattr(os, "geteuid"):
        # check process uid == effective uid
        if os.geteuid() != os.getuid():
            return None
    if hasattr(os, "getgid") and hasattr(os, "getegid"):
        # check process gid == effective gid
        if os.getegid() != os.getgid():
            return None

    return True

def getuserbase():
    """Returns the `user base` directory path.

    The `user base` directory can be used to store data. If the global
    variable ``USER_BASE`` is not initialized yet, this function will also set
    it.
    """
    global USER_BASE
    if USER_BASE is not None:
        return USER_BASE
    from sysconfig import get_config_var
    USER_BASE = get_config_var('userbase')
    return USER_BASE

def getusersitepackages():
    """Returns the user-specific site-packages directory path.

    If the global variable ``USER_SITE`` is not initialized yet, this
    function will also set it.
    """
    global USER_SITE
    user_base = getuserbase() # this will also set USER_BASE

    if USER_SITE is not None:
        return USER_SITE

    from sysconfig import get_path

    if sys.platform == 'darwin':
        from sysconfig import get_config_var
        if get_config_var('PYTHONFRAMEWORK'):
            USER_SITE = get_path('purelib', 'osx_framework_user')
            return USER_SITE

    USER_SITE = get_path('purelib', '%s_user' % os.name)
    return USER_SITE

def addusersitepackages(known_paths):
    """Add a per user site-package to sys.path

    Each user has its own python directory with site-packages in the
    home directory.
    """
    # get the per user site-package path
    # this call will also make sure USER_BASE and USER_SITE are set
    user_site = getusersitepackages()

    if ENABLE_USER_SITE and os.path.isdir(user_site):
        addsitedir(user_site, known_paths)
    return known_paths

def getsitepackages(prefixes=None):
    """Returns a list containing all global site-packages directories
    (and possibly site-python).

    For each directory present in ``prefixes`` (or the global ``PREFIXES``),
    this function will find its `site-packages` subdirectory depending on the
    system environment, and will return a list of full paths.
    """
    sitepackages = []
    seen = set()

    if prefixes is None:
        prefixes = PREFIXES

    for prefix in prefixes:
        if not prefix or prefix in seen:
            continue
        seen.add(prefix)

        if os.sep == '/':
            sitepackages.append(os.path.join(prefix, "lib",
                                        "python" + sys.version[:3],
                                        "site-packages"))
            sitepackages.append(os.path.join(prefix, "lib", "site-python"))
        else:
            sitepackages.append(prefix)
            sitepackages.append(os.path.join(prefix, "lib", "site-packages"))
        if sys.platform == "darwin":
            # for framework builds *only* we add the standard Apple
            # locations.
            from sysconfig import get_config_var
            framework = get_config_var("PYTHONFRAMEWORK")
            if framework:
                sitepackages.append(
                        os.path.join("/Library", framework,
                            sys.version[:3], "site-packages"))
    return sitepackages

def addsitepackages(known_paths, prefixes=None):
    """Add site-packages (and possibly site-python) to sys.path"""
    for sitedir in getsitepackages(prefixes):
        if os.path.isdir(sitedir):
            if "site-python" in sitedir:
                import warnings
                warnings.warn('"site-python" directories will not be '
                              'supported in 3.5 anymore',
                              DeprecationWarning)
            addsitedir(sitedir, known_paths)

    return known_paths

def setquit():
    """Define new builtins 'quit' and 'exit'.

    These are objects which make the interpreter exit when called.
    The repr of each object contains a hint at how it works.

    """
    if os.sep == ':':
        eof = 'Cmd-Q'
    elif os.sep == '\\':
        eof = 'Ctrl-Z plus Return'
    else:
        eof = 'Ctrl-D (i.e. EOF)'

    builtins.quit = _sitebuiltins.Quitter('quit', eof)
    builtins.exit = _sitebuiltins.Quitter('exit', eof)


def setcopyright():
    """Set 'copyright' and 'credits' in builtins"""
    builtins.copyright = _sitebuiltins._Printer("copyright", sys.copyright)
    if sys.platform[:4] == 'java':
        builtins.credits = _sitebuiltins._Printer(
            "credits",
            "Jython is maintained by the Jython developers (www.jython.org).")
    else:
        builtins.credits = _sitebuiltins._Printer("credits", """\
    Thanks to CWI, CNRI, BeOpen.com, Zope Corporation and a cast of thousands
    for supporting Python development.  See www.python.org for more information.""")
    files, dirs = [], []
    # Not all modules are required to have a __file__ attribute.  See
    # PEP 420 for more details.
    if hasattr(os, '__file__'):
        here = os.path.dirname(os.__file__)
        files.extend(["LICENSE.txt", "LICENSE"])
        dirs.extend([os.path.join(here, os.pardir), here, os.curdir])
    builtins.license = _sitebuiltins._Printer(
        "license",
        "See https://www.python.org/psf/license/",
        files, dirs)


def sethelper():
    builtins.help = _sitebuiltins._Helper()

def enablerlcompleter():
    """Enable default readline configuration on interactive prompts, by
    registering a sys.__interactivehook__.

    If the readline module can be imported, the hook will set the Tab key
    as completion key and register ~/.python_history as history file.
    This can be overriden in the sitecustomize or usercustomize module,
    or in a PYTHONSTARTUP file.
    """
    def register_readline():
        import atexit
        try:
            import readline
            import rlcompleter
        except ImportError:
            return

        # Reading the initialization (config) file may not be enough to set a
        # completion key, so we set one first and then read the file.
        readline_doc = getattr(readline, '__doc__', '')
        if readline_doc is not None and 'libedit' in readline_doc:
            readline.parse_and_bind('bind ^I rl_complete')
        else:
            readline.parse_and_bind('tab: complete')

        try:
            readline.read_init_file()
        except OSError:
            # An OSError here could have many causes, but the most likely one
            # is that there's no .inputrc file (or .editrc file in the case of
            # Mac OS X + libedit) in the expected location.  In that case, we
            # want to ignore the exception.
            pass

        if readline.get_current_history_length() == 0:
            # If no history was loaded, default to .python_history.
            # The guard is necessary to avoid doubling history size at
            # each interpreter exit when readline was already configured
            # through a PYTHONSTARTUP hook, see:
            # http://bugs.python.org/issue5845#msg198636
            history = os.path.join(os.path.expanduser('~'),
                                   '.python_history')
            try:
                readline.read_history_file(history)
            except IOError:
                pass
            atexit.register(readline.write_history_file, history)

    sys.__interactivehook__ = register_readline

def aliasmbcs():
    """On Windows, some default encodings are not provided by Python,
    while they are always available as "mbcs" in each locale. Make
    them usable by aliasing to "mbcs" in such a case."""
    if sys.platform == 'win32':
        import _bootlocale, codecs
        enc = _bootlocale.getpreferredencoding(False)
        if enc.startswith('cp'):            # "cp***" ?
            try:
                codecs.lookup(enc)
            except LookupError:
                import encodings
                encodings._cache[enc] = encodings._unknown
                encodings.aliases.aliases[enc] = 'mbcs'

CONFIG_LINE = r'^(?P<key>(\w|[-_])+)\s*=\s*(?P<value>.*)\s*$'

def venv(known_paths):
    global PREFIXES, ENABLE_USER_SITE

    env = os.environ
    if sys.platform == 'darwin' and '__PYVENV_LAUNCHER__' in env:
        executable = os.environ['__PYVENV_LAUNCHER__']
    else:
        executable = sys.executable
    exe_dir, _ = os.path.split(os.path.abspath(executable))
    site_prefix = os.path.dirname(exe_dir)
    sys._home = None
    conf_basename = 'pyvenv.cfg'
    candidate_confs = [
        conffile for conffile in (
            os.path.join(exe_dir, conf_basename),
            os.path.join(site_prefix, conf_basename)
            )
        if os.path.isfile(conffile)
        ]

    if candidate_confs:
        import re
        config_line = re.compile(CONFIG_LINE)
        virtual_conf = candidate_confs[0]
        system_site = "true"
        # Issue 25185: Use UTF-8, as that's what the venv module uses when
        # writing the file.
        with open(virtual_conf, encoding='utf-8') as f:
            for line in f:
                line = line.strip()
                m = config_line.match(line)
                if m:
                    d = m.groupdict()
                    key, value = d['key'].lower(), d['value']
                    if key == 'include-system-site-packages':
                        system_site = value.lower()
                    elif key == 'home':
                        sys._home = value

        sys.prefix = sys.exec_prefix = site_prefix

        # Doing this here ensures venv takes precedence over user-site
        addsitepackages(known_paths, [sys.prefix])

        # addsitepackages will process site_prefix again if its in PREFIXES,
        # but that's ok; known_paths will prevent anything being added twice
        if system_site == "true":
            PREFIXES.insert(0, sys.prefix)
        else:
            PREFIXES = [sys.prefix]
            ENABLE_USER_SITE = False

    return known_paths


def execsitecustomize():
    """Run custom site specific code, if available."""
    try:
        import sitecustomize
    except ImportError:
        pass
    except Exception as err:
        if sys.flags.verbose:
            sys.excepthook(*sys.exc_info())
        else:
            sys.stderr.write(
                "Error in sitecustomize; set PYTHONVERBOSE for traceback:\n"
                "%s: %s\n" %
                (err.__class__.__name__, err))


def execusercustomize():
    """Run custom user specific code, if available."""
    try:
        import usercustomize
    except ImportError:
        pass
    except Exception as err:
        if sys.flags.verbose:
            sys.excepthook(*sys.exc_info())
        else:
            sys.stderr.write(
                "Error in usercustomize; set PYTHONVERBOSE for traceback:\n"
                "%s: %s\n" %
                (err.__class__.__name__, err))


def main():
    """Add standard site-specific directories to the module search path.

    This function is called automatically when this module is imported,
    unless the python interpreter was started with the -S flag.
    """
    global ENABLE_USER_SITE

    abs_paths()
    known_paths = removeduppaths()
    known_paths = venv(known_paths)
    if ENABLE_USER_SITE is None:
        ENABLE_USER_SITE = check_enableusersite()
    known_paths = addusersitepackages(known_paths)
    known_paths = addsitepackages(known_paths)
    setquit()
    setcopyright()
    sethelper()
    enablerlcompleter()
    aliasmbcs()
    execsitecustomize()
    if ENABLE_USER_SITE:
        execusercustomize()

# Prevent edition of sys.path when python was started with -S and
# site is imported later.
if not sys.flags.no_site:
    main()

def _script():
    help = """\
    %s [--user-base] [--user-site]

    Without arguments print some useful information
    With arguments print the value of USER_BASE and/or USER_SITE separated
    by '%s'.

    Exit codes with --user-base or --user-site:
      0 - user site directory is enabled
      1 - user site directory is disabled by user
      2 - uses site directory is disabled by super user
          or for security reasons
     >2 - unknown error
    """
    args = sys.argv[1:]
    if not args:
        user_base = getuserbase()
        user_site = getusersitepackages()
        print("sys.path = [")
        for dir in sys.path:
            print("    %r," % (dir,))
        print("]")
        print("USER_BASE: %r (%s)" % (user_base,
            "exists" if os.path.isdir(user_base) else "doesn't exist"))
        print("USER_SITE: %r (%s)" % (user_site,
            "exists" if os.path.isdir(user_site) else "doesn't exist"))
        print("ENABLE_USER_SITE: %r" %  ENABLE_USER_SITE)
        sys.exit(0)

    buffer = []
    if '--user-base' in args:
        buffer.append(USER_BASE)
    if '--user-site' in args:
        buffer.append(USER_SITE)

    if buffer:
        print(os.pathsep.join(buffer))
        if ENABLE_USER_SITE:
            sys.exit(0)
        elif ENABLE_USER_SITE is False:
            sys.exit(1)
        elif ENABLE_USER_SITE is None:
            sys.exit(2)
        else:
            sys.exit(3)
    else:
        import textwrap
        print(textwrap.dedent(help % (sys.argv[0], os.pathsep)))
        sys.exit(10)

if __name__ == '__main__':
    _script()
lib\smtpd.py
#! /usr/bin/env python3
"""An RFC 5321 smtp proxy.

Usage: %(program)s [options] [localhost:localport [remotehost:remoteport]]

Options:

    --nosetuid
    -n
        This program generally tries to setuid `nobody', unless this flag is
        set.  The setuid call will fail if this program is not run as root (in
        which case, use this flag).

    --version
    -V
        Print the version number and exit.

    --class classname
    -c classname
        Use `classname' as the concrete SMTP proxy class.  Uses `PureProxy' by
        default.

    --size limit
    -s limit
        Restrict the total size of the incoming message to "limit" number of
        bytes via the RFC 1870 SIZE extension.  Defaults to 33554432 bytes.

    --debug
    -d
        Turn on debugging prints.

    --help
    -h
        Print this message and exit.

Version: %(__version__)s

If localhost is not given then `localhost' is used, and if localport is not
given then 8025 is used.  If remotehost is not given then `localhost' is used,
and if remoteport is not given, then 25 is used.
"""

# Overview:
#
# This file implements the minimal SMTP protocol as defined in RFC 5321.  It
# has a hierarchy of classes which implement the backend functionality for the
# smtpd.  A number of classes are provided:
#
#   SMTPServer - the base class for the backend.  Raises NotImplementedError
#   if you try to use it.
#
#   DebuggingServer - simply prints each message it receives on stdout.
#
#   PureProxy - Proxies all messages to a real smtpd which does final
#   delivery.  One known problem with this class is that it doesn't handle
#   SMTP errors from the backend server at all.  This should be fixed
#   (contributions are welcome!).
#
#   MailmanProxy - An experimental hack to work with GNU Mailman
#   <www.list.org>.  Using this server as your real incoming smtpd, your
#   mailhost will automatically recognize and accept mail destined to Mailman
#   lists when those lists are created.  Every message not destined for a list
#   gets forwarded to a real backend smtpd, as with PureProxy.  Again, errors
#   are not handled correctly yet.
#
#
# Author: Barry Warsaw <[email protected]>
#
# TODO:
#
# - support mailbox delivery
# - alias files
# - Handle more ESMTP extensions
# - handle error codes from the backend smtpd

import sys
import os
import errno
import getopt
import time
import socket
import asyncore
import asynchat
import collections
from warnings import warn
from email._header_value_parser import get_addr_spec, get_angle_addr

__all__ = ["SMTPServer","DebuggingServer","PureProxy","MailmanProxy"]

program = sys.argv[0]
__version__ = 'Python SMTP proxy version 0.3'


class Devnull:
    def write(self, msg): pass
    def flush(self): pass


DEBUGSTREAM = Devnull()
NEWLINE = '\n'
EMPTYSTRING = ''
COMMASPACE = ', '
DATA_SIZE_DEFAULT = 33554432


def usage(code, msg=''):
    print(__doc__ % globals(), file=sys.stderr)
    if msg:
        print(msg, file=sys.stderr)
    sys.exit(code)


class SMTPChannel(asynchat.async_chat):
    COMMAND = 0
    DATA = 1

    command_size_limit = 512
    command_size_limits = collections.defaultdict(lambda x=command_size_limit: x)
    command_size_limits.update({
        'MAIL': command_size_limit + 26,
        })
    max_command_size_limit = max(command_size_limits.values())

    def __init__(self, server, conn, addr, data_size_limit=DATA_SIZE_DEFAULT,
                 map=None):
        asynchat.async_chat.__init__(self, conn, map=map)
        self.smtp_server = server
        self.conn = conn
        self.addr = addr
        self.data_size_limit = data_size_limit
        self.received_lines = []
        self.smtp_state = self.COMMAND
        self.seen_greeting = ''
        self.mailfrom = None
        self.rcpttos = []
        self.received_data = ''
        self.fqdn = socket.getfqdn()
        self.num_bytes = 0
        try:
            self.peer = conn.getpeername()
        except OSError as err:
            # a race condition  may occur if the other end is closing
            # before we can get the peername
            self.close()
            if err.args[0] != errno.ENOTCONN:
                raise
            return
        print('Peer:', repr(self.peer), file=DEBUGSTREAM)
        self.push('220 %s %s' % (self.fqdn, __version__))
        self.set_terminator(b'\r\n')
        self.extended_smtp = False

    # properties for backwards-compatibility
    @property
    def __server(self):
        warn("Access to __server attribute on SMTPChannel is deprecated, "
            "use 'smtp_server' instead", DeprecationWarning, 2)
        return self.smtp_server
    @__server.setter
    def __server(self, value):
        warn("Setting __server attribute on SMTPChannel is deprecated, "
            "set 'smtp_server' instead", DeprecationWarning, 2)
        self.smtp_server = value

    @property
    def __line(self):
        warn("Access to __line attribute on SMTPChannel is deprecated, "
            "use 'received_lines' instead", DeprecationWarning, 2)
        return self.received_lines
    @__line.setter
    def __line(self, value):
        warn("Setting __line attribute on SMTPChannel is deprecated, "
            "set 'received_lines' instead", DeprecationWarning, 2)
        self.received_lines = value

    @property
    def __state(self):
        warn("Access to __state attribute on SMTPChannel is deprecated, "
            "use 'smtp_state' instead", DeprecationWarning, 2)
        return self.smtp_state
    @__state.setter
    def __state(self, value):
        warn("Setting __state attribute on SMTPChannel is deprecated, "
            "set 'smtp_state' instead", DeprecationWarning, 2)
        self.smtp_state = value

    @property
    def __greeting(self):
        warn("Access to __greeting attribute on SMTPChannel is deprecated, "
            "use 'seen_greeting' instead", DeprecationWarning, 2)
        return self.seen_greeting
    @__greeting.setter
    def __greeting(self, value):
        warn("Setting __greeting attribute on SMTPChannel is deprecated, "
            "set 'seen_greeting' instead", DeprecationWarning, 2)
        self.seen_greeting = value

    @property
    def __mailfrom(self):
        warn("Access to __mailfrom attribute on SMTPChannel is deprecated, "
            "use 'mailfrom' instead", DeprecationWarning, 2)
        return self.mailfrom
    @__mailfrom.setter
    def __mailfrom(self, value):
        warn("Setting __mailfrom attribute on SMTPChannel is deprecated, "
            "set 'mailfrom' instead", DeprecationWarning, 2)
        self.mailfrom = value

    @property
    def __rcpttos(self):
        warn("Access to __rcpttos attribute on SMTPChannel is deprecated, "
            "use 'rcpttos' instead", DeprecationWarning, 2)
        return self.rcpttos
    @__rcpttos.setter
    def __rcpttos(self, value):
        warn("Setting __rcpttos attribute on SMTPChannel is deprecated, "
            "set 'rcpttos' instead", DeprecationWarning, 2)
        self.rcpttos = value

    @property
    def __data(self):
        warn("Access to __data attribute on SMTPChannel is deprecated, "
            "use 'received_data' instead", DeprecationWarning, 2)
        return self.received_data
    @__data.setter
    def __data(self, value):
        warn("Setting __data attribute on SMTPChannel is deprecated, "
            "set 'received_data' instead", DeprecationWarning, 2)
        self.received_data = value

    @property
    def __fqdn(self):
        warn("Access to __fqdn attribute on SMTPChannel is deprecated, "
            "use 'fqdn' instead", DeprecationWarning, 2)
        return self.fqdn
    @__fqdn.setter
    def __fqdn(self, value):
        warn("Setting __fqdn attribute on SMTPChannel is deprecated, "
            "set 'fqdn' instead", DeprecationWarning, 2)
        self.fqdn = value

    @property
    def __peer(self):
        warn("Access to __peer attribute on SMTPChannel is deprecated, "
            "use 'peer' instead", DeprecationWarning, 2)
        return self.peer
    @__peer.setter
    def __peer(self, value):
        warn("Setting __peer attribute on SMTPChannel is deprecated, "
            "set 'peer' instead", DeprecationWarning, 2)
        self.peer = value

    @property
    def __conn(self):
        warn("Access to __conn attribute on SMTPChannel is deprecated, "
            "use 'conn' instead", DeprecationWarning, 2)
        return self.conn
    @__conn.setter
    def __conn(self, value):
        warn("Setting __conn attribute on SMTPChannel is deprecated, "
            "set 'conn' instead", DeprecationWarning, 2)
        self.conn = value

    @property
    def __addr(self):
        warn("Access to __addr attribute on SMTPChannel is deprecated, "
            "use 'addr' instead", DeprecationWarning, 2)
        return self.addr
    @__addr.setter
    def __addr(self, value):
        warn("Setting __addr attribute on SMTPChannel is deprecated, "
            "set 'addr' instead", DeprecationWarning, 2)
        self.addr = value

    # Overrides base class for convenience
    def push(self, msg):
        asynchat.async_chat.push(self, bytes(msg + '\r\n', 'ascii'))

    # Implementation of base class abstract method
    def collect_incoming_data(self, data):
        limit = None
        if self.smtp_state == self.COMMAND:
            limit = self.max_command_size_limit
        elif self.smtp_state == self.DATA:
            limit = self.data_size_limit
        if limit and self.num_bytes > limit:
            return
        elif limit:
            self.num_bytes += len(data)
        self.received_lines.append(str(data, "utf-8"))

    # Implementation of base class abstract method
    def found_terminator(self):
        line = EMPTYSTRING.join(self.received_lines)
        print('Data:', repr(line), file=DEBUGSTREAM)
        self.received_lines = []
        if self.smtp_state == self.COMMAND:
            sz, self.num_bytes = self.num_bytes, 0
            if not line:
                self.push('500 Error: bad syntax')
                return
            method = None
            i = line.find(' ')
            if i < 0:
                command = line.upper()
                arg = None
            else:
                command = line[:i].upper()
                arg = line[i+1:].strip()
            max_sz = (self.command_size_limits[command]
                        if self.extended_smtp else self.command_size_limit)
            if sz > max_sz:
                self.push('500 Error: line too long')
                return
            method = getattr(self, 'smtp_' + command, None)
            if not method:
                self.push('500 Error: command "%s" not recognized' % command)
                return
            method(arg)
            return
        else:
            if self.smtp_state != self.DATA:
                self.push('451 Internal confusion')
                self.num_bytes = 0
                return
            if self.data_size_limit and self.num_bytes > self.data_size_limit:
                self.push('552 Error: Too much mail data')
                self.num_bytes = 0
                return
            # Remove extraneous carriage returns and de-transparency according
            # to RFC 5321, Section 4.5.2.
            data = []
            for text in line.split('\r\n'):
                if text and text[0] == '.':
                    data.append(text[1:])
                else:
                    data.append(text)
            self.received_data = NEWLINE.join(data)
            status = self.smtp_server.process_message(self.peer,
                                                      self.mailfrom,
                                                      self.rcpttos,
                                                      self.received_data)
            self.rcpttos = []
            self.mailfrom = None
            self.smtp_state = self.COMMAND
            self.num_bytes = 0
            self.set_terminator(b'\r\n')
            if not status:
                self.push('250 OK')
            else:
                self.push(status)

    # SMTP and ESMTP commands
    def smtp_HELO(self, arg):
        if not arg:
            self.push('501 Syntax: HELO hostname')
            return
        if self.seen_greeting:
            self.push('503 Duplicate HELO/EHLO')
        else:
            self.seen_greeting = arg
            self.extended_smtp = False
            self.push('250 %s' % self.fqdn)

    def smtp_EHLO(self, arg):
        if not arg:
            self.push('501 Syntax: EHLO hostname')
            return
        if self.seen_greeting:
            self.push('503 Duplicate HELO/EHLO')
        else:
            self.seen_greeting = arg
            self.extended_smtp = True
            self.push('250-%s' % self.fqdn)
            if self.data_size_limit:
                self.push('250-SIZE %s' % self.data_size_limit)
            self.push('250 HELP')

    def smtp_NOOP(self, arg):
        if arg:
            self.push('501 Syntax: NOOP')
        else:
            self.push('250 OK')

    def smtp_QUIT(self, arg):
        # args is ignored
        self.push('221 Bye')
        self.close_when_done()

    def _strip_command_keyword(self, keyword, arg):
        keylen = len(keyword)
        if arg[:keylen].upper() == keyword:
            return arg[keylen:].strip()
        return ''

    def _getaddr(self, arg):
        if not arg:
            return '', ''
        if arg.lstrip().startswith('<'):
            address, rest = get_angle_addr(arg)
        else:
            address, rest = get_addr_spec(arg)
        if not address:
            return address, rest
        return address.addr_spec, rest

    def _getparams(self, params):
        # Return any parameters that appear to be syntactically valid according
        # to RFC 1869, ignore all others.  (Postel rule: accept what we can.)
        params = [param.split('=', 1) for param in params.split()
                                      if '=' in param]
        return {k: v for k, v in params if k.isalnum()}

    def smtp_HELP(self, arg):
        if arg:
            extended = ' [SP <mail-parameters>]'
            lc_arg = arg.upper()
            if lc_arg == 'EHLO':
                self.push('250 Syntax: EHLO hostname')
            elif lc_arg == 'HELO':
                self.push('250 Syntax: HELO hostname')
            elif lc_arg == 'MAIL':
                msg = '250 Syntax: MAIL FROM: <address>'
                if self.extended_smtp:
                    msg += extended
                self.push(msg)
            elif lc_arg == 'RCPT':
                msg = '250 Syntax: RCPT TO: <address>'
                if self.extended_smtp:
                    msg += extended
                self.push(msg)
            elif lc_arg == 'DATA':
                self.push('250 Syntax: DATA')
            elif lc_arg == 'RSET':
                self.push('250 Syntax: RSET')
            elif lc_arg == 'NOOP':
                self.push('250 Syntax: NOOP')
            elif lc_arg == 'QUIT':
                self.push('250 Syntax: QUIT')
            elif lc_arg == 'VRFY':
                self.push('250 Syntax: VRFY <address>')
            else:
                self.push('501 Supported commands: EHLO HELO MAIL RCPT '
                          'DATA RSET NOOP QUIT VRFY')
        else:
            self.push('250 Supported commands: EHLO HELO MAIL RCPT DATA '
                      'RSET NOOP QUIT VRFY')

    def smtp_VRFY(self, arg):
        if arg:
            address, params = self._getaddr(arg)
            if address:
                self.push('252 Cannot VRFY user, but will accept message '
                          'and attempt delivery')
            else:
                self.push('502 Could not VRFY %s' % arg)
        else:
            self.push('501 Syntax: VRFY <address>')

    def smtp_MAIL(self, arg):
        if not self.seen_greeting:
            self.push('503 Error: send HELO first');
            return
        print('===> MAIL', arg, file=DEBUGSTREAM)
        syntaxerr = '501 Syntax: MAIL FROM: <address>'
        if self.extended_smtp:
            syntaxerr += ' [SP <mail-parameters>]'
        if arg is None:
            self.push(syntaxerr)
            return
        arg = self._strip_command_keyword('FROM:', arg)
        address, params = self._getaddr(arg)
        if not address:
            self.push(syntaxerr)
            return
        if not self.extended_smtp and params:
            self.push(syntaxerr)
            return
        if self.mailfrom:
            self.push('503 Error: nested MAIL command')
            return
        params = self._getparams(params.upper())
        if params is None:
            self.push(syntaxerr)
            return
        size = params.pop('SIZE', None)
        if size:
            if not size.isdigit():
                self.push(syntaxerr)
                return
            elif self.data_size_limit and int(size) > self.data_size_limit:
                self.push('552 Error: message size exceeds fixed maximum message size')
                return
        if len(params.keys()) > 0:
            self.push('555 MAIL FROM parameters not recognized or not implemented')
            return
        self.mailfrom = address
        print('sender:', self.mailfrom, file=DEBUGSTREAM)
        self.push('250 OK')

    def smtp_RCPT(self, arg):
        if not self.seen_greeting:
            self.push('503 Error: send HELO first');
            return
        print('===> RCPT', arg, file=DEBUGSTREAM)
        if not self.mailfrom:
            self.push('503 Error: need MAIL command')
            return
        syntaxerr = '501 Syntax: RCPT TO: <address>'
        if self.extended_smtp:
            syntaxerr += ' [SP <mail-parameters>]'
        if arg is None:
            self.push(syntaxerr)
            return
        arg = self._strip_command_keyword('TO:', arg)
        address, params = self._getaddr(arg)
        if not address:
            self.push(syntaxerr)
            return
        if params:
            if self.extended_smtp:
                params = self._getparams(params.upper())
                if params is None:
                    self.push(syntaxerr)
                    return
            else:
                self.push(syntaxerr)
                return
        if params and len(params.keys()) > 0:
            self.push('555 RCPT TO parameters not recognized or not implemented')
            return
        self.rcpttos.append(address)
        print('recips:', self.rcpttos, file=DEBUGSTREAM)
        self.push('250 OK')

    def smtp_RSET(self, arg):
        if arg:
            self.push('501 Syntax: RSET')
            return
        # Resets the sender, recipients, and data, but not the greeting
        self.mailfrom = None
        self.rcpttos = []
        self.received_data = ''
        self.smtp_state = self.COMMAND
        self.push('250 OK')

    def smtp_DATA(self, arg):
        if not self.seen_greeting:
            self.push('503 Error: send HELO first');
            return
        if not self.rcpttos:
            self.push('503 Error: need RCPT command')
            return
        if arg:
            self.push('501 Syntax: DATA')
            return
        self.smtp_state = self.DATA
        self.set_terminator(b'\r\n.\r\n')
        self.push('354 End data with <CR><LF>.<CR><LF>')

    # Commands that have not been implemented
    def smtp_EXPN(self, arg):
        self.push('502 EXPN not implemented')


class SMTPServer(asyncore.dispatcher):
    # SMTPChannel class to use for managing client connections
    channel_class = SMTPChannel

    def __init__(self, localaddr, remoteaddr,
                 data_size_limit=DATA_SIZE_DEFAULT, map=None):
        self._localaddr = localaddr
        self._remoteaddr = remoteaddr
        self.data_size_limit = data_size_limit
        asyncore.dispatcher.__init__(self, map=map)
        try:
            self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
            # try to re-use a server port if possible
            self.set_reuse_addr()
            self.bind(localaddr)
            self.listen(5)
        except:
            self.close()
            raise
        else:
            print('%s started at %s\n\tLocal addr: %s\n\tRemote addr:%s' % (
                self.__class__.__name__, time.ctime(time.time()),
                localaddr, remoteaddr), file=DEBUGSTREAM)

    def handle_accepted(self, conn, addr):
        print('Incoming connection from %s' % repr(addr), file=DEBUGSTREAM)
        channel = self.channel_class(self, conn, addr, self.data_size_limit,
                                     self._map)

    # API for "doing something useful with the message"
    def process_message(self, peer, mailfrom, rcpttos, data):
        """Override this abstract method to handle messages from the client.

        peer is a tuple containing (ipaddr, port) of the client that made the
        socket connection to our smtp port.

        mailfrom is the raw address the client claims the message is coming
        from.

        rcpttos is a list of raw addresses the client wishes to deliver the
        message to.

        data is a string containing the entire full text of the message,
        headers (if supplied) and all.  It has been `de-transparencied'
        according to RFC 821, Section 4.5.2.  In other words, a line
        containing a `.' followed by other text has had the leading dot
        removed.

        This function should return None, for a normal `250 Ok' response;
        otherwise it returns the desired response string in RFC 821 format.

        """
        raise NotImplementedError


class DebuggingServer(SMTPServer):
    # Do something with the gathered message
    def process_message(self, peer, mailfrom, rcpttos, data):
        inheaders = 1
        lines = data.split('\n')
        print('---------- MESSAGE FOLLOWS ----------')
        for line in lines:
            # headers first
            if inheaders and not line:
                print('X-Peer:', peer[0])
                inheaders = 0
            print(line)
        print('------------ END MESSAGE ------------')


class PureProxy(SMTPServer):
    def process_message(self, peer, mailfrom, rcpttos, data):
        lines = data.split('\n')
        # Look for the last header
        i = 0
        for line in lines:
            if not line:
                break
            i += 1
        lines.insert(i, 'X-Peer: %s' % peer[0])
        data = NEWLINE.join(lines)
        refused = self._deliver(mailfrom, rcpttos, data)
        # TBD: what to do with refused addresses?
        print('we got some refusals:', refused, file=DEBUGSTREAM)

    def _deliver(self, mailfrom, rcpttos, data):
        import smtplib
        refused = {}
        try:
            s = smtplib.SMTP()
            s.connect(self._remoteaddr[0], self._remoteaddr[1])
            try:
                refused = s.sendmail(mailfrom, rcpttos, data)
            finally:
                s.quit()
        except smtplib.SMTPRecipientsRefused as e:
            print('got SMTPRecipientsRefused', file=DEBUGSTREAM)
            refused = e.recipients
        except (OSError, smtplib.SMTPException) as e:
            print('got', e.__class__, file=DEBUGSTREAM)
            # All recipients were refused.  If the exception had an associated
            # error code, use it.  Otherwise,fake it with a non-triggering
            # exception code.
            errcode = getattr(e, 'smtp_code', -1)
            errmsg = getattr(e, 'smtp_error', 'ignore')
            for r in rcpttos:
                refused[r] = (errcode, errmsg)
        return refused


class MailmanProxy(PureProxy):
    def process_message(self, peer, mailfrom, rcpttos, data):
        from io import StringIO
        from Mailman import Utils
        from Mailman import Message
        from Mailman import MailList
        # If the message is to a Mailman mailing list, then we'll invoke the
        # Mailman script directly, without going through the real smtpd.
        # Otherwise we'll forward it to the local proxy for disposition.
        listnames = []
        for rcpt in rcpttos:
            local = rcpt.lower().split('@')[0]
            # We allow the following variations on the theme
            #   listname
            #   listname-admin
            #   listname-owner
            #   listname-request
            #   listname-join
            #   listname-leave
            parts = local.split('-')
            if len(parts) > 2:
                continue
            listname = parts[0]
            if len(parts) == 2:
                command = parts[1]
            else:
                command = ''
            if not Utils.list_exists(listname) or command not in (
                    '', 'admin', 'owner', 'request', 'join', 'leave'):
                continue
            listnames.append((rcpt, listname, command))
        # Remove all list recipients from rcpttos and forward what we're not
        # going to take care of ourselves.  Linear removal should be fine
        # since we don't expect a large number of recipients.
        for rcpt, listname, command in listnames:
            rcpttos.remove(rcpt)
        # If there's any non-list destined recipients left,
        print('forwarding recips:', ' '.join(rcpttos), file=DEBUGSTREAM)
        if rcpttos:
            refused = self._deliver(mailfrom, rcpttos, data)
            # TBD: what to do with refused addresses?
            print('we got refusals:', refused, file=DEBUGSTREAM)
        # Now deliver directly to the list commands
        mlists = {}
        s = StringIO(data)
        msg = Message.Message(s)
        # These headers are required for the proper execution of Mailman.  All
        # MTAs in existence seem to add these if the original message doesn't
        # have them.
        if not msg.get('from'):
            msg['From'] = mailfrom
        if not msg.get('date'):
            msg['Date'] = time.ctime(time.time())
        for rcpt, listname, command in listnames:
            print('sending message to', rcpt, file=DEBUGSTREAM)
            mlist = mlists.get(listname)
            if not mlist:
                mlist = MailList.MailList(listname, lock=0)
                mlists[listname] = mlist
            # dispatch on the type of command
            if command == '':
                # post
                msg.Enqueue(mlist, tolist=1)
            elif command == 'admin':
                msg.Enqueue(mlist, toadmin=1)
            elif command == 'owner':
                msg.Enqueue(mlist, toowner=1)
            elif command == 'request':
                msg.Enqueue(mlist, torequest=1)
            elif command in ('join', 'leave'):
                # TBD: this is a hack!
                if command == 'join':
                    msg['Subject'] = 'subscribe'
                else:
                    msg['Subject'] = 'unsubscribe'
                msg.Enqueue(mlist, torequest=1)


class Options:
    setuid = 1
    classname = 'PureProxy'
    size_limit = None


def parseargs():
    global DEBUGSTREAM
    try:
        opts, args = getopt.getopt(
            sys.argv[1:], 'nVhc:s:d',
            ['class=', 'nosetuid', 'version', 'help', 'size=', 'debug'])
    except getopt.error as e:
        usage(1, e)

    options = Options()
    for opt, arg in opts:
        if opt in ('-h', '--help'):
            usage(0)
        elif opt in ('-V', '--version'):
            print(__version__)
            sys.exit(0)
        elif opt in ('-n', '--nosetuid'):
            options.setuid = 0
        elif opt in ('-c', '--class'):
            options.classname = arg
        elif opt in ('-d', '--debug'):
            DEBUGSTREAM = sys.stderr
        elif opt in ('-s', '--size'):
            try:
                int_size = int(arg)
                options.size_limit = int_size
            except:
                print('Invalid size: ' + arg, file=sys.stderr)
                sys.exit(1)

    # parse the rest of the arguments
    if len(args) < 1:
        localspec = 'localhost:8025'
        remotespec = 'localhost:25'
    elif len(args) < 2:
        localspec = args[0]
        remotespec = 'localhost:25'
    elif len(args) < 3:
        localspec = args[0]
        remotespec = args[1]
    else:
        usage(1, 'Invalid arguments: %s' % COMMASPACE.join(args))

    # split into host/port pairs
    i = localspec.find(':')
    if i < 0:
        usage(1, 'Bad local spec: %s' % localspec)
    options.localhost = localspec[:i]
    try:
        options.localport = int(localspec[i+1:])
    except ValueError:
        usage(1, 'Bad local port: %s' % localspec)
    i = remotespec.find(':')
    if i < 0:
        usage(1, 'Bad remote spec: %s' % remotespec)
    options.remotehost = remotespec[:i]
    try:
        options.remoteport = int(remotespec[i+1:])
    except ValueError:
        usage(1, 'Bad remote port: %s' % remotespec)
    return options


if __name__ == '__main__':
    options = parseargs()
    # Become nobody
    classname = options.classname
    if "." in classname:
        lastdot = classname.rfind(".")
        mod = __import__(classname[:lastdot], globals(), locals(), [""])
        classname = classname[lastdot+1:]
    else:
        import __main__ as mod
    class_ = getattr(mod, classname)
    proxy = class_((options.localhost, options.localport),
                   (options.remotehost, options.remoteport),
                   options.size_limit)
    if options.setuid:
        try:
            import pwd
        except ImportError:
            print('Cannot import module "pwd"; try running with -n option.', file=sys.stderr)
            sys.exit(1)
        nobody = pwd.getpwnam('nobody')[2]
        try:
            os.setuid(nobody)
        except PermissionError:
            print('Cannot setuid "nobody"; try running with -n option.', file=sys.stderr)
            sys.exit(1)
    try:
        asyncore.loop()
    except KeyboardInterrupt:
        pass
lib\smtplib.py
#! /usr/bin/env python3

'''SMTP/ESMTP client class.

This should follow RFC 821 (SMTP), RFC 1869 (ESMTP), RFC 2554 (SMTP
Authentication) and RFC 2487 (Secure SMTP over TLS).

Notes:

Please remember, when doing ESMTP, that the names of the SMTP service
extensions are NOT the same thing as the option keywords for the RCPT
and MAIL commands!

Example:

  >>> import smtplib
  >>> s=smtplib.SMTP("localhost")
  >>> print(s.help())
  This is Sendmail version 8.8.4
  Topics:
      HELO    EHLO    MAIL    RCPT    DATA
      RSET    NOOP    QUIT    HELP    VRFY
      EXPN    VERB    ETRN    DSN
  For more info use "HELP <topic>".
  To report bugs in the implementation send email to
      [email protected].
  For local information send email to Postmaster at your site.
  End of HELP info
  >>> s.putcmd("vrfy","someone@here")
  >>> s.getreply()
  (250, "Somebody OverHere <[email protected]>")
  >>> s.quit()
'''

# Author: The Dragon De Monsyne <[email protected]>
# ESMTP support, test code and doc fixes added by
#     Eric S. Raymond <[email protected]>
# Better RFC 821 compliance (MAIL and RCPT, and CRLF in data)
#     by Carey Evans <[email protected]>, for picky mail servers.
# RFC 2554 (authentication) support by Gerhard Haering <[email protected]>.
#
# This was modified from the Python 1.5 library HTTP lib.

import socket
import io
import re
import email.utils
import email.message
import email.generator
import base64
import hmac
import copy
from email.base64mime import body_encode as encode_base64
from sys import stderr

__all__ = ["SMTPException", "SMTPServerDisconnected", "SMTPResponseException",
           "SMTPSenderRefused", "SMTPRecipientsRefused", "SMTPDataError",
           "SMTPConnectError", "SMTPHeloError", "SMTPAuthenticationError",
           "quoteaddr", "quotedata", "SMTP"]

SMTP_PORT = 25
SMTP_SSL_PORT = 465
CRLF = "\r\n"
bCRLF = b"\r\n"
_MAXLINE = 8192 # more than 8 times larger than RFC 821, 4.5.3

OLDSTYLE_AUTH = re.compile(r"auth=(.*)", re.I)

# Exception classes used by this module.
class SMTPException(OSError):
    """Base class for all exceptions raised by this module."""

class SMTPServerDisconnected(SMTPException):
    """Not connected to any SMTP server.

    This exception is raised when the server unexpectedly disconnects,
    or when an attempt is made to use the SMTP instance before
    connecting it to a server.
    """

class SMTPResponseException(SMTPException):
    """Base class for all exceptions that include an SMTP error code.

    These exceptions are generated in some instances when the SMTP
    server returns an error code.  The error code is stored in the
    `smtp_code' attribute of the error, and the `smtp_error' attribute
    is set to the error message.
    """

    def __init__(self, code, msg):
        self.smtp_code = code
        self.smtp_error = msg
        self.args = (code, msg)

class SMTPSenderRefused(SMTPResponseException):
    """Sender address refused.

    In addition to the attributes set by on all SMTPResponseException
    exceptions, this sets `sender' to the string that the SMTP refused.
    """

    def __init__(self, code, msg, sender):
        self.smtp_code = code
        self.smtp_error = msg
        self.sender = sender
        self.args = (code, msg, sender)

class SMTPRecipientsRefused(SMTPException):
    """All recipient addresses refused.

    The errors for each recipient are accessible through the attribute
    'recipients', which is a dictionary of exactly the same sort as
    SMTP.sendmail() returns.
    """

    def __init__(self, recipients):
        self.recipients = recipients
        self.args = (recipients,)


class SMTPDataError(SMTPResponseException):
    """The SMTP server didn't accept the data."""

class SMTPConnectError(SMTPResponseException):
    """Error during connection establishment."""

class SMTPHeloError(SMTPResponseException):
    """The server refused our HELO reply."""

class SMTPAuthenticationError(SMTPResponseException):
    """Authentication error.

    Most probably the server didn't accept the username/password
    combination provided.
    """

def quoteaddr(addrstring):
    """Quote a subset of the email addresses defined by RFC 821.

    Should be able to handle anything email.utils.parseaddr can handle.
    """
    displayname, addr = email.utils.parseaddr(addrstring)
    if (displayname, addr) == ('', ''):
        # parseaddr couldn't parse it, use it as is and hope for the best.
        if addrstring.strip().startswith('<'):
            return addrstring
        return "<%s>" % addrstring
    return "<%s>" % addr

def _addr_only(addrstring):
    displayname, addr = email.utils.parseaddr(addrstring)
    if (displayname, addr) == ('', ''):
        # parseaddr couldn't parse it, so use it as is.
        return addrstring
    return addr

# Legacy method kept for backward compatibility.
def quotedata(data):
    """Quote data for email.

    Double leading '.', and change Unix newline '\\n', or Mac '\\r' into
    Internet CRLF end-of-line.
    """
    return re.sub(r'(?m)^\.', '..',
        re.sub(r'(?:\r\n|\n|\r(?!\n))', CRLF, data))

def _quote_periods(bindata):
    return re.sub(br'(?m)^\.', b'..', bindata)

def _fix_eols(data):
    return  re.sub(r'(?:\r\n|\n|\r(?!\n))', CRLF, data)

try:
    import ssl
except ImportError:
    _have_ssl = False
else:
    _have_ssl = True


class SMTP:
    """This class manages a connection to an SMTP or ESMTP server.
    SMTP Objects:
        SMTP objects have the following attributes:
            helo_resp
                This is the message given by the server in response to the
                most recent HELO command.

            ehlo_resp
                This is the message given by the server in response to the
                most recent EHLO command. This is usually multiline.

            does_esmtp
                This is a True value _after you do an EHLO command_, if the
                server supports ESMTP.

            esmtp_features
                This is a dictionary, which, if the server supports ESMTP,
                will _after you do an EHLO command_, contain the names of the
                SMTP service extensions this server supports, and their
                parameters (if any).

                Note, all extension names are mapped to lower case in the
                dictionary.

        See each method's docstrings for details.  In general, there is a
        method of the same name to perform each SMTP command.  There is also a
        method called 'sendmail' that will do an entire mail transaction.
        """
    debuglevel = 0
    file = None
    helo_resp = None
    ehlo_msg = "ehlo"
    ehlo_resp = None
    does_esmtp = 0
    default_port = SMTP_PORT

    def __init__(self, host='', port=0, local_hostname=None,
                 timeout=socket._GLOBAL_DEFAULT_TIMEOUT,
                 source_address=None):
        """Initialize a new instance.

        If specified, `host' is the name of the remote host to which to
        connect.  If specified, `port' specifies the port to which to connect.
        By default, smtplib.SMTP_PORT is used.  If a host is specified the
        connect method is called, and if it returns anything other than a
        success code an SMTPConnectError is raised.  If specified,
        `local_hostname` is used as the FQDN of the local host in the HELO/EHLO
        command.  Otherwise, the local hostname is found using
        socket.getfqdn(). The `source_address` parameter takes a 2-tuple (host,
        port) for the socket to bind to as its source address before
        connecting. If the host is '' and port is 0, the OS default behavior
        will be used.

        """
        self._host = host
        self.timeout = timeout
        self.esmtp_features = {}
        self.source_address = source_address

        if host:
            (code, msg) = self.connect(host, port)
            if code != 220:
                raise SMTPConnectError(code, msg)
        if local_hostname is not None:
            self.local_hostname = local_hostname
        else:
            # RFC 2821 says we should use the fqdn in the EHLO/HELO verb, and
            # if that can't be calculated, that we should use a domain literal
            # instead (essentially an encoded IP address like [A.B.C.D]).
            fqdn = socket.getfqdn()
            if '.' in fqdn:
                self.local_hostname = fqdn
            else:
                # We can't find an fqdn hostname, so use a domain literal
                addr = '127.0.0.1'
                try:
                    addr = socket.gethostbyname(socket.gethostname())
                except socket.gaierror:
                    pass
                self.local_hostname = '[%s]' % addr

    def __enter__(self):
        return self

    def __exit__(self, *args):
        try:
            code, message = self.docmd("QUIT")
            if code != 221:
                raise SMTPResponseException(code, message)
        except SMTPServerDisconnected:
            pass
        finally:
            self.close()

    def set_debuglevel(self, debuglevel):
        """Set the debug output level.

        A non-false value results in debug messages for connection and for all
        messages sent to and received from the server.

        """
        self.debuglevel = debuglevel

    def _get_socket(self, host, port, timeout):
        # This makes it simpler for SMTP_SSL to use the SMTP connect code
        # and just alter the socket connection bit.
        if self.debuglevel > 0:
            print('connect: to', (host, port), self.source_address,
                                 file=stderr)
        return socket.create_connection((host, port), timeout,
                                        self.source_address)

    def connect(self, host='localhost', port=0, source_address=None):
        """Connect to a host on a given port.

        If the hostname ends with a colon (`:') followed by a number, and
        there is no port specified, that suffix will be stripped off and the
        number interpreted as the port number to use.

        Note: This method is automatically invoked by __init__, if a host is
        specified during instantiation.

        """

        if source_address:
            self.source_address = source_address

        if not port and (host.find(':') == host.rfind(':')):
            i = host.rfind(':')
            if i >= 0:
                host, port = host[:i], host[i + 1:]
                try:
                    port = int(port)
                except ValueError:
                    raise OSError("nonnumeric port")
        if not port:
            port = self.default_port
        if self.debuglevel > 0:
            print('connect:', (host, port), file=stderr)
        self.sock = self._get_socket(host, port, self.timeout)
        self.file = None
        (code, msg) = self.getreply()
        if self.debuglevel > 0:
            print("connect:", msg, file=stderr)
        return (code, msg)

    def send(self, s):
        """Send `s' to the server."""
        if self.debuglevel > 0:
            print('send:', repr(s), file=stderr)
        if hasattr(self, 'sock') and self.sock:
            if isinstance(s, str):
                s = s.encode("ascii")
            try:
                self.sock.sendall(s)
            except OSError:
                self.close()
                raise SMTPServerDisconnected('Server not connected')
        else:
            raise SMTPServerDisconnected('please run connect() first')

    def putcmd(self, cmd, args=""):
        """Send a command to the server."""
        if args == "":
            str = '%s%s' % (cmd, CRLF)
        else:
            str = '%s %s%s' % (cmd, args, CRLF)
        self.send(str)

    def getreply(self):
        """Get a reply from the server.

        Returns a tuple consisting of:

          - server response code (e.g. '250', or such, if all goes well)
            Note: returns -1 if it can't read response code.

          - server response string corresponding to response code (multiline
            responses are converted to a single, multiline string).

        Raises SMTPServerDisconnected if end-of-file is reached.
        """
        resp = []
        if self.file is None:
            self.file = self.sock.makefile('rb')
        while 1:
            try:
                line = self.file.readline(_MAXLINE + 1)
            except OSError as e:
                self.close()
                raise SMTPServerDisconnected("Connection unexpectedly closed: "
                                             + str(e))
            if not line:
                self.close()
                raise SMTPServerDisconnected("Connection unexpectedly closed")
            if self.debuglevel > 0:
                print('reply:', repr(line), file=stderr)
            if len(line) > _MAXLINE:
                self.close()
                raise SMTPResponseException(500, "Line too long.")
            resp.append(line[4:].strip(b' \t\r\n'))
            code = line[:3]
            # Check that the error code is syntactically correct.
            # Don't attempt to read a continuation line if it is broken.
            try:
                errcode = int(code)
            except ValueError:
                errcode = -1
                break
            # Check if multiline response.
            if line[3:4] != b"-":
                break

        errmsg = b"\n".join(resp)
        if self.debuglevel > 0:
            print('reply: retcode (%s); Msg: %s' % (errcode, errmsg),
                                                    file=stderr)
        return errcode, errmsg

    def docmd(self, cmd, args=""):
        """Send a command, and return its response code."""
        self.putcmd(cmd, args)
        return self.getreply()

    # std smtp commands
    def helo(self, name=''):
        """SMTP 'helo' command.
        Hostname to send for this command defaults to the FQDN of the local
        host.
        """
        self.putcmd("helo", name or self.local_hostname)
        (code, msg) = self.getreply()
        self.helo_resp = msg
        return (code, msg)

    def ehlo(self, name=''):
        """ SMTP 'ehlo' command.
        Hostname to send for this command defaults to the FQDN of the local
        host.
        """
        self.esmtp_features = {}
        self.putcmd(self.ehlo_msg, name or self.local_hostname)
        (code, msg) = self.getreply()
        # According to RFC1869 some (badly written)
        # MTA's will disconnect on an ehlo. Toss an exception if
        # that happens -ddm
        if code == -1 and len(msg) == 0:
            self.close()
            raise SMTPServerDisconnected("Server not connected")
        self.ehlo_resp = msg
        if code != 250:
            return (code, msg)
        self.does_esmtp = 1
        #parse the ehlo response -ddm
        assert isinstance(self.ehlo_resp, bytes), repr(self.ehlo_resp)
        resp = self.ehlo_resp.decode("latin-1").split('\n')
        del resp[0]
        for each in resp:
            # To be able to communicate with as many SMTP servers as possible,
            # we have to take the old-style auth advertisement into account,
            # because:
            # 1) Else our SMTP feature parser gets confused.
            # 2) There are some servers that only advertise the auth methods we
            #    support using the old style.
            auth_match = OLDSTYLE_AUTH.match(each)
            if auth_match:
                # This doesn't remove duplicates, but that's no problem
                self.esmtp_features["auth"] = self.esmtp_features.get("auth", "") \
                        + " " + auth_match.groups(0)[0]
                continue

            # RFC 1869 requires a space between ehlo keyword and parameters.
            # It's actually stricter, in that only spaces are allowed between
            # parameters, but were not going to check for that here.  Note
            # that the space isn't present if there are no parameters.
            m = re.match(r'(?P<feature>[A-Za-z0-9][A-Za-z0-9\-]*) ?', each)
            if m:
                feature = m.group("feature").lower()
                params = m.string[m.end("feature"):].strip()
                if feature == "auth":
                    self.esmtp_features[feature] = self.esmtp_features.get(feature, "") \
                            + " " + params
                else:
                    self.esmtp_features[feature] = params
        return (code, msg)

    def has_extn(self, opt):
        """Does the server support a given SMTP service extension?"""
        return opt.lower() in self.esmtp_features

    def help(self, args=''):
        """SMTP 'help' command.
        Returns help text from server."""
        self.putcmd("help", args)
        return self.getreply()[1]

    def rset(self):
        """SMTP 'rset' command -- resets session."""
        return self.docmd("rset")

    def _rset(self):
        """Internal 'rset' command which ignores any SMTPServerDisconnected error.

        Used internally in the library, since the server disconnected error
        should appear to the application when the *next* command is issued, if
        we are doing an internal "safety" reset.
        """
        try:
            self.rset()
        except SMTPServerDisconnected:
            pass

    def noop(self):
        """SMTP 'noop' command -- doesn't do anything :>"""
        return self.docmd("noop")

    def mail(self, sender, options=[]):
        """SMTP 'mail' command -- begins mail xfer session."""
        optionlist = ''
        if options and self.does_esmtp:
            optionlist = ' ' + ' '.join(options)
        self.putcmd("mail", "FROM:%s%s" % (quoteaddr(sender), optionlist))
        return self.getreply()

    def rcpt(self, recip, options=[]):
        """SMTP 'rcpt' command -- indicates 1 recipient for this mail."""
        optionlist = ''
        if options and self.does_esmtp:
            optionlist = ' ' + ' '.join(options)
        self.putcmd("rcpt", "TO:%s%s" % (quoteaddr(recip), optionlist))
        return self.getreply()

    def data(self, msg):
        """SMTP 'DATA' command -- sends message data to server.

        Automatically quotes lines beginning with a period per rfc821.
        Raises SMTPDataError if there is an unexpected reply to the
        DATA command; the return value from this method is the final
        response code received when the all data is sent.  If msg
        is a string, lone '\\r' and '\\n' characters are converted to
        '\\r\\n' characters.  If msg is bytes, it is transmitted as is.
        """
        self.putcmd("data")
        (code, repl) = self.getreply()
        if self.debuglevel > 0:
            print("data:", (code, repl), file=stderr)
        if code != 354:
            raise SMTPDataError(code, repl)
        else:
            if isinstance(msg, str):
                msg = _fix_eols(msg).encode('ascii')
            q = _quote_periods(msg)
            if q[-2:] != bCRLF:
                q = q + bCRLF
            q = q + b"." + bCRLF
            self.send(q)
            (code, msg) = self.getreply()
            if self.debuglevel > 0:
                print("data:", (code, msg), file=stderr)
            return (code, msg)

    def verify(self, address):
        """SMTP 'verify' command -- checks for address validity."""
        self.putcmd("vrfy", _addr_only(address))
        return self.getreply()
    # a.k.a.
    vrfy = verify

    def expn(self, address):
        """SMTP 'expn' command -- expands a mailing list."""
        self.putcmd("expn", _addr_only(address))
        return self.getreply()

    # some useful methods

    def ehlo_or_helo_if_needed(self):
        """Call self.ehlo() and/or self.helo() if needed.

        If there has been no previous EHLO or HELO command this session, this
        method tries ESMTP EHLO first.

        This method may raise the following exceptions:

         SMTPHeloError            The server didn't reply properly to
                                  the helo greeting.
        """
        if self.helo_resp is None and self.ehlo_resp is None:
            if not (200 <= self.ehlo()[0] <= 299):
                (code, resp) = self.helo()
                if not (200 <= code <= 299):
                    raise SMTPHeloError(code, resp)

    def login(self, user, password):
        """Log in on an SMTP server that requires authentication.

        The arguments are:
            - user:     The user name to authenticate with.
            - password: The password for the authentication.

        If there has been no previous EHLO or HELO command this session, this
        method tries ESMTP EHLO first.

        This method will return normally if the authentication was successful.

        This method may raise the following exceptions:

         SMTPHeloError            The server didn't reply properly to
                                  the helo greeting.
         SMTPAuthenticationError  The server didn't accept the username/
                                  password combination.
         SMTPException            No suitable authentication method was
                                  found.
        """

        def encode_cram_md5(challenge, user, password):
            challenge = base64.decodebytes(challenge)
            response = user + " " + hmac.HMAC(password.encode('ascii'),
                                              challenge, 'md5').hexdigest()
            return encode_base64(response.encode('ascii'), eol='')

        def encode_plain(user, password):
            s = "\0%s\0%s" % (user, password)
            return encode_base64(s.encode('ascii'), eol='')

        AUTH_PLAIN = "PLAIN"
        AUTH_CRAM_MD5 = "CRAM-MD5"
        AUTH_LOGIN = "LOGIN"

        self.ehlo_or_helo_if_needed()

        if not self.has_extn("auth"):
            raise SMTPException("SMTP AUTH extension not supported by server.")

        # Authentication methods the server claims to support
        advertised_authlist = self.esmtp_features["auth"].split()

        # List of authentication methods we support: from preferred to
        # less preferred methods. Except for the purpose of testing the weaker
        # ones, we prefer stronger methods like CRAM-MD5:
        preferred_auths = [AUTH_CRAM_MD5, AUTH_PLAIN, AUTH_LOGIN]

        # We try the authentication methods the server advertises, but only the
        # ones *we* support. And in our preferred order.
        authlist = [auth for auth in preferred_auths if auth in advertised_authlist]
        if not authlist:
            raise SMTPException("No suitable authentication method found.")

        # Some servers advertise authentication methods they don't really
        # support, so if authentication fails, we continue until we've tried
        # all methods.
        for authmethod in authlist:
            if authmethod == AUTH_CRAM_MD5:
                (code, resp) = self.docmd("AUTH", AUTH_CRAM_MD5)
                if code == 334:
                    (code, resp) = self.docmd(encode_cram_md5(resp, user, password))
            elif authmethod == AUTH_PLAIN:
                (code, resp) = self.docmd("AUTH",
                    AUTH_PLAIN + " " + encode_plain(user, password))
            elif authmethod == AUTH_LOGIN:
                (code, resp) = self.docmd("AUTH",
                    "%s %s" % (AUTH_LOGIN, encode_base64(user.encode('ascii'), eol='')))
                if code == 334:
                    (code, resp) = self.docmd(encode_base64(password.encode('ascii'), eol=''))

            # 235 == 'Authentication successful'
            # 503 == 'Error: already authenticated'
            if code in (235, 503):
                return (code, resp)

        # We could not login sucessfully. Return result of last attempt.
        raise SMTPAuthenticationError(code, resp)

    def starttls(self, keyfile=None, certfile=None, context=None):
        """Puts the connection to the SMTP server into TLS mode.

        If there has been no previous EHLO or HELO command this session, this
        method tries ESMTP EHLO first.

        If the server supports TLS, this will encrypt the rest of the SMTP
        session. If you provide the keyfile and certfile parameters,
        the identity of the SMTP server and client can be checked. This,
        however, depends on whether the socket module really checks the
        certificates.

        This method may raise the following exceptions:

         SMTPHeloError            The server didn't reply properly to
                                  the helo greeting.
        """
        self.ehlo_or_helo_if_needed()
        if not self.has_extn("starttls"):
            raise SMTPException("STARTTLS extension not supported by server.")
        (resp, reply) = self.docmd("STARTTLS")
        if resp == 220:
            if not _have_ssl:
                raise RuntimeError("No SSL support included in this Python")
            if context is not None and keyfile is not None:
                raise ValueError("context and keyfile arguments are mutually "
                                 "exclusive")
            if context is not None and certfile is not None:
                raise ValueError("context and certfile arguments are mutually "
                                 "exclusive")
            if context is None:
                context = ssl._create_stdlib_context(certfile=certfile,
                                                     keyfile=keyfile)
            self.sock = context.wrap_socket(self.sock,
                                            server_hostname=self._host)
            self.file = None
            # RFC 3207:
            # The client MUST discard any knowledge obtained from
            # the server, such as the list of SMTP service extensions,
            # which was not obtained from the TLS negotiation itself.
            self.helo_resp = None
            self.ehlo_resp = None
            self.esmtp_features = {}
            self.does_esmtp = 0
        else:
            # RFC 3207:
            # 501 Syntax error (no parameters allowed)
            # 454 TLS not available due to temporary reason
            raise SMTPResponseException(resp, reply)
        return (resp, reply)

    def sendmail(self, from_addr, to_addrs, msg, mail_options=[],
                 rcpt_options=[]):
        """This command performs an entire mail transaction.

        The arguments are:
            - from_addr    : The address sending this mail.
            - to_addrs     : A list of addresses to send this mail to.  A bare
                             string will be treated as a list with 1 address.
            - msg          : The message to send.
            - mail_options : List of ESMTP options (such as 8bitmime) for the
                             mail command.
            - rcpt_options : List of ESMTP options (such as DSN commands) for
                             all the rcpt commands.

        msg may be a string containing characters in the ASCII range, or a byte
        string.  A string is encoded to bytes using the ascii codec, and lone
        \\r and \\n characters are converted to \\r\\n characters.

        If there has been no previous EHLO or HELO command this session, this
        method tries ESMTP EHLO first.  If the server does ESMTP, message size
        and each of the specified options will be passed to it.  If EHLO
        fails, HELO will be tried and ESMTP options suppressed.

        This method will return normally if the mail is accepted for at least
        one recipient.  It returns a dictionary, with one entry for each
        recipient that was refused.  Each entry contains a tuple of the SMTP
        error code and the accompanying error message sent by the server.

        This method may raise the following exceptions:

         SMTPHeloError          The server didn't reply properly to
                                the helo greeting.
         SMTPRecipientsRefused  The server rejected ALL recipients
                                (no mail was sent).
         SMTPSenderRefused      The server didn't accept the from_addr.
         SMTPDataError          The server replied with an unexpected
                                error code (other than a refusal of
                                a recipient).

        Note: the connection will be open even after an exception is raised.

        Example:

         >>> import smtplib
         >>> s=smtplib.SMTP("localhost")
         >>> tolist=["[email protected]","[email protected]","[email protected]","[email protected]"]
         >>> msg = '''\\
         ... From: [email protected]
         ... Subject: testin'...
         ...
         ... This is a test '''
         >>> s.sendmail("[email protected]",tolist,msg)
         { "[email protected]" : ( 550 ,"User unknown" ) }
         >>> s.quit()

        In the above example, the message was accepted for delivery to three
        of the four addresses, and one was rejected, with the error code
        550.  If all addresses are accepted, then the method will return an
        empty dictionary.

        """
        self.ehlo_or_helo_if_needed()
        esmtp_opts = []
        if isinstance(msg, str):
            msg = _fix_eols(msg).encode('ascii')
        if self.does_esmtp:
            # Hmmm? what's this? -ddm
            # self.esmtp_features['7bit']=""
            if self.has_extn('size'):
                esmtp_opts.append("size=%d" % len(msg))
            for option in mail_options:
                esmtp_opts.append(option)
        (code, resp) = self.mail(from_addr, esmtp_opts)
        if code != 250:
            if code == 421:
                self.close()
            else:
                self._rset()
            raise SMTPSenderRefused(code, resp, from_addr)
        senderrs = {}
        if isinstance(to_addrs, str):
            to_addrs = [to_addrs]
        for each in to_addrs:
            (code, resp) = self.rcpt(each, rcpt_options)
            if (code != 250) and (code != 251):
                senderrs[each] = (code, resp)
            if code == 421:
                self.close()
                raise SMTPRecipientsRefused(senderrs)
        if len(senderrs) == len(to_addrs):
            # the server refused all our recipients
            self._rset()
            raise SMTPRecipientsRefused(senderrs)
        (code, resp) = self.data(msg)
        if code != 250:
            if code == 421:
                self.close()
            else:
                self._rset()
            raise SMTPDataError(code, resp)
        #if we got here then somebody got our mail
        return senderrs

    def send_message(self, msg, from_addr=None, to_addrs=None,
                mail_options=[], rcpt_options={}):
        """Converts message to a bytestring and passes it to sendmail.

        The arguments are as for sendmail, except that msg is an
        email.message.Message object.  If from_addr is None or to_addrs is
        None, these arguments are taken from the headers of the Message as
        described in RFC 2822 (a ValueError is raised if there is more than
        one set of 'Resent-' headers).  Regardless of the values of from_addr and
        to_addr, any Bcc field (or Resent-Bcc field, when the Message is a
        resent) of the Message object won't be transmitted.  The Message
        object is then serialized using email.generator.BytesGenerator and
        sendmail is called to transmit the message.

        """
        # 'Resent-Date' is a mandatory field if the Message is resent (RFC 2822
        # Section 3.6.6). In such a case, we use the 'Resent-*' fields.  However,
        # if there is more than one 'Resent-' block there's no way to
        # unambiguously determine which one is the most recent in all cases,
        # so rather than guess we raise a ValueError in that case.
        #
        # TODO implement heuristics to guess the correct Resent-* block with an
        # option allowing the user to enable the heuristics.  (It should be
        # possible to guess correctly almost all of the time.)

        resent = msg.get_all('Resent-Date')
        if resent is None:
            header_prefix = ''
        elif len(resent) == 1:
            header_prefix = 'Resent-'
        else:
            raise ValueError("message has more than one 'Resent-' header block")
        if from_addr is None:
            # Prefer the sender field per RFC 2822:3.6.2.
            from_addr = (msg[header_prefix + 'Sender']
                           if (header_prefix + 'Sender') in msg
                           else msg[header_prefix + 'From'])
        if to_addrs is None:
            addr_fields = [f for f in (msg[header_prefix + 'To'],
                                       msg[header_prefix + 'Bcc'],
                                       msg[header_prefix + 'Cc']) if f is not None]
            to_addrs = [a[1] for a in email.utils.getaddresses(addr_fields)]
        # Make a local copy so we can delete the bcc headers.
        msg_copy = copy.copy(msg)
        del msg_copy['Bcc']
        del msg_copy['Resent-Bcc']
        with io.BytesIO() as bytesmsg:
            g = email.generator.BytesGenerator(bytesmsg)
            g.flatten(msg_copy, linesep='\r\n')
            flatmsg = bytesmsg.getvalue()
        return self.sendmail(from_addr, to_addrs, flatmsg, mail_options,
                             rcpt_options)

    def close(self):
        """Close the connection to the SMTP server."""
        try:
            file = self.file
            self.file = None
            if file:
                file.close()
        finally:
            sock = self.sock
            self.sock = None
            if sock:
                sock.close()

    def quit(self):
        """Terminate the SMTP session."""
        res = self.docmd("quit")
        # A new EHLO is required after reconnecting with connect()
        self.ehlo_resp = self.helo_resp = None
        self.esmtp_features = {}
        self.does_esmtp = False
        self.close()
        return res

if _have_ssl:

    class SMTP_SSL(SMTP):
        """ This is a subclass derived from SMTP that connects over an SSL
        encrypted socket (to use this class you need a socket module that was
        compiled with SSL support). If host is not specified, '' (the local
        host) is used. If port is omitted, the standard SMTP-over-SSL port
        (465) is used.  local_hostname and source_address have the same meaning
        as they do in the SMTP class.  keyfile and certfile are also optional -
        they can contain a PEM formatted private key and certificate chain file
        for the SSL connection. context also optional, can contain a
        SSLContext, and is an alternative to keyfile and certfile; If it is
        specified both keyfile and certfile must be None.

        """

        default_port = SMTP_SSL_PORT

        def __init__(self, host='', port=0, local_hostname=None,
                     keyfile=None, certfile=None,
                     timeout=socket._GLOBAL_DEFAULT_TIMEOUT,
                     source_address=None, context=None):
            if context is not None and keyfile is not None:
                raise ValueError("context and keyfile arguments are mutually "
                                 "exclusive")
            if context is not None and certfile is not None:
                raise ValueError("context and certfile arguments are mutually "
                                 "exclusive")
            self.keyfile = keyfile
            self.certfile = certfile
            if context is None:
                context = ssl._create_stdlib_context(certfile=certfile,
                                                     keyfile=keyfile)
            self.context = context
            SMTP.__init__(self, host, port, local_hostname, timeout,
                    source_address)

        def _get_socket(self, host, port, timeout):
            if self.debuglevel > 0:
                print('connect:', (host, port), file=stderr)
            new_socket = socket.create_connection((host, port), timeout,
                    self.source_address)
            new_socket = self.context.wrap_socket(new_socket,
                                                  server_hostname=self._host)
            return new_socket

    __all__.append("SMTP_SSL")

#
# LMTP extension
#
LMTP_PORT = 2003

class LMTP(SMTP):
    """LMTP - Local Mail Transfer Protocol

    The LMTP protocol, which is very similar to ESMTP, is heavily based
    on the standard SMTP client. It's common to use Unix sockets for
    LMTP, so our connect() method must support that as well as a regular
    host:port server.  local_hostname and source_address have the same
    meaning as they do in the SMTP class.  To specify a Unix socket,
    you must use an absolute path as the host, starting with a '/'.

    Authentication is supported, using the regular SMTP mechanism. When
    using a Unix socket, LMTP generally don't support or require any
    authentication, but your mileage might vary."""

    ehlo_msg = "lhlo"

    def __init__(self, host='', port=LMTP_PORT, local_hostname=None,
            source_address=None):
        """Initialize a new instance."""
        SMTP.__init__(self, host, port, local_hostname=local_hostname,
                      source_address=source_address)

    def connect(self, host='localhost', port=0, source_address=None):
        """Connect to the LMTP daemon, on either a Unix or a TCP socket."""
        if host[0] != '/':
            return SMTP.connect(self, host, port, source_address=source_address)

        # Handle Unix-domain sockets.
        try:
            self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
            self.file = None
            self.sock.connect(host)
        except OSError:
            if self.debuglevel > 0:
                print('connect fail:', host, file=stderr)
            if self.sock:
                self.sock.close()
            self.sock = None
            raise
        (code, msg) = self.getreply()
        if self.debuglevel > 0:
            print('connect:', msg, file=stderr)
        return (code, msg)


# Test the sendmail method, which tests most of the others.
# Note: This always sends to localhost.
if __name__ == '__main__':
    import sys

    def prompt(prompt):
        sys.stdout.write(prompt + ": ")
        sys.stdout.flush()
        return sys.stdin.readline().strip()

    fromaddr = prompt("From")
    toaddrs = prompt("To").split(',')
    print("Enter message, end with ^D:")
    msg = ''
    while 1:
        line = sys.stdin.readline()
        if not line:
            break
        msg = msg + line
    print("Message length is %d" % len(msg))

    server = SMTP('localhost')
    server.set_debuglevel(1)
    server.sendmail(fromaddr, toaddrs, msg)
    server.quit()
lib\sndhdr.py
"""Routines to help recognizing sound files.

Function whathdr() recognizes various types of sound file headers.
It understands almost all headers that SOX can decode.

The return tuple contains the following items, in this order:
- file type (as SOX understands it)
- sampling rate (0 if unknown or hard to decode)
- number of channels (0 if unknown or hard to decode)
- number of frames in the file (-1 if unknown or hard to decode)
- number of bits/sample, or 'U' for U-LAW, or 'A' for A-LAW

If the file doesn't have a recognizable type, it returns None.
If the file can't be opened, OSError is raised.

To compute the total time, divide the number of frames by the
sampling rate (a frame contains a sample for each channel).

Function what() calls whathdr().  (It used to also use some
heuristics for raw data, but this doesn't work very well.)

Finally, the function test() is a simple main program that calls
what() for all files mentioned on the argument list.  For directory
arguments it calls what() for all files in that directory.  Default
argument is "." (testing all files in the current directory).  The
option -r tells it to recurse down directories found inside
explicitly given directories.
"""

# The file structure is top-down except that the test program and its
# subroutine come last.

__all__ = ['what', 'whathdr']

def what(filename):
    """Guess the type of a sound file."""
    res = whathdr(filename)
    return res


def whathdr(filename):
    """Recognize sound headers."""
    with open(filename, 'rb') as f:
        h = f.read(512)
        for tf in tests:
            res = tf(h, f)
            if res:
                return res
        return None


#-----------------------------------#
# Subroutines per sound header type #
#-----------------------------------#

tests = []

def test_aifc(h, f):
    import aifc
    if not h.startswith(b'FORM'):
        return None
    if h[8:12] == b'AIFC':
        fmt = 'aifc'
    elif h[8:12] == b'AIFF':
        fmt = 'aiff'
    else:
        return None
    f.seek(0)
    try:
        a = aifc.open(f, 'r')
    except (EOFError, aifc.Error):
        return None
    return (fmt, a.getframerate(), a.getnchannels(),
            a.getnframes(), 8 * a.getsampwidth())

tests.append(test_aifc)


def test_au(h, f):
    if h.startswith(b'.snd'):
        func = get_long_be
    elif h[:4] in (b'\0ds.', b'dns.'):
        func = get_long_le
    else:
        return None
    filetype = 'au'
    hdr_size = func(h[4:8])
    data_size = func(h[8:12])
    encoding = func(h[12:16])
    rate = func(h[16:20])
    nchannels = func(h[20:24])
    sample_size = 1 # default
    if encoding == 1:
        sample_bits = 'U'
    elif encoding == 2:
        sample_bits = 8
    elif encoding == 3:
        sample_bits = 16
        sample_size = 2
    else:
        sample_bits = '?'
    frame_size = sample_size * nchannels
    if frame_size:
        nframe = data_size / frame_size
    else:
        nframe = -1
    return filetype, rate, nchannels, nframe, sample_bits

tests.append(test_au)


def test_hcom(h, f):
    if h[65:69] != b'FSSD' or h[128:132] != b'HCOM':
        return None
    divisor = get_long_be(h[144:148])
    if divisor:
        rate = 22050 / divisor
    else:
        rate = 0
    return 'hcom', rate, 1, -1, 8

tests.append(test_hcom)


def test_voc(h, f):
    if not h.startswith(b'Creative Voice File\032'):
        return None
    sbseek = get_short_le(h[20:22])
    rate = 0
    if 0 <= sbseek < 500 and h[sbseek] == 1:
        ratecode = 256 - h[sbseek+4]
        if ratecode:
            rate = int(1000000.0 / ratecode)
    return 'voc', rate, 1, -1, 8

tests.append(test_voc)


def test_wav(h, f):
    import wave
    # 'RIFF' <len> 'WAVE' 'fmt ' <len>
    if not h.startswith(b'RIFF') or h[8:12] != b'WAVE' or h[12:16] != b'fmt ':
        return None
    f.seek(0)
    try:
        w = wave.openfp(f, 'r')
    except (EOFError, wave.Error):
        return None
    return ('wav', w.getframerate(), w.getnchannels(),
                   w.getnframes(), 8*w.getsampwidth())

tests.append(test_wav)


def test_8svx(h, f):
    if not h.startswith(b'FORM') or h[8:12] != b'8SVX':
        return None
    # Should decode it to get #channels -- assume always 1
    return '8svx', 0, 1, 0, 8

tests.append(test_8svx)


def test_sndt(h, f):
    if h.startswith(b'SOUND'):
        nsamples = get_long_le(h[8:12])
        rate = get_short_le(h[20:22])
        return 'sndt', rate, 1, nsamples, 8

tests.append(test_sndt)


def test_sndr(h, f):
    if h.startswith(b'\0\0'):
        rate = get_short_le(h[2:4])
        if 4000 <= rate <= 25000:
            return 'sndr', rate, 1, -1, 8

tests.append(test_sndr)


#-------------------------------------------#
# Subroutines to extract numbers from bytes #
#-------------------------------------------#

def get_long_be(b):
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]

def get_long_le(b):
    return (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | b[0]

def get_short_be(b):
    return (b[0] << 8) | b[1]

def get_short_le(b):
    return (b[1] << 8) | b[0]


#--------------------#
# Small test program #
#--------------------#

def test():
    import sys
    recursive = 0
    if sys.argv[1:] and sys.argv[1] == '-r':
        del sys.argv[1:2]
        recursive = 1
    try:
        if sys.argv[1:]:
            testall(sys.argv[1:], recursive, 1)
        else:
            testall(['.'], recursive, 1)
    except KeyboardInterrupt:
        sys.stderr.write('\n[Interrupted]\n')
        sys.exit(1)

def testall(list, recursive, toplevel):
    import sys
    import os
    for filename in list:
        if os.path.isdir(filename):
            print(filename + '/:', end=' ')
            if recursive or toplevel:
                print('recursing down:')
                import glob
                names = glob.glob(os.path.join(filename, '*'))
                testall(names, recursive, 0)
            else:
                print('*** directory (use -r) ***')
        else:
            print(filename + ':', end=' ')
            sys.stdout.flush()
            try:
                print(what(filename))
            except OSError:
                print('*** not found ***')

if __name__ == '__main__':
    test()
lib\socket.py
# Wrapper module for _socket, providing some additional facilities
# implemented in Python.

"""\
This module provides socket operations and some related functions.
On Unix, it supports IP (Internet Protocol) and Unix domain sockets.
On other systems, it only supports IP. Functions specific for a
socket are available as methods of the socket object.

Functions:

socket() -- create a new socket object
socketpair() -- create a pair of new socket objects [*]
fromfd() -- create a socket object from an open file descriptor [*]
fromshare() -- create a socket object from data received from socket.share() [*]
gethostname() -- return the current hostname
gethostbyname() -- map a hostname to its IP number
gethostbyaddr() -- map an IP number or hostname to DNS info
getservbyname() -- map a service name and a protocol name to a port number
getprotobyname() -- map a protocol name (e.g. 'tcp') to a number
ntohs(), ntohl() -- convert 16, 32 bit int from network to host byte order
htons(), htonl() -- convert 16, 32 bit int from host to network byte order
inet_aton() -- convert IP addr string (123.45.67.89) to 32-bit packed format
inet_ntoa() -- convert 32-bit packed format IP to string (123.45.67.89)
socket.getdefaulttimeout() -- get the default timeout value
socket.setdefaulttimeout() -- set the default timeout value
create_connection() -- connects to an address, with an optional timeout and
                       optional source address.

 [*] not available on all platforms!

Special objects:

SocketType -- type object for socket objects
error -- exception raised for I/O errors
has_ipv6 -- boolean value indicating if IPv6 is supported

IntEnum constants:

AF_INET, AF_UNIX -- socket domains (first argument to socket() call)
SOCK_STREAM, SOCK_DGRAM, SOCK_RAW -- socket types (second argument)

Integer constants:

Many other constants may be defined; these may be used in calls to
the setsockopt() and getsockopt() methods.
"""

import _socket
from _socket import *

import os, sys, io
from enum import IntEnum

try:
    import errno
except ImportError:
    errno = None
EBADF = getattr(errno, 'EBADF', 9)
EAGAIN = getattr(errno, 'EAGAIN', 11)
EWOULDBLOCK = getattr(errno, 'EWOULDBLOCK', 11)

__all__ = ["fromfd", "getfqdn", "create_connection",
        "AddressFamily", "SocketKind"]
__all__.extend(os._get_exports_list(_socket))

# Set up the socket.AF_* socket.SOCK_* constants as members of IntEnums for
# nicer string representations.
# Note that _socket only knows about the integer values. The public interface
# in this module understands the enums and translates them back from integers
# where needed (e.g. .family property of a socket object).
IntEnum._convert(
        'AddressFamily',
        __name__,
        lambda C: C.isupper() and C.startswith('AF_'))

IntEnum._convert(
        'SocketKind',
        __name__,
        lambda C: C.isupper() and C.startswith('SOCK_'))

_LOCALHOST    = '127.0.0.1'
_LOCALHOST_V6 = '::1'

def _intenum_converter(value, enum_klass):
    """Convert a numeric family value to an IntEnum member.

    If it's not a known member, return the numeric value itself.
    """
    try:
        return enum_klass(value)
    except ValueError:
        return value

_realsocket = socket

# WSA error codes
if sys.platform.lower().startswith("win"):
    errorTab = {}
    errorTab[10004] = "The operation was interrupted."
    errorTab[10009] = "A bad file handle was passed."
    errorTab[10013] = "Permission denied."
    errorTab[10014] = "A fault occurred on the network??" # WSAEFAULT
    errorTab[10022] = "An invalid operation was attempted."
    errorTab[10035] = "The socket operation would block"
    errorTab[10036] = "A blocking operation is already in progress."
    errorTab[10048] = "The network address is in use."
    errorTab[10054] = "The connection has been reset."
    errorTab[10058] = "The network has been shut down."
    errorTab[10060] = "The operation timed out."
    errorTab[10061] = "Connection refused."
    errorTab[10063] = "The name is too long."
    errorTab[10064] = "The host is down."
    errorTab[10065] = "The host is unreachable."
    __all__.append("errorTab")


class socket(_socket.socket):

    """A subclass of _socket.socket adding the makefile() method."""

    __slots__ = ["__weakref__", "_io_refs", "_closed"]

    def __init__(self, family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None):
        # For user code address family and type values are IntEnum members, but
        # for the underlying _socket.socket they're just integers. The
        # constructor of _socket.socket converts the given argument to an
        # integer automatically.
        _socket.socket.__init__(self, family, type, proto, fileno)
        self._io_refs = 0
        self._closed = False

    def __enter__(self):
        return self

    def __exit__(self, *args):
        if not self._closed:
            self.close()

    def __repr__(self):
        """Wrap __repr__() to reveal the real class name and socket
        address(es).
        """
        closed = getattr(self, '_closed', False)
        s = "<%s.%s%s fd=%i, family=%s, type=%s, proto=%i" \
            % (self.__class__.__module__,
               self.__class__.__name__,
               " [closed]" if closed else "",
               self.fileno(),
               self.family,
               self.type,
               self.proto)
        if not closed:
            try:
                laddr = self.getsockname()
                if laddr:
                    s += ", laddr=%s" % str(laddr)
            except error:
                pass
            try:
                raddr = self.getpeername()
                if raddr:
                    s += ", raddr=%s" % str(raddr)
            except error:
                pass
        s += '>'
        return s

    def __getstate__(self):
        raise TypeError("Cannot serialize socket object")

    def dup(self):
        """dup() -> socket object

        Duplicate the socket. Return a new socket object connected to the same
        system resource. The new socket is non-inheritable.
        """
        fd = dup(self.fileno())
        sock = self.__class__(self.family, self.type, self.proto, fileno=fd)
        sock.settimeout(self.gettimeout())
        return sock

    def accept(self):
        """accept() -> (socket object, address info)

        Wait for an incoming connection.  Return a new socket
        representing the connection, and the address of the client.
        For IP sockets, the address info is a pair (hostaddr, port).
        """
        fd, addr = self._accept()
        # If our type has the SOCK_NONBLOCK flag, we shouldn't pass it onto the
        # new socket. We do not currently allow passing SOCK_NONBLOCK to
        # accept4, so the returned socket is always blocking.
        type = self.type & ~globals().get("SOCK_NONBLOCK", 0)
        sock = socket(self.family, type, self.proto, fileno=fd)
        # Issue #7995: if no default timeout is set and the listening
        # socket had a (non-zero) timeout, force the new socket in blocking
        # mode to override platform-specific socket flags inheritance.
        if getdefaulttimeout() is None and self.gettimeout():
            sock.setblocking(True)
        return sock, addr

    def makefile(self, mode="r", buffering=None, *,
                 encoding=None, errors=None, newline=None):
        """makefile(...) -> an I/O stream connected to the socket

        The arguments are as for io.open() after the filename,
        except the only mode characters supported are 'r', 'w' and 'b'.
        The semantics are similar too.  (XXX refactor to share code?)
        """
        if not set(mode) <= {"r", "w", "b"}:
            raise ValueError("invalid mode %r (only r, w, b allowed)" % (mode,))
        writing = "w" in mode
        reading = "r" in mode or not writing
        assert reading or writing
        binary = "b" in mode
        rawmode = ""
        if reading:
            rawmode += "r"
        if writing:
            rawmode += "w"
        raw = SocketIO(self, rawmode)
        self._io_refs += 1
        if buffering is None:
            buffering = -1
        if buffering < 0:
            buffering = io.DEFAULT_BUFFER_SIZE
        if buffering == 0:
            if not binary:
                raise ValueError("unbuffered streams must be binary")
            return raw
        if reading and writing:
            buffer = io.BufferedRWPair(raw, raw, buffering)
        elif reading:
            buffer = io.BufferedReader(raw, buffering)
        else:
            assert writing
            buffer = io.BufferedWriter(raw, buffering)
        if binary:
            return buffer
        text = io.TextIOWrapper(buffer, encoding, errors, newline)
        text.mode = mode
        return text

    def _decref_socketios(self):
        if self._io_refs > 0:
            self._io_refs -= 1
        if self._closed:
            self.close()

    def _real_close(self, _ss=_socket.socket):
        # This function should not reference any globals. See issue #808164.
        _ss.close(self)

    def close(self):
        # This function should not reference any globals. See issue #808164.
        self._closed = True
        if self._io_refs <= 0:
            self._real_close()

    def detach(self):
        """detach() -> file descriptor

        Close the socket object without closing the underlying file descriptor.
        The object cannot be used after this call, but the file descriptor
        can be reused for other purposes.  The file descriptor is returned.
        """
        self._closed = True
        return super().detach()

    @property
    def family(self):
        """Read-only access to the address family for this socket.
        """
        return _intenum_converter(super().family, AddressFamily)

    @property
    def type(self):
        """Read-only access to the socket type.
        """
        return _intenum_converter(super().type, SocketKind)

    if os.name == 'nt':
        def get_inheritable(self):
            return os.get_handle_inheritable(self.fileno())
        def set_inheritable(self, inheritable):
            os.set_handle_inheritable(self.fileno(), inheritable)
    else:
        def get_inheritable(self):
            return os.get_inheritable(self.fileno())
        def set_inheritable(self, inheritable):
            os.set_inheritable(self.fileno(), inheritable)
    get_inheritable.__doc__ = "Get the inheritable flag of the socket"
    set_inheritable.__doc__ = "Set the inheritable flag of the socket"

def fromfd(fd, family, type, proto=0):
    """ fromfd(fd, family, type[, proto]) -> socket object

    Create a socket object from a duplicate of the given file
    descriptor.  The remaining arguments are the same as for socket().
    """
    nfd = dup(fd)
    return socket(family, type, proto, nfd)

if hasattr(_socket.socket, "share"):
    def fromshare(info):
        """ fromshare(info) -> socket object

        Create a socket object from the bytes object returned by
        socket.share(pid).
        """
        return socket(0, 0, 0, info)
    __all__.append("fromshare")

if hasattr(_socket, "socketpair"):

    def socketpair(family=None, type=SOCK_STREAM, proto=0):
        """socketpair([family[, type[, proto]]]) -> (socket object, socket object)

        Create a pair of socket objects from the sockets returned by the platform
        socketpair() function.
        The arguments are the same as for socket() except the default family is
        AF_UNIX if defined on the platform; otherwise, the default is AF_INET.
        """
        if family is None:
            try:
                family = AF_UNIX
            except NameError:
                family = AF_INET
        a, b = _socket.socketpair(family, type, proto)
        a = socket(family, type, proto, a.detach())
        b = socket(family, type, proto, b.detach())
        return a, b

else:

    # Origin: https://gist.github.com/4325783, by Geert Jansen.  Public domain.
    def socketpair(family=AF_INET, type=SOCK_STREAM, proto=0):
        if family == AF_INET:
            host = _LOCALHOST
        elif family == AF_INET6:
            host = _LOCALHOST_V6
        else:
            raise ValueError("Only AF_INET and AF_INET6 socket address families "
                             "are supported")
        if type != SOCK_STREAM:
            raise ValueError("Only SOCK_STREAM socket type is supported")
        if proto != 0:
            raise ValueError("Only protocol zero is supported")

        # We create a connected TCP socket. Note the trick with
        # setblocking(False) that prevents us from having to create a thread.
        lsock = socket(family, type, proto)
        try:
            lsock.bind((host, 0))
            lsock.listen()
            # On IPv6, ignore flow_info and scope_id
            addr, port = lsock.getsockname()[:2]
            csock = socket(family, type, proto)
            try:
                csock.setblocking(False)
                try:
                    csock.connect((addr, port))
                except (BlockingIOError, InterruptedError):
                    pass
                csock.setblocking(True)
                ssock, _ = lsock.accept()
            except:
                csock.close()
                raise
        finally:
            lsock.close()
        return (ssock, csock)
    __all__.append("socketpair")

socketpair.__doc__ = """socketpair([family[, type[, proto]]]) -> (socket object, socket object)
Create a pair of socket objects from the sockets returned by the platform
socketpair() function.
The arguments are the same as for socket() except the default family is AF_UNIX
if defined on the platform; otherwise, the default is AF_INET.
"""

_blocking_errnos = { EAGAIN, EWOULDBLOCK }

class SocketIO(io.RawIOBase):

    """Raw I/O implementation for stream sockets.

    This class supports the makefile() method on sockets.  It provides
    the raw I/O interface on top of a socket object.
    """

    # One might wonder why not let FileIO do the job instead.  There are two
    # main reasons why FileIO is not adapted:
    # - it wouldn't work under Windows (where you can't used read() and
    #   write() on a socket handle)
    # - it wouldn't work with socket timeouts (FileIO would ignore the
    #   timeout and consider the socket non-blocking)

    # XXX More docs

    def __init__(self, sock, mode):
        if mode not in ("r", "w", "rw", "rb", "wb", "rwb"):
            raise ValueError("invalid mode: %r" % mode)
        io.RawIOBase.__init__(self)
        self._sock = sock
        if "b" not in mode:
            mode += "b"
        self._mode = mode
        self._reading = "r" in mode
        self._writing = "w" in mode
        self._timeout_occurred = False

    def readinto(self, b):
        """Read up to len(b) bytes into the writable buffer *b* and return
        the number of bytes read.  If the socket is non-blocking and no bytes
        are available, None is returned.

        If *b* is non-empty, a 0 return value indicates that the connection
        was shutdown at the other end.
        """
        self._checkClosed()
        self._checkReadable()
        if self._timeout_occurred:
            raise OSError("cannot read from timed out object")
        while True:
            try:
                return self._sock.recv_into(b)
            except timeout:
                self._timeout_occurred = True
                raise
            except InterruptedError:
                continue
            except error as e:
                if e.args[0] in _blocking_errnos:
                    return None
                raise

    def write(self, b):
        """Write the given bytes or bytearray object *b* to the socket
        and return the number of bytes written.  This can be less than
        len(b) if not all data could be written.  If the socket is
        non-blocking and no bytes could be written None is returned.
        """
        self._checkClosed()
        self._checkWritable()
        try:
            return self._sock.send(b)
        except error as e:
            # XXX what about EINTR?
            if e.args[0] in _blocking_errnos:
                return None
            raise

    def readable(self):
        """True if the SocketIO is open for reading.
        """
        if self.closed:
            raise ValueError("I/O operation on closed socket.")
        return self._reading

    def writable(self):
        """True if the SocketIO is open for writing.
        """
        if self.closed:
            raise ValueError("I/O operation on closed socket.")
        return self._writing

    def seekable(self):
        """True if the SocketIO is open for seeking.
        """
        if self.closed:
            raise ValueError("I/O operation on closed socket.")
        return super().seekable()

    def fileno(self):
        """Return the file descriptor of the underlying socket.
        """
        self._checkClosed()
        return self._sock.fileno()

    @property
    def name(self):
        if not self.closed:
            return self.fileno()
        else:
            return -1

    @property
    def mode(self):
        return self._mode

    def close(self):
        """Close the SocketIO object.  This doesn't close the underlying
        socket, except if all references to it have disappeared.
        """
        if self.closed:
            return
        io.RawIOBase.close(self)
        self._sock._decref_socketios()
        self._sock = None


def getfqdn(name=''):
    """Get fully qualified domain name from name.

    An empty argument is interpreted as meaning the local host.

    First the hostname returned by gethostbyaddr() is checked, then
    possibly existing aliases. In case no FQDN is available, hostname
    from gethostname() is returned.
    """
    name = name.strip()
    if not name or name == '0.0.0.0':
        name = gethostname()
    try:
        hostname, aliases, ipaddrs = gethostbyaddr(name)
    except error:
        pass
    else:
        aliases.insert(0, hostname)
        for name in aliases:
            if '.' in name:
                break
        else:
            name = hostname
    return name


_GLOBAL_DEFAULT_TIMEOUT = object()

def create_connection(address, timeout=_GLOBAL_DEFAULT_TIMEOUT,
                      source_address=None):
    """Connect to *address* and return the socket object.

    Convenience function.  Connect to *address* (a 2-tuple ``(host,
    port)``) and return the socket object.  Passing the optional
    *timeout* parameter will set the timeout on the socket instance
    before attempting to connect.  If no *timeout* is supplied, the
    global default timeout setting returned by :func:`getdefaulttimeout`
    is used.  If *source_address* is set it must be a tuple of (host, port)
    for the socket to bind as a source address before making the connection.
    An host of '' or port 0 tells the OS to use the default.
    """

    host, port = address
    err = None
    for res in getaddrinfo(host, port, 0, SOCK_STREAM):
        af, socktype, proto, canonname, sa = res
        sock = None
        try:
            sock = socket(af, socktype, proto)
            if timeout is not _GLOBAL_DEFAULT_TIMEOUT:
                sock.settimeout(timeout)
            if source_address:
                sock.bind(source_address)
            sock.connect(sa)
            return sock

        except error as _:
            err = _
            if sock is not None:
                sock.close()

    if err is not None:
        raise err
    else:
        raise error("getaddrinfo returns an empty list")

def getaddrinfo(host, port, family=0, type=0, proto=0, flags=0):
    """Resolve host and port into list of address info entries.

    Translate the host/port argument into a sequence of 5-tuples that contain
    all the necessary arguments for creating a socket connected to that service.
    host is a domain name, a string representation of an IPv4/v6 address or
    None. port is a string service name such as 'http', a numeric port number or
    None. By passing None as the value of host and port, you can pass NULL to
    the underlying C API.

    The family, type and proto arguments can be optionally specified in order to
    narrow the list of addresses returned. Passing zero as a value for each of
    these arguments selects the full range of results.
    """
    # We override this function since we want to translate the numeric family
    # and socket type values to enum constants.
    addrlist = []
    for res in _socket.getaddrinfo(host, port, family, type, proto, flags):
        af, socktype, proto, canonname, sa = res
        addrlist.append((_intenum_converter(af, AddressFamily),
                         _intenum_converter(socktype, SocketKind),
                         proto, canonname, sa))
    return addrlist
lib\socketserver.py
"""Generic socket server classes.

This module tries to capture the various aspects of defining a server:

For socket-based servers:

- address family:
        - AF_INET{,6}: IP (Internet Protocol) sockets (default)
        - AF_UNIX: Unix domain sockets
        - others, e.g. AF_DECNET are conceivable (see <socket.h>
- socket type:
        - SOCK_STREAM (reliable stream, e.g. TCP)
        - SOCK_DGRAM (datagrams, e.g. UDP)

For request-based servers (including socket-based):

- client address verification before further looking at the request
        (This is actually a hook for any processing that needs to look
         at the request before anything else, e.g. logging)
- how to handle multiple requests:
        - synchronous (one request is handled at a time)
        - forking (each request is handled by a new process)
        - threading (each request is handled by a new thread)

The classes in this module favor the server type that is simplest to
write: a synchronous TCP/IP server.  This is bad class design, but
save some typing.  (There's also the issue that a deep class hierarchy
slows down method lookups.)

There are five classes in an inheritance diagram, four of which represent
synchronous servers of four types:

        +------------+
        | BaseServer |
        +------------+
              |
              v
        +-----------+        +------------------+
        | TCPServer |------->| UnixStreamServer |
        +-----------+        +------------------+
              |
              v
        +-----------+        +--------------------+
        | UDPServer |------->| UnixDatagramServer |
        +-----------+        +--------------------+

Note that UnixDatagramServer derives from UDPServer, not from
UnixStreamServer -- the only difference between an IP and a Unix
stream server is the address family, which is simply repeated in both
unix server classes.

Forking and threading versions of each type of server can be created
using the ForkingMixIn and ThreadingMixIn mix-in classes.  For
instance, a threading UDP server class is created as follows:

        class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass

The Mix-in class must come first, since it overrides a method defined
in UDPServer! Setting the various member variables also changes
the behavior of the underlying server mechanism.

To implement a service, you must derive a class from
BaseRequestHandler and redefine its handle() method.  You can then run
various versions of the service by combining one of the server classes
with your request handler class.

The request handler class must be different for datagram or stream
services.  This can be hidden by using the request handler
subclasses StreamRequestHandler or DatagramRequestHandler.

Of course, you still have to use your head!

For instance, it makes no sense to use a forking server if the service
contains state in memory that can be modified by requests (since the
modifications in the child process would never reach the initial state
kept in the parent process and passed to each child).  In this case,
you can use a threading server, but you will probably have to use
locks to avoid two requests that come in nearly simultaneous to apply
conflicting changes to the server state.

On the other hand, if you are building e.g. an HTTP server, where all
data is stored externally (e.g. in the file system), a synchronous
class will essentially render the service "deaf" while one request is
being handled -- which may be for a very long time if a client is slow
to read all the data it has requested.  Here a threading or forking
server is appropriate.

In some cases, it may be appropriate to process part of a request
synchronously, but to finish processing in a forked child depending on
the request data.  This can be implemented by using a synchronous
server and doing an explicit fork in the request handler class
handle() method.

Another approach to handling multiple simultaneous requests in an
environment that supports neither threads nor fork (or where these are
too expensive or inappropriate for the service) is to maintain an
explicit table of partially finished requests and to use select() to
decide which request to work on next (or whether to handle a new
incoming request).  This is particularly important for stream services
where each client can potentially be connected for a long time (if
threads or subprocesses cannot be used).

Future work:
- Standard classes for Sun RPC (which uses either UDP or TCP)
- Standard mix-in classes to implement various authentication
  and encryption schemes
- Standard framework for select-based multiplexing

XXX Open problems:
- What to do with out-of-band data?

BaseServer:
- split generic "request" functionality out into BaseServer class.
  Copyright (C) 2000  Luke Kenneth Casson Leighton <[email protected]>

  example: read entries from a SQL database (requires overriding
  get_request() to return a table entry from the database).
  entry is processed by a RequestHandlerClass.

"""

# Author of the BaseServer patch: Luke Kenneth Casson Leighton

# XXX Warning!
# There is a test suite for this module, but it cannot be run by the
# standard regression test.
# To run it manually, run Lib/test/test_socketserver.py.

__version__ = "0.4"


import socket
import select
import os
import errno
try:
    import threading
except ImportError:
    import dummy_threading as threading

__all__ = ["BaseServer", "TCPServer", "UDPServer", "ForkingUDPServer",
           "ForkingTCPServer", "ThreadingUDPServer", "ThreadingTCPServer",
           "BaseRequestHandler", "StreamRequestHandler",
           "DatagramRequestHandler", "ThreadingMixIn", "ForkingMixIn"]
if hasattr(socket, "AF_UNIX"):
    __all__.extend(["UnixStreamServer","UnixDatagramServer",
                    "ThreadingUnixStreamServer",
                    "ThreadingUnixDatagramServer"])

def _eintr_retry(func, *args):
    """restart a system call interrupted by EINTR"""
    while True:
        try:
            return func(*args)
        except OSError as e:
            if e.errno != errno.EINTR:
                raise

class BaseServer:

    """Base class for server classes.

    Methods for the caller:

    - __init__(server_address, RequestHandlerClass)
    - serve_forever(poll_interval=0.5)
    - shutdown()
    - handle_request()  # if you do not use serve_forever()
    - fileno() -> int   # for select()

    Methods that may be overridden:

    - server_bind()
    - server_activate()
    - get_request() -> request, client_address
    - handle_timeout()
    - verify_request(request, client_address)
    - server_close()
    - process_request(request, client_address)
    - shutdown_request(request)
    - close_request(request)
    - service_actions()
    - handle_error()

    Methods for derived classes:

    - finish_request(request, client_address)

    Class variables that may be overridden by derived classes or
    instances:

    - timeout
    - address_family
    - socket_type
    - allow_reuse_address

    Instance variables:

    - RequestHandlerClass
    - socket

    """

    timeout = None

    def __init__(self, server_address, RequestHandlerClass):
        """Constructor.  May be extended, do not override."""
        self.server_address = server_address
        self.RequestHandlerClass = RequestHandlerClass
        self.__is_shut_down = threading.Event()
        self.__shutdown_request = False

    def server_activate(self):
        """Called by constructor to activate the server.

        May be overridden.

        """
        pass

    def serve_forever(self, poll_interval=0.5):
        """Handle one request at a time until shutdown.

        Polls for shutdown every poll_interval seconds. Ignores
        self.timeout. If you need to do periodic tasks, do them in
        another thread.
        """
        self.__is_shut_down.clear()
        try:
            while not self.__shutdown_request:
                # XXX: Consider using another file descriptor or
                # connecting to the socket to wake this up instead of
                # polling. Polling reduces our responsiveness to a
                # shutdown request and wastes cpu at all other times.
                r, w, e = _eintr_retry(select.select, [self], [], [],
                                       poll_interval)
                if self in r:
                    self._handle_request_noblock()

                self.service_actions()
        finally:
            self.__shutdown_request = False
            self.__is_shut_down.set()

    def shutdown(self):
        """Stops the serve_forever loop.

        Blocks until the loop has finished. This must be called while
        serve_forever() is running in another thread, or it will
        deadlock.
        """
        self.__shutdown_request = True
        self.__is_shut_down.wait()

    def service_actions(self):
        """Called by the serve_forever() loop.

        May be overridden by a subclass / Mixin to implement any code that
        needs to be run during the loop.
        """
        pass

    # The distinction between handling, getting, processing and
    # finishing a request is fairly arbitrary.  Remember:
    #
    # - handle_request() is the top-level call.  It calls
    #   select, get_request(), verify_request() and process_request()
    # - get_request() is different for stream or datagram sockets
    # - process_request() is the place that may fork a new process
    #   or create a new thread to finish the request
    # - finish_request() instantiates the request handler class;
    #   this constructor will handle the request all by itself

    def handle_request(self):
        """Handle one request, possibly blocking.

        Respects self.timeout.
        """
        # Support people who used socket.settimeout() to escape
        # handle_request before self.timeout was available.
        timeout = self.socket.gettimeout()
        if timeout is None:
            timeout = self.timeout
        elif self.timeout is not None:
            timeout = min(timeout, self.timeout)
        fd_sets = _eintr_retry(select.select, [self], [], [], timeout)
        if not fd_sets[0]:
            self.handle_timeout()
            return
        self._handle_request_noblock()

    def _handle_request_noblock(self):
        """Handle one request, without blocking.

        I assume that select.select has returned that the socket is
        readable before this function was called, so there should be
        no risk of blocking in get_request().
        """
        try:
            request, client_address = self.get_request()
        except OSError:
            return
        if self.verify_request(request, client_address):
            try:
                self.process_request(request, client_address)
            except:
                self.handle_error(request, client_address)
                self.shutdown_request(request)

    def handle_timeout(self):
        """Called if no new request arrives within self.timeout.

        Overridden by ForkingMixIn.
        """
        pass

    def verify_request(self, request, client_address):
        """Verify the request.  May be overridden.

        Return True if we should proceed with this request.

        """
        return True

    def process_request(self, request, client_address):
        """Call finish_request.

        Overridden by ForkingMixIn and ThreadingMixIn.

        """
        self.finish_request(request, client_address)
        self.shutdown_request(request)

    def server_close(self):
        """Called to clean-up the server.

        May be overridden.

        """
        pass

    def finish_request(self, request, client_address):
        """Finish one request by instantiating RequestHandlerClass."""
        self.RequestHandlerClass(request, client_address, self)

    def shutdown_request(self, request):
        """Called to shutdown and close an individual request."""
        self.close_request(request)

    def close_request(self, request):
        """Called to clean up an individual request."""
        pass

    def handle_error(self, request, client_address):
        """Handle an error gracefully.  May be overridden.

        The default is to print a traceback and continue.

        """
        print('-'*40)
        print('Exception happened during processing of request from', end=' ')
        print(client_address)
        import traceback
        traceback.print_exc() # XXX But this goes to stderr!
        print('-'*40)


class TCPServer(BaseServer):

    """Base class for various socket-based server classes.

    Defaults to synchronous IP stream (i.e., TCP).

    Methods for the caller:

    - __init__(server_address, RequestHandlerClass, bind_and_activate=True)
    - serve_forever(poll_interval=0.5)
    - shutdown()
    - handle_request()  # if you don't use serve_forever()
    - fileno() -> int   # for select()

    Methods that may be overridden:

    - server_bind()
    - server_activate()
    - get_request() -> request, client_address
    - handle_timeout()
    - verify_request(request, client_address)
    - process_request(request, client_address)
    - shutdown_request(request)
    - close_request(request)
    - handle_error()

    Methods for derived classes:

    - finish_request(request, client_address)

    Class variables that may be overridden by derived classes or
    instances:

    - timeout
    - address_family
    - socket_type
    - request_queue_size (only for stream sockets)
    - allow_reuse_address

    Instance variables:

    - server_address
    - RequestHandlerClass
    - socket

    """

    address_family = socket.AF_INET

    socket_type = socket.SOCK_STREAM

    request_queue_size = 5

    allow_reuse_address = False

    def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True):
        """Constructor.  May be extended, do not override."""
        BaseServer.__init__(self, server_address, RequestHandlerClass)
        self.socket = socket.socket(self.address_family,
                                    self.socket_type)
        if bind_and_activate:
            try:
                self.server_bind()
                self.server_activate()
            except:
                self.server_close()
                raise

    def server_bind(self):
        """Called by constructor to bind the socket.

        May be overridden.

        """
        if self.allow_reuse_address:
            self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
        self.socket.bind(self.server_address)
        self.server_address = self.socket.getsockname()

    def server_activate(self):
        """Called by constructor to activate the server.

        May be overridden.

        """
        self.socket.listen(self.request_queue_size)

    def server_close(self):
        """Called to clean-up the server.

        May be overridden.

        """
        self.socket.close()

    def fileno(self):
        """Return socket file number.

        Interface required by select().

        """
        return self.socket.fileno()

    def get_request(self):
        """Get the request and client address from the socket.

        May be overridden.

        """
        return self.socket.accept()

    def shutdown_request(self, request):
        """Called to shutdown and close an individual request."""
        try:
            #explicitly shutdown.  socket.close() merely releases
            #the socket and waits for GC to perform the actual close.
            request.shutdown(socket.SHUT_WR)
        except OSError:
            pass #some platforms may raise ENOTCONN here
        self.close_request(request)

    def close_request(self, request):
        """Called to clean up an individual request."""
        request.close()


class UDPServer(TCPServer):

    """UDP server class."""

    allow_reuse_address = False

    socket_type = socket.SOCK_DGRAM

    max_packet_size = 8192

    def get_request(self):
        data, client_addr = self.socket.recvfrom(self.max_packet_size)
        return (data, self.socket), client_addr

    def server_activate(self):
        # No need to call listen() for UDP.
        pass

    def shutdown_request(self, request):
        # No need to shutdown anything.
        self.close_request(request)

    def close_request(self, request):
        # No need to close anything.
        pass

class ForkingMixIn:

    """Mix-in class to handle each request in a new process."""

    timeout = 300
    active_children = None
    max_children = 40

    def collect_children(self):
        """Internal routine to wait for children that have exited."""
        if self.active_children is None:
            return

        # If we're above the max number of children, wait and reap them until
        # we go back below threshold. Note that we use waitpid(-1) below to be
        # able to collect children in size(<defunct children>) syscalls instead
        # of size(<children>): the downside is that this might reap children
        # which we didn't spawn, which is why we only resort to this when we're
        # above max_children.
        while len(self.active_children) >= self.max_children:
            try:
                pid, _ = os.waitpid(-1, 0)
                self.active_children.discard(pid)
            except InterruptedError:
                pass
            except ChildProcessError:
                # we don't have any children, we're done
                self.active_children.clear()
            except OSError:
                break

        # Now reap all defunct children.
        for pid in self.active_children.copy():
            try:
                pid, _ = os.waitpid(pid, os.WNOHANG)
                # if the child hasn't exited yet, pid will be 0 and ignored by
                # discard() below
                self.active_children.discard(pid)
            except ChildProcessError:
                # someone else reaped it
                self.active_children.discard(pid)
            except OSError:
                pass

    def handle_timeout(self):
        """Wait for zombies after self.timeout seconds of inactivity.

        May be extended, do not override.
        """
        self.collect_children()

    def service_actions(self):
        """Collect the zombie child processes regularly in the ForkingMixIn.

        service_actions is called in the BaseServer's serve_forver loop.
        """
        self.collect_children()

    def process_request(self, request, client_address):
        """Fork a new subprocess to process the request."""
        pid = os.fork()
        if pid:
            # Parent process
            if self.active_children is None:
                self.active_children = set()
            self.active_children.add(pid)
            self.close_request(request)
            return
        else:
            # Child process.
            # This must never return, hence os._exit()!
            try:
                self.finish_request(request, client_address)
                self.shutdown_request(request)
                os._exit(0)
            except:
                try:
                    self.handle_error(request, client_address)
                    self.shutdown_request(request)
                finally:
                    os._exit(1)


class ThreadingMixIn:
    """Mix-in class to handle each request in a new thread."""

    # Decides how threads will act upon termination of the
    # main process
    daemon_threads = False

    def process_request_thread(self, request, client_address):
        """Same as in BaseServer but as a thread.

        In addition, exception handling is done here.

        """
        try:
            self.finish_request(request, client_address)
            self.shutdown_request(request)
        except:
            self.handle_error(request, client_address)
            self.shutdown_request(request)

    def process_request(self, request, client_address):
        """Start a new thread to process the request."""
        t = threading.Thread(target = self.process_request_thread,
                             args = (request, client_address))
        t.daemon = self.daemon_threads
        t.start()


class ForkingUDPServer(ForkingMixIn, UDPServer): pass
class ForkingTCPServer(ForkingMixIn, TCPServer): pass

class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass

if hasattr(socket, 'AF_UNIX'):

    class UnixStreamServer(TCPServer):
        address_family = socket.AF_UNIX

    class UnixDatagramServer(UDPServer):
        address_family = socket.AF_UNIX

    class ThreadingUnixStreamServer(ThreadingMixIn, UnixStreamServer): pass

    class ThreadingUnixDatagramServer(ThreadingMixIn, UnixDatagramServer): pass

class BaseRequestHandler:

    """Base class for request handler classes.

    This class is instantiated for each request to be handled.  The
    constructor sets the instance variables request, client_address
    and server, and then calls the handle() method.  To implement a
    specific service, all you need to do is to derive a class which
    defines a handle() method.

    The handle() method can find the request as self.request, the
    client address as self.client_address, and the server (in case it
    needs access to per-server information) as self.server.  Since a
    separate instance is created for each request, the handle() method
    can define arbitrary other instance variariables.

    """

    def __init__(self, request, client_address, server):
        self.request = request
        self.client_address = client_address
        self.server = server
        self.setup()
        try:
            self.handle()
        finally:
            self.finish()

    def setup(self):
        pass

    def handle(self):
        pass

    def finish(self):
        pass


# The following two classes make it possible to use the same service
# class for stream or datagram servers.
# Each class sets up these instance variables:
# - rfile: a file object from which receives the request is read
# - wfile: a file object to which the reply is written
# When the handle() method returns, wfile is flushed properly


class StreamRequestHandler(BaseRequestHandler):

    """Define self.rfile and self.wfile for stream sockets."""

    # Default buffer sizes for rfile, wfile.
    # We default rfile to buffered because otherwise it could be
    # really slow for large data (a getc() call per byte); we make
    # wfile unbuffered because (a) often after a write() we want to
    # read and we need to flush the line; (b) big writes to unbuffered
    # files are typically optimized by stdio even when big reads
    # aren't.
    rbufsize = -1
    wbufsize = 0

    # A timeout to apply to the request socket, if not None.
    timeout = None

    # Disable nagle algorithm for this socket, if True.
    # Use only when wbufsize != 0, to avoid small packets.
    disable_nagle_algorithm = False

    def setup(self):
        self.connection = self.request
        if self.timeout is not None:
            self.connection.settimeout(self.timeout)
        if self.disable_nagle_algorithm:
            self.connection.setsockopt(socket.IPPROTO_TCP,
                                       socket.TCP_NODELAY, True)
        self.rfile = self.connection.makefile('rb', self.rbufsize)
        self.wfile = self.connection.makefile('wb', self.wbufsize)

    def finish(self):
        if not self.wfile.closed:
            try:
                self.wfile.flush()
            except socket.error:
                # An final socket error may have occurred here, such as
                # the local error ECONNABORTED.
                pass
        self.wfile.close()
        self.rfile.close()


class DatagramRequestHandler(BaseRequestHandler):

    # XXX Regrettably, I cannot get this working on Linux;
    # s.recvfrom() doesn't return a meaningful client address.

    """Define self.rfile and self.wfile for datagram sockets."""

    def setup(self):
        from io import BytesIO
        self.packet, self.socket = self.request
        self.rfile = BytesIO(self.packet)
        self.wfile = BytesIO()

    def finish(self):
        self.socket.sendto(self.wfile.getvalue(), self.client_address)
lib\sre_compile.py
#
# Secret Labs' Regular Expression Engine
#
# convert template to internal format
#
# Copyright (c) 1997-2001 by Secret Labs AB.  All rights reserved.
#
# See the sre.py file for information on usage and redistribution.
#

"""Internal support module for sre"""

import _sre
import sre_parse
from sre_constants import *
from _sre import MAXREPEAT

assert _sre.MAGIC == MAGIC, "SRE module mismatch"

if _sre.CODESIZE == 2:
    MAXCODE = 65535
else:
    MAXCODE = 0xFFFFFFFF

_LITERAL_CODES = set([LITERAL, NOT_LITERAL])
_REPEATING_CODES = set([REPEAT, MIN_REPEAT, MAX_REPEAT])
_SUCCESS_CODES = set([SUCCESS, FAILURE])
_ASSERT_CODES = set([ASSERT, ASSERT_NOT])

# Sets of lowercase characters which have the same uppercase.
_equivalences = (
    # LATIN SMALL LETTER I, LATIN SMALL LETTER DOTLESS I
    (0x69, 0x131), # iı
    # LATIN SMALL LETTER S, LATIN SMALL LETTER LONG S
    (0x73, 0x17f), # sſ
    # MICRO SIGN, GREEK SMALL LETTER MU
    (0xb5, 0x3bc), # µμ
    # COMBINING GREEK YPOGEGRAMMENI, GREEK SMALL LETTER IOTA, GREEK PROSGEGRAMMENI
    (0x345, 0x3b9, 0x1fbe), # \u0345ιι
    # GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS, GREEK SMALL LETTER IOTA WITH DIALYTIKA AND OXIA
    (0x390, 0x1fd3), # ΐΐ
    # GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS, GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND OXIA
    (0x3b0, 0x1fe3), # ΰΰ
    # GREEK SMALL LETTER BETA, GREEK BETA SYMBOL
    (0x3b2, 0x3d0), # βϐ
    # GREEK SMALL LETTER EPSILON, GREEK LUNATE EPSILON SYMBOL
    (0x3b5, 0x3f5), # εϵ
    # GREEK SMALL LETTER THETA, GREEK THETA SYMBOL
    (0x3b8, 0x3d1), # θϑ
    # GREEK SMALL LETTER KAPPA, GREEK KAPPA SYMBOL
    (0x3ba, 0x3f0), # κϰ
    # GREEK SMALL LETTER PI, GREEK PI SYMBOL
    (0x3c0, 0x3d6), # πϖ
    # GREEK SMALL LETTER RHO, GREEK RHO SYMBOL
    (0x3c1, 0x3f1), # ρϱ
    # GREEK SMALL LETTER FINAL SIGMA, GREEK SMALL LETTER SIGMA
    (0x3c2, 0x3c3), # ςσ
    # GREEK SMALL LETTER PHI, GREEK PHI SYMBOL
    (0x3c6, 0x3d5), # φϕ
    # LATIN SMALL LETTER S WITH DOT ABOVE, LATIN SMALL LETTER LONG S WITH DOT ABOVE
    (0x1e61, 0x1e9b), # ṡẛ
    # LATIN SMALL LIGATURE LONG S T, LATIN SMALL LIGATURE ST
    (0xfb05, 0xfb06), # ſtst
)

# Maps the lowercase code to lowercase codes which have the same uppercase.
_ignorecase_fixes = {i: tuple(j for j in t if i != j)
                     for t in _equivalences for i in t}

def _compile(code, pattern, flags):
    # internal: compile a (sub)pattern
    emit = code.append
    _len = len
    LITERAL_CODES = _LITERAL_CODES
    REPEATING_CODES = _REPEATING_CODES
    SUCCESS_CODES = _SUCCESS_CODES
    ASSERT_CODES = _ASSERT_CODES
    if (flags & SRE_FLAG_IGNORECASE and
            not (flags & SRE_FLAG_LOCALE) and
            flags & SRE_FLAG_UNICODE):
        fixes = _ignorecase_fixes
    else:
        fixes = None
    for op, av in pattern:
        if op in LITERAL_CODES:
            if flags & SRE_FLAG_IGNORECASE:
                lo = _sre.getlower(av, flags)
                if fixes and lo in fixes:
                    emit(OPCODES[IN_IGNORE])
                    skip = _len(code); emit(0)
                    if op is NOT_LITERAL:
                        emit(OPCODES[NEGATE])
                    for k in (lo,) + fixes[lo]:
                        emit(OPCODES[LITERAL])
                        emit(k)
                    emit(OPCODES[FAILURE])
                    code[skip] = _len(code) - skip
                else:
                    emit(OPCODES[OP_IGNORE[op]])
                    emit(lo)
            else:
                emit(OPCODES[op])
                emit(av)
        elif op is IN:
            if flags & SRE_FLAG_IGNORECASE:
                emit(OPCODES[OP_IGNORE[op]])
                def fixup(literal, flags=flags):
                    return _sre.getlower(literal, flags)
            else:
                emit(OPCODES[op])
                fixup = None
            skip = _len(code); emit(0)
            _compile_charset(av, flags, code, fixup, fixes)
            code[skip] = _len(code) - skip
        elif op is ANY:
            if flags & SRE_FLAG_DOTALL:
                emit(OPCODES[ANY_ALL])
            else:
                emit(OPCODES[ANY])
        elif op in REPEATING_CODES:
            if flags & SRE_FLAG_TEMPLATE:
                raise error("internal: unsupported template operator")
            elif _simple(av) and op is not REPEAT:
                if op is MAX_REPEAT:
                    emit(OPCODES[REPEAT_ONE])
                else:
                    emit(OPCODES[MIN_REPEAT_ONE])
                skip = _len(code); emit(0)
                emit(av[0])
                emit(av[1])
                _compile(code, av[2], flags)
                emit(OPCODES[SUCCESS])
                code[skip] = _len(code) - skip
            else:
                emit(OPCODES[REPEAT])
                skip = _len(code); emit(0)
                emit(av[0])
                emit(av[1])
                _compile(code, av[2], flags)
                code[skip] = _len(code) - skip
                if op is MAX_REPEAT:
                    emit(OPCODES[MAX_UNTIL])
                else:
                    emit(OPCODES[MIN_UNTIL])
        elif op is SUBPATTERN:
            if av[0]:
                emit(OPCODES[MARK])
                emit((av[0]-1)*2)
            # _compile_info(code, av[1], flags)
            _compile(code, av[1], flags)
            if av[0]:
                emit(OPCODES[MARK])
                emit((av[0]-1)*2+1)
        elif op in SUCCESS_CODES:
            emit(OPCODES[op])
        elif op in ASSERT_CODES:
            emit(OPCODES[op])
            skip = _len(code); emit(0)
            if av[0] >= 0:
                emit(0) # look ahead
            else:
                lo, hi = av[1].getwidth()
                if lo != hi:
                    raise error("look-behind requires fixed-width pattern")
                emit(lo) # look behind
            _compile(code, av[1], flags)
            emit(OPCODES[SUCCESS])
            code[skip] = _len(code) - skip
        elif op is CALL:
            emit(OPCODES[op])
            skip = _len(code); emit(0)
            _compile(code, av, flags)
            emit(OPCODES[SUCCESS])
            code[skip] = _len(code) - skip
        elif op is AT:
            emit(OPCODES[op])
            if flags & SRE_FLAG_MULTILINE:
                av = AT_MULTILINE.get(av, av)
            if flags & SRE_FLAG_LOCALE:
                av = AT_LOCALE.get(av, av)
            elif flags & SRE_FLAG_UNICODE:
                av = AT_UNICODE.get(av, av)
            emit(ATCODES[av])
        elif op is BRANCH:
            emit(OPCODES[op])
            tail = []
            tailappend = tail.append
            for av in av[1]:
                skip = _len(code); emit(0)
                # _compile_info(code, av, flags)
                _compile(code, av, flags)
                emit(OPCODES[JUMP])
                tailappend(_len(code)); emit(0)
                code[skip] = _len(code) - skip
            emit(0) # end of branch
            for tail in tail:
                code[tail] = _len(code) - tail
        elif op is CATEGORY:
            emit(OPCODES[op])
            if flags & SRE_FLAG_LOCALE:
                av = CH_LOCALE[av]
            elif flags & SRE_FLAG_UNICODE:
                av = CH_UNICODE[av]
            emit(CHCODES[av])
        elif op is GROUPREF:
            if flags & SRE_FLAG_IGNORECASE:
                emit(OPCODES[OP_IGNORE[op]])
            else:
                emit(OPCODES[op])
            emit(av-1)
        elif op is GROUPREF_EXISTS:
            emit(OPCODES[op])
            emit(av[0]-1)
            skipyes = _len(code); emit(0)
            _compile(code, av[1], flags)
            if av[2]:
                emit(OPCODES[JUMP])
                skipno = _len(code); emit(0)
                code[skipyes] = _len(code) - skipyes + 1
                _compile(code, av[2], flags)
                code[skipno] = _len(code) - skipno
            else:
                code[skipyes] = _len(code) - skipyes + 1
        else:
            raise ValueError("unsupported operand type", op)

def _compile_charset(charset, flags, code, fixup=None, fixes=None):
    # compile charset subprogram
    emit = code.append
    for op, av in _optimize_charset(charset, fixup, fixes,
                                    flags & SRE_FLAG_UNICODE):
        emit(OPCODES[op])
        if op is NEGATE:
            pass
        elif op is LITERAL:
            emit(av)
        elif op is RANGE:
            emit(av[0])
            emit(av[1])
        elif op is CHARSET:
            code.extend(av)
        elif op is BIGCHARSET:
            code.extend(av)
        elif op is CATEGORY:
            if flags & SRE_FLAG_LOCALE:
                emit(CHCODES[CH_LOCALE[av]])
            elif flags & SRE_FLAG_UNICODE:
                emit(CHCODES[CH_UNICODE[av]])
            else:
                emit(CHCODES[av])
        else:
            raise error("internal: unsupported set operator")
    emit(OPCODES[FAILURE])

def _optimize_charset(charset, fixup, fixes, isunicode):
    # internal: optimize character set
    out = []
    tail = []
    charmap = bytearray(256)
    for op, av in charset:
        while True:
            try:
                if op is LITERAL:
                    if fixup:
                        i = fixup(av)
                        charmap[i] = 1
                        if fixes and i in fixes:
                            for k in fixes[i]:
                                charmap[k] = 1
                    else:
                        charmap[av] = 1
                elif op is RANGE:
                    r = range(av[0], av[1]+1)
                    if fixup:
                        r = map(fixup, r)
                    if fixup and fixes:
                        for i in r:
                            charmap[i] = 1
                            if i in fixes:
                                for k in fixes[i]:
                                    charmap[k] = 1
                    else:
                        for i in r:
                            charmap[i] = 1
                elif op is NEGATE:
                    out.append((op, av))
                else:
                    tail.append((op, av))
            except IndexError:
                if len(charmap) == 256:
                    # character set contains non-UCS1 character codes
                    charmap += b'\0' * 0xff00
                    continue
                # character set contains non-BMP character codes
                if fixup and isunicode and op is RANGE:
                    lo, hi = av
                    ranges = [av]
                    # There are only two ranges of cased astral characters:
                    # 10400-1044F (Deseret) and 118A0-118DF (Warang Citi).
                    _fixup_range(max(0x10000, lo), min(0x11fff, hi),
                                 ranges, fixup)
                    for lo, hi in ranges:
                        if lo == hi:
                            tail.append((LITERAL, hi))
                        else:
                            tail.append((RANGE, (lo, hi)))
                else:
                    tail.append((op, av))
            break

    # compress character map
    runs = []
    q = 0
    while True:
        p = charmap.find(1, q)
        if p < 0:
            break
        if len(runs) >= 2:
            runs = None
            break
        q = charmap.find(0, p)
        if q < 0:
            runs.append((p, len(charmap)))
            break
        runs.append((p, q))
    if runs is not None:
        # use literal/range
        for p, q in runs:
            if q - p == 1:
                out.append((LITERAL, p))
            else:
                out.append((RANGE, (p, q - 1)))
        out += tail
        # if the case was changed or new representation is more compact
        if fixup or len(out) < len(charset):
            return out
        # else original character set is good enough
        return charset

    # use bitmap
    if len(charmap) == 256:
        data = _mk_bitmap(charmap)
        out.append((CHARSET, data))
        out += tail
        return out

    # To represent a big charset, first a bitmap of all characters in the
    # set is constructed. Then, this bitmap is sliced into chunks of 256
    # characters, duplicate chunks are eliminated, and each chunk is
    # given a number. In the compiled expression, the charset is
    # represented by a 32-bit word sequence, consisting of one word for
    # the number of different chunks, a sequence of 256 bytes (64 words)
    # of chunk numbers indexed by their original chunk position, and a
    # sequence of 256-bit chunks (8 words each).

    # Compression is normally good: in a typical charset, large ranges of
    # Unicode will be either completely excluded (e.g. if only cyrillic
    # letters are to be matched), or completely included (e.g. if large
    # subranges of Kanji match). These ranges will be represented by
    # chunks of all one-bits or all zero-bits.

    # Matching can be also done efficiently: the more significant byte of
    # the Unicode character is an index into the chunk number, and the
    # less significant byte is a bit index in the chunk (just like the
    # CHARSET matching).

    charmap = bytes(charmap) # should be hashable
    comps = {}
    mapping = bytearray(256)
    block = 0
    data = bytearray()
    for i in range(0, 65536, 256):
        chunk = charmap[i: i + 256]
        if chunk in comps:
            mapping[i // 256] = comps[chunk]
        else:
            mapping[i // 256] = comps[chunk] = block
            block += 1
            data += chunk
    data = _mk_bitmap(data)
    data[0:0] = [block] + _bytes_to_codes(mapping)
    out.append((BIGCHARSET, data))
    out += tail
    return out

def _fixup_range(lo, hi, ranges, fixup):
    for i in map(fixup, range(lo, hi+1)):
        for k, (lo, hi) in enumerate(ranges):
            if i < lo:
                if l == lo - 1:
                    ranges[k] = (i, hi)
                else:
                    ranges.insert(k, (i, i))
                break
            elif i > hi:
                if i == hi + 1:
                    ranges[k] = (lo, i)
                    break
            else:
                break
        else:
            ranges.append((i, i))

_CODEBITS = _sre.CODESIZE * 8
_BITS_TRANS = b'0' + b'1' * 255
def _mk_bitmap(bits, _CODEBITS=_CODEBITS, _int=int):
    s = bits.translate(_BITS_TRANS)[::-1]
    return [_int(s[i - _CODEBITS: i], 2)
            for i in range(len(s), 0, -_CODEBITS)]

def _bytes_to_codes(b):
    # Convert block indices to word array
    a = memoryview(b).cast('I')
    assert a.itemsize == _sre.CODESIZE
    assert len(a) * a.itemsize == len(b)
    return a.tolist()

def _simple(av):
    # check if av is a "simple" operator
    lo, hi = av[2].getwidth()
    return lo == hi == 1 and av[2][0][0] != SUBPATTERN

def _generate_overlap_table(prefix):
    """
    Generate an overlap table for the following prefix.
    An overlap table is a table of the same size as the prefix which
    informs about the potential self-overlap for each index in the prefix:
    - if overlap[i] == 0, prefix[i:] can't overlap prefix[0:...]
    - if overlap[i] == k with 0 < k <= i, prefix[i-k+1:i+1] overlaps with
      prefix[0:k]
    """
    table = [0] * len(prefix)
    for i in range(1, len(prefix)):
        idx = table[i - 1]
        while prefix[i] != prefix[idx]:
            if idx == 0:
                table[i] = 0
                break
            idx = table[idx - 1]
        else:
            table[i] = idx + 1
    return table

def _compile_info(code, pattern, flags):
    # internal: compile an info block.  in the current version,
    # this contains min/max pattern width, and an optional literal
    # prefix or a character map
    lo, hi = pattern.getwidth()
    if lo == 0:
        return # not worth it
    # look for a literal prefix
    prefix = []
    prefixappend = prefix.append
    prefix_skip = 0
    charset = [] # not used
    charsetappend = charset.append
    if not (flags & SRE_FLAG_IGNORECASE):
        # look for literal prefix
        for op, av in pattern.data:
            if op is LITERAL:
                if len(prefix) == prefix_skip:
                    prefix_skip = prefix_skip + 1
                prefixappend(av)
            elif op is SUBPATTERN and len(av[1]) == 1:
                op, av = av[1][0]
                if op is LITERAL:
                    prefixappend(av)
                else:
                    break
            else:
                break
        # if no prefix, look for charset prefix
        if not prefix and pattern.data:
            op, av = pattern.data[0]
            if op is SUBPATTERN and av[1]:
                op, av = av[1][0]
                if op is LITERAL:
                    charsetappend((op, av))
                elif op is BRANCH:
                    c = []
                    cappend = c.append
                    for p in av[1]:
                        if not p:
                            break
                        op, av = p[0]
                        if op is LITERAL:
                            cappend((op, av))
                        else:
                            break
                    else:
                        charset = c
            elif op is BRANCH:
                c = []
                cappend = c.append
                for p in av[1]:
                    if not p:
                        break
                    op, av = p[0]
                    if op is LITERAL:
                        cappend((op, av))
                    else:
                        break
                else:
                    charset = c
            elif op is IN:
                charset = av
##     if prefix:
##         print "*** PREFIX", prefix, prefix_skip
##     if charset:
##         print "*** CHARSET", charset
    # add an info block
    emit = code.append
    emit(OPCODES[INFO])
    skip = len(code); emit(0)
    # literal flag
    mask = 0
    if prefix:
        mask = SRE_INFO_PREFIX
        if len(prefix) == prefix_skip == len(pattern.data):
            mask = mask + SRE_INFO_LITERAL
    elif charset:
        mask = mask + SRE_INFO_CHARSET
    emit(mask)
    # pattern length
    if lo < MAXCODE:
        emit(lo)
    else:
        emit(MAXCODE)
        prefix = prefix[:MAXCODE]
    if hi < MAXCODE:
        emit(hi)
    else:
        emit(0)
    # add literal prefix
    if prefix:
        emit(len(prefix)) # length
        emit(prefix_skip) # skip
        code.extend(prefix)
        # generate overlap table
        code.extend(_generate_overlap_table(prefix))
    elif charset:
        _compile_charset(charset, flags, code)
    code[skip] = len(code) - skip

def isstring(obj):
    return isinstance(obj, (str, bytes))

def _code(p, flags):

    flags = p.pattern.flags | flags
    code = []

    # compile info block
    _compile_info(code, p, flags)

    # compile the pattern
    _compile(code, p.data, flags)

    code.append(OPCODES[SUCCESS])

    return code

def compile(p, flags=0):
    # internal: convert pattern list to internal format

    if isstring(p):
        pattern = p
        p = sre_parse.parse(p, flags)
    else:
        pattern = None

    code = _code(p, flags)

    # print code

    # XXX: <fl> get rid of this limitation!
    if p.pattern.groups > 100:
        raise AssertionError(
            "sorry, but this version only supports 100 named groups"
            )

    # map in either direction
    groupindex = p.pattern.groupdict
    indexgroup = [None] * p.pattern.groups
    for k, i in groupindex.items():
        indexgroup[i] = k

    return _sre.compile(
        pattern, flags | p.pattern.flags, code,
        p.pattern.groups-1,
        groupindex, indexgroup
        )
lib\sre_constants.py
#
# Secret Labs' Regular Expression Engine
#
# various symbols used by the regular expression engine.
# run this script to update the _sre include files!
#
# Copyright (c) 1998-2001 by Secret Labs AB.  All rights reserved.
#
# See the sre.py file for information on usage and redistribution.
#

"""Internal support module for sre"""

# update when constants are added or removed

MAGIC = 20031017

from _sre import MAXREPEAT

# SRE standard exception (access as sre.error)
# should this really be here?

class error(Exception):
    pass

# operators

FAILURE = "failure"
SUCCESS = "success"

ANY = "any"
ANY_ALL = "any_all"
ASSERT = "assert"
ASSERT_NOT = "assert_not"
AT = "at"
BIGCHARSET = "bigcharset"
BRANCH = "branch"
CALL = "call"
CATEGORY = "category"
CHARSET = "charset"
GROUPREF = "groupref"
GROUPREF_IGNORE = "groupref_ignore"
GROUPREF_EXISTS = "groupref_exists"
IN = "in"
IN_IGNORE = "in_ignore"
INFO = "info"
JUMP = "jump"
LITERAL = "literal"
LITERAL_IGNORE = "literal_ignore"
MARK = "mark"
MAX_REPEAT = "max_repeat"
MAX_UNTIL = "max_until"
MIN_REPEAT = "min_repeat"
MIN_UNTIL = "min_until"
NEGATE = "negate"
NOT_LITERAL = "not_literal"
NOT_LITERAL_IGNORE = "not_literal_ignore"
RANGE = "range"
REPEAT = "repeat"
REPEAT_ONE = "repeat_one"
SUBPATTERN = "subpattern"
MIN_REPEAT_ONE = "min_repeat_one"

# positions
AT_BEGINNING = "at_beginning"
AT_BEGINNING_LINE = "at_beginning_line"
AT_BEGINNING_STRING = "at_beginning_string"
AT_BOUNDARY = "at_boundary"
AT_NON_BOUNDARY = "at_non_boundary"
AT_END = "at_end"
AT_END_LINE = "at_end_line"
AT_END_STRING = "at_end_string"
AT_LOC_BOUNDARY = "at_loc_boundary"
AT_LOC_NON_BOUNDARY = "at_loc_non_boundary"
AT_UNI_BOUNDARY = "at_uni_boundary"
AT_UNI_NON_BOUNDARY = "at_uni_non_boundary"

# categories
CATEGORY_DIGIT = "category_digit"
CATEGORY_NOT_DIGIT = "category_not_digit"
CATEGORY_SPACE = "category_space"
CATEGORY_NOT_SPACE = "category_not_space"
CATEGORY_WORD = "category_word"
CATEGORY_NOT_WORD = "category_not_word"
CATEGORY_LINEBREAK = "category_linebreak"
CATEGORY_NOT_LINEBREAK = "category_not_linebreak"
CATEGORY_LOC_WORD = "category_loc_word"
CATEGORY_LOC_NOT_WORD = "category_loc_not_word"
CATEGORY_UNI_DIGIT = "category_uni_digit"
CATEGORY_UNI_NOT_DIGIT = "category_uni_not_digit"
CATEGORY_UNI_SPACE = "category_uni_space"
CATEGORY_UNI_NOT_SPACE = "category_uni_not_space"
CATEGORY_UNI_WORD = "category_uni_word"
CATEGORY_UNI_NOT_WORD = "category_uni_not_word"
CATEGORY_UNI_LINEBREAK = "category_uni_linebreak"
CATEGORY_UNI_NOT_LINEBREAK = "category_uni_not_linebreak"

OPCODES = [

    # failure=0 success=1 (just because it looks better that way :-)
    FAILURE, SUCCESS,

    ANY, ANY_ALL,
    ASSERT, ASSERT_NOT,
    AT,
    BRANCH,
    CALL,
    CATEGORY,
    CHARSET, BIGCHARSET,
    GROUPREF, GROUPREF_EXISTS, GROUPREF_IGNORE,
    IN, IN_IGNORE,
    INFO,
    JUMP,
    LITERAL, LITERAL_IGNORE,
    MARK,
    MAX_UNTIL,
    MIN_UNTIL,
    NOT_LITERAL, NOT_LITERAL_IGNORE,
    NEGATE,
    RANGE,
    REPEAT,
    REPEAT_ONE,
    SUBPATTERN,
    MIN_REPEAT_ONE

]

ATCODES = [
    AT_BEGINNING, AT_BEGINNING_LINE, AT_BEGINNING_STRING, AT_BOUNDARY,
    AT_NON_BOUNDARY, AT_END, AT_END_LINE, AT_END_STRING,
    AT_LOC_BOUNDARY, AT_LOC_NON_BOUNDARY, AT_UNI_BOUNDARY,
    AT_UNI_NON_BOUNDARY
]

CHCODES = [
    CATEGORY_DIGIT, CATEGORY_NOT_DIGIT, CATEGORY_SPACE,
    CATEGORY_NOT_SPACE, CATEGORY_WORD, CATEGORY_NOT_WORD,
    CATEGORY_LINEBREAK, CATEGORY_NOT_LINEBREAK, CATEGORY_LOC_WORD,
    CATEGORY_LOC_NOT_WORD, CATEGORY_UNI_DIGIT, CATEGORY_UNI_NOT_DIGIT,
    CATEGORY_UNI_SPACE, CATEGORY_UNI_NOT_SPACE, CATEGORY_UNI_WORD,
    CATEGORY_UNI_NOT_WORD, CATEGORY_UNI_LINEBREAK,
    CATEGORY_UNI_NOT_LINEBREAK
]

def makedict(list):
    d = {}
    i = 0
    for item in list:
        d[item] = i
        i = i + 1
    return d

OPCODES = makedict(OPCODES)
ATCODES = makedict(ATCODES)
CHCODES = makedict(CHCODES)

# replacement operations for "ignore case" mode
OP_IGNORE = {
    GROUPREF: GROUPREF_IGNORE,
    IN: IN_IGNORE,
    LITERAL: LITERAL_IGNORE,
    NOT_LITERAL: NOT_LITERAL_IGNORE
}

AT_MULTILINE = {
    AT_BEGINNING: AT_BEGINNING_LINE,
    AT_END: AT_END_LINE
}

AT_LOCALE = {
    AT_BOUNDARY: AT_LOC_BOUNDARY,
    AT_NON_BOUNDARY: AT_LOC_NON_BOUNDARY
}

AT_UNICODE = {
    AT_BOUNDARY: AT_UNI_BOUNDARY,
    AT_NON_BOUNDARY: AT_UNI_NON_BOUNDARY
}

CH_LOCALE = {
    CATEGORY_DIGIT: CATEGORY_DIGIT,
    CATEGORY_NOT_DIGIT: CATEGORY_NOT_DIGIT,
    CATEGORY_SPACE: CATEGORY_SPACE,
    CATEGORY_NOT_SPACE: CATEGORY_NOT_SPACE,
    CATEGORY_WORD: CATEGORY_LOC_WORD,
    CATEGORY_NOT_WORD: CATEGORY_LOC_NOT_WORD,
    CATEGORY_LINEBREAK: CATEGORY_LINEBREAK,
    CATEGORY_NOT_LINEBREAK: CATEGORY_NOT_LINEBREAK
}

CH_UNICODE = {
    CATEGORY_DIGIT: CATEGORY_UNI_DIGIT,
    CATEGORY_NOT_DIGIT: CATEGORY_UNI_NOT_DIGIT,
    CATEGORY_SPACE: CATEGORY_UNI_SPACE,
    CATEGORY_NOT_SPACE: CATEGORY_UNI_NOT_SPACE,
    CATEGORY_WORD: CATEGORY_UNI_WORD,
    CATEGORY_NOT_WORD: CATEGORY_UNI_NOT_WORD,
    CATEGORY_LINEBREAK: CATEGORY_UNI_LINEBREAK,
    CATEGORY_NOT_LINEBREAK: CATEGORY_UNI_NOT_LINEBREAK
}

# flags
SRE_FLAG_TEMPLATE = 1 # template mode (disable backtracking)
SRE_FLAG_IGNORECASE = 2 # case insensitive
SRE_FLAG_LOCALE = 4 # honour system locale
SRE_FLAG_MULTILINE = 8 # treat target as multiline string
SRE_FLAG_DOTALL = 16 # treat target as a single string
SRE_FLAG_UNICODE = 32 # use unicode "locale"
SRE_FLAG_VERBOSE = 64 # ignore whitespace and comments
SRE_FLAG_DEBUG = 128 # debugging
SRE_FLAG_ASCII = 256 # use ascii "locale"

# flags for INFO primitive
SRE_INFO_PREFIX = 1 # has prefix
SRE_INFO_LITERAL = 2 # entire pattern is literal (given by prefix)
SRE_INFO_CHARSET = 4 # pattern starts with character from given set

if __name__ == "__main__":
    def dump(f, d, prefix):
        items = sorted(d.items(), key=lambda a: a[1])
        for k, v in items:
            f.write("#define %s_%s %s\n" % (prefix, k.upper(), v))
    f = open("sre_constants.h", "w")
    f.write("""\
/*
 * Secret Labs' Regular Expression Engine
 *
 * regular expression matching engine
 *
 * NOTE: This file is generated by sre_constants.py.  If you need
 * to change anything in here, edit sre_constants.py and run it.
 *
 * Copyright (c) 1997-2001 by Secret Labs AB.  All rights reserved.
 *
 * See the _sre.c file for information on usage and redistribution.
 */

""")

    f.write("#define SRE_MAGIC %d\n" % MAGIC)

    dump(f, OPCODES, "SRE_OP")
    dump(f, ATCODES, "SRE")
    dump(f, CHCODES, "SRE")

    f.write("#define SRE_FLAG_TEMPLATE %d\n" % SRE_FLAG_TEMPLATE)
    f.write("#define SRE_FLAG_IGNORECASE %d\n" % SRE_FLAG_IGNORECASE)
    f.write("#define SRE_FLAG_LOCALE %d\n" % SRE_FLAG_LOCALE)
    f.write("#define SRE_FLAG_MULTILINE %d\n" % SRE_FLAG_MULTILINE)
    f.write("#define SRE_FLAG_DOTALL %d\n" % SRE_FLAG_DOTALL)
    f.write("#define SRE_FLAG_UNICODE %d\n" % SRE_FLAG_UNICODE)
    f.write("#define SRE_FLAG_VERBOSE %d\n" % SRE_FLAG_VERBOSE)
    f.write("#define SRE_FLAG_DEBUG %d\n" % SRE_FLAG_DEBUG)
    f.write("#define SRE_FLAG_ASCII %d\n" % SRE_FLAG_ASCII)

    f.write("#define SRE_INFO_PREFIX %d\n" % SRE_INFO_PREFIX)
    f.write("#define SRE_INFO_LITERAL %d\n" % SRE_INFO_LITERAL)
    f.write("#define SRE_INFO_CHARSET %d\n" % SRE_INFO_CHARSET)

    f.close()
    print("done")
lib\sre_parse.py
#
# Secret Labs' Regular Expression Engine
#
# convert re-style regular expression to sre pattern
#
# Copyright (c) 1998-2001 by Secret Labs AB.  All rights reserved.
#
# See the sre.py file for information on usage and redistribution.
#

"""Internal support module for sre"""

# XXX: show string offset and offending character for all errors

from sre_constants import *
from _sre import MAXREPEAT

SPECIAL_CHARS = ".\\[{()*+?^$|"
REPEAT_CHARS = "*+?{"

DIGITS = set("0123456789")

OCTDIGITS = set("01234567")
HEXDIGITS = set("0123456789abcdefABCDEF")

WHITESPACE = set(" \t\n\r\v\f")

ESCAPES = {
    r"\a": (LITERAL, ord("\a")),
    r"\b": (LITERAL, ord("\b")),
    r"\f": (LITERAL, ord("\f")),
    r"\n": (LITERAL, ord("\n")),
    r"\r": (LITERAL, ord("\r")),
    r"\t": (LITERAL, ord("\t")),
    r"\v": (LITERAL, ord("\v")),
    r"\\": (LITERAL, ord("\\"))
}

CATEGORIES = {
    r"\A": (AT, AT_BEGINNING_STRING), # start of string
    r"\b": (AT, AT_BOUNDARY),
    r"\B": (AT, AT_NON_BOUNDARY),
    r"\d": (IN, [(CATEGORY, CATEGORY_DIGIT)]),
    r"\D": (IN, [(CATEGORY, CATEGORY_NOT_DIGIT)]),
    r"\s": (IN, [(CATEGORY, CATEGORY_SPACE)]),
    r"\S": (IN, [(CATEGORY, CATEGORY_NOT_SPACE)]),
    r"\w": (IN, [(CATEGORY, CATEGORY_WORD)]),
    r"\W": (IN, [(CATEGORY, CATEGORY_NOT_WORD)]),
    r"\Z": (AT, AT_END_STRING), # end of string
}

FLAGS = {
    # standard flags
    "i": SRE_FLAG_IGNORECASE,
    "L": SRE_FLAG_LOCALE,
    "m": SRE_FLAG_MULTILINE,
    "s": SRE_FLAG_DOTALL,
    "x": SRE_FLAG_VERBOSE,
    # extensions
    "a": SRE_FLAG_ASCII,
    "t": SRE_FLAG_TEMPLATE,
    "u": SRE_FLAG_UNICODE,
}

class Pattern:
    # master pattern object.  keeps track of global attributes
    def __init__(self):
        self.flags = 0
        self.open = []
        self.groups = 1
        self.groupdict = {}
        self.lookbehind = 0

    def opengroup(self, name=None):
        gid = self.groups
        self.groups = gid + 1
        if name is not None:
            ogid = self.groupdict.get(name, None)
            if ogid is not None:
                raise error("redefinition of group name %s as group %d; "
                            "was group %d" % (repr(name), gid,  ogid))
            self.groupdict[name] = gid
        self.open.append(gid)
        return gid
    def closegroup(self, gid):
        self.open.remove(gid)
    def checkgroup(self, gid):
        return gid < self.groups and gid not in self.open

class SubPattern:
    # a subpattern, in intermediate form
    def __init__(self, pattern, data=None):
        self.pattern = pattern
        if data is None:
            data = []
        self.data = data
        self.width = None
    def dump(self, level=0):
        nl = True
        seqtypes = (tuple, list)
        for op, av in self.data:
            print(level*"  " + op, end='')
            if op == IN:
                # member sublanguage
                print()
                for op, a in av:
                    print((level+1)*"  " + op, a)
            elif op == BRANCH:
                print()
                for i, a in enumerate(av[1]):
                    if i:
                        print(level*"  " + "or")
                    a.dump(level+1)
            elif op == GROUPREF_EXISTS:
                condgroup, item_yes, item_no = av
                print('', condgroup)
                item_yes.dump(level+1)
                if item_no:
                    print(level*"  " + "else")
                    item_no.dump(level+1)
            elif isinstance(av, seqtypes):
                nl = False
                for a in av:
                    if isinstance(a, SubPattern):
                        if not nl:
                            print()
                        a.dump(level+1)
                        nl = True
                    else:
                        if not nl:
                            print(' ', end='')
                        print(a, end='')
                        nl = False
                if not nl:
                    print()
            else:
                print('', av)
    def __repr__(self):
        return repr(self.data)
    def __len__(self):
        return len(self.data)
    def __delitem__(self, index):
        del self.data[index]
    def __getitem__(self, index):
        if isinstance(index, slice):
            return SubPattern(self.pattern, self.data[index])
        return self.data[index]
    def __setitem__(self, index, code):
        self.data[index] = code
    def insert(self, index, code):
        self.data.insert(index, code)
    def append(self, code):
        self.data.append(code)
    def getwidth(self):
        # determine the width (min, max) for this subpattern
        if self.width:
            return self.width
        lo = hi = 0
        UNITCODES = (ANY, RANGE, IN, LITERAL, NOT_LITERAL, CATEGORY)
        REPEATCODES = (MIN_REPEAT, MAX_REPEAT)
        for op, av in self.data:
            if op is BRANCH:
                i = MAXREPEAT - 1
                j = 0
                for av in av[1]:
                    l, h = av.getwidth()
                    i = min(i, l)
                    j = max(j, h)
                lo = lo + i
                hi = hi + j
            elif op is CALL:
                i, j = av.getwidth()
                lo = lo + i
                hi = hi + j
            elif op is SUBPATTERN:
                i, j = av[1].getwidth()
                lo = lo + i
                hi = hi + j
            elif op in REPEATCODES:
                i, j = av[2].getwidth()
                lo = lo + i * av[0]
                hi = hi + j * av[1]
            elif op in UNITCODES:
                lo = lo + 1
                hi = hi + 1
            elif op == SUCCESS:
                break
        self.width = min(lo, MAXREPEAT - 1), min(hi, MAXREPEAT)
        return self.width

class Tokenizer:
    def __init__(self, string):
        self.istext = isinstance(string, str)
        self.string = string
        self.index = 0
        self.__next()
    def __next(self):
        if self.index >= len(self.string):
            self.next = None
            return
        char = self.string[self.index:self.index+1]
        # Special case for the str8, since indexing returns a integer
        # XXX This is only needed for test_bug_926075 in test_re.py
        if char and not self.istext:
            char = chr(char[0])
        if char == "\\":
            try:
                c = self.string[self.index + 1]
            except IndexError:
                raise error("bogus escape (end of line)")
            if not self.istext:
                c = chr(c)
            char = char + c
        self.index = self.index + len(char)
        self.next = char
    def match(self, char, skip=1):
        if char == self.next:
            if skip:
                self.__next()
            return 1
        return 0
    def get(self):
        this = self.next
        self.__next()
        return this
    def getwhile(self, n, charset):
        result = ''
        for _ in range(n):
            c = self.next
            if c not in charset:
                break
            result += c
            self.__next()
        return result
    def tell(self):
        return self.index, self.next
    def seek(self, index):
        self.index, self.next = index

# The following three functions are not used in this module anymore, but we keep
# them here (with DeprecationWarnings) for backwards compatibility.

def isident(char):
    import warnings
    warnings.warn('sre_parse.isident() will be removed in 3.5',
                  DeprecationWarning, stacklevel=2)
    return "a" <= char <= "z" or "A" <= char <= "Z" or char == "_"

def isdigit(char):
    import warnings
    warnings.warn('sre_parse.isdigit() will be removed in 3.5',
                  DeprecationWarning, stacklevel=2)
    return "0" <= char <= "9"

def isname(name):
    import warnings
    warnings.warn('sre_parse.isname() will be removed in 3.5',
                  DeprecationWarning, stacklevel=2)
    # check that group name is a valid string
    if not isident(name[0]):
        return False
    for char in name[1:]:
        if not isident(char) and not isdigit(char):
            return False
    return True

def _class_escape(source, escape):
    # handle escape code inside character class
    code = ESCAPES.get(escape)
    if code:
        return code
    code = CATEGORIES.get(escape)
    if code and code[0] == IN:
        return code
    try:
        c = escape[1:2]
        if c == "x":
            # hexadecimal escape (exactly two digits)
            escape += source.getwhile(2, HEXDIGITS)
            if len(escape) != 4:
                raise ValueError
            return LITERAL, int(escape[2:], 16) & 0xff
        elif c == "u" and source.istext:
            # unicode escape (exactly four digits)
            escape += source.getwhile(4, HEXDIGITS)
            if len(escape) != 6:
                raise ValueError
            return LITERAL, int(escape[2:], 16)
        elif c == "U" and source.istext:
            # unicode escape (exactly eight digits)
            escape += source.getwhile(8, HEXDIGITS)
            if len(escape) != 10:
                raise ValueError
            c = int(escape[2:], 16)
            chr(c) # raise ValueError for invalid code
            return LITERAL, c
        elif c in OCTDIGITS:
            # octal escape (up to three digits)
            escape += source.getwhile(2, OCTDIGITS)
            return LITERAL, int(escape[1:], 8) & 0xff
        elif c in DIGITS:
            raise ValueError
        if len(escape) == 2:
            return LITERAL, ord(escape[1])
    except ValueError:
        pass
    raise error("bogus escape: %s" % repr(escape))

def _escape(source, escape, state):
    # handle escape code in expression
    code = CATEGORIES.get(escape)
    if code:
        return code
    code = ESCAPES.get(escape)
    if code:
        return code
    try:
        c = escape[1:2]
        if c == "x":
            # hexadecimal escape
            escape += source.getwhile(2, HEXDIGITS)
            if len(escape) != 4:
                raise ValueError
            return LITERAL, int(escape[2:], 16) & 0xff
        elif c == "u" and source.istext:
            # unicode escape (exactly four digits)
            escape += source.getwhile(4, HEXDIGITS)
            if len(escape) != 6:
                raise ValueError
            return LITERAL, int(escape[2:], 16)
        elif c == "U" and source.istext:
            # unicode escape (exactly eight digits)
            escape += source.getwhile(8, HEXDIGITS)
            if len(escape) != 10:
                raise ValueError
            c = int(escape[2:], 16)
            chr(c) # raise ValueError for invalid code
            return LITERAL, c
        elif c == "0":
            # octal escape
            escape += source.getwhile(2, OCTDIGITS)
            return LITERAL, int(escape[1:], 8) & 0xff
        elif c in DIGITS:
            # octal escape *or* decimal group reference (sigh)
            if source.next in DIGITS:
                escape = escape + source.get()
                if (escape[1] in OCTDIGITS and escape[2] in OCTDIGITS and
                    source.next in OCTDIGITS):
                    # got three octal digits; this is an octal escape
                    escape = escape + source.get()
                    return LITERAL, int(escape[1:], 8) & 0xff
            # not an octal escape, so this is a group reference
            group = int(escape[1:])
            if group < state.groups:
                if not state.checkgroup(group):
                    raise error("cannot refer to open group")
                if state.lookbehind:
                    import warnings
                    warnings.warn('group references in lookbehind '
                                  'assertions are not supported',
                                  RuntimeWarning)
                return GROUPREF, group
            raise ValueError
        if len(escape) == 2:
            return LITERAL, ord(escape[1])
    except ValueError:
        pass
    raise error("bogus escape: %s" % repr(escape))

def _parse_sub(source, state, nested=1):
    # parse an alternation: a|b|c

    items = []
    itemsappend = items.append
    sourcematch = source.match
    while 1:
        itemsappend(_parse(source, state))
        if sourcematch("|"):
            continue
        if not nested:
            break
        if not source.next or sourcematch(")", 0):
            break
        else:
            raise error("pattern not properly closed")

    if len(items) == 1:
        return items[0]

    subpattern = SubPattern(state)
    subpatternappend = subpattern.append

    # check if all items share a common prefix
    while 1:
        prefix = None
        for item in items:
            if not item:
                break
            if prefix is None:
                prefix = item[0]
            elif item[0] != prefix:
                break
        else:
            # all subitems start with a common "prefix".
            # move it out of the branch
            for item in items:
                del item[0]
            subpatternappend(prefix)
            continue # check next one
        break

    # check if the branch can be replaced by a character set
    for item in items:
        if len(item) != 1 or item[0][0] != LITERAL:
            break
    else:
        # we can store this as a character set instead of a
        # branch (the compiler may optimize this even more)
        set = []
        setappend = set.append
        for item in items:
            setappend(item[0])
        subpatternappend((IN, set))
        return subpattern

    subpattern.append((BRANCH, (None, items)))
    return subpattern

def _parse_sub_cond(source, state, condgroup):
    item_yes = _parse(source, state)
    if source.match("|"):
        item_no = _parse(source, state)
        if source.match("|"):
            raise error("conditional backref with more than two branches")
    else:
        item_no = None
    if source.next and not source.match(")", 0):
        raise error("pattern not properly closed")
    subpattern = SubPattern(state)
    subpattern.append((GROUPREF_EXISTS, (condgroup, item_yes, item_no)))
    return subpattern

_PATTERNENDERS = set("|)")
_ASSERTCHARS = set("=!<")
_LOOKBEHINDASSERTCHARS = set("=!")
_REPEATCODES = set([MIN_REPEAT, MAX_REPEAT])

def _parse(source, state):
    # parse a simple pattern
    subpattern = SubPattern(state)

    # precompute constants into local variables
    subpatternappend = subpattern.append
    sourceget = source.get
    sourcematch = source.match
    _len = len
    PATTERNENDERS = _PATTERNENDERS
    ASSERTCHARS = _ASSERTCHARS
    LOOKBEHINDASSERTCHARS = _LOOKBEHINDASSERTCHARS
    REPEATCODES = _REPEATCODES

    while 1:

        if source.next in PATTERNENDERS:
            break # end of subpattern
        this = sourceget()
        if this is None:
            break # end of pattern

        if state.flags & SRE_FLAG_VERBOSE:
            # skip whitespace and comments
            if this in WHITESPACE:
                continue
            if this == "#":
                while 1:
                    this = sourceget()
                    if this in (None, "\n"):
                        break
                continue

        if this and this[0] not in SPECIAL_CHARS:
            subpatternappend((LITERAL, ord(this)))

        elif this == "[":
            # character set
            set = []
            setappend = set.append
##          if sourcematch(":"):
##              pass # handle character classes
            if sourcematch("^"):
                setappend((NEGATE, None))
            # check remaining characters
            start = set[:]
            while 1:
                this = sourceget()
                if this == "]" and set != start:
                    break
                elif this and this[0] == "\\":
                    code1 = _class_escape(source, this)
                elif this:
                    code1 = LITERAL, ord(this)
                else:
                    raise error("unexpected end of regular expression")
                if sourcematch("-"):
                    # potential range
                    this = sourceget()
                    if this == "]":
                        if code1[0] is IN:
                            code1 = code1[1][0]
                        setappend(code1)
                        setappend((LITERAL, ord("-")))
                        break
                    elif this:
                        if this[0] == "\\":
                            code2 = _class_escape(source, this)
                        else:
                            code2 = LITERAL, ord(this)
                        if code1[0] != LITERAL or code2[0] != LITERAL:
                            raise error("bad character range")
                        lo = code1[1]
                        hi = code2[1]
                        if hi < lo:
                            raise error("bad character range")
                        setappend((RANGE, (lo, hi)))
                    else:
                        raise error("unexpected end of regular expression")
                else:
                    if code1[0] is IN:
                        code1 = code1[1][0]
                    setappend(code1)

            # XXX: <fl> should move set optimization to compiler!
            if _len(set)==1 and set[0][0] is LITERAL:
                subpatternappend(set[0]) # optimization
            elif _len(set)==2 and set[0][0] is NEGATE and set[1][0] is LITERAL:
                subpatternappend((NOT_LITERAL, set[1][1])) # optimization
            else:
                # XXX: <fl> should add charmap optimization here
                subpatternappend((IN, set))

        elif this and this[0] in REPEAT_CHARS:
            # repeat previous item
            if this == "?":
                min, max = 0, 1
            elif this == "*":
                min, max = 0, MAXREPEAT

            elif this == "+":
                min, max = 1, MAXREPEAT
            elif this == "{":
                if source.next == "}":
                    subpatternappend((LITERAL, ord(this)))
                    continue
                here = source.tell()
                min, max = 0, MAXREPEAT
                lo = hi = ""
                while source.next in DIGITS:
                    lo = lo + source.get()
                if sourcematch(","):
                    while source.next in DIGITS:
                        hi = hi + sourceget()
                else:
                    hi = lo
                if not sourcematch("}"):
                    subpatternappend((LITERAL, ord(this)))
                    source.seek(here)
                    continue
                if lo:
                    min = int(lo)
                    if min >= MAXREPEAT:
                        raise OverflowError("the repetition number is too large")
                if hi:
                    max = int(hi)
                    if max >= MAXREPEAT:
                        raise OverflowError("the repetition number is too large")
                    if max < min:
                        raise error("bad repeat interval")
            else:
                raise error("not supported")
            # figure out which item to repeat
            if subpattern:
                item = subpattern[-1:]
            else:
                item = None
            if not item or (_len(item) == 1 and item[0][0] == AT):
                raise error("nothing to repeat")
            if item[0][0] in REPEATCODES:
                raise error("multiple repeat")
            if sourcematch("?"):
                subpattern[-1] = (MIN_REPEAT, (min, max, item))
            else:
                subpattern[-1] = (MAX_REPEAT, (min, max, item))

        elif this == ".":
            subpatternappend((ANY, None))

        elif this == "(":
            group = 1
            name = None
            condgroup = None
            if sourcematch("?"):
                group = 0
                # options
                if sourcematch("P"):
                    # python extensions
                    if sourcematch("<"):
                        # named group: skip forward to end of name
                        name = ""
                        while 1:
                            char = sourceget()
                            if char is None:
                                raise error("unterminated name")
                            if char == ">":
                                break
                            name = name + char
                        group = 1
                        if not name:
                            raise error("missing group name")
                        if not name.isidentifier():
                            raise error("bad character in group name %r" % name)
                    elif sourcematch("="):
                        # named backreference
                        name = ""
                        while 1:
                            char = sourceget()
                            if char is None:
                                raise error("unterminated name")
                            if char == ")":
                                break
                            name = name + char
                        if not name:
                            raise error("missing group name")
                        if not name.isidentifier():
                            raise error("bad character in backref group name "
                                        "%r" % name)
                        gid = state.groupdict.get(name)
                        if gid is None:
                            msg = "unknown group name: {0!r}".format(name)
                            raise error(msg)
                        if state.lookbehind:
                            import warnings
                            warnings.warn('group references in lookbehind '
                                          'assertions are not supported',
                                          RuntimeWarning)
                        subpatternappend((GROUPREF, gid))
                        continue
                    else:
                        char = sourceget()
                        if char is None:
                            raise error("unexpected end of pattern")
                        raise error("unknown specifier: ?P%s" % char)
                elif sourcematch(":"):
                    # non-capturing group
                    group = 2
                elif sourcematch("#"):
                    # comment
                    while 1:
                        if source.next is None or source.next == ")":
                            break
                        sourceget()
                    if not sourcematch(")"):
                        raise error("unbalanced parenthesis")
                    continue
                elif source.next in ASSERTCHARS:
                    # lookahead assertions
                    char = sourceget()
                    dir = 1
                    if char == "<":
                        if source.next not in LOOKBEHINDASSERTCHARS:
                            raise error("syntax error")
                        dir = -1 # lookbehind
                        char = sourceget()
                        state.lookbehind += 1
                    p = _parse_sub(source, state)
                    if dir < 0:
                        state.lookbehind -= 1
                    if not sourcematch(")"):
                        raise error("unbalanced parenthesis")
                    if char == "=":
                        subpatternappend((ASSERT, (dir, p)))
                    else:
                        subpatternappend((ASSERT_NOT, (dir, p)))
                    continue
                elif sourcematch("("):
                    # conditional backreference group
                    condname = ""
                    while 1:
                        char = sourceget()
                        if char is None:
                            raise error("unterminated name")
                        if char == ")":
                            break
                        condname = condname + char
                    group = 2
                    if not condname:
                        raise error("missing group name")
                    if condname.isidentifier():
                        condgroup = state.groupdict.get(condname)
                        if condgroup is None:
                            msg = "unknown group name: {0!r}".format(condname)
                            raise error(msg)
                    else:
                        try:
                            condgroup = int(condname)
                        except ValueError:
                            raise error("bad character in group name")
                    if state.lookbehind:
                        import warnings
                        warnings.warn('group references in lookbehind '
                                      'assertions are not supported',
                                      RuntimeWarning)
                else:
                    # flags
                    if not source.next in FLAGS:
                        raise error("unexpected end of pattern")
                    while source.next in FLAGS:
                        state.flags = state.flags | FLAGS[sourceget()]
            if group:
                # parse group contents
                if group == 2:
                    # anonymous group
                    group = None
                else:
                    group = state.opengroup(name)
                if condgroup:
                    p = _parse_sub_cond(source, state, condgroup)
                else:
                    p = _parse_sub(source, state)
                if not sourcematch(")"):
                    raise error("unbalanced parenthesis")
                if group is not None:
                    state.closegroup(group)
                subpatternappend((SUBPATTERN, (group, p)))
            else:
                while 1:
                    char = sourceget()
                    if char is None:
                        raise error("unexpected end of pattern")
                    if char == ")":
                        break
                    raise error("unknown extension")

        elif this == "^":
            subpatternappend((AT, AT_BEGINNING))

        elif this == "$":
            subpattern.append((AT, AT_END))

        elif this and this[0] == "\\":
            code = _escape(source, this, state)
            subpatternappend(code)

        else:
            raise error("parser error")

    return subpattern

def fix_flags(src, flags):
    # Check and fix flags according to the type of pattern (str or bytes)
    if isinstance(src, str):
        if not flags & SRE_FLAG_ASCII:
            flags |= SRE_FLAG_UNICODE
        elif flags & SRE_FLAG_UNICODE:
            raise ValueError("ASCII and UNICODE flags are incompatible")
    else:
        if flags & SRE_FLAG_UNICODE:
            raise ValueError("can't use UNICODE flag with a bytes pattern")
    return flags

def parse(str, flags=0, pattern=None):
    # parse 're' pattern into list of (opcode, argument) tuples

    source = Tokenizer(str)

    if pattern is None:
        pattern = Pattern()
    pattern.flags = flags
    pattern.str = str

    p = _parse_sub(source, pattern, 0)
    p.pattern.flags = fix_flags(str, p.pattern.flags)

    tail = source.get()
    if tail == ")":
        raise error("unbalanced parenthesis")
    elif tail:
        raise error("bogus characters at end of regular expression")

    if flags & SRE_FLAG_DEBUG:
        p.dump()

    if not (flags & SRE_FLAG_VERBOSE) and p.pattern.flags & SRE_FLAG_VERBOSE:
        # the VERBOSE flag was switched on inside the pattern.  to be
        # on the safe side, we'll parse the whole thing again...
        return parse(str, p.pattern.flags)

    return p

def parse_template(source, pattern):
    # parse 're' replacement string into list of literals and
    # group references
    s = Tokenizer(source)
    sget = s.get
    groups = []
    literals = []
    literal = []
    lappend = literal.append
    def addgroup(index):
        if literal:
            literals.append(''.join(literal))
            del literal[:]
        groups.append((len(literals), index))
        literals.append(None)
    while True:
        this = sget()
        if this is None:
            break # end of replacement string
        if this[0] == "\\":
            # group
            c = this[1]
            if c == "g":
                name = ""
                if s.match("<"):
                    while True:
                        char = sget()
                        if char is None:
                            raise error("unterminated group name")
                        if char == ">":
                            break
                        name += char
                if not name:
                    raise error("missing group name")
                try:
                    index = int(name)
                    if index < 0:
                        raise error("negative group number")
                except ValueError:
                    if not name.isidentifier():
                        raise error("bad character in group name")
                    try:
                        index = pattern.groupindex[name]
                    except KeyError:
                        msg = "unknown group name: {0!r}".format(name)
                        raise IndexError(msg)
                addgroup(index)
            elif c == "0":
                if s.next in OCTDIGITS:
                    this += sget()
                    if s.next in OCTDIGITS:
                        this += sget()
                lappend(chr(int(this[1:], 8) & 0xff))
            elif c in DIGITS:
                isoctal = False
                if s.next in DIGITS:
                    this += sget()
                    if (c in OCTDIGITS and this[2] in OCTDIGITS and
                        s.next in OCTDIGITS):
                        this += sget()
                        isoctal = True
                        lappend(chr(int(this[1:], 8) & 0xff))
                if not isoctal:
                    addgroup(int(this[1:]))
            else:
                try:
                    this = chr(ESCAPES[this][1])
                except KeyError:
                    pass
                lappend(this)
        else:
            lappend(this)
    if literal:
        literals.append(''.join(literal))
    if not isinstance(source, str):
        # The tokenizer implicitly decodes bytes objects as latin-1, we must
        # therefore re-encode the final representation.
        literals = [None if s is None else s.encode('latin-1') for s in literals]
    return groups, literals

def expand_template(template, match):
    g = match.group
    sep = match.string[:0]
    groups, literals = template
    literals = literals[:]
    try:
        for index, group in groups:
            literals[index] = s = g(group)
            if s is None:
                raise error("unmatched group")
    except IndexError:
        raise error("invalid group reference")
    return sep.join(literals)
lib\ssl.py
# Wrapper module for _ssl, providing some additional facilities
# implemented in Python.  Written by Bill Janssen.

"""This module provides some more Pythonic support for SSL.

Object types:

  SSLSocket -- subtype of socket.socket which does SSL over the socket

Exceptions:

  SSLError -- exception raised for I/O errors

Functions:

  cert_time_to_seconds -- convert time string used for certificate
                          notBefore and notAfter functions to integer
                          seconds past the Epoch (the time values
                          returned from time.time())

  fetch_server_certificate (HOST, PORT) -- fetch the certificate provided
                          by the server running on HOST at port PORT.  No
                          validation of the certificate is performed.

Integer constants:

SSL_ERROR_ZERO_RETURN
SSL_ERROR_WANT_READ
SSL_ERROR_WANT_WRITE
SSL_ERROR_WANT_X509_LOOKUP
SSL_ERROR_SYSCALL
SSL_ERROR_SSL
SSL_ERROR_WANT_CONNECT

SSL_ERROR_EOF
SSL_ERROR_INVALID_ERROR_CODE

The following group define certificate requirements that one side is
allowing/requiring from the other side:

CERT_NONE - no certificates from the other side are required (or will
            be looked at if provided)
CERT_OPTIONAL - certificates are not required, but if provided will be
                validated, and if validation fails, the connection will
                also fail
CERT_REQUIRED - certificates are required, and will be validated, and
                if validation fails, the connection will also fail

The following constants identify various SSL protocol variants:

PROTOCOL_SSLv2
PROTOCOL_SSLv3
PROTOCOL_SSLv23
PROTOCOL_TLSv1
PROTOCOL_TLSv1_1
PROTOCOL_TLSv1_2

The following constants identify various SSL alert message descriptions as per
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-6

ALERT_DESCRIPTION_CLOSE_NOTIFY
ALERT_DESCRIPTION_UNEXPECTED_MESSAGE
ALERT_DESCRIPTION_BAD_RECORD_MAC
ALERT_DESCRIPTION_RECORD_OVERFLOW
ALERT_DESCRIPTION_DECOMPRESSION_FAILURE
ALERT_DESCRIPTION_HANDSHAKE_FAILURE
ALERT_DESCRIPTION_BAD_CERTIFICATE
ALERT_DESCRIPTION_UNSUPPORTED_CERTIFICATE
ALERT_DESCRIPTION_CERTIFICATE_REVOKED
ALERT_DESCRIPTION_CERTIFICATE_EXPIRED
ALERT_DESCRIPTION_CERTIFICATE_UNKNOWN
ALERT_DESCRIPTION_ILLEGAL_PARAMETER
ALERT_DESCRIPTION_UNKNOWN_CA
ALERT_DESCRIPTION_ACCESS_DENIED
ALERT_DESCRIPTION_DECODE_ERROR
ALERT_DESCRIPTION_DECRYPT_ERROR
ALERT_DESCRIPTION_PROTOCOL_VERSION
ALERT_DESCRIPTION_INSUFFICIENT_SECURITY
ALERT_DESCRIPTION_INTERNAL_ERROR
ALERT_DESCRIPTION_USER_CANCELLED
ALERT_DESCRIPTION_NO_RENEGOTIATION
ALERT_DESCRIPTION_UNSUPPORTED_EXTENSION
ALERT_DESCRIPTION_CERTIFICATE_UNOBTAINABLE
ALERT_DESCRIPTION_UNRECOGNIZED_NAME
ALERT_DESCRIPTION_BAD_CERTIFICATE_STATUS_RESPONSE
ALERT_DESCRIPTION_BAD_CERTIFICATE_HASH_VALUE
ALERT_DESCRIPTION_UNKNOWN_PSK_IDENTITY
"""

import textwrap
import re
import sys
import os
from collections import namedtuple
from enum import Enum as _Enum

import _ssl             # if we can't import it, let the error propagate

from _ssl import OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_INFO, OPENSSL_VERSION
from _ssl import _SSLContext
from _ssl import (
    SSLError, SSLZeroReturnError, SSLWantReadError, SSLWantWriteError,
    SSLSyscallError, SSLEOFError,
    )
from _ssl import CERT_NONE, CERT_OPTIONAL, CERT_REQUIRED
from _ssl import txt2obj as _txt2obj, nid2obj as _nid2obj
from _ssl import RAND_status, RAND_add, RAND_bytes, RAND_pseudo_bytes
try:
    from _ssl import RAND_egd
except ImportError:
    # LibreSSL does not provide RAND_egd
    pass

def _import_symbols(prefix):
    for n in dir(_ssl):
        if n.startswith(prefix):
            globals()[n] = getattr(_ssl, n)

_import_symbols('OP_')
_import_symbols('ALERT_DESCRIPTION_')
_import_symbols('SSL_ERROR_')
_import_symbols('PROTOCOL_')
_import_symbols('VERIFY_')

from _ssl import HAS_SNI, HAS_ECDH, HAS_NPN

from _ssl import _OPENSSL_API_VERSION


_PROTOCOL_NAMES = {value: name for name, value in globals().items() if name.startswith('PROTOCOL_')}
try:
    from _ssl import PROTOCOL_SSLv2
    _SSLv2_IF_EXISTS = PROTOCOL_SSLv2
except ImportError:
    _SSLv2_IF_EXISTS = None
else:
    _PROTOCOL_NAMES[PROTOCOL_SSLv2] = "SSLv2"

try:
    from _ssl import PROTOCOL_TLSv1_1, PROTOCOL_TLSv1_2
except ImportError:
    pass
else:
    _PROTOCOL_NAMES[PROTOCOL_TLSv1_1] = "TLSv1.1"
    _PROTOCOL_NAMES[PROTOCOL_TLSv1_2] = "TLSv1.2"

if sys.platform == "win32":
    from _ssl import enum_certificates, enum_crls

from socket import socket, AF_INET, SOCK_STREAM, create_connection
from socket import SOL_SOCKET, SO_TYPE
import base64        # for DER-to-PEM translation
import errno


socket_error = OSError  # keep that public name in module namespace

if _ssl.HAS_TLS_UNIQUE:
    CHANNEL_BINDING_TYPES = ['tls-unique']
else:
    CHANNEL_BINDING_TYPES = []


# Disable weak or insecure ciphers by default
# (OpenSSL's default setting is 'DEFAULT:!aNULL:!eNULL')
# Enable a better set of ciphers by default
# This list has been explicitly chosen to:
#   * Prefer cipher suites that offer perfect forward secrecy (DHE/ECDHE)
#   * Prefer ECDHE over DHE for better performance
#   * Prefer AEAD over CBC for better performance and security
#   * Prefer AES-GCM over ChaCha20 because most platforms have AES-NI
#     (ChaCha20 needs OpenSSL 1.1.0 or patched 1.0.2)
#   * Prefer any AES-GCM and ChaCha20 over any AES-CBC for better
#     performance and security
#   * Then Use HIGH cipher suites as a fallback
#   * Disable NULL authentication, NULL encryption, 3DES and MD5 MACs
#     for security reasons
_DEFAULT_CIPHERS = (
    'ECDH+AESGCM:ECDH+CHACHA20:DH+AESGCM:DH+CHACHA20:ECDH+AES256:DH+AES256:'
    'ECDH+AES128:DH+AES:ECDH+HIGH:DH+HIGH:RSA+AESGCM:RSA+AES:RSA+HIGH:'
    '!aNULL:!eNULL:!MD5:!3DES'
    )

# Restricted and more secure ciphers for the server side
# This list has been explicitly chosen to:
#   * Prefer cipher suites that offer perfect forward secrecy (DHE/ECDHE)
#   * Prefer ECDHE over DHE for better performance
#   * Prefer AEAD over CBC for better performance and security
#   * Prefer AES-GCM over ChaCha20 because most platforms have AES-NI
#   * Prefer any AES-GCM and ChaCha20 over any AES-CBC for better
#     performance and security
#   * Then Use HIGH cipher suites as a fallback
#   * Disable NULL authentication, NULL encryption, MD5 MACs, DSS, RC4, and
#     3DES for security reasons
_RESTRICTED_SERVER_CIPHERS = (
    'ECDH+AESGCM:ECDH+CHACHA20:DH+AESGCM:DH+CHACHA20:ECDH+AES256:DH+AES256:'
    'ECDH+AES128:DH+AES:ECDH+HIGH:DH+HIGH:RSA+AESGCM:RSA+AES:RSA+HIGH:'
    '!aNULL:!eNULL:!MD5:!DSS:!RC4:!3DES'
)


class CertificateError(ValueError):
    pass


def _dnsname_match(dn, hostname, max_wildcards=1):
    """Matching according to RFC 6125, section 6.4.3

    http://tools.ietf.org/html/rfc6125#section-6.4.3
    """
    pats = []
    if not dn:
        return False

    leftmost, *remainder = dn.split(r'.')

    wildcards = leftmost.count('*')
    if wildcards > max_wildcards:
        # Issue #17980: avoid denials of service by refusing more
        # than one wildcard per fragment.  A survey of established
        # policy among SSL implementations showed it to be a
        # reasonable choice.
        raise CertificateError(
            "too many wildcards in certificate DNS name: " + repr(dn))

    # speed up common case w/o wildcards
    if not wildcards:
        return dn.lower() == hostname.lower()

    # RFC 6125, section 6.4.3, subitem 1.
    # The client SHOULD NOT attempt to match a presented identifier in which
    # the wildcard character comprises a label other than the left-most label.
    if leftmost == '*':
        # When '*' is a fragment by itself, it matches a non-empty dotless
        # fragment.
        pats.append('[^.]+')
    elif leftmost.startswith('xn--') or hostname.startswith('xn--'):
        # RFC 6125, section 6.4.3, subitem 3.
        # The client SHOULD NOT attempt to match a presented identifier
        # where the wildcard character is embedded within an A-label or
        # U-label of an internationalized domain name.
        pats.append(re.escape(leftmost))
    else:
        # Otherwise, '*' matches any dotless string, e.g. www*
        pats.append(re.escape(leftmost).replace(r'\*', '[^.]*'))

    # add the remaining fragments, ignore any wildcards
    for frag in remainder:
        pats.append(re.escape(frag))

    pat = re.compile(r'\A' + r'\.'.join(pats) + r'\Z', re.IGNORECASE)
    return pat.match(hostname)


def match_hostname(cert, hostname):
    """Verify that *cert* (in decoded format as returned by
    SSLSocket.getpeercert()) matches the *hostname*.  RFC 2818 and RFC 6125
    rules are followed, but IP addresses are not accepted for *hostname*.

    CertificateError is raised on failure. On success, the function
    returns nothing.
    """
    if not cert:
        raise ValueError("empty or no certificate, match_hostname needs a "
                         "SSL socket or SSL context with either "
                         "CERT_OPTIONAL or CERT_REQUIRED")
    dnsnames = []
    san = cert.get('subjectAltName', ())
    for key, value in san:
        if key == 'DNS':
            if _dnsname_match(value, hostname):
                return
            dnsnames.append(value)
    if not dnsnames:
        # The subject is only checked when there is no dNSName entry
        # in subjectAltName
        for sub in cert.get('subject', ()):
            for key, value in sub:
                # XXX according to RFC 2818, the most specific Common Name
                # must be used.
                if key == 'commonName':
                    if _dnsname_match(value, hostname):
                        return
                    dnsnames.append(value)
    if len(dnsnames) > 1:
        raise CertificateError("hostname %r "
            "doesn't match either of %s"
            % (hostname, ', '.join(map(repr, dnsnames))))
    elif len(dnsnames) == 1:
        raise CertificateError("hostname %r "
            "doesn't match %r"
            % (hostname, dnsnames[0]))
    else:
        raise CertificateError("no appropriate commonName or "
            "subjectAltName fields were found")


DefaultVerifyPaths = namedtuple("DefaultVerifyPaths",
    "cafile capath openssl_cafile_env openssl_cafile openssl_capath_env "
    "openssl_capath")

def get_default_verify_paths():
    """Return paths to default cafile and capath.
    """
    parts = _ssl.get_default_verify_paths()

    # environment vars shadow paths
    cafile = os.environ.get(parts[0], parts[1])
    capath = os.environ.get(parts[2], parts[3])

    return DefaultVerifyPaths(cafile if os.path.isfile(cafile) else None,
                              capath if os.path.isdir(capath) else None,
                              *parts)


class _ASN1Object(namedtuple("_ASN1Object", "nid shortname longname oid")):
    """ASN.1 object identifier lookup
    """
    __slots__ = ()

    def __new__(cls, oid):
        return super().__new__(cls, *_txt2obj(oid, name=False))

    @classmethod
    def fromnid(cls, nid):
        """Create _ASN1Object from OpenSSL numeric ID
        """
        return super().__new__(cls, *_nid2obj(nid))

    @classmethod
    def fromname(cls, name):
        """Create _ASN1Object from short name, long name or OID
        """
        return super().__new__(cls, *_txt2obj(name, name=True))


class Purpose(_ASN1Object, _Enum):
    """SSLContext purpose flags with X509v3 Extended Key Usage objects
    """
    SERVER_AUTH = '1.3.6.1.5.5.7.3.1'
    CLIENT_AUTH = '1.3.6.1.5.5.7.3.2'


class SSLContext(_SSLContext):
    """An SSLContext holds various SSL-related configuration options and
    data, such as certificates and possibly a private key."""

    __slots__ = ('protocol', '__weakref__')
    _windows_cert_stores = ("CA", "ROOT")

    def __new__(cls, protocol, *args, **kwargs):
        self = _SSLContext.__new__(cls, protocol)
        if protocol != _SSLv2_IF_EXISTS:
            self.set_ciphers(_DEFAULT_CIPHERS)
        return self

    def __init__(self, protocol):
        self.protocol = protocol

    def wrap_socket(self, sock, server_side=False,
                    do_handshake_on_connect=True,
                    suppress_ragged_eofs=True,
                    server_hostname=None):
        return SSLSocket(sock=sock, server_side=server_side,
                         do_handshake_on_connect=do_handshake_on_connect,
                         suppress_ragged_eofs=suppress_ragged_eofs,
                         server_hostname=server_hostname,
                         _context=self)

    def set_npn_protocols(self, npn_protocols):
        protos = bytearray()
        for protocol in npn_protocols:
            b = bytes(protocol, 'ascii')
            if len(b) == 0 or len(b) > 255:
                raise SSLError('NPN protocols must be 1 to 255 in length')
            protos.append(len(b))
            protos.extend(b)

        self._set_npn_protocols(protos)

    def _load_windows_store_certs(self, storename, purpose):
        certs = bytearray()
        for cert, encoding, trust in enum_certificates(storename):
            # CA certs are never PKCS#7 encoded
            if encoding == "x509_asn":
                if trust is True or purpose.oid in trust:
                    certs.extend(cert)
        self.load_verify_locations(cadata=certs)
        return certs

    def load_default_certs(self, purpose=Purpose.SERVER_AUTH):
        if not isinstance(purpose, _ASN1Object):
            raise TypeError(purpose)
        if sys.platform == "win32":
            for storename in self._windows_cert_stores:
                self._load_windows_store_certs(storename, purpose)
        self.set_default_verify_paths()


def create_default_context(purpose=Purpose.SERVER_AUTH, *, cafile=None,
                           capath=None, cadata=None):
    """Create a SSLContext object with default settings.

    NOTE: The protocol and settings may change anytime without prior
          deprecation. The values represent a fair balance between maximum
          compatibility and security.
    """
    if not isinstance(purpose, _ASN1Object):
        raise TypeError(purpose)

    context = SSLContext(PROTOCOL_SSLv23)

    # SSLv2 considered harmful.
    context.options |= OP_NO_SSLv2

    # SSLv3 has problematic security and is only required for really old
    # clients such as IE6 on Windows XP
    context.options |= OP_NO_SSLv3

    # disable compression to prevent CRIME attacks (OpenSSL 1.0+)
    context.options |= getattr(_ssl, "OP_NO_COMPRESSION", 0)

    if purpose == Purpose.SERVER_AUTH:
        # verify certs and host name in client mode
        context.verify_mode = CERT_REQUIRED
        context.check_hostname = True
    elif purpose == Purpose.CLIENT_AUTH:
        # Prefer the server's ciphers by default so that we get stronger
        # encryption
        context.options |= getattr(_ssl, "OP_CIPHER_SERVER_PREFERENCE", 0)

        # Use single use keys in order to improve forward secrecy
        context.options |= getattr(_ssl, "OP_SINGLE_DH_USE", 0)
        context.options |= getattr(_ssl, "OP_SINGLE_ECDH_USE", 0)

        # disallow ciphers with known vulnerabilities
        context.set_ciphers(_RESTRICTED_SERVER_CIPHERS)

    if cafile or capath or cadata:
        context.load_verify_locations(cafile, capath, cadata)
    elif context.verify_mode != CERT_NONE:
        # no explicit cafile, capath or cadata but the verify mode is
        # CERT_OPTIONAL or CERT_REQUIRED. Let's try to load default system
        # root CA certificates for the given purpose. This may fail silently.
        context.load_default_certs(purpose)
    return context

def _create_unverified_context(protocol=PROTOCOL_SSLv23, *, cert_reqs=None,
                           check_hostname=False, purpose=Purpose.SERVER_AUTH,
                           certfile=None, keyfile=None,
                           cafile=None, capath=None, cadata=None):
    """Create a SSLContext object for Python stdlib modules

    All Python stdlib modules shall use this function to create SSLContext
    objects in order to keep common settings in one place. The configuration
    is less restrict than create_default_context()'s to increase backward
    compatibility.
    """
    if not isinstance(purpose, _ASN1Object):
        raise TypeError(purpose)

    context = SSLContext(protocol)
    # SSLv2 considered harmful.
    context.options |= OP_NO_SSLv2
    # SSLv3 has problematic security and is only required for really old
    # clients such as IE6 on Windows XP
    context.options |= OP_NO_SSLv3

    if cert_reqs is not None:
        context.verify_mode = cert_reqs
    context.check_hostname = check_hostname

    if keyfile and not certfile:
        raise ValueError("certfile must be specified")
    if certfile or keyfile:
        context.load_cert_chain(certfile, keyfile)

    # load CA root certs
    if cafile or capath or cadata:
        context.load_verify_locations(cafile, capath, cadata)
    elif context.verify_mode != CERT_NONE:
        # no explicit cafile, capath or cadata but the verify mode is
        # CERT_OPTIONAL or CERT_REQUIRED. Let's try to load default system
        # root CA certificates for the given purpose. This may fail silently.
        context.load_default_certs(purpose)

    return context

# Used by http.client if no context is explicitly passed.
_create_default_https_context = create_default_context


# Backwards compatibility alias, even though it's not a public name.
_create_stdlib_context = _create_unverified_context


class SSLSocket(socket):
    """This class implements a subtype of socket.socket that wraps
    the underlying OS socket in an SSL context when necessary, and
    provides read and write methods over that channel."""

    def __init__(self, sock=None, keyfile=None, certfile=None,
                 server_side=False, cert_reqs=CERT_NONE,
                 ssl_version=PROTOCOL_SSLv23, ca_certs=None,
                 do_handshake_on_connect=True,
                 family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None,
                 suppress_ragged_eofs=True, npn_protocols=None, ciphers=None,
                 server_hostname=None,
                 _context=None):

        if _context:
            self._context = _context
        else:
            if server_side and not certfile:
                raise ValueError("certfile must be specified for server-side "
                                 "operations")
            if keyfile and not certfile:
                raise ValueError("certfile must be specified")
            if certfile and not keyfile:
                keyfile = certfile
            self._context = SSLContext(ssl_version)
            self._context.verify_mode = cert_reqs
            if ca_certs:
                self._context.load_verify_locations(ca_certs)
            if certfile:
                self._context.load_cert_chain(certfile, keyfile)
            if npn_protocols:
                self._context.set_npn_protocols(npn_protocols)
            if ciphers:
                self._context.set_ciphers(ciphers)
            self.keyfile = keyfile
            self.certfile = certfile
            self.cert_reqs = cert_reqs
            self.ssl_version = ssl_version
            self.ca_certs = ca_certs
            self.ciphers = ciphers
        # Can't use sock.type as other flags (such as SOCK_NONBLOCK) get
        # mixed in.
        if sock.getsockopt(SOL_SOCKET, SO_TYPE) != SOCK_STREAM:
            raise NotImplementedError("only stream sockets are supported")
        if server_side and server_hostname:
            raise ValueError("server_hostname can only be specified "
                             "in client mode")
        if self._context.check_hostname and not server_hostname:
            raise ValueError("check_hostname requires server_hostname")
        self.server_side = server_side
        self.server_hostname = server_hostname
        self.do_handshake_on_connect = do_handshake_on_connect
        self.suppress_ragged_eofs = suppress_ragged_eofs
        if sock is not None:
            socket.__init__(self,
                            family=sock.family,
                            type=sock.type,
                            proto=sock.proto,
                            fileno=sock.fileno())
            self.settimeout(sock.gettimeout())
            sock.detach()
        elif fileno is not None:
            socket.__init__(self, fileno=fileno)
        else:
            socket.__init__(self, family=family, type=type, proto=proto)

        # See if we are connected
        try:
            self.getpeername()
        except OSError as e:
            if e.errno != errno.ENOTCONN:
                raise
            connected = False
        else:
            connected = True

        self._closed = False
        self._sslobj = None
        self._connected = connected
        if connected:
            # create the SSL object
            try:
                self._sslobj = self._context._wrap_socket(self, server_side,
                                                         server_hostname)
                if do_handshake_on_connect:
                    timeout = self.gettimeout()
                    if timeout == 0.0:
                        # non-blocking
                        raise ValueError("do_handshake_on_connect should not be specified for non-blocking sockets")
                    self.do_handshake()

            except (OSError, ValueError):
                self.close()
                raise

    @property
    def context(self):
        return self._context

    @context.setter
    def context(self, ctx):
        self._context = ctx
        self._sslobj.context = ctx

    def dup(self):
        raise NotImplemented("Can't dup() %s instances" %
                             self.__class__.__name__)

    def _checkClosed(self, msg=None):
        # raise an exception here if you wish to check for spurious closes
        pass

    def _check_connected(self):
        if not self._connected:
            # getpeername() will raise ENOTCONN if the socket is really
            # not connected; note that we can be connected even without
            # _connected being set, e.g. if connect() first returned
            # EAGAIN.
            self.getpeername()

    def read(self, len=0, buffer=None):
        """Read up to LEN bytes and return them.
        Return zero-length string on EOF."""

        self._checkClosed()
        if not self._sslobj:
            raise ValueError("Read on closed or unwrapped SSL socket.")
        try:
            if buffer is not None:
                v = self._sslobj.read(len, buffer)
            else:
                v = self._sslobj.read(len or 1024)
            return v
        except SSLError as x:
            if x.args[0] == SSL_ERROR_EOF and self.suppress_ragged_eofs:
                if buffer is not None:
                    return 0
                else:
                    return b''
            else:
                raise

    def write(self, data):
        """Write DATA to the underlying SSL channel.  Returns
        number of bytes of DATA actually transmitted."""

        self._checkClosed()
        if not self._sslobj:
            raise ValueError("Write on closed or unwrapped SSL socket.")
        return self._sslobj.write(data)

    def getpeercert(self, binary_form=False):
        """Returns a formatted version of the data in the
        certificate provided by the other end of the SSL channel.
        Return None if no certificate was provided, {} if a
        certificate was provided, but not validated."""

        self._checkClosed()
        self._check_connected()
        return self._sslobj.peer_certificate(binary_form)

    def selected_npn_protocol(self):
        self._checkClosed()
        if not self._sslobj or not _ssl.HAS_NPN:
            return None
        else:
            return self._sslobj.selected_npn_protocol()

    def cipher(self):
        self._checkClosed()
        if not self._sslobj:
            return None
        else:
            return self._sslobj.cipher()

    def compression(self):
        self._checkClosed()
        if not self._sslobj:
            return None
        else:
            return self._sslobj.compression()

    def send(self, data, flags=0):
        self._checkClosed()
        if self._sslobj:
            if flags != 0:
                raise ValueError(
                    "non-zero flags not allowed in calls to send() on %s" %
                    self.__class__)
            try:
                v = self._sslobj.write(data)
            except SSLError as x:
                if x.args[0] == SSL_ERROR_WANT_READ:
                    return 0
                elif x.args[0] == SSL_ERROR_WANT_WRITE:
                    return 0
                else:
                    raise
            else:
                return v
        else:
            return socket.send(self, data, flags)

    def sendto(self, data, flags_or_addr, addr=None):
        self._checkClosed()
        if self._sslobj:
            raise ValueError("sendto not allowed on instances of %s" %
                             self.__class__)
        elif addr is None:
            return socket.sendto(self, data, flags_or_addr)
        else:
            return socket.sendto(self, data, flags_or_addr, addr)

    def sendmsg(self, *args, **kwargs):
        # Ensure programs don't send data unencrypted if they try to
        # use this method.
        raise NotImplementedError("sendmsg not allowed on instances of %s" %
                                  self.__class__)

    def sendall(self, data, flags=0):
        self._checkClosed()
        if self._sslobj:
            if flags != 0:
                raise ValueError(
                    "non-zero flags not allowed in calls to sendall() on %s" %
                    self.__class__)
            amount = len(data)
            count = 0
            while (count < amount):
                v = self.send(data[count:])
                count += v
            return amount
        else:
            return socket.sendall(self, data, flags)

    def recv(self, buflen=1024, flags=0):
        self._checkClosed()
        if self._sslobj:
            if flags != 0:
                raise ValueError(
                    "non-zero flags not allowed in calls to recv() on %s" %
                    self.__class__)
            return self.read(buflen)
        else:
            return socket.recv(self, buflen, flags)

    def recv_into(self, buffer, nbytes=None, flags=0):
        self._checkClosed()
        if buffer and (nbytes is None):
            nbytes = len(buffer)
        elif nbytes is None:
            nbytes = 1024
        if self._sslobj:
            if flags != 0:
                raise ValueError(
                  "non-zero flags not allowed in calls to recv_into() on %s" %
                  self.__class__)
            return self.read(nbytes, buffer)
        else:
            return socket.recv_into(self, buffer, nbytes, flags)

    def recvfrom(self, buflen=1024, flags=0):
        self._checkClosed()
        if self._sslobj:
            raise ValueError("recvfrom not allowed on instances of %s" %
                             self.__class__)
        else:
            return socket.recvfrom(self, buflen, flags)

    def recvfrom_into(self, buffer, nbytes=None, flags=0):
        self._checkClosed()
        if self._sslobj:
            raise ValueError("recvfrom_into not allowed on instances of %s" %
                             self.__class__)
        else:
            return socket.recvfrom_into(self, buffer, nbytes, flags)

    def recvmsg(self, *args, **kwargs):
        raise NotImplementedError("recvmsg not allowed on instances of %s" %
                                  self.__class__)

    def recvmsg_into(self, *args, **kwargs):
        raise NotImplementedError("recvmsg_into not allowed on instances of "
                                  "%s" % self.__class__)

    def pending(self):
        self._checkClosed()
        if self._sslobj:
            return self._sslobj.pending()
        else:
            return 0

    def shutdown(self, how):
        self._checkClosed()
        self._sslobj = None
        socket.shutdown(self, how)

    def unwrap(self):
        if self._sslobj:
            s = self._sslobj.shutdown()
            self._sslobj = None
            return s
        else:
            raise ValueError("No SSL wrapper around " + str(self))

    def _real_close(self):
        self._sslobj = None
        socket._real_close(self)

    def do_handshake(self, block=False):
        """Perform a TLS/SSL handshake."""
        self._check_connected()
        timeout = self.gettimeout()
        try:
            if timeout == 0.0 and block:
                self.settimeout(None)
            self._sslobj.do_handshake()
        finally:
            self.settimeout(timeout)

        if self.context.check_hostname:
            if not self.server_hostname:
                raise ValueError("check_hostname needs server_hostname "
                                 "argument")
            match_hostname(self.getpeercert(), self.server_hostname)

    def _real_connect(self, addr, connect_ex):
        if self.server_side:
            raise ValueError("can't connect in server-side mode")
        # Here we assume that the socket is client-side, and not
        # connected at the time of the call.  We connect it, then wrap it.
        if self._connected:
            raise ValueError("attempt to connect already-connected SSLSocket!")
        self._sslobj = self.context._wrap_socket(self, False, self.server_hostname)
        try:
            if connect_ex:
                rc = socket.connect_ex(self, addr)
            else:
                rc = None
                socket.connect(self, addr)
            if not rc:
                self._connected = True
                if self.do_handshake_on_connect:
                    self.do_handshake()
            return rc
        except (OSError, ValueError):
            self._sslobj = None
            raise

    def connect(self, addr):
        """Connects to remote ADDR, and then wraps the connection in
        an SSL channel."""
        self._real_connect(addr, False)

    def connect_ex(self, addr):
        """Connects to remote ADDR, and then wraps the connection in
        an SSL channel."""
        return self._real_connect(addr, True)

    def accept(self):
        """Accepts a new connection from a remote client, and returns
        a tuple containing that new connection wrapped with a server-side
        SSL channel, and the address of the remote client."""

        newsock, addr = socket.accept(self)
        newsock = self.context.wrap_socket(newsock,
                    do_handshake_on_connect=self.do_handshake_on_connect,
                    suppress_ragged_eofs=self.suppress_ragged_eofs,
                    server_side=True)
        return newsock, addr

    def get_channel_binding(self, cb_type="tls-unique"):
        """Get channel binding data for current connection.  Raise ValueError
        if the requested `cb_type` is not supported.  Return bytes of the data
        or None if the data is not available (e.g. before the handshake).
        """
        if cb_type not in CHANNEL_BINDING_TYPES:
            raise ValueError("Unsupported channel binding type")
        if cb_type != "tls-unique":
            raise NotImplementedError(
                            "{0} channel binding type not implemented"
                            .format(cb_type))
        if self._sslobj is None:
            return None
        return self._sslobj.tls_unique_cb()


def wrap_socket(sock, keyfile=None, certfile=None,
                server_side=False, cert_reqs=CERT_NONE,
                ssl_version=PROTOCOL_SSLv23, ca_certs=None,
                do_handshake_on_connect=True,
                suppress_ragged_eofs=True,
                ciphers=None):

    return SSLSocket(sock=sock, keyfile=keyfile, certfile=certfile,
                     server_side=server_side, cert_reqs=cert_reqs,
                     ssl_version=ssl_version, ca_certs=ca_certs,
                     do_handshake_on_connect=do_handshake_on_connect,
                     suppress_ragged_eofs=suppress_ragged_eofs,
                     ciphers=ciphers)

# some utility functions

def cert_time_to_seconds(cert_time):
    """Takes a date-time string in standard ASN1_print form
    ("MON DAY 24HOUR:MINUTE:SEC YEAR TIMEZONE") and return
    a Python time value in seconds past the epoch."""

    import time
    return time.mktime(time.strptime(cert_time, "%b %d %H:%M:%S %Y GMT"))

PEM_HEADER = "-----BEGIN CERTIFICATE-----"
PEM_FOOTER = "-----END CERTIFICATE-----"

def DER_cert_to_PEM_cert(der_cert_bytes):
    """Takes a certificate in binary DER format and returns the
    PEM version of it as a string."""

    f = str(base64.standard_b64encode(der_cert_bytes), 'ASCII', 'strict')
    return (PEM_HEADER + '\n' +
            textwrap.fill(f, 64) + '\n' +
            PEM_FOOTER + '\n')

def PEM_cert_to_DER_cert(pem_cert_string):
    """Takes a certificate in ASCII PEM format and returns the
    DER-encoded version of it as a byte sequence"""

    if not pem_cert_string.startswith(PEM_HEADER):
        raise ValueError("Invalid PEM encoding; must start with %s"
                         % PEM_HEADER)
    if not pem_cert_string.strip().endswith(PEM_FOOTER):
        raise ValueError("Invalid PEM encoding; must end with %s"
                         % PEM_FOOTER)
    d = pem_cert_string.strip()[len(PEM_HEADER):-len(PEM_FOOTER)]
    return base64.decodebytes(d.encode('ASCII', 'strict'))

def get_server_certificate(addr, ssl_version=PROTOCOL_SSLv23, ca_certs=None):
    """Retrieve the certificate from the server at the specified address,
    and return it as a PEM-encoded string.
    If 'ca_certs' is specified, validate the server cert against it.
    If 'ssl_version' is specified, use it in the connection attempt."""

    host, port = addr
    if ca_certs is not None:
        cert_reqs = CERT_REQUIRED
    else:
        cert_reqs = CERT_NONE
    context = _create_stdlib_context(ssl_version,
                                     cert_reqs=cert_reqs,
                                     cafile=ca_certs)
    with  create_connection(addr) as sock:
        with context.wrap_socket(sock) as sslsock:
            dercert = sslsock.getpeercert(True)
    return DER_cert_to_PEM_cert(dercert)

def get_protocol_name(protocol_code):
    return _PROTOCOL_NAMES.get(protocol_code, '<unknown>')
lib\stat.py
"""Constants/functions for interpreting results of os.stat() and os.lstat().

Suggested usage: from stat import *
"""

# Indices for stat struct members in the tuple returned by os.stat()

ST_MODE  = 0
ST_INO   = 1
ST_DEV   = 2
ST_NLINK = 3
ST_UID   = 4
ST_GID   = 5
ST_SIZE  = 6
ST_ATIME = 7
ST_MTIME = 8
ST_CTIME = 9

# Extract bits from the mode

def S_IMODE(mode):
    """Return the portion of the file's mode that can be set by
    os.chmod().
    """
    return mode & 0o7777

def S_IFMT(mode):
    """Return the portion of the file's mode that describes the
    file type.
    """
    return mode & 0o170000

# Constants used as S_IFMT() for various file types
# (not all are implemented on all systems)

S_IFDIR  = 0o040000  # directory
S_IFCHR  = 0o020000  # character device
S_IFBLK  = 0o060000  # block device
S_IFREG  = 0o100000  # regular file
S_IFIFO  = 0o010000  # fifo (named pipe)
S_IFLNK  = 0o120000  # symbolic link
S_IFSOCK = 0o140000  # socket file

# Functions to test for each file type

def S_ISDIR(mode):
    """Return True if mode is from a directory."""
    return S_IFMT(mode) == S_IFDIR

def S_ISCHR(mode):
    """Return True if mode is from a character special device file."""
    return S_IFMT(mode) == S_IFCHR

def S_ISBLK(mode):
    """Return True if mode is from a block special device file."""
    return S_IFMT(mode) == S_IFBLK

def S_ISREG(mode):
    """Return True if mode is from a regular file."""
    return S_IFMT(mode) == S_IFREG

def S_ISFIFO(mode):
    """Return True if mode is from a FIFO (named pipe)."""
    return S_IFMT(mode) == S_IFIFO

def S_ISLNK(mode):
    """Return True if mode is from a symbolic link."""
    return S_IFMT(mode) == S_IFLNK

def S_ISSOCK(mode):
    """Return True if mode is from a socket."""
    return S_IFMT(mode) == S_IFSOCK

# Names for permission bits

S_ISUID = 0o4000  # set UID bit
S_ISGID = 0o2000  # set GID bit
S_ENFMT = S_ISGID # file locking enforcement
S_ISVTX = 0o1000  # sticky bit
S_IREAD = 0o0400  # Unix V7 synonym for S_IRUSR
S_IWRITE = 0o0200 # Unix V7 synonym for S_IWUSR
S_IEXEC = 0o0100  # Unix V7 synonym for S_IXUSR
S_IRWXU = 0o0700  # mask for owner permissions
S_IRUSR = 0o0400  # read by owner
S_IWUSR = 0o0200  # write by owner
S_IXUSR = 0o0100  # execute by owner
S_IRWXG = 0o0070  # mask for group permissions
S_IRGRP = 0o0040  # read by group
S_IWGRP = 0o0020  # write by group
S_IXGRP = 0o0010  # execute by group
S_IRWXO = 0o0007  # mask for others (not in group) permissions
S_IROTH = 0o0004  # read by others
S_IWOTH = 0o0002  # write by others
S_IXOTH = 0o0001  # execute by others

# Names for file flags

UF_NODUMP    = 0x00000001  # do not dump file
UF_IMMUTABLE = 0x00000002  # file may not be changed
UF_APPEND    = 0x00000004  # file may only be appended to
UF_OPAQUE    = 0x00000008  # directory is opaque when viewed through a union stack
UF_NOUNLINK  = 0x00000010  # file may not be renamed or deleted
UF_COMPRESSED = 0x00000020 # OS X: file is hfs-compressed
UF_HIDDEN    = 0x00008000  # OS X: file should not be displayed
SF_ARCHIVED  = 0x00010000  # file may be archived
SF_IMMUTABLE = 0x00020000  # file may not be changed
SF_APPEND    = 0x00040000  # file may only be appended to
SF_NOUNLINK  = 0x00100000  # file may not be renamed or deleted
SF_SNAPSHOT  = 0x00200000  # file is a snapshot file


_filemode_table = (
    ((S_IFLNK,         "l"),
     (S_IFREG,         "-"),
     (S_IFBLK,         "b"),
     (S_IFDIR,         "d"),
     (S_IFCHR,         "c"),
     (S_IFIFO,         "p")),

    ((S_IRUSR,         "r"),),
    ((S_IWUSR,         "w"),),
    ((S_IXUSR|S_ISUID, "s"),
     (S_ISUID,         "S"),
     (S_IXUSR,         "x")),

    ((S_IRGRP,         "r"),),
    ((S_IWGRP,         "w"),),
    ((S_IXGRP|S_ISGID, "s"),
     (S_ISGID,         "S"),
     (S_IXGRP,         "x")),

    ((S_IROTH,         "r"),),
    ((S_IWOTH,         "w"),),
    ((S_IXOTH|S_ISVTX, "t"),
     (S_ISVTX,         "T"),
     (S_IXOTH,         "x"))
)

def filemode(mode):
    """Convert a file's mode to a string of the form '-rwxrwxrwx'."""
    perm = []
    for table in _filemode_table:
        for bit, char in table:
            if mode & bit == bit:
                perm.append(char)
                break
        else:
            perm.append("-")
    return "".join(perm)

# If available, use C implementation
try:
    from _stat import *
except ImportError:
    pass
lib\statistics.py
##  Module statistics.py
##
##  Copyright (c) 2013 Steven D'Aprano <[email protected]>.
##
##  Licensed under the Apache License, Version 2.0 (the "License");
##  you may not use this file except in compliance with the License.
##  You may obtain a copy of the License at
##
##  http://www.apache.org/licenses/LICENSE-2.0
##
##  Unless required by applicable law or agreed to in writing, software
##  distributed under the License is distributed on an "AS IS" BASIS,
##  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
##  See the License for the specific language governing permissions and
##  limitations under the License.


"""
Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  =============================================
Function            Description
==================  =============================================
mean                Arithmetic mean (average) of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
==================  =============================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

"""

__all__ = [ 'StatisticsError',
            'pstdev', 'pvariance', 'stdev', 'variance',
            'median',  'median_low', 'median_high', 'median_grouped',
            'mean', 'mode',
          ]


import collections
import math

from fractions import Fraction
from decimal import Decimal
from itertools import groupby



# === Exceptions ===

class StatisticsError(ValueError):
    pass


# === Private utilities ===

def _sum(data, start=0):
    """_sum(data [, start]) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    If optional argument ``start`` is given, it is added to the total.
    If ``data`` is empty, ``start`` (defaulting to 0) is returned.


    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
    (<class 'float'>, Fraction(11, 1), 5)

    Some sources of round-off error will be avoided:

    >>> _sum([1e50, 1, -1e50] * 1000)  # Built-in sum returns zero.
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    """
    count = 0
    n, d = _exact_ratio(start)
    partials = {d: n}
    partials_get = partials.get
    T = _coerce(int, type(start))
    for typ, values in groupby(data, type):
        T = _coerce(T, typ)  # or raise TypeError
        for n,d in map(_exact_ratio, values):
            count += 1
            partials[d] = partials_get(d, 0) + n
    if None in partials:
        # The sum will be a NAN or INF. We can ignore all the finite
        # partials, and just look at this special one.
        total = partials[None]
        assert not _isfinite(total)
    else:
        # Sum all the partial sums using builtin sum.
        # FIXME is this faster if we sum them in order of the denominator?
        total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
    return (T, total, count)


def _isfinite(x):
    try:
        return x.is_finite()  # Likely a Decimal.
    except AttributeError:
        return math.isfinite(x)  # Coerces to float first.


def _coerce(T, S):
    """Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    """
    # See http://bugs.python.org/issue24068.
    assert T is not bool, "initial type T is bool"
    # If the types are the same, no need to coerce anything. Put this
    # first, so that the usual case (no coercion needed) happens as soon
    # as possible.
    if T is S:  return T
    # Mixed int & other coerce to the other type.
    if S is int or S is bool:  return T
    if T is int:  return S
    # If one is a (strict) subclass of the other, coerce to the subclass.
    if issubclass(S, T):  return S
    if issubclass(T, S):  return T
    # Ints coerce to the other type.
    if issubclass(T, int):  return S
    if issubclass(S, int):  return T
    # Mixed fraction & float coerces to float (or float subclass).
    if issubclass(T, Fraction) and issubclass(S, float):
        return S
    if issubclass(T, float) and issubclass(S, Fraction):
        return T
    # Any other combination is disallowed.
    msg = "don't know how to coerce %s and %s"
    raise TypeError(msg % (T.__name__, S.__name__))


def _exact_ratio(x):
    """Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    """
    try:
        # Optimise the common case of floats. We expect that the most often
        # used numeric type will be builtin floats, so try to make this as
        # fast as possible.
        if type(x) is float:
            return x.as_integer_ratio()
        try:
            # x may be an int, Fraction, or Integral ABC.
            return (x.numerator, x.denominator)
        except AttributeError:
            try:
                # x may be a float subclass.
                return x.as_integer_ratio()
            except AttributeError:
                try:
                    # x may be a Decimal.
                    return _decimal_to_ratio(x)
                except AttributeError:
                    # Just give up?
                    pass
    except (OverflowError, ValueError):
        # float NAN or INF.
        assert not math.isfinite(x)
        return (x, None)
    msg = "can't convert type '{}' to numerator/denominator"
    raise TypeError(msg.format(type(x).__name__))


# FIXME This is faster than Fraction.from_decimal, but still too slow.
def _decimal_to_ratio(d):
    """Convert Decimal d to exact integer ratio (numerator, denominator).

    >>> from decimal import Decimal
    >>> _decimal_to_ratio(Decimal("2.6"))
    (26, 10)

    """
    sign, digits, exp = d.as_tuple()
    if exp in ('F', 'n', 'N'):  # INF, NAN, sNAN
        assert not d.is_finite()
        return (d, None)
    num = 0
    for digit in digits:
        num = num*10 + digit
    if exp < 0:
        den = 10**-exp
    else:
        num *= 10**exp
        den = 1
    if sign:
        num = -num
    return (num, den)


def _convert(value, T):
    """Convert value to given numeric type T."""
    if type(value) is T:
        # This covers the cases where T is Fraction, or where value is
        # a NAN or INF (Decimal or float).
        return value
    if issubclass(T, int) and value.denominator != 1:
        T = float
    try:
        # FIXME: what do we do if this overflows?
        return T(value)
    except TypeError:
        if issubclass(T, Decimal):
            return T(value.numerator)/T(value.denominator)
        else:
            raise


def _counts(data):
    # Generate a table of sorted (value, frequency) pairs.
    table = collections.Counter(iter(data)).most_common()
    if not table:
        return table
    # Extract the values with the highest frequency.
    maxfreq = table[0][1]
    for i in range(1, len(table)):
        if table[i][1] != maxfreq:
            table = table[:i]
            break
    return table


# === Measures of central tendency (averages) ===

def mean(data):
    """Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('mean requires at least one data point')
    T, total, count = _sum(data)
    assert count == n
    return _convert(total/n, T)


# FIXME: investigate ways to calculate medians without sorting? Quickselect?
def median(data):
    """Return the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        i = n//2
        return (data[i - 1] + data[i])/2


def median_low(data):
    """Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        return data[n//2 - 1]


def median_high(data):
    """Return the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    return data[n//2]


def median_grouped(data, interval=1):
    """Return the 50th percentile (median) of grouped continuous data.

    >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
    3.7
    >>> median_grouped([52, 52, 53, 54])
    52.5

    This calculates the median as the 50th percentile, and should be
    used when your data is continuous and grouped. In the above example,
    the values 1, 2, 3, etc. actually represent the midpoint of classes
    0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
    class 3.5-4.5, and interpolation is used to estimate it.

    Optional argument ``interval`` represents the class interval, and
    defaults to 1. Changing the class interval naturally will change the
    interpolated 50th percentile value:

    >>> median_grouped([1, 3, 3, 5, 7], interval=1)
    3.25
    >>> median_grouped([1, 3, 3, 5, 7], interval=2)
    3.5

    This function does not check whether the data points are at least
    ``interval`` apart.
    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    elif n == 1:
        return data[0]
    # Find the value at the midpoint. Remember this corresponds to the
    # centre of the class interval.
    x = data[n//2]
    for obj in (x, interval):
        if isinstance(obj, (str, bytes)):
            raise TypeError('expected number but got %r' % obj)
    try:
        L = x - interval/2  # The lower limit of the median interval.
    except TypeError:
        # Mixed type. For now we just coerce to float.
        L = float(x) - float(interval)/2
    cf = data.index(x)  # Number of values below the median interval.
    # FIXME The following line could be more efficient for big lists.
    f = data.count(x)  # Number of data points in the median interval.
    return L + interval*(n/2 - cf)/f


def mode(data):
    """Return the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

    >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
    3

    This also works with nominal (non-numeric) data:

    >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
    'red'

    If there is not exactly one most common value, ``mode`` will raise
    StatisticsError.
    """
    # Generate a table of sorted (value, frequency) pairs.
    table = _counts(data)
    if len(table) == 1:
        return table[0][0]
    elif table:
        raise StatisticsError(
                'no unique mode; found %d equally common values' % len(table)
                )
    else:
        raise StatisticsError('no mode for empty data')


# === Measures of spread ===

# See http://mathworld.wolfram.com/Variance.html
#     http://mathworld.wolfram.com/SampleVariance.html
#     http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
#
# Under no circumstances use the so-called "computational formula for
# variance", as that is only suitable for hand calculations with a small
# amount of low-precision data. It has terrible numeric properties.
#
# See a comparison of three computational methods here:
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/

def _ss(data, c=None):
    """Return sum of square deviations of sequence data.

    If ``c`` is None, the mean is calculated in one pass, and the deviations
    from the mean are calculated in a second pass. Otherwise, deviations are
    calculated from ``c`` as given. Use the second case with care, as it can
    lead to garbage results.
    """
    if c is None:
        c = mean(data)
    T, total, count = _sum((x-c)**2 for x in data)
    # The following sum should mathematically equal zero, but due to rounding
    # error may not.
    U, total2, count2 = _sum((x-c) for x in data)
    assert T == U and count == count2
    total -=  total2**2/len(data)
    assert not total < 0, 'negative sum of square deviations: %f' % total
    return (T, total)


def variance(data, xbar=None):
    """Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 2:
        raise StatisticsError('variance requires at least two data points')
    T, ss = _ss(data, xbar)
    return _convert(ss/(n-1), T)


def pvariance(data, mu=None):
    """Return the population variance of ``data``.

    data should be an iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    This function does not check that ``mu`` is actually the mean of ``data``.
    Giving arbitrary values for ``mu`` may lead to invalid or impossible
    results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('pvariance requires at least one data point')
    ss = _ss(data, mu)
    T, ss = _ss(data, mu)
    return _convert(ss/n, T)


def stdev(data, xbar=None):
    """Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    """
    var = variance(data, xbar)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)


def pstdev(data, mu=None):
    """Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    """
    var = pvariance(data, mu)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)
lib\string.py
"""A collection of string constants.

Public module variables:

whitespace -- a string containing all ASCII whitespace
ascii_lowercase -- a string containing all ASCII lowercase letters
ascii_uppercase -- a string containing all ASCII uppercase letters
ascii_letters -- a string containing all ASCII letters
digits -- a string containing all ASCII decimal digits
hexdigits -- a string containing all ASCII hexadecimal digits
octdigits -- a string containing all ASCII octal digits
punctuation -- a string containing all ASCII punctuation characters
printable -- a string containing all ASCII characters considered printable

"""

import _string

# Some strings for ctype-style character classification
whitespace = ' \t\n\r\v\f'
ascii_lowercase = 'abcdefghijklmnopqrstuvwxyz'
ascii_uppercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ascii_letters = ascii_lowercase + ascii_uppercase
digits = '0123456789'
hexdigits = digits + 'abcdef' + 'ABCDEF'
octdigits = '01234567'
punctuation = """!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""
printable = digits + ascii_letters + punctuation + whitespace

# Functions which aren't available as string methods.

# Capitalize the words in a string, e.g. " aBc  dEf " -> "Abc Def".
def capwords(s, sep=None):
    """capwords(s [,sep]) -> string

    Split the argument into words using split, capitalize each
    word using capitalize, and join the capitalized words using
    join.  If the optional second argument sep is absent or None,
    runs of whitespace characters are replaced by a single space
    and leading and trailing whitespace are removed, otherwise
    sep is used to split and join the words.

    """
    return (sep or ' ').join(x.capitalize() for x in s.split(sep))


####################################################################
import re as _re
from collections import ChainMap

class _TemplateMetaclass(type):
    pattern = r"""
    %(delim)s(?:
      (?P<escaped>%(delim)s) |   # Escape sequence of two delimiters
      (?P<named>%(id)s)      |   # delimiter and a Python identifier
      {(?P<braced>%(id)s)}   |   # delimiter and a braced identifier
      (?P<invalid>)              # Other ill-formed delimiter exprs
    )
    """

    def __init__(cls, name, bases, dct):
        super(_TemplateMetaclass, cls).__init__(name, bases, dct)
        if 'pattern' in dct:
            pattern = cls.pattern
        else:
            pattern = _TemplateMetaclass.pattern % {
                'delim' : _re.escape(cls.delimiter),
                'id'    : cls.idpattern,
                }
        cls.pattern = _re.compile(pattern, cls.flags | _re.VERBOSE)


class Template(metaclass=_TemplateMetaclass):
    """A string class for supporting $-substitutions."""

    delimiter = '$'
    idpattern = r'[_a-z][_a-z0-9]*'
    flags = _re.IGNORECASE

    def __init__(self, template):
        self.template = template

    # Search for $$, $identifier, ${identifier}, and any bare $'s

    def _invalid(self, mo):
        i = mo.start('invalid')
        lines = self.template[:i].splitlines(keepends=True)
        if not lines:
            colno = 1
            lineno = 1
        else:
            colno = i - len(''.join(lines[:-1]))
            lineno = len(lines)
        raise ValueError('Invalid placeholder in string: line %d, col %d' %
                         (lineno, colno))

    def substitute(*args, **kws):
        if not args:
            raise TypeError("descriptor 'substitute' of 'Template' object "
                            "needs an argument")
        self, *args = args  # allow the "self" keyword be passed
        if len(args) > 1:
            raise TypeError('Too many positional arguments')
        if not args:
            mapping = kws
        elif kws:
            mapping = ChainMap(kws, args[0])
        else:
            mapping = args[0]
        # Helper function for .sub()
        def convert(mo):
            # Check the most common path first.
            named = mo.group('named') or mo.group('braced')
            if named is not None:
                val = mapping[named]
                # We use this idiom instead of str() because the latter will
                # fail if val is a Unicode containing non-ASCII characters.
                return '%s' % (val,)
            if mo.group('escaped') is not None:
                return self.delimiter
            if mo.group('invalid') is not None:
                self._invalid(mo)
            raise ValueError('Unrecognized named group in pattern',
                             self.pattern)
        return self.pattern.sub(convert, self.template)

    def safe_substitute(*args, **kws):
        if not args:
            raise TypeError("descriptor 'safe_substitute' of 'Template' object "
                            "needs an argument")
        self, *args = args  # allow the "self" keyword be passed
        if len(args) > 1:
            raise TypeError('Too many positional arguments')
        if not args:
            mapping = kws
        elif kws:
            mapping = ChainMap(kws, args[0])
        else:
            mapping = args[0]
        # Helper function for .sub()
        def convert(mo):
            named = mo.group('named') or mo.group('braced')
            if named is not None:
                try:
                    # We use this idiom instead of str() because the latter
                    # will fail if val is a Unicode containing non-ASCII
                    return '%s' % (mapping[named],)
                except KeyError:
                    return mo.group()
            if mo.group('escaped') is not None:
                return self.delimiter
            if mo.group('invalid') is not None:
                return mo.group()
            raise ValueError('Unrecognized named group in pattern',
                             self.pattern)
        return self.pattern.sub(convert, self.template)



########################################################################
# the Formatter class
# see PEP 3101 for details and purpose of this class

# The hard parts are reused from the C implementation.  They're exposed as "_"
# prefixed methods of str.

# The overall parser is implemented in _string.formatter_parser.
# The field name parser is implemented in _string.formatter_field_name_split

class Formatter:
    def format(*args, **kwargs):
        if not args:
            raise TypeError("descriptor 'format' of 'Formatter' object "
                            "needs an argument")
        self, *args = args  # allow the "self" keyword be passed
        try:
            format_string, *args = args # allow the "format_string" keyword be passed
        except ValueError:
            if 'format_string' in kwargs:
                format_string = kwargs.pop('format_string')
            else:
                raise TypeError("format() missing 1 required positional "
                                "argument: 'format_string'") from None
        return self.vformat(format_string, args, kwargs)

    def vformat(self, format_string, args, kwargs):
        used_args = set()
        result, _ = self._vformat(format_string, args, kwargs, used_args, 2)
        self.check_unused_args(used_args, args, kwargs)
        return result

    def _vformat(self, format_string, args, kwargs, used_args, recursion_depth,
                 auto_arg_index=0):
        if recursion_depth < 0:
            raise ValueError('Max string recursion exceeded')
        result = []
        for literal_text, field_name, format_spec, conversion in \
                self.parse(format_string):

            # output the literal text
            if literal_text:
                result.append(literal_text)

            # if there's a field, output it
            if field_name is not None:
                # this is some markup, find the object and do
                #  the formatting

                # handle arg indexing when empty field_names are given.
                if field_name == '':
                    if auto_arg_index is False:
                        raise ValueError('cannot switch from manual field '
                                         'specification to automatic field '
                                         'numbering')
                    field_name = str(auto_arg_index)
                    auto_arg_index += 1
                elif field_name.isdigit():
                    if auto_arg_index:
                        raise ValueError('cannot switch from manual field '
                                         'specification to automatic field '
                                         'numbering')
                    # disable auto arg incrementing, if it gets
                    # used later on, then an exception will be raised
                    auto_arg_index = False

                # given the field_name, find the object it references
                #  and the argument it came from
                obj, arg_used = self.get_field(field_name, args, kwargs)
                used_args.add(arg_used)

                # do any conversion on the resulting object
                obj = self.convert_field(obj, conversion)

                # expand the format spec, if needed
                format_spec, auto_arg_index = self._vformat(
                    format_spec, args, kwargs,
                    used_args, recursion_depth-1,
                    auto_arg_index=auto_arg_index)

                # format the object and append to the result
                result.append(self.format_field(obj, format_spec))

        return ''.join(result), auto_arg_index


    def get_value(self, key, args, kwargs):
        if isinstance(key, int):
            return args[key]
        else:
            return kwargs[key]


    def check_unused_args(self, used_args, args, kwargs):
        pass


    def format_field(self, value, format_spec):
        return format(value, format_spec)


    def convert_field(self, value, conversion):
        # do any conversion on the resulting object
        if conversion is None:
            return value
        elif conversion == 's':
            return str(value)
        elif conversion == 'r':
            return repr(value)
        elif conversion == 'a':
            return ascii(value)
        raise ValueError("Unknown conversion specifier {0!s}".format(conversion))


    # returns an iterable that contains tuples of the form:
    # (literal_text, field_name, format_spec, conversion)
    # literal_text can be zero length
    # field_name can be None, in which case there's no
    #  object to format and output
    # if field_name is not None, it is looked up, formatted
    #  with format_spec and conversion and then used
    def parse(self, format_string):
        return _string.formatter_parser(format_string)


    # given a field_name, find the object it references.
    #  field_name:   the field being looked up, e.g. "0.name"
    #                 or "lookup[3]"
    #  used_args:    a set of which args have been used
    #  args, kwargs: as passed in to vformat
    def get_field(self, field_name, args, kwargs):
        first, rest = _string.formatter_field_name_split(field_name)

        obj = self.get_value(first, args, kwargs)

        # loop through the rest of the field_name, doing
        #  getattr or getitem as needed
        for is_attr, i in rest:
            if is_attr:
                obj = getattr(obj, i)
            else:
                obj = obj[i]

        return obj, first
lib\stringprep.py
# This file is generated by mkstringprep.py. DO NOT EDIT.
"""Library that exposes various tables found in the StringPrep RFC 3454.

There are two kinds of tables: sets, for which a member test is provided,
and mappings, for which a mapping function is provided.
"""

from unicodedata import ucd_3_2_0 as unicodedata

assert unicodedata.unidata_version == '3.2.0'

def in_table_a1(code):
    if unicodedata.category(code) != 'Cn': return False
    c = ord(code)
    if 0xFDD0 <= c < 0xFDF0: return False
    return (c & 0xFFFF) not in (0xFFFE, 0xFFFF)


b1_set = set([173, 847, 6150, 6155, 6156, 6157, 8203, 8204, 8205, 8288, 65279] + list(range(65024,65040)))
def in_table_b1(code):
    return ord(code) in b1_set


b3_exceptions = {
0xb5:'\u03bc', 0xdf:'ss', 0x130:'i\u0307', 0x149:'\u02bcn',
0x17f:'s', 0x1f0:'j\u030c', 0x345:'\u03b9', 0x37a:' \u03b9',
0x390:'\u03b9\u0308\u0301', 0x3b0:'\u03c5\u0308\u0301', 0x3c2:'\u03c3', 0x3d0:'\u03b2',
0x3d1:'\u03b8', 0x3d2:'\u03c5', 0x3d3:'\u03cd', 0x3d4:'\u03cb',
0x3d5:'\u03c6', 0x3d6:'\u03c0', 0x3f0:'\u03ba', 0x3f1:'\u03c1',
0x3f2:'\u03c3', 0x3f5:'\u03b5', 0x587:'\u0565\u0582', 0x1e96:'h\u0331',
0x1e97:'t\u0308', 0x1e98:'w\u030a', 0x1e99:'y\u030a', 0x1e9a:'a\u02be',
0x1e9b:'\u1e61', 0x1f50:'\u03c5\u0313', 0x1f52:'\u03c5\u0313\u0300', 0x1f54:'\u03c5\u0313\u0301',
0x1f56:'\u03c5\u0313\u0342', 0x1f80:'\u1f00\u03b9', 0x1f81:'\u1f01\u03b9', 0x1f82:'\u1f02\u03b9',
0x1f83:'\u1f03\u03b9', 0x1f84:'\u1f04\u03b9', 0x1f85:'\u1f05\u03b9', 0x1f86:'\u1f06\u03b9',
0x1f87:'\u1f07\u03b9', 0x1f88:'\u1f00\u03b9', 0x1f89:'\u1f01\u03b9', 0x1f8a:'\u1f02\u03b9',
0x1f8b:'\u1f03\u03b9', 0x1f8c:'\u1f04\u03b9', 0x1f8d:'\u1f05\u03b9', 0x1f8e:'\u1f06\u03b9',
0x1f8f:'\u1f07\u03b9', 0x1f90:'\u1f20\u03b9', 0x1f91:'\u1f21\u03b9', 0x1f92:'\u1f22\u03b9',
0x1f93:'\u1f23\u03b9', 0x1f94:'\u1f24\u03b9', 0x1f95:'\u1f25\u03b9', 0x1f96:'\u1f26\u03b9',
0x1f97:'\u1f27\u03b9', 0x1f98:'\u1f20\u03b9', 0x1f99:'\u1f21\u03b9', 0x1f9a:'\u1f22\u03b9',
0x1f9b:'\u1f23\u03b9', 0x1f9c:'\u1f24\u03b9', 0x1f9d:'\u1f25\u03b9', 0x1f9e:'\u1f26\u03b9',
0x1f9f:'\u1f27\u03b9', 0x1fa0:'\u1f60\u03b9', 0x1fa1:'\u1f61\u03b9', 0x1fa2:'\u1f62\u03b9',
0x1fa3:'\u1f63\u03b9', 0x1fa4:'\u1f64\u03b9', 0x1fa5:'\u1f65\u03b9', 0x1fa6:'\u1f66\u03b9',
0x1fa7:'\u1f67\u03b9', 0x1fa8:'\u1f60\u03b9', 0x1fa9:'\u1f61\u03b9', 0x1faa:'\u1f62\u03b9',
0x1fab:'\u1f63\u03b9', 0x1fac:'\u1f64\u03b9', 0x1fad:'\u1f65\u03b9', 0x1fae:'\u1f66\u03b9',
0x1faf:'\u1f67\u03b9', 0x1fb2:'\u1f70\u03b9', 0x1fb3:'\u03b1\u03b9', 0x1fb4:'\u03ac\u03b9',
0x1fb6:'\u03b1\u0342', 0x1fb7:'\u03b1\u0342\u03b9', 0x1fbc:'\u03b1\u03b9', 0x1fbe:'\u03b9',
0x1fc2:'\u1f74\u03b9', 0x1fc3:'\u03b7\u03b9', 0x1fc4:'\u03ae\u03b9', 0x1fc6:'\u03b7\u0342',
0x1fc7:'\u03b7\u0342\u03b9', 0x1fcc:'\u03b7\u03b9', 0x1fd2:'\u03b9\u0308\u0300', 0x1fd3:'\u03b9\u0308\u0301',
0x1fd6:'\u03b9\u0342', 0x1fd7:'\u03b9\u0308\u0342', 0x1fe2:'\u03c5\u0308\u0300', 0x1fe3:'\u03c5\u0308\u0301',
0x1fe4:'\u03c1\u0313', 0x1fe6:'\u03c5\u0342', 0x1fe7:'\u03c5\u0308\u0342', 0x1ff2:'\u1f7c\u03b9',
0x1ff3:'\u03c9\u03b9', 0x1ff4:'\u03ce\u03b9', 0x1ff6:'\u03c9\u0342', 0x1ff7:'\u03c9\u0342\u03b9',
0x1ffc:'\u03c9\u03b9', 0x20a8:'rs', 0x2102:'c', 0x2103:'\xb0c',
0x2107:'\u025b', 0x2109:'\xb0f', 0x210b:'h', 0x210c:'h',
0x210d:'h', 0x2110:'i', 0x2111:'i', 0x2112:'l',
0x2115:'n', 0x2116:'no', 0x2119:'p', 0x211a:'q',
0x211b:'r', 0x211c:'r', 0x211d:'r', 0x2120:'sm',
0x2121:'tel', 0x2122:'tm', 0x2124:'z', 0x2128:'z',
0x212c:'b', 0x212d:'c', 0x2130:'e', 0x2131:'f',
0x2133:'m', 0x213e:'\u03b3', 0x213f:'\u03c0', 0x2145:'d',
0x3371:'hpa', 0x3373:'au', 0x3375:'ov', 0x3380:'pa',
0x3381:'na', 0x3382:'\u03bca', 0x3383:'ma', 0x3384:'ka',
0x3385:'kb', 0x3386:'mb', 0x3387:'gb', 0x338a:'pf',
0x338b:'nf', 0x338c:'\u03bcf', 0x3390:'hz', 0x3391:'khz',
0x3392:'mhz', 0x3393:'ghz', 0x3394:'thz', 0x33a9:'pa',
0x33aa:'kpa', 0x33ab:'mpa', 0x33ac:'gpa', 0x33b4:'pv',
0x33b5:'nv', 0x33b6:'\u03bcv', 0x33b7:'mv', 0x33b8:'kv',
0x33b9:'mv', 0x33ba:'pw', 0x33bb:'nw', 0x33bc:'\u03bcw',
0x33bd:'mw', 0x33be:'kw', 0x33bf:'mw', 0x33c0:'k\u03c9',
0x33c1:'m\u03c9', 0x33c3:'bq', 0x33c6:'c\u2215kg', 0x33c7:'co.',
0x33c8:'db', 0x33c9:'gy', 0x33cb:'hp', 0x33cd:'kk',
0x33ce:'km', 0x33d7:'ph', 0x33d9:'ppm', 0x33da:'pr',
0x33dc:'sv', 0x33dd:'wb', 0xfb00:'ff', 0xfb01:'fi',
0xfb02:'fl', 0xfb03:'ffi', 0xfb04:'ffl', 0xfb05:'st',
0xfb06:'st', 0xfb13:'\u0574\u0576', 0xfb14:'\u0574\u0565', 0xfb15:'\u0574\u056b',
0xfb16:'\u057e\u0576', 0xfb17:'\u0574\u056d', 0x1d400:'a', 0x1d401:'b',
0x1d402:'c', 0x1d403:'d', 0x1d404:'e', 0x1d405:'f',
0x1d406:'g', 0x1d407:'h', 0x1d408:'i', 0x1d409:'j',
0x1d40a:'k', 0x1d40b:'l', 0x1d40c:'m', 0x1d40d:'n',
0x1d40e:'o', 0x1d40f:'p', 0x1d410:'q', 0x1d411:'r',
0x1d412:'s', 0x1d413:'t', 0x1d414:'u', 0x1d415:'v',
0x1d416:'w', 0x1d417:'x', 0x1d418:'y', 0x1d419:'z',
0x1d434:'a', 0x1d435:'b', 0x1d436:'c', 0x1d437:'d',
0x1d438:'e', 0x1d439:'f', 0x1d43a:'g', 0x1d43b:'h',
0x1d43c:'i', 0x1d43d:'j', 0x1d43e:'k', 0x1d43f:'l',
0x1d440:'m', 0x1d441:'n', 0x1d442:'o', 0x1d443:'p',
0x1d444:'q', 0x1d445:'r', 0x1d446:'s', 0x1d447:'t',
0x1d448:'u', 0x1d449:'v', 0x1d44a:'w', 0x1d44b:'x',
0x1d44c:'y', 0x1d44d:'z', 0x1d468:'a', 0x1d469:'b',
0x1d46a:'c', 0x1d46b:'d', 0x1d46c:'e', 0x1d46d:'f',
0x1d46e:'g', 0x1d46f:'h', 0x1d470:'i', 0x1d471:'j',
0x1d472:'k', 0x1d473:'l', 0x1d474:'m', 0x1d475:'n',
0x1d476:'o', 0x1d477:'p', 0x1d478:'q', 0x1d479:'r',
0x1d47a:'s', 0x1d47b:'t', 0x1d47c:'u', 0x1d47d:'v',
0x1d47e:'w', 0x1d47f:'x', 0x1d480:'y', 0x1d481:'z',
0x1d49c:'a', 0x1d49e:'c', 0x1d49f:'d', 0x1d4a2:'g',
0x1d4a5:'j', 0x1d4a6:'k', 0x1d4a9:'n', 0x1d4aa:'o',
0x1d4ab:'p', 0x1d4ac:'q', 0x1d4ae:'s', 0x1d4af:'t',
0x1d4b0:'u', 0x1d4b1:'v', 0x1d4b2:'w', 0x1d4b3:'x',
0x1d4b4:'y', 0x1d4b5:'z', 0x1d4d0:'a', 0x1d4d1:'b',
0x1d4d2:'c', 0x1d4d3:'d', 0x1d4d4:'e', 0x1d4d5:'f',
0x1d4d6:'g', 0x1d4d7:'h', 0x1d4d8:'i', 0x1d4d9:'j',
0x1d4da:'k', 0x1d4db:'l', 0x1d4dc:'m', 0x1d4dd:'n',
0x1d4de:'o', 0x1d4df:'p', 0x1d4e0:'q', 0x1d4e1:'r',
0x1d4e2:'s', 0x1d4e3:'t', 0x1d4e4:'u', 0x1d4e5:'v',
0x1d4e6:'w', 0x1d4e7:'x', 0x1d4e8:'y', 0x1d4e9:'z',
0x1d504:'a', 0x1d505:'b', 0x1d507:'d', 0x1d508:'e',
0x1d509:'f', 0x1d50a:'g', 0x1d50d:'j', 0x1d50e:'k',
0x1d50f:'l', 0x1d510:'m', 0x1d511:'n', 0x1d512:'o',
0x1d513:'p', 0x1d514:'q', 0x1d516:'s', 0x1d517:'t',
0x1d518:'u', 0x1d519:'v', 0x1d51a:'w', 0x1d51b:'x',
0x1d51c:'y', 0x1d538:'a', 0x1d539:'b', 0x1d53b:'d',
0x1d53c:'e', 0x1d53d:'f', 0x1d53e:'g', 0x1d540:'i',
0x1d541:'j', 0x1d542:'k', 0x1d543:'l', 0x1d544:'m',
0x1d546:'o', 0x1d54a:'s', 0x1d54b:'t', 0x1d54c:'u',
0x1d54d:'v', 0x1d54e:'w', 0x1d54f:'x', 0x1d550:'y',
0x1d56c:'a', 0x1d56d:'b', 0x1d56e:'c', 0x1d56f:'d',
0x1d570:'e', 0x1d571:'f', 0x1d572:'g', 0x1d573:'h',
0x1d574:'i', 0x1d575:'j', 0x1d576:'k', 0x1d577:'l',
0x1d578:'m', 0x1d579:'n', 0x1d57a:'o', 0x1d57b:'p',
0x1d57c:'q', 0x1d57d:'r', 0x1d57e:'s', 0x1d57f:'t',
0x1d580:'u', 0x1d581:'v', 0x1d582:'w', 0x1d583:'x',
0x1d584:'y', 0x1d585:'z', 0x1d5a0:'a', 0x1d5a1:'b',
0x1d5a2:'c', 0x1d5a3:'d', 0x1d5a4:'e', 0x1d5a5:'f',
0x1d5a6:'g', 0x1d5a7:'h', 0x1d5a8:'i', 0x1d5a9:'j',
0x1d5aa:'k', 0x1d5ab:'l', 0x1d5ac:'m', 0x1d5ad:'n',
0x1d5ae:'o', 0x1d5af:'p', 0x1d5b0:'q', 0x1d5b1:'r',
0x1d5b2:'s', 0x1d5b3:'t', 0x1d5b4:'u', 0x1d5b5:'v',
0x1d5b6:'w', 0x1d5b7:'x', 0x1d5b8:'y', 0x1d5b9:'z',
0x1d5d4:'a', 0x1d5d5:'b', 0x1d5d6:'c', 0x1d5d7:'d',
0x1d5d8:'e', 0x1d5d9:'f', 0x1d5da:'g', 0x1d5db:'h',
0x1d5dc:'i', 0x1d5dd:'j', 0x1d5de:'k', 0x1d5df:'l',
0x1d5e0:'m', 0x1d5e1:'n', 0x1d5e2:'o', 0x1d5e3:'p',
0x1d5e4:'q', 0x1d5e5:'r', 0x1d5e6:'s', 0x1d5e7:'t',
0x1d5e8:'u', 0x1d5e9:'v', 0x1d5ea:'w', 0x1d5eb:'x',
0x1d5ec:'y', 0x1d5ed:'z', 0x1d608:'a', 0x1d609:'b',
0x1d60a:'c', 0x1d60b:'d', 0x1d60c:'e', 0x1d60d:'f',
0x1d60e:'g', 0x1d60f:'h', 0x1d610:'i', 0x1d611:'j',
0x1d612:'k', 0x1d613:'l', 0x1d614:'m', 0x1d615:'n',
0x1d616:'o', 0x1d617:'p', 0x1d618:'q', 0x1d619:'r',
0x1d61a:'s', 0x1d61b:'t', 0x1d61c:'u', 0x1d61d:'v',
0x1d61e:'w', 0x1d61f:'x', 0x1d620:'y', 0x1d621:'z',
0x1d63c:'a', 0x1d63d:'b', 0x1d63e:'c', 0x1d63f:'d',
0x1d640:'e', 0x1d641:'f', 0x1d642:'g', 0x1d643:'h',
0x1d644:'i', 0x1d645:'j', 0x1d646:'k', 0x1d647:'l',
0x1d648:'m', 0x1d649:'n', 0x1d64a:'o', 0x1d64b:'p',
0x1d64c:'q', 0x1d64d:'r', 0x1d64e:'s', 0x1d64f:'t',
0x1d650:'u', 0x1d651:'v', 0x1d652:'w', 0x1d653:'x',
0x1d654:'y', 0x1d655:'z', 0x1d670:'a', 0x1d671:'b',
0x1d672:'c', 0x1d673:'d', 0x1d674:'e', 0x1d675:'f',
0x1d676:'g', 0x1d677:'h', 0x1d678:'i', 0x1d679:'j',
0x1d67a:'k', 0x1d67b:'l', 0x1d67c:'m', 0x1d67d:'n',
0x1d67e:'o', 0x1d67f:'p', 0x1d680:'q', 0x1d681:'r',
0x1d682:'s', 0x1d683:'t', 0x1d684:'u', 0x1d685:'v',
0x1d686:'w', 0x1d687:'x', 0x1d688:'y', 0x1d689:'z',
0x1d6a8:'\u03b1', 0x1d6a9:'\u03b2', 0x1d6aa:'\u03b3', 0x1d6ab:'\u03b4',
0x1d6ac:'\u03b5', 0x1d6ad:'\u03b6', 0x1d6ae:'\u03b7', 0x1d6af:'\u03b8',
0x1d6b0:'\u03b9', 0x1d6b1:'\u03ba', 0x1d6b2:'\u03bb', 0x1d6b3:'\u03bc',
0x1d6b4:'\u03bd', 0x1d6b5:'\u03be', 0x1d6b6:'\u03bf', 0x1d6b7:'\u03c0',
0x1d6b8:'\u03c1', 0x1d6b9:'\u03b8', 0x1d6ba:'\u03c3', 0x1d6bb:'\u03c4',
0x1d6bc:'\u03c5', 0x1d6bd:'\u03c6', 0x1d6be:'\u03c7', 0x1d6bf:'\u03c8',
0x1d6c0:'\u03c9', 0x1d6d3:'\u03c3', 0x1d6e2:'\u03b1', 0x1d6e3:'\u03b2',
0x1d6e4:'\u03b3', 0x1d6e5:'\u03b4', 0x1d6e6:'\u03b5', 0x1d6e7:'\u03b6',
0x1d6e8:'\u03b7', 0x1d6e9:'\u03b8', 0x1d6ea:'\u03b9', 0x1d6eb:'\u03ba',
0x1d6ec:'\u03bb', 0x1d6ed:'\u03bc', 0x1d6ee:'\u03bd', 0x1d6ef:'\u03be',
0x1d6f0:'\u03bf', 0x1d6f1:'\u03c0', 0x1d6f2:'\u03c1', 0x1d6f3:'\u03b8',
0x1d6f4:'\u03c3', 0x1d6f5:'\u03c4', 0x1d6f6:'\u03c5', 0x1d6f7:'\u03c6',
0x1d6f8:'\u03c7', 0x1d6f9:'\u03c8', 0x1d6fa:'\u03c9', 0x1d70d:'\u03c3',
0x1d71c:'\u03b1', 0x1d71d:'\u03b2', 0x1d71e:'\u03b3', 0x1d71f:'\u03b4',
0x1d720:'\u03b5', 0x1d721:'\u03b6', 0x1d722:'\u03b7', 0x1d723:'\u03b8',
0x1d724:'\u03b9', 0x1d725:'\u03ba', 0x1d726:'\u03bb', 0x1d727:'\u03bc',
0x1d728:'\u03bd', 0x1d729:'\u03be', 0x1d72a:'\u03bf', 0x1d72b:'\u03c0',
0x1d72c:'\u03c1', 0x1d72d:'\u03b8', 0x1d72e:'\u03c3', 0x1d72f:'\u03c4',
0x1d730:'\u03c5', 0x1d731:'\u03c6', 0x1d732:'\u03c7', 0x1d733:'\u03c8',
0x1d734:'\u03c9', 0x1d747:'\u03c3', 0x1d756:'\u03b1', 0x1d757:'\u03b2',
0x1d758:'\u03b3', 0x1d759:'\u03b4', 0x1d75a:'\u03b5', 0x1d75b:'\u03b6',
0x1d75c:'\u03b7', 0x1d75d:'\u03b8', 0x1d75e:'\u03b9', 0x1d75f:'\u03ba',
0x1d760:'\u03bb', 0x1d761:'\u03bc', 0x1d762:'\u03bd', 0x1d763:'\u03be',
0x1d764:'\u03bf', 0x1d765:'\u03c0', 0x1d766:'\u03c1', 0x1d767:'\u03b8',
0x1d768:'\u03c3', 0x1d769:'\u03c4', 0x1d76a:'\u03c5', 0x1d76b:'\u03c6',
0x1d76c:'\u03c7', 0x1d76d:'\u03c8', 0x1d76e:'\u03c9', 0x1d781:'\u03c3',
0x1d790:'\u03b1', 0x1d791:'\u03b2', 0x1d792:'\u03b3', 0x1d793:'\u03b4',
0x1d794:'\u03b5', 0x1d795:'\u03b6', 0x1d796:'\u03b7', 0x1d797:'\u03b8',
0x1d798:'\u03b9', 0x1d799:'\u03ba', 0x1d79a:'\u03bb', 0x1d79b:'\u03bc',
0x1d79c:'\u03bd', 0x1d79d:'\u03be', 0x1d79e:'\u03bf', 0x1d79f:'\u03c0',
0x1d7a0:'\u03c1', 0x1d7a1:'\u03b8', 0x1d7a2:'\u03c3', 0x1d7a3:'\u03c4',
0x1d7a4:'\u03c5', 0x1d7a5:'\u03c6', 0x1d7a6:'\u03c7', 0x1d7a7:'\u03c8',
0x1d7a8:'\u03c9', 0x1d7bb:'\u03c3', }

def map_table_b3(code):
    r = b3_exceptions.get(ord(code))
    if r is not None: return r
    return code.lower()


def map_table_b2(a):
    al = map_table_b3(a)
    b = unicodedata.normalize("NFKC", al)
    bl = "".join([map_table_b3(ch) for ch in b])
    c = unicodedata.normalize("NFKC", bl)
    if b != c:
        return c
    else:
        return al


def in_table_c11(code):
    return code == " "


def in_table_c12(code):
    return unicodedata.category(code) == "Zs" and code != " "

def in_table_c11_c12(code):
    return unicodedata.category(code) == "Zs"


def in_table_c21(code):
    return ord(code) < 128 and unicodedata.category(code) == "Cc"

c22_specials = set([1757, 1807, 6158, 8204, 8205, 8232, 8233, 65279] + list(range(8288,8292)) + list(range(8298,8304)) + list(range(65529,65533)) + list(range(119155,119163)))
def in_table_c22(code):
    c = ord(code)
    if c < 128: return False
    if unicodedata.category(code) == "Cc": return True
    return c in c22_specials

def in_table_c21_c22(code):
    return unicodedata.category(code) == "Cc" or \
           ord(code) in c22_specials


def in_table_c3(code):
    return unicodedata.category(code) == "Co"


def in_table_c4(code):
    c = ord(code)
    if c < 0xFDD0: return False
    if c < 0xFDF0: return True
    return (ord(code) & 0xFFFF) in (0xFFFE, 0xFFFF)


def in_table_c5(code):
    return unicodedata.category(code) == "Cs"


c6_set = set(range(65529,65534))
def in_table_c6(code):
    return ord(code) in c6_set


c7_set = set(range(12272,12284))
def in_table_c7(code):
    return ord(code) in c7_set


c8_set = set([832, 833, 8206, 8207] + list(range(8234,8239)) + list(range(8298,8304)))
def in_table_c8(code):
    return ord(code) in c8_set


c9_set = set([917505] + list(range(917536,917632)))
def in_table_c9(code):
    return ord(code) in c9_set


def in_table_d1(code):
    return unicodedata.bidirectional(code) in ("R","AL")


def in_table_d2(code):
    return unicodedata.bidirectional(code) == "L"
lib\struct.py
__all__ = [
    # Functions
    'calcsize', 'pack', 'pack_into', 'unpack', 'unpack_from',
    'iter_unpack',

    # Classes
    'Struct',

    # Exceptions
    'error'
    ]

from _struct import *
from _struct import _clearcache
from _struct import __doc__
lib\subprocess.py
# subprocess - Subprocesses with accessible I/O streams
#
# For more information about this module, see PEP 324.
#
# Copyright (c) 2003-2005 by Peter Astrand <[email protected]>
#
# Licensed to PSF under a Contributor Agreement.
# See http://www.python.org/2.4/license for licensing details.

r"""subprocess - Subprocesses with accessible I/O streams

This module allows you to spawn processes, connect to their
input/output/error pipes, and obtain their return codes.  This module
intends to replace several older modules and functions:

os.system
os.spawn*

Information about how the subprocess module can be used to replace these
modules and functions can be found below.



Using the subprocess module
===========================
This module defines one class called Popen:

class Popen(args, bufsize=-1, executable=None,
            stdin=None, stdout=None, stderr=None,
            preexec_fn=None, close_fds=True, shell=False,
            cwd=None, env=None, universal_newlines=False,
            startupinfo=None, creationflags=0,
            restore_signals=True, start_new_session=False, pass_fds=()):


Arguments are:

args should be a string, or a sequence of program arguments.  The
program to execute is normally the first item in the args sequence or
string, but can be explicitly set by using the executable argument.

On POSIX, with shell=False (default): In this case, the Popen class
uses os.execvp() to execute the child program.  args should normally
be a sequence.  A string will be treated as a sequence with the string
as the only item (the program to execute).

On POSIX, with shell=True: If args is a string, it specifies the
command string to execute through the shell.  If args is a sequence,
the first item specifies the command string, and any additional items
will be treated as additional shell arguments.

On Windows: the Popen class uses CreateProcess() to execute the child
program, which operates on strings.  If args is a sequence, it will be
converted to a string using the list2cmdline method.  Please note that
not all MS Windows applications interpret the command line the same
way: The list2cmdline is designed for applications using the same
rules as the MS C runtime.

bufsize will be supplied as the corresponding argument to the io.open()
function when creating the stdin/stdout/stderr pipe file objects:
0 means unbuffered (read & write are one system call and can return short),
1 means line buffered, any other positive value means use a buffer of
approximately that size.  A negative bufsize, the default, means the system
default of io.DEFAULT_BUFFER_SIZE will be used.

stdin, stdout and stderr specify the executed programs' standard
input, standard output and standard error file handles, respectively.
Valid values are PIPE, an existing file descriptor (a positive
integer), an existing file object, and None.  PIPE indicates that a
new pipe to the child should be created.  With None, no redirection
will occur; the child's file handles will be inherited from the
parent.  Additionally, stderr can be STDOUT, which indicates that the
stderr data from the applications should be captured into the same
file handle as for stdout.

On POSIX, if preexec_fn is set to a callable object, this object will be
called in the child process just before the child is executed.  The use
of preexec_fn is not thread safe, using it in the presence of threads
could lead to a deadlock in the child process before the new executable
is executed.

If close_fds is true, all file descriptors except 0, 1 and 2 will be
closed before the child process is executed.  The default for close_fds
varies by platform:  Always true on POSIX.  True when stdin/stdout/stderr
are None on Windows, false otherwise.

pass_fds is an optional sequence of file descriptors to keep open between the
parent and child.  Providing any pass_fds implicitly sets close_fds to true.

if shell is true, the specified command will be executed through the
shell.

If cwd is not None, the current directory will be changed to cwd
before the child is executed.

On POSIX, if restore_signals is True all signals that Python sets to
SIG_IGN are restored to SIG_DFL in the child process before the exec.
Currently this includes the SIGPIPE, SIGXFZ and SIGXFSZ signals.  This
parameter does nothing on Windows.

On POSIX, if start_new_session is True, the setsid() system call will be made
in the child process prior to executing the command.

If env is not None, it defines the environment variables for the new
process.

If universal_newlines is false, the file objects stdin, stdout and stderr
are opened as binary files, and no line ending conversion is done.

If universal_newlines is true, the file objects stdout and stderr are
opened as a text files, but lines may be terminated by any of '\n',
the Unix end-of-line convention, '\r', the old Macintosh convention or
'\r\n', the Windows convention.  All of these external representations
are seen as '\n' by the Python program.  Also, the newlines attribute
of the file objects stdout, stdin and stderr are not updated by the
communicate() method.

The startupinfo and creationflags, if given, will be passed to the
underlying CreateProcess() function.  They can specify things such as
appearance of the main window and priority for the new process.
(Windows only)


This module also defines some shortcut functions:

call(*popenargs, **kwargs):
    Run command with arguments.  Wait for command to complete, then
    return the returncode attribute.

    The arguments are the same as for the Popen constructor.  Example:

    >>> retcode = subprocess.call(["ls", "-l"])

check_call(*popenargs, **kwargs):
    Run command with arguments.  Wait for command to complete.  If the
    exit code was zero then return, otherwise raise
    CalledProcessError.  The CalledProcessError object will have the
    return code in the returncode attribute.

    The arguments are the same as for the Popen constructor.  Example:

    >>> subprocess.check_call(["ls", "-l"])
    0

getstatusoutput(cmd):
    Return (status, output) of executing cmd in a shell.

    Execute the string 'cmd' in a shell with 'check_output' and
    return a 2-tuple (status, output). Universal newlines mode is used,
    meaning that the result with be decoded to a string.

    A trailing newline is stripped from the output.
    The exit status for the command can be interpreted
    according to the rules for the function 'wait'.  Example:

    >>> subprocess.getstatusoutput('ls /bin/ls')
    (0, '/bin/ls')
    >>> subprocess.getstatusoutput('cat /bin/junk')
    (256, 'cat: /bin/junk: No such file or directory')
    >>> subprocess.getstatusoutput('/bin/junk')
    (256, 'sh: /bin/junk: not found')

getoutput(cmd):
    Return output (stdout or stderr) of executing cmd in a shell.

    Like getstatusoutput(), except the exit status is ignored and the return
    value is a string containing the command's output.  Example:

    >>> subprocess.getoutput('ls /bin/ls')
    '/bin/ls'

check_output(*popenargs, **kwargs):
    Run command with arguments and return its output.

    If the exit code was non-zero it raises a CalledProcessError.  The
    CalledProcessError object will have the return code in the returncode
    attribute and output in the output attribute.

    The arguments are the same as for the Popen constructor.  Example:

    >>> output = subprocess.check_output(["ls", "-l", "/dev/null"])

    There is an additional optional argument, "input", allowing you to
    pass a string to the subprocess's stdin.  If you use this argument
    you may not also use the Popen constructor's "stdin" argument.

Exceptions
----------
Exceptions raised in the child process, before the new program has
started to execute, will be re-raised in the parent.  Additionally,
the exception object will have one extra attribute called
'child_traceback', which is a string containing traceback information
from the child's point of view.

The most common exception raised is OSError.  This occurs, for
example, when trying to execute a non-existent file.  Applications
should prepare for OSErrors.

A ValueError will be raised if Popen is called with invalid arguments.

Exceptions defined within this module inherit from SubprocessError.
check_call() and check_output() will raise CalledProcessError if the
called process returns a non-zero return code.  TimeoutExpired
be raised if a timeout was specified and expired.


Security
--------
Unlike some other popen functions, this implementation will never call
/bin/sh implicitly.  This means that all characters, including shell
metacharacters, can safely be passed to child processes.


Popen objects
=============
Instances of the Popen class have the following methods:

poll()
    Check if child process has terminated.  Returns returncode
    attribute.

wait()
    Wait for child process to terminate.  Returns returncode attribute.

communicate(input=None)
    Interact with process: Send data to stdin.  Read data from stdout
    and stderr, until end-of-file is reached.  Wait for process to
    terminate.  The optional input argument should be a string to be
    sent to the child process, or None, if no data should be sent to
    the child.

    communicate() returns a tuple (stdout, stderr).

    Note: The data read is buffered in memory, so do not use this
    method if the data size is large or unlimited.

The following attributes are also available:

stdin
    If the stdin argument is PIPE, this attribute is a file object
    that provides input to the child process.  Otherwise, it is None.

stdout
    If the stdout argument is PIPE, this attribute is a file object
    that provides output from the child process.  Otherwise, it is
    None.

stderr
    If the stderr argument is PIPE, this attribute is file object that
    provides error output from the child process.  Otherwise, it is
    None.

pid
    The process ID of the child process.

returncode
    The child return code.  A None value indicates that the process
    hasn't terminated yet.  A negative value -N indicates that the
    child was terminated by signal N (POSIX only).


Replacing older functions with the subprocess module
====================================================
In this section, "a ==> b" means that b can be used as a replacement
for a.

Note: All functions in this section fail (more or less) silently if
the executed program cannot be found; this module raises an OSError
exception.

In the following examples, we assume that the subprocess module is
imported with "from subprocess import *".


Replacing /bin/sh shell backquote
---------------------------------
output=`mycmd myarg`
==>
output = Popen(["mycmd", "myarg"], stdout=PIPE).communicate()[0]


Replacing shell pipe line
-------------------------
output=`dmesg | grep hda`
==>
p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
output = p2.communicate()[0]


Replacing os.system()
---------------------
sts = os.system("mycmd" + " myarg")
==>
p = Popen("mycmd" + " myarg", shell=True)
pid, sts = os.waitpid(p.pid, 0)

Note:

* Calling the program through the shell is usually not required.

* It's easier to look at the returncode attribute than the
  exitstatus.

A more real-world example would look like this:

try:
    retcode = call("mycmd" + " myarg", shell=True)
    if retcode < 0:
        print("Child was terminated by signal", -retcode, file=sys.stderr)
    else:
        print("Child returned", retcode, file=sys.stderr)
except OSError as e:
    print("Execution failed:", e, file=sys.stderr)


Replacing os.spawn*
-------------------
P_NOWAIT example:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid


P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])


Vector example:

os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])


Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})
"""

import sys
ironpython = (sys.implementation.name == 'ironpython')
mswindows = (sys.platform == "win32")

import io
import os
import time
import signal
import builtins
import warnings
import errno
try:
    from time import monotonic as _time
except ImportError:
    from time import time as _time

# Exception classes used by this module.
class SubprocessError(Exception): pass


class CalledProcessError(SubprocessError):
    """This exception is raised when a process run by check_call() or
    check_output() returns a non-zero exit status.
    The exit status will be stored in the returncode attribute;
    check_output() will also store the output in the output attribute.
    """
    def __init__(self, returncode, cmd, output=None):
        self.returncode = returncode
        self.cmd = cmd
        self.output = output
    def __str__(self):
        return "Command '%s' returned non-zero exit status %d" % (self.cmd, self.returncode)


class TimeoutExpired(SubprocessError):
    """This exception is raised when the timeout expires while waiting for a
    child process.
    """
    def __init__(self, cmd, timeout, output=None):
        self.cmd = cmd
        self.timeout = timeout
        self.output = output

    def __str__(self):
        return ("Command '%s' timed out after %s seconds" %
                (self.cmd, self.timeout))


if mswindows:
    import threading
    import msvcrt
    import _winapi
    class STARTUPINFO:
        dwFlags = 0
        hStdInput = None
        hStdOutput = None
        hStdError = None
        wShowWindow = 0
elif ironpython:
    import threading
    import clr
    clr.AddReference("System")
    from System.Diagnostics import Process
else:
    import _posixsubprocess
    import select
    import selectors
    try:
        import threading
    except ImportError:
        import dummy_threading as threading

    # When select or poll has indicated that the file is writable,
    # we can write up to _PIPE_BUF bytes without risk of blocking.
    # POSIX defines PIPE_BUF as >= 512.
    _PIPE_BUF = getattr(select, 'PIPE_BUF', 512)

    # poll/select have the advantage of not requiring any extra file
    # descriptor, contrarily to epoll/kqueue (also, they require a single
    # syscall).
    if hasattr(selectors, 'PollSelector'):
        _PopenSelector = selectors.PollSelector
    else:
        _PopenSelector = selectors.SelectSelector


__all__ = ["Popen", "PIPE", "STDOUT", "call", "check_call", "getstatusoutput",
           "getoutput", "check_output", "CalledProcessError", "DEVNULL"]

if mswindows:
    from _winapi import (CREATE_NEW_CONSOLE, CREATE_NEW_PROCESS_GROUP,
                         STD_INPUT_HANDLE, STD_OUTPUT_HANDLE,
                         STD_ERROR_HANDLE, SW_HIDE,
                         STARTF_USESTDHANDLES, STARTF_USESHOWWINDOW)

    __all__.extend(["CREATE_NEW_CONSOLE", "CREATE_NEW_PROCESS_GROUP",
                    "STD_INPUT_HANDLE", "STD_OUTPUT_HANDLE",
                    "STD_ERROR_HANDLE", "SW_HIDE",
                    "STARTF_USESTDHANDLES", "STARTF_USESHOWWINDOW"])

    class Handle(int):
        closed = False

        def Close(self, CloseHandle=_winapi.CloseHandle):
            if not self.closed:
                self.closed = True
                CloseHandle(self)

        def Detach(self):
            if not self.closed:
                self.closed = True
                return int(self)
            raise ValueError("already closed")

        def __repr__(self):
            return "Handle(%d)" % int(self)

        __del__ = Close
        __str__ = __repr__
elif ironpython:
    __all__.extend(["Process"])

try:
    MAXFD = os.sysconf("SC_OPEN_MAX")
except:
    MAXFD = 256

# This lists holds Popen instances for which the underlying process had not
# exited at the time its __del__ method got called: those processes are wait()ed
# for synchronously from _cleanup() when a new Popen object is created, to avoid
# zombie processes.
_active = []

def _cleanup():
    for inst in _active[:]:
        res = inst._internal_poll(_deadstate=sys.maxsize)
        if res is not None:
            try:
                _active.remove(inst)
            except ValueError:
                # This can happen if two threads create a new Popen instance.
                # It's harmless that it was already removed, so ignore.
                pass

PIPE = -1
STDOUT = -2
DEVNULL = -3


def _eintr_retry_call(func, *args):
    while True:
        try:
            return func(*args)
        except InterruptedError:
            continue


# XXX This function is only used by multiprocessing and the test suite,
# but it's here so that it can be imported when Python is compiled without
# threads.

def _args_from_interpreter_flags():
    """Return a list of command-line arguments reproducing the current
    settings in sys.flags and sys.warnoptions."""
    flag_opt_map = {
        'debug': 'd',
        # 'inspect': 'i',
        # 'interactive': 'i',
        'optimize': 'O',
        'dont_write_bytecode': 'B',
        'no_user_site': 's',
        'no_site': 'S',
        'ignore_environment': 'E',
        'verbose': 'v',
        'bytes_warning': 'b',
        'quiet': 'q',
    }
    args = []
    for flag, opt in flag_opt_map.items():
        v = getattr(sys.flags, flag)
        if v > 0:
            args.append('-' + opt * v)
    for opt in sys.warnoptions:
        args.append('-W' + opt)
    return args


def call(*popenargs, timeout=None, **kwargs):
    """Run command with arguments.  Wait for command to complete or
    timeout, then return the returncode attribute.

    The arguments are the same as for the Popen constructor.  Example:

    retcode = call(["ls", "-l"])
    """
    with Popen(*popenargs, **kwargs) as p:
        try:
            return p.wait(timeout=timeout)
        except:
            p.kill()
            p.wait()
            raise


def check_call(*popenargs, **kwargs):
    """Run command with arguments.  Wait for command to complete.  If
    the exit code was zero then return, otherwise raise
    CalledProcessError.  The CalledProcessError object will have the
    return code in the returncode attribute.

    The arguments are the same as for the call function.  Example:

    check_call(["ls", "-l"])
    """
    retcode = call(*popenargs, **kwargs)
    if retcode:
        cmd = kwargs.get("args")
        if cmd is None:
            cmd = popenargs[0]
        raise CalledProcessError(retcode, cmd)
    return 0


def check_output(*popenargs, timeout=None, **kwargs):
    r"""Run command with arguments and return its output.

    If the exit code was non-zero it raises a CalledProcessError.  The
    CalledProcessError object will have the return code in the returncode
    attribute and output in the output attribute.

    The arguments are the same as for the Popen constructor.  Example:

    >>> check_output(["ls", "-l", "/dev/null"])
    b'crw-rw-rw- 1 root root 1, 3 Oct 18  2007 /dev/null\n'

    The stdout argument is not allowed as it is used internally.
    To capture standard error in the result, use stderr=STDOUT.

    >>> check_output(["/bin/sh", "-c",
    ...               "ls -l non_existent_file ; exit 0"],
    ...              stderr=STDOUT)
    b'ls: non_existent_file: No such file or directory\n'

    There is an additional optional argument, "input", allowing you to
    pass a string to the subprocess's stdin.  If you use this argument
    you may not also use the Popen constructor's "stdin" argument, as
    it too will be used internally.  Example:

    >>> check_output(["sed", "-e", "s/foo/bar/"],
    ...              input=b"when in the course of fooman events\n")
    b'when in the course of barman events\n'

    If universal_newlines=True is passed, the return value will be a
    string rather than bytes.
    """
    if 'stdout' in kwargs:
        raise ValueError('stdout argument not allowed, it will be overridden.')
    if 'input' in kwargs:
        if 'stdin' in kwargs:
            raise ValueError('stdin and input arguments may not both be used.')
        inputdata = kwargs['input']
        del kwargs['input']
        kwargs['stdin'] = PIPE
    else:
        inputdata = None
    with Popen(*popenargs, stdout=PIPE, **kwargs) as process:
        try:
            output, unused_err = process.communicate(inputdata, timeout=timeout)
        except TimeoutExpired:
            process.kill()
            output, unused_err = process.communicate()
            raise TimeoutExpired(process.args, timeout, output=output)
        except:
            process.kill()
            process.wait()
            raise
        retcode = process.poll()
        if retcode:
            raise CalledProcessError(retcode, process.args, output=output)
    return output


def list2cmdline(seq):
    """
    Translate a sequence of arguments into a command line
    string, using the same rules as the MS C runtime:

    1) Arguments are delimited by white space, which is either a
       space or a tab.

    2) A string surrounded by double quotation marks is
       interpreted as a single argument, regardless of white space
       contained within.  A quoted string can be embedded in an
       argument.

    3) A double quotation mark preceded by a backslash is
       interpreted as a literal double quotation mark.

    4) Backslashes are interpreted literally, unless they
       immediately precede a double quotation mark.

    5) If backslashes immediately precede a double quotation mark,
       every pair of backslashes is interpreted as a literal
       backslash.  If the number of backslashes is odd, the last
       backslash escapes the next double quotation mark as
       described in rule 3.
    """

    # See
    # http://msdn.microsoft.com/en-us/library/17w5ykft.aspx
    # or search http://msdn.microsoft.com for
    # "Parsing C++ Command-Line Arguments"
    result = []
    needquote = False
    for arg in seq:
        bs_buf = []

        # Add a space to separate this argument from the others
        if result:
            result.append(' ')

        needquote = (" " in arg) or ("\t" in arg) or not arg
        if needquote:
            result.append('"')

        for c in arg:
            if c == '\\':
                # Don't know if we need to double yet.
                bs_buf.append(c)
            elif c == '"':
                # Double backslashes.
                result.append('\\' * len(bs_buf)*2)
                bs_buf = []
                result.append('\\"')
            else:
                # Normal char
                if bs_buf:
                    result.extend(bs_buf)
                    bs_buf = []
                result.append(c)

        # Add remaining backslashes, if any.
        if bs_buf:
            result.extend(bs_buf)

        if needquote:
            result.extend(bs_buf)
            result.append('"')

    return ''.join(result)


# Various tools for executing commands and looking at their output and status.
#

def getstatusoutput(cmd):
    """    Return (status, output) of executing cmd in a shell.

    Execute the string 'cmd' in a shell with 'check_output' and
    return a 2-tuple (status, output). Universal newlines mode is used,
    meaning that the result with be decoded to a string.

    A trailing newline is stripped from the output.
    The exit status for the command can be interpreted
    according to the rules for the function 'wait'. Example:

    >>> import subprocess
    >>> subprocess.getstatusoutput('ls /bin/ls')
    (0, '/bin/ls')
    >>> subprocess.getstatusoutput('cat /bin/junk')
    (256, 'cat: /bin/junk: No such file or directory')
    >>> subprocess.getstatusoutput('/bin/junk')
    (256, 'sh: /bin/junk: not found')
    """
    try:
        data = check_output(cmd, shell=True, universal_newlines=True, stderr=STDOUT)
        status = 0
    except CalledProcessError as ex:
        data = ex.output
        status = ex.returncode
    if data[-1:] == '\n':
        data = data[:-1]
    return status, data

def getoutput(cmd):
    """Return output (stdout or stderr) of executing cmd in a shell.

    Like getstatusoutput(), except the exit status is ignored and the return
    value is a string containing the command's output.  Example:

    >>> import subprocess
    >>> subprocess.getoutput('ls /bin/ls')
    '/bin/ls'
    """
    return getstatusoutput(cmd)[1]


_PLATFORM_DEFAULT_CLOSE_FDS = object()


class Popen(object):

    _child_created = False  # Set here since __del__ checks it

    def __init__(self, args, bufsize=-1, executable=None,
                 stdin=None, stdout=None, stderr=None,
                 preexec_fn=None, close_fds=_PLATFORM_DEFAULT_CLOSE_FDS,
                 shell=False, cwd=None, env=None, universal_newlines=False,
                 startupinfo=None, creationflags=0,
                 restore_signals=True, start_new_session=False,
                 pass_fds=()):
        """Create new Popen instance."""
        _cleanup()
        # Held while anything is calling waitpid before returncode has been
        # updated to prevent clobbering returncode if wait() or poll() are
        # called from multiple threads at once.  After acquiring the lock,
        # code must re-check self.returncode to see if another thread just
        # finished a waitpid() call.
        self._waitpid_lock = threading.Lock()

        self._input = None
        self._communication_started = False
        if bufsize is None:
            bufsize = -1  # Restore default
        if not isinstance(bufsize, int):
            raise TypeError("bufsize must be an integer")

        if mswindows:
            if preexec_fn is not None:
                raise ValueError("preexec_fn is not supported on Windows "
                                 "platforms")
            any_stdio_set = (stdin is not None or stdout is not None or
                             stderr is not None)
            if close_fds is _PLATFORM_DEFAULT_CLOSE_FDS:
                if any_stdio_set:
                    close_fds = False
                else:
                    close_fds = True
            elif close_fds and any_stdio_set:
                raise ValueError(
                        "close_fds is not supported on Windows platforms"
                        " if you redirect stdin/stdout/stderr")

        elif ironpython:
            if preexec_fn is not None:
                raise ValueError("preexec_fn is not supported by IronPython")
            # if close_fds:
            #     raise ValueError("close_fds is not supported by IronPython")

        else:
            # POSIX
            if close_fds is _PLATFORM_DEFAULT_CLOSE_FDS:
                close_fds = True
            if pass_fds and not close_fds:
                warnings.warn("pass_fds overriding close_fds.", RuntimeWarning)
                close_fds = True
            if startupinfo is not None:
                raise ValueError("startupinfo is only supported on Windows "
                                 "platforms")
            if creationflags != 0:
                raise ValueError("creationflags is only supported on Windows "
                                 "platforms")

        self.args = args
        self.stdin = None
        self.stdout = None
        self.stderr = None
        self.pid = None
        self.returncode = None
        self.universal_newlines = universal_newlines

        # Input and output objects. The general principle is like
        # this:
        #
        # Parent                   Child
        # ------                   -----
        # p2cwrite   ---stdin--->  p2cread
        # c2pread    <--stdout---  c2pwrite
        # errread    <--stderr---  errwrite
        #
        # On POSIX, the child objects are file descriptors.  On
        # Windows, these are Windows file handles.  The parent objects
        # are file descriptors on both platforms.  The parent objects
        # are -1 when not using PIPEs. The child objects are -1
        # when not redirecting.

        (p2cread, p2cwrite,
         c2pread, c2pwrite,
         errread, errwrite) = self._get_handles(stdin, stdout, stderr)

        # We wrap OS handles *before* launching the child, otherwise a
        # quickly terminating child could make our fds unwrappable
        # (see #8458).

        if mswindows:
            if p2cwrite != -1:
                p2cwrite = msvcrt.open_osfhandle(p2cwrite.Detach(), 0)
            if c2pread != -1:
                c2pread = msvcrt.open_osfhandle(c2pread.Detach(), 0)
            if errread != -1:
                errread = msvcrt.open_osfhandle(errread.Detach(), 0)

        if p2cwrite != -1:
            self.stdin = io.open(p2cwrite, 'wb', bufsize)
            if universal_newlines:
                self.stdin = io.TextIOWrapper(self.stdin, write_through=True,
                                              line_buffering=(bufsize == 1))
        if c2pread != -1:
            self.stdout = io.open(c2pread, 'rb', bufsize)
            if universal_newlines:
                self.stdout = io.TextIOWrapper(self.stdout)
        if errread != -1:
            self.stderr = io.open(errread, 'rb', bufsize)
            if universal_newlines:
                self.stderr = io.TextIOWrapper(self.stderr)

        self._closed_child_pipe_fds = False
        try:
            self._execute_child(args, executable, preexec_fn, close_fds,
                                pass_fds, cwd, env,
                                startupinfo, creationflags, shell,
                                p2cread, p2cwrite,
                                c2pread, c2pwrite,
                                errread, errwrite,
                                restore_signals, start_new_session)
        except:
            # Cleanup if the child failed starting.
            for f in filter(None, (self.stdin, self.stdout, self.stderr)):
                try:
                    f.close()
                except OSError:
                    pass  # Ignore EBADF or other errors.

            if not self._closed_child_pipe_fds:
                to_close = []
                if stdin == PIPE:
                    to_close.append(p2cread)
                if stdout == PIPE:
                    to_close.append(c2pwrite)
                if stderr == PIPE:
                    to_close.append(errwrite)
                if hasattr(self, '_devnull'):
                    to_close.append(self._devnull)
                for fd in to_close:
                    try:
                        os.close(fd)
                    except OSError:
                        pass

            raise


    def _translate_newlines(self, data, encoding):
        data = data.decode(encoding)
        return data.replace("\r\n", "\n").replace("\r", "\n")

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        if self.stdout:
            self.stdout.close()
        if self.stderr:
            self.stderr.close()
        try:  # Flushing a BufferedWriter may raise an error
            if self.stdin:
                self.stdin.close()
        finally:
            # Wait for the process to terminate, to avoid zombies.
            self.wait()

    def __del__(self, _maxsize=sys.maxsize):
        if not self._child_created:
            # We didn't get to successfully create a child process.
            return
        # In case the child hasn't been waited on, check if it's done.
        self._internal_poll(_deadstate=_maxsize)
        if self.returncode is None and _active is not None:
            # Child is still running, keep us alive until we can wait on it.
            _active.append(self)

    def _get_devnull(self):
        if not hasattr(self, '_devnull'):
            self._devnull = os.open(os.devnull, os.O_RDWR)
        return self._devnull

    def communicate(self, input=None, timeout=None):
        """Interact with process: Send data to stdin.  Read data from
        stdout and stderr, until end-of-file is reached.  Wait for
        process to terminate.  The optional input argument should be
        bytes to be sent to the child process, or None, if no data
        should be sent to the child.

        communicate() returns a tuple (stdout, stderr)."""

        if self._communication_started and input:
            raise ValueError("Cannot send input after starting communication")

        # Optimization: If we are not worried about timeouts, we haven't
        # started communicating, and we have one or zero pipes, using select()
        # or threads is unnecessary.
        if (timeout is None and not self._communication_started and
            [self.stdin, self.stdout, self.stderr].count(None) >= 2):
            stdout = None
            stderr = None
            if self.stdin:
                if input:
                    try:
                        self.stdin.write(input)
                    except OSError as e:
                        if e.errno != errno.EPIPE and e.errno != errno.EINVAL:
                            raise
                self.stdin.close()
            elif self.stdout:
                stdout = _eintr_retry_call(self.stdout.read)
                self.stdout.close()
            elif self.stderr:
                stderr = _eintr_retry_call(self.stderr.read)
                self.stderr.close()
            self.wait()
        else:
            if timeout is not None:
                endtime = _time() + timeout
            else:
                endtime = None

            try:
                stdout, stderr = self._communicate(input, endtime, timeout)
            finally:
                self._communication_started = True

            sts = self.wait(timeout=self._remaining_time(endtime))

        return (stdout, stderr)


    def poll(self):
        return self._internal_poll()


    def _remaining_time(self, endtime):
        """Convenience for _communicate when computing timeouts."""
        if endtime is None:
            return None
        else:
            return endtime - _time()


    def _check_timeout(self, endtime, orig_timeout):
        """Convenience for checking if a timeout has expired."""
        if endtime is None:
            return
        if _time() > endtime:
            raise TimeoutExpired(self.args, orig_timeout)

    if mswindows:
        #
        # Windows methods
        #
        def _get_handles(self, stdin, stdout, stderr):
            """Construct and return tuple with IO objects:
            p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite
            """
            if stdin is None and stdout is None and stderr is None:
                return (-1, -1, -1, -1, -1, -1)

            p2cread, p2cwrite = -1, -1
            c2pread, c2pwrite = -1, -1
            errread, errwrite = -1, -1

            if stdin is None:
                p2cread = _winapi.GetStdHandle(_winapi.STD_INPUT_HANDLE)
                if p2cread is None:
                    p2cread, _ = _winapi.CreatePipe(None, 0)
                    p2cread = Handle(p2cread)
                    _winapi.CloseHandle(_)
            elif stdin == PIPE:
                p2cread, p2cwrite = _winapi.CreatePipe(None, 0)
                p2cread, p2cwrite = Handle(p2cread), Handle(p2cwrite)
            elif stdin == DEVNULL:
                p2cread = msvcrt.get_osfhandle(self._get_devnull())
            elif isinstance(stdin, int):
                p2cread = msvcrt.get_osfhandle(stdin)
            else:
                # Assuming file-like object
                p2cread = msvcrt.get_osfhandle(stdin.fileno())
            p2cread = self._make_inheritable(p2cread)

            if stdout is None:
                c2pwrite = _winapi.GetStdHandle(_winapi.STD_OUTPUT_HANDLE)
                if c2pwrite is None:
                    _, c2pwrite = _winapi.CreatePipe(None, 0)
                    c2pwrite = Handle(c2pwrite)
                    _winapi.CloseHandle(_)
            elif stdout == PIPE:
                c2pread, c2pwrite = _winapi.CreatePipe(None, 0)
                c2pread, c2pwrite = Handle(c2pread), Handle(c2pwrite)
            elif stdout == DEVNULL:
                c2pwrite = msvcrt.get_osfhandle(self._get_devnull())
            elif isinstance(stdout, int):
                c2pwrite = msvcrt.get_osfhandle(stdout)
            else:
                # Assuming file-like object
                c2pwrite = msvcrt.get_osfhandle(stdout.fileno())
            c2pwrite = self._make_inheritable(c2pwrite)

            if stderr is None:
                errwrite = _winapi.GetStdHandle(_winapi.STD_ERROR_HANDLE)
                if errwrite is None:
                    _, errwrite = _winapi.CreatePipe(None, 0)
                    errwrite = Handle(errwrite)
                    _winapi.CloseHandle(_)
            elif stderr == PIPE:
                errread, errwrite = _winapi.CreatePipe(None, 0)
                errread, errwrite = Handle(errread), Handle(errwrite)
            elif stderr == STDOUT:
                errwrite = c2pwrite
            elif stderr == DEVNULL:
                errwrite = msvcrt.get_osfhandle(self._get_devnull())
            elif isinstance(stderr, int):
                errwrite = msvcrt.get_osfhandle(stderr)
            else:
                # Assuming file-like object
                errwrite = msvcrt.get_osfhandle(stderr.fileno())
            errwrite = self._make_inheritable(errwrite)

            return (p2cread, p2cwrite,
                    c2pread, c2pwrite,
                    errread, errwrite)


        def _make_inheritable(self, handle):
            """Return a duplicate of handle, which is inheritable"""
            h = _winapi.DuplicateHandle(
                _winapi.GetCurrentProcess(), handle,
                _winapi.GetCurrentProcess(), 0, 1,
                _winapi.DUPLICATE_SAME_ACCESS)
            # IronPython: Not closing this handle may cause read operations to block down the line.
            #    Because of the GC of .NET, it may not be closed fast enough so we force it to close.
            #    This is not an issue with CPython because the handle is closed via __del__.
            if isinstance(handle, Handle): handle.Close()
            return Handle(h)


        def _execute_child(self, args, executable, preexec_fn, close_fds,
                           pass_fds, cwd, env,
                           startupinfo, creationflags, shell,
                           p2cread, p2cwrite,
                           c2pread, c2pwrite,
                           errread, errwrite,
                           unused_restore_signals, unused_start_new_session):
            """Execute program (MS Windows version)"""

            assert not pass_fds, "pass_fds not supported on Windows."

            if not isinstance(args, str):
                args = list2cmdline(args)

            # Process startup details
            if startupinfo is None:
                startupinfo = STARTUPINFO()
            if -1 not in (p2cread, c2pwrite, errwrite):
                startupinfo.dwFlags |= _winapi.STARTF_USESTDHANDLES
                startupinfo.hStdInput = p2cread
                startupinfo.hStdOutput = c2pwrite
                startupinfo.hStdError = errwrite

            if shell:
                startupinfo.dwFlags |= _winapi.STARTF_USESHOWWINDOW
                startupinfo.wShowWindow = _winapi.SW_HIDE
                comspec = os.environ.get("COMSPEC", "cmd.exe")
                args = '{} /c "{}"'.format (comspec, args)

            # Start the process
            try:
                hp, ht, pid, tid = _winapi.CreateProcess(executable, args,
                                         # no special security
                                         None, None,
                                         int(not close_fds),
                                         creationflags,
                                         env,
                                         cwd,
                                         startupinfo)
            finally:
                # Child is launched. Close the parent's copy of those pipe
                # handles that only the child should have open.  You need
                # to make sure that no handles to the write end of the
                # output pipe are maintained in this process or else the
                # pipe will not close when the child process exits and the
                # ReadFile will hang.
                if p2cread != -1:
                    p2cread.Close()
                if c2pwrite != -1:
                    c2pwrite.Close()
                if errwrite != -1:
                    errwrite.Close()
                if hasattr(self, '_devnull'):
                    os.close(self._devnull)

            # Retain the process handle, but close the thread handle
            self._child_created = True
            self._handle = Handle(hp)
            self.pid = pid
            _winapi.CloseHandle(ht)

        def _internal_poll(self, _deadstate=None,
                _WaitForSingleObject=_winapi.WaitForSingleObject,
                _WAIT_OBJECT_0=_winapi.WAIT_OBJECT_0,
                _GetExitCodeProcess=_winapi.GetExitCodeProcess):
            """Check if child process has terminated.  Returns returncode
            attribute.

            This method is called by __del__, so it can only refer to objects
            in its local scope.

            """
            if self.returncode is None:
                if _WaitForSingleObject(self._handle, 0) == _WAIT_OBJECT_0:
                    self.returncode = _GetExitCodeProcess(self._handle)
            return self.returncode


        def wait(self, timeout=None, endtime=None):
            """Wait for child process to terminate.  Returns returncode
            attribute."""
            if endtime is not None:
                timeout = self._remaining_time(endtime)
            if timeout is None:
                timeout_millis = _winapi.INFINITE
            else:
                timeout_millis = int(timeout * 1000)
            if self.returncode is None:
                result = _winapi.WaitForSingleObject(self._handle,
                                                    timeout_millis)
                if result == _winapi.WAIT_TIMEOUT:
                    raise TimeoutExpired(self.args, timeout)
                self.returncode = _winapi.GetExitCodeProcess(self._handle)
            return self.returncode


        def _readerthread(self, fh, buffer):
            buffer.append(fh.read())
            fh.close()


        def _communicate(self, input, endtime, orig_timeout):
            # Start reader threads feeding into a list hanging off of this
            # object, unless they've already been started.
            if self.stdout and not hasattr(self, "_stdout_buff"):
                self._stdout_buff = []
                self.stdout_thread = \
                        threading.Thread(target=self._readerthread,
                                         args=(self.stdout, self._stdout_buff))
                self.stdout_thread.daemon = True
                self.stdout_thread.start()
            if self.stderr and not hasattr(self, "_stderr_buff"):
                self._stderr_buff = []
                self.stderr_thread = \
                        threading.Thread(target=self._readerthread,
                                         args=(self.stderr, self._stderr_buff))
                self.stderr_thread.daemon = True
                self.stderr_thread.start()

            if self.stdin:
                if input is not None:
                    try:
                        self.stdin.write(input)
                    except OSError as e:
                        if e.errno == errno.EPIPE:
                            # communicate() should ignore pipe full error
                            pass
                        elif (e.errno == errno.EINVAL
                              and self.poll() is not None):
                            # Issue #19612: stdin.write() fails with EINVAL
                            # if the process already exited before the write
                            pass
                        else:
                            raise
                self.stdin.close()

            # Wait for the reader threads, or time out.  If we time out, the
            # threads remain reading and the fds left open in case the user
            # calls communicate again.
            if self.stdout is not None:
                self.stdout_thread.join(self._remaining_time(endtime))
                if self.stdout_thread.is_alive():
                    raise TimeoutExpired(self.args, orig_timeout)
            if self.stderr is not None:
                self.stderr_thread.join(self._remaining_time(endtime))
                if self.stderr_thread.is_alive():
                    raise TimeoutExpired(self.args, orig_timeout)

            # Collect the output from and close both pipes, now that we know
            # both have been read successfully.
            stdout = None
            stderr = None
            if self.stdout:
                stdout = self._stdout_buff
                self.stdout.close()
            if self.stderr:
                stderr = self._stderr_buff
                self.stderr.close()

            # All data exchanged.  Translate lists into strings.
            if stdout is not None:
                stdout = stdout[0]
            if stderr is not None:
                stderr = stderr[0]

            return (stdout, stderr)

        def send_signal(self, sig):
            """Send a signal to the process."""
            # Don't signal a process that we know has already died.
            if self.returncode is not None:
                return
            if sig == signal.SIGTERM:
                self.terminate()
            elif sig == signal.CTRL_C_EVENT:
                os.kill(self.pid, signal.CTRL_C_EVENT)
            elif sig == signal.CTRL_BREAK_EVENT:
                os.kill(self.pid, signal.CTRL_BREAK_EVENT)
            else:
                raise ValueError("Unsupported signal: {}".format(sig))

        def terminate(self):
            """Terminates the process."""
            # Don't terminate a process that we know has already died.
            if self.returncode is not None:
                return
            try:
                _winapi.TerminateProcess(self._handle, 1)
            except PermissionError:
                # ERROR_ACCESS_DENIED (winerror 5) is received when the
                # process already died.
                rc = _winapi.GetExitCodeProcess(self._handle)
                if rc == _winapi.STILL_ACTIVE:
                    raise
                self.returncode = rc

        kill = terminate


    elif ironpython:
        #
        # Dotnet methods
        #
        def _get_handles(self, stdin, stdout, stderr):
            # Can't get redirect file before Process.Start() is called
            # postpone it to _execute_child
            return (stdin, -1, -1, stdout, -1, stderr)

        def _execute_child(self, args, executable, preexec_fn, close_fds,
                           pass_fds, cwd, env,
                           startupinfo, creationflags, shell,
                           stdin, unused_p2cwrite,
                           unused_c2pread, stdout,
                           unused_errread, stderr,
                           unused_restore_signals, unused_start_new_session):
            """Execute program (Dotnet version)"""
            p = Process()
            s = p.StartInfo

            if env:
                for k, v in env.items():
                    s.Environment[k] = v

            if shell:
                if not isinstance(args, str):
                    args = list2cmdline(args)
                # escape backslash and double quote
                args = ''.join('\\' + c if c in {'\\', '"'} else c for c in args)
                s.Arguments = '-c "{}"'.format(args)
                s.FileName = executable or '/bin/sh'
            else:
                if not isinstance(args, str):
                    s.FileName = args[0]
                    s.Arguments = list2cmdline(args[1:])
                else:
                    s.FileName = args

            s.RedirectStandardInput = stdin is not None
            s.RedirectStandardOutput = stdout is not None
            s.RedirectStandardError = stderr is not None
            s.WorkingDirectory = cwd
            s.UseShellExecute = False

            p.Start()

            self.pid = p.Id
            self._child_created = True
            self._handle = p

            if stdin == PIPE:
                self.stdin = open(p.StandardInput.BaseStream)
            if stdout == PIPE:
                self.stdout = io.BufferedReader(open(p.StandardOutput.BaseStream))
            if stderr == PIPE:
                self.stderr = io.BufferedReader(open(p.StandardError.BaseStream))

            # dotnet can't redirect stdio to file/stream, thus has to feed from parent
            if stdin not in (None,  DEVNULL, PIPE):
                # assume file-like object
                input = stdin.read()
                with open(self._handle.StandardInput.BaseStream) as f:
                    f.write(input)

        def _internal_poll(self):
            """Check if child process has terminated.  Returns returncode
            attribute.

            This method is called by __del__, so it can only refer to objects
            in its local scope.

            """
            if self.returncode is None and self._handle.HasExited:
                self.returncode = self._handle.ExitCode
            return self.returncode

        def wait(self, timeout=None, endtime=None):
            """Wait for child process to terminate.  Returns returncode
            attribute."""
            if endtime is not None:
                timeout = self._remaining_time(endtime)
            if timeout is None:
                self._handle.WaitForExit()
            else:
                self._handle.WaitForExit(int(timeout * 1000))
            self.returncode = self._handle.ExitCode
            return self.returncode

        def _communicate(self, input, endtime, orig_timeout):
            # .NET framework caches stdout and stderr
            # so we can simply wait then read
            if self.stdin:
                if input:
                    self.stdin.write(input)
                self.stdin.close()

            if orig_timeout is not None:
                self.wait(endtime=endtime)

            return (
                self.stdout.read() if self.stdout else None,
                self.stderr.read() if self.stderr else None,
            )

        def terminate(self):
            """Terminates the process."""
            self._handle.Kill()

        kill = terminate

    else:
        #
        # POSIX methods
        #
        def _get_handles(self, stdin, stdout, stderr):
            """Construct and return tuple with IO objects:
            p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite
            """
            p2cread, p2cwrite = -1, -1
            c2pread, c2pwrite = -1, -1
            errread, errwrite = -1, -1

            if stdin is None:
                pass
            elif stdin == PIPE:
                p2cread, p2cwrite = os.pipe()
            elif stdin == DEVNULL:
                p2cread = self._get_devnull()
            elif isinstance(stdin, int):
                p2cread = stdin
            else:
                # Assuming file-like object
                p2cread = stdin.fileno()

            if stdout is None:
                pass
            elif stdout == PIPE:
                c2pread, c2pwrite = os.pipe()
            elif stdout == DEVNULL:
                c2pwrite = self._get_devnull()
            elif isinstance(stdout, int):
                c2pwrite = stdout
            else:
                # Assuming file-like object
                c2pwrite = stdout.fileno()

            if stderr is None:
                pass
            elif stderr == PIPE:
                errread, errwrite = os.pipe()
            elif stderr == STDOUT:
                errwrite = c2pwrite
            elif stderr == DEVNULL:
                errwrite = self._get_devnull()
            elif isinstance(stderr, int):
                errwrite = stderr
            else:
                # Assuming file-like object
                errwrite = stderr.fileno()

            return (p2cread, p2cwrite,
                    c2pread, c2pwrite,
                    errread, errwrite)


        def _close_fds(self, fds_to_keep):
            start_fd = 3
            for fd in sorted(fds_to_keep):
                if fd >= start_fd:
                    os.closerange(start_fd, fd)
                    start_fd = fd + 1
            if start_fd <= MAXFD:
                os.closerange(start_fd, MAXFD)


        def _execute_child(self, args, executable, preexec_fn, close_fds,
                           pass_fds, cwd, env,
                           startupinfo, creationflags, shell,
                           p2cread, p2cwrite,
                           c2pread, c2pwrite,
                           errread, errwrite,
                           restore_signals, start_new_session):
            """Execute program (POSIX version)"""

            if isinstance(args, (str, bytes)):
                args = [args]
            else:
                args = list(args)

            if shell:
                args = ["/bin/sh", "-c"] + args
                if executable:
                    args[0] = executable

            if executable is None:
                executable = args[0]
            orig_executable = executable

            # For transferring possible exec failure from child to parent.
            # Data format: "exception name:hex errno:description"
            # Pickle is not used; it is complex and involves memory allocation.
            errpipe_read, errpipe_write = os.pipe()
            # errpipe_write must not be in the standard io 0, 1, or 2 fd range.
            low_fds_to_close = []
            while errpipe_write < 3:
                low_fds_to_close.append(errpipe_write)
                errpipe_write = os.dup(errpipe_write)
            for low_fd in low_fds_to_close:
                os.close(low_fd)
            try:
                try:
                    # We must avoid complex work that could involve
                    # malloc or free in the child process to avoid
                    # potential deadlocks, thus we do all this here.
                    # and pass it to fork_exec()

                    if env is not None:
                        env_list = []
                        for k, v in env.items():
                            k = os.fsencode(k)
                            if b'=' in k:
                                raise ValueError("illegal environment variable name")
                            env_list.append(k + b'=' + os.fsencode(v))
                    else:
                        env_list = None  # Use execv instead of execve.
                    executable = os.fsencode(executable)
                    if os.path.dirname(executable):
                        executable_list = (executable,)
                    else:
                        # This matches the behavior of os._execvpe().
                        executable_list = tuple(
                            os.path.join(os.fsencode(dir), executable)
                            for dir in os.get_exec_path(env))
                    fds_to_keep = set(pass_fds)
                    fds_to_keep.add(errpipe_write)
                    self.pid = _posixsubprocess.fork_exec(
                            args, executable_list,
                            close_fds, sorted(fds_to_keep), cwd, env_list,
                            p2cread, p2cwrite, c2pread, c2pwrite,
                            errread, errwrite,
                            errpipe_read, errpipe_write,
                            restore_signals, start_new_session, preexec_fn)
                    self._child_created = True
                finally:
                    # be sure the FD is closed no matter what
                    os.close(errpipe_write)

                # self._devnull is not always defined.
                devnull_fd = getattr(self, '_devnull', None)
                if p2cread != -1 and p2cwrite != -1 and p2cread != devnull_fd:
                    os.close(p2cread)
                if c2pwrite != -1 and c2pread != -1 and c2pwrite != devnull_fd:
                    os.close(c2pwrite)
                if errwrite != -1 and errread != -1 and errwrite != devnull_fd:
                    os.close(errwrite)
                if devnull_fd is not None:
                    os.close(devnull_fd)
                # Prevent a double close of these fds from __init__ on error.
                self._closed_child_pipe_fds = True

                # Wait for exec to fail or succeed; possibly raising an
                # exception (limited in size)
                errpipe_data = bytearray()
                while True:
                    part = _eintr_retry_call(os.read, errpipe_read, 50000)
                    errpipe_data += part
                    if not part or len(errpipe_data) > 50000:
                        break
            finally:
                # be sure the FD is closed no matter what
                os.close(errpipe_read)

            if errpipe_data:
                try:
                    _eintr_retry_call(os.waitpid, self.pid, 0)
                except OSError as e:
                    if e.errno != errno.ECHILD:
                        raise
                try:
                    exception_name, hex_errno, err_msg = (
                            errpipe_data.split(b':', 2))
                except ValueError:
                    exception_name = b'SubprocessError'
                    hex_errno = b'0'
                    err_msg = (b'Bad exception data from child: ' +
                               repr(errpipe_data))
                child_exception_type = getattr(
                        builtins, exception_name.decode('ascii'),
                        SubprocessError)
                err_msg = err_msg.decode(errors="surrogatepass")
                if issubclass(child_exception_type, OSError) and hex_errno:
                    errno_num = int(hex_errno, 16)
                    child_exec_never_called = (err_msg == "noexec")
                    if child_exec_never_called:
                        err_msg = ""
                    if errno_num != 0:
                        err_msg = os.strerror(errno_num)
                        if errno_num == errno.ENOENT:
                            if child_exec_never_called:
                                # The error must be from chdir(cwd).
                                err_msg += ': ' + repr(cwd)
                            else:
                                err_msg += ': ' + repr(orig_executable)
                    raise child_exception_type(errno_num, err_msg)
                raise child_exception_type(err_msg)


        def _handle_exitstatus(self, sts, _WIFSIGNALED=os.WIFSIGNALED,
                _WTERMSIG=os.WTERMSIG, _WIFEXITED=os.WIFEXITED,
                _WEXITSTATUS=os.WEXITSTATUS):
            """All callers to this function MUST hold self._waitpid_lock."""
            # This method is called (indirectly) by __del__, so it cannot
            # refer to anything outside of its local scope.
            if _WIFSIGNALED(sts):
                self.returncode = -_WTERMSIG(sts)
            elif _WIFEXITED(sts):
                self.returncode = _WEXITSTATUS(sts)
            else:
                # Should never happen
                raise SubprocessError("Unknown child exit status!")


        def _internal_poll(self, _deadstate=None, _waitpid=os.waitpid,
                _WNOHANG=os.WNOHANG, _ECHILD=errno.ECHILD):
            """Check if child process has terminated.  Returns returncode
            attribute.

            This method is called by __del__, so it cannot reference anything
            outside of the local scope (nor can any methods it calls).

            """
            if self.returncode is None:
                if not self._waitpid_lock.acquire(False):
                    # Something else is busy calling waitpid.  Don't allow two
                    # at once.  We know nothing yet.
                    return None
                try:
                    if self.returncode is not None:
                        return self.returncode  # Another thread waited.
                    pid, sts = _waitpid(self.pid, _WNOHANG)
                    if pid == self.pid:
                        self._handle_exitstatus(sts)
                except OSError as e:
                    if _deadstate is not None:
                        self.returncode = _deadstate
                    elif e.errno == _ECHILD:
                        # This happens if SIGCLD is set to be ignored or
                        # waiting for child processes has otherwise been
                        # disabled for our process.  This child is dead, we
                        # can't get the status.
                        # http://bugs.python.org/issue15756
                        self.returncode = 0
                finally:
                    self._waitpid_lock.release()
            return self.returncode


        def _try_wait(self, wait_flags):
            """All callers to this function MUST hold self._waitpid_lock."""
            try:
                (pid, sts) = _eintr_retry_call(os.waitpid, self.pid, wait_flags)
            except OSError as e:
                if e.errno != errno.ECHILD:
                    raise
                # This happens if SIGCLD is set to be ignored or waiting
                # for child processes has otherwise been disabled for our
                # process.  This child is dead, we can't get the status.
                pid = self.pid
                sts = 0
            return (pid, sts)


        def wait(self, timeout=None, endtime=None):
            """Wait for child process to terminate.  Returns returncode
            attribute."""
            if self.returncode is not None:
                return self.returncode

            # endtime is preferred to timeout.  timeout is only used for
            # printing.
            if endtime is not None or timeout is not None:
                if endtime is None:
                    endtime = _time() + timeout
                elif timeout is None:
                    timeout = self._remaining_time(endtime)

            if endtime is not None:
                # Enter a busy loop if we have a timeout.  This busy loop was
                # cribbed from Lib/threading.py in Thread.wait() at r71065.
                delay = 0.0005 # 500 us -> initial delay of 1 ms
                while True:
                    if self._waitpid_lock.acquire(False):
                        try:
                            if self.returncode is not None:
                                break  # Another thread waited.
                            (pid, sts) = self._try_wait(os.WNOHANG)
                            assert pid == self.pid or pid == 0
                            if pid == self.pid:
                                self._handle_exitstatus(sts)
                                break
                        finally:
                            self._waitpid_lock.release()
                    remaining = self._remaining_time(endtime)
                    if remaining <= 0:
                        raise TimeoutExpired(self.args, timeout)
                    delay = min(delay * 2, remaining, .05)
                    time.sleep(delay)
            else:
                while self.returncode is None:
                    with self._waitpid_lock:
                        if self.returncode is not None:
                            break  # Another thread waited.
                        (pid, sts) = self._try_wait(0)
                        # Check the pid and loop as waitpid has been known to
                        # return 0 even without WNOHANG in odd situations.
                        # http://bugs.python.org/issue14396.
                        if pid == self.pid:
                            self._handle_exitstatus(sts)
            return self.returncode


        def _communicate(self, input, endtime, orig_timeout):
            if self.stdin and not self._communication_started:
                # Flush stdio buffer.  This might block, if the user has
                # been writing to .stdin in an uncontrolled fashion.
                self.stdin.flush()
                if not input:
                    self.stdin.close()

            stdout = None
            stderr = None

            # Only create this mapping if we haven't already.
            if not self._communication_started:
                self._fileobj2output = {}
                if self.stdout:
                    self._fileobj2output[self.stdout] = []
                if self.stderr:
                    self._fileobj2output[self.stderr] = []

            if self.stdout:
                stdout = self._fileobj2output[self.stdout]
            if self.stderr:
                stderr = self._fileobj2output[self.stderr]

            self._save_input(input)

            if self._input:
                input_view = memoryview(self._input)

            with _PopenSelector() as selector:
                if self.stdin and input:
                    selector.register(self.stdin, selectors.EVENT_WRITE)
                if self.stdout:
                    selector.register(self.stdout, selectors.EVENT_READ)
                if self.stderr:
                    selector.register(self.stderr, selectors.EVENT_READ)

                while selector.get_map():
                    timeout = self._remaining_time(endtime)
                    if timeout is not None and timeout < 0:
                        raise TimeoutExpired(self.args, orig_timeout)

                    ready = selector.select(timeout)
                    self._check_timeout(endtime, orig_timeout)

                    # XXX Rewrite these to use non-blocking I/O on the file
                    # objects; they are no longer using C stdio!

                    for key, events in ready:
                        if key.fileobj is self.stdin:
                            chunk = input_view[self._input_offset :
                                               self._input_offset + _PIPE_BUF]
                            try:
                                self._input_offset += os.write(key.fd, chunk)
                            except OSError as e:
                                if e.errno == errno.EPIPE:
                                    selector.unregister(key.fileobj)
                                    key.fileobj.close()
                                else:
                                    raise
                            else:
                                if self._input_offset >= len(self._input):
                                    selector.unregister(key.fileobj)
                                    key.fileobj.close()
                        elif key.fileobj in (self.stdout, self.stderr):
                            data = os.read(key.fd, 32768)
                            if not data:
                                selector.unregister(key.fileobj)
                                key.fileobj.close()
                            self._fileobj2output[key.fileobj].append(data)

            self.wait(timeout=self._remaining_time(endtime))

            # All data exchanged.  Translate lists into strings.
            if stdout is not None:
                stdout = b''.join(stdout)
            if stderr is not None:
                stderr = b''.join(stderr)

            # Translate newlines, if requested.
            # This also turns bytes into strings.
            if self.universal_newlines:
                if stdout is not None:
                    stdout = self._translate_newlines(stdout,
                                                      self.stdout.encoding)
                if stderr is not None:
                    stderr = self._translate_newlines(stderr,
                                                      self.stderr.encoding)

            return (stdout, stderr)


        def _save_input(self, input):
            # This method is called from the _communicate_with_*() methods
            # so that if we time out while communicating, we can continue
            # sending input if we retry.
            if self.stdin and self._input is None:
                self._input_offset = 0
                self._input = input
                if self.universal_newlines and input is not None:
                    self._input = self._input.encode(self.stdin.encoding)


        def send_signal(self, sig):
            """Send a signal to the process."""
            # Skip signalling a process that we know has already died.
            if self.returncode is None:
                os.kill(self.pid, sig)

        def terminate(self):
            """Terminate the process with SIGTERM
            """
            self.send_signal(signal.SIGTERM)

        def kill(self):
            """Kill the process with SIGKILL
            """
            self.send_signal(signal.SIGKILL)
lib\sunau.py
"""Stuff to parse Sun and NeXT audio files.

An audio file consists of a header followed by the data.  The structure
of the header is as follows.

        +---------------+
        | magic word    |
        +---------------+
        | header size   |
        +---------------+
        | data size     |
        +---------------+
        | encoding      |
        +---------------+
        | sample rate   |
        +---------------+
        | # of channels |
        +---------------+
        | info          |
        |               |
        +---------------+

The magic word consists of the 4 characters '.snd'.  Apart from the
info field, all header fields are 4 bytes in size.  They are all
32-bit unsigned integers encoded in big-endian byte order.

The header size really gives the start of the data.
The data size is the physical size of the data.  From the other
parameters the number of frames can be calculated.
The encoding gives the way in which audio samples are encoded.
Possible values are listed below.
The info field currently consists of an ASCII string giving a
human-readable description of the audio file.  The info field is
padded with NUL bytes to the header size.

Usage.

Reading audio files:
        f = sunau.open(file, 'r')
where file is either the name of a file or an open file pointer.
The open file pointer must have methods read(), seek(), and close().
When the setpos() and rewind() methods are not used, the seek()
method is not  necessary.

This returns an instance of a class with the following public methods:
        getnchannels()  -- returns number of audio channels (1 for
                           mono, 2 for stereo)
        getsampwidth()  -- returns sample width in bytes
        getframerate()  -- returns sampling frequency
        getnframes()    -- returns number of audio frames
        getcomptype()   -- returns compression type ('NONE' or 'ULAW')
        getcompname()   -- returns human-readable version of
                           compression type ('not compressed' matches 'NONE')
        getparams()     -- returns a namedtuple consisting of all of the
                           above in the above order
        getmarkers()    -- returns None (for compatibility with the
                           aifc module)
        getmark(id)     -- raises an error since the mark does not
                           exist (for compatibility with the aifc module)
        readframes(n)   -- returns at most n frames of audio
        rewind()        -- rewind to the beginning of the audio stream
        setpos(pos)     -- seek to the specified position
        tell()          -- return the current position
        close()         -- close the instance (make it unusable)
The position returned by tell() and the position given to setpos()
are compatible and have nothing to do with the actual position in the
file.
The close() method is called automatically when the class instance
is destroyed.

Writing audio files:
        f = sunau.open(file, 'w')
where file is either the name of a file or an open file pointer.
The open file pointer must have methods write(), tell(), seek(), and
close().

This returns an instance of a class with the following public methods:
        setnchannels(n) -- set the number of channels
        setsampwidth(n) -- set the sample width
        setframerate(n) -- set the frame rate
        setnframes(n)   -- set the number of frames
        setcomptype(type, name)
                        -- set the compression type and the
                           human-readable compression type
        setparams(tuple)-- set all parameters at once
        tell()          -- return current position in output file
        writeframesraw(data)
                        -- write audio frames without pathing up the
                           file header
        writeframes(data)
                        -- write audio frames and patch up the file header
        close()         -- patch up the file header and close the
                           output file
You should set the parameters before the first writeframesraw or
writeframes.  The total number of frames does not need to be set,
but when it is set to the correct value, the header does not have to
be patched up.
It is best to first set all parameters, perhaps possibly the
compression type, and then write audio frames using writeframesraw.
When all frames have been written, either call writeframes(b'') or
close() to patch up the sizes in the header.
The close() method is called automatically when the class instance
is destroyed.
"""

from collections import namedtuple

_sunau_params = namedtuple('_sunau_params',
                           'nchannels sampwidth framerate nframes comptype compname')

# from <multimedia/audio_filehdr.h>
AUDIO_FILE_MAGIC = 0x2e736e64
AUDIO_FILE_ENCODING_MULAW_8 = 1
AUDIO_FILE_ENCODING_LINEAR_8 = 2
AUDIO_FILE_ENCODING_LINEAR_16 = 3
AUDIO_FILE_ENCODING_LINEAR_24 = 4
AUDIO_FILE_ENCODING_LINEAR_32 = 5
AUDIO_FILE_ENCODING_FLOAT = 6
AUDIO_FILE_ENCODING_DOUBLE = 7
AUDIO_FILE_ENCODING_ADPCM_G721 = 23
AUDIO_FILE_ENCODING_ADPCM_G722 = 24
AUDIO_FILE_ENCODING_ADPCM_G723_3 = 25
AUDIO_FILE_ENCODING_ADPCM_G723_5 = 26
AUDIO_FILE_ENCODING_ALAW_8 = 27

# from <multimedia/audio_hdr.h>
AUDIO_UNKNOWN_SIZE = 0xFFFFFFFF        # ((unsigned)(~0))

_simple_encodings = [AUDIO_FILE_ENCODING_MULAW_8,
                     AUDIO_FILE_ENCODING_LINEAR_8,
                     AUDIO_FILE_ENCODING_LINEAR_16,
                     AUDIO_FILE_ENCODING_LINEAR_24,
                     AUDIO_FILE_ENCODING_LINEAR_32,
                     AUDIO_FILE_ENCODING_ALAW_8]

class Error(Exception):
    pass

def _read_u32(file):
    x = 0
    for i in range(4):
        byte = file.read(1)
        if not byte:
            raise EOFError
        x = x*256 + ord(byte)
    return x

def _write_u32(file, x):
    data = []
    for i in range(4):
        d, m = divmod(x, 256)
        data.insert(0, int(m))
        x = d
    file.write(bytes(data))

class Au_read:

    def __init__(self, f):
        if type(f) == type(''):
            import builtins
            f = builtins.open(f, 'rb')
            self._opened = True
        else:
            self._opened = False
        self.initfp(f)

    def __del__(self):
        if self._file:
            self.close()

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    def initfp(self, file):
        self._file = file
        self._soundpos = 0
        magic = int(_read_u32(file))
        if magic != AUDIO_FILE_MAGIC:
            raise Error('bad magic number')
        self._hdr_size = int(_read_u32(file))
        if self._hdr_size < 24:
            raise Error('header size too small')
        if self._hdr_size > 100:
            raise Error('header size ridiculously large')
        self._data_size = _read_u32(file)
        if self._data_size != AUDIO_UNKNOWN_SIZE:
            self._data_size = int(self._data_size)
        self._encoding = int(_read_u32(file))
        if self._encoding not in _simple_encodings:
            raise Error('encoding not (yet) supported')
        if self._encoding in (AUDIO_FILE_ENCODING_MULAW_8,
                  AUDIO_FILE_ENCODING_ALAW_8):
            self._sampwidth = 2
            self._framesize = 1
        elif self._encoding == AUDIO_FILE_ENCODING_LINEAR_8:
            self._framesize = self._sampwidth = 1
        elif self._encoding == AUDIO_FILE_ENCODING_LINEAR_16:
            self._framesize = self._sampwidth = 2
        elif self._encoding == AUDIO_FILE_ENCODING_LINEAR_24:
            self._framesize = self._sampwidth = 3
        elif self._encoding == AUDIO_FILE_ENCODING_LINEAR_32:
            self._framesize = self._sampwidth = 4
        else:
            raise Error('unknown encoding')
        self._framerate = int(_read_u32(file))
        self._nchannels = int(_read_u32(file))
        self._framesize = self._framesize * self._nchannels
        if self._hdr_size > 24:
            self._info = file.read(self._hdr_size - 24)
            self._info, _, _ = self._info.partition(b'\0')
        else:
            self._info = b''
        try:
            self._data_pos = file.tell()
        except (AttributeError, OSError):
            self._data_pos = None

    def getfp(self):
        return self._file

    def getnchannels(self):
        return self._nchannels

    def getsampwidth(self):
        return self._sampwidth

    def getframerate(self):
        return self._framerate

    def getnframes(self):
        if self._data_size == AUDIO_UNKNOWN_SIZE:
            return AUDIO_UNKNOWN_SIZE
        if self._encoding in _simple_encodings:
            return self._data_size // self._framesize
        return 0                # XXX--must do some arithmetic here

    def getcomptype(self):
        if self._encoding == AUDIO_FILE_ENCODING_MULAW_8:
            return 'ULAW'
        elif self._encoding == AUDIO_FILE_ENCODING_ALAW_8:
            return 'ALAW'
        else:
            return 'NONE'

    def getcompname(self):
        if self._encoding == AUDIO_FILE_ENCODING_MULAW_8:
            return 'CCITT G.711 u-law'
        elif self._encoding == AUDIO_FILE_ENCODING_ALAW_8:
            return 'CCITT G.711 A-law'
        else:
            return 'not compressed'

    def getparams(self):
        return _sunau_params(self.getnchannels(), self.getsampwidth(),
                  self.getframerate(), self.getnframes(),
                  self.getcomptype(), self.getcompname())

    def getmarkers(self):
        return None

    def getmark(self, id):
        raise Error('no marks')

    def readframes(self, nframes):
        if self._encoding in _simple_encodings:
            if nframes == AUDIO_UNKNOWN_SIZE:
                data = self._file.read()
            else:
                data = self._file.read(nframes * self._framesize)
            self._soundpos += len(data) // self._framesize
            if self._encoding == AUDIO_FILE_ENCODING_MULAW_8:
                import audioop
                data = audioop.ulaw2lin(data, self._sampwidth)
            return data
        return None             # XXX--not implemented yet

    def rewind(self):
        if self._data_pos is None:
            raise OSError('cannot seek')
        self._file.seek(self._data_pos)
        self._soundpos = 0

    def tell(self):
        return self._soundpos

    def setpos(self, pos):
        if pos < 0 or pos > self.getnframes():
            raise Error('position not in range')
        if self._data_pos is None:
            raise OSError('cannot seek')
        self._file.seek(self._data_pos + pos * self._framesize)
        self._soundpos = pos

    def close(self):
        file = self._file
        if file:
            self._file = None
            if self._opened:
                file.close()

class Au_write:

    def __init__(self, f):
        if type(f) == type(''):
            import builtins
            f = builtins.open(f, 'wb')
            self._opened = True
        else:
            self._opened = False
        self.initfp(f)

    def __del__(self):
        if self._file:
            self.close()
        self._file = None

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    def initfp(self, file):
        self._file = file
        self._framerate = 0
        self._nchannels = 0
        self._sampwidth = 0
        self._framesize = 0
        self._nframes = AUDIO_UNKNOWN_SIZE
        self._nframeswritten = 0
        self._datawritten = 0
        self._datalength = 0
        self._info = b''
        self._comptype = 'ULAW' # default is U-law

    def setnchannels(self, nchannels):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        if nchannels not in (1, 2, 4):
            raise Error('only 1, 2, or 4 channels supported')
        self._nchannels = nchannels

    def getnchannels(self):
        if not self._nchannels:
            raise Error('number of channels not set')
        return self._nchannels

    def setsampwidth(self, sampwidth):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        if sampwidth not in (1, 2, 3, 4):
            raise Error('bad sample width')
        self._sampwidth = sampwidth

    def getsampwidth(self):
        if not self._framerate:
            raise Error('sample width not specified')
        return self._sampwidth

    def setframerate(self, framerate):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        self._framerate = framerate

    def getframerate(self):
        if not self._framerate:
            raise Error('frame rate not set')
        return self._framerate

    def setnframes(self, nframes):
        if self._nframeswritten:
            raise Error('cannot change parameters after starting to write')
        if nframes < 0:
            raise Error('# of frames cannot be negative')
        self._nframes = nframes

    def getnframes(self):
        return self._nframeswritten

    def setcomptype(self, type, name):
        if type in ('NONE', 'ULAW'):
            self._comptype = type
        else:
            raise Error('unknown compression type')

    def getcomptype(self):
        return self._comptype

    def getcompname(self):
        if self._comptype == 'ULAW':
            return 'CCITT G.711 u-law'
        elif self._comptype == 'ALAW':
            return 'CCITT G.711 A-law'
        else:
            return 'not compressed'

    def setparams(self, params):
        nchannels, sampwidth, framerate, nframes, comptype, compname = params
        self.setnchannels(nchannels)
        self.setsampwidth(sampwidth)
        self.setframerate(framerate)
        self.setnframes(nframes)
        self.setcomptype(comptype, compname)

    def getparams(self):
        return _sunau_params(self.getnchannels(), self.getsampwidth(),
                  self.getframerate(), self.getnframes(),
                  self.getcomptype(), self.getcompname())

    def tell(self):
        return self._nframeswritten

    def writeframesraw(self, data):
        if not isinstance(data, (bytes, bytearray)):
            data = memoryview(data).cast('B')
        self._ensure_header_written()
        if self._comptype == 'ULAW':
            import audioop
            data = audioop.lin2ulaw(data, self._sampwidth)
        nframes = len(data) // self._framesize
        self._file.write(data)
        self._nframeswritten = self._nframeswritten + nframes
        self._datawritten = self._datawritten + len(data)

    def writeframes(self, data):
        self.writeframesraw(data)
        if self._nframeswritten != self._nframes or \
                  self._datalength != self._datawritten:
            self._patchheader()

    def close(self):
        if self._file:
            try:
                self._ensure_header_written()
                if self._nframeswritten != self._nframes or \
                        self._datalength != self._datawritten:
                    self._patchheader()
                self._file.flush()
            finally:
                file = self._file
                self._file = None
                if self._opened:
                    file.close()

    #
    # private methods
    #

    def _ensure_header_written(self):
        if not self._nframeswritten:
            if not self._nchannels:
                raise Error('# of channels not specified')
            if not self._sampwidth:
                raise Error('sample width not specified')
            if not self._framerate:
                raise Error('frame rate not specified')
            self._write_header()

    def _write_header(self):
        if self._comptype == 'NONE':
            if self._sampwidth == 1:
                encoding = AUDIO_FILE_ENCODING_LINEAR_8
                self._framesize = 1
            elif self._sampwidth == 2:
                encoding = AUDIO_FILE_ENCODING_LINEAR_16
                self._framesize = 2
            elif self._sampwidth == 3:
                encoding = AUDIO_FILE_ENCODING_LINEAR_24
                self._framesize = 3
            elif self._sampwidth == 4:
                encoding = AUDIO_FILE_ENCODING_LINEAR_32
                self._framesize = 4
            else:
                raise Error('internal error')
        elif self._comptype == 'ULAW':
            encoding = AUDIO_FILE_ENCODING_MULAW_8
            self._framesize = 1
        else:
            raise Error('internal error')
        self._framesize = self._framesize * self._nchannels
        _write_u32(self._file, AUDIO_FILE_MAGIC)
        header_size = 25 + len(self._info)
        header_size = (header_size + 7) & ~7
        _write_u32(self._file, header_size)
        if self._nframes == AUDIO_UNKNOWN_SIZE:
            length = AUDIO_UNKNOWN_SIZE
        else:
            length = self._nframes * self._framesize
        try:
            self._form_length_pos = self._file.tell()
        except (AttributeError, OSError):
            self._form_length_pos = None
        _write_u32(self._file, length)
        self._datalength = length
        _write_u32(self._file, encoding)
        _write_u32(self._file, self._framerate)
        _write_u32(self._file, self._nchannels)
        self._file.write(self._info)
        self._file.write(b'\0'*(header_size - len(self._info) - 24))

    def _patchheader(self):
        if self._form_length_pos is None:
            raise OSError('cannot seek')
        self._file.seek(self._form_length_pos)
        _write_u32(self._file, self._datawritten)
        self._datalength = self._datawritten
        self._file.seek(0, 2)

def open(f, mode=None):
    if mode is None:
        if hasattr(f, 'mode'):
            mode = f.mode
        else:
            mode = 'rb'
    if mode in ('r', 'rb'):
        return Au_read(f)
    elif mode in ('w', 'wb'):
        return Au_write(f)
    else:
        raise Error("mode must be 'r', 'rb', 'w', or 'wb'")

openfp = open
lib\symbol.py
#! /usr/bin/env python3

"""Non-terminal symbols of Python grammar (from "graminit.h")."""

#  This file is automatically generated; please don't muck it up!
#
#  To update the symbols in this file, 'cd' to the top directory of
#  the python source tree after building the interpreter and run:
#
#    ./python Lib/symbol.py

#--start constants--
single_input = 256
file_input = 257
eval_input = 258
decorator = 259
decorators = 260
decorated = 261
funcdef = 262
parameters = 263
typedargslist = 264
tfpdef = 265
varargslist = 266
vfpdef = 267
stmt = 268
simple_stmt = 269
small_stmt = 270
expr_stmt = 271
testlist_star_expr = 272
augassign = 273
del_stmt = 274
pass_stmt = 275
flow_stmt = 276
break_stmt = 277
continue_stmt = 278
return_stmt = 279
yield_stmt = 280
raise_stmt = 281
import_stmt = 282
import_name = 283
import_from = 284
import_as_name = 285
dotted_as_name = 286
import_as_names = 287
dotted_as_names = 288
dotted_name = 289
global_stmt = 290
nonlocal_stmt = 291
assert_stmt = 292
compound_stmt = 293
if_stmt = 294
while_stmt = 295
for_stmt = 296
try_stmt = 297
with_stmt = 298
with_item = 299
except_clause = 300
suite = 301
test = 302
test_nocond = 303
lambdef = 304
lambdef_nocond = 305
or_test = 306
and_test = 307
not_test = 308
comparison = 309
comp_op = 310
star_expr = 311
expr = 312
xor_expr = 313
and_expr = 314
shift_expr = 315
arith_expr = 316
term = 317
factor = 318
power = 319
atom = 320
testlist_comp = 321
trailer = 322
subscriptlist = 323
subscript = 324
sliceop = 325
exprlist = 326
testlist = 327
dictorsetmaker = 328
classdef = 329
arglist = 330
argument = 331
comp_iter = 332
comp_for = 333
comp_if = 334
encoding_decl = 335
yield_expr = 336
yield_arg = 337
#--end constants--

sym_name = {}
for _name, _value in list(globals().items()):
    if type(_value) is type(0):
        sym_name[_value] = _name


def _main():
    import sys
    import token
    if len(sys.argv) == 1:
        sys.argv = sys.argv + ["Include/graminit.h", "Lib/symbol.py"]
    token._main()

if __name__ == "__main__":
    _main()
lib\symtable.py
"""Interface to the compiler's internal symbol tables"""

import _symtable
from _symtable import (USE, DEF_GLOBAL, DEF_LOCAL, DEF_PARAM,
     DEF_IMPORT, DEF_BOUND, OPT_IMPORT_STAR, SCOPE_OFF, SCOPE_MASK, FREE,
     LOCAL, GLOBAL_IMPLICIT, GLOBAL_EXPLICIT, CELL)

import weakref

__all__ = ["symtable", "SymbolTable", "Class", "Function", "Symbol"]

def symtable(code, filename, compile_type):
    top = _symtable.symtable(code, filename, compile_type)
    return _newSymbolTable(top, filename)

class SymbolTableFactory:
    def __init__(self):
        self.__memo = weakref.WeakValueDictionary()

    def new(self, table, filename):
        if table.type == _symtable.TYPE_FUNCTION:
            return Function(table, filename)
        if table.type == _symtable.TYPE_CLASS:
            return Class(table, filename)
        return SymbolTable(table, filename)

    def __call__(self, table, filename):
        key = table, filename
        obj = self.__memo.get(key, None)
        if obj is None:
            obj = self.__memo[key] = self.new(table, filename)
        return obj

_newSymbolTable = SymbolTableFactory()


class SymbolTable(object):

    def __init__(self, raw_table, filename):
        self._table = raw_table
        self._filename = filename
        self._symbols = {}

    def __repr__(self):
        if self.__class__ == SymbolTable:
            kind = ""
        else:
            kind = "%s " % self.__class__.__name__

        if self._table.name == "global":
            return "<{0}SymbolTable for module {1}>".format(kind, self._filename)
        else:
            return "<{0}SymbolTable for {1} in {2}>".format(kind,
                                                            self._table.name,
                                                            self._filename)

    def get_type(self):
        if self._table.type == _symtable.TYPE_MODULE:
            return "module"
        if self._table.type == _symtable.TYPE_FUNCTION:
            return "function"
        if self._table.type == _symtable.TYPE_CLASS:
            return "class"
        assert self._table.type in (1, 2, 3), \
               "unexpected type: {0}".format(self._table.type)

    def get_id(self):
        return self._table.id

    def get_name(self):
        return self._table.name

    def get_lineno(self):
        return self._table.lineno

    def is_optimized(self):
        return bool(self._table.type == _symtable.TYPE_FUNCTION
                    and not self._table.optimized)

    def is_nested(self):
        return bool(self._table.nested)

    def has_children(self):
        return bool(self._table.children)

    def has_exec(self):
        """Return true if the scope uses exec.  Deprecated method."""
        return False

    def has_import_star(self):
        """Return true if the scope uses import *"""
        return bool(self._table.optimized & OPT_IMPORT_STAR)

    def get_identifiers(self):
        return self._table.symbols.keys()

    def lookup(self, name):
        sym = self._symbols.get(name)
        if sym is None:
            flags = self._table.symbols[name]
            namespaces = self.__check_children(name)
            sym = self._symbols[name] = Symbol(name, flags, namespaces)
        return sym

    def get_symbols(self):
        return [self.lookup(ident) for ident in self.get_identifiers()]

    def __check_children(self, name):
        return [_newSymbolTable(st, self._filename)
                for st in self._table.children
                if st.name == name]

    def get_children(self):
        return [_newSymbolTable(st, self._filename)
                for st in self._table.children]


class Function(SymbolTable):

    # Default values for instance variables
    __params = None
    __locals = None
    __frees = None
    __globals = None

    def __idents_matching(self, test_func):
        return tuple([ident for ident in self.get_identifiers()
                      if test_func(self._table.symbols[ident])])

    def get_parameters(self):
        if self.__params is None:
            self.__params = self.__idents_matching(lambda x:x & DEF_PARAM)
        return self.__params

    def get_locals(self):
        if self.__locals is None:
            locs = (LOCAL, CELL)
            test = lambda x: ((x >> SCOPE_OFF) & SCOPE_MASK) in locs
            self.__locals = self.__idents_matching(test)
        return self.__locals

    def get_globals(self):
        if self.__globals is None:
            glob = (GLOBAL_IMPLICIT, GLOBAL_EXPLICIT)
            test = lambda x:((x >> SCOPE_OFF) & SCOPE_MASK) in glob
            self.__globals = self.__idents_matching(test)
        return self.__globals

    def get_frees(self):
        if self.__frees is None:
            is_free = lambda x:((x >> SCOPE_OFF) & SCOPE_MASK) == FREE
            self.__frees = self.__idents_matching(is_free)
        return self.__frees


class Class(SymbolTable):

    __methods = None

    def get_methods(self):
        if self.__methods is None:
            d = {}
            for st in self._table.children:
                d[st.name] = 1
            self.__methods = tuple(d)
        return self.__methods


class Symbol(object):

    def __init__(self, name, flags, namespaces=None):
        self.__name = name
        self.__flags = flags
        self.__scope = (flags >> SCOPE_OFF) & SCOPE_MASK # like PyST_GetScope()
        self.__namespaces = namespaces or ()

    def __repr__(self):
        return "<symbol {0!r}>".format(self.__name)

    def get_name(self):
        return self.__name

    def is_referenced(self):
        return bool(self.__flags & _symtable.USE)

    def is_parameter(self):
        return bool(self.__flags & DEF_PARAM)

    def is_global(self):
        return bool(self.__scope in (GLOBAL_IMPLICIT, GLOBAL_EXPLICIT))

    def is_declared_global(self):
        return bool(self.__scope == GLOBAL_EXPLICIT)

    def is_local(self):
        return bool(self.__flags & DEF_BOUND)

    def is_free(self):
        return bool(self.__scope == FREE)

    def is_imported(self):
        return bool(self.__flags & DEF_IMPORT)

    def is_assigned(self):
        return bool(self.__flags & DEF_LOCAL)

    def is_namespace(self):
        """Returns true if name binding introduces new namespace.

        If the name is used as the target of a function or class
        statement, this will be true.

        Note that a single name can be bound to multiple objects.  If
        is_namespace() is true, the name may also be bound to other
        objects, like an int or list, that does not introduce a new
        namespace.
        """
        return bool(self.__namespaces)

    def get_namespaces(self):
        """Return a list of namespaces bound to this name"""
        return self.__namespaces

    def get_namespace(self):
        """Returns the single namespace bound to this name.

        Raises ValueError if the name is bound to multiple namespaces.
        """
        if len(self.__namespaces) != 1:
            raise ValueError("name is bound to multiple namespaces")
        return self.__namespaces[0]

if __name__ == "__main__":
    import os, sys
    with open(sys.argv[0]) as f:
        src = f.read()
    mod = symtable(src, os.path.split(sys.argv[0])[1], "exec")
    for ident in mod.get_identifiers():
        info = mod.lookup(ident)
        print(info, info.is_local(), info.is_namespace())
lib\sysconfig.py
"""Access to Python's configuration information."""

import os
import sys
from os.path import pardir, realpath

__all__ = [
    'get_config_h_filename',
    'get_config_var',
    'get_config_vars',
    'get_makefile_filename',
    'get_path',
    'get_path_names',
    'get_paths',
    'get_platform',
    'get_python_version',
    'get_scheme_names',
    'parse_config_h',
]

_INSTALL_SCHEMES = {
    'posix_prefix': {
        'stdlib': '{installed_base}/lib/{implementation_lower}{py_version_short}',
        'platstdlib': '{platbase}/lib/{implementation_lower}{py_version_short}',
        'purelib': '{base}/lib/{implementation_lower}{py_version_short}/site-packages',
        'platlib': '{platbase}/lib/{implementation_lower}{py_version_short}/site-packages',
        'include':
            '{installed_base}/include/{implementation_lower}{py_version_short}{abiflags}',
        'platinclude':
            '{installed_platbase}/include/{implementation_lower}{py_version_short}{abiflags}',
        'scripts': '{base}/bin',
        'data': '{base}',
        },
    'posix_home': {
        'stdlib': '{installed_base}/lib/{implementation_lower}',
        'platstdlib': '{base}/lib/{implementation_lower}',
        'purelib': '{base}/lib/{implementation_lower}',
        'platlib': '{base}/lib/{implementation_lower}',
        'include': '{installed_base}/include/{implementation_lower}',
        'platinclude': '{installed_base}/include/{implementation_lower}',
        'scripts': '{base}/bin',
        'data': '{base}',
        },
    'nt': {
        'stdlib': '{installed_base}/Lib',
        'platstdlib': '{base}/Lib',
        'purelib': '{base}/Lib/site-packages',
        'platlib': '{base}/Lib/site-packages',
        'include': '{installed_base}/Include',
        'platinclude': '{installed_base}/Include',
        'scripts': '{base}/Scripts',
        'data': '{base}',
        },
    'nt_user': {
        'stdlib': '{userbase}/{implementation}{py_version_nodot}',
        'platstdlib': '{userbase}/{implementation}{py_version_nodot}',
        'purelib': '{userbase}/{implementation}{py_version_nodot}/site-packages',
        'platlib': '{userbase}/{implementation}{py_version_nodot}/site-packages',
        'include': '{userbase}/{implementation}{py_version_nodot}/Include',
        'scripts': '{userbase}/Scripts',
        'data': '{userbase}',
        },
    'posix_user': {
        'stdlib': '{userbase}/lib/{implementation_lower}{py_version_short}',
        'platstdlib': '{userbase}/lib/{implementation_lower}{py_version_short}',
        'purelib': '{userbase}/lib/{implementation_lower}{py_version_short}/site-packages',
        'platlib': '{userbase}/lib/{implementation_lower}{py_version_short}/site-packages',
        'include': '{userbase}/include/{implementation_lower}{py_version_short}',
        'scripts': '{userbase}/bin',
        'data': '{userbase}',
        },
    'osx_framework_user': {
        'stdlib': '{userbase}/lib/{implementation_lower}',
        'platstdlib': '{userbase}/lib/{implementation_lower}',
        'purelib': '{userbase}/lib/{implementation_lower}/site-packages',
        'platlib': '{userbase}/lib/{implementation_lower}/site-packages',
        'include': '{userbase}/include',
        'scripts': '{userbase}/bin',
        'data': '{userbase}',
        },
    }

_SCHEME_KEYS = ('stdlib', 'platstdlib', 'purelib', 'platlib', 'include',
                'scripts', 'data')

 # FIXME don't rely on sys.version here, its format is an implementation detail
 # of CPython, use sys.version_info or sys.hexversion
_PY_VERSION = sys.version.split()[0]
_PY_VERSION_SHORT = sys.version[:3]
_PY_VERSION_SHORT_NO_DOT = _PY_VERSION[0] + _PY_VERSION[2]
_PREFIX = os.path.normpath(sys.prefix)
_BASE_PREFIX = os.path.normpath(sys.base_prefix)
_EXEC_PREFIX = os.path.normpath(sys.exec_prefix)
_BASE_EXEC_PREFIX = os.path.normpath(sys.base_exec_prefix)
_CONFIG_VARS = None
_USER_BASE = None

def _get_implementation():
    if sys.implementation.name == 'ironpython':
        return 'IronPython'
    return 'Python'

def _safe_realpath(path):
    try:
        return realpath(path)
    except OSError:
        return path

if sys.executable:
    _PROJECT_BASE = os.path.dirname(_safe_realpath(sys.executable))
else:
    # sys.executable can be empty if argv[0] has been changed and Python is
    # unable to retrieve the real program name
    _PROJECT_BASE = _safe_realpath(os.getcwd())

if os.name == "nt" and "pcbuild" in _PROJECT_BASE[-8:].lower():
    _PROJECT_BASE = _safe_realpath(os.path.join(_PROJECT_BASE, pardir))
# PC/VS7.1
if os.name == "nt" and "\\pc\\v" in _PROJECT_BASE[-10:].lower():
    _PROJECT_BASE = _safe_realpath(os.path.join(_PROJECT_BASE, pardir, pardir))
# PC/AMD64
if os.name == "nt" and "\\pcbuild\\amd64" in _PROJECT_BASE[-14:].lower():
    _PROJECT_BASE = _safe_realpath(os.path.join(_PROJECT_BASE, pardir, pardir))

# set for cross builds
if "_PYTHON_PROJECT_BASE" in os.environ:
    _PROJECT_BASE = _safe_realpath(os.environ["_PYTHON_PROJECT_BASE"])

def _is_python_source_dir(d):
    for fn in ("Setup.dist", "Setup.local"):
        if os.path.isfile(os.path.join(d, "Modules", fn)):
            return True
    return False

_sys_home = getattr(sys, '_home', None)
if _sys_home and os.name == 'nt' and \
    _sys_home.lower().endswith(('pcbuild', 'pcbuild\\amd64')):
    _sys_home = os.path.dirname(_sys_home)
    if _sys_home.endswith('pcbuild'):   # must be amd64
        _sys_home = os.path.dirname(_sys_home)
def is_python_build(check_home=False):
    if check_home and _sys_home:
        return _is_python_source_dir(_sys_home)
    return _is_python_source_dir(_PROJECT_BASE)

_PYTHON_BUILD = is_python_build(True)

if _PYTHON_BUILD:
    for scheme in ('posix_prefix', 'posix_home'):
        _INSTALL_SCHEMES[scheme]['include'] = '{srcdir}/Include'
        _INSTALL_SCHEMES[scheme]['platinclude'] = '{projectbase}/.'


def _subst_vars(s, local_vars):
    try:
        return s.format(**local_vars)
    except KeyError:
        try:
            return s.format(**os.environ)
        except KeyError as var:
            raise AttributeError('{%s}' % var)

def _extend_dict(target_dict, other_dict):
    target_keys = target_dict.keys()
    for key, value in other_dict.items():
        if key in target_keys:
            continue
        target_dict[key] = value


def _expand_vars(scheme, vars):
    res = {}
    if vars is None:
        vars = {}
    _extend_dict(vars, get_config_vars())

    for key, value in _INSTALL_SCHEMES[scheme].items():
        if os.name in ('posix', 'nt'):
            value = os.path.expanduser(value)
        res[key] = os.path.normpath(_subst_vars(value, vars))
    return res


def _get_default_scheme():
    if os.name == 'posix':
        # the default scheme for posix is posix_prefix
        return 'posix_prefix'
    return os.name


def _getuserbase():
    env_base = os.environ.get("PYTHONUSERBASE", None)

    def joinuser(*args):
        return os.path.expanduser(os.path.join(*args))

    if os.name == "nt":
        base = os.environ.get("APPDATA") or "~"
        if env_base:
            return env_base
        else:
            return joinuser(base, "Python")

    if sys.platform == "darwin":
        framework = get_config_var("PYTHONFRAMEWORK")
        if framework:
            if env_base:
                return env_base
            else:
                return joinuser("~", "Library", framework, "%d.%d" %
                                sys.version_info[:2])

    if env_base:
        return env_base
    else:
        return joinuser("~", ".local")


def _parse_makefile(filename, vars=None):
    """Parse a Makefile-style file.

    A dictionary containing name/value pairs is returned.  If an
    optional dictionary is passed in as the second argument, it is
    used instead of a new dictionary.
    """
    # Regexes needed for parsing Makefile (and similar syntaxes,
    # like old-style Setup files).
    import re
    _variable_rx = re.compile("([a-zA-Z][a-zA-Z0-9_]+)\s*=\s*(.*)")
    _findvar1_rx = re.compile(r"\$\(([A-Za-z][A-Za-z0-9_]*)\)")
    _findvar2_rx = re.compile(r"\${([A-Za-z][A-Za-z0-9_]*)}")

    if vars is None:
        vars = {}
    done = {}
    notdone = {}

    with open(filename, errors="surrogateescape") as f:
        lines = f.readlines()

    for line in lines:
        if line.startswith('#') or line.strip() == '':
            continue
        m = _variable_rx.match(line)
        if m:
            n, v = m.group(1, 2)
            v = v.strip()
            # `$$' is a literal `$' in make
            tmpv = v.replace('$$', '')

            if "$" in tmpv:
                notdone[n] = v
            else:
                try:
                    v = int(v)
                except ValueError:
                    # insert literal `$'
                    done[n] = v.replace('$$', '$')
                else:
                    done[n] = v

    # do variable interpolation here
    variables = list(notdone.keys())

    # Variables with a 'PY_' prefix in the makefile. These need to
    # be made available without that prefix through sysconfig.
    # Special care is needed to ensure that variable expansion works, even
    # if the expansion uses the name without a prefix.
    renamed_variables = ('CFLAGS', 'LDFLAGS', 'CPPFLAGS')

    while len(variables) > 0:
        for name in tuple(variables):
            value = notdone[name]
            m = _findvar1_rx.search(value) or _findvar2_rx.search(value)
            if m is not None:
                n = m.group(1)
                found = True
                if n in done:
                    item = str(done[n])
                elif n in notdone:
                    # get it on a subsequent round
                    found = False
                elif n in os.environ:
                    # do it like make: fall back to environment
                    item = os.environ[n]

                elif n in renamed_variables:
                    if (name.startswith('PY_') and
                        name[3:] in renamed_variables):
                        item = ""

                    elif 'PY_' + n in notdone:
                        found = False

                    else:
                        item = str(done['PY_' + n])

                else:
                    done[n] = item = ""

                if found:
                    after = value[m.end():]
                    value = value[:m.start()] + item + after
                    if "$" in after:
                        notdone[name] = value
                    else:
                        try:
                            value = int(value)
                        except ValueError:
                            done[name] = value.strip()
                        else:
                            done[name] = value
                        variables.remove(name)

                        if name.startswith('PY_') \
                        and name[3:] in renamed_variables:

                            name = name[3:]
                            if name not in done:
                                done[name] = value

            else:
                # bogus variable reference (e.g. "prefix=$/opt/python");
                # just drop it since we can't deal
                done[name] = value
                variables.remove(name)

    # strip spurious spaces
    for k, v in done.items():
        if isinstance(v, str):
            done[k] = v.strip()

    # save the results in the global dictionary
    vars.update(done)
    return vars


def get_makefile_filename():
    """Return the path of the Makefile."""
    if _PYTHON_BUILD:
        return os.path.join(_sys_home or _PROJECT_BASE, "Makefile")
    if hasattr(sys, 'abiflags'):
        config_dir_name = 'config-%s%s' % (_PY_VERSION_SHORT, sys.abiflags)
    else:
        config_dir_name = 'config'
    return os.path.join(get_path('stdlib'), config_dir_name, 'Makefile')

def _generate_posix_vars():
    """Generate the Python module containing build-time variables."""
    import pprint
    vars = {}
    # load the installed Makefile:
    makefile = get_makefile_filename()
    try:
        _parse_makefile(makefile, vars)
    except OSError as e:
        msg = "invalid Python installation: unable to open %s" % makefile
        if hasattr(e, "strerror"):
            msg = msg + " (%s)" % e.strerror
        raise OSError(msg)
    # load the installed pyconfig.h:
    config_h = get_config_h_filename()
    try:
        with open(config_h) as f:
            parse_config_h(f, vars)
    except OSError as e:
        msg = "invalid Python installation: unable to open %s" % config_h
        if hasattr(e, "strerror"):
            msg = msg + " (%s)" % e.strerror
        raise OSError(msg)
    # On AIX, there are wrong paths to the linker scripts in the Makefile
    # -- these paths are relative to the Python source, but when installed
    # the scripts are in another directory.
    if _PYTHON_BUILD:
        vars['BLDSHARED'] = vars['LDSHARED']

    # There's a chicken-and-egg situation on OS X with regards to the
    # _sysconfigdata module after the changes introduced by #15298:
    # get_config_vars() is called by get_platform() as part of the
    # `make pybuilddir.txt` target -- which is a precursor to the
    # _sysconfigdata.py module being constructed.  Unfortunately,
    # get_config_vars() eventually calls _init_posix(), which attempts
    # to import _sysconfigdata, which we won't have built yet.  In order
    # for _init_posix() to work, if we're on Darwin, just mock up the
    # _sysconfigdata module manually and populate it with the build vars.
    # This is more than sufficient for ensuring the subsequent call to
    # get_platform() succeeds.
    name = '_sysconfigdata'
    if 'darwin' in sys.platform:
        import types
        module = types.ModuleType(name)
        module.build_time_vars = vars
        sys.modules[name] = module

    pybuilddir = 'build/lib.%s-%s' % (get_platform(), sys.version[:3])
    if hasattr(sys, "gettotalrefcount"):
        pybuilddir += '-pydebug'
    os.makedirs(pybuilddir, exist_ok=True)
    destfile = os.path.join(pybuilddir, name + '.py')

    with open(destfile, 'w', encoding='utf8') as f:
        f.write('# system configuration generated and used by'
                ' the sysconfig module\n')
        f.write('build_time_vars = ')
        pprint.pprint(vars, stream=f)

    # Create file used for sys.path fixup -- see Modules/getpath.c
    with open('pybuilddir.txt', 'w', encoding='ascii') as f:
        f.write(pybuilddir)

def _init_posix(vars):
    """Initialize the module as appropriate for POSIX systems."""
    # _sysconfigdata is generated at build time, see _generate_posix_vars()
    from _sysconfigdata import build_time_vars
    vars.update(build_time_vars)

def _init_non_posix(vars):
    """Initialize the module as appropriate for NT"""
    # set basic install directories
    vars['LIBDEST'] = get_path('stdlib')
    vars['BINLIBDEST'] = get_path('platstdlib')
    vars['INCLUDEPY'] = get_path('include')
    vars['EXT_SUFFIX'] = '.pyd'
    vars['EXE'] = '.exe'
    vars['VERSION'] = _PY_VERSION_SHORT_NO_DOT
    vars['BINDIR'] = os.path.dirname(_safe_realpath(sys.executable))

#
# public APIs
#


def parse_config_h(fp, vars=None):
    """Parse a config.h-style file.

    A dictionary containing name/value pairs is returned.  If an
    optional dictionary is passed in as the second argument, it is
    used instead of a new dictionary.
    """
    if vars is None:
        vars = {}
    import re
    define_rx = re.compile("#define ([A-Z][A-Za-z0-9_]+) (.*)\n")
    undef_rx = re.compile("/[*] #undef ([A-Z][A-Za-z0-9_]+) [*]/\n")

    while True:
        line = fp.readline()
        if not line:
            break
        m = define_rx.match(line)
        if m:
            n, v = m.group(1, 2)
            try:
                v = int(v)
            except ValueError:
                pass
            vars[n] = v
        else:
            m = undef_rx.match(line)
            if m:
                vars[m.group(1)] = 0
    return vars


def get_config_h_filename():
    """Return the path of pyconfig.h."""
    if _PYTHON_BUILD:
        if os.name == "nt":
            inc_dir = os.path.join(_sys_home or _PROJECT_BASE, "PC")
        else:
            inc_dir = _sys_home or _PROJECT_BASE
    else:
        inc_dir = get_path('platinclude')
    return os.path.join(inc_dir, 'pyconfig.h')


def get_scheme_names():
    """Return a tuple containing the schemes names."""
    return tuple(sorted(_INSTALL_SCHEMES))


def get_path_names():
    """Return a tuple containing the paths names."""
    return _SCHEME_KEYS


def get_paths(scheme=_get_default_scheme(), vars=None, expand=True):
    """Return a mapping containing an install scheme.

    ``scheme`` is the install scheme name. If not provided, it will
    return the default scheme for the current platform.
    """
    if expand:
        return _expand_vars(scheme, vars)
    else:
        return _INSTALL_SCHEMES[scheme]


def get_path(name, scheme=_get_default_scheme(), vars=None, expand=True):
    """Return a path corresponding to the scheme.

    ``scheme`` is the install scheme name.
    """
    return get_paths(scheme, vars, expand)[name]


def get_config_vars(*args):
    """With no arguments, return a dictionary of all configuration
    variables relevant for the current platform.

    On Unix, this means every variable defined in Python's installed Makefile;
    On Windows it's a much smaller set.

    With arguments, return a list of values that result from looking up
    each argument in the configuration variable dictionary.
    """
    global _CONFIG_VARS
    if _CONFIG_VARS is None:
        _CONFIG_VARS = {}
        # Normalized versions of prefix and exec_prefix are handy to have;
        # in fact, these are the standard versions used most places in the
        # Distutils.
        _CONFIG_VARS['prefix'] = _PREFIX
        _CONFIG_VARS['exec_prefix'] = _EXEC_PREFIX
        _CONFIG_VARS['py_version'] = _PY_VERSION
        _CONFIG_VARS['py_version_short'] = _PY_VERSION_SHORT
        _CONFIG_VARS['py_version_nodot'] = _PY_VERSION[0] + _PY_VERSION[2]
        _CONFIG_VARS['installed_base'] = _BASE_PREFIX
        _CONFIG_VARS['base'] = _PREFIX
        _CONFIG_VARS['installed_platbase'] = _BASE_EXEC_PREFIX
        _CONFIG_VARS['platbase'] = _EXEC_PREFIX
        _CONFIG_VARS['projectbase'] = _PROJECT_BASE
        try:
            _CONFIG_VARS['abiflags'] = sys.abiflags
        except AttributeError:
            # sys.abiflags may not be defined on all platforms.
            _CONFIG_VARS['abiflags'] = ''
        _CONFIG_VARS['implementation'] = _get_implementation()
        _CONFIG_VARS['implementation_lower'] = _get_implementation().lower()

        if os.name == 'nt':
            _init_non_posix(_CONFIG_VARS)
        if os.name == 'posix':
            _init_posix(_CONFIG_VARS)
        # For backward compatibility, see issue19555
        SO = _CONFIG_VARS.get('EXT_SUFFIX')
        if SO is not None:
            _CONFIG_VARS['SO'] = SO
        # Setting 'userbase' is done below the call to the
        # init function to enable using 'get_config_var' in
        # the init-function.
        _CONFIG_VARS['userbase'] = _getuserbase()

        # Always convert srcdir to an absolute path
        srcdir = _CONFIG_VARS.get('srcdir', _PROJECT_BASE)
        if os.name == 'posix':
            if _PYTHON_BUILD:
                # If srcdir is a relative path (typically '.' or '..')
                # then it should be interpreted relative to the directory
                # containing Makefile.
                base = os.path.dirname(get_makefile_filename())
                srcdir = os.path.join(base, srcdir)
            else:
                # srcdir is not meaningful since the installation is
                # spread about the filesystem.  We choose the
                # directory containing the Makefile since we know it
                # exists.
                srcdir = os.path.dirname(get_makefile_filename())
        _CONFIG_VARS['srcdir'] = _safe_realpath(srcdir)

        # OS X platforms require special customization to handle
        # multi-architecture, multi-os-version installers
        if sys.platform == 'darwin':
            import _osx_support
            _osx_support.customize_config_vars(_CONFIG_VARS)

    if args:
        vals = []
        for name in args:
            vals.append(_CONFIG_VARS.get(name))
        return vals
    else:
        return _CONFIG_VARS


def get_config_var(name):
    """Return the value of a single variable using the dictionary returned by
    'get_config_vars()'.

    Equivalent to get_config_vars().get(name)
    """
    if name == 'SO':
        import warnings
        warnings.warn('SO is deprecated, use EXT_SUFFIX', DeprecationWarning, 2)
    return get_config_vars().get(name)


def get_platform():
    """Return a string that identifies the current platform.

    This is used mainly to distinguish platform-specific build directories and
    platform-specific built distributions.  Typically includes the OS name
    and version and the architecture (as supplied by 'os.uname()'),
    although the exact information included depends on the OS; eg. for IRIX
    the architecture isn't particularly important (IRIX only runs on SGI
    hardware), but for Linux the kernel version isn't particularly
    important.

    Examples of returned values:
       linux-i586
       linux-alpha (?)
       solaris-2.6-sun4u
       irix-5.3
       irix64-6.2

    Windows will return one of:
       win-amd64 (64bit Windows on AMD64 (aka x86_64, Intel64, EM64T, etc)
       win-ia64 (64bit Windows on Itanium)
       win32 (all others - specifically, sys.platform is returned)

    For other non-POSIX platforms, currently just returns 'sys.platform'.
    """
    if os.name == 'nt':
        # sniff sys.version for architecture.
        prefix = " bit ("
        i = sys.version.find(prefix)
        if i == -1:
            return sys.platform
        j = sys.version.find(")", i)
        look = sys.version[i+len(prefix):j].lower()
        if look == 'amd64':
            return 'win-amd64'
        if look == 'itanium':
            return 'win-ia64'
        return sys.platform

    if os.name != "posix" or not hasattr(os, 'uname'):
        # XXX what about the architecture? NT is Intel or Alpha
        return sys.platform

    # Set for cross builds explicitly
    if "_PYTHON_HOST_PLATFORM" in os.environ:
        return os.environ["_PYTHON_HOST_PLATFORM"]

    # Try to distinguish various flavours of Unix
    osname, host, release, version, machine = os.uname()

    # Convert the OS name to lowercase, remove '/' characters
    # (to accommodate BSD/OS), and translate spaces (for "Power Macintosh")
    osname = osname.lower().replace('/', '')
    machine = machine.replace(' ', '_')
    machine = machine.replace('/', '-')

    if osname[:5] == "linux":
        # At least on Linux/Intel, 'machine' is the processor --
        # i386, etc.
        # XXX what about Alpha, SPARC, etc?
        return  "%s-%s" % (osname, machine)
    elif osname[:5] == "sunos":
        if release[0] >= "5":           # SunOS 5 == Solaris 2
            osname = "solaris"
            release = "%d.%s" % (int(release[0]) - 3, release[2:])
            # We can't use "platform.architecture()[0]" because a
            # bootstrap problem. We use a dict to get an error
            # if some suspicious happens.
            bitness = {2147483647:"32bit", 9223372036854775807:"64bit"}
            machine += ".%s" % bitness[sys.maxsize]
        # fall through to standard osname-release-machine representation
    elif osname[:4] == "irix":              # could be "irix64"!
        return "%s-%s" % (osname, release)
    elif osname[:3] == "aix":
        return "%s-%s.%s" % (osname, version, release)
    elif osname[:6] == "cygwin":
        osname = "cygwin"
        import re
        rel_re = re.compile(r'[\d.]+')
        m = rel_re.match(release)
        if m:
            release = m.group()
    elif osname[:6] == "darwin":
        import _osx_support
        osname, release, machine = _osx_support.get_platform_osx(
                                            get_config_vars(),
                                            osname, release, machine)

    return "%s-%s-%s" % (osname, release, machine)


def get_python_version():
    return _PY_VERSION_SHORT


def _print_dict(title, data):
    for index, (key, value) in enumerate(sorted(data.items())):
        if index == 0:
            print('%s: ' % (title))
        print('\t%s = "%s"' % (key, value))


def _main():
    """Display all information sysconfig detains."""
    if '--generate-posix-vars' in sys.argv:
        _generate_posix_vars()
        return
    print('Platform: "%s"' % get_platform())
    print('Python version: "%s"' % get_python_version())
    print('Current installation scheme: "%s"' % _get_default_scheme())
    print()
    _print_dict('Paths', get_paths())
    print()
    _print_dict('Variables', get_config_vars())


if __name__ == '__main__':
    _main()
lib\tabnanny.py
#! /usr/bin/env python3

"""The Tab Nanny despises ambiguous indentation.  She knows no mercy.

tabnanny -- Detection of ambiguous indentation

For the time being this module is intended to be called as a script.
However it is possible to import it into an IDE and use the function
check() described below.

Warning: The API provided by this module is likely to change in future
releases; such changes may not be backward compatible.
"""

# Released to the public domain, by Tim Peters, 15 April 1998.

# XXX Note: this is now a standard library module.
# XXX The API needs to undergo changes however; the current code is too
# XXX script-like.  This will be addressed later.

__version__ = "6"

import os
import sys
import getopt
import tokenize
if not hasattr(tokenize, 'NL'):
    raise ValueError("tokenize.NL doesn't exist -- tokenize module too old")

__all__ = ["check", "NannyNag", "process_tokens"]

verbose = 0
filename_only = 0

def errprint(*args):
    sep = ""
    for arg in args:
        sys.stderr.write(sep + str(arg))
        sep = " "
    sys.stderr.write("\n")

def main():
    global verbose, filename_only
    try:
        opts, args = getopt.getopt(sys.argv[1:], "qv")
    except getopt.error as msg:
        errprint(msg)
        return
    for o, a in opts:
        if o == '-q':
            filename_only = filename_only + 1
        if o == '-v':
            verbose = verbose + 1
    if not args:
        errprint("Usage:", sys.argv[0], "[-v] file_or_directory ...")
        return
    for arg in args:
        check(arg)

class NannyNag(Exception):
    """
    Raised by tokeneater() if detecting an ambiguous indent.
    Captured and handled in check().
    """
    def __init__(self, lineno, msg, line):
        self.lineno, self.msg, self.line = lineno, msg, line
    def get_lineno(self):
        return self.lineno
    def get_msg(self):
        return self.msg
    def get_line(self):
        return self.line

def check(file):
    """check(file_or_dir)

    If file_or_dir is a directory and not a symbolic link, then recursively
    descend the directory tree named by file_or_dir, checking all .py files
    along the way. If file_or_dir is an ordinary Python source file, it is
    checked for whitespace related problems. The diagnostic messages are
    written to standard output using the print statement.
    """

    if os.path.isdir(file) and not os.path.islink(file):
        if verbose:
            print("%r: listing directory" % (file,))
        names = os.listdir(file)
        for name in names:
            fullname = os.path.join(file, name)
            if (os.path.isdir(fullname) and
                not os.path.islink(fullname) or
                os.path.normcase(name[-3:]) == ".py"):
                check(fullname)
        return

    try:
        f = tokenize.open(file)
    except OSError as msg:
        errprint("%r: I/O Error: %s" % (file, msg))
        return

    if verbose > 1:
        print("checking %r ..." % file)

    try:
        process_tokens(tokenize.generate_tokens(f.readline))

    except tokenize.TokenError as msg:
        errprint("%r: Token Error: %s" % (file, msg))
        return

    except IndentationError as msg:
        errprint("%r: Indentation Error: %s" % (file, msg))
        return

    except NannyNag as nag:
        badline = nag.get_lineno()
        line = nag.get_line()
        if verbose:
            print("%r: *** Line %d: trouble in tab city! ***" % (file, badline))
            print("offending line: %r" % (line,))
            print(nag.get_msg())
        else:
            if ' ' in file: file = '"' + file + '"'
            if filename_only: print(file)
            else: print(file, badline, repr(line))
        return

    finally:
        f.close()

    if verbose:
        print("%r: Clean bill of health." % (file,))

class Whitespace:
    # the characters used for space and tab
    S, T = ' \t'

    # members:
    #   raw
    #       the original string
    #   n
    #       the number of leading whitespace characters in raw
    #   nt
    #       the number of tabs in raw[:n]
    #   norm
    #       the normal form as a pair (count, trailing), where:
    #       count
    #           a tuple such that raw[:n] contains count[i]
    #           instances of S * i + T
    #       trailing
    #           the number of trailing spaces in raw[:n]
    #       It's A Theorem that m.indent_level(t) ==
    #       n.indent_level(t) for all t >= 1 iff m.norm == n.norm.
    #   is_simple
    #       true iff raw[:n] is of the form (T*)(S*)

    def __init__(self, ws):
        self.raw  = ws
        S, T = Whitespace.S, Whitespace.T
        count = []
        b = n = nt = 0
        for ch in self.raw:
            if ch == S:
                n = n + 1
                b = b + 1
            elif ch == T:
                n = n + 1
                nt = nt + 1
                if b >= len(count):
                    count = count + [0] * (b - len(count) + 1)
                count[b] = count[b] + 1
                b = 0
            else:
                break
        self.n    = n
        self.nt   = nt
        self.norm = tuple(count), b
        self.is_simple = len(count) <= 1

    # return length of longest contiguous run of spaces (whether or not
    # preceding a tab)
    def longest_run_of_spaces(self):
        count, trailing = self.norm
        return max(len(count)-1, trailing)

    def indent_level(self, tabsize):
        # count, il = self.norm
        # for i in range(len(count)):
        #    if count[i]:
        #        il = il + (i//tabsize + 1)*tabsize * count[i]
        # return il

        # quicker:
        # il = trailing + sum (i//ts + 1)*ts*count[i] =
        # trailing + ts * sum (i//ts + 1)*count[i] =
        # trailing + ts * sum i//ts*count[i] + count[i] =
        # trailing + ts * [(sum i//ts*count[i]) + (sum count[i])] =
        # trailing + ts * [(sum i//ts*count[i]) + num_tabs]
        # and note that i//ts*count[i] is 0 when i < ts

        count, trailing = self.norm
        il = 0
        for i in range(tabsize, len(count)):
            il = il + i//tabsize * count[i]
        return trailing + tabsize * (il + self.nt)

    # return true iff self.indent_level(t) == other.indent_level(t)
    # for all t >= 1
    def equal(self, other):
        return self.norm == other.norm

    # return a list of tuples (ts, i1, i2) such that
    # i1 == self.indent_level(ts) != other.indent_level(ts) == i2.
    # Intended to be used after not self.equal(other) is known, in which
    # case it will return at least one witnessing tab size.
    def not_equal_witness(self, other):
        n = max(self.longest_run_of_spaces(),
                other.longest_run_of_spaces()) + 1
        a = []
        for ts in range(1, n+1):
            if self.indent_level(ts) != other.indent_level(ts):
                a.append( (ts,
                           self.indent_level(ts),
                           other.indent_level(ts)) )
        return a

    # Return True iff self.indent_level(t) < other.indent_level(t)
    # for all t >= 1.
    # The algorithm is due to Vincent Broman.
    # Easy to prove it's correct.
    # XXXpost that.
    # Trivial to prove n is sharp (consider T vs ST).
    # Unknown whether there's a faster general way.  I suspected so at
    # first, but no longer.
    # For the special (but common!) case where M and N are both of the
    # form (T*)(S*), M.less(N) iff M.len() < N.len() and
    # M.num_tabs() <= N.num_tabs(). Proof is easy but kinda long-winded.
    # XXXwrite that up.
    # Note that M is of the form (T*)(S*) iff len(M.norm[0]) <= 1.
    def less(self, other):
        if self.n >= other.n:
            return False
        if self.is_simple and other.is_simple:
            return self.nt <= other.nt
        n = max(self.longest_run_of_spaces(),
                other.longest_run_of_spaces()) + 1
        # the self.n >= other.n test already did it for ts=1
        for ts in range(2, n+1):
            if self.indent_level(ts) >= other.indent_level(ts):
                return False
        return True

    # return a list of tuples (ts, i1, i2) such that
    # i1 == self.indent_level(ts) >= other.indent_level(ts) == i2.
    # Intended to be used after not self.less(other) is known, in which
    # case it will return at least one witnessing tab size.
    def not_less_witness(self, other):
        n = max(self.longest_run_of_spaces(),
                other.longest_run_of_spaces()) + 1
        a = []
        for ts in range(1, n+1):
            if self.indent_level(ts) >= other.indent_level(ts):
                a.append( (ts,
                           self.indent_level(ts),
                           other.indent_level(ts)) )
        return a

def format_witnesses(w):
    firsts = (str(tup[0]) for tup in w)
    prefix = "at tab size"
    if len(w) > 1:
        prefix = prefix + "s"
    return prefix + " " + ', '.join(firsts)

def process_tokens(tokens):
    INDENT = tokenize.INDENT
    DEDENT = tokenize.DEDENT
    NEWLINE = tokenize.NEWLINE
    JUNK = tokenize.COMMENT, tokenize.NL
    indents = [Whitespace("")]
    check_equal = 0

    for (type, token, start, end, line) in tokens:
        if type == NEWLINE:
            # a program statement, or ENDMARKER, will eventually follow,
            # after some (possibly empty) run of tokens of the form
            #     (NL | COMMENT)* (INDENT | DEDENT+)?
            # If an INDENT appears, setting check_equal is wrong, and will
            # be undone when we see the INDENT.
            check_equal = 1

        elif type == INDENT:
            check_equal = 0
            thisguy = Whitespace(token)
            if not indents[-1].less(thisguy):
                witness = indents[-1].not_less_witness(thisguy)
                msg = "indent not greater e.g. " + format_witnesses(witness)
                raise NannyNag(start[0], msg, line)
            indents.append(thisguy)

        elif type == DEDENT:
            # there's nothing we need to check here!  what's important is
            # that when the run of DEDENTs ends, the indentation of the
            # program statement (or ENDMARKER) that triggered the run is
            # equal to what's left at the top of the indents stack

            # Ouch!  This assert triggers if the last line of the source
            # is indented *and* lacks a newline -- then DEDENTs pop out
            # of thin air.
            # assert check_equal  # else no earlier NEWLINE, or an earlier INDENT
            check_equal = 1

            del indents[-1]

        elif check_equal and type not in JUNK:
            # this is the first "real token" following a NEWLINE, so it
            # must be the first token of the next program statement, or an
            # ENDMARKER; the "line" argument exposes the leading whitespace
            # for this statement; in the case of ENDMARKER, line is an empty
            # string, so will properly match the empty string with which the
            # "indents" stack was seeded
            check_equal = 0
            thisguy = Whitespace(line)
            if not indents[-1].equal(thisguy):
                witness = indents[-1].not_equal_witness(thisguy)
                msg = "indent not equal e.g. " + format_witnesses(witness)
                raise NannyNag(start[0], msg, line)


if __name__ == '__main__':
    main()
lib\tarfile.py
#!/usr/bin/env python3
#-------------------------------------------------------------------
# tarfile.py
#-------------------------------------------------------------------
# Copyright (C) 2002 Lars Gustaebel <[email protected]>
# All rights reserved.
#
# Permission  is  hereby granted,  free  of charge,  to  any person
# obtaining a  copy of  this software  and associated documentation
# files  (the  "Software"),  to   deal  in  the  Software   without
# restriction,  including  without limitation  the  rights to  use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies  of  the  Software,  and to  permit  persons  to  whom the
# Software  is  furnished  to  do  so,  subject  to  the  following
# conditions:
#
# The above copyright  notice and this  permission notice shall  be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS  IS", WITHOUT WARRANTY OF ANY  KIND,
# EXPRESS OR IMPLIED, INCLUDING  BUT NOT LIMITED TO  THE WARRANTIES
# OF  MERCHANTABILITY,  FITNESS   FOR  A  PARTICULAR   PURPOSE  AND
# NONINFRINGEMENT.  IN  NO  EVENT SHALL  THE  AUTHORS  OR COPYRIGHT
# HOLDERS  BE LIABLE  FOR ANY  CLAIM, DAMAGES  OR OTHER  LIABILITY,
# WHETHER  IN AN  ACTION OF  CONTRACT, TORT  OR OTHERWISE,  ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
#
"""Read from and write to tar format archives.
"""

version     = "0.9.0"
__author__  = "Lars Gust\u00e4bel ([email protected])"
__date__    = "$Date: 2011-02-25 17:42:01 +0200 (Fri, 25 Feb 2011) $"
__cvsid__   = "$Id: tarfile.py 88586 2011-02-25 15:42:01Z marc-andre.lemburg $"
__credits__ = "Gustavo Niemeyer, Niels Gust\u00e4bel, Richard Townsend."

#---------
# Imports
#---------
from builtins import open as bltn_open
import sys
import os
import io
import shutil
import stat
import time
import struct
import copy
import re

try:
    import grp, pwd
except ImportError:
    grp = pwd = None

# os.symlink on Windows prior to 6.0 raises NotImplementedError
symlink_exception = (AttributeError, NotImplementedError)
try:
    # OSError (winerror=1314) will be raised if the caller does not hold the
    # SeCreateSymbolicLinkPrivilege privilege
    symlink_exception += (OSError,)
except NameError:
    pass

# from tarfile import *
__all__ = ["TarFile", "TarInfo", "is_tarfile", "TarError"]

#---------------------------------------------------------
# tar constants
#---------------------------------------------------------
NUL = b"\0"                     # the null character
BLOCKSIZE = 512                 # length of processing blocks
RECORDSIZE = BLOCKSIZE * 20     # length of records
GNU_MAGIC = b"ustar  \0"        # magic gnu tar string
POSIX_MAGIC = b"ustar\x0000"    # magic posix tar string

LENGTH_NAME = 100               # maximum length of a filename
LENGTH_LINK = 100               # maximum length of a linkname
LENGTH_PREFIX = 155             # maximum length of the prefix field

REGTYPE = b"0"                  # regular file
AREGTYPE = b"\0"                # regular file
LNKTYPE = b"1"                  # link (inside tarfile)
SYMTYPE = b"2"                  # symbolic link
CHRTYPE = b"3"                  # character special device
BLKTYPE = b"4"                  # block special device
DIRTYPE = b"5"                  # directory
FIFOTYPE = b"6"                 # fifo special device
CONTTYPE = b"7"                 # contiguous file

GNUTYPE_LONGNAME = b"L"         # GNU tar longname
GNUTYPE_LONGLINK = b"K"         # GNU tar longlink
GNUTYPE_SPARSE = b"S"           # GNU tar sparse file

XHDTYPE = b"x"                  # POSIX.1-2001 extended header
XGLTYPE = b"g"                  # POSIX.1-2001 global header
SOLARIS_XHDTYPE = b"X"          # Solaris extended header

USTAR_FORMAT = 0                # POSIX.1-1988 (ustar) format
GNU_FORMAT = 1                  # GNU tar format
PAX_FORMAT = 2                  # POSIX.1-2001 (pax) format
DEFAULT_FORMAT = GNU_FORMAT

#---------------------------------------------------------
# tarfile constants
#---------------------------------------------------------
# File types that tarfile supports:
SUPPORTED_TYPES = (REGTYPE, AREGTYPE, LNKTYPE,
                   SYMTYPE, DIRTYPE, FIFOTYPE,
                   CONTTYPE, CHRTYPE, BLKTYPE,
                   GNUTYPE_LONGNAME, GNUTYPE_LONGLINK,
                   GNUTYPE_SPARSE)

# File types that will be treated as a regular file.
REGULAR_TYPES = (REGTYPE, AREGTYPE,
                 CONTTYPE, GNUTYPE_SPARSE)

# File types that are part of the GNU tar format.
GNU_TYPES = (GNUTYPE_LONGNAME, GNUTYPE_LONGLINK,
             GNUTYPE_SPARSE)

# Fields from a pax header that override a TarInfo attribute.
PAX_FIELDS = ("path", "linkpath", "size", "mtime",
              "uid", "gid", "uname", "gname")

# Fields from a pax header that are affected by hdrcharset.
PAX_NAME_FIELDS = {"path", "linkpath", "uname", "gname"}

# Fields in a pax header that are numbers, all other fields
# are treated as strings.
PAX_NUMBER_FIELDS = {
    "atime": float,
    "ctime": float,
    "mtime": float,
    "uid": int,
    "gid": int,
    "size": int
}

#---------------------------------------------------------
# initialization
#---------------------------------------------------------
if os.name in ("nt", "ce"):
    ENCODING = "utf-8"
else:
    ENCODING = sys.getfilesystemencoding()

#---------------------------------------------------------
# Some useful functions
#---------------------------------------------------------

def stn(s, length, encoding, errors):
    """Convert a string to a null-terminated bytes object.
    """
    s = s.encode(encoding, errors)
    return s[:length] + (length - len(s)) * NUL

def nts(s, encoding, errors):
    """Convert a null-terminated bytes object to a string.
    """
    p = s.find(b"\0")
    if p != -1:
        s = s[:p]
    return s.decode(encoding, errors)

def nti(s):
    """Convert a number field to a python number.
    """
    # There are two possible encodings for a number field, see
    # itn() below.
    if s[0] in (0o200, 0o377):
        n = 0
        for i in range(len(s) - 1):
            n <<= 8
            n += s[i + 1]
        if s[0] == 0o377:
            n = -(256 ** (len(s) - 1) - n)
    else:
        try:
            s = nts(s, "ascii", "strict")
            n = int(s.strip() or "0", 8)
        except ValueError:
            raise InvalidHeaderError("invalid header")
    return n

def itn(n, digits=8, format=DEFAULT_FORMAT):
    """Convert a python number to a number field.
    """
    # POSIX 1003.1-1988 requires numbers to be encoded as a string of
    # octal digits followed by a null-byte, this allows values up to
    # (8**(digits-1))-1. GNU tar allows storing numbers greater than
    # that if necessary. A leading 0o200 or 0o377 byte indicate this
    # particular encoding, the following digits-1 bytes are a big-endian
    # base-256 representation. This allows values up to (256**(digits-1))-1.
    # A 0o200 byte indicates a positive number, a 0o377 byte a negative
    # number.
    if 0 <= n < 8 ** (digits - 1):
        s = bytes("%0*o" % (digits - 1, int(n)), "ascii") + NUL
    elif format == GNU_FORMAT and -256 ** (digits - 1) <= n < 256 ** (digits - 1):
        if n >= 0:
            s = bytearray([0o200])
        else:
            s = bytearray([0o377])
            n = 256 ** digits + n

        for i in range(digits - 1):
            s.insert(1, n & 0o377)
            n >>= 8
    else:
        raise ValueError("overflow in number field")

    return s

def calc_chksums(buf):
    """Calculate the checksum for a member's header by summing up all
       characters except for the chksum field which is treated as if
       it was filled with spaces. According to the GNU tar sources,
       some tars (Sun and NeXT) calculate chksum with signed char,
       which will be different if there are chars in the buffer with
       the high bit set. So we calculate two checksums, unsigned and
       signed.
    """
    unsigned_chksum = 256 + sum(struct.unpack_from("148B8x356B", buf))
    signed_chksum = 256 + sum(struct.unpack_from("148b8x356b", buf))
    return unsigned_chksum, signed_chksum

def copyfileobj(src, dst, length=None, exception=OSError):
    """Copy length bytes from fileobj src to fileobj dst.
       If length is None, copy the entire content.
    """
    if length == 0:
        return
    if length is None:
        shutil.copyfileobj(src, dst)
        return

    BUFSIZE = 16 * 1024
    blocks, remainder = divmod(length, BUFSIZE)
    for b in range(blocks):
        buf = src.read(BUFSIZE)
        if len(buf) < BUFSIZE:
            raise exception("unexpected end of data")
        dst.write(buf)

    if remainder != 0:
        buf = src.read(remainder)
        if len(buf) < remainder:
            raise exception("unexpected end of data")
        dst.write(buf)
    return

def filemode(mode):
    """Deprecated in this location; use stat.filemode."""
    import warnings
    warnings.warn("deprecated in favor of stat.filemode",
                  DeprecationWarning, 2)
    return stat.filemode(mode)

def _safe_print(s):
    encoding = getattr(sys.stdout, 'encoding', None)
    if encoding is not None:
        s = s.encode(encoding, 'backslashreplace').decode(encoding)
    print(s, end=' ')


class TarError(Exception):
    """Base exception."""
    pass
class ExtractError(TarError):
    """General exception for extract errors."""
    pass
class ReadError(TarError):
    """Exception for unreadable tar archives."""
    pass
class CompressionError(TarError):
    """Exception for unavailable compression methods."""
    pass
class StreamError(TarError):
    """Exception for unsupported operations on stream-like TarFiles."""
    pass
class HeaderError(TarError):
    """Base exception for header errors."""
    pass
class EmptyHeaderError(HeaderError):
    """Exception for empty headers."""
    pass
class TruncatedHeaderError(HeaderError):
    """Exception for truncated headers."""
    pass
class EOFHeaderError(HeaderError):
    """Exception for end of file headers."""
    pass
class InvalidHeaderError(HeaderError):
    """Exception for invalid headers."""
    pass
class SubsequentHeaderError(HeaderError):
    """Exception for missing and invalid extended headers."""
    pass

#---------------------------
# internal stream interface
#---------------------------
class _LowLevelFile:
    """Low-level file object. Supports reading and writing.
       It is used instead of a regular file object for streaming
       access.
    """

    def __init__(self, name, mode):
        mode = {
            "r": os.O_RDONLY,
            "w": os.O_WRONLY | os.O_CREAT | os.O_TRUNC,
        }[mode]
        if hasattr(os, "O_BINARY"):
            mode |= os.O_BINARY
        self.fd = os.open(name, mode, 0o666)

    def close(self):
        os.close(self.fd)

    def read(self, size):
        return os.read(self.fd, size)

    def write(self, s):
        os.write(self.fd, s)

class _Stream:
    """Class that serves as an adapter between TarFile and
       a stream-like object.  The stream-like object only
       needs to have a read() or write() method and is accessed
       blockwise.  Use of gzip or bzip2 compression is possible.
       A stream-like object could be for example: sys.stdin,
       sys.stdout, a socket, a tape device etc.

       _Stream is intended to be used only internally.
    """

    def __init__(self, name, mode, comptype, fileobj, bufsize):
        """Construct a _Stream object.
        """
        self._extfileobj = True
        if fileobj is None:
            fileobj = _LowLevelFile(name, mode)
            self._extfileobj = False

        if comptype == '*':
            # Enable transparent compression detection for the
            # stream interface
            fileobj = _StreamProxy(fileobj)
            comptype = fileobj.getcomptype()

        self.name     = name or ""
        self.mode     = mode
        self.comptype = comptype
        self.fileobj  = fileobj
        self.bufsize  = bufsize
        self.buf      = b""
        self.pos      = 0
        self.closed   = False

        try:
            if comptype == "gz":
                try:
                    import zlib
                except ImportError:
                    raise CompressionError("zlib module is not available")
                self.zlib = zlib
                self.crc = zlib.crc32(b"")
                if mode == "r":
                    self._init_read_gz()
                    self.exception = zlib.error
                else:
                    self._init_write_gz()

            elif comptype == "bz2":
                try:
                    import bz2
                except ImportError:
                    raise CompressionError("bz2 module is not available")
                if mode == "r":
                    self.dbuf = b""
                    self.cmp = bz2.BZ2Decompressor()
                    self.exception = OSError
                else:
                    self.cmp = bz2.BZ2Compressor()

            elif comptype == "xz":
                try:
                    import lzma
                except ImportError:
                    raise CompressionError("lzma module is not available")
                if mode == "r":
                    self.dbuf = b""
                    self.cmp = lzma.LZMADecompressor()
                    self.exception = lzma.LZMAError
                else:
                    self.cmp = lzma.LZMACompressor()

            elif comptype != "tar":
                raise CompressionError("unknown compression type %r" % comptype)

        except:
            if not self._extfileobj:
                self.fileobj.close()
            self.closed = True
            raise

    def __del__(self):
        if hasattr(self, "closed") and not self.closed:
            self.close()

    def _init_write_gz(self):
        """Initialize for writing with gzip compression.
        """
        self.cmp = self.zlib.compressobj(9, self.zlib.DEFLATED,
                                            -self.zlib.MAX_WBITS,
                                            self.zlib.DEF_MEM_LEVEL,
                                            0)
        timestamp = struct.pack("<L", int(time.time()))
        self.__write(b"\037\213\010\010" + timestamp + b"\002\377")
        if self.name.endswith(".gz"):
            self.name = self.name[:-3]
        # RFC1952 says we must use ISO-8859-1 for the FNAME field.
        self.__write(self.name.encode("iso-8859-1", "replace") + NUL)

    def write(self, s):
        """Write string s to the stream.
        """
        if self.comptype == "gz":
            self.crc = self.zlib.crc32(s, self.crc)
        self.pos += len(s)
        if self.comptype != "tar":
            s = self.cmp.compress(s)
        self.__write(s)

    def __write(self, s):
        """Write string s to the stream if a whole new block
           is ready to be written.
        """
        self.buf += s
        while len(self.buf) > self.bufsize:
            self.fileobj.write(self.buf[:self.bufsize])
            self.buf = self.buf[self.bufsize:]

    def close(self):
        """Close the _Stream object. No operation should be
           done on it afterwards.
        """
        if self.closed:
            return

        self.closed = True
        try:
            if self.mode == "w" and self.comptype != "tar":
                self.buf += self.cmp.flush()

            if self.mode == "w" and self.buf:
                self.fileobj.write(self.buf)
                self.buf = b""
                if self.comptype == "gz":
                    # The native zlib crc is an unsigned 32-bit integer, but
                    # the Python wrapper implicitly casts that to a signed C
                    # long.  So, on a 32-bit box self.crc may "look negative",
                    # while the same crc on a 64-bit box may "look positive".
                    # To avoid irksome warnings from the `struct` module, force
                    # it to look positive on all boxes.
                    self.fileobj.write(struct.pack("<L", self.crc & 0xffffffff))
                    self.fileobj.write(struct.pack("<L", self.pos & 0xffffFFFF))
        finally:
            if not self._extfileobj:
                self.fileobj.close()

    def _init_read_gz(self):
        """Initialize for reading a gzip compressed fileobj.
        """
        self.cmp = self.zlib.decompressobj(-self.zlib.MAX_WBITS)
        self.dbuf = b""

        # taken from gzip.GzipFile with some alterations
        if self.__read(2) != b"\037\213":
            raise ReadError("not a gzip file")
        if self.__read(1) != b"\010":
            raise CompressionError("unsupported compression method")

        flag = ord(self.__read(1))
        self.__read(6)

        if flag & 4:
            xlen = ord(self.__read(1)) + 256 * ord(self.__read(1))
            self.read(xlen)
        if flag & 8:
            while True:
                s = self.__read(1)
                if not s or s == NUL:
                    break
        if flag & 16:
            while True:
                s = self.__read(1)
                if not s or s == NUL:
                    break
        if flag & 2:
            self.__read(2)

    def tell(self):
        """Return the stream's file pointer position.
        """
        return self.pos

    def seek(self, pos=0):
        """Set the stream's file pointer to pos. Negative seeking
           is forbidden.
        """
        if pos - self.pos >= 0:
            blocks, remainder = divmod(pos - self.pos, self.bufsize)
            for i in range(blocks):
                self.read(self.bufsize)
            self.read(remainder)
        else:
            raise StreamError("seeking backwards is not allowed")
        return self.pos

    def read(self, size=None):
        """Return the next size number of bytes from the stream.
           If size is not defined, return all bytes of the stream
           up to EOF.
        """
        if size is None:
            t = []
            while True:
                buf = self._read(self.bufsize)
                if not buf:
                    break
                t.append(buf)
            buf = "".join(t)
        else:
            buf = self._read(size)
        self.pos += len(buf)
        return buf

    def _read(self, size):
        """Return size bytes from the stream.
        """
        if self.comptype == "tar":
            return self.__read(size)

        c = len(self.dbuf)
        while c < size:
            buf = self.__read(self.bufsize)
            if not buf:
                break
            try:
                buf = self.cmp.decompress(buf)
            except self.exception:
                raise ReadError("invalid compressed data")
            self.dbuf += buf
            c += len(buf)
        buf = self.dbuf[:size]
        self.dbuf = self.dbuf[size:]
        return buf

    def __read(self, size):
        """Return size bytes from stream. If internal buffer is empty,
           read another block from the stream.
        """
        c = len(self.buf)
        while c < size:
            buf = self.fileobj.read(self.bufsize)
            if not buf:
                break
            self.buf += buf
            c += len(buf)
        buf = self.buf[:size]
        self.buf = self.buf[size:]
        return buf
# class _Stream

class _StreamProxy(object):
    """Small proxy class that enables transparent compression
       detection for the Stream interface (mode 'r|*').
    """

    def __init__(self, fileobj):
        self.fileobj = fileobj
        self.buf = self.fileobj.read(BLOCKSIZE)

    def read(self, size):
        self.read = self.fileobj.read
        return self.buf

    def getcomptype(self):
        if self.buf.startswith(b"\x1f\x8b\x08"):
            return "gz"
        elif self.buf[0:3] == b"BZh" and self.buf[4:10] == b"1AY&SY":
            return "bz2"
        elif self.buf.startswith((b"\x5d\x00\x00\x80", b"\xfd7zXZ")):
            return "xz"
        else:
            return "tar"

    def close(self):
        self.fileobj.close()
# class StreamProxy

#------------------------
# Extraction file object
#------------------------
class _FileInFile(object):
    """A thin wrapper around an existing file object that
       provides a part of its data as an individual file
       object.
    """

    def __init__(self, fileobj, offset, size, blockinfo=None):
        self.fileobj = fileobj
        self.offset = offset
        self.size = size
        self.position = 0
        self.name = getattr(fileobj, "name", None)
        self.closed = False

        if blockinfo is None:
            blockinfo = [(0, size)]

        # Construct a map with data and zero blocks.
        self.map_index = 0
        self.map = []
        lastpos = 0
        realpos = self.offset
        for offset, size in blockinfo:
            if offset > lastpos:
                self.map.append((False, lastpos, offset, None))
            self.map.append((True, offset, offset + size, realpos))
            realpos += size
            lastpos = offset + size
        if lastpos < self.size:
            self.map.append((False, lastpos, self.size, None))

    def flush(self):
        pass

    def readable(self):
        return True

    def writable(self):
        return False

    def seekable(self):
        return self.fileobj.seekable()

    def tell(self):
        """Return the current file position.
        """
        return self.position

    def seek(self, position, whence=io.SEEK_SET):
        """Seek to a position in the file.
        """
        if whence == io.SEEK_SET:
            self.position = min(max(position, 0), self.size)
        elif whence == io.SEEK_CUR:
            if position < 0:
                self.position = max(self.position + position, 0)
            else:
                self.position = min(self.position + position, self.size)
        elif whence == io.SEEK_END:
            self.position = max(min(self.size + position, self.size), 0)
        else:
            raise ValueError("Invalid argument")
        return self.position

    def read(self, size=None):
        """Read data from the file.
        """
        if size is None:
            size = self.size - self.position
        else:
            size = min(size, self.size - self.position)

        buf = b""
        while size > 0:
            while True:
                data, start, stop, offset = self.map[self.map_index]
                if start <= self.position < stop:
                    break
                else:
                    self.map_index += 1
                    if self.map_index == len(self.map):
                        self.map_index = 0
            length = min(size, stop - self.position)
            if data:
                self.fileobj.seek(offset + (self.position - start))
                b = self.fileobj.read(length)
                if len(b) != length:
                    raise ReadError("unexpected end of data")
                buf += b
            else:
                buf += NUL * length
            size -= length
            self.position += length
        return buf

    def readinto(self, b):
        buf = self.read(len(b))
        b[:len(buf)] = buf
        return len(buf)

    def close(self):
        self.closed = True
#class _FileInFile

class ExFileObject(io.BufferedReader):

    def __init__(self, tarfile, tarinfo):
        fileobj = _FileInFile(tarfile.fileobj, tarinfo.offset_data,
                tarinfo.size, tarinfo.sparse)
        super().__init__(fileobj)
#class ExFileObject

#------------------
# Exported Classes
#------------------
class TarInfo(object):
    """Informational class which holds the details about an
       archive member given by a tar header block.
       TarInfo objects are returned by TarFile.getmember(),
       TarFile.getmembers() and TarFile.gettarinfo() and are
       usually created internally.
    """

    __slots__ = ("name", "mode", "uid", "gid", "size", "mtime",
                 "chksum", "type", "linkname", "uname", "gname",
                 "devmajor", "devminor",
                 "offset", "offset_data", "pax_headers", "sparse",
                 "tarfile", "_sparse_structs", "_link_target")

    def __init__(self, name=""):
        """Construct a TarInfo object. name is the optional name
           of the member.
        """
        self.name = name        # member name
        self.mode = 0o644       # file permissions
        self.uid = 0            # user id
        self.gid = 0            # group id
        self.size = 0           # file size
        self.mtime = 0          # modification time
        self.chksum = 0         # header checksum
        self.type = REGTYPE     # member type
        self.linkname = ""      # link name
        self.uname = ""         # user name
        self.gname = ""         # group name
        self.devmajor = 0       # device major number
        self.devminor = 0       # device minor number

        self.offset = 0         # the tar header starts here
        self.offset_data = 0    # the file's data starts here

        self.sparse = None      # sparse member information
        self.pax_headers = {}   # pax header information

    # In pax headers the "name" and "linkname" field are called
    # "path" and "linkpath".
    def _getpath(self):
        return self.name
    def _setpath(self, name):
        self.name = name
    path = property(_getpath, _setpath)

    def _getlinkpath(self):
        return self.linkname
    def _setlinkpath(self, linkname):
        self.linkname = linkname
    linkpath = property(_getlinkpath, _setlinkpath)

    def __repr__(self):
        return "<%s %r at %#x>" % (self.__class__.__name__,self.name,id(self))

    def get_info(self):
        """Return the TarInfo's attributes as a dictionary.
        """
        info = {
            "name":     self.name,
            "mode":     self.mode & 0o7777,
            "uid":      self.uid,
            "gid":      self.gid,
            "size":     self.size,
            "mtime":    self.mtime,
            "chksum":   self.chksum,
            "type":     self.type,
            "linkname": self.linkname,
            "uname":    self.uname,
            "gname":    self.gname,
            "devmajor": self.devmajor,
            "devminor": self.devminor
        }

        if info["type"] == DIRTYPE and not info["name"].endswith("/"):
            info["name"] += "/"

        return info

    def tobuf(self, format=DEFAULT_FORMAT, encoding=ENCODING, errors="surrogateescape"):
        """Return a tar header as a string of 512 byte blocks.
        """
        info = self.get_info()

        if format == USTAR_FORMAT:
            return self.create_ustar_header(info, encoding, errors)
        elif format == GNU_FORMAT:
            return self.create_gnu_header(info, encoding, errors)
        elif format == PAX_FORMAT:
            return self.create_pax_header(info, encoding)
        else:
            raise ValueError("invalid format")

    def create_ustar_header(self, info, encoding, errors):
        """Return the object as a ustar header block.
        """
        info["magic"] = POSIX_MAGIC

        if len(info["linkname"]) > LENGTH_LINK:
            raise ValueError("linkname is too long")

        if len(info["name"]) > LENGTH_NAME:
            info["prefix"], info["name"] = self._posix_split_name(info["name"])

        return self._create_header(info, USTAR_FORMAT, encoding, errors)

    def create_gnu_header(self, info, encoding, errors):
        """Return the object as a GNU header block sequence.
        """
        info["magic"] = GNU_MAGIC

        buf = b""
        if len(info["linkname"]) > LENGTH_LINK:
            buf += self._create_gnu_long_header(info["linkname"], GNUTYPE_LONGLINK, encoding, errors)

        if len(info["name"]) > LENGTH_NAME:
            buf += self._create_gnu_long_header(info["name"], GNUTYPE_LONGNAME, encoding, errors)

        return buf + self._create_header(info, GNU_FORMAT, encoding, errors)

    def create_pax_header(self, info, encoding):
        """Return the object as a ustar header block. If it cannot be
           represented this way, prepend a pax extended header sequence
           with supplement information.
        """
        info["magic"] = POSIX_MAGIC
        pax_headers = self.pax_headers.copy()

        # Test string fields for values that exceed the field length or cannot
        # be represented in ASCII encoding.
        for name, hname, length in (
                ("name", "path", LENGTH_NAME), ("linkname", "linkpath", LENGTH_LINK),
                ("uname", "uname", 32), ("gname", "gname", 32)):

            if hname in pax_headers:
                # The pax header has priority.
                continue

            # Try to encode the string as ASCII.
            try:
                info[name].encode("ascii", "strict")
            except UnicodeEncodeError:
                pax_headers[hname] = info[name]
                continue

            if len(info[name]) > length:
                pax_headers[hname] = info[name]

        # Test number fields for values that exceed the field limit or values
        # that like to be stored as float.
        for name, digits in (("uid", 8), ("gid", 8), ("size", 12), ("mtime", 12)):
            if name in pax_headers:
                # The pax header has priority. Avoid overflow.
                info[name] = 0
                continue

            val = info[name]
            if not 0 <= val < 8 ** (digits - 1) or isinstance(val, float):
                pax_headers[name] = str(val)
                info[name] = 0

        # Create a pax extended header if necessary.
        if pax_headers:
            buf = self._create_pax_generic_header(pax_headers, XHDTYPE, encoding)
        else:
            buf = b""

        return buf + self._create_header(info, USTAR_FORMAT, "ascii", "replace")

    @classmethod
    def create_pax_global_header(cls, pax_headers):
        """Return the object as a pax global header block sequence.
        """
        return cls._create_pax_generic_header(pax_headers, XGLTYPE, "utf-8")

    def _posix_split_name(self, name):
        """Split a name longer than 100 chars into a prefix
           and a name part.
        """
        prefix = name[:LENGTH_PREFIX + 1]
        while prefix and prefix[-1] != "/":
            prefix = prefix[:-1]

        name = name[len(prefix):]
        prefix = prefix[:-1]

        if not prefix or len(name) > LENGTH_NAME:
            raise ValueError("name is too long")
        return prefix, name

    @staticmethod
    def _create_header(info, format, encoding, errors):
        """Return a header block. info is a dictionary with file
           information, format must be one of the *_FORMAT constants.
        """
        parts = [
            stn(info.get("name", ""), 100, encoding, errors),
            itn(info.get("mode", 0) & 0o7777, 8, format),
            itn(info.get("uid", 0), 8, format),
            itn(info.get("gid", 0), 8, format),
            itn(info.get("size", 0), 12, format),
            itn(info.get("mtime", 0), 12, format),
            b"        ", # checksum field
            info.get("type", REGTYPE),
            stn(info.get("linkname", ""), 100, encoding, errors),
            info.get("magic", POSIX_MAGIC),
            stn(info.get("uname", ""), 32, encoding, errors),
            stn(info.get("gname", ""), 32, encoding, errors),
            itn(info.get("devmajor", 0), 8, format),
            itn(info.get("devminor", 0), 8, format),
            stn(info.get("prefix", ""), 155, encoding, errors)
        ]

        buf = struct.pack("%ds" % BLOCKSIZE, b"".join(parts))
        chksum = calc_chksums(buf[-BLOCKSIZE:])[0]
        buf = buf[:-364] + bytes("%06o\0" % chksum, "ascii") + buf[-357:]
        return buf

    @staticmethod
    def _create_payload(payload):
        """Return the string payload filled with zero bytes
           up to the next 512 byte border.
        """
        blocks, remainder = divmod(len(payload), BLOCKSIZE)
        if remainder > 0:
            payload += (BLOCKSIZE - remainder) * NUL
        return payload

    @classmethod
    def _create_gnu_long_header(cls, name, type, encoding, errors):
        """Return a GNUTYPE_LONGNAME or GNUTYPE_LONGLINK sequence
           for name.
        """
        name = name.encode(encoding, errors) + NUL

        info = {}
        info["name"] = "././@LongLink"
        info["type"] = type
        info["size"] = len(name)
        info["magic"] = GNU_MAGIC

        # create extended header + name blocks.
        return cls._create_header(info, USTAR_FORMAT, encoding, errors) + \
                cls._create_payload(name)

    @classmethod
    def _create_pax_generic_header(cls, pax_headers, type, encoding):
        """Return a POSIX.1-2008 extended or global header sequence
           that contains a list of keyword, value pairs. The values
           must be strings.
        """
        # Check if one of the fields contains surrogate characters and thereby
        # forces hdrcharset=BINARY, see _proc_pax() for more information.
        binary = False
        for keyword, value in pax_headers.items():
            try:
                value.encode("utf-8", "strict")
            except UnicodeEncodeError:
                binary = True
                break

        records = b""
        if binary:
            # Put the hdrcharset field at the beginning of the header.
            records += b"21 hdrcharset=BINARY\n"

        for keyword, value in pax_headers.items():
            keyword = keyword.encode("utf-8")
            if binary:
                # Try to restore the original byte representation of `value'.
                # Needless to say, that the encoding must match the string.
                value = value.encode(encoding, "surrogateescape")
            else:
                value = value.encode("utf-8")

            l = len(keyword) + len(value) + 3   # ' ' + '=' + '\n'
            n = p = 0
            while True:
                n = l + len(str(p))
                if n == p:
                    break
                p = n
            records += bytes(str(p), "ascii") + b" " + keyword + b"=" + value + b"\n"

        # We use a hardcoded "././@PaxHeader" name like star does
        # instead of the one that POSIX recommends.
        info = {}
        info["name"] = "././@PaxHeader"
        info["type"] = type
        info["size"] = len(records)
        info["magic"] = POSIX_MAGIC

        # Create pax header + record blocks.
        return cls._create_header(info, USTAR_FORMAT, "ascii", "replace") + \
                cls._create_payload(records)

    @classmethod
    def frombuf(cls, buf, encoding, errors):
        """Construct a TarInfo object from a 512 byte bytes object.
        """
        if len(buf) == 0:
            raise EmptyHeaderError("empty header")
        if len(buf) != BLOCKSIZE:
            raise TruncatedHeaderError("truncated header")
        if buf.count(NUL) == BLOCKSIZE:
            raise EOFHeaderError("end of file header")

        chksum = nti(buf[148:156])
        if chksum not in calc_chksums(buf):
            raise InvalidHeaderError("bad checksum")

        obj = cls()
        obj.name = nts(buf[0:100], encoding, errors)
        obj.mode = nti(buf[100:108])
        obj.uid = nti(buf[108:116])
        obj.gid = nti(buf[116:124])
        obj.size = nti(buf[124:136])
        obj.mtime = nti(buf[136:148])
        obj.chksum = chksum
        obj.type = buf[156:157]
        obj.linkname = nts(buf[157:257], encoding, errors)
        obj.uname = nts(buf[265:297], encoding, errors)
        obj.gname = nts(buf[297:329], encoding, errors)
        obj.devmajor = nti(buf[329:337])
        obj.devminor = nti(buf[337:345])
        prefix = nts(buf[345:500], encoding, errors)

        # Old V7 tar format represents a directory as a regular
        # file with a trailing slash.
        if obj.type == AREGTYPE and obj.name.endswith("/"):
            obj.type = DIRTYPE

        # The old GNU sparse format occupies some of the unused
        # space in the buffer for up to 4 sparse structures.
        # Save the them for later processing in _proc_sparse().
        if obj.type == GNUTYPE_SPARSE:
            pos = 386
            structs = []
            for i in range(4):
                try:
                    offset = nti(buf[pos:pos + 12])
                    numbytes = nti(buf[pos + 12:pos + 24])
                except ValueError:
                    break
                structs.append((offset, numbytes))
                pos += 24
            isextended = bool(buf[482])
            origsize = nti(buf[483:495])
            obj._sparse_structs = (structs, isextended, origsize)

        # Remove redundant slashes from directories.
        if obj.isdir():
            obj.name = obj.name.rstrip("/")

        # Reconstruct a ustar longname.
        if prefix and obj.type not in GNU_TYPES:
            obj.name = prefix + "/" + obj.name
        return obj

    @classmethod
    def fromtarfile(cls, tarfile):
        """Return the next TarInfo object from TarFile object
           tarfile.
        """
        buf = tarfile.fileobj.read(BLOCKSIZE)
        obj = cls.frombuf(buf, tarfile.encoding, tarfile.errors)
        obj.offset = tarfile.fileobj.tell() - BLOCKSIZE
        return obj._proc_member(tarfile)

    #--------------------------------------------------------------------------
    # The following are methods that are called depending on the type of a
    # member. The entry point is _proc_member() which can be overridden in a
    # subclass to add custom _proc_*() methods. A _proc_*() method MUST
    # implement the following
    # operations:
    # 1. Set self.offset_data to the position where the data blocks begin,
    #    if there is data that follows.
    # 2. Set tarfile.offset to the position where the next member's header will
    #    begin.
    # 3. Return self or another valid TarInfo object.
    def _proc_member(self, tarfile):
        """Choose the right processing method depending on
           the type and call it.
        """
        if self.type in (GNUTYPE_LONGNAME, GNUTYPE_LONGLINK):
            return self._proc_gnulong(tarfile)
        elif self.type == GNUTYPE_SPARSE:
            return self._proc_sparse(tarfile)
        elif self.type in (XHDTYPE, XGLTYPE, SOLARIS_XHDTYPE):
            return self._proc_pax(tarfile)
        else:
            return self._proc_builtin(tarfile)

    def _proc_builtin(self, tarfile):
        """Process a builtin type or an unknown type which
           will be treated as a regular file.
        """
        self.offset_data = tarfile.fileobj.tell()
        offset = self.offset_data
        if self.isreg() or self.type not in SUPPORTED_TYPES:
            # Skip the following data blocks.
            offset += self._block(self.size)
        tarfile.offset = offset

        # Patch the TarInfo object with saved global
        # header information.
        self._apply_pax_info(tarfile.pax_headers, tarfile.encoding, tarfile.errors)

        return self

    def _proc_gnulong(self, tarfile):
        """Process the blocks that hold a GNU longname
           or longlink member.
        """
        buf = tarfile.fileobj.read(self._block(self.size))

        # Fetch the next header and process it.
        try:
            next = self.fromtarfile(tarfile)
        except HeaderError:
            raise SubsequentHeaderError("missing or bad subsequent header")

        # Patch the TarInfo object from the next header with
        # the longname information.
        next.offset = self.offset
        if self.type == GNUTYPE_LONGNAME:
            next.name = nts(buf, tarfile.encoding, tarfile.errors)
        elif self.type == GNUTYPE_LONGLINK:
            next.linkname = nts(buf, tarfile.encoding, tarfile.errors)

        return next

    def _proc_sparse(self, tarfile):
        """Process a GNU sparse header plus extra headers.
        """
        # We already collected some sparse structures in frombuf().
        structs, isextended, origsize = self._sparse_structs
        del self._sparse_structs

        # Collect sparse structures from extended header blocks.
        while isextended:
            buf = tarfile.fileobj.read(BLOCKSIZE)
            pos = 0
            for i in range(21):
                try:
                    offset = nti(buf[pos:pos + 12])
                    numbytes = nti(buf[pos + 12:pos + 24])
                except ValueError:
                    break
                if offset and numbytes:
                    structs.append((offset, numbytes))
                pos += 24
            isextended = bool(buf[504])
        self.sparse = structs

        self.offset_data = tarfile.fileobj.tell()
        tarfile.offset = self.offset_data + self._block(self.size)
        self.size = origsize
        return self

    def _proc_pax(self, tarfile):
        """Process an extended or global header as described in
           POSIX.1-2008.
        """
        # Read the header information.
        buf = tarfile.fileobj.read(self._block(self.size))

        # A pax header stores supplemental information for either
        # the following file (extended) or all following files
        # (global).
        if self.type == XGLTYPE:
            pax_headers = tarfile.pax_headers
        else:
            pax_headers = tarfile.pax_headers.copy()

        # Check if the pax header contains a hdrcharset field. This tells us
        # the encoding of the path, linkpath, uname and gname fields. Normally,
        # these fields are UTF-8 encoded but since POSIX.1-2008 tar
        # implementations are allowed to store them as raw binary strings if
        # the translation to UTF-8 fails.
        match = re.search(br"\d+ hdrcharset=([^\n]+)\n", buf)
        if match is not None:
            pax_headers["hdrcharset"] = match.group(1).decode("utf-8")

        # For the time being, we don't care about anything other than "BINARY".
        # The only other value that is currently allowed by the standard is
        # "ISO-IR 10646 2000 UTF-8" in other words UTF-8.
        hdrcharset = pax_headers.get("hdrcharset")
        if hdrcharset == "BINARY":
            encoding = tarfile.encoding
        else:
            encoding = "utf-8"

        # Parse pax header information. A record looks like that:
        # "%d %s=%s\n" % (length, keyword, value). length is the size
        # of the complete record including the length field itself and
        # the newline. keyword and value are both UTF-8 encoded strings.
        regex = re.compile(br"(\d+) ([^=]+)=")
        pos = 0
        while True:
            match = regex.match(buf, pos)
            if not match:
                break

            length, keyword = match.groups()
            length = int(length)
            value = buf[match.end(2) + 1:match.start(1) + length - 1]

            # Normally, we could just use "utf-8" as the encoding and "strict"
            # as the error handler, but we better not take the risk. For
            # example, GNU tar <= 1.23 is known to store filenames it cannot
            # translate to UTF-8 as raw strings (unfortunately without a
            # hdrcharset=BINARY header).
            # We first try the strict standard encoding, and if that fails we
            # fall back on the user's encoding and error handler.
            keyword = self._decode_pax_field(keyword, "utf-8", "utf-8",
                    tarfile.errors)
            if keyword in PAX_NAME_FIELDS:
                value = self._decode_pax_field(value, encoding, tarfile.encoding,
                        tarfile.errors)
            else:
                value = self._decode_pax_field(value, "utf-8", "utf-8",
                        tarfile.errors)

            pax_headers[keyword] = value
            pos += length

        # Fetch the next header.
        try:
            next = self.fromtarfile(tarfile)
        except HeaderError:
            raise SubsequentHeaderError("missing or bad subsequent header")

        # Process GNU sparse information.
        if "GNU.sparse.map" in pax_headers:
            # GNU extended sparse format version 0.1.
            self._proc_gnusparse_01(next, pax_headers)

        elif "GNU.sparse.size" in pax_headers:
            # GNU extended sparse format version 0.0.
            self._proc_gnusparse_00(next, pax_headers, buf)

        elif pax_headers.get("GNU.sparse.major") == "1" and pax_headers.get("GNU.sparse.minor") == "0":
            # GNU extended sparse format version 1.0.
            self._proc_gnusparse_10(next, pax_headers, tarfile)

        if self.type in (XHDTYPE, SOLARIS_XHDTYPE):
            # Patch the TarInfo object with the extended header info.
            next._apply_pax_info(pax_headers, tarfile.encoding, tarfile.errors)
            next.offset = self.offset

            if "size" in pax_headers:
                # If the extended header replaces the size field,
                # we need to recalculate the offset where the next
                # header starts.
                offset = next.offset_data
                if next.isreg() or next.type not in SUPPORTED_TYPES:
                    offset += next._block(next.size)
                tarfile.offset = offset

        return next

    def _proc_gnusparse_00(self, next, pax_headers, buf):
        """Process a GNU tar extended sparse header, version 0.0.
        """
        offsets = []
        for match in re.finditer(br"\d+ GNU.sparse.offset=(\d+)\n", buf):
            offsets.append(int(match.group(1)))
        numbytes = []
        for match in re.finditer(br"\d+ GNU.sparse.numbytes=(\d+)\n", buf):
            numbytes.append(int(match.group(1)))
        next.sparse = list(zip(offsets, numbytes))

    def _proc_gnusparse_01(self, next, pax_headers):
        """Process a GNU tar extended sparse header, version 0.1.
        """
        sparse = [int(x) for x in pax_headers["GNU.sparse.map"].split(",")]
        next.sparse = list(zip(sparse[::2], sparse[1::2]))

    def _proc_gnusparse_10(self, next, pax_headers, tarfile):
        """Process a GNU tar extended sparse header, version 1.0.
        """
        fields = None
        sparse = []
        buf = tarfile.fileobj.read(BLOCKSIZE)
        fields, buf = buf.split(b"\n", 1)
        fields = int(fields)
        while len(sparse) < fields * 2:
            if b"\n" not in buf:
                buf += tarfile.fileobj.read(BLOCKSIZE)
            number, buf = buf.split(b"\n", 1)
            sparse.append(int(number))
        next.offset_data = tarfile.fileobj.tell()
        next.sparse = list(zip(sparse[::2], sparse[1::2]))

    def _apply_pax_info(self, pax_headers, encoding, errors):
        """Replace fields with supplemental information from a previous
           pax extended or global header.
        """
        for keyword, value in pax_headers.items():
            if keyword == "GNU.sparse.name":
                setattr(self, "path", value)
            elif keyword == "GNU.sparse.size":
                setattr(self, "size", int(value))
            elif keyword == "GNU.sparse.realsize":
                setattr(self, "size", int(value))
            elif keyword in PAX_FIELDS:
                if keyword in PAX_NUMBER_FIELDS:
                    try:
                        value = PAX_NUMBER_FIELDS[keyword](value)
                    except ValueError:
                        value = 0
                if keyword == "path":
                    value = value.rstrip("/")
                setattr(self, keyword, value)

        self.pax_headers = pax_headers.copy()

    def _decode_pax_field(self, value, encoding, fallback_encoding, fallback_errors):
        """Decode a single field from a pax record.
        """
        try:
            return value.decode(encoding, "strict")
        except UnicodeDecodeError:
            return value.decode(fallback_encoding, fallback_errors)

    def _block(self, count):
        """Round up a byte count by BLOCKSIZE and return it,
           e.g. _block(834) => 1024.
        """
        blocks, remainder = divmod(count, BLOCKSIZE)
        if remainder:
            blocks += 1
        return blocks * BLOCKSIZE

    def isreg(self):
        return self.type in REGULAR_TYPES
    def isfile(self):
        return self.isreg()
    def isdir(self):
        return self.type == DIRTYPE
    def issym(self):
        return self.type == SYMTYPE
    def islnk(self):
        return self.type == LNKTYPE
    def ischr(self):
        return self.type == CHRTYPE
    def isblk(self):
        return self.type == BLKTYPE
    def isfifo(self):
        return self.type == FIFOTYPE
    def issparse(self):
        return self.sparse is not None
    def isdev(self):
        return self.type in (CHRTYPE, BLKTYPE, FIFOTYPE)
# class TarInfo

class TarFile(object):
    """The TarFile Class provides an interface to tar archives.
    """

    debug = 0                   # May be set from 0 (no msgs) to 3 (all msgs)

    dereference = False         # If true, add content of linked file to the
                                # tar file, else the link.

    ignore_zeros = False        # If true, skips empty or invalid blocks and
                                # continues processing.

    errorlevel = 1              # If 0, fatal errors only appear in debug
                                # messages (if debug >= 0). If > 0, errors
                                # are passed to the caller as exceptions.

    format = DEFAULT_FORMAT     # The format to use when creating an archive.

    encoding = ENCODING         # Encoding for 8-bit character strings.

    errors = None               # Error handler for unicode conversion.

    tarinfo = TarInfo           # The default TarInfo class to use.

    fileobject = ExFileObject   # The file-object for extractfile().

    def __init__(self, name=None, mode="r", fileobj=None, format=None,
            tarinfo=None, dereference=None, ignore_zeros=None, encoding=None,
            errors="surrogateescape", pax_headers=None, debug=None, errorlevel=None):
        """Open an (uncompressed) tar archive `name'. `mode' is either 'r' to
           read from an existing archive, 'a' to append data to an existing
           file or 'w' to create a new file overwriting an existing one. `mode'
           defaults to 'r'.
           If `fileobj' is given, it is used for reading or writing data. If it
           can be determined, `mode' is overridden by `fileobj's mode.
           `fileobj' is not closed, when TarFile is closed.
        """
        modes = {"r": "rb", "a": "r+b", "w": "wb"}
        if mode not in modes:
            raise ValueError("mode must be 'r', 'a' or 'w'")
        self.mode = mode
        self._mode = modes[mode]

        if not fileobj:
            if self.mode == "a" and not os.path.exists(name):
                # Create nonexistent files in append mode.
                self.mode = "w"
                self._mode = "wb"
            fileobj = bltn_open(name, self._mode)
            self._extfileobj = False
        else:
            if (name is None and hasattr(fileobj, "name") and
                isinstance(fileobj.name, (str, bytes))):
                name = fileobj.name
            if hasattr(fileobj, "mode"):
                self._mode = fileobj.mode
            self._extfileobj = True
        self.name = os.path.abspath(name) if name else None
        self.fileobj = fileobj

        # Init attributes.
        if format is not None:
            self.format = format
        if tarinfo is not None:
            self.tarinfo = tarinfo
        if dereference is not None:
            self.dereference = dereference
        if ignore_zeros is not None:
            self.ignore_zeros = ignore_zeros
        if encoding is not None:
            self.encoding = encoding
        self.errors = errors

        if pax_headers is not None and self.format == PAX_FORMAT:
            self.pax_headers = pax_headers
        else:
            self.pax_headers = {}

        if debug is not None:
            self.debug = debug
        if errorlevel is not None:
            self.errorlevel = errorlevel

        # Init datastructures.
        self.closed = False
        self.members = []       # list of members as TarInfo objects
        self._loaded = False    # flag if all members have been read
        self.offset = self.fileobj.tell()
                                # current position in the archive file
        self.inodes = {}        # dictionary caching the inodes of
                                # archive members already added

        try:
            if self.mode == "r":
                self.firstmember = None
                self.firstmember = self.next()

            if self.mode == "a":
                # Move to the end of the archive,
                # before the first empty block.
                while True:
                    self.fileobj.seek(self.offset)
                    try:
                        tarinfo = self.tarinfo.fromtarfile(self)
                        self.members.append(tarinfo)
                    except EOFHeaderError:
                        self.fileobj.seek(self.offset)
                        break
                    except HeaderError as e:
                        raise ReadError(str(e))

            if self.mode in "aw":
                self._loaded = True

                if self.pax_headers:
                    buf = self.tarinfo.create_pax_global_header(self.pax_headers.copy())
                    self.fileobj.write(buf)
                    self.offset += len(buf)
        except:
            if not self._extfileobj:
                self.fileobj.close()
            self.closed = True
            raise

    #--------------------------------------------------------------------------
    # Below are the classmethods which act as alternate constructors to the
    # TarFile class. The open() method is the only one that is needed for
    # public use; it is the "super"-constructor and is able to select an
    # adequate "sub"-constructor for a particular compression using the mapping
    # from OPEN_METH.
    #
    # This concept allows one to subclass TarFile without losing the comfort of
    # the super-constructor. A sub-constructor is registered and made available
    # by adding it to the mapping in OPEN_METH.

    @classmethod
    def open(cls, name=None, mode="r", fileobj=None, bufsize=RECORDSIZE, **kwargs):
        """Open a tar archive for reading, writing or appending. Return
           an appropriate TarFile class.

           mode:
           'r' or 'r:*' open for reading with transparent compression
           'r:'         open for reading exclusively uncompressed
           'r:gz'       open for reading with gzip compression
           'r:bz2'      open for reading with bzip2 compression
           'r:xz'       open for reading with lzma compression
           'a' or 'a:'  open for appending, creating the file if necessary
           'w' or 'w:'  open for writing without compression
           'w:gz'       open for writing with gzip compression
           'w:bz2'      open for writing with bzip2 compression
           'w:xz'       open for writing with lzma compression

           'r|*'        open a stream of tar blocks with transparent compression
           'r|'         open an uncompressed stream of tar blocks for reading
           'r|gz'       open a gzip compressed stream of tar blocks
           'r|bz2'      open a bzip2 compressed stream of tar blocks
           'r|xz'       open an lzma compressed stream of tar blocks
           'w|'         open an uncompressed stream for writing
           'w|gz'       open a gzip compressed stream for writing
           'w|bz2'      open a bzip2 compressed stream for writing
           'w|xz'       open an lzma compressed stream for writing
        """

        if not name and not fileobj:
            raise ValueError("nothing to open")

        if mode in ("r", "r:*"):
            # Find out which *open() is appropriate for opening the file.
            for comptype in cls.OPEN_METH:
                func = getattr(cls, cls.OPEN_METH[comptype])
                if fileobj is not None:
                    saved_pos = fileobj.tell()
                try:
                    return func(name, "r", fileobj, **kwargs)
                except (ReadError, CompressionError) as e:
                    if fileobj is not None:
                        fileobj.seek(saved_pos)
                    continue
            raise ReadError("file could not be opened successfully")

        elif ":" in mode:
            filemode, comptype = mode.split(":", 1)
            filemode = filemode or "r"
            comptype = comptype or "tar"

            # Select the *open() function according to
            # given compression.
            if comptype in cls.OPEN_METH:
                func = getattr(cls, cls.OPEN_METH[comptype])
            else:
                raise CompressionError("unknown compression type %r" % comptype)
            return func(name, filemode, fileobj, **kwargs)

        elif "|" in mode:
            filemode, comptype = mode.split("|", 1)
            filemode = filemode or "r"
            comptype = comptype or "tar"

            if filemode not in ("r", "w"):
                raise ValueError("mode must be 'r' or 'w'")

            stream = _Stream(name, filemode, comptype, fileobj, bufsize)
            try:
                t = cls(name, filemode, stream, **kwargs)
            except:
                stream.close()
                raise
            t._extfileobj = False
            return t

        elif mode in ("a", "w"):
            return cls.taropen(name, mode, fileobj, **kwargs)

        raise ValueError("undiscernible mode")

    @classmethod
    def taropen(cls, name, mode="r", fileobj=None, **kwargs):
        """Open uncompressed tar archive name for reading or writing.
        """
        if mode not in ("r", "a", "w"):
            raise ValueError("mode must be 'r', 'a' or 'w'")
        return cls(name, mode, fileobj, **kwargs)

    @classmethod
    def gzopen(cls, name, mode="r", fileobj=None, compresslevel=9, **kwargs):
        """Open gzip compressed tar archive name for reading or writing.
           Appending is not allowed.
        """
        if mode not in ("r", "w"):
            raise ValueError("mode must be 'r' or 'w'")

        try:
            import gzip
            gzip.GzipFile
        except (ImportError, AttributeError):
            raise CompressionError("gzip module is not available")

        try:
            fileobj = gzip.GzipFile(name, mode + "b", compresslevel, fileobj)
        except OSError:
            if fileobj is not None and mode == 'r':
                raise ReadError("not a gzip file")
            raise

        try:
            t = cls.taropen(name, mode, fileobj, **kwargs)
        except OSError:
            fileobj.close()
            if mode == 'r':
                raise ReadError("not a gzip file")
            raise
        except:
            fileobj.close()
            raise
        t._extfileobj = False
        return t

    @classmethod
    def bz2open(cls, name, mode="r", fileobj=None, compresslevel=9, **kwargs):
        """Open bzip2 compressed tar archive name for reading or writing.
           Appending is not allowed.
        """
        if mode not in ("r", "w"):
            raise ValueError("mode must be 'r' or 'w'.")

        try:
            import bz2
        except ImportError:
            raise CompressionError("bz2 module is not available")

        fileobj = bz2.BZ2File(fileobj or name, mode,
                              compresslevel=compresslevel)

        try:
            t = cls.taropen(name, mode, fileobj, **kwargs)
        except (OSError, EOFError):
            fileobj.close()
            if mode == 'r':
                raise ReadError("not a bzip2 file")
            raise
        except:
            fileobj.close()
            raise
        t._extfileobj = False
        return t

    @classmethod
    def xzopen(cls, name, mode="r", fileobj=None, preset=None, **kwargs):
        """Open lzma compressed tar archive name for reading or writing.
           Appending is not allowed.
        """
        if mode not in ("r", "w"):
            raise ValueError("mode must be 'r' or 'w'")

        try:
            import lzma
        except ImportError:
            raise CompressionError("lzma module is not available")

        fileobj = lzma.LZMAFile(fileobj or name, mode, preset=preset)

        try:
            t = cls.taropen(name, mode, fileobj, **kwargs)
        except (lzma.LZMAError, EOFError):
            fileobj.close()
            if mode == 'r':
                raise ReadError("not an lzma file")
            raise
        except:
            fileobj.close()
            raise
        t._extfileobj = False
        return t

    # All *open() methods are registered here.
    OPEN_METH = {
        "tar": "taropen",   # uncompressed tar
        "gz":  "gzopen",    # gzip compressed tar
        "bz2": "bz2open",   # bzip2 compressed tar
        "xz":  "xzopen"     # lzma compressed tar
    }

    #--------------------------------------------------------------------------
    # The public methods which TarFile provides:

    def close(self):
        """Close the TarFile. In write-mode, two finishing zero blocks are
           appended to the archive.
        """
        if self.closed:
            return

        self.closed = True
        try:
            if self.mode in "aw":
                self.fileobj.write(NUL * (BLOCKSIZE * 2))
                self.offset += (BLOCKSIZE * 2)
                # fill up the end with zero-blocks
                # (like option -b20 for tar does)
                blocks, remainder = divmod(self.offset, RECORDSIZE)
                if remainder > 0:
                    self.fileobj.write(NUL * (RECORDSIZE - remainder))
        finally:
            if not self._extfileobj:
                self.fileobj.close()

    def getmember(self, name):
        """Return a TarInfo object for member `name'. If `name' can not be
           found in the archive, KeyError is raised. If a member occurs more
           than once in the archive, its last occurrence is assumed to be the
           most up-to-date version.
        """
        tarinfo = self._getmember(name)
        if tarinfo is None:
            raise KeyError("filename %r not found" % name)
        return tarinfo

    def getmembers(self):
        """Return the members of the archive as a list of TarInfo objects. The
           list has the same order as the members in the archive.
        """
        self._check()
        if not self._loaded:    # if we want to obtain a list of
            self._load()        # all members, we first have to
                                # scan the whole archive.
        return self.members

    def getnames(self):
        """Return the members of the archive as a list of their names. It has
           the same order as the list returned by getmembers().
        """
        return [tarinfo.name for tarinfo in self.getmembers()]

    def gettarinfo(self, name=None, arcname=None, fileobj=None):
        """Create a TarInfo object for either the file `name' or the file
           object `fileobj' (using os.fstat on its file descriptor). You can
           modify some of the TarInfo's attributes before you add it using
           addfile(). If given, `arcname' specifies an alternative name for the
           file in the archive.
        """
        self._check("aw")

        # When fileobj is given, replace name by
        # fileobj's real name.
        if fileobj is not None:
            name = fileobj.name

        # Building the name of the member in the archive.
        # Backward slashes are converted to forward slashes,
        # Absolute paths are turned to relative paths.
        if arcname is None:
            arcname = name
        drv, arcname = os.path.splitdrive(arcname)
        arcname = arcname.replace(os.sep, "/")
        arcname = arcname.lstrip("/")

        # Now, fill the TarInfo object with
        # information specific for the file.
        tarinfo = self.tarinfo()
        tarinfo.tarfile = self

        # Use os.stat or os.lstat, depending on platform
        # and if symlinks shall be resolved.
        if fileobj is None:
            if hasattr(os, "lstat") and not self.dereference:
                statres = os.lstat(name)
            else:
                statres = os.stat(name)
        else:
            statres = os.fstat(fileobj.fileno())
        linkname = ""

        stmd = statres.st_mode
        if stat.S_ISREG(stmd):
            inode = (statres.st_ino, statres.st_dev)
            if not self.dereference and statres.st_nlink > 1 and \
                    inode in self.inodes and arcname != self.inodes[inode]:
                # Is it a hardlink to an already
                # archived file?
                type = LNKTYPE
                linkname = self.inodes[inode]
            else:
                # The inode is added only if its valid.
                # For win32 it is always 0.
                type = REGTYPE
                if inode[0]:
                    self.inodes[inode] = arcname
        elif stat.S_ISDIR(stmd):
            type = DIRTYPE
        elif stat.S_ISFIFO(stmd):
            type = FIFOTYPE
        elif stat.S_ISLNK(stmd):
            type = SYMTYPE
            linkname = os.readlink(name)
        elif stat.S_ISCHR(stmd):
            type = CHRTYPE
        elif stat.S_ISBLK(stmd):
            type = BLKTYPE
        else:
            return None

        # Fill the TarInfo object with all
        # information we can get.
        tarinfo.name = arcname
        tarinfo.mode = stmd
        tarinfo.uid = statres.st_uid
        tarinfo.gid = statres.st_gid
        if type == REGTYPE:
            tarinfo.size = statres.st_size
        else:
            tarinfo.size = 0
        tarinfo.mtime = statres.st_mtime
        tarinfo.type = type
        tarinfo.linkname = linkname
        if pwd:
            try:
                tarinfo.uname = pwd.getpwuid(tarinfo.uid)[0]
            except KeyError:
                pass
        if grp:
            try:
                tarinfo.gname = grp.getgrgid(tarinfo.gid)[0]
            except KeyError:
                pass

        if type in (CHRTYPE, BLKTYPE):
            if hasattr(os, "major") and hasattr(os, "minor"):
                tarinfo.devmajor = os.major(statres.st_rdev)
                tarinfo.devminor = os.minor(statres.st_rdev)
        return tarinfo

    def list(self, verbose=True):
        """Print a table of contents to sys.stdout. If `verbose' is False, only
           the names of the members are printed. If it is True, an `ls -l'-like
           output is produced.
        """
        self._check()

        for tarinfo in self:
            if verbose:
                _safe_print(stat.filemode(tarinfo.mode))
                _safe_print("%s/%s" % (tarinfo.uname or tarinfo.uid,
                                       tarinfo.gname or tarinfo.gid))
                if tarinfo.ischr() or tarinfo.isblk():
                    _safe_print("%10s" %
                            ("%d,%d" % (tarinfo.devmajor, tarinfo.devminor)))
                else:
                    _safe_print("%10d" % tarinfo.size)
                _safe_print("%d-%02d-%02d %02d:%02d:%02d" \
                            % time.localtime(tarinfo.mtime)[:6])

            _safe_print(tarinfo.name + ("/" if tarinfo.isdir() else ""))

            if verbose:
                if tarinfo.issym():
                    _safe_print("-> " + tarinfo.linkname)
                if tarinfo.islnk():
                    _safe_print("link to " + tarinfo.linkname)
            print()

    def add(self, name, arcname=None, recursive=True, exclude=None, *, filter=None):
        """Add the file `name' to the archive. `name' may be any type of file
           (directory, fifo, symbolic link, etc.). If given, `arcname'
           specifies an alternative name for the file in the archive.
           Directories are added recursively by default. This can be avoided by
           setting `recursive' to False. `exclude' is a function that should
           return True for each filename to be excluded. `filter' is a function
           that expects a TarInfo object argument and returns the changed
           TarInfo object, if it returns None the TarInfo object will be
           excluded from the archive.
        """
        self._check("aw")

        if arcname is None:
            arcname = name

        # Exclude pathnames.
        if exclude is not None:
            import warnings
            warnings.warn("use the filter argument instead",
                    DeprecationWarning, 2)
            if exclude(name):
                self._dbg(2, "tarfile: Excluded %r" % name)
                return

        # Skip if somebody tries to archive the archive...
        if self.name is not None and os.path.abspath(name) == self.name:
            self._dbg(2, "tarfile: Skipped %r" % name)
            return

        self._dbg(1, name)

        # Create a TarInfo object from the file.
        tarinfo = self.gettarinfo(name, arcname)

        if tarinfo is None:
            self._dbg(1, "tarfile: Unsupported type %r" % name)
            return

        # Change or exclude the TarInfo object.
        if filter is not None:
            tarinfo = filter(tarinfo)
            if tarinfo is None:
                self._dbg(2, "tarfile: Excluded %r" % name)
                return

        # Append the tar header and data to the archive.
        if tarinfo.isreg():
            with bltn_open(name, "rb") as f:
                self.addfile(tarinfo, f)

        elif tarinfo.isdir():
            self.addfile(tarinfo)
            if recursive:
                for f in os.listdir(name):
                    self.add(os.path.join(name, f), os.path.join(arcname, f),
                            recursive, exclude, filter=filter)

        else:
            self.addfile(tarinfo)

    def addfile(self, tarinfo, fileobj=None):
        """Add the TarInfo object `tarinfo' to the archive. If `fileobj' is
           given, tarinfo.size bytes are read from it and added to the archive.
           You can create TarInfo objects using gettarinfo().
           On Windows platforms, `fileobj' should always be opened with mode
           'rb' to avoid irritation about the file size.
        """
        self._check("aw")

        tarinfo = copy.copy(tarinfo)

        buf = tarinfo.tobuf(self.format, self.encoding, self.errors)
        self.fileobj.write(buf)
        self.offset += len(buf)

        # If there's data to follow, append it.
        if fileobj is not None:
            copyfileobj(fileobj, self.fileobj, tarinfo.size)
            blocks, remainder = divmod(tarinfo.size, BLOCKSIZE)
            if remainder > 0:
                self.fileobj.write(NUL * (BLOCKSIZE - remainder))
                blocks += 1
            self.offset += blocks * BLOCKSIZE

        self.members.append(tarinfo)

    def extractall(self, path=".", members=None):
        """Extract all members from the archive to the current working
           directory and set owner, modification time and permissions on
           directories afterwards. `path' specifies a different directory
           to extract to. `members' is optional and must be a subset of the
           list returned by getmembers().
        """
        directories = []

        if members is None:
            members = self

        for tarinfo in members:
            if tarinfo.isdir():
                # Extract directories with a safe mode.
                directories.append(tarinfo)
                tarinfo = copy.copy(tarinfo)
                tarinfo.mode = 0o700
            # Do not set_attrs directories, as we will do that further down
            self.extract(tarinfo, path, set_attrs=not tarinfo.isdir())

        # Reverse sort directories.
        directories.sort(key=lambda a: a.name)
        directories.reverse()

        # Set correct owner, mtime and filemode on directories.
        for tarinfo in directories:
            dirpath = os.path.join(path, tarinfo.name)
            try:
                self.chown(tarinfo, dirpath)
                self.utime(tarinfo, dirpath)
                self.chmod(tarinfo, dirpath)
            except ExtractError as e:
                if self.errorlevel > 1:
                    raise
                else:
                    self._dbg(1, "tarfile: %s" % e)

    def extract(self, member, path="", set_attrs=True):
        """Extract a member from the archive to the current working directory,
           using its full name. Its file information is extracted as accurately
           as possible. `member' may be a filename or a TarInfo object. You can
           specify a different directory using `path'. File attributes (owner,
           mtime, mode) are set unless `set_attrs' is False.
        """
        self._check("r")

        if isinstance(member, str):
            tarinfo = self.getmember(member)
        else:
            tarinfo = member

        # Prepare the link target for makelink().
        if tarinfo.islnk():
            tarinfo._link_target = os.path.join(path, tarinfo.linkname)

        try:
            self._extract_member(tarinfo, os.path.join(path, tarinfo.name),
                                 set_attrs=set_attrs)
        except OSError as e:
            if self.errorlevel > 0:
                raise
            else:
                if e.filename is None:
                    self._dbg(1, "tarfile: %s" % e.strerror)
                else:
                    self._dbg(1, "tarfile: %s %r" % (e.strerror, e.filename))
        except ExtractError as e:
            if self.errorlevel > 1:
                raise
            else:
                self._dbg(1, "tarfile: %s" % e)

    def extractfile(self, member):
        """Extract a member from the archive as a file object. `member' may be
           a filename or a TarInfo object. If `member' is a regular file or a
           link, an io.BufferedReader object is returned. Otherwise, None is
           returned.
        """
        self._check("r")

        if isinstance(member, str):
            tarinfo = self.getmember(member)
        else:
            tarinfo = member

        if tarinfo.isreg() or tarinfo.type not in SUPPORTED_TYPES:
            # Members with unknown types are treated as regular files.
            return self.fileobject(self, tarinfo)

        elif tarinfo.islnk() or tarinfo.issym():
            if isinstance(self.fileobj, _Stream):
                # A small but ugly workaround for the case that someone tries
                # to extract a (sym)link as a file-object from a non-seekable
                # stream of tar blocks.
                raise StreamError("cannot extract (sym)link as file object")
            else:
                # A (sym)link's file object is its target's file object.
                return self.extractfile(self._find_link_target(tarinfo))
        else:
            # If there's no data associated with the member (directory, chrdev,
            # blkdev, etc.), return None instead of a file object.
            return None

    def _extract_member(self, tarinfo, targetpath, set_attrs=True):
        """Extract the TarInfo object tarinfo to a physical
           file called targetpath.
        """
        # Fetch the TarInfo object for the given name
        # and build the destination pathname, replacing
        # forward slashes to platform specific separators.
        targetpath = targetpath.rstrip("/")
        targetpath = targetpath.replace("/", os.sep)

        # Create all upper directories.
        upperdirs = os.path.dirname(targetpath)
        if upperdirs and not os.path.exists(upperdirs):
            # Create directories that are not part of the archive with
            # default permissions.
            os.makedirs(upperdirs)

        if tarinfo.islnk() or tarinfo.issym():
            self._dbg(1, "%s -> %s" % (tarinfo.name, tarinfo.linkname))
        else:
            self._dbg(1, tarinfo.name)

        if tarinfo.isreg():
            self.makefile(tarinfo, targetpath)
        elif tarinfo.isdir():
            self.makedir(tarinfo, targetpath)
        elif tarinfo.isfifo():
            self.makefifo(tarinfo, targetpath)
        elif tarinfo.ischr() or tarinfo.isblk():
            self.makedev(tarinfo, targetpath)
        elif tarinfo.islnk() or tarinfo.issym():
            self.makelink(tarinfo, targetpath)
        elif tarinfo.type not in SUPPORTED_TYPES:
            self.makeunknown(tarinfo, targetpath)
        else:
            self.makefile(tarinfo, targetpath)

        if set_attrs:
            self.chown(tarinfo, targetpath)
            if not tarinfo.issym():
                self.chmod(tarinfo, targetpath)
                self.utime(tarinfo, targetpath)

    #--------------------------------------------------------------------------
    # Below are the different file methods. They are called via
    # _extract_member() when extract() is called. They can be replaced in a
    # subclass to implement other functionality.

    def makedir(self, tarinfo, targetpath):
        """Make a directory called targetpath.
        """
        try:
            # Use a safe mode for the directory, the real mode is set
            # later in _extract_member().
            os.mkdir(targetpath, 0o700)
        except FileExistsError:
            pass

    def makefile(self, tarinfo, targetpath):
        """Make a file called targetpath.
        """
        source = self.fileobj
        source.seek(tarinfo.offset_data)
        with bltn_open(targetpath, "wb") as target:
            if tarinfo.sparse is not None:
                for offset, size in tarinfo.sparse:
                    target.seek(offset)
                    copyfileobj(source, target, size, ReadError)
            else:
                copyfileobj(source, target, tarinfo.size, ReadError)
            target.seek(tarinfo.size)
            target.truncate()

    def makeunknown(self, tarinfo, targetpath):
        """Make a file from a TarInfo object with an unknown type
           at targetpath.
        """
        self.makefile(tarinfo, targetpath)
        self._dbg(1, "tarfile: Unknown file type %r, " \
                     "extracted as regular file." % tarinfo.type)

    def makefifo(self, tarinfo, targetpath):
        """Make a fifo called targetpath.
        """
        if hasattr(os, "mkfifo"):
            os.mkfifo(targetpath)
        else:
            raise ExtractError("fifo not supported by system")

    def makedev(self, tarinfo, targetpath):
        """Make a character or block device called targetpath.
        """
        if not hasattr(os, "mknod") or not hasattr(os, "makedev"):
            raise ExtractError("special devices not supported by system")

        mode = tarinfo.mode
        if tarinfo.isblk():
            mode |= stat.S_IFBLK
        else:
            mode |= stat.S_IFCHR

        os.mknod(targetpath, mode,
                 os.makedev(tarinfo.devmajor, tarinfo.devminor))

    def makelink(self, tarinfo, targetpath):
        """Make a (symbolic) link called targetpath. If it cannot be created
          (platform limitation), we try to make a copy of the referenced file
          instead of a link.
        """
        try:
            # For systems that support symbolic and hard links.
            if tarinfo.issym():
                os.symlink(tarinfo.linkname, targetpath)
            else:
                # See extract().
                if os.path.exists(tarinfo._link_target):
                    os.link(tarinfo._link_target, targetpath)
                else:
                    self._extract_member(self._find_link_target(tarinfo),
                                         targetpath)
        except symlink_exception:
            try:
                self._extract_member(self._find_link_target(tarinfo),
                                     targetpath)
            except KeyError:
                raise ExtractError("unable to resolve link inside archive")

    def chown(self, tarinfo, targetpath):
        """Set owner of targetpath according to tarinfo.
        """
        if pwd and hasattr(os, "geteuid") and os.geteuid() == 0:
            # We have to be root to do so.
            try:
                g = grp.getgrnam(tarinfo.gname)[2]
            except KeyError:
                g = tarinfo.gid
            try:
                u = pwd.getpwnam(tarinfo.uname)[2]
            except KeyError:
                u = tarinfo.uid
            try:
                if tarinfo.issym() and hasattr(os, "lchown"):
                    os.lchown(targetpath, u, g)
                else:
                    os.chown(targetpath, u, g)
            except OSError as e:
                raise ExtractError("could not change owner")

    def chmod(self, tarinfo, targetpath):
        """Set file permissions of targetpath according to tarinfo.
        """
        if hasattr(os, 'chmod'):
            try:
                os.chmod(targetpath, tarinfo.mode)
            except OSError as e:
                raise ExtractError("could not change mode")

    def utime(self, tarinfo, targetpath):
        """Set modification time of targetpath according to tarinfo.
        """
        if not hasattr(os, 'utime'):
            return
        try:
            os.utime(targetpath, (tarinfo.mtime, tarinfo.mtime))
        except OSError as e:
            raise ExtractError("could not change modification time")

    #--------------------------------------------------------------------------
    def next(self):
        """Return the next member of the archive as a TarInfo object, when
           TarFile is opened for reading. Return None if there is no more
           available.
        """
        self._check("ra")
        if self.firstmember is not None:
            m = self.firstmember
            self.firstmember = None
            return m

        # Advance the file pointer.
        if self.offset != self.fileobj.tell():
            self.fileobj.seek(self.offset - 1)
            if not self.fileobj.read(1):
                raise ReadError("unexpected end of data")

        # Read the next block.
        tarinfo = None
        while True:
            try:
                tarinfo = self.tarinfo.fromtarfile(self)
            except EOFHeaderError as e:
                if self.ignore_zeros:
                    self._dbg(2, "0x%X: %s" % (self.offset, e))
                    self.offset += BLOCKSIZE
                    continue
            except InvalidHeaderError as e:
                if self.ignore_zeros:
                    self._dbg(2, "0x%X: %s" % (self.offset, e))
                    self.offset += BLOCKSIZE
                    continue
                elif self.offset == 0:
                    raise ReadError(str(e))
            except EmptyHeaderError:
                if self.offset == 0:
                    raise ReadError("empty file")
            except TruncatedHeaderError as e:
                if self.offset == 0:
                    raise ReadError(str(e))
            except SubsequentHeaderError as e:
                raise ReadError(str(e))
            break

        if tarinfo is not None:
            self.members.append(tarinfo)
        else:
            self._loaded = True

        return tarinfo

    #--------------------------------------------------------------------------
    # Little helper methods:

    def _getmember(self, name, tarinfo=None, normalize=False):
        """Find an archive member by name from bottom to top.
           If tarinfo is given, it is used as the starting point.
        """
        # Ensure that all members have been loaded.
        members = self.getmembers()

        # Limit the member search list up to tarinfo.
        if tarinfo is not None:
            members = members[:members.index(tarinfo)]

        if normalize:
            name = os.path.normpath(name)

        for member in reversed(members):
            if normalize:
                member_name = os.path.normpath(member.name)
            else:
                member_name = member.name

            if name == member_name:
                return member

    def _load(self):
        """Read through the entire archive file and look for readable
           members.
        """
        while True:
            tarinfo = self.next()
            if tarinfo is None:
                break
        self._loaded = True

    def _check(self, mode=None):
        """Check if TarFile is still open, and if the operation's mode
           corresponds to TarFile's mode.
        """
        if self.closed:
            raise OSError("%s is closed" % self.__class__.__name__)
        if mode is not None and self.mode not in mode:
            raise OSError("bad operation for mode %r" % self.mode)

    def _find_link_target(self, tarinfo):
        """Find the target member of a symlink or hardlink member in the
           archive.
        """
        if tarinfo.issym():
            # Always search the entire archive.
            linkname = "/".join(filter(None, (os.path.dirname(tarinfo.name), tarinfo.linkname)))
            limit = None
        else:
            # Search the archive before the link, because a hard link is
            # just a reference to an already archived file.
            linkname = tarinfo.linkname
            limit = tarinfo

        member = self._getmember(linkname, tarinfo=limit, normalize=True)
        if member is None:
            raise KeyError("linkname %r not found" % linkname)
        return member

    def __iter__(self):
        """Provide an iterator object.
        """
        if self._loaded:
            return iter(self.members)
        else:
            return TarIter(self)

    def _dbg(self, level, msg):
        """Write debugging output to sys.stderr.
        """
        if level <= self.debug:
            print(msg, file=sys.stderr)

    def __enter__(self):
        self._check()
        return self

    def __exit__(self, type, value, traceback):
        if type is None:
            self.close()
        else:
            # An exception occurred. We must not call close() because
            # it would try to write end-of-archive blocks and padding.
            if not self._extfileobj:
                self.fileobj.close()
            self.closed = True
# class TarFile

class TarIter:
    """Iterator Class.

       for tarinfo in TarFile(...):
           suite...
    """

    def __init__(self, tarfile):
        """Construct a TarIter object.
        """
        self.tarfile = tarfile
        self.index = 0
    def __iter__(self):
        """Return iterator object.
        """
        return self
    def __next__(self):
        """Return the next item using TarFile's next() method.
           When all members have been read, set TarFile as _loaded.
        """
        # Fix for SF #1100429: Under rare circumstances it can
        # happen that getmembers() is called during iteration,
        # which will cause TarIter to stop prematurely.

        if self.index == 0 and self.tarfile.firstmember is not None:
            tarinfo = self.tarfile.next()
        elif self.index < len(self.tarfile.members):
            tarinfo = self.tarfile.members[self.index]
        elif not self.tarfile._loaded:
            tarinfo = self.tarfile.next()
            if not tarinfo:
                self.tarfile._loaded = True
                raise StopIteration
        else:
            raise StopIteration
        self.index += 1
        return tarinfo

#--------------------
# exported functions
#--------------------
def is_tarfile(name):
    """Return True if name points to a tar archive that we
       are able to handle, else return False.
    """
    try:
        t = open(name)
        t.close()
        return True
    except TarError:
        return False

open = TarFile.open


def main():
    import argparse

    description = 'A simple command line interface for tarfile module.'
    parser = argparse.ArgumentParser(description=description)
    parser.add_argument('-v', '--verbose', action='store_true', default=False,
                        help='Verbose output')
    group = parser.add_mutually_exclusive_group()
    group.add_argument('-l', '--list', metavar='<tarfile>',
                       help='Show listing of a tarfile')
    group.add_argument('-e', '--extract', nargs='+',
                       metavar=('<tarfile>', '<output_dir>'),
                       help='Extract tarfile into target dir')
    group.add_argument('-c', '--create', nargs='+',
                       metavar=('<name>', '<file>'),
                       help='Create tarfile from sources')
    group.add_argument('-t', '--test', metavar='<tarfile>',
                       help='Test if a tarfile is valid')
    args = parser.parse_args()

    if args.test:
        src = args.test
        if is_tarfile(src):
            with open(src, 'r') as tar:
                tar.getmembers()
                print(tar.getmembers(), file=sys.stderr)
            if args.verbose:
                print('{!r} is a tar archive.'.format(src))
        else:
            parser.exit(1, '{!r} is not a tar archive.\n'.format(src))

    elif args.list:
        src = args.list
        if is_tarfile(src):
            with TarFile.open(src, 'r:*') as tf:
                tf.list(verbose=args.verbose)
        else:
            parser.exit(1, '{!r} is not a tar archive.\n'.format(src))

    elif args.extract:
        if len(args.extract) == 1:
            src = args.extract[0]
            curdir = os.curdir
        elif len(args.extract) == 2:
            src, curdir = args.extract
        else:
            parser.exit(1, parser.format_help())

        if is_tarfile(src):
            with TarFile.open(src, 'r:*') as tf:
                tf.extractall(path=curdir)
            if args.verbose:
                if curdir == '.':
                    msg = '{!r} file is extracted.'.format(src)
                else:
                    msg = ('{!r} file is extracted '
                           'into {!r} directory.').format(src, curdir)
                print(msg)
        else:
            parser.exit(1, '{!r} is not a tar archive.\n'.format(src))

    elif args.create:
        tar_name = args.create.pop(0)
        _, ext = os.path.splitext(tar_name)
        compressions = {
            # gz
            '.gz': 'gz',
            '.tgz': 'gz',
            # xz
            '.xz': 'xz',
            '.txz': 'xz',
            # bz2
            '.bz2': 'bz2',
            '.tbz': 'bz2',
            '.tbz2': 'bz2',
            '.tb2': 'bz2',
        }
        tar_mode = 'w:' + compressions[ext] if ext in compressions else 'w'
        tar_files = args.create

        with TarFile.open(tar_name, tar_mode) as tf:
            for file_name in tar_files:
                tf.add(file_name)

        if args.verbose:
            print('{!r} file created.'.format(tar_name))

    else:
        parser.exit(1, parser.format_help())

if __name__ == '__main__':
    main()
lib\telnetlib.py
r"""TELNET client class.

Based on RFC 854: TELNET Protocol Specification, by J. Postel and
J. Reynolds

Example:

>>> from telnetlib import Telnet
>>> tn = Telnet('www.python.org', 79)   # connect to finger port
>>> tn.write(b'guido\r\n')
>>> print(tn.read_all())
Login       Name               TTY         Idle    When    Where
guido    Guido van Rossum      pts/2        <Dec  2 11:10> snag.cnri.reston..

>>>

Note that read_all() won't read until eof -- it just reads some data
-- but it guarantees to read at least one byte unless EOF is hit.

It is possible to pass a Telnet object to a selector in order to wait until
more data is available.  Note that in this case, read_eager() may return b''
even if there was data on the socket, because the protocol negotiation may have
eaten the data.  This is why EOFError is needed in some cases to distinguish
between "no data" and "connection closed" (since the socket also appears ready
for reading when it is closed).

To do:
- option negotiation
- timeout should be intrinsic to the connection object instead of an
  option on one of the read calls only

"""


# Imported modules
import sys
import socket
import selectors
try:
    from time import monotonic as _time
except ImportError:
    from time import time as _time

__all__ = ["Telnet"]

# Tunable parameters
DEBUGLEVEL = 0

# Telnet protocol defaults
TELNET_PORT = 23

# Telnet protocol characters (don't change)
IAC  = bytes([255]) # "Interpret As Command"
DONT = bytes([254])
DO   = bytes([253])
WONT = bytes([252])
WILL = bytes([251])
theNULL = bytes([0])

SE  = bytes([240])  # Subnegotiation End
NOP = bytes([241])  # No Operation
DM  = bytes([242])  # Data Mark
BRK = bytes([243])  # Break
IP  = bytes([244])  # Interrupt process
AO  = bytes([245])  # Abort output
AYT = bytes([246])  # Are You There
EC  = bytes([247])  # Erase Character
EL  = bytes([248])  # Erase Line
GA  = bytes([249])  # Go Ahead
SB =  bytes([250])  # Subnegotiation Begin


# Telnet protocol options code (don't change)
# These ones all come from arpa/telnet.h
BINARY = bytes([0]) # 8-bit data path
ECHO = bytes([1]) # echo
RCP = bytes([2]) # prepare to reconnect
SGA = bytes([3]) # suppress go ahead
NAMS = bytes([4]) # approximate message size
STATUS = bytes([5]) # give status
TM = bytes([6]) # timing mark
RCTE = bytes([7]) # remote controlled transmission and echo
NAOL = bytes([8]) # negotiate about output line width
NAOP = bytes([9]) # negotiate about output page size
NAOCRD = bytes([10]) # negotiate about CR disposition
NAOHTS = bytes([11]) # negotiate about horizontal tabstops
NAOHTD = bytes([12]) # negotiate about horizontal tab disposition
NAOFFD = bytes([13]) # negotiate about formfeed disposition
NAOVTS = bytes([14]) # negotiate about vertical tab stops
NAOVTD = bytes([15]) # negotiate about vertical tab disposition
NAOLFD = bytes([16]) # negotiate about output LF disposition
XASCII = bytes([17]) # extended ascii character set
LOGOUT = bytes([18]) # force logout
BM = bytes([19]) # byte macro
DET = bytes([20]) # data entry terminal
SUPDUP = bytes([21]) # supdup protocol
SUPDUPOUTPUT = bytes([22]) # supdup output
SNDLOC = bytes([23]) # send location
TTYPE = bytes([24]) # terminal type
EOR = bytes([25]) # end or record
TUID = bytes([26]) # TACACS user identification
OUTMRK = bytes([27]) # output marking
TTYLOC = bytes([28]) # terminal location number
VT3270REGIME = bytes([29]) # 3270 regime
X3PAD = bytes([30]) # X.3 PAD
NAWS = bytes([31]) # window size
TSPEED = bytes([32]) # terminal speed
LFLOW = bytes([33]) # remote flow control
LINEMODE = bytes([34]) # Linemode option
XDISPLOC = bytes([35]) # X Display Location
OLD_ENVIRON = bytes([36]) # Old - Environment variables
AUTHENTICATION = bytes([37]) # Authenticate
ENCRYPT = bytes([38]) # Encryption option
NEW_ENVIRON = bytes([39]) # New - Environment variables
# the following ones come from
# http://www.iana.org/assignments/telnet-options
# Unfortunately, that document does not assign identifiers
# to all of them, so we are making them up
TN3270E = bytes([40]) # TN3270E
XAUTH = bytes([41]) # XAUTH
CHARSET = bytes([42]) # CHARSET
RSP = bytes([43]) # Telnet Remote Serial Port
COM_PORT_OPTION = bytes([44]) # Com Port Control Option
SUPPRESS_LOCAL_ECHO = bytes([45]) # Telnet Suppress Local Echo
TLS = bytes([46]) # Telnet Start TLS
KERMIT = bytes([47]) # KERMIT
SEND_URL = bytes([48]) # SEND-URL
FORWARD_X = bytes([49]) # FORWARD_X
PRAGMA_LOGON = bytes([138]) # TELOPT PRAGMA LOGON
SSPI_LOGON = bytes([139]) # TELOPT SSPI LOGON
PRAGMA_HEARTBEAT = bytes([140]) # TELOPT PRAGMA HEARTBEAT
EXOPL = bytes([255]) # Extended-Options-List
NOOPT = bytes([0])


# poll/select have the advantage of not requiring any extra file descriptor,
# contrarily to epoll/kqueue (also, they require a single syscall).
if hasattr(selectors, 'PollSelector'):
    _TelnetSelector = selectors.PollSelector
else:
    _TelnetSelector = selectors.SelectSelector


class Telnet:

    """Telnet interface class.

    An instance of this class represents a connection to a telnet
    server.  The instance is initially not connected; the open()
    method must be used to establish a connection.  Alternatively, the
    host name and optional port number can be passed to the
    constructor, too.

    Don't try to reopen an already connected instance.

    This class has many read_*() methods.  Note that some of them
    raise EOFError when the end of the connection is read, because
    they can return an empty string for other reasons.  See the
    individual doc strings.

    read_until(expected, [timeout])
        Read until the expected string has been seen, or a timeout is
        hit (default is no timeout); may block.

    read_all()
        Read all data until EOF; may block.

    read_some()
        Read at least one byte or EOF; may block.

    read_very_eager()
        Read all data available already queued or on the socket,
        without blocking.

    read_eager()
        Read either data already queued or some data available on the
        socket, without blocking.

    read_lazy()
        Read all data in the raw queue (processing it first), without
        doing any socket I/O.

    read_very_lazy()
        Reads all data in the cooked queue, without doing any socket
        I/O.

    read_sb_data()
        Reads available data between SB ... SE sequence. Don't block.

    set_option_negotiation_callback(callback)
        Each time a telnet option is read on the input flow, this callback
        (if set) is called with the following parameters :
        callback(telnet socket, command, option)
            option will be chr(0) when there is no option.
        No other action is done afterwards by telnetlib.

    """

    def __init__(self, host=None, port=0,
                 timeout=socket._GLOBAL_DEFAULT_TIMEOUT):
        """Constructor.

        When called without arguments, create an unconnected instance.
        With a hostname argument, it connects the instance; port number
        and timeout are optional.
        """
        self.debuglevel = DEBUGLEVEL
        self.host = host
        self.port = port
        self.timeout = timeout
        self.sock = None
        self.rawq = b''
        self.irawq = 0
        self.cookedq = b''
        self.eof = 0
        self.iacseq = b'' # Buffer for IAC sequence.
        self.sb = 0 # flag for SB and SE sequence.
        self.sbdataq = b''
        self.option_callback = None
        if host is not None:
            self.open(host, port, timeout)

    def open(self, host, port=0, timeout=socket._GLOBAL_DEFAULT_TIMEOUT):
        """Connect to a host.

        The optional second argument is the port number, which
        defaults to the standard telnet port (23).

        Don't try to reopen an already connected instance.
        """
        self.eof = 0
        if not port:
            port = TELNET_PORT
        self.host = host
        self.port = port
        self.timeout = timeout
        self.sock = socket.create_connection((host, port), timeout)

    def __del__(self):
        """Destructor -- close the connection."""
        self.close()

    def msg(self, msg, *args):
        """Print a debug message, when the debug level is > 0.

        If extra arguments are present, they are substituted in the
        message using the standard string formatting operator.

        """
        if self.debuglevel > 0:
            print('Telnet(%s,%s):' % (self.host, self.port), end=' ')
            if args:
                print(msg % args)
            else:
                print(msg)

    def set_debuglevel(self, debuglevel):
        """Set the debug level.

        The higher it is, the more debug output you get (on sys.stdout).

        """
        self.debuglevel = debuglevel

    def close(self):
        """Close the connection."""
        sock = self.sock
        self.sock = 0
        self.eof = 1
        self.iacseq = b''
        self.sb = 0
        if sock:
            sock.close()

    def get_socket(self):
        """Return the socket object used internally."""
        return self.sock

    def fileno(self):
        """Return the fileno() of the socket object used internally."""
        return self.sock.fileno()

    def write(self, buffer):
        """Write a string to the socket, doubling any IAC characters.

        Can block if the connection is blocked.  May raise
        OSError if the connection is closed.

        """
        if IAC in buffer:
            buffer = buffer.replace(IAC, IAC+IAC)
        self.msg("send %r", buffer)
        self.sock.sendall(buffer)

    def read_until(self, match, timeout=None):
        """Read until a given string is encountered or until timeout.

        When no match is found, return whatever is available instead,
        possibly the empty string.  Raise EOFError if the connection
        is closed and no cooked data is available.

        """
        n = len(match)
        self.process_rawq()
        i = self.cookedq.find(match)
        if i >= 0:
            i = i+n
            buf = self.cookedq[:i]
            self.cookedq = self.cookedq[i:]
            return buf
        if timeout is not None:
            deadline = _time() + timeout
        with _TelnetSelector() as selector:
            selector.register(self, selectors.EVENT_READ)
            while not self.eof:
                if selector.select(timeout):
                    i = max(0, len(self.cookedq)-n)
                    self.fill_rawq()
                    self.process_rawq()
                    i = self.cookedq.find(match, i)
                    if i >= 0:
                        i = i+n
                        buf = self.cookedq[:i]
                        self.cookedq = self.cookedq[i:]
                        return buf
                if timeout is not None:
                    timeout = deadline - _time()
                    if timeout < 0:
                        break
        return self.read_very_lazy()

    def read_all(self):
        """Read all data until EOF; block until connection closed."""
        self.process_rawq()
        while not self.eof:
            self.fill_rawq()
            self.process_rawq()
        buf = self.cookedq
        self.cookedq = b''
        return buf

    def read_some(self):
        """Read at least one byte of cooked data unless EOF is hit.

        Return b'' if EOF is hit.  Block if no data is immediately
        available.

        """
        self.process_rawq()
        while not self.cookedq and not self.eof:
            self.fill_rawq()
            self.process_rawq()
        buf = self.cookedq
        self.cookedq = b''
        return buf

    def read_very_eager(self):
        """Read everything that's possible without blocking in I/O (eager).

        Raise EOFError if connection closed and no cooked data
        available.  Return b'' if no cooked data available otherwise.
        Don't block unless in the midst of an IAC sequence.

        """
        self.process_rawq()
        while not self.eof and self.sock_avail():
            self.fill_rawq()
            self.process_rawq()
        return self.read_very_lazy()

    def read_eager(self):
        """Read readily available data.

        Raise EOFError if connection closed and no cooked data
        available.  Return b'' if no cooked data available otherwise.
        Don't block unless in the midst of an IAC sequence.

        """
        self.process_rawq()
        while not self.cookedq and not self.eof and self.sock_avail():
            self.fill_rawq()
            self.process_rawq()
        return self.read_very_lazy()

    def read_lazy(self):
        """Process and return data that's already in the queues (lazy).

        Raise EOFError if connection closed and no data available.
        Return b'' if no cooked data available otherwise.  Don't block
        unless in the midst of an IAC sequence.

        """
        self.process_rawq()
        return self.read_very_lazy()

    def read_very_lazy(self):
        """Return any data available in the cooked queue (very lazy).

        Raise EOFError if connection closed and no data available.
        Return b'' if no cooked data available otherwise.  Don't block.

        """
        buf = self.cookedq
        self.cookedq = b''
        if not buf and self.eof and not self.rawq:
            raise EOFError('telnet connection closed')
        return buf

    def read_sb_data(self):
        """Return any data available in the SB ... SE queue.

        Return b'' if no SB ... SE available. Should only be called
        after seeing a SB or SE command. When a new SB command is
        found, old unread SB data will be discarded. Don't block.

        """
        buf = self.sbdataq
        self.sbdataq = b''
        return buf

    def set_option_negotiation_callback(self, callback):
        """Provide a callback function called after each receipt of a telnet option."""
        self.option_callback = callback

    def process_rawq(self):
        """Transfer from raw queue to cooked queue.

        Set self.eof when connection is closed.  Don't block unless in
        the midst of an IAC sequence.

        """
        buf = [b'', b'']
        try:
            while self.rawq:
                c = self.rawq_getchar()
                if not self.iacseq:
                    if c == theNULL:
                        continue
                    if c == b"\021":
                        continue
                    if c != IAC:
                        buf[self.sb] = buf[self.sb] + c
                        continue
                    else:
                        self.iacseq += c
                elif len(self.iacseq) == 1:
                    # 'IAC: IAC CMD [OPTION only for WILL/WONT/DO/DONT]'
                    if c in (DO, DONT, WILL, WONT):
                        self.iacseq += c
                        continue

                    self.iacseq = b''
                    if c == IAC:
                        buf[self.sb] = buf[self.sb] + c
                    else:
                        if c == SB: # SB ... SE start.
                            self.sb = 1
                            self.sbdataq = b''
                        elif c == SE:
                            self.sb = 0
                            self.sbdataq = self.sbdataq + buf[1]
                            buf[1] = b''
                        if self.option_callback:
                            # Callback is supposed to look into
                            # the sbdataq
                            self.option_callback(self.sock, c, NOOPT)
                        else:
                            # We can't offer automatic processing of
                            # suboptions. Alas, we should not get any
                            # unless we did a WILL/DO before.
                            self.msg('IAC %d not recognized' % ord(c))
                elif len(self.iacseq) == 2:
                    cmd = self.iacseq[1:2]
                    self.iacseq = b''
                    opt = c
                    if cmd in (DO, DONT):
                        self.msg('IAC %s %d',
                            cmd == DO and 'DO' or 'DONT', ord(opt))
                        if self.option_callback:
                            self.option_callback(self.sock, cmd, opt)
                        else:
                            self.sock.sendall(IAC + WONT + opt)
                    elif cmd in (WILL, WONT):
                        self.msg('IAC %s %d',
                            cmd == WILL and 'WILL' or 'WONT', ord(opt))
                        if self.option_callback:
                            self.option_callback(self.sock, cmd, opt)
                        else:
                            self.sock.sendall(IAC + DONT + opt)
        except EOFError: # raised by self.rawq_getchar()
            self.iacseq = b'' # Reset on EOF
            self.sb = 0
            pass
        self.cookedq = self.cookedq + buf[0]
        self.sbdataq = self.sbdataq + buf[1]

    def rawq_getchar(self):
        """Get next char from raw queue.

        Block if no data is immediately available.  Raise EOFError
        when connection is closed.

        """
        if not self.rawq:
            self.fill_rawq()
            if self.eof:
                raise EOFError
        c = self.rawq[self.irawq:self.irawq+1]
        self.irawq = self.irawq + 1
        if self.irawq >= len(self.rawq):
            self.rawq = b''
            self.irawq = 0
        return c

    def fill_rawq(self):
        """Fill raw queue from exactly one recv() system call.

        Block if no data is immediately available.  Set self.eof when
        connection is closed.

        """
        if self.irawq >= len(self.rawq):
            self.rawq = b''
            self.irawq = 0
        # The buffer size should be fairly small so as to avoid quadratic
        # behavior in process_rawq() above
        buf = self.sock.recv(50)
        self.msg("recv %r", buf)
        self.eof = (not buf)
        self.rawq = self.rawq + buf

    def sock_avail(self):
        """Test whether data is available on the socket."""
        with _TelnetSelector() as selector:
            selector.register(self, selectors.EVENT_READ)
            return bool(selector.select(0))

    def interact(self):
        """Interaction function, emulates a very dumb telnet client."""
        if sys.platform == "win32":
            self.mt_interact()
            return
        with _TelnetSelector() as selector:
            selector.register(self, selectors.EVENT_READ)
            selector.register(sys.stdin, selectors.EVENT_READ)

            while True:
                for key, events in selector.select():
                    if key.fileobj is self:
                        try:
                            text = self.read_eager()
                        except EOFError:
                            print('*** Connection closed by remote host ***')
                            return
                        if text:
                            sys.stdout.write(text.decode('ascii'))
                            sys.stdout.flush()
                    elif key.fileobj is sys.stdin:
                        line = sys.stdin.readline().encode('ascii')
                        if not line:
                            return
                        self.write(line)

    def mt_interact(self):
        """Multithreaded version of interact()."""
        import _thread
        _thread.start_new_thread(self.listener, ())
        while 1:
            line = sys.stdin.readline()
            if not line:
                break
            self.write(line.encode('ascii'))

    def listener(self):
        """Helper for mt_interact() -- this executes in the other thread."""
        while 1:
            try:
                data = self.read_eager()
            except EOFError:
                print('*** Connection closed by remote host ***')
                return
            if data:
                sys.stdout.write(data.decode('ascii'))
            else:
                sys.stdout.flush()

    def expect(self, list, timeout=None):
        """Read until one from a list of a regular expressions matches.

        The first argument is a list of regular expressions, either
        compiled (re.RegexObject instances) or uncompiled (strings).
        The optional second argument is a timeout, in seconds; default
        is no timeout.

        Return a tuple of three items: the index in the list of the
        first regular expression that matches; the match object
        returned; and the text read up till and including the match.

        If EOF is read and no text was read, raise EOFError.
        Otherwise, when nothing matches, return (-1, None, text) where
        text is the text received so far (may be the empty string if a
        timeout happened).

        If a regular expression ends with a greedy match (e.g. '.*')
        or if more than one expression can match the same input, the
        results are undeterministic, and may depend on the I/O timing.

        """
        re = None
        list = list[:]
        indices = range(len(list))
        for i in indices:
            if not hasattr(list[i], "search"):
                if not re: import re
                list[i] = re.compile(list[i])
        if timeout is not None:
            deadline = _time() + timeout
        with _TelnetSelector() as selector:
            selector.register(self, selectors.EVENT_READ)
            while not self.eof:
                self.process_rawq()
                for i in indices:
                    m = list[i].search(self.cookedq)
                    if m:
                        e = m.end()
                        text = self.cookedq[:e]
                        self.cookedq = self.cookedq[e:]
                        return (i, m, text)
                if timeout is not None:
                    ready = selector.select(timeout)
                    timeout = deadline - _time()
                    if not ready:
                        if timeout < 0:
                            break
                        else:
                            continue
                self.fill_rawq()
        text = self.read_very_lazy()
        if not text and self.eof:
            raise EOFError
        return (-1, None, text)


def test():
    """Test program for telnetlib.

    Usage: python telnetlib.py [-d] ... [host [port]]

    Default host is localhost; default port is 23.

    """
    debuglevel = 0
    while sys.argv[1:] and sys.argv[1] == '-d':
        debuglevel = debuglevel+1
        del sys.argv[1]
    host = 'localhost'
    if sys.argv[1:]:
        host = sys.argv[1]
    port = 0
    if sys.argv[2:]:
        portstr = sys.argv[2]
        try:
            port = int(portstr)
        except ValueError:
            port = socket.getservbyname(portstr, 'tcp')
    tn = Telnet()
    tn.set_debuglevel(debuglevel)
    tn.open(host, port, timeout=0.5)
    tn.interact()
    tn.close()

if __name__ == '__main__':
    test()
lib\tempfile.py
"""Temporary files.

This module provides generic, low- and high-level interfaces for
creating temporary files and directories.  All of the interfaces
provided by this module can be used without fear of race conditions
except for 'mktemp'.  'mktemp' is subject to race conditions and
should not be used; it is provided for backward compatibility only.

This module also provides some data items to the user:

  TMP_MAX  - maximum number of names that will be tried before
             giving up.
  tempdir  - If this is set to a string before the first use of
             any routine from this module, it will be considered as
             another candidate location to store temporary files.
"""

__all__ = [
    "NamedTemporaryFile", "TemporaryFile", # high level safe interfaces
    "SpooledTemporaryFile", "TemporaryDirectory",
    "mkstemp", "mkdtemp",                  # low level safe interfaces
    "mktemp",                              # deprecated unsafe interface
    "TMP_MAX", "gettempprefix",            # constants
    "tempdir", "gettempdir"
   ]


# Imports.

import functools as _functools
import warnings as _warnings
import io as _io
import os as _os
import shutil as _shutil
import errno as _errno
from random import Random as _Random
import weakref as _weakref

try:
    import _thread
except ImportError:
    import _dummy_thread as _thread
_allocate_lock = _thread.allocate_lock

_text_openflags = _os.O_RDWR | _os.O_CREAT | _os.O_EXCL
if hasattr(_os, 'O_NOFOLLOW'):
    _text_openflags |= _os.O_NOFOLLOW

_bin_openflags = _text_openflags
if hasattr(_os, 'O_BINARY'):
    _bin_openflags |= _os.O_BINARY

if hasattr(_os, 'TMP_MAX'):
    TMP_MAX = _os.TMP_MAX
else:
    TMP_MAX = 10000

# Although it does not have an underscore for historical reasons, this
# variable is an internal implementation detail (see issue 10354).
template = "tmp"

# Internal routines.

_once_lock = _allocate_lock()

if hasattr(_os, "lstat"):
    _stat = _os.lstat
elif hasattr(_os, "stat"):
    _stat = _os.stat
else:
    # Fallback.  All we need is something that raises OSError if the
    # file doesn't exist.
    def _stat(fn):
        fd = _os.open(fn, _os.O_RDONLY)
        _os.close(fd)

def _exists(fn):
    try:
        _stat(fn)
    except OSError:
        return False
    else:
        return True

class _RandomNameSequence:
    """An instance of _RandomNameSequence generates an endless
    sequence of unpredictable strings which can safely be incorporated
    into file names.  Each string is six characters long.  Multiple
    threads can safely use the same instance at the same time.

    _RandomNameSequence is an iterator."""

    characters = "abcdefghijklmnopqrstuvwxyz0123456789_"

    @property
    def rng(self):
        cur_pid = _os.getpid()
        if cur_pid != getattr(self, '_rng_pid', None):
            self._rng = _Random()
            self._rng_pid = cur_pid
        return self._rng

    def __iter__(self):
        return self

    def __next__(self):
        c = self.characters
        choose = self.rng.choice
        letters = [choose(c) for dummy in range(8)]
        return ''.join(letters)

def _candidate_tempdir_list():
    """Generate a list of candidate temporary directories which
    _get_default_tempdir will try."""

    dirlist = []

    # First, try the environment.
    for envname in 'TMPDIR', 'TEMP', 'TMP':
        dirname = _os.getenv(envname)
        if dirname: dirlist.append(dirname)

    # Failing that, try OS-specific locations.
    if _os.name == 'nt':
        dirlist.extend([ r'c:\temp', r'c:\tmp', r'\temp', r'\tmp' ])
    else:
        dirlist.extend([ '/tmp', '/var/tmp', '/usr/tmp' ])

    # As a last resort, the current directory.
    try:
        dirlist.append(_os.getcwd())
    except (AttributeError, OSError):
        dirlist.append(_os.curdir)

    return dirlist

def _get_default_tempdir():
    """Calculate the default directory to use for temporary files.
    This routine should be called exactly once.

    We determine whether or not a candidate temp dir is usable by
    trying to create and write to a file in that directory.  If this
    is successful, the test file is deleted.  To prevent denial of
    service, the name of the test file must be randomized."""

    namer = _RandomNameSequence()
    dirlist = _candidate_tempdir_list()

    for dir in dirlist:
        if dir != _os.curdir:
            dir = _os.path.abspath(dir)
        # Try only a few names per directory.
        for seq in range(100):
            name = next(namer)
            filename = _os.path.join(dir, name)
            try:
                fd = _os.open(filename, _bin_openflags, 0o600)
                try:
                    try:
                        with _io.open(fd, 'wb', closefd=False) as fp:
                            fp.write(b'blat')
                    finally:
                        _os.close(fd)
                finally:
                    _os.unlink(filename)
                return dir
            except FileExistsError:
                pass
            except PermissionError:
                # This exception is thrown when a directory with the chosen name
                # already exists on windows.
                if (_os.name == 'nt' and _os.path.isdir(dir) and
                    _os.access(dir, _os.W_OK)):
                    continue
                break   # no point trying more names in this directory
            except OSError:
                break   # no point trying more names in this directory
    raise FileNotFoundError(_errno.ENOENT,
                            "No usable temporary directory found in %s" %
                            dirlist)

_name_sequence = None

def _get_candidate_names():
    """Common setup sequence for all user-callable interfaces."""

    global _name_sequence
    if _name_sequence is None:
        _once_lock.acquire()
        try:
            if _name_sequence is None:
                _name_sequence = _RandomNameSequence()
        finally:
            _once_lock.release()
    return _name_sequence


def _mkstemp_inner(dir, pre, suf, flags):
    """Code common to mkstemp, TemporaryFile, and NamedTemporaryFile."""

    names = _get_candidate_names()

    for seq in range(TMP_MAX):
        name = next(names)
        file = _os.path.join(dir, pre + name + suf)
        try:
            fd = _os.open(file, flags, 0o600)
            return (fd, _os.path.abspath(file))
        except FileExistsError:
            continue    # try again
        except PermissionError:
            # This exception is thrown when a directory with the chosen name
            # already exists on windows.
            if (_os.name == 'nt' and _os.path.isdir(dir) and
                _os.access(dir, _os.W_OK)):
                continue
            else:
                raise

    raise FileExistsError(_errno.EEXIST,
                          "No usable temporary file name found")


# User visible interfaces.

def gettempprefix():
    """Accessor for tempdir.template."""
    return template

tempdir = None

def gettempdir():
    """Accessor for tempfile.tempdir."""
    global tempdir
    if tempdir is None:
        _once_lock.acquire()
        try:
            if tempdir is None:
                tempdir = _get_default_tempdir()
        finally:
            _once_lock.release()
    return tempdir

def mkstemp(suffix="", prefix=template, dir=None, text=False):
    """User-callable function to create and return a unique temporary
    file.  The return value is a pair (fd, name) where fd is the
    file descriptor returned by os.open, and name is the filename.

    If 'suffix' is specified, the file name will end with that suffix,
    otherwise there will be no suffix.

    If 'prefix' is specified, the file name will begin with that prefix,
    otherwise a default prefix is used.

    If 'dir' is specified, the file will be created in that directory,
    otherwise a default directory is used.

    If 'text' is specified and true, the file is opened in text
    mode.  Else (the default) the file is opened in binary mode.  On
    some operating systems, this makes no difference.

    The file is readable and writable only by the creating user ID.
    If the operating system uses permission bits to indicate whether a
    file is executable, the file is executable by no one. The file
    descriptor is not inherited by children of this process.

    Caller is responsible for deleting the file when done with it.
    """

    if dir is None:
        dir = gettempdir()

    if text:
        flags = _text_openflags
    else:
        flags = _bin_openflags

    return _mkstemp_inner(dir, prefix, suffix, flags)


def mkdtemp(suffix="", prefix=template, dir=None):
    """User-callable function to create and return a unique temporary
    directory.  The return value is the pathname of the directory.

    Arguments are as for mkstemp, except that the 'text' argument is
    not accepted.

    The directory is readable, writable, and searchable only by the
    creating user.

    Caller is responsible for deleting the directory when done with it.
    """

    if dir is None:
        dir = gettempdir()

    names = _get_candidate_names()

    for seq in range(TMP_MAX):
        name = next(names)
        file = _os.path.join(dir, prefix + name + suffix)
        try:
            _os.mkdir(file, 0o700)
            return file
        except FileExistsError:
            continue    # try again
        except PermissionError:
            # This exception is thrown when a directory with the chosen name
            # already exists on windows.
            if (_os.name == 'nt' and _os.path.isdir(dir) and
                _os.access(dir, _os.W_OK)):
                continue
            else:
                raise

    raise FileExistsError(_errno.EEXIST,
                          "No usable temporary directory name found")

def mktemp(suffix="", prefix=template, dir=None):
    """User-callable function to return a unique temporary file name.  The
    file is not created.

    Arguments are as for mkstemp, except that the 'text' argument is
    not accepted.

    This function is unsafe and should not be used.  The file name
    refers to a file that did not exist at some point, but by the time
    you get around to creating it, someone else may have beaten you to
    the punch.
    """

##    from warnings import warn as _warn
##    _warn("mktemp is a potential security risk to your program",
##          RuntimeWarning, stacklevel=2)

    if dir is None:
        dir = gettempdir()

    names = _get_candidate_names()
    for seq in range(TMP_MAX):
        name = next(names)
        file = _os.path.join(dir, prefix + name + suffix)
        if not _exists(file):
            return file

    raise FileExistsError(_errno.EEXIST,
                          "No usable temporary filename found")


class _TemporaryFileCloser:
    """A separate object allowing proper closing of a temporary file's
    underlying file object, without adding a __del__ method to the
    temporary file."""

    file = None  # Set here since __del__ checks it
    close_called = False

    def __init__(self, file, name, delete=True):
        self.file = file
        self.name = name
        self.delete = delete

    # NT provides delete-on-close as a primitive, so we don't need
    # the wrapper to do anything special.  We still use it so that
    # file.name is useful (i.e. not "(fdopen)") with NamedTemporaryFile.
    if _os.name != 'nt':
        # Cache the unlinker so we don't get spurious errors at
        # shutdown when the module-level "os" is None'd out.  Note
        # that this must be referenced as self.unlink, because the
        # name TemporaryFileWrapper may also get None'd out before
        # __del__ is called.

        def close(self, unlink=_os.unlink):
            if not self.close_called and self.file is not None:
                self.close_called = True
                try:
                    self.file.close()
                finally:
                    if self.delete:
                        unlink(self.name)

        # Need to ensure the file is deleted on __del__
        def __del__(self):
            self.close()

    else:
        def close(self):
            if not self.close_called:
                self.close_called = True
                self.file.close()


class _TemporaryFileWrapper:
    """Temporary file wrapper

    This class provides a wrapper around files opened for
    temporary use.  In particular, it seeks to automatically
    remove the file when it is no longer needed.
    """

    def __init__(self, file, name, delete=True):
        self.file = file
        self.name = name
        self.delete = delete
        self._closer = _TemporaryFileCloser(file, name, delete)

    def __getattr__(self, name):
        # Attribute lookups are delegated to the underlying file
        # and cached for non-numeric results
        # (i.e. methods are cached, closed and friends are not)
        file = self.__dict__['file']
        a = getattr(file, name)
        if hasattr(a, '__call__'):
            func = a
            @_functools.wraps(func)
            def func_wrapper(*args, **kwargs):
                return func(*args, **kwargs)
            # Avoid closing the file as long as the wrapper is alive,
            # see issue #18879.
            func_wrapper._closer = self._closer
            a = func_wrapper
        if not isinstance(a, int):
            setattr(self, name, a)
        return a

    # The underlying __enter__ method returns the wrong object
    # (self.file) so override it to return the wrapper
    def __enter__(self):
        self.file.__enter__()
        return self

    # Need to trap __exit__ as well to ensure the file gets
    # deleted when used in a with statement
    def __exit__(self, exc, value, tb):
        result = self.file.__exit__(exc, value, tb)
        self.close()
        return result

    def close(self):
        """
        Close the temporary file, possibly deleting it.
        """
        self._closer.close()

    # iter() doesn't use __getattr__ to find the __iter__ method
    def __iter__(self):
        # Don't return iter(self.file), but yield from it to avoid closing
        # file as long as it's being used as iterator (see issue #23700).  We
        # can't use 'yield from' here because iter(file) returns the file
        # object itself, which has a close method, and thus the file would get
        # closed when the generator is finalized, due to PEP380 semantics.
        for line in self.file:
            yield line


def NamedTemporaryFile(mode='w+b', buffering=-1, encoding=None,
                       newline=None, suffix="", prefix=template,
                       dir=None, delete=True):
    """Create and return a temporary file.
    Arguments:
    'prefix', 'suffix', 'dir' -- as for mkstemp.
    'mode' -- the mode argument to io.open (default "w+b").
    'buffering' -- the buffer size argument to io.open (default -1).
    'encoding' -- the encoding argument to io.open (default None)
    'newline' -- the newline argument to io.open (default None)
    'delete' -- whether the file is deleted on close (default True).
    The file is created as mkstemp() would do it.

    Returns an object with a file-like interface; the name of the file
    is accessible as file.name.  The file will be automatically deleted
    when it is closed unless the 'delete' argument is set to False.
    """

    if dir is None:
        dir = gettempdir()

    flags = _bin_openflags

    # Setting O_TEMPORARY in the flags causes the OS to delete
    # the file when it is closed.  This is only supported by Windows.
    if _os.name == 'nt' and delete:
        flags |= _os.O_TEMPORARY

    (fd, name) = _mkstemp_inner(dir, prefix, suffix, flags)
    try:
        file = _io.open(fd, mode, buffering=buffering,
                        newline=newline, encoding=encoding)

        return _TemporaryFileWrapper(file, name, delete)
    except Exception:
        _os.close(fd)
        raise

if _os.name != 'posix' or _os.sys.platform == 'cygwin':
    # On non-POSIX and Cygwin systems, assume that we cannot unlink a file
    # while it is open.
    TemporaryFile = NamedTemporaryFile

else:
    def TemporaryFile(mode='w+b', buffering=-1, encoding=None,
                      newline=None, suffix="", prefix=template,
                      dir=None):
        """Create and return a temporary file.
        Arguments:
        'prefix', 'suffix', 'dir' -- as for mkstemp.
        'mode' -- the mode argument to io.open (default "w+b").
        'buffering' -- the buffer size argument to io.open (default -1).
        'encoding' -- the encoding argument to io.open (default None)
        'newline' -- the newline argument to io.open (default None)
        The file is created as mkstemp() would do it.

        Returns an object with a file-like interface.  The file has no
        name, and will cease to exist when it is closed.
        """

        if dir is None:
            dir = gettempdir()

        flags = _bin_openflags

        (fd, name) = _mkstemp_inner(dir, prefix, suffix, flags)
        try:
            _os.unlink(name)
            return _io.open(fd, mode, buffering=buffering,
                            newline=newline, encoding=encoding)
        except:
            _os.close(fd)
            raise

class SpooledTemporaryFile:
    """Temporary file wrapper, specialized to switch from BytesIO
    or StringIO to a real file when it exceeds a certain size or
    when a fileno is needed.
    """
    _rolled = False

    def __init__(self, max_size=0, mode='w+b', buffering=-1,
                 encoding=None, newline=None,
                 suffix="", prefix=template, dir=None):
        if 'b' in mode:
            self._file = _io.BytesIO()
        else:
            # Setting newline="\n" avoids newline translation;
            # this is important because otherwise on Windows we'd
            # get double newline translation upon rollover().
            self._file = _io.StringIO(newline="\n")
        self._max_size = max_size
        self._rolled = False
        self._TemporaryFileArgs = {'mode': mode, 'buffering': buffering,
                                   'suffix': suffix, 'prefix': prefix,
                                   'encoding': encoding, 'newline': newline,
                                   'dir': dir}

    def _check(self, file):
        if self._rolled: return
        max_size = self._max_size
        if max_size and file.tell() > max_size:
            self.rollover()

    def rollover(self):
        if self._rolled: return
        file = self._file
        newfile = self._file = TemporaryFile(**self._TemporaryFileArgs)
        del self._TemporaryFileArgs

        newfile.write(file.getvalue())
        newfile.seek(file.tell(), 0)

        self._rolled = True

    # The method caching trick from NamedTemporaryFile
    # won't work here, because _file may change from a
    # BytesIO/StringIO instance to a real file. So we list
    # all the methods directly.

    # Context management protocol
    def __enter__(self):
        if self._file.closed:
            raise ValueError("Cannot enter context with closed file")
        return self

    def __exit__(self, exc, value, tb):
        self._file.close()

    # file protocol
    def __iter__(self):
        return self._file.__iter__()

    def close(self):
        self._file.close()

    @property
    def closed(self):
        return self._file.closed

    @property
    def encoding(self):
        try:
            return self._file.encoding
        except AttributeError:
            if 'b' in self._TemporaryFileArgs['mode']:
                raise
            return self._TemporaryFileArgs['encoding']

    def fileno(self):
        self.rollover()
        return self._file.fileno()

    def flush(self):
        self._file.flush()

    def isatty(self):
        return self._file.isatty()

    @property
    def mode(self):
        try:
            return self._file.mode
        except AttributeError:
            return self._TemporaryFileArgs['mode']

    @property
    def name(self):
        try:
            return self._file.name
        except AttributeError:
            return None

    @property
    def newlines(self):
        try:
            return self._file.newlines
        except AttributeError:
            if 'b' in self._TemporaryFileArgs['mode']:
                raise
            return self._TemporaryFileArgs['newline']

    def read(self, *args):
        return self._file.read(*args)

    def readline(self, *args):
        return self._file.readline(*args)

    def readlines(self, *args):
        return self._file.readlines(*args)

    def seek(self, *args):
        self._file.seek(*args)

    @property
    def softspace(self):
        return self._file.softspace

    def tell(self):
        return self._file.tell()

    def truncate(self, size=None):
        if size is None:
            self._file.truncate()
        else:
            if size > self._max_size:
                self.rollover()
            self._file.truncate(size)

    def write(self, s):
        file = self._file
        rv = file.write(s)
        self._check(file)
        return rv

    def writelines(self, iterable):
        file = self._file
        rv = file.writelines(iterable)
        self._check(file)
        return rv


class TemporaryDirectory(object):
    """Create and return a temporary directory.  This has the same
    behavior as mkdtemp but can be used as a context manager.  For
    example:

        with TemporaryDirectory() as tmpdir:
            ...

    Upon exiting the context, the directory and everything contained
    in it are removed.
    """

    def __init__(self, suffix="", prefix=template, dir=None):
        self.name = mkdtemp(suffix, prefix, dir)
        self._finalizer = _weakref.finalize(
            self, self._cleanup, self.name,
            warn_message="Implicitly cleaning up {!r}".format(self))

    @classmethod
    def _cleanup(cls, name, warn_message):
        _shutil.rmtree(name)
        _warnings.warn(warn_message, ResourceWarning)


    def __repr__(self):
        return "<{} {!r}>".format(self.__class__.__name__, self.name)

    def __enter__(self):
        return self.name

    def __exit__(self, exc, value, tb):
        self.cleanup()

    def cleanup(self):
        if self._finalizer.detach():
            _shutil.rmtree(self.name)
lib\textwrap.py
"""Text wrapping and filling.
"""

# Copyright (C) 1999-2001 Gregory P. Ward.
# Copyright (C) 2002, 2003 Python Software Foundation.
# Written by Greg Ward <[email protected]>

import re

__all__ = ['TextWrapper', 'wrap', 'fill', 'dedent', 'indent', 'shorten']

# Hardcode the recognized whitespace characters to the US-ASCII
# whitespace characters.  The main reason for doing this is that in
# ISO-8859-1, 0xa0 is non-breaking whitespace, so in certain locales
# that character winds up in string.whitespace.  Respecting
# string.whitespace in those cases would 1) make textwrap treat 0xa0 the
# same as any other whitespace char, which is clearly wrong (it's a
# *non-breaking* space), 2) possibly cause problems with Unicode,
# since 0xa0 is not in range(128).
_whitespace = '\t\n\x0b\x0c\r '

class TextWrapper:
    """
    Object for wrapping/filling text.  The public interface consists of
    the wrap() and fill() methods; the other methods are just there for
    subclasses to override in order to tweak the default behaviour.
    If you want to completely replace the main wrapping algorithm,
    you'll probably have to override _wrap_chunks().

    Several instance attributes control various aspects of wrapping:
      width (default: 70)
        the maximum width of wrapped lines (unless break_long_words
        is false)
      initial_indent (default: "")
        string that will be prepended to the first line of wrapped
        output.  Counts towards the line's width.
      subsequent_indent (default: "")
        string that will be prepended to all lines save the first
        of wrapped output; also counts towards each line's width.
      expand_tabs (default: true)
        Expand tabs in input text to spaces before further processing.
        Each tab will become 0 .. 'tabsize' spaces, depending on its position
        in its line.  If false, each tab is treated as a single character.
      tabsize (default: 8)
        Expand tabs in input text to 0 .. 'tabsize' spaces, unless
        'expand_tabs' is false.
      replace_whitespace (default: true)
        Replace all whitespace characters in the input text by spaces
        after tab expansion.  Note that if expand_tabs is false and
        replace_whitespace is true, every tab will be converted to a
        single space!
      fix_sentence_endings (default: false)
        Ensure that sentence-ending punctuation is always followed
        by two spaces.  Off by default because the algorithm is
        (unavoidably) imperfect.
      break_long_words (default: true)
        Break words longer than 'width'.  If false, those words will not
        be broken, and some lines might be longer than 'width'.
      break_on_hyphens (default: true)
        Allow breaking hyphenated words. If true, wrapping will occur
        preferably on whitespaces and right after hyphens part of
        compound words.
      drop_whitespace (default: true)
        Drop leading and trailing whitespace from lines.
      max_lines (default: None)
        Truncate wrapped lines.
      placeholder (default: ' [...]')
        Append to the last line of truncated text.
    """

    unicode_whitespace_trans = {}
    uspace = ord(' ')
    for x in _whitespace:
        unicode_whitespace_trans[ord(x)] = uspace

    # This funky little regex is just the trick for splitting
    # text up into word-wrappable chunks.  E.g.
    #   "Hello there -- you goof-ball, use the -b option!"
    # splits into
    #   Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option!
    # (after stripping out empty strings).
    wordsep_re = re.compile(
        r'(\s+|'                                  # any whitespace
        r'[^\s\w]*\w+[^0-9\W]-(?=\w+[^0-9\W])|'   # hyphenated words
        r'(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w))')   # em-dash

    # This less funky little regex just split on recognized spaces. E.g.
    #   "Hello there -- you goof-ball, use the -b option!"
    # splits into
    #   Hello/ /there/ /--/ /you/ /goof-ball,/ /use/ /the/ /-b/ /option!/
    wordsep_simple_re = re.compile(r'(\s+)')

    # XXX this is not locale- or charset-aware -- string.lowercase
    # is US-ASCII only (and therefore English-only)
    sentence_end_re = re.compile(r'[a-z]'             # lowercase letter
                                 r'[\.\!\?]'          # sentence-ending punct.
                                 r'[\"\']?'           # optional end-of-quote
                                 r'\Z')               # end of chunk


    def __init__(self,
                 width=70,
                 initial_indent="",
                 subsequent_indent="",
                 expand_tabs=True,
                 replace_whitespace=True,
                 fix_sentence_endings=False,
                 break_long_words=True,
                 drop_whitespace=True,
                 break_on_hyphens=True,
                 tabsize=8,
                 *,
                 max_lines=None,
                 placeholder=' [...]'):
        self.width = width
        self.initial_indent = initial_indent
        self.subsequent_indent = subsequent_indent
        self.expand_tabs = expand_tabs
        self.replace_whitespace = replace_whitespace
        self.fix_sentence_endings = fix_sentence_endings
        self.break_long_words = break_long_words
        self.drop_whitespace = drop_whitespace
        self.break_on_hyphens = break_on_hyphens
        self.tabsize = tabsize
        self.max_lines = max_lines
        self.placeholder = placeholder


    # -- Private methods -----------------------------------------------
    # (possibly useful for subclasses to override)

    def _munge_whitespace(self, text):
        """_munge_whitespace(text : string) -> string

        Munge whitespace in text: expand tabs and convert all other
        whitespace characters to spaces.  Eg. " foo\\tbar\\n\\nbaz"
        becomes " foo    bar  baz".
        """
        if self.expand_tabs:
            text = text.expandtabs(self.tabsize)
        if self.replace_whitespace:
            text = text.translate(self.unicode_whitespace_trans)
        return text


    def _split(self, text):
        """_split(text : string) -> [string]

        Split the text to wrap into indivisible chunks.  Chunks are
        not quite the same as words; see _wrap_chunks() for full
        details.  As an example, the text
          Look, goof-ball -- use the -b option!
        breaks into the following chunks:
          'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ',
          'use', ' ', 'the', ' ', '-b', ' ', 'option!'
        if break_on_hyphens is True, or in:
          'Look,', ' ', 'goof-ball', ' ', '--', ' ',
          'use', ' ', 'the', ' ', '-b', ' ', option!'
        otherwise.
        """
        if self.break_on_hyphens is True:
            chunks = self.wordsep_re.split(text)
        else:
            chunks = self.wordsep_simple_re.split(text)
        chunks = [c for c in chunks if c]
        return chunks

    def _fix_sentence_endings(self, chunks):
        """_fix_sentence_endings(chunks : [string])

        Correct for sentence endings buried in 'chunks'.  Eg. when the
        original text contains "... foo.\\nBar ...", munge_whitespace()
        and split() will convert that to [..., "foo.", " ", "Bar", ...]
        which has one too few spaces; this method simply changes the one
        space to two.
        """
        i = 0
        patsearch = self.sentence_end_re.search
        while i < len(chunks)-1:
            if chunks[i+1] == " " and patsearch(chunks[i]):
                chunks[i+1] = "  "
                i += 2
            else:
                i += 1

    def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width):
        """_handle_long_word(chunks : [string],
                             cur_line : [string],
                             cur_len : int, width : int)

        Handle a chunk of text (most likely a word, not whitespace) that
        is too long to fit in any line.
        """
        # Figure out when indent is larger than the specified width, and make
        # sure at least one character is stripped off on every pass
        if width < 1:
            space_left = 1
        else:
            space_left = width - cur_len

        # If we're allowed to break long words, then do so: put as much
        # of the next chunk onto the current line as will fit.
        if self.break_long_words:
            cur_line.append(reversed_chunks[-1][:space_left])
            reversed_chunks[-1] = reversed_chunks[-1][space_left:]

        # Otherwise, we have to preserve the long word intact.  Only add
        # it to the current line if there's nothing already there --
        # that minimizes how much we violate the width constraint.
        elif not cur_line:
            cur_line.append(reversed_chunks.pop())

        # If we're not allowed to break long words, and there's already
        # text on the current line, do nothing.  Next time through the
        # main loop of _wrap_chunks(), we'll wind up here again, but
        # cur_len will be zero, so the next line will be entirely
        # devoted to the long word that we can't handle right now.

    def _wrap_chunks(self, chunks):
        """_wrap_chunks(chunks : [string]) -> [string]

        Wrap a sequence of text chunks and return a list of lines of
        length 'self.width' or less.  (If 'break_long_words' is false,
        some lines may be longer than this.)  Chunks correspond roughly
        to words and the whitespace between them: each chunk is
        indivisible (modulo 'break_long_words'), but a line break can
        come between any two chunks.  Chunks should not have internal
        whitespace; ie. a chunk is either all whitespace or a "word".
        Whitespace chunks will be removed from the beginning and end of
        lines, but apart from that whitespace is preserved.
        """
        lines = []
        if self.width <= 0:
            raise ValueError("invalid width %r (must be > 0)" % self.width)
        if self.max_lines is not None:
            if self.max_lines > 1:
                indent = self.subsequent_indent
            else:
                indent = self.initial_indent
            if len(indent) + len(self.placeholder.lstrip()) > self.width:
                raise ValueError("placeholder too large for max width")

        # Arrange in reverse order so items can be efficiently popped
        # from a stack of chucks.
        chunks.reverse()

        while chunks:

            # Start the list of chunks that will make up the current line.
            # cur_len is just the length of all the chunks in cur_line.
            cur_line = []
            cur_len = 0

            # Figure out which static string will prefix this line.
            if lines:
                indent = self.subsequent_indent
            else:
                indent = self.initial_indent

            # Maximum width for this line.
            width = self.width - len(indent)

            # First chunk on line is whitespace -- drop it, unless this
            # is the very beginning of the text (ie. no lines started yet).
            if self.drop_whitespace and chunks[-1].strip() == '' and lines:
                del chunks[-1]

            while chunks:
                l = len(chunks[-1])

                # Can at least squeeze this chunk onto the current line.
                if cur_len + l <= width:
                    cur_line.append(chunks.pop())
                    cur_len += l

                # Nope, this line is full.
                else:
                    break

            # The current line is full, and the next chunk is too big to
            # fit on *any* line (not just this one).
            if chunks and len(chunks[-1]) > width:
                self._handle_long_word(chunks, cur_line, cur_len, width)
                cur_len = sum(map(len, cur_line))

            # If the last chunk on this line is all whitespace, drop it.
            if self.drop_whitespace and cur_line and cur_line[-1].strip() == '':
                cur_len -= len(cur_line[-1])
                del cur_line[-1]

            if cur_line:
                if (self.max_lines is None or
                    len(lines) + 1 < self.max_lines or
                    (not chunks or
                     self.drop_whitespace and
                     len(chunks) == 1 and
                     not chunks[0].strip()) and cur_len <= width):
                    # Convert current line back to a string and store it in
                    # list of all lines (return value).
                    lines.append(indent + ''.join(cur_line))
                else:
                    while cur_line:
                        if (cur_line[-1].strip() and
                            cur_len + len(self.placeholder) <= width):
                            cur_line.append(self.placeholder)
                            lines.append(indent + ''.join(cur_line))
                            break
                        cur_len -= len(cur_line[-1])
                        del cur_line[-1]
                    else:
                        if lines:
                            prev_line = lines[-1].rstrip()
                            if (len(prev_line) + len(self.placeholder) <=
                                    self.width):
                                lines[-1] = prev_line + self.placeholder
                                break
                        lines.append(indent + self.placeholder.lstrip())
                    break

        return lines

    def _split_chunks(self, text):
        text = self._munge_whitespace(text)
        return self._split(text)

    # -- Public interface ----------------------------------------------

    def wrap(self, text):
        """wrap(text : string) -> [string]

        Reformat the single paragraph in 'text' so it fits in lines of
        no more than 'self.width' columns, and return a list of wrapped
        lines.  Tabs in 'text' are expanded with string.expandtabs(),
        and all other whitespace characters (including newline) are
        converted to space.
        """
        chunks = self._split_chunks(text)
        if self.fix_sentence_endings:
            self._fix_sentence_endings(chunks)
        return self._wrap_chunks(chunks)

    def fill(self, text):
        """fill(text : string) -> string

        Reformat the single paragraph in 'text' to fit in lines of no
        more than 'self.width' columns, and return a new string
        containing the entire wrapped paragraph.
        """
        return "\n".join(self.wrap(text))


# -- Convenience interface ---------------------------------------------

def wrap(text, width=70, **kwargs):
    """Wrap a single paragraph of text, returning a list of wrapped lines.

    Reformat the single paragraph in 'text' so it fits in lines of no
    more than 'width' columns, and return a list of wrapped lines.  By
    default, tabs in 'text' are expanded with string.expandtabs(), and
    all other whitespace characters (including newline) are converted to
    space.  See TextWrapper class for available keyword args to customize
    wrapping behaviour.
    """
    w = TextWrapper(width=width, **kwargs)
    return w.wrap(text)

def fill(text, width=70, **kwargs):
    """Fill a single paragraph of text, returning a new string.

    Reformat the single paragraph in 'text' to fit in lines of no more
    than 'width' columns, and return a new string containing the entire
    wrapped paragraph.  As with wrap(), tabs are expanded and other
    whitespace characters converted to space.  See TextWrapper class for
    available keyword args to customize wrapping behaviour.
    """
    w = TextWrapper(width=width, **kwargs)
    return w.fill(text)

def shorten(text, width, **kwargs):
    """Collapse and truncate the given text to fit in the given width.

    The text first has its whitespace collapsed.  If it then fits in
    the *width*, it is returned as is.  Otherwise, as many words
    as possible are joined and then the placeholder is appended::

        >>> textwrap.shorten("Hello  world!", width=12)
        'Hello world!'
        >>> textwrap.shorten("Hello  world!", width=11)
        'Hello [...]'
    """
    w = TextWrapper(width=width, max_lines=1, **kwargs)
    return w.fill(' '.join(text.strip().split()))


# -- Loosely related functionality -------------------------------------

_whitespace_only_re = re.compile('^[ \t]+$', re.MULTILINE)
_leading_whitespace_re = re.compile('(^[ \t]*)(?:[^ \t\n])', re.MULTILINE)

def dedent(text):
    """Remove any common leading whitespace from every line in `text`.

    This can be used to make triple-quoted strings line up with the left
    edge of the display, while still presenting them in the source code
    in indented form.

    Note that tabs and spaces are both treated as whitespace, but they
    are not equal: the lines "  hello" and "\\thello" are
    considered to have no common leading whitespace.  (This behaviour is
    new in Python 2.5; older versions of this module incorrectly
    expanded tabs before searching for common leading whitespace.)
    """
    # Look for the longest leading string of spaces and tabs common to
    # all lines.
    margin = None
    text = _whitespace_only_re.sub('', text)
    indents = _leading_whitespace_re.findall(text)
    for indent in indents:
        if margin is None:
            margin = indent

        # Current line more deeply indented than previous winner:
        # no change (previous winner is still on top).
        elif indent.startswith(margin):
            pass

        # Current line consistent with and no deeper than previous winner:
        # it's the new winner.
        elif margin.startswith(indent):
            margin = indent

        # Find the largest common whitespace between current line and previous
        # winner.
        else:
            for i, (x, y) in enumerate(zip(margin, indent)):
                if x != y:
                    margin = margin[:i]
                    break
            else:
                margin = margin[:len(indent)]

    # sanity check (testing/debugging only)
    if 0 and margin:
        for line in text.split("\n"):
            assert not line or line.startswith(margin), \
                   "line = %r, margin = %r" % (line, margin)

    if margin:
        text = re.sub(r'(?m)^' + margin, '', text)
    return text


def indent(text, prefix, predicate=None):
    """Adds 'prefix' to the beginning of selected lines in 'text'.

    If 'predicate' is provided, 'prefix' will only be added to the lines
    where 'predicate(line)' is True. If 'predicate' is not provided,
    it will default to adding 'prefix' to all non-empty lines that do not
    consist solely of whitespace characters.
    """
    if predicate is None:
        def predicate(line):
            return line.strip()

    def prefixed_lines():
        for line in text.splitlines(True):
            yield (prefix + line if predicate(line) else line)
    return ''.join(prefixed_lines())


if __name__ == "__main__":
    #print dedent("\tfoo\n\tbar")
    #print dedent("  \thello there\n  \t  how are you?")
    print(dedent("Hello there.\n  This is indented."))
lib\this.py
s = """Gur Mra bs Clguba, ol Gvz Crgref

Ornhgvshy vf orggre guna htyl.
Rkcyvpvg vf orggre guna vzcyvpvg.
Fvzcyr vf orggre guna pbzcyrk.
Pbzcyrk vf orggre guna pbzcyvpngrq.
Syng vf orggre guna arfgrq.
Fcnefr vf orggre guna qrafr.
Ernqnovyvgl pbhagf.
Fcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf.
Nygubhtu cenpgvpnyvgl orngf chevgl.
Reebef fubhyq arire cnff fvyragyl.
Hayrff rkcyvpvgyl fvyraprq.
Va gur snpr bs nzovthvgl, ershfr gur grzcgngvba gb thrff.
Gurer fubhyq or bar-- naq cersrenoyl bayl bar --boivbhf jnl gb qb vg.
Nygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er Qhgpu.
Abj vf orggre guna arire.
Nygubhtu arire vf bsgra orggre guna *evtug* abj.
Vs gur vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn.
Vs gur vzcyrzragngvba vf rnfl gb rkcynva, vg znl or n tbbq vqrn.
Anzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs gubfr!"""

d = {}
for c in (65, 97):
    for i in range(26):
        d[chr(i+c)] = chr((i+13) % 26 + c)

print("".join([d.get(c, c) for c in s]))
lib\threading.py
"""Thread module emulating a subset of Java's threading model."""

import sys as _sys
import _thread

try:
    from time import monotonic as _time
except ImportError:
    from time import time as _time
from traceback import format_exc as _format_exc
from _weakrefset import WeakSet
from itertools import islice as _islice, count as _count
try:
    from _collections import deque as _deque
except ImportError:
    from collections import deque as _deque

# Note regarding PEP 8 compliant names
#  This threading model was originally inspired by Java, and inherited
# the convention of camelCase function and method names from that
# language. Those original names are not in any imminent danger of
# being deprecated (even for Py3k),so this module provides them as an
# alias for the PEP 8 compliant names
# Note that using the new PEP 8 compliant names facilitates substitution
# with the multiprocessing module, which doesn't provide the old
# Java inspired names.

__all__ = ['active_count', 'Condition', 'current_thread', 'enumerate', 'Event',
           'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread', 'Barrier',
           'Timer', 'ThreadError', 'setprofile', 'settrace', 'local', 'stack_size']

# Rename some stuff so "from threading import *" is safe
_start_new_thread = _thread.start_new_thread
_allocate_lock = _thread.allocate_lock
_set_sentinel = _thread._set_sentinel
get_ident = _thread.get_ident
ThreadError = _thread.error
try:
    _CRLock = _thread.RLock
except AttributeError:
    _CRLock = None
TIMEOUT_MAX = _thread.TIMEOUT_MAX
del _thread


# Support for profile and trace hooks

_profile_hook = None
_trace_hook = None

def setprofile(func):
    """Set a profile function for all threads started from the threading module.

    The func will be passed to sys.setprofile() for each thread, before its
    run() method is called.

    """
    global _profile_hook
    _profile_hook = func

def settrace(func):
    """Set a trace function for all threads started from the threading module.

    The func will be passed to sys.settrace() for each thread, before its run()
    method is called.

    """
    global _trace_hook
    _trace_hook = func

# Synchronization classes

Lock = _allocate_lock

def RLock(*args, **kwargs):
    """Factory function that returns a new reentrant lock.

    A reentrant lock must be released by the thread that acquired it. Once a
    thread has acquired a reentrant lock, the same thread may acquire it again
    without blocking; the thread must release it once for each time it has
    acquired it.

    """
    if _CRLock is None:
        return _PyRLock(*args, **kwargs)
    return _CRLock(*args, **kwargs)

class _RLock:
    """This class implements reentrant lock objects.

    A reentrant lock must be released by the thread that acquired it. Once a
    thread has acquired a reentrant lock, the same thread may acquire it
    again without blocking; the thread must release it once for each time it
    has acquired it.

    """

    def __init__(self):
        self._block = _allocate_lock()
        self._owner = None
        self._count = 0

    def __repr__(self):
        owner = self._owner
        try:
            owner = _active[owner].name
        except KeyError:
            pass
        return "<%s owner=%r count=%d>" % (
                self.__class__.__name__, owner, self._count)

    def acquire(self, blocking=True, timeout=-1):
        """Acquire a lock, blocking or non-blocking.

        When invoked without arguments: if this thread already owns the lock,
        increment the recursion level by one, and return immediately. Otherwise,
        if another thread owns the lock, block until the lock is unlocked. Once
        the lock is unlocked (not owned by any thread), then grab ownership, set
        the recursion level to one, and return. If more than one thread is
        blocked waiting until the lock is unlocked, only one at a time will be
        able to grab ownership of the lock. There is no return value in this
        case.

        When invoked with the blocking argument set to true, do the same thing
        as when called without arguments, and return true.

        When invoked with the blocking argument set to false, do not block. If a
        call without an argument would block, return false immediately;
        otherwise, do the same thing as when called without arguments, and
        return true.

        When invoked with the floating-point timeout argument set to a positive
        value, block for at most the number of seconds specified by timeout
        and as long as the lock cannot be acquired.  Return true if the lock has
        been acquired, false if the timeout has elapsed.

        """
        me = get_ident()
        if self._owner == me:
            self._count += 1
            return 1
        rc = self._block.acquire(blocking, timeout)
        if rc:
            self._owner = me
            self._count = 1
        return rc

    __enter__ = acquire

    def release(self):
        """Release a lock, decrementing the recursion level.

        If after the decrement it is zero, reset the lock to unlocked (not owned
        by any thread), and if any other threads are blocked waiting for the
        lock to become unlocked, allow exactly one of them to proceed. If after
        the decrement the recursion level is still nonzero, the lock remains
        locked and owned by the calling thread.

        Only call this method when the calling thread owns the lock. A
        RuntimeError is raised if this method is called when the lock is
        unlocked.

        There is no return value.

        """
        if self._owner != get_ident():
            raise RuntimeError("cannot release un-acquired lock")
        self._count = count = self._count - 1
        if not count:
            self._owner = None
            self._block.release()

    def __exit__(self, t, v, tb):
        self.release()

    # Internal methods used by condition variables

    def _acquire_restore(self, state):
        self._block.acquire()
        self._count, self._owner = state

    def _release_save(self):
        if self._count == 0:
            raise RuntimeError("cannot release un-acquired lock")
        count = self._count
        self._count = 0
        owner = self._owner
        self._owner = None
        self._block.release()
        return (count, owner)

    def _is_owned(self):
        return self._owner == get_ident()

_PyRLock = _RLock


class Condition:
    """Class that implements a condition variable.

    A condition variable allows one or more threads to wait until they are
    notified by another thread.

    If the lock argument is given and not None, it must be a Lock or RLock
    object, and it is used as the underlying lock. Otherwise, a new RLock object
    is created and used as the underlying lock.

    """

    def __init__(self, lock=None):
        if lock is None:
            lock = RLock()
        self._lock = lock
        # Export the lock's acquire() and release() methods
        self.acquire = lock.acquire
        self.release = lock.release
        # If the lock defines _release_save() and/or _acquire_restore(),
        # these override the default implementations (which just call
        # release() and acquire() on the lock).  Ditto for _is_owned().
        try:
            self._release_save = lock._release_save
        except AttributeError:
            pass
        try:
            self._acquire_restore = lock._acquire_restore
        except AttributeError:
            pass
        try:
            self._is_owned = lock._is_owned
        except AttributeError:
            pass
        self._waiters = _deque()

    def __enter__(self):
        return self._lock.__enter__()

    def __exit__(self, *args):
        return self._lock.__exit__(*args)

    def __repr__(self):
        return "<Condition(%s, %d)>" % (self._lock, len(self._waiters))

    def _release_save(self):
        self._lock.release()           # No state to save

    def _acquire_restore(self, x):
        self._lock.acquire()           # Ignore saved state

    def _is_owned(self):
        # Return True if lock is owned by current_thread.
        # This method is called only if _lock doesn't have _is_owned().
        if self._lock.acquire(0):
            self._lock.release()
            return False
        else:
            return True

    def wait(self, timeout=None):
        """Wait until notified or until a timeout occurs.

        If the calling thread has not acquired the lock when this method is
        called, a RuntimeError is raised.

        This method releases the underlying lock, and then blocks until it is
        awakened by a notify() or notify_all() call for the same condition
        variable in another thread, or until the optional timeout occurs. Once
        awakened or timed out, it re-acquires the lock and returns.

        When the timeout argument is present and not None, it should be a
        floating point number specifying a timeout for the operation in seconds
        (or fractions thereof).

        When the underlying lock is an RLock, it is not released using its
        release() method, since this may not actually unlock the lock when it
        was acquired multiple times recursively. Instead, an internal interface
        of the RLock class is used, which really unlocks it even when it has
        been recursively acquired several times. Another internal interface is
        then used to restore the recursion level when the lock is reacquired.

        """
        if not self._is_owned():
            raise RuntimeError("cannot wait on un-acquired lock")
        waiter = _allocate_lock()
        waiter.acquire()
        self._waiters.append(waiter)
        saved_state = self._release_save()
        gotit = False
        try:    # restore state no matter what (e.g., KeyboardInterrupt)
            if timeout is None:
                waiter.acquire()
                gotit = True
            else:
                if timeout > 0:
                    gotit = waiter.acquire(True, timeout)
                else:
                    gotit = waiter.acquire(False)
            return gotit
        finally:
            self._acquire_restore(saved_state)
            if not gotit:
                try:
                    self._waiters.remove(waiter)
                except ValueError:
                    pass

    def wait_for(self, predicate, timeout=None):
        """Wait until a condition evaluates to True.

        predicate should be a callable which result will be interpreted as a
        boolean value.  A timeout may be provided giving the maximum time to
        wait.

        """
        endtime = None
        waittime = timeout
        result = predicate()
        while not result:
            if waittime is not None:
                if endtime is None:
                    endtime = _time() + waittime
                else:
                    waittime = endtime - _time()
                    if waittime <= 0:
                        break
            self.wait(waittime)
            result = predicate()
        return result

    def notify(self, n=1):
        """Wake up one or more threads waiting on this condition, if any.

        If the calling thread has not acquired the lock when this method is
        called, a RuntimeError is raised.

        This method wakes up at most n of the threads waiting for the condition
        variable; it is a no-op if no threads are waiting.

        """
        if not self._is_owned():
            raise RuntimeError("cannot notify on un-acquired lock")
        all_waiters = self._waiters
        waiters_to_notify = _deque(_islice(all_waiters, n))
        if not waiters_to_notify:
            return
        for waiter in waiters_to_notify:
            waiter.release()
            try:
                all_waiters.remove(waiter)
            except ValueError:
                pass

    def notify_all(self):
        """Wake up all threads waiting on this condition.

        If the calling thread has not acquired the lock when this method
        is called, a RuntimeError is raised.

        """
        self.notify(len(self._waiters))

    notifyAll = notify_all


class Semaphore:
    """This class implements semaphore objects.

    Semaphores manage a counter representing the number of release() calls minus
    the number of acquire() calls, plus an initial value. The acquire() method
    blocks if necessary until it can return without making the counter
    negative. If not given, value defaults to 1.

    """

    # After Tim Peters' semaphore class, but not quite the same (no maximum)

    def __init__(self, value=1):
        if value < 0:
            raise ValueError("semaphore initial value must be >= 0")
        self._cond = Condition(Lock())
        self._value = value

    def acquire(self, blocking=True, timeout=None):
        """Acquire a semaphore, decrementing the internal counter by one.

        When invoked without arguments: if the internal counter is larger than
        zero on entry, decrement it by one and return immediately. If it is zero
        on entry, block, waiting until some other thread has called release() to
        make it larger than zero. This is done with proper interlocking so that
        if multiple acquire() calls are blocked, release() will wake exactly one
        of them up. The implementation may pick one at random, so the order in
        which blocked threads are awakened should not be relied on. There is no
        return value in this case.

        When invoked with blocking set to true, do the same thing as when called
        without arguments, and return true.

        When invoked with blocking set to false, do not block. If a call without
        an argument would block, return false immediately; otherwise, do the
        same thing as when called without arguments, and return true.

        When invoked with a timeout other than None, it will block for at
        most timeout seconds.  If acquire does not complete successfully in
        that interval, return false.  Return true otherwise.

        """
        if not blocking and timeout is not None:
            raise ValueError("can't specify timeout for non-blocking acquire")
        rc = False
        endtime = None
        with self._cond:
            while self._value == 0:
                if not blocking:
                    break
                if timeout is not None:
                    if endtime is None:
                        endtime = _time() + timeout
                    else:
                        timeout = endtime - _time()
                        if timeout <= 0:
                            break
                self._cond.wait(timeout)
            else:
                self._value -= 1
                rc = True
        return rc

    __enter__ = acquire

    def release(self):
        """Release a semaphore, incrementing the internal counter by one.

        When the counter is zero on entry and another thread is waiting for it
        to become larger than zero again, wake up that thread.

        """
        with self._cond:
            self._value += 1
            self._cond.notify()

    def __exit__(self, t, v, tb):
        self.release()


class BoundedSemaphore(Semaphore):
    """Implements a bounded semaphore.

    A bounded semaphore checks to make sure its current value doesn't exceed its
    initial value. If it does, ValueError is raised. In most situations
    semaphores are used to guard resources with limited capacity.

    If the semaphore is released too many times it's a sign of a bug. If not
    given, value defaults to 1.

    Like regular semaphores, bounded semaphores manage a counter representing
    the number of release() calls minus the number of acquire() calls, plus an
    initial value. The acquire() method blocks if necessary until it can return
    without making the counter negative. If not given, value defaults to 1.

    """

    def __init__(self, value=1):
        Semaphore.__init__(self, value)
        self._initial_value = value

    def release(self):
        """Release a semaphore, incrementing the internal counter by one.

        When the counter is zero on entry and another thread is waiting for it
        to become larger than zero again, wake up that thread.

        If the number of releases exceeds the number of acquires,
        raise a ValueError.

        """
        with self._cond:
            if self._value >= self._initial_value:
                raise ValueError("Semaphore released too many times")
            self._value += 1
            self._cond.notify()


class Event:
    """Class implementing event objects.

    Events manage a flag that can be set to true with the set() method and reset
    to false with the clear() method. The wait() method blocks until the flag is
    true.  The flag is initially false.

    """

    # After Tim Peters' event class (without is_posted())

    def __init__(self):
        self._cond = Condition(Lock())
        self._flag = False

    def _reset_internal_locks(self):
        # private!  called by Thread._reset_internal_locks by _after_fork()
        self._cond.__init__(Lock())

    def is_set(self):
        """Return true if and only if the internal flag is true."""
        return self._flag

    isSet = is_set

    def set(self):
        """Set the internal flag to true.

        All threads waiting for it to become true are awakened. Threads
        that call wait() once the flag is true will not block at all.

        """
        with self._cond:
            self._flag = True
            self._cond.notify_all()

    def clear(self):
        """Reset the internal flag to false.

        Subsequently, threads calling wait() will block until set() is called to
        set the internal flag to true again.

        """
        with self._cond:
            self._flag = False

    def wait(self, timeout=None):
        """Block until the internal flag is true.

        If the internal flag is true on entry, return immediately. Otherwise,
        block until another thread calls set() to set the flag to true, or until
        the optional timeout occurs.

        When the timeout argument is present and not None, it should be a
        floating point number specifying a timeout for the operation in seconds
        (or fractions thereof).

        This method returns the internal flag on exit, so it will always return
        True except if a timeout is given and the operation times out.

        """
        with self._cond:
            signaled = self._flag
            if not signaled:
                signaled = self._cond.wait(timeout)
            return signaled


# A barrier class.  Inspired in part by the pthread_barrier_* api and
# the CyclicBarrier class from Java.  See
# http://sourceware.org/pthreads-win32/manual/pthread_barrier_init.html and
# http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/
#        CyclicBarrier.html
# for information.
# We maintain two main states, 'filling' and 'draining' enabling the barrier
# to be cyclic.  Threads are not allowed into it until it has fully drained
# since the previous cycle.  In addition, a 'resetting' state exists which is
# similar to 'draining' except that threads leave with a BrokenBarrierError,
# and a 'broken' state in which all threads get the exception.
class Barrier:
    """Implements a Barrier.

    Useful for synchronizing a fixed number of threads at known synchronization
    points.  Threads block on 'wait()' and are simultaneously once they have all
    made that call.

    """

    def __init__(self, parties, action=None, timeout=None):
        """Create a barrier, initialised to 'parties' threads.

        'action' is a callable which, when supplied, will be called by one of
        the threads after they have all entered the barrier and just prior to
        releasing them all. If a 'timeout' is provided, it is uses as the
        default for all subsequent 'wait()' calls.

        """
        self._cond = Condition(Lock())
        self._action = action
        self._timeout = timeout
        self._parties = parties
        self._state = 0 #0 filling, 1, draining, -1 resetting, -2 broken
        self._count = 0

    def wait(self, timeout=None):
        """Wait for the barrier.

        When the specified number of threads have started waiting, they are all
        simultaneously awoken. If an 'action' was provided for the barrier, one
        of the threads will have executed that callback prior to returning.
        Returns an individual index number from 0 to 'parties-1'.

        """
        if timeout is None:
            timeout = self._timeout
        with self._cond:
            self._enter() # Block while the barrier drains.
            index = self._count
            self._count += 1
            try:
                if index + 1 == self._parties:
                    # We release the barrier
                    self._release()
                else:
                    # We wait until someone releases us
                    self._wait(timeout)
                return index
            finally:
                self._count -= 1
                # Wake up any threads waiting for barrier to drain.
                self._exit()

    # Block until the barrier is ready for us, or raise an exception
    # if it is broken.
    def _enter(self):
        while self._state in (-1, 1):
            # It is draining or resetting, wait until done
            self._cond.wait()
        #see if the barrier is in a broken state
        if self._state < 0:
            raise BrokenBarrierError
        assert self._state == 0

    # Optionally run the 'action' and release the threads waiting
    # in the barrier.
    def _release(self):
        try:
            if self._action:
                self._action()
            # enter draining state
            self._state = 1
            self._cond.notify_all()
        except:
            #an exception during the _action handler.  Break and reraise
            self._break()
            raise

    # Wait in the barrier until we are relased.  Raise an exception
    # if the barrier is reset or broken.
    def _wait(self, timeout):
        if not self._cond.wait_for(lambda : self._state != 0, timeout):
            #timed out.  Break the barrier
            self._break()
            raise BrokenBarrierError
        if self._state < 0:
            raise BrokenBarrierError
        assert self._state == 1

    # If we are the last thread to exit the barrier, signal any threads
    # waiting for the barrier to drain.
    def _exit(self):
        if self._count == 0:
            if self._state in (-1, 1):
                #resetting or draining
                self._state = 0
                self._cond.notify_all()

    def reset(self):
        """Reset the barrier to the initial state.

        Any threads currently waiting will get the BrokenBarrier exception
        raised.

        """
        with self._cond:
            if self._count > 0:
                if self._state == 0:
                    #reset the barrier, waking up threads
                    self._state = -1
                elif self._state == -2:
                    #was broken, set it to reset state
                    #which clears when the last thread exits
                    self._state = -1
            else:
                self._state = 0
            self._cond.notify_all()

    def abort(self):
        """Place the barrier into a 'broken' state.

        Useful in case of error.  Any currently waiting threads and threads
        attempting to 'wait()' will have BrokenBarrierError raised.

        """
        with self._cond:
            self._break()

    def _break(self):
        # An internal error was detected.  The barrier is set to
        # a broken state all parties awakened.
        self._state = -2
        self._cond.notify_all()

    @property
    def parties(self):
        """Return the number of threads required to trip the barrier."""
        return self._parties

    @property
    def n_waiting(self):
        """Return the number of threads currently waiting at the barrier."""
        # We don't need synchronization here since this is an ephemeral result
        # anyway.  It returns the correct value in the steady state.
        if self._state == 0:
            return self._count
        return 0

    @property
    def broken(self):
        """Return True if the barrier is in a broken state."""
        return self._state == -2

# exception raised by the Barrier class
class BrokenBarrierError(RuntimeError):
    pass


# Helper to generate new thread names
_counter = _count().__next__
_counter() # Consume 0 so first non-main thread has id 1.
def _newname(template="Thread-%d"):
    return template % _counter()

# Active thread administration
_active_limbo_lock = _allocate_lock()
_active = {}    # maps thread id to Thread object
_limbo = {}
_dangling = WeakSet()

# Main class for threads

class Thread:
    """A class that represents a thread of control.

    This class can be safely subclassed in a limited fashion. There are two ways
    to specify the activity: by passing a callable object to the constructor, or
    by overriding the run() method in a subclass.

    """

    _initialized = False
    # Need to store a reference to sys.exc_info for printing
    # out exceptions when a thread tries to use a global var. during interp.
    # shutdown and thus raises an exception about trying to perform some
    # operation on/with a NoneType
    _exc_info = _sys.exc_info
    # Keep sys.exc_clear too to clear the exception just before
    # allowing .join() to return.
    #XXX __exc_clear = _sys.exc_clear

    def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs=None, *, daemon=None):
        """This constructor should always be called with keyword arguments. Arguments are:

        *group* should be None; reserved for future extension when a ThreadGroup
        class is implemented.

        *target* is the callable object to be invoked by the run()
        method. Defaults to None, meaning nothing is called.

        *name* is the thread name. By default, a unique name is constructed of
        the form "Thread-N" where N is a small decimal number.

        *args* is the argument tuple for the target invocation. Defaults to ().

        *kwargs* is a dictionary of keyword arguments for the target
        invocation. Defaults to {}.

        If a subclass overrides the constructor, it must make sure to invoke
        the base class constructor (Thread.__init__()) before doing anything
        else to the thread.

        """
        assert group is None, "group argument must be None for now"
        if kwargs is None:
            kwargs = {}
        self._target = target
        self._name = str(name or _newname())
        self._args = args
        self._kwargs = kwargs
        if daemon is not None:
            self._daemonic = daemon
        else:
            self._daemonic = current_thread().daemon
        self._ident = None
        self._tstate_lock = None
        self._started = Event()
        self._is_stopped = False
        self._initialized = True
        # sys.stderr is not stored in the class like
        # sys.exc_info since it can be changed between instances
        self._stderr = _sys.stderr
        # For debugging and _after_fork()
        _dangling.add(self)

    def _reset_internal_locks(self, is_alive):
        # private!  Called by _after_fork() to reset our internal locks as
        # they may be in an invalid state leading to a deadlock or crash.
        self._started._reset_internal_locks()
        if is_alive:
            self._set_tstate_lock()
        else:
            # The thread isn't alive after fork: it doesn't have a tstate
            # anymore.
            self._is_stopped = True
            self._tstate_lock = None

    def __repr__(self):
        assert self._initialized, "Thread.__init__() was not called"
        status = "initial"
        if self._started.is_set():
            status = "started"
        self.is_alive() # easy way to get ._is_stopped set when appropriate
        if self._is_stopped:
            status = "stopped"
        if self._daemonic:
            status += " daemon"
        if self._ident is not None:
            status += " %s" % self._ident
        return "<%s(%s, %s)>" % (self.__class__.__name__, self._name, status)

    def start(self):
        """Start the thread's activity.

        It must be called at most once per thread object. It arranges for the
        object's run() method to be invoked in a separate thread of control.

        This method will raise a RuntimeError if called more than once on the
        same thread object.

        """
        if not self._initialized:
            raise RuntimeError("thread.__init__() not called")

        if self._started.is_set():
            raise RuntimeError("threads can only be started once")
        with _active_limbo_lock:
            _limbo[self] = self
        try:
            _start_new_thread(self._bootstrap, ())
        except Exception:
            with _active_limbo_lock:
                del _limbo[self]
            raise
        self._started.wait()

    def run(self):
        """Method representing the thread's activity.

        You may override this method in a subclass. The standard run() method
        invokes the callable object passed to the object's constructor as the
        target argument, if any, with sequential and keyword arguments taken
        from the args and kwargs arguments, respectively.

        """
        try:
            if self._target:
                self._target(*self._args, **self._kwargs)
        finally:
            # Avoid a refcycle if the thread is running a function with
            # an argument that has a member that points to the thread.
            del self._target, self._args, self._kwargs

    def _bootstrap(self):
        # Wrapper around the real bootstrap code that ignores
        # exceptions during interpreter cleanup.  Those typically
        # happen when a daemon thread wakes up at an unfortunate
        # moment, finds the world around it destroyed, and raises some
        # random exception *** while trying to report the exception in
        # _bootstrap_inner() below ***.  Those random exceptions
        # don't help anybody, and they confuse users, so we suppress
        # them.  We suppress them only when it appears that the world
        # indeed has already been destroyed, so that exceptions in
        # _bootstrap_inner() during normal business hours are properly
        # reported.  Also, we only suppress them for daemonic threads;
        # if a non-daemonic encounters this, something else is wrong.
        try:
            self._bootstrap_inner()
        except:
            if self._daemonic and _sys is None:
                return
            raise

    def _set_ident(self):
        self._ident = get_ident()

    def _set_tstate_lock(self):
        """
        Set a lock object which will be released by the interpreter when
        the underlying thread state (see pystate.h) gets deleted.
        """
        self._tstate_lock = _set_sentinel()
        self._tstate_lock.acquire()

    def _bootstrap_inner(self):
        try:
            self._set_ident()
            self._set_tstate_lock()
            self._started.set()
            with _active_limbo_lock:
                _active[self._ident] = self
                del _limbo[self]

            if _trace_hook:
                _sys.settrace(_trace_hook)
            if _profile_hook:
                _sys.setprofile(_profile_hook)

            try:
                self.run()
            except SystemExit:
                pass
            except:
                # If sys.stderr is no more (most likely from interpreter
                # shutdown) use self._stderr.  Otherwise still use sys (as in
                # _sys) in case sys.stderr was redefined since the creation of
                # self.
                if _sys and _sys.stderr is not None:
                    print("Exception in thread %s:\n%s" %
                          (self.name, _format_exc()), file=self._stderr)
                elif self._stderr is not None:
                    # Do the best job possible w/o a huge amt. of code to
                    # approximate a traceback (code ideas from
                    # Lib/traceback.py)
                    exc_type, exc_value, exc_tb = self._exc_info()
                    try:
                        print((
                            "Exception in thread " + self.name +
                            " (most likely raised during interpreter shutdown):"), file=self._stderr)
                        print((
                            "Traceback (most recent call last):"), file=self._stderr)
                        while exc_tb:
                            print((
                                '  File "%s", line %s, in %s' %
                                (exc_tb.tb_frame.f_code.co_filename,
                                    exc_tb.tb_lineno,
                                    exc_tb.tb_frame.f_code.co_name)), file=self._stderr)
                            exc_tb = exc_tb.tb_next
                        print(("%s: %s" % (exc_type, exc_value)), file=self._stderr)
                    # Make sure that exc_tb gets deleted since it is a memory
                    # hog; deleting everything else is just for thoroughness
                    finally:
                        del exc_type, exc_value, exc_tb
            finally:
                # Prevent a race in
                # test_threading.test_no_refcycle_through_target when
                # the exception keeps the target alive past when we
                # assert that it's dead.
                #XXX self._exc_clear()
                pass
        finally:
            with _active_limbo_lock:
                try:
                    # We don't call self._delete() because it also
                    # grabs _active_limbo_lock.
                    del _active[get_ident()]
                except:
                    pass

    def _stop(self):
        # After calling ._stop(), .is_alive() returns False and .join() returns
        # immediately.  ._tstate_lock must be released before calling ._stop().
        #
        # Normal case:  C code at the end of the thread's life
        # (release_sentinel in _threadmodule.c) releases ._tstate_lock, and
        # that's detected by our ._wait_for_tstate_lock(), called by .join()
        # and .is_alive().  Any number of threads _may_ call ._stop()
        # simultaneously (for example, if multiple threads are blocked in
        # .join() calls), and they're not serialized.  That's harmless -
        # they'll just make redundant rebindings of ._is_stopped and
        # ._tstate_lock.  Obscure:  we rebind ._tstate_lock last so that the
        # "assert self._is_stopped" in ._wait_for_tstate_lock() always works
        # (the assert is executed only if ._tstate_lock is None).
        #
        # Special case:  _main_thread releases ._tstate_lock via this
        # module's _shutdown() function.
        lock = self._tstate_lock
        if lock is not None:
            assert not lock.locked()
        self._is_stopped = True
        self._tstate_lock = None

    def _delete(self):
        "Remove current thread from the dict of currently running threads."

        # Notes about running with _dummy_thread:
        #
        # Must take care to not raise an exception if _dummy_thread is being
        # used (and thus this module is being used as an instance of
        # dummy_threading).  _dummy_thread.get_ident() always returns -1 since
        # there is only one thread if _dummy_thread is being used.  Thus
        # len(_active) is always <= 1 here, and any Thread instance created
        # overwrites the (if any) thread currently registered in _active.
        #
        # An instance of _MainThread is always created by 'threading'.  This
        # gets overwritten the instant an instance of Thread is created; both
        # threads return -1 from _dummy_thread.get_ident() and thus have the
        # same key in the dict.  So when the _MainThread instance created by
        # 'threading' tries to clean itself up when atexit calls this method
        # it gets a KeyError if another Thread instance was created.
        #
        # This all means that KeyError from trying to delete something from
        # _active if dummy_threading is being used is a red herring.  But
        # since it isn't if dummy_threading is *not* being used then don't
        # hide the exception.

        try:
            with _active_limbo_lock:
                del _active[get_ident()]
                # There must not be any python code between the previous line
                # and after the lock is released.  Otherwise a tracing function
                # could try to acquire the lock again in the same thread, (in
                # current_thread()), and would block.
        except KeyError:
            if 'dummy_threading' not in _sys.modules:
                raise

    def join(self, timeout=None):
        """Wait until the thread terminates.

        This blocks the calling thread until the thread whose join() method is
        called terminates -- either normally or through an unhandled exception
        or until the optional timeout occurs.

        When the timeout argument is present and not None, it should be a
        floating point number specifying a timeout for the operation in seconds
        (or fractions thereof). As join() always returns None, you must call
        isAlive() after join() to decide whether a timeout happened -- if the
        thread is still alive, the join() call timed out.

        When the timeout argument is not present or None, the operation will
        block until the thread terminates.

        A thread can be join()ed many times.

        join() raises a RuntimeError if an attempt is made to join the current
        thread as that would cause a deadlock. It is also an error to join() a
        thread before it has been started and attempts to do so raises the same
        exception.

        """
        if not self._initialized:
            raise RuntimeError("Thread.__init__() not called")
        if not self._started.is_set():
            raise RuntimeError("cannot join thread before it is started")
        if self is current_thread():
            raise RuntimeError("cannot join current thread")

        if timeout is None:
            self._wait_for_tstate_lock()
        else:
            # the behavior of a negative timeout isn't documented, but
            # historically .join(timeout=x) for x<0 has acted as if timeout=0
            self._wait_for_tstate_lock(timeout=max(timeout, 0))

    def _wait_for_tstate_lock(self, block=True, timeout=-1):
        # Issue #18808: wait for the thread state to be gone.
        # At the end of the thread's life, after all knowledge of the thread
        # is removed from C data structures, C code releases our _tstate_lock.
        # This method passes its arguments to _tstate_lock.aquire().
        # If the lock is acquired, the C code is done, and self._stop() is
        # called.  That sets ._is_stopped to True, and ._tstate_lock to None.
        lock = self._tstate_lock
        if lock is None:  # already determined that the C code is done
            assert self._is_stopped
        elif lock.acquire(block, timeout):
            lock.release()
            self._stop()

    @property
    def name(self):
        """A string used for identification purposes only.

        It has no semantics. Multiple threads may be given the same name. The
        initial name is set by the constructor.

        """
        assert self._initialized, "Thread.__init__() not called"
        return self._name

    @name.setter
    def name(self, name):
        assert self._initialized, "Thread.__init__() not called"
        self._name = str(name)

    @property
    def ident(self):
        """Thread identifier of this thread or None if it has not been started.

        This is a nonzero integer. See the thread.get_ident() function. Thread
        identifiers may be recycled when a thread exits and another thread is
        created. The identifier is available even after the thread has exited.

        """
        assert self._initialized, "Thread.__init__() not called"
        return self._ident

    def is_alive(self):
        """Return whether the thread is alive.

        This method returns True just before the run() method starts until just
        after the run() method terminates. The module function enumerate()
        returns a list of all alive threads.

        """
        assert self._initialized, "Thread.__init__() not called"
        if self._is_stopped or not self._started.is_set():
            return False
        self._wait_for_tstate_lock(False)
        return not self._is_stopped

    isAlive = is_alive

    @property
    def daemon(self):
        """A boolean value indicating whether this thread is a daemon thread.

        This must be set before start() is called, otherwise RuntimeError is
        raised. Its initial value is inherited from the creating thread; the
        main thread is not a daemon thread and therefore all threads created in
        the main thread default to daemon = False.

        The entire Python program exits when no alive non-daemon threads are
        left.

        """
        assert self._initialized, "Thread.__init__() not called"
        return self._daemonic

    @daemon.setter
    def daemon(self, daemonic):
        if not self._initialized:
            raise RuntimeError("Thread.__init__() not called")
        if self._started.is_set():
            raise RuntimeError("cannot set daemon status of active thread")
        self._daemonic = daemonic

    def isDaemon(self):
        return self.daemon

    def setDaemon(self, daemonic):
        self.daemon = daemonic

    def getName(self):
        return self.name

    def setName(self, name):
        self.name = name

# The timer class was contributed by Itamar Shtull-Trauring

class Timer(Thread):
    """Call a function after a specified number of seconds:

            t = Timer(30.0, f, args=None, kwargs=None)
            t.start()
            t.cancel()     # stop the timer's action if it's still waiting

    """

    def __init__(self, interval, function, args=None, kwargs=None):
        Thread.__init__(self)
        self.interval = interval
        self.function = function
        self.args = args if args is not None else []
        self.kwargs = kwargs if kwargs is not None else {}
        self.finished = Event()

    def cancel(self):
        """Stop the timer if it hasn't finished yet."""
        self.finished.set()

    def run(self):
        self.finished.wait(self.interval)
        if not self.finished.is_set():
            self.function(*self.args, **self.kwargs)
        self.finished.set()

# Special thread class to represent the main thread
# This is garbage collected through an exit handler

class _MainThread(Thread):

    def __init__(self):
        Thread.__init__(self, name="MainThread", daemon=False)
        self._set_tstate_lock()
        self._started.set()
        self._set_ident()
        with _active_limbo_lock:
            _active[self._ident] = self


# Dummy thread class to represent threads not started here.
# These aren't garbage collected when they die, nor can they be waited for.
# If they invoke anything in threading.py that calls current_thread(), they
# leave an entry in the _active dict forever after.
# Their purpose is to return *something* from current_thread().
# They are marked as daemon threads so we won't wait for them
# when we exit (conform previous semantics).

class _DummyThread(Thread):

    def __init__(self):
        Thread.__init__(self, name=_newname("Dummy-%d"), daemon=True)

        self._started.set()
        self._set_ident()
        with _active_limbo_lock:
            _active[self._ident] = self

    def _stop(self):
        pass

    def join(self, timeout=None):
        assert False, "cannot join a dummy thread"


# Global API functions

def current_thread():
    """Return the current Thread object, corresponding to the caller's thread of control.

    If the caller's thread of control was not created through the threading
    module, a dummy thread object with limited functionality is returned.

    """
    try:
        return _active[get_ident()]
    except KeyError:
        return _DummyThread()

currentThread = current_thread

def active_count():
    """Return the number of Thread objects currently alive.

    The returned count is equal to the length of the list returned by
    enumerate().

    """
    with _active_limbo_lock:
        return len(_active) + len(_limbo)

activeCount = active_count

def _enumerate():
    # Same as enumerate(), but without the lock. Internal use only.
    return list(_active.values()) + list(_limbo.values())

def enumerate():
    """Return a list of all Thread objects currently alive.

    The list includes daemonic threads, dummy thread objects created by
    current_thread(), and the main thread. It excludes terminated threads and
    threads that have not yet been started.

    """
    with _active_limbo_lock:
        return list(_active.values()) + list(_limbo.values())

from _thread import stack_size

# Create the main thread object,
# and make it available for the interpreter
# (Py_Main) as threading._shutdown.

_main_thread = _MainThread()

def _shutdown():
    # Obscure:  other threads may be waiting to join _main_thread.  That's
    # dubious, but some code does it.  We can't wait for C code to release
    # the main thread's tstate_lock - that won't happen until the interpreter
    # is nearly dead.  So we release it here.  Note that just calling _stop()
    # isn't enough:  other threads may already be waiting on _tstate_lock.
    tlock = _main_thread._tstate_lock
    # The main thread isn't finished yet, so its thread state lock can't have
    # been released.
    assert tlock is not None
    assert tlock.locked()
    tlock.release()
    _main_thread._stop()
    t = _pickSomeNonDaemonThread()
    while t:
        t.join()
        t = _pickSomeNonDaemonThread()
    _main_thread._delete()

def _pickSomeNonDaemonThread():
    for t in enumerate():
        if not t.daemon and t.is_alive():
            return t
    return None

def main_thread():
    """Return the main thread object.

    In normal conditions, the main thread is the thread from which the
    Python interpreter was started.
    """
    return _main_thread

# get thread-local implementation, either from the thread
# module, or from the python fallback

try:
    from _thread import _local as local
except ImportError:
    from _threading_local import local


def _after_fork():
    # This function is called by Python/ceval.c:PyEval_ReInitThreads which
    # is called from PyOS_AfterFork.  Here we cleanup threading module state
    # that should not exist after a fork.

    # Reset _active_limbo_lock, in case we forked while the lock was held
    # by another (non-forked) thread.  http://bugs.python.org/issue874900
    global _active_limbo_lock, _main_thread
    _active_limbo_lock = _allocate_lock()

    # fork() only copied the current thread; clear references to others.
    new_active = {}
    current = current_thread()
    _main_thread = current
    with _active_limbo_lock:
        # Dangling thread instances must still have their locks reset,
        # because someone may join() them.
        threads = set(_enumerate())
        threads.update(_dangling)
        for thread in threads:
            # Any lock/condition variable may be currently locked or in an
            # invalid state, so we reinitialize them.
            if thread is current:
                # There is only one active thread. We reset the ident to
                # its new value since it can have changed.
                thread._reset_internal_locks(True)
                ident = get_ident()
                thread._ident = ident
                new_active[ident] = thread
            else:
                # All the others are already stopped.
                thread._reset_internal_locks(False)
                thread._stop()

        _limbo.clear()
        _active.clear()
        _active.update(new_active)
        assert len(_active) == 1
lib\timeit.py
#! /usr/bin/env python3

"""Tool for measuring execution time of small code snippets.

This module avoids a number of common traps for measuring execution
times.  See also Tim Peters' introduction to the Algorithms chapter in
the Python Cookbook, published by O'Reilly.

Library usage: see the Timer class.

Command line usage:
    python timeit.py [-n N] [-r N] [-s S] [-t] [-c] [-p] [-h] [--] [statement]

Options:
  -n/--number N: how many times to execute 'statement' (default: see below)
  -r/--repeat N: how many times to repeat the timer (default 3)
  -s/--setup S: statement to be executed once initially (default 'pass').
                Execution time of this setup statement is NOT timed.
  -p/--process: use time.process_time() (default is time.perf_counter())
  -t/--time: use time.time() (deprecated)
  -c/--clock: use time.clock() (deprecated)
  -v/--verbose: print raw timing results; repeat for more digits precision
  -h/--help: print this usage message and exit
  --: separate options from statement, use when statement starts with -
  statement: statement to be timed (default 'pass')

A multi-line statement may be given by specifying each line as a
separate argument; indented lines are possible by enclosing an
argument in quotes and using leading spaces.  Multiple -s options are
treated similarly.

If -n is not given, a suitable number of loops is calculated by trying
successive powers of 10 until the total time is at least 0.2 seconds.

Note: there is a certain baseline overhead associated with executing a
pass statement.  It differs between versions.  The code here doesn't try
to hide it, but you should be aware of it.  The baseline overhead can be
measured by invoking the program without arguments.

Classes:

    Timer

Functions:

    timeit(string, string) -> float
    repeat(string, string) -> list
    default_timer() -> float

"""

import gc
import sys
import time
import itertools

__all__ = ["Timer", "timeit", "repeat", "default_timer"]

dummy_src_name = "<timeit-src>"
default_number = 1000000
default_repeat = 3
default_timer = time.perf_counter

# Don't change the indentation of the template; the reindent() calls
# in Timer.__init__() depend on setup being indented 4 spaces and stmt
# being indented 8 spaces.
template = """
def inner(_it, _timer{init}):
    {setup}
    _t0 = _timer()
    for _i in _it:
        {stmt}
    _t1 = _timer()
    return _t1 - _t0
"""

def reindent(src, indent):
    """Helper to reindent a multi-line statement."""
    return src.replace("\n", "\n" + " "*indent)

def _template_func(setup, func):
    """Create a timer function. Used if the "statement" is a callable."""
    def inner(_it, _timer, _func=func):
        setup()
        _t0 = _timer()
        for _i in _it:
            _func()
        _t1 = _timer()
        return _t1 - _t0
    return inner

class Timer:
    """Class for timing execution speed of small code snippets.

    The constructor takes a statement to be timed, an additional
    statement used for setup, and a timer function.  Both statements
    default to 'pass'; the timer function is platform-dependent (see
    module doc string).

    To measure the execution time of the first statement, use the
    timeit() method.  The repeat() method is a convenience to call
    timeit() multiple times and return a list of results.

    The statements may contain newlines, as long as they don't contain
    multi-line string literals.
    """

    def __init__(self, stmt="pass", setup="pass", timer=default_timer):
        """Constructor.  See class doc string."""
        self.timer = timer
        ns = {}
        if isinstance(stmt, str):
            # Check that the code can be compiled outside a function
            if isinstance(setup, str):
                compile(setup, dummy_src_name, "exec")
                compile(setup + '\n' + stmt, dummy_src_name, "exec")
            else:
                compile(stmt, dummy_src_name, "exec")
            stmt = reindent(stmt, 8)
            if isinstance(setup, str):
                setup = reindent(setup, 4)
                src = template.format(stmt=stmt, setup=setup, init='')
            elif callable(setup):
                src = template.format(stmt=stmt, setup='_setup()',
                                      init=', _setup=_setup')
                ns['_setup'] = setup
            else:
                raise ValueError("setup is neither a string nor callable")
            self.src = src # Save for traceback display
            code = compile(src, dummy_src_name, "exec")
            exec(code, globals(), ns)
            self.inner = ns["inner"]
        elif callable(stmt):
            self.src = None
            if isinstance(setup, str):
                _setup = setup
                def setup():
                    exec(_setup, globals(), ns)
            elif not callable(setup):
                raise ValueError("setup is neither a string nor callable")
            self.inner = _template_func(setup, stmt)
        else:
            raise ValueError("stmt is neither a string nor callable")

    def print_exc(self, file=None):
        """Helper to print a traceback from the timed code.

        Typical use:

            t = Timer(...)       # outside the try/except
            try:
                t.timeit(...)    # or t.repeat(...)
            except:
                t.print_exc()

        The advantage over the standard traceback is that source lines
        in the compiled template will be displayed.

        The optional file argument directs where the traceback is
        sent; it defaults to sys.stderr.
        """
        import linecache, traceback
        if self.src is not None:
            linecache.cache[dummy_src_name] = (len(self.src),
                                               None,
                                               self.src.split("\n"),
                                               dummy_src_name)
        # else the source is already stored somewhere else

        traceback.print_exc(file=file)

    def timeit(self, number=default_number):
        """Time 'number' executions of the main statement.

        To be precise, this executes the setup statement once, and
        then returns the time it takes to execute the main statement
        a number of times, as a float measured in seconds.  The
        argument is the number of times through the loop, defaulting
        to one million.  The main statement, the setup statement and
        the timer function to be used are passed to the constructor.
        """
        it = itertools.repeat(None, number)
        gcold = gc.isenabled()
        gc.disable()
        try:
            timing = self.inner(it, self.timer)
        finally:
            if gcold:
                gc.enable()
        return timing

    def repeat(self, repeat=default_repeat, number=default_number):
        """Call timeit() a few times.

        This is a convenience function that calls the timeit()
        repeatedly, returning a list of results.  The first argument
        specifies how many times to call timeit(), defaulting to 3;
        the second argument specifies the timer argument, defaulting
        to one million.

        Note: it's tempting to calculate mean and standard deviation
        from the result vector and report these.  However, this is not
        very useful.  In a typical case, the lowest value gives a
        lower bound for how fast your machine can run the given code
        snippet; higher values in the result vector are typically not
        caused by variability in Python's speed, but by other
        processes interfering with your timing accuracy.  So the min()
        of the result is probably the only number you should be
        interested in.  After that, you should look at the entire
        vector and apply common sense rather than statistics.
        """
        r = []
        for i in range(repeat):
            t = self.timeit(number)
            r.append(t)
        return r

def timeit(stmt="pass", setup="pass", timer=default_timer,
           number=default_number):
    """Convenience function to create Timer object and call timeit method."""
    return Timer(stmt, setup, timer).timeit(number)

def repeat(stmt="pass", setup="pass", timer=default_timer,
           repeat=default_repeat, number=default_number):
    """Convenience function to create Timer object and call repeat method."""
    return Timer(stmt, setup, timer).repeat(repeat, number)

def main(args=None, *, _wrap_timer=None):
    """Main program, used when run as a script.

    The optional 'args' argument specifies the command line to be parsed,
    defaulting to sys.argv[1:].

    The return value is an exit code to be passed to sys.exit(); it
    may be None to indicate success.

    When an exception happens during timing, a traceback is printed to
    stderr and the return value is 1.  Exceptions at other times
    (including the template compilation) are not caught.

    '_wrap_timer' is an internal interface used for unit testing.  If it
    is not None, it must be a callable that accepts a timer function
    and returns another timer function (used for unit testing).
    """
    if args is None:
        args = sys.argv[1:]
    import getopt
    try:
        opts, args = getopt.getopt(args, "n:s:r:tcpvh",
                                   ["number=", "setup=", "repeat=",
                                    "time", "clock", "process",
                                    "verbose", "help"])
    except getopt.error as err:
        print(err)
        print("use -h/--help for command line help")
        return 2
    timer = default_timer
    stmt = "\n".join(args) or "pass"
    number = 0 # auto-determine
    setup = []
    repeat = default_repeat
    verbose = 0
    precision = 3
    for o, a in opts:
        if o in ("-n", "--number"):
            number = int(a)
        if o in ("-s", "--setup"):
            setup.append(a)
        if o in ("-r", "--repeat"):
            repeat = int(a)
            if repeat <= 0:
                repeat = 1
        if o in ("-t", "--time"):
            timer = time.time
        if o in ("-c", "--clock"):
            timer = time.clock
        if o in ("-p", "--process"):
            timer = time.process_time
        if o in ("-v", "--verbose"):
            if verbose:
                precision += 1
            verbose += 1
        if o in ("-h", "--help"):
            print(__doc__, end=' ')
            return 0
    setup = "\n".join(setup) or "pass"
    # Include the current directory, so that local imports work (sys.path
    # contains the directory of this script, rather than the current
    # directory)
    import os
    sys.path.insert(0, os.curdir)
    if _wrap_timer is not None:
        timer = _wrap_timer(timer)
    t = Timer(stmt, setup, timer)
    if number == 0:
        # determine number so that 0.2 <= total time < 2.0
        for i in range(1, 10):
            number = 10**i
            try:
                x = t.timeit(number)
            except:
                t.print_exc()
                return 1
            if verbose:
                print("%d loops -> %.*g secs" % (number, precision, x))
            if x >= 0.2:
                break
    try:
        r = t.repeat(repeat, number)
    except:
        t.print_exc()
        return 1
    best = min(r)
    if verbose:
        print("raw times:", " ".join(["%.*g" % (precision, x) for x in r]))
    print("%d loops," % number, end=' ')
    usec = best * 1e6 / number
    if usec < 1000:
        print("best of %d: %.*g usec per loop" % (repeat, precision, usec))
    else:
        msec = usec / 1000
        if msec < 1000:
            print("best of %d: %.*g msec per loop" % (repeat, precision, msec))
        else:
            sec = msec / 1000
            print("best of %d: %.*g sec per loop" % (repeat, precision, sec))
    return None

if __name__ == "__main__":
    sys.exit(main())
lib\token.py
"""Token constants (from "token.h")."""

__all__ = ['tok_name', 'ISTERMINAL', 'ISNONTERMINAL', 'ISEOF']

#  This file is automatically generated; please don't muck it up!
#
#  To update the symbols in this file, 'cd' to the top directory of
#  the python source tree after building the interpreter and run:
#
#    ./python Lib/token.py

#--start constants--
ENDMARKER = 0
NAME = 1
NUMBER = 2
STRING = 3
NEWLINE = 4
INDENT = 5
DEDENT = 6
LPAR = 7
RPAR = 8
LSQB = 9
RSQB = 10
COLON = 11
COMMA = 12
SEMI = 13
PLUS = 14
MINUS = 15
STAR = 16
SLASH = 17
VBAR = 18
AMPER = 19
LESS = 20
GREATER = 21
EQUAL = 22
DOT = 23
PERCENT = 24
LBRACE = 25
RBRACE = 26
EQEQUAL = 27
NOTEQUAL = 28
LESSEQUAL = 29
GREATEREQUAL = 30
TILDE = 31
CIRCUMFLEX = 32
LEFTSHIFT = 33
RIGHTSHIFT = 34
DOUBLESTAR = 35
PLUSEQUAL = 36
MINEQUAL = 37
STAREQUAL = 38
SLASHEQUAL = 39
PERCENTEQUAL = 40
AMPEREQUAL = 41
VBAREQUAL = 42
CIRCUMFLEXEQUAL = 43
LEFTSHIFTEQUAL = 44
RIGHTSHIFTEQUAL = 45
DOUBLESTAREQUAL = 46
DOUBLESLASH = 47
DOUBLESLASHEQUAL = 48
AT = 49
RARROW = 50
ELLIPSIS = 51
OP = 52
ERRORTOKEN = 53
N_TOKENS = 54
NT_OFFSET = 256
#--end constants--

tok_name = {value: name
            for name, value in globals().items()
            if isinstance(value, int) and not name.startswith('_')}
__all__.extend(tok_name.values())

def ISTERMINAL(x):
    return x < NT_OFFSET

def ISNONTERMINAL(x):
    return x >= NT_OFFSET

def ISEOF(x):
    return x == ENDMARKER


def _main():
    import re
    import sys
    args = sys.argv[1:]
    inFileName = args and args[0] or "Include/token.h"
    outFileName = "Lib/token.py"
    if len(args) > 1:
        outFileName = args[1]
    try:
        fp = open(inFileName)
    except OSError as err:
        sys.stdout.write("I/O error: %s\n" % str(err))
        sys.exit(1)
    lines = fp.read().split("\n")
    fp.close()
    prog = re.compile(
        "#define[ \t][ \t]*([A-Z0-9][A-Z0-9_]*)[ \t][ \t]*([0-9][0-9]*)",
        re.IGNORECASE)
    tokens = {}
    for line in lines:
        match = prog.match(line)
        if match:
            name, val = match.group(1, 2)
            val = int(val)
            tokens[val] = name          # reverse so we can sort them...
    keys = sorted(tokens.keys())
    # load the output skeleton from the target:
    try:
        fp = open(outFileName)
    except OSError as err:
        sys.stderr.write("I/O error: %s\n" % str(err))
        sys.exit(2)
    format = fp.read().split("\n")
    fp.close()
    try:
        start = format.index("#--start constants--") + 1
        end = format.index("#--end constants--")
    except ValueError:
        sys.stderr.write("target does not contain format markers")
        sys.exit(3)
    lines = []
    for val in keys:
        lines.append("%s = %d" % (tokens[val], val))
    format[start:end] = lines
    try:
        fp = open(outFileName, 'w')
    except OSError as err:
        sys.stderr.write("I/O error: %s\n" % str(err))
        sys.exit(4)
    fp.write("\n".join(format))
    fp.close()


if __name__ == "__main__":
    _main()
lib\tokenize.py
"""Tokenization help for Python programs.

tokenize(readline) is a generator that breaks a stream of bytes into
Python tokens.  It decodes the bytes according to PEP-0263 for
determining source file encoding.

It accepts a readline-like method which is called repeatedly to get the
next line of input (or b"" for EOF).  It generates 5-tuples with these
members:

    the token type (see token.py)
    the token (a string)
    the starting (row, column) indices of the token (a 2-tuple of ints)
    the ending (row, column) indices of the token (a 2-tuple of ints)
    the original line (string)

It is designed to match the working of the Python tokenizer exactly, except
that it produces COMMENT tokens for comments and gives type OP for all
operators.  Additionally, all token lists start with an ENCODING token
which tells you which encoding was used to decode the bytes stream.
"""

__author__ = 'Ka-Ping Yee <[email protected]>'
__credits__ = ('GvR, ESR, Tim Peters, Thomas Wouters, Fred Drake, '
               'Skip Montanaro, Raymond Hettinger, Trent Nelson, '
               'Michael Foord')
from builtins import open as _builtin_open
from codecs import lookup, BOM_UTF8
import collections
from io import TextIOWrapper
from itertools import chain
import re
import sys
from token import *

cookie_re = re.compile(r'^[ \t\f]*#.*coding[:=][ \t]*([-\w.]+)', re.ASCII)
blank_re = re.compile(br'^[ \t\f]*(?:[#\r\n]|$)', re.ASCII)

import token
__all__ = token.__all__ + ["COMMENT", "tokenize", "detect_encoding",
                           "NL", "untokenize", "ENCODING", "TokenInfo"]
del token

COMMENT = N_TOKENS
tok_name[COMMENT] = 'COMMENT'
NL = N_TOKENS + 1
tok_name[NL] = 'NL'
ENCODING = N_TOKENS + 2
tok_name[ENCODING] = 'ENCODING'
N_TOKENS += 3
EXACT_TOKEN_TYPES = {
    '(':   LPAR,
    ')':   RPAR,
    '[':   LSQB,
    ']':   RSQB,
    ':':   COLON,
    ',':   COMMA,
    ';':   SEMI,
    '+':   PLUS,
    '-':   MINUS,
    '*':   STAR,
    '/':   SLASH,
    '|':   VBAR,
    '&':   AMPER,
    '<':   LESS,
    '>':   GREATER,
    '=':   EQUAL,
    '.':   DOT,
    '%':   PERCENT,
    '{':   LBRACE,
    '}':   RBRACE,
    '==':  EQEQUAL,
    '!=':  NOTEQUAL,
    '<=':  LESSEQUAL,
    '>=':  GREATEREQUAL,
    '~':   TILDE,
    '^':   CIRCUMFLEX,
    '<<':  LEFTSHIFT,
    '>>':  RIGHTSHIFT,
    '**':  DOUBLESTAR,
    '+=':  PLUSEQUAL,
    '-=':  MINEQUAL,
    '*=':  STAREQUAL,
    '/=':  SLASHEQUAL,
    '%=':  PERCENTEQUAL,
    '&=':  AMPEREQUAL,
    '|=':  VBAREQUAL,
    '^=': CIRCUMFLEXEQUAL,
    '<<=': LEFTSHIFTEQUAL,
    '>>=': RIGHTSHIFTEQUAL,
    '**=': DOUBLESTAREQUAL,
    '//':  DOUBLESLASH,
    '//=': DOUBLESLASHEQUAL,
    '@':   AT
}

class TokenInfo(collections.namedtuple('TokenInfo', 'type string start end line')):
    def __repr__(self):
        annotated_type = '%d (%s)' % (self.type, tok_name[self.type])
        return ('TokenInfo(type=%s, string=%r, start=%r, end=%r, line=%r)' %
                self._replace(type=annotated_type))

    @property
    def exact_type(self):
        if self.type == OP and self.string in EXACT_TOKEN_TYPES:
            return EXACT_TOKEN_TYPES[self.string]
        else:
            return self.type

def group(*choices): return '(' + '|'.join(choices) + ')'
def any(*choices): return group(*choices) + '*'
def maybe(*choices): return group(*choices) + '?'

# Note: we use unicode matching for names ("\w") but ascii matching for
# number literals.
Whitespace = r'[ \f\t]*'
Comment = r'#[^\r\n]*'
Ignore = Whitespace + any(r'\\\r?\n' + Whitespace) + maybe(Comment)
Name = r'\w+'

Hexnumber = r'0[xX][0-9a-fA-F]+'
Binnumber = r'0[bB][01]+'
Octnumber = r'0[oO][0-7]+'
Decnumber = r'(?:0+|[1-9][0-9]*)'
Intnumber = group(Hexnumber, Binnumber, Octnumber, Decnumber)
Exponent = r'[eE][-+]?[0-9]+'
Pointfloat = group(r'[0-9]+\.[0-9]*', r'\.[0-9]+') + maybe(Exponent)
Expfloat = r'[0-9]+' + Exponent
Floatnumber = group(Pointfloat, Expfloat)
Imagnumber = group(r'[0-9]+[jJ]', Floatnumber + r'[jJ]')
Number = group(Imagnumber, Floatnumber, Intnumber)

StringPrefix = r'(?:[bB][rR]?|[rR][bB]?|[uU])?'

# Tail end of ' string.
Single = r"[^'\\]*(?:\\.[^'\\]*)*'"
# Tail end of " string.
Double = r'[^"\\]*(?:\\.[^"\\]*)*"'
# Tail end of ''' string.
Single3 = r"[^'\\]*(?:(?:\\.|'(?!''))[^'\\]*)*'''"
# Tail end of """ string.
Double3 = r'[^"\\]*(?:(?:\\.|"(?!""))[^"\\]*)*"""'
Triple = group(StringPrefix + "'''", StringPrefix + '"""')
# Single-line ' or " string.
String = group(StringPrefix + r"'[^\n'\\]*(?:\\.[^\n'\\]*)*'",
               StringPrefix + r'"[^\n"\\]*(?:\\.[^\n"\\]*)*"')

# Because of leftmost-then-longest match semantics, be sure to put the
# longest operators first (e.g., if = came before ==, == would get
# recognized as two instances of =).
Operator = group(r"\*\*=?", r">>=?", r"<<=?", r"!=",
                 r"//=?", r"->",
                 r"[+\-*/%&|^=<>]=?",
                 r"~")

Bracket = '[][(){}]'
Special = group(r'\r?\n', r'\.\.\.', r'[:;.,@]')
Funny = group(Operator, Bracket, Special)

PlainToken = group(Number, Funny, String, Name)
Token = Ignore + PlainToken

# First (or only) line of ' or " string.
ContStr = group(StringPrefix + r"'[^\n'\\]*(?:\\.[^\n'\\]*)*" +
                group("'", r'\\\r?\n'),
                StringPrefix + r'"[^\n"\\]*(?:\\.[^\n"\\]*)*' +
                group('"', r'\\\r?\n'))
PseudoExtras = group(r'\\\r?\n|\Z', Comment, Triple)
PseudoToken = Whitespace + group(PseudoExtras, Number, Funny, ContStr, Name)

def _compile(expr):
    return re.compile(expr, re.UNICODE)

endpats = {"'": Single, '"': Double,
           "'''": Single3, '"""': Double3,
           "r'''": Single3, 'r"""': Double3,
           "b'''": Single3, 'b"""': Double3,
           "R'''": Single3, 'R"""': Double3,
           "B'''": Single3, 'B"""': Double3,
           "br'''": Single3, 'br"""': Double3,
           "bR'''": Single3, 'bR"""': Double3,
           "Br'''": Single3, 'Br"""': Double3,
           "BR'''": Single3, 'BR"""': Double3,
           "rb'''": Single3, 'rb"""': Double3,
           "Rb'''": Single3, 'Rb"""': Double3,
           "rB'''": Single3, 'rB"""': Double3,
           "RB'''": Single3, 'RB"""': Double3,
           "u'''": Single3, 'u"""': Double3,
           "R'''": Single3, 'R"""': Double3,
           "U'''": Single3, 'U"""': Double3,
           'r': None, 'R': None, 'b': None, 'B': None,
           'u': None, 'U': None}

triple_quoted = {}
for t in ("'''", '"""',
          "r'''", 'r"""', "R'''", 'R"""',
          "b'''", 'b"""', "B'''", 'B"""',
          "br'''", 'br"""', "Br'''", 'Br"""',
          "bR'''", 'bR"""', "BR'''", 'BR"""',
          "rb'''", 'rb"""', "rB'''", 'rB"""',
          "Rb'''", 'Rb"""', "RB'''", 'RB"""',
          "u'''", 'u"""', "U'''", 'U"""',
          ):
    triple_quoted[t] = t
single_quoted = {}
for t in ("'", '"',
          "r'", 'r"', "R'", 'R"',
          "b'", 'b"', "B'", 'B"',
          "br'", 'br"', "Br'", 'Br"',
          "bR'", 'bR"', "BR'", 'BR"' ,
          "rb'", 'rb"', "rB'", 'rB"',
          "Rb'", 'Rb"', "RB'", 'RB"' ,
          "u'", 'u"', "U'", 'U"',
          ):
    single_quoted[t] = t

tabsize = 8

class TokenError(Exception): pass

class StopTokenizing(Exception): pass


class Untokenizer:

    def __init__(self):
        self.tokens = []
        self.prev_row = 1
        self.prev_col = 0
        self.encoding = None

    def add_whitespace(self, start):
        row, col = start
        if row < self.prev_row or row == self.prev_row and col < self.prev_col:
            raise ValueError("start ({},{}) precedes previous end ({},{})"
                             .format(row, col, self.prev_row, self.prev_col))
        row_offset = row - self.prev_row
        if row_offset:
            self.tokens.append("\\\n" * row_offset)
            self.prev_col = 0
        col_offset = col - self.prev_col
        if col_offset:
            self.tokens.append(" " * col_offset)

    def untokenize(self, iterable):
        it = iter(iterable)
        indents = []
        startline = False
        for t in it:
            if len(t) == 2:
                self.compat(t, it)
                break
            tok_type, token, start, end, line = t
            if tok_type == ENCODING:
                self.encoding = token
                continue
            if tok_type == ENDMARKER:
                break
            if tok_type == INDENT:
                indents.append(token)
                continue
            elif tok_type == DEDENT:
                indents.pop()
                self.prev_row, self.prev_col = end
                continue
            elif tok_type in (NEWLINE, NL):
                startline = True
            elif startline and indents:
                indent = indents[-1]
                if start[1] >= len(indent):
                    self.tokens.append(indent)
                    self.prev_col = len(indent)
                startline = False
            self.add_whitespace(start)
            self.tokens.append(token)
            self.prev_row, self.prev_col = end
            if tok_type in (NEWLINE, NL):
                self.prev_row += 1
                self.prev_col = 0
        return "".join(self.tokens)

    def compat(self, token, iterable):
        indents = []
        toks_append = self.tokens.append
        startline = token[0] in (NEWLINE, NL)
        prevstring = False

        for tok in chain([token], iterable):
            toknum, tokval = tok[:2]
            if toknum == ENCODING:
                self.encoding = tokval
                continue

            if toknum in (NAME, NUMBER):
                tokval += ' '

            # Insert a space between two consecutive strings
            if toknum == STRING:
                if prevstring:
                    tokval = ' ' + tokval
                prevstring = True
            else:
                prevstring = False

            if toknum == INDENT:
                indents.append(tokval)
                continue
            elif toknum == DEDENT:
                indents.pop()
                continue
            elif toknum in (NEWLINE, NL):
                startline = True
            elif startline and indents:
                toks_append(indents[-1])
                startline = False
            toks_append(tokval)


def untokenize(iterable):
    """Transform tokens back into Python source code.
    It returns a bytes object, encoded using the ENCODING
    token, which is the first token sequence output by tokenize.

    Each element returned by the iterable must be a token sequence
    with at least two elements, a token number and token value.  If
    only two tokens are passed, the resulting output is poor.

    Round-trip invariant for full input:
        Untokenized source will match input source exactly

    Round-trip invariant for limited intput:
        # Output bytes will tokenize the back to the input
        t1 = [tok[:2] for tok in tokenize(f.readline)]
        newcode = untokenize(t1)
        readline = BytesIO(newcode).readline
        t2 = [tok[:2] for tok in tokenize(readline)]
        assert t1 == t2
    """
    ut = Untokenizer()
    out = ut.untokenize(iterable)
    if ut.encoding is not None:
        out = out.encode(ut.encoding)
    return out


def _get_normal_name(orig_enc):
    """Imitates get_normal_name in tokenizer.c."""
    # Only care about the first 12 characters.
    enc = orig_enc[:12].lower().replace("_", "-")
    if enc == "utf-8" or enc.startswith("utf-8-"):
        return "utf-8"
    if enc in ("latin-1", "iso-8859-1", "iso-latin-1") or \
       enc.startswith(("latin-1-", "iso-8859-1-", "iso-latin-1-")):
        return "iso-8859-1"
    return orig_enc

def detect_encoding(readline):
    """
    The detect_encoding() function is used to detect the encoding that should
    be used to decode a Python source file.  It requires one argument, readline,
    in the same way as the tokenize() generator.

    It will call readline a maximum of twice, and return the encoding used
    (as a string) and a list of any lines (left as bytes) it has read in.

    It detects the encoding from the presence of a utf-8 bom or an encoding
    cookie as specified in pep-0263.  If both a bom and a cookie are present,
    but disagree, a SyntaxError will be raised.  If the encoding cookie is an
    invalid charset, raise a SyntaxError.  Note that if a utf-8 bom is found,
    'utf-8-sig' is returned.

    If no encoding is specified, then the default of 'utf-8' will be returned.
    """
    try:
        filename = readline.__self__.name
    except AttributeError:
        filename = None
    bom_found = False
    encoding = None
    default = 'utf-8'
    def read_or_stop():
        try:
            return readline()
        except StopIteration:
            return b''

    def find_cookie(line):
        try:
            # Decode as UTF-8. Either the line is an encoding declaration,
            # in which case it should be pure ASCII, or it must be UTF-8
            # per default encoding.
            line_string = line.decode('utf-8')
        except UnicodeDecodeError:
            msg = "invalid or missing encoding declaration"
            if filename is not None:
                msg = '{} for {!r}'.format(msg, filename)
            raise SyntaxError(msg)

        match = cookie_re.match(line_string)
        if not match:
            return None
        encoding = _get_normal_name(match.group(1))
        try:
            codec = lookup(encoding)
        except LookupError:
            # This behaviour mimics the Python interpreter
            if filename is None:
                msg = "unknown encoding: " + encoding
            else:
                msg = "unknown encoding for {!r}: {}".format(filename,
                        encoding)
            raise SyntaxError(msg)

        if bom_found:
            if encoding != 'utf-8':
                # This behaviour mimics the Python interpreter
                if filename is None:
                    msg = 'encoding problem: utf-8'
                else:
                    msg = 'encoding problem for {!r}: utf-8'.format(filename)
                raise SyntaxError(msg)
            encoding += '-sig'
        return encoding

    first = read_or_stop()
    if first.startswith(BOM_UTF8):
        bom_found = True
        first = first[3:]
        default = 'utf-8-sig'
    if not first:
        return default, []

    encoding = find_cookie(first)
    if encoding:
        return encoding, [first]
    if not blank_re.match(first):
        return default, [first]

    second = read_or_stop()
    if not second:
        return default, [first]

    encoding = find_cookie(second)
    if encoding:
        return encoding, [first, second]

    return default, [first, second]


def open(filename):
    """Open a file in read only mode using the encoding detected by
    detect_encoding().
    """
    buffer = _builtin_open(filename, 'rb')
    try:
        encoding, lines = detect_encoding(buffer.readline)
        buffer.seek(0)
        text = TextIOWrapper(buffer, encoding, line_buffering=True)
        text.mode = 'r'
        return text
    except:
        buffer.close()
        raise


def tokenize(readline):
    """
    The tokenize() generator requires one argment, readline, which
    must be a callable object which provides the same interface as the
    readline() method of built-in file objects.  Each call to the function
    should return one line of input as bytes.  Alternately, readline
    can be a callable function terminating with StopIteration:
        readline = open(myfile, 'rb').__next__  # Example of alternate readline

    The generator produces 5-tuples with these members: the token type; the
    token string; a 2-tuple (srow, scol) of ints specifying the row and
    column where the token begins in the source; a 2-tuple (erow, ecol) of
    ints specifying the row and column where the token ends in the source;
    and the line on which the token was found.  The line passed is the
    logical line; continuation lines are included.

    The first token sequence will always be an ENCODING token
    which tells you which encoding was used to decode the bytes stream.
    """
    # This import is here to avoid problems when the itertools module is not
    # built yet and tokenize is imported.
    from itertools import chain, repeat
    encoding, consumed = detect_encoding(readline)
    rl_gen = iter(readline, b"")
    empty = repeat(b"")
    return _tokenize(chain(consumed, rl_gen, empty).__next__, encoding)


def _tokenize(readline, encoding):
    lnum = parenlev = continued = 0
    numchars = '0123456789'
    contstr, needcont = '', 0
    contline = None
    indents = [0]

    if encoding is not None:
        if encoding == "utf-8-sig":
            # BOM will already have been stripped.
            encoding = "utf-8"
        yield TokenInfo(ENCODING, encoding, (0, 0), (0, 0), '')
    while True:             # loop over lines in stream
        try:
            line = readline()
        except StopIteration:
            line = b''

        if encoding is not None:
            line = line.decode(encoding)
        lnum += 1
        pos, max = 0, len(line)

        if contstr:                            # continued string
            if not line:
                raise TokenError("EOF in multi-line string", strstart)
            endmatch = endprog.match(line)
            if endmatch:
                pos = end = endmatch.end(0)
                yield TokenInfo(STRING, contstr + line[:end],
                       strstart, (lnum, end), contline + line)
                contstr, needcont = '', 0
                contline = None
            elif needcont and line[-2:] != '\\\n' and line[-3:] != '\\\r\n':
                yield TokenInfo(ERRORTOKEN, contstr + line,
                           strstart, (lnum, len(line)), contline)
                contstr = ''
                contline = None
                continue
            else:
                contstr = contstr + line
                contline = contline + line
                continue

        elif parenlev == 0 and not continued:  # new statement
            if not line: break
            column = 0
            while pos < max:                   # measure leading whitespace
                if line[pos] == ' ':
                    column += 1
                elif line[pos] == '\t':
                    column = (column//tabsize + 1)*tabsize
                elif line[pos] == '\f':
                    column = 0
                else:
                    break
                pos += 1
            if pos == max:
                break

            if line[pos] in '#\r\n':           # skip comments or blank lines
                if line[pos] == '#':
                    comment_token = line[pos:].rstrip('\r\n')
                    nl_pos = pos + len(comment_token)
                    yield TokenInfo(COMMENT, comment_token,
                           (lnum, pos), (lnum, pos + len(comment_token)), line)
                    yield TokenInfo(NL, line[nl_pos:],
                           (lnum, nl_pos), (lnum, len(line)), line)
                else:
                    yield TokenInfo((NL, COMMENT)[line[pos] == '#'], line[pos:],
                           (lnum, pos), (lnum, len(line)), line)
                continue

            if column > indents[-1]:           # count indents or dedents
                indents.append(column)
                yield TokenInfo(INDENT, line[:pos], (lnum, 0), (lnum, pos), line)
            while column < indents[-1]:
                if column not in indents:
                    raise IndentationError(
                        "unindent does not match any outer indentation level",
                        ("<tokenize>", lnum, pos, line))
                indents = indents[:-1]
                yield TokenInfo(DEDENT, '', (lnum, pos), (lnum, pos), line)

        else:                                  # continued statement
            if not line:
                raise TokenError("EOF in multi-line statement", (lnum, 0))
            continued = 0

        while pos < max:
            pseudomatch = _compile(PseudoToken).match(line, pos)
            if pseudomatch:                                # scan for tokens
                start, end = pseudomatch.span(1)
                spos, epos, pos = (lnum, start), (lnum, end), end
                if start == end:
                    continue
                token, initial = line[start:end], line[start]

                if (initial in numchars or                  # ordinary number
                    (initial == '.' and token != '.' and token != '...')):
                    yield TokenInfo(NUMBER, token, spos, epos, line)
                elif initial in '\r\n':
                    yield TokenInfo(NL if parenlev > 0 else NEWLINE,
                           token, spos, epos, line)
                elif initial == '#':
                    assert not token.endswith("\n")
                    yield TokenInfo(COMMENT, token, spos, epos, line)
                elif token in triple_quoted:
                    endprog = _compile(endpats[token])
                    endmatch = endprog.match(line, pos)
                    if endmatch:                           # all on one line
                        pos = endmatch.end(0)
                        token = line[start:pos]
                        yield TokenInfo(STRING, token, spos, (lnum, pos), line)
                    else:
                        strstart = (lnum, start)           # multiple lines
                        contstr = line[start:]
                        contline = line
                        break
                elif initial in single_quoted or \
                    token[:2] in single_quoted or \
                    token[:3] in single_quoted:
                    if token[-1] == '\n':                  # continued string
                        strstart = (lnum, start)
                        endprog = _compile(endpats[initial] or
                                           endpats[token[1]] or
                                           endpats[token[2]])
                        contstr, needcont = line[start:], 1
                        contline = line
                        break
                    else:                                  # ordinary string
                        yield TokenInfo(STRING, token, spos, epos, line)
                elif initial.isidentifier():               # ordinary name
                    yield TokenInfo(NAME, token, spos, epos, line)
                elif initial == '\\':                      # continued stmt
                    continued = 1
                else:
                    if initial in '([{':
                        parenlev += 1
                    elif initial in ')]}':
                        parenlev -= 1
                    yield TokenInfo(OP, token, spos, epos, line)
            else:
                yield TokenInfo(ERRORTOKEN, line[pos],
                           (lnum, pos), (lnum, pos+1), line)
                pos += 1

    for indent in indents[1:]:                 # pop remaining indent levels
        yield TokenInfo(DEDENT, '', (lnum, 0), (lnum, 0), '')
    yield TokenInfo(ENDMARKER, '', (lnum, 0), (lnum, 0), '')


# An undocumented, backwards compatible, API for all the places in the standard
# library that expect to be able to use tokenize with strings
def generate_tokens(readline):
    return _tokenize(readline, None)

def main():
    import argparse

    # Helper error handling routines
    def perror(message):
        print(message, file=sys.stderr)

    def error(message, filename=None, location=None):
        if location:
            args = (filename,) + location + (message,)
            perror("%s:%d:%d: error: %s" % args)
        elif filename:
            perror("%s: error: %s" % (filename, message))
        else:
            perror("error: %s" % message)
        sys.exit(1)

    # Parse the arguments and options
    parser = argparse.ArgumentParser(prog='python -m tokenize')
    parser.add_argument(dest='filename', nargs='?',
                        metavar='filename.py',
                        help='the file to tokenize; defaults to stdin')
    parser.add_argument('-e', '--exact', dest='exact', action='store_true',
                        help='display token names using the exact type')
    args = parser.parse_args()

    try:
        # Tokenize the input
        if args.filename:
            filename = args.filename
            with _builtin_open(filename, 'rb') as f:
                tokens = list(tokenize(f.readline))
        else:
            filename = "<stdin>"
            tokens = _tokenize(sys.stdin.readline, None)

        # Output the tokenization
        for token in tokens:
            token_type = token.type
            if args.exact:
                token_type = token.exact_type
            token_range = "%d,%d-%d,%d:" % (token.start + token.end)
            print("%-20s%-15s%-15r" %
                  (token_range, tok_name[token_type], token.string))
    except IndentationError as err:
        line, column = err.args[1][1:3]
        error(err.args[0], filename, (line, column))
    except TokenError as err:
        line, column = err.args[1]
        error(err.args[0], filename, (line, column))
    except SyntaxError as err:
        error(err, filename)
    except OSError as err:
        error(err)
    except KeyboardInterrupt:
        print("interrupted\n")
    except Exception as err:
        perror("unexpected error: %s" % err)
        raise

if __name__ == "__main__":
    main()
lib\trace.py
#!/usr/bin/env python3

# portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
# err...  reserved and offered to the public under the terms of the
# Python 2.2 license.
# Author: Zooko O'Whielacronx
# http://zooko.com/
# mailto:[email protected]
#
# Copyright 2000, Mojam Media, Inc., all rights reserved.
# Author: Skip Montanaro
#
# Copyright 1999, Bioreason, Inc., all rights reserved.
# Author: Andrew Dalke
#
# Copyright 1995-1997, Automatrix, Inc., all rights reserved.
# Author: Skip Montanaro
#
# Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.
#
#
# Permission to use, copy, modify, and distribute this Python software and
# its associated documentation for any purpose without fee is hereby
# granted, provided that the above copyright notice appears in all copies,
# and that both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of neither Automatrix,
# Bioreason or Mojam Media be used in advertising or publicity pertaining to
# distribution of the software without specific, written prior permission.
#
"""program/module to trace Python program or function execution

Sample use, command line:
  trace.py -c -f counts --ignore-dir '$prefix' spam.py eggs
  trace.py -t --ignore-dir '$prefix' spam.py eggs
  trace.py --trackcalls spam.py eggs

Sample use, programmatically
  import sys

  # create a Trace object, telling it what to ignore, and whether to
  # do tracing or line-counting or both.
  tracer = trace.Trace(ignoredirs=[sys.base_prefix, sys.base_exec_prefix,],
                       trace=0, count=1)
  # run the new command using the given tracer
  tracer.run('main()')
  # make a report, placing output in /tmp
  r = tracer.results()
  r.write_results(show_missing=True, coverdir="/tmp")
"""
__all__ = ['Trace', 'CoverageResults']
import linecache
import os
import re
import sys
import token
import tokenize
import inspect
import gc
import dis
import pickle
from warnings import warn as _warn
try:
    from time import monotonic as _time
except ImportError:
    from time import time as _time

try:
    import threading
except ImportError:
    _settrace = sys.settrace

    def _unsettrace():
        sys.settrace(None)
else:
    def _settrace(func):
        threading.settrace(func)
        sys.settrace(func)

    def _unsettrace():
        sys.settrace(None)
        threading.settrace(None)

def _usage(outfile):
    outfile.write("""Usage: %s [OPTIONS] <file> [ARGS]

Meta-options:
--help                Display this help then exit.
--version             Output version information then exit.

Otherwise, exactly one of the following three options must be given:
-t, --trace           Print each line to sys.stdout before it is executed.
-c, --count           Count the number of times each line is executed
                      and write the counts to <module>.cover for each
                      module executed, in the module's directory.
                      See also `--coverdir', `--file', `--no-report' below.
-l, --listfuncs       Keep track of which functions are executed at least
                      once and write the results to sys.stdout after the
                      program exits.
-T, --trackcalls      Keep track of caller/called pairs and write the
                      results to sys.stdout after the program exits.
-r, --report          Generate a report from a counts file; do not execute
                      any code.  `--file' must specify the results file to
                      read, which must have been created in a previous run
                      with `--count --file=FILE'.

Modifiers:
-f, --file=<file>     File to accumulate counts over several runs.
-R, --no-report       Do not generate the coverage report files.
                      Useful if you want to accumulate over several runs.
-C, --coverdir=<dir>  Directory where the report files.  The coverage
                      report for <package>.<module> is written to file
                      <dir>/<package>/<module>.cover.
-m, --missing         Annotate executable lines that were not executed
                      with '>>>>>> '.
-s, --summary         Write a brief summary on stdout for each file.
                      (Can only be used with --count or --report.)
-g, --timing          Prefix each line with the time since the program started.
                      Only used while tracing.

Filters, may be repeated multiple times:
--ignore-module=<mod> Ignore the given module(s) and its submodules
                      (if it is a package).  Accepts comma separated
                      list of module names
--ignore-dir=<dir>    Ignore files in the given directory (multiple
                      directories can be joined by os.pathsep).
""" % sys.argv[0])

PRAGMA_NOCOVER = "#pragma NO COVER"

# Simple rx to find lines with no code.
rx_blank = re.compile(r'^\s*(#.*)?$')

class _Ignore:
    def __init__(self, modules=None, dirs=None):
        self._mods = set() if not modules else set(modules)
        self._dirs = [] if not dirs else [os.path.normpath(d)
                                          for d in dirs]
        self._ignore = { '<string>': 1 }

    def names(self, filename, modulename):
        if modulename in self._ignore:
            return self._ignore[modulename]

        # haven't seen this one before, so see if the module name is
        # on the ignore list.
        if modulename in self._mods:  # Identical names, so ignore
            self._ignore[modulename] = 1
            return 1

        # check if the module is a proper submodule of something on
        # the ignore list
        for mod in self._mods:
            # Need to take some care since ignoring
            # "cmp" mustn't mean ignoring "cmpcache" but ignoring
            # "Spam" must also mean ignoring "Spam.Eggs".
            if modulename.startswith(mod + '.'):
                self._ignore[modulename] = 1
                return 1

        # Now check that filename isn't in one of the directories
        if filename is None:
            # must be a built-in, so we must ignore
            self._ignore[modulename] = 1
            return 1

        # Ignore a file when it contains one of the ignorable paths
        for d in self._dirs:
            # The '+ os.sep' is to ensure that d is a parent directory,
            # as compared to cases like:
            #  d = "/usr/local"
            #  filename = "/usr/local.py"
            # or
            #  d = "/usr/local.py"
            #  filename = "/usr/local.py"
            if filename.startswith(d + os.sep):
                self._ignore[modulename] = 1
                return 1

        # Tried the different ways, so we don't ignore this module
        self._ignore[modulename] = 0
        return 0

def _modname(path):
    """Return a plausible module name for the patch."""

    base = os.path.basename(path)
    filename, ext = os.path.splitext(base)
    return filename

def _fullmodname(path):
    """Return a plausible module name for the path."""

    # If the file 'path' is part of a package, then the filename isn't
    # enough to uniquely identify it.  Try to do the right thing by
    # looking in sys.path for the longest matching prefix.  We'll
    # assume that the rest is the package name.

    comparepath = os.path.normcase(path)
    longest = ""
    for dir in sys.path:
        dir = os.path.normcase(dir)
        if comparepath.startswith(dir) and comparepath[len(dir)] == os.sep:
            if len(dir) > len(longest):
                longest = dir

    if longest:
        base = path[len(longest) + 1:]
    else:
        base = path
    # the drive letter is never part of the module name
    drive, base = os.path.splitdrive(base)
    base = base.replace(os.sep, ".")
    if os.altsep:
        base = base.replace(os.altsep, ".")
    filename, ext = os.path.splitext(base)
    return filename.lstrip(".")

class CoverageResults:
    def __init__(self, counts=None, calledfuncs=None, infile=None,
                 callers=None, outfile=None):
        self.counts = counts
        if self.counts is None:
            self.counts = {}
        self.counter = self.counts.copy() # map (filename, lineno) to count
        self.calledfuncs = calledfuncs
        if self.calledfuncs is None:
            self.calledfuncs = {}
        self.calledfuncs = self.calledfuncs.copy()
        self.callers = callers
        if self.callers is None:
            self.callers = {}
        self.callers = self.callers.copy()
        self.infile = infile
        self.outfile = outfile
        if self.infile:
            # Try to merge existing counts file.
            try:
                counts, calledfuncs, callers = \
                        pickle.load(open(self.infile, 'rb'))
                self.update(self.__class__(counts, calledfuncs, callers))
            except (OSError, EOFError, ValueError) as err:
                print(("Skipping counts file %r: %s"
                                      % (self.infile, err)), file=sys.stderr)

    def is_ignored_filename(self, filename):
        """Return True if the filename does not refer to a file
        we want to have reported.
        """
        return filename.startswith('<') and filename.endswith('>')

    def update(self, other):
        """Merge in the data from another CoverageResults"""
        counts = self.counts
        calledfuncs = self.calledfuncs
        callers = self.callers
        other_counts = other.counts
        other_calledfuncs = other.calledfuncs
        other_callers = other.callers

        for key in other_counts:
            counts[key] = counts.get(key, 0) + other_counts[key]

        for key in other_calledfuncs:
            calledfuncs[key] = 1

        for key in other_callers:
            callers[key] = 1

    def write_results(self, show_missing=True, summary=False, coverdir=None):
        """
        @param coverdir
        """
        if self.calledfuncs:
            print()
            print("functions called:")
            calls = self.calledfuncs
            for filename, modulename, funcname in sorted(calls):
                print(("filename: %s, modulename: %s, funcname: %s"
                       % (filename, modulename, funcname)))

        if self.callers:
            print()
            print("calling relationships:")
            lastfile = lastcfile = ""
            for ((pfile, pmod, pfunc), (cfile, cmod, cfunc)) \
                    in sorted(self.callers):
                if pfile != lastfile:
                    print()
                    print("***", pfile, "***")
                    lastfile = pfile
                    lastcfile = ""
                if cfile != pfile and lastcfile != cfile:
                    print("  -->", cfile)
                    lastcfile = cfile
                print("    %s.%s -> %s.%s" % (pmod, pfunc, cmod, cfunc))

        # turn the counts data ("(filename, lineno) = count") into something
        # accessible on a per-file basis
        per_file = {}
        for filename, lineno in self.counts:
            lines_hit = per_file[filename] = per_file.get(filename, {})
            lines_hit[lineno] = self.counts[(filename, lineno)]

        # accumulate summary info, if needed
        sums = {}

        for filename, count in per_file.items():
            if self.is_ignored_filename(filename):
                continue

            if filename.endswith((".pyc", ".pyo")):
                filename = filename[:-1]

            if coverdir is None:
                dir = os.path.dirname(os.path.abspath(filename))
                modulename = _modname(filename)
            else:
                dir = coverdir
                if not os.path.exists(dir):
                    os.makedirs(dir)
                modulename = _fullmodname(filename)

            # If desired, get a list of the line numbers which represent
            # executable content (returned as a dict for better lookup speed)
            if show_missing:
                lnotab = _find_executable_linenos(filename)
            else:
                lnotab = {}

            source = linecache.getlines(filename)
            coverpath = os.path.join(dir, modulename + ".cover")
            with open(filename, 'rb') as fp:
                encoding, _ = tokenize.detect_encoding(fp.readline)
            n_hits, n_lines = self.write_results_file(coverpath, source,
                                                      lnotab, count, encoding)
            if summary and n_lines:
                percent = int(100 * n_hits / n_lines)
                sums[modulename] = n_lines, percent, modulename, filename

        if summary and sums:
            print("lines   cov%   module   (path)")
            for m in sorted(sums):
                n_lines, percent, modulename, filename = sums[m]
                print("%5d   %3d%%   %s   (%s)" % sums[m])

        if self.outfile:
            # try and store counts and module info into self.outfile
            try:
                pickle.dump((self.counts, self.calledfuncs, self.callers),
                            open(self.outfile, 'wb'), 1)
            except OSError as err:
                print("Can't save counts files because %s" % err, file=sys.stderr)

    def write_results_file(self, path, lines, lnotab, lines_hit, encoding=None):
        """Return a coverage results file in path."""

        try:
            outfile = open(path, "w", encoding=encoding)
        except OSError as err:
            print(("trace: Could not open %r for writing: %s"
                                  "- skipping" % (path, err)), file=sys.stderr)
            return 0, 0

        n_lines = 0
        n_hits = 0
        for lineno, line in enumerate(lines, 1):
            # do the blank/comment match to try to mark more lines
            # (help the reader find stuff that hasn't been covered)
            if lineno in lines_hit:
                outfile.write("%5d: " % lines_hit[lineno])
                n_hits += 1
                n_lines += 1
            elif rx_blank.match(line):
                outfile.write("       ")
            else:
                # lines preceded by no marks weren't hit
                # Highlight them if so indicated, unless the line contains
                # #pragma: NO COVER
                if lineno in lnotab and not PRAGMA_NOCOVER in line:
                    outfile.write(">>>>>> ")
                    n_lines += 1
                else:
                    outfile.write("       ")
            outfile.write(line.expandtabs(8))
        outfile.close()

        return n_hits, n_lines

def _find_lines_from_code(code, strs):
    """Return dict where keys are lines in the line number table."""
    linenos = {}

    for _, lineno in dis.findlinestarts(code):
        if lineno not in strs:
            linenos[lineno] = 1

    return linenos

def _find_lines(code, strs):
    """Return lineno dict for all code objects reachable from code."""
    # get all of the lineno information from the code of this scope level
    linenos = _find_lines_from_code(code, strs)

    # and check the constants for references to other code objects
    for c in code.co_consts:
        if inspect.iscode(c):
            # find another code object, so recurse into it
            linenos.update(_find_lines(c, strs))
    return linenos

def _find_strings(filename, encoding=None):
    """Return a dict of possible docstring positions.

    The dict maps line numbers to strings.  There is an entry for
    line that contains only a string or a part of a triple-quoted
    string.
    """
    d = {}
    # If the first token is a string, then it's the module docstring.
    # Add this special case so that the test in the loop passes.
    prev_ttype = token.INDENT
    with open(filename, encoding=encoding) as f:
        tok = tokenize.generate_tokens(f.readline)
        for ttype, tstr, start, end, line in tok:
            if ttype == token.STRING:
                if prev_ttype == token.INDENT:
                    sline, scol = start
                    eline, ecol = end
                    for i in range(sline, eline + 1):
                        d[i] = 1
            prev_ttype = ttype
    return d

def _find_executable_linenos(filename):
    """Return dict where keys are line numbers in the line number table."""
    try:
        with tokenize.open(filename) as f:
            prog = f.read()
            encoding = f.encoding
    except OSError as err:
        print(("Not printing coverage data for %r: %s"
                              % (filename, err)), file=sys.stderr)
        return {}
    code = compile(prog, filename, "exec")
    strs = _find_strings(filename, encoding)
    return _find_lines(code, strs)

class Trace:
    def __init__(self, count=1, trace=1, countfuncs=0, countcallers=0,
                 ignoremods=(), ignoredirs=(), infile=None, outfile=None,
                 timing=False):
        """
        @param count true iff it should count number of times each
                     line is executed
        @param trace true iff it should print out each line that is
                     being counted
        @param countfuncs true iff it should just output a list of
                     (filename, modulename, funcname,) for functions
                     that were called at least once;  This overrides
                     `count' and `trace'
        @param ignoremods a list of the names of modules to ignore
        @param ignoredirs a list of the names of directories to ignore
                     all of the (recursive) contents of
        @param infile file from which to read stored counts to be
                     added into the results
        @param outfile file in which to write the results
        @param timing true iff timing information be displayed
        """
        self.infile = infile
        self.outfile = outfile
        self.ignore = _Ignore(ignoremods, ignoredirs)
        self.counts = {}   # keys are (filename, linenumber)
        self.pathtobasename = {} # for memoizing os.path.basename
        self.donothing = 0
        self.trace = trace
        self._calledfuncs = {}
        self._callers = {}
        self._caller_cache = {}
        self.start_time = None
        if timing:
            self.start_time = _time()
        if countcallers:
            self.globaltrace = self.globaltrace_trackcallers
        elif countfuncs:
            self.globaltrace = self.globaltrace_countfuncs
        elif trace and count:
            self.globaltrace = self.globaltrace_lt
            self.localtrace = self.localtrace_trace_and_count
        elif trace:
            self.globaltrace = self.globaltrace_lt
            self.localtrace = self.localtrace_trace
        elif count:
            self.globaltrace = self.globaltrace_lt
            self.localtrace = self.localtrace_count
        else:
            # Ahem -- do nothing?  Okay.
            self.donothing = 1

    def run(self, cmd):
        import __main__
        dict = __main__.__dict__
        self.runctx(cmd, dict, dict)

    def runctx(self, cmd, globals=None, locals=None):
        if globals is None: globals = {}
        if locals is None: locals = {}
        if not self.donothing:
            _settrace(self.globaltrace)
        try:
            exec(cmd, globals, locals)
        finally:
            if not self.donothing:
                _unsettrace()

    def runfunc(self, func, *args, **kw):
        result = None
        if not self.donothing:
            sys.settrace(self.globaltrace)
        try:
            result = func(*args, **kw)
        finally:
            if not self.donothing:
                sys.settrace(None)
        return result

    def file_module_function_of(self, frame):
        code = frame.f_code
        filename = code.co_filename
        if filename:
            modulename = _modname(filename)
        else:
            modulename = None

        funcname = code.co_name
        clsname = None
        if code in self._caller_cache:
            if self._caller_cache[code] is not None:
                clsname = self._caller_cache[code]
        else:
            self._caller_cache[code] = None
            ## use of gc.get_referrers() was suggested by Michael Hudson
            # all functions which refer to this code object
            funcs = [f for f in gc.get_referrers(code)
                         if inspect.isfunction(f)]
            # require len(func) == 1 to avoid ambiguity caused by calls to
            # new.function(): "In the face of ambiguity, refuse the
            # temptation to guess."
            if len(funcs) == 1:
                dicts = [d for d in gc.get_referrers(funcs[0])
                             if isinstance(d, dict)]
                if len(dicts) == 1:
                    classes = [c for c in gc.get_referrers(dicts[0])
                                   if hasattr(c, "__bases__")]
                    if len(classes) == 1:
                        # ditto for new.classobj()
                        clsname = classes[0].__name__
                        # cache the result - assumption is that new.* is
                        # not called later to disturb this relationship
                        # _caller_cache could be flushed if functions in
                        # the new module get called.
                        self._caller_cache[code] = clsname
        if clsname is not None:
            funcname = "%s.%s" % (clsname, funcname)

        return filename, modulename, funcname

    def globaltrace_trackcallers(self, frame, why, arg):
        """Handler for call events.

        Adds information about who called who to the self._callers dict.
        """
        if why == 'call':
            # XXX Should do a better job of identifying methods
            this_func = self.file_module_function_of(frame)
            parent_func = self.file_module_function_of(frame.f_back)
            self._callers[(parent_func, this_func)] = 1

    def globaltrace_countfuncs(self, frame, why, arg):
        """Handler for call events.

        Adds (filename, modulename, funcname) to the self._calledfuncs dict.
        """
        if why == 'call':
            this_func = self.file_module_function_of(frame)
            self._calledfuncs[this_func] = 1

    def globaltrace_lt(self, frame, why, arg):
        """Handler for call events.

        If the code block being entered is to be ignored, returns `None',
        else returns self.localtrace.
        """
        if why == 'call':
            code = frame.f_code
            filename = frame.f_globals.get('__file__', None)
            if filename:
                # XXX _modname() doesn't work right for packages, so
                # the ignore support won't work right for packages
                modulename = _modname(filename)
                if modulename is not None:
                    ignore_it = self.ignore.names(filename, modulename)
                    if not ignore_it:
                        if self.trace:
                            print((" --- modulename: %s, funcname: %s"
                                   % (modulename, code.co_name)))
                        return self.localtrace
            else:
                return None

    def localtrace_trace_and_count(self, frame, why, arg):
        if why == "line":
            # record the file name and line number of every trace
            filename = frame.f_code.co_filename
            lineno = frame.f_lineno
            key = filename, lineno
            self.counts[key] = self.counts.get(key, 0) + 1

            if self.start_time:
                print('%.2f' % (_time() - self.start_time), end=' ')
            bname = os.path.basename(filename)
            print("%s(%d): %s" % (bname, lineno,
                                  linecache.getline(filename, lineno)), end='')
        return self.localtrace

    def localtrace_trace(self, frame, why, arg):
        if why == "line":
            # record the file name and line number of every trace
            filename = frame.f_code.co_filename
            lineno = frame.f_lineno

            if self.start_time:
                print('%.2f' % (_time() - self.start_time), end=' ')
            bname = os.path.basename(filename)
            print("%s(%d): %s" % (bname, lineno,
                                  linecache.getline(filename, lineno)), end='')
        return self.localtrace

    def localtrace_count(self, frame, why, arg):
        if why == "line":
            filename = frame.f_code.co_filename
            lineno = frame.f_lineno
            key = filename, lineno
            self.counts[key] = self.counts.get(key, 0) + 1
        return self.localtrace

    def results(self):
        return CoverageResults(self.counts, infile=self.infile,
                               outfile=self.outfile,
                               calledfuncs=self._calledfuncs,
                               callers=self._callers)

def _err_exit(msg):
    sys.stderr.write("%s: %s\n" % (sys.argv[0], msg))
    sys.exit(1)

def main(argv=None):
    import getopt

    if argv is None:
        argv = sys.argv
    try:
        opts, prog_argv = getopt.getopt(argv[1:], "tcrRf:d:msC:lTg",
                                        ["help", "version", "trace", "count",
                                         "report", "no-report", "summary",
                                         "file=", "missing",
                                         "ignore-module=", "ignore-dir=",
                                         "coverdir=", "listfuncs",
                                         "trackcalls", "timing"])

    except getopt.error as msg:
        sys.stderr.write("%s: %s\n" % (sys.argv[0], msg))
        sys.stderr.write("Try `%s --help' for more information\n"
                         % sys.argv[0])
        sys.exit(1)

    trace = 0
    count = 0
    report = 0
    no_report = 0
    counts_file = None
    missing = 0
    ignore_modules = []
    ignore_dirs = []
    coverdir = None
    summary = 0
    listfuncs = False
    countcallers = False
    timing = False

    for opt, val in opts:
        if opt == "--help":
            _usage(sys.stdout)
            sys.exit(0)

        if opt == "--version":
            sys.stdout.write("trace 2.0\n")
            sys.exit(0)

        if opt == "-T" or opt == "--trackcalls":
            countcallers = True
            continue

        if opt == "-l" or opt == "--listfuncs":
            listfuncs = True
            continue

        if opt == "-g" or opt == "--timing":
            timing = True
            continue

        if opt == "-t" or opt == "--trace":
            trace = 1
            continue

        if opt == "-c" or opt == "--count":
            count = 1
            continue

        if opt == "-r" or opt == "--report":
            report = 1
            continue

        if opt == "-R" or opt == "--no-report":
            no_report = 1
            continue

        if opt == "-f" or opt == "--file":
            counts_file = val
            continue

        if opt == "-m" or opt == "--missing":
            missing = 1
            continue

        if opt == "-C" or opt == "--coverdir":
            coverdir = val
            continue

        if opt == "-s" or opt == "--summary":
            summary = 1
            continue

        if opt == "--ignore-module":
            for mod in val.split(","):
                ignore_modules.append(mod.strip())
            continue

        if opt == "--ignore-dir":
            for s in val.split(os.pathsep):
                s = os.path.expandvars(s)
                # should I also call expanduser? (after all, could use $HOME)

                s = s.replace("$prefix",
                              os.path.join(sys.base_prefix, "lib",
                                           "python" + sys.version[:3]))
                s = s.replace("$exec_prefix",
                              os.path.join(sys.base_exec_prefix, "lib",
                                           "python" + sys.version[:3]))
                s = os.path.normpath(s)
                ignore_dirs.append(s)
            continue

        assert 0, "Should never get here"

    if listfuncs and (count or trace):
        _err_exit("cannot specify both --listfuncs and (--trace or --count)")

    if not (count or trace or report or listfuncs or countcallers):
        _err_exit("must specify one of --trace, --count, --report, "
                  "--listfuncs, or --trackcalls")

    if report and no_report:
        _err_exit("cannot specify both --report and --no-report")

    if report and not counts_file:
        _err_exit("--report requires a --file")

    if no_report and len(prog_argv) == 0:
        _err_exit("missing name of file to run")

    # everything is ready
    if report:
        results = CoverageResults(infile=counts_file, outfile=counts_file)
        results.write_results(missing, summary=summary, coverdir=coverdir)
    else:
        sys.argv = prog_argv
        progname = prog_argv[0]
        sys.path[0] = os.path.split(progname)[0]

        t = Trace(count, trace, countfuncs=listfuncs,
                  countcallers=countcallers, ignoremods=ignore_modules,
                  ignoredirs=ignore_dirs, infile=counts_file,
                  outfile=counts_file, timing=timing)
        try:
            with open(progname) as fp:
                code = compile(fp.read(), progname, 'exec')
            # try to emulate __main__ namespace as much as possible
            globs = {
                '__file__': progname,
                '__name__': '__main__',
                '__package__': None,
                '__cached__': None,
            }
            t.runctx(code, globs, globs)
        except OSError as err:
            _err_exit("Cannot run file %r because: %s" % (sys.argv[0], err))
        except SystemExit:
            pass

        results = t.results()

        if not no_report:
            results.write_results(missing, summary=summary, coverdir=coverdir)

#  Deprecated API
def usage(outfile):
    _warn("The trace.usage() function is deprecated",
         DeprecationWarning, 2)
    _usage(outfile)

class Ignore(_Ignore):
    def __init__(self, modules=None, dirs=None):
        _warn("The class trace.Ignore is deprecated",
             DeprecationWarning, 2)
        _Ignore.__init__(self, modules, dirs)

def modname(path):
    _warn("The trace.modname() function is deprecated",
         DeprecationWarning, 2)
    return _modname(path)

def fullmodname(path):
    _warn("The trace.fullmodname() function is deprecated",
         DeprecationWarning, 2)
    return _fullmodname(path)

def find_lines_from_code(code, strs):
    _warn("The trace.find_lines_from_code() function is deprecated",
         DeprecationWarning, 2)
    return _find_lines_from_code(code, strs)

def find_lines(code, strs):
    _warn("The trace.find_lines() function is deprecated",
         DeprecationWarning, 2)
    return _find_lines(code, strs)

def find_strings(filename, encoding=None):
    _warn("The trace.find_strings() function is deprecated",
         DeprecationWarning, 2)
    return _find_strings(filename, encoding=None)

def find_executable_linenos(filename):
    _warn("The trace.find_executable_linenos() function is deprecated",
         DeprecationWarning, 2)
    return _find_executable_linenos(filename)

if __name__=='__main__':
    main()
lib\traceback.py
"""Extract, format and print information about Python stack traces."""

import linecache
import sys
import operator

__all__ = ['extract_stack', 'extract_tb', 'format_exception',
           'format_exception_only', 'format_list', 'format_stack',
           'format_tb', 'print_exc', 'format_exc', 'print_exception',
           'print_last', 'print_stack', 'print_tb',
           'clear_frames']

#
# Formatting and printing lists of traceback lines.
#

def _format_list_iter(extracted_list):
    for filename, lineno, name, line in extracted_list:
        item = '  File "{}", line {}, in {}\n'.format(filename, lineno, name)
        if line:
            item = item + '    {}\n'.format(line.strip())
        yield item

def print_list(extracted_list, file=None):
    """Print the list of tuples as returned by extract_tb() or
    extract_stack() as a formatted stack trace to the given file."""
    if file is None:
        file = sys.stderr
    for item in _format_list_iter(extracted_list):
        print(item, file=file, end="")

def format_list(extracted_list):
    """Format a list of traceback entry tuples for printing.

    Given a list of tuples as returned by extract_tb() or
    extract_stack(), return a list of strings ready for printing.
    Each string in the resulting list corresponds to the item with the
    same index in the argument list.  Each string ends in a newline;
    the strings may contain internal newlines as well, for those items
    whose source text line is not None.
    """
    return list(_format_list_iter(extracted_list))

#
# Printing and Extracting Tracebacks.
#

# extractor takes curr and needs to return a tuple of:
# - Frame object
# - Line number
# - Next item (same type as curr)
# In practice, curr is either a traceback or a frame.
def _extract_tb_or_stack_iter(curr, limit, extractor):
    if limit is None:
        limit = getattr(sys, 'tracebacklimit', None)

    n = 0
    while curr is not None and (limit is None or n < limit):
        f, lineno, next_item = extractor(curr)
        co = f.f_code
        filename = co.co_filename
        name = co.co_name

        linecache.checkcache(filename)
        line = linecache.getline(filename, lineno, f.f_globals)

        if line:
            line = line.strip()
        else:
            line = None

        yield (filename, lineno, name, line)
        curr = next_item
        n += 1

def _extract_tb_iter(tb, limit):
    return _extract_tb_or_stack_iter(
                tb, limit,
                operator.attrgetter("tb_frame", "tb_lineno", "tb_next"))

def print_tb(tb, limit=None, file=None):
    """Print up to 'limit' stack trace entries from the traceback 'tb'.

    If 'limit' is omitted or None, all entries are printed.  If 'file'
    is omitted or None, the output goes to sys.stderr; otherwise
    'file' should be an open file or file-like object with a write()
    method.
    """
    print_list(extract_tb(tb, limit=limit), file=file)

def format_tb(tb, limit=None):
    """A shorthand for 'format_list(extract_tb(tb, limit))'."""
    return format_list(extract_tb(tb, limit=limit))

def extract_tb(tb, limit=None):
    """Return list of up to limit pre-processed entries from traceback.

    This is useful for alternate formatting of stack traces.  If
    'limit' is omitted or None, all entries are extracted.  A
    pre-processed stack trace entry is a quadruple (filename, line
    number, function name, text) representing the information that is
    usually printed for a stack trace.  The text is a string with
    leading and trailing whitespace stripped; if the source is not
    available it is None.
    """
    return list(_extract_tb_iter(tb, limit=limit))

#
# Exception formatting and output.
#

_cause_message = (
    "\nThe above exception was the direct cause "
    "of the following exception:\n")

_context_message = (
    "\nDuring handling of the above exception, "
    "another exception occurred:\n")

def _iter_chain(exc, custom_tb=None, seen=None):
    if seen is None:
        seen = set()
    seen.add(exc)
    its = []
    context = exc.__context__
    cause = exc.__cause__
    if cause is not None and cause not in seen:
        its.append(_iter_chain(cause, False, seen))
        its.append([(_cause_message, None)])
    elif (context is not None and
          not exc.__suppress_context__ and
          context not in seen):
        its.append(_iter_chain(context, None, seen))
        its.append([(_context_message, None)])
    its.append([(exc, custom_tb or exc.__traceback__)])
    # itertools.chain is in an extension module and may be unavailable
    for it in its:
        yield from it

def _format_exception_iter(etype, value, tb, limit, chain):
    if chain:
        values = _iter_chain(value, tb)
    else:
        values = [(value, tb)]

    for value, tb in values:
        if isinstance(value, str):
            # This is a cause/context message line
            yield value + '\n'
            continue
        if tb:
            yield 'Traceback (most recent call last):\n'
            yield from _format_list_iter(_extract_tb_iter(tb, limit=limit))
        yield from _format_exception_only_iter(type(value), value)

def print_exception(etype, value, tb, limit=None, file=None, chain=True):
    """Print exception up to 'limit' stack trace entries from 'tb' to 'file'.

    This differs from print_tb() in the following ways: (1) if
    traceback is not None, it prints a header "Traceback (most recent
    call last):"; (2) it prints the exception type and value after the
    stack trace; (3) if type is SyntaxError and value has the
    appropriate format, it prints the line where the syntax error
    occurred with a caret on the next line indicating the approximate
    position of the error.
    """
    if file is None:
        file = sys.stderr
    for line in _format_exception_iter(etype, value, tb, limit, chain):
        print(line, file=file, end="")

def format_exception(etype, value, tb, limit=None, chain=True):
    """Format a stack trace and the exception information.

    The arguments have the same meaning as the corresponding arguments
    to print_exception().  The return value is a list of strings, each
    ending in a newline and some containing internal newlines.  When
    these lines are concatenated and printed, exactly the same text is
    printed as does print_exception().
    """
    return list(_format_exception_iter(etype, value, tb, limit, chain))

def format_exception_only(etype, value):
    """Format the exception part of a traceback.

    The arguments are the exception type and value such as given by
    sys.last_type and sys.last_value. The return value is a list of
    strings, each ending in a newline.

    Normally, the list contains a single string; however, for
    SyntaxError exceptions, it contains several lines that (when
    printed) display detailed information about where the syntax
    error occurred.

    The message indicating which exception occurred is always the last
    string in the list.

    """
    return list(_format_exception_only_iter(etype, value))

def _format_exception_only_iter(etype, value):
    # Gracefully handle (the way Python 2.4 and earlier did) the case of
    # being called with (None, None).
    if etype is None:
        yield _format_final_exc_line(etype, value)
        return

    stype = etype.__name__
    smod = etype.__module__
    if smod not in ("__main__", "builtins"):
        stype = smod + '.' + stype

    if not issubclass(etype, SyntaxError):
        yield _format_final_exc_line(stype, value)
        return

    # It was a syntax error; show exactly where the problem was found.
    filename = value.filename or "<string>"
    lineno = str(value.lineno) or '?'
    yield '  File "{}", line {}\n'.format(filename, lineno)

    badline = value.text
    offset = value.offset
    if badline is not None:
        yield '    {}\n'.format(badline.strip())
        if offset is not None:
            caretspace = badline.rstrip('\n')
            offset = min(len(caretspace), offset) - 1
            caretspace = caretspace[:offset].lstrip()
            # non-space whitespace (likes tabs) must be kept for alignment
            caretspace = ((c.isspace() and c or ' ') for c in caretspace)
            yield '    {}^\n'.format(''.join(caretspace))
    msg = value.msg or "<no detail available>"
    yield "{}: {}\n".format(stype, msg)

def _format_final_exc_line(etype, value):
    valuestr = _some_str(value)
    if value is None or not valuestr:
        line = "%s\n" % etype
    else:
        line = "%s: %s\n" % (etype, valuestr)
    return line

def _some_str(value):
    try:
        return str(value)
    except:
        return '<unprintable %s object>' % type(value).__name__

def print_exc(limit=None, file=None, chain=True):
    """Shorthand for 'print_exception(*sys.exc_info(), limit, file)'."""
    print_exception(*sys.exc_info(), limit=limit, file=file, chain=chain)

def format_exc(limit=None, chain=True):
    """Like print_exc() but return a string."""
    return "".join(format_exception(*sys.exc_info(), limit=limit, chain=chain))

def print_last(limit=None, file=None, chain=True):
    """This is a shorthand for 'print_exception(sys.last_type,
    sys.last_value, sys.last_traceback, limit, file)'."""
    if not hasattr(sys, "last_type"):
        raise ValueError("no last exception")
    print_exception(sys.last_type, sys.last_value, sys.last_traceback,
                    limit, file, chain)

#
# Printing and Extracting Stacks.
#

def _extract_stack_iter(f, limit=None):
    return _extract_tb_or_stack_iter(
                f, limit, lambda f: (f, f.f_lineno, f.f_back))

def _get_stack(f):
    if f is None:
        f = sys._getframe().f_back.f_back
    return f

def print_stack(f=None, limit=None, file=None):
    """Print a stack trace from its invocation point.

    The optional 'f' argument can be used to specify an alternate
    stack frame at which to start. The optional 'limit' and 'file'
    arguments have the same meaning as for print_exception().
    """
    print_list(extract_stack(_get_stack(f), limit=limit), file=file)

def format_stack(f=None, limit=None):
    """Shorthand for 'format_list(extract_stack(f, limit))'."""
    return format_list(extract_stack(_get_stack(f), limit=limit))

def extract_stack(f=None, limit=None):
    """Extract the raw traceback from the current stack frame.

    The return value has the same format as for extract_tb().  The
    optional 'f' and 'limit' arguments have the same meaning as for
    print_stack().  Each item in the list is a quadruple (filename,
    line number, function name, text), and the entries are in order
    from oldest to newest stack frame.
    """
    stack = list(_extract_stack_iter(_get_stack(f), limit=limit))
    stack.reverse()
    return stack

def clear_frames(tb):
    "Clear all references to local variables in the frames of a traceback."
    while tb is not None:
        try:
            tb.tb_frame.clear()
        except RuntimeError:
            # Ignore the exception raised if the frame is still executing.
            pass
        tb = tb.tb_next
lib\tracemalloc.py
from collections import Sequence, Iterable
from functools import total_ordering
import fnmatch
import linecache
import os.path
import pickle

# Import types and functions implemented in C
from _tracemalloc import *
from _tracemalloc import _get_object_traceback, _get_traces


def _format_size(size, sign):
    for unit in ('B', 'KiB', 'MiB', 'GiB', 'TiB'):
        if abs(size) < 100 and unit != 'B':
            # 3 digits (xx.x UNIT)
            if sign:
                return "%+.1f %s" % (size, unit)
            else:
                return "%.1f %s" % (size, unit)
        if abs(size) < 10 * 1024 or unit == 'TiB':
            # 4 or 5 digits (xxxx UNIT)
            if sign:
                return "%+.0f %s" % (size, unit)
            else:
                return "%.0f %s" % (size, unit)
        size /= 1024


class Statistic:
    """
    Statistic difference on memory allocations between two Snapshot instance.
    """

    __slots__ = ('traceback', 'size', 'count')

    def __init__(self, traceback, size, count):
        self.traceback = traceback
        self.size = size
        self.count = count

    def __hash__(self):
        return hash((self.traceback, self.size, self.count))

    def __eq__(self, other):
        return (self.traceback == other.traceback
                and self.size == other.size
                and self.count == other.count)

    def __str__(self):
        text = ("%s: size=%s, count=%i"
                 % (self.traceback,
                    _format_size(self.size, False),
                    self.count))
        if self.count:
            average = self.size / self.count
            text += ", average=%s" % _format_size(average, False)
        return text

    def __repr__(self):
        return ('<Statistic traceback=%r size=%i count=%i>'
                % (self.traceback, self.size, self.count))

    def _sort_key(self):
        return (self.size, self.count, self.traceback)


class StatisticDiff:
    """
    Statistic difference on memory allocations between an old and a new
    Snapshot instance.
    """
    __slots__ = ('traceback', 'size', 'size_diff', 'count', 'count_diff')

    def __init__(self, traceback, size, size_diff, count, count_diff):
        self.traceback = traceback
        self.size = size
        self.size_diff = size_diff
        self.count = count
        self.count_diff = count_diff

    def __hash__(self):
        return hash((self.traceback, self.size, self.size_diff,
                     self.count, self.count_diff))

    def __eq__(self, other):
        return (self.traceback == other.traceback
                and self.size == other.size
                and self.size_diff == other.size_diff
                and self.count == other.count
                and self.count_diff == other.count_diff)

    def __str__(self):
        text = ("%s: size=%s (%s), count=%i (%+i)"
                % (self.traceback,
                   _format_size(self.size, False),
                   _format_size(self.size_diff, True),
                   self.count,
                   self.count_diff))
        if self.count:
            average = self.size / self.count
            text += ", average=%s" % _format_size(average, False)
        return text

    def __repr__(self):
        return ('<StatisticDiff traceback=%r size=%i (%+i) count=%i (%+i)>'
                % (self.traceback, self.size, self.size_diff,
                   self.count, self.count_diff))

    def _sort_key(self):
        return (abs(self.size_diff), self.size,
                abs(self.count_diff), self.count,
                self.traceback)


def _compare_grouped_stats(old_group, new_group):
    statistics = []
    for traceback, stat in new_group.items():
        previous = old_group.pop(traceback, None)
        if previous is not None:
            stat = StatisticDiff(traceback,
                                 stat.size, stat.size - previous.size,
                                 stat.count, stat.count - previous.count)
        else:
            stat = StatisticDiff(traceback,
                                 stat.size, stat.size,
                                 stat.count, stat.count)
        statistics.append(stat)

    for traceback, stat in old_group.items():
        stat = StatisticDiff(traceback, 0, -stat.size, 0, -stat.count)
        statistics.append(stat)
    return statistics


@total_ordering
class Frame:
    """
    Frame of a traceback.
    """
    __slots__ = ("_frame",)

    def __init__(self, frame):
        # frame is a tuple: (filename: str, lineno: int)
        self._frame = frame

    @property
    def filename(self):
        return self._frame[0]

    @property
    def lineno(self):
        return self._frame[1]

    def __eq__(self, other):
        return (self._frame == other._frame)

    def __lt__(self, other):
        return (self._frame < other._frame)

    def __hash__(self):
        return hash(self._frame)

    def __str__(self):
        return "%s:%s" % (self.filename, self.lineno)

    def __repr__(self):
        return "<Frame filename=%r lineno=%r>" % (self.filename, self.lineno)


@total_ordering
class Traceback(Sequence):
    """
    Sequence of Frame instances sorted from the most recent frame
    to the oldest frame.
    """
    __slots__ = ("_frames",)

    def __init__(self, frames):
        Sequence.__init__(self)
        # frames is a tuple of frame tuples: see Frame constructor for the
        # format of a frame tuple
        self._frames = frames

    def __len__(self):
        return len(self._frames)

    def __getitem__(self, index):
        if isinstance(index, slice):
            return tuple(Frame(trace) for trace in self._frames[index])
        else:
            return Frame(self._frames[index])

    def __contains__(self, frame):
        return frame._frame in self._frames

    def __hash__(self):
        return hash(self._frames)

    def __eq__(self, other):
        return (self._frames == other._frames)

    def __lt__(self, other):
        return (self._frames < other._frames)

    def __str__(self):
        return str(self[0])

    def __repr__(self):
        return "<Traceback %r>" % (tuple(self),)

    def format(self, limit=None):
        lines = []
        if limit is not None and limit < 0:
            return lines
        for frame in self[:limit]:
            lines.append('  File "%s", line %s'
                         % (frame.filename, frame.lineno))
            line = linecache.getline(frame.filename, frame.lineno).strip()
            if line:
                lines.append('    %s' % line)
        return lines


def get_object_traceback(obj):
    """
    Get the traceback where the Python object *obj* was allocated.
    Return a Traceback instance.

    Return None if the tracemalloc module is not tracing memory allocations or
    did not trace the allocation of the object.
    """
    frames = _get_object_traceback(obj)
    if frames is not None:
        return Traceback(frames)
    else:
        return None


class Trace:
    """
    Trace of a memory block.
    """
    __slots__ = ("_trace",)

    def __init__(self, trace):
        # trace is a tuple: (size, traceback), see Traceback constructor
        # for the format of the traceback tuple
        self._trace = trace

    @property
    def size(self):
        return self._trace[0]

    @property
    def traceback(self):
        return Traceback(self._trace[1])

    def __eq__(self, other):
        return (self._trace == other._trace)

    def __hash__(self):
        return hash(self._trace)

    def __str__(self):
        return "%s: %s" % (self.traceback, _format_size(self.size, False))

    def __repr__(self):
        return ("<Trace size=%s, traceback=%r>"
                % (_format_size(self.size, False), self.traceback))


class _Traces(Sequence):
    def __init__(self, traces):
        Sequence.__init__(self)
        # traces is a tuple of trace tuples: see Trace constructor
        self._traces = traces

    def __len__(self):
        return len(self._traces)

    def __getitem__(self, index):
        if isinstance(index, slice):
            return tuple(Trace(trace) for trace in self._traces[index])
        else:
            return Trace(self._traces[index])

    def __contains__(self, trace):
        return trace._trace in self._traces

    def __eq__(self, other):
        return (self._traces == other._traces)

    def __repr__(self):
        return "<Traces len=%s>" % len(self)


def _normalize_filename(filename):
    filename = os.path.normcase(filename)
    if filename.endswith(('.pyc', '.pyo')):
        filename = filename[:-1]
    return filename


class Filter:
    def __init__(self, inclusive, filename_pattern,
                 lineno=None, all_frames=False):
        self.inclusive = inclusive
        self._filename_pattern = _normalize_filename(filename_pattern)
        self.lineno = lineno
        self.all_frames = all_frames

    @property
    def filename_pattern(self):
        return self._filename_pattern

    def __match_frame(self, filename, lineno):
        filename = _normalize_filename(filename)
        if not fnmatch.fnmatch(filename, self._filename_pattern):
            return False
        if self.lineno is None:
            return True
        else:
            return (lineno == self.lineno)

    def _match_frame(self, filename, lineno):
        return self.__match_frame(filename, lineno) ^ (not self.inclusive)

    def _match_traceback(self, traceback):
        if self.all_frames:
            if any(self.__match_frame(filename, lineno)
                   for filename, lineno in traceback):
                return self.inclusive
            else:
                return (not self.inclusive)
        else:
            filename, lineno = traceback[0]
            return self._match_frame(filename, lineno)


class Snapshot:
    """
    Snapshot of traces of memory blocks allocated by Python.
    """

    def __init__(self, traces, traceback_limit):
        # traces is a tuple of trace tuples: see _Traces constructor for
        # the exact format
        self.traces = _Traces(traces)
        self.traceback_limit = traceback_limit

    def dump(self, filename):
        """
        Write the snapshot into a file.
        """
        with open(filename, "wb") as fp:
            pickle.dump(self, fp, pickle.HIGHEST_PROTOCOL)

    @staticmethod
    def load(filename):
        """
        Load a snapshot from a file.
        """
        with open(filename, "rb") as fp:
            return pickle.load(fp)

    def _filter_trace(self, include_filters, exclude_filters, trace):
        traceback = trace[1]
        if include_filters:
            if not any(trace_filter._match_traceback(traceback)
                       for trace_filter in include_filters):
                return False
        if exclude_filters:
            if any(not trace_filter._match_traceback(traceback)
                   for trace_filter in exclude_filters):
                return False
        return True

    def filter_traces(self, filters):
        """
        Create a new Snapshot instance with a filtered traces sequence, filters
        is a list of Filter instances.  If filters is an empty list, return a
        new Snapshot instance with a copy of the traces.
        """
        if not isinstance(filters, Iterable):
            raise TypeError("filters must be a list of filters, not %s"
                            % type(filters).__name__)
        if filters:
            include_filters = []
            exclude_filters = []
            for trace_filter in filters:
                if trace_filter.inclusive:
                    include_filters.append(trace_filter)
                else:
                    exclude_filters.append(trace_filter)
            new_traces = [trace for trace in self.traces._traces
                          if self._filter_trace(include_filters,
                                                exclude_filters,
                                                trace)]
        else:
            new_traces = self.traces._traces.copy()
        return Snapshot(new_traces, self.traceback_limit)

    def _group_by(self, key_type, cumulative):
        if key_type not in ('traceback', 'filename', 'lineno'):
            raise ValueError("unknown key_type: %r" % (key_type,))
        if cumulative and key_type not in ('lineno', 'filename'):
            raise ValueError("cumulative mode cannot by used "
                             "with key type %r" % key_type)

        stats = {}
        tracebacks = {}
        if not cumulative:
            for trace in self.traces._traces:
                size, trace_traceback = trace
                try:
                    traceback = tracebacks[trace_traceback]
                except KeyError:
                    if key_type == 'traceback':
                        frames = trace_traceback
                    elif key_type == 'lineno':
                        frames = trace_traceback[:1]
                    else: # key_type == 'filename':
                        frames = ((trace_traceback[0][0], 0),)
                    traceback = Traceback(frames)
                    tracebacks[trace_traceback] = traceback
                try:
                    stat = stats[traceback]
                    stat.size += size
                    stat.count += 1
                except KeyError:
                    stats[traceback] = Statistic(traceback, size, 1)
        else:
            # cumulative statistics
            for trace in self.traces._traces:
                size, trace_traceback = trace
                for frame in trace_traceback:
                    try:
                        traceback = tracebacks[frame]
                    except KeyError:
                        if key_type == 'lineno':
                            frames = (frame,)
                        else: # key_type == 'filename':
                            frames = ((frame[0], 0),)
                        traceback = Traceback(frames)
                        tracebacks[frame] = traceback
                    try:
                        stat = stats[traceback]
                        stat.size += size
                        stat.count += 1
                    except KeyError:
                        stats[traceback] = Statistic(traceback, size, 1)
        return stats

    def statistics(self, key_type, cumulative=False):
        """
        Group statistics by key_type. Return a sorted list of Statistic
        instances.
        """
        grouped = self._group_by(key_type, cumulative)
        statistics = list(grouped.values())
        statistics.sort(reverse=True, key=Statistic._sort_key)
        return statistics

    def compare_to(self, old_snapshot, key_type, cumulative=False):
        """
        Compute the differences with an old snapshot old_snapshot. Get
        statistics as a sorted list of StatisticDiff instances, grouped by
        group_by.
        """
        new_group = self._group_by(key_type, cumulative)
        old_group = old_snapshot._group_by(key_type, cumulative)
        statistics = _compare_grouped_stats(old_group, new_group)
        statistics.sort(reverse=True, key=StatisticDiff._sort_key)
        return statistics


def take_snapshot():
    """
    Take a snapshot of traces of memory blocks allocated by Python.
    """
    if not is_tracing():
        raise RuntimeError("the tracemalloc module must be tracing memory "
                           "allocations to take a snapshot")
    traces = _get_traces()
    traceback_limit = get_traceback_limit()
    return Snapshot(traces, traceback_limit)
lib\tty.py
"""Terminal utilities."""

# Author: Steen Lumholt.

from termios import *

__all__ = ["setraw", "setcbreak"]

# Indexes for termios list.
IFLAG = 0
OFLAG = 1
CFLAG = 2
LFLAG = 3
ISPEED = 4
OSPEED = 5
CC = 6

def setraw(fd, when=TCSAFLUSH):
    """Put terminal into a raw mode."""
    mode = tcgetattr(fd)
    mode[IFLAG] = mode[IFLAG] & ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON)
    mode[OFLAG] = mode[OFLAG] & ~(OPOST)
    mode[CFLAG] = mode[CFLAG] & ~(CSIZE | PARENB)
    mode[CFLAG] = mode[CFLAG] | CS8
    mode[LFLAG] = mode[LFLAG] & ~(ECHO | ICANON | IEXTEN | ISIG)
    mode[CC][VMIN] = 1
    mode[CC][VTIME] = 0
    tcsetattr(fd, when, mode)

def setcbreak(fd, when=TCSAFLUSH):
    """Put terminal into a cbreak mode."""
    mode = tcgetattr(fd)
    mode[LFLAG] = mode[LFLAG] & ~(ECHO | ICANON)
    mode[CC][VMIN] = 1
    mode[CC][VTIME] = 0
    tcsetattr(fd, when, mode)
lib\turtle.py
#
# turtle.py: a Tkinter based turtle graphics module for Python
# Version 1.1b - 4. 5. 2009
#
# Copyright (C) 2006 - 2010  Gregor Lingl
# email: [email protected]
#
# This software is provided 'as-is', without any express or implied
# warranty.  In no event will the authors be held liable for any damages
# arising from the use of this software.
#
# Permission is granted to anyone to use this software for any purpose,
# including commercial applications, and to alter it and redistribute it
# freely, subject to the following restrictions:
#
# 1. The origin of this software must not be misrepresented; you must not
#    claim that you wrote the original software. If you use this software
#    in a product, an acknowledgment in the product documentation would be
#    appreciated but is not required.
# 2. Altered source versions must be plainly marked as such, and must not be
#    misrepresented as being the original software.
# 3. This notice may not be removed or altered from any source distribution.


"""
Turtle graphics is a popular way for introducing programming to
kids. It was part of the original Logo programming language developed
by Wally Feurzig and Seymour Papert in 1966.

Imagine a robotic turtle starting at (0, 0) in the x-y plane. After an ``import turtle``, give it
the command turtle.forward(15), and it moves (on-screen!) 15 pixels in
the direction it is facing, drawing a line as it moves. Give it the
command turtle.right(25), and it rotates in-place 25 degrees clockwise.

By combining together these and similar commands, intricate shapes and
pictures can easily be drawn.

----- turtle.py

This module is an extended reimplementation of turtle.py from the
Python standard distribution up to Python 2.5. (See: http://www.python.org)

It tries to keep the merits of turtle.py and to be (nearly) 100%
compatible with it. This means in the first place to enable the
learning programmer to use all the commands, classes and methods
interactively when using the module from within IDLE run with
the -n switch.

Roughly it has the following features added:

- Better animation of the turtle movements, especially of turning the
  turtle. So the turtles can more easily be used as a visual feedback
  instrument by the (beginning) programmer.

- Different turtle shapes, gif-images as turtle shapes, user defined
  and user controllable turtle shapes, among them compound
  (multicolored) shapes. Turtle shapes can be stretched and tilted, which
  makes turtles very versatile geometrical objects.

- Fine control over turtle movement and screen updates via delay(),
  and enhanced tracer() and speed() methods.

- Aliases for the most commonly used commands, like fd for forward etc.,
  following the early Logo traditions. This reduces the boring work of
  typing long sequences of commands, which often occur in a natural way
  when kids try to program fancy pictures on their first encounter with
  turtle graphics.

- Turtles now have an undo()-method with configurable undo-buffer.

- Some simple commands/methods for creating event driven programs
  (mouse-, key-, timer-events). Especially useful for programming games.

- A scrollable Canvas class. The default scrollable Canvas can be
  extended interactively as needed while playing around with the turtle(s).

- A TurtleScreen class with methods controlling background color or
  background image, window and canvas size and other properties of the
  TurtleScreen.

- There is a method, setworldcoordinates(), to install a user defined
  coordinate-system for the TurtleScreen.

- The implementation uses a 2-vector class named Vec2D, derived from tuple.
  This class is public, so it can be imported by the application programmer,
  which makes certain types of computations very natural and compact.

- Appearance of the TurtleScreen and the Turtles at startup/import can be
  configured by means of a turtle.cfg configuration file.
  The default configuration mimics the appearance of the old turtle module.

- If configured appropriately the module reads in docstrings from a docstring
  dictionary in some different language, supplied separately  and replaces
  the English ones by those read in. There is a utility function
  write_docstringdict() to write a dictionary with the original (English)
  docstrings to disc, so it can serve as a template for translations.

Behind the scenes there are some features included with possible
extensions in mind. These will be commented and documented elsewhere.

"""

_ver = "turtle 1.1b- - for Python 3.1   -  4. 5. 2009"

# print(_ver)

import tkinter as TK
import types
import math
import time
import inspect
import sys

from os.path import isfile, split, join
from copy import deepcopy
from tkinter import simpledialog

_tg_classes = ['ScrolledCanvas', 'TurtleScreen', 'Screen',
               'RawTurtle', 'Turtle', 'RawPen', 'Pen', 'Shape', 'Vec2D']
_tg_screen_functions = ['addshape', 'bgcolor', 'bgpic', 'bye',
        'clearscreen', 'colormode', 'delay', 'exitonclick', 'getcanvas',
        'getshapes', 'listen', 'mainloop', 'mode', 'numinput',
        'onkey', 'onkeypress', 'onkeyrelease', 'onscreenclick', 'ontimer',
        'register_shape', 'resetscreen', 'screensize', 'setup',
        'setworldcoordinates', 'textinput', 'title', 'tracer', 'turtles', 'update',
        'window_height', 'window_width']
_tg_turtle_functions = ['back', 'backward', 'begin_fill', 'begin_poly', 'bk',
        'circle', 'clear', 'clearstamp', 'clearstamps', 'clone', 'color',
        'degrees', 'distance', 'dot', 'down', 'end_fill', 'end_poly', 'fd',
        'fillcolor', 'filling', 'forward', 'get_poly', 'getpen', 'getscreen', 'get_shapepoly',
        'getturtle', 'goto', 'heading', 'hideturtle', 'home', 'ht', 'isdown',
        'isvisible', 'left', 'lt', 'onclick', 'ondrag', 'onrelease', 'pd',
        'pen', 'pencolor', 'pendown', 'pensize', 'penup', 'pos', 'position',
        'pu', 'radians', 'right', 'reset', 'resizemode', 'rt',
        'seth', 'setheading', 'setpos', 'setposition', 'settiltangle',
        'setundobuffer', 'setx', 'sety', 'shape', 'shapesize', 'shapetransform', 'shearfactor', 'showturtle',
        'speed', 'st', 'stamp', 'tilt', 'tiltangle', 'towards',
        'turtlesize', 'undo', 'undobufferentries', 'up', 'width',
        'write', 'xcor', 'ycor']
_tg_utilities = ['write_docstringdict', 'done']

__all__ = (_tg_classes + _tg_screen_functions + _tg_turtle_functions +
           _tg_utilities + ['Terminator']) # + _math_functions)

_alias_list = ['addshape', 'backward', 'bk', 'fd', 'ht', 'lt', 'pd', 'pos',
               'pu', 'rt', 'seth', 'setpos', 'setposition', 'st',
               'turtlesize', 'up', 'width']

_CFG = {"width" : 0.5,               # Screen
        "height" : 0.75,
        "canvwidth" : 400,
        "canvheight": 300,
        "leftright": None,
        "topbottom": None,
        "mode": "standard",          # TurtleScreen
        "colormode": 1.0,
        "delay": 10,
        "undobuffersize": 1000,      # RawTurtle
        "shape": "classic",
        "pencolor" : "black",
        "fillcolor" : "black",
        "resizemode" : "noresize",
        "visible" : True,
        "language": "english",        # docstrings
        "exampleturtle": "turtle",
        "examplescreen": "screen",
        "title": "Python Turtle Graphics",
        "using_IDLE": False
       }

def config_dict(filename):
    """Convert content of config-file into dictionary."""
    with open(filename, "r") as f:
        cfglines = f.readlines()
    cfgdict = {}
    for line in cfglines:
        line = line.strip()
        if not line or line.startswith("#"):
            continue
        try:
            key, value = line.split("=")
        except:
            print("Bad line in config-file %s:\n%s" % (filename,line))
            continue
        key = key.strip()
        value = value.strip()
        if value in ["True", "False", "None", "''", '""']:
            value = eval(value)
        else:
            try:
                if "." in value:
                    value = float(value)
                else:
                    value = int(value)
            except:
                pass # value need not be converted
        cfgdict[key] = value
    return cfgdict

def readconfig(cfgdict):
    """Read config-files, change configuration-dict accordingly.

    If there is a turtle.cfg file in the current working directory,
    read it from there. If this contains an importconfig-value,
    say 'myway', construct filename turtle_mayway.cfg else use
    turtle.cfg and read it from the import-directory, where
    turtle.py is located.
    Update configuration dictionary first according to config-file,
    in the import directory, then according to config-file in the
    current working directory.
    If no config-file is found, the default configuration is used.
    """
    default_cfg = "turtle.cfg"
    cfgdict1 = {}
    cfgdict2 = {}
    if isfile(default_cfg):
        cfgdict1 = config_dict(default_cfg)
    if "importconfig" in cfgdict1:
        default_cfg = "turtle_%s.cfg" % cfgdict1["importconfig"]
    try:
        head, tail = split(__file__)
        cfg_file2 = join(head, default_cfg)
    except:
        cfg_file2 = ""
    if isfile(cfg_file2):
        cfgdict2 = config_dict(cfg_file2)
    _CFG.update(cfgdict2)
    _CFG.update(cfgdict1)

try:
    readconfig(_CFG)
except:
    print ("No configfile read, reason unknown")


class Vec2D(tuple):
    """A 2 dimensional vector class, used as a helper class
    for implementing turtle graphics.
    May be useful for turtle graphics programs also.
    Derived from tuple, so a vector is a tuple!

    Provides (for a, b vectors, k number):
       a+b vector addition
       a-b vector subtraction
       a*b inner product
       k*a and a*k multiplication with scalar
       |a| absolute value of a
       a.rotate(angle) rotation
    """
    def __new__(cls, x, y):
        return tuple.__new__(cls, (x, y))
    def __add__(self, other):
        return Vec2D(self[0]+other[0], self[1]+other[1])
    def __mul__(self, other):
        if isinstance(other, Vec2D):
            return self[0]*other[0]+self[1]*other[1]
        return Vec2D(self[0]*other, self[1]*other)
    def __rmul__(self, other):
        if isinstance(other, int) or isinstance(other, float):
            return Vec2D(self[0]*other, self[1]*other)
    def __sub__(self, other):
        return Vec2D(self[0]-other[0], self[1]-other[1])
    def __neg__(self):
        return Vec2D(-self[0], -self[1])
    def __abs__(self):
        return (self[0]**2 + self[1]**2)**0.5
    def rotate(self, angle):
        """rotate self counterclockwise by angle
        """
        perp = Vec2D(-self[1], self[0])
        angle = angle * math.pi / 180.0
        c, s = math.cos(angle), math.sin(angle)
        return Vec2D(self[0]*c+perp[0]*s, self[1]*c+perp[1]*s)
    def __getnewargs__(self):
        return (self[0], self[1])
    def __repr__(self):
        return "(%.2f,%.2f)" % self


##############################################################################
### From here up to line    : Tkinter - Interface for turtle.py            ###
### May be replaced by an interface to some different graphics toolkit     ###
##############################################################################

## helper functions for Scrolled Canvas, to forward Canvas-methods
## to ScrolledCanvas class

def __methodDict(cls, _dict):
    """helper function for Scrolled Canvas"""
    baseList = list(cls.__bases__)
    baseList.reverse()
    for _super in baseList:
        __methodDict(_super, _dict)
    for key, value in cls.__dict__.items():
        if type(value) == types.FunctionType:
            _dict[key] = value

def __methods(cls):
    """helper function for Scrolled Canvas"""
    _dict = {}
    __methodDict(cls, _dict)
    return _dict.keys()

__stringBody = (
    'def %(method)s(self, *args, **kw): return ' +
    'self.%(attribute)s.%(method)s(*args, **kw)')

def __forwardmethods(fromClass, toClass, toPart, exclude = ()):
    ### MANY CHANGES ###
    _dict_1 = {}
    __methodDict(toClass, _dict_1)
    _dict = {}
    mfc = __methods(fromClass)
    for ex in _dict_1.keys():
        if ex[:1] == '_' or ex[-1:] == '_' or ex in exclude or ex in mfc:
            pass
        else:
            _dict[ex] = _dict_1[ex]

    for method, func in _dict.items():
        d = {'method': method, 'func': func}
        if isinstance(toPart, str):
            execString = \
                __stringBody % {'method' : method, 'attribute' : toPart}
        exec(execString, d)
        setattr(fromClass, method, d[method])   ### NEWU!


class ScrolledCanvas(TK.Frame):
    """Modeled after the scrolled canvas class from Grayons's Tkinter book.

    Used as the default canvas, which pops up automatically when
    using turtle graphics functions or the Turtle class.
    """
    def __init__(self, master, width=500, height=350,
                                          canvwidth=600, canvheight=500):
        TK.Frame.__init__(self, master, width=width, height=height)
        self._rootwindow = self.winfo_toplevel()
        self.width, self.height = width, height
        self.canvwidth, self.canvheight = canvwidth, canvheight
        self.bg = "white"
        self._canvas = TK.Canvas(master, width=width, height=height,
                                 bg=self.bg, relief=TK.SUNKEN, borderwidth=2)
        self.hscroll = TK.Scrollbar(master, command=self._canvas.xview,
                                    orient=TK.HORIZONTAL)
        self.vscroll = TK.Scrollbar(master, command=self._canvas.yview)
        self._canvas.configure(xscrollcommand=self.hscroll.set,
                               yscrollcommand=self.vscroll.set)
        self.rowconfigure(0, weight=1, minsize=0)
        self.columnconfigure(0, weight=1, minsize=0)
        self._canvas.grid(padx=1, in_ = self, pady=1, row=0,
                column=0, rowspan=1, columnspan=1, sticky='news')
        self.vscroll.grid(padx=1, in_ = self, pady=1, row=0,
                column=1, rowspan=1, columnspan=1, sticky='news')
        self.hscroll.grid(padx=1, in_ = self, pady=1, row=1,
                column=0, rowspan=1, columnspan=1, sticky='news')
        self.reset()
        self._rootwindow.bind('<Configure>', self.onResize)

    def reset(self, canvwidth=None, canvheight=None, bg = None):
        """Adjust canvas and scrollbars according to given canvas size."""
        if canvwidth:
            self.canvwidth = canvwidth
        if canvheight:
            self.canvheight = canvheight
        if bg:
            self.bg = bg
        self._canvas.config(bg=bg,
                        scrollregion=(-self.canvwidth//2, -self.canvheight//2,
                                       self.canvwidth//2, self.canvheight//2))
        self._canvas.xview_moveto(0.5*(self.canvwidth - self.width + 30) /
                                                               self.canvwidth)
        self._canvas.yview_moveto(0.5*(self.canvheight- self.height + 30) /
                                                              self.canvheight)
        self.adjustScrolls()


    def adjustScrolls(self):
        """ Adjust scrollbars according to window- and canvas-size.
        """
        cwidth = self._canvas.winfo_width()
        cheight = self._canvas.winfo_height()
        self._canvas.xview_moveto(0.5*(self.canvwidth-cwidth)/self.canvwidth)
        self._canvas.yview_moveto(0.5*(self.canvheight-cheight)/self.canvheight)
        if cwidth < self.canvwidth or cheight < self.canvheight:
            self.hscroll.grid(padx=1, in_ = self, pady=1, row=1,
                              column=0, rowspan=1, columnspan=1, sticky='news')
            self.vscroll.grid(padx=1, in_ = self, pady=1, row=0,
                              column=1, rowspan=1, columnspan=1, sticky='news')
        else:
            self.hscroll.grid_forget()
            self.vscroll.grid_forget()

    def onResize(self, event):
        """self-explanatory"""
        self.adjustScrolls()

    def bbox(self, *args):
        """ 'forward' method, which canvas itself has inherited...
        """
        return self._canvas.bbox(*args)

    def cget(self, *args, **kwargs):
        """ 'forward' method, which canvas itself has inherited...
        """
        return self._canvas.cget(*args, **kwargs)

    def config(self, *args, **kwargs):
        """ 'forward' method, which canvas itself has inherited...
        """
        self._canvas.config(*args, **kwargs)

    def bind(self, *args, **kwargs):
        """ 'forward' method, which canvas itself has inherited...
        """
        self._canvas.bind(*args, **kwargs)

    def unbind(self, *args, **kwargs):
        """ 'forward' method, which canvas itself has inherited...
        """
        self._canvas.unbind(*args, **kwargs)

    def focus_force(self):
        """ 'forward' method, which canvas itself has inherited...
        """
        self._canvas.focus_force()

__forwardmethods(ScrolledCanvas, TK.Canvas, '_canvas')


class _Root(TK.Tk):
    """Root class for Screen based on Tkinter."""
    def __init__(self):
        TK.Tk.__init__(self)

    def setupcanvas(self, width, height, cwidth, cheight):
        self._canvas = ScrolledCanvas(self, width, height, cwidth, cheight)
        self._canvas.pack(expand=1, fill="both")

    def _getcanvas(self):
        return self._canvas

    def set_geometry(self, width, height, startx, starty):
        self.geometry("%dx%d%+d%+d"%(width, height, startx, starty))

    def ondestroy(self, destroy):
        self.wm_protocol("WM_DELETE_WINDOW", destroy)

    def win_width(self):
        return self.winfo_screenwidth()

    def win_height(self):
        return self.winfo_screenheight()

Canvas = TK.Canvas


class TurtleScreenBase(object):
    """Provide the basic graphics functionality.
       Interface between Tkinter and turtle.py.

       To port turtle.py to some different graphics toolkit
       a corresponding TurtleScreenBase class has to be implemented.
    """

    @staticmethod
    def _blankimage():
        """return a blank image object
        """
        img = TK.PhotoImage(width=1, height=1)
        img.blank()
        return img

    @staticmethod
    def _image(filename):
        """return an image object containing the
        imagedata from a gif-file named filename.
        """
        return TK.PhotoImage(file=filename)

    def __init__(self, cv):
        self.cv = cv
        if isinstance(cv, ScrolledCanvas):
            w = self.cv.canvwidth
            h = self.cv.canvheight
        else:  # expected: ordinary TK.Canvas
            w = int(self.cv.cget("width"))
            h = int(self.cv.cget("height"))
            self.cv.config(scrollregion = (-w//2, -h//2, w//2, h//2 ))
        self.canvwidth = w
        self.canvheight = h
        self.xscale = self.yscale = 1.0

    def _createpoly(self):
        """Create an invisible polygon item on canvas self.cv)
        """
        return self.cv.create_polygon((0, 0, 0, 0, 0, 0), fill="", outline="")

    def _drawpoly(self, polyitem, coordlist, fill=None,
                  outline=None, width=None, top=False):
        """Configure polygonitem polyitem according to provided
        arguments:
        coordlist is sequence of coordinates
        fill is filling color
        outline is outline color
        top is a boolean value, which specifies if polyitem
        will be put on top of the canvas' displaylist so it
        will not be covered by other items.
        """
        cl = []
        for x, y in coordlist:
            cl.append(x * self.xscale)
            cl.append(-y * self.yscale)
        self.cv.coords(polyitem, *cl)
        if fill is not None:
            self.cv.itemconfigure(polyitem, fill=fill)
        if outline is not None:
            self.cv.itemconfigure(polyitem, outline=outline)
        if width is not None:
            self.cv.itemconfigure(polyitem, width=width)
        if top:
            self.cv.tag_raise(polyitem)

    def _createline(self):
        """Create an invisible line item on canvas self.cv)
        """
        return self.cv.create_line(0, 0, 0, 0, fill="", width=2,
                                   capstyle = TK.ROUND)

    def _drawline(self, lineitem, coordlist=None,
                  fill=None, width=None, top=False):
        """Configure lineitem according to provided arguments:
        coordlist is sequence of coordinates
        fill is drawing color
        width is width of drawn line.
        top is a boolean value, which specifies if polyitem
        will be put on top of the canvas' displaylist so it
        will not be covered by other items.
        """
        if coordlist is not None:
            cl = []
            for x, y in coordlist:
                cl.append(x * self.xscale)
                cl.append(-y * self.yscale)
            self.cv.coords(lineitem, *cl)
        if fill is not None:
            self.cv.itemconfigure(lineitem, fill=fill)
        if width is not None:
            self.cv.itemconfigure(lineitem, width=width)
        if top:
            self.cv.tag_raise(lineitem)

    def _delete(self, item):
        """Delete graphics item from canvas.
        If item is"all" delete all graphics items.
        """
        self.cv.delete(item)

    def _update(self):
        """Redraw graphics items on canvas
        """
        self.cv.update()

    def _delay(self, delay):
        """Delay subsequent canvas actions for delay ms."""
        self.cv.after(delay)

    def _iscolorstring(self, color):
        """Check if the string color is a legal Tkinter color string.
        """
        try:
            rgb = self.cv.winfo_rgb(color)
            ok = True
        except TK.TclError:
            ok = False
        return ok

    def _bgcolor(self, color=None):
        """Set canvas' backgroundcolor if color is not None,
        else return backgroundcolor."""
        if color is not None:
            self.cv.config(bg = color)
            self._update()
        else:
            return self.cv.cget("bg")

    def _write(self, pos, txt, align, font, pencolor):
        """Write txt at pos in canvas with specified font
        and color.
        Return text item and x-coord of right bottom corner
        of text's bounding box."""
        x, y = pos
        x = x * self.xscale
        y = y * self.yscale
        anchor = {"left":"sw", "center":"s", "right":"se" }
        item = self.cv.create_text(x-1, -y, text = txt, anchor = anchor[align],
                                        fill = pencolor, font = font)
        x0, y0, x1, y1 = self.cv.bbox(item)
        self.cv.update()
        return item, x1-1

##    def _dot(self, pos, size, color):
##        """may be implemented for some other graphics toolkit"""

    def _onclick(self, item, fun, num=1, add=None):
        """Bind fun to mouse-click event on turtle.
        fun must be a function with two arguments, the coordinates
        of the clicked point on the canvas.
        num, the number of the mouse-button defaults to 1
        """
        if fun is None:
            self.cv.tag_unbind(item, "<Button-%s>" % num)
        else:
            def eventfun(event):
                x, y = (self.cv.canvasx(event.x)/self.xscale,
                        -self.cv.canvasy(event.y)/self.yscale)
                fun(x, y)
            self.cv.tag_bind(item, "<Button-%s>" % num, eventfun, add)

    def _onrelease(self, item, fun, num=1, add=None):
        """Bind fun to mouse-button-release event on turtle.
        fun must be a function with two arguments, the coordinates
        of the point on the canvas where mouse button is released.
        num, the number of the mouse-button defaults to 1

        If a turtle is clicked, first _onclick-event will be performed,
        then _onscreensclick-event.
        """
        if fun is None:
            self.cv.tag_unbind(item, "<Button%s-ButtonRelease>" % num)
        else:
            def eventfun(event):
                x, y = (self.cv.canvasx(event.x)/self.xscale,
                        -self.cv.canvasy(event.y)/self.yscale)
                fun(x, y)
            self.cv.tag_bind(item, "<Button%s-ButtonRelease>" % num,
                             eventfun, add)

    def _ondrag(self, item, fun, num=1, add=None):
        """Bind fun to mouse-move-event (with pressed mouse button) on turtle.
        fun must be a function with two arguments, the coordinates of the
        actual mouse position on the canvas.
        num, the number of the mouse-button defaults to 1

        Every sequence of mouse-move-events on a turtle is preceded by a
        mouse-click event on that turtle.
        """
        if fun is None:
            self.cv.tag_unbind(item, "<Button%s-Motion>" % num)
        else:
            def eventfun(event):
                try:
                    x, y = (self.cv.canvasx(event.x)/self.xscale,
                           -self.cv.canvasy(event.y)/self.yscale)
                    fun(x, y)
                except:
                    pass
            self.cv.tag_bind(item, "<Button%s-Motion>" % num, eventfun, add)

    def _onscreenclick(self, fun, num=1, add=None):
        """Bind fun to mouse-click event on canvas.
        fun must be a function with two arguments, the coordinates
        of the clicked point on the canvas.
        num, the number of the mouse-button defaults to 1

        If a turtle is clicked, first _onclick-event will be performed,
        then _onscreensclick-event.
        """
        if fun is None:
            self.cv.unbind("<Button-%s>" % num)
        else:
            def eventfun(event):
                x, y = (self.cv.canvasx(event.x)/self.xscale,
                        -self.cv.canvasy(event.y)/self.yscale)
                fun(x, y)
            self.cv.bind("<Button-%s>" % num, eventfun, add)

    def _onkeyrelease(self, fun, key):
        """Bind fun to key-release event of key.
        Canvas must have focus. See method listen
        """
        if fun is None:
            self.cv.unbind("<KeyRelease-%s>" % key, None)
        else:
            def eventfun(event):
                fun()
            self.cv.bind("<KeyRelease-%s>" % key, eventfun)

    def _onkeypress(self, fun, key=None):
        """If key is given, bind fun to key-press event of key.
        Otherwise bind fun to any key-press.
        Canvas must have focus. See method listen.
        """
        if fun is None:
            if key is None:
                self.cv.unbind("<KeyPress>", None)
            else:
                self.cv.unbind("<KeyPress-%s>" % key, None)
        else:
            def eventfun(event):
                fun()
            if key is None:
                self.cv.bind("<KeyPress>", eventfun)
            else:
                self.cv.bind("<KeyPress-%s>" % key, eventfun)

    def _listen(self):
        """Set focus on canvas (in order to collect key-events)
        """
        self.cv.focus_force()

    def _ontimer(self, fun, t):
        """Install a timer, which calls fun after t milliseconds.
        """
        if t == 0:
            self.cv.after_idle(fun)
        else:
            self.cv.after(t, fun)

    def _createimage(self, image):
        """Create and return image item on canvas.
        """
        return self.cv.create_image(0, 0, image=image)

    def _drawimage(self, item, pos, image):
        """Configure image item as to draw image object
        at position (x,y) on canvas)
        """
        x, y = pos
        self.cv.coords(item, (x * self.xscale, -y * self.yscale))
        self.cv.itemconfig(item, image=image)

    def _setbgpic(self, item, image):
        """Configure image item as to draw image object
        at center of canvas. Set item to the first item
        in the displaylist, so it will be drawn below
        any other item ."""
        self.cv.itemconfig(item, image=image)
        self.cv.tag_lower(item)

    def _type(self, item):
        """Return 'line' or 'polygon' or 'image' depending on
        type of item.
        """
        return self.cv.type(item)

    def _pointlist(self, item):
        """returns list of coordinate-pairs of points of item
        Example (for insiders):
        >>> from turtle import *
        >>> getscreen()._pointlist(getturtle().turtle._item)
        [(0.0, 9.9999999999999982), (0.0, -9.9999999999999982),
        (9.9999999999999982, 0.0)]
        >>> """
        cl = self.cv.coords(item)
        pl = [(cl[i], -cl[i+1]) for i in range(0, len(cl), 2)]
        return  pl

    def _setscrollregion(self, srx1, sry1, srx2, sry2):
        self.cv.config(scrollregion=(srx1, sry1, srx2, sry2))

    def _rescale(self, xscalefactor, yscalefactor):
        items = self.cv.find_all()
        for item in items:
            coordinates = list(self.cv.coords(item))
            newcoordlist = []
            while coordinates:
                x, y = coordinates[:2]
                newcoordlist.append(x * xscalefactor)
                newcoordlist.append(y * yscalefactor)
                coordinates = coordinates[2:]
            self.cv.coords(item, *newcoordlist)

    def _resize(self, canvwidth=None, canvheight=None, bg=None):
        """Resize the canvas the turtles are drawing on. Does
        not alter the drawing window.
        """
        # needs amendment
        if not isinstance(self.cv, ScrolledCanvas):
            return self.canvwidth, self.canvheight
        if canvwidth is canvheight is bg is None:
            return self.cv.canvwidth, self.cv.canvheight
        if canvwidth is not None:
            self.canvwidth = canvwidth
        if canvheight is not None:
            self.canvheight = canvheight
        self.cv.reset(canvwidth, canvheight, bg)

    def _window_size(self):
        """ Return the width and height of the turtle window.
        """
        width = self.cv.winfo_width()
        if width <= 1:  # the window isn't managed by a geometry manager
            width = self.cv['width']
        height = self.cv.winfo_height()
        if height <= 1: # the window isn't managed by a geometry manager
            height = self.cv['height']
        return width, height

    def mainloop(self):
        """Starts event loop - calling Tkinter's mainloop function.

        No argument.

        Must be last statement in a turtle graphics program.
        Must NOT be used if a script is run from within IDLE in -n mode
        (No subprocess) - for interactive use of turtle graphics.

        Example (for a TurtleScreen instance named screen):
        >>> screen.mainloop()

        """
        TK.mainloop()

    def textinput(self, title, prompt):
        """Pop up a dialog window for input of a string.

        Arguments: title is the title of the dialog window,
        prompt is a text mostly describing what information to input.

        Return the string input
        If the dialog is canceled, return None.

        Example (for a TurtleScreen instance named screen):
        >>> screen.textinput("NIM", "Name of first player:")

        """
        return simpledialog.askstring(title, prompt)

    def numinput(self, title, prompt, default=None, minval=None, maxval=None):
        """Pop up a dialog window for input of a number.

        Arguments: title is the title of the dialog window,
        prompt is a text mostly describing what numerical information to input.
        default: default value
        minval: minimum value for imput
        maxval: maximum value for input

        The number input must be in the range minval .. maxval if these are
        given. If not, a hint is issued and the dialog remains open for
        correction. Return the number input.
        If the dialog is canceled,  return None.

        Example (for a TurtleScreen instance named screen):
        >>> screen.numinput("Poker", "Your stakes:", 1000, minval=10, maxval=10000)

        """
        return simpledialog.askfloat(title, prompt, initialvalue=default,
                                     minvalue=minval, maxvalue=maxval)


##############################################################################
###                  End of Tkinter - interface                            ###
##############################################################################


class Terminator (Exception):
    """Will be raised in TurtleScreen.update, if _RUNNING becomes False.

    This stops execution of a turtle graphics script.
    Main purpose: use in the Demo-Viewer turtle.Demo.py.
    """
    pass


class TurtleGraphicsError(Exception):
    """Some TurtleGraphics Error
    """


class Shape(object):
    """Data structure modeling shapes.

    attribute _type is one of "polygon", "image", "compound"
    attribute _data is - depending on _type a poygon-tuple,
    an image or a list constructed using the addcomponent method.
    """
    def __init__(self, type_, data=None):
        self._type = type_
        if type_ == "polygon":
            if isinstance(data, list):
                data = tuple(data)
        elif type_ == "image":
            if isinstance(data, str):
                if data.lower().endswith(".gif") and isfile(data):
                    data = TurtleScreen._image(data)
                # else data assumed to be Photoimage
        elif type_ == "compound":
            data = []
        else:
            raise TurtleGraphicsError("There is no shape type %s" % type_)
        self._data = data

    def addcomponent(self, poly, fill, outline=None):
        """Add component to a shape of type compound.

        Arguments: poly is a polygon, i. e. a tuple of number pairs.
        fill is the fillcolor of the component,
        outline is the outline color of the component.

        call (for a Shapeobject namend s):
        --   s.addcomponent(((0,0), (10,10), (-10,10)), "red", "blue")

        Example:
        >>> poly = ((0,0),(10,-5),(0,10),(-10,-5))
        >>> s = Shape("compound")
        >>> s.addcomponent(poly, "red", "blue")
        >>> # .. add more components and then use register_shape()
        """
        if self._type != "compound":
            raise TurtleGraphicsError("Cannot add component to %s Shape"
                                                                % self._type)
        if outline is None:
            outline = fill
        self._data.append([poly, fill, outline])


class Tbuffer(object):
    """Ring buffer used as undobuffer for RawTurtle objects."""
    def __init__(self, bufsize=10):
        self.bufsize = bufsize
        self.buffer = [[None]] * bufsize
        self.ptr = -1
        self.cumulate = False
    def reset(self, bufsize=None):
        if bufsize is None:
            for i in range(self.bufsize):
                self.buffer[i] = [None]
        else:
            self.bufsize = bufsize
            self.buffer = [[None]] * bufsize
        self.ptr = -1
    def push(self, item):
        if self.bufsize > 0:
            if not self.cumulate:
                self.ptr = (self.ptr + 1) % self.bufsize
                self.buffer[self.ptr] = item
            else:
                self.buffer[self.ptr].append(item)
    def pop(self):
        if self.bufsize > 0:
            item = self.buffer[self.ptr]
            if item is None:
                return None
            else:
                self.buffer[self.ptr] = [None]
                self.ptr = (self.ptr - 1) % self.bufsize
                return (item)
    def nr_of_items(self):
        return self.bufsize - self.buffer.count([None])
    def __repr__(self):
        return str(self.buffer) + " " + str(self.ptr)



class TurtleScreen(TurtleScreenBase):
    """Provides screen oriented methods like setbg etc.

    Only relies upon the methods of TurtleScreenBase and NOT
    upon components of the underlying graphics toolkit -
    which is Tkinter in this case.
    """
    _RUNNING = True

    def __init__(self, cv, mode=_CFG["mode"],
                 colormode=_CFG["colormode"], delay=_CFG["delay"]):
        self._shapes = {
                   "arrow" : Shape("polygon", ((-10,0), (10,0), (0,10))),
                  "turtle" : Shape("polygon", ((0,16), (-2,14), (-1,10), (-4,7),
                              (-7,9), (-9,8), (-6,5), (-7,1), (-5,-3), (-8,-6),
                              (-6,-8), (-4,-5), (0,-7), (4,-5), (6,-8), (8,-6),
                              (5,-3), (7,1), (6,5), (9,8), (7,9), (4,7), (1,10),
                              (2,14))),
                  "circle" : Shape("polygon", ((10,0), (9.51,3.09), (8.09,5.88),
                              (5.88,8.09), (3.09,9.51), (0,10), (-3.09,9.51),
                              (-5.88,8.09), (-8.09,5.88), (-9.51,3.09), (-10,0),
                              (-9.51,-3.09), (-8.09,-5.88), (-5.88,-8.09),
                              (-3.09,-9.51), (-0.00,-10.00), (3.09,-9.51),
                              (5.88,-8.09), (8.09,-5.88), (9.51,-3.09))),
                  "square" : Shape("polygon", ((10,-10), (10,10), (-10,10),
                              (-10,-10))),
                "triangle" : Shape("polygon", ((10,-5.77), (0,11.55),
                              (-10,-5.77))),
                  "classic": Shape("polygon", ((0,0),(-5,-9),(0,-7),(5,-9))),
                   "blank" : Shape("image", self._blankimage())
                  }

        self._bgpics = {"nopic" : ""}

        TurtleScreenBase.__init__(self, cv)
        self._mode = mode
        self._delayvalue = delay
        self._colormode = _CFG["colormode"]
        self._keys = []
        self.clear()
        if sys.platform == 'darwin':
            # Force Turtle window to the front on OS X. This is needed because
            # the Turtle window will show behind the Terminal window when you
            # start the demo from the command line.
            rootwindow = cv.winfo_toplevel()
            rootwindow.call('wm', 'attributes', '.', '-topmost', '1')
            rootwindow.call('wm', 'attributes', '.', '-topmost', '0')

    def clear(self):
        """Delete all drawings and all turtles from the TurtleScreen.

        No argument.

        Reset empty TurtleScreen to its initial state: white background,
        no backgroundimage, no eventbindings and tracing on.

        Example (for a TurtleScreen instance named screen):
        >>> screen.clear()

        Note: this method is not available as function.
        """
        self._delayvalue = _CFG["delay"]
        self._colormode = _CFG["colormode"]
        self._delete("all")
        self._bgpic = self._createimage("")
        self._bgpicname = "nopic"
        self._tracing = 1
        self._updatecounter = 0
        self._turtles = []
        self.bgcolor("white")
        for btn in 1, 2, 3:
            self.onclick(None, btn)
        self.onkeypress(None)
        for key in self._keys[:]:
            self.onkey(None, key)
            self.onkeypress(None, key)
        Turtle._pen = None

    def mode(self, mode=None):
        """Set turtle-mode ('standard', 'logo' or 'world') and perform reset.

        Optional argument:
        mode -- on of the strings 'standard', 'logo' or 'world'

        Mode 'standard' is compatible with turtle.py.
        Mode 'logo' is compatible with most Logo-Turtle-Graphics.
        Mode 'world' uses userdefined 'worldcoordinates'. *Attention*: in
        this mode angles appear distorted if x/y unit-ratio doesn't equal 1.
        If mode is not given, return the current mode.

             Mode      Initial turtle heading     positive angles
         ------------|-------------------------|-------------------
          'standard'    to the right (east)       counterclockwise
            'logo'        upward    (north)         clockwise

        Examples:
        >>> mode('logo')   # resets turtle heading to north
        >>> mode()
        'logo'
        """
        if mode is None:
            return self._mode
        mode = mode.lower()
        if mode not in ["standard", "logo", "world"]:
            raise TurtleGraphicsError("No turtle-graphics-mode %s" % mode)
        self._mode = mode
        if mode in ["standard", "logo"]:
            self._setscrollregion(-self.canvwidth//2, -self.canvheight//2,
                                       self.canvwidth//2, self.canvheight//2)
            self.xscale = self.yscale = 1.0
        self.reset()

    def setworldcoordinates(self, llx, lly, urx, ury):
        """Set up a user defined coordinate-system.

        Arguments:
        llx -- a number, x-coordinate of lower left corner of canvas
        lly -- a number, y-coordinate of lower left corner of canvas
        urx -- a number, x-coordinate of upper right corner of canvas
        ury -- a number, y-coordinate of upper right corner of canvas

        Set up user coodinat-system and switch to mode 'world' if necessary.
        This performs a screen.reset. If mode 'world' is already active,
        all drawings are redrawn according to the new coordinates.

        But ATTENTION: in user-defined coordinatesystems angles may appear
        distorted. (see Screen.mode())

        Example (for a TurtleScreen instance named screen):
        >>> screen.setworldcoordinates(-10,-0.5,50,1.5)
        >>> for _ in range(36):
        ...     left(10)
        ...     forward(0.5)
        """
        if self.mode() != "world":
            self.mode("world")
        xspan = float(urx - llx)
        yspan = float(ury - lly)
        wx, wy = self._window_size()
        self.screensize(wx-20, wy-20)
        oldxscale, oldyscale = self.xscale, self.yscale
        self.xscale = self.canvwidth / xspan
        self.yscale = self.canvheight / yspan
        srx1 = llx * self.xscale
        sry1 = -ury * self.yscale
        srx2 = self.canvwidth + srx1
        sry2 = self.canvheight + sry1
        self._setscrollregion(srx1, sry1, srx2, sry2)
        self._rescale(self.xscale/oldxscale, self.yscale/oldyscale)
        self.update()

    def register_shape(self, name, shape=None):
        """Adds a turtle shape to TurtleScreen's shapelist.

        Arguments:
        (1) name is the name of a gif-file and shape is None.
            Installs the corresponding image shape.
            !! Image-shapes DO NOT rotate when turning the turtle,
            !! so they do not display the heading of the turtle!
        (2) name is an arbitrary string and shape is a tuple
            of pairs of coordinates. Installs the corresponding
            polygon shape
        (3) name is an arbitrary string and shape is a
            (compound) Shape object. Installs the corresponding
            compound shape.
        To use a shape, you have to issue the command shape(shapename).

        call: register_shape("turtle.gif")
        --or: register_shape("tri", ((0,0), (10,10), (-10,10)))

        Example (for a TurtleScreen instance named screen):
        >>> screen.register_shape("triangle", ((5,-3),(0,5),(-5,-3)))

        """
        if shape is None:
            # image
            if name.lower().endswith(".gif"):
                shape = Shape("image", self._image(name))
            else:
                raise TurtleGraphicsError("Bad arguments for register_shape.\n"
                                          + "Use  help(register_shape)" )
        elif isinstance(shape, tuple):
            shape = Shape("polygon", shape)
        ## else shape assumed to be Shape-instance
        self._shapes[name] = shape

    def _colorstr(self, color):
        """Return color string corresponding to args.

        Argument may be a string or a tuple of three
        numbers corresponding to actual colormode,
        i.e. in the range 0<=n<=colormode.

        If the argument doesn't represent a color,
        an error is raised.
        """
        if len(color) == 1:
            color = color[0]
        if isinstance(color, str):
            if self._iscolorstring(color) or color == "":
                return color
            else:
                raise TurtleGraphicsError("bad color string: %s" % str(color))
        try:
            r, g, b = color
        except:
            raise TurtleGraphicsError("bad color arguments: %s" % str(color))
        if self._colormode == 1.0:
            r, g, b = [round(255.0*x) for x in (r, g, b)]
        if not ((0 <= r <= 255) and (0 <= g <= 255) and (0 <= b <= 255)):
            raise TurtleGraphicsError("bad color sequence: %s" % str(color))
        return "#%02x%02x%02x" % (r, g, b)

    def _color(self, cstr):
        if not cstr.startswith("#"):
            return cstr
        if len(cstr) == 7:
            cl = [int(cstr[i:i+2], 16) for i in (1, 3, 5)]
        elif len(cstr) == 4:
            cl = [16*int(cstr[h], 16) for h in cstr[1:]]
        else:
            raise TurtleGraphicsError("bad colorstring: %s" % cstr)
        return tuple([c * self._colormode/255 for c in cl])

    def colormode(self, cmode=None):
        """Return the colormode or set it to 1.0 or 255.

        Optional argument:
        cmode -- one of the values 1.0 or 255

        r, g, b values of colortriples have to be in range 0..cmode.

        Example (for a TurtleScreen instance named screen):
        >>> screen.colormode()
        1.0
        >>> screen.colormode(255)
        >>> pencolor(240,160,80)
        """
        if cmode is None:
            return self._colormode
        if cmode == 1.0:
            self._colormode = float(cmode)
        elif cmode == 255:
            self._colormode = int(cmode)

    def reset(self):
        """Reset all Turtles on the Screen to their initial state.

        No argument.

        Example (for a TurtleScreen instance named screen):
        >>> screen.reset()
        """
        for turtle in self._turtles:
            turtle._setmode(self._mode)
            turtle.reset()

    def turtles(self):
        """Return the list of turtles on the screen.

        Example (for a TurtleScreen instance named screen):
        >>> screen.turtles()
        [<turtle.Turtle object at 0x00E11FB0>]
        """
        return self._turtles

    def bgcolor(self, *args):
        """Set or return backgroundcolor of the TurtleScreen.

        Arguments (if given): a color string or three numbers
        in the range 0..colormode or a 3-tuple of such numbers.

        Example (for a TurtleScreen instance named screen):
        >>> screen.bgcolor("orange")
        >>> screen.bgcolor()
        'orange'
        >>> screen.bgcolor(0.5,0,0.5)
        >>> screen.bgcolor()
        '#800080'
        """
        if args:
            color = self._colorstr(args)
        else:
            color = None
        color = self._bgcolor(color)
        if color is not None:
            color = self._color(color)
        return color

    def tracer(self, n=None, delay=None):
        """Turns turtle animation on/off and set delay for update drawings.

        Optional arguments:
        n -- nonnegative  integer
        delay -- nonnegative  integer

        If n is given, only each n-th regular screen update is really performed.
        (Can be used to accelerate the drawing of complex graphics.)
        Second arguments sets delay value (see RawTurtle.delay())

        Example (for a TurtleScreen instance named screen):
        >>> screen.tracer(8, 25)
        >>> dist = 2
        >>> for i in range(200):
        ...     fd(dist)
        ...     rt(90)
        ...     dist += 2
        """
        if n is None:
            return self._tracing
        self._tracing = int(n)
        self._updatecounter = 0
        if delay is not None:
            self._delayvalue = int(delay)
        if self._tracing:
            self.update()

    def delay(self, delay=None):
        """ Return or set the drawing delay in milliseconds.

        Optional argument:
        delay -- positive integer

        Example (for a TurtleScreen instance named screen):
        >>> screen.delay(15)
        >>> screen.delay()
        15
        """
        if delay is None:
            return self._delayvalue
        self._delayvalue = int(delay)

    def _incrementudc(self):
        """Increment update counter."""
        if not TurtleScreen._RUNNING:
            TurtleScreen._RUNNING = True
            raise Terminator
        if self._tracing > 0:
            self._updatecounter += 1
            self._updatecounter %= self._tracing

    def update(self):
        """Perform a TurtleScreen update.
        """
        tracing = self._tracing
        self._tracing = True
        for t in self.turtles():
            t._update_data()
            t._drawturtle()
        self._tracing = tracing
        self._update()

    def window_width(self):
        """ Return the width of the turtle window.

        Example (for a TurtleScreen instance named screen):
        >>> screen.window_width()
        640
        """
        return self._window_size()[0]

    def window_height(self):
        """ Return the height of the turtle window.

        Example (for a TurtleScreen instance named screen):
        >>> screen.window_height()
        480
        """
        return self._window_size()[1]

    def getcanvas(self):
        """Return the Canvas of this TurtleScreen.

        No argument.

        Example (for a Screen instance named screen):
        >>> cv = screen.getcanvas()
        >>> cv
        <turtle.ScrolledCanvas instance at 0x010742D8>
        """
        return self.cv

    def getshapes(self):
        """Return a list of names of all currently available turtle shapes.

        No argument.

        Example (for a TurtleScreen instance named screen):
        >>> screen.getshapes()
        ['arrow', 'blank', 'circle', ... , 'turtle']
        """
        return sorted(self._shapes.keys())

    def onclick(self, fun, btn=1, add=None):
        """Bind fun to mouse-click event on canvas.

        Arguments:
        fun -- a function with two arguments, the coordinates of the
               clicked point on the canvas.
        num -- the number of the mouse-button, defaults to 1

        Example (for a TurtleScreen instance named screen)

        >>> screen.onclick(goto)
        >>> # Subsequently clicking into the TurtleScreen will
        >>> # make the turtle move to the clicked point.
        >>> screen.onclick(None)
        """
        self._onscreenclick(fun, btn, add)

    def onkey(self, fun, key):
        """Bind fun to key-release event of key.

        Arguments:
        fun -- a function with no arguments
        key -- a string: key (e.g. "a") or key-symbol (e.g. "space")

        In order to be able to register key-events, TurtleScreen
        must have focus. (See method listen.)

        Example (for a TurtleScreen instance named screen):

        >>> def f():
        ...     fd(50)
        ...     lt(60)
        ...
        >>> screen.onkey(f, "Up")
        >>> screen.listen()

        Subsequently the turtle can be moved by repeatedly pressing
        the up-arrow key, consequently drawing a hexagon

        """
        if fun is None:
            if key in self._keys:
                self._keys.remove(key)
        elif key not in self._keys:
            self._keys.append(key)
        self._onkeyrelease(fun, key)

    def onkeypress(self, fun, key=None):
        """Bind fun to key-press event of key if key is given,
        or to any key-press-event if no key is given.

        Arguments:
        fun -- a function with no arguments
        key -- a string: key (e.g. "a") or key-symbol (e.g. "space")

        In order to be able to register key-events, TurtleScreen
        must have focus. (See method listen.)

        Example (for a TurtleScreen instance named screen
        and a Turtle instance named turtle):

        >>> def f():
        ...     fd(50)
        ...     lt(60)
        ...
        >>> screen.onkeypress(f, "Up")
        >>> screen.listen()

        Subsequently the turtle can be moved by repeatedly pressing
        the up-arrow key, or by keeping pressed the up-arrow key.
        consequently drawing a hexagon.
        """
        if fun is None:
            if key in self._keys:
                self._keys.remove(key)
        elif key is not None and key not in self._keys:
            self._keys.append(key)
        self._onkeypress(fun, key)

    def listen(self, xdummy=None, ydummy=None):
        """Set focus on TurtleScreen (in order to collect key-events)

        No arguments.
        Dummy arguments are provided in order
        to be able to pass listen to the onclick method.

        Example (for a TurtleScreen instance named screen):
        >>> screen.listen()
        """
        self._listen()

    def ontimer(self, fun, t=0):
        """Install a timer, which calls fun after t milliseconds.

        Arguments:
        fun -- a function with no arguments.
        t -- a number >= 0

        Example (for a TurtleScreen instance named screen):

        >>> running = True
        >>> def f():
        ...     if running:
        ...             fd(50)
        ...             lt(60)
        ...             screen.ontimer(f, 250)
        ...
        >>> f()   # makes the turtle marching around
        >>> running = False
        """
        self._ontimer(fun, t)

    def bgpic(self, picname=None):
        """Set background image or return name of current backgroundimage.

        Optional argument:
        picname -- a string, name of a gif-file or "nopic".

        If picname is a filename, set the corresponding image as background.
        If picname is "nopic", delete backgroundimage, if present.
        If picname is None, return the filename of the current backgroundimage.

        Example (for a TurtleScreen instance named screen):
        >>> screen.bgpic()
        'nopic'
        >>> screen.bgpic("landscape.gif")
        >>> screen.bgpic()
        'landscape.gif'
        """
        if picname is None:
            return self._bgpicname
        if picname not in self._bgpics:
            self._bgpics[picname] = self._image(picname)
        self._setbgpic(self._bgpic, self._bgpics[picname])
        self._bgpicname = picname

    def screensize(self, canvwidth=None, canvheight=None, bg=None):
        """Resize the canvas the turtles are drawing on.

        Optional arguments:
        canvwidth -- positive integer, new width of canvas in pixels
        canvheight --  positive integer, new height of canvas in pixels
        bg -- colorstring or color-tuple, new backgroundcolor
        If no arguments are given, return current (canvaswidth, canvasheight)

        Do not alter the drawing window. To observe hidden parts of
        the canvas use the scrollbars. (Can make visible those parts
        of a drawing, which were outside the canvas before!)

        Example (for a Turtle instance named turtle):
        >>> turtle.screensize(2000,1500)
        >>> # e.g. to search for an erroneously escaped turtle ;-)
        """
        return self._resize(canvwidth, canvheight, bg)

    onscreenclick = onclick
    resetscreen = reset
    clearscreen = clear
    addshape = register_shape
    onkeyrelease = onkey

class TNavigator(object):
    """Navigation part of the RawTurtle.
    Implements methods for turtle movement.
    """
    START_ORIENTATION = {
        "standard": Vec2D(1.0, 0.0),
        "world"   : Vec2D(1.0, 0.0),
        "logo"    : Vec2D(0.0, 1.0)  }
    DEFAULT_MODE = "standard"
    DEFAULT_ANGLEOFFSET = 0
    DEFAULT_ANGLEORIENT = 1

    def __init__(self, mode=DEFAULT_MODE):
        self._angleOffset = self.DEFAULT_ANGLEOFFSET
        self._angleOrient = self.DEFAULT_ANGLEORIENT
        self._mode = mode
        self.undobuffer = None
        self.degrees()
        self._mode = None
        self._setmode(mode)
        TNavigator.reset(self)

    def reset(self):
        """reset turtle to its initial values

        Will be overwritten by parent class
        """
        self._position = Vec2D(0.0, 0.0)
        self._orient =  TNavigator.START_ORIENTATION[self._mode]

    def _setmode(self, mode=None):
        """Set turtle-mode to 'standard', 'world' or 'logo'.
        """
        if mode is None:
            return self._mode
        if mode not in ["standard", "logo", "world"]:
            return
        self._mode = mode
        if mode in ["standard", "world"]:
            self._angleOffset = 0
            self._angleOrient = 1
        else: # mode == "logo":
            self._angleOffset = self._fullcircle/4.
            self._angleOrient = -1

    def _setDegreesPerAU(self, fullcircle):
        """Helper function for degrees() and radians()"""
        self._fullcircle = fullcircle
        self._degreesPerAU = 360/fullcircle
        if self._mode == "standard":
            self._angleOffset = 0
        else:
            self._angleOffset = fullcircle/4.

    def degrees(self, fullcircle=360.0):
        """ Set angle measurement units to degrees.

        Optional argument:
        fullcircle -  a number

        Set angle measurement units, i. e. set number
        of 'degrees' for a full circle. Dafault value is
        360 degrees.

        Example (for a Turtle instance named turtle):
        >>> turtle.left(90)
        >>> turtle.heading()
        90

        Change angle measurement unit to grad (also known as gon,
        grade, or gradian and equals 1/100-th of the right angle.)
        >>> turtle.degrees(400.0)
        >>> turtle.heading()
        100

        """
        self._setDegreesPerAU(fullcircle)

    def radians(self):
        """ Set the angle measurement units to radians.

        No arguments.

        Example (for a Turtle instance named turtle):
        >>> turtle.heading()
        90
        >>> turtle.radians()
        >>> turtle.heading()
        1.5707963267948966
        """
        self._setDegreesPerAU(2*math.pi)

    def _go(self, distance):
        """move turtle forward by specified distance"""
        ende = self._position + self._orient * distance
        self._goto(ende)

    def _rotate(self, angle):
        """Turn turtle counterclockwise by specified angle if angle > 0."""
        angle *= self._degreesPerAU
        self._orient = self._orient.rotate(angle)

    def _goto(self, end):
        """move turtle to position end."""
        self._position = end

    def forward(self, distance):
        """Move the turtle forward by the specified distance.

        Aliases: forward | fd

        Argument:
        distance -- a number (integer or float)

        Move the turtle forward by the specified distance, in the direction
        the turtle is headed.

        Example (for a Turtle instance named turtle):
        >>> turtle.position()
        (0.00, 0.00)
        >>> turtle.forward(25)
        >>> turtle.position()
        (25.00,0.00)
        >>> turtle.forward(-75)
        >>> turtle.position()
        (-50.00,0.00)
        """
        self._go(distance)

    def back(self, distance):
        """Move the turtle backward by distance.

        Aliases: back | backward | bk

        Argument:
        distance -- a number

        Move the turtle backward by distance ,opposite to the direction the
        turtle is headed. Do not change the turtle's heading.

        Example (for a Turtle instance named turtle):
        >>> turtle.position()
        (0.00, 0.00)
        >>> turtle.backward(30)
        >>> turtle.position()
        (-30.00, 0.00)
        """
        self._go(-distance)

    def right(self, angle):
        """Turn turtle right by angle units.

        Aliases: right | rt

        Argument:
        angle -- a number (integer or float)

        Turn turtle right by angle units. (Units are by default degrees,
        but can be set via the degrees() and radians() functions.)
        Angle orientation depends on mode. (See this.)

        Example (for a Turtle instance named turtle):
        >>> turtle.heading()
        22.0
        >>> turtle.right(45)
        >>> turtle.heading()
        337.0
        """
        self._rotate(-angle)

    def left(self, angle):
        """Turn turtle left by angle units.

        Aliases: left | lt

        Argument:
        angle -- a number (integer or float)

        Turn turtle left by angle units. (Units are by default degrees,
        but can be set via the degrees() and radians() functions.)
        Angle orientation depends on mode. (See this.)

        Example (for a Turtle instance named turtle):
        >>> turtle.heading()
        22.0
        >>> turtle.left(45)
        >>> turtle.heading()
        67.0
        """
        self._rotate(angle)

    def pos(self):
        """Return the turtle's current location (x,y), as a Vec2D-vector.

        Aliases: pos | position

        No arguments.

        Example (for a Turtle instance named turtle):
        >>> turtle.pos()
        (0.00, 240.00)
        """
        return self._position

    def xcor(self):
        """ Return the turtle's x coordinate.

        No arguments.

        Example (for a Turtle instance named turtle):
        >>> reset()
        >>> turtle.left(60)
        >>> turtle.forward(100)
        >>> print turtle.xcor()
        50.0
        """
        return self._position[0]

    def ycor(self):
        """ Return the turtle's y coordinate
        ---
        No arguments.

        Example (for a Turtle instance named turtle):
        >>> reset()
        >>> turtle.left(60)
        >>> turtle.forward(100)
        >>> print turtle.ycor()
        86.6025403784
        """
        return self._position[1]


    def goto(self, x, y=None):
        """Move turtle to an absolute position.

        Aliases: setpos | setposition | goto:

        Arguments:
        x -- a number      or     a pair/vector of numbers
        y -- a number             None

        call: goto(x, y)         # two coordinates
        --or: goto((x, y))       # a pair (tuple) of coordinates
        --or: goto(vec)          # e.g. as returned by pos()

        Move turtle to an absolute position. If the pen is down,
        a line will be drawn. The turtle's orientation does not change.

        Example (for a Turtle instance named turtle):
        >>> tp = turtle.pos()
        >>> tp
        (0.00, 0.00)
        >>> turtle.setpos(60,30)
        >>> turtle.pos()
        (60.00,30.00)
        >>> turtle.setpos((20,80))
        >>> turtle.pos()
        (20.00,80.00)
        >>> turtle.setpos(tp)
        >>> turtle.pos()
        (0.00,0.00)
        """
        if y is None:
            self._goto(Vec2D(*x))
        else:
            self._goto(Vec2D(x, y))

    def home(self):
        """Move turtle to the origin - coordinates (0,0).

        No arguments.

        Move turtle to the origin - coordinates (0,0) and set its
        heading to its start-orientation (which depends on mode).

        Example (for a Turtle instance named turtle):
        >>> turtle.home()
        """
        self.goto(0, 0)
        self.setheading(0)

    def setx(self, x):
        """Set the turtle's first coordinate to x

        Argument:
        x -- a number (integer or float)

        Set the turtle's first coordinate to x, leave second coordinate
        unchanged.

        Example (for a Turtle instance named turtle):
        >>> turtle.position()
        (0.00, 240.00)
        >>> turtle.setx(10)
        >>> turtle.position()
        (10.00, 240.00)
        """
        self._goto(Vec2D(x, self._position[1]))

    def sety(self, y):
        """Set the turtle's second coordinate to y

        Argument:
        y -- a number (integer or float)

        Set the turtle's first coordinate to x, second coordinate remains
        unchanged.

        Example (for a Turtle instance named turtle):
        >>> turtle.position()
        (0.00, 40.00)
        >>> turtle.sety(-10)
        >>> turtle.position()
        (0.00, -10.00)
        """
        self._goto(Vec2D(self._position[0], y))

    def distance(self, x, y=None):
        """Return the distance from the turtle to (x,y) in turtle step units.

        Arguments:
        x -- a number   or  a pair/vector of numbers   or   a turtle instance
        y -- a number       None                            None

        call: distance(x, y)         # two coordinates
        --or: distance((x, y))       # a pair (tuple) of coordinates
        --or: distance(vec)          # e.g. as returned by pos()
        --or: distance(mypen)        # where mypen is another turtle

        Example (for a Turtle instance named turtle):
        >>> turtle.pos()
        (0.00, 0.00)
        >>> turtle.distance(30,40)
        50.0
        >>> pen = Turtle()
        >>> pen.forward(77)
        >>> turtle.distance(pen)
        77.0
        """
        if y is not None:
            pos = Vec2D(x, y)
        if isinstance(x, Vec2D):
            pos = x
        elif isinstance(x, tuple):
            pos = Vec2D(*x)
        elif isinstance(x, TNavigator):
            pos = x._position
        return abs(pos - self._position)

    def towards(self, x, y=None):
        """Return the angle of the line from the turtle's position to (x, y).

        Arguments:
        x -- a number   or  a pair/vector of numbers   or   a turtle instance
        y -- a number       None                            None

        call: distance(x, y)         # two coordinates
        --or: distance((x, y))       # a pair (tuple) of coordinates
        --or: distance(vec)          # e.g. as returned by pos()
        --or: distance(mypen)        # where mypen is another turtle

        Return the angle, between the line from turtle-position to position
        specified by x, y and the turtle's start orientation. (Depends on
        modes - "standard" or "logo")

        Example (for a Turtle instance named turtle):
        >>> turtle.pos()
        (10.00, 10.00)
        >>> turtle.towards(0,0)
        225.0
        """
        if y is not None:
            pos = Vec2D(x, y)
        if isinstance(x, Vec2D):
            pos = x
        elif isinstance(x, tuple):
            pos = Vec2D(*x)
        elif isinstance(x, TNavigator):
            pos = x._position
        x, y = pos - self._position
        result = round(math.atan2(y, x)*180.0/math.pi, 10) % 360.0
        result /= self._degreesPerAU
        return (self._angleOffset + self._angleOrient*result) % self._fullcircle

    def heading(self):
        """ Return the turtle's current heading.

        No arguments.

        Example (for a Turtle instance named turtle):
        >>> turtle.left(67)
        >>> turtle.heading()
        67.0
        """
        x, y = self._orient
        result = round(math.atan2(y, x)*180.0/math.pi, 10) % 360.0
        result /= self._degreesPerAU
        return (self._angleOffset + self._angleOrient*result) % self._fullcircle

    def setheading(self, to_angle):
        """Set the orientation of the turtle to to_angle.

        Aliases:  setheading | seth

        Argument:
        to_angle -- a number (integer or float)

        Set the orientation of the turtle to to_angle.
        Here are some common directions in degrees:

         standard - mode:          logo-mode:
        -------------------|--------------------
           0 - east                0 - north
          90 - north              90 - east
         180 - west              180 - south
         270 - south             270 - west

        Example (for a Turtle instance named turtle):
        >>> turtle.setheading(90)
        >>> turtle.heading()
        90
        """
        angle = (to_angle - self.heading())*self._angleOrient
        full = self._fullcircle
        angle = (angle+full/2.)%full - full/2.
        self._rotate(angle)

    def circle(self, radius, extent = None, steps = None):
        """ Draw a circle with given radius.

        Arguments:
        radius -- a number
        extent (optional) -- a number
        steps (optional) -- an integer

        Draw a circle with given radius. The center is radius units left
        of the turtle; extent - an angle - determines which part of the
        circle is drawn. If extent is not given, draw the entire circle.
        If extent is not a full circle, one endpoint of the arc is the
        current pen position. Draw the arc in counterclockwise direction
        if radius is positive, otherwise in clockwise direction. Finally
        the direction of the turtle is changed by the amount of extent.

        As the circle is approximated by an inscribed regular polygon,
        steps determines the number of steps to use. If not given,
        it will be calculated automatically. Maybe used to draw regular
        polygons.

        call: circle(radius)                  # full circle
        --or: circle(radius, extent)          # arc
        --or: circle(radius, extent, steps)
        --or: circle(radius, steps=6)         # 6-sided polygon

        Example (for a Turtle instance named turtle):
        >>> turtle.circle(50)
        >>> turtle.circle(120, 180)  # semicircle
        """
        if self.undobuffer:
            self.undobuffer.push(["seq"])
            self.undobuffer.cumulate = True
        speed = self.speed()
        if extent is None:
            extent = self._fullcircle
        if steps is None:
            frac = abs(extent)/self._fullcircle
            steps = 1+int(min(11+abs(radius)/6.0, 59.0)*frac)
        w = 1.0 * extent / steps
        w2 = 0.5 * w
        l = 2.0 * radius * math.sin(w2*math.pi/180.0*self._degreesPerAU)
        if radius < 0:
            l, w, w2 = -l, -w, -w2
        tr = self._tracer()
        dl = self._delay()
        if speed == 0:
            self._tracer(0, 0)
        else:
            self.speed(0)
        self._rotate(w2)
        for i in range(steps):
            self.speed(speed)
            self._go(l)
            self.speed(0)
            self._rotate(w)
        self._rotate(-w2)
        if speed == 0:
            self._tracer(tr, dl)
        self.speed(speed)
        if self.undobuffer:
            self.undobuffer.cumulate = False

## three dummy methods to be implemented by child class:

    def speed(self, s=0):
        """dummy method - to be overwritten by child class"""
    def _tracer(self, a=None, b=None):
        """dummy method - to be overwritten by child class"""
    def _delay(self, n=None):
        """dummy method - to be overwritten by child class"""

    fd = forward
    bk = back
    backward = back
    rt = right
    lt = left
    position = pos
    setpos = goto
    setposition = goto
    seth = setheading


class TPen(object):
    """Drawing part of the RawTurtle.
    Implements drawing properties.
    """
    def __init__(self, resizemode=_CFG["resizemode"]):
        self._resizemode = resizemode # or "user" or "noresize"
        self.undobuffer = None
        TPen._reset(self)

    def _reset(self, pencolor=_CFG["pencolor"],
                     fillcolor=_CFG["fillcolor"]):
        self._pensize = 1
        self._shown = True
        self._pencolor = pencolor
        self._fillcolor = fillcolor
        self._drawing = True
        self._speed = 3
        self._stretchfactor = (1., 1.)
        self._shearfactor = 0.
        self._tilt = 0.
        self._shapetrafo = (1., 0., 0., 1.)
        self._outlinewidth = 1

    def resizemode(self, rmode=None):
        """Set resizemode to one of the values: "auto", "user", "noresize".

        (Optional) Argument:
        rmode -- one of the strings "auto", "user", "noresize"

        Different resizemodes have the following effects:
          - "auto" adapts the appearance of the turtle
                   corresponding to the value of pensize.
          - "user" adapts the appearance of the turtle according to the
                   values of stretchfactor and outlinewidth (outline),
                   which are set by shapesize()
          - "noresize" no adaption of the turtle's appearance takes place.
        If no argument is given, return current resizemode.
        resizemode("user") is called by a call of shapesize with arguments.


        Examples (for a Turtle instance named turtle):
        >>> turtle.resizemode("noresize")
        >>> turtle.resizemode()
        'noresize'
        """
        if rmode is None:
            return self._resizemode
        rmode = rmode.lower()
        if rmode in ["auto", "user", "noresize"]:
            self.pen(resizemode=rmode)

    def pensize(self, width=None):
        """Set or return the line thickness.

        Aliases:  pensize | width

        Argument:
        width -- positive number

        Set the line thickness to width or return it. If resizemode is set
        to "auto" and turtleshape is a polygon, that polygon is drawn with
        the same line thickness. If no argument is given, current pensize
        is returned.

        Example (for a Turtle instance named turtle):
        >>> turtle.pensize()
        1
        >>> turtle.pensize(10)   # from here on lines of width 10 are drawn
        """
        if width is None:
            return self._pensize
        self.pen(pensize=width)


    def penup(self):
        """Pull the pen up -- no drawing when moving.

        Aliases: penup | pu | up

        No argument

        Example (for a Turtle instance named turtle):
        >>> turtle.penup()
        """
        if not self._drawing:
            return
        self.pen(pendown=False)

    def pendown(self):
        """Pull the pen down -- drawing when moving.

        Aliases: pendown | pd | down

        No argument.

        Example (for a Turtle instance named turtle):
        >>> turtle.pendown()
        """
        if self._drawing:
            return
        self.pen(pendown=True)

    def isdown(self):
        """Return True if pen is down, False if it's up.

        No argument.

        Example (for a Turtle instance named turtle):
        >>> turtle.penup()
        >>> turtle.isdown()
        False
        >>> turtle.pendown()
        >>> turtle.isdown()
        True
        """
        return self._drawing

    def speed(self, speed=None):
        """ Return or set the turtle's speed.

        Optional argument:
        speed -- an integer in the range 0..10 or a speedstring (see below)

        Set the turtle's speed to an integer value in the range 0 .. 10.
        If no argument is given: return current speed.

        If input is a number greater than 10 or smaller than 0.5,
        speed is set to 0.
        Speedstrings  are mapped to speedvalues in the following way:
            'fastest' :  0
            'fast'    :  10
            'normal'  :  6
            'slow'    :  3
            'slowest' :  1
        speeds from 1 to 10 enforce increasingly faster animation of
        line drawing and turtle turning.

        Attention:
        speed = 0 : *no* animation takes place. forward/back makes turtle jump
        and likewise left/right make the turtle turn instantly.

        Example (for a Turtle instance named turtle):
        >>> turtle.speed(3)
        """
        speeds = {'fastest':0, 'fast':10, 'normal':6, 'slow':3, 'slowest':1 }
        if speed is None:
            return self._speed
        if speed in speeds:
            speed = speeds[speed]
        elif 0.5 < speed < 10.5:
            speed = int(round(speed))
        else:
            speed = 0
        self.pen(speed=speed)

    def color(self, *args):
        """Return or set the pencolor and fillcolor.

        Arguments:
        Several input formats are allowed.
        They use 0, 1, 2, or 3 arguments as follows:

        color()
            Return the current pencolor and the current fillcolor
            as a pair of color specification strings as are returned
            by pencolor and fillcolor.
        color(colorstring), color((r,g,b)), color(r,g,b)
            inputs as in pencolor, set both, fillcolor and pencolor,
            to the given value.
        color(colorstring1, colorstring2),
        color((r1,g1,b1), (r2,g2,b2))
            equivalent to pencolor(colorstring1) and fillcolor(colorstring2)
            and analogously, if the other input format is used.

        If turtleshape is a polygon, outline and interior of that polygon
        is drawn with the newly set colors.
        For mor info see: pencolor, fillcolor

        Example (for a Turtle instance named turtle):
        >>> turtle.color('red', 'green')
        >>> turtle.color()
        ('red', 'green')
        >>> colormode(255)
        >>> color((40, 80, 120), (160, 200, 240))
        >>> color()
        ('#285078', '#a0c8f0')
        """
        if args:
            l = len(args)
            if l == 1:
                pcolor = fcolor = args[0]
            elif l == 2:
                pcolor, fcolor = args
            elif l == 3:
                pcolor = fcolor = args
            pcolor = self._colorstr(pcolor)
            fcolor = self._colorstr(fcolor)
            self.pen(pencolor=pcolor, fillcolor=fcolor)
        else:
            return self._color(self._pencolor), self._color(self._fillcolor)

    def pencolor(self, *args):
        """ Return or set the pencolor.

        Arguments:
        Four input formats are allowed:
          - pencolor()
            Return the current pencolor as color specification string,
            possibly in hex-number format (see example).
            May be used as input to another color/pencolor/fillcolor call.
          - pencolor(colorstring)
            s is a Tk color specification string, such as "red" or "yellow"
          - pencolor((r, g, b))
            *a tuple* of r, g, and b, which represent, an RGB color,
            and each of r, g, and b are in the range 0..colormode,
            where colormode is either 1.0 or 255
          - pencolor(r, g, b)
            r, g, and b represent an RGB color, and each of r, g, and b
            are in the range 0..colormode

        If turtleshape is a polygon, the outline of that polygon is drawn
        with the newly set pencolor.

        Example (for a Turtle instance named turtle):
        >>> turtle.pencolor('brown')
        >>> tup = (0.2, 0.8, 0.55)
        >>> turtle.pencolor(tup)
        >>> turtle.pencolor()
        '#33cc8c'
        """
        if args:
            color = self._colorstr(args)
            if color == self._pencolor:
                return
            self.pen(pencolor=color)
        else:
            return self._color(self._pencolor)

    def fillcolor(self, *args):
        """ Return or set the fillcolor.

        Arguments:
        Four input formats are allowed:
          - fillcolor()
            Return the current fillcolor as color specification string,
            possibly in hex-number format (see example).
            May be used as input to another color/pencolor/fillcolor call.
          - fillcolor(colorstring)
            s is a Tk color specification string, such as "red" or "yellow"
          - fillcolor((r, g, b))
            *a tuple* of r, g, and b, which represent, an RGB color,
            and each of r, g, and b are in the range 0..colormode,
            where colormode is either 1.0 or 255
          - fillcolor(r, g, b)
            r, g, and b represent an RGB color, and each of r, g, and b
            are in the range 0..colormode

        If turtleshape is a polygon, the interior of that polygon is drawn
        with the newly set fillcolor.

        Example (for a Turtle instance named turtle):
        >>> turtle.fillcolor('violet')
        >>> col = turtle.pencolor()
        >>> turtle.fillcolor(col)
        >>> turtle.fillcolor(0, .5, 0)
        """
        if args:
            color = self._colorstr(args)
            if color == self._fillcolor:
                return
            self.pen(fillcolor=color)
        else:
            return self._color(self._fillcolor)

    def showturtle(self):
        """Makes the turtle visible.

        Aliases: showturtle | st

        No argument.

        Example (for a Turtle instance named turtle):
        >>> turtle.hideturtle()
        >>> turtle.showturtle()
        """
        self.pen(shown=True)

    def hideturtle(self):
        """Makes the turtle invisible.

        Aliases: hideturtle | ht

        No argument.

        It's a good idea to do this while you're in the
        middle of a complicated drawing, because hiding
        the turtle speeds up the drawing observably.

        Example (for a Turtle instance named turtle):
        >>> turtle.hideturtle()
        """
        self.pen(shown=False)

    def isvisible(self):
        """Return True if the Turtle is shown, False if it's hidden.

        No argument.

        Example (for a Turtle instance named turtle):
        >>> turtle.hideturtle()
        >>> print turtle.isvisible():
        False
        """
        return self._shown

    def pen(self, pen=None, **pendict):
        """Return or set the pen's attributes.

        Arguments:
            pen -- a dictionary with some or all of the below listed keys.
            **pendict -- one or more keyword-arguments with the below
                         listed keys as keywords.

        Return or set the pen's attributes in a 'pen-dictionary'
        with the following key/value pairs:
           "shown"      :   True/False
           "pendown"    :   True/False
           "pencolor"   :   color-string or color-tuple
           "fillcolor"  :   color-string or color-tuple
           "pensize"    :   positive number
           "speed"      :   number in range 0..10
           "resizemode" :   "auto" or "user" or "noresize"
           "stretchfactor": (positive number, positive number)
           "shearfactor":   number
           "outline"    :   positive number
           "tilt"       :   number

        This dictionary can be used as argument for a subsequent
        pen()-call to restore the former pen-state. Moreover one
        or more of these attributes can be provided as keyword-arguments.
        This can be used to set several pen attributes in one statement.


        Examples (for a Turtle instance named turtle):
        >>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)
        >>> turtle.pen()
        {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1,
        'pencolor': 'red', 'pendown': True, 'fillcolor': 'black',
        'stretchfactor': (1,1), 'speed': 3, 'shearfactor': 0.0}
        >>> penstate=turtle.pen()
        >>> turtle.color("yellow","")
        >>> turtle.penup()
        >>> turtle.pen()
        {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1,
        'pencolor': 'yellow', 'pendown': False, 'fillcolor': '',
        'stretchfactor': (1,1), 'speed': 3, 'shearfactor': 0.0}
        >>> p.pen(penstate, fillcolor="green")
        >>> p.pen()
        {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1,
        'pencolor': 'red', 'pendown': True, 'fillcolor': 'green',
        'stretchfactor': (1,1), 'speed': 3, 'shearfactor': 0.0}
        """
        _pd =  {"shown"         : self._shown,
                "pendown"       : self._drawing,
                "pencolor"      : self._pencolor,
                "fillcolor"     : self._fillcolor,
                "pensize"       : self._pensize,
                "speed"         : self._speed,
                "resizemode"    : self._resizemode,
                "stretchfactor" : self._stretchfactor,
                "shearfactor"   : self._shearfactor,
                "outline"       : self._outlinewidth,
                "tilt"          : self._tilt
               }

        if not (pen or pendict):
            return _pd

        if isinstance(pen, dict):
            p = pen
        else:
            p = {}
        p.update(pendict)

        _p_buf = {}
        for key in p:
            _p_buf[key] = _pd[key]

        if self.undobuffer:
            self.undobuffer.push(("pen", _p_buf))

        newLine = False
        if "pendown" in p:
            if self._drawing != p["pendown"]:
                newLine = True
        if "pencolor" in p:
            if isinstance(p["pencolor"], tuple):
                p["pencolor"] = self._colorstr((p["pencolor"],))
            if self._pencolor != p["pencolor"]:
                newLine = True
        if "pensize" in p:
            if self._pensize != p["pensize"]:
                newLine = True
        if newLine:
            self._newLine()
        if "pendown" in p:
            self._drawing = p["pendown"]
        if "pencolor" in p:
            self._pencolor = p["pencolor"]
        if "pensize" in p:
            self._pensize = p["pensize"]
        if "fillcolor" in p:
            if isinstance(p["fillcolor"], tuple):
                p["fillcolor"] = self._colorstr((p["fillcolor"],))
            self._fillcolor = p["fillcolor"]
        if "speed" in p:
            self._speed = p["speed"]
        if "resizemode" in p:
            self._resizemode = p["resizemode"]
        if "stretchfactor" in p:
            sf = p["stretchfactor"]
            if isinstance(sf, (int, float)):
                sf = (sf, sf)
            self._stretchfactor = sf
        if "shearfactor" in p:
            self._shearfactor = p["shearfactor"]
        if "outline" in p:
            self._outlinewidth = p["outline"]
        if "shown" in p:
            self._shown = p["shown"]
        if "tilt" in p:
            self._tilt = p["tilt"]
        if "stretchfactor" in p or "tilt" in p or "shearfactor" in p:
            scx, scy = self._stretchfactor
            shf = self._shearfactor
            sa, ca = math.sin(self._tilt), math.cos(self._tilt)
            self._shapetrafo = ( scx*ca, scy*(shf*ca + sa),
                                -scx*sa, scy*(ca - shf*sa))
        self._update()

## three dummy methods to be implemented by child class:

    def _newLine(self, usePos = True):
        """dummy method - to be overwritten by child class"""
    def _update(self, count=True, forced=False):
        """dummy method - to be overwritten by child class"""
    def _color(self, args):
        """dummy method - to be overwritten by child class"""
    def _colorstr(self, args):
        """dummy method - to be overwritten by child class"""

    width = pensize
    up = penup
    pu = penup
    pd = pendown
    down = pendown
    st = showturtle
    ht = hideturtle


class _TurtleImage(object):
    """Helper class: Datatype to store Turtle attributes
    """

    def __init__(self, screen, shapeIndex):
        self.screen = screen
        self._type = None
        self._setshape(shapeIndex)

    def _setshape(self, shapeIndex):
        screen = self.screen
        self.shapeIndex = shapeIndex
        if self._type == "polygon" == screen._shapes[shapeIndex]._type:
            return
        if self._type == "image" == screen._shapes[shapeIndex]._type:
            return
        if self._type in ["image", "polygon"]:
            screen._delete(self._item)
        elif self._type == "compound":
            for item in self._item:
                screen._delete(item)
        self._type = screen._shapes[shapeIndex]._type
        if self._type == "polygon":
            self._item = screen._createpoly()
        elif self._type == "image":
            self._item = screen._createimage(screen._shapes["blank"]._data)
        elif self._type == "compound":
            self._item = [screen._createpoly() for item in
                                          screen._shapes[shapeIndex]._data]


class RawTurtle(TPen, TNavigator):
    """Animation part of the RawTurtle.
    Puts RawTurtle upon a TurtleScreen and provides tools for
    its animation.
    """
    screens = []

    def __init__(self, canvas=None,
                 shape=_CFG["shape"],
                 undobuffersize=_CFG["undobuffersize"],
                 visible=_CFG["visible"]):
        if isinstance(canvas, _Screen):
            self.screen = canvas
        elif isinstance(canvas, TurtleScreen):
            if canvas not in RawTurtle.screens:
                RawTurtle.screens.append(canvas)
            self.screen = canvas
        elif isinstance(canvas, (ScrolledCanvas, Canvas)):
            for screen in RawTurtle.screens:
                if screen.cv == canvas:
                    self.screen = screen
                    break
            else:
                self.screen = TurtleScreen(canvas)
                RawTurtle.screens.append(self.screen)
        else:
            raise TurtleGraphicsError("bad canvas argument %s" % canvas)

        screen = self.screen
        TNavigator.__init__(self, screen.mode())
        TPen.__init__(self)
        screen._turtles.append(self)
        self.drawingLineItem = screen._createline()
        self.turtle = _TurtleImage(screen, shape)
        self._poly = None
        self._creatingPoly = False
        self._fillitem = self._fillpath = None
        self._shown = visible
        self._hidden_from_screen = False
        self.currentLineItem = screen._createline()
        self.currentLine = [self._position]
        self.items = [self.currentLineItem]
        self.stampItems = []
        self._undobuffersize = undobuffersize
        self.undobuffer = Tbuffer(undobuffersize)
        self._update()

    def reset(self):
        """Delete the turtle's drawings and restore its default values.

        No argument.

        Delete the turtle's drawings from the screen, re-center the turtle
        and set variables to the default values.

        Example (for a Turtle instance named turtle):
        >>> turtle.position()
        (0.00,-22.00)
        >>> turtle.heading()
        100.0
        >>> turtle.reset()
        >>> turtle.position()
        (0.00,0.00)
        >>> turtle.heading()
        0.0
        """
        TNavigator.reset(self)
        TPen._reset(self)
        self._clear()
        self._drawturtle()
        self._update()

    def setundobuffer(self, size):
        """Set or disable undobuffer.

        Argument:
        size -- an integer or None

        If size is an integer an empty undobuffer of given size is installed.
        Size gives the maximum number of turtle-actions that can be undone
        by the undo() function.
        If size is None, no undobuffer is present.

        Example (for a Turtle instance named turtle):
        >>> turtle.setundobuffer(42)
        """
        if size is None or size <= 0:
            self.undobuffer = None
        else:
            self.undobuffer = Tbuffer(size)

    def undobufferentries(self):
        """Return count of entries in the undobuffer.

        No argument.

        Example (for a Turtle instance named turtle):
        >>> while undobufferentries():
        ...     undo()
        """
        if self.undobuffer is None:
            return 0
        return self.undobuffer.nr_of_items()

    def _clear(self):
        """Delete all of pen's drawings"""
        self._fillitem = self._fillpath = None
        for item in self.items:
            self.screen._delete(item)
        self.currentLineItem = self.screen._createline()
        self.currentLine = []
        if self._drawing:
            self.currentLine.append(self._position)
        self.items = [self.currentLineItem]
        self.clearstamps()
        self.setundobuffer(self._undobuffersize)


    def clear(self):
        """Delete the turtle's drawings from the screen. Do not move turtle.

        No arguments.

        Delete the turtle's drawings from the screen. Do not move turtle.
        State and position of the turtle as well as drawings of other
        turtles are not affected.

        Examples (for a Turtle instance named turtle):
        >>> turtle.clear()
        """
        self._clear()
        self._update()

    def _update_data(self):
        self.screen._incrementudc()
        if self.screen._updatecounter != 0:
            return
        if len(self.currentLine)>1:
            self.screen._drawline(self.currentLineItem, self.currentLine,
                                  self._pencolor, self._pensize)

    def _update(self):
        """Perform a Turtle-data update.
        """
        screen = self.screen
        if screen._tracing == 0:
            return
        elif screen._tracing == 1:
            self._update_data()
            self._drawturtle()
            screen._update()                  # TurtleScreenBase
            screen._delay(screen._delayvalue) # TurtleScreenBase
        else:
            self._update_data()
            if screen._updatecounter == 0:
                for t in screen.turtles():
                    t._drawturtle()
                screen._update()

    def _tracer(self, flag=None, delay=None):
        """Turns turtle animation on/off and set delay for update drawings.

        Optional arguments:
        n -- nonnegative  integer
        delay -- nonnegative  integer

        If n is given, only each n-th regular screen update is really performed.
        (Can be used to accelerate the drawing of complex graphics.)
        Second arguments sets delay value (see RawTurtle.delay())

        Example (for a Turtle instance named turtle):
        >>> turtle.tracer(8, 25)
        >>> dist = 2
        >>> for i in range(200):
        ...     turtle.fd(dist)
        ...     turtle.rt(90)
        ...     dist += 2
        """
        return self.screen.tracer(flag, delay)

    def _color(self, args):
        return self.screen._color(args)

    def _colorstr(self, args):
        return self.screen._colorstr(args)

    def _cc(self, args):
        """Convert colortriples to hexstrings.
        """
        if isinstance(args, str):
            return args
        try:
            r, g, b = args
        except:
            raise TurtleGraphicsError("bad color arguments: %s" % str(args))
        if self.screen._colormode == 1.0:
            r, g, b = [round(255.0*x) for x in (r, g, b)]
        if not ((0 <= r <= 255) and (0 <= g <= 255) and (0 <= b <= 255)):
            raise TurtleGraphicsError("bad color sequence: %s" % str(args))
        return "#%02x%02x%02x" % (r, g, b)

    def clone(self):
        """Create and return a clone of the turtle.

        No argument.

        Create and return a clone of the turtle with same position, heading
        and turtle properties.

        Example (for a Turtle instance named mick):
        mick = Turtle()
        joe = mick.clone()
        """
        screen = self.screen
        self._newLine(self._drawing)

        turtle = self.turtle
        self.screen = None
        self.turtle = None  # too make self deepcopy-able

        q = deepcopy(self)

        self.screen = screen
        self.turtle = turtle

        q.screen = screen
        q.turtle = _TurtleImage(screen, self.turtle.shapeIndex)

        screen._turtles.append(q)
        ttype = screen._shapes[self.turtle.shapeIndex]._type
        if ttype == "polygon":
            q.turtle._item = screen._createpoly()
        elif ttype == "image":
            q.turtle._item = screen._createimage(screen._shapes["blank"]._data)
        elif ttype == "compound":
            q.turtle._item = [screen._createpoly() for item in
                              screen._shapes[self.turtle.shapeIndex]._data]
        q.currentLineItem = screen._createline()
        q._update()
        return q

    def shape(self, name=None):
        """Set turtle shape to shape with given name / return current shapename.

        Optional argument:
        name -- a string, which is a valid shapename

        Set turtle shape to shape with given name or, if name is not given,
        return name of current shape.
        Shape with name must exist in the TurtleScreen's shape dictionary.
        Initially there are the following polygon shapes:
        'arrow', 'turtle', 'circle', 'square', 'triangle', 'classic'.
        To learn about how to deal with shapes see Screen-method register_shape.

        Example (for a Turtle instance named turtle):
        >>> turtle.shape()
        'arrow'
        >>> turtle.shape("turtle")
        >>> turtle.shape()
        'turtle'
        """
        if name is None:
            return self.turtle.shapeIndex
        if not name in self.screen.getshapes():
            raise TurtleGraphicsError("There is no shape named %s" % name)
        self.turtle._setshape(name)
        self._update()

    def shapesize(self, stretch_wid=None, stretch_len=None, outline=None):
        """Set/return turtle's stretchfactors/outline. Set resizemode to "user".

        Optional arguments:
           stretch_wid : positive number
           stretch_len : positive number
           outline  : positive number

        Return or set the pen's attributes x/y-stretchfactors and/or outline.
        Set resizemode to "user".
        If and only if resizemode is set to "user", the turtle will be displayed
        stretched according to its stretchfactors:
        stretch_wid is stretchfactor perpendicular to orientation
        stretch_len is stretchfactor in direction of turtles orientation.
        outline determines the width of the shapes's outline.

        Examples (for a Turtle instance named turtle):
        >>> turtle.resizemode("user")
        >>> turtle.shapesize(5, 5, 12)
        >>> turtle.shapesize(outline=8)
        """
        if stretch_wid is stretch_len is outline is None:
            stretch_wid, stretch_len = self._stretchfactor
            return stretch_wid, stretch_len, self._outlinewidth
        if stretch_wid == 0 or stretch_len == 0:
            raise TurtleGraphicsError("stretch_wid/stretch_len must not be zero")
        if stretch_wid is not None:
            if stretch_len is None:
                stretchfactor = stretch_wid, stretch_wid
            else:
                stretchfactor = stretch_wid, stretch_len
        elif stretch_len is not None:
            stretchfactor = self._stretchfactor[0], stretch_len
        else:
            stretchfactor = self._stretchfactor
        if outline is None:
            outline = self._outlinewidth
        self.pen(resizemode="user",
                 stretchfactor=stretchfactor, outline=outline)

    def shearfactor(self, shear=None):
        """Set or return the current shearfactor.

        Optional argument: shear -- number, tangent of the shear angle

        Shear the turtleshape according to the given shearfactor shear,
        which is the tangent of the shear angle. DO NOT change the
        turtle's heading (direction of movement).
        If shear is not given: return the current shearfactor, i. e. the
        tangent of the shear angle, by which lines parallel to the
        heading of the turtle are sheared.

        Examples (for a Turtle instance named turtle):
        >>> turtle.shape("circle")
        >>> turtle.shapesize(5,2)
        >>> turtle.shearfactor(0.5)
        >>> turtle.shearfactor()
        >>> 0.5
        """
        if shear is None:
            return self._shearfactor
        self.pen(resizemode="user", shearfactor=shear)

    def settiltangle(self, angle):
        """Rotate the turtleshape to point in the specified direction

        Argument: angle -- number

        Rotate the turtleshape to point in the direction specified by angle,
        regardless of its current tilt-angle. DO NOT change the turtle's
        heading (direction of movement).


        Examples (for a Turtle instance named turtle):
        >>> turtle.shape("circle")
        >>> turtle.shapesize(5,2)
        >>> turtle.settiltangle(45)
        >>> stamp()
        >>> turtle.fd(50)
        >>> turtle.settiltangle(-45)
        >>> stamp()
        >>> turtle.fd(50)
        """
        tilt = -angle * self._degreesPerAU * self._angleOrient
        tilt = (tilt * math.pi / 180.0) % (2*math.pi)
        self.pen(resizemode="user", tilt=tilt)

    def tiltangle(self, angle=None):
        """Set or return the current tilt-angle.

        Optional argument: angle -- number

        Rotate the turtleshape to point in the direction specified by angle,
        regardless of its current tilt-angle. DO NOT change the turtle's
        heading (direction of movement).
        If angle is not given: return the current tilt-angle, i. e. the angle
        between the orientation of the turtleshape and the heading of the
        turtle (its direction of movement).

        Deprecated since Python 3.1

        Examples (for a Turtle instance named turtle):
        >>> turtle.shape("circle")
        >>> turtle.shapesize(5,2)
        >>> turtle.tilt(45)
        >>> turtle.tiltangle()
        """
        if angle is None:
            tilt = -self._tilt * (180.0/math.pi) * self._angleOrient
            return (tilt / self._degreesPerAU) % self._fullcircle
        else:
            self.settiltangle(angle)

    def tilt(self, angle):
        """Rotate the turtleshape by angle.

        Argument:
        angle - a number

        Rotate the turtleshape by angle from its current tilt-angle,
        but do NOT change the turtle's heading (direction of movement).

        Examples (for a Turtle instance named turtle):
        >>> turtle.shape("circle")
        >>> turtle.shapesize(5,2)
        >>> turtle.tilt(30)
        >>> turtle.fd(50)
        >>> turtle.tilt(30)
        >>> turtle.fd(50)
        """
        self.settiltangle(angle + self.tiltangle())

    def shapetransform(self, t11=None, t12=None, t21=None, t22=None):
        """Set or return the current transformation matrix of the turtle shape.

        Optional arguments: t11, t12, t21, t22 -- numbers.

        If none of the matrix elements are given, return the transformation
        matrix.
        Otherwise set the given elements and transform the turtleshape
        according to the matrix consisting of first row t11, t12 and
        second row t21, 22.
        Modify stretchfactor, shearfactor and tiltangle according to the
        given matrix.

        Examples (for a Turtle instance named turtle):
        >>> turtle.shape("square")
        >>> turtle.shapesize(4,2)
        >>> turtle.shearfactor(-0.5)
        >>> turtle.shapetransform()
        (4.0, -1.0, -0.0, 2.0)
        """
        if t11 is t12 is t21 is t22 is None:
            return self._shapetrafo
        m11, m12, m21, m22 = self._shapetrafo
        if t11 is not None: m11 = t11
        if t12 is not None: m12 = t12
        if t21 is not None: m21 = t21
        if t22 is not None: m22 = t22
        if t11 * t22 - t12 * t21 == 0:
            raise TurtleGraphicsError("Bad shape transform matrix: must not be singular")
        self._shapetrafo = (m11, m12, m21, m22)
        alfa = math.atan2(-m21, m11) % (2 * math.pi)
        sa, ca = math.sin(alfa), math.cos(alfa)
        a11, a12, a21, a22 = (ca*m11 - sa*m21, ca*m12 - sa*m22,
                              sa*m11 + ca*m21, sa*m12 + ca*m22)
        self._stretchfactor = a11, a22
        self._shearfactor = a12/a22
        self._tilt = alfa
        self.pen(resizemode="user")


    def _polytrafo(self, poly):
        """Computes transformed polygon shapes from a shape
        according to current position and heading.
        """
        screen = self.screen
        p0, p1 = self._position
        e0, e1 = self._orient
        e = Vec2D(e0, e1 * screen.yscale / screen.xscale)
        e0, e1 = (1.0 / abs(e)) * e
        return [(p0+(e1*x+e0*y)/screen.xscale, p1+(-e0*x+e1*y)/screen.yscale)
                                                           for (x, y) in poly]

    def get_shapepoly(self):
        """Return the current shape polygon as tuple of coordinate pairs.

        No argument.

        Examples (for a Turtle instance named turtle):
        >>> turtle.shape("square")
        >>> turtle.shapetransform(4, -1, 0, 2)
        >>> turtle.get_shapepoly()
        ((50, -20), (30, 20), (-50, 20), (-30, -20))

        """
        shape = self.screen._shapes[self.turtle.shapeIndex]
        if shape._type == "polygon":
            return self._getshapepoly(shape._data, shape._type == "compound")
        # else return None

    def _getshapepoly(self, polygon, compound=False):
        """Calculate transformed shape polygon according to resizemode
        and shapetransform.
        """
        if self._resizemode == "user" or compound:
            t11, t12, t21, t22 = self._shapetrafo
        elif self._resizemode == "auto":
            l = max(1, self._pensize/5.0)
            t11, t12, t21, t22 = l, 0, 0, l
        elif self._resizemode == "noresize":
            return polygon
        return tuple([(t11*x + t12*y, t21*x + t22*y) for (x, y) in polygon])

    def _drawturtle(self):
        """Manages the correct rendering of the turtle with respect to
        its shape, resizemode, stretch and tilt etc."""
        screen = self.screen
        shape = screen._shapes[self.turtle.shapeIndex]
        ttype = shape._type
        titem = self.turtle._item
        if self._shown and screen._updatecounter == 0 and screen._tracing > 0:
            self._hidden_from_screen = False
            tshape = shape._data
            if ttype == "polygon":
                if self._resizemode == "noresize": w = 1
                elif self._resizemode == "auto": w = self._pensize
                else: w =self._outlinewidth
                shape = self._polytrafo(self._getshapepoly(tshape))
                fc, oc = self._fillcolor, self._pencolor
                screen._drawpoly(titem, shape, fill=fc, outline=oc,
                                                      width=w, top=True)
            elif ttype == "image":
                screen._drawimage(titem, self._position, tshape)
            elif ttype == "compound":
                for item, (poly, fc, oc) in zip(titem, tshape):
                    poly = self._polytrafo(self._getshapepoly(poly, True))
                    screen._drawpoly(item, poly, fill=self._cc(fc),
                                     outline=self._cc(oc), width=self._outlinewidth, top=True)
        else:
            if self._hidden_from_screen:
                return
            if ttype == "polygon":
                screen._drawpoly(titem, ((0, 0), (0, 0), (0, 0)), "", "")
            elif ttype == "image":
                screen._drawimage(titem, self._position,
                                          screen._shapes["blank"]._data)
            elif ttype == "compound":
                for item in titem:
                    screen._drawpoly(item, ((0, 0), (0, 0), (0, 0)), "", "")
            self._hidden_from_screen = True

##############################  stamp stuff  ###############################

    def stamp(self):
        """Stamp a copy of the turtleshape onto the canvas and return its id.

        No argument.

        Stamp a copy of the turtle shape onto the canvas at the current
        turtle position. Return a stamp_id for that stamp, which can be
        used to delete it by calling clearstamp(stamp_id).

        Example (for a Turtle instance named turtle):
        >>> turtle.color("blue")
        >>> turtle.stamp()
        13
        >>> turtle.fd(50)
        """
        screen = self.screen
        shape = screen._shapes[self.turtle.shapeIndex]
        ttype = shape._type
        tshape = shape._data
        if ttype == "polygon":
            stitem = screen._createpoly()
            if self._resizemode == "noresize": w = 1
            elif self._resizemode == "auto": w = self._pensize
            else: w =self._outlinewidth
            shape = self._polytrafo(self._getshapepoly(tshape))
            fc, oc = self._fillcolor, self._pencolor
            screen._drawpoly(stitem, shape, fill=fc, outline=oc,
                                                  width=w, top=True)
        elif ttype == "image":
            stitem = screen._createimage("")
            screen._drawimage(stitem, self._position, tshape)
        elif ttype == "compound":
            stitem = []
            for element in tshape:
                item = screen._createpoly()
                stitem.append(item)
            stitem = tuple(stitem)
            for item, (poly, fc, oc) in zip(stitem, tshape):
                poly = self._polytrafo(self._getshapepoly(poly, True))
                screen._drawpoly(item, poly, fill=self._cc(fc),
                                 outline=self._cc(oc), width=self._outlinewidth, top=True)
        self.stampItems.append(stitem)
        self.undobuffer.push(("stamp", stitem))
        return stitem

    def _clearstamp(self, stampid):
        """does the work for clearstamp() and clearstamps()
        """
        if stampid in self.stampItems:
            if isinstance(stampid, tuple):
                for subitem in stampid:
                    self.screen._delete(subitem)
            else:
                self.screen._delete(stampid)
            self.stampItems.remove(stampid)
        # Delete stampitem from undobuffer if necessary
        # if clearstamp is called directly.
        item = ("stamp", stampid)
        buf = self.undobuffer
        if item not in buf.buffer:
            return
        index = buf.buffer.index(item)
        buf.buffer.remove(item)
        if index <= buf.ptr:
            buf.ptr = (buf.ptr - 1) % buf.bufsize
        buf.buffer.insert((buf.ptr+1)%buf.bufsize, [None])

    def clearstamp(self, stampid):
        """Delete stamp with given stampid

        Argument:
        stampid - an integer, must be return value of previous stamp() call.

        Example (for a Turtle instance named turtle):
        >>> turtle.color("blue")
        >>> astamp = turtle.stamp()
        >>> turtle.fd(50)
        >>> turtle.clearstamp(astamp)
        """
        self._clearstamp(stampid)
        self._update()

    def clearstamps(self, n=None):
        """Delete all or first/last n of turtle's stamps.

        Optional argument:
        n -- an integer

        If n is None, delete all of pen's stamps,
        else if n > 0 delete first n stamps
        else if n < 0 delete last n stamps.

        Example (for a Turtle instance named turtle):
        >>> for i in range(8):
        ...     turtle.stamp(); turtle.fd(30)
        ...
        >>> turtle.clearstamps(2)
        >>> turtle.clearstamps(-2)
        >>> turtle.clearstamps()
        """
        if n is None:
            toDelete = self.stampItems[:]
        elif n >= 0:
            toDelete = self.stampItems[:n]
        else:
            toDelete = self.stampItems[n:]
        for item in toDelete:
            self._clearstamp(item)
        self._update()

    def _goto(self, end):
        """Move the pen to the point end, thereby drawing a line
        if pen is down. All other methods for turtle movement depend
        on this one.
        """
        ## Version with undo-stuff
        go_modes = ( self._drawing,
                     self._pencolor,
                     self._pensize,
                     isinstance(self._fillpath, list))
        screen = self.screen
        undo_entry = ("go", self._position, end, go_modes,
                      (self.currentLineItem,
                      self.currentLine[:],
                      screen._pointlist(self.currentLineItem),
                      self.items[:])
                      )
        if self.undobuffer:
            self.undobuffer.push(undo_entry)
        start = self._position
        if self._speed and screen._tracing == 1:
            diff = (end-start)
            diffsq = (diff[0]*screen.xscale)**2 + (diff[1]*screen.yscale)**2
            nhops = 1+int((diffsq**0.5)/(3*(1.1**self._speed)*self._speed))
            delta = diff * (1.0/nhops)
            for n in range(1, nhops):
                if n == 1:
                    top = True
                else:
                    top = False
                self._position = start + delta * n
                if self._drawing:
                    screen._drawline(self.drawingLineItem,
                                     (start, self._position),
                                     self._pencolor, self._pensize, top)
                self._update()
            if self._drawing:
                screen._drawline(self.drawingLineItem, ((0, 0), (0, 0)),
                                               fill="", width=self._pensize)
        # Turtle now at end,
        if self._drawing: # now update currentLine
            self.currentLine.append(end)
        if isinstance(self._fillpath, list):
            self._fillpath.append(end)
        ######    vererbung!!!!!!!!!!!!!!!!!!!!!!
        self._position = end
        if self._creatingPoly:
            self._poly.append(end)
        if len(self.currentLine) > 42: # 42! answer to the ultimate question
                                       # of life, the universe and everything
            self._newLine()
        self._update() #count=True)

    def _undogoto(self, entry):
        """Reverse a _goto. Used for undo()
        """
        old, new, go_modes, coodata = entry
        drawing, pc, ps, filling = go_modes
        cLI, cL, pl, items = coodata
        screen = self.screen
        if abs(self._position - new) > 0.5:
            print ("undogoto: HALLO-DA-STIMMT-WAS-NICHT!")
        # restore former situation
        self.currentLineItem = cLI
        self.currentLine = cL

        if pl == [(0, 0), (0, 0)]:
            usepc = ""
        else:
            usepc = pc
        screen._drawline(cLI, pl, fill=usepc, width=ps)

        todelete = [i for i in self.items if (i not in items) and
                                       (screen._type(i) == "line")]
        for i in todelete:
            screen._delete(i)
            self.items.remove(i)

        start = old
        if self._speed and screen._tracing == 1:
            diff = old - new
            diffsq = (diff[0]*screen.xscale)**2 + (diff[1]*screen.yscale)**2
            nhops = 1+int((diffsq**0.5)/(3*(1.1**self._speed)*self._speed))
            delta = diff * (1.0/nhops)
            for n in range(1, nhops):
                if n == 1:
                    top = True
                else:
                    top = False
                self._position = new + delta * n
                if drawing:
                    screen._drawline(self.drawingLineItem,
                                     (start, self._position),
                                     pc, ps, top)
                self._update()
            if drawing:
                screen._drawline(self.drawingLineItem, ((0, 0), (0, 0)),
                                               fill="", width=ps)
        # Turtle now at position old,
        self._position = old
        ##  if undo is done during creating a polygon, the last vertex
        ##  will be deleted. if the polygon is entirely deleted,
        ##  creatingPoly will be set to False.
        ##  Polygons created before the last one will not be affected by undo()
        if self._creatingPoly:
            if len(self._poly) > 0:
                self._poly.pop()
            if self._poly == []:
                self._creatingPoly = False
                self._poly = None
        if filling:
            if self._fillpath == []:
                self._fillpath = None
                print("Unwahrscheinlich in _undogoto!")
            elif self._fillpath is not None:
                self._fillpath.pop()
        self._update() #count=True)

    def _rotate(self, angle):
        """Turns pen clockwise by angle.
        """
        if self.undobuffer:
            self.undobuffer.push(("rot", angle, self._degreesPerAU))
        angle *= self._degreesPerAU
        neworient = self._orient.rotate(angle)
        tracing = self.screen._tracing
        if tracing == 1 and self._speed > 0:
            anglevel = 3.0 * self._speed
            steps = 1 + int(abs(angle)/anglevel)
            delta = 1.0*angle/steps
            for _ in range(steps):
                self._orient = self._orient.rotate(delta)
                self._update()
        self._orient = neworient
        self._update()

    def _newLine(self, usePos=True):
        """Closes current line item and starts a new one.
           Remark: if current line became too long, animation
           performance (via _drawline) slowed down considerably.
        """
        if len(self.currentLine) > 1:
            self.screen._drawline(self.currentLineItem, self.currentLine,
                                      self._pencolor, self._pensize)
            self.currentLineItem = self.screen._createline()
            self.items.append(self.currentLineItem)
        else:
            self.screen._drawline(self.currentLineItem, top=True)
        self.currentLine = []
        if usePos:
            self.currentLine = [self._position]

    def filling(self):
        """Return fillstate (True if filling, False else).

        No argument.

        Example (for a Turtle instance named turtle):
        >>> turtle.begin_fill()
        >>> if turtle.filling():
        ...     turtle.pensize(5)
        ... else:
        ...     turtle.pensize(3)
        """
        return isinstance(self._fillpath, list)

    def begin_fill(self):
        """Called just before drawing a shape to be filled.

        No argument.

        Example (for a Turtle instance named turtle):
        >>> turtle.color("black", "red")
        >>> turtle.begin_fill()
        >>> turtle.circle(60)
        >>> turtle.end_fill()
        """
        if not self.filling():
            self._fillitem = self.screen._createpoly()
            self.items.append(self._fillitem)
        self._fillpath = [self._position]
        self._newLine()
        if self.undobuffer:
            self.undobuffer.push(("beginfill", self._fillitem))
        self._update()


    def end_fill(self):
        """Fill the shape drawn after the call begin_fill().

        No argument.

        Example (for a Turtle instance named turtle):
        >>> turtle.color("black", "red")
        >>> turtle.begin_fill()
        >>> turtle.circle(60)
        >>> turtle.end_fill()
        """
        if self.filling():
            if len(self._fillpath) > 2:
                self.screen._drawpoly(self._fillitem, self._fillpath,
                                      fill=self._fillcolor)
                if self.undobuffer:
                    self.undobuffer.push(("dofill", self._fillitem))
            self._fillitem = self._fillpath = None
            self._update()

    def dot(self, size=None, *color):
        """Draw a dot with diameter size, using color.

        Optional arguments:
        size -- an integer >= 1 (if given)
        color -- a colorstring or a numeric color tuple

        Draw a circular dot with diameter size, using color.
        If size is not given, the maximum of pensize+4 and 2*pensize is used.

        Example (for a Turtle instance named turtle):
        >>> turtle.dot()
        >>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)
        """
        if not color:
            if isinstance(size, (str, tuple)):
                color = self._colorstr(size)
                size = self._pensize + max(self._pensize, 4)
            else:
                color = self._pencolor
                if not size:
                    size = self._pensize + max(self._pensize, 4)
        else:
            if size is None:
                size = self._pensize + max(self._pensize, 4)
            color = self._colorstr(color)
        if hasattr(self.screen, "_dot"):
            item = self.screen._dot(self._position, size, color)
            self.items.append(item)
            if self.undobuffer:
                self.undobuffer.push(("dot", item))
        else:
            pen = self.pen()
            if self.undobuffer:
                self.undobuffer.push(["seq"])
                self.undobuffer.cumulate = True
            try:
                if self.resizemode() == 'auto':
                    self.ht()
                self.pendown()
                self.pensize(size)
                self.pencolor(color)
                self.forward(0)
            finally:
                self.pen(pen)
            if self.undobuffer:
                self.undobuffer.cumulate = False

    def _write(self, txt, align, font):
        """Performs the writing for write()
        """
        item, end = self.screen._write(self._position, txt, align, font,
                                                          self._pencolor)
        self.items.append(item)
        if self.undobuffer:
            self.undobuffer.push(("wri", item))
        return end

    def write(self, arg, move=False, align="left", font=("Arial", 8, "normal")):
        """Write text at the current turtle position.

        Arguments:
        arg -- info, which is to be written to the TurtleScreen
        move (optional) -- True/False
        align (optional) -- one of the strings "left", "center" or right"
        font (optional) -- a triple (fontname, fontsize, fonttype)

        Write text - the string representation of arg - at the current
        turtle position according to align ("left", "center" or right")
        and with the given font.
        If move is True, the pen is moved to the bottom-right corner
        of the text. By default, move is False.

        Example (for a Turtle instance named turtle):
        >>> turtle.write('Home = ', True, align="center")
        >>> turtle.write((0,0), True)
        """
        if self.undobuffer:
            self.undobuffer.push(["seq"])
            self.undobuffer.cumulate = True
        end = self._write(str(arg), align.lower(), font)
        if move:
            x, y = self.pos()
            self.setpos(end, y)
        if self.undobuffer:
            self.undobuffer.cumulate = False

    def begin_poly(self):
        """Start recording the vertices of a polygon.

        No argument.

        Start recording the vertices of a polygon. Current turtle position
        is first point of polygon.

        Example (for a Turtle instance named turtle):
        >>> turtle.begin_poly()
        """
        self._poly = [self._position]
        self._creatingPoly = True

    def end_poly(self):
        """Stop recording the vertices of a polygon.

        No argument.

        Stop recording the vertices of a polygon. Current turtle position is
        last point of polygon. This will be connected with the first point.

        Example (for a Turtle instance named turtle):
        >>> turtle.end_poly()
        """
        self._creatingPoly = False

    def get_poly(self):
        """Return the lastly recorded polygon.

        No argument.

        Example (for a Turtle instance named turtle):
        >>> p = turtle.get_poly()
        >>> turtle.register_shape("myFavouriteShape", p)
        """
        ## check if there is any poly?
        if self._poly is not None:
            return tuple(self._poly)

    def getscreen(self):
        """Return the TurtleScreen object, the turtle is drawing  on.

        No argument.

        Return the TurtleScreen object, the turtle is drawing  on.
        So TurtleScreen-methods can be called for that object.

        Example (for a Turtle instance named turtle):
        >>> ts = turtle.getscreen()
        >>> ts
        <turtle.TurtleScreen object at 0x0106B770>
        >>> ts.bgcolor("pink")
        """
        return self.screen

    def getturtle(self):
        """Return the Turtleobject itself.

        No argument.

        Only reasonable use: as a function to return the 'anonymous turtle':

        Example:
        >>> pet = getturtle()
        >>> pet.fd(50)
        >>> pet
        <turtle.Turtle object at 0x0187D810>
        >>> turtles()
        [<turtle.Turtle object at 0x0187D810>]
        """
        return self

    getpen = getturtle


    ################################################################
    ### screen oriented methods recurring to methods of TurtleScreen
    ################################################################

    def _delay(self, delay=None):
        """Set delay value which determines speed of turtle animation.
        """
        return self.screen.delay(delay)

    def onclick(self, fun, btn=1, add=None):
        """Bind fun to mouse-click event on this turtle on canvas.

        Arguments:
        fun --  a function with two arguments, to which will be assigned
                the coordinates of the clicked point on the canvas.
        num --  number of the mouse-button defaults to 1 (left mouse button).
        add --  True or False. If True, new binding will be added, otherwise
                it will replace a former binding.

        Example for the anonymous turtle, i. e. the procedural way:

        >>> def turn(x, y):
        ...     left(360)
        ...
        >>> onclick(turn)  # Now clicking into the turtle will turn it.
        >>> onclick(None)  # event-binding will be removed
        """
        self.screen._onclick(self.turtle._item, fun, btn, add)
        self._update()

    def onrelease(self, fun, btn=1, add=None):
        """Bind fun to mouse-button-release event on this turtle on canvas.

        Arguments:
        fun -- a function with two arguments, to which will be assigned
                the coordinates of the clicked point on the canvas.
        num --  number of the mouse-button defaults to 1 (left mouse button).

        Example (for a MyTurtle instance named joe):
        >>> class MyTurtle(Turtle):
        ...     def glow(self,x,y):
        ...             self.fillcolor("red")
        ...     def unglow(self,x,y):
        ...             self.fillcolor("")
        ...
        >>> joe = MyTurtle()
        >>> joe.onclick(joe.glow)
        >>> joe.onrelease(joe.unglow)

        Clicking on joe turns fillcolor red, unclicking turns it to
        transparent.
        """
        self.screen._onrelease(self.turtle._item, fun, btn, add)
        self._update()

    def ondrag(self, fun, btn=1, add=None):
        """Bind fun to mouse-move event on this turtle on canvas.

        Arguments:
        fun -- a function with two arguments, to which will be assigned
               the coordinates of the clicked point on the canvas.
        num -- number of the mouse-button defaults to 1 (left mouse button).

        Every sequence of mouse-move-events on a turtle is preceded by a
        mouse-click event on that turtle.

        Example (for a Turtle instance named turtle):
        >>> turtle.ondrag(turtle.goto)

        Subsequently clicking and dragging a Turtle will move it
        across the screen thereby producing handdrawings (if pen is
        down).
        """
        self.screen._ondrag(self.turtle._item, fun, btn, add)


    def _undo(self, action, data):
        """Does the main part of the work for undo()
        """
        if self.undobuffer is None:
            return
        if action == "rot":
            angle, degPAU = data
            self._rotate(-angle*degPAU/self._degreesPerAU)
            dummy = self.undobuffer.pop()
        elif action == "stamp":
            stitem = data[0]
            self.clearstamp(stitem)
        elif action == "go":
            self._undogoto(data)
        elif action in ["wri", "dot"]:
            item = data[0]
            self.screen._delete(item)
            self.items.remove(item)
        elif action == "dofill":
            item = data[0]
            self.screen._drawpoly(item, ((0, 0),(0, 0),(0, 0)),
                                  fill="", outline="")
        elif action == "beginfill":
            item = data[0]
            self._fillitem = self._fillpath = None
            if item in self.items:
                self.screen._delete(item)
                self.items.remove(item)
        elif action == "pen":
            TPen.pen(self, data[0])
            self.undobuffer.pop()

    def undo(self):
        """undo (repeatedly) the last turtle action.

        No argument.

        undo (repeatedly) the last turtle action.
        Number of available undo actions is determined by the size of
        the undobuffer.

        Example (for a Turtle instance named turtle):
        >>> for i in range(4):
        ...     turtle.fd(50); turtle.lt(80)
        ...
        >>> for i in range(8):
        ...     turtle.undo()
        ...
        """
        if self.undobuffer is None:
            return
        item = self.undobuffer.pop()
        action = item[0]
        data = item[1:]
        if action == "seq":
            while data:
                item = data.pop()
                self._undo(item[0], item[1:])
        else:
            self._undo(action, data)

    turtlesize = shapesize

RawPen = RawTurtle

###  Screen - Singleton  ########################

def Screen():
    """Return the singleton screen object.
    If none exists at the moment, create a new one and return it,
    else return the existing one."""
    if Turtle._screen is None:
        Turtle._screen = _Screen()
    return Turtle._screen

class _Screen(TurtleScreen):

    _root = None
    _canvas = None
    _title = _CFG["title"]

    def __init__(self):
        # XXX there is no need for this code to be conditional,
        # as there will be only a single _Screen instance, anyway
        # XXX actually, the turtle demo is injecting root window,
        # so perhaps the conditional creation of a root should be
        # preserved (perhaps by passing it as an optional parameter)
        if _Screen._root is None:
            _Screen._root = self._root = _Root()
            self._root.title(_Screen._title)
            self._root.ondestroy(self._destroy)
        if _Screen._canvas is None:
            width = _CFG["width"]
            height = _CFG["height"]
            canvwidth = _CFG["canvwidth"]
            canvheight = _CFG["canvheight"]
            leftright = _CFG["leftright"]
            topbottom = _CFG["topbottom"]
            self._root.setupcanvas(width, height, canvwidth, canvheight)
            _Screen._canvas = self._root._getcanvas()
            TurtleScreen.__init__(self, _Screen._canvas)
            self.setup(width, height, leftright, topbottom)

    def setup(self, width=_CFG["width"], height=_CFG["height"],
              startx=_CFG["leftright"], starty=_CFG["topbottom"]):
        """ Set the size and position of the main window.

        Arguments:
        width: as integer a size in pixels, as float a fraction of the screen.
          Default is 50% of screen.
        height: as integer the height in pixels, as float a fraction of the
          screen. Default is 75% of screen.
        startx: if positive, starting position in pixels from the left
          edge of the screen, if negative from the right edge
          Default, startx=None is to center window horizontally.
        starty: if positive, starting position in pixels from the top
          edge of the screen, if negative from the bottom edge
          Default, starty=None is to center window vertically.

        Examples (for a Screen instance named screen):
        >>> screen.setup (width=200, height=200, startx=0, starty=0)

        sets window to 200x200 pixels, in upper left of screen

        >>> screen.setup(width=.75, height=0.5, startx=None, starty=None)

        sets window to 75% of screen by 50% of screen and centers
        """
        if not hasattr(self._root, "set_geometry"):
            return
        sw = self._root.win_width()
        sh = self._root.win_height()
        if isinstance(width, float) and 0 <= width <= 1:
            width = sw*width
        if startx is None:
            startx = (sw - width) / 2
        if isinstance(height, float) and 0 <= height <= 1:
            height = sh*height
        if starty is None:
            starty = (sh - height) / 2
        self._root.set_geometry(width, height, startx, starty)
        self.update()

    def title(self, titlestring):
        """Set title of turtle-window

        Argument:
        titlestring -- a string, to appear in the titlebar of the
                       turtle graphics window.

        This is a method of Screen-class. Not available for TurtleScreen-
        objects.

        Example (for a Screen instance named screen):
        >>> screen.title("Welcome to the turtle-zoo!")
        """
        if _Screen._root is not None:
            _Screen._root.title(titlestring)
        _Screen._title = titlestring

    def _destroy(self):
        root = self._root
        if root is _Screen._root:
            Turtle._pen = None
            Turtle._screen = None
            _Screen._root = None
            _Screen._canvas = None
        TurtleScreen._RUNNING = False
        root.destroy()

    def bye(self):
        """Shut the turtlegraphics window.

        Example (for a TurtleScreen instance named screen):
        >>> screen.bye()
        """
        self._destroy()

    def exitonclick(self):
        """Go into mainloop until the mouse is clicked.

        No arguments.

        Bind bye() method to mouseclick on TurtleScreen.
        If "using_IDLE" - value in configuration dictionary is False
        (default value), enter mainloop.
        If IDLE with -n switch (no subprocess) is used, this value should be
        set to True in turtle.cfg. In this case IDLE's mainloop
        is active also for the client script.

        This is a method of the Screen-class and not available for
        TurtleScreen instances.

        Example (for a Screen instance named screen):
        >>> screen.exitonclick()

        """
        def exitGracefully(x, y):
            """Screen.bye() with two dummy-parameters"""
            self.bye()
        self.onclick(exitGracefully)
        if _CFG["using_IDLE"]:
            return
        try:
            mainloop()
        except AttributeError:
            exit(0)

class Turtle(RawTurtle):
    """RawTurtle auto-creating (scrolled) canvas.

    When a Turtle object is created or a function derived from some
    Turtle method is called a TurtleScreen object is automatically created.
    """
    _pen = None
    _screen = None

    def __init__(self,
                 shape=_CFG["shape"],
                 undobuffersize=_CFG["undobuffersize"],
                 visible=_CFG["visible"]):
        if Turtle._screen is None:
            Turtle._screen = Screen()
        RawTurtle.__init__(self, Turtle._screen,
                           shape=shape,
                           undobuffersize=undobuffersize,
                           visible=visible)

Pen = Turtle

def write_docstringdict(filename="turtle_docstringdict"):
    """Create and write docstring-dictionary to file.

    Optional argument:
    filename -- a string, used as filename
                default value is turtle_docstringdict

    Has to be called explicitly, (not used by the turtle-graphics classes)
    The docstring dictionary will be written to the Python script <filname>.py
    It is intended to serve as a template for translation of the docstrings
    into different languages.
    """
    docsdict = {}

    for methodname in _tg_screen_functions:
        key = "_Screen."+methodname
        docsdict[key] = eval(key).__doc__
    for methodname in _tg_turtle_functions:
        key = "Turtle."+methodname
        docsdict[key] = eval(key).__doc__

    with open("%s.py" % filename,"w") as f:
        keys = sorted([x for x in docsdict.keys()
                            if x.split('.')[1] not in _alias_list])
        f.write('docsdict = {\n\n')
        for key in keys[:-1]:
            f.write('%s :\n' % repr(key))
            f.write('        """%s\n""",\n\n' % docsdict[key])
        key = keys[-1]
        f.write('%s :\n' % repr(key))
        f.write('        """%s\n"""\n\n' % docsdict[key])
        f.write("}\n")
        f.close()

def read_docstrings(lang):
    """Read in docstrings from lang-specific docstring dictionary.

    Transfer docstrings, translated to lang, from a dictionary-file
    to the methods of classes Screen and Turtle and - in revised form -
    to the corresponding functions.
    """
    modname = "turtle_docstringdict_%(language)s" % {'language':lang.lower()}
    module = __import__(modname)
    docsdict = module.docsdict
    for key in docsdict:
        try:
#            eval(key).im_func.__doc__ = docsdict[key]
            eval(key).__doc__ = docsdict[key]
        except:
            print("Bad docstring-entry: %s" % key)

_LANGUAGE = _CFG["language"]

try:
    if _LANGUAGE != "english":
        read_docstrings(_LANGUAGE)
except ImportError:
    print("Cannot find docsdict for", _LANGUAGE)
except:
    print ("Unknown Error when trying to import %s-docstring-dictionary" %
                                                                  _LANGUAGE)


def getmethparlist(ob):
    """Get strings describing the arguments for the given object

    Returns a pair of strings representing function parameter lists
    including parenthesis.  The first string is suitable for use in
    function definition and the second is suitable for use in function
    call.  The "self" parameter is not included.
    """
    defText = callText = ""
    # bit of a hack for methods - turn it into a function
    # but we drop the "self" param.
    # Try and build one for Python defined functions
    args, varargs, varkw = inspect.getargs(ob.__code__)
    items2 = args[1:]
    realArgs = args[1:]
    defaults = ob.__defaults__ or []
    defaults = ["=%r" % (value,) for value in defaults]
    defaults = [""] * (len(realArgs)-len(defaults)) + defaults
    items1 = [arg + dflt for arg, dflt in zip(realArgs, defaults)]
    if varargs is not None:
        items1.append("*" + varargs)
        items2.append("*" + varargs)
    if varkw is not None:
        items1.append("**" + varkw)
        items2.append("**" + varkw)
    defText = ", ".join(items1)
    defText = "(%s)" % defText
    callText = ", ".join(items2)
    callText = "(%s)" % callText
    return defText, callText

def _turtle_docrevise(docstr):
    """To reduce docstrings from RawTurtle class for functions
    """
    import re
    if docstr is None:
        return None
    turtlename = _CFG["exampleturtle"]
    newdocstr = docstr.replace("%s." % turtlename,"")
    parexp = re.compile(r' \(.+ %s\):' % turtlename)
    newdocstr = parexp.sub(":", newdocstr)
    return newdocstr

def _screen_docrevise(docstr):
    """To reduce docstrings from TurtleScreen class for functions
    """
    import re
    if docstr is None:
        return None
    screenname = _CFG["examplescreen"]
    newdocstr = docstr.replace("%s." % screenname,"")
    parexp = re.compile(r' \(.+ %s\):' % screenname)
    newdocstr = parexp.sub(":", newdocstr)
    return newdocstr

## The following mechanism makes all methods of RawTurtle and Turtle available
## as functions. So we can enhance, change, add, delete methods to these
## classes and do not need to change anything here.

__func_body = """\
def {name}{paramslist}:
    if {obj} is None:
        if not TurtleScreen._RUNNING:
            TurtleScreen._RUNNING = True
            raise Terminator
        {obj} = {init}
    try:
        return {obj}.{name}{argslist}
    except TK.TclError:
        if not TurtleScreen._RUNNING:
            TurtleScreen._RUNNING = True
            raise Terminator
        raise
"""

def _make_global_funcs(functions, cls, obj, init, docrevise):
    for methodname in functions:
        method = getattr(cls, methodname)
        pl1, pl2 = getmethparlist(method)
        if pl1 == "":
            print(">>>>>>", pl1, pl2)
            continue
        defstr = __func_body.format(obj=obj, init=init, name=methodname,
                                    paramslist=pl1, argslist=pl2)
        exec(defstr, globals())
        globals()[methodname].__doc__ = docrevise(method.__doc__)

_make_global_funcs(_tg_screen_functions, _Screen,
                   'Turtle._screen', 'Screen()', _screen_docrevise)
_make_global_funcs(_tg_turtle_functions, Turtle,
                   'Turtle._pen', 'Turtle()', _turtle_docrevise)


done = mainloop

if __name__ == "__main__":
    def switchpen():
        if isdown():
            pu()
        else:
            pd()

    def demo1():
        """Demo of old turtle.py - module"""
        reset()
        tracer(True)
        up()
        backward(100)
        down()
        # draw 3 squares; the last filled
        width(3)
        for i in range(3):
            if i == 2:
                begin_fill()
            for _ in range(4):
                forward(20)
                left(90)
            if i == 2:
                color("maroon")
                end_fill()
            up()
            forward(30)
            down()
        width(1)
        color("black")
        # move out of the way
        tracer(False)
        up()
        right(90)
        forward(100)
        right(90)
        forward(100)
        right(180)
        down()
        # some text
        write("startstart", 1)
        write("start", 1)
        color("red")
        # staircase
        for i in range(5):
            forward(20)
            left(90)
            forward(20)
            right(90)
        # filled staircase
        tracer(True)
        begin_fill()
        for i in range(5):
            forward(20)
            left(90)
            forward(20)
            right(90)
        end_fill()
        # more text

    def demo2():
        """Demo of some new features."""
        speed(1)
        st()
        pensize(3)
        setheading(towards(0, 0))
        radius = distance(0, 0)/2.0
        rt(90)
        for _ in range(18):
            switchpen()
            circle(radius, 10)
        write("wait a moment...")
        while undobufferentries():
            undo()
        reset()
        lt(90)
        colormode(255)
        laenge = 10
        pencolor("green")
        pensize(3)
        lt(180)
        for i in range(-2, 16):
            if i > 0:
                begin_fill()
                fillcolor(255-15*i, 0, 15*i)
            for _ in range(3):
                fd(laenge)
                lt(120)
            end_fill()
            laenge += 10
            lt(15)
            speed((speed()+1)%12)
        #end_fill()

        lt(120)
        pu()
        fd(70)
        rt(30)
        pd()
        color("red","yellow")
        speed(0)
        begin_fill()
        for _ in range(4):
            circle(50, 90)
            rt(90)
            fd(30)
            rt(90)
        end_fill()
        lt(90)
        pu()
        fd(30)
        pd()
        shape("turtle")

        tri = getturtle()
        tri.resizemode("auto")
        turtle = Turtle()
        turtle.resizemode("auto")
        turtle.shape("turtle")
        turtle.reset()
        turtle.left(90)
        turtle.speed(0)
        turtle.up()
        turtle.goto(280, 40)
        turtle.lt(30)
        turtle.down()
        turtle.speed(6)
        turtle.color("blue","orange")
        turtle.pensize(2)
        tri.speed(6)
        setheading(towards(turtle))
        count = 1
        while tri.distance(turtle) > 4:
            turtle.fd(3.5)
            turtle.lt(0.6)
            tri.setheading(tri.towards(turtle))
            tri.fd(4)
            if count % 20 == 0:
                turtle.stamp()
                tri.stamp()
                switchpen()
            count += 1
        tri.write("CAUGHT! ", font=("Arial", 16, "bold"), align="right")
        tri.pencolor("black")
        tri.pencolor("red")

        def baba(xdummy, ydummy):
            clearscreen()
            bye()

        time.sleep(2)

        while undobufferentries():
            tri.undo()
            turtle.undo()
        tri.fd(50)
        tri.write("  Click me!", font = ("Courier", 12, "bold") )
        tri.onclick(baba, 1)

    demo1()
    demo2()
    exitonclick()
lib\types.py
"""
Define names for built-in types that aren't directly accessible as a builtin.
"""
import sys

# Iterators in Python aren't a matter of type but of protocol.  A large
# and changing number of builtin types implement *some* flavor of
# iterator.  Don't check the type!  Use hasattr to check for both
# "__iter__" and "__next__" attributes instead.

def _f(): pass
FunctionType = type(_f)
LambdaType = type(lambda: None)         # Same as FunctionType
CodeType = type(_f.__code__)
MappingProxyType = type(type.__dict__)
SimpleNamespace = type(sys.implementation)

def _g():
    yield 1
GeneratorType = type(_g())

class _C:
    def _m(self): pass
MethodType = type(_C()._m)

BuiltinFunctionType = type(len)
BuiltinMethodType = type([].append)     # Same as BuiltinFunctionType

ModuleType = type(sys)

try:
    raise TypeError
except TypeError:
    tb = sys.exc_info()[2]
    TracebackType = type(tb)
    FrameType = type(tb.tb_frame)
    tb = None; del tb

# For Jython, the following two types are identical
GetSetDescriptorType = type(FunctionType.__code__)
MemberDescriptorType = type(ModuleType.__dict__["__dict__"]) # ironpython: type(FunctionType.__globals__) is getset_descriptor

del sys, _f, _g, _C,                              # Not for export


# Provide a PEP 3115 compliant mechanism for class creation
def new_class(name, bases=(), kwds=None, exec_body=None):
    """Create a class object dynamically using the appropriate metaclass."""
    meta, ns, kwds = prepare_class(name, bases, kwds)
    if exec_body is not None:
        exec_body(ns)
    return meta(name, bases, ns, **kwds)

def prepare_class(name, bases=(), kwds=None):
    """Call the __prepare__ method of the appropriate metaclass.

    Returns (metaclass, namespace, kwds) as a 3-tuple

    *metaclass* is the appropriate metaclass
    *namespace* is the prepared class namespace
    *kwds* is an updated copy of the passed in kwds argument with any
    'metaclass' entry removed. If no kwds argument is passed in, this will
    be an empty dict.
    """
    if kwds is None:
        kwds = {}
    else:
        kwds = dict(kwds) # Don't alter the provided mapping
    if 'metaclass' in kwds:
        meta = kwds.pop('metaclass')
    else:
        if bases:
            meta = type(bases[0])
        else:
            meta = type
    if isinstance(meta, type):
        # when meta is a type, we first determine the most-derived metaclass
        # instead of invoking the initial candidate directly
        meta = _calculate_meta(meta, bases)
    if hasattr(meta, '__prepare__'):
        ns = meta.__prepare__(name, bases, **kwds)
    else:
        ns = {}
    return meta, ns, kwds

def _calculate_meta(meta, bases):
    """Calculate the most derived metaclass."""
    winner = meta
    for base in bases:
        base_meta = type(base)
        if issubclass(winner, base_meta):
            continue
        if issubclass(base_meta, winner):
            winner = base_meta
            continue
        # else:
        raise TypeError("metaclass conflict: "
                        "the metaclass of a derived class "
                        "must be a (non-strict) subclass "
                        "of the metaclasses of all its bases")
    return winner

class DynamicClassAttribute:
    """Route attribute access on a class to __getattr__.

    This is a descriptor, used to define attributes that act differently when
    accessed through an instance and through a class.  Instance access remains
    normal, but access to an attribute through a class will be routed to the
    class's __getattr__ method; this is done by raising AttributeError.

    This allows one to have properties active on an instance, and have virtual
    attributes on the class with the same name (see Enum for an example).

    """
    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        # next two lines make DynamicClassAttribute act the same as property
        self.__doc__ = doc or fget.__doc__
        self.overwrite_doc = doc is None
        # support for abstract methods
        self.__isabstractmethod__ = bool(getattr(fget, '__isabstractmethod__', False))

    def __get__(self, instance, ownerclass=None):
        if instance is None:
            if self.__isabstractmethod__:
                return self
            raise AttributeError()
        elif self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(instance)

    def __set__(self, instance, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(instance, value)

    def __delete__(self, instance):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(instance)

    def getter(self, fget):
        fdoc = fget.__doc__ if self.overwrite_doc else None
        result = type(self)(fget, self.fset, self.fdel, fdoc or self.__doc__)
        result.overwrite_doc = self.overwrite_doc
        return result

    def setter(self, fset):
        result = type(self)(self.fget, fset, self.fdel, self.__doc__)
        result.overwrite_doc = self.overwrite_doc
        return result

    def deleter(self, fdel):
        result = type(self)(self.fget, self.fset, fdel, self.__doc__)
        result.overwrite_doc = self.overwrite_doc
        return result


__all__ = [n for n in globals() if n[:1] != '_']
lib\typing.py
import abc
from abc import abstractmethod, abstractproperty
import collections
import contextlib
import functools
import re as stdlib_re  # Avoid confusion with the re we export.
import sys
import types
try:
    import collections.abc as collections_abc
except ImportError:
    import collections as collections_abc  # Fallback for PY3.2.
if sys.version_info[:2] >= (3, 6):
    import _collections_abc  # Needed for private function _check_methods # noqa
try:
    from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType
except ImportError:
    WrapperDescriptorType = type(object.__init__)
    MethodWrapperType = type(object().__str__)
    MethodDescriptorType = type(str.join)


# Please keep __all__ alphabetized within each category.
__all__ = [
    # Super-special typing primitives.
    'Any',
    'Callable',
    'ClassVar',
    'Generic',
    'Optional',
    'Tuple',
    'Type',
    'TypeVar',
    'Union',

    # ABCs (from collections.abc).
    'AbstractSet',  # collections.abc.Set.
    'GenericMeta',  # subclass of abc.ABCMeta and a metaclass
                    # for 'Generic' and ABCs below.
    'ByteString',
    'Container',
    'ContextManager',
    'Hashable',
    'ItemsView',
    'Iterable',
    'Iterator',
    'KeysView',
    'Mapping',
    'MappingView',
    'MutableMapping',
    'MutableSequence',
    'MutableSet',
    'Sequence',
    'Sized',
    'ValuesView',
    # The following are added depending on presence
    # of their non-generic counterparts in stdlib:
    # Awaitable,
    # AsyncIterator,
    # AsyncIterable,
    # Coroutine,
    # Collection,
    # AsyncGenerator,
    # AsyncContextManager

    # Structural checks, a.k.a. protocols.
    'Reversible',
    'SupportsAbs',
    'SupportsBytes',
    'SupportsComplex',
    'SupportsFloat',
    'SupportsIndex',
    'SupportsInt',
    'SupportsRound',

    # Concrete collection types.
    'Counter',
    'Deque',
    'Dict',
    'DefaultDict',
    'List',
    'Set',
    'FrozenSet',
    'NamedTuple',  # Not really a type.
    'Generator',

    # One-off things.
    'AnyStr',
    'cast',
    'get_type_hints',
    'NewType',
    'no_type_check',
    'no_type_check_decorator',
    'NoReturn',
    'overload',
    'Text',
    'TYPE_CHECKING',
]

# The pseudo-submodules 're' and 'io' are part of the public
# namespace, but excluded from __all__ because they might stomp on
# legitimate imports of those modules.


def _qualname(x):
    if sys.version_info[:2] >= (3, 3):
        return x.__qualname__
    else:
        # Fall back to just name.
        return x.__name__


def _trim_name(nm):
    whitelist = ('_TypeAlias', '_ForwardRef', '_TypingBase', '_FinalTypingBase')
    if nm.startswith('_') and nm not in whitelist:
        nm = nm[1:]
    return nm


class TypingMeta(type):
    """Metaclass for most types defined in typing module
    (not a part of public API).

    This overrides __new__() to require an extra keyword parameter
    '_root', which serves as a guard against naive subclassing of the
    typing classes.  Any legitimate class defined using a metaclass
    derived from TypingMeta must pass _root=True.

    This also defines a dummy constructor (all the work for most typing
    constructs is done in __new__) and a nicer repr().
    """

    _is_protocol = False

    def __new__(cls, name, bases, namespace, *, _root=False):
        if not _root:
            raise TypeError("Cannot subclass %s" %
                            (', '.join(map(_type_repr, bases)) or '()'))
        return super().__new__(cls, name, bases, namespace)

    def __init__(self, *args, **kwds):
        pass

    def _eval_type(self, globalns, localns):
        """Override this in subclasses to interpret forward references.

        For example, List['C'] is internally stored as
        List[_ForwardRef('C')], which should evaluate to List[C],
        where C is an object found in globalns or localns (searching
        localns first, of course).
        """
        return self

    def _get_type_vars(self, tvars):
        pass

    def __repr__(self):
        qname = _trim_name(_qualname(self))
        return '%s.%s' % (self.__module__, qname)


class _TypingBase(metaclass=TypingMeta, _root=True):
    """Internal indicator of special typing constructs."""

    __slots__ = ('__weakref__',)

    def __init__(self, *args, **kwds):
        pass

    def __new__(cls, *args, **kwds):
        """Constructor.

        This only exists to give a better error message in case
        someone tries to subclass a special typing object (not a good idea).
        """
        if (len(args) == 3 and
                isinstance(args[0], str) and
                isinstance(args[1], tuple)):
            # Close enough.
            raise TypeError("Cannot subclass %r" % cls)
        return super().__new__(cls)

    # Things that are not classes also need these.
    def _eval_type(self, globalns, localns):
        return self

    def _get_type_vars(self, tvars):
        pass

    def __repr__(self):
        cls = type(self)
        qname = _trim_name(_qualname(cls))
        return '%s.%s' % (cls.__module__, qname)

    def __call__(self, *args, **kwds):
        raise TypeError("Cannot instantiate %r" % type(self))


class _FinalTypingBase(_TypingBase, _root=True):
    """Internal mix-in class to prevent instantiation.

    Prevents instantiation unless _root=True is given in class call.
    It is used to create pseudo-singleton instances Any, Union, Optional, etc.
    """

    __slots__ = ()

    def __new__(cls, *args, _root=False, **kwds):
        self = super().__new__(cls, *args, **kwds)
        if _root is True:
            return self
        raise TypeError("Cannot instantiate %r" % cls)

    def __reduce__(self):
        return _trim_name(type(self).__name__)


class _ForwardRef(_TypingBase, _root=True):
    """Internal wrapper to hold a forward reference."""

    __slots__ = ('__forward_arg__', '__forward_code__',
                 '__forward_evaluated__', '__forward_value__')

    def __init__(self, arg):
        super().__init__(arg)
        if not isinstance(arg, str):
            raise TypeError('Forward reference must be a string -- got %r' % (arg,))
        try:
            code = compile(arg, '<string>', 'eval')
        except SyntaxError:
            raise SyntaxError('Forward reference must be an expression -- got %r' %
                              (arg,))
        self.__forward_arg__ = arg
        self.__forward_code__ = code
        self.__forward_evaluated__ = False
        self.__forward_value__ = None

    def _eval_type(self, globalns, localns):
        if not self.__forward_evaluated__ or localns is not globalns:
            if globalns is None and localns is None:
                globalns = localns = {}
            elif globalns is None:
                globalns = localns
            elif localns is None:
                localns = globalns
            self.__forward_value__ = _type_check(
                eval(self.__forward_code__, globalns, localns),
                "Forward references must evaluate to types.")
            self.__forward_evaluated__ = True
        return self.__forward_value__

    def __eq__(self, other):
        if not isinstance(other, _ForwardRef):
            return NotImplemented
        if self.__forward_evaluated__ and other.__forward_evaluated__:
            return (self.__forward_arg__ == other.__forward_arg__ and
                    self.__forward_value__ == other.__forward_value__)
        return self.__forward_arg__ == other.__forward_arg__

    def __hash__(self):
        return hash(self.__forward_arg__)

    def __instancecheck__(self, obj):
        raise TypeError("Forward references cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("Forward references cannot be used with issubclass().")

    def __repr__(self):
        return '_ForwardRef(%r)' % (self.__forward_arg__,)


class _TypeAlias(_TypingBase, _root=True):
    """Internal helper class for defining generic variants of concrete types.

    Note that this is not a type; let's call it a pseudo-type.  It cannot
    be used in instance and subclass checks in parameterized form, i.e.
    ``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning
    ``False``.
    """

    __slots__ = ('name', 'type_var', 'impl_type', 'type_checker')

    def __init__(self, name, type_var, impl_type, type_checker):
        """Initializer.

        Args:
            name: The name, e.g. 'Pattern'.
            type_var: The type parameter, e.g. AnyStr, or the
                specific type, e.g. str.
            impl_type: The implementation type.
            type_checker: Function that takes an impl_type instance.
                and returns a value that should be a type_var instance.
        """
        assert isinstance(name, str), repr(name)
        assert isinstance(impl_type, type), repr(impl_type)
        assert not isinstance(impl_type, TypingMeta), repr(impl_type)
        assert isinstance(type_var, (type, _TypingBase)), repr(type_var)
        self.name = name
        self.type_var = type_var
        self.impl_type = impl_type
        self.type_checker = type_checker

    def __repr__(self):
        return "%s[%s]" % (self.name, _type_repr(self.type_var))

    def __getitem__(self, parameter):
        if not isinstance(self.type_var, TypeVar):
            raise TypeError("%s cannot be further parameterized." % self)
        if self.type_var.__constraints__ and isinstance(parameter, type):
            if not issubclass(parameter, self.type_var.__constraints__):
                raise TypeError("%s is not a valid substitution for %s." %
                                (parameter, self.type_var))
        if isinstance(parameter, TypeVar) and parameter is not self.type_var:
            raise TypeError("%s cannot be re-parameterized." % self)
        return self.__class__(self.name, parameter,
                              self.impl_type, self.type_checker)

    def __eq__(self, other):
        if not isinstance(other, _TypeAlias):
            return NotImplemented
        return self.name == other.name and self.type_var == other.type_var

    def __hash__(self):
        return hash((self.name, self.type_var))

    def __instancecheck__(self, obj):
        if not isinstance(self.type_var, TypeVar):
            raise TypeError("Parameterized type aliases cannot be used "
                            "with isinstance().")
        return isinstance(obj, self.impl_type)

    def __subclasscheck__(self, cls):
        if not isinstance(self.type_var, TypeVar):
            raise TypeError("Parameterized type aliases cannot be used "
                            "with issubclass().")
        return issubclass(cls, self.impl_type)


def _get_type_vars(types, tvars):
    for t in types:
        if isinstance(t, TypingMeta) or isinstance(t, _TypingBase):
            t._get_type_vars(tvars)


def _type_vars(types):
    tvars = []
    _get_type_vars(types, tvars)
    return tuple(tvars)


def _eval_type(t, globalns, localns):
    if isinstance(t, TypingMeta) or isinstance(t, _TypingBase):
        return t._eval_type(globalns, localns)
    return t


def _type_check(arg, msg):
    """Check that the argument is a type, and return it (internal helper).

    As a special case, accept None and return type(None) instead.
    Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.

    The msg argument is a human-readable error message, e.g.

        "Union[arg, ...]: arg should be a type."

    We append the repr() of the actual value (truncated to 100 chars).
    """
    if arg is None:
        return type(None)
    if isinstance(arg, str):
        arg = _ForwardRef(arg)
    if (
        isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or
        not isinstance(arg, (type, _TypingBase)) and not callable(arg)
    ):
        raise TypeError(msg + " Got %.100r." % (arg,))
    # Bare Union etc. are not valid as type arguments
    if (
        type(arg).__name__ in ('_Union', '_Optional') and
        not getattr(arg, '__origin__', None) or
        isinstance(arg, TypingMeta) and arg._gorg in (Generic, _Protocol)
    ):
        raise TypeError("Plain %s is not valid as type argument" % arg)
    return arg


def _type_repr(obj):
    """Return the repr() of an object, special-casing types (internal helper).

    If obj is a type, we return a shorter version than the default
    type.__repr__, based on the module and qualified name, which is
    typically enough to uniquely identify a type.  For everything
    else, we fall back on repr(obj).
    """
    if isinstance(obj, type) and not isinstance(obj, TypingMeta):
        if obj.__module__ == 'builtins':
            return _qualname(obj)
        return '%s.%s' % (obj.__module__, _qualname(obj))
    if obj is ...:
        return('...')
    if isinstance(obj, types.FunctionType):
        return obj.__name__
    return repr(obj)


class _Any(_FinalTypingBase, _root=True):
    """Special type indicating an unconstrained type.

    - Any is compatible with every type.
    - Any assumed to have all methods.
    - All values assumed to be instances of Any.

    Note that all the above statements are true from the point of view of
    static type checkers. At runtime, Any should not be used with instance
    or class checks.
    """

    __slots__ = ()

    def __instancecheck__(self, obj):
        raise TypeError("Any cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("Any cannot be used with issubclass().")


Any = _Any(_root=True)


class _NoReturn(_FinalTypingBase, _root=True):
    """Special type indicating functions that never return.
    Example::

      from typing import NoReturn

      def stop() -> NoReturn:
          raise Exception('no way')

    This type is invalid in other positions, e.g., ``List[NoReturn]``
    will fail in static type checkers.
    """

    __slots__ = ()

    def __instancecheck__(self, obj):
        raise TypeError("NoReturn cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("NoReturn cannot be used with issubclass().")


NoReturn = _NoReturn(_root=True)


class TypeVar(_TypingBase, _root=True):
    """Type variable.

    Usage::

      T = TypeVar('T')  # Can be anything
      A = TypeVar('A', str, bytes)  # Must be str or bytes

    Type variables exist primarily for the benefit of static type
    checkers.  They serve as the parameters for generic types as well
    as for generic function definitions.  See class Generic for more
    information on generic types.  Generic functions work as follows:

      def repeat(x: T, n: int) -> List[T]:
          '''Return a list containing n references to x.'''
          return [x]*n

      def longest(x: A, y: A) -> A:
          '''Return the longest of two strings.'''
          return x if len(x) >= len(y) else y

    The latter example's signature is essentially the overloading
    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note
    that if the arguments are instances of some subclass of str,
    the return type is still plain str.

    At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.

    Type variables defined with covariant=True or contravariant=True
    can be used do declare covariant or contravariant generic types.
    See PEP 484 for more details. By default generic types are invariant
    in all type variables.

    Type variables can be introspected. e.g.:

      T.__name__ == 'T'
      T.__constraints__ == ()
      T.__covariant__ == False
      T.__contravariant__ = False
      A.__constraints__ == (str, bytes)
    """

    __slots__ = ('__name__', '__bound__', '__constraints__',
                 '__covariant__', '__contravariant__')

    def __init__(self, name, *constraints, bound=None,
                 covariant=False, contravariant=False):
        super().__init__(name, *constraints, bound=bound,
                         covariant=covariant, contravariant=contravariant)
        self.__name__ = name
        if covariant and contravariant:
            raise ValueError("Bivariant types are not supported.")
        self.__covariant__ = bool(covariant)
        self.__contravariant__ = bool(contravariant)
        if constraints and bound is not None:
            raise TypeError("Constraints cannot be combined with bound=...")
        if constraints and len(constraints) == 1:
            raise TypeError("A single constraint is not allowed")
        msg = "TypeVar(name, constraint, ...): constraints must be types."
        self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
        if bound:
            self.__bound__ = _type_check(bound, "Bound must be a type.")
        else:
            self.__bound__ = None

    def _get_type_vars(self, tvars):
        if self not in tvars:
            tvars.append(self)

    def __repr__(self):
        if self.__covariant__:
            prefix = '+'
        elif self.__contravariant__:
            prefix = '-'
        else:
            prefix = '~'
        return prefix + self.__name__

    def __instancecheck__(self, instance):
        raise TypeError("Type variables cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("Type variables cannot be used with issubclass().")


# Some unconstrained type variables.  These are used by the container types.
# (These are not for export.)
T = TypeVar('T')  # Any type.
KT = TypeVar('KT')  # Key type.
VT = TypeVar('VT')  # Value type.
T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.

# A useful type variable with constraints.  This represents string types.
# (This one *is* for export!)
AnyStr = TypeVar('AnyStr', bytes, str)


def _replace_arg(arg, tvars, args):
    """An internal helper function: replace arg if it is a type variable
    found in tvars with corresponding substitution from args or
    with corresponding substitution sub-tree if arg is a generic type.
    """

    if tvars is None:
        tvars = []
    if hasattr(arg, '_subs_tree') and isinstance(arg, (GenericMeta, _TypingBase)):
        return arg._subs_tree(tvars, args)
    if isinstance(arg, TypeVar):
        for i, tvar in enumerate(tvars):
            if arg == tvar:
                return args[i]
    return arg


# Special typing constructs Union, Optional, Generic, Callable and Tuple
# use three special attributes for internal bookkeeping of generic types:
# * __parameters__ is a tuple of unique free type parameters of a generic
#   type, for example, Dict[T, T].__parameters__ == (T,);
# * __origin__ keeps a reference to a type that was subscripted,
#   e.g., Union[T, int].__origin__ == Union;
# * __args__ is a tuple of all arguments used in subscripting,
#   e.g., Dict[T, int].__args__ == (T, int).


def _subs_tree(cls, tvars=None, args=None):
    """An internal helper function: calculate substitution tree
    for generic cls after replacing its type parameters with
    substitutions in tvars -> args (if any).
    Repeat the same following __origin__'s.

    Return a list of arguments with all possible substitutions
    performed. Arguments that are generic classes themselves are represented
    as tuples (so that no new classes are created by this function).
    For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)]
    """

    if cls.__origin__ is None:
        return cls
    # Make of chain of origins (i.e. cls -> cls.__origin__)
    current = cls.__origin__
    orig_chain = []
    while current.__origin__ is not None:
        orig_chain.append(current)
        current = current.__origin__
    # Replace type variables in __args__ if asked ...
    tree_args = []
    for arg in cls.__args__:
        tree_args.append(_replace_arg(arg, tvars, args))
    # ... then continue replacing down the origin chain.
    for ocls in orig_chain:
        new_tree_args = []
        for arg in ocls.__args__:
            new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args))
        tree_args = new_tree_args
    return tree_args


def _remove_dups_flatten(parameters):
    """An internal helper for Union creation and substitution: flatten Union's
    among parameters, then remove duplicates and strict subclasses.
    """

    # Flatten out Union[Union[...], ...].
    params = []
    for p in parameters:
        if isinstance(p, _Union) and p.__origin__ is Union:
            params.extend(p.__args__)
        elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union:
            params.extend(p[1:])
        else:
            params.append(p)
    # Weed out strict duplicates, preserving the first of each occurrence.
    all_params = set(params)
    if len(all_params) < len(params):
        new_params = []
        for t in params:
            if t in all_params:
                new_params.append(t)
                all_params.remove(t)
        params = new_params
        assert not all_params, all_params
    # Weed out subclasses.
    # E.g. Union[int, Employee, Manager] == Union[int, Employee].
    # If object is present it will be sole survivor among proper classes.
    # Never discard type variables.
    # (In particular, Union[str, AnyStr] != AnyStr.)
    all_params = set(params)
    for t1 in params:
        if not isinstance(t1, type):
            continue
        if any(isinstance(t2, type) and issubclass(t1, t2)
               for t2 in all_params - {t1}
               if not (isinstance(t2, GenericMeta) and
                       t2.__origin__ is not None)):
            all_params.remove(t1)
    return tuple(t for t in params if t in all_params)


def _check_generic(cls, parameters):
    # Check correct count for parameters of a generic cls (internal helper).
    if not cls.__parameters__:
        raise TypeError("%s is not a generic class" % repr(cls))
    alen = len(parameters)
    elen = len(cls.__parameters__)
    if alen != elen:
        raise TypeError("Too %s parameters for %s; actual %s, expected %s" %
                        ("many" if alen > elen else "few", repr(cls), alen, elen))


_cleanups = []


def _tp_cache(func):
    """Internal wrapper caching __getitem__ of generic types with a fallback to
    original function for non-hashable arguments.
    """

    cached = functools.lru_cache()(func)
    _cleanups.append(cached.cache_clear)

    @functools.wraps(func)
    def inner(*args, **kwds):
        try:
            return cached(*args, **kwds)
        except TypeError:
            pass  # All real errors (not unhashable args) are raised below.
        return func(*args, **kwds)
    return inner


class _Union(_FinalTypingBase, _root=True):
    """Union type; Union[X, Y] means either X or Y.

    To define a union, use e.g. Union[int, str].  Details:

    - The arguments must be types and there must be at least one.

    - None as an argument is a special case and is replaced by
      type(None).

    - Unions of unions are flattened, e.g.::

        Union[Union[int, str], float] == Union[int, str, float]

    - Unions of a single argument vanish, e.g.::

        Union[int] == int  # The constructor actually returns int

    - Redundant arguments are skipped, e.g.::

        Union[int, str, int] == Union[int, str]

    - When comparing unions, the argument order is ignored, e.g.::

        Union[int, str] == Union[str, int]

    - When two arguments have a subclass relationship, the least
      derived argument is kept, e.g.::

        class Employee: pass
        class Manager(Employee): pass
        Union[int, Employee, Manager] == Union[int, Employee]
        Union[Manager, int, Employee] == Union[int, Employee]
        Union[Employee, Manager] == Employee

    - Similar for object::

        Union[int, object] == object

    - You cannot subclass or instantiate a union.

    - You can use Optional[X] as a shorthand for Union[X, None].
    """

    __slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__')

    def __new__(cls, parameters=None, origin=None, *args, _root=False):
        self = super().__new__(cls, parameters, origin, *args, _root=_root)
        if origin is None:
            self.__parameters__ = None
            self.__args__ = None
            self.__origin__ = None
            self.__tree_hash__ = hash(frozenset(('Union',)))
            return self
        if not isinstance(parameters, tuple):
            raise TypeError("Expected parameters=<tuple>")
        if origin is Union:
            parameters = _remove_dups_flatten(parameters)
            # It's not a union if there's only one type left.
            if len(parameters) == 1:
                return parameters[0]
        self.__parameters__ = _type_vars(parameters)
        self.__args__ = parameters
        self.__origin__ = origin
        # Pre-calculate the __hash__ on instantiation.
        # This improves speed for complex substitutions.
        subs_tree = self._subs_tree()
        if isinstance(subs_tree, tuple):
            self.__tree_hash__ = hash(frozenset(subs_tree))
        else:
            self.__tree_hash__ = hash(subs_tree)
        return self

    def _eval_type(self, globalns, localns):
        if self.__args__ is None:
            return self
        ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__)
        ev_origin = _eval_type(self.__origin__, globalns, localns)
        if ev_args == self.__args__ and ev_origin == self.__origin__:
            # Everything is already evaluated.
            return self
        return self.__class__(ev_args, ev_origin, _root=True)

    def _get_type_vars(self, tvars):
        if self.__origin__ and self.__parameters__:
            _get_type_vars(self.__parameters__, tvars)

    def __repr__(self):
        if self.__origin__ is None:
            return super().__repr__()
        tree = self._subs_tree()
        if not isinstance(tree, tuple):
            return repr(tree)
        return tree[0]._tree_repr(tree)

    def _tree_repr(self, tree):
        arg_list = []
        for arg in tree[1:]:
            if not isinstance(arg, tuple):
                arg_list.append(_type_repr(arg))
            else:
                arg_list.append(arg[0]._tree_repr(arg))
        return super().__repr__() + '[%s]' % ', '.join(arg_list)

    @_tp_cache
    def __getitem__(self, parameters):
        if parameters == ():
            raise TypeError("Cannot take a Union of no types.")
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        if self.__origin__ is None:
            msg = "Union[arg, ...]: each arg must be a type."
        else:
            msg = "Parameters to generic types must be types."
        parameters = tuple(_type_check(p, msg) for p in parameters)
        if self is not Union:
            _check_generic(self, parameters)
        return self.__class__(parameters, origin=self, _root=True)

    def _subs_tree(self, tvars=None, args=None):
        if self is Union:
            return Union  # Nothing to substitute
        tree_args = _subs_tree(self, tvars, args)
        tree_args = _remove_dups_flatten(tree_args)
        if len(tree_args) == 1:
            return tree_args[0]  # Union of a single type is that type
        return (Union,) + tree_args

    def __eq__(self, other):
        if isinstance(other, _Union):
            return self.__tree_hash__ == other.__tree_hash__
        elif self is not Union:
            return self._subs_tree() == other
        else:
            return self is other

    def __hash__(self):
        return self.__tree_hash__

    def __instancecheck__(self, obj):
        raise TypeError("Unions cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("Unions cannot be used with issubclass().")


Union = _Union(_root=True)


class _Optional(_FinalTypingBase, _root=True):
    """Optional type.

    Optional[X] is equivalent to Union[X, None].
    """

    __slots__ = ()

    @_tp_cache
    def __getitem__(self, arg):
        arg = _type_check(arg, "Optional[t] requires a single type.")
        return Union[arg, type(None)]


Optional = _Optional(_root=True)


def _next_in_mro(cls):
    """Helper for Generic.__new__.

    Returns the class after the last occurrence of Generic or
    Generic[...] in cls.__mro__.
    """
    next_in_mro = object
    # Look for the last occurrence of Generic or Generic[...].
    for i, c in enumerate(cls.__mro__[:-1]):
        if isinstance(c, GenericMeta) and c._gorg is Generic:
            next_in_mro = cls.__mro__[i + 1]
    return next_in_mro


def _make_subclasshook(cls):
    """Construct a __subclasshook__ callable that incorporates
    the associated __extra__ class in subclass checks performed
    against cls.
    """
    if isinstance(cls.__extra__, abc.ABCMeta):
        # The logic mirrors that of ABCMeta.__subclasscheck__.
        # Registered classes need not be checked here because
        # cls and its extra share the same _abc_registry.
        def __extrahook__(subclass):
            res = cls.__extra__.__subclasshook__(subclass)
            if res is not NotImplemented:
                return res
            if cls.__extra__ in subclass.__mro__:
                return True
            for scls in cls.__extra__.__subclasses__():
                if isinstance(scls, GenericMeta):
                    continue
                if issubclass(subclass, scls):
                    return True
            return NotImplemented
    else:
        # For non-ABC extras we'll just call issubclass().
        def __extrahook__(subclass):
            if cls.__extra__ and issubclass(subclass, cls.__extra__):
                return True
            return NotImplemented
    return __extrahook__


def _no_slots_copy(dct):
    """Internal helper: copy class __dict__ and clean slots class variables.
    (They will be re-created if necessary by normal class machinery.)
    """
    dict_copy = dict(dct)
    if '__slots__' in dict_copy:
        for slot in dict_copy['__slots__']:
            dict_copy.pop(slot, None)
    return dict_copy


class GenericMeta(TypingMeta, abc.ABCMeta):
    """Metaclass for generic types.

    This is a metaclass for typing.Generic and generic ABCs defined in
    typing module. User defined subclasses of GenericMeta can override
    __new__ and invoke super().__new__. Note that GenericMeta.__new__
    has strict rules on what is allowed in its bases argument:
    * plain Generic is disallowed in bases;
    * Generic[...] should appear in bases at most once;
    * if Generic[...] is present, then it should list all type variables
      that appear in other bases.
    In addition, type of all generic bases is erased, e.g., C[int] is
    stripped to plain C.
    """

    def __new__(cls, name, bases, namespace,
                tvars=None, args=None, origin=None, extra=None, orig_bases=None):
        """Create a new generic class. GenericMeta.__new__ accepts
        keyword arguments that are used for internal bookkeeping, therefore
        an override should pass unused keyword arguments to super().
        """
        if tvars is not None:
            # Called from __getitem__() below.
            assert origin is not None
            assert all(isinstance(t, TypeVar) for t in tvars), tvars
        else:
            # Called from class statement.
            assert tvars is None, tvars
            assert args is None, args
            assert origin is None, origin

            # Get the full set of tvars from the bases.
            tvars = _type_vars(bases)
            # Look for Generic[T1, ..., Tn].
            # If found, tvars must be a subset of it.
            # If not found, tvars is it.
            # Also check for and reject plain Generic,
            # and reject multiple Generic[...].
            gvars = None
            for base in bases:
                if base is Generic:
                    raise TypeError("Cannot inherit from plain Generic")
                if (isinstance(base, GenericMeta) and
                        base.__origin__ is Generic):
                    if gvars is not None:
                        raise TypeError(
                            "Cannot inherit from Generic[...] multiple types.")
                    gvars = base.__parameters__
            if gvars is None:
                gvars = tvars
            else:
                tvarset = set(tvars)
                gvarset = set(gvars)
                if not tvarset <= gvarset:
                    raise TypeError(
                        "Some type variables (%s) "
                        "are not listed in Generic[%s]" %
                        (", ".join(str(t) for t in tvars if t not in gvarset),
                         ", ".join(str(g) for g in gvars)))
                tvars = gvars

        initial_bases = bases
        if extra is not None and type(extra) is abc.ABCMeta and extra not in bases:
            bases = (extra,) + bases
        bases = tuple(b._gorg if isinstance(b, GenericMeta) else b for b in bases)

        # remove bare Generic from bases if there are other generic bases
        if any(isinstance(b, GenericMeta) and b is not Generic for b in bases):
            bases = tuple(b for b in bases if b is not Generic)
        namespace.update({'__origin__': origin, '__extra__': extra,
                          '_gorg': None if not origin else origin._gorg})
        self = super().__new__(cls, name, bases, namespace, _root=True)
        super(GenericMeta, self).__setattr__('_gorg',
                                             self if not origin else origin._gorg)
        self.__parameters__ = tvars
        # Be prepared that GenericMeta will be subclassed by TupleMeta
        # and CallableMeta, those two allow ..., (), or [] in __args___.
        self.__args__ = tuple(... if a is _TypingEllipsis else
                              () if a is _TypingEmpty else
                              a for a in args) if args else None
        # Speed hack (https://github.com/python/typing/issues/196).
        self.__next_in_mro__ = _next_in_mro(self)
        # Preserve base classes on subclassing (__bases__ are type erased now).
        if orig_bases is None:
            self.__orig_bases__ = initial_bases

        # This allows unparameterized generic collections to be used
        # with issubclass() and isinstance() in the same way as their
        # collections.abc counterparts (e.g., isinstance([], Iterable)).
        if (
            '__subclasshook__' not in namespace and extra or
            # allow overriding
            getattr(self.__subclasshook__, '__name__', '') == '__extrahook__'
        ):
            self.__subclasshook__ = _make_subclasshook(self)
        if isinstance(extra, abc.ABCMeta):
            self._abc_registry = extra._abc_registry
            self._abc_cache = extra._abc_cache
        elif origin is not None:
            self._abc_registry = origin._abc_registry
            self._abc_cache = origin._abc_cache

        if origin and hasattr(origin, '__qualname__'):  # Fix for Python 3.2.
            self.__qualname__ = origin.__qualname__
        self.__tree_hash__ = (hash(self._subs_tree()) if origin else
                              super(GenericMeta, self).__hash__())
        return self

    # _abc_negative_cache and _abc_negative_cache_version
    # realised as descriptors, since GenClass[t1, t2, ...] always
    # share subclass info with GenClass.
    # This is an important memory optimization.
    @property
    def _abc_negative_cache(self):
        if isinstance(self.__extra__, abc.ABCMeta):
            return self.__extra__._abc_negative_cache
        return self._gorg._abc_generic_negative_cache

    @_abc_negative_cache.setter
    def _abc_negative_cache(self, value):
        if self.__origin__ is None:
            if isinstance(self.__extra__, abc.ABCMeta):
                self.__extra__._abc_negative_cache = value
            else:
                self._abc_generic_negative_cache = value

    @property
    def _abc_negative_cache_version(self):
        if isinstance(self.__extra__, abc.ABCMeta):
            return self.__extra__._abc_negative_cache_version
        return self._gorg._abc_generic_negative_cache_version

    @_abc_negative_cache_version.setter
    def _abc_negative_cache_version(self, value):
        if self.__origin__ is None:
            if isinstance(self.__extra__, abc.ABCMeta):
                self.__extra__._abc_negative_cache_version = value
            else:
                self._abc_generic_negative_cache_version = value

    def _get_type_vars(self, tvars):
        if self.__origin__ and self.__parameters__:
            _get_type_vars(self.__parameters__, tvars)

    def _eval_type(self, globalns, localns):
        ev_origin = (self.__origin__._eval_type(globalns, localns)
                     if self.__origin__ else None)
        ev_args = tuple(_eval_type(a, globalns, localns) for a
                        in self.__args__) if self.__args__ else None
        if ev_origin == self.__origin__ and ev_args == self.__args__:
            return self
        return self.__class__(self.__name__,
                              self.__bases__,
                              _no_slots_copy(self.__dict__),
                              tvars=_type_vars(ev_args) if ev_args else None,
                              args=ev_args,
                              origin=ev_origin,
                              extra=self.__extra__,
                              orig_bases=self.__orig_bases__)

    def __repr__(self):
        if self.__origin__ is None:
            return super().__repr__()
        return self._tree_repr(self._subs_tree())

    def _tree_repr(self, tree):
        arg_list = []
        for arg in tree[1:]:
            if arg == ():
                arg_list.append('()')
            elif not isinstance(arg, tuple):
                arg_list.append(_type_repr(arg))
            else:
                arg_list.append(arg[0]._tree_repr(arg))
        return super().__repr__() + '[%s]' % ', '.join(arg_list)

    def _subs_tree(self, tvars=None, args=None):
        if self.__origin__ is None:
            return self
        tree_args = _subs_tree(self, tvars, args)
        return (self._gorg,) + tuple(tree_args)

    def __eq__(self, other):
        if not isinstance(other, GenericMeta):
            return NotImplemented
        if self.__origin__ is None or other.__origin__ is None:
            return self is other
        return self.__tree_hash__ == other.__tree_hash__

    def __hash__(self):
        return self.__tree_hash__

    @_tp_cache
    def __getitem__(self, params):
        if not isinstance(params, tuple):
            params = (params,)
        if not params and self._gorg is not Tuple:
            raise TypeError(
                "Parameter list to %s[...] cannot be empty" % _qualname(self))
        msg = "Parameters to generic types must be types."
        params = tuple(_type_check(p, msg) for p in params)
        if self is Generic:
            # Generic can only be subscripted with unique type variables.
            if not all(isinstance(p, TypeVar) for p in params):
                raise TypeError(
                    "Parameters to Generic[...] must all be type variables")
            if len(set(params)) != len(params):
                raise TypeError(
                    "Parameters to Generic[...] must all be unique")
            tvars = params
            args = params
        elif self in (Tuple, Callable):
            tvars = _type_vars(params)
            args = params
        elif self is _Protocol:
            # _Protocol is internal, don't check anything.
            tvars = params
            args = params
        elif self.__origin__ in (Generic, _Protocol):
            # Can't subscript Generic[...] or _Protocol[...].
            raise TypeError("Cannot subscript already-subscripted %s" %
                            repr(self))
        else:
            # Subscripting a regular Generic subclass.
            _check_generic(self, params)
            tvars = _type_vars(params)
            args = params

        prepend = (self,) if self.__origin__ is None else ()
        return self.__class__(self.__name__,
                              prepend + self.__bases__,
                              _no_slots_copy(self.__dict__),
                              tvars=tvars,
                              args=args,
                              origin=self,
                              extra=self.__extra__,
                              orig_bases=self.__orig_bases__)

    def __subclasscheck__(self, cls):
        if self.__origin__ is not None:
            if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']:
                raise TypeError("Parameterized generics cannot be used with class "
                                "or instance checks")
            return False
        if self is Generic:
            raise TypeError("Class %r cannot be used with class "
                            "or instance checks" % self)
        return super().__subclasscheck__(cls)

    def __instancecheck__(self, instance):
        # Since we extend ABC.__subclasscheck__ and
        # ABC.__instancecheck__ inlines the cache checking done by the
        # latter, we must extend __instancecheck__ too. For simplicity
        # we just skip the cache check -- instance checks for generic
        # classes are supposed to be rare anyways.
        return issubclass(instance.__class__, self)

    def __setattr__(self, attr, value):
        # We consider all the subscripted generics as proxies for original class
        if (
            attr.startswith('__') and attr.endswith('__') or
            attr.startswith('_abc_') or
            self._gorg is None  # The class is not fully created, see #typing/506
        ):
            super(GenericMeta, self).__setattr__(attr, value)
        else:
            super(GenericMeta, self._gorg).__setattr__(attr, value)


# Prevent checks for Generic to crash when defining Generic.
Generic = None


def _generic_new(base_cls, cls, *args, **kwds):
    # Assure type is erased on instantiation,
    # but attempt to store it in __orig_class__
    if cls.__origin__ is None:
        if (base_cls.__new__ is object.__new__ and
                cls.__init__ is not object.__init__):
            return base_cls.__new__(cls)
        else:
            return base_cls.__new__(cls, *args, **kwds)
    else:
        origin = cls._gorg
        if (base_cls.__new__ is object.__new__ and
                cls.__init__ is not object.__init__):
            obj = base_cls.__new__(origin)
        else:
            obj = base_cls.__new__(origin, *args, **kwds)
        try:
            obj.__orig_class__ = cls
        except AttributeError:
            pass
        obj.__init__(*args, **kwds)
        return obj


class Generic(metaclass=GenericMeta):
    """Abstract base class for generic types.

    A generic type is typically declared by inheriting from
    this class parameterized with one or more type variables.
    For example, a generic mapping type might be defined as::

      class Mapping(Generic[KT, VT]):
          def __getitem__(self, key: KT) -> VT:
              ...
          # Etc.

    This class can then be used as follows::

      def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
          try:
              return mapping[key]
          except KeyError:
              return default
    """

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Generic:
            raise TypeError("Type Generic cannot be instantiated; "
                            "it can be used only as a base class")
        return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)


class _TypingEmpty:
    """Internal placeholder for () or []. Used by TupleMeta and CallableMeta
    to allow empty list/tuple in specific places, without allowing them
    to sneak in where prohibited.
    """


class _TypingEllipsis:
    """Internal placeholder for ... (ellipsis)."""


class TupleMeta(GenericMeta):
    """Metaclass for Tuple (internal)."""

    @_tp_cache
    def __getitem__(self, parameters):
        if self.__origin__ is not None or self._gorg is not Tuple:
            # Normal generic rules apply if this is not the first subscription
            # or a subscription of a subclass.
            return super().__getitem__(parameters)
        if parameters == ():
            return super().__getitem__((_TypingEmpty,))
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        if len(parameters) == 2 and parameters[1] is ...:
            msg = "Tuple[t, ...]: t must be a type."
            p = _type_check(parameters[0], msg)
            return super().__getitem__((p, _TypingEllipsis))
        msg = "Tuple[t0, t1, ...]: each t must be a type."
        parameters = tuple(_type_check(p, msg) for p in parameters)
        return super().__getitem__(parameters)

    def __instancecheck__(self, obj):
        if self.__args__ is None:
            return isinstance(obj, tuple)
        raise TypeError("Parameterized Tuple cannot be used "
                        "with isinstance().")

    def __subclasscheck__(self, cls):
        if self.__args__ is None:
            return issubclass(cls, tuple)
        raise TypeError("Parameterized Tuple cannot be used "
                        "with issubclass().")


class Tuple(tuple, extra=tuple, metaclass=TupleMeta):
    """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.

    Example: Tuple[T1, T2] is a tuple of two elements corresponding
    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
    of an int, a float and a string.

    To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
    """

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Tuple:
            raise TypeError("Type Tuple cannot be instantiated; "
                            "use tuple() instead")
        return _generic_new(tuple, cls, *args, **kwds)


class CallableMeta(GenericMeta):
    """Metaclass for Callable (internal)."""

    def __repr__(self):
        if self.__origin__ is None:
            return super().__repr__()
        return self._tree_repr(self._subs_tree())

    def _tree_repr(self, tree):
        if self._gorg is not Callable:
            return super()._tree_repr(tree)
        # For actual Callable (not its subclass) we override
        # super()._tree_repr() for nice formatting.
        arg_list = []
        for arg in tree[1:]:
            if not isinstance(arg, tuple):
                arg_list.append(_type_repr(arg))
            else:
                arg_list.append(arg[0]._tree_repr(arg))
        if arg_list[0] == '...':
            return repr(tree[0]) + '[..., %s]' % arg_list[1]
        return (repr(tree[0]) +
                '[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1]))

    def __getitem__(self, parameters):
        """A thin wrapper around __getitem_inner__ to provide the latter
        with hashable arguments to improve speed.
        """

        if self.__origin__ is not None or self._gorg is not Callable:
            return super().__getitem__(parameters)
        if not isinstance(parameters, tuple) or len(parameters) != 2:
            raise TypeError("Callable must be used as "
                            "Callable[[arg, ...], result].")
        args, result = parameters
        if args is Ellipsis:
            parameters = (Ellipsis, result)
        else:
            if not isinstance(args, list):
                raise TypeError("Callable[args, result]: args must be a list."
                                " Got %.100r." % (args,))
            parameters = (tuple(args), result)
        return self.__getitem_inner__(parameters)

    @_tp_cache
    def __getitem_inner__(self, parameters):
        args, result = parameters
        msg = "Callable[args, result]: result must be a type."
        result = _type_check(result, msg)
        if args is Ellipsis:
            return super().__getitem__((_TypingEllipsis, result))
        msg = "Callable[[arg, ...], result]: each arg must be a type."
        args = tuple(_type_check(arg, msg) for arg in args)
        parameters = args + (result,)
        return super().__getitem__(parameters)


class Callable(extra=collections_abc.Callable, metaclass=CallableMeta):
    """Callable type; Callable[[int], str] is a function of (int) -> str.

    The subscription syntax must always be used with exactly two
    values: the argument list and the return type.  The argument list
    must be a list of types or ellipsis; the return type must be a single type.

    There is no syntax to indicate optional or keyword arguments,
    such function types are rarely used as callback types.
    """

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Callable:
            raise TypeError("Type Callable cannot be instantiated; "
                            "use a non-abstract subclass instead")
        return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)


class _ClassVar(_FinalTypingBase, _root=True):
    """Special type construct to mark class variables.

    An annotation wrapped in ClassVar indicates that a given
    attribute is intended to be used as a class variable and
    should not be set on instances of that class. Usage::

      class Starship:
          stats: ClassVar[Dict[str, int]] = {} # class variable
          damage: int = 10                     # instance variable

    ClassVar accepts only types and cannot be further subscribed.

    Note that ClassVar is not a class itself, and should not
    be used with isinstance() or issubclass().
    """

    __slots__ = ('__type__',)

    def __init__(self, tp=None, **kwds):
        self.__type__ = tp

    def __getitem__(self, item):
        cls = type(self)
        if self.__type__ is None:
            return cls(_type_check(item,
                       '{} accepts only single type.'.format(cls.__name__[1:])),
                       _root=True)
        raise TypeError('{} cannot be further subscripted'
                        .format(cls.__name__[1:]))

    def _eval_type(self, globalns, localns):
        new_tp = _eval_type(self.__type__, globalns, localns)
        if new_tp == self.__type__:
            return self
        return type(self)(new_tp, _root=True)

    def __repr__(self):
        r = super().__repr__()
        if self.__type__ is not None:
            r += '[{}]'.format(_type_repr(self.__type__))
        return r

    def __hash__(self):
        return hash((type(self).__name__, self.__type__))

    def __eq__(self, other):
        if not isinstance(other, _ClassVar):
            return NotImplemented
        if self.__type__ is not None:
            return self.__type__ == other.__type__
        return self is other


ClassVar = _ClassVar(_root=True)


def cast(typ, val):
    """Cast a value to a type.

    This returns the value unchanged.  To the type checker this
    signals that the return value has the designated type, but at
    runtime we intentionally don't check anything (we want this
    to be as fast as possible).
    """
    return val


def _get_defaults(func):
    """Internal helper to extract the default arguments, by name."""
    try:
        code = func.__code__
    except AttributeError:
        # Some built-in functions don't have __code__, __defaults__, etc.
        return {}
    pos_count = code.co_argcount
    arg_names = code.co_varnames
    arg_names = arg_names[:pos_count]
    defaults = func.__defaults__ or ()
    kwdefaults = func.__kwdefaults__
    res = dict(kwdefaults) if kwdefaults else {}
    pos_offset = pos_count - len(defaults)
    for name, value in zip(arg_names[pos_offset:], defaults):
        assert name not in res
        res[name] = value
    return res


_allowed_types = (types.FunctionType, types.BuiltinFunctionType,
                  types.MethodType, types.ModuleType,
                  WrapperDescriptorType, MethodWrapperType, MethodDescriptorType)


def get_type_hints(obj, globalns=None, localns=None):
    """Return type hints for an object.

    This is often the same as obj.__annotations__, but it handles
    forward references encoded as string literals, and if necessary
    adds Optional[t] if a default value equal to None is set.

    The argument may be a module, class, method, or function. The annotations
    are returned as a dictionary. For classes, annotations include also
    inherited members.

    TypeError is raised if the argument is not of a type that can contain
    annotations, and an empty dictionary is returned if no annotations are
    present.

    BEWARE -- the behavior of globalns and localns is counterintuitive
    (unless you are familiar with how eval() and exec() work).  The
    search order is locals first, then globals.

    - If no dict arguments are passed, an attempt is made to use the
      globals from obj (or the respective module's globals for classes),
      and these are also used as the locals.  If the object does not appear
      to have globals, an empty dictionary is used.

    - If one dict argument is passed, it is used for both globals and
      locals.

    - If two dict arguments are passed, they specify globals and
      locals, respectively.
    """

    if getattr(obj, '__no_type_check__', None):
        return {}
    # Classes require a special treatment.
    if isinstance(obj, type):
        hints = {}
        for base in reversed(obj.__mro__):
            if globalns is None:
                base_globals = sys.modules[base.__module__].__dict__
            else:
                base_globals = globalns
            ann = base.__dict__.get('__annotations__', {})
            for name, value in ann.items():
                if value is None:
                    value = type(None)
                if isinstance(value, str):
                    value = _ForwardRef(value)
                value = _eval_type(value, base_globals, localns)
                hints[name] = value
        return hints

    if globalns is None:
        if isinstance(obj, types.ModuleType):
            globalns = obj.__dict__
        else:
            globalns = getattr(obj, '__globals__', {})
        if localns is None:
            localns = globalns
    elif localns is None:
        localns = globalns
    hints = getattr(obj, '__annotations__', None)
    if hints is None:
        # Return empty annotations for something that _could_ have them.
        if isinstance(obj, _allowed_types):
            return {}
        else:
            raise TypeError('{!r} is not a module, class, method, '
                            'or function.'.format(obj))
    defaults = _get_defaults(obj)
    hints = dict(hints)
    for name, value in hints.items():
        if value is None:
            value = type(None)
        if isinstance(value, str):
            value = _ForwardRef(value)
        value = _eval_type(value, globalns, localns)
        if name in defaults and defaults[name] is None:
            value = Optional[value]
        hints[name] = value
    return hints


def no_type_check(arg):
    """Decorator to indicate that annotations are not type hints.

    The argument must be a class or function; if it is a class, it
    applies recursively to all methods and classes defined in that class
    (but not to methods defined in its superclasses or subclasses).

    This mutates the function(s) or class(es) in place.
    """
    if isinstance(arg, type):
        arg_attrs = arg.__dict__.copy()
        for attr, val in arg.__dict__.items():
            if val in arg.__bases__ + (arg,):
                arg_attrs.pop(attr)
        for obj in arg_attrs.values():
            if isinstance(obj, types.FunctionType):
                obj.__no_type_check__ = True
            if isinstance(obj, type):
                no_type_check(obj)
    try:
        arg.__no_type_check__ = True
    except TypeError:  # built-in classes
        pass
    return arg


def no_type_check_decorator(decorator):
    """Decorator to give another decorator the @no_type_check effect.

    This wraps the decorator with something that wraps the decorated
    function in @no_type_check.
    """

    @functools.wraps(decorator)
    def wrapped_decorator(*args, **kwds):
        func = decorator(*args, **kwds)
        func = no_type_check(func)
        return func

    return wrapped_decorator


def _overload_dummy(*args, **kwds):
    """Helper for @overload to raise when called."""
    raise NotImplementedError(
        "You should not call an overloaded function. "
        "A series of @overload-decorated functions "
        "outside a stub module should always be followed "
        "by an implementation that is not @overload-ed.")


def overload(func):
    """Decorator for overloaded functions/methods.

    In a stub file, place two or more stub definitions for the same
    function in a row, each decorated with @overload.  For example:

      @overload
      def utf8(value: None) -> None: ...
      @overload
      def utf8(value: bytes) -> bytes: ...
      @overload
      def utf8(value: str) -> bytes: ...

    In a non-stub file (i.e. a regular .py file), do the same but
    follow it with an implementation.  The implementation should *not*
    be decorated with @overload.  For example:

      @overload
      def utf8(value: None) -> None: ...
      @overload
      def utf8(value: bytes) -> bytes: ...
      @overload
      def utf8(value: str) -> bytes: ...
      def utf8(value):
          # implementation goes here
    """
    return _overload_dummy


class _ProtocolMeta(GenericMeta):
    """Internal metaclass for _Protocol.

    This exists so _Protocol classes can be generic without deriving
    from Generic.
    """

    def __instancecheck__(self, obj):
        if _Protocol not in self.__bases__:
            return super().__instancecheck__(obj)
        raise TypeError("Protocols cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        if not self._is_protocol:
            # No structural checks since this isn't a protocol.
            return NotImplemented

        if self is _Protocol:
            # Every class is a subclass of the empty protocol.
            return True

        # Find all attributes defined in the protocol.
        attrs = self._get_protocol_attrs()

        for attr in attrs:
            if not any(attr in d.__dict__ for d in cls.__mro__):
                return False
        return True

    def _get_protocol_attrs(self):
        # Get all Protocol base classes.
        protocol_bases = []
        for c in self.__mro__:
            if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
                protocol_bases.append(c)

        # Get attributes included in protocol.
        attrs = set()
        for base in protocol_bases:
            for attr in base.__dict__.keys():
                # Include attributes not defined in any non-protocol bases.
                for c in self.__mro__:
                    if (c is not base and attr in c.__dict__ and
                            not getattr(c, '_is_protocol', False)):
                        break
                else:
                    if (not attr.startswith('_abc_') and
                            attr != '__abstractmethods__' and
                            attr != '__annotations__' and
                            attr != '__weakref__' and
                            attr != '_is_protocol' and
                            attr != '_gorg' and
                            attr != '__dict__' and
                            attr != '__args__' and
                            attr != '__slots__' and
                            attr != '_get_protocol_attrs' and
                            attr != '__next_in_mro__' and
                            attr != '__parameters__' and
                            attr != '__origin__' and
                            attr != '__orig_bases__' and
                            attr != '__extra__' and
                            attr != '__tree_hash__' and
                            attr != '__module__'):
                        attrs.add(attr)

        return attrs


class _Protocol(metaclass=_ProtocolMeta):
    """Internal base class for protocol classes.

    This implements a simple-minded structural issubclass check
    (similar but more general than the one-offs in collections.abc
    such as Hashable).
    """

    __slots__ = ()

    _is_protocol = True


# Various ABCs mimicking those in collections.abc.
# A few are simply re-exported for completeness.

Hashable = collections_abc.Hashable  # Not generic.


if hasattr(collections_abc, 'Awaitable'):
    class Awaitable(Generic[T_co], extra=collections_abc.Awaitable):
        __slots__ = ()

    __all__.append('Awaitable')


if hasattr(collections_abc, 'Coroutine'):
    class Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co],
                    extra=collections_abc.Coroutine):
        __slots__ = ()

    __all__.append('Coroutine')


if hasattr(collections_abc, 'AsyncIterable'):

    class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable):
        __slots__ = ()

    class AsyncIterator(AsyncIterable[T_co],
                        extra=collections_abc.AsyncIterator):
        __slots__ = ()

    __all__.append('AsyncIterable')
    __all__.append('AsyncIterator')


class Iterable(Generic[T_co], extra=collections_abc.Iterable):
    __slots__ = ()


class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
    __slots__ = ()


class SupportsInt(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __int__(self) -> int:
        pass


class SupportsFloat(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __float__(self) -> float:
        pass


class SupportsComplex(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __complex__(self) -> complex:
        pass


class SupportsBytes(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __bytes__(self) -> bytes:
        pass


class SupportsIndex(_Protocol):
    __slots__ = ()

    @abstractmethod
    def __index__(self) -> int:
        pass


class SupportsAbs(_Protocol[T_co]):
    __slots__ = ()

    @abstractmethod
    def __abs__(self) -> T_co:
        pass


class SupportsRound(_Protocol[T_co]):
    __slots__ = ()

    @abstractmethod
    def __round__(self, ndigits: int = 0) -> T_co:
        pass


if hasattr(collections_abc, 'Reversible'):
    class Reversible(Iterable[T_co], extra=collections_abc.Reversible):
        __slots__ = ()
else:
    class Reversible(_Protocol[T_co]):
        __slots__ = ()

        @abstractmethod
        def __reversed__(self) -> 'Iterator[T_co]':
            pass


Sized = collections_abc.Sized  # Not generic.


class Container(Generic[T_co], extra=collections_abc.Container):
    __slots__ = ()


if hasattr(collections_abc, 'Collection'):
    class Collection(Sized, Iterable[T_co], Container[T_co],
                     extra=collections_abc.Collection):
        __slots__ = ()

    __all__.append('Collection')


# Callable was defined earlier.

if hasattr(collections_abc, 'Collection'):
    class AbstractSet(Collection[T_co],
                      extra=collections_abc.Set):
        __slots__ = ()
else:
    class AbstractSet(Sized, Iterable[T_co], Container[T_co],
                      extra=collections_abc.Set):
        __slots__ = ()


class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
    __slots__ = ()


# NOTE: It is only covariant in the value type.
if hasattr(collections_abc, 'Collection'):
    class Mapping(Collection[KT], Generic[KT, VT_co],
                  extra=collections_abc.Mapping):
        __slots__ = ()
else:
    class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co],
                  extra=collections_abc.Mapping):
        __slots__ = ()


class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
    __slots__ = ()


if hasattr(collections_abc, 'Reversible'):
    if hasattr(collections_abc, 'Collection'):
        class Sequence(Reversible[T_co], Collection[T_co],
                       extra=collections_abc.Sequence):
            __slots__ = ()
    else:
        class Sequence(Sized, Reversible[T_co], Container[T_co],
                       extra=collections_abc.Sequence):
            __slots__ = ()
else:
    class Sequence(Sized, Iterable[T_co], Container[T_co],
                   extra=collections_abc.Sequence):
        __slots__ = ()


class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
    __slots__ = ()


class ByteString(Sequence[int], extra=collections_abc.ByteString):
    __slots__ = ()


class List(list, MutableSequence[T], extra=list):

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is List:
            raise TypeError("Type List cannot be instantiated; "
                            "use list() instead")
        return _generic_new(list, cls, *args, **kwds)


class Deque(collections.deque, MutableSequence[T], extra=collections.deque):

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Deque:
            return collections.deque(*args, **kwds)
        return _generic_new(collections.deque, cls, *args, **kwds)


class Set(set, MutableSet[T], extra=set):

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Set:
            raise TypeError("Type Set cannot be instantiated; "
                            "use set() instead")
        return _generic_new(set, cls, *args, **kwds)


class FrozenSet(frozenset, AbstractSet[T_co], extra=frozenset):
    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is FrozenSet:
            raise TypeError("Type FrozenSet cannot be instantiated; "
                            "use frozenset() instead")
        return _generic_new(frozenset, cls, *args, **kwds)


class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
    __slots__ = ()


class KeysView(MappingView[KT], AbstractSet[KT],
               extra=collections_abc.KeysView):
    __slots__ = ()


class ItemsView(MappingView[Tuple[KT, VT_co]],
                AbstractSet[Tuple[KT, VT_co]],
                Generic[KT, VT_co],
                extra=collections_abc.ItemsView):
    __slots__ = ()


class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
    __slots__ = ()


if hasattr(contextlib, 'AbstractContextManager'):
    class ContextManager(Generic[T_co], extra=contextlib.AbstractContextManager):
        __slots__ = ()
else:
    class ContextManager(Generic[T_co]):
        __slots__ = ()

        def __enter__(self):
            return self

        @abc.abstractmethod
        def __exit__(self, exc_type, exc_value, traceback):
            return None

        @classmethod
        def __subclasshook__(cls, C):
            if cls is ContextManager:
                # In Python 3.6+, it is possible to set a method to None to
                # explicitly indicate that the class does not implement an ABC
                # (https://bugs.python.org/issue25958), but we do not support
                # that pattern here because this fallback class is only used
                # in Python 3.5 and earlier.
                if (any("__enter__" in B.__dict__ for B in C.__mro__) and
                    any("__exit__" in B.__dict__ for B in C.__mro__)):
                    return True
            return NotImplemented


if hasattr(contextlib, 'AbstractAsyncContextManager'):
    class AsyncContextManager(Generic[T_co],
                              extra=contextlib.AbstractAsyncContextManager):
        __slots__ = ()

    __all__.append('AsyncContextManager')
elif sys.version_info[:2] >= (3, 5):
    exec("""
class AsyncContextManager(Generic[T_co]):
    __slots__ = ()

    async def __aenter__(self):
        return self

    @abc.abstractmethod
    async def __aexit__(self, exc_type, exc_value, traceback):
        return None

    @classmethod
    def __subclasshook__(cls, C):
        if cls is AsyncContextManager:
            if sys.version_info[:2] >= (3, 6):
                return _collections_abc._check_methods(C, "__aenter__", "__aexit__")
            if (any("__aenter__" in B.__dict__ for B in C.__mro__) and
                    any("__aexit__" in B.__dict__ for B in C.__mro__)):
                return True
        return NotImplemented

__all__.append('AsyncContextManager')
""")


class Dict(dict, MutableMapping[KT, VT], extra=dict):

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Dict:
            raise TypeError("Type Dict cannot be instantiated; "
                            "use dict() instead")
        return _generic_new(dict, cls, *args, **kwds)


class DefaultDict(collections.defaultdict, MutableMapping[KT, VT],
                  extra=collections.defaultdict):

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is DefaultDict:
            return collections.defaultdict(*args, **kwds)
        return _generic_new(collections.defaultdict, cls, *args, **kwds)


class Counter(collections.Counter, Dict[T, int], extra=collections.Counter):

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Counter:
            return collections.Counter(*args, **kwds)
        return _generic_new(collections.Counter, cls, *args, **kwds)


if hasattr(collections, 'ChainMap'):
    # ChainMap only exists in 3.3+
    __all__.append('ChainMap')

    class ChainMap(collections.ChainMap, MutableMapping[KT, VT],
                   extra=collections.ChainMap):

        __slots__ = ()

        def __new__(cls, *args, **kwds):
            if cls._gorg is ChainMap:
                return collections.ChainMap(*args, **kwds)
            return _generic_new(collections.ChainMap, cls, *args, **kwds)


# Determine what base class to use for Generator.
if hasattr(collections_abc, 'Generator'):
    # Sufficiently recent versions of 3.5 have a Generator ABC.
    _G_base = collections_abc.Generator
else:
    # Fall back on the exact type.
    _G_base = types.GeneratorType


class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
                extra=_G_base):
    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Generator:
            raise TypeError("Type Generator cannot be instantiated; "
                            "create a subclass instead")
        return _generic_new(_G_base, cls, *args, **kwds)


if hasattr(collections_abc, 'AsyncGenerator'):
    class AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra],
                         extra=collections_abc.AsyncGenerator):
        __slots__ = ()

    __all__.append('AsyncGenerator')


# Internal type variable used for Type[].
CT_co = TypeVar('CT_co', covariant=True, bound=type)


# This is not a real generic class.  Don't use outside annotations.
class Type(Generic[CT_co], extra=type):
    """A special construct usable to annotate class objects.

    For example, suppose we have the following classes::

      class User: ...  # Abstract base for User classes
      class BasicUser(User): ...
      class ProUser(User): ...
      class TeamUser(User): ...

    And a function that takes a class argument that's a subclass of
    User and returns an instance of the corresponding class::

      U = TypeVar('U', bound=User)
      def new_user(user_class: Type[U]) -> U:
          user = user_class()
          # (Here we could write the user object to a database)
          return user

      joe = new_user(BasicUser)

    At this point the type checker knows that joe has type BasicUser.
    """

    __slots__ = ()


def _make_nmtuple(name, types):
    msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type"
    types = [(n, _type_check(t, msg)) for n, t in types]
    nm_tpl = collections.namedtuple(name, [n for n, t in types])
    # Prior to PEP 526, only _field_types attribute was assigned.
    # Now, both __annotations__ and _field_types are used to maintain compatibility.
    nm_tpl.__annotations__ = nm_tpl._field_types = collections.OrderedDict(types)
    try:
        nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass
    return nm_tpl


_PY36 = sys.version_info[:2] >= (3, 6)

# attributes prohibited to set in NamedTuple class syntax
_prohibited = ('__new__', '__init__', '__slots__', '__getnewargs__',
               '_fields', '_field_defaults', '_field_types',
               '_make', '_replace', '_asdict', '_source')

_special = ('__module__', '__name__', '__qualname__', '__annotations__')


class NamedTupleMeta(type):

    def __new__(cls, typename, bases, ns):
        if ns.get('_root', False):
            return super().__new__(cls, typename, bases, ns)
        if not _PY36:
            raise TypeError("Class syntax for NamedTuple is only supported"
                            " in Python 3.6+")
        types = ns.get('__annotations__', {})
        nm_tpl = _make_nmtuple(typename, types.items())
        defaults = []
        defaults_dict = {}
        for field_name in types:
            if field_name in ns:
                default_value = ns[field_name]
                defaults.append(default_value)
                defaults_dict[field_name] = default_value
            elif defaults:
                raise TypeError("Non-default namedtuple field {field_name} cannot "
                                "follow default field(s) {default_names}"
                                .format(field_name=field_name,
                                        default_names=', '.join(defaults_dict.keys())))
        nm_tpl.__new__.__annotations__ = collections.OrderedDict(types)
        nm_tpl.__new__.__defaults__ = tuple(defaults)
        nm_tpl._field_defaults = defaults_dict
        # update from user namespace without overriding special namedtuple attributes
        for key in ns:
            if key in _prohibited:
                raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
            elif key not in _special and key not in nm_tpl._fields:
                setattr(nm_tpl, key, ns[key])
        return nm_tpl


class NamedTuple(metaclass=NamedTupleMeta):
    """Typed version of namedtuple.

    Usage in Python versions >= 3.6::

        class Employee(NamedTuple):
            name: str
            id: int

    This is equivalent to::

        Employee = collections.namedtuple('Employee', ['name', 'id'])

    The resulting class has extra __annotations__ and _field_types
    attributes, giving an ordered dict mapping field names to types.
    __annotations__ should be preferred, while _field_types
    is kept to maintain pre PEP 526 compatibility. (The field names
    are in the _fields attribute, which is part of the namedtuple
    API.) Alternative equivalent keyword syntax is also accepted::

        Employee = NamedTuple('Employee', name=str, id=int)

    In Python versions <= 3.5 use::

        Employee = NamedTuple('Employee', [('name', str), ('id', int)])
    """
    _root = True

    def __new__(*args, **kwargs):
        if kwargs and not _PY36:
            raise TypeError("Keyword syntax for NamedTuple is only supported"
                            " in Python 3.6+")
        if not args:
            raise TypeError('NamedTuple.__new__(): not enough arguments')
        _, args = args[0], args[1:]  # allow the "cls" keyword be passed
        if args:
            typename, args = args[0], args[1:]  # allow the "typename" keyword be passed
        elif 'typename' in kwargs:
            typename = kwargs.pop('typename')
            import warnings
            warnings.warn("Passing 'typename' as keyword argument is deprecated",
                          DeprecationWarning, stacklevel=2)
        else:
            raise TypeError("NamedTuple.__new__() missing 1 required positional "
                            "argument: 'typename'")
        if args:
            try:
                fields, = args  # allow the "fields" keyword be passed
            except ValueError:
                raise TypeError('NamedTuple.__new__() takes from 2 to 3 '
                                'positional arguments but {} '
                                'were given'.format(len(args) + 2))
        elif 'fields' in kwargs and len(kwargs) == 1:
            fields = kwargs.pop('fields')
            import warnings
            warnings.warn("Passing 'fields' as keyword argument is deprecated",
                          DeprecationWarning, stacklevel=2)
        else:
            fields = None

        if fields is None:
            fields = kwargs.items()
        elif kwargs:
            raise TypeError("Either list of fields or keywords"
                            " can be provided to NamedTuple, not both")
        return _make_nmtuple(typename, fields)

    __new__.__text_signature__ = '($cls, typename, fields=None, /, **kwargs)'


def NewType(name, tp):
    """NewType creates simple unique types with almost zero
    runtime overhead. NewType(name, tp) is considered a subtype of tp
    by static type checkers. At runtime, NewType(name, tp) returns
    a dummy function that simply returns its argument. Usage::

        UserId = NewType('UserId', int)

        def name_by_id(user_id: UserId) -> str:
            ...

        UserId('user')          # Fails type check

        name_by_id(42)          # Fails type check
        name_by_id(UserId(42))  # OK

        num = UserId(5) + 1     # type: int
    """

    def new_type(x):
        return x

    new_type.__name__ = name
    new_type.__supertype__ = tp
    return new_type


# Python-version-specific alias (Python 2: unicode; Python 3: str)
Text = str


# Constant that's True when type checking, but False here.
TYPE_CHECKING = False


class IO(Generic[AnyStr]):
    """Generic base class for TextIO and BinaryIO.

    This is an abstract, generic version of the return of open().

    NOTE: This does not distinguish between the different possible
    classes (text vs. binary, read vs. write vs. read/write,
    append-only, unbuffered).  The TextIO and BinaryIO subclasses
    below capture the distinctions between text vs. binary, which is
    pervasive in the interface; however we currently do not offer a
    way to track the other distinctions in the type system.
    """

    __slots__ = ()

    @abstractproperty
    def mode(self) -> str:
        pass

    @abstractproperty
    def name(self) -> str:
        pass

    @abstractmethod
    def close(self) -> None:
        pass

    @abstractproperty
    def closed(self) -> bool:
        pass

    @abstractmethod
    def fileno(self) -> int:
        pass

    @abstractmethod
    def flush(self) -> None:
        pass

    @abstractmethod
    def isatty(self) -> bool:
        pass

    @abstractmethod
    def read(self, n: int = -1) -> AnyStr:
        pass

    @abstractmethod
    def readable(self) -> bool:
        pass

    @abstractmethod
    def readline(self, limit: int = -1) -> AnyStr:
        pass

    @abstractmethod
    def readlines(self, hint: int = -1) -> List[AnyStr]:
        pass

    @abstractmethod
    def seek(self, offset: int, whence: int = 0) -> int:
        pass

    @abstractmethod
    def seekable(self) -> bool:
        pass

    @abstractmethod
    def tell(self) -> int:
        pass

    @abstractmethod
    def truncate(self, size: int = None) -> int:
        pass

    @abstractmethod
    def writable(self) -> bool:
        pass

    @abstractmethod
    def write(self, s: AnyStr) -> int:
        pass

    @abstractmethod
    def writelines(self, lines: List[AnyStr]) -> None:
        pass

    @abstractmethod
    def __enter__(self) -> 'IO[AnyStr]':
        pass

    @abstractmethod
    def __exit__(self, type, value, traceback) -> None:
        pass


class BinaryIO(IO[bytes]):
    """Typed version of the return of open() in binary mode."""

    __slots__ = ()

    @abstractmethod
    def write(self, s: Union[bytes, bytearray]) -> int:
        pass

    @abstractmethod
    def __enter__(self) -> 'BinaryIO':
        pass


class TextIO(IO[str]):
    """Typed version of the return of open() in text mode."""

    __slots__ = ()

    @abstractproperty
    def buffer(self) -> BinaryIO:
        pass

    @abstractproperty
    def encoding(self) -> str:
        pass

    @abstractproperty
    def errors(self) -> Optional[str]:
        pass

    @abstractproperty
    def line_buffering(self) -> bool:
        pass

    @abstractproperty
    def newlines(self) -> Any:
        pass

    @abstractmethod
    def __enter__(self) -> 'TextIO':
        pass


class io:
    """Wrapper namespace for IO generic classes."""

    __all__ = ['IO', 'TextIO', 'BinaryIO']
    IO = IO
    TextIO = TextIO
    BinaryIO = BinaryIO


io.__name__ = __name__ + '.io'
sys.modules[io.__name__] = io


Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
                     lambda p: p.pattern)
Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
                   lambda m: m.re.pattern)


class re:
    """Wrapper namespace for re type aliases."""

    __all__ = ['Pattern', 'Match']
    Pattern = Pattern
    Match = Match


re.__name__ = __name__ + '.re'
sys.modules[re.__name__] = re
lib\uu.py
#! /usr/bin/env python3

# Copyright 1994 by Lance Ellinghouse
# Cathedral City, California Republic, United States of America.
#                        All Rights Reserved
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of Lance Ellinghouse
# not be used in advertising or publicity pertaining to distribution
# of the software without specific, written prior permission.
# LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
# THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
# FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
# FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# Modified by Jack Jansen, CWI, July 1995:
# - Use binascii module to do the actual line-by-line conversion
#   between ascii and binary. This results in a 1000-fold speedup. The C
#   version is still 5 times faster, though.
# - Arguments more compliant with python standard

"""Implementation of the UUencode and UUdecode functions.

encode(in_file, out_file [,name, mode])
decode(in_file [, out_file, mode])
"""

import binascii
import os
import sys

__all__ = ["Error", "encode", "decode"]

class Error(Exception):
    pass

def encode(in_file, out_file, name=None, mode=None):
    """Uuencode file"""
    #
    # If in_file is a pathname open it and change defaults
    #
    opened_files = []
    try:
        if in_file == '-':
            in_file = sys.stdin.buffer
        elif isinstance(in_file, str):
            if name is None:
                name = os.path.basename(in_file)
            if mode is None:
                try:
                    mode = os.stat(in_file).st_mode
                except AttributeError:
                    pass
            in_file = open(in_file, 'rb')
            opened_files.append(in_file)
        #
        # Open out_file if it is a pathname
        #
        if out_file == '-':
            out_file = sys.stdout.buffer
        elif isinstance(out_file, str):
            out_file = open(out_file, 'wb')
            opened_files.append(out_file)
        #
        # Set defaults for name and mode
        #
        if name is None:
            name = '-'
        if mode is None:
            mode = 0o666
        #
        # Write the data
        #
        out_file.write(('begin %o %s\n' % ((mode & 0o777), name)).encode("ascii"))
        data = in_file.read(45)
        while len(data) > 0:
            out_file.write(binascii.b2a_uu(data))
            data = in_file.read(45)
        out_file.write(b' \nend\n')
    finally:
        for f in opened_files:
            f.close()


def decode(in_file, out_file=None, mode=None, quiet=False):
    """Decode uuencoded file"""
    #
    # Open the input file, if needed.
    #
    opened_files = []
    if in_file == '-':
        in_file = sys.stdin.buffer
    elif isinstance(in_file, str):
        in_file = open(in_file, 'rb')
        opened_files.append(in_file)

    try:
        #
        # Read until a begin is encountered or we've exhausted the file
        #
        while True:
            hdr = in_file.readline()
            if not hdr:
                raise Error('No valid begin line found in input file')
            if not hdr.startswith(b'begin'):
                continue
            hdrfields = hdr.split(b' ', 2)
            if len(hdrfields) == 3 and hdrfields[0] == b'begin':
                try:
                    int(hdrfields[1], 8)
                    break
                except ValueError:
                    pass
        if out_file is None:
            # If the filename isn't ASCII, what's up with that?!?
            out_file = hdrfields[2].rstrip(b' \t\r\n\f').decode("ascii")
            if os.path.exists(out_file):
                raise Error('Cannot overwrite existing file: %s' % out_file)
        if mode is None:
            mode = int(hdrfields[1], 8)
        #
        # Open the output file
        #
        if out_file == '-':
            out_file = sys.stdout.buffer
        elif isinstance(out_file, str):
            fp = open(out_file, 'wb')
            try:
                os.path.chmod(out_file, mode)
            except AttributeError:
                pass
            out_file = fp
            opened_files.append(out_file)
        #
        # Main decoding loop
        #
        s = in_file.readline()
        while s and s.strip(b' \t\r\n\f') != b'end':
            try:
                data = binascii.a2b_uu(s)
            except binascii.Error as v:
                # Workaround for broken uuencoders by /Fredrik Lundh
                nbytes = (((s[0]-32) & 63) * 4 + 5) // 3
                data = binascii.a2b_uu(s[:nbytes])
                if not quiet:
                    sys.stderr.write("Warning: %s\n" % v)
            out_file.write(data)
            s = in_file.readline()
        if not s:
            raise Error('Truncated input file')
    finally:
        for f in opened_files:
            f.close()

def test():
    """uuencode/uudecode main program"""

    import optparse
    parser = optparse.OptionParser(usage='usage: %prog [-d] [-t] [input [output]]')
    parser.add_option('-d', '--decode', dest='decode', help='Decode (instead of encode)?', default=False, action='store_true')
    parser.add_option('-t', '--text', dest='text', help='data is text, encoded format unix-compatible text?', default=False, action='store_true')

    (options, args) = parser.parse_args()
    if len(args) > 2:
        parser.error('incorrect number of arguments')
        sys.exit(1)

    # Use the binary streams underlying stdin/stdout
    input = sys.stdin.buffer
    output = sys.stdout.buffer
    if len(args) > 0:
        input = args[0]
    if len(args) > 1:
        output = args[1]

    if options.decode:
        if options.text:
            if isinstance(output, str):
                output = open(output, 'wb')
            else:
                print(sys.argv[0], ': cannot do -t to stdout')
                sys.exit(1)
        decode(input, output)
    else:
        if options.text:
            if isinstance(input, str):
                input = open(input, 'rb')
            else:
                print(sys.argv[0], ': cannot do -t from stdin')
                sys.exit(1)
        encode(input, output)

if __name__ == '__main__':
    test()
lib\uuid.py
r"""UUID objects (universally unique identifiers) according to RFC 4122.

This module provides immutable UUID objects (class UUID) and the functions
uuid1(), uuid3(), uuid4(), uuid5() for generating version 1, 3, 4, and 5
UUIDs as specified in RFC 4122.

If all you want is a unique ID, you should probably call uuid1() or uuid4().
Note that uuid1() may compromise privacy since it creates a UUID containing
the computer's network address.  uuid4() creates a random UUID.

Typical usage:

    >>> import uuid

    # make a UUID based on the host ID and current time
    >>> uuid.uuid1()    # doctest: +SKIP
    UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

    # make a UUID using an MD5 hash of a namespace UUID and a name
    >>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
    UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

    # make a random UUID
    >>> uuid.uuid4()    # doctest: +SKIP
    UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

    # make a UUID using a SHA-1 hash of a namespace UUID and a name
    >>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
    UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

    # make a UUID from a string of hex digits (braces and hyphens ignored)
    >>> x = uuid.UUID('{00010203-0405-0607-0809-0a0b0c0d0e0f}')

    # convert a UUID to a string of hex digits in standard form
    >>> str(x)
    '00010203-0405-0607-0809-0a0b0c0d0e0f'

    # get the raw 16 bytes of the UUID
    >>> x.bytes
    b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f'

    # make a UUID from a 16-byte string
    >>> uuid.UUID(bytes=x.bytes)
    UUID('00010203-0405-0607-0809-0a0b0c0d0e0f')
"""

__author__ = 'Ka-Ping Yee <[email protected]>'

RESERVED_NCS, RFC_4122, RESERVED_MICROSOFT, RESERVED_FUTURE = [
    'reserved for NCS compatibility', 'specified in RFC 4122',
    'reserved for Microsoft compatibility', 'reserved for future definition']

int_ = int      # The built-in int type
bytes_ = bytes  # The built-in bytes type

class UUID(object):
    """Instances of the UUID class represent UUIDs as specified in RFC 4122.
    UUID objects are immutable, hashable, and usable as dictionary keys.
    Converting a UUID to a string with str() yields something in the form
    '12345678-1234-1234-1234-123456789abc'.  The UUID constructor accepts
    five possible forms: a similar string of hexadecimal digits, or a tuple
    of six integer fields (with 32-bit, 16-bit, 16-bit, 8-bit, 8-bit, and
    48-bit values respectively) as an argument named 'fields', or a string
    of 16 bytes (with all the integer fields in big-endian order) as an
    argument named 'bytes', or a string of 16 bytes (with the first three
    fields in little-endian order) as an argument named 'bytes_le', or a
    single 128-bit integer as an argument named 'int'.

    UUIDs have these read-only attributes:

        bytes       the UUID as a 16-byte string (containing the six
                    integer fields in big-endian byte order)

        bytes_le    the UUID as a 16-byte string (with time_low, time_mid,
                    and time_hi_version in little-endian byte order)

        fields      a tuple of the six integer fields of the UUID,
                    which are also available as six individual attributes
                    and two derived attributes:

            time_low                the first 32 bits of the UUID
            time_mid                the next 16 bits of the UUID
            time_hi_version         the next 16 bits of the UUID
            clock_seq_hi_variant    the next 8 bits of the UUID
            clock_seq_low           the next 8 bits of the UUID
            node                    the last 48 bits of the UUID

            time                    the 60-bit timestamp
            clock_seq               the 14-bit sequence number

        hex         the UUID as a 32-character hexadecimal string

        int         the UUID as a 128-bit integer

        urn         the UUID as a URN as specified in RFC 4122

        variant     the UUID variant (one of the constants RESERVED_NCS,
                    RFC_4122, RESERVED_MICROSOFT, or RESERVED_FUTURE)

        version     the UUID version number (1 through 5, meaningful only
                    when the variant is RFC_4122)
    """

    def __init__(self, hex=None, bytes=None, bytes_le=None, fields=None,
                       int=None, version=None):
        r"""Create a UUID from either a string of 32 hexadecimal digits,
        a string of 16 bytes as the 'bytes' argument, a string of 16 bytes
        in little-endian order as the 'bytes_le' argument, a tuple of six
        integers (32-bit time_low, 16-bit time_mid, 16-bit time_hi_version,
        8-bit clock_seq_hi_variant, 8-bit clock_seq_low, 48-bit node) as
        the 'fields' argument, or a single 128-bit integer as the 'int'
        argument.  When a string of hex digits is given, curly braces,
        hyphens, and a URN prefix are all optional.  For example, these
        expressions all yield the same UUID:

        UUID('{12345678-1234-5678-1234-567812345678}')
        UUID('12345678123456781234567812345678')
        UUID('urn:uuid:12345678-1234-5678-1234-567812345678')
        UUID(bytes='\x12\x34\x56\x78'*4)
        UUID(bytes_le='\x78\x56\x34\x12\x34\x12\x78\x56' +
                      '\x12\x34\x56\x78\x12\x34\x56\x78')
        UUID(fields=(0x12345678, 0x1234, 0x5678, 0x12, 0x34, 0x567812345678))
        UUID(int=0x12345678123456781234567812345678)

        Exactly one of 'hex', 'bytes', 'bytes_le', 'fields', or 'int' must
        be given.  The 'version' argument is optional; if given, the resulting
        UUID will have its variant and version set according to RFC 4122,
        overriding the given 'hex', 'bytes', 'bytes_le', 'fields', or 'int'.
        """

        if [hex, bytes, bytes_le, fields, int].count(None) != 4:
            raise TypeError('need one of hex, bytes, bytes_le, fields, or int')
        if hex is not None:
            hex = hex.replace('urn:', '').replace('uuid:', '')
            hex = hex.strip('{}').replace('-', '')
            if len(hex) != 32:
                raise ValueError('badly formed hexadecimal UUID string')
            int = int_(hex, 16)
        if bytes_le is not None:
            if len(bytes_le) != 16:
                raise ValueError('bytes_le is not a 16-char string')
            bytes = (bytes_(reversed(bytes_le[0:4])) +
                     bytes_(reversed(bytes_le[4:6])) +
                     bytes_(reversed(bytes_le[6:8])) +
                     bytes_le[8:])
        if bytes is not None:
            if len(bytes) != 16:
                raise ValueError('bytes is not a 16-char string')
            assert isinstance(bytes, bytes_), repr(bytes)
            int = int_.from_bytes(bytes, byteorder='big')
        if fields is not None:
            if len(fields) != 6:
                raise ValueError('fields is not a 6-tuple')
            (time_low, time_mid, time_hi_version,
             clock_seq_hi_variant, clock_seq_low, node) = fields
            if not 0 <= time_low < 1<<32:
                raise ValueError('field 1 out of range (need a 32-bit value)')
            if not 0 <= time_mid < 1<<16:
                raise ValueError('field 2 out of range (need a 16-bit value)')
            if not 0 <= time_hi_version < 1<<16:
                raise ValueError('field 3 out of range (need a 16-bit value)')
            if not 0 <= clock_seq_hi_variant < 1<<8:
                raise ValueError('field 4 out of range (need an 8-bit value)')
            if not 0 <= clock_seq_low < 1<<8:
                raise ValueError('field 5 out of range (need an 8-bit value)')
            if not 0 <= node < 1<<48:
                raise ValueError('field 6 out of range (need a 48-bit value)')
            clock_seq = (clock_seq_hi_variant << 8) | clock_seq_low
            int = ((time_low << 96) | (time_mid << 80) |
                   (time_hi_version << 64) | (clock_seq << 48) | node)
        if int is not None:
            if not 0 <= int < 1<<128:
                raise ValueError('int is out of range (need a 128-bit value)')
        if version is not None:
            if not 1 <= version <= 5:
                raise ValueError('illegal version number')
            # Set the variant to RFC 4122.
            int &= ~(0xc000 << 48)
            int |= 0x8000 << 48
            # Set the version number.
            int &= ~(0xf000 << 64)
            int |= version << 76
        self.__dict__['int'] = int

    def __eq__(self, other):
        if isinstance(other, UUID):
            return self.int == other.int
        return NotImplemented

    def __ne__(self, other):
        if isinstance(other, UUID):
            return self.int != other.int
        return NotImplemented

    # Q. What's the value of being able to sort UUIDs?
    # A. Use them as keys in a B-Tree or similar mapping.

    def __lt__(self, other):
        if isinstance(other, UUID):
            return self.int < other.int
        return NotImplemented

    def __gt__(self, other):
        if isinstance(other, UUID):
            return self.int > other.int
        return NotImplemented

    def __le__(self, other):
        if isinstance(other, UUID):
            return self.int <= other.int
        return NotImplemented

    def __ge__(self, other):
        if isinstance(other, UUID):
            return self.int >= other.int
        return NotImplemented

    def __hash__(self):
        return hash(self.int)

    def __int__(self):
        return self.int

    def __repr__(self):
        return 'UUID(%r)' % str(self)

    def __setattr__(self, name, value):
        raise TypeError('UUID objects are immutable')

    def __str__(self):
        hex = '%032x' % self.int
        return '%s-%s-%s-%s-%s' % (
            hex[:8], hex[8:12], hex[12:16], hex[16:20], hex[20:])

    @property
    def bytes(self):
        bytes = bytearray()
        for shift in range(0, 128, 8):
            bytes.insert(0, (self.int >> shift) & 0xff)
        return bytes_(bytes)

    @property
    def bytes_le(self):
        bytes = self.bytes
        return (bytes_(reversed(bytes[0:4])) +
                bytes_(reversed(bytes[4:6])) +
                bytes_(reversed(bytes[6:8])) +
                bytes[8:])

    @property
    def fields(self):
        return (self.time_low, self.time_mid, self.time_hi_version,
                self.clock_seq_hi_variant, self.clock_seq_low, self.node)

    @property
    def time_low(self):
        return self.int >> 96

    @property
    def time_mid(self):
        return (self.int >> 80) & 0xffff

    @property
    def time_hi_version(self):
        return (self.int >> 64) & 0xffff

    @property
    def clock_seq_hi_variant(self):
        return (self.int >> 56) & 0xff

    @property
    def clock_seq_low(self):
        return (self.int >> 48) & 0xff

    @property
    def time(self):
        return (((self.time_hi_version & 0x0fff) << 48) |
                (self.time_mid << 32) | self.time_low)

    @property
    def clock_seq(self):
        return (((self.clock_seq_hi_variant & 0x3f) << 8) |
                self.clock_seq_low)

    @property
    def node(self):
        return self.int & 0xffffffffffff

    @property
    def hex(self):
        return '%032x' % self.int

    @property
    def urn(self):
        return 'urn:uuid:' + str(self)

    @property
    def variant(self):
        if not self.int & (0x8000 << 48):
            return RESERVED_NCS
        elif not self.int & (0x4000 << 48):
            return RFC_4122
        elif not self.int & (0x2000 << 48):
            return RESERVED_MICROSOFT
        else:
            return RESERVED_FUTURE

    @property
    def version(self):
        # The version bits are only meaningful for RFC 4122 UUIDs.
        if self.variant == RFC_4122:
            return int((self.int >> 76) & 0xf)

def _popen(command, args):
    import os, shutil
    executable = shutil.which(command)
    if executable is None:
        path = os.pathsep.join(('/sbin', '/usr/sbin'))
        executable = shutil.which(command, path=path)
        if executable is None:
            return None
    # LC_ALL to ensure English output, 2>/dev/null to prevent output on
    # stderr (Note: we don't have an example where the words we search for
    # are actually localized, but in theory some system could do so.)
    cmd = 'LC_ALL=C %s %s 2>/dev/null' % (executable, args)
    return os.popen(cmd)

def _find_mac(command, args, hw_identifiers, get_index):
    try:
        pipe = _popen(command, args)
        if not pipe:
            return
        with pipe:
            for line in pipe:
                words = line.lower().rstrip().split()
                for i in range(len(words)):
                    if words[i] in hw_identifiers:
                        try:
                            word = words[get_index(i)]
                            mac = int(word.replace(':', ''), 16)
                            if mac:
                                return mac
                        except (ValueError, IndexError):
                            # Virtual interfaces, such as those provided by
                            # VPNs, do not have a colon-delimited MAC address
                            # as expected, but a 16-byte HWAddr separated by
                            # dashes. These should be ignored in favor of a
                            # real MAC address
                            pass
    except OSError:
        pass

def _ifconfig_getnode():
    """Get the hardware address on Unix by running ifconfig."""
    # This works on Linux ('' or '-a'), Tru64 ('-av'), but not all Unixes.
    for args in ('', '-a', '-av'):
        mac = _find_mac('ifconfig', args, ['hwaddr', 'ether'], lambda i: i+1)
        if mac:
            return mac

def _arp_getnode():
    """Get the hardware address on Unix by running arp."""
    import os, socket
    try:
        ip_addr = socket.gethostbyname(socket.gethostname())
    except OSError:
        return None

    # Try getting the MAC addr from arp based on our IP address (Solaris).
    return _find_mac('arp', '-an', [ip_addr], lambda i: -1)

def _lanscan_getnode():
    """Get the hardware address on Unix by running lanscan."""
    # This might work on HP-UX.
    return _find_mac('lanscan', '-ai', ['lan0'], lambda i: 0)

def _netstat_getnode():
    """Get the hardware address on Unix by running netstat."""
    # This might work on AIX, Tru64 UNIX and presumably on IRIX.
    try:
        pipe = _popen('netstat', '-ia')
        if not pipe:
            return
        with pipe:
            words = pipe.readline().rstrip().split()
            try:
                i = words.index('Address')
            except ValueError:
                return
            for line in pipe:
                try:
                    words = line.rstrip().split()
                    word = words[i]
                    if len(word) == 17 and word.count(':') == 5:
                        mac = int(word.replace(':', ''), 16)
                        if mac:
                            return mac
                except (ValueError, IndexError):
                    pass
    except OSError:
        pass

def _ipconfig_getnode():
    """Get the hardware address on Windows by running ipconfig.exe."""
    import os, re
    dirs = ['', r'c:\windows\system32', r'c:\winnt\system32']
    try:
        import ctypes
        buffer = ctypes.create_string_buffer(300)
        ctypes.windll.kernel32.GetSystemDirectoryA(buffer, 300)
        dirs.insert(0, buffer.value.decode('mbcs'))
    except:
        pass
    for dir in dirs:
        try:
            pipe = os.popen(os.path.join(dir, 'ipconfig') + ' /all')
        except OSError:
            continue
        with pipe:
            for line in pipe:
                value = line.split(':')[-1].strip().lower()
                if re.match('([0-9a-f][0-9a-f]-){5}[0-9a-f][0-9a-f]', value):
                    return int(value.replace('-', ''), 16)

def _netbios_getnode():
    """Get the hardware address on Windows using NetBIOS calls.
    See http://support.microsoft.com/kb/118623 for details."""
    import win32wnet, netbios
    ncb = netbios.NCB()
    ncb.Command = netbios.NCBENUM
    ncb.Buffer = adapters = netbios.LANA_ENUM()
    adapters._pack()
    if win32wnet.Netbios(ncb) != 0:
        return
    adapters._unpack()
    for i in range(adapters.length):
        ncb.Reset()
        ncb.Command = netbios.NCBRESET
        ncb.Lana_num = ord(adapters.lana[i])
        if win32wnet.Netbios(ncb) != 0:
            continue
        ncb.Reset()
        ncb.Command = netbios.NCBASTAT
        ncb.Lana_num = ord(adapters.lana[i])
        ncb.Callname = '*'.ljust(16)
        ncb.Buffer = status = netbios.ADAPTER_STATUS()
        if win32wnet.Netbios(ncb) != 0:
            continue
        status._unpack()
        bytes = status.adapter_address
        return ((bytes[0]<<40) + (bytes[1]<<32) + (bytes[2]<<24) +
                (bytes[3]<<16) + (bytes[4]<<8) + bytes[5])

# Thanks to Thomas Heller for ctypes and for his help with its use here.

# If ctypes is available, use it to find system routines for UUID generation.
# XXX This makes the module non-thread-safe!
_uuid_generate_random = _uuid_generate_time = _UuidCreate = None
try:
    import ctypes, ctypes.util

    # The uuid_generate_* routines are provided by libuuid on at least
    # Linux and FreeBSD, and provided by libc on Mac OS X.
    for libname in ['uuid', 'c']:
        try:
            lib = ctypes.CDLL(ctypes.util.find_library(libname))
        except:
            continue
        if hasattr(lib, 'uuid_generate_random'):
            _uuid_generate_random = lib.uuid_generate_random
        if hasattr(lib, 'uuid_generate_time'):
            _uuid_generate_time = lib.uuid_generate_time
            if _uuid_generate_random is not None:
                break  # found everything we were looking for

    # The uuid_generate_* functions are broken on MacOS X 10.5, as noted
    # in issue #8621 the function generates the same sequence of values
    # in the parent process and all children created using fork (unless
    # those children use exec as well).
    #
    # Assume that the uuid_generate functions are broken from 10.5 onward,
    # the test can be adjusted when a later version is fixed.
    import sys
    if sys.platform == 'darwin':
        import os
        if int(os.uname().release.split('.')[0]) >= 9:
            _uuid_generate_random = _uuid_generate_time = None

    # On Windows prior to 2000, UuidCreate gives a UUID containing the
    # hardware address.  On Windows 2000 and later, UuidCreate makes a
    # random UUID and UuidCreateSequential gives a UUID containing the
    # hardware address.  These routines are provided by the RPC runtime.
    # NOTE:  at least on Tim's WinXP Pro SP2 desktop box, while the last
    # 6 bytes returned by UuidCreateSequential are fixed, they don't appear
    # to bear any relationship to the MAC address of any network device
    # on the box.
    try:
        lib = ctypes.windll.rpcrt4
    except:
        lib = None
    _UuidCreate = getattr(lib, 'UuidCreateSequential',
                          getattr(lib, 'UuidCreate', None))
except:
    pass

def _unixdll_getnode():
    """Get the hardware address on Unix using ctypes."""
    _buffer = ctypes.create_string_buffer(16)
    _uuid_generate_time(_buffer)
    return UUID(bytes=bytes_(_buffer.raw)).node

def _windll_getnode():
    """Get the hardware address on Windows using ctypes."""
    _buffer = ctypes.create_string_buffer(16)
    if _UuidCreate(_buffer) == 0:
        return UUID(bytes=bytes_(_buffer.raw)).node

def _random_getnode():
    """Get a random node ID, with eighth bit set as suggested by RFC 4122."""
    import random
    return random.randrange(0, 1<<48) | 0x010000000000

_node = None

def getnode():
    """Get the hardware address as a 48-bit positive integer.

    The first time this runs, it may launch a separate program, which could
    be quite slow.  If all attempts to obtain the hardware address fail, we
    choose a random 48-bit number with its eighth bit set to 1 as recommended
    in RFC 4122.
    """

    global _node
    if _node is not None:
        return _node

    import sys
    if sys.platform == 'win32':
        getters = [_windll_getnode, _netbios_getnode, _ipconfig_getnode]
    else:
        getters = [_unixdll_getnode, _ifconfig_getnode, _arp_getnode,
                   _lanscan_getnode, _netstat_getnode]

    for getter in getters + [_random_getnode]:
        try:
            _node = getter()
        except:
            continue
        if _node is not None:
            return _node

_last_timestamp = None

def uuid1(node=None, clock_seq=None):
    """Generate a UUID from a host ID, sequence number, and the current time.
    If 'node' is not given, getnode() is used to obtain the hardware
    address.  If 'clock_seq' is given, it is used as the sequence number;
    otherwise a random 14-bit sequence number is chosen."""

    # When the system provides a version-1 UUID generator, use it (but don't
    # use UuidCreate here because its UUIDs don't conform to RFC 4122).
    if _uuid_generate_time and node is clock_seq is None:
        _buffer = ctypes.create_string_buffer(16)
        _uuid_generate_time(_buffer)
        return UUID(bytes=bytes_(_buffer.raw))

    global _last_timestamp
    import time
    nanoseconds = int(time.time() * 1e9)
    # 0x01b21dd213814000 is the number of 100-ns intervals between the
    # UUID epoch 1582-10-15 00:00:00 and the Unix epoch 1970-01-01 00:00:00.
    timestamp = int(nanoseconds/100) + 0x01b21dd213814000
    if _last_timestamp is not None and timestamp <= _last_timestamp:
        timestamp = _last_timestamp + 1
    _last_timestamp = timestamp
    if clock_seq is None:
        import random
        clock_seq = random.randrange(1<<14) # instead of stable storage
    time_low = timestamp & 0xffffffff
    time_mid = (timestamp >> 32) & 0xffff
    time_hi_version = (timestamp >> 48) & 0x0fff
    clock_seq_low = clock_seq & 0xff
    clock_seq_hi_variant = (clock_seq >> 8) & 0x3f
    if node is None:
        node = getnode()
    return UUID(fields=(time_low, time_mid, time_hi_version,
                        clock_seq_hi_variant, clock_seq_low, node), version=1)

def uuid3(namespace, name):
    """Generate a UUID from the MD5 hash of a namespace UUID and a name."""
    from hashlib import md5
    hash = md5(namespace.bytes + bytes(name, "utf-8")).digest()
    return UUID(bytes=hash[:16], version=3)

def uuid4():
    """Generate a random UUID."""

    # When the system provides a version-4 UUID generator, use it.
    if _uuid_generate_random:
        _buffer = ctypes.create_string_buffer(16)
        _uuid_generate_random(_buffer)
        return UUID(bytes=bytes_(_buffer.raw))

    # Otherwise, get randomness from urandom or the 'random' module.
    try:
        import os
        return UUID(bytes=os.urandom(16), version=4)
    except:
        import random
        bytes = bytes_(random.randrange(256) for i in range(16))
        return UUID(bytes=bytes, version=4)

def uuid5(namespace, name):
    """Generate a UUID from the SHA-1 hash of a namespace UUID and a name."""
    from hashlib import sha1
    hash = sha1(namespace.bytes + bytes(name, "utf-8")).digest()
    return UUID(bytes=hash[:16], version=5)

# The following standard UUIDs are for use with uuid3() or uuid5().

NAMESPACE_DNS = UUID('6ba7b810-9dad-11d1-80b4-00c04fd430c8')
NAMESPACE_URL = UUID('6ba7b811-9dad-11d1-80b4-00c04fd430c8')
NAMESPACE_OID = UUID('6ba7b812-9dad-11d1-80b4-00c04fd430c8')
NAMESPACE_X500 = UUID('6ba7b814-9dad-11d1-80b4-00c04fd430c8')
lib\warnings.py
"""Python part of the warnings subsystem."""

import sys

__all__ = ["warn", "warn_explicit", "showwarning",
           "formatwarning", "filterwarnings", "simplefilter",
           "resetwarnings", "catch_warnings"]


def showwarning(message, category, filename, lineno, file=None, line=None):
    """Hook to write a warning to a file; replace if you like."""
    if file is None:
        file = sys.stderr
        if file is None:
            # sys.stderr is None when run with pythonw.exe - warnings get lost
            return
    try:
        file.write(formatwarning(message, category, filename, lineno, line))
    except OSError:
        pass # the file (probably stderr) is invalid - this warning gets lost.

def formatwarning(message, category, filename, lineno, line=None):
    """Function to format a warning the standard way."""
    import linecache
    s =  "%s:%s: %s: %s\n" % (filename, lineno, category.__name__, message)
    line = linecache.getline(filename, lineno) if line is None else line
    if line:
        line = line.strip()
        s += "  %s\n" % line
    return s

def filterwarnings(action, message="", category=Warning, module="", lineno=0,
                   append=False):
    """Insert an entry into the list of warnings filters (at the front).

    'action' -- one of "error", "ignore", "always", "default", "module",
                or "once"
    'message' -- a regex that the warning message must match
    'category' -- a class that the warning must be a subclass of
    'module' -- a regex that the module name must match
    'lineno' -- an integer line number, 0 matches all warnings
    'append' -- if true, append to the list of filters
    """
    import re
    assert action in ("error", "ignore", "always", "default", "module",
                      "once"), "invalid action: %r" % (action,)
    assert isinstance(message, str), "message must be a string"
    assert isinstance(category, type), "category must be a class"
    assert issubclass(category, Warning), "category must be a Warning subclass"
    assert isinstance(module, str), "module must be a string"
    assert isinstance(lineno, int) and lineno >= 0, \
           "lineno must be an int >= 0"
    item = (action, re.compile(message, re.I), category,
            re.compile(module), lineno)
    if append:
        filters.append(item)
    else:
        filters.insert(0, item)
    _filters_mutated()

def simplefilter(action, category=Warning, lineno=0, append=False):
    """Insert a simple entry into the list of warnings filters (at the front).

    A simple filter matches all modules and messages.
    'action' -- one of "error", "ignore", "always", "default", "module",
                or "once"
    'category' -- a class that the warning must be a subclass of
    'lineno' -- an integer line number, 0 matches all warnings
    'append' -- if true, append to the list of filters
    """
    assert action in ("error", "ignore", "always", "default", "module",
                      "once"), "invalid action: %r" % (action,)
    assert isinstance(lineno, int) and lineno >= 0, \
           "lineno must be an int >= 0"
    item = (action, None, category, None, lineno)
    if append:
        filters.append(item)
    else:
        filters.insert(0, item)
    _filters_mutated()

def resetwarnings():
    """Clear the list of warning filters, so that no filters are active."""
    filters[:] = []
    _filters_mutated()

class _OptionError(Exception):
    """Exception used by option processing helpers."""
    pass

# Helper to process -W options passed via sys.warnoptions
def _processoptions(args):
    for arg in args:
        try:
            _setoption(arg)
        except _OptionError as msg:
            print("Invalid -W option ignored:", msg, file=sys.stderr)

# Helper for _processoptions()
def _setoption(arg):
    import re
    parts = arg.split(':')
    if len(parts) > 5:
        raise _OptionError("too many fields (max 5): %r" % (arg,))
    while len(parts) < 5:
        parts.append('')
    action, message, category, module, lineno = [s.strip()
                                                 for s in parts]
    action = _getaction(action)
    message = re.escape(message)
    category = _getcategory(category)
    module = re.escape(module)
    if module:
        module = module + '$'
    if lineno:
        try:
            lineno = int(lineno)
            if lineno < 0:
                raise ValueError
        except (ValueError, OverflowError):
            raise _OptionError("invalid lineno %r" % (lineno,))
    else:
        lineno = 0
    filterwarnings(action, message, category, module, lineno)

# Helper for _setoption()
def _getaction(action):
    if not action:
        return "default"
    if action == "all": return "always" # Alias
    for a in ('default', 'always', 'ignore', 'module', 'once', 'error'):
        if a.startswith(action):
            return a
    raise _OptionError("invalid action: %r" % (action,))

# Helper for _setoption()
def _getcategory(category):
    import re
    if not category:
        return Warning
    if re.match("^[a-zA-Z0-9_]+$", category):
        try:
            cat = eval(category)
        except NameError:
            raise _OptionError("unknown warning category: %r" % (category,))
    else:
        i = category.rfind(".")
        module = category[:i]
        klass = category[i+1:]
        try:
            m = __import__(module, None, None, [klass])
        except ImportError:
            raise _OptionError("invalid module name: %r" % (module,))
        try:
            cat = getattr(m, klass)
        except AttributeError:
            raise _OptionError("unknown warning category: %r" % (category,))
    if not issubclass(cat, Warning):
        raise _OptionError("invalid warning category: %r" % (category,))
    return cat


# Code typically replaced by _warnings
def warn(message, category=None, stacklevel=1):
    """Issue a warning, or maybe ignore it or raise an exception."""
    # Check if message is already a Warning object
    if isinstance(message, Warning):
        category = message.__class__
    # Check category argument
    if category is None:
        category = UserWarning
    assert issubclass(category, Warning)
    # Get context information
    try:
        caller = sys._getframe(stacklevel)
    except ValueError:
        globals = sys.__dict__
        lineno = 1
    else:
        globals = caller.f_globals
        lineno = caller.f_lineno
    if '__name__' in globals:
        module = globals['__name__']
    else:
        module = "<string>"
    filename = globals.get('__file__')
    if filename:
        fnl = filename.lower()
        if fnl.endswith((".pyc", ".pyo")):
            filename = filename[:-1]
    else:
        if module == "__main__":
            try:
                filename = sys.argv[0]
            except AttributeError:
                # embedded interpreters don't have sys.argv, see bug #839151
                filename = '__main__'
        if not filename:
            filename = module
    registry = globals.setdefault("__warningregistry__", {})
    warn_explicit(message, category, filename, lineno, module, registry,
                  globals)

def warn_explicit(message, category, filename, lineno,
                  module=None, registry=None, module_globals=None):
    lineno = int(lineno)
    if module is None:
        module = filename or "<unknown>"
        if module[-3:].lower() == ".py":
            module = module[:-3] # XXX What about leading pathname?
    if registry is None:
        registry = {}
    if registry.get('version', 0) != _filters_version:
        registry.clear()
        registry['version'] = _filters_version
    if isinstance(message, Warning):
        text = str(message)
        category = message.__class__
    else:
        text = message
        message = category(message)
    key = (text, category, lineno)
    # Quick test for common case
    if registry.get(key):
        return
    # Search the filters
    for item in filters:
        action, msg, cat, mod, ln = item
        if ((msg is None or msg.match(text)) and
            issubclass(category, cat) and
            (mod is None or mod.match(module)) and
            (ln == 0 or lineno == ln)):
            break
    else:
        action = defaultaction
    # Early exit actions
    if action == "ignore":
        registry[key] = 1
        return

    # Prime the linecache for formatting, in case the
    # "file" is actually in a zipfile or something.
    import linecache
    linecache.getlines(filename, module_globals)

    if action == "error":
        raise message
    # Other actions
    if action == "once":
        registry[key] = 1
        oncekey = (text, category)
        if onceregistry.get(oncekey):
            return
        onceregistry[oncekey] = 1
    elif action == "always":
        pass
    elif action == "module":
        registry[key] = 1
        altkey = (text, category, 0)
        if registry.get(altkey):
            return
        registry[altkey] = 1
    elif action == "default":
        registry[key] = 1
    else:
        # Unrecognized actions are errors
        raise RuntimeError(
              "Unrecognized action (%r) in warnings.filters:\n %s" %
              (action, item))
    if not callable(showwarning):
        raise TypeError("warnings.showwarning() must be set to a "
                        "function or method")
    # Print message and context
    showwarning(message, category, filename, lineno)


class WarningMessage(object):

    """Holds the result of a single showwarning() call."""

    _WARNING_DETAILS = ("message", "category", "filename", "lineno", "file",
                        "line")

    def __init__(self, message, category, filename, lineno, file=None,
                    line=None):
        local_values = locals()
        for attr in self._WARNING_DETAILS:
            setattr(self, attr, local_values[attr])
        self._category_name = category.__name__ if category else None

    def __str__(self):
        return ("{message : %r, category : %r, filename : %r, lineno : %s, "
                    "line : %r}" % (self.message, self._category_name,
                                    self.filename, self.lineno, self.line))


class catch_warnings(object):

    """A context manager that copies and restores the warnings filter upon
    exiting the context.

    The 'record' argument specifies whether warnings should be captured by a
    custom implementation of warnings.showwarning() and be appended to a list
    returned by the context manager. Otherwise None is returned by the context
    manager. The objects appended to the list are arguments whose attributes
    mirror the arguments to showwarning().

    The 'module' argument is to specify an alternative module to the module
    named 'warnings' and imported under that name. This argument is only useful
    when testing the warnings module itself.

    """

    def __init__(self, *, record=False, module=None):
        """Specify whether to record warnings and if an alternative module
        should be used other than sys.modules['warnings'].

        For compatibility with Python 3.0, please consider all arguments to be
        keyword-only.

        """
        self._record = record
        self._module = sys.modules['warnings'] if module is None else module
        self._entered = False

    def __repr__(self):
        args = []
        if self._record:
            args.append("record=True")
        if self._module is not sys.modules['warnings']:
            args.append("module=%r" % self._module)
        name = type(self).__name__
        return "%s(%s)" % (name, ", ".join(args))

    def __enter__(self):
        if self._entered:
            raise RuntimeError("Cannot enter %r twice" % self)
        self._entered = True
        self._filters = self._module.filters
        self._module.filters = self._filters[:]
        self._module._filters_mutated()
        self._showwarning = self._module.showwarning
        if self._record:
            log = []
            def showwarning(*args, **kwargs):
                log.append(WarningMessage(*args, **kwargs))
            self._module.showwarning = showwarning
            return log
        else:
            return None

    def __exit__(self, *exc_info):
        if not self._entered:
            raise RuntimeError("Cannot exit %r without entering first" % self)
        self._module.filters = self._filters
        self._module._filters_mutated()
        self._module.showwarning = self._showwarning


# filters contains a sequence of filter 5-tuples
# The components of the 5-tuple are:
# - an action: error, ignore, always, default, module, or once
# - a compiled regex that must match the warning message
# - a class representing the warning category
# - a compiled regex that must match the module that is being warned
# - a line number for the line being warning, or 0 to mean any line
# If either if the compiled regexs are None, match anything.
_warnings_defaults = False
try:
    from _warnings import (filters, _defaultaction, _onceregistry,
                           warn, warn_explicit, _filters_mutated)
    defaultaction = _defaultaction
    onceregistry = _onceregistry
    _warnings_defaults = True

except ImportError:
    filters = []
    defaultaction = "default"
    onceregistry = {}

    _filters_version = 1

    def _filters_mutated():
        global _filters_version
        _filters_version += 1


# Module initialization
_processoptions(sys.warnoptions)
if not _warnings_defaults:
    silence = [ImportWarning, PendingDeprecationWarning]
    silence.append(DeprecationWarning)
    for cls in silence:
        simplefilter("ignore", category=cls)
    bytes_warning = sys.flags.bytes_warning
    if bytes_warning > 1:
        bytes_action = "error"
    elif bytes_warning:
        bytes_action = "default"
    else:
        bytes_action = "ignore"
    simplefilter(bytes_action, category=BytesWarning, append=1)
    # resource usage warnings are enabled by default in pydebug mode
    if hasattr(sys, 'gettotalrefcount'):
        resource_action = "always"
    else:
        resource_action = "ignore"
    simplefilter(resource_action, category=ResourceWarning, append=1)

del _warnings_defaults
lib\wave.py
"""Stuff to parse WAVE files.

Usage.

Reading WAVE files:
      f = wave.open(file, 'r')
where file is either the name of a file or an open file pointer.
The open file pointer must have methods read(), seek(), and close().
When the setpos() and rewind() methods are not used, the seek()
method is not  necessary.

This returns an instance of a class with the following public methods:
      getnchannels()  -- returns number of audio channels (1 for
                         mono, 2 for stereo)
      getsampwidth()  -- returns sample width in bytes
      getframerate()  -- returns sampling frequency
      getnframes()    -- returns number of audio frames
      getcomptype()   -- returns compression type ('NONE' for linear samples)
      getcompname()   -- returns human-readable version of
                         compression type ('not compressed' linear samples)
      getparams()     -- returns a namedtuple consisting of all of the
                         above in the above order
      getmarkers()    -- returns None (for compatibility with the
                         aifc module)
      getmark(id)     -- raises an error since the mark does not
                         exist (for compatibility with the aifc module)
      readframes(n)   -- returns at most n frames of audio
      rewind()        -- rewind to the beginning of the audio stream
      setpos(pos)     -- seek to the specified position
      tell()          -- return the current position
      close()         -- close the instance (make it unusable)
The position returned by tell() and the position given to setpos()
are compatible and have nothing to do with the actual position in the
file.
The close() method is called automatically when the class instance
is destroyed.

Writing WAVE files:
      f = wave.open(file, 'w')
where file is either the name of a file or an open file pointer.
The open file pointer must have methods write(), tell(), seek(), and
close().

This returns an instance of a class with the following public methods:
      setnchannels(n) -- set the number of channels
      setsampwidth(n) -- set the sample width
      setframerate(n) -- set the frame rate
      setnframes(n)   -- set the number of frames
      setcomptype(type, name)
                      -- set the compression type and the
                         human-readable compression type
      setparams(tuple)
                      -- set all parameters at once
      tell()          -- return current position in output file
      writeframesraw(data)
                      -- write audio frames without pathing up the
                         file header
      writeframes(data)
                      -- write audio frames and patch up the file header
      close()         -- patch up the file header and close the
                         output file
You should set the parameters before the first writeframesraw or
writeframes.  The total number of frames does not need to be set,
but when it is set to the correct value, the header does not have to
be patched up.
It is best to first set all parameters, perhaps possibly the
compression type, and then write audio frames using writeframesraw.
When all frames have been written, either call writeframes(b'') or
close() to patch up the sizes in the header.
The close() method is called automatically when the class instance
is destroyed.
"""

import builtins

__all__ = ["open", "openfp", "Error"]

class Error(Exception):
    pass

WAVE_FORMAT_PCM = 0x0001

_array_fmts = None, 'b', 'h', None, 'i'

import audioop
import struct
import sys
from chunk import Chunk
from collections import namedtuple

_wave_params = namedtuple('_wave_params',
                     'nchannels sampwidth framerate nframes comptype compname')

class Wave_read:
    """Variables used in this class:

    These variables are available to the user though appropriate
    methods of this class:
    _file -- the open file with methods read(), close(), and seek()
              set through the __init__() method
    _nchannels -- the number of audio channels
              available through the getnchannels() method
    _nframes -- the number of audio frames
              available through the getnframes() method
    _sampwidth -- the number of bytes per audio sample
              available through the getsampwidth() method
    _framerate -- the sampling frequency
              available through the getframerate() method
    _comptype -- the AIFF-C compression type ('NONE' if AIFF)
              available through the getcomptype() method
    _compname -- the human-readable AIFF-C compression type
              available through the getcomptype() method
    _soundpos -- the position in the audio stream
              available through the tell() method, set through the
              setpos() method

    These variables are used internally only:
    _fmt_chunk_read -- 1 iff the FMT chunk has been read
    _data_seek_needed -- 1 iff positioned correctly in audio
              file for readframes()
    _data_chunk -- instantiation of a chunk class for the DATA chunk
    _framesize -- size of one frame in the file
    """

    def initfp(self, file):
        self._convert = None
        self._soundpos = 0
        self._file = Chunk(file, bigendian = 0)
        if self._file.getname() != b'RIFF':
            raise Error('file does not start with RIFF id')
        if self._file.read(4) != b'WAVE':
            raise Error('not a WAVE file')
        self._fmt_chunk_read = 0
        self._data_chunk = None
        while 1:
            self._data_seek_needed = 1
            try:
                chunk = Chunk(self._file, bigendian = 0)
            except EOFError:
                break
            chunkname = chunk.getname()
            if chunkname == b'fmt ':
                self._read_fmt_chunk(chunk)
                self._fmt_chunk_read = 1
            elif chunkname == b'data':
                if not self._fmt_chunk_read:
                    raise Error('data chunk before fmt chunk')
                self._data_chunk = chunk
                self._nframes = chunk.chunksize // self._framesize
                self._data_seek_needed = 0
                break
            chunk.skip()
        if not self._fmt_chunk_read or not self._data_chunk:
            raise Error('fmt chunk and/or data chunk missing')

    def __init__(self, f):
        self._i_opened_the_file = None
        if isinstance(f, str):
            f = builtins.open(f, 'rb')
            self._i_opened_the_file = f
        # else, assume it is an open file object already
        try:
            self.initfp(f)
        except:
            if self._i_opened_the_file:
                f.close()
            raise

    def __del__(self):
        self.close()

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    #
    # User visible methods.
    #
    def getfp(self):
        return self._file

    def rewind(self):
        self._data_seek_needed = 1
        self._soundpos = 0

    def close(self):
        self._file = None
        file = self._i_opened_the_file
        if file:
            self._i_opened_the_file = None
            file.close()

    def tell(self):
        return self._soundpos

    def getnchannels(self):
        return self._nchannels

    def getnframes(self):
        return self._nframes

    def getsampwidth(self):
        return self._sampwidth

    def getframerate(self):
        return self._framerate

    def getcomptype(self):
        return self._comptype

    def getcompname(self):
        return self._compname

    def getparams(self):
        return _wave_params(self.getnchannels(), self.getsampwidth(),
                       self.getframerate(), self.getnframes(),
                       self.getcomptype(), self.getcompname())

    def getmarkers(self):
        return None

    def getmark(self, id):
        raise Error('no marks')

    def setpos(self, pos):
        if pos < 0 or pos > self._nframes:
            raise Error('position not in range')
        self._soundpos = pos
        self._data_seek_needed = 1

    def readframes(self, nframes):
        if self._data_seek_needed:
            self._data_chunk.seek(0, 0)
            pos = self._soundpos * self._framesize
            if pos:
                self._data_chunk.seek(pos, 0)
            self._data_seek_needed = 0
        if nframes == 0:
            return b''
        data = self._data_chunk.read(nframes * self._framesize)
        if self._sampwidth != 1 and sys.byteorder == 'big':
            data = audioop.byteswap(data, self._sampwidth)
        if self._convert and data:
            data = self._convert(data)
        self._soundpos = self._soundpos + len(data) // (self._nchannels * self._sampwidth)
        return data

    #
    # Internal methods.
    #

    def _read_fmt_chunk(self, chunk):
        wFormatTag, self._nchannels, self._framerate, dwAvgBytesPerSec, wBlockAlign = struct.unpack_from('<HHLLH', chunk.read(14))
        if wFormatTag == WAVE_FORMAT_PCM:
            sampwidth = struct.unpack_from('<H', chunk.read(2))[0]
            self._sampwidth = (sampwidth + 7) // 8
        else:
            raise Error('unknown format: %r' % (wFormatTag,))
        self._framesize = self._nchannels * self._sampwidth
        self._comptype = 'NONE'
        self._compname = 'not compressed'

class Wave_write:
    """Variables used in this class:

    These variables are user settable through appropriate methods
    of this class:
    _file -- the open file with methods write(), close(), tell(), seek()
              set through the __init__() method
    _comptype -- the AIFF-C compression type ('NONE' in AIFF)
              set through the setcomptype() or setparams() method
    _compname -- the human-readable AIFF-C compression type
              set through the setcomptype() or setparams() method
    _nchannels -- the number of audio channels
              set through the setnchannels() or setparams() method
    _sampwidth -- the number of bytes per audio sample
              set through the setsampwidth() or setparams() method
    _framerate -- the sampling frequency
              set through the setframerate() or setparams() method
    _nframes -- the number of audio frames written to the header
              set through the setnframes() or setparams() method

    These variables are used internally only:
    _datalength -- the size of the audio samples written to the header
    _nframeswritten -- the number of frames actually written
    _datawritten -- the size of the audio samples actually written
    """

    def __init__(self, f):
        self._i_opened_the_file = None
        if isinstance(f, str):
            f = builtins.open(f, 'wb')
            self._i_opened_the_file = f
        try:
            self.initfp(f)
        except:
            if self._i_opened_the_file:
                f.close()
            raise

    def initfp(self, file):
        self._file = file
        self._convert = None
        self._nchannels = 0
        self._sampwidth = 0
        self._framerate = 0
        self._nframes = 0
        self._nframeswritten = 0
        self._datawritten = 0
        self._datalength = 0
        self._headerwritten = False

    def __del__(self):
        self.close()

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    #
    # User visible methods.
    #
    def setnchannels(self, nchannels):
        if self._datawritten:
            raise Error('cannot change parameters after starting to write')
        if nchannels < 1:
            raise Error('bad # of channels')
        self._nchannels = nchannels

    def getnchannels(self):
        if not self._nchannels:
            raise Error('number of channels not set')
        return self._nchannels

    def setsampwidth(self, sampwidth):
        if self._datawritten:
            raise Error('cannot change parameters after starting to write')
        if sampwidth < 1 or sampwidth > 4:
            raise Error('bad sample width')
        self._sampwidth = sampwidth

    def getsampwidth(self):
        if not self._sampwidth:
            raise Error('sample width not set')
        return self._sampwidth

    def setframerate(self, framerate):
        if self._datawritten:
            raise Error('cannot change parameters after starting to write')
        if framerate <= 0:
            raise Error('bad frame rate')
        self._framerate = int(round(framerate))

    def getframerate(self):
        if not self._framerate:
            raise Error('frame rate not set')
        return self._framerate

    def setnframes(self, nframes):
        if self._datawritten:
            raise Error('cannot change parameters after starting to write')
        self._nframes = nframes

    def getnframes(self):
        return self._nframeswritten

    def setcomptype(self, comptype, compname):
        if self._datawritten:
            raise Error('cannot change parameters after starting to write')
        if comptype not in ('NONE',):
            raise Error('unsupported compression type')
        self._comptype = comptype
        self._compname = compname

    def getcomptype(self):
        return self._comptype

    def getcompname(self):
        return self._compname

    def setparams(self, params):
        nchannels, sampwidth, framerate, nframes, comptype, compname = params
        if self._datawritten:
            raise Error('cannot change parameters after starting to write')
        self.setnchannels(nchannels)
        self.setsampwidth(sampwidth)
        self.setframerate(framerate)
        self.setnframes(nframes)
        self.setcomptype(comptype, compname)

    def getparams(self):
        if not self._nchannels or not self._sampwidth or not self._framerate:
            raise Error('not all parameters set')
        return _wave_params(self._nchannels, self._sampwidth, self._framerate,
              self._nframes, self._comptype, self._compname)

    def setmark(self, id, pos, name):
        raise Error('setmark() not supported')

    def getmark(self, id):
        raise Error('no marks')

    def getmarkers(self):
        return None

    def tell(self):
        return self._nframeswritten

    def writeframesraw(self, data):
        if not isinstance(data, (bytes, bytearray)):
            data = memoryview(data).cast('B')
        self._ensure_header_written(len(data))
        nframes = len(data) // (self._sampwidth * self._nchannels)
        if self._convert:
            data = self._convert(data)
        if self._sampwidth != 1 and sys.byteorder == 'big':
            data = audioop.byteswap(data, self._sampwidth)
        self._file.write(data)
        self._datawritten += len(data)
        self._nframeswritten = self._nframeswritten + nframes

    def writeframes(self, data):
        self.writeframesraw(data)
        if self._datalength != self._datawritten:
            self._patchheader()

    def close(self):
        try:
            if self._file:
                self._ensure_header_written(0)
                if self._datalength != self._datawritten:
                    self._patchheader()
                self._file.flush()
        finally:
            self._file = None
            file = self._i_opened_the_file
            if file:
                self._i_opened_the_file = None
                file.close()

    #
    # Internal methods.
    #

    def _ensure_header_written(self, datasize):
        if not self._headerwritten:
            if not self._nchannels:
                raise Error('# channels not specified')
            if not self._sampwidth:
                raise Error('sample width not specified')
            if not self._framerate:
                raise Error('sampling rate not specified')
            self._write_header(datasize)

    def _write_header(self, initlength):
        assert not self._headerwritten
        self._file.write(b'RIFF')
        if not self._nframes:
            self._nframes = initlength // (self._nchannels * self._sampwidth)
        self._datalength = self._nframes * self._nchannels * self._sampwidth
        try:
            self._form_length_pos = self._file.tell()
        except (AttributeError, OSError):
            self._form_length_pos = None
        self._file.write(struct.pack('<L4s4sLHHLLHH4s',
            36 + self._datalength, b'WAVE', b'fmt ', 16,
            WAVE_FORMAT_PCM, self._nchannels, self._framerate,
            self._nchannels * self._framerate * self._sampwidth,
            self._nchannels * self._sampwidth,
            self._sampwidth * 8, b'data'))
        if self._form_length_pos is not None:
            self._data_length_pos = self._file.tell()
        self._file.write(struct.pack('<L', self._datalength))
        self._headerwritten = True

    def _patchheader(self):
        assert self._headerwritten
        if self._datawritten == self._datalength:
            return
        curpos = self._file.tell()
        self._file.seek(self._form_length_pos, 0)
        self._file.write(struct.pack('<L', 36 + self._datawritten))
        self._file.seek(self._data_length_pos, 0)
        self._file.write(struct.pack('<L', self._datawritten))
        self._file.seek(curpos, 0)
        self._datalength = self._datawritten

def open(f, mode=None):
    if mode is None:
        if hasattr(f, 'mode'):
            mode = f.mode
        else:
            mode = 'rb'
    if mode in ('r', 'rb'):
        return Wave_read(f)
    elif mode in ('w', 'wb'):
        return Wave_write(f)
    else:
        raise Error("mode must be 'r', 'rb', 'w', or 'wb'")

openfp = open # B/W compatibility
lib\weakref.py
"""Weak reference support for Python.

This module is an implementation of PEP 205:

http://www.python.org/dev/peps/pep-0205/
"""

# Naming convention: Variables named "wr" are weak reference objects;
# they are called this instead of "ref" to avoid name collisions with
# the module-global ref() function imported from _weakref.

from _weakref import (
     getweakrefcount,
     getweakrefs,
     ref,
     proxy,
     CallableProxyType,
     ProxyType,
     ReferenceType)

from _weakrefset import WeakSet, _IterationGuard

import collections  # Import after _weakref to avoid circular import.
import sys
import itertools

ProxyTypes = (ProxyType, CallableProxyType)

__all__ = ["ref", "proxy", "getweakrefcount", "getweakrefs",
           "WeakKeyDictionary", "ReferenceType", "ProxyType",
           "CallableProxyType", "ProxyTypes", "WeakValueDictionary",
           "WeakSet", "WeakMethod", "finalize"]


class WeakMethod(ref):
    """
    A custom `weakref.ref` subclass which simulates a weak reference to
    a bound method, working around the lifetime problem of bound methods.
    """

    __slots__ = "_func_ref", "_meth_type", "_alive", "__weakref__"

    def __new__(cls, meth, callback=None):
        try:
            obj = meth.__self__
            func = meth.__func__
        except AttributeError:
            raise TypeError("argument should be a bound method, not {}"
                            .format(type(meth))) from None
        def _cb(arg):
            # The self-weakref trick is needed to avoid creating a reference
            # cycle.
            self = self_wr()
            if self._alive:
                self._alive = False
                if callback is not None:
                    callback(self)
        self = ref.__new__(cls, obj, _cb)
        self._func_ref = ref(func, _cb)
        self._meth_type = type(meth)
        self._alive = True
        self_wr = ref(self)
        return self

    def __call__(self):
        obj = super().__call__()
        func = self._func_ref()
        if obj is None or func is None:
            return None
        return self._meth_type(func, obj)

    def __eq__(self, other):
        if isinstance(other, WeakMethod):
            if not self._alive or not other._alive:
                return self is other
            return ref.__eq__(self, other) and self._func_ref == other._func_ref
        return False

    def __ne__(self, other):
        if isinstance(other, WeakMethod):
            if not self._alive or not other._alive:
                return self is not other
            return ref.__ne__(self, other) or self._func_ref != other._func_ref
        return True

    __hash__ = ref.__hash__


class WeakValueDictionary(collections.MutableMapping):
    """Mapping class that references values weakly.

    Entries in the dictionary will be discarded when no strong
    reference to the value exists anymore
    """
    # We inherit the constructor without worrying about the input
    # dictionary; since it uses our .update() method, we get the right
    # checks (if the other dictionary is a WeakValueDictionary,
    # objects are unwrapped on the way out, and we always wrap on the
    # way in).

    def __init__(*args, **kw):
        if not args:
            raise TypeError("descriptor '__init__' of 'WeakValueDictionary' "
                            "object needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        def remove(wr, selfref=ref(self)):
            self = selfref()
            if self is not None:
                if self._iterating:
                    self._pending_removals.append(wr.key)
                else:
                    del self.data[wr.key]
        self._remove = remove
        # A list of keys to be removed
        self._pending_removals = []
        self._iterating = set()
        self.data = d = {}
        self.update(*args, **kw)

    def _commit_removals(self):
        l = self._pending_removals
        d = self.data
        # We shouldn't encounter any KeyError, because this method should
        # always be called *before* mutating the dict.
        while l:
            del d[l.pop()]

    def __getitem__(self, key):
        o = self.data[key]()
        if o is None:
            raise KeyError(key)
        else:
            return o

    def __delitem__(self, key):
        if self._pending_removals:
            self._commit_removals()
        del self.data[key]

    def __len__(self):
        return len(self.data) - len(self._pending_removals)

    def __contains__(self, key):
        try:
            o = self.data[key]()
        except KeyError:
            return False
        return o is not None

    def __repr__(self):
        return "<WeakValueDictionary at %s>" % id(self)

    def __setitem__(self, key, value):
        if self._pending_removals:
            self._commit_removals()
        self.data[key] = KeyedRef(value, self._remove, key)

    def copy(self):
        new = WeakValueDictionary()
        for key, wr in self.data.items():
            o = wr()
            if o is not None:
                new[key] = o
        return new

    __copy__ = copy

    def __deepcopy__(self, memo):
        from copy import deepcopy
        new = self.__class__()
        for key, wr in self.data.items():
            o = wr()
            if o is not None:
                new[deepcopy(key, memo)] = o
        return new

    def get(self, key, default=None):
        try:
            wr = self.data[key]
        except KeyError:
            return default
        else:
            o = wr()
            if o is None:
                # This should only happen
                return default
            else:
                return o

    def items(self):
        with _IterationGuard(self):
            for k, wr in self.data.items():
                v = wr()
                if v is not None:
                    yield k, v

    def keys(self):
        with _IterationGuard(self):
            for k, wr in self.data.items():
                if wr() is not None:
                    yield k

    __iter__ = keys

    def itervaluerefs(self):
        """Return an iterator that yields the weak references to the values.

        The references are not guaranteed to be 'live' at the time
        they are used, so the result of calling the references needs
        to be checked before being used.  This can be used to avoid
        creating references that will cause the garbage collector to
        keep the values around longer than needed.

        """
        with _IterationGuard(self):
            yield from self.data.values()

    def values(self):
        with _IterationGuard(self):
            for wr in self.data.values():
                obj = wr()
                if obj is not None:
                    yield obj

    def popitem(self):
        if self._pending_removals:
            self._commit_removals()
        while True:
            key, wr = self.data.popitem()
            o = wr()
            if o is not None:
                return key, o

    def pop(self, key, *args):
        if self._pending_removals:
            self._commit_removals()
        try:
            o = self.data.pop(key)()
        except KeyError:
            if args:
                return args[0]
            raise
        if o is None:
            raise KeyError(key)
        else:
            return o

    def setdefault(self, key, default=None):
        try:
            wr = self.data[key]
        except KeyError:
            if self._pending_removals:
                self._commit_removals()
            self.data[key] = KeyedRef(default, self._remove, key)
            return default
        else:
            return wr()

    def update(*args, **kwargs):
        if not args:
            raise TypeError("descriptor 'update' of 'WeakValueDictionary' "
                            "object needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        dict = args[0] if args else None
        if self._pending_removals:
            self._commit_removals()
        d = self.data
        if dict is not None:
            if not hasattr(dict, "items"):
                dict = type({})(dict)
            for key, o in dict.items():
                d[key] = KeyedRef(o, self._remove, key)
        if len(kwargs):
            self.update(kwargs)

    def valuerefs(self):
        """Return a list of weak references to the values.

        The references are not guaranteed to be 'live' at the time
        they are used, so the result of calling the references needs
        to be checked before being used.  This can be used to avoid
        creating references that will cause the garbage collector to
        keep the values around longer than needed.

        """
        return list(self.data.values())


class KeyedRef(ref):
    """Specialized reference that includes a key corresponding to the value.

    This is used in the WeakValueDictionary to avoid having to create
    a function object for each key stored in the mapping.  A shared
    callback object can use the 'key' attribute of a KeyedRef instead
    of getting a reference to the key from an enclosing scope.

    """

    __slots__ = "key",

    def __new__(type, ob, callback, key):
        self = ref.__new__(type, ob, callback)
        self.key = key
        return self

    def __init__(self, ob, callback, key):
        super().__init__(ob, callback)


class WeakKeyDictionary(collections.MutableMapping):
    """ Mapping class that references keys weakly.

    Entries in the dictionary will be discarded when there is no
    longer a strong reference to the key. This can be used to
    associate additional data with an object owned by other parts of
    an application without adding attributes to those objects. This
    can be especially useful with objects that override attribute
    accesses.
    """

    def __init__(self, dict=None):
        self.data = {}
        def remove(k, selfref=ref(self)):
            self = selfref()
            if self is not None:
                if self._iterating:
                    self._pending_removals.append(k)
                else:
                    del self.data[k]
        self._remove = remove
        # A list of dead weakrefs (keys to be removed)
        self._pending_removals = []
        self._iterating = set()
        self._dirty_len = False
        if dict is not None:
            self.update(dict)

    def _commit_removals(self):
        # NOTE: We don't need to call this method before mutating the dict,
        # because a dead weakref never compares equal to a live weakref,
        # even if they happened to refer to equal objects.
        # However, it means keys may already have been removed.
        l = self._pending_removals
        d = self.data
        while l:
            try:
                del d[l.pop()]
            except KeyError:
                pass

    def _scrub_removals(self):
        d = self.data
        self._pending_removals = [k for k in self._pending_removals if k in d]
        self._dirty_len = False

    def __delitem__(self, key):
        self._dirty_len = True
        del self.data[ref(key)]

    def __getitem__(self, key):
        return self.data[ref(key)]

    def __len__(self):
        if self._dirty_len and self._pending_removals:
            # self._pending_removals may still contain keys which were
            # explicitly removed, we have to scrub them (see issue #21173).
            self._scrub_removals()
        return len(self.data) - len(self._pending_removals)

    def __repr__(self):
        return "<WeakKeyDictionary at %s>" % id(self)

    def __setitem__(self, key, value):
        self.data[ref(key, self._remove)] = value

    def copy(self):
        new = WeakKeyDictionary()
        for key, value in self.data.items():
            o = key()
            if o is not None:
                new[o] = value
        return new

    __copy__ = copy

    def __deepcopy__(self, memo):
        from copy import deepcopy
        new = self.__class__()
        for key, value in self.data.items():
            o = key()
            if o is not None:
                new[o] = deepcopy(value, memo)
        return new

    def get(self, key, default=None):
        return self.data.get(ref(key),default)

    def __contains__(self, key):
        try:
            wr = ref(key)
        except TypeError:
            return False
        return wr in self.data

    def items(self):
        with _IterationGuard(self):
            for wr, value in self.data.items():
                key = wr()
                if key is not None:
                    yield key, value

    def keys(self):
        with _IterationGuard(self):
            for wr in self.data:
                obj = wr()
                if obj is not None:
                    yield obj

    __iter__ = keys

    def values(self):
        with _IterationGuard(self):
            for wr, value in self.data.items():
                if wr() is not None:
                    yield value

    def keyrefs(self):
        """Return a list of weak references to the keys.

        The references are not guaranteed to be 'live' at the time
        they are used, so the result of calling the references needs
        to be checked before being used.  This can be used to avoid
        creating references that will cause the garbage collector to
        keep the keys around longer than needed.

        """
        return list(self.data)

    def popitem(self):
        self._dirty_len = True
        while True:
            key, value = self.data.popitem()
            o = key()
            if o is not None:
                return o, value

    def pop(self, key, *args):
        self._dirty_len = True
        return self.data.pop(ref(key), *args)

    def setdefault(self, key, default=None):
        return self.data.setdefault(ref(key, self._remove),default)

    def update(self, dict=None, **kwargs):
        d = self.data
        if dict is not None:
            if not hasattr(dict, "items"):
                dict = type({})(dict)
            for key, value in dict.items():
                d[ref(key, self._remove)] = value
        if len(kwargs):
            self.update(kwargs)


class finalize:
    """Class for finalization of weakrefable objects

    finalize(obj, func, *args, **kwargs) returns a callable finalizer
    object which will be called when obj is garbage collected. The
    first time the finalizer is called it evaluates func(*arg, **kwargs)
    and returns the result. After this the finalizer is dead, and
    calling it just returns None.

    When the program exits any remaining finalizers for which the
    atexit attribute is true will be run in reverse order of creation.
    By default atexit is true.
    """

    # Finalizer objects don't have any state of their own.  They are
    # just used as keys to lookup _Info objects in the registry.  This
    # ensures that they cannot be part of a ref-cycle.

    __slots__ = ()
    _registry = {}
    _shutdown = False
    _index_iter = itertools.count()
    _dirty = False
    _registered_with_atexit = False

    class _Info:
        __slots__ = ("weakref", "func", "args", "kwargs", "atexit", "index")

    def __init__(self, obj, func, *args, **kwargs):
        if not self._registered_with_atexit:
            # We may register the exit function more than once because
            # of a thread race, but that is harmless
            import atexit
            atexit.register(self._exitfunc)
            finalize._registered_with_atexit = True
        info = self._Info()
        info.weakref = ref(obj, self)
        info.func = func
        info.args = args
        info.kwargs = kwargs or None
        info.atexit = True
        info.index = next(self._index_iter)
        self._registry[self] = info
        finalize._dirty = True

    def __call__(self, _=None):
        """If alive then mark as dead and return func(*args, **kwargs);
        otherwise return None"""
        info = self._registry.pop(self, None)
        if info and not self._shutdown:
            return info.func(*info.args, **(info.kwargs or {}))

    def detach(self):
        """If alive then mark as dead and return (obj, func, args, kwargs);
        otherwise return None"""
        info = self._registry.get(self)
        obj = info and info.weakref()
        if obj is not None and self._registry.pop(self, None):
            return (obj, info.func, info.args, info.kwargs or {})

    def peek(self):
        """If alive then return (obj, func, args, kwargs);
        otherwise return None"""
        info = self._registry.get(self)
        obj = info and info.weakref()
        if obj is not None:
            return (obj, info.func, info.args, info.kwargs or {})

    @property
    def alive(self):
        """Whether finalizer is alive"""
        return self in self._registry

    @property
    def atexit(self):
        """Whether finalizer should be called at exit"""
        info = self._registry.get(self)
        return bool(info) and info.atexit

    @atexit.setter
    def atexit(self, value):
        info = self._registry.get(self)
        if info:
            info.atexit = bool(value)

    def __repr__(self):
        info = self._registry.get(self)
        obj = info and info.weakref()
        if obj is None:
            return '<%s object at %#x; dead>' % (type(self).__name__, id(self))
        else:
            return '<%s object at %#x; for %r at %#x>' % \
                (type(self).__name__, id(self), type(obj).__name__, id(obj))

    @classmethod
    def _select_for_exit(cls):
        # Return live finalizers marked for exit, oldest first
        L = [(f,i) for (f,i) in cls._registry.items() if i.atexit]
        L.sort(key=lambda item:item[1].index)
        return [f for (f,i) in L]

    @classmethod
    def _exitfunc(cls):
        # At shutdown invoke finalizers for which atexit is true.
        # This is called once all other non-daemonic threads have been
        # joined.
        reenable_gc = False
        try:
            if cls._registry:
                import gc
                if gc.isenabled():
                    reenable_gc = True
                    gc.disable()
                pending = None
                while True:
                    if pending is None or finalize._dirty:
                        pending = cls._select_for_exit()
                        finalize._dirty = False
                    if not pending:
                        break
                    f = pending.pop()
                    try:
                        # gc is disabled, so (assuming no daemonic
                        # threads) the following is the only line in
                        # this function which might trigger creation
                        # of a new finalizer
                        f()
                    except Exception:
                        sys.excepthook(*sys.exc_info())
                    assert f not in cls._registry
        finally:
            # prevent any more finalizers from executing during shutdown
            finalize._shutdown = True
            if reenable_gc:
                gc.enable()
lib\webbrowser.py
#! /usr/bin/env python3
"""Interfaces for launching and remotely controlling Web browsers."""
# Maintained by Georg Brandl.

import os
import shlex
import shutil
import sys
import subprocess

__all__ = ["Error", "open", "open_new", "open_new_tab", "get", "register"]

class Error(Exception):
    pass

_browsers = {}          # Dictionary of available browser controllers
_tryorder = []          # Preference order of available browsers

def register(name, klass, instance=None, update_tryorder=1):
    """Register a browser connector and, optionally, connection."""
    _browsers[name.lower()] = [klass, instance]
    if update_tryorder > 0:
        _tryorder.append(name)
    elif update_tryorder < 0:
        _tryorder.insert(0, name)

def get(using=None):
    """Return a browser launcher instance appropriate for the environment."""
    if using is not None:
        alternatives = [using]
    else:
        alternatives = _tryorder
    for browser in alternatives:
        if '%s' in browser:
            # User gave us a command line, split it into name and args
            browser = shlex.split(browser)
            if browser[-1] == '&':
                return BackgroundBrowser(browser[:-1])
            else:
                return GenericBrowser(browser)
        else:
            # User gave us a browser name or path.
            try:
                command = _browsers[browser.lower()]
            except KeyError:
                command = _synthesize(browser)
            if command[1] is not None:
                return command[1]
            elif command[0] is not None:
                return command[0]()
    raise Error("could not locate runnable browser")

# Please note: the following definition hides a builtin function.
# It is recommended one does "import webbrowser" and uses webbrowser.open(url)
# instead of "from webbrowser import *".

def open(url, new=0, autoraise=True):
    for name in _tryorder:
        browser = get(name)
        if browser.open(url, new, autoraise):
            return True
    return False

def open_new(url):
    return open(url, 1)

def open_new_tab(url):
    return open(url, 2)


def _synthesize(browser, update_tryorder=1):
    """Attempt to synthesize a controller base on existing controllers.

    This is useful to create a controller when a user specifies a path to
    an entry in the BROWSER environment variable -- we can copy a general
    controller to operate using a specific installation of the desired
    browser in this way.

    If we can't create a controller in this way, or if there is no
    executable for the requested browser, return [None, None].

    """
    cmd = browser.split()[0]
    if not shutil.which(cmd):
        return [None, None]
    name = os.path.basename(cmd)
    try:
        command = _browsers[name.lower()]
    except KeyError:
        return [None, None]
    # now attempt to clone to fit the new name:
    controller = command[1]
    if controller and name.lower() == controller.basename:
        import copy
        controller = copy.copy(controller)
        controller.name = browser
        controller.basename = os.path.basename(browser)
        register(browser, None, controller, update_tryorder)
        return [None, controller]
    return [None, None]


# General parent classes

class BaseBrowser(object):
    """Parent class for all browsers. Do not use directly."""

    args = ['%s']

    def __init__(self, name=""):
        self.name = name
        self.basename = name

    def open(self, url, new=0, autoraise=True):
        raise NotImplementedError

    def open_new(self, url):
        return self.open(url, 1)

    def open_new_tab(self, url):
        return self.open(url, 2)


class GenericBrowser(BaseBrowser):
    """Class for all browsers started with a command
       and without remote functionality."""

    def __init__(self, name):
        if isinstance(name, str):
            self.name = name
            self.args = ["%s"]
        else:
            # name should be a list with arguments
            self.name = name[0]
            self.args = name[1:]
        self.basename = os.path.basename(self.name)

    def open(self, url, new=0, autoraise=True):
        cmdline = [self.name] + [arg.replace("%s", url)
                                 for arg in self.args]
        try:
            if sys.platform[:3] == 'win':
                p = subprocess.Popen(cmdline)
            else:
                p = subprocess.Popen(cmdline, close_fds=True)
            return not p.wait()
        except OSError:
            return False


class BackgroundBrowser(GenericBrowser):
    """Class for all browsers which are to be started in the
       background."""

    def open(self, url, new=0, autoraise=True):
        cmdline = [self.name] + [arg.replace("%s", url)
                                 for arg in self.args]
        try:
            if sys.platform[:3] == 'win':
                p = subprocess.Popen(cmdline)
            else:
                p = subprocess.Popen(cmdline, close_fds=True,
                                     start_new_session=True)
            return (p.poll() is None)
        except OSError:
            return False


class UnixBrowser(BaseBrowser):
    """Parent class for all Unix browsers with remote functionality."""

    raise_opts = None
    background = False
    redirect_stdout = True
    # In remote_args, %s will be replaced with the requested URL.  %action will
    # be replaced depending on the value of 'new' passed to open.
    # remote_action is used for new=0 (open).  If newwin is not None, it is
    # used for new=1 (open_new).  If newtab is not None, it is used for
    # new=3 (open_new_tab).  After both substitutions are made, any empty
    # strings in the transformed remote_args list will be removed.
    remote_args = ['%action', '%s']
    remote_action = None
    remote_action_newwin = None
    remote_action_newtab = None

    def _invoke(self, args, remote, autoraise):
        raise_opt = []
        if remote and self.raise_opts:
            # use autoraise argument only for remote invocation
            autoraise = int(autoraise)
            opt = self.raise_opts[autoraise]
            if opt: raise_opt = [opt]

        cmdline = [self.name] + raise_opt + args

        if remote or self.background:
            inout = subprocess.DEVNULL
        else:
            # for TTY browsers, we need stdin/out
            inout = None
        p = subprocess.Popen(cmdline, close_fds=True, stdin=inout,
                             stdout=(self.redirect_stdout and inout or None),
                             stderr=inout, start_new_session=True)
        if remote:
            # wait at most five seconds. If the subprocess is not finished, the
            # remote invocation has (hopefully) started a new instance.
            try:
                rc = p.wait(5)
                # if remote call failed, open() will try direct invocation
                return not rc
            except subprocess.TimeoutExpired:
                return True
        elif self.background:
            if p.poll() is None:
                return True
            else:
                return False
        else:
            return not p.wait()

    def open(self, url, new=0, autoraise=True):
        if new == 0:
            action = self.remote_action
        elif new == 1:
            action = self.remote_action_newwin
        elif new == 2:
            if self.remote_action_newtab is None:
                action = self.remote_action_newwin
            else:
                action = self.remote_action_newtab
        else:
            raise Error("Bad 'new' parameter to open(); " +
                        "expected 0, 1, or 2, got %s" % new)

        args = [arg.replace("%s", url).replace("%action", action)
                for arg in self.remote_args]
        args = [arg for arg in args if arg]
        success = self._invoke(args, True, autoraise)
        if not success:
            # remote invocation failed, try straight way
            args = [arg.replace("%s", url) for arg in self.args]
            return self._invoke(args, False, False)
        else:
            return True


class Mozilla(UnixBrowser):
    """Launcher class for Mozilla/Netscape browsers."""

    raise_opts = ["-noraise", "-raise"]
    remote_args = ['-remote', 'openURL(%s%action)']
    remote_action = ""
    remote_action_newwin = ",new-window"
    remote_action_newtab = ",new-tab"
    background = True

Netscape = Mozilla


class Galeon(UnixBrowser):
    """Launcher class for Galeon/Epiphany browsers."""

    raise_opts = ["-noraise", ""]
    remote_args = ['%action', '%s']
    remote_action = "-n"
    remote_action_newwin = "-w"
    background = True


class Chrome(UnixBrowser):
    "Launcher class for Google Chrome browser."

    remote_args = ['%action', '%s']
    remote_action = ""
    remote_action_newwin = "--new-window"
    remote_action_newtab = ""
    background = True

Chromium = Chrome


class Opera(UnixBrowser):
    "Launcher class for Opera browser."

    raise_opts = ["-noraise", ""]
    remote_args = ['-remote', 'openURL(%s%action)']
    remote_action = ""
    remote_action_newwin = ",new-window"
    remote_action_newtab = ",new-page"
    background = True


class Elinks(UnixBrowser):
    "Launcher class for Elinks browsers."

    remote_args = ['-remote', 'openURL(%s%action)']
    remote_action = ""
    remote_action_newwin = ",new-window"
    remote_action_newtab = ",new-tab"
    background = False

    # elinks doesn't like its stdout to be redirected -
    # it uses redirected stdout as a signal to do -dump
    redirect_stdout = False


class Konqueror(BaseBrowser):
    """Controller for the KDE File Manager (kfm, or Konqueror).

    See the output of ``kfmclient --commands``
    for more information on the Konqueror remote-control interface.
    """

    def open(self, url, new=0, autoraise=True):
        # XXX Currently I know no way to prevent KFM from opening a new win.
        if new == 2:
            action = "newTab"
        else:
            action = "openURL"

        devnull = subprocess.DEVNULL

        try:
            p = subprocess.Popen(["kfmclient", action, url],
                                 close_fds=True, stdin=devnull,
                                 stdout=devnull, stderr=devnull)
        except OSError:
            # fall through to next variant
            pass
        else:
            p.wait()
            # kfmclient's return code unfortunately has no meaning as it seems
            return True

        try:
            p = subprocess.Popen(["konqueror", "--silent", url],
                                 close_fds=True, stdin=devnull,
                                 stdout=devnull, stderr=devnull,
                                 start_new_session=True)
        except OSError:
            # fall through to next variant
            pass
        else:
            if p.poll() is None:
                # Should be running now.
                return True

        try:
            p = subprocess.Popen(["kfm", "-d", url],
                                 close_fds=True, stdin=devnull,
                                 stdout=devnull, stderr=devnull,
                                 start_new_session=True)
        except OSError:
            return False
        else:
            return (p.poll() is None)


class Grail(BaseBrowser):
    # There should be a way to maintain a connection to Grail, but the
    # Grail remote control protocol doesn't really allow that at this
    # point.  It probably never will!
    def _find_grail_rc(self):
        import glob
        import pwd
        import socket
        import tempfile
        tempdir = os.path.join(tempfile.gettempdir(),
                               ".grail-unix")
        user = pwd.getpwuid(os.getuid())[0]
        filename = os.path.join(tempdir, user + "-*")
        maybes = glob.glob(filename)
        if not maybes:
            return None
        s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
        for fn in maybes:
            # need to PING each one until we find one that's live
            try:
                s.connect(fn)
            except OSError:
                # no good; attempt to clean it out, but don't fail:
                try:
                    os.unlink(fn)
                except OSError:
                    pass
            else:
                return s

    def _remote(self, action):
        s = self._find_grail_rc()
        if not s:
            return 0
        s.send(action)
        s.close()
        return 1

    def open(self, url, new=0, autoraise=True):
        if new:
            ok = self._remote("LOADNEW " + url)
        else:
            ok = self._remote("LOAD " + url)
        return ok


#
# Platform support for Unix
#

# These are the right tests because all these Unix browsers require either
# a console terminal or an X display to run.

def register_X_browsers():

    # use xdg-open if around
    if shutil.which("xdg-open"):
        register("xdg-open", None, BackgroundBrowser("xdg-open"))

    # The default GNOME3 browser
    if "GNOME_DESKTOP_SESSION_ID" in os.environ and shutil.which("gvfs-open"):
        register("gvfs-open", None, BackgroundBrowser("gvfs-open"))

    # The default GNOME browser
    if "GNOME_DESKTOP_SESSION_ID" in os.environ and shutil.which("gnome-open"):
        register("gnome-open", None, BackgroundBrowser("gnome-open"))

    # The default KDE browser
    if "KDE_FULL_SESSION" in os.environ and shutil.which("kfmclient"):
        register("kfmclient", Konqueror, Konqueror("kfmclient"))

    if shutil.which("x-www-browser"):
        register("x-www-browser", None, BackgroundBrowser("x-www-browser"))

    # The Mozilla/Netscape browsers
    for browser in ("mozilla-firefox", "firefox",
                    "mozilla-firebird", "firebird",
                    "iceweasel", "iceape",
                    "seamonkey", "mozilla", "netscape"):
        if shutil.which(browser):
            register(browser, None, Mozilla(browser))

    # Konqueror/kfm, the KDE browser.
    if shutil.which("kfm"):
        register("kfm", Konqueror, Konqueror("kfm"))
    elif shutil.which("konqueror"):
        register("konqueror", Konqueror, Konqueror("konqueror"))

    # Gnome's Galeon and Epiphany
    for browser in ("galeon", "epiphany"):
        if shutil.which(browser):
            register(browser, None, Galeon(browser))

    # Skipstone, another Gtk/Mozilla based browser
    if shutil.which("skipstone"):
        register("skipstone", None, BackgroundBrowser("skipstone"))

    # Google Chrome/Chromium browsers
    for browser in ("google-chrome", "chrome", "chromium", "chromium-browser"):
        if shutil.which(browser):
            register(browser, None, Chrome(browser))

    # Opera, quite popular
    if shutil.which("opera"):
        register("opera", None, Opera("opera"))

    # Next, Mosaic -- old but still in use.
    if shutil.which("mosaic"):
        register("mosaic", None, BackgroundBrowser("mosaic"))

    # Grail, the Python browser. Does anybody still use it?
    if shutil.which("grail"):
        register("grail", Grail, None)

# Prefer X browsers if present
if os.environ.get("DISPLAY"):
    register_X_browsers()

# Also try console browsers
if os.environ.get("TERM"):
    if shutil.which("www-browser"):
        register("www-browser", None, GenericBrowser("www-browser"))
    # The Links/elinks browsers <http://artax.karlin.mff.cuni.cz/~mikulas/links/>
    if shutil.which("links"):
        register("links", None, GenericBrowser("links"))
    if shutil.which("elinks"):
        register("elinks", None, Elinks("elinks"))
    # The Lynx browser <http://lynx.isc.org/>, <http://lynx.browser.org/>
    if shutil.which("lynx"):
        register("lynx", None, GenericBrowser("lynx"))
    # The w3m browser <http://w3m.sourceforge.net/>
    if shutil.which("w3m"):
        register("w3m", None, GenericBrowser("w3m"))

#
# Platform support for Windows
#

if sys.platform[:3] == "win":
    class WindowsDefault(BaseBrowser):
        def open(self, url, new=0, autoraise=True):
            try:
                os.startfile(url)
            except OSError:
                # [Error 22] No application is associated with the specified
                # file for this operation: '<URL>'
                return False
            else:
                return True

    _tryorder = []
    _browsers = {}

    # First try to use the default Windows browser
    register("windows-default", WindowsDefault)

    # Detect some common Windows browsers, fallback to IE
    iexplore = os.path.join(os.environ.get("PROGRAMFILES", "C:\\Program Files"),
                            "Internet Explorer\\IEXPLORE.EXE")
    for browser in ("firefox", "firebird", "seamonkey", "mozilla",
                    "netscape", "opera", iexplore):
        if shutil.which(browser):
            register(browser, None, BackgroundBrowser(browser))

#
# Platform support for MacOS
#

if sys.platform == 'darwin':
    # Adapted from patch submitted to SourceForge by Steven J. Burr
    class MacOSX(BaseBrowser):
        """Launcher class for Aqua browsers on Mac OS X

        Optionally specify a browser name on instantiation.  Note that this
        will not work for Aqua browsers if the user has moved the application
        package after installation.

        If no browser is specified, the default browser, as specified in the
        Internet System Preferences panel, will be used.
        """
        def __init__(self, name):
            self.name = name

        def open(self, url, new=0, autoraise=True):
            assert "'" not in url
            # hack for local urls
            if not ':' in url:
                url = 'file:'+url

            # new must be 0 or 1
            new = int(bool(new))
            if self.name == "default":
                # User called open, open_new or get without a browser parameter
                script = 'open location "%s"' % url.replace('"', '%22') # opens in default browser
            else:
                # User called get and chose a browser
                if self.name == "OmniWeb":
                    toWindow = ""
                else:
                    # Include toWindow parameter of OpenURL command for browsers
                    # that support it.  0 == new window; -1 == existing
                    toWindow = "toWindow %d" % (new - 1)
                cmd = 'OpenURL "%s"' % url.replace('"', '%22')
                script = '''tell application "%s"
                                activate
                                %s %s
                            end tell''' % (self.name, cmd, toWindow)
            # Open pipe to AppleScript through osascript command
            osapipe = os.popen("osascript", "w")
            if osapipe is None:
                return False
            # Write script to osascript's stdin
            osapipe.write(script)
            rc = osapipe.close()
            return not rc

    class MacOSXOSAScript(BaseBrowser):
        def __init__(self, name):
            self._name = name

        def open(self, url, new=0, autoraise=True):
            if self._name == 'default':
                script = 'open location "%s"' % url.replace('"', '%22') # opens in default browser
            else:
                script = '''
                   tell application "%s"
                       activate
                       open location "%s"
                   end
                   '''%(self._name, url.replace('"', '%22'))

            osapipe = os.popen("osascript", "w")
            if osapipe is None:
                return False

            osapipe.write(script)
            rc = osapipe.close()
            return not rc


    # Don't clear _tryorder or _browsers since OS X can use above Unix support
    # (but we prefer using the OS X specific stuff)
    register("safari", None, MacOSXOSAScript('safari'), -1)
    register("firefox", None, MacOSXOSAScript('firefox'), -1)
    register("MacOSX", None, MacOSXOSAScript('default'), -1)


# OK, now that we know what the default preference orders for each
# platform are, allow user to override them with the BROWSER variable.
if "BROWSER" in os.environ:
    _userchoices = os.environ["BROWSER"].split(os.pathsep)
    _userchoices.reverse()

    # Treat choices in same way as if passed into get() but do register
    # and prepend to _tryorder
    for cmdline in _userchoices:
        if cmdline != '':
            cmd = _synthesize(cmdline, -1)
            if cmd[1] is None:
                register(cmdline, None, GenericBrowser(cmdline), -1)
    cmdline = None # to make del work if _userchoices was empty
    del cmdline
    del _userchoices

# what to do if _tryorder is now empty?


def main():
    import getopt
    usage = """Usage: %s [-n | -t] url
    -n: open new window
    -t: open new tab""" % sys.argv[0]
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'ntd')
    except getopt.error as msg:
        print(msg, file=sys.stderr)
        print(usage, file=sys.stderr)
        sys.exit(1)
    new_win = 0
    for o, a in opts:
        if o == '-n': new_win = 1
        elif o == '-t': new_win = 2
    if len(args) != 1:
        print(usage, file=sys.stderr)
        sys.exit(1)

    url = args[0]
    open(url, new_win)

    print("\a")

if __name__ == "__main__":
    main()
lib\wpf.py
#-*- coding: ISO-8859-1 -*-

def _():
    import sys
    if sys.implementation.name == 'ironpython':
        import clr
        try:
            clr.AddReference('IronPython.Wpf')
        except:
            pass
_()
del _

from _wpf import *
lib\xdrlib.py
"""Implements (a subset of) Sun XDR -- eXternal Data Representation.

See: RFC 1014

"""

import struct
from io import BytesIO
from functools import wraps

__all__ = ["Error", "Packer", "Unpacker", "ConversionError"]

# exceptions
class Error(Exception):
    """Exception class for this module. Use:

    except xdrlib.Error as var:
        # var has the Error instance for the exception

    Public ivars:
        msg -- contains the message

    """
    def __init__(self, msg):
        self.msg = msg
    def __repr__(self):
        return repr(self.msg)
    def __str__(self):
        return str(self.msg)


class ConversionError(Error):
    pass

def raise_conversion_error(function):
    """ Wrap any raised struct.errors in a ConversionError. """

    @wraps(function)
    def result(self, value):
        try:
            return function(self, value)
        except struct.error as e:
            raise ConversionError(e.args[0]) from None
    return result


class Packer:
    """Pack various data representations into a buffer."""

    def __init__(self):
        self.reset()

    def reset(self):
        self.__buf = BytesIO()

    def get_buffer(self):
        return self.__buf.getvalue()
    # backwards compatibility
    get_buf = get_buffer

    @raise_conversion_error
    def pack_uint(self, x):
        self.__buf.write(struct.pack('>L', x))

    @raise_conversion_error
    def pack_int(self, x):
        self.__buf.write(struct.pack('>l', x))

    pack_enum = pack_int

    def pack_bool(self, x):
        if x: self.__buf.write(b'\0\0\0\1')
        else: self.__buf.write(b'\0\0\0\0')

    def pack_uhyper(self, x):
        try:
            self.pack_uint(x>>32 & 0xffffffff)
        except (TypeError, struct.error) as e:
            raise ConversionError(e.args[0]) from None
        try:
            self.pack_uint(x & 0xffffffff)
        except (TypeError, struct.error) as e:
            raise ConversionError(e.args[0]) from None

    pack_hyper = pack_uhyper

    @raise_conversion_error
    def pack_float(self, x):
        self.__buf.write(struct.pack('>f', x))

    @raise_conversion_error
    def pack_double(self, x):
        self.__buf.write(struct.pack('>d', x))

    def pack_fstring(self, n, s):
        if n < 0:
            raise ValueError('fstring size must be nonnegative')
        data = s[:n]
        n = ((n+3)//4)*4
        data = data + (n - len(data)) * b'\0'
        self.__buf.write(data)

    pack_fopaque = pack_fstring

    def pack_string(self, s):
        n = len(s)
        self.pack_uint(n)
        self.pack_fstring(n, s)

    pack_opaque = pack_string
    pack_bytes = pack_string

    def pack_list(self, list, pack_item):
        for item in list:
            self.pack_uint(1)
            pack_item(item)
        self.pack_uint(0)

    def pack_farray(self, n, list, pack_item):
        if len(list) != n:
            raise ValueError('wrong array size')
        for item in list:
            pack_item(item)

    def pack_array(self, list, pack_item):
        n = len(list)
        self.pack_uint(n)
        self.pack_farray(n, list, pack_item)



class Unpacker:
    """Unpacks various data representations from the given buffer."""

    def __init__(self, data):
        self.reset(data)

    def reset(self, data):
        self.__buf = data
        self.__pos = 0

    def get_position(self):
        return self.__pos

    def set_position(self, position):
        self.__pos = position

    def get_buffer(self):
        return self.__buf

    def done(self):
        if self.__pos < len(self.__buf):
            raise Error('unextracted data remains')

    def unpack_uint(self):
        i = self.__pos
        self.__pos = j = i+4
        data = self.__buf[i:j]
        if len(data) < 4:
            raise EOFError
        return struct.unpack('>L', data)[0]

    def unpack_int(self):
        i = self.__pos
        self.__pos = j = i+4
        data = self.__buf[i:j]
        if len(data) < 4:
            raise EOFError
        return struct.unpack('>l', data)[0]

    unpack_enum = unpack_int

    def unpack_bool(self):
        return bool(self.unpack_int())

    def unpack_uhyper(self):
        hi = self.unpack_uint()
        lo = self.unpack_uint()
        return int(hi)<<32 | lo

    def unpack_hyper(self):
        x = self.unpack_uhyper()
        if x >= 0x8000000000000000:
            x = x - 0x10000000000000000
        return x

    def unpack_float(self):
        i = self.__pos
        self.__pos = j = i+4
        data = self.__buf[i:j]
        if len(data) < 4:
            raise EOFError
        return struct.unpack('>f', data)[0]

    def unpack_double(self):
        i = self.__pos
        self.__pos = j = i+8
        data = self.__buf[i:j]
        if len(data) < 8:
            raise EOFError
        return struct.unpack('>d', data)[0]

    def unpack_fstring(self, n):
        if n < 0:
            raise ValueError('fstring size must be nonnegative')
        i = self.__pos
        j = i + (n+3)//4*4
        if j > len(self.__buf):
            raise EOFError
        self.__pos = j
        return self.__buf[i:i+n]

    unpack_fopaque = unpack_fstring

    def unpack_string(self):
        n = self.unpack_uint()
        return self.unpack_fstring(n)

    unpack_opaque = unpack_string
    unpack_bytes = unpack_string

    def unpack_list(self, unpack_item):
        list = []
        while 1:
            x = self.unpack_uint()
            if x == 0: break
            if x != 1:
                raise ConversionError('0 or 1 expected, got %r' % (x,))
            item = unpack_item()
            list.append(item)
        return list

    def unpack_farray(self, n, unpack_item):
        list = []
        for i in range(n):
            list.append(unpack_item())
        return list

    def unpack_array(self, unpack_item):
        n = self.unpack_uint()
        return self.unpack_farray(n, unpack_item)
lib\zipfile.py
"""
Read and write ZIP files.

XXX references to utf-8 need further investigation.
"""
import io
import os
import re
import importlib.util
import sys
import time
import stat
import shutil
import struct
import binascii


try:
    import zlib # We may need its compression method
    crc32 = zlib.crc32
except ImportError:
    zlib = None
    crc32 = binascii.crc32

try:
    import bz2 # We may need its compression method
except ImportError:
    bz2 = None

try:
    import lzma # We may need its compression method
except ImportError:
    lzma = None

__all__ = ["BadZipFile", "BadZipfile", "error",
           "ZIP_STORED", "ZIP_DEFLATED", "ZIP_BZIP2", "ZIP_LZMA",
           "is_zipfile", "ZipInfo", "ZipFile", "PyZipFile", "LargeZipFile"]

class BadZipFile(Exception):
    pass


class LargeZipFile(Exception):
    """
    Raised when writing a zipfile, the zipfile requires ZIP64 extensions
    and those extensions are disabled.
    """

error = BadZipfile = BadZipFile      # Pre-3.2 compatibility names


ZIP64_LIMIT = (1 << 31) - 1
ZIP_FILECOUNT_LIMIT = (1 << 16) - 1
ZIP_MAX_COMMENT = (1 << 16) - 1

# constants for Zip file compression methods
ZIP_STORED = 0
ZIP_DEFLATED = 8
ZIP_BZIP2 = 12
ZIP_LZMA = 14
# Other ZIP compression methods not supported

DEFAULT_VERSION = 20
ZIP64_VERSION = 45
BZIP2_VERSION = 46
LZMA_VERSION = 63
# we recognize (but not necessarily support) all features up to that version
MAX_EXTRACT_VERSION = 63

# Below are some formats and associated data for reading/writing headers using
# the struct module.  The names and structures of headers/records are those used
# in the PKWARE description of the ZIP file format:
#     http://www.pkware.com/documents/casestudies/APPNOTE.TXT
# (URL valid as of January 2008)

# The "end of central directory" structure, magic number, size, and indices
# (section V.I in the format document)
structEndArchive = b"<4s4H2LH"
stringEndArchive = b"PK\005\006"
sizeEndCentDir = struct.calcsize(structEndArchive)

_ECD_SIGNATURE = 0
_ECD_DISK_NUMBER = 1
_ECD_DISK_START = 2
_ECD_ENTRIES_THIS_DISK = 3
_ECD_ENTRIES_TOTAL = 4
_ECD_SIZE = 5
_ECD_OFFSET = 6
_ECD_COMMENT_SIZE = 7
# These last two indices are not part of the structure as defined in the
# spec, but they are used internally by this module as a convenience
_ECD_COMMENT = 8
_ECD_LOCATION = 9

# The "central directory" structure, magic number, size, and indices
# of entries in the structure (section V.F in the format document)
structCentralDir = "<4s4B4HL2L5H2L"
stringCentralDir = b"PK\001\002"
sizeCentralDir = struct.calcsize(structCentralDir)

# indexes of entries in the central directory structure
_CD_SIGNATURE = 0
_CD_CREATE_VERSION = 1
_CD_CREATE_SYSTEM = 2
_CD_EXTRACT_VERSION = 3
_CD_EXTRACT_SYSTEM = 4
_CD_FLAG_BITS = 5
_CD_COMPRESS_TYPE = 6
_CD_TIME = 7
_CD_DATE = 8
_CD_CRC = 9
_CD_COMPRESSED_SIZE = 10
_CD_UNCOMPRESSED_SIZE = 11
_CD_FILENAME_LENGTH = 12
_CD_EXTRA_FIELD_LENGTH = 13
_CD_COMMENT_LENGTH = 14
_CD_DISK_NUMBER_START = 15
_CD_INTERNAL_FILE_ATTRIBUTES = 16
_CD_EXTERNAL_FILE_ATTRIBUTES = 17
_CD_LOCAL_HEADER_OFFSET = 18

# The "local file header" structure, magic number, size, and indices
# (section V.A in the format document)
structFileHeader = "<4s2B4HL2L2H"
stringFileHeader = b"PK\003\004"
sizeFileHeader = struct.calcsize(structFileHeader)

_FH_SIGNATURE = 0
_FH_EXTRACT_VERSION = 1
_FH_EXTRACT_SYSTEM = 2
_FH_GENERAL_PURPOSE_FLAG_BITS = 3
_FH_COMPRESSION_METHOD = 4
_FH_LAST_MOD_TIME = 5
_FH_LAST_MOD_DATE = 6
_FH_CRC = 7
_FH_COMPRESSED_SIZE = 8
_FH_UNCOMPRESSED_SIZE = 9
_FH_FILENAME_LENGTH = 10
_FH_EXTRA_FIELD_LENGTH = 11

# The "Zip64 end of central directory locator" structure, magic number, and size
structEndArchive64Locator = "<4sLQL"
stringEndArchive64Locator = b"PK\x06\x07"
sizeEndCentDir64Locator = struct.calcsize(structEndArchive64Locator)

# The "Zip64 end of central directory" record, magic number, size, and indices
# (section V.G in the format document)
structEndArchive64 = "<4sQ2H2L4Q"
stringEndArchive64 = b"PK\x06\x06"
sizeEndCentDir64 = struct.calcsize(structEndArchive64)

_CD64_SIGNATURE = 0
_CD64_DIRECTORY_RECSIZE = 1
_CD64_CREATE_VERSION = 2
_CD64_EXTRACT_VERSION = 3
_CD64_DISK_NUMBER = 4
_CD64_DISK_NUMBER_START = 5
_CD64_NUMBER_ENTRIES_THIS_DISK = 6
_CD64_NUMBER_ENTRIES_TOTAL = 7
_CD64_DIRECTORY_SIZE = 8
_CD64_OFFSET_START_CENTDIR = 9

def _check_zipfile(fp):
    try:
        if _EndRecData(fp):
            return True         # file has correct magic number
    except OSError:
        pass
    return False

def is_zipfile(filename):
    """Quickly see if a file is a ZIP file by checking the magic number.

    The filename argument may be a file or file-like object too.
    """
    result = False
    try:
        if hasattr(filename, "read"):
            result = _check_zipfile(fp=filename)
        else:
            with open(filename, "rb") as fp:
                result = _check_zipfile(fp)
    except OSError:
        pass
    return result

def _EndRecData64(fpin, offset, endrec):
    """
    Read the ZIP64 end-of-archive records and use that to update endrec
    """
    try:
        fpin.seek(offset - sizeEndCentDir64Locator, 2)
    except OSError:
        # If the seek fails, the file is not large enough to contain a ZIP64
        # end-of-archive record, so just return the end record we were given.
        return endrec

    data = fpin.read(sizeEndCentDir64Locator)
    if len(data) != sizeEndCentDir64Locator:
        return endrec
    sig, diskno, reloff, disks = struct.unpack(structEndArchive64Locator, data)
    if sig != stringEndArchive64Locator:
        return endrec

    if diskno != 0 or disks != 1:
        raise BadZipFile("zipfiles that span multiple disks are not supported")

    # Assume no 'zip64 extensible data'
    fpin.seek(offset - sizeEndCentDir64Locator - sizeEndCentDir64, 2)
    data = fpin.read(sizeEndCentDir64)
    if len(data) != sizeEndCentDir64:
        return endrec
    sig, sz, create_version, read_version, disk_num, disk_dir, \
        dircount, dircount2, dirsize, diroffset = \
        struct.unpack(structEndArchive64, data)
    if sig != stringEndArchive64:
        return endrec

    # Update the original endrec using data from the ZIP64 record
    endrec[_ECD_SIGNATURE] = sig
    endrec[_ECD_DISK_NUMBER] = disk_num
    endrec[_ECD_DISK_START] = disk_dir
    endrec[_ECD_ENTRIES_THIS_DISK] = dircount
    endrec[_ECD_ENTRIES_TOTAL] = dircount2
    endrec[_ECD_SIZE] = dirsize
    endrec[_ECD_OFFSET] = diroffset
    return endrec


def _EndRecData(fpin):
    """Return data from the "End of Central Directory" record, or None.

    The data is a list of the nine items in the ZIP "End of central dir"
    record followed by a tenth item, the file seek offset of this record."""

    # Determine file size
    fpin.seek(0, 2)
    filesize = fpin.tell()

    # Check to see if this is ZIP file with no archive comment (the
    # "end of central directory" structure should be the last item in the
    # file if this is the case).
    try:
        fpin.seek(-sizeEndCentDir, 2)
    except OSError:
        return None
    data = fpin.read()
    if (len(data) == sizeEndCentDir and
        data[0:4] == stringEndArchive and
        data[-2:] == b"\000\000"):
        # the signature is correct and there's no comment, unpack structure
        endrec = struct.unpack(structEndArchive, data)
        endrec=list(endrec)

        # Append a blank comment and record start offset
        endrec.append(b"")
        endrec.append(filesize - sizeEndCentDir)

        # Try to read the "Zip64 end of central directory" structure
        return _EndRecData64(fpin, -sizeEndCentDir, endrec)

    # Either this is not a ZIP file, or it is a ZIP file with an archive
    # comment.  Search the end of the file for the "end of central directory"
    # record signature. The comment is the last item in the ZIP file and may be
    # up to 64K long.  It is assumed that the "end of central directory" magic
    # number does not appear in the comment.
    maxCommentStart = max(filesize - (1 << 16) - sizeEndCentDir, 0)
    fpin.seek(maxCommentStart, 0)
    data = fpin.read()
    start = data.rfind(stringEndArchive)
    if start >= 0:
        # found the magic number; attempt to unpack and interpret
        recData = data[start:start+sizeEndCentDir]
        if len(recData) != sizeEndCentDir:
            # Zip file is corrupted.
            return None
        endrec = list(struct.unpack(structEndArchive, recData))
        commentSize = endrec[_ECD_COMMENT_SIZE] #as claimed by the zip file
        comment = data[start+sizeEndCentDir:start+sizeEndCentDir+commentSize]
        endrec.append(comment)
        endrec.append(maxCommentStart + start)

        # Try to read the "Zip64 end of central directory" structure
        return _EndRecData64(fpin, maxCommentStart + start - filesize,
                             endrec)

    # Unable to find a valid end of central directory structure
    return None


class ZipInfo (object):
    """Class with attributes describing each file in the ZIP archive."""

    __slots__ = (
        'orig_filename',
        'filename',
        'date_time',
        'compress_type',
        'comment',
        'extra',
        'create_system',
        'create_version',
        'extract_version',
        'reserved',
        'flag_bits',
        'volume',
        'internal_attr',
        'external_attr',
        'header_offset',
        'CRC',
        'compress_size',
        'file_size',
        '_raw_time',
    )

    def __init__(self, filename="NoName", date_time=(1980,1,1,0,0,0)):
        self.orig_filename = filename   # Original file name in archive

        # Terminate the file name at the first null byte.  Null bytes in file
        # names are used as tricks by viruses in archives.
        null_byte = filename.find(chr(0))
        if null_byte >= 0:
            filename = filename[0:null_byte]
        # This is used to ensure paths in generated ZIP files always use
        # forward slashes as the directory separator, as required by the
        # ZIP format specification.
        if os.sep != "/" and os.sep in filename:
            filename = filename.replace(os.sep, "/")

        self.filename = filename        # Normalized file name
        self.date_time = date_time      # year, month, day, hour, min, sec

        if date_time[0] < 1980:
            raise ValueError('ZIP does not support timestamps before 1980')

        # Standard values:
        self.compress_type = ZIP_STORED # Type of compression for the file
        self.comment = b""              # Comment for each file
        self.extra = b""                # ZIP extra data
        if sys.platform == 'win32':
            self.create_system = 0          # System which created ZIP archive
        else:
            # Assume everything else is unix-y
            self.create_system = 3          # System which created ZIP archive
        self.create_version = DEFAULT_VERSION  # Version which created ZIP archive
        self.extract_version = DEFAULT_VERSION # Version needed to extract archive
        self.reserved = 0               # Must be zero
        self.flag_bits = 0              # ZIP flag bits
        self.volume = 0                 # Volume number of file header
        self.internal_attr = 0          # Internal attributes
        self.external_attr = 0          # External file attributes
        # Other attributes are set by class ZipFile:
        # header_offset         Byte offset to the file header
        # CRC                   CRC-32 of the uncompressed file
        # compress_size         Size of the compressed file
        # file_size             Size of the uncompressed file

    def FileHeader(self, zip64=None):
        """Return the per-file header as a string."""
        dt = self.date_time
        dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2]
        dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2)
        if self.flag_bits & 0x08:
            # Set these to zero because we write them after the file data
            CRC = compress_size = file_size = 0
        else:
            CRC = self.CRC
            compress_size = self.compress_size
            file_size = self.file_size

        extra = self.extra

        min_version = 0
        if zip64 is None:
            zip64 = file_size > ZIP64_LIMIT or compress_size > ZIP64_LIMIT
        if zip64:
            fmt = '<HHQQ'
            extra = extra + struct.pack(fmt,
                                        1, struct.calcsize(fmt)-4, file_size, compress_size)
        if file_size > ZIP64_LIMIT or compress_size > ZIP64_LIMIT:
            if not zip64:
                raise LargeZipFile("Filesize would require ZIP64 extensions")
            # File is larger than what fits into a 4 byte integer,
            # fall back to the ZIP64 extension
            file_size = 0xffffffff
            compress_size = 0xffffffff
            min_version = ZIP64_VERSION

        if self.compress_type == ZIP_BZIP2:
            min_version = max(BZIP2_VERSION, min_version)
        elif self.compress_type == ZIP_LZMA:
            min_version = max(LZMA_VERSION, min_version)

        self.extract_version = max(min_version, self.extract_version)
        self.create_version = max(min_version, self.create_version)
        filename, flag_bits = self._encodeFilenameFlags()
        header = struct.pack(structFileHeader, stringFileHeader,
                             self.extract_version, self.reserved, flag_bits,
                             self.compress_type, dostime, dosdate, CRC,
                             compress_size, file_size,
                             len(filename), len(extra))
        return header + filename + extra

    def _encodeFilenameFlags(self):
        try:
            return self.filename.encode('ascii'), self.flag_bits
        except UnicodeEncodeError:
            return self.filename.encode('utf-8'), self.flag_bits | 0x800

    def _decodeExtra(self):
        # Try to decode the extra field.
        extra = self.extra
        unpack = struct.unpack
        while len(extra) >= 4:
            tp, ln = unpack('<HH', extra[:4])
            if tp == 1:
                if ln >= 24:
                    counts = unpack('<QQQ', extra[4:28])
                elif ln == 16:
                    counts = unpack('<QQ', extra[4:20])
                elif ln == 8:
                    counts = unpack('<Q', extra[4:12])
                elif ln == 0:
                    counts = ()
                else:
                    raise RuntimeError("Corrupt extra field %s"%(ln,))

                idx = 0

                # ZIP64 extension (large files and/or large archives)
                if self.file_size in (0xffffffffffffffff, 0xffffffff):
                    self.file_size = counts[idx]
                    idx += 1

                if self.compress_size == 0xFFFFFFFF:
                    self.compress_size = counts[idx]
                    idx += 1

                if self.header_offset == 0xffffffff:
                    old = self.header_offset
                    self.header_offset = counts[idx]
                    idx+=1

            extra = extra[ln+4:]


class _ZipDecrypter:
    """Class to handle decryption of files stored within a ZIP archive.

    ZIP supports a password-based form of encryption. Even though known
    plaintext attacks have been found against it, it is still useful
    to be able to get data out of such a file.

    Usage:
        zd = _ZipDecrypter(mypwd)
        plain_char = zd(cypher_char)
        plain_text = map(zd, cypher_text)
    """

    def _GenerateCRCTable():
        """Generate a CRC-32 table.

        ZIP encryption uses the CRC32 one-byte primitive for scrambling some
        internal keys. We noticed that a direct implementation is faster than
        relying on binascii.crc32().
        """
        poly = 0xedb88320
        table = [0] * 256
        for i in range(256):
            crc = i
            for j in range(8):
                if crc & 1:
                    crc = ((crc >> 1) & 0x7FFFFFFF) ^ poly
                else:
                    crc = ((crc >> 1) & 0x7FFFFFFF)
            table[i] = crc
        return table
    crctable = None

    def _crc32(self, ch, crc):
        """Compute the CRC32 primitive on one byte."""
        return ((crc >> 8) & 0xffffff) ^ self.crctable[(crc ^ ch) & 0xff]

    def __init__(self, pwd):
        if _ZipDecrypter.crctable is None:
            _ZipDecrypter.crctable = _ZipDecrypter._GenerateCRCTable()
        self.key0 = 305419896
        self.key1 = 591751049
        self.key2 = 878082192
        for p in pwd:
            self._UpdateKeys(p)

    def _UpdateKeys(self, c):
        self.key0 = self._crc32(c, self.key0)
        self.key1 = (self.key1 + (self.key0 & 255)) & 4294967295
        self.key1 = (self.key1 * 134775813 + 1) & 4294967295
        self.key2 = self._crc32((self.key1 >> 24) & 255, self.key2)

    def __call__(self, c):
        """Decrypt a single character."""
        assert isinstance(c, int)
        k = self.key2 | 2
        c = c ^ (((k * (k^1)) >> 8) & 255)
        self._UpdateKeys(c)
        return c


class LZMACompressor:

    def __init__(self):
        self._comp = None

    def _init(self):
        props = lzma._encode_filter_properties({'id': lzma.FILTER_LZMA1})
        self._comp = lzma.LZMACompressor(lzma.FORMAT_RAW, filters=[
            lzma._decode_filter_properties(lzma.FILTER_LZMA1, props)
        ])
        return struct.pack('<BBH', 9, 4, len(props)) + props

    def compress(self, data):
        if self._comp is None:
            return self._init() + self._comp.compress(data)
        return self._comp.compress(data)

    def flush(self):
        if self._comp is None:
            return self._init() + self._comp.flush()
        return self._comp.flush()


class LZMADecompressor:

    def __init__(self):
        self._decomp = None
        self._unconsumed = b''
        self.eof = False

    def decompress(self, data):
        if self._decomp is None:
            self._unconsumed += data
            if len(self._unconsumed) <= 4:
                return b''
            psize, = struct.unpack('<H', self._unconsumed[2:4])
            if len(self._unconsumed) <= 4 + psize:
                return b''

            self._decomp = lzma.LZMADecompressor(lzma.FORMAT_RAW, filters=[
                lzma._decode_filter_properties(lzma.FILTER_LZMA1,
                                               self._unconsumed[4:4 + psize])
            ])
            data = self._unconsumed[4 + psize:]
            del self._unconsumed

        result = self._decomp.decompress(data)
        self.eof = self._decomp.eof
        return result


compressor_names = {
    0: 'store',
    1: 'shrink',
    2: 'reduce',
    3: 'reduce',
    4: 'reduce',
    5: 'reduce',
    6: 'implode',
    7: 'tokenize',
    8: 'deflate',
    9: 'deflate64',
    10: 'implode',
    12: 'bzip2',
    14: 'lzma',
    18: 'terse',
    19: 'lz77',
    97: 'wavpack',
    98: 'ppmd',
}

def _check_compression(compression):
    if compression == ZIP_STORED:
        pass
    elif compression == ZIP_DEFLATED:
        if not zlib:
            raise RuntimeError(
                "Compression requires the (missing) zlib module")
    elif compression == ZIP_BZIP2:
        if not bz2:
            raise RuntimeError(
                "Compression requires the (missing) bz2 module")
    elif compression == ZIP_LZMA:
        if not lzma:
            raise RuntimeError(
                "Compression requires the (missing) lzma module")
    else:
        raise RuntimeError("That compression method is not supported")


def _get_compressor(compress_type):
    if compress_type == ZIP_DEFLATED:
        return zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION,
                                zlib.DEFLATED, -15)
    elif compress_type == ZIP_BZIP2:
        return bz2.BZ2Compressor()
    elif compress_type == ZIP_LZMA:
        return LZMACompressor()
    else:
        return None


def _get_decompressor(compress_type):
    if compress_type == ZIP_STORED:
        return None
    elif compress_type == ZIP_DEFLATED:
        return zlib.decompressobj(-15)
    elif compress_type == ZIP_BZIP2:
        return bz2.BZ2Decompressor()
    elif compress_type == ZIP_LZMA:
        return LZMADecompressor()
    else:
        descr = compressor_names.get(compress_type)
        if descr:
            raise NotImplementedError("compression type %d (%s)" % (compress_type, descr))
        else:
            raise NotImplementedError("compression type %d" % (compress_type,))


class ZipExtFile(io.BufferedIOBase):
    """File-like object for reading an archive member.
       Is returned by ZipFile.open().
    """

    # Max size supported by decompressor.
    MAX_N = 1 << 31 - 1

    # Read from compressed files in 4k blocks.
    MIN_READ_SIZE = 4096

    # Search for universal newlines or line chunks.
    PATTERN = re.compile(br'^(?P<chunk>[^\r\n]+)|(?P<newline>\n|\r\n?)')

    def __init__(self, fileobj, mode, zipinfo, decrypter=None,
                 close_fileobj=False):
        self._fileobj = fileobj
        self._decrypter = decrypter
        self._close_fileobj = close_fileobj

        self._compress_type = zipinfo.compress_type
        self._compress_left = zipinfo.compress_size
        self._left = zipinfo.file_size

        self._decompressor = _get_decompressor(self._compress_type)

        self._eof = False
        self._readbuffer = b''
        self._offset = 0

        self._universal = 'U' in mode
        self.newlines = None

        # Adjust read size for encrypted files since the first 12 bytes
        # are for the encryption/password information.
        if self._decrypter is not None:
            self._compress_left -= 12

        self.mode = mode
        self.name = zipinfo.filename

        if hasattr(zipinfo, 'CRC'):
            self._expected_crc = zipinfo.CRC
            self._running_crc = crc32(b'') & 0xffffffff
        else:
            self._expected_crc = None

    def readline(self, limit=-1):
        """Read and return a line from the stream.

        If limit is specified, at most limit bytes will be read.
        """

        if not self._universal and limit < 0:
            # Shortcut common case - newline found in buffer.
            i = self._readbuffer.find(b'\n', self._offset) + 1
            if i > 0:
                line = self._readbuffer[self._offset: i]
                self._offset = i
                return line

        if not self._universal:
            return io.BufferedIOBase.readline(self, limit)

        line = b''
        while limit < 0 or len(line) < limit:
            readahead = self.peek(2)
            if readahead == b'':
                return line

            #
            # Search for universal newlines or line chunks.
            #
            # The pattern returns either a line chunk or a newline, but not
            # both. Combined with peek(2), we are assured that the sequence
            # '\r\n' is always retrieved completely and never split into
            # separate newlines - '\r', '\n' due to coincidental readaheads.
            #
            match = self.PATTERN.search(readahead)
            newline = match.group('newline')
            if newline is not None:
                if self.newlines is None:
                    self.newlines = []
                if newline not in self.newlines:
                    self.newlines.append(newline)
                self._offset += len(newline)
                return line + b'\n'

            chunk = match.group('chunk')
            if limit >= 0:
                chunk = chunk[: limit - len(line)]

            self._offset += len(chunk)
            line += chunk

        return line

    def peek(self, n=1):
        """Returns buffered bytes without advancing the position."""
        if n > len(self._readbuffer) - self._offset:
            chunk = self.read(n)
            if len(chunk) > self._offset:
                self._readbuffer = chunk + self._readbuffer[self._offset:]
                self._offset = 0
            else:
                self._offset -= len(chunk)

        # Return up to 512 bytes to reduce allocation overhead for tight loops.
        return self._readbuffer[self._offset: self._offset + 512]

    def readable(self):
        return True

    def read(self, n=-1):
        """Read and return up to n bytes.
        If the argument is omitted, None, or negative, data is read and returned until EOF is reached..
        """
        if n is None or n < 0:
            buf = self._readbuffer[self._offset:]
            self._readbuffer = b''
            self._offset = 0
            while not self._eof:
                buf += self._read1(self.MAX_N)
            return buf

        end = n + self._offset
        if end < len(self._readbuffer):
            buf = self._readbuffer[self._offset:end]
            self._offset = end
            return buf

        n = end - len(self._readbuffer)
        buf = self._readbuffer[self._offset:]
        self._readbuffer = b''
        self._offset = 0
        while n > 0 and not self._eof:
            data = self._read1(n)
            if n < len(data):
                self._readbuffer = data
                self._offset = n
                buf += data[:n]
                break
            buf += data
            n -= len(data)
        return buf

    def _update_crc(self, newdata):
        # Update the CRC using the given data.
        if self._expected_crc is None:
            # No need to compute the CRC if we don't have a reference value
            return
        self._running_crc = crc32(newdata, self._running_crc) & 0xffffffff
        # Check the CRC if we're at the end of the file
        if self._eof and self._running_crc != self._expected_crc:
            raise BadZipFile("Bad CRC-32 for file %r" % self.name)

    def read1(self, n):
        """Read up to n bytes with at most one read() system call."""

        if n is None or n < 0:
            buf = self._readbuffer[self._offset:]
            self._readbuffer = b''
            self._offset = 0
            while not self._eof:
                data = self._read1(self.MAX_N)
                if data:
                    buf += data
                    break
            return buf

        end = n + self._offset
        if end < len(self._readbuffer):
            buf = self._readbuffer[self._offset:end]
            self._offset = end
            return buf

        n = end - len(self._readbuffer)
        buf = self._readbuffer[self._offset:]
        self._readbuffer = b''
        self._offset = 0
        if n > 0:
            while not self._eof:
                data = self._read1(n)
                if n < len(data):
                    self._readbuffer = data
                    self._offset = n
                    buf += data[:n]
                    break
                if data:
                    buf += data
                    break
        return buf

    def _read1(self, n):
        # Read up to n compressed bytes with at most one read() system call,
        # decrypt and decompress them.
        if self._eof or n <= 0:
            return b''

        # Read from file.
        if self._compress_type == ZIP_DEFLATED:
            ## Handle unconsumed data.
            data = self._decompressor.unconsumed_tail
            if n > len(data):
                data += self._read2(n - len(data))
        else:
            data = self._read2(n)

        if self._compress_type == ZIP_STORED:
            self._eof = self._compress_left <= 0
        elif self._compress_type == ZIP_DEFLATED:
            n = max(n, self.MIN_READ_SIZE)
            data = self._decompressor.decompress(data, n)
            self._eof = (self._decompressor.eof or
                         self._compress_left <= 0 and
                         not self._decompressor.unconsumed_tail)
            if self._eof:
                data += self._decompressor.flush()
        else:
            data = self._decompressor.decompress(data)
            self._eof = self._decompressor.eof or self._compress_left <= 0

        data = data[:self._left]
        self._left -= len(data)
        if self._left <= 0:
            self._eof = True
        self._update_crc(data)
        return data

    def _read2(self, n):
        if self._compress_left <= 0:
            return b''

        n = max(n, self.MIN_READ_SIZE)
        n = min(n, self._compress_left)

        data = self._fileobj.read(n)
        self._compress_left -= len(data)
        if not data:
            raise EOFError

        if self._decrypter is not None:
            data = bytes(map(self._decrypter, data))
        return data

    def close(self):
        try:
            if self._close_fileobj:
                self._fileobj.close()
        finally:
            super().close()


class ZipFile:
    """ Class with methods to open, read, write, close, list zip files.

    z = ZipFile(file, mode="r", compression=ZIP_STORED, allowZip64=True)

    file: Either the path to the file, or a file-like object.
          If it is a path, the file will be opened and closed by ZipFile.
    mode: The mode can be either read "r", write "w" or append "a".
    compression: ZIP_STORED (no compression), ZIP_DEFLATED (requires zlib),
                 ZIP_BZIP2 (requires bz2) or ZIP_LZMA (requires lzma).
    allowZip64: if True ZipFile will create files with ZIP64 extensions when
                needed, otherwise it will raise an exception when this would
                be necessary.

    """

    fp = None                   # Set here since __del__ checks it
    _windows_illegal_name_trans_table = None

    def __init__(self, file, mode="r", compression=ZIP_STORED, allowZip64=True):
        """Open the ZIP file with mode read "r", write "w" or append "a"."""
        if mode not in ("r", "w", "a"):
            raise RuntimeError('ZipFile() requires mode "r", "w", or "a"')

        _check_compression(compression)

        self._allowZip64 = allowZip64
        self._didModify = False
        self.debug = 0  # Level of printing: 0 through 3
        self.NameToInfo = {}    # Find file info given name
        self.filelist = []      # List of ZipInfo instances for archive
        self.compression = compression  # Method of compression
        self.mode = key = mode.replace('b', '')[0]
        self.pwd = None
        self._comment = b''

        # Check if we were passed a file-like object
        if isinstance(file, str):
            # No, it's a filename
            self._filePassed = 0
            self.filename = file
            modeDict = {'r' : 'rb', 'w': 'wb', 'a' : 'r+b'}
            try:
                self.fp = io.open(file, modeDict[mode])
            except OSError:
                if mode == 'a':
                    mode = key = 'w'
                    self.fp = io.open(file, modeDict[mode])
                else:
                    raise
        else:
            self._filePassed = 1
            self.fp = file
            self.filename = getattr(file, 'name', None)

        try:
            if key == 'r':
                self._RealGetContents()
            elif key == 'w':
                # set the modified flag so central directory gets written
                # even if no files are added to the archive
                self._didModify = True
            elif key == 'a':
                try:
                    # See if file is a zip file
                    self._RealGetContents()
                    # seek to start of directory and overwrite
                    self.fp.seek(self.start_dir, 0)
                except BadZipFile:
                    # file is not a zip file, just append
                    self.fp.seek(0, 2)

                    # set the modified flag so central directory gets written
                    # even if no files are added to the archive
                    self._didModify = True
            else:
                raise RuntimeError('Mode must be "r", "w" or "a"')
        except:
            fp = self.fp
            self.fp = None
            if not self._filePassed:
                fp.close()
            raise

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        self.close()

    def _RealGetContents(self):
        """Read in the table of contents for the ZIP file."""
        fp = self.fp
        try:
            endrec = _EndRecData(fp)
        except OSError:
            raise BadZipFile("File is not a zip file")
        if not endrec:
            raise BadZipFile("File is not a zip file")
        if self.debug > 1:
            print(endrec)
        size_cd = endrec[_ECD_SIZE]             # bytes in central directory
        offset_cd = endrec[_ECD_OFFSET]         # offset of central directory
        self._comment = endrec[_ECD_COMMENT]    # archive comment

        # "concat" is zero, unless zip was concatenated to another file
        concat = endrec[_ECD_LOCATION] - size_cd - offset_cd
        if endrec[_ECD_SIGNATURE] == stringEndArchive64:
            # If Zip64 extension structures are present, account for them
            concat -= (sizeEndCentDir64 + sizeEndCentDir64Locator)

        if self.debug > 2:
            inferred = concat + offset_cd
            print("given, inferred, offset", offset_cd, inferred, concat)
        # self.start_dir:  Position of start of central directory
        self.start_dir = offset_cd + concat
        fp.seek(self.start_dir, 0)
        data = fp.read(size_cd)
        fp = io.BytesIO(data)
        total = 0
        while total < size_cd:
            centdir = fp.read(sizeCentralDir)
            if len(centdir) != sizeCentralDir:
                raise BadZipFile("Truncated central directory")
            centdir = struct.unpack(structCentralDir, centdir)
            if centdir[_CD_SIGNATURE] != stringCentralDir:
                raise BadZipFile("Bad magic number for central directory")
            if self.debug > 2:
                print(centdir)
            filename = fp.read(centdir[_CD_FILENAME_LENGTH])
            flags = centdir[5]
            if flags & 0x800:
                # UTF-8 file names extension
                filename = filename.decode('utf-8')
            else:
                # Historical ZIP filename encoding
                filename = filename.decode('cp437')
            # Create ZipInfo instance to store file information
            x = ZipInfo(filename)
            x.extra = fp.read(centdir[_CD_EXTRA_FIELD_LENGTH])
            x.comment = fp.read(centdir[_CD_COMMENT_LENGTH])
            x.header_offset = centdir[_CD_LOCAL_HEADER_OFFSET]
            (x.create_version, x.create_system, x.extract_version, x.reserved,
             x.flag_bits, x.compress_type, t, d,
             x.CRC, x.compress_size, x.file_size) = centdir[1:12]
            if x.extract_version > MAX_EXTRACT_VERSION:
                raise NotImplementedError("zip file version %.1f" %
                                          (x.extract_version / 10))
            x.volume, x.internal_attr, x.external_attr = centdir[15:18]
            # Convert date/time code to (year, month, day, hour, min, sec)
            x._raw_time = t
            x.date_time = ( (d>>9)+1980, (d>>5)&0xF, d&0x1F,
                            t>>11, (t>>5)&0x3F, (t&0x1F) * 2 )

            x._decodeExtra()
            x.header_offset = x.header_offset + concat
            self.filelist.append(x)
            self.NameToInfo[x.filename] = x

            # update total bytes read from central directory
            total = (total + sizeCentralDir + centdir[_CD_FILENAME_LENGTH]
                     + centdir[_CD_EXTRA_FIELD_LENGTH]
                     + centdir[_CD_COMMENT_LENGTH])

            if self.debug > 2:
                print("total", total)


    def namelist(self):
        """Return a list of file names in the archive."""
        return [data.filename for data in self.filelist]

    def infolist(self):
        """Return a list of class ZipInfo instances for files in the
        archive."""
        return self.filelist

    def printdir(self, file=None):
        """Print a table of contents for the zip file."""
        print("%-46s %19s %12s" % ("File Name", "Modified    ", "Size"),
              file=file)
        for zinfo in self.filelist:
            date = "%d-%02d-%02d %02d:%02d:%02d" % zinfo.date_time[:6]
            print("%-46s %s %12d" % (zinfo.filename, date, zinfo.file_size),
                  file=file)

    def testzip(self):
        """Read all the files and check the CRC."""
        chunk_size = 2 ** 20
        for zinfo in self.filelist:
            try:
                # Read by chunks, to avoid an OverflowError or a
                # MemoryError with very large embedded files.
                with self.open(zinfo.filename, "r") as f:
                    while f.read(chunk_size):     # Check CRC-32
                        pass
            except BadZipFile:
                return zinfo.filename

    def getinfo(self, name):
        """Return the instance of ZipInfo given 'name'."""
        info = self.NameToInfo.get(name)
        if info is None:
            raise KeyError(
                'There is no item named %r in the archive' % name)

        return info

    def setpassword(self, pwd):
        """Set default password for encrypted files."""
        if pwd and not isinstance(pwd, bytes):
            raise TypeError("pwd: expected bytes, got %s" % type(pwd))
        if pwd:
            self.pwd = pwd
        else:
            self.pwd = None

    @property
    def comment(self):
        """The comment text associated with the ZIP file."""
        return self._comment

    @comment.setter
    def comment(self, comment):
        if not isinstance(comment, bytes):
            raise TypeError("comment: expected bytes, got %s" % type(comment))
        # check for valid comment length
        if len(comment) > ZIP_MAX_COMMENT:
            import warnings
            warnings.warn('Archive comment is too long; truncating to %d bytes'
                          % ZIP_MAX_COMMENT, stacklevel=2)
            comment = comment[:ZIP_MAX_COMMENT]
        self._comment = comment
        self._didModify = True

    def read(self, name, pwd=None):
        """Return file bytes (as a string) for name."""
        with self.open(name, "r", pwd) as fp:
            return fp.read()

    def open(self, name, mode="r", pwd=None):
        """Return file-like object for 'name'."""
        if mode not in ("r", "U", "rU"):
            raise RuntimeError('open() requires mode "r", "U", or "rU"')
        if 'U' in mode:
            import warnings
            warnings.warn("'U' mode is deprecated",
                          DeprecationWarning, 2)
        if pwd and not isinstance(pwd, bytes):
            raise TypeError("pwd: expected bytes, got %s" % type(pwd))
        if not self.fp:
            raise RuntimeError(
                "Attempt to read ZIP archive that was already closed")

        # Only open a new file for instances where we were not
        # given a file object in the constructor
        if self._filePassed:
            zef_file = self.fp
        else:
            zef_file = io.open(self.filename, 'rb')

        try:
            # Make sure we have an info object
            if isinstance(name, ZipInfo):
                # 'name' is already an info object
                zinfo = name
            else:
                # Get info object for name
                zinfo = self.getinfo(name)
            zef_file.seek(zinfo.header_offset, 0)

            # Skip the file header:
            fheader = zef_file.read(sizeFileHeader)
            if len(fheader) != sizeFileHeader:
                raise BadZipFile("Truncated file header")
            fheader = struct.unpack(structFileHeader, fheader)
            if fheader[_FH_SIGNATURE] != stringFileHeader:
                raise BadZipFile("Bad magic number for file header")

            fname = zef_file.read(fheader[_FH_FILENAME_LENGTH])
            if fheader[_FH_EXTRA_FIELD_LENGTH]:
                zef_file.read(fheader[_FH_EXTRA_FIELD_LENGTH])

            if zinfo.flag_bits & 0x20:
                # Zip 2.7: compressed patched data
                raise NotImplementedError("compressed patched data (flag bit 5)")

            if zinfo.flag_bits & 0x40:
                # strong encryption
                raise NotImplementedError("strong encryption (flag bit 6)")

            if zinfo.flag_bits & 0x800:
                # UTF-8 filename
                fname_str = fname.decode("utf-8")
            else:
                fname_str = fname.decode("cp437")

            if fname_str != zinfo.orig_filename:
                raise BadZipFile(
                    'File name in directory %r and header %r differ.'
                    % (zinfo.orig_filename, fname))

            # check for encrypted flag & handle password
            is_encrypted = zinfo.flag_bits & 0x1
            zd = None
            if is_encrypted:
                if not pwd:
                    pwd = self.pwd
                if not pwd:
                    raise RuntimeError("File %s is encrypted, password "
                                       "required for extraction" % name)

                zd = _ZipDecrypter(pwd)
                # The first 12 bytes in the cypher stream is an encryption header
                #  used to strengthen the algorithm. The first 11 bytes are
                #  completely random, while the 12th contains the MSB of the CRC,
                #  or the MSB of the file time depending on the header type
                #  and is used to check the correctness of the password.
                header = zef_file.read(12)
                h = list(map(zd, header[0:12]))
                if zinfo.flag_bits & 0x8:
                    # compare against the file type from extended local headers
                    check_byte = (zinfo._raw_time >> 8) & 0xff
                else:
                    # compare against the CRC otherwise
                    check_byte = (zinfo.CRC >> 24) & 0xff
                if h[11] != check_byte:
                    raise RuntimeError("Bad password for file", name)

            return ZipExtFile(zef_file, mode, zinfo, zd,
                              close_fileobj=not self._filePassed)
        except:
            if not self._filePassed:
                zef_file.close()
            raise

    def extract(self, member, path=None, pwd=None):
        """Extract a member from the archive to the current working directory,
           using its full name. Its file information is extracted as accurately
           as possible. `member' may be a filename or a ZipInfo object. You can
           specify a different directory using `path'.
        """
        if not isinstance(member, ZipInfo):
            member = self.getinfo(member)

        if path is None:
            path = os.getcwd()

        return self._extract_member(member, path, pwd)

    def extractall(self, path=None, members=None, pwd=None):
        """Extract all members from the archive to the current working
           directory. `path' specifies a different directory to extract to.
           `members' is optional and must be a subset of the list returned
           by namelist().
        """
        if members is None:
            members = self.namelist()

        for zipinfo in members:
            self.extract(zipinfo, path, pwd)

    @classmethod
    def _sanitize_windows_name(cls, arcname, pathsep):
        """Replace bad characters and remove trailing dots from parts."""
        table = cls._windows_illegal_name_trans_table
        if not table:
            illegal = ':<>|"?*'
            table = str.maketrans(illegal, '_' * len(illegal))
            cls._windows_illegal_name_trans_table = table
        arcname = arcname.translate(table)
        # remove trailing dots
        arcname = (x.rstrip('.') for x in arcname.split(pathsep))
        # rejoin, removing empty parts.
        arcname = pathsep.join(x for x in arcname if x)
        return arcname

    def _extract_member(self, member, targetpath, pwd):
        """Extract the ZipInfo object 'member' to a physical
           file on the path targetpath.
        """
        # build the destination pathname, replacing
        # forward slashes to platform specific separators.
        arcname = member.filename.replace('/', os.path.sep)

        if os.path.altsep:
            arcname = arcname.replace(os.path.altsep, os.path.sep)
        # interpret absolute pathname as relative, remove drive letter or
        # UNC path, redundant separators, "." and ".." components.
        arcname = os.path.splitdrive(arcname)[1]
        invalid_path_parts = ('', os.path.curdir, os.path.pardir)
        arcname = os.path.sep.join(x for x in arcname.split(os.path.sep)
                                   if x not in invalid_path_parts)
        if os.path.sep == '\\':
            # filter illegal characters on Windows
            arcname = self._sanitize_windows_name(arcname, os.path.sep)

        targetpath = os.path.join(targetpath, arcname)
        targetpath = os.path.normpath(targetpath)

        # Create all upper directories if necessary.
        upperdirs = os.path.dirname(targetpath)
        if upperdirs and not os.path.exists(upperdirs):
            os.makedirs(upperdirs)

        if member.filename[-1] == '/':
            if not os.path.isdir(targetpath):
                os.mkdir(targetpath)
            return targetpath

        with self.open(member, pwd=pwd) as source, \
             open(targetpath, "wb") as target:
            shutil.copyfileobj(source, target)

        return targetpath

    def _writecheck(self, zinfo):
        """Check for errors before writing a file to the archive."""
        if zinfo.filename in self.NameToInfo:
            import warnings
            warnings.warn('Duplicate name: %r' % zinfo.filename, stacklevel=3)
        if self.mode not in ("w", "a"):
            raise RuntimeError('write() requires mode "w" or "a"')
        if not self.fp:
            raise RuntimeError(
                "Attempt to write ZIP archive that was already closed")
        _check_compression(zinfo.compress_type)
        if not self._allowZip64:
            requires_zip64 = None
            if len(self.filelist) >= ZIP_FILECOUNT_LIMIT:
                requires_zip64 = "Files count"
            elif zinfo.file_size > ZIP64_LIMIT:
                requires_zip64 = "Filesize"
            elif zinfo.header_offset > ZIP64_LIMIT:
                requires_zip64 = "Zipfile size"
            if requires_zip64:
                raise LargeZipFile(requires_zip64 +
                                   " would require ZIP64 extensions")

    def write(self, filename, arcname=None, compress_type=None):
        """Put the bytes from filename into the archive under the name
        arcname."""
        if not self.fp:
            raise RuntimeError(
                "Attempt to write to ZIP archive that was already closed")

        st = os.stat(filename)
        isdir = stat.S_ISDIR(st.st_mode)
        mtime = time.localtime(st.st_mtime)
        date_time = mtime[0:6]
        # Create ZipInfo instance to store file information
        if arcname is None:
            arcname = filename
        arcname = os.path.normpath(os.path.splitdrive(arcname)[1])
        while arcname[0] in (os.sep, os.altsep):
            arcname = arcname[1:]
        if isdir:
            arcname += '/'
        zinfo = ZipInfo(arcname, date_time)
        zinfo.external_attr = (st[0] & 0xFFFF) << 16      # Unix attributes
        if isdir:
            zinfo.compress_type = ZIP_STORED
        elif compress_type is None:
            zinfo.compress_type = self.compression
        else:
            zinfo.compress_type = compress_type

        zinfo.file_size = st.st_size
        zinfo.flag_bits = 0x00
        zinfo.header_offset = self.fp.tell()    # Start of header bytes
        if zinfo.compress_type == ZIP_LZMA:
            # Compressed data includes an end-of-stream (EOS) marker
            zinfo.flag_bits |= 0x02

        self._writecheck(zinfo)
        self._didModify = True

        if isdir:
            zinfo.file_size = 0
            zinfo.compress_size = 0
            zinfo.CRC = 0
            zinfo.external_attr |= 0x10  # MS-DOS directory flag
            self.filelist.append(zinfo)
            self.NameToInfo[zinfo.filename] = zinfo
            self.fp.write(zinfo.FileHeader(False))
            return

        cmpr = _get_compressor(zinfo.compress_type)
        with open(filename, "rb") as fp:
            # Must overwrite CRC and sizes with correct data later
            zinfo.CRC = CRC = 0
            zinfo.compress_size = compress_size = 0
            # Compressed size can be larger than uncompressed size
            zip64 = self._allowZip64 and \
                zinfo.file_size * 1.05 > ZIP64_LIMIT
            self.fp.write(zinfo.FileHeader(zip64))
            file_size = 0
            while 1:
                buf = fp.read(1024 * 8)
                if not buf:
                    break
                file_size = file_size + len(buf)
                CRC = crc32(buf, CRC) & 0xffffffff
                if cmpr:
                    buf = cmpr.compress(buf)
                    compress_size = compress_size + len(buf)
                self.fp.write(buf)
        if cmpr:
            buf = cmpr.flush()
            compress_size = compress_size + len(buf)
            self.fp.write(buf)
            zinfo.compress_size = compress_size
        else:
            zinfo.compress_size = file_size
        zinfo.CRC = CRC
        zinfo.file_size = file_size
        if not zip64 and self._allowZip64:
            if file_size > ZIP64_LIMIT:
                raise RuntimeError('File size has increased during compressing')
            if compress_size > ZIP64_LIMIT:
                raise RuntimeError('Compressed size larger than uncompressed size')
        # Seek backwards and write file header (which will now include
        # correct CRC and file sizes)
        position = self.fp.tell()       # Preserve current position in file
        self.fp.seek(zinfo.header_offset, 0)
        self.fp.write(zinfo.FileHeader(zip64))
        self.fp.seek(position, 0)
        self.filelist.append(zinfo)
        self.NameToInfo[zinfo.filename] = zinfo

    def writestr(self, zinfo_or_arcname, data, compress_type=None):
        """Write a file into the archive.  The contents is 'data', which
        may be either a 'str' or a 'bytes' instance; if it is a 'str',
        it is encoded as UTF-8 first.
        'zinfo_or_arcname' is either a ZipInfo instance or
        the name of the file in the archive."""
        if isinstance(data, str):
            data = data.encode("utf-8")
        if not isinstance(zinfo_or_arcname, ZipInfo):
            zinfo = ZipInfo(filename=zinfo_or_arcname,
                            date_time=time.localtime(time.time())[:6])
            zinfo.compress_type = self.compression
            if zinfo.filename[-1] == '/':
                zinfo.external_attr = 0o40775 << 16   # drwxrwxr-x
                zinfo.external_attr |= 0x10           # MS-DOS directory flag
            else:
                zinfo.external_attr = 0o600 << 16     # ?rw-------
        else:
            zinfo = zinfo_or_arcname

        if not self.fp:
            raise RuntimeError(
                "Attempt to write to ZIP archive that was already closed")

        zinfo.file_size = len(data)            # Uncompressed size
        zinfo.header_offset = self.fp.tell()    # Start of header data
        if compress_type is not None:
            zinfo.compress_type = compress_type
        if zinfo.compress_type == ZIP_LZMA:
            # Compressed data includes an end-of-stream (EOS) marker
            zinfo.flag_bits |= 0x02

        self._writecheck(zinfo)
        self._didModify = True
        zinfo.CRC = crc32(data) & 0xffffffff       # CRC-32 checksum
        co = _get_compressor(zinfo.compress_type)
        if co:
            data = co.compress(data) + co.flush()
            zinfo.compress_size = len(data)    # Compressed size
        else:
            zinfo.compress_size = zinfo.file_size
        zip64 = zinfo.file_size > ZIP64_LIMIT or \
            zinfo.compress_size > ZIP64_LIMIT
        if zip64 and not self._allowZip64:
            raise LargeZipFile("Filesize would require ZIP64 extensions")
        self.fp.write(zinfo.FileHeader(zip64))
        self.fp.write(data)
        if zinfo.flag_bits & 0x08:
            # Write CRC and file sizes after the file data
            fmt = '<LQQ' if zip64 else '<LLL'
            self.fp.write(struct.pack(fmt, zinfo.CRC, zinfo.compress_size,
                                      zinfo.file_size))
        self.fp.flush()
        self.filelist.append(zinfo)
        self.NameToInfo[zinfo.filename] = zinfo

    def __del__(self):
        """Call the "close()" method in case the user forgot."""
        self.close()

    def close(self):
        """Close the file, and for mode "w" and "a" write the ending
        records."""
        if self.fp is None:
            return

        try:
            if self.mode in ("w", "a") and self._didModify: # write ending records
                pos1 = self.fp.tell()
                for zinfo in self.filelist:         # write central directory
                    dt = zinfo.date_time
                    dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2]
                    dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2)
                    extra = []
                    if zinfo.file_size > ZIP64_LIMIT \
                       or zinfo.compress_size > ZIP64_LIMIT:
                        extra.append(zinfo.file_size)
                        extra.append(zinfo.compress_size)
                        file_size = 0xffffffff
                        compress_size = 0xffffffff
                    else:
                        file_size = zinfo.file_size
                        compress_size = zinfo.compress_size

                    if zinfo.header_offset > ZIP64_LIMIT:
                        extra.append(zinfo.header_offset)
                        header_offset = 0xffffffff
                    else:
                        header_offset = zinfo.header_offset

                    extra_data = zinfo.extra
                    min_version = 0
                    if extra:
                        # Append a ZIP64 field to the extra's
                        extra_data = struct.pack(
                            '<HH' + 'Q'*len(extra),
                            1, 8*len(extra), *extra) + extra_data

                        min_version = ZIP64_VERSION

                    if zinfo.compress_type == ZIP_BZIP2:
                        min_version = max(BZIP2_VERSION, min_version)
                    elif zinfo.compress_type == ZIP_LZMA:
                        min_version = max(LZMA_VERSION, min_version)

                    extract_version = max(min_version, zinfo.extract_version)
                    create_version = max(min_version, zinfo.create_version)
                    try:
                        filename, flag_bits = zinfo._encodeFilenameFlags()
                        centdir = struct.pack(structCentralDir,
                                              stringCentralDir, create_version,
                                              zinfo.create_system, extract_version, zinfo.reserved,
                                              flag_bits, zinfo.compress_type, dostime, dosdate,
                                              zinfo.CRC, compress_size, file_size,
                                              len(filename), len(extra_data), len(zinfo.comment),
                                              0, zinfo.internal_attr, zinfo.external_attr,
                                              header_offset)
                    except DeprecationWarning:
                        print((structCentralDir, stringCentralDir, create_version,
                               zinfo.create_system, extract_version, zinfo.reserved,
                               zinfo.flag_bits, zinfo.compress_type, dostime, dosdate,
                               zinfo.CRC, compress_size, file_size,
                               len(zinfo.filename), len(extra_data), len(zinfo.comment),
                               0, zinfo.internal_attr, zinfo.external_attr,
                               header_offset), file=sys.stderr)
                        raise
                    self.fp.write(centdir)
                    self.fp.write(filename)
                    self.fp.write(extra_data)
                    self.fp.write(zinfo.comment)

                pos2 = self.fp.tell()
                # Write end-of-zip-archive record
                centDirCount = len(self.filelist)
                centDirSize = pos2 - pos1
                centDirOffset = pos1
                requires_zip64 = None
                if centDirCount > ZIP_FILECOUNT_LIMIT:
                    requires_zip64 = "Files count"
                elif centDirOffset > ZIP64_LIMIT:
                    requires_zip64 = "Central directory offset"
                elif centDirSize > ZIP64_LIMIT:
                    requires_zip64 = "Central directory size"
                if requires_zip64:
                    # Need to write the ZIP64 end-of-archive records
                    if not self._allowZip64:
                        raise LargeZipFile(requires_zip64 +
                                           " would require ZIP64 extensions")
                    zip64endrec = struct.pack(
                        structEndArchive64, stringEndArchive64,
                        44, 45, 45, 0, 0, centDirCount, centDirCount,
                        centDirSize, centDirOffset)
                    self.fp.write(zip64endrec)

                    zip64locrec = struct.pack(
                        structEndArchive64Locator,
                        stringEndArchive64Locator, 0, pos2, 1)
                    self.fp.write(zip64locrec)
                    centDirCount = min(centDirCount, 0xFFFF)
                    centDirSize = min(centDirSize, 0xFFFFFFFF)
                    centDirOffset = min(centDirOffset, 0xFFFFFFFF)

                endrec = struct.pack(structEndArchive, stringEndArchive,
                                     0, 0, centDirCount, centDirCount,
                                     centDirSize, centDirOffset, len(self._comment))
                self.fp.write(endrec)
                self.fp.write(self._comment)
                self.fp.flush()
        finally:
            fp = self.fp
            self.fp = None
            if not self._filePassed:
                fp.close()


class PyZipFile(ZipFile):
    """Class to create ZIP archives with Python library files and packages."""

    def __init__(self, file, mode="r", compression=ZIP_STORED,
                 allowZip64=True, optimize=-1):
        ZipFile.__init__(self, file, mode=mode, compression=compression,
                         allowZip64=allowZip64)
        self._optimize = optimize

    def writepy(self, pathname, basename="", filterfunc=None):
        """Add all files from "pathname" to the ZIP archive.

        If pathname is a package directory, search the directory and
        all package subdirectories recursively for all *.py and enter
        the modules into the archive.  If pathname is a plain
        directory, listdir *.py and enter all modules.  Else, pathname
        must be a Python *.py file and the module will be put into the
        archive.  Added modules are always module.pyo or module.pyc.
        This method will compile the module.py into module.pyc if
        necessary.
        If filterfunc(pathname) is given, it is called with every argument.
        When it is False, the file or directory is skipped.
        """
        if filterfunc and not filterfunc(pathname):
            if self.debug:
                label = 'path' if os.path.isdir(pathname) else 'file'
                print('%s "%s" skipped by filterfunc' % (label, pathname))
            return
        dir, name = os.path.split(pathname)
        if os.path.isdir(pathname):
            initname = os.path.join(pathname, "__init__.py")
            if os.path.isfile(initname):
                # This is a package directory, add it
                if basename:
                    basename = "%s/%s" % (basename, name)
                else:
                    basename = name
                if self.debug:
                    print("Adding package in", pathname, "as", basename)
                fname, arcname = self._get_codename(initname[0:-3], basename)
                if self.debug:
                    print("Adding", arcname)
                self.write(fname, arcname)
                dirlist = os.listdir(pathname)
                dirlist.remove("__init__.py")
                # Add all *.py files and package subdirectories
                for filename in dirlist:
                    path = os.path.join(pathname, filename)
                    root, ext = os.path.splitext(filename)
                    if os.path.isdir(path):
                        if os.path.isfile(os.path.join(path, "__init__.py")):
                            # This is a package directory, add it
                            self.writepy(path, basename,
                                         filterfunc=filterfunc)  # Recursive call
                    elif ext == ".py":
                        if filterfunc and not filterfunc(path):
                            if self.debug:
                                print('file "%s" skipped by filterfunc' % path)
                            continue
                        fname, arcname = self._get_codename(path[0:-3],
                                                            basename)
                        if self.debug:
                            print("Adding", arcname)
                        self.write(fname, arcname)
            else:
                # This is NOT a package directory, add its files at top level
                if self.debug:
                    print("Adding files from directory", pathname)
                for filename in os.listdir(pathname):
                    path = os.path.join(pathname, filename)
                    root, ext = os.path.splitext(filename)
                    if ext == ".py":
                        if filterfunc and not filterfunc(path):
                            if self.debug:
                                print('file "%s" skipped by filterfunc' % path)
                            continue
                        fname, arcname = self._get_codename(path[0:-3],
                                                            basename)
                        if self.debug:
                            print("Adding", arcname)
                        self.write(fname, arcname)
        else:
            if pathname[-3:] != ".py":
                raise RuntimeError(
                    'Files added with writepy() must end with ".py"')
            fname, arcname = self._get_codename(pathname[0:-3], basename)
            if self.debug:
                print("Adding file", arcname)
            self.write(fname, arcname)

    def _get_codename(self, pathname, basename):
        """Return (filename, archivename) for the path.

        Given a module name path, return the correct file path and
        archive name, compiling if necessary.  For example, given
        /python/lib/string, return (/python/lib/string.pyc, string).
        """
        def _compile(file, optimize=-1):
            import py_compile
            if self.debug:
                print("Compiling", file)
            try:
                py_compile.compile(file, doraise=True, optimize=optimize)
            except py_compile.PyCompileError as err:
                print(err.msg)
                return False
            return True

        file_py  = pathname + ".py"
        file_pyc = pathname + ".pyc"
        file_pyo = pathname + ".pyo"
        pycache_pyc = importlib.util.cache_from_source(file_py, True)
        pycache_pyo = importlib.util.cache_from_source(file_py, False)
        if self._optimize == -1:
            # legacy mode: use whatever file is present
            if (os.path.isfile(file_pyo) and
                os.stat(file_pyo).st_mtime >= os.stat(file_py).st_mtime):
                # Use .pyo file.
                arcname = fname = file_pyo
            elif (os.path.isfile(file_pyc) and
                  os.stat(file_pyc).st_mtime >= os.stat(file_py).st_mtime):
                # Use .pyc file.
                arcname = fname = file_pyc
            elif (os.path.isfile(pycache_pyc) and
                  os.stat(pycache_pyc).st_mtime >= os.stat(file_py).st_mtime):
                # Use the __pycache__/*.pyc file, but write it to the legacy pyc
                # file name in the archive.
                fname = pycache_pyc
                arcname = file_pyc
            elif (os.path.isfile(pycache_pyo) and
                  os.stat(pycache_pyo).st_mtime >= os.stat(file_py).st_mtime):
                # Use the __pycache__/*.pyo file, but write it to the legacy pyo
                # file name in the archive.
                fname = pycache_pyo
                arcname = file_pyo
            else:
                # Compile py into PEP 3147 pyc file.
                if _compile(file_py):
                    fname = (pycache_pyc if __debug__ else pycache_pyo)
                    arcname = (file_pyc if __debug__ else file_pyo)
                else:
                    fname = arcname = file_py
        else:
            # new mode: use given optimization level
            if self._optimize == 0:
                fname = pycache_pyc
                arcname = file_pyc
            else:
                fname = pycache_pyo
                arcname = file_pyo
            if not (os.path.isfile(fname) and
                    os.stat(fname).st_mtime >= os.stat(file_py).st_mtime):
                if not _compile(file_py, optimize=self._optimize):
                    fname = arcname = file_py
        archivename = os.path.split(arcname)[1]
        if basename:
            archivename = "%s/%s" % (basename, archivename)
        return (fname, archivename)


def main(args = None):
    import textwrap
    USAGE=textwrap.dedent("""\
        Usage:
            zipfile.py -l zipfile.zip        # Show listing of a zipfile
            zipfile.py -t zipfile.zip        # Test if a zipfile is valid
            zipfile.py -e zipfile.zip target # Extract zipfile into target dir
            zipfile.py -c zipfile.zip src ... # Create zipfile from sources
        """)
    if args is None:
        args = sys.argv[1:]

    if not args or args[0] not in ('-l', '-c', '-e', '-t'):
        print(USAGE)
        sys.exit(1)

    if args[0] == '-l':
        if len(args) != 2:
            print(USAGE)
            sys.exit(1)
        with ZipFile(args[1], 'r') as zf:
            zf.printdir()

    elif args[0] == '-t':
        if len(args) != 2:
            print(USAGE)
            sys.exit(1)
        with ZipFile(args[1], 'r') as zf:
            badfile = zf.testzip()
        if badfile:
            print("The following enclosed file is corrupted: {!r}".format(badfile))
        print("Done testing")

    elif args[0] == '-e':
        if len(args) != 3:
            print(USAGE)
            sys.exit(1)

        with ZipFile(args[1], 'r') as zf:
            zf.extractall(args[2])

    elif args[0] == '-c':
        if len(args) < 3:
            print(USAGE)
            sys.exit(1)

        def addToZip(zf, path, zippath):
            if os.path.isfile(path):
                zf.write(path, zippath, ZIP_DEFLATED)
            elif os.path.isdir(path):
                if zippath:
                    zf.write(path, zippath)
                for nm in os.listdir(path):
                    addToZip(zf,
                             os.path.join(path, nm), os.path.join(zippath, nm))
            # else: ignore

        with ZipFile(args[1], 'w') as zf:
            for path in args[2:]:
                zippath = os.path.basename(path)
                if not zippath:
                    zippath = os.path.basename(os.path.dirname(path))
                if zippath in ('', os.curdir, os.pardir):
                    zippath = ''
                addToZip(zf, path, zippath)

if __name__ == "__main__":
    main()
lib\_bootlocale.py
"""A minimal subset of the locale module used at interpreter startup
(imported by the _io module), in order to reduce startup time.

Don't import directly from third-party code; use the `locale` module instead!
"""

import sys
import _locale

if sys.platform.startswith("win"):
    def getpreferredencoding(do_setlocale=True):
        if sys.flags.utf8_mode:
            return 'UTF-8'
        return _locale._getdefaultlocale()[1]
else:
    try:
        _locale.CODESET
    except AttributeError:
        def getpreferredencoding(do_setlocale=True):
            if sys.flags.utf8_mode:
                return 'UTF-8'
            # This path for legacy systems needs the more complex
            # getdefaultlocale() function, import the full locale module.
            import locale
            return locale.getpreferredencoding(do_setlocale)
    else:
        def getpreferredencoding(do_setlocale=True):
            assert not do_setlocale
            if sys.flags.utf8_mode:
                return 'UTF-8'
            result = _locale.nl_langinfo(_locale.CODESET)
            if not result and sys.platform == 'darwin':
                # nl_langinfo can return an empty string
                # when the setting has an invalid value.
                # Default to UTF-8 in that case because
                # UTF-8 is the default charset on OSX and
                # returning nothing will crash the
                # interpreter.
                result = 'UTF-8'
            return result
lib\_collections_abc.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for collections, according to PEP 3119.

Unit tests are in test_collections.
"""

from abc import ABCMeta, abstractmethod
import sys

__all__ = ["Hashable", "Iterable", "Iterator",
           "Sized", "Container", "Callable",
           "Set", "MutableSet",
           "Mapping", "MutableMapping",
           "MappingView", "KeysView", "ItemsView", "ValuesView",
           "Sequence", "MutableSequence",
           "ByteString",
           ]

# This module has been renamed from collections.abc to _collections_abc to
# speed up interpreter startup. Some of the types such as MutableMapping are
# required early but collections module imports a lot of other modules.
# See issue #19218
__name__ = "collections.abc"

# Private list of types that we want to register with the various ABCs
# so that they will pass tests like:
#       it = iter(somebytearray)
#       assert isinstance(it, Iterable)
# Note:  in other implementations, these types many not be distinct
# and they make have their own implementation specific types that
# are not included on this list.
bytes_iterator = type(iter(b''))
bytearray_iterator = type(iter(bytearray()))
#callable_iterator = ???
dict_keyiterator = type(iter({}.keys()))
dict_valueiterator = type(iter({}.values()))
dict_itemiterator = type(iter({}.items()))
list_iterator = type(iter([]))
list_reverseiterator = type(iter(reversed([])))
range_iterator = type(iter(range(0)))
set_iterator = type(iter(set()))
str_iterator = type(iter(""))
tuple_iterator = type(iter(()))
zip_iterator = type(iter(zip()))
## views ##
dict_keys = type({}.keys())
dict_values = type({}.values())
dict_items = type({}.items())
## misc ##
mappingproxy = type(type.__dict__)


### ONE-TRICK PONIES ###

class Hashable(metaclass=ABCMeta):

    __slots__ = ()

    @abstractmethod
    def __hash__(self):
        return 0

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Hashable:
            for B in C.__mro__:
                if "__hash__" in B.__dict__:
                    if B.__dict__["__hash__"]:
                        return True
                    break
        return NotImplemented


class Iterable(metaclass=ABCMeta):

    __slots__ = ()

    @abstractmethod
    def __iter__(self):
        while False:
            yield None

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterable:
            if any("__iter__" in B.__dict__ for B in C.__mro__):
                return True
        return NotImplemented


class Iterator(Iterable):

    __slots__ = ()

    @abstractmethod
    def __next__(self):
        'Return the next item from the iterator. When exhausted, raise StopIteration'
        raise StopIteration

    def __iter__(self):
        return self

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterator:
            if (any("__next__" in B.__dict__ for B in C.__mro__) and
                any("__iter__" in B.__dict__ for B in C.__mro__)):
                return True
        return NotImplemented

Iterator.register(bytes_iterator)
Iterator.register(bytearray_iterator)
#Iterator.register(callable_iterator)
Iterator.register(dict_keyiterator)
Iterator.register(dict_valueiterator)
Iterator.register(dict_itemiterator)
Iterator.register(list_iterator)
Iterator.register(list_reverseiterator)
Iterator.register(range_iterator)
Iterator.register(set_iterator)
Iterator.register(str_iterator)
Iterator.register(tuple_iterator)
Iterator.register(zip_iterator)

class Sized(metaclass=ABCMeta):

    __slots__ = ()

    @abstractmethod
    def __len__(self):
        return 0

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Sized:
            if any("__len__" in B.__dict__ for B in C.__mro__):
                return True
        return NotImplemented


class Container(metaclass=ABCMeta):

    __slots__ = ()

    @abstractmethod
    def __contains__(self, x):
        return False

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Container:
            if any("__contains__" in B.__dict__ for B in C.__mro__):
                return True
        return NotImplemented


class Callable(metaclass=ABCMeta):

    __slots__ = ()

    @abstractmethod
    def __call__(self, *args, **kwds):
        return False

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Callable:
            if any("__call__" in B.__dict__ for B in C.__mro__):
                return True
        return NotImplemented


### SETS ###


class Set(Sized, Iterable, Container):

    """A set is a finite, iterable container.

    This class provides concrete generic implementations of all
    methods except for __contains__, __iter__ and __len__.

    To override the comparisons (presumably for speed, as the
    semantics are fixed), redefine __le__ and __ge__,
    then the other operations will automatically follow suit.
    """

    __slots__ = ()

    def __le__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        if len(self) > len(other):
            return False
        for elem in self:
            if elem not in other:
                return False
        return True

    def __lt__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return len(self) < len(other) and self.__le__(other)

    def __gt__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return len(self) > len(other) and self.__ge__(other)

    def __ge__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        if len(self) < len(other):
            return False
        for elem in other:
            if elem not in self:
                return False
        return True

    def __eq__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return len(self) == len(other) and self.__le__(other)

    @classmethod
    def _from_iterable(cls, it):
        '''Construct an instance of the class from any iterable input.

        Must override this method if the class constructor signature
        does not accept an iterable for an input.
        '''
        return cls(it)

    def __and__(self, other):
        if not isinstance(other, Iterable):
            return NotImplemented
        return self._from_iterable(value for value in other if value in self)

    __rand__ = __and__

    def isdisjoint(self, other):
        'Return True if two sets have a null intersection.'
        for value in other:
            if value in self:
                return False
        return True

    def __or__(self, other):
        if not isinstance(other, Iterable):
            return NotImplemented
        chain = (e for s in (self, other) for e in s)
        return self._from_iterable(chain)

    __ror__ = __or__

    def __sub__(self, other):
        if not isinstance(other, Set):
            if not isinstance(other, Iterable):
                return NotImplemented
            other = self._from_iterable(other)
        return self._from_iterable(value for value in self
                                   if value not in other)

    def __rsub__(self, other):
        if not isinstance(other, Set):
            if not isinstance(other, Iterable):
                return NotImplemented
            other = self._from_iterable(other)
        return self._from_iterable(value for value in other
                                   if value not in self)

    def __xor__(self, other):
        if not isinstance(other, Set):
            if not isinstance(other, Iterable):
                return NotImplemented
            other = self._from_iterable(other)
        return (self - other) | (other - self)

    __rxor__ = __xor__

    def _hash(self):
        """Compute the hash value of a set.

        Note that we don't define __hash__: not all sets are hashable.
        But if you define a hashable set type, its __hash__ should
        call this function.

        This must be compatible __eq__.

        All sets ought to compare equal if they contain the same
        elements, regardless of how they are implemented, and
        regardless of the order of the elements; so there's not much
        freedom for __eq__ or __hash__.  We match the algorithm used
        by the built-in frozenset type.
        """
        MAX = sys.maxsize
        MASK = 2 * MAX + 1
        n = len(self)
        h = 1927868237 * (n + 1)
        h &= MASK
        for x in self:
            hx = hash(x)
            h ^= (hx ^ (hx << 16) ^ 89869747)  * 3644798167
            h &= MASK
        h = h * 69069 + 907133923
        h &= MASK
        if h > MAX:
            h -= MASK + 1
        if h == -1:
            h = 590923713
        return h

Set.register(frozenset)


class MutableSet(Set):
    """A mutable set is a finite, iterable container.

    This class provides concrete generic implementations of all
    methods except for __contains__, __iter__, __len__,
    add(), and discard().

    To override the comparisons (presumably for speed, as the
    semantics are fixed), all you have to do is redefine __le__ and
    then the other operations will automatically follow suit.
    """

    __slots__ = ()

    @abstractmethod
    def add(self, value):
        """Add an element."""
        raise NotImplementedError

    @abstractmethod
    def discard(self, value):
        """Remove an element.  Do not raise an exception if absent."""
        raise NotImplementedError

    def remove(self, value):
        """Remove an element. If not a member, raise a KeyError."""
        if value not in self:
            raise KeyError(value)
        self.discard(value)

    def pop(self):
        """Return the popped value.  Raise KeyError if empty."""
        it = iter(self)
        try:
            value = next(it)
        except StopIteration:
            raise KeyError
        self.discard(value)
        return value

    def clear(self):
        """This is slow (creates N new iterators!) but effective."""
        try:
            while True:
                self.pop()
        except KeyError:
            pass

    def __ior__(self, it):
        for value in it:
            self.add(value)
        return self

    def __iand__(self, it):
        for value in (self - it):
            self.discard(value)
        return self

    def __ixor__(self, it):
        if it is self:
            self.clear()
        else:
            if not isinstance(it, Set):
                it = self._from_iterable(it)
            for value in it:
                if value in self:
                    self.discard(value)
                else:
                    self.add(value)
        return self

    def __isub__(self, it):
        if it is self:
            self.clear()
        else:
            for value in it:
                self.discard(value)
        return self

MutableSet.register(set)


### MAPPINGS ###


class Mapping(Sized, Iterable, Container):

    __slots__ = ()

    """A Mapping is a generic container for associating key/value
    pairs.

    This class provides concrete generic implementations of all
    methods except for __getitem__, __iter__, and __len__.

    """

    @abstractmethod
    def __getitem__(self, key):
        raise KeyError

    def get(self, key, default=None):
        'D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.'
        try:
            return self[key]
        except KeyError:
            return default

    def __contains__(self, key):
        try:
            self[key]
        except KeyError:
            return False
        else:
            return True

    def keys(self):
        "D.keys() -> a set-like object providing a view on D's keys"
        return KeysView(self)

    def items(self):
        "D.items() -> a set-like object providing a view on D's items"
        return ItemsView(self)

    def values(self):
        "D.values() -> an object providing a view on D's values"
        return ValuesView(self)

    def __eq__(self, other):
        if not isinstance(other, Mapping):
            return NotImplemented
        return dict(self.items()) == dict(other.items())

Mapping.register(mappingproxy)


class MappingView(Sized):

    def __init__(self, mapping):
        self._mapping = mapping

    def __len__(self):
        return len(self._mapping)

    def __repr__(self):
        return '{0.__class__.__name__}({0._mapping!r})'.format(self)


class KeysView(MappingView, Set):

    @classmethod
    def _from_iterable(self, it):
        return set(it)

    def __contains__(self, key):
        return key in self._mapping

    def __iter__(self):
        yield from self._mapping

KeysView.register(dict_keys)


class ItemsView(MappingView, Set):

    @classmethod
    def _from_iterable(self, it):
        return set(it)

    def __contains__(self, item):
        key, value = item
        try:
            v = self._mapping[key]
        except KeyError:
            return False
        else:
            return v == value

    def __iter__(self):
        for key in self._mapping:
            yield (key, self._mapping[key])

ItemsView.register(dict_items)


class ValuesView(MappingView):

    def __contains__(self, value):
        for key in self._mapping:
            if value == self._mapping[key]:
                return True
        return False

    def __iter__(self):
        for key in self._mapping:
            yield self._mapping[key]

ValuesView.register(dict_values)


class MutableMapping(Mapping):

    __slots__ = ()

    """A MutableMapping is a generic container for associating
    key/value pairs.

    This class provides concrete generic implementations of all
    methods except for __getitem__, __setitem__, __delitem__,
    __iter__, and __len__.

    """

    @abstractmethod
    def __setitem__(self, key, value):
        raise KeyError

    @abstractmethod
    def __delitem__(self, key):
        raise KeyError

    __marker = object()

    def pop(self, key, default=__marker):
        '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
          If key is not found, d is returned if given, otherwise KeyError is raised.
        '''
        try:
            value = self[key]
        except KeyError:
            if default is self.__marker:
                raise
            return default
        else:
            del self[key]
            return value

    def popitem(self):
        '''D.popitem() -> (k, v), remove and return some (key, value) pair
           as a 2-tuple; but raise KeyError if D is empty.
        '''
        try:
            key = next(iter(self))
        except StopIteration:
            raise KeyError
        value = self[key]
        del self[key]
        return key, value

    def clear(self):
        'D.clear() -> None.  Remove all items from D.'
        try:
            while True:
                self.popitem()
        except KeyError:
            pass

    def update(*args, **kwds):
        ''' D.update([E, ]**F) -> None.  Update D from mapping/iterable E and F.
            If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
            If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
            In either case, this is followed by: for k, v in F.items(): D[k] = v
        '''
        if not args:
            raise TypeError("descriptor 'update' of 'MutableMapping' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('update expected at most 1 arguments, got %d' %
                            len(args))
        if args:
            other = args[0]
            if isinstance(other, Mapping):
                for key in other:
                    self[key] = other[key]
            elif hasattr(other, "keys"):
                for key in other.keys():
                    self[key] = other[key]
            else:
                for key, value in other:
                    self[key] = value
        for key, value in kwds.items():
            self[key] = value

    def setdefault(self, key, default=None):
        'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D'
        try:
            return self[key]
        except KeyError:
            self[key] = default
        return default

MutableMapping.register(dict)


### SEQUENCES ###


class Sequence(Sized, Iterable, Container):

    """All the operations on a read-only sequence.

    Concrete subclasses must override __new__ or __init__,
    __getitem__, and __len__.
    """

    __slots__ = ()

    @abstractmethod
    def __getitem__(self, index):
        raise IndexError

    def __iter__(self):
        i = 0
        try:
            while True:
                v = self[i]
                yield v
                i += 1
        except IndexError:
            return

    def __contains__(self, value):
        for v in self:
            if v == value:
                return True
        return False

    def __reversed__(self):
        for i in reversed(range(len(self))):
            yield self[i]

    def index(self, value):
        '''S.index(value) -> integer -- return first index of value.
           Raises ValueError if the value is not present.
        '''
        for i, v in enumerate(self):
            if v == value:
                return i
        raise ValueError

    def count(self, value):
        'S.count(value) -> integer -- return number of occurrences of value'
        return sum(1 for v in self if v == value)

Sequence.register(tuple)
Sequence.register(str)
Sequence.register(range)
Sequence.register(memoryview)


class ByteString(Sequence):

    """This unifies bytes and bytearray.

    XXX Should add all their methods.
    """

    __slots__ = ()

ByteString.register(bytes)
ByteString.register(bytearray)


class MutableSequence(Sequence):

    __slots__ = ()

    """All the operations on a read-write sequence.

    Concrete subclasses must provide __new__ or __init__,
    __getitem__, __setitem__, __delitem__, __len__, and insert().

    """

    @abstractmethod
    def __setitem__(self, index, value):
        raise IndexError

    @abstractmethod
    def __delitem__(self, index):
        raise IndexError

    @abstractmethod
    def insert(self, index, value):
        'S.insert(index, value) -- insert value before index'
        raise IndexError

    def append(self, value):
        'S.append(value) -- append value to the end of the sequence'
        self.insert(len(self), value)

    def clear(self):
        'S.clear() -> None -- remove all items from S'
        try:
            while True:
                self.pop()
        except IndexError:
            pass

    def reverse(self):
        'S.reverse() -- reverse *IN PLACE*'
        n = len(self)
        for i in range(n//2):
            self[i], self[n-i-1] = self[n-i-1], self[i]

    def extend(self, values):
        'S.extend(iterable) -- extend sequence by appending elements from the iterable'
        for v in values:
            self.append(v)

    def pop(self, index=-1):
        '''S.pop([index]) -> item -- remove and return item at index (default last).
           Raise IndexError if list is empty or index is out of range.
        '''
        v = self[index]
        del self[index]
        return v

    def remove(self, value):
        '''S.remove(value) -- remove first occurrence of value.
           Raise ValueError if the value is not present.
        '''
        del self[self.index(value)]

    def __iadd__(self, values):
        self.extend(values)
        return self

MutableSequence.register(list)
MutableSequence.register(bytearray)  # Multiply inheriting, see ByteString
lib\_compat_pickle.py
# This module is used to map the old Python 2 names to the new names used in
# Python 3 for the pickle module.  This needed to make pickle streams
# generated with Python 2 loadable by Python 3.

# This is a copy of lib2to3.fixes.fix_imports.MAPPING.  We cannot import
# lib2to3 and use the mapping defined there, because lib2to3 uses pickle.
# Thus, this could cause the module to be imported recursively.
IMPORT_MAPPING = {
    '__builtin__' : 'builtins',
    'copy_reg': 'copyreg',
    'Queue': 'queue',
    'SocketServer': 'socketserver',
    'ConfigParser': 'configparser',
    'repr': 'reprlib',
    'tkFileDialog': 'tkinter.filedialog',
    'tkSimpleDialog': 'tkinter.simpledialog',
    'tkColorChooser': 'tkinter.colorchooser',
    'tkCommonDialog': 'tkinter.commondialog',
    'Dialog': 'tkinter.dialog',
    'Tkdnd': 'tkinter.dnd',
    'tkFont': 'tkinter.font',
    'tkMessageBox': 'tkinter.messagebox',
    'ScrolledText': 'tkinter.scrolledtext',
    'Tkconstants': 'tkinter.constants',
    'Tix': 'tkinter.tix',
    'ttk': 'tkinter.ttk',
    'Tkinter': 'tkinter',
    'markupbase': '_markupbase',
    '_winreg': 'winreg',
    'thread': '_thread',
    'dummy_thread': '_dummy_thread',
    'dbhash': 'dbm.bsd',
    'dumbdbm': 'dbm.dumb',
    'dbm': 'dbm.ndbm',
    'gdbm': 'dbm.gnu',
    'xmlrpclib': 'xmlrpc.client',
    'SimpleXMLRPCServer': 'xmlrpc.server',
    'httplib': 'http.client',
    'htmlentitydefs' : 'html.entities',
    'HTMLParser' : 'html.parser',
    'Cookie': 'http.cookies',
    'cookielib': 'http.cookiejar',
    'BaseHTTPServer': 'http.server',
    'test.test_support': 'test.support',
    'commands': 'subprocess',
    'urlparse' : 'urllib.parse',
    'robotparser' : 'urllib.robotparser',
    'urllib2': 'urllib.request',
    'anydbm': 'dbm',
    '_abcoll' : 'collections.abc',
}


# This contains rename rules that are easy to handle.  We ignore the more
# complex stuff (e.g. mapping the names in the urllib and types modules).
# These rules should be run before import names are fixed.
NAME_MAPPING = {
    ('__builtin__', 'xrange'):     ('builtins', 'range'),
    ('__builtin__', 'reduce'):     ('functools', 'reduce'),
    ('__builtin__', 'intern'):     ('sys', 'intern'),
    ('__builtin__', 'unichr'):     ('builtins', 'chr'),
    ('__builtin__', 'unicode'):    ('builtins', 'str'),
    ('__builtin__', 'long'):       ('builtins', 'int'),
    ('itertools', 'izip'):         ('builtins', 'zip'),
    ('itertools', 'imap'):         ('builtins', 'map'),
    ('itertools', 'ifilter'):      ('builtins', 'filter'),
    ('itertools', 'ifilterfalse'): ('itertools', 'filterfalse'),
    ('itertools', 'izip_longest'): ('itertools', 'zip_longest'),
    ('UserDict', 'IterableUserDict'): ('collections', 'UserDict'),
    ('UserList', 'UserList'): ('collections', 'UserList'),
    ('UserString', 'UserString'): ('collections', 'UserString'),
    ('whichdb', 'whichdb'): ('dbm', 'whichdb'),
    ('_socket', 'fromfd'): ('socket', 'fromfd'),
    ('_multiprocessing', 'Connection'): ('multiprocessing.connection', 'Connection'),
    ('multiprocessing.process', 'Process'): ('multiprocessing.context', 'Process'),
    ('multiprocessing.forking', 'Popen'): ('multiprocessing.popen_fork', 'Popen'),
    ('urllib', 'ContentTooShortError'): ('urllib.error', 'ContentTooShortError'),
    ('urllib', 'getproxies'): ('urllib.request', 'getproxies'),
    ('urllib', 'pathname2url'): ('urllib.request', 'pathname2url'),
    ('urllib', 'quote_plus'): ('urllib.parse', 'quote_plus'),
    ('urllib', 'quote'): ('urllib.parse', 'quote'),
    ('urllib', 'unquote_plus'): ('urllib.parse', 'unquote_plus'),
    ('urllib', 'unquote'): ('urllib.parse', 'unquote'),
    ('urllib', 'url2pathname'): ('urllib.request', 'url2pathname'),
    ('urllib', 'urlcleanup'): ('urllib.request', 'urlcleanup'),
    ('urllib', 'urlencode'): ('urllib.parse', 'urlencode'),
    ('urllib', 'urlopen'): ('urllib.request', 'urlopen'),
    ('urllib', 'urlretrieve'): ('urllib.request', 'urlretrieve'),
    ('urllib2', 'HTTPError'): ('urllib.error', 'HTTPError'),
    ('urllib2', 'URLError'): ('urllib.error', 'URLError'),
}

PYTHON2_EXCEPTIONS = (
    "ArithmeticError",
    "AssertionError",
    "AttributeError",
    "BaseException",
    "BufferError",
    "BytesWarning",
    "DeprecationWarning",
    "EOFError",
    "EnvironmentError",
    "Exception",
    "FloatingPointError",
    "FutureWarning",
    "GeneratorExit",
    "IOError",
    "ImportError",
    "ImportWarning",
    "IndentationError",
    "IndexError",
    "KeyError",
    "KeyboardInterrupt",
    "LookupError",
    "MemoryError",
    "NameError",
    "NotImplementedError",
    "OSError",
    "OverflowError",
    "PendingDeprecationWarning",
    "ReferenceError",
    "RuntimeError",
    "RuntimeWarning",
    # StandardError is gone in Python 3, so we map it to Exception
    "StopIteration",
    "SyntaxError",
    "SyntaxWarning",
    "SystemError",
    "SystemExit",
    "TabError",
    "TypeError",
    "UnboundLocalError",
    "UnicodeDecodeError",
    "UnicodeEncodeError",
    "UnicodeError",
    "UnicodeTranslateError",
    "UnicodeWarning",
    "UserWarning",
    "ValueError",
    "Warning",
    "ZeroDivisionError",
)

try:
    WindowsError
except NameError:
    pass
else:
    PYTHON2_EXCEPTIONS += ("WindowsError",)

for excname in PYTHON2_EXCEPTIONS:
    NAME_MAPPING[("exceptions", excname)] = ("builtins", excname)

MULTIPROCESSING_EXCEPTIONS = (
    'AuthenticationError',
    'BufferTooShort',
    'ProcessError',
    'TimeoutError',
)

for excname in MULTIPROCESSING_EXCEPTIONS:
    NAME_MAPPING[("multiprocessing", excname)] = ("multiprocessing.context", excname)

# Same, but for 3.x to 2.x
REVERSE_IMPORT_MAPPING = dict((v, k) for (k, v) in IMPORT_MAPPING.items())
assert len(REVERSE_IMPORT_MAPPING) == len(IMPORT_MAPPING)
REVERSE_NAME_MAPPING = dict((v, k) for (k, v) in NAME_MAPPING.items())
assert len(REVERSE_NAME_MAPPING) == len(NAME_MAPPING)

# Non-mutual mappings.

IMPORT_MAPPING.update({
    'cPickle': 'pickle',
    '_elementtree': 'xml.etree.ElementTree',
    'FileDialog': 'tkinter.filedialog',
    'SimpleDialog': 'tkinter.simpledialog',
    'DocXMLRPCServer': 'xmlrpc.server',
    'SimpleHTTPServer': 'http.server',
    'CGIHTTPServer': 'http.server',
})

REVERSE_IMPORT_MAPPING.update({
    '_bz2': 'bz2',
    '_dbm': 'dbm',
    '_functools': 'functools',
    '_gdbm': 'gdbm',
    '_pickle': 'pickle',
})

NAME_MAPPING.update({
    ('__builtin__', 'basestring'): ('builtins', 'str'),
    ('exceptions', 'StandardError'): ('builtins', 'Exception'),
    ('UserDict', 'UserDict'): ('collections', 'UserDict'),
    ('socket', '_socketobject'): ('socket', 'SocketType'),
})

REVERSE_NAME_MAPPING.update({
    ('_functools', 'reduce'): ('__builtin__', 'reduce'),
    ('tkinter.filedialog', 'FileDialog'): ('FileDialog', 'FileDialog'),
    ('tkinter.filedialog', 'LoadFileDialog'): ('FileDialog', 'LoadFileDialog'),
    ('tkinter.filedialog', 'SaveFileDialog'): ('FileDialog', 'SaveFileDialog'),
    ('tkinter.simpledialog', 'SimpleDialog'): ('SimpleDialog', 'SimpleDialog'),
    ('xmlrpc.server', 'ServerHTMLDoc'): ('DocXMLRPCServer', 'ServerHTMLDoc'),
    ('xmlrpc.server', 'XMLRPCDocGenerator'):
        ('DocXMLRPCServer', 'XMLRPCDocGenerator'),
    ('xmlrpc.server', 'DocXMLRPCRequestHandler'):
        ('DocXMLRPCServer', 'DocXMLRPCRequestHandler'),
    ('xmlrpc.server', 'DocXMLRPCServer'):
        ('DocXMLRPCServer', 'DocXMLRPCServer'),
    ('xmlrpc.server', 'DocCGIXMLRPCRequestHandler'):
        ('DocXMLRPCServer', 'DocCGIXMLRPCRequestHandler'),
    ('http.server', 'SimpleHTTPRequestHandler'):
        ('SimpleHTTPServer', 'SimpleHTTPRequestHandler'),
    ('http.server', 'CGIHTTPRequestHandler'):
        ('CGIHTTPServer', 'CGIHTTPRequestHandler'),
    ('_socket', 'socket'): ('socket', '_socketobject'),
})

PYTHON3_OSERROR_EXCEPTIONS = (
    'BrokenPipeError',
    'ChildProcessError',
    'ConnectionAbortedError',
    'ConnectionError',
    'ConnectionRefusedError',
    'ConnectionResetError',
    'FileExistsError',
    'FileNotFoundError',
    'InterruptedError',
    'IsADirectoryError',
    'NotADirectoryError',
    'PermissionError',
    'ProcessLookupError',
    'TimeoutError',
)

for excname in PYTHON3_OSERROR_EXCEPTIONS:
    REVERSE_NAME_MAPPING[('builtins', excname)] = ('exceptions', 'OSError')
lib\_dummy_thread.py
"""Drop-in replacement for the thread module.

Meant to be used as a brain-dead substitute so that threaded code does
not need to be rewritten for when the thread module is not present.

Suggested usage is::

    try:
        import _thread
    except ImportError:
        import _dummy_thread as _thread

"""
# Exports only things specified by thread documentation;
# skipping obsolete synonyms allocate(), start_new(), exit_thread().
__all__ = ['error', 'start_new_thread', 'exit', 'get_ident', 'allocate_lock',
           'interrupt_main', 'LockType']

# A dummy value
TIMEOUT_MAX = 2**31

# NOTE: this module can be imported early in the extension building process,
# and so top level imports of other modules should be avoided.  Instead, all
# imports are done when needed on a function-by-function basis.  Since threads
# are disabled, the import lock should not be an issue anyway (??).

error = RuntimeError

def start_new_thread(function, args, kwargs={}):
    """Dummy implementation of _thread.start_new_thread().

    Compatibility is maintained by making sure that ``args`` is a
    tuple and ``kwargs`` is a dictionary.  If an exception is raised
    and it is SystemExit (which can be done by _thread.exit()) it is
    caught and nothing is done; all other exceptions are printed out
    by using traceback.print_exc().

    If the executed function calls interrupt_main the KeyboardInterrupt will be
    raised when the function returns.

    """
    if type(args) != type(tuple()):
        raise TypeError("2nd arg must be a tuple")
    if type(kwargs) != type(dict()):
        raise TypeError("3rd arg must be a dict")
    global _main
    _main = False
    try:
        function(*args, **kwargs)
    except SystemExit:
        pass
    except:
        import traceback
        traceback.print_exc()
    _main = True
    global _interrupt
    if _interrupt:
        _interrupt = False
        raise KeyboardInterrupt

def exit():
    """Dummy implementation of _thread.exit()."""
    raise SystemExit

def get_ident():
    """Dummy implementation of _thread.get_ident().

    Since this module should only be used when _threadmodule is not
    available, it is safe to assume that the current process is the
    only thread.  Thus a constant can be safely returned.
    """
    return -1

def allocate_lock():
    """Dummy implementation of _thread.allocate_lock()."""
    return LockType()

def stack_size(size=None):
    """Dummy implementation of _thread.stack_size()."""
    if size is not None:
        raise error("setting thread stack size not supported")
    return 0

def _set_sentinel():
    """Dummy implementation of _thread._set_sentinel()."""
    return LockType()

class LockType(object):
    """Class implementing dummy implementation of _thread.LockType.

    Compatibility is maintained by maintaining self.locked_status
    which is a boolean that stores the state of the lock.  Pickling of
    the lock, though, should not be done since if the _thread module is
    then used with an unpickled ``lock()`` from here problems could
    occur from this class not having atomic methods.

    """

    def __init__(self):
        self.locked_status = False

    def acquire(self, waitflag=None, timeout=-1):
        """Dummy implementation of acquire().

        For blocking calls, self.locked_status is automatically set to
        True and returned appropriately based on value of
        ``waitflag``.  If it is non-blocking, then the value is
        actually checked and not set if it is already acquired.  This
        is all done so that threading.Condition's assert statements
        aren't triggered and throw a little fit.

        """
        if waitflag is None or waitflag:
            self.locked_status = True
            return True
        else:
            if not self.locked_status:
                self.locked_status = True
                return True
            else:
                if timeout > 0:
                    import time
                    time.sleep(timeout)
                return False

    __enter__ = acquire

    def __exit__(self, typ, val, tb):
        self.release()

    def release(self):
        """Release the dummy lock."""
        # XXX Perhaps shouldn't actually bother to test?  Could lead
        #     to problems for complex, threaded code.
        if not self.locked_status:
            raise error
        self.locked_status = False
        return True

    def locked(self):
        return self.locked_status

# Used to signal that interrupt_main was called in a "thread"
_interrupt = False
# True when not executing in a "thread"
_main = True

def interrupt_main():
    """Set _interrupt flag to True to have start_new_thread raise
    KeyboardInterrupt upon exiting."""
    if _main:
        raise KeyboardInterrupt
    else:
        global _interrupt
        _interrupt = True
lib\_markupbase.py
"""Shared support for scanning document type declarations in HTML and XHTML.

This module is used as a foundation for the html.parser module.  It has no
documented public API and should not be used directly.

"""

import re

_declname_match = re.compile(r'[a-zA-Z][-_.a-zA-Z0-9]*\s*').match
_declstringlit_match = re.compile(r'(\'[^\']*\'|"[^"]*")\s*').match
_commentclose = re.compile(r'--\s*>')
_markedsectionclose = re.compile(r']\s*]\s*>')

# An analysis of the MS-Word extensions is available at
# http://www.planetpublish.com/xmlarena/xap/Thursday/WordtoXML.pdf

_msmarkedsectionclose = re.compile(r']\s*>')

del re


class ParserBase:
    """Parser base class which provides some common support methods used
    by the SGML/HTML and XHTML parsers."""

    def __init__(self):
        if self.__class__ is ParserBase:
            raise RuntimeError(
                "_markupbase.ParserBase must be subclassed")

    def error(self, message):
        raise NotImplementedError(
            "subclasses of ParserBase must override error()")

    def reset(self):
        self.lineno = 1
        self.offset = 0

    def getpos(self):
        """Return current line number and offset."""
        return self.lineno, self.offset

    # Internal -- update line number and offset.  This should be
    # called for each piece of data exactly once, in order -- in other
    # words the concatenation of all the input strings to this
    # function should be exactly the entire input.
    def updatepos(self, i, j):
        if i >= j:
            return j
        rawdata = self.rawdata
        nlines = rawdata.count("\n", i, j)
        if nlines:
            self.lineno = self.lineno + nlines
            pos = rawdata.rindex("\n", i, j) # Should not fail
            self.offset = j-(pos+1)
        else:
            self.offset = self.offset + j-i
        return j

    _decl_otherchars = ''

    # Internal -- parse declaration (for use by subclasses).
    def parse_declaration(self, i):
        # This is some sort of declaration; in "HTML as
        # deployed," this should only be the document type
        # declaration ("<!DOCTYPE html...>").
        # ISO 8879:1986, however, has more complex
        # declaration syntax for elements in <!...>, including:
        # --comment--
        # [marked section]
        # name in the following list: ENTITY, DOCTYPE, ELEMENT,
        # ATTLIST, NOTATION, SHORTREF, USEMAP,
        # LINKTYPE, LINK, IDLINK, USELINK, SYSTEM
        rawdata = self.rawdata
        j = i + 2
        assert rawdata[i:j] == "<!", "unexpected call to parse_declaration"
        if rawdata[j:j+1] == ">":
            # the empty comment <!>
            return j + 1
        if rawdata[j:j+1] in ("-", ""):
            # Start of comment followed by buffer boundary,
            # or just a buffer boundary.
            return -1
        # A simple, practical version could look like: ((name|stringlit) S*) + '>'
        n = len(rawdata)
        if rawdata[j:j+2] == '--': #comment
            # Locate --.*-- as the body of the comment
            return self.parse_comment(i)
        elif rawdata[j] == '[': #marked section
            # Locate [statusWord [...arbitrary SGML...]] as the body of the marked section
            # Where statusWord is one of TEMP, CDATA, IGNORE, INCLUDE, RCDATA
            # Note that this is extended by Microsoft Office "Save as Web" function
            # to include [if...] and [endif].
            return self.parse_marked_section(i)
        else: #all other declaration elements
            decltype, j = self._scan_name(j, i)
        if j < 0:
            return j
        if decltype == "doctype":
            self._decl_otherchars = ''
        while j < n:
            c = rawdata[j]
            if c == ">":
                # end of declaration syntax
                data = rawdata[i+2:j]
                if decltype == "doctype":
                    self.handle_decl(data)
                else:
                    # According to the HTML5 specs sections "8.2.4.44 Bogus
                    # comment state" and "8.2.4.45 Markup declaration open
                    # state", a comment token should be emitted.
                    # Calling unknown_decl provides more flexibility though.
                    self.unknown_decl(data)
                return j + 1
            if c in "\"'":
                m = _declstringlit_match(rawdata, j)
                if not m:
                    return -1 # incomplete
                j = m.end()
            elif c in "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ":
                name, j = self._scan_name(j, i)
            elif c in self._decl_otherchars:
                j = j + 1
            elif c == "[":
                # this could be handled in a separate doctype parser
                if decltype == "doctype":
                    j = self._parse_doctype_subset(j + 1, i)
                elif decltype in {"attlist", "linktype", "link", "element"}:
                    # must tolerate []'d groups in a content model in an element declaration
                    # also in data attribute specifications of attlist declaration
                    # also link type declaration subsets in linktype declarations
                    # also link attribute specification lists in link declarations
                    self.error("unsupported '[' char in %s declaration" % decltype)
                else:
                    self.error("unexpected '[' char in declaration")
            else:
                self.error(
                    "unexpected %r char in declaration" % rawdata[j])
            if j < 0:
                return j
        return -1 # incomplete

    # Internal -- parse a marked section
    # Override this to handle MS-word extension syntax <![if word]>content<![endif]>
    def parse_marked_section(self, i, report=1):
        rawdata= self.rawdata
        assert rawdata[i:i+3] == '<![', "unexpected call to parse_marked_section()"
        sectName, j = self._scan_name( i+3, i )
        if j < 0:
            return j
        if sectName in {"temp", "cdata", "ignore", "include", "rcdata"}:
            # look for standard ]]> ending
            match= _markedsectionclose.search(rawdata, i+3)
        elif sectName in {"if", "else", "endif"}:
            # look for MS Office ]> ending
            match= _msmarkedsectionclose.search(rawdata, i+3)
        else:
            self.error('unknown status keyword %r in marked section' % rawdata[i+3:j])
        if not match:
            return -1
        if report:
            j = match.start(0)
            self.unknown_decl(rawdata[i+3: j])
        return match.end(0)

    # Internal -- parse comment, return length or -1 if not terminated
    def parse_comment(self, i, report=1):
        rawdata = self.rawdata
        if rawdata[i:i+4] != '<!--':
            self.error('unexpected call to parse_comment()')
        match = _commentclose.search(rawdata, i+4)
        if not match:
            return -1
        if report:
            j = match.start(0)
            self.handle_comment(rawdata[i+4: j])
        return match.end(0)

    # Internal -- scan past the internal subset in a <!DOCTYPE declaration,
    # returning the index just past any whitespace following the trailing ']'.
    def _parse_doctype_subset(self, i, declstartpos):
        rawdata = self.rawdata
        n = len(rawdata)
        j = i
        while j < n:
            c = rawdata[j]
            if c == "<":
                s = rawdata[j:j+2]
                if s == "<":
                    # end of buffer; incomplete
                    return -1
                if s != "<!":
                    self.updatepos(declstartpos, j + 1)
                    self.error("unexpected char in internal subset (in %r)" % s)
                if (j + 2) == n:
                    # end of buffer; incomplete
                    return -1
                if (j + 4) > n:
                    # end of buffer; incomplete
                    return -1
                if rawdata[j:j+4] == "<!--":
                    j = self.parse_comment(j, report=0)
                    if j < 0:
                        return j
                    continue
                name, j = self._scan_name(j + 2, declstartpos)
                if j == -1:
                    return -1
                if name not in {"attlist", "element", "entity", "notation"}:
                    self.updatepos(declstartpos, j + 2)
                    self.error(
                        "unknown declaration %r in internal subset" % name)
                # handle the individual names
                meth = getattr(self, "_parse_doctype_" + name)
                j = meth(j, declstartpos)
                if j < 0:
                    return j
            elif c == "%":
                # parameter entity reference
                if (j + 1) == n:
                    # end of buffer; incomplete
                    return -1
                s, j = self._scan_name(j + 1, declstartpos)
                if j < 0:
                    return j
                if rawdata[j] == ";":
                    j = j + 1
            elif c == "]":
                j = j + 1
                while j < n and rawdata[j].isspace():
                    j = j + 1
                if j < n:
                    if rawdata[j] == ">":
                        return j
                    self.updatepos(declstartpos, j)
                    self.error("unexpected char after internal subset")
                else:
                    return -1
            elif c.isspace():
                j = j + 1
            else:
                self.updatepos(declstartpos, j)
                self.error("unexpected char %r in internal subset" % c)
        # end of buffer reached
        return -1

    # Internal -- scan past <!ELEMENT declarations
    def _parse_doctype_element(self, i, declstartpos):
        name, j = self._scan_name(i, declstartpos)
        if j == -1:
            return -1
        # style content model; just skip until '>'
        rawdata = self.rawdata
        if '>' in rawdata[j:]:
            return rawdata.find(">", j) + 1
        return -1

    # Internal -- scan past <!ATTLIST declarations
    def _parse_doctype_attlist(self, i, declstartpos):
        rawdata = self.rawdata
        name, j = self._scan_name(i, declstartpos)
        c = rawdata[j:j+1]
        if c == "":
            return -1
        if c == ">":
            return j + 1
        while 1:
            # scan a series of attribute descriptions; simplified:
            #   name type [value] [#constraint]
            name, j = self._scan_name(j, declstartpos)
            if j < 0:
                return j
            c = rawdata[j:j+1]
            if c == "":
                return -1
            if c == "(":
                # an enumerated type; look for ')'
                if ")" in rawdata[j:]:
                    j = rawdata.find(")", j) + 1
                else:
                    return -1
                while rawdata[j:j+1].isspace():
                    j = j + 1
                if not rawdata[j:]:
                    # end of buffer, incomplete
                    return -1
            else:
                name, j = self._scan_name(j, declstartpos)
            c = rawdata[j:j+1]
            if not c:
                return -1
            if c in "'\"":
                m = _declstringlit_match(rawdata, j)
                if m:
                    j = m.end()
                else:
                    return -1
                c = rawdata[j:j+1]
                if not c:
                    return -1
            if c == "#":
                if rawdata[j:] == "#":
                    # end of buffer
                    return -1
                name, j = self._scan_name(j + 1, declstartpos)
                if j < 0:
                    return j
                c = rawdata[j:j+1]
                if not c:
                    return -1
            if c == '>':
                # all done
                return j + 1

    # Internal -- scan past <!NOTATION declarations
    def _parse_doctype_notation(self, i, declstartpos):
        name, j = self._scan_name(i, declstartpos)
        if j < 0:
            return j
        rawdata = self.rawdata
        while 1:
            c = rawdata[j:j+1]
            if not c:
                # end of buffer; incomplete
                return -1
            if c == '>':
                return j + 1
            if c in "'\"":
                m = _declstringlit_match(rawdata, j)
                if not m:
                    return -1
                j = m.end()
            else:
                name, j = self._scan_name(j, declstartpos)
                if j < 0:
                    return j

    # Internal -- scan past <!ENTITY declarations
    def _parse_doctype_entity(self, i, declstartpos):
        rawdata = self.rawdata
        if rawdata[i:i+1] == "%":
            j = i + 1
            while 1:
                c = rawdata[j:j+1]
                if not c:
                    return -1
                if c.isspace():
                    j = j + 1
                else:
                    break
        else:
            j = i
        name, j = self._scan_name(j, declstartpos)
        if j < 0:
            return j
        while 1:
            c = self.rawdata[j:j+1]
            if not c:
                return -1
            if c in "'\"":
                m = _declstringlit_match(rawdata, j)
                if m:
                    j = m.end()
                else:
                    return -1    # incomplete
            elif c == ">":
                return j + 1
            else:
                name, j = self._scan_name(j, declstartpos)
                if j < 0:
                    return j

    # Internal -- scan a name token and the new position and the token, or
    # return -1 if we've reached the end of the buffer.
    def _scan_name(self, i, declstartpos):
        rawdata = self.rawdata
        n = len(rawdata)
        if i == n:
            return None, -1
        m = _declname_match(rawdata, i)
        if m:
            s = m.group()
            name = s.strip()
            if (i + len(s)) == n:
                return None, -1  # end of buffer
            return name.lower(), m.end()
        else:
            self.updatepos(declstartpos, i)
            self.error("expected name token at %r"
                       % rawdata[declstartpos:declstartpos+20])

    # To be overridden -- handlers for unknown objects
    def unknown_decl(self, data):
        pass
lib\_osx_support.py
"""Shared OS X support functions."""

import os
import re
import sys

__all__ = [
    'compiler_fixup',
    'customize_config_vars',
    'customize_compiler',
    'get_platform_osx',
]

# configuration variables that may contain universal build flags,
# like "-arch" or "-isdkroot", that may need customization for
# the user environment
_UNIVERSAL_CONFIG_VARS = ('CFLAGS', 'LDFLAGS', 'CPPFLAGS', 'BASECFLAGS',
                            'BLDSHARED', 'LDSHARED', 'CC', 'CXX',
                            'PY_CFLAGS', 'PY_LDFLAGS', 'PY_CPPFLAGS',
                            'PY_CORE_CFLAGS')

# configuration variables that may contain compiler calls
_COMPILER_CONFIG_VARS = ('BLDSHARED', 'LDSHARED', 'CC', 'CXX')

# prefix added to original configuration variable names
_INITPRE = '_OSX_SUPPORT_INITIAL_'


def _find_executable(executable, path=None):
    """Tries to find 'executable' in the directories listed in 'path'.

    A string listing directories separated by 'os.pathsep'; defaults to
    os.environ['PATH'].  Returns the complete filename or None if not found.
    """
    if path is None:
        path = os.environ['PATH']

    paths = path.split(os.pathsep)
    base, ext = os.path.splitext(executable)

    if (sys.platform == 'win32') and (ext != '.exe'):
        executable = executable + '.exe'

    if not os.path.isfile(executable):
        for p in paths:
            f = os.path.join(p, executable)
            if os.path.isfile(f):
                # the file exists, we have a shot at spawn working
                return f
        return None
    else:
        return executable


def _read_output(commandstring):
    """Output from successful command execution or None"""
    # Similar to os.popen(commandstring, "r").read(),
    # but without actually using os.popen because that
    # function is not usable during python bootstrap.
    # tempfile is also not available then.
    import contextlib
    try:
        import tempfile
        fp = tempfile.NamedTemporaryFile()
    except ImportError:
        fp = open("/tmp/_osx_support.%s"%(
            os.getpid(),), "w+b")

    with contextlib.closing(fp) as fp:
        cmd = "%s 2>/dev/null >'%s'" % (commandstring, fp.name)
        return fp.read().decode('utf-8').strip() if not os.system(cmd) else None


def _find_build_tool(toolname):
    """Find a build tool on current path or using xcrun"""
    return (_find_executable(toolname)
                or _read_output("/usr/bin/xcrun -find %s" % (toolname,))
                or ''
            )

_SYSTEM_VERSION = None

def _get_system_version():
    """Return the OS X system version as a string"""
    # Reading this plist is a documented way to get the system
    # version (see the documentation for the Gestalt Manager)
    # We avoid using platform.mac_ver to avoid possible bootstrap issues during
    # the build of Python itself (distutils is used to build standard library
    # extensions).

    global _SYSTEM_VERSION

    if _SYSTEM_VERSION is None:
        _SYSTEM_VERSION = ''
        try:
            f = open('/System/Library/CoreServices/SystemVersion.plist')
        except OSError:
            # We're on a plain darwin box, fall back to the default
            # behaviour.
            pass
        else:
            try:
                m = re.search(r'<key>ProductUserVisibleVersion</key>\s*'
                              r'<string>(.*?)</string>', f.read())
            finally:
                f.close()
            if m is not None:
                _SYSTEM_VERSION = '.'.join(m.group(1).split('.')[:2])
            # else: fall back to the default behaviour

    return _SYSTEM_VERSION

def _remove_original_values(_config_vars):
    """Remove original unmodified values for testing"""
    # This is needed for higher-level cross-platform tests of get_platform.
    for k in list(_config_vars):
        if k.startswith(_INITPRE):
            del _config_vars[k]

def _save_modified_value(_config_vars, cv, newvalue):
    """Save modified and original unmodified value of configuration var"""

    oldvalue = _config_vars.get(cv, '')
    if (oldvalue != newvalue) and (_INITPRE + cv not in _config_vars):
        _config_vars[_INITPRE + cv] = oldvalue
    _config_vars[cv] = newvalue

def _supports_universal_builds():
    """Returns True if universal builds are supported on this system"""
    # As an approximation, we assume that if we are running on 10.4 or above,
    # then we are running with an Xcode environment that supports universal
    # builds, in particular -isysroot and -arch arguments to the compiler. This
    # is in support of allowing 10.4 universal builds to run on 10.3.x systems.

    osx_version = _get_system_version()
    if osx_version:
        try:
            osx_version = tuple(int(i) for i in osx_version.split('.'))
        except ValueError:
            osx_version = ''
    return bool(osx_version >= (10, 4)) if osx_version else False


def _find_appropriate_compiler(_config_vars):
    """Find appropriate C compiler for extension module builds"""

    # Issue #13590:
    #    The OSX location for the compiler varies between OSX
    #    (or rather Xcode) releases.  With older releases (up-to 10.5)
    #    the compiler is in /usr/bin, with newer releases the compiler
    #    can only be found inside Xcode.app if the "Command Line Tools"
    #    are not installed.
    #
    #    Futhermore, the compiler that can be used varies between
    #    Xcode releases. Up to Xcode 4 it was possible to use 'gcc-4.2'
    #    as the compiler, after that 'clang' should be used because
    #    gcc-4.2 is either not present, or a copy of 'llvm-gcc' that
    #    miscompiles Python.

    # skip checks if the compiler was overriden with a CC env variable
    if 'CC' in os.environ:
        return _config_vars

    # The CC config var might contain additional arguments.
    # Ignore them while searching.
    cc = oldcc = _config_vars['CC'].split()[0]
    if not _find_executable(cc):
        # Compiler is not found on the shell search PATH.
        # Now search for clang, first on PATH (if the Command LIne
        # Tools have been installed in / or if the user has provided
        # another location via CC).  If not found, try using xcrun
        # to find an uninstalled clang (within a selected Xcode).

        # NOTE: Cannot use subprocess here because of bootstrap
        # issues when building Python itself (and os.popen is
        # implemented on top of subprocess and is therefore not
        # usable as well)

        cc = _find_build_tool('clang')

    elif os.path.basename(cc).startswith('gcc'):
        # Compiler is GCC, check if it is LLVM-GCC
        data = _read_output("'%s' --version"
                             % (cc.replace("'", "'\"'\"'"),))
        if data and 'llvm-gcc' in data:
            # Found LLVM-GCC, fall back to clang
            cc = _find_build_tool('clang')

    if not cc:
        raise SystemError(
               "Cannot locate working compiler")

    if cc != oldcc:
        # Found a replacement compiler.
        # Modify config vars using new compiler, if not already explicitly
        # overriden by an env variable, preserving additional arguments.
        for cv in _COMPILER_CONFIG_VARS:
            if cv in _config_vars and cv not in os.environ:
                cv_split = _config_vars[cv].split()
                cv_split[0] = cc if cv != 'CXX' else cc + '++'
                _save_modified_value(_config_vars, cv, ' '.join(cv_split))

    return _config_vars


def _remove_universal_flags(_config_vars):
    """Remove all universal build arguments from config vars"""

    for cv in _UNIVERSAL_CONFIG_VARS:
        # Do not alter a config var explicitly overriden by env var
        if cv in _config_vars and cv not in os.environ:
            flags = _config_vars[cv]
            flags = re.sub('-arch\s+\w+\s', ' ', flags, re.ASCII)
            flags = re.sub('-isysroot [^ \t]*', ' ', flags)
            _save_modified_value(_config_vars, cv, flags)

    return _config_vars


def _remove_unsupported_archs(_config_vars):
    """Remove any unsupported archs from config vars"""
    # Different Xcode releases support different sets for '-arch'
    # flags. In particular, Xcode 4.x no longer supports the
    # PPC architectures.
    #
    # This code automatically removes '-arch ppc' and '-arch ppc64'
    # when these are not supported. That makes it possible to
    # build extensions on OSX 10.7 and later with the prebuilt
    # 32-bit installer on the python.org website.

    # skip checks if the compiler was overriden with a CC env variable
    if 'CC' in os.environ:
        return _config_vars

    if re.search('-arch\s+ppc', _config_vars['CFLAGS']) is not None:
        # NOTE: Cannot use subprocess here because of bootstrap
        # issues when building Python itself
        status = os.system(
            """echo 'int main{};' | """
            """'%s' -c -arch ppc -x c -o /dev/null /dev/null 2>/dev/null"""
            %(_config_vars['CC'].replace("'", "'\"'\"'"),))
        if status:
            # The compile failed for some reason.  Because of differences
            # across Xcode and compiler versions, there is no reliable way
            # to be sure why it failed.  Assume here it was due to lack of
            # PPC support and remove the related '-arch' flags from each
            # config variables not explicitly overriden by an environment
            # variable.  If the error was for some other reason, we hope the
            # failure will show up again when trying to compile an extension
            # module.
            for cv in _UNIVERSAL_CONFIG_VARS:
                if cv in _config_vars and cv not in os.environ:
                    flags = _config_vars[cv]
                    flags = re.sub('-arch\s+ppc\w*\s', ' ', flags)
                    _save_modified_value(_config_vars, cv, flags)

    return _config_vars


def _override_all_archs(_config_vars):
    """Allow override of all archs with ARCHFLAGS env var"""
    # NOTE: This name was introduced by Apple in OSX 10.5 and
    # is used by several scripting languages distributed with
    # that OS release.
    if 'ARCHFLAGS' in os.environ:
        arch = os.environ['ARCHFLAGS']
        for cv in _UNIVERSAL_CONFIG_VARS:
            if cv in _config_vars and '-arch' in _config_vars[cv]:
                flags = _config_vars[cv]
                flags = re.sub('-arch\s+\w+\s', ' ', flags)
                flags = flags + ' ' + arch
                _save_modified_value(_config_vars, cv, flags)

    return _config_vars


def _check_for_unavailable_sdk(_config_vars):
    """Remove references to any SDKs not available"""
    # If we're on OSX 10.5 or later and the user tries to
    # compile an extension using an SDK that is not present
    # on the current machine it is better to not use an SDK
    # than to fail.  This is particularly important with
    # the standalone Command Line Tools alternative to a
    # full-blown Xcode install since the CLT packages do not
    # provide SDKs.  If the SDK is not present, it is assumed
    # that the header files and dev libs have been installed
    # to /usr and /System/Library by either a standalone CLT
    # package or the CLT component within Xcode.
    cflags = _config_vars.get('CFLAGS', '')
    m = re.search(r'-isysroot\s+(\S+)', cflags)
    if m is not None:
        sdk = m.group(1)
        if not os.path.exists(sdk):
            for cv in _UNIVERSAL_CONFIG_VARS:
                # Do not alter a config var explicitly overriden by env var
                if cv in _config_vars and cv not in os.environ:
                    flags = _config_vars[cv]
                    flags = re.sub(r'-isysroot\s+\S+(?:\s|$)', ' ', flags)
                    _save_modified_value(_config_vars, cv, flags)

    return _config_vars


def compiler_fixup(compiler_so, cc_args):
    """
    This function will strip '-isysroot PATH' and '-arch ARCH' from the
    compile flags if the user has specified one them in extra_compile_flags.

    This is needed because '-arch ARCH' adds another architecture to the
    build, without a way to remove an architecture. Furthermore GCC will
    barf if multiple '-isysroot' arguments are present.
    """
    stripArch = stripSysroot = False

    compiler_so = list(compiler_so)

    if not _supports_universal_builds():
        # OSX before 10.4.0, these don't support -arch and -isysroot at
        # all.
        stripArch = stripSysroot = True
    else:
        stripArch = '-arch' in cc_args
        stripSysroot = '-isysroot' in cc_args

    if stripArch or 'ARCHFLAGS' in os.environ:
        while True:
            try:
                index = compiler_so.index('-arch')
                # Strip this argument and the next one:
                del compiler_so[index:index+2]
            except ValueError:
                break

    if 'ARCHFLAGS' in os.environ and not stripArch:
        # User specified different -arch flags in the environ,
        # see also distutils.sysconfig
        compiler_so = compiler_so + os.environ['ARCHFLAGS'].split()

    if stripSysroot:
        while True:
            try:
                index = compiler_so.index('-isysroot')
                # Strip this argument and the next one:
                del compiler_so[index:index+2]
            except ValueError:
                break

    # Check if the SDK that is used during compilation actually exists,
    # the universal build requires the usage of a universal SDK and not all
    # users have that installed by default.
    sysroot = None
    if '-isysroot' in cc_args:
        idx = cc_args.index('-isysroot')
        sysroot = cc_args[idx+1]
    elif '-isysroot' in compiler_so:
        idx = compiler_so.index('-isysroot')
        sysroot = compiler_so[idx+1]

    if sysroot and not os.path.isdir(sysroot):
        from distutils import log
        log.warn("Compiling with an SDK that doesn't seem to exist: %s",
                sysroot)
        log.warn("Please check your Xcode installation")

    return compiler_so


def customize_config_vars(_config_vars):
    """Customize Python build configuration variables.

    Called internally from sysconfig with a mutable mapping
    containing name/value pairs parsed from the configured
    makefile used to build this interpreter.  Returns
    the mapping updated as needed to reflect the environment
    in which the interpreter is running; in the case of
    a Python from a binary installer, the installed
    environment may be very different from the build
    environment, i.e. different OS levels, different
    built tools, different available CPU architectures.

    This customization is performed whenever
    distutils.sysconfig.get_config_vars() is first
    called.  It may be used in environments where no
    compilers are present, i.e. when installing pure
    Python dists.  Customization of compiler paths
    and detection of unavailable archs is deferred
    until the first extension module build is
    requested (in distutils.sysconfig.customize_compiler).

    Currently called from distutils.sysconfig
    """

    if not _supports_universal_builds():
        # On Mac OS X before 10.4, check if -arch and -isysroot
        # are in CFLAGS or LDFLAGS and remove them if they are.
        # This is needed when building extensions on a 10.3 system
        # using a universal build of python.
        _remove_universal_flags(_config_vars)

    # Allow user to override all archs with ARCHFLAGS env var
    _override_all_archs(_config_vars)

    # Remove references to sdks that are not found
    _check_for_unavailable_sdk(_config_vars)

    return _config_vars


def customize_compiler(_config_vars):
    """Customize compiler path and configuration variables.

    This customization is performed when the first
    extension module build is requested
    in distutils.sysconfig.customize_compiler).
    """

    # Find a compiler to use for extension module builds
    _find_appropriate_compiler(_config_vars)

    # Remove ppc arch flags if not supported here
    _remove_unsupported_archs(_config_vars)

    # Allow user to override all archs with ARCHFLAGS env var
    _override_all_archs(_config_vars)

    return _config_vars


def get_platform_osx(_config_vars, osname, release, machine):
    """Filter values for get_platform()"""
    # called from get_platform() in sysconfig and distutils.util
    #
    # For our purposes, we'll assume that the system version from
    # distutils' perspective is what MACOSX_DEPLOYMENT_TARGET is set
    # to. This makes the compatibility story a bit more sane because the
    # machine is going to compile and link as if it were
    # MACOSX_DEPLOYMENT_TARGET.

    macver = _config_vars.get('MACOSX_DEPLOYMENT_TARGET', '')
    macrelease = _get_system_version() or macver
    macver = macver or macrelease

    if macver:
        release = macver
        osname = "macosx"

        # Use the original CFLAGS value, if available, so that we
        # return the same machine type for the platform string.
        # Otherwise, distutils may consider this a cross-compiling
        # case and disallow installs.
        cflags = _config_vars.get(_INITPRE+'CFLAGS',
                                    _config_vars.get('CFLAGS', ''))
        if macrelease:
            try:
                macrelease = tuple(int(i) for i in macrelease.split('.')[0:2])
            except ValueError:
                macrelease = (10, 0)
        else:
            # assume no universal support
            macrelease = (10, 0)

        if (macrelease >= (10, 4)) and '-arch' in cflags.strip():
            # The universal build will build fat binaries, but not on
            # systems before 10.4

            machine = 'fat'

            archs = re.findall('-arch\s+(\S+)', cflags)
            archs = tuple(sorted(set(archs)))

            if len(archs) == 1:
                machine = archs[0]
            elif archs == ('i386', 'ppc'):
                machine = 'fat'
            elif archs == ('i386', 'x86_64'):
                machine = 'intel'
            elif archs == ('i386', 'ppc', 'x86_64'):
                machine = 'fat3'
            elif archs == ('ppc64', 'x86_64'):
                machine = 'fat64'
            elif archs == ('i386', 'ppc', 'ppc64', 'x86_64'):
                machine = 'universal'
            else:
                raise ValueError(
                   "Don't know machine value for archs=%r" % (archs,))

        elif machine == 'i386':
            # On OSX the machine type returned by uname is always the
            # 32-bit variant, even if the executable architecture is
            # the 64-bit variant
            if sys.maxsize >= 2**32:
                machine = 'x86_64'

        elif machine in ('PowerPC', 'Power_Macintosh'):
            # Pick a sane name for the PPC architecture.
            # See 'i386' case
            if sys.maxsize >= 2**32:
                machine = 'ppc64'
            else:
                machine = 'ppc'

    return (osname, release, machine)
lib\_pyio.py
"""
Python implementation of the io module.
"""

import os
import abc
import codecs
import errno
# Import _thread instead of threading to reduce startup cost
try:
    from _thread import allocate_lock as Lock
except ImportError:
    from _dummy_thread import allocate_lock as Lock

import io
from io import (__all__, SEEK_SET, SEEK_CUR, SEEK_END)

valid_seek_flags = {0, 1, 2}  # Hardwired values
if hasattr(os, 'SEEK_HOLE') :
    valid_seek_flags.add(os.SEEK_HOLE)
    valid_seek_flags.add(os.SEEK_DATA)

# open() uses st_blksize whenever we can
DEFAULT_BUFFER_SIZE = 8 * 1024  # bytes

# NOTE: Base classes defined here are registered with the "official" ABCs
# defined in io.py. We don't use real inheritance though, because we don't want
# to inherit the C implementations.

# Rebind for compatibility
BlockingIOError = BlockingIOError


def open(file, mode="r", buffering=-1, encoding=None, errors=None,
         newline=None, closefd=True, opener=None):

    r"""Open file and return a stream.  Raise OSError upon failure.

    file is either a text or byte string giving the name (and the path
    if the file isn't in the current working directory) of the file to
    be opened or an integer file descriptor of the file to be
    wrapped. (If a file descriptor is given, it is closed when the
    returned I/O object is closed, unless closefd is set to False.)

    mode is an optional string that specifies the mode in which the file is
    opened. It defaults to 'r' which means open for reading in text mode. Other
    common values are 'w' for writing (truncating the file if it already
    exists), 'x' for exclusive creation of a new file, and 'a' for appending
    (which on some Unix systems, means that all writes append to the end of the
    file regardless of the current seek position). In text mode, if encoding is
    not specified the encoding used is platform dependent. (For reading and
    writing raw bytes use binary mode and leave encoding unspecified.) The
    available modes are:

    ========= ===============================================================
    Character Meaning
    --------- ---------------------------------------------------------------
    'r'       open for reading (default)
    'w'       open for writing, truncating the file first
    'x'       create a new file and open it for writing
    'a'       open for writing, appending to the end of the file if it exists
    'b'       binary mode
    't'       text mode (default)
    '+'       open a disk file for updating (reading and writing)
    'U'       universal newline mode (deprecated)
    ========= ===============================================================

    The default mode is 'rt' (open for reading text). For binary random
    access, the mode 'w+b' opens and truncates the file to 0 bytes, while
    'r+b' opens the file without truncation. The 'x' mode implies 'w' and
    raises an `FileExistsError` if the file already exists.

    Python distinguishes between files opened in binary and text modes,
    even when the underlying operating system doesn't. Files opened in
    binary mode (appending 'b' to the mode argument) return contents as
    bytes objects without any decoding. In text mode (the default, or when
    't' is appended to the mode argument), the contents of the file are
    returned as strings, the bytes having been first decoded using a
    platform-dependent encoding or using the specified encoding if given.

    'U' mode is deprecated and will raise an exception in future versions
    of Python.  It has no effect in Python 3.  Use newline to control
    universal newlines mode.

    buffering is an optional integer used to set the buffering policy.
    Pass 0 to switch buffering off (only allowed in binary mode), 1 to select
    line buffering (only usable in text mode), and an integer > 1 to indicate
    the size of a fixed-size chunk buffer.  When no buffering argument is
    given, the default buffering policy works as follows:

    * Binary files are buffered in fixed-size chunks; the size of the buffer
      is chosen using a heuristic trying to determine the underlying device's
      "block size" and falling back on `io.DEFAULT_BUFFER_SIZE`.
      On many systems, the buffer will typically be 4096 or 8192 bytes long.

    * "Interactive" text files (files for which isatty() returns True)
      use line buffering.  Other text files use the policy described above
      for binary files.

    encoding is the str name of the encoding used to decode or encode the
    file. This should only be used in text mode. The default encoding is
    platform dependent, but any encoding supported by Python can be
    passed.  See the codecs module for the list of supported encodings.

    errors is an optional string that specifies how encoding errors are to
    be handled---this argument should not be used in binary mode. Pass
    'strict' to raise a ValueError exception if there is an encoding error
    (the default of None has the same effect), or pass 'ignore' to ignore
    errors. (Note that ignoring encoding errors can lead to data loss.)
    See the documentation for codecs.register for a list of the permitted
    encoding error strings.

    newline is a string controlling how universal newlines works (it only
    applies to text mode). It can be None, '', '\n', '\r', and '\r\n'.  It works
    as follows:

    * On input, if newline is None, universal newlines mode is
      enabled. Lines in the input can end in '\n', '\r', or '\r\n', and
      these are translated into '\n' before being returned to the
      caller. If it is '', universal newline mode is enabled, but line
      endings are returned to the caller untranslated. If it has any of
      the other legal values, input lines are only terminated by the given
      string, and the line ending is returned to the caller untranslated.

    * On output, if newline is None, any '\n' characters written are
      translated to the system default line separator, os.linesep. If
      newline is '', no translation takes place. If newline is any of the
      other legal values, any '\n' characters written are translated to
      the given string.

    closedfd is a bool. If closefd is False, the underlying file descriptor will
    be kept open when the file is closed. This does not work when a file name is
    given and must be True in that case.

    The newly created file is non-inheritable.

    A custom opener can be used by passing a callable as *opener*. The
    underlying file descriptor for the file object is then obtained by calling
    *opener* with (*file*, *flags*). *opener* must return an open file
    descriptor (passing os.open as *opener* results in functionality similar to
    passing None).

    open() returns a file object whose type depends on the mode, and
    through which the standard file operations such as reading and writing
    are performed. When open() is used to open a file in a text mode ('w',
    'r', 'wt', 'rt', etc.), it returns a TextIOWrapper. When used to open
    a file in a binary mode, the returned class varies: in read binary
    mode, it returns a BufferedReader; in write binary and append binary
    modes, it returns a BufferedWriter, and in read/write mode, it returns
    a BufferedRandom.

    It is also possible to use a string or bytearray as a file for both
    reading and writing. For strings StringIO can be used like a file
    opened in a text mode, and for bytes a BytesIO can be used like a file
    opened in a binary mode.
    """
    if not isinstance(file, (str, bytes, int)):
        raise TypeError("invalid file: %r" % file)
    if not isinstance(mode, str):
        raise TypeError("invalid mode: %r" % mode)
    if not isinstance(buffering, int):
        raise TypeError("invalid buffering: %r" % buffering)
    if encoding is not None and not isinstance(encoding, str):
        raise TypeError("invalid encoding: %r" % encoding)
    if errors is not None and not isinstance(errors, str):
        raise TypeError("invalid errors: %r" % errors)
    modes = set(mode)
    if modes - set("axrwb+tU") or len(mode) > len(modes):
        raise ValueError("invalid mode: %r" % mode)
    creating = "x" in modes
    reading = "r" in modes
    writing = "w" in modes
    appending = "a" in modes
    updating = "+" in modes
    text = "t" in modes
    binary = "b" in modes
    if "U" in modes:
        if creating or writing or appending:
            raise ValueError("can't use U and writing mode at once")
        import warnings
        warnings.warn("'U' mode is deprecated",
                      DeprecationWarning, 2)
        reading = True
    if text and binary:
        raise ValueError("can't have text and binary mode at once")
    if creating + reading + writing + appending > 1:
        raise ValueError("can't have read/write/append mode at once")
    if not (creating or reading or writing or appending):
        raise ValueError("must have exactly one of read/write/append mode")
    if binary and encoding is not None:
        raise ValueError("binary mode doesn't take an encoding argument")
    if binary and errors is not None:
        raise ValueError("binary mode doesn't take an errors argument")
    if binary and newline is not None:
        raise ValueError("binary mode doesn't take a newline argument")
    raw = FileIO(file,
                 (creating and "x" or "") +
                 (reading and "r" or "") +
                 (writing and "w" or "") +
                 (appending and "a" or "") +
                 (updating and "+" or ""),
                 closefd, opener=opener)
    result = raw
    try:
        line_buffering = False
        if buffering == 1 or buffering < 0 and raw.isatty():
            buffering = -1
            line_buffering = True
        if buffering < 0:
            buffering = DEFAULT_BUFFER_SIZE
            try:
                bs = os.fstat(raw.fileno()).st_blksize
            except (OSError, AttributeError):
                pass
            else:
                if bs > 1:
                    buffering = bs
        if buffering < 0:
            raise ValueError("invalid buffering size")
        if buffering == 0:
            if binary:
                return result
            raise ValueError("can't have unbuffered text I/O")
        if updating:
            buffer = BufferedRandom(raw, buffering)
        elif creating or writing or appending:
            buffer = BufferedWriter(raw, buffering)
        elif reading:
            buffer = BufferedReader(raw, buffering)
        else:
            raise ValueError("unknown mode: %r" % mode)
        result = buffer
        if binary:
            return result
        text = TextIOWrapper(buffer, encoding, errors, newline, line_buffering)
        result = text
        text.mode = mode
        return result
    except:
        result.close()
        raise


class DocDescriptor:
    """Helper for builtins.open.__doc__
    """
    def __get__(self, obj, typ):
        return (
            "open(file, mode='r', buffering=-1, encoding=None, "
                 "errors=None, newline=None, closefd=True)\n\n" +
            open.__doc__)

class OpenWrapper:
    """Wrapper for builtins.open

    Trick so that open won't become a bound method when stored
    as a class variable (as dbm.dumb does).

    See initstdio() in Python/pythonrun.c.
    """
    __doc__ = DocDescriptor()

    def __new__(cls, *args, **kwargs):
        return open(*args, **kwargs)


# In normal operation, both `UnsupportedOperation`s should be bound to the
# same object.
try:
    UnsupportedOperation = io.UnsupportedOperation
except AttributeError:
    class UnsupportedOperation(ValueError, OSError):
        pass


class IOBase(metaclass=abc.ABCMeta):

    """The abstract base class for all I/O classes, acting on streams of
    bytes. There is no public constructor.

    This class provides dummy implementations for many methods that
    derived classes can override selectively; the default implementations
    represent a file that cannot be read, written or seeked.

    Even though IOBase does not declare read, readinto, or write because
    their signatures will vary, implementations and clients should
    consider those methods part of the interface. Also, implementations
    may raise UnsupportedOperation when operations they do not support are
    called.

    The basic type used for binary data read from or written to a file is
    bytes. bytearrays are accepted too, and in some cases (such as
    readinto) needed. Text I/O classes work with str data.

    Note that calling any method (even inquiries) on a closed stream is
    undefined. Implementations may raise OSError in this case.

    IOBase (and its subclasses) support the iterator protocol, meaning
    that an IOBase object can be iterated over yielding the lines in a
    stream.

    IOBase also supports the :keyword:`with` statement. In this example,
    fp is closed after the suite of the with statement is complete:

    with open('spam.txt', 'r') as fp:
        fp.write('Spam and eggs!')
    """

    ### Internal ###

    def _unsupported(self, name):
        """Internal: raise an OSError exception for unsupported operations."""
        raise UnsupportedOperation("%s.%s() not supported" %
                                   (self.__class__.__name__, name))

    ### Positioning ###

    def seek(self, pos, whence=0):
        """Change stream position.

        Change the stream position to byte offset pos. Argument pos is
        interpreted relative to the position indicated by whence.  Values
        for whence are ints:

        * 0 -- start of stream (the default); offset should be zero or positive
        * 1 -- current stream position; offset may be negative
        * 2 -- end of stream; offset is usually negative
        Some operating systems / file systems could provide additional values.

        Return an int indicating the new absolute position.
        """
        self._unsupported("seek")

    def tell(self):
        """Return an int indicating the current stream position."""
        return self.seek(0, 1)

    def truncate(self, pos=None):
        """Truncate file to size bytes.

        Size defaults to the current IO position as reported by tell().  Return
        the new size.
        """
        self._unsupported("truncate")

    ### Flush and close ###

    def flush(self):
        """Flush write buffers, if applicable.

        This is not implemented for read-only and non-blocking streams.
        """
        self._checkClosed()
        # XXX Should this return the number of bytes written???

    __closed = False

    def close(self):
        """Flush and close the IO object.

        This method has no effect if the file is already closed.
        """
        if not self.__closed:
            try:
                self.flush()
            finally:
                self.__closed = True

    def __del__(self):
        """Destructor.  Calls close()."""
        # The try/except block is in case this is called at program
        # exit time, when it's possible that globals have already been
        # deleted, and then the close() call might fail.  Since
        # there's nothing we can do about such failures and they annoy
        # the end users, we suppress the traceback.
        try:
            self.close()
        except:
            pass

    ### Inquiries ###

    def seekable(self):
        """Return a bool indicating whether object supports random access.

        If False, seek(), tell() and truncate() will raise UnsupportedOperation.
        This method may need to do a test seek().
        """
        return False

    def _checkSeekable(self, msg=None):
        """Internal: raise UnsupportedOperation if file is not seekable
        """
        if not self.seekable():
            raise UnsupportedOperation("File or stream is not seekable."
                                       if msg is None else msg)

    def readable(self):
        """Return a bool indicating whether object was opened for reading.

        If False, read() will raise UnsupportedOperation.
        """
        return False

    def _checkReadable(self, msg=None):
        """Internal: raise UnsupportedOperation if file is not readable
        """
        if not self.readable():
            raise UnsupportedOperation("File or stream is not readable."
                                       if msg is None else msg)

    def writable(self):
        """Return a bool indicating whether object was opened for writing.

        If False, write() and truncate() will raise UnsupportedOperation.
        """
        return False

    def _checkWritable(self, msg=None):
        """Internal: raise UnsupportedOperation if file is not writable
        """
        if not self.writable():
            raise UnsupportedOperation("File or stream is not writable."
                                       if msg is None else msg)

    @property
    def closed(self):
        """closed: bool.  True iff the file has been closed.

        For backwards compatibility, this is a property, not a predicate.
        """
        return self.__closed

    def _checkClosed(self, msg=None):
        """Internal: raise an ValueError if file is closed
        """
        if self.closed:
            raise ValueError("I/O operation on closed file."
                             if msg is None else msg)

    ### Context manager ###

    def __enter__(self):  # That's a forward reference
        """Context management protocol.  Returns self (an instance of IOBase)."""
        self._checkClosed()
        return self

    def __exit__(self, *args):
        """Context management protocol.  Calls close()"""
        self.close()

    ### Lower-level APIs ###

    # XXX Should these be present even if unimplemented?

    def fileno(self):
        """Returns underlying file descriptor (an int) if one exists.

        An OSError is raised if the IO object does not use a file descriptor.
        """
        self._unsupported("fileno")

    def isatty(self):
        """Return a bool indicating whether this is an 'interactive' stream.

        Return False if it can't be determined.
        """
        self._checkClosed()
        return False

    ### Readline[s] and writelines ###

    def readline(self, size=-1):
        r"""Read and return a line of bytes from the stream.

        If size is specified, at most size bytes will be read.
        Size should be an int.

        The line terminator is always b'\n' for binary files; for text
        files, the newlines argument to open can be used to select the line
        terminator(s) recognized.
        """
        # For backwards compatibility, a (slowish) readline().
        if hasattr(self, "peek"):
            def nreadahead():
                readahead = self.peek(1)
                if not readahead:
                    return 1
                n = (readahead.find(b"\n") + 1) or len(readahead)
                if size >= 0:
                    n = min(n, size)
                return n
        else:
            def nreadahead():
                return 1
        if size is None:
            size = -1
        elif not isinstance(size, int):
            raise TypeError("size must be an integer")
        res = bytearray()
        while size < 0 or len(res) < size:
            b = self.read(nreadahead())
            if not b:
                break
            res += b
            if res.endswith(b"\n"):
                break
        return bytes(res)

    def __iter__(self):
        self._checkClosed()
        return self

    def __next__(self):
        line = self.readline()
        if not line:
            raise StopIteration
        return line

    def readlines(self, hint=None):
        """Return a list of lines from the stream.

        hint can be specified to control the number of lines read: no more
        lines will be read if the total size (in bytes/characters) of all
        lines so far exceeds hint.
        """
        if hint is None or hint <= 0:
            return list(self)
        n = 0
        lines = []
        for line in self:
            lines.append(line)
            n += len(line)
            if n >= hint:
                break
        return lines

    def writelines(self, lines):
        self._checkClosed()
        for line in lines:
            self.write(line)

io.IOBase.register(IOBase)


class RawIOBase(IOBase):

    """Base class for raw binary I/O."""

    # The read() method is implemented by calling readinto(); derived
    # classes that want to support read() only need to implement
    # readinto() as a primitive operation.  In general, readinto() can be
    # more efficient than read().

    # (It would be tempting to also provide an implementation of
    # readinto() in terms of read(), in case the latter is a more suitable
    # primitive operation, but that would lead to nasty recursion in case
    # a subclass doesn't implement either.)

    def read(self, size=-1):
        """Read and return up to size bytes, where size is an int.

        Returns an empty bytes object on EOF, or None if the object is
        set not to block and has no data to read.
        """
        if size is None:
            size = -1
        if size < 0:
            return self.readall()
        b = bytearray(size.__index__())
        n = self.readinto(b)
        if n is None:
            return None
        del b[n:]
        return bytes(b)

    def readall(self):
        """Read until EOF, using multiple read() call."""
        res = bytearray()
        while True:
            data = self.read(DEFAULT_BUFFER_SIZE)
            if not data:
                break
            res += data
        if res:
            return bytes(res)
        else:
            # b'' or None
            return data

    def readinto(self, b):
        """Read up to len(b) bytes into bytearray b.

        Returns an int representing the number of bytes read (0 for EOF), or
        None if the object is set not to block and has no data to read.
        """
        self._unsupported("readinto")

    def write(self, b):
        """Write the given buffer to the IO stream.

        Returns the number of bytes written, which may be less than len(b).
        """
        self._unsupported("write")

io.RawIOBase.register(RawIOBase)
from _io import FileIO
RawIOBase.register(FileIO)


class BufferedIOBase(IOBase):

    """Base class for buffered IO objects.

    The main difference with RawIOBase is that the read() method
    supports omitting the size argument, and does not have a default
    implementation that defers to readinto().

    In addition, read(), readinto() and write() may raise
    BlockingIOError if the underlying raw stream is in non-blocking
    mode and not ready; unlike their raw counterparts, they will never
    return None.

    A typical implementation should not inherit from a RawIOBase
    implementation, but wrap one.
    """

    def read(self, size=None):
        """Read and return up to size bytes, where size is an int.

        If the argument is omitted, None, or negative, reads and
        returns all data until EOF.

        If the argument is positive, and the underlying raw stream is
        not 'interactive', multiple raw reads may be issued to satisfy
        the byte count (unless EOF is reached first).  But for
        interactive raw streams (XXX and for pipes?), at most one raw
        read will be issued, and a short result does not imply that
        EOF is imminent.

        Returns an empty bytes array on EOF.

        Raises BlockingIOError if the underlying raw stream has no
        data at the moment.
        """
        self._unsupported("read")

    def read1(self, size=None):
        """Read up to size bytes with at most one read() system call,
        where size is an int.
        """
        self._unsupported("read1")

    def readinto(self, b):
        """Read up to len(b) bytes into bytearray b.

        Like read(), this may issue multiple reads to the underlying raw
        stream, unless the latter is 'interactive'.

        Returns an int representing the number of bytes read (0 for EOF).

        Raises BlockingIOError if the underlying raw stream has no
        data at the moment.
        """
        # XXX This ought to work with anything that supports the buffer API
        data = self.read(len(b))
        n = len(data)
        try:
            b[:n] = data
        except TypeError as err:
            import array
            if not isinstance(b, array.array):
                raise err
            b[:n] = array.array('b', data)
        return n

    def write(self, b):
        """Write the given bytes buffer to the IO stream.

        Return the number of bytes written, which is never less than
        len(b).

        Raises BlockingIOError if the buffer is full and the
        underlying raw stream cannot accept more data at the moment.
        """
        self._unsupported("write")

    def detach(self):
        """
        Separate the underlying raw stream from the buffer and return it.

        After the raw stream has been detached, the buffer is in an unusable
        state.
        """
        self._unsupported("detach")

io.BufferedIOBase.register(BufferedIOBase)


class _BufferedIOMixin(BufferedIOBase):

    """A mixin implementation of BufferedIOBase with an underlying raw stream.

    This passes most requests on to the underlying raw stream.  It
    does *not* provide implementations of read(), readinto() or
    write().
    """

    def __init__(self, raw):
        self._raw = raw

    ### Positioning ###

    def seek(self, pos, whence=0):
        new_position = self.raw.seek(pos, whence)
        if new_position < 0:
            raise OSError("seek() returned an invalid position")
        return new_position

    def tell(self):
        pos = self.raw.tell()
        if pos < 0:
            raise OSError("tell() returned an invalid position")
        return pos

    def truncate(self, pos=None):
        # Flush the stream.  We're mixing buffered I/O with lower-level I/O,
        # and a flush may be necessary to synch both views of the current
        # file state.
        self.flush()

        if pos is None:
            pos = self.tell()
        # XXX: Should seek() be used, instead of passing the position
        # XXX  directly to truncate?
        return self.raw.truncate(pos)

    ### Flush and close ###

    def flush(self):
        if self.closed:
            raise ValueError("flush of closed file")
        self.raw.flush()

    def close(self):
        if self.raw is not None and not self.closed:
            try:
                # may raise BlockingIOError or BrokenPipeError etc
                self.flush()
            finally:
                self.raw.close()

    def detach(self):
        if self.raw is None:
            raise ValueError("raw stream already detached")
        self.flush()
        raw = self._raw
        self._raw = None
        return raw

    ### Inquiries ###

    def seekable(self):
        return self.raw.seekable()

    def readable(self):
        return self.raw.readable()

    def writable(self):
        return self.raw.writable()

    @property
    def raw(self):
        return self._raw

    @property
    def closed(self):
        return self.raw.closed

    @property
    def name(self):
        return self.raw.name

    @property
    def mode(self):
        return self.raw.mode

    def __getstate__(self):
        raise TypeError("can not serialize a '{0}' object"
                        .format(self.__class__.__name__))

    def __repr__(self):
        clsname = self.__class__.__name__
        try:
            name = self.name
        except Exception:
            return "<_pyio.{0}>".format(clsname)
        else:
            return "<_pyio.{0} name={1!r}>".format(clsname, name)

    ### Lower-level APIs ###

    def fileno(self):
        return self.raw.fileno()

    def isatty(self):
        return self.raw.isatty()


class BytesIO(BufferedIOBase):

    """Buffered I/O implementation using an in-memory bytes buffer."""

    def __init__(self, initial_bytes=None):
        buf = bytearray()
        if initial_bytes is not None:
            buf += initial_bytes
        self._buffer = buf
        self._pos = 0

    def __getstate__(self):
        if self.closed:
            raise ValueError("__getstate__ on closed file")
        return self.__dict__.copy()

    def getvalue(self):
        """Return the bytes value (contents) of the buffer
        """
        if self.closed:
            raise ValueError("getvalue on closed file")
        return bytes(self._buffer)

    def getbuffer(self):
        """Return a readable and writable view of the buffer.
        """
        if self.closed:
            raise ValueError("getbuffer on closed file")
        return memoryview(self._buffer)

    def close(self):
        self._buffer.clear()
        super().close()

    def read(self, size=None):
        if self.closed:
            raise ValueError("read from closed file")
        if size is None:
            size = -1
        if size < 0:
            size = len(self._buffer)
        if len(self._buffer) <= self._pos:
            return b""
        newpos = min(len(self._buffer), self._pos + size)
        b = self._buffer[self._pos : newpos]
        self._pos = newpos
        return bytes(b)

    def read1(self, size):
        """This is the same as read.
        """
        return self.read(size)

    def write(self, b):
        if self.closed:
            raise ValueError("write to closed file")
        if isinstance(b, str):
            raise TypeError("can't write str to binary stream")
        n = len(b)
        if n == 0:
            return 0
        pos = self._pos
        if pos > len(self._buffer):
            # Inserts null bytes between the current end of the file
            # and the new write position.
            padding = b'\x00' * (pos - len(self._buffer))
            self._buffer += padding
        self._buffer[pos:pos + n] = b
        self._pos += n
        return n

    def seek(self, pos, whence=0):
        if self.closed:
            raise ValueError("seek on closed file")
        try:
            pos.__index__
        except AttributeError as err:
            raise TypeError("an integer is required") from err
        if whence == 0:
            if pos < 0:
                raise ValueError("negative seek position %r" % (pos,))
            self._pos = pos
        elif whence == 1:
            self._pos = max(0, self._pos + pos)
        elif whence == 2:
            self._pos = max(0, len(self._buffer) + pos)
        else:
            raise ValueError("unsupported whence value")
        return self._pos

    def tell(self):
        if self.closed:
            raise ValueError("tell on closed file")
        return self._pos

    def truncate(self, pos=None):
        if self.closed:
            raise ValueError("truncate on closed file")
        if pos is None:
            pos = self._pos
        else:
            try:
                pos.__index__
            except AttributeError as err:
                raise TypeError("an integer is required") from err
            if pos < 0:
                raise ValueError("negative truncate position %r" % (pos,))
        del self._buffer[pos:]
        return pos

    def readable(self):
        if self.closed:
            raise ValueError("I/O operation on closed file.")
        return True

    def writable(self):
        if self.closed:
            raise ValueError("I/O operation on closed file.")
        return True

    def seekable(self):
        if self.closed:
            raise ValueError("I/O operation on closed file.")
        return True


class BufferedReader(_BufferedIOMixin):

    """BufferedReader(raw[, buffer_size])

    A buffer for a readable, sequential BaseRawIO object.

    The constructor creates a BufferedReader for the given readable raw
    stream and buffer_size. If buffer_size is omitted, DEFAULT_BUFFER_SIZE
    is used.
    """

    def __init__(self, raw, buffer_size=DEFAULT_BUFFER_SIZE):
        """Create a new buffered reader using the given readable raw IO object.
        """
        if not raw.readable():
            raise OSError('"raw" argument must be readable.')

        _BufferedIOMixin.__init__(self, raw)
        if buffer_size <= 0:
            raise ValueError("invalid buffer size")
        self.buffer_size = buffer_size
        self._reset_read_buf()
        self._read_lock = Lock()

    def _reset_read_buf(self):
        self._read_buf = b""
        self._read_pos = 0

    def read(self, size=None):
        """Read size bytes.

        Returns exactly size bytes of data unless the underlying raw IO
        stream reaches EOF or if the call would block in non-blocking
        mode. If size is negative, read until EOF or until read() would
        block.
        """
        if size is not None and size < -1:
            raise ValueError("invalid number of bytes to read")
        with self._read_lock:
            return self._read_unlocked(size)

    def _read_unlocked(self, n=None):
        nodata_val = b""
        empty_values = (b"", None)
        buf = self._read_buf
        pos = self._read_pos

        # Special case for when the number of bytes to read is unspecified.
        if n is None or n == -1:
            self._reset_read_buf()
            if hasattr(self.raw, 'readall'):
                chunk = self.raw.readall()
                if chunk is None:
                    return buf[pos:] or None
                else:
                    return buf[pos:] + chunk
            chunks = [buf[pos:]]  # Strip the consumed bytes.
            current_size = 0
            while True:
                # Read until EOF or until read() would block.
                try:
                    chunk = self.raw.read()
                except InterruptedError:
                    continue
                if chunk in empty_values:
                    nodata_val = chunk
                    break
                current_size += len(chunk)
                chunks.append(chunk)
            return b"".join(chunks) or nodata_val

        # The number of bytes to read is specified, return at most n bytes.
        avail = len(buf) - pos  # Length of the available buffered data.
        if n <= avail:
            # Fast path: the data to read is fully buffered.
            self._read_pos += n
            return buf[pos:pos+n]
        # Slow path: read from the stream until enough bytes are read,
        # or until an EOF occurs or until read() would block.
        chunks = [buf[pos:]]
        wanted = max(self.buffer_size, n)
        while avail < n:
            try:
                chunk = self.raw.read(wanted)
            except InterruptedError:
                continue
            if chunk in empty_values:
                nodata_val = chunk
                break
            avail += len(chunk)
            chunks.append(chunk)
        # n is more then avail only when an EOF occurred or when
        # read() would have blocked.
        n = min(n, avail)
        out = b"".join(chunks)
        self._read_buf = out[n:]  # Save the extra data in the buffer.
        self._read_pos = 0
        return out[:n] if out else nodata_val

    def peek(self, size=0):
        """Returns buffered bytes without advancing the position.

        The argument indicates a desired minimal number of bytes; we
        do at most one raw read to satisfy it.  We never return more
        than self.buffer_size.
        """
        with self._read_lock:
            return self._peek_unlocked(size)

    def _peek_unlocked(self, n=0):
        want = min(n, self.buffer_size)
        have = len(self._read_buf) - self._read_pos
        if have < want or have <= 0:
            to_read = self.buffer_size - have
            while True:
                try:
                    current = self.raw.read(to_read)
                except InterruptedError:
                    continue
                break
            if current:
                self._read_buf = self._read_buf[self._read_pos:] + current
                self._read_pos = 0
        return self._read_buf[self._read_pos:]

    def read1(self, size):
        """Reads up to size bytes, with at most one read() system call."""
        # Returns up to size bytes.  If at least one byte is buffered, we
        # only return buffered bytes.  Otherwise, we do one raw read.
        if size < 0:
            raise ValueError("number of bytes to read must be positive")
        if size == 0:
            return b""
        with self._read_lock:
            self._peek_unlocked(1)
            return self._read_unlocked(
                min(size, len(self._read_buf) - self._read_pos))

    def tell(self):
        return _BufferedIOMixin.tell(self) - len(self._read_buf) + self._read_pos

    def seek(self, pos, whence=0):
        if whence not in valid_seek_flags:
            raise ValueError("invalid whence value")
        with self._read_lock:
            if whence == 1:
                pos -= len(self._read_buf) - self._read_pos
            pos = _BufferedIOMixin.seek(self, pos, whence)
            self._reset_read_buf()
            return pos

class BufferedWriter(_BufferedIOMixin):

    """A buffer for a writeable sequential RawIO object.

    The constructor creates a BufferedWriter for the given writeable raw
    stream. If the buffer_size is not given, it defaults to
    DEFAULT_BUFFER_SIZE.
    """

    def __init__(self, raw, buffer_size=DEFAULT_BUFFER_SIZE):
        if not raw.writable():
            raise OSError('"raw" argument must be writable.')

        _BufferedIOMixin.__init__(self, raw)
        if buffer_size <= 0:
            raise ValueError("invalid buffer size")
        self.buffer_size = buffer_size
        self._write_buf = bytearray()
        self._write_lock = Lock()

    def write(self, b):
        if self.closed:
            raise ValueError("write to closed file")
        if isinstance(b, str):
            raise TypeError("can't write str to binary stream")
        with self._write_lock:
            # XXX we can implement some more tricks to try and avoid
            # partial writes
            if len(self._write_buf) > self.buffer_size:
                # We're full, so let's pre-flush the buffer.  (This may
                # raise BlockingIOError with characters_written == 0.)
                self._flush_unlocked()
            before = len(self._write_buf)
            self._write_buf.extend(b)
            written = len(self._write_buf) - before
            if len(self._write_buf) > self.buffer_size:
                try:
                    self._flush_unlocked()
                except BlockingIOError as e:
                    if len(self._write_buf) > self.buffer_size:
                        # We've hit the buffer_size. We have to accept a partial
                        # write and cut back our buffer.
                        overage = len(self._write_buf) - self.buffer_size
                        written -= overage
                        self._write_buf = self._write_buf[:self.buffer_size]
                        raise BlockingIOError(e.errno, e.strerror, written)
            return written

    def truncate(self, pos=None):
        with self._write_lock:
            self._flush_unlocked()
            if pos is None:
                pos = self.raw.tell()
            return self.raw.truncate(pos)

    def flush(self):
        with self._write_lock:
            self._flush_unlocked()

    def _flush_unlocked(self):
        if self.closed:
            raise ValueError("flush of closed file")
        while self._write_buf:
            try:
                n = self.raw.write(self._write_buf)
            except InterruptedError:
                continue
            except BlockingIOError:
                raise RuntimeError("self.raw should implement RawIOBase: it "
                                   "should not raise BlockingIOError")
            if n is None:
                raise BlockingIOError(
                    errno.EAGAIN,
                    "write could not complete without blocking", 0)
            if n > len(self._write_buf) or n < 0:
                raise OSError("write() returned incorrect number of bytes")
            del self._write_buf[:n]

    def tell(self):
        return _BufferedIOMixin.tell(self) + len(self._write_buf)

    def seek(self, pos, whence=0):
        if whence not in valid_seek_flags:
            raise ValueError("invalid whence value")
        with self._write_lock:
            self._flush_unlocked()
            return _BufferedIOMixin.seek(self, pos, whence)


class BufferedRWPair(BufferedIOBase):

    """A buffered reader and writer object together.

    A buffered reader object and buffered writer object put together to
    form a sequential IO object that can read and write. This is typically
    used with a socket or two-way pipe.

    reader and writer are RawIOBase objects that are readable and
    writeable respectively. If the buffer_size is omitted it defaults to
    DEFAULT_BUFFER_SIZE.
    """

    # XXX The usefulness of this (compared to having two separate IO
    # objects) is questionable.

    def __init__(self, reader, writer, buffer_size=DEFAULT_BUFFER_SIZE):
        """Constructor.

        The arguments are two RawIO instances.
        """
        if not reader.readable():
            raise OSError('"reader" argument must be readable.')

        if not writer.writable():
            raise OSError('"writer" argument must be writable.')

        self.reader = BufferedReader(reader, buffer_size)
        self.writer = BufferedWriter(writer, buffer_size)

    def read(self, size=None):
        if size is None:
            size = -1
        return self.reader.read(size)

    def readinto(self, b):
        return self.reader.readinto(b)

    def write(self, b):
        return self.writer.write(b)

    def peek(self, size=0):
        return self.reader.peek(size)

    def read1(self, size):
        return self.reader.read1(size)

    def readable(self):
        return self.reader.readable()

    def writable(self):
        return self.writer.writable()

    def flush(self):
        return self.writer.flush()

    def close(self):
        try:
            self.writer.close()
        finally:
            self.reader.close()

    def isatty(self):
        return self.reader.isatty() or self.writer.isatty()

    @property
    def closed(self):
        return self.writer.closed


class BufferedRandom(BufferedWriter, BufferedReader):

    """A buffered interface to random access streams.

    The constructor creates a reader and writer for a seekable stream,
    raw, given in the first argument. If the buffer_size is omitted it
    defaults to DEFAULT_BUFFER_SIZE.
    """

    def __init__(self, raw, buffer_size=DEFAULT_BUFFER_SIZE):
        raw._checkSeekable()
        BufferedReader.__init__(self, raw, buffer_size)
        BufferedWriter.__init__(self, raw, buffer_size)

    def seek(self, pos, whence=0):
        if whence not in valid_seek_flags:
            raise ValueError("invalid whence value")
        self.flush()
        if self._read_buf:
            # Undo read ahead.
            with self._read_lock:
                self.raw.seek(self._read_pos - len(self._read_buf), 1)
        # First do the raw seek, then empty the read buffer, so that
        # if the raw seek fails, we don't lose buffered data forever.
        pos = self.raw.seek(pos, whence)
        with self._read_lock:
            self._reset_read_buf()
        if pos < 0:
            raise OSError("seek() returned invalid position")
        return pos

    def tell(self):
        if self._write_buf:
            return BufferedWriter.tell(self)
        else:
            return BufferedReader.tell(self)

    def truncate(self, pos=None):
        if pos is None:
            pos = self.tell()
        # Use seek to flush the read buffer.
        return BufferedWriter.truncate(self, pos)

    def read(self, size=None):
        if size is None:
            size = -1
        self.flush()
        return BufferedReader.read(self, size)

    def readinto(self, b):
        self.flush()
        return BufferedReader.readinto(self, b)

    def peek(self, size=0):
        self.flush()
        return BufferedReader.peek(self, size)

    def read1(self, size):
        self.flush()
        return BufferedReader.read1(self, size)

    def write(self, b):
        if self._read_buf:
            # Undo readahead
            with self._read_lock:
                self.raw.seek(self._read_pos - len(self._read_buf), 1)
                self._reset_read_buf()
        return BufferedWriter.write(self, b)


class TextIOBase(IOBase):

    """Base class for text I/O.

    This class provides a character and line based interface to stream
    I/O. There is no readinto method because Python's character strings
    are immutable. There is no public constructor.
    """

    def read(self, size=-1):
        """Read at most size characters from stream, where size is an int.

        Read from underlying buffer until we have size characters or we hit EOF.
        If size is negative or omitted, read until EOF.

        Returns a string.
        """
        self._unsupported("read")

    def write(self, s):
        """Write string s to stream and returning an int."""
        self._unsupported("write")

    def truncate(self, pos=None):
        """Truncate size to pos, where pos is an int."""
        self._unsupported("truncate")

    def readline(self):
        """Read until newline or EOF.

        Returns an empty string if EOF is hit immediately.
        """
        self._unsupported("readline")

    def detach(self):
        """
        Separate the underlying buffer from the TextIOBase and return it.

        After the underlying buffer has been detached, the TextIO is in an
        unusable state.
        """
        self._unsupported("detach")

    @property
    def encoding(self):
        """Subclasses should override."""
        return None

    @property
    def newlines(self):
        """Line endings translated so far.

        Only line endings translated during reading are considered.

        Subclasses should override.
        """
        return None

    @property
    def errors(self):
        """Error setting of the decoder or encoder.

        Subclasses should override."""
        return None

io.TextIOBase.register(TextIOBase)


class IncrementalNewlineDecoder(codecs.IncrementalDecoder):
    r"""Codec used when reading a file in universal newlines mode.  It wraps
    another incremental decoder, translating \r\n and \r into \n.  It also
    records the types of newlines encountered.  When used with
    translate=False, it ensures that the newline sequence is returned in
    one piece.
    """
    def __init__(self, decoder, translate, errors='strict'):
        codecs.IncrementalDecoder.__init__(self, errors=errors)
        self.translate = translate
        self.decoder = decoder
        self.seennl = 0
        self.pendingcr = False

    def decode(self, input, final=False):
        # decode input (with the eventual \r from a previous pass)
        if self.decoder is None:
            output = input
        else:
            output = self.decoder.decode(input, final=final)
        if self.pendingcr and (output or final):
            output = "\r" + output
            self.pendingcr = False

        # retain last \r even when not translating data:
        # then readline() is sure to get \r\n in one pass
        if output.endswith("\r") and not final:
            output = output[:-1]
            self.pendingcr = True

        # Record which newlines are read
        crlf = output.count('\r\n')
        cr = output.count('\r') - crlf
        lf = output.count('\n') - crlf
        self.seennl |= (lf and self._LF) | (cr and self._CR) \
                    | (crlf and self._CRLF)

        if self.translate:
            if crlf:
                output = output.replace("\r\n", "\n")
            if cr:
                output = output.replace("\r", "\n")

        return output

    def getstate(self):
        if self.decoder is None:
            buf = b""
            flag = 0
        else:
            buf, flag = self.decoder.getstate()
        flag <<= 1
        if self.pendingcr:
            flag |= 1
        return buf, flag

    def setstate(self, state):
        buf, flag = state
        self.pendingcr = bool(flag & 1)
        if self.decoder is not None:
            self.decoder.setstate((buf, flag >> 1))

    def reset(self):
        self.seennl = 0
        self.pendingcr = False
        if self.decoder is not None:
            self.decoder.reset()

    _LF = 1
    _CR = 2
    _CRLF = 4

    @property
    def newlines(self):
        return (None,
                "\n",
                "\r",
                ("\r", "\n"),
                "\r\n",
                ("\n", "\r\n"),
                ("\r", "\r\n"),
                ("\r", "\n", "\r\n")
               )[self.seennl]


class TextIOWrapper(TextIOBase):

    r"""Character and line based layer over a BufferedIOBase object, buffer.

    encoding gives the name of the encoding that the stream will be
    decoded or encoded with. It defaults to locale.getpreferredencoding(False).

    errors determines the strictness of encoding and decoding (see the
    codecs.register) and defaults to "strict".

    newline can be None, '', '\n', '\r', or '\r\n'.  It controls the
    handling of line endings. If it is None, universal newlines is
    enabled.  With this enabled, on input, the lines endings '\n', '\r',
    or '\r\n' are translated to '\n' before being returned to the
    caller. Conversely, on output, '\n' is translated to the system
    default line separator, os.linesep. If newline is any other of its
    legal values, that newline becomes the newline when the file is read
    and it is returned untranslated. On output, '\n' is converted to the
    newline.

    If line_buffering is True, a call to flush is implied when a call to
    write contains a newline character.
    """

    _CHUNK_SIZE = 2048

    # The write_through argument has no effect here since this
    # implementation always writes through.  The argument is present only
    # so that the signature can match the signature of the C version.
    def __init__(self, buffer, encoding=None, errors=None, newline=None,
                 line_buffering=False, write_through=False):
        if newline is not None and not isinstance(newline, str):
            raise TypeError("illegal newline type: %r" % (type(newline),))
        if newline not in (None, "", "\n", "\r", "\r\n"):
            raise ValueError("illegal newline value: %r" % (newline,))
        if encoding is None:
            try:
                encoding = os.device_encoding(buffer.fileno())
            except (AttributeError, UnsupportedOperation):
                pass
            if encoding is None:
                try:
                    import locale
                except ImportError:
                    # Importing locale may fail if Python is being built
                    encoding = "ascii"
                else:
                    encoding = locale.getpreferredencoding(False)

        if not isinstance(encoding, str):
            raise ValueError("invalid encoding: %r" % encoding)

        if not codecs.lookup(encoding)._is_text_encoding:
            msg = ("%r is not a text encoding; "
                   "use codecs.open() to handle arbitrary codecs")
            raise LookupError(msg % encoding)

        if errors is None:
            errors = "strict"
        else:
            if not isinstance(errors, str):
                raise ValueError("invalid errors: %r" % errors)

        self._buffer = buffer
        self._line_buffering = line_buffering
        self._encoding = encoding
        self._errors = errors
        self._readuniversal = not newline
        self._readtranslate = newline is None
        self._readnl = newline
        self._writetranslate = newline != ''
        self._writenl = newline or os.linesep
        self._encoder = None
        self._decoder = None
        self._decoded_chars = ''  # buffer for text returned from decoder
        self._decoded_chars_used = 0  # offset into _decoded_chars for read()
        self._snapshot = None  # info for reconstructing decoder state
        self._seekable = self._telling = self.buffer.seekable()
        self._has_read1 = hasattr(self.buffer, 'read1')
        self._b2cratio = 0.0

        if self._seekable and self.writable():
            position = self.buffer.tell()
            if position != 0:
                try:
                    self._get_encoder().setstate(0)
                except LookupError:
                    # Sometimes the encoder doesn't exist
                    pass

    # self._snapshot is either None, or a tuple (dec_flags, next_input)
    # where dec_flags is the second (integer) item of the decoder state
    # and next_input is the chunk of input bytes that comes next after the
    # snapshot point.  We use this to reconstruct decoder states in tell().

    # Naming convention:
    #   - "bytes_..." for integer variables that count input bytes
    #   - "chars_..." for integer variables that count decoded characters

    def __repr__(self):
        result = "<_pyio.TextIOWrapper"
        try:
            name = self.name
        except Exception:
            pass
        else:
            result += " name={0!r}".format(name)
        try:
            mode = self.mode
        except Exception:
            pass
        else:
            result += " mode={0!r}".format(mode)
        return result + " encoding={0!r}>".format(self.encoding)

    @property
    def encoding(self):
        return self._encoding

    @property
    def errors(self):
        return self._errors

    @property
    def line_buffering(self):
        return self._line_buffering

    @property
    def buffer(self):
        return self._buffer

    def seekable(self):
        if self.closed:
            raise ValueError("I/O operation on closed file.")
        return self._seekable

    def readable(self):
        return self.buffer.readable()

    def writable(self):
        return self.buffer.writable()

    def flush(self):
        self.buffer.flush()
        self._telling = self._seekable

    def close(self):
        if self.buffer is not None and not self.closed:
            try:
                self.flush()
            finally:
                self.buffer.close()

    @property
    def closed(self):
        return self.buffer.closed

    @property
    def name(self):
        return self.buffer.name

    def fileno(self):
        return self.buffer.fileno()

    def isatty(self):
        return self.buffer.isatty()

    def write(self, s):
        'Write data, where s is a str'
        if self.closed:
            raise ValueError("write to closed file")
        if not isinstance(s, str):
            raise TypeError("can't write %s to text stream" %
                            s.__class__.__name__)
        length = len(s)
        haslf = (self._writetranslate or self._line_buffering) and "\n" in s
        if haslf and self._writetranslate and self._writenl != "\n":
            s = s.replace("\n", self._writenl)
        encoder = self._encoder or self._get_encoder()
        # XXX What if we were just reading?
        b = encoder.encode(s)
        self.buffer.write(b)
        if self._line_buffering and (haslf or "\r" in s):
            self.flush()
        self._snapshot = None
        if self._decoder:
            self._decoder.reset()
        return length

    def _get_encoder(self):
        make_encoder = codecs.getincrementalencoder(self._encoding)
        self._encoder = make_encoder(self._errors)
        return self._encoder

    def _get_decoder(self):
        make_decoder = codecs.getincrementaldecoder(self._encoding)
        decoder = make_decoder(self._errors)
        if self._readuniversal:
            decoder = IncrementalNewlineDecoder(decoder, self._readtranslate)
        self._decoder = decoder
        return decoder

    # The following three methods implement an ADT for _decoded_chars.
    # Text returned from the decoder is buffered here until the client
    # requests it by calling our read() or readline() method.
    def _set_decoded_chars(self, chars):
        """Set the _decoded_chars buffer."""
        self._decoded_chars = chars
        self._decoded_chars_used = 0

    def _get_decoded_chars(self, n=None):
        """Advance into the _decoded_chars buffer."""
        offset = self._decoded_chars_used
        if n is None:
            chars = self._decoded_chars[offset:]
        else:
            chars = self._decoded_chars[offset:offset + n]
        self._decoded_chars_used += len(chars)
        return chars

    def _rewind_decoded_chars(self, n):
        """Rewind the _decoded_chars buffer."""
        if self._decoded_chars_used < n:
            raise AssertionError("rewind decoded_chars out of bounds")
        self._decoded_chars_used -= n

    def _read_chunk(self):
        """
        Read and decode the next chunk of data from the BufferedReader.
        """

        # The return value is True unless EOF was reached.  The decoded
        # string is placed in self._decoded_chars (replacing its previous
        # value).  The entire input chunk is sent to the decoder, though
        # some of it may remain buffered in the decoder, yet to be
        # converted.

        if self._decoder is None:
            raise ValueError("no decoder")

        if self._telling:
            # To prepare for tell(), we need to snapshot a point in the
            # file where the decoder's input buffer is empty.

            dec_buffer, dec_flags = self._decoder.getstate()
            # Given this, we know there was a valid snapshot point
            # len(dec_buffer) bytes ago with decoder state (b'', dec_flags).

        # Read a chunk, decode it, and put the result in self._decoded_chars.
        if self._has_read1:
            input_chunk = self.buffer.read1(self._CHUNK_SIZE)
        else:
            input_chunk = self.buffer.read(self._CHUNK_SIZE)
        eof = not input_chunk
        decoded_chars = self._decoder.decode(input_chunk, eof)
        self._set_decoded_chars(decoded_chars)
        if decoded_chars:
            self._b2cratio = len(input_chunk) / len(self._decoded_chars)
        else:
            self._b2cratio = 0.0

        if self._telling:
            # At the snapshot point, len(dec_buffer) bytes before the read,
            # the next input to be decoded is dec_buffer + input_chunk.
            self._snapshot = (dec_flags, dec_buffer + input_chunk)

        return not eof

    def _pack_cookie(self, position, dec_flags=0,
                           bytes_to_feed=0, need_eof=0, chars_to_skip=0):
        # The meaning of a tell() cookie is: seek to position, set the
        # decoder flags to dec_flags, read bytes_to_feed bytes, feed them
        # into the decoder with need_eof as the EOF flag, then skip
        # chars_to_skip characters of the decoded result.  For most simple
        # decoders, tell() will often just give a byte offset in the file.
        return (position | (dec_flags<<64) | (bytes_to_feed<<128) |
               (chars_to_skip<<192) | bool(need_eof)<<256)

    def _unpack_cookie(self, bigint):
        rest, position = divmod(bigint, 1<<64)
        rest, dec_flags = divmod(rest, 1<<64)
        rest, bytes_to_feed = divmod(rest, 1<<64)
        need_eof, chars_to_skip = divmod(rest, 1<<64)
        return position, dec_flags, bytes_to_feed, need_eof, chars_to_skip

    def tell(self):
        if not self._seekable:
            raise UnsupportedOperation("underlying stream is not seekable")
        if not self._telling:
            raise OSError("telling position disabled by next() call")
        self.flush()
        position = self.buffer.tell()
        decoder = self._decoder
        if decoder is None or self._snapshot is None:
            if self._decoded_chars:
                # This should never happen.
                raise AssertionError("pending decoded text")
            return position

        # Skip backward to the snapshot point (see _read_chunk).
        dec_flags, next_input = self._snapshot
        position -= len(next_input)

        # How many decoded characters have been used up since the snapshot?
        chars_to_skip = self._decoded_chars_used
        if chars_to_skip == 0:
            # We haven't moved from the snapshot point.
            return self._pack_cookie(position, dec_flags)

        # Starting from the snapshot position, we will walk the decoder
        # forward until it gives us enough decoded characters.
        saved_state = decoder.getstate()
        try:
            # Fast search for an acceptable start point, close to our
            # current pos.
            # Rationale: calling decoder.decode() has a large overhead
            # regardless of chunk size; we want the number of such calls to
            # be O(1) in most situations (common decoders, non-crazy input).
            # Actually, it will be exactly 1 for fixed-size codecs (all
            # 8-bit codecs, also UTF-16 and UTF-32).
            skip_bytes = int(self._b2cratio * chars_to_skip)
            skip_back = 1
            assert skip_bytes <= len(next_input)
            while skip_bytes > 0:
                decoder.setstate((b'', dec_flags))
                # Decode up to temptative start point
                n = len(decoder.decode(next_input[:skip_bytes]))
                if n <= chars_to_skip:
                    b, d = decoder.getstate()
                    if not b:
                        # Before pos and no bytes buffered in decoder => OK
                        dec_flags = d
                        chars_to_skip -= n
                        break
                    # Skip back by buffered amount and reset heuristic
                    skip_bytes -= len(b)
                    skip_back = 1
                else:
                    # We're too far ahead, skip back a bit
                    skip_bytes -= skip_back
                    skip_back = skip_back * 2
            else:
                skip_bytes = 0
                decoder.setstate((b'', dec_flags))

            # Note our initial start point.
            start_pos = position + skip_bytes
            start_flags = dec_flags
            if chars_to_skip == 0:
                # We haven't moved from the start point.
                return self._pack_cookie(start_pos, start_flags)

            # Feed the decoder one byte at a time.  As we go, note the
            # nearest "safe start point" before the current location
            # (a point where the decoder has nothing buffered, so seek()
            # can safely start from there and advance to this location).
            bytes_fed = 0
            need_eof = 0
            # Chars decoded since `start_pos`
            chars_decoded = 0
            for i in range(skip_bytes, len(next_input)):
                bytes_fed += 1
                chars_decoded += len(decoder.decode(next_input[i:i+1]))
                dec_buffer, dec_flags = decoder.getstate()
                if not dec_buffer and chars_decoded <= chars_to_skip:
                    # Decoder buffer is empty, so this is a safe start point.
                    start_pos += bytes_fed
                    chars_to_skip -= chars_decoded
                    start_flags, bytes_fed, chars_decoded = dec_flags, 0, 0
                if chars_decoded >= chars_to_skip:
                    break
            else:
                # We didn't get enough decoded data; signal EOF to get more.
                chars_decoded += len(decoder.decode(b'', final=True))
                need_eof = 1
                if chars_decoded < chars_to_skip:
                    raise OSError("can't reconstruct logical file position")

            # The returned cookie corresponds to the last safe start point.
            return self._pack_cookie(
                start_pos, start_flags, bytes_fed, need_eof, chars_to_skip)
        finally:
            decoder.setstate(saved_state)

    def truncate(self, pos=None):
        self.flush()
        if pos is None:
            pos = self.tell()
        return self.buffer.truncate(pos)

    def detach(self):
        if self.buffer is None:
            raise ValueError("buffer is already detached")
        self.flush()
        buffer = self._buffer
        self._buffer = None
        return buffer

    def seek(self, cookie, whence=0):
        def _reset_encoder(position):
            """Reset the encoder (merely useful for proper BOM handling)"""
            try:
                encoder = self._encoder or self._get_encoder()
            except LookupError:
                # Sometimes the encoder doesn't exist
                pass
            else:
                if position != 0:
                    encoder.setstate(0)
                else:
                    encoder.reset()

        if self.closed:
            raise ValueError("tell on closed file")
        if not self._seekable:
            raise UnsupportedOperation("underlying stream is not seekable")
        if whence == 1: # seek relative to current position
            if cookie != 0:
                raise UnsupportedOperation("can't do nonzero cur-relative seeks")
            # Seeking to the current position should attempt to
            # sync the underlying buffer with the current position.
            whence = 0
            cookie = self.tell()
        if whence == 2: # seek relative to end of file
            if cookie != 0:
                raise UnsupportedOperation("can't do nonzero end-relative seeks")
            self.flush()
            position = self.buffer.seek(0, 2)
            self._set_decoded_chars('')
            self._snapshot = None
            if self._decoder:
                self._decoder.reset()
            _reset_encoder(position)
            return position
        if whence != 0:
            raise ValueError("unsupported whence (%r)" % (whence,))
        if cookie < 0:
            raise ValueError("negative seek position %r" % (cookie,))
        self.flush()

        # The strategy of seek() is to go back to the safe start point
        # and replay the effect of read(chars_to_skip) from there.
        start_pos, dec_flags, bytes_to_feed, need_eof, chars_to_skip = \
            self._unpack_cookie(cookie)

        # Seek back to the safe start point.
        self.buffer.seek(start_pos)
        self._set_decoded_chars('')
        self._snapshot = None

        # Restore the decoder to its state from the safe start point.
        if cookie == 0 and self._decoder:
            self._decoder.reset()
        elif self._decoder or dec_flags or chars_to_skip:
            self._decoder = self._decoder or self._get_decoder()
            self._decoder.setstate((b'', dec_flags))
            self._snapshot = (dec_flags, b'')

        if chars_to_skip:
            # Just like _read_chunk, feed the decoder and save a snapshot.
            input_chunk = self.buffer.read(bytes_to_feed)
            self._set_decoded_chars(
                self._decoder.decode(input_chunk, need_eof))
            self._snapshot = (dec_flags, input_chunk)

            # Skip chars_to_skip of the decoded characters.
            if len(self._decoded_chars) < chars_to_skip:
                raise OSError("can't restore logical file position")
            self._decoded_chars_used = chars_to_skip

        _reset_encoder(cookie)
        return cookie

    def read(self, size=None):
        self._checkReadable()
        if size is None:
            size = -1
        decoder = self._decoder or self._get_decoder()
        try:
            size.__index__
        except AttributeError as err:
            raise TypeError("an integer is required") from err
        if size < 0:
            # Read everything.
            result = (self._get_decoded_chars() +
                      decoder.decode(self.buffer.read(), final=True))
            self._set_decoded_chars('')
            self._snapshot = None
            return result
        else:
            # Keep reading chunks until we have size characters to return.
            eof = False
            result = self._get_decoded_chars(size)
            while len(result) < size and not eof:
                eof = not self._read_chunk()
                result += self._get_decoded_chars(size - len(result))
            return result

    def __next__(self):
        self._telling = False
        line = self.readline()
        if not line:
            self._snapshot = None
            self._telling = self._seekable
            raise StopIteration
        return line

    def readline(self, size=None):
        if self.closed:
            raise ValueError("read from closed file")
        if size is None:
            size = -1
        elif not isinstance(size, int):
            raise TypeError("size must be an integer")

        # Grab all the decoded text (we will rewind any extra bits later).
        line = self._get_decoded_chars()

        start = 0
        # Make the decoder if it doesn't already exist.
        if not self._decoder:
            self._get_decoder()

        pos = endpos = None
        while True:
            if self._readtranslate:
                # Newlines are already translated, only search for \n
                pos = line.find('\n', start)
                if pos >= 0:
                    endpos = pos + 1
                    break
                else:
                    start = len(line)

            elif self._readuniversal:
                # Universal newline search. Find any of \r, \r\n, \n
                # The decoder ensures that \r\n are not split in two pieces

                # In C we'd look for these in parallel of course.
                nlpos = line.find("\n", start)
                crpos = line.find("\r", start)
                if crpos == -1:
                    if nlpos == -1:
                        # Nothing found
                        start = len(line)
                    else:
                        # Found \n
                        endpos = nlpos + 1
                        break
                elif nlpos == -1:
                    # Found lone \r
                    endpos = crpos + 1
                    break
                elif nlpos < crpos:
                    # Found \n
                    endpos = nlpos + 1
                    break
                elif nlpos == crpos + 1:
                    # Found \r\n
                    endpos = crpos + 2
                    break
                else:
                    # Found \r
                    endpos = crpos + 1
                    break
            else:
                # non-universal
                pos = line.find(self._readnl)
                if pos >= 0:
                    endpos = pos + len(self._readnl)
                    break

            if size >= 0 and len(line) >= size:
                endpos = size  # reached length size
                break

            # No line ending seen yet - get more data'
            while self._read_chunk():
                if self._decoded_chars:
                    break
            if self._decoded_chars:
                line += self._get_decoded_chars()
            else:
                # end of file
                self._set_decoded_chars('')
                self._snapshot = None
                return line

        if size >= 0 and endpos > size:
            endpos = size  # don't exceed size

        # Rewind _decoded_chars to just after the line ending we found.
        self._rewind_decoded_chars(len(line) - endpos)
        return line[:endpos]

    @property
    def newlines(self):
        return self._decoder.newlines if self._decoder else None


class StringIO(TextIOWrapper):
    """Text I/O implementation using an in-memory buffer.

    The initial_value argument sets the value of object.  The newline
    argument is like the one of TextIOWrapper's constructor.
    """

    def __init__(self, initial_value="", newline="\n"):
        super(StringIO, self).__init__(BytesIO(),
                                       encoding="utf-8",
                                       errors="surrogatepass",
                                       newline=newline)
        # Issue #5645: make universal newlines semantics the same as in the
        # C version, even under Windows.
        if newline is None:
            self._writetranslate = False
        if initial_value is not None:
            if not isinstance(initial_value, str):
                raise TypeError("initial_value must be str or None, not {0}"
                                .format(type(initial_value).__name__))
            self.write(initial_value)
            self.seek(0)

    def getvalue(self):
        self.flush()
        decoder = self._decoder or self._get_decoder()
        old_state = decoder.getstate()
        decoder.reset()
        try:
            return decoder.decode(self.buffer.getvalue(), final=True)
        finally:
            decoder.setstate(old_state)

    def __repr__(self):
        # TextIOWrapper tells the encoding in its repr. In StringIO,
        # that's an implementation detail.
        return object.__repr__(self)

    @property
    def errors(self):
        return None

    @property
    def encoding(self):
        return None

    def detach(self):
        # This doesn't make sense on StringIO.
        self._unsupported("detach")
lib\_sitebuiltins.py
"""
The objects used by the site module to add custom builtins.
"""

# Those objects are almost immortal and they keep a reference to their module
# globals.  Defining them in the site module would keep too many references
# alive.
# Note this means this module should also avoid keep things alive in its
# globals.

import sys

class Quitter(object):
    def __init__(self, name, eof):
        self.name = name
        self.eof = eof
    def __repr__(self):
        return 'Use %s() or %s to exit' % (self.name, self.eof)
    def __call__(self, code=None):
        # Shells like IDLE catch the SystemExit, but listen when their
        # stdin wrapper is closed.
        try:
            sys.stdin.close()
        except:
            pass
        raise SystemExit(code)


class _Printer(object):
    """interactive prompt objects for printing the license text, a list of
    contributors and the copyright notice."""

    MAXLINES = 23

    def __init__(self, name, data, files=(), dirs=()):
        import os
        self.__name = name
        self.__data = data
        self.__lines = None
        self.__filenames = [os.path.join(dir, filename)
                            for dir in dirs
                            for filename in files]

    def __setup(self):
        if self.__lines:
            return
        data = None
        for filename in self.__filenames:
            try:
                with open(filename, "r") as fp:
                    data = fp.read()
                break
            except OSError:
                pass
        if not data:
            data = self.__data
        self.__lines = data.split('\n')
        self.__linecnt = len(self.__lines)

    def __repr__(self):
        self.__setup()
        if len(self.__lines) <= self.MAXLINES:
            return "\n".join(self.__lines)
        else:
            return "Type %s() to see the full %s text" % ((self.__name,)*2)

    def __call__(self):
        self.__setup()
        prompt = 'Hit Return for more, or q (and Return) to quit: '
        lineno = 0
        while 1:
            try:
                for i in range(lineno, lineno + self.MAXLINES):
                    print(self.__lines[i])
            except IndexError:
                break
            else:
                lineno += self.MAXLINES
                key = None
                while key is None:
                    key = input(prompt)
                    if key not in ('', 'q'):
                        key = None
                if key == 'q':
                    break


class _Helper(object):
    """Define the builtin 'help'.

    This is a wrapper around pydoc.help that provides a helpful message
    when 'help' is typed at the Python interactive prompt.

    Calling help() at the Python prompt starts an interactive help session.
    Calling help(thing) prints help for the python object 'thing'.
    """

    def __repr__(self):
        return "Type help() for interactive help, " \
               "or help(object) for help about object."
    def __call__(self, *args, **kwds):
        import pydoc
        return pydoc.help(*args, **kwds)
lib\_strptime.py
"""Strptime-related classes and functions.

CLASSES:
    LocaleTime -- Discovers and stores locale-specific time information
    TimeRE -- Creates regexes for pattern matching a string of text containing
                time information

FUNCTIONS:
    _getlang -- Figure out what language is being used for the locale
    strptime -- Calculates the time struct represented by the passed-in string

"""
import time
import locale
import calendar
from re import compile as re_compile
from re import IGNORECASE
from re import escape as re_escape
from datetime import (date as datetime_date,
                      timedelta as datetime_timedelta,
                      timezone as datetime_timezone)
try:
    from _thread import allocate_lock as _thread_allocate_lock
except ImportError:
    from _dummy_thread import allocate_lock as _thread_allocate_lock

__all__ = []

def _getlang():
    # Figure out what the current language is set to.
    return locale.getlocale(locale.LC_TIME)

class LocaleTime(object):
    """Stores and handles locale-specific information related to time.

    ATTRIBUTES:
        f_weekday -- full weekday names (7-item list)
        a_weekday -- abbreviated weekday names (7-item list)
        f_month -- full month names (13-item list; dummy value in [0], which
                    is added by code)
        a_month -- abbreviated month names (13-item list, dummy value in
                    [0], which is added by code)
        am_pm -- AM/PM representation (2-item list)
        LC_date_time -- format string for date/time representation (string)
        LC_date -- format string for date representation (string)
        LC_time -- format string for time representation (string)
        timezone -- daylight- and non-daylight-savings timezone representation
                    (2-item list of sets)
        lang -- Language used by instance (2-item tuple)
    """

    def __init__(self):
        """Set all attributes.

        Order of methods called matters for dependency reasons.

        The locale language is set at the offset and then checked again before
        exiting.  This is to make sure that the attributes were not set with a
        mix of information from more than one locale.  This would most likely
        happen when using threads where one thread calls a locale-dependent
        function while another thread changes the locale while the function in
        the other thread is still running.  Proper coding would call for
        locks to prevent changing the locale while locale-dependent code is
        running.  The check here is done in case someone does not think about
        doing this.

        Only other possible issue is if someone changed the timezone and did
        not call tz.tzset .  That is an issue for the programmer, though,
        since changing the timezone is worthless without that call.

        """
        self.lang = _getlang()
        self.__calc_weekday()
        self.__calc_month()
        self.__calc_am_pm()
        self.__calc_timezone()
        self.__calc_date_time()
        if _getlang() != self.lang:
            raise ValueError("locale changed during initialization")
        if time.tzname != self.tzname or time.daylight != self.daylight:
            raise ValueError("timezone changed during initialization")

    def __pad(self, seq, front):
        # Add '' to seq to either the front (is True), else the back.
        seq = list(seq)
        if front:
            seq.insert(0, '')
        else:
            seq.append('')
        return seq

    def __calc_weekday(self):
        # Set self.a_weekday and self.f_weekday using the calendar
        # module.
        a_weekday = [calendar.day_abbr[i].lower() for i in range(7)]
        f_weekday = [calendar.day_name[i].lower() for i in range(7)]
        self.a_weekday = a_weekday
        self.f_weekday = f_weekday

    def __calc_month(self):
        # Set self.f_month and self.a_month using the calendar module.
        a_month = [calendar.month_abbr[i].lower() for i in range(13)]
        f_month = [calendar.month_name[i].lower() for i in range(13)]
        self.a_month = a_month
        self.f_month = f_month

    def __calc_am_pm(self):
        # Set self.am_pm by using time.strftime().

        # The magic date (1999,3,17,hour,44,55,2,76,0) is not really that
        # magical; just happened to have used it everywhere else where a
        # static date was needed.
        am_pm = []
        for hour in (1, 22):
            time_tuple = time.struct_time((1999,3,17,hour,44,55,2,76,0))
            am_pm.append(time.strftime("%p", time_tuple).lower())
        self.am_pm = am_pm

    def __calc_date_time(self):
        # Set self.date_time, self.date, & self.time by using
        # time.strftime().

        # Use (1999,3,17,22,44,55,2,76,0) for magic date because the amount of
        # overloaded numbers is minimized.  The order in which searches for
        # values within the format string is very important; it eliminates
        # possible ambiguity for what something represents.
        time_tuple = time.struct_time((1999,3,17,22,44,55,2,76,0))
        date_time = [None, None, None]
        date_time[0] = time.strftime("%c", time_tuple).lower()
        date_time[1] = time.strftime("%x", time_tuple).lower()
        date_time[2] = time.strftime("%X", time_tuple).lower()
        replacement_pairs = [('%', '%%'), (self.f_weekday[2], '%A'),
                    (self.f_month[3], '%B'), (self.a_weekday[2], '%a'),
                    (self.a_month[3], '%b'), (self.am_pm[1], '%p'),
                    ('1999', '%Y'), ('99', '%y'), ('22', '%H'),
                    ('44', '%M'), ('55', '%S'), ('76', '%j'),
                    ('17', '%d'), ('03', '%m'), ('3', '%m'),
                    # '3' needed for when no leading zero.
                    ('2', '%w'), ('10', '%I')]
        replacement_pairs.extend([(tz, "%Z") for tz_values in self.timezone
                                                for tz in tz_values])
        for offset,directive in ((0,'%c'), (1,'%x'), (2,'%X')):
            current_format = date_time[offset]
            for old, new in replacement_pairs:
                # Must deal with possible lack of locale info
                # manifesting itself as the empty string (e.g., Swedish's
                # lack of AM/PM info) or a platform returning a tuple of empty
                # strings (e.g., MacOS 9 having timezone as ('','')).
                if old:
                    current_format = current_format.replace(old, new)
            # If %W is used, then Sunday, 2005-01-03 will fall on week 0 since
            # 2005-01-03 occurs before the first Monday of the year.  Otherwise
            # %U is used.
            time_tuple = time.struct_time((1999,1,3,1,1,1,6,3,0))
            if '00' in time.strftime(directive, time_tuple):
                U_W = '%W'
            else:
                U_W = '%U'
            date_time[offset] = current_format.replace('11', U_W)
        self.LC_date_time = date_time[0]
        self.LC_date = date_time[1]
        self.LC_time = date_time[2]

    def __calc_timezone(self):
        # Set self.timezone by using time.tzname.
        # Do not worry about possibility of time.tzname[0] == time.tzname[1]
        # and time.daylight; handle that in strptime.
        try:
            time.tzset()
        except AttributeError:
            pass
        self.tzname = time.tzname
        self.daylight = time.daylight
        no_saving = frozenset(["utc", "gmt", self.tzname[0].lower()])
        if self.daylight:
            has_saving = frozenset([self.tzname[1].lower()])
        else:
            has_saving = frozenset()
        self.timezone = (no_saving, has_saving)


class TimeRE(dict):
    """Handle conversion from format directives to regexes."""

    def __init__(self, locale_time=None):
        """Create keys/values.

        Order of execution is important for dependency reasons.

        """
        if locale_time:
            self.locale_time = locale_time
        else:
            self.locale_time = LocaleTime()
        base = super()
        base.__init__({
            # The " \d" part of the regex is to make %c from ANSI C work
            'd': r"(?P<d>3[0-1]|[1-2]\d|0[1-9]|[1-9]| [1-9])",
            'f': r"(?P<f>[0-9]{1,6})",
            'H': r"(?P<H>2[0-3]|[0-1]\d|\d)",
            'I': r"(?P<I>1[0-2]|0[1-9]|[1-9])",
            'j': r"(?P<j>36[0-6]|3[0-5]\d|[1-2]\d\d|0[1-9]\d|00[1-9]|[1-9]\d|0[1-9]|[1-9])",
            'm': r"(?P<m>1[0-2]|0[1-9]|[1-9])",
            'M': r"(?P<M>[0-5]\d|\d)",
            'S': r"(?P<S>6[0-1]|[0-5]\d|\d)",
            'U': r"(?P<U>5[0-3]|[0-4]\d|\d)",
            'w': r"(?P<w>[0-6])",
            # W is set below by using 'U'
            'y': r"(?P<y>\d\d)",
            #XXX: Does 'Y' need to worry about having less or more than
            #     4 digits?
            'Y': r"(?P<Y>\d\d\d\d)",
            'z': r"(?P<z>[+-]\d\d[0-5]\d)",
            'A': self.__seqToRE(self.locale_time.f_weekday, 'A'),
            'a': self.__seqToRE(self.locale_time.a_weekday, 'a'),
            'B': self.__seqToRE(self.locale_time.f_month[1:], 'B'),
            'b': self.__seqToRE(self.locale_time.a_month[1:], 'b'),
            'p': self.__seqToRE(self.locale_time.am_pm, 'p'),
            'Z': self.__seqToRE((tz for tz_names in self.locale_time.timezone
                                        for tz in tz_names),
                                'Z'),
            '%': '%'})
        base.__setitem__('W', base.__getitem__('U').replace('U', 'W'))
        base.__setitem__('c', self.pattern(self.locale_time.LC_date_time))
        base.__setitem__('x', self.pattern(self.locale_time.LC_date))
        base.__setitem__('X', self.pattern(self.locale_time.LC_time))

    def __seqToRE(self, to_convert, directive):
        """Convert a list to a regex string for matching a directive.

        Want possible matching values to be from longest to shortest.  This
        prevents the possibility of a match occurring for a value that also
        a substring of a larger value that should have matched (e.g., 'abc'
        matching when 'abcdef' should have been the match).

        """
        to_convert = sorted(to_convert, key=len, reverse=True)
        for value in to_convert:
            if value != '':
                break
        else:
            return ''
        regex = '|'.join(re_escape(stuff) for stuff in to_convert)
        regex = '(?P<%s>%s' % (directive, regex)
        return '%s)' % regex

    def pattern(self, format):
        """Return regex pattern for the format string.

        Need to make sure that any characters that might be interpreted as
        regex syntax are escaped.

        """
        processed_format = ''
        # The sub() call escapes all characters that might be misconstrued
        # as regex syntax.  Cannot use re.escape since we have to deal with
        # format directives (%m, etc.).
        regex_chars = re_compile(r"([\\.^$*+?\(\){}\[\]|])")
        format = regex_chars.sub(r"\\\1", format)
        whitespace_replacement = re_compile('\s+')
        format = whitespace_replacement.sub('\s+', format)
        while '%' in format:
            directive_index = format.index('%')+1
            processed_format = "%s%s%s" % (processed_format,
                                           format[:directive_index-1],
                                           self[format[directive_index]])
            format = format[directive_index+1:]
        return "%s%s" % (processed_format, format)

    def compile(self, format):
        """Return a compiled re object for the format string."""
        return re_compile(self.pattern(format), IGNORECASE)

_cache_lock = _thread_allocate_lock()
# DO NOT modify _TimeRE_cache or _regex_cache without acquiring the cache lock
# first!
_TimeRE_cache = TimeRE()
_CACHE_MAX_SIZE = 5 # Max number of regexes stored in _regex_cache
_regex_cache = {}

def _calc_julian_from_U_or_W(year, week_of_year, day_of_week, week_starts_Mon):
    """Calculate the Julian day based on the year, week of the year, and day of
    the week, with week_start_day representing whether the week of the year
    assumes the week starts on Sunday or Monday (6 or 0)."""
    first_weekday = datetime_date(year, 1, 1).weekday()
    # If we are dealing with the %U directive (week starts on Sunday), it's
    # easier to just shift the view to Sunday being the first day of the
    # week.
    if not week_starts_Mon:
        first_weekday = (first_weekday + 1) % 7
        day_of_week = (day_of_week + 1) % 7
    # Need to watch out for a week 0 (when the first day of the year is not
    # the same as that specified by %U or %W).
    week_0_length = (7 - first_weekday) % 7
    if week_of_year == 0:
        return 1 + day_of_week - first_weekday
    else:
        days_to_week = week_0_length + (7 * (week_of_year - 1))
        return 1 + days_to_week + day_of_week


def _strptime(data_string, format="%a %b %d %H:%M:%S %Y"):
    """Return a 2-tuple consisting of a time struct and an int containing
    the number of microseconds based on the input string and the
    format string."""

    for index, arg in enumerate([data_string, format]):
        if not isinstance(arg, str):
            msg = "strptime() argument {} must be str, not {}"
            raise TypeError(msg.format(index, type(arg)))

    global _TimeRE_cache, _regex_cache
    with _cache_lock:

        locale_time = _TimeRE_cache.locale_time
        if (_getlang() != locale_time.lang or
            time.tzname != locale_time.tzname or
            time.daylight != locale_time.daylight):
            _TimeRE_cache = TimeRE()
            _regex_cache.clear()
            locale_time = _TimeRE_cache.locale_time
        if len(_regex_cache) > _CACHE_MAX_SIZE:
            _regex_cache.clear()
        format_regex = _regex_cache.get(format)
        if not format_regex:
            try:
                format_regex = _TimeRE_cache.compile(format)
            # KeyError raised when a bad format is found; can be specified as
            # \\, in which case it was a stray % but with a space after it
            except KeyError as err:
                bad_directive = err.args[0]
                if bad_directive == "\\":
                    bad_directive = "%"
                del err
                raise ValueError("'%s' is a bad directive in format '%s'" %
                                    (bad_directive, format)) from None
            # IndexError only occurs when the format string is "%"
            except IndexError:
                raise ValueError("stray %% in format '%s'" % format) from None
            _regex_cache[format] = format_regex
    found = format_regex.match(data_string)
    if not found:
        raise ValueError("time data %r does not match format %r" %
                         (data_string, format))
    if len(data_string) != found.end():
        raise ValueError("unconverted data remains: %s" %
                          data_string[found.end():])

    year = None
    month = day = 1
    hour = minute = second = fraction = 0
    tz = -1
    tzoffset = None
    # Default to -1 to signify that values not known; not critical to have,
    # though
    week_of_year = -1
    week_of_year_start = -1
    # weekday and julian defaulted to None so as to signal need to calculate
    # values
    weekday = julian = None
    found_dict = found.groupdict()
    for group_key in found_dict.keys():
        # Directives not explicitly handled below:
        #   c, x, X
        #      handled by making out of other directives
        #   U, W
        #      worthless without day of the week
        if group_key == 'y':
            year = int(found_dict['y'])
            # Open Group specification for strptime() states that a %y
            #value in the range of [00, 68] is in the century 2000, while
            #[69,99] is in the century 1900
            if year <= 68:
                year += 2000
            else:
                year += 1900
        elif group_key == 'Y':
            year = int(found_dict['Y'])
        elif group_key == 'm':
            month = int(found_dict['m'])
        elif group_key == 'B':
            month = locale_time.f_month.index(found_dict['B'].lower())
        elif group_key == 'b':
            month = locale_time.a_month.index(found_dict['b'].lower())
        elif group_key == 'd':
            day = int(found_dict['d'])
        elif group_key == 'H':
            hour = int(found_dict['H'])
        elif group_key == 'I':
            hour = int(found_dict['I'])
            ampm = found_dict.get('p', '').lower()
            # If there was no AM/PM indicator, we'll treat this like AM
            if ampm in ('', locale_time.am_pm[0]):
                # We're in AM so the hour is correct unless we're
                # looking at 12 midnight.
                # 12 midnight == 12 AM == hour 0
                if hour == 12:
                    hour = 0
            elif ampm == locale_time.am_pm[1]:
                # We're in PM so we need to add 12 to the hour unless
                # we're looking at 12 noon.
                # 12 noon == 12 PM == hour 12
                if hour != 12:
                    hour += 12
        elif group_key == 'M':
            minute = int(found_dict['M'])
        elif group_key == 'S':
            second = int(found_dict['S'])
        elif group_key == 'f':
            s = found_dict['f']
            # Pad to always return microseconds.
            s += "0" * (6 - len(s))
            fraction = int(s)
        elif group_key == 'A':
            weekday = locale_time.f_weekday.index(found_dict['A'].lower())
        elif group_key == 'a':
            weekday = locale_time.a_weekday.index(found_dict['a'].lower())
        elif group_key == 'w':
            weekday = int(found_dict['w'])
            if weekday == 0:
                weekday = 6
            else:
                weekday -= 1
        elif group_key == 'j':
            julian = int(found_dict['j'])
        elif group_key in ('U', 'W'):
            week_of_year = int(found_dict[group_key])
            if group_key == 'U':
                # U starts week on Sunday.
                week_of_year_start = 6
            else:
                # W starts week on Monday.
                week_of_year_start = 0
        elif group_key == 'z':
            z = found_dict['z']
            tzoffset = int(z[1:3]) * 60 + int(z[3:5])
            if z.startswith("-"):
                tzoffset = -tzoffset
        elif group_key == 'Z':
            # Since -1 is default value only need to worry about setting tz if
            # it can be something other than -1.
            found_zone = found_dict['Z'].lower()
            for value, tz_values in enumerate(locale_time.timezone):
                if found_zone in tz_values:
                    # Deal with bad locale setup where timezone names are the
                    # same and yet time.daylight is true; too ambiguous to
                    # be able to tell what timezone has daylight savings
                    if (time.tzname[0] == time.tzname[1] and
                       time.daylight and found_zone not in ("utc", "gmt")):
                        break
                    else:
                        tz = value
                        break
    leap_year_fix = False
    if year is None and month == 2 and day == 29:
        year = 1904  # 1904 is first leap year of 20th century
        leap_year_fix = True
    elif year is None:
        year = 1900
    # If we know the week of the year and what day of that week, we can figure
    # out the Julian day of the year.
    if julian is None and week_of_year != -1 and weekday is not None:
        week_starts_Mon = True if week_of_year_start == 0 else False
        julian = _calc_julian_from_U_or_W(year, week_of_year, weekday,
                                            week_starts_Mon)
    # Cannot pre-calculate datetime_date() since can change in Julian
    # calculation and thus could have different value for the day of the week
    # calculation.
    if julian is None:
        # Need to add 1 to result since first day of the year is 1, not 0.
        julian = datetime_date(year, month, day).toordinal() - \
                  datetime_date(year, 1, 1).toordinal() + 1
    else:  # Assume that if they bothered to include Julian day it will
           # be accurate.
        datetime_result = datetime_date.fromordinal((julian - 1) + datetime_date(year, 1, 1).toordinal())
        year = datetime_result.year
        month = datetime_result.month
        day = datetime_result.day
    if weekday is None:
        weekday = datetime_date(year, month, day).weekday()
    # Add timezone info
    tzname = found_dict.get("Z")
    if tzoffset is not None:
        gmtoff = tzoffset * 60
    else:
        gmtoff = None

    if leap_year_fix:
        # the caller didn't supply a year but asked for Feb 29th. We couldn't
        # use the default of 1900 for computations. We set it back to ensure
        # that February 29th is smaller than March 1st.
        year = 1900

    return (year, month, day,
            hour, minute, second,
            weekday, julian, tz, tzname, gmtoff), fraction

def _strptime_time(data_string, format="%a %b %d %H:%M:%S %Y"):
    """Return a time struct based on the input string and the
    format string."""
    tt = _strptime(data_string, format)[0]
    return time.struct_time(tt[:time._STRUCT_TM_ITEMS])

def _strptime_datetime(cls, data_string, format="%a %b %d %H:%M:%S %Y"):
    """Return a class cls instance based on the input string and the
    format string."""
    tt, fraction = _strptime(data_string, format)
    tzname, gmtoff = tt[-2:]
    args = tt[:6] + (fraction,)
    if gmtoff is not None:
        tzdelta = datetime_timedelta(seconds=gmtoff)
        if tzname:
            tz = datetime_timezone(tzdelta, tzname)
        else:
            tz = datetime_timezone(tzdelta)
        args += (tz,)

    return cls(*args)
lib\_threading_local.py
"""Thread-local objects.

(Note that this module provides a Python version of the threading.local
 class.  Depending on the version of Python you're using, there may be a
 faster one available.  You should always import the `local` class from
 `threading`.)

Thread-local objects support the management of thread-local data.
If you have data that you want to be local to a thread, simply create
a thread-local object and use its attributes:

  >>> mydata = local()
  >>> mydata.number = 42
  >>> mydata.number
  42

You can also access the local-object's dictionary:

  >>> mydata.__dict__
  {'number': 42}
  >>> mydata.__dict__.setdefault('widgets', [])
  []
  >>> mydata.widgets
  []

What's important about thread-local objects is that their data are
local to a thread. If we access the data in a different thread:

  >>> log = []
  >>> def f():
  ...     items = sorted(mydata.__dict__.items())
  ...     log.append(items)
  ...     mydata.number = 11
  ...     log.append(mydata.number)

  >>> import threading
  >>> thread = threading.Thread(target=f)
  >>> thread.start()
  >>> thread.join()
  >>> log
  [[], 11]

we get different data.  Furthermore, changes made in the other thread
don't affect data seen in this thread:

  >>> mydata.number
  42

Of course, values you get from a local object, including a __dict__
attribute, are for whatever thread was current at the time the
attribute was read.  For that reason, you generally don't want to save
these values across threads, as they apply only to the thread they
came from.

You can create custom local objects by subclassing the local class:

  >>> class MyLocal(local):
  ...     number = 2
  ...     initialized = False
  ...     def __init__(self, **kw):
  ...         if self.initialized:
  ...             raise SystemError('__init__ called too many times')
  ...         self.initialized = True
  ...         self.__dict__.update(kw)
  ...     def squared(self):
  ...         return self.number ** 2

This can be useful to support default values, methods and
initialization.  Note that if you define an __init__ method, it will be
called each time the local object is used in a separate thread.  This
is necessary to initialize each thread's dictionary.

Now if we create a local object:

  >>> mydata = MyLocal(color='red')

Now we have a default number:

  >>> mydata.number
  2

an initial color:

  >>> mydata.color
  'red'
  >>> del mydata.color

And a method that operates on the data:

  >>> mydata.squared()
  4

As before, we can access the data in a separate thread:

  >>> log = []
  >>> thread = threading.Thread(target=f)
  >>> thread.start()
  >>> thread.join()
  >>> log
  [[('color', 'red'), ('initialized', True)], 11]

without affecting this thread's data:

  >>> mydata.number
  2
  >>> mydata.color
  Traceback (most recent call last):
  ...
  AttributeError: 'MyLocal' object has no attribute 'color'

Note that subclasses can define slots, but they are not thread
local. They are shared across threads:

  >>> class MyLocal(local):
  ...     __slots__ = 'number'

  >>> mydata = MyLocal()
  >>> mydata.number = 42
  >>> mydata.color = 'red'

So, the separate thread:

  >>> thread = threading.Thread(target=f)
  >>> thread.start()
  >>> thread.join()

affects what we see:

  >>> mydata.number
  11

>>> del mydata
"""

from weakref import ref
from contextlib import contextmanager

__all__ = ["local"]

# We need to use objects from the threading module, but the threading
# module may also want to use our `local` class, if support for locals
# isn't compiled in to the `thread` module.  This creates potential problems
# with circular imports.  For that reason, we don't import `threading`
# until the bottom of this file (a hack sufficient to worm around the
# potential problems).  Note that all platforms on CPython do have support
# for locals in the `thread` module, and there is no circular import problem
# then, so problems introduced by fiddling the order of imports here won't
# manifest.

class _localimpl:
    """A class managing thread-local dicts"""
    __slots__ = 'key', 'dicts', 'localargs', 'locallock', '__weakref__'

    def __init__(self):
        # The key used in the Thread objects' attribute dicts.
        # We keep it a string for speed but make it unlikely to clash with
        # a "real" attribute.
        self.key = '_threading_local._localimpl.' + str(id(self))
        # { id(Thread) -> (ref(Thread), thread-local dict) }
        self.dicts = {}

    def get_dict(self):
        """Return the dict for the current thread. Raises KeyError if none
        defined."""
        thread = current_thread()
        return self.dicts[id(thread)][1]

    def create_dict(self):
        """Create a new dict for the current thread, and return it."""
        localdict = {}
        key = self.key
        thread = current_thread()
        idt = id(thread)
        def local_deleted(_, key=key):
            # When the localimpl is deleted, remove the thread attribute.
            thread = wrthread()
            if thread is not None:
                del thread.__dict__[key]
        def thread_deleted(_, idt=idt):
            # When the thread is deleted, remove the local dict.
            # Note that this is suboptimal if the thread object gets
            # caught in a reference loop. We would like to be called
            # as soon as the OS-level thread ends instead.
            local = wrlocal()
            if local is not None:
                dct = local.dicts.pop(idt)
        wrlocal = ref(self, local_deleted)
        wrthread = ref(thread, thread_deleted)
        thread.__dict__[key] = wrlocal
        self.dicts[idt] = wrthread, localdict
        return localdict


@contextmanager
def _patch(self):
    impl = object.__getattribute__(self, '_local__impl')
    try:
        dct = impl.get_dict()
    except KeyError:
        dct = impl.create_dict()
        args, kw = impl.localargs
        self.__init__(*args, **kw)
    with impl.locallock:
        object.__setattr__(self, '__dict__', dct)
        yield


class local:
    __slots__ = '_local__impl', '__dict__'

    def __new__(cls, *args, **kw):
        if (args or kw) and (cls.__init__ is object.__init__):
            raise TypeError("Initialization arguments are not supported")
        self = object.__new__(cls)
        impl = _localimpl()
        impl.localargs = (args, kw)
        impl.locallock = RLock()
        object.__setattr__(self, '_local__impl', impl)
        # We need to create the thread dict in anticipation of
        # __init__ being called, to make sure we don't call it
        # again ourselves.
        impl.create_dict()
        return self

    def __getattribute__(self, name):
        with _patch(self):
            return object.__getattribute__(self, name)

    def __setattr__(self, name, value):
        if name == '__dict__':
            raise AttributeError(
                "%r object attribute '__dict__' is read-only"
                % self.__class__.__name__)
        with _patch(self):
            return object.__setattr__(self, name, value)

    def __delattr__(self, name):
        if name == '__dict__':
            raise AttributeError(
                "%r object attribute '__dict__' is read-only"
                % self.__class__.__name__)
        with _patch(self):
            return object.__delattr__(self, name)


from threading import current_thread, RLock
lib\_weakrefset.py
# Access WeakSet through the weakref module.
# This code is separated-out because it is needed
# by abc.py to load everything else at startup.

from _weakref import ref

__all__ = ['WeakSet']


class _IterationGuard:
    # This context manager registers itself in the current iterators of the
    # weak container, such as to delay all removals until the context manager
    # exits.
    # This technique should be relatively thread-safe (since sets are).

    def __init__(self, weakcontainer):
        # Don't create cycles
        self.weakcontainer = ref(weakcontainer)

    def __enter__(self):
        w = self.weakcontainer()
        if w is not None:
            w._iterating.add(self)
        return self

    def __exit__(self, e, t, b):
        w = self.weakcontainer()
        if w is not None:
            s = w._iterating
            s.remove(self)
            if not s:
                w._commit_removals()


class WeakSet:
    def __init__(self, data=None):
        self.data = set()
        def _remove(item, selfref=ref(self)):
            self = selfref()
            if self is not None:
                if self._iterating:
                    self._pending_removals.append(item)
                else:
                    self.data.discard(item)
        self._remove = _remove
        # A list of keys to be removed
        self._pending_removals = []
        self._iterating = set()
        if data is not None:
            self.update(data)

    def _commit_removals(self):
        l = self._pending_removals
        discard = self.data.discard
        while l:
            discard(l.pop())

    def __iter__(self):
        with _IterationGuard(self):
            for itemref in self.data:
                item = itemref()
                if item is not None:
                    # Caveat: the iterator will keep a strong reference to
                    # `item` until it is resumed or closed.
                    yield item

    def __len__(self):
        return len(self.data) - len(self._pending_removals)

    def __contains__(self, item):
        try:
            wr = ref(item)
        except TypeError:
            return False
        return wr in self.data

    def __reduce__(self):
        return (self.__class__, (list(self),),
                getattr(self, '__dict__', None))

    def add(self, item):
        if self._pending_removals:
            self._commit_removals()
        self.data.add(ref(item, self._remove))

    def clear(self):
        if self._pending_removals:
            self._commit_removals()
        self.data.clear()

    def copy(self):
        return self.__class__(self)

    def pop(self):
        if self._pending_removals:
            self._commit_removals()
        while True:
            try:
                itemref = self.data.pop()
            except KeyError:
                raise KeyError('pop from empty WeakSet')
            item = itemref()
            if item is not None:
                return item

    def remove(self, item):
        if self._pending_removals:
            self._commit_removals()
        self.data.remove(ref(item))

    def discard(self, item):
        if self._pending_removals:
            self._commit_removals()
        self.data.discard(ref(item))

    def update(self, other):
        if self._pending_removals:
            self._commit_removals()
        for element in other:
            self.add(element)

    def __ior__(self, other):
        self.update(other)
        return self

    def difference(self, other):
        newset = self.copy()
        newset.difference_update(other)
        return newset
    __sub__ = difference

    def difference_update(self, other):
        self.__isub__(other)
    def __isub__(self, other):
        if self._pending_removals:
            self._commit_removals()
        if self is other:
            self.data.clear()
        else:
            self.data.difference_update(ref(item) for item in other)
        return self

    def intersection(self, other):
        return self.__class__(item for item in other if item in self)
    __and__ = intersection

    def intersection_update(self, other):
        self.__iand__(other)
    def __iand__(self, other):
        if self._pending_removals:
            self._commit_removals()
        self.data.intersection_update(ref(item) for item in other)
        return self

    def issubset(self, other):
        return self.data.issubset(ref(item) for item in other)
    __le__ = issubset

    def __lt__(self, other):
        return self.data < set(ref(item) for item in other)

    def issuperset(self, other):
        return self.data.issuperset(ref(item) for item in other)
    __ge__ = issuperset

    def __gt__(self, other):
        return self.data > set(ref(item) for item in other)

    def __eq__(self, other):
        if not isinstance(other, self.__class__):
            return NotImplemented
        return self.data == set(ref(item) for item in other)

    def symmetric_difference(self, other):
        newset = self.copy()
        newset.symmetric_difference_update(other)
        return newset
    __xor__ = symmetric_difference

    def symmetric_difference_update(self, other):
        self.__ixor__(other)
    def __ixor__(self, other):
        if self._pending_removals:
            self._commit_removals()
        if self is other:
            self.data.clear()
        else:
            self.data.symmetric_difference_update(ref(item, self._remove) for item in other)
        return self

    def union(self, other):
        return self.__class__(e for s in (self, other) for e in s)
    __or__ = union

    def isdisjoint(self, other):
        return len(self.intersection(other)) == 0
lib\__future__.py
"""Record of phased-in incompatible language changes.

Each line is of the form:

    FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ","
                              CompilerFlag ")"

where, normally, OptionalRelease < MandatoryRelease, and both are 5-tuples
of the same form as sys.version_info:

    (PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
     PY_MINOR_VERSION, # the 1; an int
     PY_MICRO_VERSION, # the 0; an int
     PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
     PY_RELEASE_SERIAL # the 3; an int
    )

OptionalRelease records the first release in which

    from __future__ import FeatureName

was accepted.

In the case of MandatoryReleases that have not yet occurred,
MandatoryRelease predicts the release in which the feature will become part
of the language.

Else MandatoryRelease records when the feature became part of the language;
in releases at or after that, modules no longer need

    from __future__ import FeatureName

to use the feature in question, but may continue to use such imports.

MandatoryRelease may also be None, meaning that a planned feature got
dropped.

Instances of class _Feature have two corresponding methods,
.getOptionalRelease() and .getMandatoryRelease().

CompilerFlag is the (bitfield) flag that should be passed in the fourth
argument to the builtin function compile() to enable the feature in
dynamically compiled code.  This flag is stored in the .compiler_flag
attribute on _Future instances.  These values must match the appropriate
#defines of CO_xxx flags in Include/compile.h.

No feature line is ever to be deleted from this file.
"""

all_feature_names = [
    "nested_scopes",
    "generators",
    "division",
    "absolute_import",
    "with_statement",
    "print_function",
    "unicode_literals",
    "barry_as_FLUFL",
    "generator_stop",
]

__all__ = ["all_feature_names"] + all_feature_names

# The CO_xxx symbols are defined here under the same names used by
# compile.h, so that an editor search will find them here.  However,
# they're not exported in __all__, because they don't really belong to
# this module.
CO_NESTED            = 0x0010   # nested_scopes
CO_GENERATOR_ALLOWED = 0        # generators (obsolete, was 0x1000)
CO_FUTURE_DIVISION   = 0x2000   # division
CO_FUTURE_ABSOLUTE_IMPORT = 0x4000 # perform absolute imports by default
CO_FUTURE_WITH_STATEMENT  = 0x8000   # with statement
CO_FUTURE_PRINT_FUNCTION  = 0x10000   # print function
CO_FUTURE_UNICODE_LITERALS = 0x20000 # unicode string literals
CO_FUTURE_BARRY_AS_BDFL = 0x40000
CO_FUTURE_GENERATOR_STOP  = 0x80000 # StopIteration becomes RuntimeError in generators

class _Feature:
    def __init__(self, optionalRelease, mandatoryRelease, compiler_flag):
        self.optional = optionalRelease
        self.mandatory = mandatoryRelease
        self.compiler_flag = compiler_flag

    def getOptionalRelease(self):
        """Return first release in which this feature was recognized.

        This is a 5-tuple, of the same form as sys.version_info.
        """

        return self.optional

    def getMandatoryRelease(self):
        """Return release in which this feature will become mandatory.

        This is a 5-tuple, of the same form as sys.version_info, or, if
        the feature was dropped, is None.
        """

        return self.mandatory

    def __repr__(self):
        return "_Feature" + repr((self.optional,
                                  self.mandatory,
                                  self.compiler_flag))

nested_scopes = _Feature((2, 1, 0, "beta",  1),
                         (2, 2, 0, "alpha", 0),
                         CO_NESTED)

generators = _Feature((2, 2, 0, "alpha", 1),
                      (2, 3, 0, "final", 0),
                      CO_GENERATOR_ALLOWED)

division = _Feature((2, 2, 0, "alpha", 2),
                    (3, 0, 0, "alpha", 0),
                    CO_FUTURE_DIVISION)

absolute_import = _Feature((2, 5, 0, "alpha", 1),
                           (3, 0, 0, "alpha", 0),
                           CO_FUTURE_ABSOLUTE_IMPORT)

with_statement = _Feature((2, 5, 0, "alpha", 1),
                          (2, 6, 0, "alpha", 0),
                          CO_FUTURE_WITH_STATEMENT)

print_function = _Feature((2, 6, 0, "alpha", 2),
                          (3, 0, 0, "alpha", 0),
                          CO_FUTURE_PRINT_FUNCTION)

unicode_literals = _Feature((2, 6, 0, "alpha", 2),
                            (3, 0, 0, "alpha", 0),
                            CO_FUTURE_UNICODE_LITERALS)

barry_as_FLUFL = _Feature((3, 1, 0, "alpha", 2),
                         (3, 9, 0, "alpha", 0),
                         CO_FUTURE_BARRY_AS_BDFL)

generator_stop = _Feature((3, 5, 0, "beta", 1),
                         (3, 7, 0, "alpha", 0),
                         CO_FUTURE_GENERATOR_STOP)
lib\__phello__.foo.py
# This file exists as a helper for the test.test_frozen module.
lib\asyncio\base_events.py
"""Base implementation of event loop.

The event loop can be broken up into a multiplexer (the part
responsible for notifying us of I/O events) and the event loop proper,
which wraps a multiplexer with functionality for scheduling callbacks,
immediately or at a given time in the future.

Whenever a public API takes a callback, subsequent positional
arguments will be passed to the callback if/when it is called.  This
avoids the proliferation of trivial lambdas implementing closures.
Keyword arguments for the callback are not supported; this is a
conscious design decision, leaving the door open for keyword arguments
to modify the meaning of the API call itself.
"""


import collections
import concurrent.futures
import functools
import heapq
import inspect
import ipaddress
import itertools
import logging
import os
import socket
import subprocess
import threading
import time
import traceback
import sys
import warnings

from . import compat
from . import coroutines
from . import events
from . import futures
from . import tasks
from .coroutines import coroutine
from .log import logger


__all__ = ['BaseEventLoop']


# Argument for default thread pool executor creation.
_MAX_WORKERS = 5

# Minimum number of _scheduled timer handles before cleanup of
# cancelled handles is performed.
_MIN_SCHEDULED_TIMER_HANDLES = 100

# Minimum fraction of _scheduled timer handles that are cancelled
# before cleanup of cancelled handles is performed.
_MIN_CANCELLED_TIMER_HANDLES_FRACTION = 0.5

def _format_handle(handle):
    cb = handle._callback
    if inspect.ismethod(cb) and isinstance(cb.__self__, tasks.Task):
        # format the task
        return repr(cb.__self__)
    else:
        return str(handle)


def _format_pipe(fd):
    if fd == subprocess.PIPE:
        return '<pipe>'
    elif fd == subprocess.STDOUT:
        return '<stdout>'
    else:
        return repr(fd)


# Linux's sock.type is a bitmask that can include extra info about socket.
_SOCKET_TYPE_MASK = 0
if hasattr(socket, 'SOCK_NONBLOCK'):
    _SOCKET_TYPE_MASK |= socket.SOCK_NONBLOCK
if hasattr(socket, 'SOCK_CLOEXEC'):
    _SOCKET_TYPE_MASK |= socket.SOCK_CLOEXEC


@functools.lru_cache(maxsize=1024)
def _ipaddr_info(host, port, family, type, proto):
    # Try to skip getaddrinfo if "host" is already an IP. Since getaddrinfo
    # blocks on an exclusive lock on some platforms, users might handle name
    # resolution in their own code and pass in resolved IPs.
    if proto not in {0, socket.IPPROTO_TCP, socket.IPPROTO_UDP} or host is None:
        return None

    type &= ~_SOCKET_TYPE_MASK
    if type == socket.SOCK_STREAM:
        proto = socket.IPPROTO_TCP
    elif type == socket.SOCK_DGRAM:
        proto = socket.IPPROTO_UDP
    else:
        return None

    if hasattr(socket, 'inet_pton'):
        if family == socket.AF_UNSPEC:
            afs = [socket.AF_INET, socket.AF_INET6]
        else:
            afs = [family]

        for af in afs:
            # Linux's inet_pton doesn't accept an IPv6 zone index after host,
            # like '::1%lo0', so strip it. If we happen to make an invalid
            # address look valid, we fail later in sock.connect or sock.bind.
            try:
                if af == socket.AF_INET6:
                    socket.inet_pton(af, host.partition('%')[0])
                else:
                    socket.inet_pton(af, host)
                return af, type, proto, '', (host, port)
            except OSError:
                pass

        # "host" is not an IP address.
        return None

    # No inet_pton. (On Windows it's only available since Python 3.4.)
    # Even though getaddrinfo with AI_NUMERICHOST would be non-blocking, it
    # still requires a lock on some platforms, and waiting for that lock could
    # block the event loop. Use ipaddress instead, it's just text parsing.
    try:
        addr = ipaddress.IPv4Address(host)
    except ValueError:
        try:
            addr = ipaddress.IPv6Address(host.partition('%')[0])
        except ValueError:
            return None

    af = socket.AF_INET if addr.version == 4 else socket.AF_INET6
    if family not in (socket.AF_UNSPEC, af):
        # "host" is wrong IP version for "family".
        return None

    return af, type, proto, '', (host, port)


def _check_resolved_address(sock, address):
    # Ensure that the address is already resolved to avoid the trap of hanging
    # the entire event loop when the address requires doing a DNS lookup.

    if hasattr(socket, 'AF_UNIX') and sock.family == socket.AF_UNIX:
        return

    host, port = address[:2]
    if _ipaddr_info(host, port, sock.family, sock.type, sock.proto) is None:
        raise ValueError("address must be resolved (IP address),"
                         " got host %r" % host)


def _run_until_complete_cb(fut):
    exc = fut._exception
    if (isinstance(exc, BaseException)
    and not isinstance(exc, Exception)):
        # Issue #22429: run_forever() already finished, no need to
        # stop it.
        return
    fut._loop.stop()


class Server(events.AbstractServer):

    def __init__(self, loop, sockets):
        self._loop = loop
        self.sockets = sockets
        self._active_count = 0
        self._waiters = []

    def __repr__(self):
        return '<%s sockets=%r>' % (self.__class__.__name__, self.sockets)

    def _attach(self):
        assert self.sockets is not None
        self._active_count += 1

    def _detach(self):
        assert self._active_count > 0
        self._active_count -= 1
        if self._active_count == 0 and self.sockets is None:
            self._wakeup()

    def close(self):
        sockets = self.sockets
        if sockets is None:
            return
        self.sockets = None
        for sock in sockets:
            self._loop._stop_serving(sock)
        if self._active_count == 0:
            self._wakeup()

    def _wakeup(self):
        waiters = self._waiters
        self._waiters = None
        for waiter in waiters:
            if not waiter.done():
                waiter.set_result(waiter)

    @coroutine
    def wait_closed(self):
        if self.sockets is None or self._waiters is None:
            return
        waiter = futures.Future(loop=self._loop)
        self._waiters.append(waiter)
        yield from waiter


class BaseEventLoop(events.AbstractEventLoop):

    def __init__(self):
        self._timer_cancelled_count = 0
        self._closed = False
        self._stopping = False
        self._ready = collections.deque()
        self._scheduled = []
        self._default_executor = None
        self._internal_fds = 0
        # Identifier of the thread running the event loop, or None if the
        # event loop is not running
        self._thread_id = None
        self._clock_resolution = time.get_clock_info('monotonic').resolution
        self._exception_handler = None
        self.set_debug((not sys.flags.ignore_environment
                        and bool(os.environ.get('PYTHONASYNCIODEBUG'))))
        # In debug mode, if the execution of a callback or a step of a task
        # exceed this duration in seconds, the slow callback/task is logged.
        self.slow_callback_duration = 0.1
        self._current_handle = None
        self._task_factory = None
        self._coroutine_wrapper_set = False

    def __repr__(self):
        return ('<%s running=%s closed=%s debug=%s>'
                % (self.__class__.__name__, self.is_running(),
                   self.is_closed(), self.get_debug()))

    def create_task(self, coro):
        """Schedule a coroutine object.

        Return a task object.
        """
        self._check_closed()
        if self._task_factory is None:
            task = tasks.Task(coro, loop=self)
            if task._source_traceback:
                del task._source_traceback[-1]
        else:
            task = self._task_factory(self, coro)
        return task

    def set_task_factory(self, factory):
        """Set a task factory that will be used by loop.create_task().

        If factory is None the default task factory will be set.

        If factory is a callable, it should have a signature matching
        '(loop, coro)', where 'loop' will be a reference to the active
        event loop, 'coro' will be a coroutine object.  The callable
        must return a Future.
        """
        if factory is not None and not callable(factory):
            raise TypeError('task factory must be a callable or None')
        self._task_factory = factory

    def get_task_factory(self):
        """Return a task factory, or None if the default one is in use."""
        return self._task_factory

    def _make_socket_transport(self, sock, protocol, waiter=None, *,
                               extra=None, server=None):
        """Create socket transport."""
        raise NotImplementedError

    def _make_ssl_transport(self, rawsock, protocol, sslcontext, waiter=None,
                            *, server_side=False, server_hostname=None,
                            extra=None, server=None):
        """Create SSL transport."""
        raise NotImplementedError

    def _make_datagram_transport(self, sock, protocol,
                                 address=None, waiter=None, extra=None):
        """Create datagram transport."""
        raise NotImplementedError

    def _make_read_pipe_transport(self, pipe, protocol, waiter=None,
                                  extra=None):
        """Create read pipe transport."""
        raise NotImplementedError

    def _make_write_pipe_transport(self, pipe, protocol, waiter=None,
                                   extra=None):
        """Create write pipe transport."""
        raise NotImplementedError

    @coroutine
    def _make_subprocess_transport(self, protocol, args, shell,
                                   stdin, stdout, stderr, bufsize,
                                   extra=None, **kwargs):
        """Create subprocess transport."""
        raise NotImplementedError

    def _write_to_self(self):
        """Write a byte to self-pipe, to wake up the event loop.

        This may be called from a different thread.

        The subclass is responsible for implementing the self-pipe.
        """
        raise NotImplementedError

    def _process_events(self, event_list):
        """Process selector events."""
        raise NotImplementedError

    def _check_closed(self):
        if self._closed:
            raise RuntimeError('Event loop is closed')

    def run_forever(self):
        """Run until stop() is called."""
        self._check_closed()
        if self.is_running():
            raise RuntimeError('Event loop is running.')
        self._set_coroutine_wrapper(self._debug)
        self._thread_id = threading.get_ident()
        try:
            while True:
                self._run_once()
                if self._stopping:
                    break
        finally:
            self._stopping = False
            self._thread_id = None
            self._set_coroutine_wrapper(False)

    def run_until_complete(self, future):
        """Run until the Future is done.

        If the argument is a coroutine, it is wrapped in a Task.

        WARNING: It would be disastrous to call run_until_complete()
        with the same coroutine twice -- it would wrap it in two
        different Tasks and that can't be good.

        Return the Future's result, or raise its exception.
        """
        self._check_closed()

        new_task = not isinstance(future, futures.Future)
        future = tasks.ensure_future(future, loop=self)
        if new_task:
            # An exception is raised if the future didn't complete, so there
            # is no need to log the "destroy pending task" message
            future._log_destroy_pending = False

        future.add_done_callback(_run_until_complete_cb)
        try:
            self.run_forever()
        except:
            if new_task and future.done() and not future.cancelled():
                # The coroutine raised a BaseException. Consume the exception
                # to not log a warning, the caller doesn't have access to the
                # local task.
                future.exception()
            raise
        future.remove_done_callback(_run_until_complete_cb)
        if not future.done():
            raise RuntimeError('Event loop stopped before Future completed.')

        return future.result()

    def stop(self):
        """Stop running the event loop.

        Every callback already scheduled will still run.  This simply informs
        run_forever to stop looping after a complete iteration.
        """
        self._stopping = True

    def close(self):
        """Close the event loop.

        This clears the queues and shuts down the executor,
        but does not wait for the executor to finish.

        The event loop must not be running.
        """
        if self.is_running():
            raise RuntimeError("Cannot close a running event loop")
        if self._closed:
            return
        if self._debug:
            logger.debug("Close %r", self)
        self._closed = True
        self._ready.clear()
        self._scheduled.clear()
        executor = self._default_executor
        if executor is not None:
            self._default_executor = None
            executor.shutdown(wait=False)

    def is_closed(self):
        """Returns True if the event loop was closed."""
        return self._closed

    # On Python 3.3 and older, objects with a destructor part of a reference
    # cycle are never destroyed. It's not more the case on Python 3.4 thanks
    # to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if not self.is_closed():
                warnings.warn("unclosed event loop %r" % self, ResourceWarning)
                if not self.is_running():
                    self.close()

    def is_running(self):
        """Returns True if the event loop is running."""
        return (self._thread_id is not None)

    def time(self):
        """Return the time according to the event loop's clock.

        This is a float expressed in seconds since an epoch, but the
        epoch, precision, accuracy and drift are unspecified and may
        differ per event loop.
        """
        return time.monotonic()

    def call_later(self, delay, callback, *args):
        """Arrange for a callback to be called at a given time.

        Return a Handle: an opaque object with a cancel() method that
        can be used to cancel the call.

        The delay can be an int or float, expressed in seconds.  It is
        always relative to the current time.

        Each callback will be called exactly once.  If two callbacks
        are scheduled for exactly the same time, it undefined which
        will be called first.

        Any positional arguments after the callback will be passed to
        the callback when it is called.
        """
        timer = self.call_at(self.time() + delay, callback, *args)
        if timer._source_traceback:
            del timer._source_traceback[-1]
        return timer

    def call_at(self, when, callback, *args):
        """Like call_later(), but uses an absolute time.

        Absolute time corresponds to the event loop's time() method.
        """
        if (coroutines.iscoroutine(callback)
        or coroutines.iscoroutinefunction(callback)):
            raise TypeError("coroutines cannot be used with call_at()")
        self._check_closed()
        if self._debug:
            self._check_thread()
        timer = events.TimerHandle(when, callback, args, self)
        if timer._source_traceback:
            del timer._source_traceback[-1]
        heapq.heappush(self._scheduled, timer)
        timer._scheduled = True
        return timer

    def call_soon(self, callback, *args):
        """Arrange for a callback to be called as soon as possible.

        This operates as a FIFO queue: callbacks are called in the
        order in which they are registered.  Each callback will be
        called exactly once.

        Any positional arguments after the callback will be passed to
        the callback when it is called.
        """
        if self._debug:
            self._check_thread()
        handle = self._call_soon(callback, args)
        if handle._source_traceback:
            del handle._source_traceback[-1]
        return handle

    def _call_soon(self, callback, args):
        if (coroutines.iscoroutine(callback)
        or coroutines.iscoroutinefunction(callback)):
            raise TypeError("coroutines cannot be used with call_soon()")
        self._check_closed()
        handle = events.Handle(callback, args, self)
        if handle._source_traceback:
            del handle._source_traceback[-1]
        self._ready.append(handle)
        return handle

    def _check_thread(self):
        """Check that the current thread is the thread running the event loop.

        Non-thread-safe methods of this class make this assumption and will
        likely behave incorrectly when the assumption is violated.

        Should only be called when (self._debug == True).  The caller is
        responsible for checking this condition for performance reasons.
        """
        if self._thread_id is None:
            return
        thread_id = threading.get_ident()
        if thread_id != self._thread_id:
            raise RuntimeError(
                "Non-thread-safe operation invoked on an event loop other "
                "than the current one")

    def call_soon_threadsafe(self, callback, *args):
        """Like call_soon(), but thread-safe."""
        handle = self._call_soon(callback, args)
        if handle._source_traceback:
            del handle._source_traceback[-1]
        self._write_to_self()
        return handle

    def run_in_executor(self, executor, func, *args):
        if (coroutines.iscoroutine(func)
        or coroutines.iscoroutinefunction(func)):
            raise TypeError("coroutines cannot be used with run_in_executor()")
        self._check_closed()
        if isinstance(func, events.Handle):
            assert not args
            assert not isinstance(func, events.TimerHandle)
            if func._cancelled:
                f = futures.Future(loop=self)
                f.set_result(None)
                return f
            func, args = func._callback, func._args
        if executor is None:
            executor = self._default_executor
            if executor is None:
                executor = concurrent.futures.ThreadPoolExecutor(_MAX_WORKERS)
                self._default_executor = executor
        return futures.wrap_future(executor.submit(func, *args), loop=self)

    def set_default_executor(self, executor):
        self._default_executor = executor

    def _getaddrinfo_debug(self, host, port, family, type, proto, flags):
        msg = ["%s:%r" % (host, port)]
        if family:
            msg.append('family=%r' % family)
        if type:
            msg.append('type=%r' % type)
        if proto:
            msg.append('proto=%r' % proto)
        if flags:
            msg.append('flags=%r' % flags)
        msg = ', '.join(msg)
        logger.debug('Get address info %s', msg)

        t0 = self.time()
        addrinfo = socket.getaddrinfo(host, port, family, type, proto, flags)
        dt = self.time() - t0

        msg = ('Getting address info %s took %.3f ms: %r'
               % (msg, dt * 1e3, addrinfo))
        if dt >= self.slow_callback_duration:
            logger.info(msg)
        else:
            logger.debug(msg)
        return addrinfo

    def getaddrinfo(self, host, port, *,
                    family=0, type=0, proto=0, flags=0):
        info = _ipaddr_info(host, port, family, type, proto)
        if info is not None:
            fut = futures.Future(loop=self)
            fut.set_result([info])
            return fut
        elif self._debug:
            return self.run_in_executor(None, self._getaddrinfo_debug,
                                        host, port, family, type, proto, flags)
        else:
            return self.run_in_executor(None, socket.getaddrinfo,
                                        host, port, family, type, proto, flags)

    def getnameinfo(self, sockaddr, flags=0):
        return self.run_in_executor(None, socket.getnameinfo, sockaddr, flags)

    @coroutine
    def create_connection(self, protocol_factory, host=None, port=None, *,
                          ssl=None, family=0, proto=0, flags=0, sock=None,
                          local_addr=None, server_hostname=None):
        """Connect to a TCP server.

        Create a streaming transport connection to a given Internet host and
        port: socket family AF_INET or socket.AF_INET6 depending on host (or
        family if specified), socket type SOCK_STREAM. protocol_factory must be
        a callable returning a protocol instance.

        This method is a coroutine which will try to establish the connection
        in the background.  When successful, the coroutine returns a
        (transport, protocol) pair.
        """
        if server_hostname is not None and not ssl:
            raise ValueError('server_hostname is only meaningful with ssl')

        if server_hostname is None and ssl:
            # Use host as default for server_hostname.  It is an error
            # if host is empty or not set, e.g. when an
            # already-connected socket was passed or when only a port
            # is given.  To avoid this error, you can pass
            # server_hostname='' -- this will bypass the hostname
            # check.  (This also means that if host is a numeric
            # IP/IPv6 address, we will attempt to verify that exact
            # address; this will probably fail, but it is possible to
            # create a certificate for a specific IP address, so we
            # don't judge it here.)
            if not host:
                raise ValueError('You must set server_hostname '
                                 'when using ssl without a host')
            server_hostname = host

        if host is not None or port is not None:
            if sock is not None:
                raise ValueError(
                    'host/port and sock can not be specified at the same time')

            f1 = self.getaddrinfo(
                host, port, family=family,
                type=socket.SOCK_STREAM, proto=proto, flags=flags)
            fs = [f1]
            if local_addr is not None:
                f2 = self.getaddrinfo(
                    *local_addr, family=family,
                    type=socket.SOCK_STREAM, proto=proto, flags=flags)
                fs.append(f2)
            else:
                f2 = None

            yield from tasks.wait(fs, loop=self)

            infos = f1.result()
            if not infos:
                raise OSError('getaddrinfo() returned empty list')
            if f2 is not None:
                laddr_infos = f2.result()
                if not laddr_infos:
                    raise OSError('getaddrinfo() returned empty list')

            exceptions = []
            for family, type, proto, cname, address in infos:
                try:
                    sock = socket.socket(family=family, type=type, proto=proto)
                    sock.setblocking(False)
                    if f2 is not None:
                        for _, _, _, _, laddr in laddr_infos:
                            try:
                                sock.bind(laddr)
                                break
                            except OSError as exc:
                                exc = OSError(
                                    exc.errno, 'error while '
                                    'attempting to bind on address '
                                    '{!r}: {}'.format(
                                        laddr, exc.strerror.lower()))
                                exceptions.append(exc)
                        else:
                            sock.close()
                            sock = None
                            continue
                    if self._debug:
                        logger.debug("connect %r to %r", sock, address)
                    yield from self.sock_connect(sock, address)
                except OSError as exc:
                    if sock is not None:
                        sock.close()
                    exceptions.append(exc)
                except:
                    if sock is not None:
                        sock.close()
                    raise
                else:
                    break
            else:
                if len(exceptions) == 1:
                    raise exceptions[0]
                else:
                    # If they all have the same str(), raise one.
                    model = str(exceptions[0])
                    if all(str(exc) == model for exc in exceptions):
                        raise exceptions[0]
                    # Raise a combined exception so the user can see all
                    # the various error messages.
                    raise OSError('Multiple exceptions: {}'.format(
                        ', '.join(str(exc) for exc in exceptions)))

        elif sock is None:
            raise ValueError(
                'host and port was not specified and no sock specified')

        sock.setblocking(False)

        transport, protocol = yield from self._create_connection_transport(
            sock, protocol_factory, ssl, server_hostname)
        if self._debug:
            # Get the socket from the transport because SSL transport closes
            # the old socket and creates a new SSL socket
            sock = transport.get_extra_info('socket')
            logger.debug("%r connected to %s:%r: (%r, %r)",
                         sock, host, port, transport, protocol)
        return transport, protocol

    @coroutine
    def _create_connection_transport(self, sock, protocol_factory, ssl,
                                     server_hostname):
        protocol = protocol_factory()
        waiter = futures.Future(loop=self)
        if ssl:
            sslcontext = None if isinstance(ssl, bool) else ssl
            transport = self._make_ssl_transport(
                sock, protocol, sslcontext, waiter,
                server_side=False, server_hostname=server_hostname)
        else:
            transport = self._make_socket_transport(sock, protocol, waiter)

        try:
            yield from waiter
        except:
            transport.close()
            raise

        return transport, protocol

    @coroutine
    def create_datagram_endpoint(self, protocol_factory,
                                 local_addr=None, remote_addr=None, *,
                                 family=0, proto=0, flags=0,
                                 reuse_address=None, reuse_port=None,
                                 allow_broadcast=None, sock=None):
        """Create datagram connection."""
        if sock is not None:
            if (local_addr or remote_addr or
                    family or proto or flags or
                    reuse_address or reuse_port or allow_broadcast):
                # show the problematic kwargs in exception msg
                opts = dict(local_addr=local_addr, remote_addr=remote_addr,
                            family=family, proto=proto, flags=flags,
                            reuse_address=reuse_address, reuse_port=reuse_port,
                            allow_broadcast=allow_broadcast)
                problems = ', '.join(
                    '{}={}'.format(k, v) for k, v in opts.items() if v)
                raise ValueError(
                    'socket modifier keyword arguments can not be used '
                    'when sock is specified. ({})'.format(problems))
            sock.setblocking(False)
            r_addr = None
        else:
            if not (local_addr or remote_addr):
                if family == 0:
                    raise ValueError('unexpected address family')
                addr_pairs_info = (((family, proto), (None, None)),)
            else:
                # join address by (family, protocol)
                addr_infos = collections.OrderedDict()
                for idx, addr in ((0, local_addr), (1, remote_addr)):
                    if addr is not None:
                        assert isinstance(addr, tuple) and len(addr) == 2, (
                            '2-tuple is expected')

                        infos = yield from self.getaddrinfo(
                            *addr, family=family, type=socket.SOCK_DGRAM,
                            proto=proto, flags=flags)
                        if not infos:
                            raise OSError('getaddrinfo() returned empty list')

                        for fam, _, pro, _, address in infos:
                            key = (fam, pro)
                            if key not in addr_infos:
                                addr_infos[key] = [None, None]
                            addr_infos[key][idx] = address

                # each addr has to have info for each (family, proto) pair
                addr_pairs_info = [
                    (key, addr_pair) for key, addr_pair in addr_infos.items()
                    if not ((local_addr and addr_pair[0] is None) or
                            (remote_addr and addr_pair[1] is None))]

                if not addr_pairs_info:
                    raise ValueError('can not get address information')

            exceptions = []

            if reuse_address is None:
                reuse_address = os.name == 'posix' and sys.platform != 'cygwin'

            for ((family, proto),
                 (local_address, remote_address)) in addr_pairs_info:
                sock = None
                r_addr = None
                try:
                    sock = socket.socket(
                        family=family, type=socket.SOCK_DGRAM, proto=proto)
                    if reuse_address:
                        sock.setsockopt(
                            socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
                    if reuse_port:
                        if not hasattr(socket, 'SO_REUSEPORT'):
                            raise ValueError(
                                'reuse_port not supported by socket module')
                        else:
                            sock.setsockopt(
                                socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
                    if allow_broadcast:
                        sock.setsockopt(
                            socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
                    sock.setblocking(False)

                    if local_addr:
                        sock.bind(local_address)
                    if remote_addr:
                        yield from self.sock_connect(sock, remote_address)
                        r_addr = remote_address
                except OSError as exc:
                    if sock is not None:
                        sock.close()
                    exceptions.append(exc)
                except:
                    if sock is not None:
                        sock.close()
                    raise
                else:
                    break
            else:
                raise exceptions[0]

        protocol = protocol_factory()
        waiter = futures.Future(loop=self)
        transport = self._make_datagram_transport(
            sock, protocol, r_addr, waiter)
        if self._debug:
            if local_addr:
                logger.info("Datagram endpoint local_addr=%r remote_addr=%r "
                            "created: (%r, %r)",
                            local_addr, remote_addr, transport, protocol)
            else:
                logger.debug("Datagram endpoint remote_addr=%r created: "
                             "(%r, %r)",
                             remote_addr, transport, protocol)

        try:
            yield from waiter
        except:
            transport.close()
            raise

        return transport, protocol

    @coroutine
    def _create_server_getaddrinfo(self, host, port, family, flags):
        infos = yield from self.getaddrinfo(host, port, family=family,
                                            type=socket.SOCK_STREAM,
                                            flags=flags)
        if not infos:
            raise OSError('getaddrinfo({!r}) returned empty list'.format(host))
        return infos

    @coroutine
    def create_server(self, protocol_factory, host=None, port=None,
                      *,
                      family=socket.AF_UNSPEC,
                      flags=socket.AI_PASSIVE,
                      sock=None,
                      backlog=100,
                      ssl=None,
                      reuse_address=None,
                      reuse_port=None):
        """Create a TCP server.

        The host parameter can be a string, in that case the TCP server is bound
        to host and port.

        The host parameter can also be a sequence of strings and in that case
        the TCP server is bound to all hosts of the sequence.

        Return a Server object which can be used to stop the service.

        This method is a coroutine.
        """
        if isinstance(ssl, bool):
            raise TypeError('ssl argument must be an SSLContext or None')
        if host is not None or port is not None:
            if sock is not None:
                raise ValueError(
                    'host/port and sock can not be specified at the same time')

            AF_INET6 = getattr(socket, 'AF_INET6', 0)
            if reuse_address is None:
                reuse_address = os.name == 'posix' and sys.platform != 'cygwin'
            sockets = []
            if host == '':
                hosts = [None]
            elif (isinstance(host, str) or
                  not isinstance(host, collections.Iterable)):
                hosts = [host]
            else:
                hosts = host

            fs = [self._create_server_getaddrinfo(host, port, family=family,
                                                  flags=flags)
                  for host in hosts]
            infos = yield from tasks.gather(*fs, loop=self)
            infos = itertools.chain.from_iterable(infos)

            completed = False
            try:
                for res in infos:
                    af, socktype, proto, canonname, sa = res
                    try:
                        sock = socket.socket(af, socktype, proto)
                    except socket.error:
                        # Assume it's a bad family/type/protocol combination.
                        if self._debug:
                            logger.warning('create_server() failed to create '
                                           'socket.socket(%r, %r, %r)',
                                           af, socktype, proto, exc_info=True)
                        continue
                    sockets.append(sock)
                    if reuse_address:
                        sock.setsockopt(
                            socket.SOL_SOCKET, socket.SO_REUSEADDR, True)
                    if reuse_port:
                        if not hasattr(socket, 'SO_REUSEPORT'):
                            raise ValueError(
                                'reuse_port not supported by socket module')
                        else:
                            sock.setsockopt(
                                socket.SOL_SOCKET, socket.SO_REUSEPORT, True)
                    # Disable IPv4/IPv6 dual stack support (enabled by
                    # default on Linux) which makes a single socket
                    # listen on both address families.
                    if af == AF_INET6 and hasattr(socket, 'IPPROTO_IPV6'):
                        sock.setsockopt(socket.IPPROTO_IPV6,
                                        socket.IPV6_V6ONLY,
                                        True)
                    try:
                        sock.bind(sa)
                    except OSError as err:
                        raise OSError(err.errno, 'error while attempting '
                                      'to bind on address %r: %s'
                                      % (sa, err.strerror.lower()))
                completed = True
            finally:
                if not completed:
                    for sock in sockets:
                        sock.close()
        else:
            if sock is None:
                raise ValueError('Neither host/port nor sock were specified')
            sockets = [sock]

        server = Server(self, sockets)
        for sock in sockets:
            sock.listen(backlog)
            sock.setblocking(False)
            self._start_serving(protocol_factory, sock, ssl, server)
        if self._debug:
            logger.info("%r is serving", server)
        return server

    @coroutine
    def connect_read_pipe(self, protocol_factory, pipe):
        protocol = protocol_factory()
        waiter = futures.Future(loop=self)
        transport = self._make_read_pipe_transport(pipe, protocol, waiter)

        try:
            yield from waiter
        except:
            transport.close()
            raise

        if self._debug:
            logger.debug('Read pipe %r connected: (%r, %r)',
                         pipe.fileno(), transport, protocol)
        return transport, protocol

    @coroutine
    def connect_write_pipe(self, protocol_factory, pipe):
        protocol = protocol_factory()
        waiter = futures.Future(loop=self)
        transport = self._make_write_pipe_transport(pipe, protocol, waiter)

        try:
            yield from waiter
        except:
            transport.close()
            raise

        if self._debug:
            logger.debug('Write pipe %r connected: (%r, %r)',
                         pipe.fileno(), transport, protocol)
        return transport, protocol

    def _log_subprocess(self, msg, stdin, stdout, stderr):
        info = [msg]
        if stdin is not None:
            info.append('stdin=%s' % _format_pipe(stdin))
        if stdout is not None and stderr == subprocess.STDOUT:
            info.append('stdout=stderr=%s' % _format_pipe(stdout))
        else:
            if stdout is not None:
                info.append('stdout=%s' % _format_pipe(stdout))
            if stderr is not None:
                info.append('stderr=%s' % _format_pipe(stderr))
        logger.debug(' '.join(info))

    @coroutine
    def subprocess_shell(self, protocol_factory, cmd, *, stdin=subprocess.PIPE,
                         stdout=subprocess.PIPE, stderr=subprocess.PIPE,
                         universal_newlines=False, shell=True, bufsize=0,
                         **kwargs):
        if not isinstance(cmd, (bytes, str)):
            raise ValueError("cmd must be a string")
        if universal_newlines:
            raise ValueError("universal_newlines must be False")
        if not shell:
            raise ValueError("shell must be True")
        if bufsize != 0:
            raise ValueError("bufsize must be 0")
        protocol = protocol_factory()
        if self._debug:
            # don't log parameters: they may contain sensitive information
            # (password) and may be too long
            debug_log = 'run shell command %r' % cmd
            self._log_subprocess(debug_log, stdin, stdout, stderr)
        transport = yield from self._make_subprocess_transport(
            protocol, cmd, True, stdin, stdout, stderr, bufsize, **kwargs)
        if self._debug:
            logger.info('%s: %r' % (debug_log, transport))
        return transport, protocol

    @coroutine
    def subprocess_exec(self, protocol_factory, program, *args,
                        stdin=subprocess.PIPE, stdout=subprocess.PIPE,
                        stderr=subprocess.PIPE, universal_newlines=False,
                        shell=False, bufsize=0, **kwargs):
        if universal_newlines:
            raise ValueError("universal_newlines must be False")
        if shell:
            raise ValueError("shell must be False")
        if bufsize != 0:
            raise ValueError("bufsize must be 0")
        popen_args = (program,) + args
        for arg in popen_args:
            if not isinstance(arg, (str, bytes)):
                raise TypeError("program arguments must be "
                                "a bytes or text string, not %s"
                                % type(arg).__name__)
        protocol = protocol_factory()
        if self._debug:
            # don't log parameters: they may contain sensitive information
            # (password) and may be too long
            debug_log = 'execute program %r' % program
            self._log_subprocess(debug_log, stdin, stdout, stderr)
        transport = yield from self._make_subprocess_transport(
            protocol, popen_args, False, stdin, stdout, stderr,
            bufsize, **kwargs)
        if self._debug:
            logger.info('%s: %r' % (debug_log, transport))
        return transport, protocol

    def set_exception_handler(self, handler):
        """Set handler as the new event loop exception handler.

        If handler is None, the default exception handler will
        be set.

        If handler is a callable object, it should have a
        signature matching '(loop, context)', where 'loop'
        will be a reference to the active event loop, 'context'
        will be a dict object (see `call_exception_handler()`
        documentation for details about context).
        """
        if handler is not None and not callable(handler):
            raise TypeError('A callable object or None is expected, '
                            'got {!r}'.format(handler))
        self._exception_handler = handler

    def default_exception_handler(self, context):
        """Default exception handler.

        This is called when an exception occurs and no exception
        handler is set, and can be called by a custom exception
        handler that wants to defer to the default behavior.

        The context parameter has the same meaning as in
        `call_exception_handler()`.
        """
        message = context.get('message')
        if not message:
            message = 'Unhandled exception in event loop'

        exception = context.get('exception')
        if exception is not None:
            exc_info = (type(exception), exception, exception.__traceback__)
        else:
            exc_info = False

        if ('source_traceback' not in context
        and self._current_handle is not None
        and self._current_handle._source_traceback):
            context['handle_traceback'] = self._current_handle._source_traceback

        log_lines = [message]
        for key in sorted(context):
            if key in {'message', 'exception'}:
                continue
            value = context[key]
            if key == 'source_traceback':
                tb = ''.join(traceback.format_list(value))
                value = 'Object created at (most recent call last):\n'
                value += tb.rstrip()
            elif key == 'handle_traceback':
                tb = ''.join(traceback.format_list(value))
                value = 'Handle created at (most recent call last):\n'
                value += tb.rstrip()
            else:
                value = repr(value)
            log_lines.append('{}: {}'.format(key, value))

        logger.error('\n'.join(log_lines), exc_info=exc_info)

    def call_exception_handler(self, context):
        """Call the current event loop's exception handler.

        The context argument is a dict containing the following keys:

        - 'message': Error message;
        - 'exception' (optional): Exception object;
        - 'future' (optional): Future instance;
        - 'handle' (optional): Handle instance;
        - 'protocol' (optional): Protocol instance;
        - 'transport' (optional): Transport instance;
        - 'socket' (optional): Socket instance.

        New keys maybe introduced in the future.

        Note: do not overload this method in an event loop subclass.
        For custom exception handling, use the
        `set_exception_handler()` method.
        """
        if self._exception_handler is None:
            try:
                self.default_exception_handler(context)
            except Exception:
                # Second protection layer for unexpected errors
                # in the default implementation, as well as for subclassed
                # event loops with overloaded "default_exception_handler".
                logger.error('Exception in default exception handler',
                             exc_info=True)
        else:
            try:
                self._exception_handler(self, context)
            except Exception as exc:
                # Exception in the user set custom exception handler.
                try:
                    # Let's try default handler.
                    self.default_exception_handler({
                        'message': 'Unhandled error in exception handler',
                        'exception': exc,
                        'context': context,
                    })
                except Exception:
                    # Guard 'default_exception_handler' in case it is
                    # overloaded.
                    logger.error('Exception in default exception handler '
                                 'while handling an unexpected error '
                                 'in custom exception handler',
                                 exc_info=True)

    def _add_callback(self, handle):
        """Add a Handle to _scheduled (TimerHandle) or _ready."""
        assert isinstance(handle, events.Handle), 'A Handle is required here'
        if handle._cancelled:
            return
        assert not isinstance(handle, events.TimerHandle)
        self._ready.append(handle)

    def _add_callback_signalsafe(self, handle):
        """Like _add_callback() but called from a signal handler."""
        self._add_callback(handle)
        self._write_to_self()

    def _timer_handle_cancelled(self, handle):
        """Notification that a TimerHandle has been cancelled."""
        if handle._scheduled:
            self._timer_cancelled_count += 1

    def _run_once(self):
        """Run one full iteration of the event loop.

        This calls all currently ready callbacks, polls for I/O,
        schedules the resulting callbacks, and finally schedules
        'call_later' callbacks.
        """

        sched_count = len(self._scheduled)
        if (sched_count > _MIN_SCHEDULED_TIMER_HANDLES and
            self._timer_cancelled_count / sched_count >
                _MIN_CANCELLED_TIMER_HANDLES_FRACTION):
            # Remove delayed calls that were cancelled if their number
            # is too high
            new_scheduled = []
            for handle in self._scheduled:
                if handle._cancelled:
                    handle._scheduled = False
                else:
                    new_scheduled.append(handle)

            heapq.heapify(new_scheduled)
            self._scheduled = new_scheduled
            self._timer_cancelled_count = 0
        else:
            # Remove delayed calls that were cancelled from head of queue.
            while self._scheduled and self._scheduled[0]._cancelled:
                self._timer_cancelled_count -= 1
                handle = heapq.heappop(self._scheduled)
                handle._scheduled = False

        timeout = None
        if self._ready or self._stopping:
            timeout = 0
        elif self._scheduled:
            # Compute the desired timeout.
            when = self._scheduled[0]._when
            timeout = max(0, when - self.time())

        if self._debug and timeout != 0:
            t0 = self.time()
            event_list = self._selector.select(timeout)
            dt = self.time() - t0
            if dt >= 1.0:
                level = logging.INFO
            else:
                level = logging.DEBUG
            nevent = len(event_list)
            if timeout is None:
                logger.log(level, 'poll took %.3f ms: %s events',
                           dt * 1e3, nevent)
            elif nevent:
                logger.log(level,
                           'poll %.3f ms took %.3f ms: %s events',
                           timeout * 1e3, dt * 1e3, nevent)
            elif dt >= 1.0:
                logger.log(level,
                           'poll %.3f ms took %.3f ms: timeout',
                           timeout * 1e3, dt * 1e3)
        else:
            event_list = self._selector.select(timeout)
        self._process_events(event_list)

        # Handle 'later' callbacks that are ready.
        end_time = self.time() + self._clock_resolution
        while self._scheduled:
            handle = self._scheduled[0]
            if handle._when >= end_time:
                break
            handle = heapq.heappop(self._scheduled)
            handle._scheduled = False
            self._ready.append(handle)

        # This is the only place where callbacks are actually *called*.
        # All other places just add them to ready.
        # Note: We run all currently scheduled callbacks, but not any
        # callbacks scheduled by callbacks run this time around --
        # they will be run the next time (after another I/O poll).
        # Use an idiom that is thread-safe without using locks.
        ntodo = len(self._ready)
        for i in range(ntodo):
            handle = self._ready.popleft()
            if handle._cancelled:
                continue
            if self._debug:
                try:
                    self._current_handle = handle
                    t0 = self.time()
                    handle._run()
                    dt = self.time() - t0
                    if dt >= self.slow_callback_duration:
                        logger.warning('Executing %s took %.3f seconds',
                                       _format_handle(handle), dt)
                finally:
                    self._current_handle = None
            else:
                handle._run()
        handle = None  # Needed to break cycles when an exception occurs.

    def _set_coroutine_wrapper(self, enabled):
        try:
            set_wrapper = sys.set_coroutine_wrapper
            get_wrapper = sys.get_coroutine_wrapper
        except AttributeError:
            return

        enabled = bool(enabled)
        if self._coroutine_wrapper_set == enabled:
            return

        wrapper = coroutines.debug_wrapper
        current_wrapper = get_wrapper()

        if enabled:
            if current_wrapper not in (None, wrapper):
                warnings.warn(
                    "loop.set_debug(True): cannot set debug coroutine "
                    "wrapper; another wrapper is already set %r" %
                    current_wrapper, RuntimeWarning)
            else:
                set_wrapper(wrapper)
                self._coroutine_wrapper_set = True
        else:
            if current_wrapper not in (None, wrapper):
                warnings.warn(
                    "loop.set_debug(False): cannot unset debug coroutine "
                    "wrapper; another wrapper was set %r" %
                    current_wrapper, RuntimeWarning)
            else:
                set_wrapper(None)
                self._coroutine_wrapper_set = False

    def get_debug(self):
        return self._debug

    def set_debug(self, enabled):
        self._debug = enabled

        if self.is_running():
            self._set_coroutine_wrapper(enabled)
lib\asyncio\base_subprocess.py
import collections
import subprocess
import warnings

from . import compat
from . import futures
from . import protocols
from . import transports
from .coroutines import coroutine
from .log import logger


class BaseSubprocessTransport(transports.SubprocessTransport):

    def __init__(self, loop, protocol, args, shell,
                 stdin, stdout, stderr, bufsize,
                 waiter=None, extra=None, **kwargs):
        super().__init__(extra)
        self._closed = False
        self._protocol = protocol
        self._loop = loop
        self._proc = None
        self._pid = None
        self._returncode = None
        self._exit_waiters = []
        self._pending_calls = collections.deque()
        self._pipes = {}
        self._finished = False

        if stdin == subprocess.PIPE:
            self._pipes[0] = None
        if stdout == subprocess.PIPE:
            self._pipes[1] = None
        if stderr == subprocess.PIPE:
            self._pipes[2] = None

        # Create the child process: set the _proc attribute
        try:
            self._start(args=args, shell=shell, stdin=stdin, stdout=stdout,
                        stderr=stderr, bufsize=bufsize, **kwargs)
        except:
            self.close()
            raise

        self._pid = self._proc.pid
        self._extra['subprocess'] = self._proc

        if self._loop.get_debug():
            if isinstance(args, (bytes, str)):
                program = args
            else:
                program = args[0]
            logger.debug('process %r created: pid %s',
                         program, self._pid)

        self._loop.create_task(self._connect_pipes(waiter))

    def __repr__(self):
        info = [self.__class__.__name__]
        if self._closed:
            info.append('closed')
        if self._pid is not None:
            info.append('pid=%s' % self._pid)
        if self._returncode is not None:
            info.append('returncode=%s' % self._returncode)
        elif self._pid is not None:
            info.append('running')
        else:
            info.append('not started')

        stdin = self._pipes.get(0)
        if stdin is not None:
            info.append('stdin=%s' % stdin.pipe)

        stdout = self._pipes.get(1)
        stderr = self._pipes.get(2)
        if stdout is not None and stderr is stdout:
            info.append('stdout=stderr=%s' % stdout.pipe)
        else:
            if stdout is not None:
                info.append('stdout=%s' % stdout.pipe)
            if stderr is not None:
                info.append('stderr=%s' % stderr.pipe)

        return '<%s>' % ' '.join(info)

    def _start(self, args, shell, stdin, stdout, stderr, bufsize, **kwargs):
        raise NotImplementedError

    def is_closing(self):
        return self._closed

    def close(self):
        if self._closed:
            return
        self._closed = True

        for proto in self._pipes.values():
            if proto is None:
                continue
            proto.pipe.close()

        if (self._proc is not None
        # the child process finished?
        and self._returncode is None
        # the child process finished but the transport was not notified yet?
        and self._proc.poll() is None
        ):
            if self._loop.get_debug():
                logger.warning('Close running child process: kill %r', self)

            try:
                self._proc.kill()
            except ProcessLookupError:
                pass

            # Don't clear the _proc reference yet: _post_init() may still run

    # On Python 3.3 and older, objects with a destructor part of a reference
    # cycle are never destroyed. It's not more the case on Python 3.4 thanks
    # to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if not self._closed:
                warnings.warn("unclosed transport %r" % self, ResourceWarning)
                self.close()

    def get_pid(self):
        return self._pid

    def get_returncode(self):
        return self._returncode

    def get_pipe_transport(self, fd):
        if fd in self._pipes:
            return self._pipes[fd].pipe
        else:
            return None

    def _check_proc(self):
        if self._proc is None:
            raise ProcessLookupError()

    def send_signal(self, signal):
        self._check_proc()
        self._proc.send_signal(signal)

    def terminate(self):
        self._check_proc()
        self._proc.terminate()

    def kill(self):
        self._check_proc()
        self._proc.kill()

    @coroutine
    def _connect_pipes(self, waiter):
        try:
            proc = self._proc
            loop = self._loop

            if proc.stdin is not None:
                _, pipe = yield from loop.connect_write_pipe(
                    lambda: WriteSubprocessPipeProto(self, 0),
                    proc.stdin)
                self._pipes[0] = pipe

            if proc.stdout is not None:
                _, pipe = yield from loop.connect_read_pipe(
                    lambda: ReadSubprocessPipeProto(self, 1),
                    proc.stdout)
                self._pipes[1] = pipe

            if proc.stderr is not None:
                _, pipe = yield from loop.connect_read_pipe(
                    lambda: ReadSubprocessPipeProto(self, 2),
                    proc.stderr)
                self._pipes[2] = pipe

            assert self._pending_calls is not None

            loop.call_soon(self._protocol.connection_made, self)
            for callback, data in self._pending_calls:
                loop.call_soon(callback, *data)
            self._pending_calls = None
        except Exception as exc:
            if waiter is not None and not waiter.cancelled():
                waiter.set_exception(exc)
        else:
            if waiter is not None and not waiter.cancelled():
                waiter.set_result(None)

    def _call(self, cb, *data):
        if self._pending_calls is not None:
            self._pending_calls.append((cb, data))
        else:
            self._loop.call_soon(cb, *data)

    def _pipe_connection_lost(self, fd, exc):
        self._call(self._protocol.pipe_connection_lost, fd, exc)
        self._try_finish()

    def _pipe_data_received(self, fd, data):
        self._call(self._protocol.pipe_data_received, fd, data)

    def _process_exited(self, returncode):
        assert returncode is not None, returncode
        assert self._returncode is None, self._returncode
        if self._loop.get_debug():
            logger.info('%r exited with return code %r',
                        self, returncode)
        self._returncode = returncode
        self._call(self._protocol.process_exited)
        self._try_finish()

        # wake up futures waiting for wait()
        for waiter in self._exit_waiters:
            if not waiter.cancelled():
                waiter.set_result(returncode)
        self._exit_waiters = None

    @coroutine
    def _wait(self):
        """Wait until the process exit and return the process return code.

        This method is a coroutine."""
        if self._returncode is not None:
            return self._returncode

        waiter = futures.Future(loop=self._loop)
        self._exit_waiters.append(waiter)
        return (yield from waiter)

    def _try_finish(self):
        assert not self._finished
        if self._returncode is None:
            return
        if all(p is not None and p.disconnected
               for p in self._pipes.values()):
            self._finished = True
            self._call(self._call_connection_lost, None)

    def _call_connection_lost(self, exc):
        try:
            self._protocol.connection_lost(exc)
        finally:
            self._loop = None
            self._proc = None
            self._protocol = None


class WriteSubprocessPipeProto(protocols.BaseProtocol):

    def __init__(self, proc, fd):
        self.proc = proc
        self.fd = fd
        self.pipe = None
        self.disconnected = False

    def connection_made(self, transport):
        self.pipe = transport

    def __repr__(self):
        return ('<%s fd=%s pipe=%r>'
                % (self.__class__.__name__, self.fd, self.pipe))

    def connection_lost(self, exc):
        self.disconnected = True
        self.proc._pipe_connection_lost(self.fd, exc)
        self.proc = None

    def pause_writing(self):
        self.proc._protocol.pause_writing()

    def resume_writing(self):
        self.proc._protocol.resume_writing()


class ReadSubprocessPipeProto(WriteSubprocessPipeProto,
                              protocols.Protocol):

    def data_received(self, data):
        self.proc._pipe_data_received(self.fd, data)
lib\asyncio\compat.py
"""Compatibility helpers for the different Python versions."""

import sys

PY34 = sys.version_info >= (3, 4)
PY35 = sys.version_info >= (3, 5)


def flatten_list_bytes(list_of_data):
    """Concatenate a sequence of bytes-like objects."""
    if not PY34:
        # On Python 3.3 and older, bytes.join() doesn't handle
        # memoryview.
        list_of_data = (
            bytes(data) if isinstance(data, memoryview) else data
            for data in list_of_data)
    return b''.join(list_of_data)
lib\asyncio\constants.py
"""Constants."""

# After the connection is lost, log warnings after this many write()s.
LOG_THRESHOLD_FOR_CONNLOST_WRITES = 5

# Seconds to wait before retrying accept().
ACCEPT_RETRY_DELAY = 1
lib\asyncio\coroutines.py
__all__ = ['coroutine',
           'iscoroutinefunction', 'iscoroutine']

import functools
import inspect
import opcode
import os
import sys
import traceback
import types

from . import compat
from . import events
from . import futures
from .log import logger


# Opcode of "yield from" instruction
_YIELD_FROM = opcode.opmap['YIELD_FROM']

# If you set _DEBUG to true, @coroutine will wrap the resulting
# generator objects in a CoroWrapper instance (defined below).  That
# instance will log a message when the generator is never iterated
# over, which may happen when you forget to use "yield from" with a
# coroutine call.  Note that the value of the _DEBUG flag is taken
# when the decorator is used, so to be of any use it must be set
# before you define your coroutines.  A downside of using this feature
# is that tracebacks show entries for the CoroWrapper.__next__ method
# when _DEBUG is true.
_DEBUG = (not sys.flags.ignore_environment and
          bool(os.environ.get('PYTHONASYNCIODEBUG')))


try:
    _types_coroutine = types.coroutine
except AttributeError:
    _types_coroutine = None

try:
    _inspect_iscoroutinefunction = inspect.iscoroutinefunction
except AttributeError:
    _inspect_iscoroutinefunction = lambda func: False

try:
    from collections.abc import Coroutine as _CoroutineABC, \
                                Awaitable as _AwaitableABC
except ImportError:
    _CoroutineABC = _AwaitableABC = None


# Check for CPython issue #21209
def has_yield_from_bug():
    class MyGen:
        def __init__(self):
            self.send_args = None
        def __iter__(self):
            return self
        def __next__(self):
            return 42
        def send(self, *what):
            self.send_args = what
            return None
    def yield_from_gen(gen):
        yield from gen
    value = (1, 2, 3)
    gen = MyGen()
    coro = yield_from_gen(gen)
    next(coro)
    coro.send(value)
    return gen.send_args != (value,)
_YIELD_FROM_BUG = has_yield_from_bug()
del has_yield_from_bug


def debug_wrapper(gen):
    # This function is called from 'sys.set_coroutine_wrapper'.
    # We only wrap here coroutines defined via 'async def' syntax.
    # Generator-based coroutines are wrapped in @coroutine
    # decorator.
    return CoroWrapper(gen, None)


class CoroWrapper:
    # Wrapper for coroutine object in _DEBUG mode.

    def __init__(self, gen, func=None):
        assert inspect.isgenerator(gen) or inspect.iscoroutine(gen), gen
        self.gen = gen
        self.func = func  # Used to unwrap @coroutine decorator
        self._source_traceback = traceback.extract_stack(sys._getframe(1))
        self.__name__ = getattr(gen, '__name__', None)
        self.__qualname__ = getattr(gen, '__qualname__', None)

    def __repr__(self):
        coro_repr = _format_coroutine(self)
        if self._source_traceback:
            frame = self._source_traceback[-1]
            coro_repr += ', created at %s:%s' % (frame[0], frame[1])
        return '<%s %s>' % (self.__class__.__name__, coro_repr)

    def __iter__(self):
        return self

    def __next__(self):
        return self.gen.send(None)

    if _YIELD_FROM_BUG:
        # For for CPython issue #21209: using "yield from" and a custom
        # generator, generator.send(tuple) unpacks the tuple instead of passing
        # the tuple unchanged. Check if the caller is a generator using "yield
        # from" to decide if the parameter should be unpacked or not.
        def send(self, *value):
            frame = sys._getframe()
            caller = frame.f_back
            assert caller.f_lasti >= 0
            if caller.f_code.co_code[caller.f_lasti] != _YIELD_FROM:
                value = value[0]
            return self.gen.send(value)
    else:
        def send(self, value):
            return self.gen.send(value)

    def throw(self, exc):
        return self.gen.throw(exc)

    def close(self):
        return self.gen.close()

    @property
    def gi_frame(self):
        return self.gen.gi_frame

    @property
    def gi_running(self):
        return self.gen.gi_running

    @property
    def gi_code(self):
        return self.gen.gi_code

    if compat.PY35:

        def __await__(self):
            cr_await = getattr(self.gen, 'cr_await', None)
            if cr_await is not None:
                raise RuntimeError(
                    "Cannot await on coroutine {!r} while it's "
                    "awaiting for {!r}".format(self.gen, cr_await))
            return self

        @property
        def gi_yieldfrom(self):
            return self.gen.gi_yieldfrom

        @property
        def cr_await(self):
            return self.gen.cr_await

        @property
        def cr_running(self):
            return self.gen.cr_running

        @property
        def cr_code(self):
            return self.gen.cr_code

        @property
        def cr_frame(self):
            return self.gen.cr_frame

    def __del__(self):
        # Be careful accessing self.gen.frame -- self.gen might not exist.
        gen = getattr(self, 'gen', None)
        frame = getattr(gen, 'gi_frame', None)
        if frame is None:
            frame = getattr(gen, 'cr_frame', None)
        if frame is not None and frame.f_lasti == -1:
            msg = '%r was never yielded from' % self
            tb = getattr(self, '_source_traceback', ())
            if tb:
                tb = ''.join(traceback.format_list(tb))
                msg += ('\nCoroutine object created at '
                        '(most recent call last):\n')
                msg += tb.rstrip()
            logger.error(msg)


def coroutine(func):
    """Decorator to mark coroutines.

    If the coroutine is not yielded from before it is destroyed,
    an error message is logged.
    """
    if _inspect_iscoroutinefunction(func):
        # In Python 3.5 that's all we need to do for coroutines
        # defiend with "async def".
        # Wrapping in CoroWrapper will happen via
        # 'sys.set_coroutine_wrapper' function.
        return func

    if inspect.isgeneratorfunction(func):
        coro = func
    else:
        @functools.wraps(func)
        def coro(*args, **kw):
            res = func(*args, **kw)
            if isinstance(res, futures.Future) or inspect.isgenerator(res):
                res = yield from res
            elif _AwaitableABC is not None:
                # If 'func' returns an Awaitable (new in 3.5) we
                # want to run it.
                try:
                    await_meth = res.__await__
                except AttributeError:
                    pass
                else:
                    if isinstance(res, _AwaitableABC):
                        res = yield from await_meth()
            return res

    if not _DEBUG:
        if _types_coroutine is None:
            wrapper = coro
        else:
            wrapper = _types_coroutine(coro)
    else:
        @functools.wraps(func)
        def wrapper(*args, **kwds):
            w = CoroWrapper(coro(*args, **kwds), func=func)
            if w._source_traceback:
                del w._source_traceback[-1]
            # Python < 3.5 does not implement __qualname__
            # on generator objects, so we set it manually.
            # We use getattr as some callables (such as
            # functools.partial may lack __qualname__).
            w.__name__ = getattr(func, '__name__', None)
            w.__qualname__ = getattr(func, '__qualname__', None)
            return w

    wrapper._is_coroutine = True  # For iscoroutinefunction().
    return wrapper


def iscoroutinefunction(func):
    """Return True if func is a decorated coroutine function."""
    return (getattr(func, '_is_coroutine', False) or
            _inspect_iscoroutinefunction(func))


_COROUTINE_TYPES = (types.GeneratorType, CoroWrapper)
if _CoroutineABC is not None:
    _COROUTINE_TYPES += (_CoroutineABC,)


def iscoroutine(obj):
    """Return True if obj is a coroutine object."""
    return isinstance(obj, _COROUTINE_TYPES)


def _format_coroutine(coro):
    assert iscoroutine(coro)

    coro_name = None
    if isinstance(coro, CoroWrapper):
        func = coro.func
        coro_name = coro.__qualname__
        if coro_name is not None:
            coro_name = '{}()'.format(coro_name)
    else:
        func = coro

    if coro_name is None:
        coro_name = events._format_callback(func, ())

    try:
        coro_code = coro.gi_code
    except AttributeError:
        coro_code = coro.cr_code

    try:
        coro_frame = coro.gi_frame
    except AttributeError:
        coro_frame = coro.cr_frame

    filename = coro_code.co_filename
    lineno = 0
    if (isinstance(coro, CoroWrapper) and
            not inspect.isgeneratorfunction(coro.func) and
            coro.func is not None):
        source = events._get_function_source(coro.func)
        if source is not None:
            filename, lineno = source
        if coro_frame is None:
            coro_repr = ('%s done, defined at %s:%s'
                         % (coro_name, filename, lineno))
        else:
            coro_repr = ('%s running, defined at %s:%s'
                         % (coro_name, filename, lineno))
    elif coro_frame is not None:
        lineno = coro_frame.f_lineno
        coro_repr = ('%s running at %s:%s'
                     % (coro_name, filename, lineno))
    else:
        lineno = coro_code.co_firstlineno
        coro_repr = ('%s done, defined at %s:%s'
                     % (coro_name, filename, lineno))

    return coro_repr
lib\asyncio\events.py
"""Event loop and event loop policy."""

__all__ = ['AbstractEventLoopPolicy',
           'AbstractEventLoop', 'AbstractServer',
           'Handle', 'TimerHandle',
           'get_event_loop_policy', 'set_event_loop_policy',
           'get_event_loop', 'set_event_loop', 'new_event_loop',
           'get_child_watcher', 'set_child_watcher',
           ]

import functools
import inspect
import reprlib
import socket
import subprocess
import sys
import threading
import traceback

from asyncio import compat


def _get_function_source(func):
    if compat.PY34:
        func = inspect.unwrap(func)
    elif hasattr(func, '__wrapped__'):
        func = func.__wrapped__
    if inspect.isfunction(func):
        code = func.__code__
        return (code.co_filename, code.co_firstlineno)
    if isinstance(func, functools.partial):
        return _get_function_source(func.func)
    if compat.PY34 and isinstance(func, functools.partialmethod):
        return _get_function_source(func.func)
    return None


def _format_args(args):
    """Format function arguments.

    Special case for a single parameter: ('hello',) is formatted as ('hello').
    """
    # use reprlib to limit the length of the output
    args_repr = reprlib.repr(args)
    if len(args) == 1 and args_repr.endswith(',)'):
        args_repr = args_repr[:-2] + ')'
    return args_repr


def _format_callback(func, args, suffix=''):
    if isinstance(func, functools.partial):
        if args is not None:
            suffix = _format_args(args) + suffix
        return _format_callback(func.func, func.args, suffix)

    if hasattr(func, '__qualname__'):
        func_repr = getattr(func, '__qualname__')
    elif hasattr(func, '__name__'):
        func_repr = getattr(func, '__name__')
    else:
        func_repr = repr(func)

    if args is not None:
        func_repr += _format_args(args)
    if suffix:
        func_repr += suffix
    return func_repr

def _format_callback_source(func, args):
    func_repr = _format_callback(func, args)
    source = _get_function_source(func)
    if source:
        func_repr += ' at %s:%s' % source
    return func_repr


class Handle:
    """Object returned by callback registration methods."""

    __slots__ = ('_callback', '_args', '_cancelled', '_loop',
                 '_source_traceback', '_repr', '__weakref__')

    def __init__(self, callback, args, loop):
        assert not isinstance(callback, Handle), 'A Handle is not a callback'
        self._loop = loop
        self._callback = callback
        self._args = args
        self._cancelled = False
        self._repr = None
        if self._loop.get_debug():
            self._source_traceback = traceback.extract_stack(sys._getframe(1))
        else:
            self._source_traceback = None

    def _repr_info(self):
        info = [self.__class__.__name__]
        if self._cancelled:
            info.append('cancelled')
        if self._callback is not None:
            info.append(_format_callback_source(self._callback, self._args))
        if self._source_traceback:
            frame = self._source_traceback[-1]
            info.append('created at %s:%s' % (frame[0], frame[1]))
        return info

    def __repr__(self):
        if self._repr is not None:
            return self._repr
        info = self._repr_info()
        return '<%s>' % ' '.join(info)

    def cancel(self):
        if not self._cancelled:
            self._cancelled = True
            if self._loop.get_debug():
                # Keep a representation in debug mode to keep callback and
                # parameters. For example, to log the warning
                # "Executing <Handle...> took 2.5 second"
                self._repr = repr(self)
            self._callback = None
            self._args = None

    def _run(self):
        try:
            self._callback(*self._args)
        except Exception as exc:
            cb = _format_callback_source(self._callback, self._args)
            msg = 'Exception in callback {}'.format(cb)
            context = {
                'message': msg,
                'exception': exc,
                'handle': self,
            }
            if self._source_traceback:
                context['source_traceback'] = self._source_traceback
            self._loop.call_exception_handler(context)
        self = None  # Needed to break cycles when an exception occurs.


class TimerHandle(Handle):
    """Object returned by timed callback registration methods."""

    __slots__ = ['_scheduled', '_when']

    def __init__(self, when, callback, args, loop):
        assert when is not None
        super().__init__(callback, args, loop)
        if self._source_traceback:
            del self._source_traceback[-1]
        self._when = when
        self._scheduled = False

    def _repr_info(self):
        info = super()._repr_info()
        pos = 2 if self._cancelled else 1
        info.insert(pos, 'when=%s' % self._when)
        return info

    def __hash__(self):
        return hash(self._when)

    def __lt__(self, other):
        return self._when < other._when

    def __le__(self, other):
        if self._when < other._when:
            return True
        return self.__eq__(other)

    def __gt__(self, other):
        return self._when > other._when

    def __ge__(self, other):
        if self._when > other._when:
            return True
        return self.__eq__(other)

    def __eq__(self, other):
        if isinstance(other, TimerHandle):
            return (self._when == other._when and
                    self._callback == other._callback and
                    self._args == other._args and
                    self._cancelled == other._cancelled)
        return NotImplemented

    def __ne__(self, other):
        equal = self.__eq__(other)
        return NotImplemented if equal is NotImplemented else not equal

    def cancel(self):
        if not self._cancelled:
            self._loop._timer_handle_cancelled(self)
        super().cancel()


class AbstractServer:
    """Abstract server returned by create_server()."""

    def close(self):
        """Stop serving.  This leaves existing connections open."""
        return NotImplemented

    def wait_closed(self):
        """Coroutine to wait until service is closed."""
        return NotImplemented


class AbstractEventLoop:
    """Abstract event loop."""

    # Running and stopping the event loop.

    def run_forever(self):
        """Run the event loop until stop() is called."""
        raise NotImplementedError

    def run_until_complete(self, future):
        """Run the event loop until a Future is done.

        Return the Future's result, or raise its exception.
        """
        raise NotImplementedError

    def stop(self):
        """Stop the event loop as soon as reasonable.

        Exactly how soon that is may depend on the implementation, but
        no more I/O callbacks should be scheduled.
        """
        raise NotImplementedError

    def is_running(self):
        """Return whether the event loop is currently running."""
        raise NotImplementedError

    def is_closed(self):
        """Returns True if the event loop was closed."""
        raise NotImplementedError

    def close(self):
        """Close the loop.

        The loop should not be running.

        This is idempotent and irreversible.

        No other methods should be called after this one.
        """
        raise NotImplementedError

    # Methods scheduling callbacks.  All these return Handles.

    def _timer_handle_cancelled(self, handle):
        """Notification that a TimerHandle has been cancelled."""
        raise NotImplementedError

    def call_soon(self, callback, *args):
        return self.call_later(0, callback, *args)

    def call_later(self, delay, callback, *args):
        raise NotImplementedError

    def call_at(self, when, callback, *args):
        raise NotImplementedError

    def time(self):
        raise NotImplementedError

    # Method scheduling a coroutine object: create a task.

    def create_task(self, coro):
        raise NotImplementedError

    # Methods for interacting with threads.

    def call_soon_threadsafe(self, callback, *args):
        raise NotImplementedError

    def run_in_executor(self, executor, func, *args):
        raise NotImplementedError

    def set_default_executor(self, executor):
        raise NotImplementedError

    # Network I/O methods returning Futures.

    def getaddrinfo(self, host, port, *, family=0, type=0, proto=0, flags=0):
        raise NotImplementedError

    def getnameinfo(self, sockaddr, flags=0):
        raise NotImplementedError

    def create_connection(self, protocol_factory, host=None, port=None, *,
                          ssl=None, family=0, proto=0, flags=0, sock=None,
                          local_addr=None, server_hostname=None):
        raise NotImplementedError

    def create_server(self, protocol_factory, host=None, port=None, *,
                      family=socket.AF_UNSPEC, flags=socket.AI_PASSIVE,
                      sock=None, backlog=100, ssl=None, reuse_address=None,
                      reuse_port=None):
        """A coroutine which creates a TCP server bound to host and port.

        The return value is a Server object which can be used to stop
        the service.

        If host is an empty string or None all interfaces are assumed
        and a list of multiple sockets will be returned (most likely
        one for IPv4 and another one for IPv6). The host parameter can also be a
        sequence (e.g. list) of hosts to bind to.

        family can be set to either AF_INET or AF_INET6 to force the
        socket to use IPv4 or IPv6. If not set it will be determined
        from host (defaults to AF_UNSPEC).

        flags is a bitmask for getaddrinfo().

        sock can optionally be specified in order to use a preexisting
        socket object.

        backlog is the maximum number of queued connections passed to
        listen() (defaults to 100).

        ssl can be set to an SSLContext to enable SSL over the
        accepted connections.

        reuse_address tells the kernel to reuse a local socket in
        TIME_WAIT state, without waiting for its natural timeout to
        expire. If not specified will automatically be set to True on
        UNIX.

        reuse_port tells the kernel to allow this endpoint to be bound to
        the same port as other existing endpoints are bound to, so long as
        they all set this flag when being created. This option is not
        supported on Windows.
        """
        raise NotImplementedError

    def create_unix_connection(self, protocol_factory, path, *,
                               ssl=None, sock=None,
                               server_hostname=None):
        raise NotImplementedError

    def create_unix_server(self, protocol_factory, path, *,
                           sock=None, backlog=100, ssl=None):
        """A coroutine which creates a UNIX Domain Socket server.

        The return value is a Server object, which can be used to stop
        the service.

        path is a str, representing a file systsem path to bind the
        server socket to.

        sock can optionally be specified in order to use a preexisting
        socket object.

        backlog is the maximum number of queued connections passed to
        listen() (defaults to 100).

        ssl can be set to an SSLContext to enable SSL over the
        accepted connections.
        """
        raise NotImplementedError

    def create_datagram_endpoint(self, protocol_factory,
                                 local_addr=None, remote_addr=None, *,
                                 family=0, proto=0, flags=0,
                                 reuse_address=None, reuse_port=None,
                                 allow_broadcast=None, sock=None):
        """A coroutine which creates a datagram endpoint.

        This method will try to establish the endpoint in the background.
        When successful, the coroutine returns a (transport, protocol) pair.

        protocol_factory must be a callable returning a protocol instance.

        socket family AF_INET or socket.AF_INET6 depending on host (or
        family if specified), socket type SOCK_DGRAM.

        reuse_address tells the kernel to reuse a local socket in
        TIME_WAIT state, without waiting for its natural timeout to
        expire. If not specified it will automatically be set to True on
        UNIX.

        reuse_port tells the kernel to allow this endpoint to be bound to
        the same port as other existing endpoints are bound to, so long as
        they all set this flag when being created. This option is not
        supported on Windows and some UNIX's. If the
        :py:data:`~socket.SO_REUSEPORT` constant is not defined then this
        capability is unsupported.

        allow_broadcast tells the kernel to allow this endpoint to send
        messages to the broadcast address.

        sock can optionally be specified in order to use a preexisting
        socket object.
        """
        raise NotImplementedError

    # Pipes and subprocesses.

    def connect_read_pipe(self, protocol_factory, pipe):
        """Register read pipe in event loop. Set the pipe to non-blocking mode.

        protocol_factory should instantiate object with Protocol interface.
        pipe is a file-like object.
        Return pair (transport, protocol), where transport supports the
        ReadTransport interface."""
        # The reason to accept file-like object instead of just file descriptor
        # is: we need to own pipe and close it at transport finishing
        # Can got complicated errors if pass f.fileno(),
        # close fd in pipe transport then close f and vise versa.
        raise NotImplementedError

    def connect_write_pipe(self, protocol_factory, pipe):
        """Register write pipe in event loop.

        protocol_factory should instantiate object with BaseProtocol interface.
        Pipe is file-like object already switched to nonblocking.
        Return pair (transport, protocol), where transport support
        WriteTransport interface."""
        # The reason to accept file-like object instead of just file descriptor
        # is: we need to own pipe and close it at transport finishing
        # Can got complicated errors if pass f.fileno(),
        # close fd in pipe transport then close f and vise versa.
        raise NotImplementedError

    def subprocess_shell(self, protocol_factory, cmd, *, stdin=subprocess.PIPE,
                         stdout=subprocess.PIPE, stderr=subprocess.PIPE,
                         **kwargs):
        raise NotImplementedError

    def subprocess_exec(self, protocol_factory, *args, stdin=subprocess.PIPE,
                        stdout=subprocess.PIPE, stderr=subprocess.PIPE,
                        **kwargs):
        raise NotImplementedError

    # Ready-based callback registration methods.
    # The add_*() methods return None.
    # The remove_*() methods return True if something was removed,
    # False if there was nothing to delete.

    def add_reader(self, fd, callback, *args):
        raise NotImplementedError

    def remove_reader(self, fd):
        raise NotImplementedError

    def add_writer(self, fd, callback, *args):
        raise NotImplementedError

    def remove_writer(self, fd):
        raise NotImplementedError

    # Completion based I/O methods returning Futures.

    def sock_recv(self, sock, nbytes):
        raise NotImplementedError

    def sock_sendall(self, sock, data):
        raise NotImplementedError

    def sock_connect(self, sock, address):
        raise NotImplementedError

    def sock_accept(self, sock):
        raise NotImplementedError

    # Signal handling.

    def add_signal_handler(self, sig, callback, *args):
        raise NotImplementedError

    def remove_signal_handler(self, sig):
        raise NotImplementedError

    # Task factory.

    def set_task_factory(self, factory):
        raise NotImplementedError

    def get_task_factory(self):
        raise NotImplementedError

    # Error handlers.

    def set_exception_handler(self, handler):
        raise NotImplementedError

    def default_exception_handler(self, context):
        raise NotImplementedError

    def call_exception_handler(self, context):
        raise NotImplementedError

    # Debug flag management.

    def get_debug(self):
        raise NotImplementedError

    def set_debug(self, enabled):
        raise NotImplementedError


class AbstractEventLoopPolicy:
    """Abstract policy for accessing the event loop."""

    def get_event_loop(self):
        """Get the event loop for the current context.

        Returns an event loop object implementing the BaseEventLoop interface,
        or raises an exception in case no event loop has been set for the
        current context and the current policy does not specify to create one.

        It should never return None."""
        raise NotImplementedError

    def set_event_loop(self, loop):
        """Set the event loop for the current context to loop."""
        raise NotImplementedError

    def new_event_loop(self):
        """Create and return a new event loop object according to this
        policy's rules. If there's need to set this loop as the event loop for
        the current context, set_event_loop must be called explicitly."""
        raise NotImplementedError

    # Child processes handling (Unix only).

    def get_child_watcher(self):
        "Get the watcher for child processes."
        raise NotImplementedError

    def set_child_watcher(self, watcher):
        """Set the watcher for child processes."""
        raise NotImplementedError


class BaseDefaultEventLoopPolicy(AbstractEventLoopPolicy):
    """Default policy implementation for accessing the event loop.

    In this policy, each thread has its own event loop.  However, we
    only automatically create an event loop by default for the main
    thread; other threads by default have no event loop.

    Other policies may have different rules (e.g. a single global
    event loop, or automatically creating an event loop per thread, or
    using some other notion of context to which an event loop is
    associated).
    """

    _loop_factory = None

    class _Local(threading.local):
        _loop = None
        _set_called = False

    def __init__(self):
        self._local = self._Local()

    def get_event_loop(self):
        """Get the event loop.

        This may be None or an instance of EventLoop.
        """
        if (self._local._loop is None and
            not self._local._set_called and
            isinstance(threading.current_thread(), threading._MainThread)):
            self.set_event_loop(self.new_event_loop())
        if self._local._loop is None:
            raise RuntimeError('There is no current event loop in thread %r.'
                               % threading.current_thread().name)
        return self._local._loop

    def set_event_loop(self, loop):
        """Set the event loop."""
        self._local._set_called = True
        assert loop is None or isinstance(loop, AbstractEventLoop)
        self._local._loop = loop

    def new_event_loop(self):
        """Create a new event loop.

        You must call set_event_loop() to make this the current event
        loop.
        """
        return self._loop_factory()


# Event loop policy.  The policy itself is always global, even if the
# policy's rules say that there is an event loop per thread (or other
# notion of context).  The default policy is installed by the first
# call to get_event_loop_policy().
_event_loop_policy = None

# Lock for protecting the on-the-fly creation of the event loop policy.
_lock = threading.Lock()


def _init_event_loop_policy():
    global _event_loop_policy
    with _lock:
        if _event_loop_policy is None:  # pragma: no branch
            from . import DefaultEventLoopPolicy
            _event_loop_policy = DefaultEventLoopPolicy()


def get_event_loop_policy():
    """Get the current event loop policy."""
    if _event_loop_policy is None:
        _init_event_loop_policy()
    return _event_loop_policy


def set_event_loop_policy(policy):
    """Set the current event loop policy.

    If policy is None, the default policy is restored."""
    global _event_loop_policy
    assert policy is None or isinstance(policy, AbstractEventLoopPolicy)
    _event_loop_policy = policy


def get_event_loop():
    """Equivalent to calling get_event_loop_policy().get_event_loop()."""
    return get_event_loop_policy().get_event_loop()


def set_event_loop(loop):
    """Equivalent to calling get_event_loop_policy().set_event_loop(loop)."""
    get_event_loop_policy().set_event_loop(loop)


def new_event_loop():
    """Equivalent to calling get_event_loop_policy().new_event_loop()."""
    return get_event_loop_policy().new_event_loop()


def get_child_watcher():
    """Equivalent to calling get_event_loop_policy().get_child_watcher()."""
    return get_event_loop_policy().get_child_watcher()


def set_child_watcher(watcher):
    """Equivalent to calling
    get_event_loop_policy().set_child_watcher(watcher)."""
    return get_event_loop_policy().set_child_watcher(watcher)
lib\asyncio\futures.py
"""A Future class similar to the one in PEP 3148."""

__all__ = ['CancelledError', 'TimeoutError',
           'InvalidStateError',
           'Future', 'wrap_future',
           ]

import concurrent.futures._base
import logging
import reprlib
import sys
import traceback

from . import compat
from . import events

# States for Future.
_PENDING = 'PENDING'
_CANCELLED = 'CANCELLED'
_FINISHED = 'FINISHED'

Error = concurrent.futures._base.Error
CancelledError = concurrent.futures.CancelledError
TimeoutError = concurrent.futures.TimeoutError

STACK_DEBUG = logging.DEBUG - 1  # heavy-duty debugging


class InvalidStateError(Error):
    """The operation is not allowed in this state."""


class _TracebackLogger:
    """Helper to log a traceback upon destruction if not cleared.

    This solves a nasty problem with Futures and Tasks that have an
    exception set: if nobody asks for the exception, the exception is
    never logged.  This violates the Zen of Python: 'Errors should
    never pass silently.  Unless explicitly silenced.'

    However, we don't want to log the exception as soon as
    set_exception() is called: if the calling code is written
    properly, it will get the exception and handle it properly.  But
    we *do* want to log it if result() or exception() was never called
    -- otherwise developers waste a lot of time wondering why their
    buggy code fails silently.

    An earlier attempt added a __del__() method to the Future class
    itself, but this backfired because the presence of __del__()
    prevents garbage collection from breaking cycles.  A way out of
    this catch-22 is to avoid having a __del__() method on the Future
    class itself, but instead to have a reference to a helper object
    with a __del__() method that logs the traceback, where we ensure
    that the helper object doesn't participate in cycles, and only the
    Future has a reference to it.

    The helper object is added when set_exception() is called.  When
    the Future is collected, and the helper is present, the helper
    object is also collected, and its __del__() method will log the
    traceback.  When the Future's result() or exception() method is
    called (and a helper object is present), it removes the helper
    object, after calling its clear() method to prevent it from
    logging.

    One downside is that we do a fair amount of work to extract the
    traceback from the exception, even when it is never logged.  It
    would seem cheaper to just store the exception object, but that
    references the traceback, which references stack frames, which may
    reference the Future, which references the _TracebackLogger, and
    then the _TracebackLogger would be included in a cycle, which is
    what we're trying to avoid!  As an optimization, we don't
    immediately format the exception; we only do the work when
    activate() is called, which call is delayed until after all the
    Future's callbacks have run.  Since usually a Future has at least
    one callback (typically set by 'yield from') and usually that
    callback extracts the callback, thereby removing the need to
    format the exception.

    PS. I don't claim credit for this solution.  I first heard of it
    in a discussion about closing files when they are collected.
    """

    __slots__ = ('loop', 'source_traceback', 'exc', 'tb')

    def __init__(self, future, exc):
        self.loop = future._loop
        self.source_traceback = future._source_traceback
        self.exc = exc
        self.tb = None

    def activate(self):
        exc = self.exc
        if exc is not None:
            self.exc = None
            self.tb = traceback.format_exception(exc.__class__, exc,
                                                 exc.__traceback__)

    def clear(self):
        self.exc = None
        self.tb = None

    def __del__(self):
        if self.tb:
            msg = 'Future/Task exception was never retrieved\n'
            if self.source_traceback:
                src = ''.join(traceback.format_list(self.source_traceback))
                msg += 'Future/Task created at (most recent call last):\n'
                msg += '%s\n' % src.rstrip()
            msg += ''.join(self.tb).rstrip()
            self.loop.call_exception_handler({'message': msg})


class Future:
    """This class is *almost* compatible with concurrent.futures.Future.

    Differences:

    - result() and exception() do not take a timeout argument and
      raise an exception when the future isn't done yet.

    - Callbacks registered with add_done_callback() are always called
      via the event loop's call_soon_threadsafe().

    - This class is not compatible with the wait() and as_completed()
      methods in the concurrent.futures package.

    (In Python 3.4 or later we may be able to unify the implementations.)
    """

    # Class variables serving as defaults for instance variables.
    _state = _PENDING
    _result = None
    _exception = None
    _loop = None
    _source_traceback = None

    _blocking = False  # proper use of future (yield vs yield from)

    _log_traceback = False   # Used for Python 3.4 and later
    _tb_logger = None        # Used for Python 3.3 only

    def __init__(self, *, loop=None):
        """Initialize the future.

        The optional event_loop argument allows to explicitly set the event
        loop object used by the future. If it's not provided, the future uses
        the default event loop.
        """
        if loop is None:
            self._loop = events.get_event_loop()
        else:
            self._loop = loop
        self._callbacks = []
        if self._loop.get_debug():
            self._source_traceback = traceback.extract_stack(sys._getframe(1))

    def __format_callbacks(self):
        cb = self._callbacks
        size = len(cb)
        if not size:
            cb = ''

        def format_cb(callback):
            return events._format_callback_source(callback, ())

        if size == 1:
            cb = format_cb(cb[0])
        elif size == 2:
            cb = '{}, {}'.format(format_cb(cb[0]), format_cb(cb[1]))
        elif size > 2:
            cb = '{}, <{} more>, {}'.format(format_cb(cb[0]),
                                            size-2,
                                            format_cb(cb[-1]))
        return 'cb=[%s]' % cb

    def _repr_info(self):
        info = [self._state.lower()]
        if self._state == _FINISHED:
            if self._exception is not None:
                info.append('exception={!r}'.format(self._exception))
            else:
                # use reprlib to limit the length of the output, especially
                # for very long strings
                result = reprlib.repr(self._result)
                info.append('result={}'.format(result))
        if self._callbacks:
            info.append(self.__format_callbacks())
        if self._source_traceback:
            frame = self._source_traceback[-1]
            info.append('created at %s:%s' % (frame[0], frame[1]))
        return info

    def __repr__(self):
        info = self._repr_info()
        return '<%s %s>' % (self.__class__.__name__, ' '.join(info))

    # On Python 3.3 and older, objects with a destructor part of a reference
    # cycle are never destroyed. It's not more the case on Python 3.4 thanks
    # to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if not self._log_traceback:
                # set_exception() was not called, or result() or exception()
                # has consumed the exception
                return
            exc = self._exception
            context = {
                'message': ('%s exception was never retrieved'
                            % self.__class__.__name__),
                'exception': exc,
                'future': self,
            }
            if self._source_traceback:
                context['source_traceback'] = self._source_traceback
            self._loop.call_exception_handler(context)

    def cancel(self):
        """Cancel the future and schedule callbacks.

        If the future is already done or cancelled, return False.  Otherwise,
        change the future's state to cancelled, schedule the callbacks and
        return True.
        """
        if self._state != _PENDING:
            return False
        self._state = _CANCELLED
        self._schedule_callbacks()
        return True

    def _schedule_callbacks(self):
        """Internal: Ask the event loop to call all callbacks.

        The callbacks are scheduled to be called as soon as possible. Also
        clears the callback list.
        """
        callbacks = self._callbacks[:]
        if not callbacks:
            return

        self._callbacks[:] = []
        for callback in callbacks:
            self._loop.call_soon(callback, self)

    def cancelled(self):
        """Return True if the future was cancelled."""
        return self._state == _CANCELLED

    # Don't implement running(); see http://bugs.python.org/issue18699

    def done(self):
        """Return True if the future is done.

        Done means either that a result / exception are available, or that the
        future was cancelled.
        """
        return self._state != _PENDING

    def result(self):
        """Return the result this future represents.

        If the future has been cancelled, raises CancelledError.  If the
        future's result isn't yet available, raises InvalidStateError.  If
        the future is done and has an exception set, this exception is raised.
        """
        if self._state == _CANCELLED:
            raise CancelledError
        if self._state != _FINISHED:
            raise InvalidStateError('Result is not ready.')
        self._log_traceback = False
        if self._tb_logger is not None:
            self._tb_logger.clear()
            self._tb_logger = None
        if self._exception is not None:
            raise self._exception
        return self._result

    def exception(self):
        """Return the exception that was set on this future.

        The exception (or None if no exception was set) is returned only if
        the future is done.  If the future has been cancelled, raises
        CancelledError.  If the future isn't done yet, raises
        InvalidStateError.
        """
        if self._state == _CANCELLED:
            raise CancelledError
        if self._state != _FINISHED:
            raise InvalidStateError('Exception is not set.')
        self._log_traceback = False
        if self._tb_logger is not None:
            self._tb_logger.clear()
            self._tb_logger = None
        return self._exception

    def add_done_callback(self, fn):
        """Add a callback to be run when the future becomes done.

        The callback is called with a single argument - the future object. If
        the future is already done when this is called, the callback is
        scheduled with call_soon.
        """
        if self._state != _PENDING:
            self._loop.call_soon(fn, self)
        else:
            self._callbacks.append(fn)

    # New method not in PEP 3148.

    def remove_done_callback(self, fn):
        """Remove all instances of a callback from the "call when done" list.

        Returns the number of callbacks removed.
        """
        filtered_callbacks = [f for f in self._callbacks if f != fn]
        removed_count = len(self._callbacks) - len(filtered_callbacks)
        if removed_count:
            self._callbacks[:] = filtered_callbacks
        return removed_count

    # So-called internal methods (note: no set_running_or_notify_cancel()).

    def set_result(self, result):
        """Mark the future done and set its result.

        If the future is already done when this method is called, raises
        InvalidStateError.
        """
        if self._state != _PENDING:
            raise InvalidStateError('{}: {!r}'.format(self._state, self))
        self._result = result
        self._state = _FINISHED
        self._schedule_callbacks()

    def set_exception(self, exception):
        """Mark the future done and set an exception.

        If the future is already done when this method is called, raises
        InvalidStateError.
        """
        if self._state != _PENDING:
            raise InvalidStateError('{}: {!r}'.format(self._state, self))
        if isinstance(exception, type):
            exception = exception()
        self._exception = exception
        self._state = _FINISHED
        self._schedule_callbacks()
        if compat.PY34:
            self._log_traceback = True
        else:
            self._tb_logger = _TracebackLogger(self, exception)
            # Arrange for the logger to be activated after all callbacks
            # have had a chance to call result() or exception().
            self._loop.call_soon(self._tb_logger.activate)

    def __iter__(self):
        if not self.done():
            self._blocking = True
            yield self  # This tells Task to wait for completion.
        assert self.done(), "yield from wasn't used with future"
        return self.result()  # May raise too.

    if compat.PY35:
        __await__ = __iter__ # make compatible with 'await' expression


def _set_result_unless_cancelled(fut, result):
    """Helper setting the result only if the future was not cancelled."""
    if fut.cancelled():
        return
    fut.set_result(result)


def _set_concurrent_future_state(concurrent, source):
    """Copy state from a future to a concurrent.futures.Future."""
    assert source.done()
    if source.cancelled():
        concurrent.cancel()
    if not concurrent.set_running_or_notify_cancel():
        return
    exception = source.exception()
    if exception is not None:
        concurrent.set_exception(exception)
    else:
        result = source.result()
        concurrent.set_result(result)


def _copy_future_state(source, dest):
    """Internal helper to copy state from another Future.

    The other Future may be a concurrent.futures.Future.
    """
    assert source.done()
    if dest.cancelled():
        return
    assert not dest.done()
    if source.cancelled():
        dest.cancel()
    else:
        exception = source.exception()
        if exception is not None:
            dest.set_exception(exception)
        else:
            result = source.result()
            dest.set_result(result)


def _chain_future(source, destination):
    """Chain two futures so that when one completes, so does the other.

    The result (or exception) of source will be copied to destination.
    If destination is cancelled, source gets cancelled too.
    Compatible with both asyncio.Future and concurrent.futures.Future.
    """
    if not isinstance(source, (Future, concurrent.futures.Future)):
        raise TypeError('A future is required for source argument')
    if not isinstance(destination, (Future, concurrent.futures.Future)):
        raise TypeError('A future is required for destination argument')
    source_loop = source._loop if isinstance(source, Future) else None
    dest_loop = destination._loop if isinstance(destination, Future) else None

    def _set_state(future, other):
        if isinstance(future, Future):
            _copy_future_state(other, future)
        else:
            _set_concurrent_future_state(future, other)

    def _call_check_cancel(destination):
        if destination.cancelled():
            if source_loop is None or source_loop is dest_loop:
                source.cancel()
            else:
                source_loop.call_soon_threadsafe(source.cancel)

    def _call_set_state(source):
        if dest_loop is None or dest_loop is source_loop:
            _set_state(destination, source)
        else:
            dest_loop.call_soon_threadsafe(_set_state, destination, source)

    destination.add_done_callback(_call_check_cancel)
    source.add_done_callback(_call_set_state)


def wrap_future(future, *, loop=None):
    """Wrap concurrent.futures.Future object."""
    if isinstance(future, Future):
        return future
    assert isinstance(future, concurrent.futures.Future), \
        'concurrent.futures.Future is expected, got {!r}'.format(future)
    new_future = Future(loop=loop)
    _chain_future(future, new_future)
    return new_future
lib\asyncio\locks.py
"""Synchronization primitives."""

__all__ = ['Lock', 'Event', 'Condition', 'Semaphore', 'BoundedSemaphore']

import collections

from . import compat
from . import events
from . import futures
from .coroutines import coroutine


class _ContextManager:
    """Context manager.

    This enables the following idiom for acquiring and releasing a
    lock around a block:

        with (yield from lock):
            <block>

    while failing loudly when accidentally using:

        with lock:
            <block>
    """

    def __init__(self, lock):
        self._lock = lock

    def __enter__(self):
        # We have no use for the "as ..."  clause in the with
        # statement for locks.
        return None

    def __exit__(self, *args):
        try:
            self._lock.release()
        finally:
            self._lock = None  # Crudely prevent reuse.


class _ContextManagerMixin:
    def __enter__(self):
        raise RuntimeError(
            '"yield from" should be used as context manager expression')

    def __exit__(self, *args):
        # This must exist because __enter__ exists, even though that
        # always raises; that's how the with-statement works.
        pass

    @coroutine
    def __iter__(self):
        # This is not a coroutine.  It is meant to enable the idiom:
        #
        #     with (yield from lock):
        #         <block>
        #
        # as an alternative to:
        #
        #     yield from lock.acquire()
        #     try:
        #         <block>
        #     finally:
        #         lock.release()
        yield from self.acquire()
        return _ContextManager(self)

    if compat.PY35:

        def __await__(self):
            # To make "with await lock" work.
            yield from self.acquire()
            return _ContextManager(self)

        @coroutine
        def __aenter__(self):
            yield from self.acquire()
            # We have no use for the "as ..."  clause in the with
            # statement for locks.
            return None

        @coroutine
        def __aexit__(self, exc_type, exc, tb):
            self.release()


class Lock(_ContextManagerMixin):
    """Primitive lock objects.

    A primitive lock is a synchronization primitive that is not owned
    by a particular coroutine when locked.  A primitive lock is in one
    of two states, 'locked' or 'unlocked'.

    It is created in the unlocked state.  It has two basic methods,
    acquire() and release().  When the state is unlocked, acquire()
    changes the state to locked and returns immediately.  When the
    state is locked, acquire() blocks until a call to release() in
    another coroutine changes it to unlocked, then the acquire() call
    resets it to locked and returns.  The release() method should only
    be called in the locked state; it changes the state to unlocked
    and returns immediately.  If an attempt is made to release an
    unlocked lock, a RuntimeError will be raised.

    When more than one coroutine is blocked in acquire() waiting for
    the state to turn to unlocked, only one coroutine proceeds when a
    release() call resets the state to unlocked; first coroutine which
    is blocked in acquire() is being processed.

    acquire() is a coroutine and should be called with 'yield from'.

    Locks also support the context management protocol.  '(yield from lock)'
    should be used as context manager expression.

    Usage:

        lock = Lock()
        ...
        yield from lock
        try:
            ...
        finally:
            lock.release()

    Context manager usage:

        lock = Lock()
        ...
        with (yield from lock):
             ...

    Lock objects can be tested for locking state:

        if not lock.locked():
           yield from lock
        else:
           # lock is acquired
           ...

    """

    def __init__(self, *, loop=None):
        self._waiters = collections.deque()
        self._locked = False
        if loop is not None:
            self._loop = loop
        else:
            self._loop = events.get_event_loop()

    def __repr__(self):
        res = super().__repr__()
        extra = 'locked' if self._locked else 'unlocked'
        if self._waiters:
            extra = '{},waiters:{}'.format(extra, len(self._waiters))
        return '<{} [{}]>'.format(res[1:-1], extra)

    def locked(self):
        """Return True if lock is acquired."""
        return self._locked

    @coroutine
    def acquire(self):
        """Acquire a lock.

        This method blocks until the lock is unlocked, then sets it to
        locked and returns True.
        """
        if not self._waiters and not self._locked:
            self._locked = True
            return True

        fut = futures.Future(loop=self._loop)
        self._waiters.append(fut)
        try:
            yield from fut
            self._locked = True
            return True
        finally:
            self._waiters.remove(fut)

    def release(self):
        """Release a lock.

        When the lock is locked, reset it to unlocked, and return.
        If any other coroutines are blocked waiting for the lock to become
        unlocked, allow exactly one of them to proceed.

        When invoked on an unlocked lock, a RuntimeError is raised.

        There is no return value.
        """
        if self._locked:
            self._locked = False
            # Wake up the first waiter who isn't cancelled.
            for fut in self._waiters:
                if not fut.done():
                    fut.set_result(True)
                    break
        else:
            raise RuntimeError('Lock is not acquired.')


class Event:
    """Asynchronous equivalent to threading.Event.

    Class implementing event objects. An event manages a flag that can be set
    to true with the set() method and reset to false with the clear() method.
    The wait() method blocks until the flag is true. The flag is initially
    false.
    """

    def __init__(self, *, loop=None):
        self._waiters = collections.deque()
        self._value = False
        if loop is not None:
            self._loop = loop
        else:
            self._loop = events.get_event_loop()

    def __repr__(self):
        res = super().__repr__()
        extra = 'set' if self._value else 'unset'
        if self._waiters:
            extra = '{},waiters:{}'.format(extra, len(self._waiters))
        return '<{} [{}]>'.format(res[1:-1], extra)

    def is_set(self):
        """Return True if and only if the internal flag is true."""
        return self._value

    def set(self):
        """Set the internal flag to true. All coroutines waiting for it to
        become true are awakened. Coroutine that call wait() once the flag is
        true will not block at all.
        """
        if not self._value:
            self._value = True

            for fut in self._waiters:
                if not fut.done():
                    fut.set_result(True)

    def clear(self):
        """Reset the internal flag to false. Subsequently, coroutines calling
        wait() will block until set() is called to set the internal flag
        to true again."""
        self._value = False

    @coroutine
    def wait(self):
        """Block until the internal flag is true.

        If the internal flag is true on entry, return True
        immediately.  Otherwise, block until another coroutine calls
        set() to set the flag to true, then return True.
        """
        if self._value:
            return True

        fut = futures.Future(loop=self._loop)
        self._waiters.append(fut)
        try:
            yield from fut
            return True
        finally:
            self._waiters.remove(fut)


class Condition(_ContextManagerMixin):
    """Asynchronous equivalent to threading.Condition.

    This class implements condition variable objects. A condition variable
    allows one or more coroutines to wait until they are notified by another
    coroutine.

    A new Lock object is created and used as the underlying lock.
    """

    def __init__(self, lock=None, *, loop=None):
        if loop is not None:
            self._loop = loop
        else:
            self._loop = events.get_event_loop()

        if lock is None:
            lock = Lock(loop=self._loop)
        elif lock._loop is not self._loop:
            raise ValueError("loop argument must agree with lock")

        self._lock = lock
        # Export the lock's locked(), acquire() and release() methods.
        self.locked = lock.locked
        self.acquire = lock.acquire
        self.release = lock.release

        self._waiters = collections.deque()

    def __repr__(self):
        res = super().__repr__()
        extra = 'locked' if self.locked() else 'unlocked'
        if self._waiters:
            extra = '{},waiters:{}'.format(extra, len(self._waiters))
        return '<{} [{}]>'.format(res[1:-1], extra)

    @coroutine
    def wait(self):
        """Wait until notified.

        If the calling coroutine has not acquired the lock when this
        method is called, a RuntimeError is raised.

        This method releases the underlying lock, and then blocks
        until it is awakened by a notify() or notify_all() call for
        the same condition variable in another coroutine.  Once
        awakened, it re-acquires the lock and returns True.
        """
        if not self.locked():
            raise RuntimeError('cannot wait on un-acquired lock')

        self.release()
        try:
            fut = futures.Future(loop=self._loop)
            self._waiters.append(fut)
            try:
                yield from fut
                return True
            finally:
                self._waiters.remove(fut)

        finally:
            yield from self.acquire()

    @coroutine
    def wait_for(self, predicate):
        """Wait until a predicate becomes true.

        The predicate should be a callable which result will be
        interpreted as a boolean value.  The final predicate value is
        the return value.
        """
        result = predicate()
        while not result:
            yield from self.wait()
            result = predicate()
        return result

    def notify(self, n=1):
        """By default, wake up one coroutine waiting on this condition, if any.
        If the calling coroutine has not acquired the lock when this method
        is called, a RuntimeError is raised.

        This method wakes up at most n of the coroutines waiting for the
        condition variable; it is a no-op if no coroutines are waiting.

        Note: an awakened coroutine does not actually return from its
        wait() call until it can reacquire the lock. Since notify() does
        not release the lock, its caller should.
        """
        if not self.locked():
            raise RuntimeError('cannot notify on un-acquired lock')

        idx = 0
        for fut in self._waiters:
            if idx >= n:
                break

            if not fut.done():
                idx += 1
                fut.set_result(False)

    def notify_all(self):
        """Wake up all threads waiting on this condition. This method acts
        like notify(), but wakes up all waiting threads instead of one. If the
        calling thread has not acquired the lock when this method is called,
        a RuntimeError is raised.
        """
        self.notify(len(self._waiters))


class Semaphore(_ContextManagerMixin):
    """A Semaphore implementation.

    A semaphore manages an internal counter which is decremented by each
    acquire() call and incremented by each release() call. The counter
    can never go below zero; when acquire() finds that it is zero, it blocks,
    waiting until some other thread calls release().

    Semaphores also support the context management protocol.

    The optional argument gives the initial value for the internal
    counter; it defaults to 1. If the value given is less than 0,
    ValueError is raised.
    """

    def __init__(self, value=1, *, loop=None):
        if value < 0:
            raise ValueError("Semaphore initial value must be >= 0")
        self._value = value
        self._waiters = collections.deque()
        if loop is not None:
            self._loop = loop
        else:
            self._loop = events.get_event_loop()

    def __repr__(self):
        res = super().__repr__()
        extra = 'locked' if self.locked() else 'unlocked,value:{}'.format(
            self._value)
        if self._waiters:
            extra = '{},waiters:{}'.format(extra, len(self._waiters))
        return '<{} [{}]>'.format(res[1:-1], extra)

    def _wake_up_next(self):
        while self._waiters:
            waiter = self._waiters.popleft()
            if not waiter.done():
                waiter.set_result(None)
                return

    def locked(self):
        """Returns True if semaphore can not be acquired immediately."""
        return self._value == 0

    @coroutine
    def acquire(self):
        """Acquire a semaphore.

        If the internal counter is larger than zero on entry,
        decrement it by one and return True immediately.  If it is
        zero on entry, block, waiting until some other coroutine has
        called release() to make it larger than 0, and then return
        True.
        """
        while self._value <= 0:
            fut = futures.Future(loop=self._loop)
            self._waiters.append(fut)
            try:
                yield from fut
            except:
                # See the similar code in Queue.get.
                fut.cancel()
                if self._value > 0 and not fut.cancelled():
                    self._wake_up_next()
                raise
        self._value -= 1
        return True

    def release(self):
        """Release a semaphore, incrementing the internal counter by one.
        When it was zero on entry and another coroutine is waiting for it to
        become larger than zero again, wake up that coroutine.
        """
        self._value += 1
        self._wake_up_next()


class BoundedSemaphore(Semaphore):
    """A bounded semaphore implementation.

    This raises ValueError in release() if it would increase the value
    above the initial value.
    """

    def __init__(self, value=1, *, loop=None):
        self._bound_value = value
        super().__init__(value, loop=loop)

    def release(self):
        if self._value >= self._bound_value:
            raise ValueError('BoundedSemaphore released too many times')
        super().release()
lib\asyncio\log.py
"""Logging configuration."""

import logging


# Name the logger after the package.
logger = logging.getLogger(__package__)
lib\asyncio\proactor_events.py
"""Event loop using a proactor and related classes.

A proactor is a "notify-on-completion" multiplexer.  Currently a
proactor is only implemented on Windows with IOCP.
"""

__all__ = ['BaseProactorEventLoop']

import socket
import warnings

from . import base_events
from . import compat
from . import constants
from . import futures
from . import sslproto
from . import transports
from .log import logger


class _ProactorBasePipeTransport(transports._FlowControlMixin,
                                 transports.BaseTransport):
    """Base class for pipe and socket transports."""

    def __init__(self, loop, sock, protocol, waiter=None,
                 extra=None, server=None):
        super().__init__(extra, loop)
        self._set_extra(sock)
        self._sock = sock
        self._protocol = protocol
        self._server = server
        self._buffer = None  # None or bytearray.
        self._read_fut = None
        self._write_fut = None
        self._pending_write = 0
        self._conn_lost = 0
        self._closing = False  # Set when close() called.
        self._eof_written = False
        if self._server is not None:
            self._server._attach()
        self._loop.call_soon(self._protocol.connection_made, self)
        if waiter is not None:
            # only wake up the waiter when connection_made() has been called
            self._loop.call_soon(futures._set_result_unless_cancelled,
                                 waiter, None)

    def __repr__(self):
        info = [self.__class__.__name__]
        if self._sock is None:
            info.append('closed')
        elif self._closing:
            info.append('closing')
        if self._sock is not None:
            info.append('fd=%s' % self._sock.fileno())
        if self._read_fut is not None:
            info.append('read=%s' % self._read_fut)
        if self._write_fut is not None:
            info.append("write=%r" % self._write_fut)
        if self._buffer:
            bufsize = len(self._buffer)
            info.append('write_bufsize=%s' % bufsize)
        if self._eof_written:
            info.append('EOF written')
        return '<%s>' % ' '.join(info)

    def _set_extra(self, sock):
        self._extra['pipe'] = sock

    def is_closing(self):
        return self._closing

    def close(self):
        if self._closing:
            return
        self._closing = True
        self._conn_lost += 1
        if not self._buffer and self._write_fut is None:
            self._loop.call_soon(self._call_connection_lost, None)
        if self._read_fut is not None:
            self._read_fut.cancel()
            self._read_fut = None

    # On Python 3.3 and older, objects with a destructor part of a reference
    # cycle are never destroyed. It's not more the case on Python 3.4 thanks
    # to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if self._sock is not None:
                warnings.warn("unclosed transport %r" % self, ResourceWarning)
                self.close()

    def _fatal_error(self, exc, message='Fatal error on pipe transport'):
        if isinstance(exc, (BrokenPipeError, ConnectionResetError)):
            if self._loop.get_debug():
                logger.debug("%r: %s", self, message, exc_info=True)
        else:
            self._loop.call_exception_handler({
                'message': message,
                'exception': exc,
                'transport': self,
                'protocol': self._protocol,
            })
        self._force_close(exc)

    def _force_close(self, exc):
        if self._closing:
            return
        self._closing = True
        self._conn_lost += 1
        if self._write_fut:
            self._write_fut.cancel()
            self._write_fut = None
        if self._read_fut:
            self._read_fut.cancel()
            self._read_fut = None
        self._pending_write = 0
        self._buffer = None
        self._loop.call_soon(self._call_connection_lost, exc)

    def _call_connection_lost(self, exc):
        try:
            self._protocol.connection_lost(exc)
        finally:
            # XXX If there is a pending overlapped read on the other
            # end then it may fail with ERROR_NETNAME_DELETED if we
            # just close our end.  First calling shutdown() seems to
            # cure it, but maybe using DisconnectEx() would be better.
            if hasattr(self._sock, 'shutdown'):
                self._sock.shutdown(socket.SHUT_RDWR)
            self._sock.close()
            self._sock = None
            server = self._server
            if server is not None:
                server._detach()
                self._server = None

    def get_write_buffer_size(self):
        size = self._pending_write
        if self._buffer is not None:
            size += len(self._buffer)
        return size


class _ProactorReadPipeTransport(_ProactorBasePipeTransport,
                                 transports.ReadTransport):
    """Transport for read pipes."""

    def __init__(self, loop, sock, protocol, waiter=None,
                 extra=None, server=None):
        super().__init__(loop, sock, protocol, waiter, extra, server)
        self._paused = False
        self._loop.call_soon(self._loop_reading)

    def pause_reading(self):
        if self._closing:
            raise RuntimeError('Cannot pause_reading() when closing')
        if self._paused:
            raise RuntimeError('Already paused')
        self._paused = True
        if self._loop.get_debug():
            logger.debug("%r pauses reading", self)

    def resume_reading(self):
        if not self._paused:
            raise RuntimeError('Not paused')
        self._paused = False
        if self._closing:
            return
        self._loop.call_soon(self._loop_reading, self._read_fut)
        if self._loop.get_debug():
            logger.debug("%r resumes reading", self)

    def _loop_reading(self, fut=None):
        if self._paused:
            return
        data = None

        try:
            if fut is not None:
                assert self._read_fut is fut or (self._read_fut is None and
                                                 self._closing)
                self._read_fut = None
                data = fut.result()  # deliver data later in "finally" clause

            if self._closing:
                # since close() has been called we ignore any read data
                data = None
                return

            if data == b'':
                # we got end-of-file so no need to reschedule a new read
                return

            # reschedule a new read
            self._read_fut = self._loop._proactor.recv(self._sock, 4096)
        except ConnectionAbortedError as exc:
            if not self._closing:
                self._fatal_error(exc, 'Fatal read error on pipe transport')
            elif self._loop.get_debug():
                logger.debug("Read error on pipe transport while closing",
                             exc_info=True)
        except ConnectionResetError as exc:
            self._force_close(exc)
        except OSError as exc:
            self._fatal_error(exc, 'Fatal read error on pipe transport')
        except futures.CancelledError:
            if not self._closing:
                raise
        else:
            self._read_fut.add_done_callback(self._loop_reading)
        finally:
            if data:
                self._protocol.data_received(data)
            elif data is not None:
                if self._loop.get_debug():
                    logger.debug("%r received EOF", self)
                keep_open = self._protocol.eof_received()
                if not keep_open:
                    self.close()


class _ProactorBaseWritePipeTransport(_ProactorBasePipeTransport,
                                      transports.WriteTransport):
    """Transport for write pipes."""

    def write(self, data):
        if not isinstance(data, (bytes, bytearray, memoryview)):
            raise TypeError('data argument must be byte-ish (%r)',
                            type(data))
        if self._eof_written:
            raise RuntimeError('write_eof() already called')

        if not data:
            return

        if self._conn_lost:
            if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES:
                logger.warning('socket.send() raised exception.')
            self._conn_lost += 1
            return

        # Observable states:
        # 1. IDLE: _write_fut and _buffer both None
        # 2. WRITING: _write_fut set; _buffer None
        # 3. BACKED UP: _write_fut set; _buffer a bytearray
        # We always copy the data, so the caller can't modify it
        # while we're still waiting for the I/O to happen.
        if self._write_fut is None:  # IDLE -> WRITING
            assert self._buffer is None
            # Pass a copy, except if it's already immutable.
            self._loop_writing(data=bytes(data))
        elif not self._buffer:  # WRITING -> BACKED UP
            # Make a mutable copy which we can extend.
            self._buffer = bytearray(data)
            self._maybe_pause_protocol()
        else:  # BACKED UP
            # Append to buffer (also copies).
            self._buffer.extend(data)
            self._maybe_pause_protocol()

    def _loop_writing(self, f=None, data=None):
        try:
            assert f is self._write_fut
            self._write_fut = None
            self._pending_write = 0
            if f:
                f.result()
            if data is None:
                data = self._buffer
                self._buffer = None
            if not data:
                if self._closing:
                    self._loop.call_soon(self._call_connection_lost, None)
                if self._eof_written:
                    self._sock.shutdown(socket.SHUT_WR)
                # Now that we've reduced the buffer size, tell the
                # protocol to resume writing if it was paused.  Note that
                # we do this last since the callback is called immediately
                # and it may add more data to the buffer (even causing the
                # protocol to be paused again).
                self._maybe_resume_protocol()
            else:
                self._write_fut = self._loop._proactor.send(self._sock, data)
                if not self._write_fut.done():
                    assert self._pending_write == 0
                    self._pending_write = len(data)
                    self._write_fut.add_done_callback(self._loop_writing)
                    self._maybe_pause_protocol()
                else:
                    self._write_fut.add_done_callback(self._loop_writing)
        except ConnectionResetError as exc:
            self._force_close(exc)
        except OSError as exc:
            self._fatal_error(exc, 'Fatal write error on pipe transport')

    def can_write_eof(self):
        return True

    def write_eof(self):
        self.close()

    def abort(self):
        self._force_close(None)


class _ProactorWritePipeTransport(_ProactorBaseWritePipeTransport):
    def __init__(self, *args, **kw):
        super().__init__(*args, **kw)
        self._read_fut = self._loop._proactor.recv(self._sock, 16)
        self._read_fut.add_done_callback(self._pipe_closed)

    def _pipe_closed(self, fut):
        if fut.cancelled():
            # the transport has been closed
            return
        assert fut.result() == b''
        if self._closing:
            assert self._read_fut is None
            return
        assert fut is self._read_fut, (fut, self._read_fut)
        self._read_fut = None
        if self._write_fut is not None:
            self._force_close(BrokenPipeError())
        else:
            self.close()


class _ProactorDuplexPipeTransport(_ProactorReadPipeTransport,
                                   _ProactorBaseWritePipeTransport,
                                   transports.Transport):
    """Transport for duplex pipes."""

    def can_write_eof(self):
        return False

    def write_eof(self):
        raise NotImplementedError


class _ProactorSocketTransport(_ProactorReadPipeTransport,
                               _ProactorBaseWritePipeTransport,
                               transports.Transport):
    """Transport for connected sockets."""

    def _set_extra(self, sock):
        self._extra['socket'] = sock
        try:
            self._extra['sockname'] = sock.getsockname()
        except (socket.error, AttributeError):
            if self._loop.get_debug():
                logger.warning("getsockname() failed on %r",
                             sock, exc_info=True)
        if 'peername' not in self._extra:
            try:
                self._extra['peername'] = sock.getpeername()
            except (socket.error, AttributeError):
                if self._loop.get_debug():
                    logger.warning("getpeername() failed on %r",
                                   sock, exc_info=True)

    def can_write_eof(self):
        return True

    def write_eof(self):
        if self._closing or self._eof_written:
            return
        self._eof_written = True
        if self._write_fut is None:
            self._sock.shutdown(socket.SHUT_WR)


class BaseProactorEventLoop(base_events.BaseEventLoop):

    def __init__(self, proactor):
        super().__init__()
        logger.debug('Using proactor: %s', proactor.__class__.__name__)
        self._proactor = proactor
        self._selector = proactor   # convenient alias
        self._self_reading_future = None
        self._accept_futures = {}   # socket file descriptor => Future
        proactor.set_loop(self)
        self._make_self_pipe()

    def _make_socket_transport(self, sock, protocol, waiter=None,
                               extra=None, server=None):
        return _ProactorSocketTransport(self, sock, protocol, waiter,
                                        extra, server)

    def _make_ssl_transport(self, rawsock, protocol, sslcontext, waiter=None,
                            *, server_side=False, server_hostname=None,
                            extra=None, server=None):
        if not sslproto._is_sslproto_available():
            raise NotImplementedError("Proactor event loop requires Python 3.5"
                                      " or newer (ssl.MemoryBIO) to support "
                                      "SSL")

        ssl_protocol = sslproto.SSLProtocol(self, protocol, sslcontext, waiter,
                                            server_side, server_hostname)
        _ProactorSocketTransport(self, rawsock, ssl_protocol,
                                 extra=extra, server=server)
        return ssl_protocol._app_transport

    def _make_duplex_pipe_transport(self, sock, protocol, waiter=None,
                                    extra=None):
        return _ProactorDuplexPipeTransport(self,
                                            sock, protocol, waiter, extra)

    def _make_read_pipe_transport(self, sock, protocol, waiter=None,
                                  extra=None):
        return _ProactorReadPipeTransport(self, sock, protocol, waiter, extra)

    def _make_write_pipe_transport(self, sock, protocol, waiter=None,
                                   extra=None):
        # We want connection_lost() to be called when other end closes
        return _ProactorWritePipeTransport(self,
                                           sock, protocol, waiter, extra)

    def close(self):
        if self.is_running():
            raise RuntimeError("Cannot close a running event loop")
        if self.is_closed():
            return

        # Call these methods before closing the event loop (before calling
        # BaseEventLoop.close), because they can schedule callbacks with
        # call_soon(), which is forbidden when the event loop is closed.
        self._stop_accept_futures()
        self._close_self_pipe()
        self._proactor.close()
        self._proactor = None
        self._selector = None

        # Close the event loop
        super().close()

    def sock_recv(self, sock, n):
        return self._proactor.recv(sock, n)

    def sock_sendall(self, sock, data):
        return self._proactor.send(sock, data)

    def sock_connect(self, sock, address):
        try:
            base_events._check_resolved_address(sock, address)
        except ValueError as err:
            fut = futures.Future(loop=self)
            fut.set_exception(err)
            return fut
        else:
            return self._proactor.connect(sock, address)

    def sock_accept(self, sock):
        return self._proactor.accept(sock)

    def _socketpair(self):
        raise NotImplementedError

    def _close_self_pipe(self):
        if self._self_reading_future is not None:
            self._self_reading_future.cancel()
            self._self_reading_future = None
        self._ssock.close()
        self._ssock = None
        self._csock.close()
        self._csock = None
        self._internal_fds -= 1

    def _make_self_pipe(self):
        # A self-socket, really. :-)
        self._ssock, self._csock = self._socketpair()
        self._ssock.setblocking(False)
        self._csock.setblocking(False)
        self._internal_fds += 1
        self.call_soon(self._loop_self_reading)

    def _loop_self_reading(self, f=None):
        try:
            if f is not None:
                f.result()  # may raise
            f = self._proactor.recv(self._ssock, 4096)
        except futures.CancelledError:
            # _close_self_pipe() has been called, stop waiting for data
            return
        except Exception as exc:
            self.call_exception_handler({
                'message': 'Error on reading from the event loop self pipe',
                'exception': exc,
                'loop': self,
            })
        else:
            self._self_reading_future = f
            f.add_done_callback(self._loop_self_reading)

    def _write_to_self(self):
        self._csock.send(b'\0')

    def _start_serving(self, protocol_factory, sock,
                       sslcontext=None, server=None):

        def loop(f=None):
            try:
                if f is not None:
                    conn, addr = f.result()
                    if self._debug:
                        logger.debug("%r got a new connection from %r: %r",
                                     server, addr, conn)
                    protocol = protocol_factory()
                    if sslcontext is not None:
                        self._make_ssl_transport(
                            conn, protocol, sslcontext, server_side=True,
                            extra={'peername': addr}, server=server)
                    else:
                        self._make_socket_transport(
                            conn, protocol,
                            extra={'peername': addr}, server=server)
                if self.is_closed():
                    return
                f = self._proactor.accept(sock)
            except OSError as exc:
                if sock.fileno() != -1:
                    self.call_exception_handler({
                        'message': 'Accept failed on a socket',
                        'exception': exc,
                        'socket': sock,
                    })
                    sock.close()
                elif self._debug:
                    logger.debug("Accept failed on socket %r",
                                 sock, exc_info=True)
            except futures.CancelledError:
                sock.close()
            else:
                self._accept_futures[sock.fileno()] = f
                f.add_done_callback(loop)

        self.call_soon(loop)

    def _process_events(self, event_list):
        # Events are processed in the IocpProactor._poll() method
        pass

    def _stop_accept_futures(self):
        for future in self._accept_futures.values():
            future.cancel()
        self._accept_futures.clear()

    def _stop_serving(self, sock):
        self._stop_accept_futures()
        self._proactor._stop_serving(sock)
        sock.close()
lib\asyncio\protocols.py
"""Abstract Protocol class."""

__all__ = ['BaseProtocol', 'Protocol', 'DatagramProtocol',
           'SubprocessProtocol']


class BaseProtocol:
    """Common base class for protocol interfaces.

    Usually user implements protocols that derived from BaseProtocol
    like Protocol or ProcessProtocol.

    The only case when BaseProtocol should be implemented directly is
    write-only transport like write pipe
    """

    def connection_made(self, transport):
        """Called when a connection is made.

        The argument is the transport representing the pipe connection.
        To receive data, wait for data_received() calls.
        When the connection is closed, connection_lost() is called.
        """

    def connection_lost(self, exc):
        """Called when the connection is lost or closed.

        The argument is an exception object or None (the latter
        meaning a regular EOF is received or the connection was
        aborted or closed).
        """

    def pause_writing(self):
        """Called when the transport's buffer goes over the high-water mark.

        Pause and resume calls are paired -- pause_writing() is called
        once when the buffer goes strictly over the high-water mark
        (even if subsequent writes increases the buffer size even
        more), and eventually resume_writing() is called once when the
        buffer size reaches the low-water mark.

        Note that if the buffer size equals the high-water mark,
        pause_writing() is not called -- it must go strictly over.
        Conversely, resume_writing() is called when the buffer size is
        equal or lower than the low-water mark.  These end conditions
        are important to ensure that things go as expected when either
        mark is zero.

        NOTE: This is the only Protocol callback that is not called
        through EventLoop.call_soon() -- if it were, it would have no
        effect when it's most needed (when the app keeps writing
        without yielding until pause_writing() is called).
        """

    def resume_writing(self):
        """Called when the transport's buffer drains below the low-water mark.

        See pause_writing() for details.
        """


class Protocol(BaseProtocol):
    """Interface for stream protocol.

    The user should implement this interface.  They can inherit from
    this class but don't need to.  The implementations here do
    nothing (they don't raise exceptions).

    When the user wants to requests a transport, they pass a protocol
    factory to a utility function (e.g., EventLoop.create_connection()).

    When the connection is made successfully, connection_made() is
    called with a suitable transport object.  Then data_received()
    will be called 0 or more times with data (bytes) received from the
    transport; finally, connection_lost() will be called exactly once
    with either an exception object or None as an argument.

    State machine of calls:

      start -> CM [-> DR*] [-> ER?] -> CL -> end

    * CM: connection_made()
    * DR: data_received()
    * ER: eof_received()
    * CL: connection_lost()
    """

    def data_received(self, data):
        """Called when some data is received.

        The argument is a bytes object.
        """

    def eof_received(self):
        """Called when the other end calls write_eof() or equivalent.

        If this returns a false value (including None), the transport
        will close itself.  If it returns a true value, closing the
        transport is up to the protocol.
        """


class DatagramProtocol(BaseProtocol):
    """Interface for datagram protocol."""

    def datagram_received(self, data, addr):
        """Called when some datagram is received."""

    def error_received(self, exc):
        """Called when a send or receive operation raises an OSError.

        (Other than BlockingIOError or InterruptedError.)
        """


class SubprocessProtocol(BaseProtocol):
    """Interface for protocol for subprocess calls."""

    def pipe_data_received(self, fd, data):
        """Called when the subprocess writes data into stdout/stderr pipe.

        fd is int file descriptor.
        data is bytes object.
        """

    def pipe_connection_lost(self, fd, exc):
        """Called when a file descriptor associated with the child process is
        closed.

        fd is the int file descriptor that was closed.
        """

    def process_exited(self):
        """Called when subprocess has exited."""
lib\asyncio\queues.py
"""Queues"""

__all__ = ['Queue', 'PriorityQueue', 'LifoQueue', 'QueueFull', 'QueueEmpty']

import collections
import heapq

from . import compat
from . import events
from . import futures
from . import locks
from .coroutines import coroutine


class QueueEmpty(Exception):
    """Exception raised when Queue.get_nowait() is called on a Queue object
    which is empty.
    """
    pass


class QueueFull(Exception):
    """Exception raised when the Queue.put_nowait() method is called on a Queue
    object which is full.
    """
    pass


class Queue:
    """A queue, useful for coordinating producer and consumer coroutines.

    If maxsize is less than or equal to zero, the queue size is infinite. If it
    is an integer greater than 0, then "yield from put()" will block when the
    queue reaches maxsize, until an item is removed by get().

    Unlike the standard library Queue, you can reliably know this Queue's size
    with qsize(), since your single-threaded asyncio application won't be
    interrupted between calling qsize() and doing an operation on the Queue.
    """

    def __init__(self, maxsize=0, *, loop=None):
        if loop is None:
            self._loop = events.get_event_loop()
        else:
            self._loop = loop
        self._maxsize = maxsize

        # Futures.
        self._getters = collections.deque()
        # Futures.
        self._putters = collections.deque()
        self._unfinished_tasks = 0
        self._finished = locks.Event(loop=self._loop)
        self._finished.set()
        self._init(maxsize)

    # These three are overridable in subclasses.

    def _init(self, maxsize):
        self._queue = collections.deque()

    def _get(self):
        return self._queue.popleft()

    def _put(self, item):
        self._queue.append(item)

    # End of the overridable methods.

    def _wakeup_next(self, waiters):
        # Wake up the next waiter (if any) that isn't cancelled.
        while waiters:
            waiter = waiters.popleft()
            if not waiter.done():
                waiter.set_result(None)
                break

    def __repr__(self):
        return '<{} at {:#x} {}>'.format(
            type(self).__name__, id(self), self._format())

    def __str__(self):
        return '<{} {}>'.format(type(self).__name__, self._format())

    def _format(self):
        result = 'maxsize={!r}'.format(self._maxsize)
        if getattr(self, '_queue', None):
            result += ' _queue={!r}'.format(list(self._queue))
        if self._getters:
            result += ' _getters[{}]'.format(len(self._getters))
        if self._putters:
            result += ' _putters[{}]'.format(len(self._putters))
        if self._unfinished_tasks:
            result += ' tasks={}'.format(self._unfinished_tasks)
        return result

    def qsize(self):
        """Number of items in the queue."""
        return len(self._queue)

    @property
    def maxsize(self):
        """Number of items allowed in the queue."""
        return self._maxsize

    def empty(self):
        """Return True if the queue is empty, False otherwise."""
        return not self._queue

    def full(self):
        """Return True if there are maxsize items in the queue.

        Note: if the Queue was initialized with maxsize=0 (the default),
        then full() is never True.
        """
        if self._maxsize <= 0:
            return False
        else:
            return self.qsize() >= self._maxsize

    @coroutine
    def put(self, item):
        """Put an item into the queue.

        Put an item into the queue. If the queue is full, wait until a free
        slot is available before adding item.

        This method is a coroutine.
        """
        while self.full():
            putter = futures.Future(loop=self._loop)
            self._putters.append(putter)
            try:
                yield from putter
            except:
                putter.cancel()  # Just in case putter is not done yet.
                if not self.full() and not putter.cancelled():
                    # We were woken up by get_nowait(), but can't take
                    # the call.  Wake up the next in line.
                    self._wakeup_next(self._putters)
                raise
        return self.put_nowait(item)

    def put_nowait(self, item):
        """Put an item into the queue without blocking.

        If no free slot is immediately available, raise QueueFull.
        """
        if self.full():
            raise QueueFull
        self._put(item)
        self._unfinished_tasks += 1
        self._finished.clear()
        self._wakeup_next(self._getters)

    @coroutine
    def get(self):
        """Remove and return an item from the queue.

        If queue is empty, wait until an item is available.

        This method is a coroutine.
        """
        while self.empty():
            getter = futures.Future(loop=self._loop)
            self._getters.append(getter)
            try:
                yield from getter
            except:
                getter.cancel()  # Just in case getter is not done yet.
                if not self.empty() and not getter.cancelled():
                    # We were woken up by put_nowait(), but can't take
                    # the call.  Wake up the next in line.
                    self._wakeup_next(self._getters)
                raise
        return self.get_nowait()

    def get_nowait(self):
        """Remove and return an item from the queue.

        Return an item if one is immediately available, else raise QueueEmpty.
        """
        if self.empty():
            raise QueueEmpty
        item = self._get()
        self._wakeup_next(self._putters)
        return item

    def task_done(self):
        """Indicate that a formerly enqueued task is complete.

        Used by queue consumers. For each get() used to fetch a task,
        a subsequent call to task_done() tells the queue that the processing
        on the task is complete.

        If a join() is currently blocking, it will resume when all items have
        been processed (meaning that a task_done() call was received for every
        item that had been put() into the queue).

        Raises ValueError if called more times than there were items placed in
        the queue.
        """
        if self._unfinished_tasks <= 0:
            raise ValueError('task_done() called too many times')
        self._unfinished_tasks -= 1
        if self._unfinished_tasks == 0:
            self._finished.set()

    @coroutine
    def join(self):
        """Block until all items in the queue have been gotten and processed.

        The count of unfinished tasks goes up whenever an item is added to the
        queue. The count goes down whenever a consumer calls task_done() to
        indicate that the item was retrieved and all work on it is complete.
        When the count of unfinished tasks drops to zero, join() unblocks.
        """
        if self._unfinished_tasks > 0:
            yield from self._finished.wait()


class PriorityQueue(Queue):
    """A subclass of Queue; retrieves entries in priority order (lowest first).

    Entries are typically tuples of the form: (priority number, data).
    """

    def _init(self, maxsize):
        self._queue = []

    def _put(self, item, heappush=heapq.heappush):
        heappush(self._queue, item)

    def _get(self, heappop=heapq.heappop):
        return heappop(self._queue)


class LifoQueue(Queue):
    """A subclass of Queue that retrieves most recently added entries first."""

    def _init(self, maxsize):
        self._queue = []

    def _put(self, item):
        self._queue.append(item)

    def _get(self):
        return self._queue.pop()


if not compat.PY35:
    JoinableQueue = Queue
    """Deprecated alias for Queue."""
    __all__.append('JoinableQueue')
lib\asyncio\selector_events.py
"""Event loop using a selector and related classes.

A selector is a "notify-when-ready" multiplexer.  For a subclass which
also includes support for signal handling, see the unix_events sub-module.
"""

__all__ = ['BaseSelectorEventLoop']

import collections
import errno
import functools
import socket
import warnings
try:
    import ssl
except ImportError:  # pragma: no cover
    ssl = None

from . import base_events
from . import compat
from . import constants
from . import events
from . import futures
from . import selectors
from . import transports
from . import sslproto
from .coroutines import coroutine
from .log import logger


def _test_selector_event(selector, fd, event):
    # Test if the selector is monitoring 'event' events
    # for the file descriptor 'fd'.
    try:
        key = selector.get_key(fd)
    except KeyError:
        return False
    else:
        return bool(key.events & event)


class BaseSelectorEventLoop(base_events.BaseEventLoop):
    """Selector event loop.

    See events.EventLoop for API specification.
    """

    def __init__(self, selector=None):
        super().__init__()

        if selector is None:
            selector = selectors.DefaultSelector()
        logger.debug('Using selector: %s', selector.__class__.__name__)
        self._selector = selector
        self._make_self_pipe()

    def _make_socket_transport(self, sock, protocol, waiter=None, *,
                               extra=None, server=None):
        return _SelectorSocketTransport(self, sock, protocol, waiter,
                                        extra, server)

    def _make_ssl_transport(self, rawsock, protocol, sslcontext, waiter=None,
                            *, server_side=False, server_hostname=None,
                            extra=None, server=None):
        if not sslproto._is_sslproto_available():
            return self._make_legacy_ssl_transport(
                rawsock, protocol, sslcontext, waiter,
                server_side=server_side, server_hostname=server_hostname,
                extra=extra, server=server)

        ssl_protocol = sslproto.SSLProtocol(self, protocol, sslcontext, waiter,
                                            server_side, server_hostname)
        _SelectorSocketTransport(self, rawsock, ssl_protocol,
                                 extra=extra, server=server)
        return ssl_protocol._app_transport

    def _make_legacy_ssl_transport(self, rawsock, protocol, sslcontext,
                                   waiter, *,
                                   server_side=False, server_hostname=None,
                                   extra=None, server=None):
        # Use the legacy API: SSL_write, SSL_read, etc. The legacy API is used
        # on Python 3.4 and older, when ssl.MemoryBIO is not available.
        return _SelectorSslTransport(
            self, rawsock, protocol, sslcontext, waiter,
            server_side, server_hostname, extra, server)

    def _make_datagram_transport(self, sock, protocol,
                                 address=None, waiter=None, extra=None):
        return _SelectorDatagramTransport(self, sock, protocol,
                                          address, waiter, extra)

    def close(self):
        if self.is_running():
            raise RuntimeError("Cannot close a running event loop")
        if self.is_closed():
            return
        self._close_self_pipe()
        super().close()
        if self._selector is not None:
            self._selector.close()
            self._selector = None

    def _socketpair(self):
        raise NotImplementedError

    def _close_self_pipe(self):
        self.remove_reader(self._ssock.fileno())
        self._ssock.close()
        self._ssock = None
        self._csock.close()
        self._csock = None
        self._internal_fds -= 1

    def _make_self_pipe(self):
        # A self-socket, really. :-)
        self._ssock, self._csock = self._socketpair()
        self._ssock.setblocking(False)
        self._csock.setblocking(False)
        self._internal_fds += 1
        self.add_reader(self._ssock.fileno(), self._read_from_self)

    def _process_self_data(self, data):
        pass

    def _read_from_self(self):
        while True:
            try:
                data = self._ssock.recv(4096)
                if not data:
                    break
                self._process_self_data(data)
            except InterruptedError:
                continue
            except BlockingIOError:
                break

    def _write_to_self(self):
        # This may be called from a different thread, possibly after
        # _close_self_pipe() has been called or even while it is
        # running.  Guard for self._csock being None or closed.  When
        # a socket is closed, send() raises OSError (with errno set to
        # EBADF, but let's not rely on the exact error code).
        csock = self._csock
        if csock is not None:
            try:
                csock.send(b'\0')
            except OSError:
                if self._debug:
                    logger.debug("Fail to write a null byte into the "
                                 "self-pipe socket",
                                 exc_info=True)

    def _start_serving(self, protocol_factory, sock,
                       sslcontext=None, server=None):
        self.add_reader(sock.fileno(), self._accept_connection,
                        protocol_factory, sock, sslcontext, server)

    def _accept_connection(self, protocol_factory, sock,
                           sslcontext=None, server=None):
        try:
            conn, addr = sock.accept()
            if self._debug:
                logger.debug("%r got a new connection from %r: %r",
                             server, addr, conn)
            conn.setblocking(False)
        except (BlockingIOError, InterruptedError, ConnectionAbortedError):
            pass  # False alarm.
        except OSError as exc:
            # There's nowhere to send the error, so just log it.
            if exc.errno in (errno.EMFILE, errno.ENFILE,
                             errno.ENOBUFS, errno.ENOMEM):
                # Some platforms (e.g. Linux keep reporting the FD as
                # ready, so we remove the read handler temporarily.
                # We'll try again in a while.
                self.call_exception_handler({
                    'message': 'socket.accept() out of system resource',
                    'exception': exc,
                    'socket': sock,
                })
                self.remove_reader(sock.fileno())
                self.call_later(constants.ACCEPT_RETRY_DELAY,
                                self._start_serving,
                                protocol_factory, sock, sslcontext, server)
            else:
                raise  # The event loop will catch, log and ignore it.
        else:
            extra = {'peername': addr}
            accept = self._accept_connection2(protocol_factory, conn, extra,
                                              sslcontext, server)
            self.create_task(accept)

    @coroutine
    def _accept_connection2(self, protocol_factory, conn, extra,
                            sslcontext=None, server=None):
        protocol = None
        transport = None
        try:
            protocol = protocol_factory()
            waiter = futures.Future(loop=self)
            if sslcontext:
                transport = self._make_ssl_transport(
                    conn, protocol, sslcontext, waiter=waiter,
                    server_side=True, extra=extra, server=server)
            else:
                transport = self._make_socket_transport(
                    conn, protocol, waiter=waiter, extra=extra,
                    server=server)

            try:
                yield from waiter
            except:
                transport.close()
                raise

            # It's now up to the protocol to handle the connection.
        except Exception as exc:
            if self._debug:
                context = {
                    'message': ('Error on transport creation '
                                'for incoming connection'),
                    'exception': exc,
                }
                if protocol is not None:
                    context['protocol'] = protocol
                if transport is not None:
                    context['transport'] = transport
                self.call_exception_handler(context)

    def add_reader(self, fd, callback, *args):
        """Add a reader callback."""
        self._check_closed()
        handle = events.Handle(callback, args, self)
        try:
            key = self._selector.get_key(fd)
        except KeyError:
            self._selector.register(fd, selectors.EVENT_READ,
                                    (handle, None))
        else:
            mask, (reader, writer) = key.events, key.data
            self._selector.modify(fd, mask | selectors.EVENT_READ,
                                  (handle, writer))
            if reader is not None:
                reader.cancel()

    def remove_reader(self, fd):
        """Remove a reader callback."""
        if self.is_closed():
            return False
        try:
            key = self._selector.get_key(fd)
        except KeyError:
            return False
        else:
            mask, (reader, writer) = key.events, key.data
            mask &= ~selectors.EVENT_READ
            if not mask:
                self._selector.unregister(fd)
            else:
                self._selector.modify(fd, mask, (None, writer))

            if reader is not None:
                reader.cancel()
                return True
            else:
                return False

    def add_writer(self, fd, callback, *args):
        """Add a writer callback.."""
        self._check_closed()
        handle = events.Handle(callback, args, self)
        try:
            key = self._selector.get_key(fd)
        except KeyError:
            self._selector.register(fd, selectors.EVENT_WRITE,
                                    (None, handle))
        else:
            mask, (reader, writer) = key.events, key.data
            self._selector.modify(fd, mask | selectors.EVENT_WRITE,
                                  (reader, handle))
            if writer is not None:
                writer.cancel()

    def remove_writer(self, fd):
        """Remove a writer callback."""
        if self.is_closed():
            return False
        try:
            key = self._selector.get_key(fd)
        except KeyError:
            return False
        else:
            mask, (reader, writer) = key.events, key.data
            # Remove both writer and connector.
            mask &= ~selectors.EVENT_WRITE
            if not mask:
                self._selector.unregister(fd)
            else:
                self._selector.modify(fd, mask, (reader, None))

            if writer is not None:
                writer.cancel()
                return True
            else:
                return False

    def sock_recv(self, sock, n):
        """Receive data from the socket.

        The return value is a bytes object representing the data received.
        The maximum amount of data to be received at once is specified by
        nbytes.

        This method is a coroutine.
        """
        if self._debug and sock.gettimeout() != 0:
            raise ValueError("the socket must be non-blocking")
        fut = futures.Future(loop=self)
        self._sock_recv(fut, False, sock, n)
        return fut

    def _sock_recv(self, fut, registered, sock, n):
        # _sock_recv() can add itself as an I/O callback if the operation can't
        # be done immediately. Don't use it directly, call sock_recv().
        fd = sock.fileno()
        if registered:
            # Remove the callback early.  It should be rare that the
            # selector says the fd is ready but the call still returns
            # EAGAIN, and I am willing to take a hit in that case in
            # order to simplify the common case.
            self.remove_reader(fd)
        if fut.cancelled():
            return
        try:
            data = sock.recv(n)
        except (BlockingIOError, InterruptedError):
            self.add_reader(fd, self._sock_recv, fut, True, sock, n)
        except Exception as exc:
            fut.set_exception(exc)
        else:
            fut.set_result(data)

    def sock_sendall(self, sock, data):
        """Send data to the socket.

        The socket must be connected to a remote socket. This method continues
        to send data from data until either all data has been sent or an
        error occurs. None is returned on success. On error, an exception is
        raised, and there is no way to determine how much data, if any, was
        successfully processed by the receiving end of the connection.

        This method is a coroutine.
        """
        if self._debug and sock.gettimeout() != 0:
            raise ValueError("the socket must be non-blocking")
        fut = futures.Future(loop=self)
        if data:
            self._sock_sendall(fut, False, sock, data)
        else:
            fut.set_result(None)
        return fut

    def _sock_sendall(self, fut, registered, sock, data):
        fd = sock.fileno()

        if registered:
            self.remove_writer(fd)
        if fut.cancelled():
            return

        try:
            n = sock.send(data)
        except (BlockingIOError, InterruptedError):
            n = 0
        except Exception as exc:
            fut.set_exception(exc)
            return

        if n == len(data):
            fut.set_result(None)
        else:
            if n:
                data = data[n:]
            self.add_writer(fd, self._sock_sendall, fut, True, sock, data)

    def sock_connect(self, sock, address):
        """Connect to a remote socket at address.

        The address must be already resolved to avoid the trap of hanging the
        entire event loop when the address requires doing a DNS lookup. For
        example, it must be an IP address, not an hostname, for AF_INET and
        AF_INET6 address families. Use getaddrinfo() to resolve the hostname
        asynchronously.

        This method is a coroutine.
        """
        if self._debug and sock.gettimeout() != 0:
            raise ValueError("the socket must be non-blocking")
        fut = futures.Future(loop=self)
        try:
            base_events._check_resolved_address(sock, address)
        except ValueError as err:
            fut.set_exception(err)
        else:
            self._sock_connect(fut, sock, address)
        return fut

    def _sock_connect(self, fut, sock, address):
        fd = sock.fileno()
        try:
            sock.connect(address)
        except (BlockingIOError, InterruptedError):
            # Issue #23618: When the C function connect() fails with EINTR, the
            # connection runs in background. We have to wait until the socket
            # becomes writable to be notified when the connection succeed or
            # fails.
            fut.add_done_callback(functools.partial(self._sock_connect_done,
                                                    fd))
            self.add_writer(fd, self._sock_connect_cb, fut, sock, address)
        except Exception as exc:
            fut.set_exception(exc)
        else:
            fut.set_result(None)

    def _sock_connect_done(self, fd, fut):
        self.remove_writer(fd)

    def _sock_connect_cb(self, fut, sock, address):
        if fut.cancelled():
            return

        try:
            err = sock.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR)
            if err != 0:
                # Jump to any except clause below.
                raise OSError(err, 'Connect call failed %s' % (address,))
        except (BlockingIOError, InterruptedError):
            # socket is still registered, the callback will be retried later
            pass
        except Exception as exc:
            fut.set_exception(exc)
        else:
            fut.set_result(None)

    def sock_accept(self, sock):
        """Accept a connection.

        The socket must be bound to an address and listening for connections.
        The return value is a pair (conn, address) where conn is a new socket
        object usable to send and receive data on the connection, and address
        is the address bound to the socket on the other end of the connection.

        This method is a coroutine.
        """
        if self._debug and sock.gettimeout() != 0:
            raise ValueError("the socket must be non-blocking")
        fut = futures.Future(loop=self)
        self._sock_accept(fut, False, sock)
        return fut

    def _sock_accept(self, fut, registered, sock):
        fd = sock.fileno()
        if registered:
            self.remove_reader(fd)
        if fut.cancelled():
            return
        try:
            conn, address = sock.accept()
            conn.setblocking(False)
        except (BlockingIOError, InterruptedError):
            self.add_reader(fd, self._sock_accept, fut, True, sock)
        except Exception as exc:
            fut.set_exception(exc)
        else:
            fut.set_result((conn, address))

    def _process_events(self, event_list):
        for key, mask in event_list:
            fileobj, (reader, writer) = key.fileobj, key.data
            if mask & selectors.EVENT_READ and reader is not None:
                if reader._cancelled:
                    self.remove_reader(fileobj)
                else:
                    self._add_callback(reader)
            if mask & selectors.EVENT_WRITE and writer is not None:
                if writer._cancelled:
                    self.remove_writer(fileobj)
                else:
                    self._add_callback(writer)

    def _stop_serving(self, sock):
        self.remove_reader(sock.fileno())
        sock.close()


class _SelectorTransport(transports._FlowControlMixin,
                         transports.Transport):

    max_size = 256 * 1024  # Buffer size passed to recv().

    _buffer_factory = bytearray  # Constructs initial value for self._buffer.

    # Attribute used in the destructor: it must be set even if the constructor
    # is not called (see _SelectorSslTransport which may start by raising an
    # exception)
    _sock = None

    def __init__(self, loop, sock, protocol, extra=None, server=None):
        super().__init__(extra, loop)
        self._extra['socket'] = sock
        self._extra['sockname'] = sock.getsockname()
        if 'peername' not in self._extra:
            try:
                self._extra['peername'] = sock.getpeername()
            except socket.error:
                self._extra['peername'] = None
        self._sock = sock
        self._sock_fd = sock.fileno()
        self._protocol = protocol
        self._protocol_connected = True
        self._server = server
        self._buffer = self._buffer_factory()
        self._conn_lost = 0  # Set when call to connection_lost scheduled.
        self._closing = False  # Set when close() called.
        if self._server is not None:
            self._server._attach()

    def __repr__(self):
        info = [self.__class__.__name__]
        if self._sock is None:
            info.append('closed')
        elif self._closing:
            info.append('closing')
        info.append('fd=%s' % self._sock_fd)
        # test if the transport was closed
        if self._loop is not None and not self._loop.is_closed():
            polling = _test_selector_event(self._loop._selector,
                                           self._sock_fd, selectors.EVENT_READ)
            if polling:
                info.append('read=polling')
            else:
                info.append('read=idle')

            polling = _test_selector_event(self._loop._selector,
                                           self._sock_fd,
                                           selectors.EVENT_WRITE)
            if polling:
                state = 'polling'
            else:
                state = 'idle'

            bufsize = self.get_write_buffer_size()
            info.append('write=<%s, bufsize=%s>' % (state, bufsize))
        return '<%s>' % ' '.join(info)

    def abort(self):
        self._force_close(None)

    def is_closing(self):
        return self._closing

    def close(self):
        if self._closing:
            return
        self._closing = True
        self._loop.remove_reader(self._sock_fd)
        if not self._buffer:
            self._conn_lost += 1
            self._loop.call_soon(self._call_connection_lost, None)

    # On Python 3.3 and older, objects with a destructor part of a reference
    # cycle are never destroyed. It's not more the case on Python 3.4 thanks
    # to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if self._sock is not None:
                warnings.warn("unclosed transport %r" % self, ResourceWarning)
                self._sock.close()

    def _fatal_error(self, exc, message='Fatal error on transport'):
        # Should be called from exception handler only.
        if isinstance(exc, (BrokenPipeError,
                            ConnectionResetError, ConnectionAbortedError)):
            if self._loop.get_debug():
                logger.debug("%r: %s", self, message, exc_info=True)
        else:
            self._loop.call_exception_handler({
                'message': message,
                'exception': exc,
                'transport': self,
                'protocol': self._protocol,
            })
        self._force_close(exc)

    def _force_close(self, exc):
        if self._conn_lost:
            return
        if self._buffer:
            self._buffer.clear()
            self._loop.remove_writer(self._sock_fd)
        if not self._closing:
            self._closing = True
            self._loop.remove_reader(self._sock_fd)
        self._conn_lost += 1
        self._loop.call_soon(self._call_connection_lost, exc)

    def _call_connection_lost(self, exc):
        try:
            if self._protocol_connected:
                self._protocol.connection_lost(exc)
        finally:
            self._sock.close()
            self._sock = None
            self._protocol = None
            self._loop = None
            server = self._server
            if server is not None:
                server._detach()
                self._server = None

    def get_write_buffer_size(self):
        return len(self._buffer)


class _SelectorSocketTransport(_SelectorTransport):

    def __init__(self, loop, sock, protocol, waiter=None,
                 extra=None, server=None):
        super().__init__(loop, sock, protocol, extra, server)
        self._eof = False
        self._paused = False

        self._loop.call_soon(self._protocol.connection_made, self)
        # only start reading when connection_made() has been called
        self._loop.call_soon(self._loop.add_reader,
                             self._sock_fd, self._read_ready)
        if waiter is not None:
            # only wake up the waiter when connection_made() has been called
            self._loop.call_soon(futures._set_result_unless_cancelled,
                                 waiter, None)

    def pause_reading(self):
        if self._closing:
            raise RuntimeError('Cannot pause_reading() when closing')
        if self._paused:
            raise RuntimeError('Already paused')
        self._paused = True
        self._loop.remove_reader(self._sock_fd)
        if self._loop.get_debug():
            logger.debug("%r pauses reading", self)

    def resume_reading(self):
        if not self._paused:
            raise RuntimeError('Not paused')
        self._paused = False
        if self._closing:
            return
        self._loop.add_reader(self._sock_fd, self._read_ready)
        if self._loop.get_debug():
            logger.debug("%r resumes reading", self)

    def _read_ready(self):
        try:
            data = self._sock.recv(self.max_size)
        except (BlockingIOError, InterruptedError):
            pass
        except Exception as exc:
            self._fatal_error(exc, 'Fatal read error on socket transport')
        else:
            if data:
                self._protocol.data_received(data)
            else:
                if self._loop.get_debug():
                    logger.debug("%r received EOF", self)
                keep_open = self._protocol.eof_received()
                if keep_open:
                    # We're keeping the connection open so the
                    # protocol can write more, but we still can't
                    # receive more, so remove the reader callback.
                    self._loop.remove_reader(self._sock_fd)
                else:
                    self.close()

    def write(self, data):
        if not isinstance(data, (bytes, bytearray, memoryview)):
            raise TypeError('data argument must be byte-ish (%r)',
                            type(data))
        if self._eof:
            raise RuntimeError('Cannot call write() after write_eof()')
        if not data:
            return

        if self._conn_lost:
            if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES:
                logger.warning('socket.send() raised exception.')
            self._conn_lost += 1
            return

        if not self._buffer:
            # Optimization: try to send now.
            try:
                n = self._sock.send(data)
            except (BlockingIOError, InterruptedError):
                pass
            except Exception as exc:
                self._fatal_error(exc, 'Fatal write error on socket transport')
                return
            else:
                data = data[n:]
                if not data:
                    return
            # Not all was written; register write handler.
            self._loop.add_writer(self._sock_fd, self._write_ready)

        # Add it to the buffer.
        self._buffer.extend(data)
        self._maybe_pause_protocol()

    def _write_ready(self):
        assert self._buffer, 'Data should not be empty'

        try:
            n = self._sock.send(self._buffer)
        except (BlockingIOError, InterruptedError):
            pass
        except Exception as exc:
            self._loop.remove_writer(self._sock_fd)
            self._buffer.clear()
            self._fatal_error(exc, 'Fatal write error on socket transport')
        else:
            if n:
                del self._buffer[:n]
            self._maybe_resume_protocol()  # May append to buffer.
            if not self._buffer:
                self._loop.remove_writer(self._sock_fd)
                if self._closing:
                    self._call_connection_lost(None)
                elif self._eof:
                    self._sock.shutdown(socket.SHUT_WR)

    def write_eof(self):
        if self._eof:
            return
        self._eof = True
        if not self._buffer:
            self._sock.shutdown(socket.SHUT_WR)

    def can_write_eof(self):
        return True


class _SelectorSslTransport(_SelectorTransport):

    _buffer_factory = bytearray

    def __init__(self, loop, rawsock, protocol, sslcontext, waiter=None,
                 server_side=False, server_hostname=None,
                 extra=None, server=None):
        if ssl is None:
            raise RuntimeError('stdlib ssl module not available')

        if not sslcontext:
            sslcontext = sslproto._create_transport_context(server_side, server_hostname)

        wrap_kwargs = {
            'server_side': server_side,
            'do_handshake_on_connect': False,
        }
        if server_hostname and not server_side:
            wrap_kwargs['server_hostname'] = server_hostname
        sslsock = sslcontext.wrap_socket(rawsock, **wrap_kwargs)

        super().__init__(loop, sslsock, protocol, extra, server)
        # the protocol connection is only made after the SSL handshake
        self._protocol_connected = False

        self._server_hostname = server_hostname
        self._waiter = waiter
        self._sslcontext = sslcontext
        self._paused = False

        # SSL-specific extra info.  (peercert is set later)
        self._extra.update(sslcontext=sslcontext)

        if self._loop.get_debug():
            logger.debug("%r starts SSL handshake", self)
            start_time = self._loop.time()
        else:
            start_time = None
        self._on_handshake(start_time)

    def _wakeup_waiter(self, exc=None):
        if self._waiter is None:
            return
        if not self._waiter.cancelled():
            if exc is not None:
                self._waiter.set_exception(exc)
            else:
                self._waiter.set_result(None)
        self._waiter = None

    def _on_handshake(self, start_time):
        try:
            self._sock.do_handshake()
        except ssl.SSLWantReadError:
            self._loop.add_reader(self._sock_fd,
                                  self._on_handshake, start_time)
            return
        except ssl.SSLWantWriteError:
            self._loop.add_writer(self._sock_fd,
                                  self._on_handshake, start_time)
            return
        except BaseException as exc:
            if self._loop.get_debug():
                logger.warning("%r: SSL handshake failed",
                               self, exc_info=True)
            self._loop.remove_reader(self._sock_fd)
            self._loop.remove_writer(self._sock_fd)
            self._sock.close()
            self._wakeup_waiter(exc)
            if isinstance(exc, Exception):
                return
            else:
                raise

        self._loop.remove_reader(self._sock_fd)
        self._loop.remove_writer(self._sock_fd)

        peercert = self._sock.getpeercert()
        if not hasattr(self._sslcontext, 'check_hostname'):
            # Verify hostname if requested, Python 3.4+ uses check_hostname
            # and checks the hostname in do_handshake()
            if (self._server_hostname and
                self._sslcontext.verify_mode != ssl.CERT_NONE):
                try:
                    ssl.match_hostname(peercert, self._server_hostname)
                except Exception as exc:
                    if self._loop.get_debug():
                        logger.warning("%r: SSL handshake failed "
                                       "on matching the hostname",
                                       self, exc_info=True)
                    self._sock.close()
                    self._wakeup_waiter(exc)
                    return

        # Add extra info that becomes available after handshake.
        self._extra.update(peercert=peercert,
                           cipher=self._sock.cipher(),
                           compression=self._sock.compression(),
                           ssl_object=self._sock,
                           )

        self._read_wants_write = False
        self._write_wants_read = False
        self._loop.add_reader(self._sock_fd, self._read_ready)
        self._protocol_connected = True
        self._loop.call_soon(self._protocol.connection_made, self)
        # only wake up the waiter when connection_made() has been called
        self._loop.call_soon(self._wakeup_waiter)

        if self._loop.get_debug():
            dt = self._loop.time() - start_time
            logger.debug("%r: SSL handshake took %.1f ms", self, dt * 1e3)

    def pause_reading(self):
        # XXX This is a bit icky, given the comment at the top of
        # _read_ready().  Is it possible to evoke a deadlock?  I don't
        # know, although it doesn't look like it; write() will still
        # accept more data for the buffer and eventually the app will
        # call resume_reading() again, and things will flow again.

        if self._closing:
            raise RuntimeError('Cannot pause_reading() when closing')
        if self._paused:
            raise RuntimeError('Already paused')
        self._paused = True
        self._loop.remove_reader(self._sock_fd)
        if self._loop.get_debug():
            logger.debug("%r pauses reading", self)

    def resume_reading(self):
        if not self._paused:
            raise RuntimeError('Not paused')
        self._paused = False
        if self._closing:
            return
        self._loop.add_reader(self._sock_fd, self._read_ready)
        if self._loop.get_debug():
            logger.debug("%r resumes reading", self)

    def _read_ready(self):
        if self._write_wants_read:
            self._write_wants_read = False
            self._write_ready()

            if self._buffer:
                self._loop.add_writer(self._sock_fd, self._write_ready)

        try:
            data = self._sock.recv(self.max_size)
        except (BlockingIOError, InterruptedError, ssl.SSLWantReadError):
            pass
        except ssl.SSLWantWriteError:
            self._read_wants_write = True
            self._loop.remove_reader(self._sock_fd)
            self._loop.add_writer(self._sock_fd, self._write_ready)
        except Exception as exc:
            self._fatal_error(exc, 'Fatal read error on SSL transport')
        else:
            if data:
                self._protocol.data_received(data)
            else:
                try:
                    if self._loop.get_debug():
                        logger.debug("%r received EOF", self)
                    keep_open = self._protocol.eof_received()
                    if keep_open:
                        logger.warning('returning true from eof_received() '
                                       'has no effect when using ssl')
                finally:
                    self.close()

    def _write_ready(self):
        if self._read_wants_write:
            self._read_wants_write = False
            self._read_ready()

            if not (self._paused or self._closing):
                self._loop.add_reader(self._sock_fd, self._read_ready)

        if self._buffer:
            try:
                n = self._sock.send(self._buffer)
            except (BlockingIOError, InterruptedError, ssl.SSLWantWriteError):
                n = 0
            except ssl.SSLWantReadError:
                n = 0
                self._loop.remove_writer(self._sock_fd)
                self._write_wants_read = True
            except Exception as exc:
                self._loop.remove_writer(self._sock_fd)
                self._buffer.clear()
                self._fatal_error(exc, 'Fatal write error on SSL transport')
                return

            if n:
                del self._buffer[:n]

        self._maybe_resume_protocol()  # May append to buffer.

        if not self._buffer:
            self._loop.remove_writer(self._sock_fd)
            if self._closing:
                self._call_connection_lost(None)

    def write(self, data):
        if not isinstance(data, (bytes, bytearray, memoryview)):
            raise TypeError('data argument must be byte-ish (%r)',
                            type(data))
        if not data:
            return

        if self._conn_lost:
            if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES:
                logger.warning('socket.send() raised exception.')
            self._conn_lost += 1
            return

        if not self._buffer:
            self._loop.add_writer(self._sock_fd, self._write_ready)

        # Add it to the buffer.
        self._buffer.extend(data)
        self._maybe_pause_protocol()

    def can_write_eof(self):
        return False


class _SelectorDatagramTransport(_SelectorTransport):

    _buffer_factory = collections.deque

    def __init__(self, loop, sock, protocol, address=None,
                 waiter=None, extra=None):
        super().__init__(loop, sock, protocol, extra)
        self._address = address
        self._loop.call_soon(self._protocol.connection_made, self)
        # only start reading when connection_made() has been called
        self._loop.call_soon(self._loop.add_reader,
                             self._sock_fd, self._read_ready)
        if waiter is not None:
            # only wake up the waiter when connection_made() has been called
            self._loop.call_soon(futures._set_result_unless_cancelled,
                                 waiter, None)

    def get_write_buffer_size(self):
        return sum(len(data) for data, _ in self._buffer)

    def _read_ready(self):
        try:
            data, addr = self._sock.recvfrom(self.max_size)
        except (BlockingIOError, InterruptedError):
            pass
        except OSError as exc:
            self._protocol.error_received(exc)
        except Exception as exc:
            self._fatal_error(exc, 'Fatal read error on datagram transport')
        else:
            self._protocol.datagram_received(data, addr)

    def sendto(self, data, addr=None):
        if not isinstance(data, (bytes, bytearray, memoryview)):
            raise TypeError('data argument must be byte-ish (%r)',
                            type(data))
        if not data:
            return

        if self._address and addr not in (None, self._address):
            raise ValueError('Invalid address: must be None or %s' %
                             (self._address,))

        if self._conn_lost and self._address:
            if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES:
                logger.warning('socket.send() raised exception.')
            self._conn_lost += 1
            return

        if not self._buffer:
            # Attempt to send it right away first.
            try:
                if self._address:
                    self._sock.send(data)
                else:
                    self._sock.sendto(data, addr)
                return
            except (BlockingIOError, InterruptedError):
                self._loop.add_writer(self._sock_fd, self._sendto_ready)
            except OSError as exc:
                self._protocol.error_received(exc)
                return
            except Exception as exc:
                self._fatal_error(exc,
                                  'Fatal write error on datagram transport')
                return

        # Ensure that what we buffer is immutable.
        self._buffer.append((bytes(data), addr))
        self._maybe_pause_protocol()

    def _sendto_ready(self):
        while self._buffer:
            data, addr = self._buffer.popleft()
            try:
                if self._address:
                    self._sock.send(data)
                else:
                    self._sock.sendto(data, addr)
            except (BlockingIOError, InterruptedError):
                self._buffer.appendleft((data, addr))  # Try again later.
                break
            except OSError as exc:
                self._protocol.error_received(exc)
                return
            except Exception as exc:
                self._fatal_error(exc,
                                  'Fatal write error on datagram transport')
                return

        self._maybe_resume_protocol()  # May append to buffer.
        if not self._buffer:
            self._loop.remove_writer(self._sock_fd)
            if self._closing:
                self._call_connection_lost(None)
lib\asyncio\sslproto.py
import collections
import warnings
try:
    import ssl
except ImportError:  # pragma: no cover
    ssl = None

from . import compat
from . import protocols
from . import transports
from .log import logger


def _create_transport_context(server_side, server_hostname):
    if server_side:
        raise ValueError('Server side SSL needs a valid SSLContext')

    # Client side may pass ssl=True to use a default
    # context; in that case the sslcontext passed is None.
    # The default is secure for client connections.
    if hasattr(ssl, 'create_default_context'):
        # Python 3.4+: use up-to-date strong settings.
        sslcontext = ssl.create_default_context()
        if not server_hostname:
            sslcontext.check_hostname = False
    else:
        # Fallback for Python 3.3.
        sslcontext = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
        sslcontext.options |= ssl.OP_NO_SSLv2
        sslcontext.options |= ssl.OP_NO_SSLv3
        sslcontext.set_default_verify_paths()
        sslcontext.verify_mode = ssl.CERT_REQUIRED
    return sslcontext


def _is_sslproto_available():
    return hasattr(ssl, "MemoryBIO")


# States of an _SSLPipe.
_UNWRAPPED = "UNWRAPPED"
_DO_HANDSHAKE = "DO_HANDSHAKE"
_WRAPPED = "WRAPPED"
_SHUTDOWN = "SHUTDOWN"


class _SSLPipe(object):
    """An SSL "Pipe".

    An SSL pipe allows you to communicate with an SSL/TLS protocol instance
    through memory buffers. It can be used to implement a security layer for an
    existing connection where you don't have access to the connection's file
    descriptor, or for some reason you don't want to use it.

    An SSL pipe can be in "wrapped" and "unwrapped" mode. In unwrapped mode,
    data is passed through untransformed. In wrapped mode, application level
    data is encrypted to SSL record level data and vice versa. The SSL record
    level is the lowest level in the SSL protocol suite and is what travels
    as-is over the wire.

    An SslPipe initially is in "unwrapped" mode. To start SSL, call
    do_handshake(). To shutdown SSL again, call unwrap().
    """

    max_size = 256 * 1024   # Buffer size passed to read()

    def __init__(self, context, server_side, server_hostname=None):
        """
        The *context* argument specifies the ssl.SSLContext to use.

        The *server_side* argument indicates whether this is a server side or
        client side transport.

        The optional *server_hostname* argument can be used to specify the
        hostname you are connecting to. You may only specify this parameter if
        the _ssl module supports Server Name Indication (SNI).
        """
        self._context = context
        self._server_side = server_side
        self._server_hostname = server_hostname
        self._state = _UNWRAPPED
        self._incoming = ssl.MemoryBIO()
        self._outgoing = ssl.MemoryBIO()
        self._sslobj = None
        self._need_ssldata = False
        self._handshake_cb = None
        self._shutdown_cb = None

    @property
    def context(self):
        """The SSL context passed to the constructor."""
        return self._context

    @property
    def ssl_object(self):
        """The internal ssl.SSLObject instance.

        Return None if the pipe is not wrapped.
        """
        return self._sslobj

    @property
    def need_ssldata(self):
        """Whether more record level data is needed to complete a handshake
        that is currently in progress."""
        return self._need_ssldata

    @property
    def wrapped(self):
        """
        Whether a security layer is currently in effect.

        Return False during handshake.
        """
        return self._state == _WRAPPED

    def do_handshake(self, callback=None):
        """Start the SSL handshake.

        Return a list of ssldata. A ssldata element is a list of buffers

        The optional *callback* argument can be used to install a callback that
        will be called when the handshake is complete. The callback will be
        called with None if successful, else an exception instance.
        """
        if self._state != _UNWRAPPED:
            raise RuntimeError('handshake in progress or completed')
        self._sslobj = self._context.wrap_bio(
            self._incoming, self._outgoing,
            server_side=self._server_side,
            server_hostname=self._server_hostname)
        self._state = _DO_HANDSHAKE
        self._handshake_cb = callback
        ssldata, appdata = self.feed_ssldata(b'', only_handshake=True)
        assert len(appdata) == 0
        return ssldata

    def shutdown(self, callback=None):
        """Start the SSL shutdown sequence.

        Return a list of ssldata. A ssldata element is a list of buffers

        The optional *callback* argument can be used to install a callback that
        will be called when the shutdown is complete. The callback will be
        called without arguments.
        """
        if self._state == _UNWRAPPED:
            raise RuntimeError('no security layer present')
        if self._state == _SHUTDOWN:
            raise RuntimeError('shutdown in progress')
        assert self._state in (_WRAPPED, _DO_HANDSHAKE)
        self._state = _SHUTDOWN
        self._shutdown_cb = callback
        ssldata, appdata = self.feed_ssldata(b'')
        assert appdata == [] or appdata == [b'']
        return ssldata

    def feed_eof(self):
        """Send a potentially "ragged" EOF.

        This method will raise an SSL_ERROR_EOF exception if the EOF is
        unexpected.
        """
        self._incoming.write_eof()
        ssldata, appdata = self.feed_ssldata(b'')
        assert appdata == [] or appdata == [b'']

    def feed_ssldata(self, data, only_handshake=False):
        """Feed SSL record level data into the pipe.

        The data must be a bytes instance. It is OK to send an empty bytes
        instance. This can be used to get ssldata for a handshake initiated by
        this endpoint.

        Return a (ssldata, appdata) tuple. The ssldata element is a list of
        buffers containing SSL data that needs to be sent to the remote SSL.

        The appdata element is a list of buffers containing plaintext data that
        needs to be forwarded to the application. The appdata list may contain
        an empty buffer indicating an SSL "close_notify" alert. This alert must
        be acknowledged by calling shutdown().
        """
        if self._state == _UNWRAPPED:
            # If unwrapped, pass plaintext data straight through.
            if data:
                appdata = [data]
            else:
                appdata = []
            return ([], appdata)

        self._need_ssldata = False
        if data:
            self._incoming.write(data)

        ssldata = []
        appdata = []
        try:
            if self._state == _DO_HANDSHAKE:
                # Call do_handshake() until it doesn't raise anymore.
                self._sslobj.do_handshake()
                self._state = _WRAPPED
                if self._handshake_cb:
                    self._handshake_cb(None)
                if only_handshake:
                    return (ssldata, appdata)
                # Handshake done: execute the wrapped block

            if self._state == _WRAPPED:
                # Main state: read data from SSL until close_notify
                while True:
                    chunk = self._sslobj.read(self.max_size)
                    appdata.append(chunk)
                    if not chunk:  # close_notify
                        break

            elif self._state == _SHUTDOWN:
                # Call shutdown() until it doesn't raise anymore.
                self._sslobj.unwrap()
                self._sslobj = None
                self._state = _UNWRAPPED
                if self._shutdown_cb:
                    self._shutdown_cb()

            elif self._state == _UNWRAPPED:
                # Drain possible plaintext data after close_notify.
                appdata.append(self._incoming.read())
        except (ssl.SSLError, ssl.CertificateError) as exc:
            if getattr(exc, 'errno', None) not in (
                    ssl.SSL_ERROR_WANT_READ, ssl.SSL_ERROR_WANT_WRITE,
                    ssl.SSL_ERROR_SYSCALL):
                if self._state == _DO_HANDSHAKE and self._handshake_cb:
                    self._handshake_cb(exc)
                raise
            self._need_ssldata = (exc.errno == ssl.SSL_ERROR_WANT_READ)

        # Check for record level data that needs to be sent back.
        # Happens for the initial handshake and renegotiations.
        if self._outgoing.pending:
            ssldata.append(self._outgoing.read())
        return (ssldata, appdata)

    def feed_appdata(self, data, offset=0):
        """Feed plaintext data into the pipe.

        Return an (ssldata, offset) tuple. The ssldata element is a list of
        buffers containing record level data that needs to be sent to the
        remote SSL instance. The offset is the number of plaintext bytes that
        were processed, which may be less than the length of data.

        NOTE: In case of short writes, this call MUST be retried with the SAME
        buffer passed into the *data* argument (i.e. the id() must be the
        same). This is an OpenSSL requirement. A further particularity is that
        a short write will always have offset == 0, because the _ssl module
        does not enable partial writes. And even though the offset is zero,
        there will still be encrypted data in ssldata.
        """
        assert 0 <= offset <= len(data)
        if self._state == _UNWRAPPED:
            # pass through data in unwrapped mode
            if offset < len(data):
                ssldata = [data[offset:]]
            else:
                ssldata = []
            return (ssldata, len(data))

        ssldata = []
        view = memoryview(data)
        while True:
            self._need_ssldata = False
            try:
                if offset < len(view):
                    offset += self._sslobj.write(view[offset:])
            except ssl.SSLError as exc:
                # It is not allowed to call write() after unwrap() until the
                # close_notify is acknowledged. We return the condition to the
                # caller as a short write.
                if exc.reason == 'PROTOCOL_IS_SHUTDOWN':
                    exc.errno = ssl.SSL_ERROR_WANT_READ
                if exc.errno not in (ssl.SSL_ERROR_WANT_READ,
                                     ssl.SSL_ERROR_WANT_WRITE,
                                     ssl.SSL_ERROR_SYSCALL):
                    raise
                self._need_ssldata = (exc.errno == ssl.SSL_ERROR_WANT_READ)

            # See if there's any record level data back for us.
            if self._outgoing.pending:
                ssldata.append(self._outgoing.read())
            if offset == len(view) or self._need_ssldata:
                break
        return (ssldata, offset)


class _SSLProtocolTransport(transports._FlowControlMixin,
                            transports.Transport):

    def __init__(self, loop, ssl_protocol, app_protocol):
        self._loop = loop
        # SSLProtocol instance
        self._ssl_protocol = ssl_protocol
        self._app_protocol = app_protocol
        self._closed = False

    def get_extra_info(self, name, default=None):
        """Get optional transport information."""
        return self._ssl_protocol._get_extra_info(name, default)

    def is_closing(self):
        return self._closed

    def close(self):
        """Close the transport.

        Buffered data will be flushed asynchronously.  No more data
        will be received.  After all buffered data is flushed, the
        protocol's connection_lost() method will (eventually) called
        with None as its argument.
        """
        self._closed = True
        self._ssl_protocol._start_shutdown()

    # On Python 3.3 and older, objects with a destructor part of a reference
    # cycle are never destroyed. It's not more the case on Python 3.4 thanks
    # to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if not self._closed:
                warnings.warn("unclosed transport %r" % self, ResourceWarning)
                self.close()

    def pause_reading(self):
        """Pause the receiving end.

        No data will be passed to the protocol's data_received()
        method until resume_reading() is called.
        """
        self._ssl_protocol._transport.pause_reading()

    def resume_reading(self):
        """Resume the receiving end.

        Data received will once again be passed to the protocol's
        data_received() method.
        """
        self._ssl_protocol._transport.resume_reading()

    def set_write_buffer_limits(self, high=None, low=None):
        """Set the high- and low-water limits for write flow control.

        These two values control when to call the protocol's
        pause_writing() and resume_writing() methods.  If specified,
        the low-water limit must be less than or equal to the
        high-water limit.  Neither value can be negative.

        The defaults are implementation-specific.  If only the
        high-water limit is given, the low-water limit defaults to an
        implementation-specific value less than or equal to the
        high-water limit.  Setting high to zero forces low to zero as
        well, and causes pause_writing() to be called whenever the
        buffer becomes non-empty.  Setting low to zero causes
        resume_writing() to be called only once the buffer is empty.
        Use of zero for either limit is generally sub-optimal as it
        reduces opportunities for doing I/O and computation
        concurrently.
        """
        self._ssl_protocol._transport.set_write_buffer_limits(high, low)

    def get_write_buffer_size(self):
        """Return the current size of the write buffer."""
        return self._ssl_protocol._transport.get_write_buffer_size()

    def write(self, data):
        """Write some data bytes to the transport.

        This does not block; it buffers the data and arranges for it
        to be sent out asynchronously.
        """
        if not isinstance(data, (bytes, bytearray, memoryview)):
            raise TypeError("data: expecting a bytes-like instance, got {!r}"
                                .format(type(data).__name__))
        if not data:
            return
        self._ssl_protocol._write_appdata(data)

    def can_write_eof(self):
        """Return True if this transport supports write_eof(), False if not."""
        return False

    def abort(self):
        """Close the transport immediately.

        Buffered data will be lost.  No more data will be received.
        The protocol's connection_lost() method will (eventually) be
        called with None as its argument.
        """
        self._ssl_protocol._abort()


class SSLProtocol(protocols.Protocol):
    """SSL protocol.

    Implementation of SSL on top of a socket using incoming and outgoing
    buffers which are ssl.MemoryBIO objects.
    """

    def __init__(self, loop, app_protocol, sslcontext, waiter,
                 server_side=False, server_hostname=None):
        if ssl is None:
            raise RuntimeError('stdlib ssl module not available')

        if not sslcontext:
            sslcontext = _create_transport_context(server_side, server_hostname)

        self._server_side = server_side
        if server_hostname and not server_side:
            self._server_hostname = server_hostname
        else:
            self._server_hostname = None
        self._sslcontext = sslcontext
        # SSL-specific extra info. More info are set when the handshake
        # completes.
        self._extra = dict(sslcontext=sslcontext)

        # App data write buffering
        self._write_backlog = collections.deque()
        self._write_buffer_size = 0

        self._waiter = waiter
        self._loop = loop
        self._app_protocol = app_protocol
        self._app_transport = _SSLProtocolTransport(self._loop,
                                                    self, self._app_protocol)
        # _SSLPipe instance (None until the connection is made)
        self._sslpipe = None
        self._session_established = False
        self._in_handshake = False
        self._in_shutdown = False
        # transport, ex: SelectorSocketTransport
        self._transport = None

    def _wakeup_waiter(self, exc=None):
        if self._waiter is None:
            return
        if not self._waiter.cancelled():
            if exc is not None:
                self._waiter.set_exception(exc)
            else:
                self._waiter.set_result(None)
        self._waiter = None

    def connection_made(self, transport):
        """Called when the low-level connection is made.

        Start the SSL handshake.
        """
        self._transport = transport
        self._sslpipe = _SSLPipe(self._sslcontext,
                                 self._server_side,
                                 self._server_hostname)
        self._start_handshake()

    def connection_lost(self, exc):
        """Called when the low-level connection is lost or closed.

        The argument is an exception object or None (the latter
        meaning a regular EOF is received or the connection was
        aborted or closed).
        """
        if self._session_established:
            self._session_established = False
            self._loop.call_soon(self._app_protocol.connection_lost, exc)
        self._transport = None
        self._app_transport = None

    def pause_writing(self):
        """Called when the low-level transport's buffer goes over
        the high-water mark.
        """
        self._app_protocol.pause_writing()

    def resume_writing(self):
        """Called when the low-level transport's buffer drains below
        the low-water mark.
        """
        self._app_protocol.resume_writing()

    def data_received(self, data):
        """Called when some SSL data is received.

        The argument is a bytes object.
        """
        try:
            ssldata, appdata = self._sslpipe.feed_ssldata(data)
        except ssl.SSLError as e:
            if self._loop.get_debug():
                logger.warning('%r: SSL error %s (reason %s)',
                               self, e.errno, e.reason)
            self._abort()
            return

        for chunk in ssldata:
            self._transport.write(chunk)

        for chunk in appdata:
            if chunk:
                self._app_protocol.data_received(chunk)
            else:
                self._start_shutdown()
                break

    def eof_received(self):
        """Called when the other end of the low-level stream
        is half-closed.

        If this returns a false value (including None), the transport
        will close itself.  If it returns a true value, closing the
        transport is up to the protocol.
        """
        try:
            if self._loop.get_debug():
                logger.debug("%r received EOF", self)

            self._wakeup_waiter(ConnectionResetError)

            if not self._in_handshake:
                keep_open = self._app_protocol.eof_received()
                if keep_open:
                    logger.warning('returning true from eof_received() '
                                   'has no effect when using ssl')
        finally:
            self._transport.close()

    def _get_extra_info(self, name, default=None):
        if name in self._extra:
            return self._extra[name]
        else:
            return self._transport.get_extra_info(name, default)

    def _start_shutdown(self):
        if self._in_shutdown:
            return
        self._in_shutdown = True
        self._write_appdata(b'')

    def _write_appdata(self, data):
        self._write_backlog.append((data, 0))
        self._write_buffer_size += len(data)
        self._process_write_backlog()

    def _start_handshake(self):
        if self._loop.get_debug():
            logger.debug("%r starts SSL handshake", self)
            self._handshake_start_time = self._loop.time()
        else:
            self._handshake_start_time = None
        self._in_handshake = True
        # (b'', 1) is a special value in _process_write_backlog() to do
        # the SSL handshake
        self._write_backlog.append((b'', 1))
        self._loop.call_soon(self._process_write_backlog)

    def _on_handshake_complete(self, handshake_exc):
        self._in_handshake = False

        sslobj = self._sslpipe.ssl_object
        try:
            if handshake_exc is not None:
                raise handshake_exc

            peercert = sslobj.getpeercert()
            if not hasattr(self._sslcontext, 'check_hostname'):
                # Verify hostname if requested, Python 3.4+ uses check_hostname
                # and checks the hostname in do_handshake()
                if (self._server_hostname
                and self._sslcontext.verify_mode != ssl.CERT_NONE):
                    ssl.match_hostname(peercert, self._server_hostname)
        except BaseException as exc:
            if self._loop.get_debug():
                if isinstance(exc, ssl.CertificateError):
                    logger.warning("%r: SSL handshake failed "
                                   "on verifying the certificate",
                                   self, exc_info=True)
                else:
                    logger.warning("%r: SSL handshake failed",
                                   self, exc_info=True)
            self._transport.close()
            if isinstance(exc, Exception):
                self._wakeup_waiter(exc)
                return
            else:
                raise

        if self._loop.get_debug():
            dt = self._loop.time() - self._handshake_start_time
            logger.debug("%r: SSL handshake took %.1f ms", self, dt * 1e3)

        # Add extra info that becomes available after handshake.
        self._extra.update(peercert=peercert,
                           cipher=sslobj.cipher(),
                           compression=sslobj.compression(),
                           ssl_object=sslobj,
                           )
        self._app_protocol.connection_made(self._app_transport)
        self._wakeup_waiter()
        self._session_established = True
        # In case transport.write() was already called. Don't call
        # immediatly _process_write_backlog(), but schedule it:
        # _on_handshake_complete() can be called indirectly from
        # _process_write_backlog(), and _process_write_backlog() is not
        # reentrant.
        self._loop.call_soon(self._process_write_backlog)

    def _process_write_backlog(self):
        # Try to make progress on the write backlog.
        if self._transport is None:
            return

        try:
            for i in range(len(self._write_backlog)):
                data, offset = self._write_backlog[0]
                if data:
                    ssldata, offset = self._sslpipe.feed_appdata(data, offset)
                elif offset:
                    ssldata = self._sslpipe.do_handshake(
                        self._on_handshake_complete)
                    offset = 1
                else:
                    ssldata = self._sslpipe.shutdown(self._finalize)
                    offset = 1

                for chunk in ssldata:
                    self._transport.write(chunk)

                if offset < len(data):
                    self._write_backlog[0] = (data, offset)
                    # A short write means that a write is blocked on a read
                    # We need to enable reading if it is paused!
                    assert self._sslpipe.need_ssldata
                    if self._transport._paused:
                        self._transport.resume_reading()
                    break

                # An entire chunk from the backlog was processed. We can
                # delete it and reduce the outstanding buffer size.
                del self._write_backlog[0]
                self._write_buffer_size -= len(data)
        except BaseException as exc:
            if self._in_handshake:
                # BaseExceptions will be re-raised in _on_handshake_complete.
                self._on_handshake_complete(exc)
            else:
                self._fatal_error(exc, 'Fatal error on SSL transport')
            if not isinstance(exc, Exception):
                # BaseException
                raise

    def _fatal_error(self, exc, message='Fatal error on transport'):
        # Should be called from exception handler only.
        if isinstance(exc, (BrokenPipeError, ConnectionResetError)):
            if self._loop.get_debug():
                logger.debug("%r: %s", self, message, exc_info=True)
        else:
            self._loop.call_exception_handler({
                'message': message,
                'exception': exc,
                'transport': self._transport,
                'protocol': self,
            })
        if self._transport:
            self._transport._force_close(exc)

    def _finalize(self):
        if self._transport is not None:
            self._transport.close()

    def _abort(self):
        if self._transport is not None:
            try:
                self._transport.abort()
            finally:
                self._finalize()
lib\asyncio\streams.py
"""Stream-related things."""

__all__ = ['StreamReader', 'StreamWriter', 'StreamReaderProtocol',
           'open_connection', 'start_server',
           'IncompleteReadError',
           'LimitOverrunError',
           ]

import socket

if hasattr(socket, 'AF_UNIX'):
    __all__.extend(['open_unix_connection', 'start_unix_server'])

from . import coroutines
from . import compat
from . import events
from . import futures
from . import protocols
from .coroutines import coroutine
from .log import logger


_DEFAULT_LIMIT = 2**16


class IncompleteReadError(EOFError):
    """
    Incomplete read error. Attributes:

    - partial: read bytes string before the end of stream was reached
    - expected: total number of expected bytes (or None if unknown)
    """
    def __init__(self, partial, expected):
        super().__init__("%d bytes read on a total of %r expected bytes"
                         % (len(partial), expected))
        self.partial = partial
        self.expected = expected


class LimitOverrunError(Exception):
    """Reached buffer limit while looking for the separator.

    Attributes:
    - message: error message
    - consumed: total number of bytes that should be consumed
    """
    def __init__(self, message, consumed):
        super().__init__(message)
        self.message = message
        self.consumed = consumed


@coroutine
def open_connection(host=None, port=None, *,
                    loop=None, limit=_DEFAULT_LIMIT, **kwds):
    """A wrapper for create_connection() returning a (reader, writer) pair.

    The reader returned is a StreamReader instance; the writer is a
    StreamWriter instance.

    The arguments are all the usual arguments to create_connection()
    except protocol_factory; most common are positional host and port,
    with various optional keyword arguments following.

    Additional optional keyword arguments are loop (to set the event loop
    instance to use) and limit (to set the buffer limit passed to the
    StreamReader).

    (If you want to customize the StreamReader and/or
    StreamReaderProtocol classes, just copy the code -- there's
    really nothing special here except some convenience.)
    """
    if loop is None:
        loop = events.get_event_loop()
    reader = StreamReader(limit=limit, loop=loop)
    protocol = StreamReaderProtocol(reader, loop=loop)
    transport, _ = yield from loop.create_connection(
        lambda: protocol, host, port, **kwds)
    writer = StreamWriter(transport, protocol, reader, loop)
    return reader, writer


@coroutine
def start_server(client_connected_cb, host=None, port=None, *,
                 loop=None, limit=_DEFAULT_LIMIT, **kwds):
    """Start a socket server, call back for each client connected.

    The first parameter, `client_connected_cb`, takes two parameters:
    client_reader, client_writer.  client_reader is a StreamReader
    object, while client_writer is a StreamWriter object.  This
    parameter can either be a plain callback function or a coroutine;
    if it is a coroutine, it will be automatically converted into a
    Task.

    The rest of the arguments are all the usual arguments to
    loop.create_server() except protocol_factory; most common are
    positional host and port, with various optional keyword arguments
    following.  The return value is the same as loop.create_server().

    Additional optional keyword arguments are loop (to set the event loop
    instance to use) and limit (to set the buffer limit passed to the
    StreamReader).

    The return value is the same as loop.create_server(), i.e. a
    Server object which can be used to stop the service.
    """
    if loop is None:
        loop = events.get_event_loop()

    def factory():
        reader = StreamReader(limit=limit, loop=loop)
        protocol = StreamReaderProtocol(reader, client_connected_cb,
                                        loop=loop)
        return protocol

    return (yield from loop.create_server(factory, host, port, **kwds))


if hasattr(socket, 'AF_UNIX'):
    # UNIX Domain Sockets are supported on this platform

    @coroutine
    def open_unix_connection(path=None, *,
                             loop=None, limit=_DEFAULT_LIMIT, **kwds):
        """Similar to `open_connection` but works with UNIX Domain Sockets."""
        if loop is None:
            loop = events.get_event_loop()
        reader = StreamReader(limit=limit, loop=loop)
        protocol = StreamReaderProtocol(reader, loop=loop)
        transport, _ = yield from loop.create_unix_connection(
            lambda: protocol, path, **kwds)
        writer = StreamWriter(transport, protocol, reader, loop)
        return reader, writer


    @coroutine
    def start_unix_server(client_connected_cb, path=None, *,
                          loop=None, limit=_DEFAULT_LIMIT, **kwds):
        """Similar to `start_server` but works with UNIX Domain Sockets."""
        if loop is None:
            loop = events.get_event_loop()

        def factory():
            reader = StreamReader(limit=limit, loop=loop)
            protocol = StreamReaderProtocol(reader, client_connected_cb,
                                            loop=loop)
            return protocol

        return (yield from loop.create_unix_server(factory, path, **kwds))


class FlowControlMixin(protocols.Protocol):
    """Reusable flow control logic for StreamWriter.drain().

    This implements the protocol methods pause_writing(),
    resume_reading() and connection_lost().  If the subclass overrides
    these it must call the super methods.

    StreamWriter.drain() must wait for _drain_helper() coroutine.
    """

    def __init__(self, loop=None):
        if loop is None:
            self._loop = events.get_event_loop()
        else:
            self._loop = loop
        self._paused = False
        self._drain_waiter = None
        self._connection_lost = False

    def pause_writing(self):
        assert not self._paused
        self._paused = True
        if self._loop.get_debug():
            logger.debug("%r pauses writing", self)

    def resume_writing(self):
        assert self._paused
        self._paused = False
        if self._loop.get_debug():
            logger.debug("%r resumes writing", self)

        waiter = self._drain_waiter
        if waiter is not None:
            self._drain_waiter = None
            if not waiter.done():
                waiter.set_result(None)

    def connection_lost(self, exc):
        self._connection_lost = True
        # Wake up the writer if currently paused.
        if not self._paused:
            return
        waiter = self._drain_waiter
        if waiter is None:
            return
        self._drain_waiter = None
        if waiter.done():
            return
        if exc is None:
            waiter.set_result(None)
        else:
            waiter.set_exception(exc)

    @coroutine
    def _drain_helper(self):
        if self._connection_lost:
            raise ConnectionResetError('Connection lost')
        if not self._paused:
            return
        waiter = self._drain_waiter
        assert waiter is None or waiter.cancelled()
        waiter = futures.Future(loop=self._loop)
        self._drain_waiter = waiter
        yield from waiter


class StreamReaderProtocol(FlowControlMixin, protocols.Protocol):
    """Helper class to adapt between Protocol and StreamReader.

    (This is a helper class instead of making StreamReader itself a
    Protocol subclass, because the StreamReader has other potential
    uses, and to prevent the user of the StreamReader to accidentally
    call inappropriate methods of the protocol.)
    """

    def __init__(self, stream_reader, client_connected_cb=None, loop=None):
        super().__init__(loop=loop)
        self._stream_reader = stream_reader
        self._stream_writer = None
        self._client_connected_cb = client_connected_cb

    def connection_made(self, transport):
        self._stream_reader.set_transport(transport)
        if self._client_connected_cb is not None:
            self._stream_writer = StreamWriter(transport, self,
                                               self._stream_reader,
                                               self._loop)
            res = self._client_connected_cb(self._stream_reader,
                                            self._stream_writer)
            if coroutines.iscoroutine(res):
                self._loop.create_task(res)

    def connection_lost(self, exc):
        if exc is None:
            self._stream_reader.feed_eof()
        else:
            self._stream_reader.set_exception(exc)
        super().connection_lost(exc)

    def data_received(self, data):
        self._stream_reader.feed_data(data)

    def eof_received(self):
        self._stream_reader.feed_eof()
        return True


class StreamWriter:
    """Wraps a Transport.

    This exposes write(), writelines(), [can_]write_eof(),
    get_extra_info() and close().  It adds drain() which returns an
    optional Future on which you can wait for flow control.  It also
    adds a transport property which references the Transport
    directly.
    """

    def __init__(self, transport, protocol, reader, loop):
        self._transport = transport
        self._protocol = protocol
        # drain() expects that the reader has an exception() method
        assert reader is None or isinstance(reader, StreamReader)
        self._reader = reader
        self._loop = loop

    def __repr__(self):
        info = [self.__class__.__name__, 'transport=%r' % self._transport]
        if self._reader is not None:
            info.append('reader=%r' % self._reader)
        return '<%s>' % ' '.join(info)

    @property
    def transport(self):
        return self._transport

    def write(self, data):
        self._transport.write(data)

    def writelines(self, data):
        self._transport.writelines(data)

    def write_eof(self):
        return self._transport.write_eof()

    def can_write_eof(self):
        return self._transport.can_write_eof()

    def close(self):
        return self._transport.close()

    def get_extra_info(self, name, default=None):
        return self._transport.get_extra_info(name, default)

    @coroutine
    def drain(self):
        """Flush the write buffer.

        The intended use is to write

          w.write(data)
          yield from w.drain()
        """
        if self._reader is not None:
            exc = self._reader.exception()
            if exc is not None:
                raise exc
        if self._transport is not None:
            if self._transport.is_closing():
                # Yield to the event loop so connection_lost() may be
                # called.  Without this, _drain_helper() would return
                # immediately, and code that calls
                #     write(...); yield from drain()
                # in a loop would never call connection_lost(), so it
                # would not see an error when the socket is closed.
                yield
        yield from self._protocol._drain_helper()


class StreamReader:

    def __init__(self, limit=_DEFAULT_LIMIT, loop=None):
        # The line length limit is  a security feature;
        # it also doubles as half the buffer limit.

        if limit <= 0:
            raise ValueError('Limit cannot be <= 0')

        self._limit = limit
        if loop is None:
            self._loop = events.get_event_loop()
        else:
            self._loop = loop
        self._buffer = bytearray()
        self._eof = False    # Whether we're done.
        self._waiter = None  # A future used by _wait_for_data()
        self._exception = None
        self._transport = None
        self._paused = False

    def __repr__(self):
        info = ['StreamReader']
        if self._buffer:
            info.append('%d bytes' % len(self._buffer))
        if self._eof:
            info.append('eof')
        if self._limit != _DEFAULT_LIMIT:
            info.append('l=%d' % self._limit)
        if self._waiter:
            info.append('w=%r' % self._waiter)
        if self._exception:
            info.append('e=%r' % self._exception)
        if self._transport:
            info.append('t=%r' % self._transport)
        if self._paused:
            info.append('paused')
        return '<%s>' % ' '.join(info)

    def exception(self):
        return self._exception

    def set_exception(self, exc):
        self._exception = exc

        waiter = self._waiter
        if waiter is not None:
            self._waiter = None
            if not waiter.cancelled():
                waiter.set_exception(exc)

    def _wakeup_waiter(self):
        """Wakeup read*() functions waiting for data or EOF."""
        waiter = self._waiter
        if waiter is not None:
            self._waiter = None
            if not waiter.cancelled():
                waiter.set_result(None)

    def set_transport(self, transport):
        assert self._transport is None, 'Transport already set'
        self._transport = transport

    def _maybe_resume_transport(self):
        if self._paused and len(self._buffer) <= self._limit:
            self._paused = False
            self._transport.resume_reading()

    def feed_eof(self):
        self._eof = True
        self._wakeup_waiter()

    def at_eof(self):
        """Return True if the buffer is empty and 'feed_eof' was called."""
        return self._eof and not self._buffer

    def feed_data(self, data):
        assert not self._eof, 'feed_data after feed_eof'

        if not data:
            return

        self._buffer.extend(data)
        self._wakeup_waiter()

        if (self._transport is not None and
            not self._paused and
            len(self._buffer) > 2*self._limit):
            try:
                self._transport.pause_reading()
            except NotImplementedError:
                # The transport can't be paused.
                # We'll just have to buffer all data.
                # Forget the transport so we don't keep trying.
                self._transport = None
            else:
                self._paused = True

    @coroutine
    def _wait_for_data(self, func_name):
        """Wait until feed_data() or feed_eof() is called.

        If stream was paused, automatically resume it.
        """
        # StreamReader uses a future to link the protocol feed_data() method
        # to a read coroutine. Running two read coroutines at the same time
        # would have an unexpected behaviour. It would not possible to know
        # which coroutine would get the next data.
        if self._waiter is not None:
            raise RuntimeError('%s() called while another coroutine is '
                               'already waiting for incoming data' % func_name)

        assert not self._eof, '_wait_for_data after EOF'

        # Waiting for data while paused will make deadlock, so prevent it.
        if self._paused:
            self._paused = False
            self._transport.resume_reading()

        self._waiter = futures.Future(loop=self._loop)
        try:
            yield from self._waiter
        finally:
            self._waiter = None

    @coroutine
    def readline(self):
        """Read chunk of data from the stream until newline (b'\n') is found.

        On success, return chunk that ends with newline. If only partial
        line can be read due to EOF, return incomplete line without
        terminating newline. When EOF was reached while no bytes read, empty
        bytes object is returned.

        If limit is reached, ValueError will be raised. In that case, if
        newline was found, complete line including newline will be removed
        from internal buffer. Else, internal buffer will be cleared. Limit is
        compared against part of the line without newline.

        If stream was paused, this function will automatically resume it if
        needed.
        """
        sep = b'\n'
        seplen = len(sep)
        try:
            line = yield from self.readuntil(sep)
        except IncompleteReadError as e:
            return e.partial
        except LimitOverrunError as e:
            if self._buffer.startswith(sep, e.consumed):
                del self._buffer[:e.consumed + seplen]
            else:
                self._buffer.clear()
            self._maybe_resume_transport()
            raise ValueError(e.args[0])
        return line

    @coroutine
    def readuntil(self, separator=b'\n'):
        """Read chunk of data from the stream until `separator` is found.

        On success, chunk and its separator will be removed from internal buffer
        (i.e. consumed). Returned chunk will include separator at the end.

        Configured stream limit is used to check result. Limit means maximal
        length of chunk that can be returned, not counting the separator.

        If EOF occurs and complete separator still not found,
        IncompleteReadError(<partial data>, None) will be raised and internal
        buffer becomes empty. This partial data may contain a partial separator.

        If chunk cannot be read due to overlimit, LimitOverrunError will be raised
        and data will be left in internal buffer, so it can be read again, in
        some different way.

        If stream was paused, this function will automatically resume it if
        needed.
        """
        seplen = len(separator)
        if seplen == 0:
            raise ValueError('Separator should be at least one-byte string')

        if self._exception is not None:
            raise self._exception

        # Consume whole buffer except last bytes, which length is
        # one less than seplen. Let's check corner cases with
        # separator='SEPARATOR':
        # * we have received almost complete separator (without last
        #   byte). i.e buffer='some textSEPARATO'. In this case we
        #   can safely consume len(separator) - 1 bytes.
        # * last byte of buffer is first byte of separator, i.e.
        #   buffer='abcdefghijklmnopqrS'. We may safely consume
        #   everything except that last byte, but this require to
        #   analyze bytes of buffer that match partial separator.
        #   This is slow and/or require FSM. For this case our
        #   implementation is not optimal, since require rescanning
        #   of data that is known to not belong to separator. In
        #   real world, separator will not be so long to notice
        #   performance problems. Even when reading MIME-encoded
        #   messages :)

        # `offset` is the number of bytes from the beginning of the buffer where
        # is no occurrence of `separator`.
        offset = 0

        # Loop until we find `separator` in the buffer, exceed the buffer size,
        # or an EOF has happened.
        while True:
            buflen = len(self._buffer)

            # Check if we now have enough data in the buffer for `separator` to
            # fit.
            if buflen - offset >= seplen:
                isep = self._buffer.find(separator, offset)

                if isep != -1:
                    # `separator` is in the buffer. `isep` will be used later to
                    # retrieve the data.
                    break

                # see upper comment for explanation.
                offset = buflen + 1 - seplen
                if offset > self._limit:
                    raise LimitOverrunError('Separator is not found, and chunk exceed the limit', offset)

            # Complete message (with full separator) may be present in buffer
            # even when EOF flag is set. This may happen when the last chunk
            # adds data which makes separator be found. That's why we check for
            # EOF *ater* inspecting the buffer.
            if self._eof:
                chunk = bytes(self._buffer)
                self._buffer.clear()
                raise IncompleteReadError(chunk, None)

            # _wait_for_data() will resume reading if stream was paused.
            yield from self._wait_for_data('readuntil')

        if isep > self._limit:
            raise LimitOverrunError('Separator is found, but chunk is longer than limit', isep)

        chunk = self._buffer[:isep + seplen]
        del self._buffer[:isep + seplen]
        self._maybe_resume_transport()
        return bytes(chunk)

    @coroutine
    def read(self, n=-1):
        """Read up to `n` bytes from the stream.

        If n is not provided, or set to -1, read until EOF and return all read
        bytes. If the EOF was received and the internal buffer is empty, return
        an empty bytes object.

        If n is zero, return empty bytes object immediatelly.

        If n is positive, this function try to read `n` bytes, and may return
        less or equal bytes than requested, but at least one byte. If EOF was
        received before any byte is read, this function returns empty byte
        object.

        Returned value is not limited with limit, configured at stream creation.

        If stream was paused, this function will automatically resume it if
        needed.
        """

        if self._exception is not None:
            raise self._exception

        if n == 0:
            return b''

        if n < 0:
            # This used to just loop creating a new waiter hoping to
            # collect everything in self._buffer, but that would
            # deadlock if the subprocess sends more than self.limit
            # bytes.  So just call self.read(self._limit) until EOF.
            blocks = []
            while True:
                block = yield from self.read(self._limit)
                if not block:
                    break
                blocks.append(block)
            return b''.join(blocks)

        if not self._buffer and not self._eof:
            yield from self._wait_for_data('read')

        # This will work right even if buffer is less than n bytes
        data = bytes(self._buffer[:n])
        del self._buffer[:n]

        self._maybe_resume_transport()
        return data

    @coroutine
    def readexactly(self, n):
        """Read exactly `n` bytes.

        Raise an `IncompleteReadError` if EOF is reached before `n` bytes can be
        read. The `IncompleteReadError.partial` attribute of the exception will
        contain the partial read bytes.

        if n is zero, return empty bytes object.

        Returned value is not limited with limit, configured at stream creation.

        If stream was paused, this function will automatically resume it if
        needed.
        """
        if n < 0:
            raise ValueError('readexactly size can not be less than zero')

        if self._exception is not None:
            raise self._exception

        if n == 0:
            return b''

        # There used to be "optimized" code here.  It created its own
        # Future and waited until self._buffer had at least the n
        # bytes, then called read(n).  Unfortunately, this could pause
        # the transport if the argument was larger than the pause
        # limit (which is twice self._limit).  So now we just read()
        # into a local buffer.

        blocks = []
        while n > 0:
            block = yield from self.read(n)
            if not block:
                partial = b''.join(blocks)
                raise IncompleteReadError(partial, len(partial) + n)
            blocks.append(block)
            n -= len(block)

        assert n == 0

        return b''.join(blocks)

    if compat.PY35:
        @coroutine
        def __aiter__(self):
            return self

        @coroutine
        def __anext__(self):
            val = yield from self.readline()
            if val == b'':
                raise StopAsyncIteration
            return val
lib\asyncio\subprocess.py
__all__ = ['create_subprocess_exec', 'create_subprocess_shell']

import subprocess

from . import events
from . import protocols
from . import streams
from . import tasks
from .coroutines import coroutine
from .log import logger


PIPE = subprocess.PIPE
STDOUT = subprocess.STDOUT
DEVNULL = subprocess.DEVNULL


class SubprocessStreamProtocol(streams.FlowControlMixin,
                               protocols.SubprocessProtocol):
    """Like StreamReaderProtocol, but for a subprocess."""

    def __init__(self, limit, loop):
        super().__init__(loop=loop)
        self._limit = limit
        self.stdin = self.stdout = self.stderr = None
        self._transport = None

    def __repr__(self):
        info = [self.__class__.__name__]
        if self.stdin is not None:
            info.append('stdin=%r' % self.stdin)
        if self.stdout is not None:
            info.append('stdout=%r' % self.stdout)
        if self.stderr is not None:
            info.append('stderr=%r' % self.stderr)
        return '<%s>' % ' '.join(info)

    def connection_made(self, transport):
        self._transport = transport

        stdout_transport = transport.get_pipe_transport(1)
        if stdout_transport is not None:
            self.stdout = streams.StreamReader(limit=self._limit,
                                               loop=self._loop)
            self.stdout.set_transport(stdout_transport)

        stderr_transport = transport.get_pipe_transport(2)
        if stderr_transport is not None:
            self.stderr = streams.StreamReader(limit=self._limit,
                                               loop=self._loop)
            self.stderr.set_transport(stderr_transport)

        stdin_transport = transport.get_pipe_transport(0)
        if stdin_transport is not None:
            self.stdin = streams.StreamWriter(stdin_transport,
                                              protocol=self,
                                              reader=None,
                                              loop=self._loop)

    def pipe_data_received(self, fd, data):
        if fd == 1:
            reader = self.stdout
        elif fd == 2:
            reader = self.stderr
        else:
            reader = None
        if reader is not None:
            reader.feed_data(data)

    def pipe_connection_lost(self, fd, exc):
        if fd == 0:
            pipe = self.stdin
            if pipe is not None:
                pipe.close()
            self.connection_lost(exc)
            return
        if fd == 1:
            reader = self.stdout
        elif fd == 2:
            reader = self.stderr
        else:
            reader = None
        if reader != None:
            if exc is None:
                reader.feed_eof()
            else:
                reader.set_exception(exc)

    def process_exited(self):
        self._transport.close()
        self._transport = None


class Process:
    def __init__(self, transport, protocol, loop):
        self._transport = transport
        self._protocol = protocol
        self._loop = loop
        self.stdin = protocol.stdin
        self.stdout = protocol.stdout
        self.stderr = protocol.stderr
        self.pid = transport.get_pid()

    def __repr__(self):
        return '<%s %s>' % (self.__class__.__name__, self.pid)

    @property
    def returncode(self):
        return self._transport.get_returncode()

    @coroutine
    def wait(self):
        """Wait until the process exit and return the process return code.

        This method is a coroutine."""
        return (yield from self._transport._wait())

    def send_signal(self, signal):
        self._transport.send_signal(signal)

    def terminate(self):
        self._transport.terminate()

    def kill(self):
        self._transport.kill()

    @coroutine
    def _feed_stdin(self, input):
        debug = self._loop.get_debug()
        self.stdin.write(input)
        if debug:
            logger.debug('%r communicate: feed stdin (%s bytes)',
                        self, len(input))
        try:
            yield from self.stdin.drain()
        except (BrokenPipeError, ConnectionResetError) as exc:
            # communicate() ignores BrokenPipeError and ConnectionResetError
            if debug:
                logger.debug('%r communicate: stdin got %r', self, exc)

        if debug:
            logger.debug('%r communicate: close stdin', self)
        self.stdin.close()

    @coroutine
    def _noop(self):
        return None

    @coroutine
    def _read_stream(self, fd):
        transport = self._transport.get_pipe_transport(fd)
        if fd == 2:
            stream = self.stderr
        else:
            assert fd == 1
            stream = self.stdout
        if self._loop.get_debug():
            name = 'stdout' if fd == 1 else 'stderr'
            logger.debug('%r communicate: read %s', self, name)
        output = yield from stream.read()
        if self._loop.get_debug():
            name = 'stdout' if fd == 1 else 'stderr'
            logger.debug('%r communicate: close %s', self, name)
        transport.close()
        return output

    @coroutine
    def communicate(self, input=None):
        if input:
            stdin = self._feed_stdin(input)
        else:
            stdin = self._noop()
        if self.stdout is not None:
            stdout = self._read_stream(1)
        else:
            stdout = self._noop()
        if self.stderr is not None:
            stderr = self._read_stream(2)
        else:
            stderr = self._noop()
        stdin, stdout, stderr = yield from tasks.gather(stdin, stdout, stderr,
                                                        loop=self._loop)
        yield from self.wait()
        return (stdout, stderr)


@coroutine
def create_subprocess_shell(cmd, stdin=None, stdout=None, stderr=None,
                            loop=None, limit=streams._DEFAULT_LIMIT, **kwds):
    if loop is None:
        loop = events.get_event_loop()
    protocol_factory = lambda: SubprocessStreamProtocol(limit=limit,
                                                        loop=loop)
    transport, protocol = yield from loop.subprocess_shell(
                                            protocol_factory,
                                            cmd, stdin=stdin, stdout=stdout,
                                            stderr=stderr, **kwds)
    return Process(transport, protocol, loop)

@coroutine
def create_subprocess_exec(program, *args, stdin=None, stdout=None,
                           stderr=None, loop=None,
                           limit=streams._DEFAULT_LIMIT, **kwds):
    if loop is None:
        loop = events.get_event_loop()
    protocol_factory = lambda: SubprocessStreamProtocol(limit=limit,
                                                        loop=loop)
    transport, protocol = yield from loop.subprocess_exec(
                                            protocol_factory,
                                            program, *args,
                                            stdin=stdin, stdout=stdout,
                                            stderr=stderr, **kwds)
    return Process(transport, protocol, loop)
lib\asyncio\tasks.py
"""Support for tasks, coroutines and the scheduler."""

__all__ = ['Task',
           'FIRST_COMPLETED', 'FIRST_EXCEPTION', 'ALL_COMPLETED',
           'wait', 'wait_for', 'as_completed', 'sleep',
           'gather', 'shield', 'ensure_future', 'run_coroutine_threadsafe',
           'timeout',
           ]

import concurrent.futures
import functools
import inspect
import linecache
import traceback
import warnings
import weakref

from . import compat
from . import coroutines
from . import events
from . import futures
from .coroutines import coroutine


class Task(futures.Future):
    """A coroutine wrapped in a Future."""

    # An important invariant maintained while a Task not done:
    #
    # - Either _fut_waiter is None, and _step() is scheduled;
    # - or _fut_waiter is some Future, and _step() is *not* scheduled.
    #
    # The only transition from the latter to the former is through
    # _wakeup().  When _fut_waiter is not None, one of its callbacks
    # must be _wakeup().

    # Weak set containing all tasks alive.
    _all_tasks = weakref.WeakSet()

    # Dictionary containing tasks that are currently active in
    # all running event loops.  {EventLoop: Task}
    _current_tasks = {}

    # If False, don't log a message if the task is destroyed whereas its
    # status is still pending
    _log_destroy_pending = True

    @classmethod
    def current_task(cls, loop=None):
        """Return the currently running task in an event loop or None.

        By default the current task for the current event loop is returned.

        None is returned when called not in the context of a Task.
        """
        if loop is None:
            loop = events.get_event_loop()
        return cls._current_tasks.get(loop)

    @classmethod
    def all_tasks(cls, loop=None):
        """Return a set of all tasks for an event loop.

        By default all tasks for the current event loop are returned.
        """
        if loop is None:
            loop = events.get_event_loop()
        return {t for t in cls._all_tasks if t._loop is loop}

    def __init__(self, coro, *, loop=None):
        assert coroutines.iscoroutine(coro), repr(coro)
        super().__init__(loop=loop)
        if self._source_traceback:
            del self._source_traceback[-1]
        self._coro = coro
        self._fut_waiter = None
        self._must_cancel = False
        self._loop.call_soon(self._step)
        self.__class__._all_tasks.add(self)

    # On Python 3.3 or older, objects with a destructor that are part of a
    # reference cycle are never destroyed. That's not the case any more on
    # Python 3.4 thanks to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if self._state == futures._PENDING and self._log_destroy_pending:
                context = {
                    'task': self,
                    'message': 'Task was destroyed but it is pending!',
                }
                if self._source_traceback:
                    context['source_traceback'] = self._source_traceback
                self._loop.call_exception_handler(context)
            futures.Future.__del__(self)

    def _repr_info(self):
        info = super()._repr_info()

        if self._must_cancel:
            # replace status
            info[0] = 'cancelling'

        coro = coroutines._format_coroutine(self._coro)
        info.insert(1, 'coro=<%s>' % coro)

        if self._fut_waiter is not None:
            info.insert(2, 'wait_for=%r' % self._fut_waiter)
        return info

    def get_stack(self, *, limit=None):
        """Return the list of stack frames for this task's coroutine.

        If the coroutine is not done, this returns the stack where it is
        suspended.  If the coroutine has completed successfully or was
        cancelled, this returns an empty list.  If the coroutine was
        terminated by an exception, this returns the list of traceback
        frames.

        The frames are always ordered from oldest to newest.

        The optional limit gives the maximum number of frames to
        return; by default all available frames are returned.  Its
        meaning differs depending on whether a stack or a traceback is
        returned: the newest frames of a stack are returned, but the
        oldest frames of a traceback are returned.  (This matches the
        behavior of the traceback module.)

        For reasons beyond our control, only one stack frame is
        returned for a suspended coroutine.
        """
        frames = []
        try:
            # 'async def' coroutines
            f = self._coro.cr_frame
        except AttributeError:
            f = self._coro.gi_frame
        if f is not None:
            while f is not None:
                if limit is not None:
                    if limit <= 0:
                        break
                    limit -= 1
                frames.append(f)
                f = f.f_back
            frames.reverse()
        elif self._exception is not None:
            tb = self._exception.__traceback__
            while tb is not None:
                if limit is not None:
                    if limit <= 0:
                        break
                    limit -= 1
                frames.append(tb.tb_frame)
                tb = tb.tb_next
        return frames

    def print_stack(self, *, limit=None, file=None):
        """Print the stack or traceback for this task's coroutine.

        This produces output similar to that of the traceback module,
        for the frames retrieved by get_stack().  The limit argument
        is passed to get_stack().  The file argument is an I/O stream
        to which the output is written; by default output is written
        to sys.stderr.
        """
        extracted_list = []
        checked = set()
        for f in self.get_stack(limit=limit):
            lineno = f.f_lineno
            co = f.f_code
            filename = co.co_filename
            name = co.co_name
            if filename not in checked:
                checked.add(filename)
                linecache.checkcache(filename)
            line = linecache.getline(filename, lineno, f.f_globals)
            extracted_list.append((filename, lineno, name, line))
        exc = self._exception
        if not extracted_list:
            print('No stack for %r' % self, file=file)
        elif exc is not None:
            print('Traceback for %r (most recent call last):' % self,
                  file=file)
        else:
            print('Stack for %r (most recent call last):' % self,
                  file=file)
        traceback.print_list(extracted_list, file=file)
        if exc is not None:
            for line in traceback.format_exception_only(exc.__class__, exc):
                print(line, file=file, end='')

    def cancel(self):
        """Request that this task cancel itself.

        This arranges for a CancelledError to be thrown into the
        wrapped coroutine on the next cycle through the event loop.
        The coroutine then has a chance to clean up or even deny
        the request using try/except/finally.

        Unlike Future.cancel, this does not guarantee that the
        task will be cancelled: the exception might be caught and
        acted upon, delaying cancellation of the task or preventing
        cancellation completely.  The task may also return a value or
        raise a different exception.

        Immediately after this method is called, Task.cancelled() will
        not return True (unless the task was already cancelled).  A
        task will be marked as cancelled when the wrapped coroutine
        terminates with a CancelledError exception (even if cancel()
        was not called).
        """
        if self.done():
            return False
        if self._fut_waiter is not None:
            if self._fut_waiter.cancel():
                # Leave self._fut_waiter; it may be a Task that
                # catches and ignores the cancellation so we may have
                # to cancel it again later.
                return True
        # It must be the case that self._step is already scheduled.
        self._must_cancel = True
        return True

    def _step(self, exc=None):
        assert not self.done(), \
            '_step(): already done: {!r}, {!r}'.format(self, exc)
        if self._must_cancel:
            if not isinstance(exc, futures.CancelledError):
                exc = futures.CancelledError()
            self._must_cancel = False
        coro = self._coro
        self._fut_waiter = None

        self.__class__._current_tasks[self._loop] = self
        # Call either coro.throw(exc) or coro.send(None).
        try:
            if exc is None:
                # We use the `send` method directly, because coroutines
                # don't have `__iter__` and `__next__` methods.
                result = coro.send(None)
            else:
                result = coro.throw(exc)
        except StopIteration as exc:
            self.set_result(exc.value)
        except futures.CancelledError as exc:
            super().cancel()  # I.e., Future.cancel(self).
        except Exception as exc:
            self.set_exception(exc)
        except BaseException as exc:
            self.set_exception(exc)
            raise
        else:
            if isinstance(result, futures.Future):
                # Yielded Future must come from Future.__iter__().
                if result._loop is not self._loop:
                    self._loop.call_soon(
                        self._step,
                        RuntimeError(
                            'Task {!r} got Future {!r} attached to a '
                            'different loop'.format(self, result)))
                elif result._blocking:
                    result._blocking = False
                    result.add_done_callback(self._wakeup)
                    self._fut_waiter = result
                    if self._must_cancel:
                        if self._fut_waiter.cancel():
                            self._must_cancel = False
                else:
                    self._loop.call_soon(
                        self._step,
                        RuntimeError(
                            'yield was used instead of yield from '
                            'in task {!r} with {!r}'.format(self, result)))
            elif result is None:
                # Bare yield relinquishes control for one event loop iteration.
                self._loop.call_soon(self._step)
            elif inspect.isgenerator(result):
                # Yielding a generator is just wrong.
                self._loop.call_soon(
                    self._step,
                    RuntimeError(
                        'yield was used instead of yield from for '
                        'generator in task {!r} with {}'.format(
                            self, result)))
            else:
                # Yielding something else is an error.
                self._loop.call_soon(
                    self._step,
                    RuntimeError(
                        'Task got bad yield: {!r}'.format(result)))
        finally:
            self.__class__._current_tasks.pop(self._loop)
            self = None  # Needed to break cycles when an exception occurs.

    def _wakeup(self, future):
        try:
            future.result()
        except Exception as exc:
            # This may also be a cancellation.
            self._step(exc)
        else:
            # Don't pass the value of `future.result()` explicitly,
            # as `Future.__iter__` and `Future.__await__` don't need it.
            # If we call `_step(value, None)` instead of `_step()`,
            # Python eval loop would use `.send(value)` method call,
            # instead of `__next__()`, which is slower for futures
            # that return non-generator iterators from their `__iter__`.
            self._step()
        self = None  # Needed to break cycles when an exception occurs.


# wait() and as_completed() similar to those in PEP 3148.

FIRST_COMPLETED = concurrent.futures.FIRST_COMPLETED
FIRST_EXCEPTION = concurrent.futures.FIRST_EXCEPTION
ALL_COMPLETED = concurrent.futures.ALL_COMPLETED


@coroutine
def wait(fs, *, loop=None, timeout=None, return_when=ALL_COMPLETED):
    """Wait for the Futures and coroutines given by fs to complete.

    The sequence futures must not be empty.

    Coroutines will be wrapped in Tasks.

    Returns two sets of Future: (done, pending).

    Usage:

        done, pending = yield from asyncio.wait(fs)

    Note: This does not raise TimeoutError! Futures that aren't done
    when the timeout occurs are returned in the second set.
    """
    if isinstance(fs, futures.Future) or coroutines.iscoroutine(fs):
        raise TypeError("expect a list of futures, not %s" % type(fs).__name__)
    if not fs:
        raise ValueError('Set of coroutines/Futures is empty.')
    if return_when not in (FIRST_COMPLETED, FIRST_EXCEPTION, ALL_COMPLETED):
        raise ValueError('Invalid return_when value: {}'.format(return_when))

    if loop is None:
        loop = events.get_event_loop()

    fs = {ensure_future(f, loop=loop) for f in set(fs)}

    return (yield from _wait(fs, timeout, return_when, loop))


def _release_waiter(waiter, *args):
    if not waiter.done():
        waiter.set_result(None)


@coroutine
def wait_for(fut, timeout, *, loop=None):
    """Wait for the single Future or coroutine to complete, with timeout.

    Coroutine will be wrapped in Task.

    Returns result of the Future or coroutine.  When a timeout occurs,
    it cancels the task and raises TimeoutError.  To avoid the task
    cancellation, wrap it in shield().

    If the wait is cancelled, the task is also cancelled.

    This function is a coroutine.
    """
    if loop is None:
        loop = events.get_event_loop()

    if timeout is None:
        return (yield from fut)

    waiter = futures.Future(loop=loop)
    timeout_handle = loop.call_later(timeout, _release_waiter, waiter)
    cb = functools.partial(_release_waiter, waiter)

    fut = ensure_future(fut, loop=loop)
    fut.add_done_callback(cb)

    try:
        # wait until the future completes or the timeout
        try:
            yield from waiter
        except futures.CancelledError:
            fut.remove_done_callback(cb)
            fut.cancel()
            raise

        if fut.done():
            return fut.result()
        else:
            fut.remove_done_callback(cb)
            fut.cancel()
            raise futures.TimeoutError()
    finally:
        timeout_handle.cancel()


@coroutine
def _wait(fs, timeout, return_when, loop):
    """Internal helper for wait() and _wait_for().

    The fs argument must be a collection of Futures.
    """
    assert fs, 'Set of Futures is empty.'
    waiter = futures.Future(loop=loop)
    timeout_handle = None
    if timeout is not None:
        timeout_handle = loop.call_later(timeout, _release_waiter, waiter)
    counter = len(fs)

    def _on_completion(f):
        nonlocal counter
        counter -= 1
        if (counter <= 0 or
            return_when == FIRST_COMPLETED or
            return_when == FIRST_EXCEPTION and (not f.cancelled() and
                                                f.exception() is not None)):
            if timeout_handle is not None:
                timeout_handle.cancel()
            if not waiter.done():
                waiter.set_result(None)

    for f in fs:
        f.add_done_callback(_on_completion)

    try:
        yield from waiter
    finally:
        if timeout_handle is not None:
            timeout_handle.cancel()

    done, pending = set(), set()
    for f in fs:
        f.remove_done_callback(_on_completion)
        if f.done():
            done.add(f)
        else:
            pending.add(f)
    return done, pending


# This is *not* a @coroutine!  It is just an iterator (yielding Futures).
def as_completed(fs, *, loop=None, timeout=None):
    """Return an iterator whose values are coroutines.

    When waiting for the yielded coroutines you'll get the results (or
    exceptions!) of the original Futures (or coroutines), in the order
    in which and as soon as they complete.

    This differs from PEP 3148; the proper way to use this is:

        for f in as_completed(fs):
            result = yield from f  # The 'yield from' may raise.
            # Use result.

    If a timeout is specified, the 'yield from' will raise
    TimeoutError when the timeout occurs before all Futures are done.

    Note: The futures 'f' are not necessarily members of fs.
    """
    if isinstance(fs, futures.Future) or coroutines.iscoroutine(fs):
        raise TypeError("expect a list of futures, not %s" % type(fs).__name__)
    loop = loop if loop is not None else events.get_event_loop()
    todo = {ensure_future(f, loop=loop) for f in set(fs)}
    from .queues import Queue  # Import here to avoid circular import problem.
    done = Queue(loop=loop)
    timeout_handle = None

    def _on_timeout():
        for f in todo:
            f.remove_done_callback(_on_completion)
            done.put_nowait(None)  # Queue a dummy value for _wait_for_one().
        todo.clear()  # Can't do todo.remove(f) in the loop.

    def _on_completion(f):
        if not todo:
            return  # _on_timeout() was here first.
        todo.remove(f)
        done.put_nowait(f)
        if not todo and timeout_handle is not None:
            timeout_handle.cancel()

    @coroutine
    def _wait_for_one():
        f = yield from done.get()
        if f is None:
            # Dummy value from _on_timeout().
            raise futures.TimeoutError
        return f.result()  # May raise f.exception().

    for f in todo:
        f.add_done_callback(_on_completion)
    if todo and timeout is not None:
        timeout_handle = loop.call_later(timeout, _on_timeout)
    for _ in range(len(todo)):
        yield _wait_for_one()


@coroutine
def sleep(delay, result=None, *, loop=None):
    """Coroutine that completes after a given time (in seconds)."""
    if delay == 0:
        yield
        return result

    future = futures.Future(loop=loop)
    h = future._loop.call_later(delay,
                                futures._set_result_unless_cancelled,
                                future, result)
    try:
        return (yield from future)
    finally:
        h.cancel()


def ensure_future(coro_or_future, *, loop=None):
    """Wrap a coroutine or an awaitable in a future.

    If the argument is a Future, it is returned directly.
    """
    if isinstance(coro_or_future, futures.Future):
        if loop is not None and loop is not coro_or_future._loop:
            raise ValueError('loop argument must agree with Future')
        return coro_or_future
    elif coroutines.iscoroutine(coro_or_future):
        if loop is None:
            loop = events.get_event_loop()
        task = loop.create_task(coro_or_future)
        if task._source_traceback:
            del task._source_traceback[-1]
        return task
    elif compat.PY35 and inspect.isawaitable(coro_or_future):
        return ensure_future(_wrap_awaitable(coro_or_future), loop=loop)
    else:
        raise TypeError('A Future, a coroutine or an awaitable is required')


@coroutine
def _wrap_awaitable(awaitable):
    """Helper for asyncio.ensure_future().

    Wraps awaitable (an object with __await__) into a coroutine
    that will later be wrapped in a Task by ensure_future().
    """
    return (yield from awaitable.__await__())


class _GatheringFuture(futures.Future):
    """Helper for gather().

    This overrides cancel() to cancel all the children and act more
    like Task.cancel(), which doesn't immediately mark itself as
    cancelled.
    """

    def __init__(self, children, *, loop=None):
        super().__init__(loop=loop)
        self._children = children

    def cancel(self):
        if self.done():
            return False
        for child in self._children:
            child.cancel()
        return True


def gather(*coros_or_futures, loop=None, return_exceptions=False):
    """Return a future aggregating results from the given coroutines
    or futures.

    All futures must share the same event loop.  If all the tasks are
    done successfully, the returned future's result is the list of
    results (in the order of the original sequence, not necessarily
    the order of results arrival).  If *return_exceptions* is True,
    exceptions in the tasks are treated the same as successful
    results, and gathered in the result list; otherwise, the first
    raised exception will be immediately propagated to the returned
    future.

    Cancellation: if the outer Future is cancelled, all children (that
    have not completed yet) are also cancelled.  If any child is
    cancelled, this is treated as if it raised CancelledError --
    the outer Future is *not* cancelled in this case.  (This is to
    prevent the cancellation of one child to cause other children to
    be cancelled.)
    """
    if not coros_or_futures:
        outer = futures.Future(loop=loop)
        outer.set_result([])
        return outer

    arg_to_fut = {}
    for arg in set(coros_or_futures):
        if not isinstance(arg, futures.Future):
            fut = ensure_future(arg, loop=loop)
            if loop is None:
                loop = fut._loop
            # The caller cannot control this future, the "destroy pending task"
            # warning should not be emitted.
            fut._log_destroy_pending = False
        else:
            fut = arg
            if loop is None:
                loop = fut._loop
            elif fut._loop is not loop:
                raise ValueError("futures are tied to different event loops")
        arg_to_fut[arg] = fut

    children = [arg_to_fut[arg] for arg in coros_or_futures]
    nchildren = len(children)
    outer = _GatheringFuture(children, loop=loop)
    nfinished = 0
    results = [None] * nchildren

    def _done_callback(i, fut):
        nonlocal nfinished
        if outer.done():
            if not fut.cancelled():
                # Mark exception retrieved.
                fut.exception()
            return

        if fut.cancelled():
            res = futures.CancelledError()
            if not return_exceptions:
                outer.set_exception(res)
                return
        elif fut._exception is not None:
            res = fut.exception()  # Mark exception retrieved.
            if not return_exceptions:
                outer.set_exception(res)
                return
        else:
            res = fut._result
        results[i] = res
        nfinished += 1
        if nfinished == nchildren:
            outer.set_result(results)

    for i, fut in enumerate(children):
        fut.add_done_callback(functools.partial(_done_callback, i))
    return outer


def shield(arg, *, loop=None):
    """Wait for a future, shielding it from cancellation.

    The statement

        res = yield from shield(something())

    is exactly equivalent to the statement

        res = yield from something()

    *except* that if the coroutine containing it is cancelled, the
    task running in something() is not cancelled.  From the POV of
    something(), the cancellation did not happen.  But its caller is
    still cancelled, so the yield-from expression still raises
    CancelledError.  Note: If something() is cancelled by other means
    this will still cancel shield().

    If you want to completely ignore cancellation (not recommended)
    you can combine shield() with a try/except clause, as follows:

        try:
            res = yield from shield(something())
        except CancelledError:
            res = None
    """
    inner = ensure_future(arg, loop=loop)
    if inner.done():
        # Shortcut.
        return inner
    loop = inner._loop
    outer = futures.Future(loop=loop)

    def _done_callback(inner):
        if outer.cancelled():
            if not inner.cancelled():
                # Mark inner's result as retrieved.
                inner.exception()
            return

        if inner.cancelled():
            outer.cancel()
        else:
            exc = inner.exception()
            if exc is not None:
                outer.set_exception(exc)
            else:
                outer.set_result(inner.result())

    inner.add_done_callback(_done_callback)
    return outer


def run_coroutine_threadsafe(coro, loop):
    """Submit a coroutine object to a given event loop.

    Return a concurrent.futures.Future to access the result.
    """
    if not coroutines.iscoroutine(coro):
        raise TypeError('A coroutine object is required')
    future = concurrent.futures.Future()

    def callback():
        try:
            futures._chain_future(ensure_future(coro, loop=loop), future)
        except Exception as exc:
            if future.set_running_or_notify_cancel():
                future.set_exception(exc)
            raise

    loop.call_soon_threadsafe(callback)
    return future


def timeout(timeout, *, loop=None):
    """A factory which produce a context manager with timeout.

    Useful in cases when you want to apply timeout logic around block
    of code or in cases when asyncio.wait_for is not suitable.

    For example:

    >>> with asyncio.timeout(0.001):
    ...     yield from coro()


    timeout: timeout value in seconds
    loop: asyncio compatible event loop
    """
    if loop is None:
        loop = events.get_event_loop()
    return _Timeout(timeout, loop=loop)


class _Timeout:
    def __init__(self, timeout, *, loop):
        self._timeout = timeout
        self._loop = loop
        self._task = None
        self._cancelled = False
        self._cancel_handler = None

    def __enter__(self):
        self._task = Task.current_task(loop=self._loop)
        if self._task is None:
            raise RuntimeError('Timeout context manager should be used '
                               'inside a task')
        self._cancel_handler = self._loop.call_later(
            self._timeout, self._cancel_task)
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is futures.CancelledError and self._cancelled:
            self._cancel_handler = None
            self._task = None
            raise futures.TimeoutError
        self._cancel_handler.cancel()
        self._cancel_handler = None
        self._task = None

    def _cancel_task(self):
        self._cancelled = self._task.cancel()
lib\asyncio\test_utils.py
"""Utilities shared by tests."""

import collections
import contextlib
import io
import logging
import os
import re
import socket
import socketserver
import sys
import tempfile
import threading
import time
import unittest
from unittest import mock

from http.server import HTTPServer
from wsgiref.simple_server import WSGIRequestHandler, WSGIServer

try:
    import ssl
except ImportError:  # pragma: no cover
    ssl = None

from . import base_events
from . import compat
from . import events
from . import futures
from . import selectors
from . import tasks
from .coroutines import coroutine
from .log import logger


if sys.platform == 'win32':  # pragma: no cover
    from .windows_utils import socketpair
else:
    from socket import socketpair  # pragma: no cover


def dummy_ssl_context():
    if ssl is None:
        return None
    else:
        return ssl.SSLContext(ssl.PROTOCOL_SSLv23)


def run_briefly(loop):
    @coroutine
    def once():
        pass
    gen = once()
    t = loop.create_task(gen)
    # Don't log a warning if the task is not done after run_until_complete().
    # It occurs if the loop is stopped or if a task raises a BaseException.
    t._log_destroy_pending = False
    try:
        loop.run_until_complete(t)
    finally:
        gen.close()


def run_until(loop, pred, timeout=30):
    deadline = time.time() + timeout
    while not pred():
        if timeout is not None:
            timeout = deadline - time.time()
            if timeout <= 0:
                raise futures.TimeoutError()
        loop.run_until_complete(tasks.sleep(0.001, loop=loop))


def run_once(loop):
    """Legacy API to run once through the event loop.

    This is the recommended pattern for test code.  It will poll the
    selector once and run all callbacks scheduled in response to I/O
    events.
    """
    loop.call_soon(loop.stop)
    loop.run_forever()


class SilentWSGIRequestHandler(WSGIRequestHandler):

    def get_stderr(self):
        return io.StringIO()

    def log_message(self, format, *args):
        pass


class SilentWSGIServer(WSGIServer):

    request_timeout = 2

    def get_request(self):
        request, client_addr = super().get_request()
        request.settimeout(self.request_timeout)
        return request, client_addr

    def handle_error(self, request, client_address):
        pass


class SSLWSGIServerMixin:

    def finish_request(self, request, client_address):
        # The relative location of our test directory (which
        # contains the ssl key and certificate files) differs
        # between the stdlib and stand-alone asyncio.
        # Prefer our own if we can find it.
        here = os.path.join(os.path.dirname(__file__), '..', 'tests')
        if not os.path.isdir(here):
            here = os.path.join(os.path.dirname(os.__file__),
                                'test', 'test_asyncio')
        keyfile = os.path.join(here, 'ssl_key.pem')
        certfile = os.path.join(here, 'ssl_cert.pem')
        ssock = ssl.wrap_socket(request,
                                keyfile=keyfile,
                                certfile=certfile,
                                server_side=True)
        try:
            self.RequestHandlerClass(ssock, client_address, self)
            ssock.close()
        except OSError:
            # maybe socket has been closed by peer
            pass


class SSLWSGIServer(SSLWSGIServerMixin, SilentWSGIServer):
    pass


def _run_test_server(*, address, use_ssl=False, server_cls, server_ssl_cls):

    def app(environ, start_response):
        status = '200 OK'
        headers = [('Content-type', 'text/plain')]
        start_response(status, headers)
        return [b'Test message']

    # Run the test WSGI server in a separate thread in order not to
    # interfere with event handling in the main thread
    server_class = server_ssl_cls if use_ssl else server_cls
    httpd = server_class(address, SilentWSGIRequestHandler)
    httpd.set_app(app)
    httpd.address = httpd.server_address
    server_thread = threading.Thread(
        target=lambda: httpd.serve_forever(poll_interval=0.05))
    server_thread.start()
    try:
        yield httpd
    finally:
        httpd.shutdown()
        httpd.server_close()
        server_thread.join()


if hasattr(socket, 'AF_UNIX'):

    class UnixHTTPServer(socketserver.UnixStreamServer, HTTPServer):

        def server_bind(self):
            socketserver.UnixStreamServer.server_bind(self)
            self.server_name = '127.0.0.1'
            self.server_port = 80


    class UnixWSGIServer(UnixHTTPServer, WSGIServer):

        request_timeout = 2

        def server_bind(self):
            UnixHTTPServer.server_bind(self)
            self.setup_environ()

        def get_request(self):
            request, client_addr = super().get_request()
            request.settimeout(self.request_timeout)
            # Code in the stdlib expects that get_request
            # will return a socket and a tuple (host, port).
            # However, this isn't true for UNIX sockets,
            # as the second return value will be a path;
            # hence we return some fake data sufficient
            # to get the tests going
            return request, ('127.0.0.1', '')


    class SilentUnixWSGIServer(UnixWSGIServer):

        def handle_error(self, request, client_address):
            pass


    class UnixSSLWSGIServer(SSLWSGIServerMixin, SilentUnixWSGIServer):
        pass


    def gen_unix_socket_path():
        with tempfile.NamedTemporaryFile() as file:
            return file.name


    @contextlib.contextmanager
    def unix_socket_path():
        path = gen_unix_socket_path()
        try:
            yield path
        finally:
            try:
                os.unlink(path)
            except OSError:
                pass


    @contextlib.contextmanager
    def run_test_unix_server(*, use_ssl=False):
        with unix_socket_path() as path:
            yield from _run_test_server(address=path, use_ssl=use_ssl,
                                        server_cls=SilentUnixWSGIServer,
                                        server_ssl_cls=UnixSSLWSGIServer)


@contextlib.contextmanager
def run_test_server(*, host='127.0.0.1', port=0, use_ssl=False):
    yield from _run_test_server(address=(host, port), use_ssl=use_ssl,
                                server_cls=SilentWSGIServer,
                                server_ssl_cls=SSLWSGIServer)


def make_test_protocol(base):
    dct = {}
    for name in dir(base):
        if name.startswith('__') and name.endswith('__'):
            # skip magic names
            continue
        dct[name] = MockCallback(return_value=None)
    return type('TestProtocol', (base,) + base.__bases__, dct)()


class TestSelector(selectors.BaseSelector):

    def __init__(self):
        self.keys = {}

    def register(self, fileobj, events, data=None):
        key = selectors.SelectorKey(fileobj, 0, events, data)
        self.keys[fileobj] = key
        return key

    def unregister(self, fileobj):
        return self.keys.pop(fileobj)

    def select(self, timeout):
        return []

    def get_map(self):
        return self.keys


class TestLoop(base_events.BaseEventLoop):
    """Loop for unittests.

    It manages self time directly.
    If something scheduled to be executed later then
    on next loop iteration after all ready handlers done
    generator passed to __init__ is calling.

    Generator should be like this:

        def gen():
            ...
            when = yield ...
            ... = yield time_advance

    Value returned by yield is absolute time of next scheduled handler.
    Value passed to yield is time advance to move loop's time forward.
    """

    def __init__(self, gen=None):
        super().__init__()

        if gen is None:
            def gen():
                yield
            self._check_on_close = False
        else:
            self._check_on_close = True

        self._gen = gen()
        next(self._gen)
        self._time = 0
        self._clock_resolution = 1e-9
        self._timers = []
        self._selector = TestSelector()

        self.readers = {}
        self.writers = {}
        self.reset_counters()

    def time(self):
        return self._time

    def advance_time(self, advance):
        """Move test time forward."""
        if advance:
            self._time += advance

    def close(self):
        super().close()
        if self._check_on_close:
            try:
                self._gen.send(0)
            except StopIteration:
                pass
            else:  # pragma: no cover
                raise AssertionError("Time generator is not finished")

    def add_reader(self, fd, callback, *args):
        self.readers[fd] = events.Handle(callback, args, self)

    def remove_reader(self, fd):
        self.remove_reader_count[fd] += 1
        if fd in self.readers:
            del self.readers[fd]
            return True
        else:
            return False

    def assert_reader(self, fd, callback, *args):
        assert fd in self.readers, 'fd {} is not registered'.format(fd)
        handle = self.readers[fd]
        assert handle._callback == callback, '{!r} != {!r}'.format(
            handle._callback, callback)
        assert handle._args == args, '{!r} != {!r}'.format(
            handle._args, args)

    def add_writer(self, fd, callback, *args):
        self.writers[fd] = events.Handle(callback, args, self)

    def remove_writer(self, fd):
        self.remove_writer_count[fd] += 1
        if fd in self.writers:
            del self.writers[fd]
            return True
        else:
            return False

    def assert_writer(self, fd, callback, *args):
        assert fd in self.writers, 'fd {} is not registered'.format(fd)
        handle = self.writers[fd]
        assert handle._callback == callback, '{!r} != {!r}'.format(
            handle._callback, callback)
        assert handle._args == args, '{!r} != {!r}'.format(
            handle._args, args)

    def reset_counters(self):
        self.remove_reader_count = collections.defaultdict(int)
        self.remove_writer_count = collections.defaultdict(int)

    def _run_once(self):
        super()._run_once()
        for when in self._timers:
            advance = self._gen.send(when)
            self.advance_time(advance)
        self._timers = []

    def call_at(self, when, callback, *args):
        self._timers.append(when)
        return super().call_at(when, callback, *args)

    def _process_events(self, event_list):
        return

    def _write_to_self(self):
        pass


def MockCallback(**kwargs):
    return mock.Mock(spec=['__call__'], **kwargs)


class MockPattern(str):
    """A regex based str with a fuzzy __eq__.

    Use this helper with 'mock.assert_called_with', or anywhere
    where a regex comparison between strings is needed.

    For instance:
       mock_call.assert_called_with(MockPattern('spam.*ham'))
    """
    def __eq__(self, other):
        return bool(re.search(str(self), other, re.S))


def get_function_source(func):
    source = events._get_function_source(func)
    if source is None:
        raise ValueError("unable to get the source of %r" % (func,))
    return source


class TestCase(unittest.TestCase):
    def set_event_loop(self, loop, *, cleanup=True):
        assert loop is not None
        # ensure that the event loop is passed explicitly in asyncio
        events.set_event_loop(None)
        if cleanup:
            self.addCleanup(loop.close)

    def new_test_loop(self, gen=None):
        loop = TestLoop(gen)
        self.set_event_loop(loop)
        return loop

    def tearDown(self):
        events.set_event_loop(None)

        # Detect CPython bug #23353: ensure that yield/yield-from is not used
        # in an except block of a generator
        self.assertEqual(sys.exc_info(), (None, None, None))

    if not compat.PY34:
        # Python 3.3 compatibility
        def subTest(self, *args, **kwargs):
            class EmptyCM:
                def __enter__(self):
                    pass
                def __exit__(self, *exc):
                    pass
            return EmptyCM()


@contextlib.contextmanager
def disable_logger():
    """Context manager to disable asyncio logger.

    For example, it can be used to ignore warnings in debug mode.
    """
    old_level = logger.level
    try:
        logger.setLevel(logging.CRITICAL+1)
        yield
    finally:
        logger.setLevel(old_level)


def mock_nonblocking_socket(proto=socket.IPPROTO_TCP, type=socket.SOCK_STREAM,
                            family=socket.AF_INET):
    """Create a mock of a non-blocking socket."""
    sock = mock.MagicMock(socket.socket)
    sock.proto = proto
    sock.type = type
    sock.family = family
    sock.gettimeout.return_value = 0.0
    return sock


def force_legacy_ssl_support():
    return mock.patch('asyncio.sslproto._is_sslproto_available',
                      return_value=False)
lib\asyncio\transports.py
"""Abstract Transport class."""

from asyncio import compat

__all__ = ['BaseTransport', 'ReadTransport', 'WriteTransport',
           'Transport', 'DatagramTransport', 'SubprocessTransport',
           ]


class BaseTransport:
    """Base class for transports."""

    def __init__(self, extra=None):
        if extra is None:
            extra = {}
        self._extra = extra

    def get_extra_info(self, name, default=None):
        """Get optional transport information."""
        return self._extra.get(name, default)

    def is_closing(self):
        """Return True if the transport is closing or closed."""
        raise NotImplementedError

    def close(self):
        """Close the transport.

        Buffered data will be flushed asynchronously.  No more data
        will be received.  After all buffered data is flushed, the
        protocol's connection_lost() method will (eventually) called
        with None as its argument.
        """
        raise NotImplementedError


class ReadTransport(BaseTransport):
    """Interface for read-only transports."""

    def pause_reading(self):
        """Pause the receiving end.

        No data will be passed to the protocol's data_received()
        method until resume_reading() is called.
        """
        raise NotImplementedError

    def resume_reading(self):
        """Resume the receiving end.

        Data received will once again be passed to the protocol's
        data_received() method.
        """
        raise NotImplementedError


class WriteTransport(BaseTransport):
    """Interface for write-only transports."""

    def set_write_buffer_limits(self, high=None, low=None):
        """Set the high- and low-water limits for write flow control.

        These two values control when to call the protocol's
        pause_writing() and resume_writing() methods.  If specified,
        the low-water limit must be less than or equal to the
        high-water limit.  Neither value can be negative.

        The defaults are implementation-specific.  If only the
        high-water limit is given, the low-water limit defaults to an
        implementation-specific value less than or equal to the
        high-water limit.  Setting high to zero forces low to zero as
        well, and causes pause_writing() to be called whenever the
        buffer becomes non-empty.  Setting low to zero causes
        resume_writing() to be called only once the buffer is empty.
        Use of zero for either limit is generally sub-optimal as it
        reduces opportunities for doing I/O and computation
        concurrently.
        """
        raise NotImplementedError

    def get_write_buffer_size(self):
        """Return the current size of the write buffer."""
        raise NotImplementedError

    def write(self, data):
        """Write some data bytes to the transport.

        This does not block; it buffers the data and arranges for it
        to be sent out asynchronously.
        """
        raise NotImplementedError

    def writelines(self, list_of_data):
        """Write a list (or any iterable) of data bytes to the transport.

        The default implementation concatenates the arguments and
        calls write() on the result.
        """
        data = compat.flatten_list_bytes(list_of_data)
        self.write(data)

    def write_eof(self):
        """Close the write end after flushing buffered data.

        (This is like typing ^D into a UNIX program reading from stdin.)

        Data may still be received.
        """
        raise NotImplementedError

    def can_write_eof(self):
        """Return True if this transport supports write_eof(), False if not."""
        raise NotImplementedError

    def abort(self):
        """Close the transport immediately.

        Buffered data will be lost.  No more data will be received.
        The protocol's connection_lost() method will (eventually) be
        called with None as its argument.
        """
        raise NotImplementedError


class Transport(ReadTransport, WriteTransport):
    """Interface representing a bidirectional transport.

    There may be several implementations, but typically, the user does
    not implement new transports; rather, the platform provides some
    useful transports that are implemented using the platform's best
    practices.

    The user never instantiates a transport directly; they call a
    utility function, passing it a protocol factory and other
    information necessary to create the transport and protocol.  (E.g.
    EventLoop.create_connection() or EventLoop.create_server().)

    The utility function will asynchronously create a transport and a
    protocol and hook them up by calling the protocol's
    connection_made() method, passing it the transport.

    The implementation here raises NotImplemented for every method
    except writelines(), which calls write() in a loop.
    """


class DatagramTransport(BaseTransport):
    """Interface for datagram (UDP) transports."""

    def sendto(self, data, addr=None):
        """Send data to the transport.

        This does not block; it buffers the data and arranges for it
        to be sent out asynchronously.
        addr is target socket address.
        If addr is None use target address pointed on transport creation.
        """
        raise NotImplementedError

    def abort(self):
        """Close the transport immediately.

        Buffered data will be lost.  No more data will be received.
        The protocol's connection_lost() method will (eventually) be
        called with None as its argument.
        """
        raise NotImplementedError


class SubprocessTransport(BaseTransport):

    def get_pid(self):
        """Get subprocess id."""
        raise NotImplementedError

    def get_returncode(self):
        """Get subprocess returncode.

        See also
        http://docs.python.org/3/library/subprocess#subprocess.Popen.returncode
        """
        raise NotImplementedError

    def get_pipe_transport(self, fd):
        """Get transport for pipe with number fd."""
        raise NotImplementedError

    def send_signal(self, signal):
        """Send signal to subprocess.

        See also:
        docs.python.org/3/library/subprocess#subprocess.Popen.send_signal
        """
        raise NotImplementedError

    def terminate(self):
        """Stop the subprocess.

        Alias for close() method.

        On Posix OSs the method sends SIGTERM to the subprocess.
        On Windows the Win32 API function TerminateProcess()
         is called to stop the subprocess.

        See also:
        http://docs.python.org/3/library/subprocess#subprocess.Popen.terminate
        """
        raise NotImplementedError

    def kill(self):
        """Kill the subprocess.

        On Posix OSs the function sends SIGKILL to the subprocess.
        On Windows kill() is an alias for terminate().

        See also:
        http://docs.python.org/3/library/subprocess#subprocess.Popen.kill
        """
        raise NotImplementedError


class _FlowControlMixin(Transport):
    """All the logic for (write) flow control in a mix-in base class.

    The subclass must implement get_write_buffer_size().  It must call
    _maybe_pause_protocol() whenever the write buffer size increases,
    and _maybe_resume_protocol() whenever it decreases.  It may also
    override set_write_buffer_limits() (e.g. to specify different
    defaults).

    The subclass constructor must call super().__init__(extra).  This
    will call set_write_buffer_limits().

    The user may call set_write_buffer_limits() and
    get_write_buffer_size(), and their protocol's pause_writing() and
    resume_writing() may be called.
    """

    def __init__(self, extra=None, loop=None):
        super().__init__(extra)
        assert loop is not None
        self._loop = loop
        self._protocol_paused = False
        self._set_write_buffer_limits()

    def _maybe_pause_protocol(self):
        size = self.get_write_buffer_size()
        if size <= self._high_water:
            return
        if not self._protocol_paused:
            self._protocol_paused = True
            try:
                self._protocol.pause_writing()
            except Exception as exc:
                self._loop.call_exception_handler({
                    'message': 'protocol.pause_writing() failed',
                    'exception': exc,
                    'transport': self,
                    'protocol': self._protocol,
                })

    def _maybe_resume_protocol(self):
        if (self._protocol_paused and
            self.get_write_buffer_size() <= self._low_water):
            self._protocol_paused = False
            try:
                self._protocol.resume_writing()
            except Exception as exc:
                self._loop.call_exception_handler({
                    'message': 'protocol.resume_writing() failed',
                    'exception': exc,
                    'transport': self,
                    'protocol': self._protocol,
                })

    def get_write_buffer_limits(self):
        return (self._low_water, self._high_water)

    def _set_write_buffer_limits(self, high=None, low=None):
        if high is None:
            if low is None:
                high = 64*1024
            else:
                high = 4*low
        if low is None:
            low = high // 4
        if not high >= low >= 0:
            raise ValueError('high (%r) must be >= low (%r) must be >= 0' %
                             (high, low))
        self._high_water = high
        self._low_water = low

    def set_write_buffer_limits(self, high=None, low=None):
        self._set_write_buffer_limits(high=high, low=low)
        self._maybe_pause_protocol()

    def get_write_buffer_size(self):
        raise NotImplementedError
lib\asyncio\unix_events.py
"""Selector event loop for Unix with signal handling."""

import errno
import os
import signal
import socket
import stat
import subprocess
import sys
import threading
import warnings


from . import base_events
from . import base_subprocess
from . import compat
from . import constants
from . import coroutines
from . import events
from . import futures
from . import selector_events
from . import selectors
from . import transports
from .coroutines import coroutine
from .log import logger


__all__ = ['SelectorEventLoop',
           'AbstractChildWatcher', 'SafeChildWatcher',
           'FastChildWatcher', 'DefaultEventLoopPolicy',
           ]

if sys.platform == 'win32':  # pragma: no cover
    raise ImportError('Signals are not really supported on Windows')


def _sighandler_noop(signum, frame):
    """Dummy signal handler."""
    pass


class _UnixSelectorEventLoop(selector_events.BaseSelectorEventLoop):
    """Unix event loop.

    Adds signal handling and UNIX Domain Socket support to SelectorEventLoop.
    """

    def __init__(self, selector=None):
        super().__init__(selector)
        self._signal_handlers = {}

    def _socketpair(self):
        return socket.socketpair()

    def close(self):
        super().close()
        for sig in list(self._signal_handlers):
            self.remove_signal_handler(sig)

    def _process_self_data(self, data):
        for signum in data:
            if not signum:
                # ignore null bytes written by _write_to_self()
                continue
            self._handle_signal(signum)

    def add_signal_handler(self, sig, callback, *args):
        """Add a handler for a signal.  UNIX only.

        Raise ValueError if the signal number is invalid or uncatchable.
        Raise RuntimeError if there is a problem setting up the handler.
        """
        if (coroutines.iscoroutine(callback)
        or coroutines.iscoroutinefunction(callback)):
            raise TypeError("coroutines cannot be used "
                            "with add_signal_handler()")
        self._check_signal(sig)
        self._check_closed()
        try:
            # set_wakeup_fd() raises ValueError if this is not the
            # main thread.  By calling it early we ensure that an
            # event loop running in another thread cannot add a signal
            # handler.
            signal.set_wakeup_fd(self._csock.fileno())
        except (ValueError, OSError) as exc:
            raise RuntimeError(str(exc))

        handle = events.Handle(callback, args, self)
        self._signal_handlers[sig] = handle

        try:
            # Register a dummy signal handler to ask Python to write the signal
            # number in the wakup file descriptor. _process_self_data() will
            # read signal numbers from this file descriptor to handle signals.
            signal.signal(sig, _sighandler_noop)

            # Set SA_RESTART to limit EINTR occurrences.
            signal.siginterrupt(sig, False)
        except OSError as exc:
            del self._signal_handlers[sig]
            if not self._signal_handlers:
                try:
                    signal.set_wakeup_fd(-1)
                except (ValueError, OSError) as nexc:
                    logger.info('set_wakeup_fd(-1) failed: %s', nexc)

            if exc.errno == errno.EINVAL:
                raise RuntimeError('sig {} cannot be caught'.format(sig))
            else:
                raise

    def _handle_signal(self, sig):
        """Internal helper that is the actual signal handler."""
        handle = self._signal_handlers.get(sig)
        if handle is None:
            return  # Assume it's some race condition.
        if handle._cancelled:
            self.remove_signal_handler(sig)  # Remove it properly.
        else:
            self._add_callback_signalsafe(handle)

    def remove_signal_handler(self, sig):
        """Remove a handler for a signal.  UNIX only.

        Return True if a signal handler was removed, False if not.
        """
        self._check_signal(sig)
        try:
            del self._signal_handlers[sig]
        except KeyError:
            return False

        if sig == signal.SIGINT:
            handler = signal.default_int_handler
        else:
            handler = signal.SIG_DFL

        try:
            signal.signal(sig, handler)
        except OSError as exc:
            if exc.errno == errno.EINVAL:
                raise RuntimeError('sig {} cannot be caught'.format(sig))
            else:
                raise

        if not self._signal_handlers:
            try:
                signal.set_wakeup_fd(-1)
            except (ValueError, OSError) as exc:
                logger.info('set_wakeup_fd(-1) failed: %s', exc)

        return True

    def _check_signal(self, sig):
        """Internal helper to validate a signal.

        Raise ValueError if the signal number is invalid or uncatchable.
        Raise RuntimeError if there is a problem setting up the handler.
        """
        if not isinstance(sig, int):
            raise TypeError('sig must be an int, not {!r}'.format(sig))

        if not (1 <= sig < signal.NSIG):
            raise ValueError(
                'sig {} out of range(1, {})'.format(sig, signal.NSIG))

    def _make_read_pipe_transport(self, pipe, protocol, waiter=None,
                                  extra=None):
        return _UnixReadPipeTransport(self, pipe, protocol, waiter, extra)

    def _make_write_pipe_transport(self, pipe, protocol, waiter=None,
                                   extra=None):
        return _UnixWritePipeTransport(self, pipe, protocol, waiter, extra)

    @coroutine
    def _make_subprocess_transport(self, protocol, args, shell,
                                   stdin, stdout, stderr, bufsize,
                                   extra=None, **kwargs):
        with events.get_child_watcher() as watcher:
            waiter = futures.Future(loop=self)
            transp = _UnixSubprocessTransport(self, protocol, args, shell,
                                              stdin, stdout, stderr, bufsize,
                                              waiter=waiter, extra=extra,
                                              **kwargs)

            watcher.add_child_handler(transp.get_pid(),
                                      self._child_watcher_callback, transp)
            try:
                yield from waiter
            except Exception as exc:
                # Workaround CPython bug #23353: using yield/yield-from in an
                # except block of a generator doesn't clear properly
                # sys.exc_info()
                err = exc
            else:
                err = None

            if err is not None:
                transp.close()
                yield from transp._wait()
                raise err

        return transp

    def _child_watcher_callback(self, pid, returncode, transp):
        self.call_soon_threadsafe(transp._process_exited, returncode)

    @coroutine
    def create_unix_connection(self, protocol_factory, path, *,
                               ssl=None, sock=None,
                               server_hostname=None):
        assert server_hostname is None or isinstance(server_hostname, str)
        if ssl:
            if server_hostname is None:
                raise ValueError(
                    'you have to pass server_hostname when using ssl')
        else:
            if server_hostname is not None:
                raise ValueError('server_hostname is only meaningful with ssl')

        if path is not None:
            if sock is not None:
                raise ValueError(
                    'path and sock can not be specified at the same time')

            sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM, 0)
            try:
                sock.setblocking(False)
                yield from self.sock_connect(sock, path)
            except:
                sock.close()
                raise

        else:
            if sock is None:
                raise ValueError('no path and sock were specified')
            sock.setblocking(False)

        transport, protocol = yield from self._create_connection_transport(
            sock, protocol_factory, ssl, server_hostname)
        return transport, protocol

    @coroutine
    def create_unix_server(self, protocol_factory, path=None, *,
                           sock=None, backlog=100, ssl=None):
        if isinstance(ssl, bool):
            raise TypeError('ssl argument must be an SSLContext or None')

        if path is not None:
            if sock is not None:
                raise ValueError(
                    'path and sock can not be specified at the same time')

            sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

            try:
                sock.bind(path)
            except OSError as exc:
                sock.close()
                if exc.errno == errno.EADDRINUSE:
                    # Let's improve the error message by adding
                    # with what exact address it occurs.
                    msg = 'Address {!r} is already in use'.format(path)
                    raise OSError(errno.EADDRINUSE, msg) from None
                else:
                    raise
            except:
                sock.close()
                raise
        else:
            if sock is None:
                raise ValueError(
                    'path was not specified, and no sock specified')

            if sock.family != socket.AF_UNIX:
                raise ValueError(
                    'A UNIX Domain Socket was expected, got {!r}'.format(sock))

        server = base_events.Server(self, [sock])
        sock.listen(backlog)
        sock.setblocking(False)
        self._start_serving(protocol_factory, sock, ssl, server)
        return server


if hasattr(os, 'set_blocking'):
    def _set_nonblocking(fd):
        os.set_blocking(fd, False)
else:
    import fcntl

    def _set_nonblocking(fd):
        flags = fcntl.fcntl(fd, fcntl.F_GETFL)
        flags = flags | os.O_NONBLOCK
        fcntl.fcntl(fd, fcntl.F_SETFL, flags)


class _UnixReadPipeTransport(transports.ReadTransport):

    max_size = 256 * 1024  # max bytes we read in one event loop iteration

    def __init__(self, loop, pipe, protocol, waiter=None, extra=None):
        super().__init__(extra)
        self._extra['pipe'] = pipe
        self._loop = loop
        self._pipe = pipe
        self._fileno = pipe.fileno()
        mode = os.fstat(self._fileno).st_mode
        if not (stat.S_ISFIFO(mode) or
                stat.S_ISSOCK(mode) or
                stat.S_ISCHR(mode)):
            raise ValueError("Pipe transport is for pipes/sockets only.")
        _set_nonblocking(self._fileno)
        self._protocol = protocol
        self._closing = False
        self._loop.call_soon(self._protocol.connection_made, self)
        # only start reading when connection_made() has been called
        self._loop.call_soon(self._loop.add_reader,
                             self._fileno, self._read_ready)
        if waiter is not None:
            # only wake up the waiter when connection_made() has been called
            self._loop.call_soon(futures._set_result_unless_cancelled,
                                 waiter, None)

    def __repr__(self):
        info = [self.__class__.__name__]
        if self._pipe is None:
            info.append('closed')
        elif self._closing:
            info.append('closing')
        info.append('fd=%s' % self._fileno)
        if self._pipe is not None:
            polling = selector_events._test_selector_event(
                          self._loop._selector,
                          self._fileno, selectors.EVENT_READ)
            if polling:
                info.append('polling')
            else:
                info.append('idle')
        else:
            info.append('closed')
        return '<%s>' % ' '.join(info)

    def _read_ready(self):
        try:
            data = os.read(self._fileno, self.max_size)
        except (BlockingIOError, InterruptedError):
            pass
        except OSError as exc:
            self._fatal_error(exc, 'Fatal read error on pipe transport')
        else:
            if data:
                self._protocol.data_received(data)
            else:
                if self._loop.get_debug():
                    logger.info("%r was closed by peer", self)
                self._closing = True
                self._loop.remove_reader(self._fileno)
                self._loop.call_soon(self._protocol.eof_received)
                self._loop.call_soon(self._call_connection_lost, None)

    def pause_reading(self):
        self._loop.remove_reader(self._fileno)

    def resume_reading(self):
        self._loop.add_reader(self._fileno, self._read_ready)

    def is_closing(self):
        return self._closing

    def close(self):
        if not self._closing:
            self._close(None)

    # On Python 3.3 and older, objects with a destructor part of a reference
    # cycle are never destroyed. It's not more the case on Python 3.4 thanks
    # to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if self._pipe is not None:
                warnings.warn("unclosed transport %r" % self, ResourceWarning)
                self._pipe.close()

    def _fatal_error(self, exc, message='Fatal error on pipe transport'):
        # should be called by exception handler only
        if (isinstance(exc, OSError) and exc.errno == errno.EIO):
            if self._loop.get_debug():
                logger.debug("%r: %s", self, message, exc_info=True)
        else:
            self._loop.call_exception_handler({
                'message': message,
                'exception': exc,
                'transport': self,
                'protocol': self._protocol,
            })
        self._close(exc)

    def _close(self, exc):
        self._closing = True
        self._loop.remove_reader(self._fileno)
        self._loop.call_soon(self._call_connection_lost, exc)

    def _call_connection_lost(self, exc):
        try:
            self._protocol.connection_lost(exc)
        finally:
            self._pipe.close()
            self._pipe = None
            self._protocol = None
            self._loop = None


class _UnixWritePipeTransport(transports._FlowControlMixin,
                              transports.WriteTransport):

    def __init__(self, loop, pipe, protocol, waiter=None, extra=None):
        super().__init__(extra, loop)
        self._extra['pipe'] = pipe
        self._pipe = pipe
        self._fileno = pipe.fileno()
        mode = os.fstat(self._fileno).st_mode
        is_socket = stat.S_ISSOCK(mode)
        if not (is_socket or
                stat.S_ISFIFO(mode) or
                stat.S_ISCHR(mode)):
            raise ValueError("Pipe transport is only for "
                             "pipes, sockets and character devices")
        _set_nonblocking(self._fileno)
        self._protocol = protocol
        self._buffer = []
        self._conn_lost = 0
        self._closing = False  # Set when close() or write_eof() called.

        self._loop.call_soon(self._protocol.connection_made, self)

        # On AIX, the reader trick (to be notified when the read end of the
        # socket is closed) only works for sockets. On other platforms it
        # works for pipes and sockets. (Exception: OS X 10.4?  Issue #19294.)
        if is_socket or not sys.platform.startswith("aix"):
            # only start reading when connection_made() has been called
            self._loop.call_soon(self._loop.add_reader,
                                 self._fileno, self._read_ready)

        if waiter is not None:
            # only wake up the waiter when connection_made() has been called
            self._loop.call_soon(futures._set_result_unless_cancelled,
                                 waiter, None)

    def __repr__(self):
        info = [self.__class__.__name__]
        if self._pipe is None:
            info.append('closed')
        elif self._closing:
            info.append('closing')
        info.append('fd=%s' % self._fileno)
        if self._pipe is not None:
            polling = selector_events._test_selector_event(
                          self._loop._selector,
                          self._fileno, selectors.EVENT_WRITE)
            if polling:
                info.append('polling')
            else:
                info.append('idle')

            bufsize = self.get_write_buffer_size()
            info.append('bufsize=%s' % bufsize)
        else:
            info.append('closed')
        return '<%s>' % ' '.join(info)

    def get_write_buffer_size(self):
        return sum(len(data) for data in self._buffer)

    def _read_ready(self):
        # Pipe was closed by peer.
        if self._loop.get_debug():
            logger.info("%r was closed by peer", self)
        if self._buffer:
            self._close(BrokenPipeError())
        else:
            self._close()

    def write(self, data):
        assert isinstance(data, (bytes, bytearray, memoryview)), repr(data)
        if isinstance(data, bytearray):
            data = memoryview(data)
        if not data:
            return

        if self._conn_lost or self._closing:
            if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES:
                logger.warning('pipe closed by peer or '
                               'os.write(pipe, data) raised exception.')
            self._conn_lost += 1
            return

        if not self._buffer:
            # Attempt to send it right away first.
            try:
                n = os.write(self._fileno, data)
            except (BlockingIOError, InterruptedError):
                n = 0
            except Exception as exc:
                self._conn_lost += 1
                self._fatal_error(exc, 'Fatal write error on pipe transport')
                return
            if n == len(data):
                return
            elif n > 0:
                data = data[n:]
            self._loop.add_writer(self._fileno, self._write_ready)

        self._buffer.append(data)
        self._maybe_pause_protocol()

    def _write_ready(self):
        data = b''.join(self._buffer)
        assert data, 'Data should not be empty'

        self._buffer.clear()
        try:
            n = os.write(self._fileno, data)
        except (BlockingIOError, InterruptedError):
            self._buffer.append(data)
        except Exception as exc:
            self._conn_lost += 1
            # Remove writer here, _fatal_error() doesn't it
            # because _buffer is empty.
            self._loop.remove_writer(self._fileno)
            self._fatal_error(exc, 'Fatal write error on pipe transport')
        else:
            if n == len(data):
                self._loop.remove_writer(self._fileno)
                self._maybe_resume_protocol()  # May append to buffer.
                if not self._buffer and self._closing:
                    self._loop.remove_reader(self._fileno)
                    self._call_connection_lost(None)
                return
            elif n > 0:
                data = data[n:]

            self._buffer.append(data)  # Try again later.

    def can_write_eof(self):
        return True

    def write_eof(self):
        if self._closing:
            return
        assert self._pipe
        self._closing = True
        if not self._buffer:
            self._loop.remove_reader(self._fileno)
            self._loop.call_soon(self._call_connection_lost, None)

    def is_closing(self):
        return self._closing

    def close(self):
        if self._pipe is not None and not self._closing:
            # write_eof is all what we needed to close the write pipe
            self.write_eof()

    # On Python 3.3 and older, objects with a destructor part of a reference
    # cycle are never destroyed. It's not more the case on Python 3.4 thanks
    # to the PEP 442.
    if compat.PY34:
        def __del__(self):
            if self._pipe is not None:
                warnings.warn("unclosed transport %r" % self, ResourceWarning)
                self._pipe.close()

    def abort(self):
        self._close(None)

    def _fatal_error(self, exc, message='Fatal error on pipe transport'):
        # should be called by exception handler only
        if isinstance(exc, (BrokenPipeError, ConnectionResetError)):
            if self._loop.get_debug():
                logger.debug("%r: %s", self, message, exc_info=True)
        else:
            self._loop.call_exception_handler({
                'message': message,
                'exception': exc,
                'transport': self,
                'protocol': self._protocol,
            })
        self._close(exc)

    def _close(self, exc=None):
        self._closing = True
        if self._buffer:
            self._loop.remove_writer(self._fileno)
        self._buffer.clear()
        self._loop.remove_reader(self._fileno)
        self._loop.call_soon(self._call_connection_lost, exc)

    def _call_connection_lost(self, exc):
        try:
            self._protocol.connection_lost(exc)
        finally:
            self._pipe.close()
            self._pipe = None
            self._protocol = None
            self._loop = None


if hasattr(os, 'set_inheritable'):
    # Python 3.4 and newer
    _set_inheritable = os.set_inheritable
else:
    import fcntl

    def _set_inheritable(fd, inheritable):
        cloexec_flag = getattr(fcntl, 'FD_CLOEXEC', 1)

        old = fcntl.fcntl(fd, fcntl.F_GETFD)
        if not inheritable:
            fcntl.fcntl(fd, fcntl.F_SETFD, old | cloexec_flag)
        else:
            fcntl.fcntl(fd, fcntl.F_SETFD, old & ~cloexec_flag)


class _UnixSubprocessTransport(base_subprocess.BaseSubprocessTransport):

    def _start(self, args, shell, stdin, stdout, stderr, bufsize, **kwargs):
        stdin_w = None
        if stdin == subprocess.PIPE:
            # Use a socket pair for stdin, since not all platforms
            # support selecting read events on the write end of a
            # socket (which we use in order to detect closing of the
            # other end).  Notably this is needed on AIX, and works
            # just fine on other platforms.
            stdin, stdin_w = self._loop._socketpair()

            # Mark the write end of the stdin pipe as non-inheritable,
            # needed by close_fds=False on Python 3.3 and older
            # (Python 3.4 implements the PEP 446, socketpair returns
            # non-inheritable sockets)
            _set_inheritable(stdin_w.fileno(), False)
        self._proc = subprocess.Popen(
            args, shell=shell, stdin=stdin, stdout=stdout, stderr=stderr,
            universal_newlines=False, bufsize=bufsize, **kwargs)
        if stdin_w is not None:
            stdin.close()
            self._proc.stdin = open(stdin_w.detach(), 'wb', buffering=bufsize)


class AbstractChildWatcher:
    """Abstract base class for monitoring child processes.

    Objects derived from this class monitor a collection of subprocesses and
    report their termination or interruption by a signal.

    New callbacks are registered with .add_child_handler(). Starting a new
    process must be done within a 'with' block to allow the watcher to suspend
    its activity until the new process if fully registered (this is needed to
    prevent a race condition in some implementations).

    Example:
        with watcher:
            proc = subprocess.Popen("sleep 1")
            watcher.add_child_handler(proc.pid, callback)

    Notes:
        Implementations of this class must be thread-safe.

        Since child watcher objects may catch the SIGCHLD signal and call
        waitpid(-1), there should be only one active object per process.
    """

    def add_child_handler(self, pid, callback, *args):
        """Register a new child handler.

        Arrange for callback(pid, returncode, *args) to be called when
        process 'pid' terminates. Specifying another callback for the same
        process replaces the previous handler.

        Note: callback() must be thread-safe.
        """
        raise NotImplementedError()

    def remove_child_handler(self, pid):
        """Removes the handler for process 'pid'.

        The function returns True if the handler was successfully removed,
        False if there was nothing to remove."""

        raise NotImplementedError()

    def attach_loop(self, loop):
        """Attach the watcher to an event loop.

        If the watcher was previously attached to an event loop, then it is
        first detached before attaching to the new loop.

        Note: loop may be None.
        """
        raise NotImplementedError()

    def close(self):
        """Close the watcher.

        This must be called to make sure that any underlying resource is freed.
        """
        raise NotImplementedError()

    def __enter__(self):
        """Enter the watcher's context and allow starting new processes

        This function must return self"""
        raise NotImplementedError()

    def __exit__(self, a, b, c):
        """Exit the watcher's context"""
        raise NotImplementedError()


class BaseChildWatcher(AbstractChildWatcher):

    def __init__(self):
        self._loop = None

    def close(self):
        self.attach_loop(None)

    def _do_waitpid(self, expected_pid):
        raise NotImplementedError()

    def _do_waitpid_all(self):
        raise NotImplementedError()

    def attach_loop(self, loop):
        assert loop is None or isinstance(loop, events.AbstractEventLoop)

        if self._loop is not None:
            self._loop.remove_signal_handler(signal.SIGCHLD)

        self._loop = loop
        if loop is not None:
            loop.add_signal_handler(signal.SIGCHLD, self._sig_chld)

            # Prevent a race condition in case a child terminated
            # during the switch.
            self._do_waitpid_all()

    def _sig_chld(self):
        try:
            self._do_waitpid_all()
        except Exception as exc:
            # self._loop should always be available here
            # as '_sig_chld' is added as a signal handler
            # in 'attach_loop'
            self._loop.call_exception_handler({
                'message': 'Unknown exception in SIGCHLD handler',
                'exception': exc,
            })

    def _compute_returncode(self, status):
        if os.WIFSIGNALED(status):
            # The child process died because of a signal.
            return -os.WTERMSIG(status)
        elif os.WIFEXITED(status):
            # The child process exited (e.g sys.exit()).
            return os.WEXITSTATUS(status)
        else:
            # The child exited, but we don't understand its status.
            # This shouldn't happen, but if it does, let's just
            # return that status; perhaps that helps debug it.
            return status


class SafeChildWatcher(BaseChildWatcher):
    """'Safe' child watcher implementation.

    This implementation avoids disrupting other code spawning processes by
    polling explicitly each process in the SIGCHLD handler instead of calling
    os.waitpid(-1).

    This is a safe solution but it has a significant overhead when handling a
    big number of children (O(n) each time SIGCHLD is raised)
    """

    def __init__(self):
        super().__init__()
        self._callbacks = {}

    def close(self):
        self._callbacks.clear()
        super().close()

    def __enter__(self):
        return self

    def __exit__(self, a, b, c):
        pass

    def add_child_handler(self, pid, callback, *args):
        self._callbacks[pid] = (callback, args)

        # Prevent a race condition in case the child is already terminated.
        self._do_waitpid(pid)

    def remove_child_handler(self, pid):
        try:
            del self._callbacks[pid]
            return True
        except KeyError:
            return False

    def _do_waitpid_all(self):

        for pid in list(self._callbacks):
            self._do_waitpid(pid)

    def _do_waitpid(self, expected_pid):
        assert expected_pid > 0

        try:
            pid, status = os.waitpid(expected_pid, os.WNOHANG)
        except ChildProcessError:
            # The child process is already reaped
            # (may happen if waitpid() is called elsewhere).
            pid = expected_pid
            returncode = 255
            logger.warning(
                "Unknown child process pid %d, will report returncode 255",
                pid)
        else:
            if pid == 0:
                # The child process is still alive.
                return

            returncode = self._compute_returncode(status)
            if self._loop.get_debug():
                logger.debug('process %s exited with returncode %s',
                             expected_pid, returncode)

        try:
            callback, args = self._callbacks.pop(pid)
        except KeyError:  # pragma: no cover
            # May happen if .remove_child_handler() is called
            # after os.waitpid() returns.
            if self._loop.get_debug():
                logger.warning("Child watcher got an unexpected pid: %r",
                               pid, exc_info=True)
        else:
            callback(pid, returncode, *args)


class FastChildWatcher(BaseChildWatcher):
    """'Fast' child watcher implementation.

    This implementation reaps every terminated processes by calling
    os.waitpid(-1) directly, possibly breaking other code spawning processes
    and waiting for their termination.

    There is no noticeable overhead when handling a big number of children
    (O(1) each time a child terminates).
    """
    def __init__(self):
        super().__init__()
        self._callbacks = {}
        self._lock = threading.Lock()
        self._zombies = {}
        self._forks = 0

    def close(self):
        self._callbacks.clear()
        self._zombies.clear()
        super().close()

    def __enter__(self):
        with self._lock:
            self._forks += 1

            return self

    def __exit__(self, a, b, c):
        with self._lock:
            self._forks -= 1

            if self._forks or not self._zombies:
                return

            collateral_victims = str(self._zombies)
            self._zombies.clear()

        logger.warning(
            "Caught subprocesses termination from unknown pids: %s",
            collateral_victims)

    def add_child_handler(self, pid, callback, *args):
        assert self._forks, "Must use the context manager"
        with self._lock:
            try:
                returncode = self._zombies.pop(pid)
            except KeyError:
                # The child is running.
                self._callbacks[pid] = callback, args
                return

        # The child is dead already. We can fire the callback.
        callback(pid, returncode, *args)

    def remove_child_handler(self, pid):
        try:
            del self._callbacks[pid]
            return True
        except KeyError:
            return False

    def _do_waitpid_all(self):
        # Because of signal coalescing, we must keep calling waitpid() as
        # long as we're able to reap a child.
        while True:
            try:
                pid, status = os.waitpid(-1, os.WNOHANG)
            except ChildProcessError:
                # No more child processes exist.
                return
            else:
                if pid == 0:
                    # A child process is still alive.
                    return

                returncode = self._compute_returncode(status)

            with self._lock:
                try:
                    callback, args = self._callbacks.pop(pid)
                except KeyError:
                    # unknown child
                    if self._forks:
                        # It may not be registered yet.
                        self._zombies[pid] = returncode
                        if self._loop.get_debug():
                            logger.debug('unknown process %s exited '
                                         'with returncode %s',
                                         pid, returncode)
                        continue
                    callback = None
                else:
                    if self._loop.get_debug():
                        logger.debug('process %s exited with returncode %s',
                                     pid, returncode)

            if callback is None:
                logger.warning(
                    "Caught subprocess termination from unknown pid: "
                    "%d -> %d", pid, returncode)
            else:
                callback(pid, returncode, *args)


class _UnixDefaultEventLoopPolicy(events.BaseDefaultEventLoopPolicy):
    """UNIX event loop policy with a watcher for child processes."""
    _loop_factory = _UnixSelectorEventLoop

    def __init__(self):
        super().__init__()
        self._watcher = None

    def _init_watcher(self):
        with events._lock:
            if self._watcher is None:  # pragma: no branch
                self._watcher = SafeChildWatcher()
                if isinstance(threading.current_thread(),
                              threading._MainThread):
                    self._watcher.attach_loop(self._local._loop)

    def set_event_loop(self, loop):
        """Set the event loop.

        As a side effect, if a child watcher was set before, then calling
        .set_event_loop() from the main thread will call .attach_loop(loop) on
        the child watcher.
        """

        super().set_event_loop(loop)

        if self._watcher is not None and \
            isinstance(threading.current_thread(), threading._MainThread):
            self._watcher.attach_loop(loop)

    def get_child_watcher(self):
        """Get the watcher for child processes.

        If not yet set, a SafeChildWatcher object is automatically created.
        """
        if self._watcher is None:
            self._init_watcher()

        return self._watcher

    def set_child_watcher(self, watcher):
        """Set the watcher for child processes."""

        assert watcher is None or isinstance(watcher, AbstractChildWatcher)

        if self._watcher is not None:
            self._watcher.close()

        self._watcher = watcher

SelectorEventLoop = _UnixSelectorEventLoop
DefaultEventLoopPolicy = _UnixDefaultEventLoopPolicy
lib\asyncio\windows_events.py
"""Selector and proactor event loops for Windows."""

import _winapi
import errno
import math
import socket
import struct
import weakref

from . import events
from . import base_subprocess
from . import futures
from . import proactor_events
from . import selector_events
from . import tasks
from . import windows_utils
from . import _overlapped
from .coroutines import coroutine
from .log import logger


__all__ = ['SelectorEventLoop', 'ProactorEventLoop', 'IocpProactor',
           'DefaultEventLoopPolicy',
           ]


NULL = 0
INFINITE = 0xffffffff
ERROR_CONNECTION_REFUSED = 1225
ERROR_CONNECTION_ABORTED = 1236

# Initial delay in seconds for connect_pipe() before retrying to connect
CONNECT_PIPE_INIT_DELAY = 0.001

# Maximum delay in seconds for connect_pipe() before retrying to connect
CONNECT_PIPE_MAX_DELAY = 0.100


class _OverlappedFuture(futures.Future):
    """Subclass of Future which represents an overlapped operation.

    Cancelling it will immediately cancel the overlapped operation.
    """

    def __init__(self, ov, *, loop=None):
        super().__init__(loop=loop)
        if self._source_traceback:
            del self._source_traceback[-1]
        self._ov = ov

    def _repr_info(self):
        info = super()._repr_info()
        if self._ov is not None:
            state = 'pending' if self._ov.pending else 'completed'
            info.insert(1, 'overlapped=<%s, %#x>' % (state, self._ov.address))
        return info

    def _cancel_overlapped(self):
        if self._ov is None:
            return
        try:
            self._ov.cancel()
        except OSError as exc:
            context = {
                'message': 'Cancelling an overlapped future failed',
                'exception': exc,
                'future': self,
            }
            if self._source_traceback:
                context['source_traceback'] = self._source_traceback
            self._loop.call_exception_handler(context)
        self._ov = None

    def cancel(self):
        self._cancel_overlapped()
        return super().cancel()

    def set_exception(self, exception):
        super().set_exception(exception)
        self._cancel_overlapped()

    def set_result(self, result):
        super().set_result(result)
        self._ov = None


class _BaseWaitHandleFuture(futures.Future):
    """Subclass of Future which represents a wait handle."""

    def __init__(self, ov, handle, wait_handle, *, loop=None):
        super().__init__(loop=loop)
        if self._source_traceback:
            del self._source_traceback[-1]
        # Keep a reference to the Overlapped object to keep it alive until the
        # wait is unregistered
        self._ov = ov
        self._handle = handle
        self._wait_handle = wait_handle

        # Should we call UnregisterWaitEx() if the wait completes
        # or is cancelled?
        self._registered = True

    def _poll(self):
        # non-blocking wait: use a timeout of 0 millisecond
        return (_winapi.WaitForSingleObject(self._handle, 0) ==
                _winapi.WAIT_OBJECT_0)

    def _repr_info(self):
        info = super()._repr_info()
        info.append('handle=%#x' % self._handle)
        if self._handle is not None:
            state = 'signaled' if self._poll() else 'waiting'
            info.append(state)
        if self._wait_handle is not None:
            info.append('wait_handle=%#x' % self._wait_handle)
        return info

    def _unregister_wait_cb(self, fut):
        # The wait was unregistered: it's not safe to destroy the Overlapped
        # object
        self._ov = None

    def _unregister_wait(self):
        if not self._registered:
            return
        self._registered = False

        wait_handle = self._wait_handle
        self._wait_handle = None
        try:
            _overlapped.UnregisterWait(wait_handle)
        except OSError as exc:
            if exc.winerror != _overlapped.ERROR_IO_PENDING:
                context = {
                    'message': 'Failed to unregister the wait handle',
                    'exception': exc,
                    'future': self,
                }
                if self._source_traceback:
                    context['source_traceback'] = self._source_traceback
                self._loop.call_exception_handler(context)
                return
            # ERROR_IO_PENDING means that the unregister is pending

        self._unregister_wait_cb(None)

    def cancel(self):
        self._unregister_wait()
        return super().cancel()

    def set_exception(self, exception):
        self._unregister_wait()
        super().set_exception(exception)

    def set_result(self, result):
        self._unregister_wait()
        super().set_result(result)


class _WaitCancelFuture(_BaseWaitHandleFuture):
    """Subclass of Future which represents a wait for the cancellation of a
    _WaitHandleFuture using an event.
    """

    def __init__(self, ov, event, wait_handle, *, loop=None):
        super().__init__(ov, event, wait_handle, loop=loop)

        self._done_callback = None

    def cancel(self):
        raise RuntimeError("_WaitCancelFuture must not be cancelled")

    def _schedule_callbacks(self):
        super(_WaitCancelFuture, self)._schedule_callbacks()
        if self._done_callback is not None:
            self._done_callback(self)


class _WaitHandleFuture(_BaseWaitHandleFuture):
    def __init__(self, ov, handle, wait_handle, proactor, *, loop=None):
        super().__init__(ov, handle, wait_handle, loop=loop)
        self._proactor = proactor
        self._unregister_proactor = True
        self._event = _overlapped.CreateEvent(None, True, False, None)
        self._event_fut = None

    def _unregister_wait_cb(self, fut):
        if self._event is not None:
            _winapi.CloseHandle(self._event)
            self._event = None
            self._event_fut = None

        # If the wait was cancelled, the wait may never be signalled, so
        # it's required to unregister it. Otherwise, IocpProactor.close() will
        # wait forever for an event which will never come.
        #
        # If the IocpProactor already received the event, it's safe to call
        # _unregister() because we kept a reference to the Overlapped object
        # which is used as an unique key.
        self._proactor._unregister(self._ov)
        self._proactor = None

        super()._unregister_wait_cb(fut)

    def _unregister_wait(self):
        if not self._registered:
            return
        self._registered = False

        wait_handle = self._wait_handle
        self._wait_handle = None
        try:
            _overlapped.UnregisterWaitEx(wait_handle, self._event)
        except OSError as exc:
            if exc.winerror != _overlapped.ERROR_IO_PENDING:
                context = {
                    'message': 'Failed to unregister the wait handle',
                    'exception': exc,
                    'future': self,
                }
                if self._source_traceback:
                    context['source_traceback'] = self._source_traceback
                self._loop.call_exception_handler(context)
                return
            # ERROR_IO_PENDING is not an error, the wait was unregistered

        self._event_fut = self._proactor._wait_cancel(self._event,
                                                      self._unregister_wait_cb)


class PipeServer(object):
    """Class representing a pipe server.

    This is much like a bound, listening socket.
    """
    def __init__(self, address):
        self._address = address
        self._free_instances = weakref.WeakSet()
        # initialize the pipe attribute before calling _server_pipe_handle()
        # because this function can raise an exception and the destructor calls
        # the close() method
        self._pipe = None
        self._accept_pipe_future = None
        self._pipe = self._server_pipe_handle(True)

    def _get_unconnected_pipe(self):
        # Create new instance and return previous one.  This ensures
        # that (until the server is closed) there is always at least
        # one pipe handle for address.  Therefore if a client attempt
        # to connect it will not fail with FileNotFoundError.
        tmp, self._pipe = self._pipe, self._server_pipe_handle(False)
        return tmp

    def _server_pipe_handle(self, first):
        # Return a wrapper for a new pipe handle.
        if self.closed():
            return None
        flags = _winapi.PIPE_ACCESS_DUPLEX | _winapi.FILE_FLAG_OVERLAPPED
        if first:
            flags |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE
        h = _winapi.CreateNamedPipe(
            self._address, flags,
            _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE |
            _winapi.PIPE_WAIT,
            _winapi.PIPE_UNLIMITED_INSTANCES,
            windows_utils.BUFSIZE, windows_utils.BUFSIZE,
            _winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL)
        pipe = windows_utils.PipeHandle(h)
        self._free_instances.add(pipe)
        return pipe

    def closed(self):
        return (self._address is None)

    def close(self):
        if self._accept_pipe_future is not None:
            self._accept_pipe_future.cancel()
            self._accept_pipe_future = None
        # Close all instances which have not been connected to by a client.
        if self._address is not None:
            for pipe in self._free_instances:
                pipe.close()
            self._pipe = None
            self._address = None
            self._free_instances.clear()

    __del__ = close


class _WindowsSelectorEventLoop(selector_events.BaseSelectorEventLoop):
    """Windows version of selector event loop."""

    def _socketpair(self):
        return windows_utils.socketpair()


class ProactorEventLoop(proactor_events.BaseProactorEventLoop):
    """Windows version of proactor event loop using IOCP."""

    def __init__(self, proactor=None):
        if proactor is None:
            proactor = IocpProactor()
        super().__init__(proactor)

    def _socketpair(self):
        return windows_utils.socketpair()

    @coroutine
    def create_pipe_connection(self, protocol_factory, address):
        f = self._proactor.connect_pipe(address)
        pipe = yield from f
        protocol = protocol_factory()
        trans = self._make_duplex_pipe_transport(pipe, protocol,
                                                 extra={'addr': address})
        return trans, protocol

    @coroutine
    def start_serving_pipe(self, protocol_factory, address):
        server = PipeServer(address)

        def loop_accept_pipe(f=None):
            pipe = None
            try:
                if f:
                    pipe = f.result()
                    server._free_instances.discard(pipe)

                    if server.closed():
                        # A client connected before the server was closed:
                        # drop the client (close the pipe) and exit
                        pipe.close()
                        return

                    protocol = protocol_factory()
                    self._make_duplex_pipe_transport(
                        pipe, protocol, extra={'addr': address})

                pipe = server._get_unconnected_pipe()
                if pipe is None:
                    return

                f = self._proactor.accept_pipe(pipe)
            except OSError as exc:
                if pipe and pipe.fileno() != -1:
                    self.call_exception_handler({
                        'message': 'Pipe accept failed',
                        'exception': exc,
                        'pipe': pipe,
                    })
                    pipe.close()
                elif self._debug:
                    logger.warning("Accept pipe failed on pipe %r",
                                   pipe, exc_info=True)
            except futures.CancelledError:
                if pipe:
                    pipe.close()
            else:
                server._accept_pipe_future = f
                f.add_done_callback(loop_accept_pipe)

        self.call_soon(loop_accept_pipe)
        return [server]

    @coroutine
    def _make_subprocess_transport(self, protocol, args, shell,
                                   stdin, stdout, stderr, bufsize,
                                   extra=None, **kwargs):
        waiter = futures.Future(loop=self)
        transp = _WindowsSubprocessTransport(self, protocol, args, shell,
                                             stdin, stdout, stderr, bufsize,
                                             waiter=waiter, extra=extra,
                                             **kwargs)
        try:
            yield from waiter
        except Exception as exc:
            # Workaround CPython bug #23353: using yield/yield-from in an
            # except block of a generator doesn't clear properly sys.exc_info()
            err = exc
        else:
            err = None

        if err is not None:
            transp.close()
            yield from transp._wait()
            raise err

        return transp


class IocpProactor:
    """Proactor implementation using IOCP."""

    def __init__(self, concurrency=0xffffffff):
        self._loop = None
        self._results = []
        self._iocp = _overlapped.CreateIoCompletionPort(
            _overlapped.INVALID_HANDLE_VALUE, NULL, 0, concurrency)
        self._cache = {}
        self._registered = weakref.WeakSet()
        self._unregistered = []
        self._stopped_serving = weakref.WeakSet()

    def __repr__(self):
        return ('<%s overlapped#=%s result#=%s>'
                % (self.__class__.__name__, len(self._cache),
                   len(self._results)))

    def set_loop(self, loop):
        self._loop = loop

    def select(self, timeout=None):
        if not self._results:
            self._poll(timeout)
        tmp = self._results
        self._results = []
        return tmp

    def _result(self, value):
        fut = futures.Future(loop=self._loop)
        fut.set_result(value)
        return fut

    def recv(self, conn, nbytes, flags=0):
        self._register_with_iocp(conn)
        ov = _overlapped.Overlapped(NULL)
        try:
            if isinstance(conn, socket.socket):
                ov.WSARecv(conn.fileno(), nbytes, flags)
            else:
                ov.ReadFile(conn.fileno(), nbytes)
        except BrokenPipeError:
            return self._result(b'')

        def finish_recv(trans, key, ov):
            try:
                return ov.getresult()
            except OSError as exc:
                if exc.winerror == _overlapped.ERROR_NETNAME_DELETED:
                    raise ConnectionResetError(*exc.args)
                else:
                    raise

        return self._register(ov, conn, finish_recv)

    def send(self, conn, buf, flags=0):
        self._register_with_iocp(conn)
        ov = _overlapped.Overlapped(NULL)
        if isinstance(conn, socket.socket):
            ov.WSASend(conn.fileno(), buf, flags)
        else:
            ov.WriteFile(conn.fileno(), buf)

        def finish_send(trans, key, ov):
            try:
                return ov.getresult()
            except OSError as exc:
                if exc.winerror == _overlapped.ERROR_NETNAME_DELETED:
                    raise ConnectionResetError(*exc.args)
                else:
                    raise

        return self._register(ov, conn, finish_send)

    def accept(self, listener):
        self._register_with_iocp(listener)
        conn = self._get_accept_socket(listener.family)
        ov = _overlapped.Overlapped(NULL)
        ov.AcceptEx(listener.fileno(), conn.fileno())

        def finish_accept(trans, key, ov):
            ov.getresult()
            # Use SO_UPDATE_ACCEPT_CONTEXT so getsockname() etc work.
            buf = struct.pack('@P', listener.fileno())
            conn.setsockopt(socket.SOL_SOCKET,
                            _overlapped.SO_UPDATE_ACCEPT_CONTEXT, buf)
            conn.settimeout(listener.gettimeout())
            return conn, conn.getpeername()

        @coroutine
        def accept_coro(future, conn):
            # Coroutine closing the accept socket if the future is cancelled
            try:
                yield from future
            except futures.CancelledError:
                conn.close()
                raise

        future = self._register(ov, listener, finish_accept)
        coro = accept_coro(future, conn)
        tasks.ensure_future(coro, loop=self._loop)
        return future

    def connect(self, conn, address):
        self._register_with_iocp(conn)
        # The socket needs to be locally bound before we call ConnectEx().
        try:
            _overlapped.BindLocal(conn.fileno(), conn.family)
        except OSError as e:
            if e.winerror != errno.WSAEINVAL:
                raise
            # Probably already locally bound; check using getsockname().
            if conn.getsockname()[1] == 0:
                raise
        ov = _overlapped.Overlapped(NULL)
        ov.ConnectEx(conn.fileno(), address)

        def finish_connect(trans, key, ov):
            ov.getresult()
            # Use SO_UPDATE_CONNECT_CONTEXT so getsockname() etc work.
            conn.setsockopt(socket.SOL_SOCKET,
                            _overlapped.SO_UPDATE_CONNECT_CONTEXT, 0)
            return conn

        return self._register(ov, conn, finish_connect)

    def accept_pipe(self, pipe):
        self._register_with_iocp(pipe)
        ov = _overlapped.Overlapped(NULL)
        connected = ov.ConnectNamedPipe(pipe.fileno())

        if connected:
            # ConnectNamePipe() failed with ERROR_PIPE_CONNECTED which means
            # that the pipe is connected. There is no need to wait for the
            # completion of the connection.
            return self._result(pipe)

        def finish_accept_pipe(trans, key, ov):
            ov.getresult()
            return pipe

        return self._register(ov, pipe, finish_accept_pipe)

    @coroutine
    def connect_pipe(self, address):
        delay = CONNECT_PIPE_INIT_DELAY
        while True:
            # Unfortunately there is no way to do an overlapped connect to a pipe.
            # Call CreateFile() in a loop until it doesn't fail with
            # ERROR_PIPE_BUSY
            try:
                handle = _overlapped.ConnectPipe(address)
                break
            except OSError as exc:
                if exc.winerror != _overlapped.ERROR_PIPE_BUSY:
                    raise

            # ConnectPipe() failed with ERROR_PIPE_BUSY: retry later
            delay = min(delay * 2, CONNECT_PIPE_MAX_DELAY)
            yield from tasks.sleep(delay, loop=self._loop)

        return windows_utils.PipeHandle(handle)

    def wait_for_handle(self, handle, timeout=None):
        """Wait for a handle.

        Return a Future object. The result of the future is True if the wait
        completed, or False if the wait did not complete (on timeout).
        """
        return self._wait_for_handle(handle, timeout, False)

    def _wait_cancel(self, event, done_callback):
        fut = self._wait_for_handle(event, None, True)
        # add_done_callback() cannot be used because the wait may only complete
        # in IocpProactor.close(), while the event loop is not running.
        fut._done_callback = done_callback
        return fut

    def _wait_for_handle(self, handle, timeout, _is_cancel):
        if timeout is None:
            ms = _winapi.INFINITE
        else:
            # RegisterWaitForSingleObject() has a resolution of 1 millisecond,
            # round away from zero to wait *at least* timeout seconds.
            ms = math.ceil(timeout * 1e3)

        # We only create ov so we can use ov.address as a key for the cache.
        ov = _overlapped.Overlapped(NULL)
        wait_handle = _overlapped.RegisterWaitWithQueue(
            handle, self._iocp, ov.address, ms)
        if _is_cancel:
            f = _WaitCancelFuture(ov, handle, wait_handle, loop=self._loop)
        else:
            f = _WaitHandleFuture(ov, handle, wait_handle, self,
                                  loop=self._loop)
        if f._source_traceback:
            del f._source_traceback[-1]

        def finish_wait_for_handle(trans, key, ov):
            # Note that this second wait means that we should only use
            # this with handles types where a successful wait has no
            # effect.  So events or processes are all right, but locks
            # or semaphores are not.  Also note if the handle is
            # signalled and then quickly reset, then we may return
            # False even though we have not timed out.
            return f._poll()

        self._cache[ov.address] = (f, ov, 0, finish_wait_for_handle)
        return f

    def _register_with_iocp(self, obj):
        # To get notifications of finished ops on this objects sent to the
        # completion port, were must register the handle.
        if obj not in self._registered:
            self._registered.add(obj)
            _overlapped.CreateIoCompletionPort(obj.fileno(), self._iocp, 0, 0)
            # XXX We could also use SetFileCompletionNotificationModes()
            # to avoid sending notifications to completion port of ops
            # that succeed immediately.

    def _register(self, ov, obj, callback):
        # Return a future which will be set with the result of the
        # operation when it completes.  The future's value is actually
        # the value returned by callback().
        f = _OverlappedFuture(ov, loop=self._loop)
        if f._source_traceback:
            del f._source_traceback[-1]
        if not ov.pending:
            # The operation has completed, so no need to postpone the
            # work.  We cannot take this short cut if we need the
            # NumberOfBytes, CompletionKey values returned by
            # PostQueuedCompletionStatus().
            try:
                value = callback(None, None, ov)
            except OSError as e:
                f.set_exception(e)
            else:
                f.set_result(value)
            # Even if GetOverlappedResult() was called, we have to wait for the
            # notification of the completion in GetQueuedCompletionStatus().
            # Register the overlapped operation to keep a reference to the
            # OVERLAPPED object, otherwise the memory is freed and Windows may
            # read uninitialized memory.

        # Register the overlapped operation for later.  Note that
        # we only store obj to prevent it from being garbage
        # collected too early.
        self._cache[ov.address] = (f, ov, obj, callback)
        return f

    def _unregister(self, ov):
        """Unregister an overlapped object.

        Call this method when its future has been cancelled. The event can
        already be signalled (pending in the proactor event queue). It is also
        safe if the event is never signalled (because it was cancelled).
        """
        self._unregistered.append(ov)

    def _get_accept_socket(self, family):
        s = socket.socket(family)
        s.settimeout(0)
        return s

    def _poll(self, timeout=None):
        if timeout is None:
            ms = INFINITE
        elif timeout < 0:
            raise ValueError("negative timeout")
        else:
            # GetQueuedCompletionStatus() has a resolution of 1 millisecond,
            # round away from zero to wait *at least* timeout seconds.
            ms = math.ceil(timeout * 1e3)
            if ms >= INFINITE:
                raise ValueError("timeout too big")

        while True:
            status = _overlapped.GetQueuedCompletionStatus(self._iocp, ms)
            if status is None:
                break
            ms = 0

            err, transferred, key, address = status
            try:
                f, ov, obj, callback = self._cache.pop(address)
            except KeyError:
                if self._loop.get_debug():
                    self._loop.call_exception_handler({
                        'message': ('GetQueuedCompletionStatus() returned an '
                                    'unexpected event'),
                        'status': ('err=%s transferred=%s key=%#x address=%#x'
                                   % (err, transferred, key, address)),
                    })

                # key is either zero, or it is used to return a pipe
                # handle which should be closed to avoid a leak.
                if key not in (0, _overlapped.INVALID_HANDLE_VALUE):
                    _winapi.CloseHandle(key)
                continue

            if obj in self._stopped_serving:
                f.cancel()
            # Don't call the callback if _register() already read the result or
            # if the overlapped has been cancelled
            elif not f.done():
                try:
                    value = callback(transferred, key, ov)
                except OSError as e:
                    f.set_exception(e)
                    self._results.append(f)
                else:
                    f.set_result(value)
                    self._results.append(f)

        # Remove unregisted futures
        for ov in self._unregistered:
            self._cache.pop(ov.address, None)
        self._unregistered.clear()

    def _stop_serving(self, obj):
        # obj is a socket or pipe handle.  It will be closed in
        # BaseProactorEventLoop._stop_serving() which will make any
        # pending operations fail quickly.
        self._stopped_serving.add(obj)

    def close(self):
        # Cancel remaining registered operations.
        for address, (fut, ov, obj, callback) in list(self._cache.items()):
            if fut.cancelled():
                # Nothing to do with cancelled futures
                pass
            elif isinstance(fut, _WaitCancelFuture):
                # _WaitCancelFuture must not be cancelled
                pass
            else:
                try:
                    fut.cancel()
                except OSError as exc:
                    if self._loop is not None:
                        context = {
                            'message': 'Cancelling a future failed',
                            'exception': exc,
                            'future': fut,
                        }
                        if fut._source_traceback:
                            context['source_traceback'] = fut._source_traceback
                        self._loop.call_exception_handler(context)

        while self._cache:
            if not self._poll(1):
                logger.debug('taking long time to close proactor')

        self._results = []
        if self._iocp is not None:
            _winapi.CloseHandle(self._iocp)
            self._iocp = None

    def __del__(self):
        self.close()


class _WindowsSubprocessTransport(base_subprocess.BaseSubprocessTransport):

    def _start(self, args, shell, stdin, stdout, stderr, bufsize, **kwargs):
        self._proc = windows_utils.Popen(
            args, shell=shell, stdin=stdin, stdout=stdout, stderr=stderr,
            bufsize=bufsize, **kwargs)

        def callback(f):
            returncode = self._proc.poll()
            self._process_exited(returncode)

        f = self._loop._proactor.wait_for_handle(int(self._proc._handle))
        f.add_done_callback(callback)


SelectorEventLoop = _WindowsSelectorEventLoop


class _WindowsDefaultEventLoopPolicy(events.BaseDefaultEventLoopPolicy):
    _loop_factory = SelectorEventLoop


DefaultEventLoopPolicy = _WindowsDefaultEventLoopPolicy
lib\asyncio\windows_utils.py
"""
Various Windows specific bits and pieces
"""

import sys

if sys.platform != 'win32':  # pragma: no cover
    raise ImportError('win32 only')

import _winapi
import itertools
import msvcrt
import os
import socket
import subprocess
import tempfile
import warnings


__all__ = ['socketpair', 'pipe', 'Popen', 'PIPE', 'PipeHandle']


# Constants/globals


BUFSIZE = 8192
PIPE = subprocess.PIPE
STDOUT = subprocess.STDOUT
_mmap_counter = itertools.count()


if hasattr(socket, 'socketpair'):
    # Since Python 3.5, socket.socketpair() is now also available on Windows
    socketpair = socket.socketpair
else:
    # Replacement for socket.socketpair()
    def socketpair(family=socket.AF_INET, type=socket.SOCK_STREAM, proto=0):
        """A socket pair usable as a self-pipe, for Windows.

        Origin: https://gist.github.com/4325783, by Geert Jansen.
        Public domain.
        """
        if family == socket.AF_INET:
            host = '127.0.0.1'
        elif family == socket.AF_INET6:
            host = '::1'
        else:
            raise ValueError("Only AF_INET and AF_INET6 socket address "
                             "families are supported")
        if type != socket.SOCK_STREAM:
            raise ValueError("Only SOCK_STREAM socket type is supported")
        if proto != 0:
            raise ValueError("Only protocol zero is supported")

        # We create a connected TCP socket. Note the trick with setblocking(0)
        # that prevents us from having to create a thread.
        lsock = socket.socket(family, type, proto)
        try:
            lsock.bind((host, 0))
            lsock.listen(1)
            # On IPv6, ignore flow_info and scope_id
            addr, port = lsock.getsockname()[:2]
            csock = socket.socket(family, type, proto)
            try:
                csock.setblocking(False)
                try:
                    csock.connect((addr, port))
                except (BlockingIOError, InterruptedError):
                    pass
                csock.setblocking(True)
                ssock, _ = lsock.accept()
            except:
                csock.close()
                raise
        finally:
            lsock.close()
        return (ssock, csock)


# Replacement for os.pipe() using handles instead of fds


def pipe(*, duplex=False, overlapped=(True, True), bufsize=BUFSIZE):
    """Like os.pipe() but with overlapped support and using handles not fds."""
    address = tempfile.mktemp(prefix=r'\\.\pipe\python-pipe-%d-%d-' %
                              (os.getpid(), next(_mmap_counter)))

    if duplex:
        openmode = _winapi.PIPE_ACCESS_DUPLEX
        access = _winapi.GENERIC_READ | _winapi.GENERIC_WRITE
        obsize, ibsize = bufsize, bufsize
    else:
        openmode = _winapi.PIPE_ACCESS_INBOUND
        access = _winapi.GENERIC_WRITE
        obsize, ibsize = 0, bufsize

    openmode |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE

    if overlapped[0]:
        openmode |= _winapi.FILE_FLAG_OVERLAPPED

    if overlapped[1]:
        flags_and_attribs = _winapi.FILE_FLAG_OVERLAPPED
    else:
        flags_and_attribs = 0

    h1 = h2 = None
    try:
        h1 = _winapi.CreateNamedPipe(
            address, openmode, _winapi.PIPE_WAIT,
            1, obsize, ibsize, _winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL)

        h2 = _winapi.CreateFile(
            address, access, 0, _winapi.NULL, _winapi.OPEN_EXISTING,
            flags_and_attribs, _winapi.NULL)

        ov = _winapi.ConnectNamedPipe(h1, overlapped=True)
        ov.GetOverlappedResult(True)
        return h1, h2
    except:
        if h1 is not None:
            _winapi.CloseHandle(h1)
        if h2 is not None:
            _winapi.CloseHandle(h2)
        raise


# Wrapper for a pipe handle


class PipeHandle:
    """Wrapper for an overlapped pipe handle which is vaguely file-object like.

    The IOCP event loop can use these instead of socket objects.
    """
    def __init__(self, handle):
        self._handle = handle

    def __repr__(self):
        if self._handle is not None:
            handle = 'handle=%r' % self._handle
        else:
            handle = 'closed'
        return '<%s %s>' % (self.__class__.__name__, handle)

    @property
    def handle(self):
        return self._handle

    def fileno(self):
        if self._handle is None:
            raise ValueError("I/O operatioon on closed pipe")
        return self._handle

    def close(self, *, CloseHandle=_winapi.CloseHandle):
        if self._handle is not None:
            CloseHandle(self._handle)
            self._handle = None

    def __del__(self):
        if self._handle is not None:
            warnings.warn("unclosed %r" % self, ResourceWarning)
            self.close()

    def __enter__(self):
        return self

    def __exit__(self, t, v, tb):
        self.close()


# Replacement for subprocess.Popen using overlapped pipe handles


class Popen(subprocess.Popen):
    """Replacement for subprocess.Popen using overlapped pipe handles.

    The stdin, stdout, stderr are None or instances of PipeHandle.
    """
    def __init__(self, args, stdin=None, stdout=None, stderr=None, **kwds):
        assert not kwds.get('universal_newlines')
        assert kwds.get('bufsize', 0) == 0
        stdin_rfd = stdout_wfd = stderr_wfd = None
        stdin_wh = stdout_rh = stderr_rh = None
        if stdin == PIPE:
            stdin_rh, stdin_wh = pipe(overlapped=(False, True), duplex=True)
            stdin_rfd = msvcrt.open_osfhandle(stdin_rh, os.O_RDONLY)
        else:
            stdin_rfd = stdin
        if stdout == PIPE:
            stdout_rh, stdout_wh = pipe(overlapped=(True, False))
            stdout_wfd = msvcrt.open_osfhandle(stdout_wh, 0)
        else:
            stdout_wfd = stdout
        if stderr == PIPE:
            stderr_rh, stderr_wh = pipe(overlapped=(True, False))
            stderr_wfd = msvcrt.open_osfhandle(stderr_wh, 0)
        elif stderr == STDOUT:
            stderr_wfd = stdout_wfd
        else:
            stderr_wfd = stderr
        try:
            super().__init__(args, stdin=stdin_rfd, stdout=stdout_wfd,
                             stderr=stderr_wfd, **kwds)
        except:
            for h in (stdin_wh, stdout_rh, stderr_rh):
                if h is not None:
                    _winapi.CloseHandle(h)
            raise
        else:
            if stdin_wh is not None:
                self.stdin = PipeHandle(stdin_wh)
            if stdout_rh is not None:
                self.stdout = PipeHandle(stdout_rh)
            if stderr_rh is not None:
                self.stderr = PipeHandle(stderr_rh)
        finally:
            if stdin == PIPE:
                os.close(stdin_rfd)
            if stdout == PIPE:
                os.close(stdout_wfd)
            if stderr == PIPE:
                os.close(stderr_wfd)
lib\asyncio\__init__.py
"""The asyncio package, tracking PEP 3156."""

import sys

# The selectors module is in the stdlib in Python 3.4 but not in 3.3.
# Do this first, so the other submodules can use "from . import selectors".
# Prefer asyncio/selectors.py over the stdlib one, as ours may be newer.
try:
    from . import selectors
except ImportError:
    import selectors  # Will also be exported.

if sys.platform == 'win32':
    # Similar thing for _overlapped.
    try:
        from . import _overlapped
    except ImportError:
        import _overlapped  # Will also be exported.

# This relies on each of the submodules having an __all__ variable.
from .base_events import *
from .coroutines import *
from .events import *
from .futures import *
from .locks import *
from .protocols import *
from .queues import *
from .streams import *
from .subprocess import *
from .tasks import *
from .transports import *

__all__ = (base_events.__all__ +
           coroutines.__all__ +
           events.__all__ +
           futures.__all__ +
           locks.__all__ +
           protocols.__all__ +
           queues.__all__ +
           streams.__all__ +
           subprocess.__all__ +
           tasks.__all__ +
           transports.__all__)

if sys.platform == 'win32':  # pragma: no cover
    from .windows_events import *
    __all__ += windows_events.__all__
else:
    from .unix_events import *  # pragma: no cover
    __all__ += unix_events.__all__
lib\collections\abc.py
from _collections_abc import *
from _collections_abc import __all__
lib\collections\__init__.py
__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList',
            'UserString', 'Counter', 'OrderedDict', 'ChainMap']

# For backwards compatibility, continue to make the collections ABCs
# available through the collections module.
from _collections_abc import *
import _collections_abc
__all__ += _collections_abc.__all__

from _collections import deque, defaultdict
from operator import itemgetter as _itemgetter, eq as _eq
from keyword import iskeyword as _iskeyword
import sys as _sys
import heapq as _heapq
from _weakref import proxy as _proxy
from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
from reprlib import recursive_repr as _recursive_repr

################################################################################
### OrderedDict
################################################################################

class _Link(object):
    __slots__ = 'prev', 'next', 'key', '__weakref__'

class OrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.

    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # The sentinel is in self.__hardroot with a weakref proxy in self.__root.
    # The prev links are weakref proxies (to prevent circular references).
    # Individual links are kept alive by the hard reference in self.__map.
    # Those hard references disappear when a key is deleted from an OrderedDict.

    def __init__(*args, **kwds):
        '''Initialize an ordered dictionary.  The signature is the same as
        regular dictionaries, but keyword arguments are not recommended because
        their insertion order is arbitrary.

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'OrderedDict' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__hardroot = _Link()
            self.__root = root = _proxy(self.__hardroot)
            root.prev = root.next = root
            self.__map = {}
        self.__update(*args, **kwds)

    def __setitem__(self, key, value,
                    dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
        'od.__setitem__(i, y) <==> od[i]=y'
        # Setting a new item creates a new link at the end of the linked list,
        # and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            self.__map[key] = link = Link()
            root = self.__root
            last = root.prev
            link.prev, link.next, link.key = last, root, key
            last.next = link
            root.prev = proxy(link)
        dict_setitem(self, key, value)

    def __delitem__(self, key, dict_delitem=dict.__delitem__):
        'od.__delitem__(y) <==> del od[y]'
        # Deleting an existing item uses self.__map to find the link which gets
        # removed by updating the links in the predecessor and successor nodes.
        dict_delitem(self, key)
        link = self.__map.pop(key)
        link_prev = link.prev
        link_next = link.next
        link_prev.next = link_next
        link_next.prev = link_prev

    def __iter__(self):
        'od.__iter__() <==> iter(od)'
        # Traverse the linked list in order.
        root = self.__root
        curr = root.next
        while curr is not root:
            yield curr.key
            curr = curr.next

    def __reversed__(self):
        'od.__reversed__() <==> reversed(od)'
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root.prev
        while curr is not root:
            yield curr.key
            curr = curr.prev

    def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root.prev = root.next = root
        self.__map.clear()
        dict.clear(self)

    def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        root = self.__root
        if last:
            link = root.prev
            link_prev = link.prev
            link_prev.next = root
            root.prev = link_prev
        else:
            link = root.next
            link_next = link.next
            root.next = link_next
            link_next.prev = root
        key = link.key
        del self.__map[key]
        value = dict.pop(self, key)
        return key, value

    def move_to_end(self, key, last=True):
        '''Move an existing element to the end (or beginning if last==False).

        Raises KeyError if the element does not exist.
        When last=True, acts like a fast version of self[key]=self.pop(key).

        '''
        link = self.__map[key]
        link_prev = link.prev
        link_next = link.next
        link_prev.next = link_next
        link_next.prev = link_prev
        root = self.__root
        if last:
            last = root.prev
            link.prev = last
            link.next = root
            last.next = root.prev = link
        else:
            first = root.next
            link.prev = root
            link.next = first
            root.next = first.prev = link

    def __sizeof__(self):
        sizeof = _sys.getsizeof
        n = len(self) + 1                       # number of links including root
        size = sizeof(self.__dict__)            # instance dictionary
        size += sizeof(self.__map) * 2          # internal dict and inherited dict
        size += sizeof(self.__hardroot) * n     # link objects
        size += sizeof(self.__root) * n         # proxy objects
        return size

    update = __update = MutableMapping.update
    keys = MutableMapping.keys
    values = MutableMapping.values
    items = MutableMapping.items
    __ne__ = MutableMapping.__ne__

    __marker = object()

    def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default

    def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default

    @_recursive_repr()
    def __repr__(self):
        'od.__repr__() <==> repr(od)'
        if not self:
            return '%s()' % (self.__class__.__name__,)
        return '%s(%r)' % (self.__class__.__name__, list(self.items()))

    def __reduce__(self):
        'Return state information for pickling'
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        return self.__class__, (), inst_dict or None, None, iter(self.items())

    def copy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)

    @classmethod
    def fromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.

        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self

    def __eq__(self, other):
        '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.

        '''
        if isinstance(other, OrderedDict):
            return dict.__eq__(self, other) and all(map(_eq, self, other))
        return dict.__eq__(self, other)


################################################################################
### namedtuple
################################################################################

_class_template = """\
from builtins import property as _property, tuple as _tuple
from operator import itemgetter as _itemgetter
from collections import OrderedDict

class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % list(kwds))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return self.__class__.__name__ + '({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values.'
        return OrderedDict(zip(self._fields, self))

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

{field_defs}
"""

_repr_template = '{name}=%r'

_field_template = '''\
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessable by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, str):
        field_names = field_names.replace(',', ' ').split()
    field_names = list(map(str, field_names))
    typename = str(typename)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not name.isidentifier()
                or _iskeyword(name)
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if type(name) != str:
            raise TypeError('Type names and field names must be strings')
        if not name.isidentifier():
            raise ValueError('Type names and field names must be valid '
                             'identifiers: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )

    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(__name__='namedtuple_%s' % typename)
    exec(class_definition, namespace)
    result = namespace[typename]
    result._source = class_definition
    if verbose:
        print(result._source)

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython).
    try:
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return result


########################################################################
###  Counter
########################################################################

def _count_elements(mapping, iterable):
    'Tally elements from the iterable.'
    mapping_get = mapping.get
    for elem in iterable:
        mapping[elem] = mapping_get(elem, 0) + 1

try:                                    # Load C helper function if available
    from _collections import _count_elements
except ImportError:
    pass

class Counter(dict):
    '''Dict subclass for counting hashable items.  Sometimes called a bag
    or multiset.  Elements are stored as dictionary keys and their counts
    are stored as dictionary values.

    >>> c = Counter('abcdeabcdabcaba')  # count elements from a string

    >>> c.most_common(3)                # three most common elements
    [('a', 5), ('b', 4), ('c', 3)]
    >>> sorted(c)                       # list all unique elements
    ['a', 'b', 'c', 'd', 'e']
    >>> ''.join(sorted(c.elements()))   # list elements with repetitions
    'aaaaabbbbcccdde'
    >>> sum(c.values())                 # total of all counts
    15

    >>> c['a']                          # count of letter 'a'
    5
    >>> for elem in 'shazam':           # update counts from an iterable
    ...     c[elem] += 1                # by adding 1 to each element's count
    >>> c['a']                          # now there are seven 'a'
    7
    >>> del c['b']                      # remove all 'b'
    >>> c['b']                          # now there are zero 'b'
    0

    >>> d = Counter('simsalabim')       # make another counter
    >>> c.update(d)                     # add in the second counter
    >>> c['a']                          # now there are nine 'a'
    9

    >>> c.clear()                       # empty the counter
    >>> c
    Counter()

    Note:  If a count is set to zero or reduced to zero, it will remain
    in the counter until the entry is deleted or the counter is cleared:

    >>> c = Counter('aaabbc')
    >>> c['b'] -= 2                     # reduce the count of 'b' by two
    >>> c.most_common()                 # 'b' is still in, but its count is zero
    [('a', 3), ('c', 1), ('b', 0)]

    '''
    # References:
    #   http://en.wikipedia.org/wiki/Multiset
    #   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
    #   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
    #   http://code.activestate.com/recipes/259174/
    #   Knuth, TAOCP Vol. II section 4.6.3

    def __init__(*args, **kwds):
        '''Create a new, empty Counter object.  And if given, count elements
        from an input iterable.  Or, initialize the count from another mapping
        of elements to their counts.

        >>> c = Counter()                           # a new, empty counter
        >>> c = Counter('gallahad')                 # a new counter from an iterable
        >>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
        >>> c = Counter(a=4, b=2)                   # a new counter from keyword args

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        super(Counter, self).__init__()
        self.update(*args, **kwds)

    def __missing__(self, key):
        'The count of elements not in the Counter is zero.'
        # Needed so that self[missing_item] does not raise KeyError
        return 0

    def most_common(self, n=None):
        '''List the n most common elements and their counts from the most
        common to the least.  If n is None, then list all element counts.

        >>> Counter('abcdeabcdabcaba').most_common(3)
        [('a', 5), ('b', 4), ('c', 3)]

        '''
        # Emulate Bag.sortedByCount from Smalltalk
        if n is None:
            return sorted(self.items(), key=_itemgetter(1), reverse=True)
        return _heapq.nlargest(n, self.items(), key=_itemgetter(1))

    def elements(self):
        '''Iterator over elements repeating each as many times as its count.

        >>> c = Counter('ABCABC')
        >>> sorted(c.elements())
        ['A', 'A', 'B', 'B', 'C', 'C']

        # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
        >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
        >>> product = 1
        >>> for factor in prime_factors.elements():     # loop over factors
        ...     product *= factor                       # and multiply them
        >>> product
        1836

        Note, if an element's count has been set to zero or is a negative
        number, elements() will ignore it.

        '''
        # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
        return _chain.from_iterable(_starmap(_repeat, self.items()))

    # Override dict methods where necessary

    @classmethod
    def fromkeys(cls, iterable, v=None):
        # There is no equivalent method for counters because setting v=1
        # means that no element can have a count greater than one.
        raise NotImplementedError(
            'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')

    def update(*args, **kwds):
        '''Like dict.update() but add counts instead of replacing them.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.update('witch')           # add elements from another iterable
        >>> d = Counter('watch')
        >>> c.update(d)                 # add elements from another counter
        >>> c['h']                      # four 'h' in which, witch, and watch
        4

        '''
        # The regular dict.update() operation makes no sense here because the
        # replace behavior results in the some of original untouched counts
        # being mixed-in with all of the other counts for a mismash that
        # doesn't have a straight-forward interpretation in most counting
        # contexts.  Instead, we implement straight-addition.  Both the inputs
        # and outputs are allowed to contain zero and negative counts.

        if not args:
            raise TypeError("descriptor 'update' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            if isinstance(iterable, Mapping):
                if self:
                    self_get = self.get
                    for elem, count in iterable.items():
                        self[elem] = count + self_get(elem, 0)
                else:
                    super(Counter, self).update(iterable) # fast path when counter is empty
            else:
                _count_elements(self, iterable)
        if kwds:
            self.update(kwds)

    def subtract(*args, **kwds):
        '''Like dict.update() but subtracts counts instead of replacing them.
        Counts can be reduced below zero.  Both the inputs and outputs are
        allowed to contain zero and negative counts.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.subtract('witch')             # subtract elements from another iterable
        >>> c.subtract(Counter('watch'))    # subtract elements from another counter
        >>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
        0
        >>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
        -1

        '''
        if not args:
            raise TypeError("descriptor 'subtract' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            self_get = self.get
            if isinstance(iterable, Mapping):
                for elem, count in iterable.items():
                    self[elem] = self_get(elem, 0) - count
            else:
                for elem in iterable:
                    self[elem] = self_get(elem, 0) - 1
        if kwds:
            self.subtract(kwds)

    def copy(self):
        'Return a shallow copy.'
        return self.__class__(self)

    def __reduce__(self):
        return self.__class__, (dict(self),)

    def __delitem__(self, elem):
        'Like dict.__delitem__() but does not raise KeyError for missing values.'
        if elem in self:
            super().__delitem__(elem)

    def __repr__(self):
        if not self:
            return '%s()' % self.__class__.__name__
        try:
            items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
            return '%s({%s})' % (self.__class__.__name__, items)
        except TypeError:
            # handle case where values are not orderable
            return '{0}({1!r})'.format(self.__class__.__name__, dict(self))

    # Multiset-style mathematical operations discussed in:
    #       Knuth TAOCP Volume II section 4.6.3 exercise 19
    #       and at http://en.wikipedia.org/wiki/Multiset
    #
    # Outputs guaranteed to only include positive counts.
    #
    # To strip negative and zero counts, add-in an empty counter:
    #       c += Counter()

    def __add__(self, other):
        '''Add counts from two counters.

        >>> Counter('abbb') + Counter('bcc')
        Counter({'b': 4, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count + other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result

    def __sub__(self, other):
        ''' Subtract count, but keep only results with positive counts.

        >>> Counter('abbbc') - Counter('bccd')
        Counter({'b': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count - other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count < 0:
                result[elem] = 0 - count
        return result

    def __or__(self, other):
        '''Union is the maximum of value in either of the input counters.

        >>> Counter('abbb') | Counter('bcc')
        Counter({'b': 3, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = other_count if count < other_count else count
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result

    def __and__(self, other):
        ''' Intersection is the minimum of corresponding counts.

        >>> Counter('abbb') & Counter('bcc')
        Counter({'b': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = count if count < other_count else other_count
            if newcount > 0:
                result[elem] = newcount
        return result

    def __pos__(self):
        'Adds an empty counter, effectively stripping negative and zero counts'
        return self + Counter()

    def __neg__(self):
        '''Subtracts from an empty counter.  Strips positive and zero counts,
        and flips the sign on negative counts.

        '''
        return Counter() - self

    def _keep_positive(self):
        '''Internal method to strip elements with a negative or zero count'''
        nonpositive = [elem for elem, count in self.items() if not count > 0]
        for elem in nonpositive:
            del self[elem]
        return self

    def __iadd__(self, other):
        '''Inplace add from another counter, keeping only positive counts.

        >>> c = Counter('abbb')
        >>> c += Counter('bcc')
        >>> c
        Counter({'b': 4, 'c': 2, 'a': 1})

        '''
        for elem, count in other.items():
            self[elem] += count
        return self._keep_positive()

    def __isub__(self, other):
        '''Inplace subtract counter, but keep only results with positive counts.

        >>> c = Counter('abbbc')
        >>> c -= Counter('bccd')
        >>> c
        Counter({'b': 2, 'a': 1})

        '''
        for elem, count in other.items():
            self[elem] -= count
        return self._keep_positive()

    def __ior__(self, other):
        '''Inplace union is the maximum of value from either counter.

        >>> c = Counter('abbb')
        >>> c |= Counter('bcc')
        >>> c
        Counter({'b': 3, 'c': 2, 'a': 1})

        '''
        for elem, other_count in other.items():
            count = self[elem]
            if other_count > count:
                self[elem] = other_count
        return self._keep_positive()

    def __iand__(self, other):
        '''Inplace intersection is the minimum of corresponding counts.

        >>> c = Counter('abbb')
        >>> c &= Counter('bcc')
        >>> c
        Counter({'b': 1})

        '''
        for elem, count in self.items():
            other_count = other[elem]
            if other_count < count:
                self[elem] = other_count
        return self._keep_positive()


########################################################################
###  ChainMap (helper for configparser and string.Template)
########################################################################

class ChainMap(MutableMapping):
    ''' A ChainMap groups multiple dicts (or other mappings) together
    to create a single, updateable view.

    The underlying mappings are stored in a list.  That list is public and can
    accessed or updated using the *maps* attribute.  There is no other state.

    Lookups search the underlying mappings successively until a key is found.
    In contrast, writes, updates, and deletions only operate on the first
    mapping.

    '''

    def __init__(self, *maps):
        '''Initialize a ChainMap by setting *maps* to the given mappings.
        If no mappings are provided, a single empty dictionary is used.

        '''
        self.maps = list(maps) or [{}]          # always at least one map

    def __missing__(self, key):
        raise KeyError(key)

    def __getitem__(self, key):
        for mapping in self.maps:
            try:
                return mapping[key]             # can't use 'key in mapping' with defaultdict
            except KeyError:
                pass
        return self.__missing__(key)            # support subclasses that define __missing__

    def get(self, key, default=None):
        return self[key] if key in self else default

    def __len__(self):
        return len(set().union(*self.maps))     # reuses stored hash values if possible

    def __iter__(self):
        return iter(set().union(*self.maps))

    def __contains__(self, key):
        return any(key in m for m in self.maps)

    def __bool__(self):
        return any(self.maps)

    @_recursive_repr()
    def __repr__(self):
        return '{0.__class__.__name__}({1})'.format(
            self, ', '.join(map(repr, self.maps)))

    @classmethod
    def fromkeys(cls, iterable, *args):
        'Create a ChainMap with a single dict created from the iterable.'
        return cls(dict.fromkeys(iterable, *args))

    def copy(self):
        'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]'
        return self.__class__(self.maps[0].copy(), *self.maps[1:])

    __copy__ = copy

    def new_child(self, m=None):                # like Django's Context.push()
        '''New ChainMap with a new map followed by all previous maps.
        If no map is provided, an empty dict is used.
        '''
        if m is None:
            m = {}
        return self.__class__(m, *self.maps)

    @property
    def parents(self):                          # like Django's Context.pop()
        'New ChainMap from maps[1:].'
        return self.__class__(*self.maps[1:])

    def __setitem__(self, key, value):
        self.maps[0][key] = value

    def __delitem__(self, key):
        try:
            del self.maps[0][key]
        except KeyError:
            raise KeyError('Key not found in the first mapping: {!r}'.format(key))

    def popitem(self):
        'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.'
        try:
            return self.maps[0].popitem()
        except KeyError:
            raise KeyError('No keys found in the first mapping.')

    def pop(self, key, *args):
        'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].'
        try:
            return self.maps[0].pop(key, *args)
        except KeyError:
            raise KeyError('Key not found in the first mapping: {!r}'.format(key))

    def clear(self):
        'Clear maps[0], leaving maps[1:] intact.'
        self.maps[0].clear()


################################################################################
### UserDict
################################################################################

class UserDict(MutableMapping):

    # Start by filling-out the abstract methods
    def __init__(*args, **kwargs):
        if not args:
            raise TypeError("descriptor '__init__' of 'UserDict' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        if args:
            dict = args[0]
        elif 'dict' in kwargs:
            dict = kwargs.pop('dict')
            import warnings
            warnings.warn("Passing 'dict' as keyword argument is deprecated",
                          PendingDeprecationWarning, stacklevel=2)
        else:
            dict = None
        self.data = {}
        if dict is not None:
            self.update(dict)
        if len(kwargs):
            self.update(kwargs)
    def __len__(self): return len(self.data)
    def __getitem__(self, key):
        if key in self.data:
            return self.data[key]
        if hasattr(self.__class__, "__missing__"):
            return self.__class__.__missing__(self, key)
        raise KeyError(key)
    def __setitem__(self, key, item): self.data[key] = item
    def __delitem__(self, key): del self.data[key]
    def __iter__(self):
        return iter(self.data)

    # Modify __contains__ to work correctly when __missing__ is present
    def __contains__(self, key):
        return key in self.data

    # Now, add the methods in dicts but not in MutableMapping
    def __repr__(self): return repr(self.data)
    def copy(self):
        if self.__class__ is UserDict:
            return UserDict(self.data.copy())
        import copy
        data = self.data
        try:
            self.data = {}
            c = copy.copy(self)
        finally:
            self.data = data
        c.update(self)
        return c
    @classmethod
    def fromkeys(cls, iterable, value=None):
        d = cls()
        for key in iterable:
            d[key] = value
        return d



################################################################################
### UserList
################################################################################

class UserList(MutableSequence):
    """A more or less complete user-defined wrapper around list objects."""
    def __init__(self, initlist=None):
        self.data = []
        if initlist is not None:
            # XXX should this accept an arbitrary sequence?
            if type(initlist) == type(self.data):
                self.data[:] = initlist
            elif isinstance(initlist, UserList):
                self.data[:] = initlist.data[:]
            else:
                self.data = list(initlist)
    def __repr__(self): return repr(self.data)
    def __lt__(self, other): return self.data <  self.__cast(other)
    def __le__(self, other): return self.data <= self.__cast(other)
    def __eq__(self, other): return self.data == self.__cast(other)
    def __ne__(self, other): return self.data != self.__cast(other)
    def __gt__(self, other): return self.data >  self.__cast(other)
    def __ge__(self, other): return self.data >= self.__cast(other)
    def __cast(self, other):
        return other.data if isinstance(other, UserList) else other
    def __contains__(self, item): return item in self.data
    def __len__(self): return len(self.data)
    def __getitem__(self, i): return self.data[i]
    def __setitem__(self, i, item): self.data[i] = item
    def __delitem__(self, i): del self.data[i]
    def __add__(self, other):
        if isinstance(other, UserList):
            return self.__class__(self.data + other.data)
        elif isinstance(other, type(self.data)):
            return self.__class__(self.data + other)
        return self.__class__(self.data + list(other))
    def __radd__(self, other):
        if isinstance(other, UserList):
            return self.__class__(other.data + self.data)
        elif isinstance(other, type(self.data)):
            return self.__class__(other + self.data)
        return self.__class__(list(other) + self.data)
    def __iadd__(self, other):
        if isinstance(other, UserList):
            self.data += other.data
        elif isinstance(other, type(self.data)):
            self.data += other
        else:
            self.data += list(other)
        return self
    def __mul__(self, n):
        return self.__class__(self.data*n)
    __rmul__ = __mul__
    def __imul__(self, n):
        self.data *= n
        return self
    def append(self, item): self.data.append(item)
    def insert(self, i, item): self.data.insert(i, item)
    def pop(self, i=-1): return self.data.pop(i)
    def remove(self, item): self.data.remove(item)
    def clear(self): self.data.clear()
    def copy(self): return self.__class__(self)
    def count(self, item): return self.data.count(item)
    def index(self, item, *args): return self.data.index(item, *args)
    def reverse(self): self.data.reverse()
    def sort(self, *args, **kwds): self.data.sort(*args, **kwds)
    def extend(self, other):
        if isinstance(other, UserList):
            self.data.extend(other.data)
        else:
            self.data.extend(other)



################################################################################
### UserString
################################################################################

class UserString(Sequence):
    def __init__(self, seq):
        if isinstance(seq, str):
            self.data = seq
        elif isinstance(seq, UserString):
            self.data = seq.data[:]
        else:
            self.data = str(seq)
    def __str__(self): return str(self.data)
    def __repr__(self): return repr(self.data)
    def __int__(self): return int(self.data)
    def __float__(self): return float(self.data)
    def __complex__(self): return complex(self.data)
    def __hash__(self): return hash(self.data)

    def __eq__(self, string):
        if isinstance(string, UserString):
            return self.data == string.data
        return self.data == string
    def __ne__(self, string):
        if isinstance(string, UserString):
            return self.data != string.data
        return self.data != string
    def __lt__(self, string):
        if isinstance(string, UserString):
            return self.data < string.data
        return self.data < string
    def __le__(self, string):
        if isinstance(string, UserString):
            return self.data <= string.data
        return self.data <= string
    def __gt__(self, string):
        if isinstance(string, UserString):
            return self.data > string.data
        return self.data > string
    def __ge__(self, string):
        if isinstance(string, UserString):
            return self.data >= string.data
        return self.data >= string

    def __contains__(self, char):
        if isinstance(char, UserString):
            char = char.data
        return char in self.data

    def __len__(self): return len(self.data)
    def __getitem__(self, index): return self.__class__(self.data[index])
    def __add__(self, other):
        if isinstance(other, UserString):
            return self.__class__(self.data + other.data)
        elif isinstance(other, str):
            return self.__class__(self.data + other)
        return self.__class__(self.data + str(other))
    def __radd__(self, other):
        if isinstance(other, str):
            return self.__class__(other + self.data)
        return self.__class__(str(other) + self.data)
    def __mul__(self, n):
        return self.__class__(self.data*n)
    __rmul__ = __mul__
    def __mod__(self, args):
        return self.__class__(self.data % args)

    # the following methods are defined in alphabetical order:
    def capitalize(self): return self.__class__(self.data.capitalize())
    def center(self, width, *args):
        return self.__class__(self.data.center(width, *args))
    def count(self, sub, start=0, end=_sys.maxsize):
        if isinstance(sub, UserString):
            sub = sub.data
        return self.data.count(sub, start, end)
    def encode(self, encoding=None, errors=None): # XXX improve this?
        if encoding:
            if errors:
                return self.__class__(self.data.encode(encoding, errors))
            return self.__class__(self.data.encode(encoding))
        return self.__class__(self.data.encode())
    def endswith(self, suffix, start=0, end=_sys.maxsize):
        return self.data.endswith(suffix, start, end)
    def expandtabs(self, tabsize=8):
        return self.__class__(self.data.expandtabs(tabsize))
    def find(self, sub, start=0, end=_sys.maxsize):
        if isinstance(sub, UserString):
            sub = sub.data
        return self.data.find(sub, start, end)
    def format(self, *args, **kwds):
        return self.data.format(*args, **kwds)
    def index(self, sub, start=0, end=_sys.maxsize):
        return self.data.index(sub, start, end)
    def isalpha(self): return self.data.isalpha()
    def isalnum(self): return self.data.isalnum()
    def isdecimal(self): return self.data.isdecimal()
    def isdigit(self): return self.data.isdigit()
    def isidentifier(self): return self.data.isidentifier()
    def islower(self): return self.data.islower()
    def isnumeric(self): return self.data.isnumeric()
    def isspace(self): return self.data.isspace()
    def istitle(self): return self.data.istitle()
    def isupper(self): return self.data.isupper()
    def join(self, seq): return self.data.join(seq)
    def ljust(self, width, *args):
        return self.__class__(self.data.ljust(width, *args))
    def lower(self): return self.__class__(self.data.lower())
    def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars))
    def partition(self, sep):
        return self.data.partition(sep)
    def replace(self, old, new, maxsplit=-1):
        if isinstance(old, UserString):
            old = old.data
        if isinstance(new, UserString):
            new = new.data
        return self.__class__(self.data.replace(old, new, maxsplit))
    def rfind(self, sub, start=0, end=_sys.maxsize):
        if isinstance(sub, UserString):
            sub = sub.data
        return self.data.rfind(sub, start, end)
    def rindex(self, sub, start=0, end=_sys.maxsize):
        return self.data.rindex(sub, start, end)
    def rjust(self, width, *args):
        return self.__class__(self.data.rjust(width, *args))
    def rpartition(self, sep):
        return self.data.rpartition(sep)
    def rstrip(self, chars=None):
        return self.__class__(self.data.rstrip(chars))
    def split(self, sep=None, maxsplit=-1):
        return self.data.split(sep, maxsplit)
    def rsplit(self, sep=None, maxsplit=-1):
        return self.data.rsplit(sep, maxsplit)
    def splitlines(self, keepends=False): return self.data.splitlines(keepends)
    def startswith(self, prefix, start=0, end=_sys.maxsize):
        return self.data.startswith(prefix, start, end)
    def strip(self, chars=None): return self.__class__(self.data.strip(chars))
    def swapcase(self): return self.__class__(self.data.swapcase())
    def title(self): return self.__class__(self.data.title())
    def translate(self, *args):
        return self.__class__(self.data.translate(*args))
    def upper(self): return self.__class__(self.data.upper())
    def zfill(self, width): return self.__class__(self.data.zfill(width))
lib\collections\__main__.py
################################################################################
### Simple tests
################################################################################

# verify that instances can be pickled
from collections import namedtuple
from pickle import loads, dumps
Point = namedtuple('Point', 'x, y', True)
p = Point(x=10, y=20)
assert p == loads(dumps(p))

# test and demonstrate ability to override methods
class Point(namedtuple('Point', 'x y')):
    __slots__ = ()
    @property
    def hypot(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5
    def __str__(self):
        return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

for p in Point(3, 4), Point(14, 5/7.):
    print (p)

class Point(namedtuple('Point', 'x y')):
    'Point class with optimized _make() and _replace() without error-checking'
    __slots__ = ()
    _make = classmethod(tuple.__new__)
    def _replace(self, _map=map, **kwds):
        return self._make(_map(kwds.get, ('x', 'y'), self))

print(Point(11, 22)._replace(x=100))

Point3D = namedtuple('Point3D', Point._fields + ('z',))
print(Point3D.__doc__)

import doctest, collections
TestResults = namedtuple('TestResults', 'failed attempted')
print(TestResults(*doctest.testmod(collections)))
lib\concurrent\__init__.py
# This directory is a Python package.
lib\concurrent\futures\process.py
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Implements ProcessPoolExecutor.

The follow diagram and text describe the data-flow through the system:

|======================= In-process =====================|== Out-of-process ==|

+----------+     +----------+       +--------+     +-----------+    +---------+
|          |  => | Work Ids |    => |        |  => | Call Q    | => |         |
|          |     +----------+       |        |     +-----------+    |         |
|          |     | ...      |       |        |     | ...       |    |         |
|          |     | 6        |       |        |     | 5, call() |    |         |
|          |     | 7        |       |        |     | ...       |    |         |
| Process  |     | ...      |       | Local  |     +-----------+    | Process |
|  Pool    |     +----------+       | Worker |                      |  #1..n  |
| Executor |                        | Thread |                      |         |
|          |     +----------- +     |        |     +-----------+    |         |
|          | <=> | Work Items | <=> |        | <=  | Result Q  | <= |         |
|          |     +------------+     |        |     +-----------+    |         |
|          |     | 6: call()  |     |        |     | ...       |    |         |
|          |     |    future  |     |        |     | 4, result |    |         |
|          |     | ...        |     |        |     | 3, except |    |         |
+----------+     +------------+     +--------+     +-----------+    +---------+

Executor.submit() called:
- creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict
- adds the id of the _WorkItem to the "Work Ids" queue

Local worker thread:
- reads work ids from the "Work Ids" queue and looks up the corresponding
  WorkItem from the "Work Items" dict: if the work item has been cancelled then
  it is simply removed from the dict, otherwise it is repackaged as a
  _CallItem and put in the "Call Q". New _CallItems are put in the "Call Q"
  until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because
  calls placed in the "Call Q" can no longer be cancelled with Future.cancel().
- reads _ResultItems from "Result Q", updates the future stored in the
  "Work Items" dict and deletes the dict entry

Process #1..n:
- reads _CallItems from "Call Q", executes the calls, and puts the resulting
  _ResultItems in "Result Q"
"""

__author__ = 'Brian Quinlan ([email protected])'

import atexit
import os
from concurrent.futures import _base
import queue
from queue import Full
import multiprocessing
from multiprocessing import SimpleQueue
from multiprocessing.connection import wait
import threading
import weakref

# Workers are created as daemon threads and processes. This is done to allow the
# interpreter to exit when there are still idle processes in a
# ProcessPoolExecutor's process pool (i.e. shutdown() was not called). However,
# allowing workers to die with the interpreter has two undesirable properties:
#   - The workers would still be running during interpretor shutdown,
#     meaning that they would fail in unpredictable ways.
#   - The workers could be killed while evaluating a work item, which could
#     be bad if the callable being evaluated has external side-effects e.g.
#     writing to a file.
#
# To work around this problem, an exit handler is installed which tells the
# workers to exit when their work queues are empty and then waits until the
# threads/processes finish.

_threads_queues = weakref.WeakKeyDictionary()
_shutdown = False

def _python_exit():
    global _shutdown
    _shutdown = True
    items = list(_threads_queues.items())
    for t, q in items:
        q.put(None)
    for t, q in items:
        t.join()

# Controls how many more calls than processes will be queued in the call queue.
# A smaller number will mean that processes spend more time idle waiting for
# work while a larger number will make Future.cancel() succeed less frequently
# (Futures in the call queue cannot be cancelled).
EXTRA_QUEUED_CALLS = 1

class _WorkItem(object):
    def __init__(self, future, fn, args, kwargs):
        self.future = future
        self.fn = fn
        self.args = args
        self.kwargs = kwargs

class _ResultItem(object):
    def __init__(self, work_id, exception=None, result=None):
        self.work_id = work_id
        self.exception = exception
        self.result = result

class _CallItem(object):
    def __init__(self, work_id, fn, args, kwargs):
        self.work_id = work_id
        self.fn = fn
        self.args = args
        self.kwargs = kwargs

def _process_worker(call_queue, result_queue):
    """Evaluates calls from call_queue and places the results in result_queue.

    This worker is run in a separate process.

    Args:
        call_queue: A multiprocessing.Queue of _CallItems that will be read and
            evaluated by the worker.
        result_queue: A multiprocessing.Queue of _ResultItems that will written
            to by the worker.
        shutdown: A multiprocessing.Event that will be set as a signal to the
            worker that it should exit when call_queue is empty.
    """
    while True:
        call_item = call_queue.get(block=True)
        if call_item is None:
            # Wake up queue management thread
            result_queue.put(os.getpid())
            return
        try:
            r = call_item.fn(*call_item.args, **call_item.kwargs)
        except BaseException as e:
            result_queue.put(_ResultItem(call_item.work_id,
                                         exception=e))
        else:
            result_queue.put(_ResultItem(call_item.work_id,
                                         result=r))

def _add_call_item_to_queue(pending_work_items,
                            work_ids,
                            call_queue):
    """Fills call_queue with _WorkItems from pending_work_items.

    This function never blocks.

    Args:
        pending_work_items: A dict mapping work ids to _WorkItems e.g.
            {5: <_WorkItem...>, 6: <_WorkItem...>, ...}
        work_ids: A queue.Queue of work ids e.g. Queue([5, 6, ...]). Work ids
            are consumed and the corresponding _WorkItems from
            pending_work_items are transformed into _CallItems and put in
            call_queue.
        call_queue: A multiprocessing.Queue that will be filled with _CallItems
            derived from _WorkItems.
    """
    while True:
        if call_queue.full():
            return
        try:
            work_id = work_ids.get(block=False)
        except queue.Empty:
            return
        else:
            work_item = pending_work_items[work_id]

            if work_item.future.set_running_or_notify_cancel():
                call_queue.put(_CallItem(work_id,
                                         work_item.fn,
                                         work_item.args,
                                         work_item.kwargs),
                               block=True)
            else:
                del pending_work_items[work_id]
                continue

def _queue_management_worker(executor_reference,
                             processes,
                             pending_work_items,
                             work_ids_queue,
                             call_queue,
                             result_queue):
    """Manages the communication between this process and the worker processes.

    This function is run in a local thread.

    Args:
        executor_reference: A weakref.ref to the ProcessPoolExecutor that owns
            this thread. Used to determine if the ProcessPoolExecutor has been
            garbage collected and that this function can exit.
        process: A list of the multiprocessing.Process instances used as
            workers.
        pending_work_items: A dict mapping work ids to _WorkItems e.g.
            {5: <_WorkItem...>, 6: <_WorkItem...>, ...}
        work_ids_queue: A queue.Queue of work ids e.g. Queue([5, 6, ...]).
        call_queue: A multiprocessing.Queue that will be filled with _CallItems
            derived from _WorkItems for processing by the process workers.
        result_queue: A multiprocessing.Queue of _ResultItems generated by the
            process workers.
    """
    executor = None

    def shutting_down():
        return _shutdown or executor is None or executor._shutdown_thread

    def shutdown_worker():
        # This is an upper bound
        nb_children_alive = sum(p.is_alive() for p in processes.values())
        for i in range(0, nb_children_alive):
            call_queue.put_nowait(None)
        # Release the queue's resources as soon as possible.
        call_queue.close()
        # If .join() is not called on the created processes then
        # some multiprocessing.Queue methods may deadlock on Mac OS X.
        for p in processes.values():
            p.join()

    reader = result_queue._reader

    while True:
        _add_call_item_to_queue(pending_work_items,
                                work_ids_queue,
                                call_queue)

        sentinels = [p.sentinel for p in processes.values()]
        assert sentinels
        ready = wait([reader] + sentinels)
        if reader in ready:
            result_item = reader.recv()
        else:
            # Mark the process pool broken so that submits fail right now.
            executor = executor_reference()
            if executor is not None:
                executor._broken = True
                executor._shutdown_thread = True
                executor = None
            # All futures in flight must be marked failed
            for work_id, work_item in pending_work_items.items():
                work_item.future.set_exception(
                    BrokenProcessPool(
                        "A process in the process pool was "
                        "terminated abruptly while the future was "
                        "running or pending."
                    ))
                # Delete references to object. See issue16284
                del work_item
            pending_work_items.clear()
            # Terminate remaining workers forcibly: the queues or their
            # locks may be in a dirty state and block forever.
            for p in processes.values():
                p.terminate()
            shutdown_worker()
            return
        if isinstance(result_item, int):
            # Clean shutdown of a worker using its PID
            # (avoids marking the executor broken)
            assert shutting_down()
            p = processes.pop(result_item)
            p.join()
            if not processes:
                shutdown_worker()
                return
        elif result_item is not None:
            work_item = pending_work_items.pop(result_item.work_id, None)
            # work_item can be None if another process terminated (see above)
            if work_item is not None:
                if result_item.exception:
                    work_item.future.set_exception(result_item.exception)
                else:
                    work_item.future.set_result(result_item.result)
                # Delete references to object. See issue16284
                del work_item
        # Check whether we should start shutting down.
        executor = executor_reference()
        # No more work items can be added if:
        #   - The interpreter is shutting down OR
        #   - The executor that owns this worker has been collected OR
        #   - The executor that owns this worker has been shutdown.
        if shutting_down():
            try:
                # Since no new work items can be added, it is safe to shutdown
                # this thread if there are no pending work items.
                if not pending_work_items:
                    shutdown_worker()
                    return
            except Full:
                # This is not a problem: we will eventually be woken up (in
                # result_queue.get()) and be able to send a sentinel again.
                pass
        executor = None

_system_limits_checked = False
_system_limited = None
def _check_system_limits():
    global _system_limits_checked, _system_limited
    if _system_limits_checked:
        if _system_limited:
            raise NotImplementedError(_system_limited)
    _system_limits_checked = True
    try:
        nsems_max = os.sysconf("SC_SEM_NSEMS_MAX")
    except (AttributeError, ValueError):
        # sysconf not available or setting not available
        return
    if nsems_max == -1:
        # indetermined limit, assume that limit is determined
        # by available memory only
        return
    if nsems_max >= 256:
        # minimum number of semaphores available
        # according to POSIX
        return
    _system_limited = "system provides too few semaphores (%d available, 256 necessary)" % nsems_max
    raise NotImplementedError(_system_limited)


class BrokenProcessPool(RuntimeError):
    """
    Raised when a process in a ProcessPoolExecutor terminated abruptly
    while a future was in the running state.
    """


class ProcessPoolExecutor(_base.Executor):
    def __init__(self, max_workers=None):
        """Initializes a new ProcessPoolExecutor instance.

        Args:
            max_workers: The maximum number of processes that can be used to
                execute the given calls. If None or not given then as many
                worker processes will be created as the machine has processors.
        """
        _check_system_limits()

        if max_workers is None:
            self._max_workers = os.cpu_count() or 1
        else:
            self._max_workers = max_workers

        # Make the call queue slightly larger than the number of processes to
        # prevent the worker processes from idling. But don't make it too big
        # because futures in the call queue cannot be cancelled.
        self._call_queue = multiprocessing.Queue(self._max_workers +
                                                 EXTRA_QUEUED_CALLS)
        # Killed worker processes can produce spurious "broken pipe"
        # tracebacks in the queue's own worker thread. But we detect killed
        # processes anyway, so silence the tracebacks.
        self._call_queue._ignore_epipe = True
        self._result_queue = SimpleQueue()
        self._work_ids = queue.Queue()
        self._queue_management_thread = None
        # Map of pids to processes
        self._processes = {}

        # Shutdown is a two-step process.
        self._shutdown_thread = False
        self._shutdown_lock = threading.Lock()
        self._broken = False
        self._queue_count = 0
        self._pending_work_items = {}

    def _start_queue_management_thread(self):
        # When the executor gets lost, the weakref callback will wake up
        # the queue management thread.
        def weakref_cb(_, q=self._result_queue):
            q.put(None)
        if self._queue_management_thread is None:
            # Start the processes so that their sentinels are known.
            self._adjust_process_count()
            self._queue_management_thread = threading.Thread(
                    target=_queue_management_worker,
                    args=(weakref.ref(self, weakref_cb),
                          self._processes,
                          self._pending_work_items,
                          self._work_ids,
                          self._call_queue,
                          self._result_queue))
            self._queue_management_thread.daemon = True
            self._queue_management_thread.start()
            _threads_queues[self._queue_management_thread] = self._result_queue

    def _adjust_process_count(self):
        for _ in range(len(self._processes), self._max_workers):
            p = multiprocessing.Process(
                    target=_process_worker,
                    args=(self._call_queue,
                          self._result_queue))
            p.start()
            self._processes[p.pid] = p

    def submit(self, fn, *args, **kwargs):
        with self._shutdown_lock:
            if self._broken:
                raise BrokenProcessPool('A child process terminated '
                    'abruptly, the process pool is not usable anymore')
            if self._shutdown_thread:
                raise RuntimeError('cannot schedule new futures after shutdown')

            f = _base.Future()
            w = _WorkItem(f, fn, args, kwargs)

            self._pending_work_items[self._queue_count] = w
            self._work_ids.put(self._queue_count)
            self._queue_count += 1
            # Wake up queue management thread
            self._result_queue.put(None)

            self._start_queue_management_thread()
            return f
    submit.__doc__ = _base.Executor.submit.__doc__

    def shutdown(self, wait=True):
        with self._shutdown_lock:
            self._shutdown_thread = True
        if self._queue_management_thread:
            # Wake up queue management thread
            self._result_queue.put(None)
            if wait:
                self._queue_management_thread.join()
        # To reduce the risk of opening too many files, remove references to
        # objects that use file descriptors.
        self._queue_management_thread = None
        self._call_queue = None
        self._result_queue = None
        self._processes = None
    shutdown.__doc__ = _base.Executor.shutdown.__doc__

atexit.register(_python_exit)
lib\concurrent\futures\thread.py
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Implements ThreadPoolExecutor."""

__author__ = 'Brian Quinlan ([email protected])'

import atexit
from concurrent.futures import _base
import queue
import threading
import weakref

# Workers are created as daemon threads. This is done to allow the interpreter
# to exit when there are still idle threads in a ThreadPoolExecutor's thread
# pool (i.e. shutdown() was not called). However, allowing workers to die with
# the interpreter has two undesirable properties:
#   - The workers would still be running during interpretor shutdown,
#     meaning that they would fail in unpredictable ways.
#   - The workers could be killed while evaluating a work item, which could
#     be bad if the callable being evaluated has external side-effects e.g.
#     writing to a file.
#
# To work around this problem, an exit handler is installed which tells the
# workers to exit when their work queues are empty and then waits until the
# threads finish.

_threads_queues = weakref.WeakKeyDictionary()
_shutdown = False

def _python_exit():
    global _shutdown
    _shutdown = True
    items = list(_threads_queues.items())
    for t, q in items:
        q.put(None)
    for t, q in items:
        t.join()

atexit.register(_python_exit)

class _WorkItem(object):
    def __init__(self, future, fn, args, kwargs):
        self.future = future
        self.fn = fn
        self.args = args
        self.kwargs = kwargs

    def run(self):
        if not self.future.set_running_or_notify_cancel():
            return

        try:
            result = self.fn(*self.args, **self.kwargs)
        except BaseException as e:
            self.future.set_exception(e)
        else:
            self.future.set_result(result)

def _worker(executor_reference, work_queue):
    try:
        while True:
            work_item = work_queue.get(block=True)
            if work_item is not None:
                work_item.run()
                # Delete references to object. See issue16284
                del work_item
                continue
            executor = executor_reference()
            # Exit if:
            #   - The interpreter is shutting down OR
            #   - The executor that owns the worker has been collected OR
            #   - The executor that owns the worker has been shutdown.
            if _shutdown or executor is None or executor._shutdown:
                # Notice other workers
                work_queue.put(None)
                return
            del executor
    except BaseException:
        _base.LOGGER.critical('Exception in worker', exc_info=True)

class ThreadPoolExecutor(_base.Executor):
    def __init__(self, max_workers):
        """Initializes a new ThreadPoolExecutor instance.

        Args:
            max_workers: The maximum number of threads that can be used to
                execute the given calls.
        """
        self._max_workers = max_workers
        self._work_queue = queue.Queue()
        self._threads = set()
        self._shutdown = False
        self._shutdown_lock = threading.Lock()

    def submit(self, fn, *args, **kwargs):
        with self._shutdown_lock:
            if self._shutdown:
                raise RuntimeError('cannot schedule new futures after shutdown')

            f = _base.Future()
            w = _WorkItem(f, fn, args, kwargs)

            self._work_queue.put(w)
            self._adjust_thread_count()
            return f
    submit.__doc__ = _base.Executor.submit.__doc__

    def _adjust_thread_count(self):
        # When the executor gets lost, the weakref callback will wake up
        # the worker threads.
        def weakref_cb(_, q=self._work_queue):
            q.put(None)
        # TODO(bquinlan): Should avoid creating new threads if there are more
        # idle threads than items in the work queue.
        if len(self._threads) < self._max_workers:
            t = threading.Thread(target=_worker,
                                 args=(weakref.ref(self, weakref_cb),
                                       self._work_queue))
            t.daemon = True
            t.start()
            self._threads.add(t)
            _threads_queues[t] = self._work_queue

    def shutdown(self, wait=True):
        with self._shutdown_lock:
            self._shutdown = True
            self._work_queue.put(None)
        if wait:
            for t in self._threads:
                t.join()
    shutdown.__doc__ = _base.Executor.shutdown.__doc__
lib\concurrent\futures\_base.py
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

__author__ = 'Brian Quinlan ([email protected])'

import collections
import logging
import threading
import time

FIRST_COMPLETED = 'FIRST_COMPLETED'
FIRST_EXCEPTION = 'FIRST_EXCEPTION'
ALL_COMPLETED = 'ALL_COMPLETED'
_AS_COMPLETED = '_AS_COMPLETED'

# Possible future states (for internal use by the futures package).
PENDING = 'PENDING'
RUNNING = 'RUNNING'
# The future was cancelled by the user...
CANCELLED = 'CANCELLED'
# ...and _Waiter.add_cancelled() was called by a worker.
CANCELLED_AND_NOTIFIED = 'CANCELLED_AND_NOTIFIED'
FINISHED = 'FINISHED'

_FUTURE_STATES = [
    PENDING,
    RUNNING,
    CANCELLED,
    CANCELLED_AND_NOTIFIED,
    FINISHED
]

_STATE_TO_DESCRIPTION_MAP = {
    PENDING: "pending",
    RUNNING: "running",
    CANCELLED: "cancelled",
    CANCELLED_AND_NOTIFIED: "cancelled",
    FINISHED: "finished"
}

# Logger for internal use by the futures package.
LOGGER = logging.getLogger("concurrent.futures")

class Error(Exception):
    """Base class for all future-related exceptions."""
    pass

class CancelledError(Error):
    """The Future was cancelled."""
    pass

class TimeoutError(Error):
    """The operation exceeded the given deadline."""
    pass

class _Waiter(object):
    """Provides the event that wait() and as_completed() block on."""
    def __init__(self):
        self.event = threading.Event()
        self.finished_futures = []

    def add_result(self, future):
        self.finished_futures.append(future)

    def add_exception(self, future):
        self.finished_futures.append(future)

    def add_cancelled(self, future):
        self.finished_futures.append(future)

class _AsCompletedWaiter(_Waiter):
    """Used by as_completed()."""

    def __init__(self):
        super(_AsCompletedWaiter, self).__init__()
        self.lock = threading.Lock()

    def add_result(self, future):
        with self.lock:
            super(_AsCompletedWaiter, self).add_result(future)
            self.event.set()

    def add_exception(self, future):
        with self.lock:
            super(_AsCompletedWaiter, self).add_exception(future)
            self.event.set()

    def add_cancelled(self, future):
        with self.lock:
            super(_AsCompletedWaiter, self).add_cancelled(future)
            self.event.set()

class _FirstCompletedWaiter(_Waiter):
    """Used by wait(return_when=FIRST_COMPLETED)."""

    def add_result(self, future):
        super().add_result(future)
        self.event.set()

    def add_exception(self, future):
        super().add_exception(future)
        self.event.set()

    def add_cancelled(self, future):
        super().add_cancelled(future)
        self.event.set()

class _AllCompletedWaiter(_Waiter):
    """Used by wait(return_when=FIRST_EXCEPTION and ALL_COMPLETED)."""

    def __init__(self, num_pending_calls, stop_on_exception):
        self.num_pending_calls = num_pending_calls
        self.stop_on_exception = stop_on_exception
        self.lock = threading.Lock()
        super().__init__()

    def _decrement_pending_calls(self):
        with self.lock:
            self.num_pending_calls -= 1
            if not self.num_pending_calls:
                self.event.set()

    def add_result(self, future):
        super().add_result(future)
        self._decrement_pending_calls()

    def add_exception(self, future):
        super().add_exception(future)
        if self.stop_on_exception:
            self.event.set()
        else:
            self._decrement_pending_calls()

    def add_cancelled(self, future):
        super().add_cancelled(future)
        self._decrement_pending_calls()

class _AcquireFutures(object):
    """A context manager that does an ordered acquire of Future conditions."""

    def __init__(self, futures):
        self.futures = sorted(futures, key=id)

    def __enter__(self):
        for future in self.futures:
            future._condition.acquire()

    def __exit__(self, *args):
        for future in self.futures:
            future._condition.release()

def _create_and_install_waiters(fs, return_when):
    if return_when == _AS_COMPLETED:
        waiter = _AsCompletedWaiter()
    elif return_when == FIRST_COMPLETED:
        waiter = _FirstCompletedWaiter()
    else:
        pending_count = sum(
                f._state not in [CANCELLED_AND_NOTIFIED, FINISHED] for f in fs)

        if return_when == FIRST_EXCEPTION:
            waiter = _AllCompletedWaiter(pending_count, stop_on_exception=True)
        elif return_when == ALL_COMPLETED:
            waiter = _AllCompletedWaiter(pending_count, stop_on_exception=False)
        else:
            raise ValueError("Invalid return condition: %r" % return_when)

    for f in fs:
        f._waiters.append(waiter)

    return waiter

def as_completed(fs, timeout=None):
    """An iterator over the given futures that yields each as it completes.

    Args:
        fs: The sequence of Futures (possibly created by different Executors) to
            iterate over.
        timeout: The maximum number of seconds to wait. If None, then there
            is no limit on the wait time.

    Returns:
        An iterator that yields the given Futures as they complete (finished or
        cancelled). If any given Futures are duplicated, they will be returned
        once.

    Raises:
        TimeoutError: If the entire result iterator could not be generated
            before the given timeout.
    """
    if timeout is not None:
        end_time = timeout + time.time()

    fs = set(fs)
    with _AcquireFutures(fs):
        finished = set(
                f for f in fs
                if f._state in [CANCELLED_AND_NOTIFIED, FINISHED])
        pending = fs - finished
        waiter = _create_and_install_waiters(fs, _AS_COMPLETED)

    try:
        yield from finished

        while pending:
            if timeout is None:
                wait_timeout = None
            else:
                wait_timeout = end_time - time.time()
                if wait_timeout < 0:
                    raise TimeoutError(
                            '%d (of %d) futures unfinished' % (
                            len(pending), len(fs)))

            waiter.event.wait(wait_timeout)

            with waiter.lock:
                finished = waiter.finished_futures
                waiter.finished_futures = []
                waiter.event.clear()

            for future in finished:
                yield future
                pending.remove(future)

    finally:
        for f in fs:
            with f._condition:
                f._waiters.remove(waiter)

DoneAndNotDoneFutures = collections.namedtuple(
        'DoneAndNotDoneFutures', 'done not_done')
def wait(fs, timeout=None, return_when=ALL_COMPLETED):
    """Wait for the futures in the given sequence to complete.

    Args:
        fs: The sequence of Futures (possibly created by different Executors) to
            wait upon.
        timeout: The maximum number of seconds to wait. If None, then there
            is no limit on the wait time.
        return_when: Indicates when this function should return. The options
            are:

            FIRST_COMPLETED - Return when any future finishes or is
                              cancelled.
            FIRST_EXCEPTION - Return when any future finishes by raising an
                              exception. If no future raises an exception
                              then it is equivalent to ALL_COMPLETED.
            ALL_COMPLETED -   Return when all futures finish or are cancelled.

    Returns:
        A named 2-tuple of sets. The first set, named 'done', contains the
        futures that completed (is finished or cancelled) before the wait
        completed. The second set, named 'not_done', contains uncompleted
        futures.
    """
    with _AcquireFutures(fs):
        done = set(f for f in fs
                   if f._state in [CANCELLED_AND_NOTIFIED, FINISHED])
        not_done = set(fs) - done

        if (return_when == FIRST_COMPLETED) and done:
            return DoneAndNotDoneFutures(done, not_done)
        elif (return_when == FIRST_EXCEPTION) and done:
            if any(f for f in done
                   if not f.cancelled() and f.exception() is not None):
                return DoneAndNotDoneFutures(done, not_done)

        if len(done) == len(fs):
            return DoneAndNotDoneFutures(done, not_done)

        waiter = _create_and_install_waiters(fs, return_when)

    waiter.event.wait(timeout)
    for f in fs:
        with f._condition:
            f._waiters.remove(waiter)

    done.update(waiter.finished_futures)
    return DoneAndNotDoneFutures(done, set(fs) - done)

class Future(object):
    """Represents the result of an asynchronous computation."""

    def __init__(self):
        """Initializes the future. Should not be called by clients."""
        self._condition = threading.Condition()
        self._state = PENDING
        self._result = None
        self._exception = None
        self._waiters = []
        self._done_callbacks = []

    def _invoke_callbacks(self):
        for callback in self._done_callbacks:
            try:
                callback(self)
            except Exception:
                LOGGER.exception('exception calling callback for %r', self)

    def __repr__(self):
        with self._condition:
            if self._state == FINISHED:
                if self._exception:
                    return '<Future at %s state=%s raised %s>' % (
                        hex(id(self)),
                        _STATE_TO_DESCRIPTION_MAP[self._state],
                        self._exception.__class__.__name__)
                else:
                    return '<Future at %s state=%s returned %s>' % (
                        hex(id(self)),
                        _STATE_TO_DESCRIPTION_MAP[self._state],
                        self._result.__class__.__name__)
            return '<Future at %s state=%s>' % (
                    hex(id(self)),
                   _STATE_TO_DESCRIPTION_MAP[self._state])

    def cancel(self):
        """Cancel the future if possible.

        Returns True if the future was cancelled, False otherwise. A future
        cannot be cancelled if it is running or has already completed.
        """
        with self._condition:
            if self._state in [RUNNING, FINISHED]:
                return False

            if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
                return True

            self._state = CANCELLED
            self._condition.notify_all()

        self._invoke_callbacks()
        return True

    def cancelled(self):
        """Return True if the future was cancelled."""
        with self._condition:
            return self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]

    def running(self):
        """Return True if the future is currently executing."""
        with self._condition:
            return self._state == RUNNING

    def done(self):
        """Return True of the future was cancelled or finished executing."""
        with self._condition:
            return self._state in [CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED]

    def __get_result(self):
        if self._exception:
            raise self._exception
        else:
            return self._result

    def add_done_callback(self, fn):
        """Attaches a callable that will be called when the future finishes.

        Args:
            fn: A callable that will be called with this future as its only
                argument when the future completes or is cancelled. The callable
                will always be called by a thread in the same process in which
                it was added. If the future has already completed or been
                cancelled then the callable will be called immediately. These
                callables are called in the order that they were added.
        """
        with self._condition:
            if self._state not in [CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED]:
                self._done_callbacks.append(fn)
                return
        fn(self)

    def result(self, timeout=None):
        """Return the result of the call that the future represents.

        Args:
            timeout: The number of seconds to wait for the result if the future
                isn't done. If None, then there is no limit on the wait time.

        Returns:
            The result of the call that the future represents.

        Raises:
            CancelledError: If the future was cancelled.
            TimeoutError: If the future didn't finish executing before the given
                timeout.
            Exception: If the call raised then that exception will be raised.
        """
        with self._condition:
            if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
                raise CancelledError()
            elif self._state == FINISHED:
                return self.__get_result()

            self._condition.wait(timeout)

            if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
                raise CancelledError()
            elif self._state == FINISHED:
                return self.__get_result()
            else:
                raise TimeoutError()

    def exception(self, timeout=None):
        """Return the exception raised by the call that the future represents.

        Args:
            timeout: The number of seconds to wait for the exception if the
                future isn't done. If None, then there is no limit on the wait
                time.

        Returns:
            The exception raised by the call that the future represents or None
            if the call completed without raising.

        Raises:
            CancelledError: If the future was cancelled.
            TimeoutError: If the future didn't finish executing before the given
                timeout.
        """

        with self._condition:
            if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
                raise CancelledError()
            elif self._state == FINISHED:
                return self._exception

            self._condition.wait(timeout)

            if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]:
                raise CancelledError()
            elif self._state == FINISHED:
                return self._exception
            else:
                raise TimeoutError()

    # The following methods should only be used by Executors and in tests.
    def set_running_or_notify_cancel(self):
        """Mark the future as running or process any cancel notifications.

        Should only be used by Executor implementations and unit tests.

        If the future has been cancelled (cancel() was called and returned
        True) then any threads waiting on the future completing (though calls
        to as_completed() or wait()) are notified and False is returned.

        If the future was not cancelled then it is put in the running state
        (future calls to running() will return True) and True is returned.

        This method should be called by Executor implementations before
        executing the work associated with this future. If this method returns
        False then the work should not be executed.

        Returns:
            False if the Future was cancelled, True otherwise.

        Raises:
            RuntimeError: if this method was already called or if set_result()
                or set_exception() was called.
        """
        with self._condition:
            if self._state == CANCELLED:
                self._state = CANCELLED_AND_NOTIFIED
                for waiter in self._waiters:
                    waiter.add_cancelled(self)
                # self._condition.notify_all() is not necessary because
                # self.cancel() triggers a notification.
                return False
            elif self._state == PENDING:
                self._state = RUNNING
                return True
            else:
                LOGGER.critical('Future %s in unexpected state: %s',
                                id(self),
                                self._state)
                raise RuntimeError('Future in unexpected state')

    def set_result(self, result):
        """Sets the return value of work associated with the future.

        Should only be used by Executor implementations and unit tests.
        """
        with self._condition:
            self._result = result
            self._state = FINISHED
            for waiter in self._waiters:
                waiter.add_result(self)
            self._condition.notify_all()
        self._invoke_callbacks()

    def set_exception(self, exception):
        """Sets the result of the future as being the given exception.

        Should only be used by Executor implementations and unit tests.
        """
        with self._condition:
            self._exception = exception
            self._state = FINISHED
            for waiter in self._waiters:
                waiter.add_exception(self)
            self._condition.notify_all()
        self._invoke_callbacks()

class Executor(object):
    """This is an abstract base class for concrete asynchronous executors."""

    def submit(self, fn, *args, **kwargs):
        """Submits a callable to be executed with the given arguments.

        Schedules the callable to be executed as fn(*args, **kwargs) and returns
        a Future instance representing the execution of the callable.

        Returns:
            A Future representing the given call.
        """
        raise NotImplementedError()

    def map(self, fn, *iterables, timeout=None):
        """Returns an iterator equivalent to map(fn, iter).

        Args:
            fn: A callable that will take as many arguments as there are
                passed iterables.
            timeout: The maximum number of seconds to wait. If None, then there
                is no limit on the wait time.

        Returns:
            An iterator equivalent to: map(func, *iterables) but the calls may
            be evaluated out-of-order.

        Raises:
            TimeoutError: If the entire result iterator could not be generated
                before the given timeout.
            Exception: If fn(*args) raises for any values.
        """
        if timeout is not None:
            end_time = timeout + time.time()

        fs = [self.submit(fn, *args) for args in zip(*iterables)]

        # Yield must be hidden in closure so that the futures are submitted
        # before the first iterator value is required.
        def result_iterator():
            try:
                for future in fs:
                    if timeout is None:
                        yield future.result()
                    else:
                        yield future.result(end_time - time.time())
            finally:
                for future in fs:
                    future.cancel()
        return result_iterator()

    def shutdown(self, wait=True):
        """Clean-up the resources associated with the Executor.

        It is safe to call this method several times. Otherwise, no other
        methods can be called after this one.

        Args:
            wait: If True then shutdown will not return until all running
                futures have finished executing and the resources used by the
                executor have been reclaimed.
        """
        pass

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.shutdown(wait=True)
        return False
lib\concurrent\futures\__init__.py
# Copyright 2009 Brian Quinlan. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Execute computations asynchronously using threads or processes."""

__author__ = 'Brian Quinlan ([email protected])'

from concurrent.futures._base import (FIRST_COMPLETED,
                                      FIRST_EXCEPTION,
                                      ALL_COMPLETED,
                                      CancelledError,
                                      TimeoutError,
                                      Future,
                                      Executor,
                                      wait,
                                      as_completed)
from concurrent.futures.process import ProcessPoolExecutor
from concurrent.futures.thread import ThreadPoolExecutor
lib\ctypes\util.py
import sys, os
import contextlib
import subprocess

# find_library(name) returns the pathname of a library, or None.
if os.name == "nt":

    def _get_build_version():
        """Return the version of MSVC that was used to build Python.

        For Python 2.3 and up, the version number is included in
        sys.version.  For earlier versions, assume the compiler is MSVC 6.
        """
        # This function was copied from Lib/distutils/msvccompiler.py
        prefix = "MSC v."
        i = sys.version.find(prefix)
        if i == -1:
            return 6
        i = i + len(prefix)
        s, rest = sys.version[i:].split(" ", 1)
        majorVersion = int(s[:-2]) - 6
        minorVersion = int(s[2:3]) / 10.0
        # I don't think paths are affected by minor version in version 6
        if majorVersion == 6:
            minorVersion = 0
        if majorVersion >= 6:
            return majorVersion + minorVersion
        # else we don't know what version of the compiler this is
        return None

    def find_msvcrt():
        """Return the name of the VC runtime dll"""
        version = _get_build_version()
        if version is None:
            # better be safe than sorry
            return None
        if version <= 6:
            clibname = 'msvcrt'
        else:
            clibname = 'msvcr%d' % (version * 10)

        # If python was built with in debug mode
        import importlib.machinery
        if '_d.pyd' in importlib.machinery.EXTENSION_SUFFIXES:
            clibname += 'd'
        return clibname+'.dll'

    def find_library(name):
        if name in ('c', 'm'):
            return find_msvcrt()
        # See MSDN for the REAL search order.
        for directory in os.environ['PATH'].split(os.pathsep):
            fname = os.path.join(directory, name)
            if os.path.isfile(fname):
                return fname
            if fname.lower().endswith(".dll"):
                continue
            fname = fname + ".dll"
            if os.path.isfile(fname):
                return fname
        return None

if os.name == "ce":
    # search path according to MSDN:
    # - absolute path specified by filename
    # - The .exe launch directory
    # - the Windows directory
    # - ROM dll files (where are they?)
    # - OEM specified search path: HKLM\Loader\SystemPath
    def find_library(name):
        return name

if os.name == "posix" and sys.platform == "darwin":
    from ctypes.macholib.dyld import dyld_find as _dyld_find
    def find_library(name):
        possible = ['lib%s.dylib' % name,
                    '%s.dylib' % name,
                    '%s.framework/%s' % (name, name)]
        for name in possible:
            try:
                return _dyld_find(name)
            except ValueError:
                continue
        return None

elif os.name == "posix":
    # Andreas Degert's find functions, using gcc, /sbin/ldconfig, objdump
    import re, tempfile

    def _findLib_gcc(name):
        expr = r'[^\(\)\s]*lib%s\.[^\(\)\s]*' % re.escape(name)
        fdout, ccout = tempfile.mkstemp()
        os.close(fdout)
        cmd = 'if type gcc >/dev/null 2>&1; then CC=gcc; elif type cc >/dev/null 2>&1; then CC=cc;else exit 10; fi;' \
              'LANG=C LC_ALL=C $CC -Wl,-t -o ' + ccout + ' 2>&1 -l' + name
        try:
            f = os.popen(cmd)
            try:
                trace = f.read()
            finally:
                rv = f.close()
        finally:
            try:
                os.unlink(ccout)
            except FileNotFoundError:
                pass
        if rv == 10:
            raise OSError('gcc or cc command not found')
        res = re.search(expr, trace)
        if not res:
            return None
        return res.group(0)


    if sys.platform == "sunos5":
        # use /usr/ccs/bin/dump on solaris
        def _get_soname(f):
            if not f:
                return None
            cmd = "/usr/ccs/bin/dump -Lpv 2>/dev/null " + f
            with contextlib.closing(os.popen(cmd)) as f:
                data = f.read()
            res = re.search(r'\[.*\]\sSONAME\s+([^\s]+)', data)
            if not res:
                return None
            return res.group(1)
    else:
        def _get_soname(f):
            # assuming GNU binutils / ELF
            if not f:
                return None
            cmd = 'if ! type objdump >/dev/null 2>&1; then exit 10; fi;' \
                  "objdump -p -j .dynamic 2>/dev/null " + f
            f = os.popen(cmd)
            try:
                dump = f.read()
            finally:
                rv = f.close()
            if rv == 10:
                raise OSError('objdump command not found')
            res = re.search(r'\sSONAME\s+([^\s]+)', dump)
            if not res:
                return None
            return res.group(1)

    if sys.platform.startswith(("freebsd", "openbsd", "dragonfly")):

        def _num_version(libname):
            # "libxyz.so.MAJOR.MINOR" => [ MAJOR, MINOR ]
            parts = libname.split(".")
            nums = []
            try:
                while parts:
                    nums.insert(0, int(parts.pop()))
            except ValueError:
                pass
            return nums or [ sys.maxsize ]

        def find_library(name):
            ename = re.escape(name)
            expr = r':-l%s\.\S+ => \S*/(lib%s\.\S+)' % (ename, ename)
            with contextlib.closing(os.popen('/sbin/ldconfig -r 2>/dev/null')) as f:
                data = f.read()
            res = re.findall(expr, data)
            if not res:
                return _get_soname(_findLib_gcc(name))
            res.sort(key=_num_version)
            return res[-1]

    elif sys.platform == "sunos5":

        def _findLib_crle(name, is64):
            if not os.path.exists('/usr/bin/crle'):
                return None

            if is64:
                cmd = 'env LC_ALL=C /usr/bin/crle -64 2>/dev/null'
            else:
                cmd = 'env LC_ALL=C /usr/bin/crle 2>/dev/null'

            with contextlib.closing(os.popen(cmd)) as f:
                for line in f.readlines():
                    line = line.strip()
                    if line.startswith('Default Library Path (ELF):'):
                        paths = line.split()[4]

            if not paths:
                return None

            for dir in paths.split(":"):
                libfile = os.path.join(dir, "lib%s.so" % name)
                if os.path.exists(libfile):
                    return libfile

            return None

        def find_library(name, is64 = False):
            return _get_soname(_findLib_crle(name, is64) or _findLib_gcc(name))

    else:

        def _findSoname_ldconfig(name):
            import struct
            if struct.calcsize('l') == 4:
                machine = os.uname().machine + '-32'
            else:
                machine = os.uname().machine + '-64'
            mach_map = {
                'x86_64-64': 'libc6,x86-64',
                'ppc64-64': 'libc6,64bit',
                'sparc64-64': 'libc6,64bit',
                's390x-64': 'libc6,64bit',
                'ia64-64': 'libc6,IA-64',
                }
            abi_type = mach_map.get(machine, 'libc6')

            # XXX assuming GLIBC's ldconfig (with option -p)
            regex = os.fsencode(
                '\s+(lib%s\.[^\s]+)\s+\(%s' % (re.escape(name), abi_type))
            try:
                with subprocess.Popen(['/sbin/ldconfig', '-p'],
                                      stdin=subprocess.DEVNULL,
                                      stderr=subprocess.DEVNULL,
                                      stdout=subprocess.PIPE,
                                      env={'LC_ALL': 'C', 'LANG': 'C'}) as p:
                    res = re.search(regex, p.stdout.read())
                    if res:
                        return os.fsdecode(res.group(1))
            except OSError:
                pass

        def find_library(name):
            return _findSoname_ldconfig(name) or _get_soname(_findLib_gcc(name))

################################################################
# test code

def test():
    from ctypes import cdll
    if os.name == "nt":
        print(cdll.msvcrt)
        print(cdll.load("msvcrt"))
        print(find_library("msvcrt"))

    if os.name == "posix":
        # find and load_version
        print(find_library("m"))
        print(find_library("c"))
        print(find_library("bz2"))

        # getattr
##        print cdll.m
##        print cdll.bz2

        # load
        if sys.platform == "darwin":
            print(cdll.LoadLibrary("libm.dylib"))
            print(cdll.LoadLibrary("libcrypto.dylib"))
            print(cdll.LoadLibrary("libSystem.dylib"))
            print(cdll.LoadLibrary("System.framework/System"))
        else:
            print(cdll.LoadLibrary("libm.so"))
            print(cdll.LoadLibrary("libcrypt.so"))
            print(find_library("crypt"))

if __name__ == "__main__":
    test()
lib\ctypes\wintypes.py
# The most useful windows datatypes
import ctypes

BYTE = ctypes.c_byte
WORD = ctypes.c_ushort
DWORD = ctypes.c_ulong

#UCHAR = ctypes.c_uchar
CHAR = ctypes.c_char
WCHAR = ctypes.c_wchar
UINT = ctypes.c_uint
INT = ctypes.c_int

DOUBLE = ctypes.c_double
FLOAT = ctypes.c_float

BOOLEAN = BYTE
BOOL = ctypes.c_long

class VARIANT_BOOL(ctypes._SimpleCData):
    _type_ = "v"
    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self.value)

ULONG = ctypes.c_ulong
LONG = ctypes.c_long

USHORT = ctypes.c_ushort
SHORT = ctypes.c_short

# in the windows header files, these are structures.
_LARGE_INTEGER = LARGE_INTEGER = ctypes.c_longlong
_ULARGE_INTEGER = ULARGE_INTEGER = ctypes.c_ulonglong

LPCOLESTR = LPOLESTR = OLESTR = ctypes.c_wchar_p
LPCWSTR = LPWSTR = ctypes.c_wchar_p
LPCSTR = LPSTR = ctypes.c_char_p
LPCVOID = LPVOID = ctypes.c_void_p

# WPARAM is defined as UINT_PTR (unsigned type)
# LPARAM is defined as LONG_PTR (signed type)
if ctypes.sizeof(ctypes.c_long) == ctypes.sizeof(ctypes.c_void_p):
    WPARAM = ctypes.c_ulong
    LPARAM = ctypes.c_long
elif ctypes.sizeof(ctypes.c_longlong) == ctypes.sizeof(ctypes.c_void_p):
    WPARAM = ctypes.c_ulonglong
    LPARAM = ctypes.c_longlong

ATOM = WORD
LANGID = WORD

COLORREF = DWORD
LGRPID = DWORD
LCTYPE = DWORD

LCID = DWORD

################################################################
# HANDLE types
HANDLE = ctypes.c_void_p # in the header files: void *

HACCEL = HANDLE
HBITMAP = HANDLE
HBRUSH = HANDLE
HCOLORSPACE = HANDLE
HDC = HANDLE
HDESK = HANDLE
HDWP = HANDLE
HENHMETAFILE = HANDLE
HFONT = HANDLE
HGDIOBJ = HANDLE
HGLOBAL = HANDLE
HHOOK = HANDLE
HICON = HANDLE
HINSTANCE = HANDLE
HKEY = HANDLE
HKL = HANDLE
HLOCAL = HANDLE
HMENU = HANDLE
HMETAFILE = HANDLE
HMODULE = HANDLE
HMONITOR = HANDLE
HPALETTE = HANDLE
HPEN = HANDLE
HRGN = HANDLE
HRSRC = HANDLE
HSTR = HANDLE
HTASK = HANDLE
HWINSTA = HANDLE
HWND = HANDLE
SC_HANDLE = HANDLE
SERVICE_STATUS_HANDLE = HANDLE

################################################################
# Some important structure definitions

class RECT(ctypes.Structure):
    _fields_ = [("left", LONG),
                ("top", LONG),
                ("right", LONG),
                ("bottom", LONG)]
tagRECT = _RECTL = RECTL = RECT

class _SMALL_RECT(ctypes.Structure):
    _fields_ = [('Left', SHORT),
                ('Top', SHORT),
                ('Right', SHORT),
                ('Bottom', SHORT)]
SMALL_RECT = _SMALL_RECT

class _COORD(ctypes.Structure):
    _fields_ = [('X', SHORT),
                ('Y', SHORT)]

class POINT(ctypes.Structure):
    _fields_ = [("x", LONG),
                ("y", LONG)]
tagPOINT = _POINTL = POINTL = POINT

class SIZE(ctypes.Structure):
    _fields_ = [("cx", LONG),
                ("cy", LONG)]
tagSIZE = SIZEL = SIZE

def RGB(red, green, blue):
    return red + (green << 8) + (blue << 16)

class FILETIME(ctypes.Structure):
    _fields_ = [("dwLowDateTime", DWORD),
                ("dwHighDateTime", DWORD)]
_FILETIME = FILETIME

class MSG(ctypes.Structure):
    _fields_ = [("hWnd", HWND),
                ("message", UINT),
                ("wParam", WPARAM),
                ("lParam", LPARAM),
                ("time", DWORD),
                ("pt", POINT)]
tagMSG = MSG
MAX_PATH = 260

class WIN32_FIND_DATAA(ctypes.Structure):
    _fields_ = [("dwFileAttributes", DWORD),
                ("ftCreationTime", FILETIME),
                ("ftLastAccessTime", FILETIME),
                ("ftLastWriteTime", FILETIME),
                ("nFileSizeHigh", DWORD),
                ("nFileSizeLow", DWORD),
                ("dwReserved0", DWORD),
                ("dwReserved1", DWORD),
                ("cFileName", CHAR * MAX_PATH),
                ("cAlternateFileName", CHAR * 14)]

class WIN32_FIND_DATAW(ctypes.Structure):
    _fields_ = [("dwFileAttributes", DWORD),
                ("ftCreationTime", FILETIME),
                ("ftLastAccessTime", FILETIME),
                ("ftLastWriteTime", FILETIME),
                ("nFileSizeHigh", DWORD),
                ("nFileSizeLow", DWORD),
                ("dwReserved0", DWORD),
                ("dwReserved1", DWORD),
                ("cFileName", WCHAR * MAX_PATH),
                ("cAlternateFileName", WCHAR * 14)]

################################################################
# Pointer types

LPBOOL = PBOOL = ctypes.POINTER(BOOL)
PBOOLEAN = ctypes.POINTER(BOOLEAN)
LPBYTE = PBYTE = ctypes.POINTER(BYTE)
PCHAR = ctypes.POINTER(CHAR)
LPCOLORREF = ctypes.POINTER(COLORREF)
LPDWORD = PDWORD = ctypes.POINTER(DWORD)
LPFILETIME = PFILETIME = ctypes.POINTER(FILETIME)
PFLOAT = ctypes.POINTER(FLOAT)
LPHANDLE = PHANDLE = ctypes.POINTER(HANDLE)
PHKEY = ctypes.POINTER(HKEY)
LPHKL = ctypes.POINTER(HKL)
LPINT = PINT = ctypes.POINTER(INT)
PLARGE_INTEGER = ctypes.POINTER(LARGE_INTEGER)
PLCID = ctypes.POINTER(LCID)
LPLONG = PLONG = ctypes.POINTER(LONG)
LPMSG = PMSG = ctypes.POINTER(MSG)
LPPOINT = PPOINT = ctypes.POINTER(POINT)
PPOINTL = ctypes.POINTER(POINTL)
LPRECT = PRECT = ctypes.POINTER(RECT)
LPRECTL = PRECTL = ctypes.POINTER(RECTL)
LPSC_HANDLE = ctypes.POINTER(SC_HANDLE)
PSHORT = ctypes.POINTER(SHORT)
LPSIZE = PSIZE = ctypes.POINTER(SIZE)
LPSIZEL = PSIZEL = ctypes.POINTER(SIZEL)
PSMALL_RECT = ctypes.POINTER(SMALL_RECT)
LPUINT = PUINT = ctypes.POINTER(UINT)
PULARGE_INTEGER = ctypes.POINTER(ULARGE_INTEGER)
PULONG = ctypes.POINTER(ULONG)
PUSHORT = ctypes.POINTER(USHORT)
PWCHAR = ctypes.POINTER(WCHAR)
LPWIN32_FIND_DATAA = PWIN32_FIND_DATAA = ctypes.POINTER(WIN32_FIND_DATAA)
LPWIN32_FIND_DATAW = PWIN32_FIND_DATAW = ctypes.POINTER(WIN32_FIND_DATAW)
LPWORD = PWORD = ctypes.POINTER(WORD)
lib\ctypes\_endian.py
import sys
from ctypes import *

_array_type = type(Array)

def _other_endian(typ):
    """Return the type with the 'other' byte order.  Simple types like
    c_int and so on already have __ctype_be__ and __ctype_le__
    attributes which contain the types, for more complicated types
    arrays and structures are supported.
    """
    # check _OTHER_ENDIAN attribute (present if typ is primitive type)
    if hasattr(typ, _OTHER_ENDIAN):
        return getattr(typ, _OTHER_ENDIAN)
    # if typ is array
    if isinstance(typ, _array_type):
        return _other_endian(typ._type_) * typ._length_
    # if typ is structure
    if issubclass(typ, Structure):
        return typ
    raise TypeError("This type does not support other endian: %s" % typ)

class _swapped_meta(type(Structure)):
    def __setattr__(self, attrname, value):
        if attrname == "_fields_":
            fields = []
            for desc in value:
                name = desc[0]
                typ = desc[1]
                rest = desc[2:]
                fields.append((name, _other_endian(typ)) + rest)
            value = fields
        super().__setattr__(attrname, value)

################################################################

# Note: The Structure metaclass checks for the *presence* (not the
# value!) of a _swapped_bytes_ attribute to determine the bit order in
# structures containing bit fields.

if sys.byteorder == "little":
    _OTHER_ENDIAN = "__ctype_be__"

    LittleEndianStructure = Structure

    class BigEndianStructure(Structure, metaclass=_swapped_meta):
        """Structure with big endian byte order"""
        _swappedbytes_ = None

elif sys.byteorder == "big":
    _OTHER_ENDIAN = "__ctype_le__"

    BigEndianStructure = Structure
    class LittleEndianStructure(Structure, metaclass=_swapped_meta):
        """Structure with little endian byte order"""
        _swappedbytes_ = None

else:
    raise RuntimeError("Invalid byteorder")
lib\ctypes\__init__.py
"""create and manipulate C data types in Python"""

import os as _os, sys as _sys

__version__ = "1.1.0"

from _ctypes import Union, Structure, Array
from _ctypes import _Pointer
from _ctypes import CFuncPtr as _CFuncPtr
from _ctypes import __version__ as _ctypes_version
from _ctypes import RTLD_LOCAL, RTLD_GLOBAL
from _ctypes import ArgumentError

from struct import calcsize as _calcsize

if __version__ != _ctypes_version:
    raise Exception("Version number mismatch", __version__, _ctypes_version)

if _os.name in ("nt", "ce"):
    from _ctypes import FormatError

DEFAULT_MODE = RTLD_LOCAL
if _os.name == "posix" and _sys.platform == "darwin":
    # On OS X 10.3, we use RTLD_GLOBAL as default mode
    # because RTLD_LOCAL does not work at least on some
    # libraries.  OS X 10.3 is Darwin 7, so we check for
    # that.

    if int(_os.uname().release.split('.')[0]) < 8:
        DEFAULT_MODE = RTLD_GLOBAL

from _ctypes import FUNCFLAG_CDECL as _FUNCFLAG_CDECL, \
     FUNCFLAG_PYTHONAPI as _FUNCFLAG_PYTHONAPI, \
     FUNCFLAG_USE_ERRNO as _FUNCFLAG_USE_ERRNO, \
     FUNCFLAG_USE_LASTERROR as _FUNCFLAG_USE_LASTERROR

# WINOLEAPI -> HRESULT
# WINOLEAPI_(type)
#
# STDMETHODCALLTYPE
#
# STDMETHOD(name)
# STDMETHOD_(type, name)
#
# STDAPICALLTYPE

def create_string_buffer(init, size=None):
    """create_string_buffer(aBytes) -> character array
    create_string_buffer(anInteger) -> character array
    create_string_buffer(aString, anInteger) -> character array
    """
    if isinstance(init, bytes):
        if size is None:
            size = len(init)+1
        buftype = c_char * size
        buf = buftype()
        buf.value = init
        return buf
    elif isinstance(init, int):
        buftype = c_char * init
        buf = buftype()
        return buf
    raise TypeError(init)

def c_buffer(init, size=None):
##    "deprecated, use create_string_buffer instead"
##    import warnings
##    warnings.warn("c_buffer is deprecated, use create_string_buffer instead",
##                  DeprecationWarning, stacklevel=2)
    return create_string_buffer(init, size)

_c_functype_cache = {}
def CFUNCTYPE(restype, *argtypes, **kw):
    """CFUNCTYPE(restype, *argtypes,
                 use_errno=False, use_last_error=False) -> function prototype.

    restype: the result type
    argtypes: a sequence specifying the argument types

    The function prototype can be called in different ways to create a
    callable object:

    prototype(integer address) -> foreign function
    prototype(callable) -> create and return a C callable function from callable
    prototype(integer index, method name[, paramflags]) -> foreign function calling a COM method
    prototype((ordinal number, dll object)[, paramflags]) -> foreign function exported by ordinal
    prototype((function name, dll object)[, paramflags]) -> foreign function exported by name
    """
    flags = _FUNCFLAG_CDECL
    if kw.pop("use_errno", False):
        flags |= _FUNCFLAG_USE_ERRNO
    if kw.pop("use_last_error", False):
        flags |= _FUNCFLAG_USE_LASTERROR
    if kw:
        raise ValueError("unexpected keyword argument(s) %s" % kw.keys())
    try:
        return _c_functype_cache[(restype, argtypes, flags)]
    except KeyError:
        class CFunctionType(_CFuncPtr):
            _argtypes_ = argtypes
            _restype_ = restype
            _flags_ = flags
        _c_functype_cache[(restype, argtypes, flags)] = CFunctionType
        return CFunctionType

if _os.name in ("nt", "ce"):
    from _ctypes import LoadLibrary as _dlopen
    from _ctypes import FUNCFLAG_STDCALL as _FUNCFLAG_STDCALL
    if _os.name == "ce":
        # 'ce' doesn't have the stdcall calling convention
        _FUNCFLAG_STDCALL = _FUNCFLAG_CDECL

    _win_functype_cache = {}
    def WINFUNCTYPE(restype, *argtypes, **kw):
        # docstring set later (very similar to CFUNCTYPE.__doc__)
        flags = _FUNCFLAG_STDCALL
        if kw.pop("use_errno", False):
            flags |= _FUNCFLAG_USE_ERRNO
        if kw.pop("use_last_error", False):
            flags |= _FUNCFLAG_USE_LASTERROR
        if kw:
            raise ValueError("unexpected keyword argument(s) %s" % kw.keys())
        try:
            return _win_functype_cache[(restype, argtypes, flags)]
        except KeyError:
            class WinFunctionType(_CFuncPtr):
                _argtypes_ = argtypes
                _restype_ = restype
                _flags_ = flags
            _win_functype_cache[(restype, argtypes, flags)] = WinFunctionType
            return WinFunctionType
    if WINFUNCTYPE.__doc__:
        WINFUNCTYPE.__doc__ = CFUNCTYPE.__doc__.replace("CFUNCTYPE", "WINFUNCTYPE")

elif _os.name == "posix":
    from _ctypes import dlopen as _dlopen

from _ctypes import sizeof, byref, addressof, alignment, resize
from _ctypes import get_errno, set_errno
from _ctypes import _SimpleCData

def _check_size(typ, typecode=None):
    # Check if sizeof(ctypes_type) against struct.calcsize.  This
    # should protect somewhat against a misconfigured libffi.
    from struct import calcsize
    if typecode is None:
        # Most _type_ codes are the same as used in struct
        typecode = typ._type_
    actual, required = sizeof(typ), calcsize(typecode)
    if actual != required:
        raise SystemError("sizeof(%s) wrong: %d instead of %d" % \
                          (typ, actual, required))

class py_object(_SimpleCData):
    _type_ = "O"
    def __repr__(self):
        try:
            return super().__repr__()
        except ValueError:
            return "%s(<NULL>)" % type(self).__name__
_check_size(py_object, "P")

class c_short(_SimpleCData):
    _type_ = "h"
_check_size(c_short)

class c_ushort(_SimpleCData):
    _type_ = "H"
_check_size(c_ushort)

class c_long(_SimpleCData):
    _type_ = "l"
_check_size(c_long)

class c_ulong(_SimpleCData):
    _type_ = "L"
_check_size(c_ulong)

if _calcsize("i") == _calcsize("l"):
    # if int and long have the same size, make c_int an alias for c_long
    c_int = c_long
    c_uint = c_ulong
else:
    class c_int(_SimpleCData):
        _type_ = "i"
    _check_size(c_int)

    class c_uint(_SimpleCData):
        _type_ = "I"
    _check_size(c_uint)

class c_float(_SimpleCData):
    _type_ = "f"
_check_size(c_float)

class c_double(_SimpleCData):
    _type_ = "d"
_check_size(c_double)

class c_longdouble(_SimpleCData):
    _type_ = "g"
if sizeof(c_longdouble) == sizeof(c_double):
    c_longdouble = c_double

if _calcsize("l") == _calcsize("q"):
    # if long and long long have the same size, make c_longlong an alias for c_long
    c_longlong = c_long
    c_ulonglong = c_ulong
else:
    class c_longlong(_SimpleCData):
        _type_ = "q"
    _check_size(c_longlong)

    class c_ulonglong(_SimpleCData):
        _type_ = "Q"
    ##    def from_param(cls, val):
    ##        return ('d', float(val), val)
    ##    from_param = classmethod(from_param)
    _check_size(c_ulonglong)

class c_ubyte(_SimpleCData):
    _type_ = "B"
c_ubyte.__ctype_le__ = c_ubyte.__ctype_be__ = c_ubyte
# backward compatibility:
##c_uchar = c_ubyte
_check_size(c_ubyte)

class c_byte(_SimpleCData):
    _type_ = "b"
c_byte.__ctype_le__ = c_byte.__ctype_be__ = c_byte
_check_size(c_byte)

class c_char(_SimpleCData):
    _type_ = "c"
c_char.__ctype_le__ = c_char.__ctype_be__ = c_char
_check_size(c_char)

class c_char_p(_SimpleCData):
    _type_ = "z"
    if _os.name == "nt":
        def __repr__(self):
            if not windll.kernel32.IsBadStringPtrA(self, -1):
                return "%s(%r)" % (self.__class__.__name__, self.value)
            return "%s(%s)" % (self.__class__.__name__, cast(self, c_void_p).value)
    else:
        def __repr__(self):
            return "%s(%s)" % (self.__class__.__name__, cast(self, c_void_p).value)
_check_size(c_char_p, "P")

class c_void_p(_SimpleCData):
    _type_ = "P"
c_voidp = c_void_p # backwards compatibility (to a bug)
_check_size(c_void_p)

class c_bool(_SimpleCData):
    _type_ = "?"

from _ctypes import POINTER, pointer, _pointer_type_cache

class c_wchar_p(_SimpleCData):
    _type_ = "Z"

class c_wchar(_SimpleCData):
    _type_ = "u"

def _reset_cache():
    _pointer_type_cache.clear()
    _c_functype_cache.clear()
    if _os.name in ("nt", "ce"):
        _win_functype_cache.clear()
    # _SimpleCData.c_wchar_p_from_param
    POINTER(c_wchar).from_param = c_wchar_p.from_param
    # _SimpleCData.c_char_p_from_param
    POINTER(c_char).from_param = c_char_p.from_param
    _pointer_type_cache[None] = c_void_p
    # XXX for whatever reasons, creating the first instance of a callback
    # function is needed for the unittests on Win64 to succeed.  This MAY
    # be a compiler bug, since the problem occurs only when _ctypes is
    # compiled with the MS SDK compiler.  Or an uninitialized variable?
    CFUNCTYPE(c_int)(lambda: None)

def create_unicode_buffer(init, size=None):
    """create_unicode_buffer(aString) -> character array
    create_unicode_buffer(anInteger) -> character array
    create_unicode_buffer(aString, anInteger) -> character array
    """
    if isinstance(init, str):
        if size is None:
            size = len(init)+1
        buftype = c_wchar * size
        buf = buftype()
        buf.value = init
        return buf
    elif isinstance(init, int):
        buftype = c_wchar * init
        buf = buftype()
        return buf
    raise TypeError(init)


# XXX Deprecated
def SetPointerType(pointer, cls):
    if _pointer_type_cache.get(cls, None) is not None:
        raise RuntimeError("This type already exists in the cache")
    if id(pointer) not in _pointer_type_cache:
        raise RuntimeError("What's this???")
    pointer.set_type(cls)
    _pointer_type_cache[cls] = pointer
    del _pointer_type_cache[id(pointer)]

# XXX Deprecated
def ARRAY(typ, len):
    return typ * len

################################################################


class CDLL(object):
    """An instance of this class represents a loaded dll/shared
    library, exporting functions using the standard C calling
    convention (named 'cdecl' on Windows).

    The exported functions can be accessed as attributes, or by
    indexing with the function name.  Examples:

    <obj>.qsort -> callable object
    <obj>['qsort'] -> callable object

    Calling the functions releases the Python GIL during the call and
    reacquires it afterwards.
    """
    _func_flags_ = _FUNCFLAG_CDECL
    _func_restype_ = c_int

    def __init__(self, name, mode=DEFAULT_MODE, handle=None,
                 use_errno=False,
                 use_last_error=False):
        self._name = name
        flags = self._func_flags_
        if use_errno:
            flags |= _FUNCFLAG_USE_ERRNO
        if use_last_error:
            flags |= _FUNCFLAG_USE_LASTERROR

        class _FuncPtr(_CFuncPtr):
            _flags_ = flags
            _restype_ = self._func_restype_
        self._FuncPtr = _FuncPtr

        if handle is None:
            self._handle = _dlopen(self._name, mode)
        else:
            self._handle = handle

    def __repr__(self):
        return "<%s '%s', handle %x at %x>" % \
               (self.__class__.__name__, self._name,
                (self._handle & (_sys.maxsize*2 + 1)),
                id(self) & (_sys.maxsize*2 + 1))

    def __getattr__(self, name):
        if name.startswith('__') and name.endswith('__'):
            raise AttributeError(name)
        func = self.__getitem__(name)
        setattr(self, name, func)
        return func

    def __getitem__(self, name_or_ordinal):
        func = self._FuncPtr((name_or_ordinal, self))
        if not isinstance(name_or_ordinal, int):
            func.__name__ = name_or_ordinal
        return func

class PyDLL(CDLL):
    """This class represents the Python library itself.  It allows to
    access Python API functions.  The GIL is not released, and
    Python exceptions are handled correctly.
    """
    _func_flags_ = _FUNCFLAG_CDECL | _FUNCFLAG_PYTHONAPI

if _os.name in ("nt", "ce"):

    class WinDLL(CDLL):
        """This class represents a dll exporting functions using the
        Windows stdcall calling convention.
        """
        _func_flags_ = _FUNCFLAG_STDCALL

    # XXX Hm, what about HRESULT as normal parameter?
    # Mustn't it derive from c_long then?
    from _ctypes import _check_HRESULT, _SimpleCData
    class HRESULT(_SimpleCData):
        _type_ = "l"
        # _check_retval_ is called with the function's result when it
        # is used as restype.  It checks for the FAILED bit, and
        # raises an OSError if it is set.
        #
        # The _check_retval_ method is implemented in C, so that the
        # method definition itself is not included in the traceback
        # when it raises an error - that is what we want (and Python
        # doesn't have a way to raise an exception in the caller's
        # frame).
        _check_retval_ = _check_HRESULT

    class OleDLL(CDLL):
        """This class represents a dll exporting functions using the
        Windows stdcall calling convention, and returning HRESULT.
        HRESULT error values are automatically raised as OSError
        exceptions.
        """
        _func_flags_ = _FUNCFLAG_STDCALL
        _func_restype_ = HRESULT

class LibraryLoader(object):
    def __init__(self, dlltype):
        self._dlltype = dlltype

    def __getattr__(self, name):
        if name[0] == '_':
            raise AttributeError(name)
        dll = self._dlltype(name)
        setattr(self, name, dll)
        return dll

    def __getitem__(self, name):
        return getattr(self, name)

    def LoadLibrary(self, name):
        return self._dlltype(name)

cdll = LibraryLoader(CDLL)
pydll = LibraryLoader(PyDLL)

if _os.name in ("nt", "ce"):
    pythonapi = PyDLL("python dll", None, _sys.dllhandle)
elif _sys.platform == "cygwin":
    pythonapi = PyDLL("libpython%d.%d.dll" % _sys.version_info[:2])
else:
    pythonapi = PyDLL(None)


if _os.name in ("nt", "ce"):
    windll = LibraryLoader(WinDLL)
    oledll = LibraryLoader(OleDLL)

    if _os.name == "nt":
        GetLastError = windll.kernel32.GetLastError
    else:
        GetLastError = windll.coredll.GetLastError
    from _ctypes import get_last_error, set_last_error

    def WinError(code=None, descr=None):
        if code is None:
            code = GetLastError()
        if descr is None:
            descr = FormatError(code).strip()
        return OSError(None, descr, None, code)

if sizeof(c_uint) == sizeof(c_void_p):
    c_size_t = c_uint
    c_ssize_t = c_int
elif sizeof(c_ulong) == sizeof(c_void_p):
    c_size_t = c_ulong
    c_ssize_t = c_long
elif sizeof(c_ulonglong) == sizeof(c_void_p):
    c_size_t = c_ulonglong
    c_ssize_t = c_longlong

# functions

from _ctypes import _memmove_addr, _memset_addr, _string_at_addr, _cast_addr

## void *memmove(void *, const void *, size_t);
memmove = CFUNCTYPE(c_void_p, c_void_p, c_void_p, c_size_t)(_memmove_addr)

## void *memset(void *, int, size_t)
memset = CFUNCTYPE(c_void_p, c_void_p, c_int, c_size_t)(_memset_addr)

def PYFUNCTYPE(restype, *argtypes):
    class CFunctionType(_CFuncPtr):
        _argtypes_ = argtypes
        _restype_ = restype
        _flags_ = _FUNCFLAG_CDECL | _FUNCFLAG_PYTHONAPI
    return CFunctionType

_cast = PYFUNCTYPE(py_object, c_void_p, py_object, py_object)(_cast_addr)
def cast(obj, typ):
    return _cast(obj, obj, typ)

_string_at = PYFUNCTYPE(py_object, c_void_p, c_int)(_string_at_addr)
def string_at(ptr, size=-1):
    """string_at(addr[, size]) -> string

    Return the string at addr."""
    return _string_at(ptr, size)

try:
    from _ctypes import _wstring_at_addr
except ImportError:
    pass
else:
    _wstring_at = PYFUNCTYPE(py_object, c_void_p, c_int)(_wstring_at_addr)
    def wstring_at(ptr, size=-1):
        """wstring_at(addr[, size]) -> string

        Return the string at addr."""
        return _wstring_at(ptr, size)


if _os.name in ("nt", "ce"): # COM stuff
    def DllGetClassObject(rclsid, riid, ppv):
        try:
            ccom = __import__("comtypes.server.inprocserver", globals(), locals(), ['*'])
        except ImportError:
            return -2147221231 # CLASS_E_CLASSNOTAVAILABLE
        else:
            return ccom.DllGetClassObject(rclsid, riid, ppv)

    def DllCanUnloadNow():
        try:
            ccom = __import__("comtypes.server.inprocserver", globals(), locals(), ['*'])
        except ImportError:
            return 0 # S_OK
        return ccom.DllCanUnloadNow()

from ctypes._endian import BigEndianStructure, LittleEndianStructure

# Fill in specifically-sized types
c_int8 = c_byte
c_uint8 = c_ubyte
for kind in [c_short, c_int, c_long, c_longlong]:
    if sizeof(kind) == 2: c_int16 = kind
    elif sizeof(kind) == 4: c_int32 = kind
    elif sizeof(kind) == 8: c_int64 = kind
for kind in [c_ushort, c_uint, c_ulong, c_ulonglong]:
    if sizeof(kind) == 2: c_uint16 = kind
    elif sizeof(kind) == 4: c_uint32 = kind
    elif sizeof(kind) == 8: c_uint64 = kind
del(kind)

_reset_cache()
lib\ctypes\macholib\dyld.py
"""
dyld emulation
"""

import os
from ctypes.macholib.framework import framework_info
from ctypes.macholib.dylib import dylib_info
from itertools import *

__all__ = [
    'dyld_find', 'framework_find',
    'framework_info', 'dylib_info',
]

# These are the defaults as per man dyld(1)
#
DEFAULT_FRAMEWORK_FALLBACK = [
    os.path.expanduser("~/Library/Frameworks"),
    "/Library/Frameworks",
    "/Network/Library/Frameworks",
    "/System/Library/Frameworks",
]

DEFAULT_LIBRARY_FALLBACK = [
    os.path.expanduser("~/lib"),
    "/usr/local/lib",
    "/lib",
    "/usr/lib",
]

def dyld_env(env, var):
    if env is None:
        env = os.environ
    rval = env.get(var)
    if rval is None:
        return []
    return rval.split(':')

def dyld_image_suffix(env=None):
    if env is None:
        env = os.environ
    return env.get('DYLD_IMAGE_SUFFIX')

def dyld_framework_path(env=None):
    return dyld_env(env, 'DYLD_FRAMEWORK_PATH')

def dyld_library_path(env=None):
    return dyld_env(env, 'DYLD_LIBRARY_PATH')

def dyld_fallback_framework_path(env=None):
    return dyld_env(env, 'DYLD_FALLBACK_FRAMEWORK_PATH')

def dyld_fallback_library_path(env=None):
    return dyld_env(env, 'DYLD_FALLBACK_LIBRARY_PATH')

def dyld_image_suffix_search(iterator, env=None):
    """For a potential path iterator, add DYLD_IMAGE_SUFFIX semantics"""
    suffix = dyld_image_suffix(env)
    if suffix is None:
        return iterator
    def _inject(iterator=iterator, suffix=suffix):
        for path in iterator:
            if path.endswith('.dylib'):
                yield path[:-len('.dylib')] + suffix + '.dylib'
            else:
                yield path + suffix
            yield path
    return _inject()

def dyld_override_search(name, env=None):
    # If DYLD_FRAMEWORK_PATH is set and this dylib_name is a
    # framework name, use the first file that exists in the framework
    # path if any.  If there is none go on to search the DYLD_LIBRARY_PATH
    # if any.

    framework = framework_info(name)

    if framework is not None:
        for path in dyld_framework_path(env):
            yield os.path.join(path, framework['name'])

    # If DYLD_LIBRARY_PATH is set then use the first file that exists
    # in the path.  If none use the original name.
    for path in dyld_library_path(env):
        yield os.path.join(path, os.path.basename(name))

def dyld_executable_path_search(name, executable_path=None):
    # If we haven't done any searching and found a library and the
    # dylib_name starts with "@executable_path/" then construct the
    # library name.
    if name.startswith('@executable_path/') and executable_path is not None:
        yield os.path.join(executable_path, name[len('@executable_path/'):])

def dyld_default_search(name, env=None):
    yield name

    framework = framework_info(name)

    if framework is not None:
        fallback_framework_path = dyld_fallback_framework_path(env)
        for path in fallback_framework_path:
            yield os.path.join(path, framework['name'])

    fallback_library_path = dyld_fallback_library_path(env)
    for path in fallback_library_path:
        yield os.path.join(path, os.path.basename(name))

    if framework is not None and not fallback_framework_path:
        for path in DEFAULT_FRAMEWORK_FALLBACK:
            yield os.path.join(path, framework['name'])

    if not fallback_library_path:
        for path in DEFAULT_LIBRARY_FALLBACK:
            yield os.path.join(path, os.path.basename(name))

def dyld_find(name, executable_path=None, env=None):
    """
    Find a library or framework using dyld semantics
    """
    for path in dyld_image_suffix_search(chain(
                dyld_override_search(name, env),
                dyld_executable_path_search(name, executable_path),
                dyld_default_search(name, env),
            ), env):
        if os.path.isfile(path):
            return path
    raise ValueError("dylib %s could not be found" % (name,))

def framework_find(fn, executable_path=None, env=None):
    """
    Find a framework using dyld semantics in a very loose manner.

    Will take input such as:
        Python
        Python.framework
        Python.framework/Versions/Current
    """
    try:
        return dyld_find(fn, executable_path=executable_path, env=env)
    except ValueError as e:
        pass
    fmwk_index = fn.rfind('.framework')
    if fmwk_index == -1:
        fmwk_index = len(fn)
        fn += '.framework'
    fn = os.path.join(fn, os.path.basename(fn[:fmwk_index]))
    try:
        return dyld_find(fn, executable_path=executable_path, env=env)
    except ValueError:
        raise e

def test_dyld_find():
    env = {}
    assert dyld_find('libSystem.dylib') == '/usr/lib/libSystem.dylib'
    assert dyld_find('System.framework/System') == '/System/Library/Frameworks/System.framework/System'

if __name__ == '__main__':
    test_dyld_find()
lib\ctypes\macholib\dylib.py
"""
Generic dylib path manipulation
"""

import re

__all__ = ['dylib_info']

DYLIB_RE = re.compile(r"""(?x)
(?P<location>^.*)(?:^|/)
(?P<name>
    (?P<shortname>\w+?)
    (?:\.(?P<version>[^._]+))?
    (?:_(?P<suffix>[^._]+))?
    \.dylib$
)
""")

def dylib_info(filename):
    """
    A dylib name can take one of the following four forms:
        Location/Name.SomeVersion_Suffix.dylib
        Location/Name.SomeVersion.dylib
        Location/Name_Suffix.dylib
        Location/Name.dylib

    returns None if not found or a mapping equivalent to:
        dict(
            location='Location',
            name='Name.SomeVersion_Suffix.dylib',
            shortname='Name',
            version='SomeVersion',
            suffix='Suffix',
        )

    Note that SomeVersion and Suffix are optional and may be None
    if not present.
    """
    is_dylib = DYLIB_RE.match(filename)
    if not is_dylib:
        return None
    return is_dylib.groupdict()


def test_dylib_info():
    def d(location=None, name=None, shortname=None, version=None, suffix=None):
        return dict(
            location=location,
            name=name,
            shortname=shortname,
            version=version,
            suffix=suffix
        )
    assert dylib_info('completely/invalid') is None
    assert dylib_info('completely/invalide_debug') is None
    assert dylib_info('P/Foo.dylib') == d('P', 'Foo.dylib', 'Foo')
    assert dylib_info('P/Foo_debug.dylib') == d('P', 'Foo_debug.dylib', 'Foo', suffix='debug')
    assert dylib_info('P/Foo.A.dylib') == d('P', 'Foo.A.dylib', 'Foo', 'A')
    assert dylib_info('P/Foo_debug.A.dylib') == d('P', 'Foo_debug.A.dylib', 'Foo_debug', 'A')
    assert dylib_info('P/Foo.A_debug.dylib') == d('P', 'Foo.A_debug.dylib', 'Foo', 'A', 'debug')

if __name__ == '__main__':
    test_dylib_info()
lib\ctypes\macholib\fetch_macholib
 
lib\ctypes\macholib\fetch_macholib.bat
svn export --force http://svn.red-bean.com/bob/macholib/trunk/macholib/ .
lib\ctypes\macholib\framework.py
"""
Generic framework path manipulation
"""

import re

__all__ = ['framework_info']

STRICT_FRAMEWORK_RE = re.compile(r"""(?x)
(?P<location>^.*)(?:^|/)
(?P<name>
    (?P<shortname>\w+).framework/
    (?:Versions/(?P<version>[^/]+)/)?
    (?P=shortname)
    (?:_(?P<suffix>[^_]+))?
)$
""")

def framework_info(filename):
    """
    A framework name can take one of the following four forms:
        Location/Name.framework/Versions/SomeVersion/Name_Suffix
        Location/Name.framework/Versions/SomeVersion/Name
        Location/Name.framework/Name_Suffix
        Location/Name.framework/Name

    returns None if not found, or a mapping equivalent to:
        dict(
            location='Location',
            name='Name.framework/Versions/SomeVersion/Name_Suffix',
            shortname='Name',
            version='SomeVersion',
            suffix='Suffix',
        )

    Note that SomeVersion and Suffix are optional and may be None
    if not present
    """
    is_framework = STRICT_FRAMEWORK_RE.match(filename)
    if not is_framework:
        return None
    return is_framework.groupdict()

def test_framework_info():
    def d(location=None, name=None, shortname=None, version=None, suffix=None):
        return dict(
            location=location,
            name=name,
            shortname=shortname,
            version=version,
            suffix=suffix
        )
    assert framework_info('completely/invalid') is None
    assert framework_info('completely/invalid/_debug') is None
    assert framework_info('P/F.framework') is None
    assert framework_info('P/F.framework/_debug') is None
    assert framework_info('P/F.framework/F') == d('P', 'F.framework/F', 'F')
    assert framework_info('P/F.framework/F_debug') == d('P', 'F.framework/F_debug', 'F', suffix='debug')
    assert framework_info('P/F.framework/Versions') is None
    assert framework_info('P/F.framework/Versions/A') is None
    assert framework_info('P/F.framework/Versions/A/F') == d('P', 'F.framework/Versions/A/F', 'F', 'A')
    assert framework_info('P/F.framework/Versions/A/F_debug') == d('P', 'F.framework/Versions/A/F_debug', 'F', 'A', 'debug')

if __name__ == '__main__':
    test_framework_info()
lib\ctypes\macholib\README.ctypes
 
lib\ctypes\macholib\__init__.py
"""
Enough Mach-O to make your head spin.

See the relevant header files in /usr/include/mach-o

And also Apple's documentation.
"""

__version__ = '1.0'
lib\curses\ascii.py
"""Constants and membership tests for ASCII characters"""

NUL     = 0x00  # ^@
SOH     = 0x01  # ^A
STX     = 0x02  # ^B
ETX     = 0x03  # ^C
EOT     = 0x04  # ^D
ENQ     = 0x05  # ^E
ACK     = 0x06  # ^F
BEL     = 0x07  # ^G
BS      = 0x08  # ^H
TAB     = 0x09  # ^I
HT      = 0x09  # ^I
LF      = 0x0a  # ^J
NL      = 0x0a  # ^J
VT      = 0x0b  # ^K
FF      = 0x0c  # ^L
CR      = 0x0d  # ^M
SO      = 0x0e  # ^N
SI      = 0x0f  # ^O
DLE     = 0x10  # ^P
DC1     = 0x11  # ^Q
DC2     = 0x12  # ^R
DC3     = 0x13  # ^S
DC4     = 0x14  # ^T
NAK     = 0x15  # ^U
SYN     = 0x16  # ^V
ETB     = 0x17  # ^W
CAN     = 0x18  # ^X
EM      = 0x19  # ^Y
SUB     = 0x1a  # ^Z
ESC     = 0x1b  # ^[
FS      = 0x1c  # ^\
GS      = 0x1d  # ^]
RS      = 0x1e  # ^^
US      = 0x1f  # ^_
SP      = 0x20  # space
DEL     = 0x7f  # delete

controlnames = [
"NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL",
"BS",  "HT",  "LF",  "VT",  "FF",  "CR",  "SO",  "SI",
"DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB",
"CAN", "EM",  "SUB", "ESC", "FS",  "GS",  "RS",  "US",
"SP"
]

def _ctoi(c):
    if type(c) == type(""):
        return ord(c)
    else:
        return c

def isalnum(c): return isalpha(c) or isdigit(c)
def isalpha(c): return isupper(c) or islower(c)
def isascii(c): return _ctoi(c) <= 127          # ?
def isblank(c): return _ctoi(c) in (8,32)
def iscntrl(c): return _ctoi(c) <= 31
def isdigit(c): return _ctoi(c) >= 48 and _ctoi(c) <= 57
def isgraph(c): return _ctoi(c) >= 33 and _ctoi(c) <= 126
def islower(c): return _ctoi(c) >= 97 and _ctoi(c) <= 122
def isprint(c): return _ctoi(c) >= 32 and _ctoi(c) <= 126
def ispunct(c): return _ctoi(c) != 32 and not isalnum(c)
def isspace(c): return _ctoi(c) in (9, 10, 11, 12, 13, 32)
def isupper(c): return _ctoi(c) >= 65 and _ctoi(c) <= 90
def isxdigit(c): return isdigit(c) or \
    (_ctoi(c) >= 65 and _ctoi(c) <= 70) or (_ctoi(c) >= 97 and _ctoi(c) <= 102)
def isctrl(c): return _ctoi(c) < 32
def ismeta(c): return _ctoi(c) > 127

def ascii(c):
    if type(c) == type(""):
        return chr(_ctoi(c) & 0x7f)
    else:
        return _ctoi(c) & 0x7f

def ctrl(c):
    if type(c) == type(""):
        return chr(_ctoi(c) & 0x1f)
    else:
        return _ctoi(c) & 0x1f

def alt(c):
    if type(c) == type(""):
        return chr(_ctoi(c) | 0x80)
    else:
        return _ctoi(c) | 0x80

def unctrl(c):
    bits = _ctoi(c)
    if bits == 0x7f:
        rep = "^?"
    elif isprint(bits & 0x7f):
        rep = chr(bits & 0x7f)
    else:
        rep = "^" + chr(((bits & 0x7f) | 0x20) + 0x20)
    if bits & 0x80:
        return "!" + rep
    return rep
lib\curses\has_key.py

#
# Emulation of has_key() function for platforms that don't use ncurses
#

import _curses

# Table mapping curses keys to the terminfo capability name

_capability_names = {
    _curses.KEY_A1: 'ka1',
    _curses.KEY_A3: 'ka3',
    _curses.KEY_B2: 'kb2',
    _curses.KEY_BACKSPACE: 'kbs',
    _curses.KEY_BEG: 'kbeg',
    _curses.KEY_BTAB: 'kcbt',
    _curses.KEY_C1: 'kc1',
    _curses.KEY_C3: 'kc3',
    _curses.KEY_CANCEL: 'kcan',
    _curses.KEY_CATAB: 'ktbc',
    _curses.KEY_CLEAR: 'kclr',
    _curses.KEY_CLOSE: 'kclo',
    _curses.KEY_COMMAND: 'kcmd',
    _curses.KEY_COPY: 'kcpy',
    _curses.KEY_CREATE: 'kcrt',
    _curses.KEY_CTAB: 'kctab',
    _curses.KEY_DC: 'kdch1',
    _curses.KEY_DL: 'kdl1',
    _curses.KEY_DOWN: 'kcud1',
    _curses.KEY_EIC: 'krmir',
    _curses.KEY_END: 'kend',
    _curses.KEY_ENTER: 'kent',
    _curses.KEY_EOL: 'kel',
    _curses.KEY_EOS: 'ked',
    _curses.KEY_EXIT: 'kext',
    _curses.KEY_F0: 'kf0',
    _curses.KEY_F1: 'kf1',
    _curses.KEY_F10: 'kf10',
    _curses.KEY_F11: 'kf11',
    _curses.KEY_F12: 'kf12',
    _curses.KEY_F13: 'kf13',
    _curses.KEY_F14: 'kf14',
    _curses.KEY_F15: 'kf15',
    _curses.KEY_F16: 'kf16',
    _curses.KEY_F17: 'kf17',
    _curses.KEY_F18: 'kf18',
    _curses.KEY_F19: 'kf19',
    _curses.KEY_F2: 'kf2',
    _curses.KEY_F20: 'kf20',
    _curses.KEY_F21: 'kf21',
    _curses.KEY_F22: 'kf22',
    _curses.KEY_F23: 'kf23',
    _curses.KEY_F24: 'kf24',
    _curses.KEY_F25: 'kf25',
    _curses.KEY_F26: 'kf26',
    _curses.KEY_F27: 'kf27',
    _curses.KEY_F28: 'kf28',
    _curses.KEY_F29: 'kf29',
    _curses.KEY_F3: 'kf3',
    _curses.KEY_F30: 'kf30',
    _curses.KEY_F31: 'kf31',
    _curses.KEY_F32: 'kf32',
    _curses.KEY_F33: 'kf33',
    _curses.KEY_F34: 'kf34',
    _curses.KEY_F35: 'kf35',
    _curses.KEY_F36: 'kf36',
    _curses.KEY_F37: 'kf37',
    _curses.KEY_F38: 'kf38',
    _curses.KEY_F39: 'kf39',
    _curses.KEY_F4: 'kf4',
    _curses.KEY_F40: 'kf40',
    _curses.KEY_F41: 'kf41',
    _curses.KEY_F42: 'kf42',
    _curses.KEY_F43: 'kf43',
    _curses.KEY_F44: 'kf44',
    _curses.KEY_F45: 'kf45',
    _curses.KEY_F46: 'kf46',
    _curses.KEY_F47: 'kf47',
    _curses.KEY_F48: 'kf48',
    _curses.KEY_F49: 'kf49',
    _curses.KEY_F5: 'kf5',
    _curses.KEY_F50: 'kf50',
    _curses.KEY_F51: 'kf51',
    _curses.KEY_F52: 'kf52',
    _curses.KEY_F53: 'kf53',
    _curses.KEY_F54: 'kf54',
    _curses.KEY_F55: 'kf55',
    _curses.KEY_F56: 'kf56',
    _curses.KEY_F57: 'kf57',
    _curses.KEY_F58: 'kf58',
    _curses.KEY_F59: 'kf59',
    _curses.KEY_F6: 'kf6',
    _curses.KEY_F60: 'kf60',
    _curses.KEY_F61: 'kf61',
    _curses.KEY_F62: 'kf62',
    _curses.KEY_F63: 'kf63',
    _curses.KEY_F7: 'kf7',
    _curses.KEY_F8: 'kf8',
    _curses.KEY_F9: 'kf9',
    _curses.KEY_FIND: 'kfnd',
    _curses.KEY_HELP: 'khlp',
    _curses.KEY_HOME: 'khome',
    _curses.KEY_IC: 'kich1',
    _curses.KEY_IL: 'kil1',
    _curses.KEY_LEFT: 'kcub1',
    _curses.KEY_LL: 'kll',
    _curses.KEY_MARK: 'kmrk',
    _curses.KEY_MESSAGE: 'kmsg',
    _curses.KEY_MOVE: 'kmov',
    _curses.KEY_NEXT: 'knxt',
    _curses.KEY_NPAGE: 'knp',
    _curses.KEY_OPEN: 'kopn',
    _curses.KEY_OPTIONS: 'kopt',
    _curses.KEY_PPAGE: 'kpp',
    _curses.KEY_PREVIOUS: 'kprv',
    _curses.KEY_PRINT: 'kprt',
    _curses.KEY_REDO: 'krdo',
    _curses.KEY_REFERENCE: 'kref',
    _curses.KEY_REFRESH: 'krfr',
    _curses.KEY_REPLACE: 'krpl',
    _curses.KEY_RESTART: 'krst',
    _curses.KEY_RESUME: 'kres',
    _curses.KEY_RIGHT: 'kcuf1',
    _curses.KEY_SAVE: 'ksav',
    _curses.KEY_SBEG: 'kBEG',
    _curses.KEY_SCANCEL: 'kCAN',
    _curses.KEY_SCOMMAND: 'kCMD',
    _curses.KEY_SCOPY: 'kCPY',
    _curses.KEY_SCREATE: 'kCRT',
    _curses.KEY_SDC: 'kDC',
    _curses.KEY_SDL: 'kDL',
    _curses.KEY_SELECT: 'kslt',
    _curses.KEY_SEND: 'kEND',
    _curses.KEY_SEOL: 'kEOL',
    _curses.KEY_SEXIT: 'kEXT',
    _curses.KEY_SF: 'kind',
    _curses.KEY_SFIND: 'kFND',
    _curses.KEY_SHELP: 'kHLP',
    _curses.KEY_SHOME: 'kHOM',
    _curses.KEY_SIC: 'kIC',
    _curses.KEY_SLEFT: 'kLFT',
    _curses.KEY_SMESSAGE: 'kMSG',
    _curses.KEY_SMOVE: 'kMOV',
    _curses.KEY_SNEXT: 'kNXT',
    _curses.KEY_SOPTIONS: 'kOPT',
    _curses.KEY_SPREVIOUS: 'kPRV',
    _curses.KEY_SPRINT: 'kPRT',
    _curses.KEY_SR: 'kri',
    _curses.KEY_SREDO: 'kRDO',
    _curses.KEY_SREPLACE: 'kRPL',
    _curses.KEY_SRIGHT: 'kRIT',
    _curses.KEY_SRSUME: 'kRES',
    _curses.KEY_SSAVE: 'kSAV',
    _curses.KEY_SSUSPEND: 'kSPD',
    _curses.KEY_STAB: 'khts',
    _curses.KEY_SUNDO: 'kUND',
    _curses.KEY_SUSPEND: 'kspd',
    _curses.KEY_UNDO: 'kund',
    _curses.KEY_UP: 'kcuu1'
    }

def has_key(ch):
    if isinstance(ch, str):
        ch = ord(ch)

    # Figure out the correct capability name for the keycode.
    capability_name = _capability_names.get(ch)
    if capability_name is None:
        return False

    #Check the current terminal description for that capability;
    #if present, return true, else return false.
    if _curses.tigetstr( capability_name ):
        return True
    else:
        return False

if __name__ == '__main__':
    # Compare the output of this implementation and the ncurses has_key,
    # on platforms where has_key is already available
    try:
        L = []
        _curses.initscr()
        for key in _capability_names.keys():
            system = _curses.has_key(key)
            python = has_key(key)
            if system != python:
                L.append( 'Mismatch for key %s, system=%i, Python=%i'
                          % (_curses.keyname( key ), system, python) )
    finally:
        _curses.endwin()
        for i in L: print(i)
lib\curses\panel.py
"""curses.panel

Module for using panels with curses.
"""

from _curses_panel import *
lib\curses\textpad.py
"""Simple textbox editing widget with Emacs-like keybindings."""

import curses
import curses.ascii

def rectangle(win, uly, ulx, lry, lrx):
    """Draw a rectangle with corners at the provided upper-left
    and lower-right coordinates.
    """
    win.vline(uly+1, ulx, curses.ACS_VLINE, lry - uly - 1)
    win.hline(uly, ulx+1, curses.ACS_HLINE, lrx - ulx - 1)
    win.hline(lry, ulx+1, curses.ACS_HLINE, lrx - ulx - 1)
    win.vline(uly+1, lrx, curses.ACS_VLINE, lry - uly - 1)
    win.addch(uly, ulx, curses.ACS_ULCORNER)
    win.addch(uly, lrx, curses.ACS_URCORNER)
    win.addch(lry, lrx, curses.ACS_LRCORNER)
    win.addch(lry, ulx, curses.ACS_LLCORNER)

class Textbox:
    """Editing widget using the interior of a window object.
     Supports the following Emacs-like key bindings:

    Ctrl-A      Go to left edge of window.
    Ctrl-B      Cursor left, wrapping to previous line if appropriate.
    Ctrl-D      Delete character under cursor.
    Ctrl-E      Go to right edge (stripspaces off) or end of line (stripspaces on).
    Ctrl-F      Cursor right, wrapping to next line when appropriate.
    Ctrl-G      Terminate, returning the window contents.
    Ctrl-H      Delete character backward.
    Ctrl-J      Terminate if the window is 1 line, otherwise insert newline.
    Ctrl-K      If line is blank, delete it, otherwise clear to end of line.
    Ctrl-L      Refresh screen.
    Ctrl-N      Cursor down; move down one line.
    Ctrl-O      Insert a blank line at cursor location.
    Ctrl-P      Cursor up; move up one line.

    Move operations do nothing if the cursor is at an edge where the movement
    is not possible.  The following synonyms are supported where possible:

    KEY_LEFT = Ctrl-B, KEY_RIGHT = Ctrl-F, KEY_UP = Ctrl-P, KEY_DOWN = Ctrl-N
    KEY_BACKSPACE = Ctrl-h
    """
    def __init__(self, win, insert_mode=False):
        self.win = win
        self.insert_mode = insert_mode
        (self.maxy, self.maxx) = win.getmaxyx()
        self.maxy = self.maxy - 1
        self.maxx = self.maxx - 1
        self.stripspaces = 1
        self.lastcmd = None
        win.keypad(1)

    def _end_of_line(self, y):
        """Go to the location of the first blank on the given line,
        returning the index of the last non-blank character."""
        last = self.maxx
        while True:
            if curses.ascii.ascii(self.win.inch(y, last)) != curses.ascii.SP:
                last = min(self.maxx, last+1)
                break
            elif last == 0:
                break
            last = last - 1
        return last

    def _insert_printable_char(self, ch):
        (y, x) = self.win.getyx()
        if y < self.maxy or x < self.maxx:
            if self.insert_mode:
                oldch = self.win.inch()
            # The try-catch ignores the error we trigger from some curses
            # versions by trying to write into the lowest-rightmost spot
            # in the window.
            try:
                self.win.addch(ch)
            except curses.error:
                pass
            if self.insert_mode:
                (backy, backx) = self.win.getyx()
                if curses.ascii.isprint(oldch):
                    self._insert_printable_char(oldch)
                    self.win.move(backy, backx)

    def do_command(self, ch):
        "Process a single editing command."
        (y, x) = self.win.getyx()
        self.lastcmd = ch
        if curses.ascii.isprint(ch):
            if y < self.maxy or x < self.maxx:
                self._insert_printable_char(ch)
        elif ch == curses.ascii.SOH:                           # ^a
            self.win.move(y, 0)
        elif ch in (curses.ascii.STX,curses.KEY_LEFT, curses.ascii.BS,curses.KEY_BACKSPACE):
            if x > 0:
                self.win.move(y, x-1)
            elif y == 0:
                pass
            elif self.stripspaces:
                self.win.move(y-1, self._end_of_line(y-1))
            else:
                self.win.move(y-1, self.maxx)
            if ch in (curses.ascii.BS, curses.KEY_BACKSPACE):
                self.win.delch()
        elif ch == curses.ascii.EOT:                           # ^d
            self.win.delch()
        elif ch == curses.ascii.ENQ:                           # ^e
            if self.stripspaces:
                self.win.move(y, self._end_of_line(y))
            else:
                self.win.move(y, self.maxx)
        elif ch in (curses.ascii.ACK, curses.KEY_RIGHT):       # ^f
            if x < self.maxx:
                self.win.move(y, x+1)
            elif y == self.maxy:
                pass
            else:
                self.win.move(y+1, 0)
        elif ch == curses.ascii.BEL:                           # ^g
            return 0
        elif ch == curses.ascii.NL:                            # ^j
            if self.maxy == 0:
                return 0
            elif y < self.maxy:
                self.win.move(y+1, 0)
        elif ch == curses.ascii.VT:                            # ^k
            if x == 0 and self._end_of_line(y) == 0:
                self.win.deleteln()
            else:
                # first undo the effect of self._end_of_line
                self.win.move(y, x)
                self.win.clrtoeol()
        elif ch == curses.ascii.FF:                            # ^l
            self.win.refresh()
        elif ch in (curses.ascii.SO, curses.KEY_DOWN):         # ^n
            if y < self.maxy:
                self.win.move(y+1, x)
                if x > self._end_of_line(y+1):
                    self.win.move(y+1, self._end_of_line(y+1))
        elif ch == curses.ascii.SI:                            # ^o
            self.win.insertln()
        elif ch in (curses.ascii.DLE, curses.KEY_UP):          # ^p
            if y > 0:
                self.win.move(y-1, x)
                if x > self._end_of_line(y-1):
                    self.win.move(y-1, self._end_of_line(y-1))
        return 1

    def gather(self):
        "Collect and return the contents of the window."
        result = ""
        for y in range(self.maxy+1):
            self.win.move(y, 0)
            stop = self._end_of_line(y)
            if stop == 0 and self.stripspaces:
                continue
            for x in range(self.maxx+1):
                if self.stripspaces and x > stop:
                    break
                result = result + chr(curses.ascii.ascii(self.win.inch(y, x)))
            if self.maxy > 0:
                result = result + "\n"
        return result

    def edit(self, validate=None):
        "Edit in the widget window and collect the results."
        while 1:
            ch = self.win.getch()
            if validate:
                ch = validate(ch)
            if not ch:
                continue
            if not self.do_command(ch):
                break
            self.win.refresh()
        return self.gather()

if __name__ == '__main__':
    def test_editbox(stdscr):
        ncols, nlines = 9, 4
        uly, ulx = 15, 20
        stdscr.addstr(uly-2, ulx, "Use Ctrl-G to end editing.")
        win = curses.newwin(nlines, ncols, uly, ulx)
        rectangle(stdscr, uly-1, ulx-1, uly + nlines, ulx + ncols)
        stdscr.refresh()
        return Textbox(win).edit()

    str = curses.wrapper(test_editbox)
    print('Contents of text box:', repr(str))
lib\curses\__init__.py
"""curses

The main package for curses support for Python.  Normally used by importing
the package, and perhaps a particular module inside it.

   import curses
   from curses import textpad
   curses.initscr()
   ...

"""

from _curses import *
import os as _os
import sys as _sys

# Some constants, most notably the ACS_* ones, are only added to the C
# _curses module's dictionary after initscr() is called.  (Some
# versions of SGI's curses don't define values for those constants
# until initscr() has been called.)  This wrapper function calls the
# underlying C initscr(), and then copies the constants from the
# _curses module to the curses package's dictionary.  Don't do 'from
# curses import *' if you'll be needing the ACS_* constants.

def initscr():
    import _curses, curses
    # we call setupterm() here because it raises an error
    # instead of calling exit() in error cases.
    setupterm(term=_os.environ.get("TERM", "unknown"),
              fd=_sys.__stdout__.fileno())
    stdscr = _curses.initscr()
    for key, value in _curses.__dict__.items():
        if key[0:4] == 'ACS_' or key in ('LINES', 'COLS'):
            setattr(curses, key, value)

    return stdscr

# This is a similar wrapper for start_color(), which adds the COLORS and
# COLOR_PAIRS variables which are only available after start_color() is
# called.

def start_color():
    import _curses, curses
    retval = _curses.start_color()
    if hasattr(_curses, 'COLORS'):
        curses.COLORS = _curses.COLORS
    if hasattr(_curses, 'COLOR_PAIRS'):
        curses.COLOR_PAIRS = _curses.COLOR_PAIRS
    return retval

# Import Python has_key() implementation if _curses doesn't contain has_key()

try:
    has_key
except NameError:
    from .has_key import has_key

# Wrapper for the entire curses-based application.  Runs a function which
# should be the rest of your curses-based application.  If the application
# raises an exception, wrapper() will restore the terminal to a sane state so
# you can read the resulting traceback.

def wrapper(func, *args, **kwds):
    """Wrapper function that initializes curses and calls another function,
    restoring normal keyboard/screen behavior on error.
    The callable object 'func' is then passed the main window 'stdscr'
    as its first argument, followed by any other arguments passed to
    wrapper().
    """

    try:
        # Initialize curses
        stdscr = initscr()

        # Turn off echoing of keys, and enter cbreak mode,
        # where no buffering is performed on keyboard input
        noecho()
        cbreak()

        # In keypad mode, escape sequences for special keys
        # (like the cursor keys) will be interpreted and
        # a special value like curses.KEY_LEFT will be returned
        stdscr.keypad(1)

        # Start color, too.  Harmless if the terminal doesn't have
        # color; user can test with has_color() later on.  The try/catch
        # works around a minor bit of over-conscientiousness in the curses
        # module -- the error return from C start_color() is ignorable.
        try:
            start_color()
        except:
            pass

        return func(stdscr, *args, **kwds)
    finally:
        # Set everything back to normal
        if 'stdscr' in locals():
            stdscr.keypad(0)
            echo()
            nocbreak()
            endwin()
lib\dbm\dumb.py
"""A dumb and slow but simple dbm clone.

For database spam, spam.dir contains the index (a text file),
spam.bak *may* contain a backup of the index (also a text file),
while spam.dat contains the data (a binary file).

XXX TO DO:

- seems to contain a bug when updating...

- reclaim free space (currently, space once occupied by deleted or expanded
items is never reused)

- support concurrent access (currently, if two processes take turns making
updates, they can mess up the index)

- support efficient access to large databases (currently, the whole index
is read when the database is opened, and some updates rewrite the whole index)

- support opening for read-only (flag = 'm')

"""

import ast as _ast
import io as _io
import os as _os
import collections

__all__ = ["error", "open"]

_BLOCKSIZE = 512

error = OSError

class _Database(collections.MutableMapping):

    # The on-disk directory and data files can remain in mutually
    # inconsistent states for an arbitrarily long time (see comments
    # at the end of __setitem__).  This is only repaired when _commit()
    # gets called.  One place _commit() gets called is from __del__(),
    # and if that occurs at program shutdown time, module globals may
    # already have gotten rebound to None.  Since it's crucial that
    # _commit() finish successfully, we can't ignore shutdown races
    # here, and _commit() must not reference any globals.
    _os = _os       # for _commit()
    _io = _io       # for _commit()

    def __init__(self, filebasename, mode):
        self._mode = mode

        # The directory file is a text file.  Each line looks like
        #    "%r, (%d, %d)\n" % (key, pos, siz)
        # where key is the string key, pos is the offset into the dat
        # file of the associated value's first byte, and siz is the number
        # of bytes in the associated value.
        self._dirfile = filebasename + '.dir'

        # The data file is a binary file pointed into by the directory
        # file, and holds the values associated with keys.  Each value
        # begins at a _BLOCKSIZE-aligned byte offset, and is a raw
        # binary 8-bit string value.
        self._datfile = filebasename + '.dat'
        self._bakfile = filebasename + '.bak'

        # The index is an in-memory dict, mirroring the directory file.
        self._index = None  # maps keys to (pos, siz) pairs

        # Mod by Jack: create data file if needed
        try:
            f = _io.open(self._datfile, 'r', encoding="Latin-1")
        except OSError:
            with _io.open(self._datfile, 'w', encoding="Latin-1") as f:
                self._chmod(self._datfile)
        else:
            f.close()
        self._update()

    # Read directory file into the in-memory index dict.
    def _update(self):
        self._index = {}
        try:
            f = _io.open(self._dirfile, 'r', encoding="Latin-1")
        except OSError:
            pass
        else:
            with f:
                for line in f:
                    line = line.rstrip()
                    key, pos_and_siz_pair = _ast.literal_eval(line)
                    key = key.encode('Latin-1')
                    self._index[key] = pos_and_siz_pair

    # Write the index dict to the directory file.  The original directory
    # file (if any) is renamed with a .bak extension first.  If a .bak
    # file currently exists, it's deleted.
    def _commit(self):
        # CAUTION:  It's vital that _commit() succeed, and _commit() can
        # be called from __del__().  Therefore we must never reference a
        # global in this routine.
        if self._index is None:
            return  # nothing to do

        try:
            self._os.unlink(self._bakfile)
        except OSError:
            pass

        try:
            self._os.rename(self._dirfile, self._bakfile)
        except OSError:
            pass

        with self._io.open(self._dirfile, 'w', encoding="Latin-1") as f:
            self._chmod(self._dirfile)
            for key, pos_and_siz_pair in self._index.items():
                # Use Latin-1 since it has no qualms with any value in any
                # position; UTF-8, though, does care sometimes.
                entry = "%r, %r\n" % (key.decode('Latin-1'), pos_and_siz_pair)
                f.write(entry)

    sync = _commit

    def _verify_open(self):
        if self._index is None:
            raise error('DBM object has already been closed')

    def __getitem__(self, key):
        if isinstance(key, str):
            key = key.encode('utf-8')
        self._verify_open()
        pos, siz = self._index[key]     # may raise KeyError
        with _io.open(self._datfile, 'rb') as f:
            f.seek(pos)
            dat = f.read(siz)
        return dat

    # Append val to the data file, starting at a _BLOCKSIZE-aligned
    # offset.  The data file is first padded with NUL bytes (if needed)
    # to get to an aligned offset.  Return pair
    #     (starting offset of val, len(val))
    def _addval(self, val):
        with _io.open(self._datfile, 'rb+') as f:
            f.seek(0, 2)
            pos = int(f.tell())
            npos = ((pos + _BLOCKSIZE - 1) // _BLOCKSIZE) * _BLOCKSIZE
            f.write(b'\0'*(npos-pos))
            pos = npos
            f.write(val)
        return (pos, len(val))

    # Write val to the data file, starting at offset pos.  The caller
    # is responsible for ensuring that there's enough room starting at
    # pos to hold val, without overwriting some other value.  Return
    # pair (pos, len(val)).
    def _setval(self, pos, val):
        with _io.open(self._datfile, 'rb+') as f:
            f.seek(pos)
            f.write(val)
        return (pos, len(val))

    # key is a new key whose associated value starts in the data file
    # at offset pos and with length siz.  Add an index record to
    # the in-memory index dict, and append one to the directory file.
    def _addkey(self, key, pos_and_siz_pair):
        self._index[key] = pos_and_siz_pair
        with _io.open(self._dirfile, 'a', encoding="Latin-1") as f:
            self._chmod(self._dirfile)
            f.write("%r, %r\n" % (key.decode("Latin-1"), pos_and_siz_pair))

    def __setitem__(self, key, val):
        if isinstance(key, str):
            key = key.encode('utf-8')
        elif not isinstance(key, (bytes, bytearray)):
            raise TypeError("keys must be bytes or strings")
        if isinstance(val, str):
            val = val.encode('utf-8')
        elif not isinstance(val, (bytes, bytearray)):
            raise TypeError("values must be bytes or strings")
        self._verify_open()
        if key not in self._index:
            self._addkey(key, self._addval(val))
        else:
            # See whether the new value is small enough to fit in the
            # (padded) space currently occupied by the old value.
            pos, siz = self._index[key]
            oldblocks = (siz + _BLOCKSIZE - 1) // _BLOCKSIZE
            newblocks = (len(val) + _BLOCKSIZE - 1) // _BLOCKSIZE
            if newblocks <= oldblocks:
                self._index[key] = self._setval(pos, val)
            else:
                # The new value doesn't fit in the (padded) space used
                # by the old value.  The blocks used by the old value are
                # forever lost.
                self._index[key] = self._addval(val)

            # Note that _index may be out of synch with the directory
            # file now:  _setval() and _addval() don't update the directory
            # file.  This also means that the on-disk directory and data
            # files are in a mutually inconsistent state, and they'll
            # remain that way until _commit() is called.  Note that this
            # is a disaster (for the database) if the program crashes
            # (so that _commit() never gets called).

    def __delitem__(self, key):
        if isinstance(key, str):
            key = key.encode('utf-8')
        self._verify_open()
        # The blocks used by the associated value are lost.
        del self._index[key]
        # XXX It's unclear why we do a _commit() here (the code always
        # XXX has, so I'm not changing it).  __setitem__ doesn't try to
        # XXX keep the directory file in synch.  Why should we?  Or
        # XXX why shouldn't __setitem__?
        self._commit()

    def keys(self):
        try:
            return list(self._index)
        except TypeError:
            raise error('DBM object has already been closed') from None

    def items(self):
        self._verify_open()
        return [(key, self[key]) for key in self._index.keys()]

    def __contains__(self, key):
        if isinstance(key, str):
            key = key.encode('utf-8')
        try:
            return key in self._index
        except TypeError:
            if self._index is None:
                raise error('DBM object has already been closed') from None
            else:
                raise

    def iterkeys(self):
        try:
            return iter(self._index)
        except TypeError:
            raise error('DBM object has already been closed') from None
    __iter__ = iterkeys

    def __len__(self):
        try:
            return len(self._index)
        except TypeError:
            raise error('DBM object has already been closed') from None

    def close(self):
        try:
            self._commit()
        finally:
            self._index = self._datfile = self._dirfile = self._bakfile = None

    __del__ = close

    def _chmod(self, file):
        if hasattr(self._os, 'chmod'):
            self._os.chmod(file, self._mode)

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()


def open(file, flag=None, mode=0o666):
    """Open the database file, filename, and return corresponding object.

    The flag argument, used to control how the database is opened in the
    other DBM implementations, is ignored in the dbm.dumb module; the
    database is always opened for update, and will be created if it does
    not exist.

    The optional mode argument is the UNIX mode of the file, used only when
    the database has to be created.  It defaults to octal code 0o666 (and
    will be modified by the prevailing umask).

    """
    # flag argument is currently ignored

    # Modify mode depending on the umask
    try:
        um = _os.umask(0)
        _os.umask(um)
    except AttributeError:
        pass
    else:
        # Turn off any bits that are set in the umask
        mode = mode & (~um)

    return _Database(file, mode)
lib\dbm\gnu.py
"""Provide the _gdbm module as a dbm submodule."""

from _gdbm import *
lib\dbm\ndbm.py
"""Provide the _dbm module as a dbm submodule."""

from _dbm import *
lib\dbm\__init__.py
"""Generic interface to all dbm clones.

Use

        import dbm
        d = dbm.open(file, 'w', 0o666)

The returned object is a dbm.gnu, dbm.ndbm or dbm.dumb object, dependent on the
type of database being opened (determined by the whichdb function) in the case
of an existing dbm. If the dbm does not exist and the create or new flag ('c'
or 'n') was specified, the dbm type will be determined by the availability of
the modules (tested in the above order).

It has the following interface (key and data are strings):

        d[key] = data   # store data at key (may override data at
                        # existing key)
        data = d[key]   # retrieve data at key (raise KeyError if no
                        # such key)
        del d[key]      # delete data stored at key (raises KeyError
                        # if no such key)
        flag = key in d # true if the key exists
        list = d.keys() # return a list of all existing keys (slow!)

Future versions may change the order in which implementations are
tested for existence, and add interfaces to other dbm-like
implementations.
"""

__all__ = ['open', 'whichdb', 'error']

import io
import os
import struct
import sys


class error(Exception):
    pass

_names = ['dbm.gnu', 'dbm.ndbm', 'dbm.dumb']
_defaultmod = None
_modules = {}

error = (error, OSError)

try:
    from dbm import ndbm
except ImportError:
    ndbm = None


def open(file, flag='r', mode=0o666):
    """Open or create database at path given by *file*.

    Optional argument *flag* can be 'r' (default) for read-only access, 'w'
    for read-write access of an existing database, 'c' for read-write access
    to a new or existing database, and 'n' for read-write access to a new
    database.

    Note: 'r' and 'w' fail if the database doesn't exist; 'c' creates it
    only if it doesn't exist; and 'n' always creates a new database.
    """
    global _defaultmod
    if _defaultmod is None:
        for name in _names:
            try:
                mod = __import__(name, fromlist=['open'])
            except ImportError:
                continue
            if not _defaultmod:
                _defaultmod = mod
            _modules[name] = mod
        if not _defaultmod:
            raise ImportError("no dbm clone found; tried %s" % _names)

    # guess the type of an existing database, if not creating a new one
    result = whichdb(file) if 'n' not in flag else None
    if result is None:
        # db doesn't exist or 'n' flag was specified to create a new db
        if 'c' in flag or 'n' in flag:
            # file doesn't exist and the new flag was used so use default type
            mod = _defaultmod
        else:
            raise error[0]("need 'c' or 'n' flag to open new db")
    elif result == "":
        # db type cannot be determined
        raise error[0]("db type could not be determined")
    elif result not in _modules:
        raise error[0]("db type is {0}, but the module is not "
                       "available".format(result))
    else:
        mod = _modules[result]
    return mod.open(file, flag, mode)


def whichdb(filename):
    """Guess which db package to use to open a db file.

    Return values:

    - None if the database file can't be read;
    - empty string if the file can be read but can't be recognized
    - the name of the dbm submodule (e.g. "ndbm" or "gnu") if recognized.

    Importing the given module may still fail, and opening the
    database using that module may still fail.
    """

    # Check for ndbm first -- this has a .pag and a .dir file
    try:
        f = io.open(filename + ".pag", "rb")
        f.close()
        f = io.open(filename + ".dir", "rb")
        f.close()
        return "dbm.ndbm"
    except OSError:
        # some dbm emulations based on Berkeley DB generate a .db file
        # some do not, but they should be caught by the bsd checks
        try:
            f = io.open(filename + ".db", "rb")
            f.close()
            # guarantee we can actually open the file using dbm
            # kind of overkill, but since we are dealing with emulations
            # it seems like a prudent step
            if ndbm is not None:
                d = ndbm.open(filename)
                d.close()
                return "dbm.ndbm"
        except OSError:
            pass

    # Check for dumbdbm next -- this has a .dir and a .dat file
    try:
        # First check for presence of files
        os.stat(filename + ".dat")
        size = os.stat(filename + ".dir").st_size
        # dumbdbm files with no keys are empty
        if size == 0:
            return "dbm.dumb"
        f = io.open(filename + ".dir", "rb")
        try:
            if f.read(1) in (b"'", b'"'):
                return "dbm.dumb"
        finally:
            f.close()
    except OSError:
        pass

    # See if the file exists, return None if not
    try:
        f = io.open(filename, "rb")
    except OSError:
        return None

    # Read the start of the file -- the magic number
    s16 = f.read(16)
    f.close()
    s = s16[0:4]

    # Return "" if not at least 4 bytes
    if len(s) != 4:
        return ""

    # Convert to 4-byte int in native byte order -- return "" if impossible
    try:
        (magic,) = struct.unpack("=l", s)
    except struct.error:
        return ""

    # Check for GNU dbm
    if magic in (0x13579ace, 0x13579acd, 0x13579acf):
        return "dbm.gnu"

    # Later versions of Berkeley db hash file have a 12-byte pad in
    # front of the file type
    try:
        (magic,) = struct.unpack("=l", s16[-4:])
    except struct.error:
        return ""

    # Unknown
    return ""


if __name__ == "__main__":
    for filename in sys.argv[1:]:
        print(whichdb(filename) or "UNKNOWN", filename)
lib\distutils\archive_util.py
"""distutils.archive_util

Utility functions for creating archive files (tarballs, zip files,
that sort of thing)."""

import os
from warnings import warn
import sys

try:
    import zipfile
except ImportError:
    zipfile = None


from distutils.errors import DistutilsExecError
from distutils.spawn import spawn
from distutils.dir_util import mkpath
from distutils import log

try:
    from pwd import getpwnam
except ImportError:
    getpwnam = None

try:
    from grp import getgrnam
except ImportError:
    getgrnam = None

def _get_gid(name):
    """Returns a gid, given a group name."""
    if getgrnam is None or name is None:
        return None
    try:
        result = getgrnam(name)
    except KeyError:
        result = None
    if result is not None:
        return result[2]
    return None

def _get_uid(name):
    """Returns an uid, given a user name."""
    if getpwnam is None or name is None:
        return None
    try:
        result = getpwnam(name)
    except KeyError:
        result = None
    if result is not None:
        return result[2]
    return None

def make_tarball(base_name, base_dir, compress="gzip", verbose=0, dry_run=0,
                 owner=None, group=None):
    """Create a (possibly compressed) tar file from all the files under
    'base_dir'.

    'compress' must be "gzip" (the default), "compress", "bzip2", or None.
    (compress will be deprecated in Python 3.2)

    'owner' and 'group' can be used to define an owner and a group for the
    archive that is being built. If not provided, the current owner and group
    will be used.

    The output tar file will be named 'base_dir' +  ".tar", possibly plus
    the appropriate compression extension (".gz", ".bz2" or ".Z").

    Returns the output filename.
    """
    tar_compression = {'gzip': 'gz', 'bzip2': 'bz2', None: '', 'compress': ''}
    compress_ext = {'gzip': '.gz', 'bzip2': '.bz2', 'compress': '.Z'}

    # flags for compression program, each element of list will be an argument
    if compress is not None and compress not in compress_ext.keys():
        raise ValueError(
              "bad value for 'compress': must be None, 'gzip', 'bzip2' "
              "or 'compress'")

    archive_name = base_name + '.tar'
    if compress != 'compress':
        archive_name += compress_ext.get(compress, '')

    mkpath(os.path.dirname(archive_name), dry_run=dry_run)

    # creating the tarball
    import tarfile  # late import so Python build itself doesn't break

    log.info('Creating tar archive')

    uid = _get_uid(owner)
    gid = _get_gid(group)

    def _set_uid_gid(tarinfo):
        if gid is not None:
            tarinfo.gid = gid
            tarinfo.gname = group
        if uid is not None:
            tarinfo.uid = uid
            tarinfo.uname = owner
        return tarinfo

    if not dry_run:
        tar = tarfile.open(archive_name, 'w|%s' % tar_compression[compress])
        try:
            tar.add(base_dir, filter=_set_uid_gid)
        finally:
            tar.close()

    # compression using `compress`
    if compress == 'compress':
        warn("'compress' will be deprecated.", PendingDeprecationWarning)
        # the option varies depending on the platform
        compressed_name = archive_name + compress_ext[compress]
        if sys.platform == 'win32':
            cmd = [compress, archive_name, compressed_name]
        else:
            cmd = [compress, '-f', archive_name]
        spawn(cmd, dry_run=dry_run)
        return compressed_name

    return archive_name

def make_zipfile(base_name, base_dir, verbose=0, dry_run=0):
    """Create a zip file from all the files under 'base_dir'.

    The output zip file will be named 'base_name' + ".zip".  Uses either the
    "zipfile" Python module (if available) or the InfoZIP "zip" utility
    (if installed and found on the default search path).  If neither tool is
    available, raises DistutilsExecError.  Returns the name of the output zip
    file.
    """
    zip_filename = base_name + ".zip"
    mkpath(os.path.dirname(zip_filename), dry_run=dry_run)

    # If zipfile module is not available, try spawning an external
    # 'zip' command.
    if zipfile is None:
        if verbose:
            zipoptions = "-r"
        else:
            zipoptions = "-rq"

        try:
            spawn(["zip", zipoptions, zip_filename, base_dir],
                  dry_run=dry_run)
        except DistutilsExecError:
            # XXX really should distinguish between "couldn't find
            # external 'zip' command" and "zip failed".
            raise DistutilsExecError(("unable to create zip file '%s': "
                   "could neither import the 'zipfile' module nor "
                   "find a standalone zip utility") % zip_filename)

    else:
        log.info("creating '%s' and adding '%s' to it",
                 zip_filename, base_dir)

        if not dry_run:
            try:
                zip = zipfile.ZipFile(zip_filename, "w",
                                      compression=zipfile.ZIP_DEFLATED)
            except RuntimeError:
                zip = zipfile.ZipFile(zip_filename, "w",
                                      compression=zipfile.ZIP_STORED)

            for dirpath, dirnames, filenames in os.walk(base_dir):
                for name in filenames:
                    path = os.path.normpath(os.path.join(dirpath, name))
                    if os.path.isfile(path):
                        zip.write(path, path)
                        log.info("adding '%s'" % path)
            zip.close()

    return zip_filename

ARCHIVE_FORMATS = {
    'gztar': (make_tarball, [('compress', 'gzip')], "gzip'ed tar-file"),
    'bztar': (make_tarball, [('compress', 'bzip2')], "bzip2'ed tar-file"),
    'ztar':  (make_tarball, [('compress', 'compress')], "compressed tar file"),
    'tar':   (make_tarball, [('compress', None)], "uncompressed tar file"),
    'zip':   (make_zipfile, [],"ZIP file")
    }

def check_archive_formats(formats):
    """Returns the first format from the 'format' list that is unknown.

    If all formats are known, returns None
    """
    for format in formats:
        if format not in ARCHIVE_FORMATS:
            return format
    return None

def make_archive(base_name, format, root_dir=None, base_dir=None, verbose=0,
                 dry_run=0, owner=None, group=None):
    """Create an archive file (eg. zip or tar).

    'base_name' is the name of the file to create, minus any format-specific
    extension; 'format' is the archive format: one of "zip", "tar", "ztar",
    or "gztar".

    'root_dir' is a directory that will be the root directory of the
    archive; ie. we typically chdir into 'root_dir' before creating the
    archive.  'base_dir' is the directory where we start archiving from;
    ie. 'base_dir' will be the common prefix of all files and
    directories in the archive.  'root_dir' and 'base_dir' both default
    to the current directory.  Returns the name of the archive file.

    'owner' and 'group' are used when creating a tar archive. By default,
    uses the current owner and group.
    """
    save_cwd = os.getcwd()
    if root_dir is not None:
        log.debug("changing into '%s'", root_dir)
        base_name = os.path.abspath(base_name)
        if not dry_run:
            os.chdir(root_dir)

    if base_dir is None:
        base_dir = os.curdir

    kwargs = {'dry_run': dry_run}

    try:
        format_info = ARCHIVE_FORMATS[format]
    except KeyError:
        raise ValueError("unknown archive format '%s'" % format)

    func = format_info[0]
    for arg, val in format_info[1]:
        kwargs[arg] = val

    if format != 'zip':
        kwargs['owner'] = owner
        kwargs['group'] = group

    try:
        filename = func(base_name, base_dir, **kwargs)
    finally:
        if root_dir is not None:
            log.debug("changing back to '%s'", save_cwd)
            os.chdir(save_cwd)

    return filename
lib\distutils\bcppcompiler.py
"""distutils.bcppcompiler

Contains BorlandCCompiler, an implementation of the abstract CCompiler class
for the Borland C++ compiler.
"""

# This implementation by Lyle Johnson, based on the original msvccompiler.py
# module and using the directions originally published by Gordon Williams.

# XXX looks like there's a LOT of overlap between these two classes:
# someone should sit down and factor out the common code as
# WindowsCCompiler!  --GPW


import os
from distutils.errors import \
     DistutilsExecError, DistutilsPlatformError, \
     CompileError, LibError, LinkError, UnknownFileError
from distutils.ccompiler import \
     CCompiler, gen_preprocess_options, gen_lib_options
from distutils.file_util import write_file
from distutils.dep_util import newer
from distutils import log

class BCPPCompiler(CCompiler) :
    """Concrete class that implements an interface to the Borland C/C++
    compiler, as defined by the CCompiler abstract class.
    """

    compiler_type = 'bcpp'

    # Just set this so CCompiler's constructor doesn't barf.  We currently
    # don't use the 'set_executables()' bureaucracy provided by CCompiler,
    # as it really isn't necessary for this sort of single-compiler class.
    # Would be nice to have a consistent interface with UnixCCompiler,
    # though, so it's worth thinking about.
    executables = {}

    # Private class data (need to distinguish C from C++ source for compiler)
    _c_extensions = ['.c']
    _cpp_extensions = ['.cc', '.cpp', '.cxx']

    # Needed for the filename generation methods provided by the
    # base class, CCompiler.
    src_extensions = _c_extensions + _cpp_extensions
    obj_extension = '.obj'
    static_lib_extension = '.lib'
    shared_lib_extension = '.dll'
    static_lib_format = shared_lib_format = '%s%s'
    exe_extension = '.exe'


    def __init__ (self,
                  verbose=0,
                  dry_run=0,
                  force=0):

        CCompiler.__init__ (self, verbose, dry_run, force)

        # These executables are assumed to all be in the path.
        # Borland doesn't seem to use any special registry settings to
        # indicate their installation locations.

        self.cc = "bcc32.exe"
        self.linker = "ilink32.exe"
        self.lib = "tlib.exe"

        self.preprocess_options = None
        self.compile_options = ['/tWM', '/O2', '/q', '/g0']
        self.compile_options_debug = ['/tWM', '/Od', '/q', '/g0']

        self.ldflags_shared = ['/Tpd', '/Gn', '/q', '/x']
        self.ldflags_shared_debug = ['/Tpd', '/Gn', '/q', '/x']
        self.ldflags_static = []
        self.ldflags_exe = ['/Gn', '/q', '/x']
        self.ldflags_exe_debug = ['/Gn', '/q', '/x','/r']


    # -- Worker methods ------------------------------------------------

    def compile(self, sources,
                output_dir=None, macros=None, include_dirs=None, debug=0,
                extra_preargs=None, extra_postargs=None, depends=None):

        macros, objects, extra_postargs, pp_opts, build = \
                self._setup_compile(output_dir, macros, include_dirs, sources,
                                    depends, extra_postargs)
        compile_opts = extra_preargs or []
        compile_opts.append ('-c')
        if debug:
            compile_opts.extend (self.compile_options_debug)
        else:
            compile_opts.extend (self.compile_options)

        for obj in objects:
            try:
                src, ext = build[obj]
            except KeyError:
                continue
            # XXX why do the normpath here?
            src = os.path.normpath(src)
            obj = os.path.normpath(obj)
            # XXX _setup_compile() did a mkpath() too but before the normpath.
            # Is it possible to skip the normpath?
            self.mkpath(os.path.dirname(obj))

            if ext == '.res':
                # This is already a binary file -- skip it.
                continue # the 'for' loop
            if ext == '.rc':
                # This needs to be compiled to a .res file -- do it now.
                try:
                    self.spawn (["brcc32", "-fo", obj, src])
                except DistutilsExecError as msg:
                    raise CompileError(msg)
                continue # the 'for' loop

            # The next two are both for the real compiler.
            if ext in self._c_extensions:
                input_opt = ""
            elif ext in self._cpp_extensions:
                input_opt = "-P"
            else:
                # Unknown file type -- no extra options.  The compiler
                # will probably fail, but let it just in case this is a
                # file the compiler recognizes even if we don't.
                input_opt = ""

            output_opt = "-o" + obj

            # Compiler command line syntax is: "bcc32 [options] file(s)".
            # Note that the source file names must appear at the end of
            # the command line.
            try:
                self.spawn ([self.cc] + compile_opts + pp_opts +
                            [input_opt, output_opt] +
                            extra_postargs + [src])
            except DistutilsExecError as msg:
                raise CompileError(msg)

        return objects

    # compile ()


    def create_static_lib (self,
                           objects,
                           output_libname,
                           output_dir=None,
                           debug=0,
                           target_lang=None):

        (objects, output_dir) = self._fix_object_args (objects, output_dir)
        output_filename = \
            self.library_filename (output_libname, output_dir=output_dir)

        if self._need_link (objects, output_filename):
            lib_args = [output_filename, '/u'] + objects
            if debug:
                pass                    # XXX what goes here?
            try:
                self.spawn ([self.lib] + lib_args)
            except DistutilsExecError as msg:
                raise LibError(msg)
        else:
            log.debug("skipping %s (up-to-date)", output_filename)

    # create_static_lib ()


    def link (self,
              target_desc,
              objects,
              output_filename,
              output_dir=None,
              libraries=None,
              library_dirs=None,
              runtime_library_dirs=None,
              export_symbols=None,
              debug=0,
              extra_preargs=None,
              extra_postargs=None,
              build_temp=None,
              target_lang=None):

        # XXX this ignores 'build_temp'!  should follow the lead of
        # msvccompiler.py

        (objects, output_dir) = self._fix_object_args (objects, output_dir)
        (libraries, library_dirs, runtime_library_dirs) = \
            self._fix_lib_args (libraries, library_dirs, runtime_library_dirs)

        if runtime_library_dirs:
            log.warn("I don't know what to do with 'runtime_library_dirs': %s",
                     str(runtime_library_dirs))

        if output_dir is not None:
            output_filename = os.path.join (output_dir, output_filename)

        if self._need_link (objects, output_filename):

            # Figure out linker args based on type of target.
            if target_desc == CCompiler.EXECUTABLE:
                startup_obj = 'c0w32'
                if debug:
                    ld_args = self.ldflags_exe_debug[:]
                else:
                    ld_args = self.ldflags_exe[:]
            else:
                startup_obj = 'c0d32'
                if debug:
                    ld_args = self.ldflags_shared_debug[:]
                else:
                    ld_args = self.ldflags_shared[:]


            # Create a temporary exports file for use by the linker
            if export_symbols is None:
                def_file = ''
            else:
                head, tail = os.path.split (output_filename)
                modname, ext = os.path.splitext (tail)
                temp_dir = os.path.dirname(objects[0]) # preserve tree structure
                def_file = os.path.join (temp_dir, '%s.def' % modname)
                contents = ['EXPORTS']
                for sym in (export_symbols or []):
                    contents.append('  %s=_%s' % (sym, sym))
                self.execute(write_file, (def_file, contents),
                             "writing %s" % def_file)

            # Borland C++ has problems with '/' in paths
            objects2 = map(os.path.normpath, objects)
            # split objects in .obj and .res files
            # Borland C++ needs them at different positions in the command line
            objects = [startup_obj]
            resources = []
            for file in objects2:
                (base, ext) = os.path.splitext(os.path.normcase(file))
                if ext == '.res':
                    resources.append(file)
                else:
                    objects.append(file)


            for l in library_dirs:
                ld_args.append("/L%s" % os.path.normpath(l))
            ld_args.append("/L.") # we sometimes use relative paths

            # list of object files
            ld_args.extend(objects)

            # XXX the command-line syntax for Borland C++ is a bit wonky;
            # certain filenames are jammed together in one big string, but
            # comma-delimited.  This doesn't mesh too well with the
            # Unix-centric attitude (with a DOS/Windows quoting hack) of
            # 'spawn()', so constructing the argument list is a bit
            # awkward.  Note that doing the obvious thing and jamming all
            # the filenames and commas into one argument would be wrong,
            # because 'spawn()' would quote any filenames with spaces in
            # them.  Arghghh!.  Apparently it works fine as coded...

            # name of dll/exe file
            ld_args.extend([',',output_filename])
            # no map file and start libraries
            ld_args.append(',,')

            for lib in libraries:
                # see if we find it and if there is a bcpp specific lib
                # (xxx_bcpp.lib)
                libfile = self.find_library_file(library_dirs, lib, debug)
                if libfile is None:
                    ld_args.append(lib)
                    # probably a BCPP internal library -- don't warn
                else:
                    # full name which prefers bcpp_xxx.lib over xxx.lib
                    ld_args.append(libfile)

            # some default libraries
            ld_args.append ('import32')
            ld_args.append ('cw32mt')

            # def file for export symbols
            ld_args.extend([',',def_file])
            # add resource files
            ld_args.append(',')
            ld_args.extend(resources)


            if extra_preargs:
                ld_args[:0] = extra_preargs
            if extra_postargs:
                ld_args.extend(extra_postargs)

            self.mkpath (os.path.dirname (output_filename))
            try:
                self.spawn ([self.linker] + ld_args)
            except DistutilsExecError as msg:
                raise LinkError(msg)

        else:
            log.debug("skipping %s (up-to-date)", output_filename)

    # link ()

    # -- Miscellaneous methods -----------------------------------------


    def find_library_file (self, dirs, lib, debug=0):
        # List of effective library names to try, in order of preference:
        # xxx_bcpp.lib is better than xxx.lib
        # and xxx_d.lib is better than xxx.lib if debug is set
        #
        # The "_bcpp" suffix is to handle a Python installation for people
        # with multiple compilers (primarily Distutils hackers, I suspect
        # ;-).  The idea is they'd have one static library for each
        # compiler they care about, since (almost?) every Windows compiler
        # seems to have a different format for static libraries.
        if debug:
            dlib = (lib + "_d")
            try_names = (dlib + "_bcpp", lib + "_bcpp", dlib, lib)
        else:
            try_names = (lib + "_bcpp", lib)

        for dir in dirs:
            for name in try_names:
                libfile = os.path.join(dir, self.library_filename(name))
                if os.path.exists(libfile):
                    return libfile
        else:
            # Oops, didn't find it in *any* of 'dirs'
            return None

    # overwrite the one from CCompiler to support rc and res-files
    def object_filenames (self,
                          source_filenames,
                          strip_dir=0,
                          output_dir=''):
        if output_dir is None: output_dir = ''
        obj_names = []
        for src_name in source_filenames:
            # use normcase to make sure '.rc' is really '.rc' and not '.RC'
            (base, ext) = os.path.splitext (os.path.normcase(src_name))
            if ext not in (self.src_extensions + ['.rc','.res']):
                raise UnknownFileError("unknown file type '%s' (from '%s')" % \
                      (ext, src_name))
            if strip_dir:
                base = os.path.basename (base)
            if ext == '.res':
                # these can go unchanged
                obj_names.append (os.path.join (output_dir, base + ext))
            elif ext == '.rc':
                # these need to be compiled to .res-files
                obj_names.append (os.path.join (output_dir, base + '.res'))
            else:
                obj_names.append (os.path.join (output_dir,
                                            base + self.obj_extension))
        return obj_names

    # object_filenames ()

    def preprocess (self,
                    source,
                    output_file=None,
                    macros=None,
                    include_dirs=None,
                    extra_preargs=None,
                    extra_postargs=None):

        (_, macros, include_dirs) = \
            self._fix_compile_args(None, macros, include_dirs)
        pp_opts = gen_preprocess_options(macros, include_dirs)
        pp_args = ['cpp32.exe'] + pp_opts
        if output_file is not None:
            pp_args.append('-o' + output_file)
        if extra_preargs:
            pp_args[:0] = extra_preargs
        if extra_postargs:
            pp_args.extend(extra_postargs)
        pp_args.append(source)

        # We need to preprocess: either we're being forced to, or the
        # source file is newer than the target (or the target doesn't
        # exist).
        if self.force or output_file is None or newer(source, output_file):
            if output_file:
                self.mkpath(os.path.dirname(output_file))
            try:
                self.spawn(pp_args)
            except DistutilsExecError as msg:
                print(msg)
                raise CompileError(msg)

    # preprocess()
lib\distutils\ccompiler.py
"""distutils.ccompiler

Contains CCompiler, an abstract base class that defines the interface
for the Distutils compiler abstraction model."""

import sys, os, re
from distutils.errors import *
from distutils.spawn import spawn
from distutils.file_util import move_file
from distutils.dir_util import mkpath
from distutils.dep_util import newer_pairwise, newer_group
from distutils.util import split_quoted, execute
from distutils import log

class CCompiler:
    """Abstract base class to define the interface that must be implemented
    by real compiler classes.  Also has some utility methods used by
    several compiler classes.

    The basic idea behind a compiler abstraction class is that each
    instance can be used for all the compile/link steps in building a
    single project.  Thus, attributes common to all of those compile and
    link steps -- include directories, macros to define, libraries to link
    against, etc. -- are attributes of the compiler instance.  To allow for
    variability in how individual files are treated, most of those
    attributes may be varied on a per-compilation or per-link basis.
    """

    # 'compiler_type' is a class attribute that identifies this class.  It
    # keeps code that wants to know what kind of compiler it's dealing with
    # from having to import all possible compiler classes just to do an
    # 'isinstance'.  In concrete CCompiler subclasses, 'compiler_type'
    # should really, really be one of the keys of the 'compiler_class'
    # dictionary (see below -- used by the 'new_compiler()' factory
    # function) -- authors of new compiler interface classes are
    # responsible for updating 'compiler_class'!
    compiler_type = None

    # XXX things not handled by this compiler abstraction model:
    #   * client can't provide additional options for a compiler,
    #     e.g. warning, optimization, debugging flags.  Perhaps this
    #     should be the domain of concrete compiler abstraction classes
    #     (UnixCCompiler, MSVCCompiler, etc.) -- or perhaps the base
    #     class should have methods for the common ones.
    #   * can't completely override the include or library searchg
    #     path, ie. no "cc -I -Idir1 -Idir2" or "cc -L -Ldir1 -Ldir2".
    #     I'm not sure how widely supported this is even by Unix
    #     compilers, much less on other platforms.  And I'm even less
    #     sure how useful it is; maybe for cross-compiling, but
    #     support for that is a ways off.  (And anyways, cross
    #     compilers probably have a dedicated binary with the
    #     right paths compiled in.  I hope.)
    #   * can't do really freaky things with the library list/library
    #     dirs, e.g. "-Ldir1 -lfoo -Ldir2 -lfoo" to link against
    #     different versions of libfoo.a in different locations.  I
    #     think this is useless without the ability to null out the
    #     library search path anyways.


    # Subclasses that rely on the standard filename generation methods
    # implemented below should override these; see the comment near
    # those methods ('object_filenames()' et. al.) for details:
    src_extensions = None               # list of strings
    obj_extension = None                # string
    static_lib_extension = None
    shared_lib_extension = None         # string
    static_lib_format = None            # format string
    shared_lib_format = None            # prob. same as static_lib_format
    exe_extension = None                # string

    # Default language settings. language_map is used to detect a source
    # file or Extension target language, checking source filenames.
    # language_order is used to detect the language precedence, when deciding
    # what language to use when mixing source types. For example, if some
    # extension has two files with ".c" extension, and one with ".cpp", it
    # is still linked as c++.
    language_map = {".c"   : "c",
                    ".cc"  : "c++",
                    ".cpp" : "c++",
                    ".cxx" : "c++",
                    ".m"   : "objc",
                   }
    language_order = ["c++", "objc", "c"]

    def __init__(self, verbose=0, dry_run=0, force=0):
        self.dry_run = dry_run
        self.force = force
        self.verbose = verbose

        # 'output_dir': a common output directory for object, library,
        # shared object, and shared library files
        self.output_dir = None

        # 'macros': a list of macro definitions (or undefinitions).  A
        # macro definition is a 2-tuple (name, value), where the value is
        # either a string or None (no explicit value).  A macro
        # undefinition is a 1-tuple (name,).
        self.macros = []

        # 'include_dirs': a list of directories to search for include files
        self.include_dirs = []

        # 'libraries': a list of libraries to include in any link
        # (library names, not filenames: eg. "foo" not "libfoo.a")
        self.libraries = []

        # 'library_dirs': a list of directories to search for libraries
        self.library_dirs = []

        # 'runtime_library_dirs': a list of directories to search for
        # shared libraries/objects at runtime
        self.runtime_library_dirs = []

        # 'objects': a list of object files (or similar, such as explicitly
        # named library files) to include on any link
        self.objects = []

        for key in self.executables.keys():
            self.set_executable(key, self.executables[key])

    def set_executables(self, **kwargs):
        """Define the executables (and options for them) that will be run
        to perform the various stages of compilation.  The exact set of
        executables that may be specified here depends on the compiler
        class (via the 'executables' class attribute), but most will have:
          compiler      the C/C++ compiler
          linker_so     linker used to create shared objects and libraries
          linker_exe    linker used to create binary executables
          archiver      static library creator

        On platforms with a command-line (Unix, DOS/Windows), each of these
        is a string that will be split into executable name and (optional)
        list of arguments.  (Splitting the string is done similarly to how
        Unix shells operate: words are delimited by spaces, but quotes and
        backslashes can override this.  See
        'distutils.util.split_quoted()'.)
        """

        # Note that some CCompiler implementation classes will define class
        # attributes 'cpp', 'cc', etc. with hard-coded executable names;
        # this is appropriate when a compiler class is for exactly one
        # compiler/OS combination (eg. MSVCCompiler).  Other compiler
        # classes (UnixCCompiler, in particular) are driven by information
        # discovered at run-time, since there are many different ways to do
        # basically the same things with Unix C compilers.

        for key in kwargs:
            if key not in self.executables:
                raise ValueError("unknown executable '%s' for class %s" %
                      (key, self.__class__.__name__))
            self.set_executable(key, kwargs[key])

    def set_executable(self, key, value):
        if isinstance(value, str):
            setattr(self, key, split_quoted(value))
        else:
            setattr(self, key, value)

    def _find_macro(self, name):
        i = 0
        for defn in self.macros:
            if defn[0] == name:
                return i
            i += 1
        return None

    def _check_macro_definitions(self, definitions):
        """Ensures that every element of 'definitions' is a valid macro
        definition, ie. either (name,value) 2-tuple or a (name,) tuple.  Do
        nothing if all definitions are OK, raise TypeError otherwise.
        """
        for defn in definitions:
            if not (isinstance(defn, tuple) and
                    (len(defn) in (1, 2) and
                      (isinstance (defn[1], str) or defn[1] is None)) and
                    isinstance (defn[0], str)):
                raise TypeError(("invalid macro definition '%s': " % defn) + \
                      "must be tuple (string,), (string, string), or " + \
                      "(string, None)")


    # -- Bookkeeping methods -------------------------------------------

    def define_macro(self, name, value=None):
        """Define a preprocessor macro for all compilations driven by this
        compiler object.  The optional parameter 'value' should be a
        string; if it is not supplied, then the macro will be defined
        without an explicit value and the exact outcome depends on the
        compiler used (XXX true? does ANSI say anything about this?)
        """
        # Delete from the list of macro definitions/undefinitions if
        # already there (so that this one will take precedence).
        i = self._find_macro (name)
        if i is not None:
            del self.macros[i]

        self.macros.append((name, value))

    def undefine_macro(self, name):
        """Undefine a preprocessor macro for all compilations driven by
        this compiler object.  If the same macro is defined by
        'define_macro()' and undefined by 'undefine_macro()' the last call
        takes precedence (including multiple redefinitions or
        undefinitions).  If the macro is redefined/undefined on a
        per-compilation basis (ie. in the call to 'compile()'), then that
        takes precedence.
        """
        # Delete from the list of macro definitions/undefinitions if
        # already there (so that this one will take precedence).
        i = self._find_macro (name)
        if i is not None:
            del self.macros[i]

        undefn = (name,)
        self.macros.append(undefn)

    def add_include_dir(self, dir):
        """Add 'dir' to the list of directories that will be searched for
        header files.  The compiler is instructed to search directories in
        the order in which they are supplied by successive calls to
        'add_include_dir()'.
        """
        self.include_dirs.append(dir)

    def set_include_dirs(self, dirs):
        """Set the list of directories that will be searched to 'dirs' (a
        list of strings).  Overrides any preceding calls to
        'add_include_dir()'; subsequence calls to 'add_include_dir()' add
        to the list passed to 'set_include_dirs()'.  This does not affect
        any list of standard include directories that the compiler may
        search by default.
        """
        self.include_dirs = dirs[:]

    def add_library(self, libname):
        """Add 'libname' to the list of libraries that will be included in
        all links driven by this compiler object.  Note that 'libname'
        should *not* be the name of a file containing a library, but the
        name of the library itself: the actual filename will be inferred by
        the linker, the compiler, or the compiler class (depending on the
        platform).

        The linker will be instructed to link against libraries in the
        order they were supplied to 'add_library()' and/or
        'set_libraries()'.  It is perfectly valid to duplicate library
        names; the linker will be instructed to link against libraries as
        many times as they are mentioned.
        """
        self.libraries.append(libname)

    def set_libraries(self, libnames):
        """Set the list of libraries to be included in all links driven by
        this compiler object to 'libnames' (a list of strings).  This does
        not affect any standard system libraries that the linker may
        include by default.
        """
        self.libraries = libnames[:]

    def add_library_dir(self, dir):
        """Add 'dir' to the list of directories that will be searched for
        libraries specified to 'add_library()' and 'set_libraries()'.  The
        linker will be instructed to search for libraries in the order they
        are supplied to 'add_library_dir()' and/or 'set_library_dirs()'.
        """
        self.library_dirs.append(dir)

    def set_library_dirs(self, dirs):
        """Set the list of library search directories to 'dirs' (a list of
        strings).  This does not affect any standard library search path
        that the linker may search by default.
        """
        self.library_dirs = dirs[:]

    def add_runtime_library_dir(self, dir):
        """Add 'dir' to the list of directories that will be searched for
        shared libraries at runtime.
        """
        self.runtime_library_dirs.append(dir)

    def set_runtime_library_dirs(self, dirs):
        """Set the list of directories to search for shared libraries at
        runtime to 'dirs' (a list of strings).  This does not affect any
        standard search path that the runtime linker may search by
        default.
        """
        self.runtime_library_dirs = dirs[:]

    def add_link_object(self, object):
        """Add 'object' to the list of object files (or analogues, such as
        explicitly named library files or the output of "resource
        compilers") to be included in every link driven by this compiler
        object.
        """
        self.objects.append(object)

    def set_link_objects(self, objects):
        """Set the list of object files (or analogues) to be included in
        every link to 'objects'.  This does not affect any standard object
        files that the linker may include by default (such as system
        libraries).
        """
        self.objects = objects[:]


    # -- Private utility methods --------------------------------------
    # (here for the convenience of subclasses)

    # Helper method to prep compiler in subclass compile() methods

    def _setup_compile(self, outdir, macros, incdirs, sources, depends,
                       extra):
        """Process arguments and decide which source files to compile."""
        if outdir is None:
            outdir = self.output_dir
        elif not isinstance(outdir, str):
            raise TypeError("'output_dir' must be a string or None")

        if macros is None:
            macros = self.macros
        elif isinstance(macros, list):
            macros = macros + (self.macros or [])
        else:
            raise TypeError("'macros' (if supplied) must be a list of tuples")

        if incdirs is None:
            incdirs = self.include_dirs
        elif isinstance(incdirs, (list, tuple)):
            incdirs = list(incdirs) + (self.include_dirs or [])
        else:
            raise TypeError(
                  "'include_dirs' (if supplied) must be a list of strings")

        if extra is None:
            extra = []

        # Get the list of expected output (object) files
        objects = self.object_filenames(sources, strip_dir=0,
                                        output_dir=outdir)
        assert len(objects) == len(sources)

        pp_opts = gen_preprocess_options(macros, incdirs)

        build = {}
        for i in range(len(sources)):
            src = sources[i]
            obj = objects[i]
            ext = os.path.splitext(src)[1]
            self.mkpath(os.path.dirname(obj))
            build[obj] = (src, ext)

        return macros, objects, extra, pp_opts, build

    def _get_cc_args(self, pp_opts, debug, before):
        # works for unixccompiler, cygwinccompiler
        cc_args = pp_opts + ['-c']
        if debug:
            cc_args[:0] = ['-g']
        if before:
            cc_args[:0] = before
        return cc_args

    def _fix_compile_args(self, output_dir, macros, include_dirs):
        """Typecheck and fix-up some of the arguments to the 'compile()'
        method, and return fixed-up values.  Specifically: if 'output_dir'
        is None, replaces it with 'self.output_dir'; ensures that 'macros'
        is a list, and augments it with 'self.macros'; ensures that
        'include_dirs' is a list, and augments it with 'self.include_dirs'.
        Guarantees that the returned values are of the correct type,
        i.e. for 'output_dir' either string or None, and for 'macros' and
        'include_dirs' either list or None.
        """
        if output_dir is None:
            output_dir = self.output_dir
        elif not isinstance(output_dir, str):
            raise TypeError("'output_dir' must be a string or None")

        if macros is None:
            macros = self.macros
        elif isinstance(macros, list):
            macros = macros + (self.macros or [])
        else:
            raise TypeError("'macros' (if supplied) must be a list of tuples")

        if include_dirs is None:
            include_dirs = self.include_dirs
        elif isinstance(include_dirs, (list, tuple)):
            include_dirs = list(include_dirs) + (self.include_dirs or [])
        else:
            raise TypeError(
                  "'include_dirs' (if supplied) must be a list of strings")

        return output_dir, macros, include_dirs

    def _prep_compile(self, sources, output_dir, depends=None):
        """Decide which souce files must be recompiled.

        Determine the list of object files corresponding to 'sources',
        and figure out which ones really need to be recompiled.
        Return a list of all object files and a dictionary telling
        which source files can be skipped.
        """
        # Get the list of expected output (object) files
        objects = self.object_filenames(sources, output_dir=output_dir)
        assert len(objects) == len(sources)

        # Return an empty dict for the "which source files can be skipped"
        # return value to preserve API compatibility.
        return objects, {}

    def _fix_object_args(self, objects, output_dir):
        """Typecheck and fix up some arguments supplied to various methods.
        Specifically: ensure that 'objects' is a list; if output_dir is
        None, replace with self.output_dir.  Return fixed versions of
        'objects' and 'output_dir'.
        """
        if not isinstance(objects, (list, tuple)):
            raise TypeError("'objects' must be a list or tuple of strings")
        objects = list(objects)

        if output_dir is None:
            output_dir = self.output_dir
        elif not isinstance(output_dir, str):
            raise TypeError("'output_dir' must be a string or None")

        return (objects, output_dir)

    def _fix_lib_args(self, libraries, library_dirs, runtime_library_dirs):
        """Typecheck and fix up some of the arguments supplied to the
        'link_*' methods.  Specifically: ensure that all arguments are
        lists, and augment them with their permanent versions
        (eg. 'self.libraries' augments 'libraries').  Return a tuple with
        fixed versions of all arguments.
        """
        if libraries is None:
            libraries = self.libraries
        elif isinstance(libraries, (list, tuple)):
            libraries = list (libraries) + (self.libraries or [])
        else:
            raise TypeError(
                  "'libraries' (if supplied) must be a list of strings")

        if library_dirs is None:
            library_dirs = self.library_dirs
        elif isinstance(library_dirs, (list, tuple)):
            library_dirs = list (library_dirs) + (self.library_dirs or [])
        else:
            raise TypeError(
                  "'library_dirs' (if supplied) must be a list of strings")

        if runtime_library_dirs is None:
            runtime_library_dirs = self.runtime_library_dirs
        elif isinstance(runtime_library_dirs, (list, tuple)):
            runtime_library_dirs = (list(runtime_library_dirs) +
                                    (self.runtime_library_dirs or []))
        else:
            raise TypeError("'runtime_library_dirs' (if supplied) "
                            "must be a list of strings")

        return (libraries, library_dirs, runtime_library_dirs)

    def _need_link(self, objects, output_file):
        """Return true if we need to relink the files listed in 'objects'
        to recreate 'output_file'.
        """
        if self.force:
            return True
        else:
            if self.dry_run:
                newer = newer_group (objects, output_file, missing='newer')
            else:
                newer = newer_group (objects, output_file)
            return newer

    def detect_language(self, sources):
        """Detect the language of a given file, or list of files. Uses
        language_map, and language_order to do the job.
        """
        if not isinstance(sources, list):
            sources = [sources]
        lang = None
        index = len(self.language_order)
        for source in sources:
            base, ext = os.path.splitext(source)
            extlang = self.language_map.get(ext)
            try:
                extindex = self.language_order.index(extlang)
                if extindex < index:
                    lang = extlang
                    index = extindex
            except ValueError:
                pass
        return lang


    # -- Worker methods ------------------------------------------------
    # (must be implemented by subclasses)

    def preprocess(self, source, output_file=None, macros=None,
                   include_dirs=None, extra_preargs=None, extra_postargs=None):
        """Preprocess a single C/C++ source file, named in 'source'.
        Output will be written to file named 'output_file', or stdout if
        'output_file' not supplied.  'macros' is a list of macro
        definitions as for 'compile()', which will augment the macros set
        with 'define_macro()' and 'undefine_macro()'.  'include_dirs' is a
        list of directory names that will be added to the default list.

        Raises PreprocessError on failure.
        """
        pass

    def compile(self, sources, output_dir=None, macros=None,
                include_dirs=None, debug=0, extra_preargs=None,
                extra_postargs=None, depends=None):
        """Compile one or more source files.

        'sources' must be a list of filenames, most likely C/C++
        files, but in reality anything that can be handled by a
        particular compiler and compiler class (eg. MSVCCompiler can
        handle resource files in 'sources').  Return a list of object
        filenames, one per source filename in 'sources'.  Depending on
        the implementation, not all source files will necessarily be
        compiled, but all corresponding object filenames will be
        returned.

        If 'output_dir' is given, object files will be put under it, while
        retaining their original path component.  That is, "foo/bar.c"
        normally compiles to "foo/bar.o" (for a Unix implementation); if
        'output_dir' is "build", then it would compile to
        "build/foo/bar.o".

        'macros', if given, must be a list of macro definitions.  A macro
        definition is either a (name, value) 2-tuple or a (name,) 1-tuple.
        The former defines a macro; if the value is None, the macro is
        defined without an explicit value.  The 1-tuple case undefines a
        macro.  Later definitions/redefinitions/ undefinitions take
        precedence.

        'include_dirs', if given, must be a list of strings, the
        directories to add to the default include file search path for this
        compilation only.

        'debug' is a boolean; if true, the compiler will be instructed to
        output debug symbols in (or alongside) the object file(s).

        'extra_preargs' and 'extra_postargs' are implementation- dependent.
        On platforms that have the notion of a command-line (e.g. Unix,
        DOS/Windows), they are most likely lists of strings: extra
        command-line arguments to prepand/append to the compiler command
        line.  On other platforms, consult the implementation class
        documentation.  In any event, they are intended as an escape hatch
        for those occasions when the abstract compiler framework doesn't
        cut the mustard.

        'depends', if given, is a list of filenames that all targets
        depend on.  If a source file is older than any file in
        depends, then the source file will be recompiled.  This
        supports dependency tracking, but only at a coarse
        granularity.

        Raises CompileError on failure.
        """
        # A concrete compiler class can either override this method
        # entirely or implement _compile().
        macros, objects, extra_postargs, pp_opts, build = \
                self._setup_compile(output_dir, macros, include_dirs, sources,
                                    depends, extra_postargs)
        cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)

        for obj in objects:
            try:
                src, ext = build[obj]
            except KeyError:
                continue
            self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)

        # Return *all* object filenames, not just the ones we just built.
        return objects

    def _compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts):
        """Compile 'src' to product 'obj'."""
        # A concrete compiler class that does not override compile()
        # should implement _compile().
        pass

    def create_static_lib(self, objects, output_libname, output_dir=None,
                          debug=0, target_lang=None):
        """Link a bunch of stuff together to create a static library file.
        The "bunch of stuff" consists of the list of object files supplied
        as 'objects', the extra object files supplied to
        'add_link_object()' and/or 'set_link_objects()', the libraries
        supplied to 'add_library()' and/or 'set_libraries()', and the
        libraries supplied as 'libraries' (if any).

        'output_libname' should be a library name, not a filename; the
        filename will be inferred from the library name.  'output_dir' is
        the directory where the library file will be put.

        'debug' is a boolean; if true, debugging information will be
        included in the library (note that on most platforms, it is the
        compile step where this matters: the 'debug' flag is included here
        just for consistency).

        'target_lang' is the target language for which the given objects
        are being compiled. This allows specific linkage time treatment of
        certain languages.

        Raises LibError on failure.
        """
        pass


    # values for target_desc parameter in link()
    SHARED_OBJECT = "shared_object"
    SHARED_LIBRARY = "shared_library"
    EXECUTABLE = "executable"

    def link(self,
             target_desc,
             objects,
             output_filename,
             output_dir=None,
             libraries=None,
             library_dirs=None,
             runtime_library_dirs=None,
             export_symbols=None,
             debug=0,
             extra_preargs=None,
             extra_postargs=None,
             build_temp=None,
             target_lang=None):
        """Link a bunch of stuff together to create an executable or
        shared library file.

        The "bunch of stuff" consists of the list of object files supplied
        as 'objects'.  'output_filename' should be a filename.  If
        'output_dir' is supplied, 'output_filename' is relative to it
        (i.e. 'output_filename' can provide directory components if
        needed).

        'libraries' is a list of libraries to link against.  These are
        library names, not filenames, since they're translated into
        filenames in a platform-specific way (eg. "foo" becomes "libfoo.a"
        on Unix and "foo.lib" on DOS/Windows).  However, they can include a
        directory component, which means the linker will look in that
        specific directory rather than searching all the normal locations.

        'library_dirs', if supplied, should be a list of directories to
        search for libraries that were specified as bare library names
        (ie. no directory component).  These are on top of the system
        default and those supplied to 'add_library_dir()' and/or
        'set_library_dirs()'.  'runtime_library_dirs' is a list of
        directories that will be embedded into the shared library and used
        to search for other shared libraries that *it* depends on at
        run-time.  (This may only be relevant on Unix.)

        'export_symbols' is a list of symbols that the shared library will
        export.  (This appears to be relevant only on Windows.)

        'debug' is as for 'compile()' and 'create_static_lib()', with the
        slight distinction that it actually matters on most platforms (as
        opposed to 'create_static_lib()', which includes a 'debug' flag
        mostly for form's sake).

        'extra_preargs' and 'extra_postargs' are as for 'compile()' (except
        of course that they supply command-line arguments for the
        particular linker being used).

        'target_lang' is the target language for which the given objects
        are being compiled. This allows specific linkage time treatment of
        certain languages.

        Raises LinkError on failure.
        """
        raise NotImplementedError


    # Old 'link_*()' methods, rewritten to use the new 'link()' method.

    def link_shared_lib(self,
                        objects,
                        output_libname,
                        output_dir=None,
                        libraries=None,
                        library_dirs=None,
                        runtime_library_dirs=None,
                        export_symbols=None,
                        debug=0,
                        extra_preargs=None,
                        extra_postargs=None,
                        build_temp=None,
                        target_lang=None):
        self.link(CCompiler.SHARED_LIBRARY, objects,
                  self.library_filename(output_libname, lib_type='shared'),
                  output_dir,
                  libraries, library_dirs, runtime_library_dirs,
                  export_symbols, debug,
                  extra_preargs, extra_postargs, build_temp, target_lang)


    def link_shared_object(self,
                           objects,
                           output_filename,
                           output_dir=None,
                           libraries=None,
                           library_dirs=None,
                           runtime_library_dirs=None,
                           export_symbols=None,
                           debug=0,
                           extra_preargs=None,
                           extra_postargs=None,
                           build_temp=None,
                           target_lang=None):
        self.link(CCompiler.SHARED_OBJECT, objects,
                  output_filename, output_dir,
                  libraries, library_dirs, runtime_library_dirs,
                  export_symbols, debug,
                  extra_preargs, extra_postargs, build_temp, target_lang)


    def link_executable(self,
                        objects,
                        output_progname,
                        output_dir=None,
                        libraries=None,
                        library_dirs=None,
                        runtime_library_dirs=None,
                        debug=0,
                        extra_preargs=None,
                        extra_postargs=None,
                        target_lang=None):
        self.link(CCompiler.EXECUTABLE, objects,
                  self.executable_filename(output_progname), output_dir,
                  libraries, library_dirs, runtime_library_dirs, None,
                  debug, extra_preargs, extra_postargs, None, target_lang)


    # -- Miscellaneous methods -----------------------------------------
    # These are all used by the 'gen_lib_options() function; there is
    # no appropriate default implementation so subclasses should
    # implement all of these.

    def library_dir_option(self, dir):
        """Return the compiler option to add 'dir' to the list of
        directories searched for libraries.
        """
        raise NotImplementedError

    def runtime_library_dir_option(self, dir):
        """Return the compiler option to add 'dir' to the list of
        directories searched for runtime libraries.
        """
        raise NotImplementedError

    def library_option(self, lib):
        """Return the compiler option to add 'lib' to the list of libraries
        linked into the shared library or executable.
        """
        raise NotImplementedError

    def has_function(self, funcname, includes=None, include_dirs=None,
                     libraries=None, library_dirs=None):
        """Return a boolean indicating whether funcname is supported on
        the current platform.  The optional arguments can be used to
        augment the compilation environment.
        """
        # this can't be included at module scope because it tries to
        # import math which might not be available at that point - maybe
        # the necessary logic should just be inlined?
        import tempfile
        if includes is None:
            includes = []
        if include_dirs is None:
            include_dirs = []
        if libraries is None:
            libraries = []
        if library_dirs is None:
            library_dirs = []
        fd, fname = tempfile.mkstemp(".c", funcname, text=True)
        f = os.fdopen(fd, "w")
        try:
            for incl in includes:
                f.write("""#include "%s"\n""" % incl)
            f.write("""\
main (int argc, char **argv) {
    %s();
}
""" % funcname)
        finally:
            f.close()
        try:
            objects = self.compile([fname], include_dirs=include_dirs)
        except CompileError:
            return False

        try:
            self.link_executable(objects, "a.out",
                                 libraries=libraries,
                                 library_dirs=library_dirs)
        except (LinkError, TypeError):
            return False
        return True

    def find_library_file (self, dirs, lib, debug=0):
        """Search the specified list of directories for a static or shared
        library file 'lib' and return the full path to that file.  If
        'debug' true, look for a debugging version (if that makes sense on
        the current platform).  Return None if 'lib' wasn't found in any of
        the specified directories.
        """
        raise NotImplementedError

    # -- Filename generation methods -----------------------------------

    # The default implementation of the filename generating methods are
    # prejudiced towards the Unix/DOS/Windows view of the world:
    #   * object files are named by replacing the source file extension
    #     (eg. .c/.cpp -> .o/.obj)
    #   * library files (shared or static) are named by plugging the
    #     library name and extension into a format string, eg.
    #     "lib%s.%s" % (lib_name, ".a") for Unix static libraries
    #   * executables are named by appending an extension (possibly
    #     empty) to the program name: eg. progname + ".exe" for
    #     Windows
    #
    # To reduce redundant code, these methods expect to find
    # several attributes in the current object (presumably defined
    # as class attributes):
    #   * src_extensions -
    #     list of C/C++ source file extensions, eg. ['.c', '.cpp']
    #   * obj_extension -
    #     object file extension, eg. '.o' or '.obj'
    #   * static_lib_extension -
    #     extension for static library files, eg. '.a' or '.lib'
    #   * shared_lib_extension -
    #     extension for shared library/object files, eg. '.so', '.dll'
    #   * static_lib_format -
    #     format string for generating static library filenames,
    #     eg. 'lib%s.%s' or '%s.%s'
    #   * shared_lib_format
    #     format string for generating shared library filenames
    #     (probably same as static_lib_format, since the extension
    #     is one of the intended parameters to the format string)
    #   * exe_extension -
    #     extension for executable files, eg. '' or '.exe'

    def object_filenames(self, source_filenames, strip_dir=0, output_dir=''):
        if output_dir is None:
            output_dir = ''
        obj_names = []
        for src_name in source_filenames:
            base, ext = os.path.splitext(src_name)
            base = os.path.splitdrive(base)[1] # Chop off the drive
            base = base[os.path.isabs(base):]  # If abs, chop off leading /
            if ext not in self.src_extensions:
                raise UnknownFileError(
                      "unknown file type '%s' (from '%s')" % (ext, src_name))
            if strip_dir:
                base = os.path.basename(base)
            obj_names.append(os.path.join(output_dir,
                                          base + self.obj_extension))
        return obj_names

    def shared_object_filename(self, basename, strip_dir=0, output_dir=''):
        assert output_dir is not None
        if strip_dir:
            basename = os.path.basename(basename)
        return os.path.join(output_dir, basename + self.shared_lib_extension)

    def executable_filename(self, basename, strip_dir=0, output_dir=''):
        assert output_dir is not None
        if strip_dir:
            basename = os.path.basename(basename)
        return os.path.join(output_dir, basename + (self.exe_extension or ''))

    def library_filename(self, libname, lib_type='static',     # or 'shared'
                         strip_dir=0, output_dir=''):
        assert output_dir is not None
        if lib_type not in ("static", "shared", "dylib"):
            raise ValueError(
                  "'lib_type' must be \"static\", \"shared\" or \"dylib\"")
        fmt = getattr(self, lib_type + "_lib_format")
        ext = getattr(self, lib_type + "_lib_extension")

        dir, base = os.path.split(libname)
        filename = fmt % (base, ext)
        if strip_dir:
            dir = ''

        return os.path.join(output_dir, dir, filename)


    # -- Utility methods -----------------------------------------------

    def announce(self, msg, level=1):
        log.debug(msg)

    def debug_print(self, msg):
        from distutils.debug import DEBUG
        if DEBUG:
            print(msg)

    def warn(self, msg):
        sys.stderr.write("warning: %s\n" % msg)

    def execute(self, func, args, msg=None, level=1):
        execute(func, args, msg, self.dry_run)

    def spawn(self, cmd):
        spawn(cmd, dry_run=self.dry_run)

    def move_file(self, src, dst):
        return move_file(src, dst, dry_run=self.dry_run)

    def mkpath (self, name, mode=0o777):
        mkpath(name, mode, dry_run=self.dry_run)


# Map a sys.platform/os.name ('posix', 'nt') to the default compiler
# type for that platform. Keys are interpreted as re match
# patterns. Order is important; platform mappings are preferred over
# OS names.
_default_compilers = (

    # Platform string mappings

    # on a cygwin built python we can use gcc like an ordinary UNIXish
    # compiler
    ('cygwin.*', 'unix'),

    # OS name mappings
    ('posix', 'unix'),
    ('nt', 'msvc'),

    )

def get_default_compiler(osname=None, platform=None):
    """Determine the default compiler to use for the given platform.

       osname should be one of the standard Python OS names (i.e. the
       ones returned by os.name) and platform the common value
       returned by sys.platform for the platform in question.

       The default values are os.name and sys.platform in case the
       parameters are not given.
    """
    if osname is None:
        osname = os.name
    if platform is None:
        platform = sys.platform
    for pattern, compiler in _default_compilers:
        if re.match(pattern, platform) is not None or \
           re.match(pattern, osname) is not None:
            return compiler
    # Default to Unix compiler
    return 'unix'

# Map compiler types to (module_name, class_name) pairs -- ie. where to
# find the code that implements an interface to this compiler.  (The module
# is assumed to be in the 'distutils' package.)
compiler_class = { 'unix':    ('unixccompiler', 'UnixCCompiler',
                               "standard UNIX-style compiler"),
                   'msvc':    ('msvccompiler', 'MSVCCompiler',
                               "Microsoft Visual C++"),
                   'cygwin':  ('cygwinccompiler', 'CygwinCCompiler',
                               "Cygwin port of GNU C Compiler for Win32"),
                   'mingw32': ('cygwinccompiler', 'Mingw32CCompiler',
                               "Mingw32 port of GNU C Compiler for Win32"),
                   'bcpp':    ('bcppcompiler', 'BCPPCompiler',
                               "Borland C++ Compiler"),
                 }

def show_compilers():
    """Print list of available compilers (used by the "--help-compiler"
    options to "build", "build_ext", "build_clib").
    """
    # XXX this "knows" that the compiler option it's describing is
    # "--compiler", which just happens to be the case for the three
    # commands that use it.
    from distutils.fancy_getopt import FancyGetopt
    compilers = []
    for compiler in compiler_class.keys():
        compilers.append(("compiler="+compiler, None,
                          compiler_class[compiler][2]))
    compilers.sort()
    pretty_printer = FancyGetopt(compilers)
    pretty_printer.print_help("List of available compilers:")


def new_compiler(plat=None, compiler=None, verbose=0, dry_run=0, force=0):
    """Generate an instance of some CCompiler subclass for the supplied
    platform/compiler combination.  'plat' defaults to 'os.name'
    (eg. 'posix', 'nt'), and 'compiler' defaults to the default compiler
    for that platform.  Currently only 'posix' and 'nt' are supported, and
    the default compilers are "traditional Unix interface" (UnixCCompiler
    class) and Visual C++ (MSVCCompiler class).  Note that it's perfectly
    possible to ask for a Unix compiler object under Windows, and a
    Microsoft compiler object under Unix -- if you supply a value for
    'compiler', 'plat' is ignored.
    """
    if plat is None:
        plat = os.name

    try:
        if compiler is None:
            compiler = get_default_compiler(plat)

        (module_name, class_name, long_description) = compiler_class[compiler]
    except KeyError:
        msg = "don't know how to compile C/C++ code on platform '%s'" % plat
        if compiler is not None:
            msg = msg + " with '%s' compiler" % compiler
        raise DistutilsPlatformError(msg)

    try:
        module_name = "distutils." + module_name
        __import__ (module_name)
        module = sys.modules[module_name]
        klass = vars(module)[class_name]
    except ImportError:
        raise DistutilsModuleError(
              "can't compile C/C++ code: unable to load module '%s'" % \
              module_name)
    except KeyError:
        raise DistutilsModuleError(
               "can't compile C/C++ code: unable to find class '%s' "
               "in module '%s'" % (class_name, module_name))

    # XXX The None is necessary to preserve backwards compatibility
    # with classes that expect verbose to be the first positional
    # argument.
    return klass(None, dry_run, force)


def gen_preprocess_options(macros, include_dirs):
    """Generate C pre-processor options (-D, -U, -I) as used by at least
    two types of compilers: the typical Unix compiler and Visual C++.
    'macros' is the usual thing, a list of 1- or 2-tuples, where (name,)
    means undefine (-U) macro 'name', and (name,value) means define (-D)
    macro 'name' to 'value'.  'include_dirs' is just a list of directory
    names to be added to the header file search path (-I).  Returns a list
    of command-line options suitable for either Unix compilers or Visual
    C++.
    """
    # XXX it would be nice (mainly aesthetic, and so we don't generate
    # stupid-looking command lines) to go over 'macros' and eliminate
    # redundant definitions/undefinitions (ie. ensure that only the
    # latest mention of a particular macro winds up on the command
    # line).  I don't think it's essential, though, since most (all?)
    # Unix C compilers only pay attention to the latest -D or -U
    # mention of a macro on their command line.  Similar situation for
    # 'include_dirs'.  I'm punting on both for now.  Anyways, weeding out
    # redundancies like this should probably be the province of
    # CCompiler, since the data structures used are inherited from it
    # and therefore common to all CCompiler classes.
    pp_opts = []
    for macro in macros:
        if not (isinstance(macro, tuple) and 1 <= len(macro) <= 2):
            raise TypeError(
                  "bad macro definition '%s': "
                  "each element of 'macros' list must be a 1- or 2-tuple"
                  % macro)

        if len(macro) == 1:        # undefine this macro
            pp_opts.append("-U%s" % macro[0])
        elif len(macro) == 2:
            if macro[1] is None:    # define with no explicit value
                pp_opts.append("-D%s" % macro[0])
            else:
                # XXX *don't* need to be clever about quoting the
                # macro value here, because we're going to avoid the
                # shell at all costs when we spawn the command!
                pp_opts.append("-D%s=%s" % macro)

    for dir in include_dirs:
        pp_opts.append("-I%s" % dir)
    return pp_opts


def gen_lib_options (compiler, library_dirs, runtime_library_dirs, libraries):
    """Generate linker options for searching library directories and
    linking with specific libraries.  'libraries' and 'library_dirs' are,
    respectively, lists of library names (not filenames!) and search
    directories.  Returns a list of command-line options suitable for use
    with some compiler (depending on the two format strings passed in).
    """
    lib_opts = []

    for dir in library_dirs:
        lib_opts.append(compiler.library_dir_option(dir))

    for dir in runtime_library_dirs:
        opt = compiler.runtime_library_dir_option(dir)
        if isinstance(opt, list):
            lib_opts = lib_opts + opt
        else:
            lib_opts.append(opt)

    # XXX it's important that we *not* remove redundant library mentions!
    # sometimes you really do have to say "-lfoo -lbar -lfoo" in order to
    # resolve all symbols.  I just hope we never have to say "-lfoo obj.o
    # -lbar" to get things to work -- that's certainly a possibility, but a
    # pretty nasty way to arrange your C code.

    for lib in libraries:
        (lib_dir, lib_name) = os.path.split(lib)
        if lib_dir:
            lib_file = compiler.find_library_file([lib_dir], lib_name)
            if lib_file:
                lib_opts.append(lib_file)
            else:
                compiler.warn("no library file corresponding to "
                              "'%s' found (skipping)" % lib)
        else:
            lib_opts.append(compiler.library_option (lib))
    return lib_opts
lib\distutils\cmd.py
"""distutils.cmd

Provides the Command class, the base class for the command classes
in the distutils.command package.
"""

import sys, os, re
from distutils.errors import DistutilsOptionError
from distutils import util, dir_util, file_util, archive_util, dep_util
from distutils import log

class Command:
    """Abstract base class for defining command classes, the "worker bees"
    of the Distutils.  A useful analogy for command classes is to think of
    them as subroutines with local variables called "options".  The options
    are "declared" in 'initialize_options()' and "defined" (given their
    final values, aka "finalized") in 'finalize_options()', both of which
    must be defined by every command class.  The distinction between the
    two is necessary because option values might come from the outside
    world (command line, config file, ...), and any options dependent on
    other options must be computed *after* these outside influences have
    been processed -- hence 'finalize_options()'.  The "body" of the
    subroutine, where it does all its work based on the values of its
    options, is the 'run()' method, which must also be implemented by every
    command class.
    """

    # 'sub_commands' formalizes the notion of a "family" of commands,
    # eg. "install" as the parent with sub-commands "install_lib",
    # "install_headers", etc.  The parent of a family of commands
    # defines 'sub_commands' as a class attribute; it's a list of
    #    (command_name : string, predicate : unbound_method | string | None)
    # tuples, where 'predicate' is a method of the parent command that
    # determines whether the corresponding command is applicable in the
    # current situation.  (Eg. we "install_headers" is only applicable if
    # we have any C header files to install.)  If 'predicate' is None,
    # that command is always applicable.
    #
    # 'sub_commands' is usually defined at the *end* of a class, because
    # predicates can be unbound methods, so they must already have been
    # defined.  The canonical example is the "install" command.
    sub_commands = []


    # -- Creation/initialization methods -------------------------------

    def __init__(self, dist):
        """Create and initialize a new Command object.  Most importantly,
        invokes the 'initialize_options()' method, which is the real
        initializer and depends on the actual command being
        instantiated.
        """
        # late import because of mutual dependence between these classes
        from distutils.dist import Distribution

        if not isinstance(dist, Distribution):
            raise TypeError("dist must be a Distribution instance")
        if self.__class__ is Command:
            raise RuntimeError("Command is an abstract class")

        self.distribution = dist
        self.initialize_options()

        # Per-command versions of the global flags, so that the user can
        # customize Distutils' behaviour command-by-command and let some
        # commands fall back on the Distribution's behaviour.  None means
        # "not defined, check self.distribution's copy", while 0 or 1 mean
        # false and true (duh).  Note that this means figuring out the real
        # value of each flag is a touch complicated -- hence "self._dry_run"
        # will be handled by __getattr__, below.
        # XXX This needs to be fixed.
        self._dry_run = None

        # verbose is largely ignored, but needs to be set for
        # backwards compatibility (I think)?
        self.verbose = dist.verbose

        # Some commands define a 'self.force' option to ignore file
        # timestamps, but methods defined *here* assume that
        # 'self.force' exists for all commands.  So define it here
        # just to be safe.
        self.force = None

        # The 'help' flag is just used for command-line parsing, so
        # none of that complicated bureaucracy is needed.
        self.help = 0

        # 'finalized' records whether or not 'finalize_options()' has been
        # called.  'finalize_options()' itself should not pay attention to
        # this flag: it is the business of 'ensure_finalized()', which
        # always calls 'finalize_options()', to respect/update it.
        self.finalized = 0

    # XXX A more explicit way to customize dry_run would be better.
    def __getattr__(self, attr):
        if attr == 'dry_run':
            myval = getattr(self, "_" + attr)
            if myval is None:
                return getattr(self.distribution, attr)
            else:
                return myval
        else:
            raise AttributeError(attr)

    def ensure_finalized(self):
        if not self.finalized:
            self.finalize_options()
        self.finalized = 1

    # Subclasses must define:
    #   initialize_options()
    #     provide default values for all options; may be customized by
    #     setup script, by options from config file(s), or by command-line
    #     options
    #   finalize_options()
    #     decide on the final values for all options; this is called
    #     after all possible intervention from the outside world
    #     (command-line, option file, etc.) has been processed
    #   run()
    #     run the command: do whatever it is we're here to do,
    #     controlled by the command's various option values

    def initialize_options(self):
        """Set default values for all the options that this command
        supports.  Note that these defaults may be overridden by other
        commands, by the setup script, by config files, or by the
        command-line.  Thus, this is not the place to code dependencies
        between options; generally, 'initialize_options()' implementations
        are just a bunch of "self.foo = None" assignments.

        This method must be implemented by all command classes.
        """
        raise RuntimeError("abstract method -- subclass %s must override"
                           % self.__class__)

    def finalize_options(self):
        """Set final values for all the options that this command supports.
        This is always called as late as possible, ie.  after any option
        assignments from the command-line or from other commands have been
        done.  Thus, this is the place to code option dependencies: if
        'foo' depends on 'bar', then it is safe to set 'foo' from 'bar' as
        long as 'foo' still has the same value it was assigned in
        'initialize_options()'.

        This method must be implemented by all command classes.
        """
        raise RuntimeError("abstract method -- subclass %s must override"
                           % self.__class__)


    def dump_options(self, header=None, indent=""):
        from distutils.fancy_getopt import longopt_xlate
        if header is None:
            header = "command options for '%s':" % self.get_command_name()
        self.announce(indent + header, level=log.INFO)
        indent = indent + "  "
        for (option, _, _) in self.user_options:
            option = option.translate(longopt_xlate)
            if option[-1] == "=":
                option = option[:-1]
            value = getattr(self, option)
            self.announce(indent + "%s = %s" % (option, value),
                          level=log.INFO)

    def run(self):
        """A command's raison d'etre: carry out the action it exists to
        perform, controlled by the options initialized in
        'initialize_options()', customized by other commands, the setup
        script, the command-line, and config files, and finalized in
        'finalize_options()'.  All terminal output and filesystem
        interaction should be done by 'run()'.

        This method must be implemented by all command classes.
        """
        raise RuntimeError("abstract method -- subclass %s must override"
                           % self.__class__)

    def announce(self, msg, level=1):
        """If the current verbosity level is of greater than or equal to
        'level' print 'msg' to stdout.
        """
        log.log(level, msg)

    def debug_print(self, msg):
        """Print 'msg' to stdout if the global DEBUG (taken from the
        DISTUTILS_DEBUG environment variable) flag is true.
        """
        from distutils.debug import DEBUG
        if DEBUG:
            print(msg)
            sys.stdout.flush()


    # -- Option validation methods -------------------------------------
    # (these are very handy in writing the 'finalize_options()' method)
    #
    # NB. the general philosophy here is to ensure that a particular option
    # value meets certain type and value constraints.  If not, we try to
    # force it into conformance (eg. if we expect a list but have a string,
    # split the string on comma and/or whitespace).  If we can't force the
    # option into conformance, raise DistutilsOptionError.  Thus, command
    # classes need do nothing more than (eg.)
    #   self.ensure_string_list('foo')
    # and they can be guaranteed that thereafter, self.foo will be
    # a list of strings.

    def _ensure_stringlike(self, option, what, default=None):
        val = getattr(self, option)
        if val is None:
            setattr(self, option, default)
            return default
        elif not isinstance(val, str):
            raise DistutilsOptionError("'%s' must be a %s (got `%s`)"
                                       % (option, what, val))
        return val

    def ensure_string(self, option, default=None):
        """Ensure that 'option' is a string; if not defined, set it to
        'default'.
        """
        self._ensure_stringlike(option, "string", default)

    def ensure_string_list(self, option):
        """Ensure that 'option' is a list of strings.  If 'option' is
        currently a string, we split it either on /,\s*/ or /\s+/, so
        "foo bar baz", "foo,bar,baz", and "foo,   bar baz" all become
        ["foo", "bar", "baz"].
        """
        val = getattr(self, option)
        if val is None:
            return
        elif isinstance(val, str):
            setattr(self, option, re.split(r',\s*|\s+', val))
        else:
            if isinstance(val, list):
                ok = all(isinstance(v, str) for v in val)
            else:
                ok = False
            if not ok:
                raise DistutilsOptionError(
                      "'%s' must be a list of strings (got %r)"
                      % (option, val))

    def _ensure_tested_string(self, option, tester, what, error_fmt,
                              default=None):
        val = self._ensure_stringlike(option, what, default)
        if val is not None and not tester(val):
            raise DistutilsOptionError(("error in '%s' option: " + error_fmt)
                                       % (option, val))

    def ensure_filename(self, option):
        """Ensure that 'option' is the name of an existing file."""
        self._ensure_tested_string(option, os.path.isfile,
                                   "filename",
                                   "'%s' does not exist or is not a file")

    def ensure_dirname(self, option):
        self._ensure_tested_string(option, os.path.isdir,
                                   "directory name",
                                   "'%s' does not exist or is not a directory")


    # -- Convenience methods for commands ------------------------------

    def get_command_name(self):
        if hasattr(self, 'command_name'):
            return self.command_name
        else:
            return self.__class__.__name__

    def set_undefined_options(self, src_cmd, *option_pairs):
        """Set the values of any "undefined" options from corresponding
        option values in some other command object.  "Undefined" here means
        "is None", which is the convention used to indicate that an option
        has not been changed between 'initialize_options()' and
        'finalize_options()'.  Usually called from 'finalize_options()' for
        options that depend on some other command rather than another
        option of the same command.  'src_cmd' is the other command from
        which option values will be taken (a command object will be created
        for it if necessary); the remaining arguments are
        '(src_option,dst_option)' tuples which mean "take the value of
        'src_option' in the 'src_cmd' command object, and copy it to
        'dst_option' in the current command object".
        """
        # Option_pairs: list of (src_option, dst_option) tuples
        src_cmd_obj = self.distribution.get_command_obj(src_cmd)
        src_cmd_obj.ensure_finalized()
        for (src_option, dst_option) in option_pairs:
            if getattr(self, dst_option) is None:
                setattr(self, dst_option, getattr(src_cmd_obj, src_option))

    def get_finalized_command(self, command, create=1):
        """Wrapper around Distribution's 'get_command_obj()' method: find
        (create if necessary and 'create' is true) the command object for
        'command', call its 'ensure_finalized()' method, and return the
        finalized command object.
        """
        cmd_obj = self.distribution.get_command_obj(command, create)
        cmd_obj.ensure_finalized()
        return cmd_obj

    # XXX rename to 'get_reinitialized_command()'? (should do the
    # same in dist.py, if so)
    def reinitialize_command(self, command, reinit_subcommands=0):
        return self.distribution.reinitialize_command(command,
                                                      reinit_subcommands)

    def run_command(self, command):
        """Run some other command: uses the 'run_command()' method of
        Distribution, which creates and finalizes the command object if
        necessary and then invokes its 'run()' method.
        """
        self.distribution.run_command(command)

    def get_sub_commands(self):
        """Determine the sub-commands that are relevant in the current
        distribution (ie., that need to be run).  This is based on the
        'sub_commands' class attribute: each tuple in that list may include
        a method that we call to determine if the subcommand needs to be
        run for the current distribution.  Return a list of command names.
        """
        commands = []
        for (cmd_name, method) in self.sub_commands:
            if method is None or method(self):
                commands.append(cmd_name)
        return commands


    # -- External world manipulation -----------------------------------

    def warn(self, msg):
        log.warn("warning: %s: %s\n" %
                (self.get_command_name(), msg))

    def execute(self, func, args, msg=None, level=1):
        util.execute(func, args, msg, dry_run=self.dry_run)

    def mkpath(self, name, mode=0o777):
        dir_util.mkpath(name, mode, dry_run=self.dry_run)

    def copy_file(self, infile, outfile, preserve_mode=1, preserve_times=1,
                  link=None, level=1):
        """Copy a file respecting verbose, dry-run and force flags.  (The
        former two default to whatever is in the Distribution object, and
        the latter defaults to false for commands that don't define it.)"""
        return file_util.copy_file(infile, outfile, preserve_mode,
                                   preserve_times, not self.force, link,
                                   dry_run=self.dry_run)

    def copy_tree(self, infile, outfile, preserve_mode=1, preserve_times=1,
                   preserve_symlinks=0, level=1):
        """Copy an entire directory tree respecting verbose, dry-run,
        and force flags.
        """
        return dir_util.copy_tree(infile, outfile, preserve_mode,
                                  preserve_times, preserve_symlinks,
                                  not self.force, dry_run=self.dry_run)

    def move_file (self, src, dst, level=1):
        """Move a file respecting dry-run flag."""
        return file_util.move_file(src, dst, dry_run=self.dry_run)

    def spawn(self, cmd, search_path=1, level=1):
        """Spawn an external command respecting dry-run flag."""
        from distutils.spawn import spawn
        spawn(cmd, search_path, dry_run=self.dry_run)

    def make_archive(self, base_name, format, root_dir=None, base_dir=None,
                     owner=None, group=None):
        return archive_util.make_archive(base_name, format, root_dir, base_dir,
                                         dry_run=self.dry_run,
                                         owner=owner, group=group)

    def make_file(self, infiles, outfile, func, args,
                  exec_msg=None, skip_msg=None, level=1):
        """Special case of 'execute()' for operations that process one or
        more input files and generate one output file.  Works just like
        'execute()', except the operation is skipped and a different
        message printed if 'outfile' already exists and is newer than all
        files listed in 'infiles'.  If the command defined 'self.force',
        and it is true, then the command is unconditionally run -- does no
        timestamp checks.
        """
        if skip_msg is None:
            skip_msg = "skipping %s (inputs unchanged)" % outfile

        # Allow 'infiles' to be a single string
        if isinstance(infiles, str):
            infiles = (infiles,)
        elif not isinstance(infiles, (list, tuple)):
            raise TypeError(
                  "'infiles' must be a string, or a list or tuple of strings")

        if exec_msg is None:
            exec_msg = "generating %s from %s" % (outfile, ', '.join(infiles))

        # If 'outfile' must be regenerated (either because it doesn't
        # exist, is out-of-date, or the 'force' flag is true) then
        # perform the action that presumably regenerates it
        if self.force or dep_util.newer_group(infiles, outfile):
            self.execute(func, args, exec_msg, level)
        # Otherwise, print the "skip" message
        else:
            log.debug(skip_msg)

# XXX 'install_misc' class not currently used -- it was the base class for
# both 'install_scripts' and 'install_data', but they outgrew it.  It might
# still be useful for 'install_headers', though, so I'm keeping it around
# for the time being.

class install_misc(Command):
    """Common base class for installing some files in a subdirectory.
    Currently used by install_data and install_scripts.
    """

    user_options = [('install-dir=', 'd', "directory to install the files to")]

    def initialize_options (self):
        self.install_dir = None
        self.outfiles = []

    def _install_dir_from(self, dirname):
        self.set_undefined_options('install', (dirname, 'install_dir'))

    def _copy_files(self, filelist):
        self.outfiles = []
        if not filelist:
            return
        self.mkpath(self.install_dir)
        for f in filelist:
            self.copy_file(f, self.install_dir)
            self.outfiles.append(os.path.join(self.install_dir, f))

    def get_outputs(self):
        return self.outfiles
lib\distutils\config.py
"""distutils.pypirc

Provides the PyPIRCCommand class, the base class for the command classes
that uses .pypirc in the distutils.command package.
"""
import os
from configparser import ConfigParser

from distutils.cmd import Command

DEFAULT_PYPIRC = """\
[distutils]
index-servers =
    pypi

[pypi]
username:%s
password:%s
"""

class PyPIRCCommand(Command):
    """Base command that knows how to handle the .pypirc file
    """
    DEFAULT_REPOSITORY = 'https://upload.pypi.org/legacy/'
    DEFAULT_REALM = 'pypi'
    repository = None
    realm = None

    user_options = [
        ('repository=', 'r',
         "url of repository [default: %s]" % \
            DEFAULT_REPOSITORY),
        ('show-response', None,
         'display full response text from server')]

    boolean_options = ['show-response']

    def _get_rc_file(self):
        """Returns rc file path."""
        return os.path.join(os.path.expanduser('~'), '.pypirc')

    def _store_pypirc(self, username, password):
        """Creates a default .pypirc file."""
        rc = self._get_rc_file()
        with os.fdopen(os.open(rc, os.O_CREAT | os.O_WRONLY, 0o600), 'w') as f:
            f.write(DEFAULT_PYPIRC % (username, password))

    def _read_pypirc(self):
        """Reads the .pypirc file."""
        rc = self._get_rc_file()
        if os.path.exists(rc):
            self.announce('Using PyPI login from %s' % rc)
            repository = self.repository or self.DEFAULT_REPOSITORY
            realm = self.realm or self.DEFAULT_REALM

            config = ConfigParser()
            config.read(rc)
            sections = config.sections()
            if 'distutils' in sections:
                # let's get the list of servers
                index_servers = config.get('distutils', 'index-servers')
                _servers = [server.strip() for server in
                            index_servers.split('\n')
                            if server.strip() != '']
                if _servers == []:
                    # nothing set, let's try to get the default pypi
                    if 'pypi' in sections:
                        _servers = ['pypi']
                    else:
                        # the file is not properly defined, returning
                        # an empty dict
                        return {}
                for server in _servers:
                    current = {'server': server}
                    current['username'] = config.get(server, 'username')

                    # optional params
                    for key, default in (('repository',
                                          self.DEFAULT_REPOSITORY),
                                         ('realm', self.DEFAULT_REALM),
                                         ('password', None)):
                        if config.has_option(server, key):
                            current[key] = config.get(server, key)
                        else:
                            current[key] = default

                    # work around people having "repository" for the "pypi"
                    # section of their config set to the HTTP (rather than
                    # HTTPS) URL
                    if (server == 'pypi' and
                        repository in (self.DEFAULT_REPOSITORY, 'pypi')):
                        current['repository'] = self.DEFAULT_REPOSITORY
                        return current

                    if (current['server'] == repository or
                        current['repository'] == repository):
                        return current
            elif 'server-login' in sections:
                # old format
                server = 'server-login'
                if config.has_option(server, 'repository'):
                    repository = config.get(server, 'repository')
                else:
                    repository = self.DEFAULT_REPOSITORY
                return {'username': config.get(server, 'username'),
                        'password': config.get(server, 'password'),
                        'repository': repository,
                        'server': server,
                        'realm': self.DEFAULT_REALM}

        return {}

    def _read_pypi_response(self, response):
        """Read and decode a PyPI HTTP response."""
        import cgi
        content_type = response.getheader('content-type', 'text/plain')
        encoding = cgi.parse_header(content_type)[1].get('charset', 'ascii')
        return response.read().decode(encoding)

    def initialize_options(self):
        """Initialize options."""
        self.repository = None
        self.realm = None
        self.show_response = 0

    def finalize_options(self):
        """Finalizes options."""
        if self.repository is None:
            self.repository = self.DEFAULT_REPOSITORY
        if self.realm is None:
            self.realm = self.DEFAULT_REALM
lib\distutils\core.py
"""distutils.core

The only module that needs to be imported to use the Distutils; provides
the 'setup' function (which is to be called from the setup script).  Also
indirectly provides the Distribution and Command classes, although they are
really defined in distutils.dist and distutils.cmd.
"""

import os
import sys

from distutils.debug import DEBUG
from distutils.errors import *

# Mainly import these so setup scripts can "from distutils.core import" them.
from distutils.dist import Distribution
from distutils.cmd import Command
from distutils.config import PyPIRCCommand
from distutils.extension import Extension

# This is a barebones help message generated displayed when the user
# runs the setup script with no arguments at all.  More useful help
# is generated with various --help options: global help, list commands,
# and per-command help.
USAGE = """\
usage: %(script)s [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
   or: %(script)s --help [cmd1 cmd2 ...]
   or: %(script)s --help-commands
   or: %(script)s cmd --help
"""

def gen_usage (script_name):
    script = os.path.basename(script_name)
    return USAGE % vars()


# Some mild magic to control the behaviour of 'setup()' from 'run_setup()'.
_setup_stop_after = None
_setup_distribution = None

# Legal keyword arguments for the setup() function
setup_keywords = ('distclass', 'script_name', 'script_args', 'options',
                  'name', 'version', 'author', 'author_email',
                  'maintainer', 'maintainer_email', 'url', 'license',
                  'description', 'long_description', 'keywords',
                  'platforms', 'classifiers', 'download_url',
                  'requires', 'provides', 'obsoletes',
                  )

# Legal keyword arguments for the Extension constructor
extension_keywords = ('name', 'sources', 'include_dirs',
                      'define_macros', 'undef_macros',
                      'library_dirs', 'libraries', 'runtime_library_dirs',
                      'extra_objects', 'extra_compile_args', 'extra_link_args',
                      'swig_opts', 'export_symbols', 'depends', 'language')

def setup (**attrs):
    """The gateway to the Distutils: do everything your setup script needs
    to do, in a highly flexible and user-driven way.  Briefly: create a
    Distribution instance; find and parse config files; parse the command
    line; run each Distutils command found there, customized by the options
    supplied to 'setup()' (as keyword arguments), in config files, and on
    the command line.

    The Distribution instance might be an instance of a class supplied via
    the 'distclass' keyword argument to 'setup'; if no such class is
    supplied, then the Distribution class (in dist.py) is instantiated.
    All other arguments to 'setup' (except for 'cmdclass') are used to set
    attributes of the Distribution instance.

    The 'cmdclass' argument, if supplied, is a dictionary mapping command
    names to command classes.  Each command encountered on the command line
    will be turned into a command class, which is in turn instantiated; any
    class found in 'cmdclass' is used in place of the default, which is
    (for command 'foo_bar') class 'foo_bar' in module
    'distutils.command.foo_bar'.  The command class must provide a
    'user_options' attribute which is a list of option specifiers for
    'distutils.fancy_getopt'.  Any command-line options between the current
    and the next command are used to set attributes of the current command
    object.

    When the entire command-line has been successfully parsed, calls the
    'run()' method on each command object in turn.  This method will be
    driven entirely by the Distribution object (which each command object
    has a reference to, thanks to its constructor), and the
    command-specific options that became attributes of each command
    object.
    """

    global _setup_stop_after, _setup_distribution

    # Determine the distribution class -- either caller-supplied or
    # our Distribution (see below).
    klass = attrs.get('distclass')
    if klass:
        del attrs['distclass']
    else:
        klass = Distribution

    if 'script_name' not in attrs:
        attrs['script_name'] = os.path.basename(sys.argv[0])
    if 'script_args'  not in attrs:
        attrs['script_args'] = sys.argv[1:]

    # Create the Distribution instance, using the remaining arguments
    # (ie. everything except distclass) to initialize it
    try:
        _setup_distribution = dist = klass(attrs)
    except DistutilsSetupError as msg:
        if 'name' not in attrs:
            raise SystemExit("error in setup command: %s" % msg)
        else:
            raise SystemExit("error in %s setup command: %s" % \
                  (attrs['name'], msg))

    if _setup_stop_after == "init":
        return dist

    # Find and parse the config file(s): they will override options from
    # the setup script, but be overridden by the command line.
    dist.parse_config_files()

    if DEBUG:
        print("options (after parsing config files):")
        dist.dump_option_dicts()

    if _setup_stop_after == "config":
        return dist

    # Parse the command line and override config files; any
    # command-line errors are the end user's fault, so turn them into
    # SystemExit to suppress tracebacks.
    try:
        ok = dist.parse_command_line()
    except DistutilsArgError as msg:
        raise SystemExit(gen_usage(dist.script_name) + "\nerror: %s" % msg)

    if DEBUG:
        print("options (after parsing command line):")
        dist.dump_option_dicts()

    if _setup_stop_after == "commandline":
        return dist

    # And finally, run all the commands found on the command line.
    if ok:
        try:
            dist.run_commands()
        except KeyboardInterrupt:
            raise SystemExit("interrupted")
        except OSError as exc:
            if DEBUG:
                sys.stderr.write("error: %s\n" % (exc,))
                raise
            else:
                raise SystemExit("error: %s" % (exc,))

        except (DistutilsError,
                CCompilerError) as msg:
            if DEBUG:
                raise
            else:
                raise SystemExit("error: " + str(msg))

    return dist

# setup ()


def run_setup (script_name, script_args=None, stop_after="run"):
    """Run a setup script in a somewhat controlled environment, and
    return the Distribution instance that drives things.  This is useful
    if you need to find out the distribution meta-data (passed as
    keyword args from 'script' to 'setup()', or the contents of the
    config files or command-line.

    'script_name' is a file that will be read and run with 'exec()';
    'sys.argv[0]' will be replaced with 'script' for the duration of the
    call.  'script_args' is a list of strings; if supplied,
    'sys.argv[1:]' will be replaced by 'script_args' for the duration of
    the call.

    'stop_after' tells 'setup()' when to stop processing; possible
    values:
      init
        stop after the Distribution instance has been created and
        populated with the keyword arguments to 'setup()'
      config
        stop after config files have been parsed (and their data
        stored in the Distribution instance)
      commandline
        stop after the command-line ('sys.argv[1:]' or 'script_args')
        have been parsed (and the data stored in the Distribution)
      run [default]
        stop after all commands have been run (the same as if 'setup()'
        had been called in the usual way

    Returns the Distribution instance, which provides all information
    used to drive the Distutils.
    """
    if stop_after not in ('init', 'config', 'commandline', 'run'):
        raise ValueError("invalid value for 'stop_after': %r" % (stop_after,))

    global _setup_stop_after, _setup_distribution
    _setup_stop_after = stop_after

    save_argv = sys.argv
    g = {'__file__': script_name}
    l = {}
    try:
        try:
            sys.argv[0] = script_name
            if script_args is not None:
                sys.argv[1:] = script_args
            with open(script_name, 'rb') as f:
                exec(f.read(), g, l)
        finally:
            sys.argv = save_argv
            _setup_stop_after = None
    except SystemExit:
        # Hmm, should we do something if exiting with a non-zero code
        # (ie. error)?
        pass
    except:
        raise

    if _setup_distribution is None:
        raise RuntimeError(("'distutils.core.setup()' was never called -- "
               "perhaps '%s' is not a Distutils setup script?") % \
              script_name)

    # I wonder if the setup script's namespace -- g and l -- would be of
    # any interest to callers?
    #print "_setup_distribution:", _setup_distribution
    return _setup_distribution

# run_setup ()
lib\distutils\cygwinccompiler.py
"""distutils.cygwinccompiler

Provides the CygwinCCompiler class, a subclass of UnixCCompiler that
handles the Cygwin port of the GNU C compiler to Windows.  It also contains
the Mingw32CCompiler class which handles the mingw32 port of GCC (same as
cygwin in no-cygwin mode).
"""

# problems:
#
# * if you use a msvc compiled python version (1.5.2)
#   1. you have to insert a __GNUC__ section in its config.h
#   2. you have to generate an import library for its dll
#      - create a def-file for python??.dll
#      - create an import library using
#             dlltool --dllname python15.dll --def python15.def \
#                       --output-lib libpython15.a
#
#   see also http://starship.python.net/crew/kernr/mingw32/Notes.html
#
# * We put export_symbols in a def-file, and don't use
#   --export-all-symbols because it doesn't worked reliable in some
#   tested configurations. And because other windows compilers also
#   need their symbols specified this no serious problem.
#
# tested configurations:
#
# * cygwin gcc 2.91.57/ld 2.9.4/dllwrap 0.2.4 works
#   (after patching python's config.h and for C++ some other include files)
#   see also http://starship.python.net/crew/kernr/mingw32/Notes.html
# * mingw32 gcc 2.95.2/ld 2.9.4/dllwrap 0.2.4 works
#   (ld doesn't support -shared, so we use dllwrap)
# * cygwin gcc 2.95.2/ld 2.10.90/dllwrap 2.10.90 works now
#   - its dllwrap doesn't work, there is a bug in binutils 2.10.90
#     see also http://sources.redhat.com/ml/cygwin/2000-06/msg01274.html
#   - using gcc -mdll instead dllwrap doesn't work without -static because
#     it tries to link against dlls instead their import libraries. (If
#     it finds the dll first.)
#     By specifying -static we force ld to link against the import libraries,
#     this is windows standard and there are normally not the necessary symbols
#     in the dlls.
#   *** only the version of June 2000 shows these problems
# * cygwin gcc 3.2/ld 2.13.90 works
#   (ld supports -shared)
# * mingw gcc 3.2/ld 2.13 works
#   (ld supports -shared)

import os
import sys
import copy
from subprocess import Popen, PIPE, check_output
import re

from distutils.ccompiler import gen_preprocess_options, gen_lib_options
from distutils.unixccompiler import UnixCCompiler
from distutils.file_util import write_file
from distutils.errors import (DistutilsExecError, CCompilerError,
        CompileError, UnknownFileError)
from distutils import log
from distutils.version import LooseVersion
from distutils.spawn import find_executable

def get_msvcr():
    """Include the appropriate MSVC runtime library if Python was built
    with MSVC 7.0 or later.
    """
    msc_pos = sys.version.find('MSC v.')
    if msc_pos != -1:
        msc_ver = sys.version[msc_pos+6:msc_pos+10]
        if msc_ver == '1300':
            # MSVC 7.0
            return ['msvcr70']
        elif msc_ver == '1310':
            # MSVC 7.1
            return ['msvcr71']
        elif msc_ver == '1400':
            # VS2005 / MSVC 8.0
            return ['msvcr80']
        elif msc_ver == '1500':
            # VS2008 / MSVC 9.0
            return ['msvcr90']
        elif msc_ver == '1600':
            # VS2010 / MSVC 10.0
            return ['msvcr100']
        else:
            raise ValueError("Unknown MS Compiler version %s " % msc_ver)


class CygwinCCompiler(UnixCCompiler):
    """ Handles the Cygwin port of the GNU C compiler to Windows.
    """
    compiler_type = 'cygwin'
    obj_extension = ".o"
    static_lib_extension = ".a"
    shared_lib_extension = ".dll"
    static_lib_format = "lib%s%s"
    shared_lib_format = "%s%s"
    exe_extension = ".exe"

    def __init__(self, verbose=0, dry_run=0, force=0):

        UnixCCompiler.__init__(self, verbose, dry_run, force)

        status, details = check_config_h()
        self.debug_print("Python's GCC status: %s (details: %s)" %
                         (status, details))
        if status is not CONFIG_H_OK:
            self.warn(
                "Python's pyconfig.h doesn't seem to support your compiler. "
                "Reason: %s. "
                "Compiling may fail because of undefined preprocessor macros."
                % details)

        self.gcc_version, self.ld_version, self.dllwrap_version = \
            get_versions()
        self.debug_print(self.compiler_type + ": gcc %s, ld %s, dllwrap %s\n" %
                         (self.gcc_version,
                          self.ld_version,
                          self.dllwrap_version) )

        # ld_version >= "2.10.90" and < "2.13" should also be able to use
        # gcc -mdll instead of dllwrap
        # Older dllwraps had own version numbers, newer ones use the
        # same as the rest of binutils ( also ld )
        # dllwrap 2.10.90 is buggy
        if self.ld_version >= "2.10.90":
            self.linker_dll = "gcc"
        else:
            self.linker_dll = "dllwrap"

        # ld_version >= "2.13" support -shared so use it instead of
        # -mdll -static
        if self.ld_version >= "2.13":
            shared_option = "-shared"
        else:
            shared_option = "-mdll -static"

        # Hard-code GCC because that's what this is all about.
        # XXX optimization, warnings etc. should be customizable.
        self.set_executables(compiler='gcc -mcygwin -O -Wall',
                             compiler_so='gcc -mcygwin -mdll -O -Wall',
                             compiler_cxx='g++ -mcygwin -O -Wall',
                             linker_exe='gcc -mcygwin',
                             linker_so=('%s -mcygwin %s' %
                                        (self.linker_dll, shared_option)))

        # cygwin and mingw32 need different sets of libraries
        if self.gcc_version == "2.91.57":
            # cygwin shouldn't need msvcrt, but without the dlls will crash
            # (gcc version 2.91.57) -- perhaps something about initialization
            self.dll_libraries=["msvcrt"]
            self.warn(
                "Consider upgrading to a newer version of gcc")
        else:
            # Include the appropriate MSVC runtime library if Python was built
            # with MSVC 7.0 or later.
            self.dll_libraries = get_msvcr()

    def _compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts):
        """Compiles the source by spawning GCC and windres if needed."""
        if ext == '.rc' or ext == '.res':
            # gcc needs '.res' and '.rc' compiled to object files !!!
            try:
                self.spawn(["windres", "-i", src, "-o", obj])
            except DistutilsExecError as msg:
                raise CompileError(msg)
        else: # for other files use the C-compiler
            try:
                self.spawn(self.compiler_so + cc_args + [src, '-o', obj] +
                           extra_postargs)
            except DistutilsExecError as msg:
                raise CompileError(msg)

    def link(self, target_desc, objects, output_filename, output_dir=None,
             libraries=None, library_dirs=None, runtime_library_dirs=None,
             export_symbols=None, debug=0, extra_preargs=None,
             extra_postargs=None, build_temp=None, target_lang=None):
        """Link the objects."""
        # use separate copies, so we can modify the lists
        extra_preargs = copy.copy(extra_preargs or [])
        libraries = copy.copy(libraries or [])
        objects = copy.copy(objects or [])

        # Additional libraries
        libraries.extend(self.dll_libraries)

        # handle export symbols by creating a def-file
        # with executables this only works with gcc/ld as linker
        if ((export_symbols is not None) and
            (target_desc != self.EXECUTABLE or self.linker_dll == "gcc")):
            # (The linker doesn't do anything if output is up-to-date.
            # So it would probably better to check if we really need this,
            # but for this we had to insert some unchanged parts of
            # UnixCCompiler, and this is not what we want.)

            # we want to put some files in the same directory as the
            # object files are, build_temp doesn't help much
            # where are the object files
            temp_dir = os.path.dirname(objects[0])
            # name of dll to give the helper files the same base name
            (dll_name, dll_extension) = os.path.splitext(
                os.path.basename(output_filename))

            # generate the filenames for these files
            def_file = os.path.join(temp_dir, dll_name + ".def")
            lib_file = os.path.join(temp_dir, 'lib' + dll_name + ".a")

            # Generate .def file
            contents = [
                "LIBRARY %s" % os.path.basename(output_filename),
                "EXPORTS"]
            for sym in export_symbols:
                contents.append(sym)
            self.execute(write_file, (def_file, contents),
                         "writing %s" % def_file)

            # next add options for def-file and to creating import libraries

            # dllwrap uses different options than gcc/ld
            if self.linker_dll == "dllwrap":
                extra_preargs.extend(["--output-lib", lib_file])
                # for dllwrap we have to use a special option
                extra_preargs.extend(["--def", def_file])
            # we use gcc/ld here and can be sure ld is >= 2.9.10
            else:
                # doesn't work: bfd_close build\...\libfoo.a: Invalid operation
                #extra_preargs.extend(["-Wl,--out-implib,%s" % lib_file])
                # for gcc/ld the def-file is specified as any object files
                objects.append(def_file)

        #end: if ((export_symbols is not None) and
        #        (target_desc != self.EXECUTABLE or self.linker_dll == "gcc")):

        # who wants symbols and a many times larger output file
        # should explicitly switch the debug mode on
        # otherwise we let dllwrap/ld strip the output file
        # (On my machine: 10KB < stripped_file < ??100KB
        #   unstripped_file = stripped_file + XXX KB
        #  ( XXX=254 for a typical python extension))
        if not debug:
            extra_preargs.append("-s")

        UnixCCompiler.link(self, target_desc, objects, output_filename,
                           output_dir, libraries, library_dirs,
                           runtime_library_dirs,
                           None, # export_symbols, we do this in our def-file
                           debug, extra_preargs, extra_postargs, build_temp,
                           target_lang)

    # -- Miscellaneous methods -----------------------------------------

    def object_filenames(self, source_filenames, strip_dir=0, output_dir=''):
        """Adds supports for rc and res files."""
        if output_dir is None:
            output_dir = ''
        obj_names = []
        for src_name in source_filenames:
            # use normcase to make sure '.rc' is really '.rc' and not '.RC'
            base, ext = os.path.splitext(os.path.normcase(src_name))
            if ext not in (self.src_extensions + ['.rc','.res']):
                raise UnknownFileError("unknown file type '%s' (from '%s')" % \
                      (ext, src_name))
            if strip_dir:
                base = os.path.basename (base)
            if ext in ('.res', '.rc'):
                # these need to be compiled to object files
                obj_names.append (os.path.join(output_dir,
                                              base + ext + self.obj_extension))
            else:
                obj_names.append (os.path.join(output_dir,
                                               base + self.obj_extension))
        return obj_names

# the same as cygwin plus some additional parameters
class Mingw32CCompiler(CygwinCCompiler):
    """ Handles the Mingw32 port of the GNU C compiler to Windows.
    """
    compiler_type = 'mingw32'

    def __init__(self, verbose=0, dry_run=0, force=0):

        CygwinCCompiler.__init__ (self, verbose, dry_run, force)

        # ld_version >= "2.13" support -shared so use it instead of
        # -mdll -static
        if self.ld_version >= "2.13":
            shared_option = "-shared"
        else:
            shared_option = "-mdll -static"

        # A real mingw32 doesn't need to specify a different entry point,
        # but cygwin 2.91.57 in no-cygwin-mode needs it.
        if self.gcc_version <= "2.91.57":
            entry_point = '--entry _DllMain@12'
        else:
            entry_point = ''

        if is_cygwingcc():
            raise CCompilerError(
                'Cygwin gcc cannot be used with --compiler=mingw32')

        self.set_executables(compiler='gcc -O -Wall',
                             compiler_so='gcc -mdll -O -Wall',
                             compiler_cxx='g++ -O -Wall',
                             linker_exe='gcc',
                             linker_so='%s %s %s'
                                        % (self.linker_dll, shared_option,
                                           entry_point))
        # Maybe we should also append -mthreads, but then the finished
        # dlls need another dll (mingwm10.dll see Mingw32 docs)
        # (-mthreads: Support thread-safe exception handling on `Mingw32')

        # no additional libraries needed
        self.dll_libraries=[]

        # Include the appropriate MSVC runtime library if Python was built
        # with MSVC 7.0 or later.
        self.dll_libraries = get_msvcr()

# Because these compilers aren't configured in Python's pyconfig.h file by
# default, we should at least warn the user if he is using an unmodified
# version.

CONFIG_H_OK = "ok"
CONFIG_H_NOTOK = "not ok"
CONFIG_H_UNCERTAIN = "uncertain"

def check_config_h():
    """Check if the current Python installation appears amenable to building
    extensions with GCC.

    Returns a tuple (status, details), where 'status' is one of the following
    constants:

    - CONFIG_H_OK: all is well, go ahead and compile
    - CONFIG_H_NOTOK: doesn't look good
    - CONFIG_H_UNCERTAIN: not sure -- unable to read pyconfig.h

    'details' is a human-readable string explaining the situation.

    Note there are two ways to conclude "OK": either 'sys.version' contains
    the string "GCC" (implying that this Python was built with GCC), or the
    installed "pyconfig.h" contains the string "__GNUC__".
    """

    # XXX since this function also checks sys.version, it's not strictly a
    # "pyconfig.h" check -- should probably be renamed...

    from distutils import sysconfig

    # if sys.version contains GCC then python was compiled with GCC, and the
    # pyconfig.h file should be OK
    if "GCC" in sys.version:
        return CONFIG_H_OK, "sys.version mentions 'GCC'"

    # let's see if __GNUC__ is mentioned in python.h
    fn = sysconfig.get_config_h_filename()
    try:
        config_h = open(fn)
        try:
            if "__GNUC__" in config_h.read():
                return CONFIG_H_OK, "'%s' mentions '__GNUC__'" % fn
            else:
                return CONFIG_H_NOTOK, "'%s' does not mention '__GNUC__'" % fn
        finally:
            config_h.close()
    except OSError as exc:
        return (CONFIG_H_UNCERTAIN,
                "couldn't read '%s': %s" % (fn, exc.strerror))

RE_VERSION = re.compile(b'(\d+\.\d+(\.\d+)*)')

def _find_exe_version(cmd):
    """Find the version of an executable by running `cmd` in the shell.

    If the command is not found, or the output does not match
    `RE_VERSION`, returns None.
    """
    executable = cmd.split()[0]
    if find_executable(executable) is None:
        return None
    out = Popen(cmd, shell=True, stdout=PIPE).stdout
    try:
        out_string = out.read()
    finally:
        out.close()
    result = RE_VERSION.search(out_string)
    if result is None:
        return None
    # LooseVersion works with strings
    # so we need to decode our bytes
    return LooseVersion(result.group(1).decode())

def get_versions():
    """ Try to find out the versions of gcc, ld and dllwrap.

    If not possible it returns None for it.
    """
    commands = ['gcc -dumpversion', 'ld -v', 'dllwrap --version']
    return tuple([_find_exe_version(cmd) for cmd in commands])

def is_cygwingcc():
    '''Try to determine if the gcc that would be used is from cygwin.'''
    out_string = check_output(['gcc', '-dumpmachine'])
    return out_string.strip().endswith(b'cygwin')
lib\distutils\debug.py
import os

# If DISTUTILS_DEBUG is anything other than the empty string, we run in
# debug mode.
DEBUG = os.environ.get('DISTUTILS_DEBUG')
lib\distutils\dep_util.py
"""distutils.dep_util

Utility functions for simple, timestamp-based dependency of files
and groups of files; also, function based entirely on such
timestamp dependency analysis."""

import os
from distutils.errors import DistutilsFileError


def newer (source, target):
    """Return true if 'source' exists and is more recently modified than
    'target', or if 'source' exists and 'target' doesn't.  Return false if
    both exist and 'target' is the same age or younger than 'source'.
    Raise DistutilsFileError if 'source' does not exist.
    """
    if not os.path.exists(source):
        raise DistutilsFileError("file '%s' does not exist" %
                                 os.path.abspath(source))
    if not os.path.exists(target):
        return 1

    from stat import ST_MTIME
    mtime1 = os.stat(source)[ST_MTIME]
    mtime2 = os.stat(target)[ST_MTIME]

    return mtime1 > mtime2

# newer ()


def newer_pairwise (sources, targets):
    """Walk two filename lists in parallel, testing if each source is newer
    than its corresponding target.  Return a pair of lists (sources,
    targets) where source is newer than target, according to the semantics
    of 'newer()'.
    """
    if len(sources) != len(targets):
        raise ValueError("'sources' and 'targets' must be same length")

    # build a pair of lists (sources, targets) where  source is newer
    n_sources = []
    n_targets = []
    for i in range(len(sources)):
        if newer(sources[i], targets[i]):
            n_sources.append(sources[i])
            n_targets.append(targets[i])

    return (n_sources, n_targets)

# newer_pairwise ()


def newer_group (sources, target, missing='error'):
    """Return true if 'target' is out-of-date with respect to any file
    listed in 'sources'.  In other words, if 'target' exists and is newer
    than every file in 'sources', return false; otherwise return true.
    'missing' controls what we do when a source file is missing; the
    default ("error") is to blow up with an OSError from inside 'stat()';
    if it is "ignore", we silently drop any missing source files; if it is
    "newer", any missing source files make us assume that 'target' is
    out-of-date (this is handy in "dry-run" mode: it'll make you pretend to
    carry out commands that wouldn't work because inputs are missing, but
    that doesn't matter because you're not actually going to run the
    commands).
    """
    # If the target doesn't even exist, then it's definitely out-of-date.
    if not os.path.exists(target):
        return 1

    # Otherwise we have to find out the hard way: if *any* source file
    # is more recent than 'target', then 'target' is out-of-date and
    # we can immediately return true.  If we fall through to the end
    # of the loop, then 'target' is up-to-date and we return false.
    from stat import ST_MTIME
    target_mtime = os.stat(target)[ST_MTIME]
    for source in sources:
        if not os.path.exists(source):
            if missing == 'error':      # blow up when we stat() the file
                pass
            elif missing == 'ignore':   # missing source dropped from
                continue                #  target's dependency list
            elif missing == 'newer':    # missing source means target is
                return 1                #  out-of-date

        source_mtime = os.stat(source)[ST_MTIME]
        if source_mtime > target_mtime:
            return 1
    else:
        return 0

# newer_group ()
lib\distutils\dir_util.py
"""distutils.dir_util

Utility functions for manipulating directories and directory trees."""

import os
import errno
from distutils.errors import DistutilsFileError, DistutilsInternalError
from distutils import log

# cache for by mkpath() -- in addition to cheapening redundant calls,
# eliminates redundant "creating /foo/bar/baz" messages in dry-run mode
_path_created = {}

# I don't use os.makedirs because a) it's new to Python 1.5.2, and
# b) it blows up if the directory already exists (I want to silently
# succeed in that case).
def mkpath(name, mode=0o777, verbose=1, dry_run=0):
    """Create a directory and any missing ancestor directories.

    If the directory already exists (or if 'name' is the empty string, which
    means the current directory, which of course exists), then do nothing.
    Raise DistutilsFileError if unable to create some directory along the way
    (eg. some sub-path exists, but is a file rather than a directory).
    If 'verbose' is true, print a one-line summary of each mkdir to stdout.
    Return the list of directories actually created.
    """

    global _path_created

    # Detect a common bug -- name is None
    if not isinstance(name, str):
        raise DistutilsInternalError(
              "mkpath: 'name' must be a string (got %r)" % (name,))

    # XXX what's the better way to handle verbosity? print as we create
    # each directory in the path (the current behaviour), or only announce
    # the creation of the whole path? (quite easy to do the latter since
    # we're not using a recursive algorithm)

    name = os.path.normpath(name)
    created_dirs = []
    if os.path.isdir(name) or name == '':
        return created_dirs
    if _path_created.get(os.path.abspath(name)):
        return created_dirs

    (head, tail) = os.path.split(name)
    tails = [tail]                      # stack of lone dirs to create

    while head and tail and not os.path.isdir(head):
        (head, tail) = os.path.split(head)
        tails.insert(0, tail)          # push next higher dir onto stack

    # now 'head' contains the deepest directory that already exists
    # (that is, the child of 'head' in 'name' is the highest directory
    # that does *not* exist)
    for d in tails:
        #print "head = %s, d = %s: " % (head, d),
        head = os.path.join(head, d)
        abs_head = os.path.abspath(head)

        if _path_created.get(abs_head):
            continue

        if verbose >= 1:
            log.info("creating %s", head)

        if not dry_run:
            try:
                os.mkdir(head, mode)
            except OSError as exc:
                if not (exc.errno == errno.EEXIST and os.path.isdir(head)):
                    raise DistutilsFileError(
                          "could not create '%s': %s" % (head, exc.args[-1]))
            created_dirs.append(head)

        _path_created[abs_head] = 1
    return created_dirs

def create_tree(base_dir, files, mode=0o777, verbose=1, dry_run=0):
    """Create all the empty directories under 'base_dir' needed to put 'files'
    there.

    'base_dir' is just the name of a directory which doesn't necessarily
    exist yet; 'files' is a list of filenames to be interpreted relative to
    'base_dir'.  'base_dir' + the directory portion of every file in 'files'
    will be created if it doesn't already exist.  'mode', 'verbose' and
    'dry_run' flags are as for 'mkpath()'.
    """
    # First get the list of directories to create
    need_dir = set()
    for file in files:
        need_dir.add(os.path.join(base_dir, os.path.dirname(file)))

    # Now create them
    for dir in sorted(need_dir):
        mkpath(dir, mode, verbose=verbose, dry_run=dry_run)

def copy_tree(src, dst, preserve_mode=1, preserve_times=1,
              preserve_symlinks=0, update=0, verbose=1, dry_run=0):
    """Copy an entire directory tree 'src' to a new location 'dst'.

    Both 'src' and 'dst' must be directory names.  If 'src' is not a
    directory, raise DistutilsFileError.  If 'dst' does not exist, it is
    created with 'mkpath()'.  The end result of the copy is that every
    file in 'src' is copied to 'dst', and directories under 'src' are
    recursively copied to 'dst'.  Return the list of files that were
    copied or might have been copied, using their output name.  The
    return value is unaffected by 'update' or 'dry_run': it is simply
    the list of all files under 'src', with the names changed to be
    under 'dst'.

    'preserve_mode' and 'preserve_times' are the same as for
    'copy_file'; note that they only apply to regular files, not to
    directories.  If 'preserve_symlinks' is true, symlinks will be
    copied as symlinks (on platforms that support them!); otherwise
    (the default), the destination of the symlink will be copied.
    'update' and 'verbose' are the same as for 'copy_file'.
    """
    from distutils.file_util import copy_file

    if not dry_run and not os.path.isdir(src):
        raise DistutilsFileError(
              "cannot copy tree '%s': not a directory" % src)
    try:
        names = os.listdir(src)
    except OSError as e:
        if dry_run:
            names = []
        else:
            raise DistutilsFileError(
                  "error listing files in '%s': %s" % (src, e.strerror))

    if not dry_run:
        mkpath(dst, verbose=verbose)

    outputs = []

    for n in names:
        src_name = os.path.join(src, n)
        dst_name = os.path.join(dst, n)

        if n.startswith('.nfs'):
            # skip NFS rename files
            continue

        if preserve_symlinks and os.path.islink(src_name):
            link_dest = os.readlink(src_name)
            if verbose >= 1:
                log.info("linking %s -> %s", dst_name, link_dest)
            if not dry_run:
                os.symlink(link_dest, dst_name)
            outputs.append(dst_name)

        elif os.path.isdir(src_name):
            outputs.extend(
                copy_tree(src_name, dst_name, preserve_mode,
                          preserve_times, preserve_symlinks, update,
                          verbose=verbose, dry_run=dry_run))
        else:
            copy_file(src_name, dst_name, preserve_mode,
                      preserve_times, update, verbose=verbose,
                      dry_run=dry_run)
            outputs.append(dst_name)

    return outputs

def _build_cmdtuple(path, cmdtuples):
    """Helper for remove_tree()."""
    for f in os.listdir(path):
        real_f = os.path.join(path,f)
        if os.path.isdir(real_f) and not os.path.islink(real_f):
            _build_cmdtuple(real_f, cmdtuples)
        else:
            cmdtuples.append((os.remove, real_f))
    cmdtuples.append((os.rmdir, path))

def remove_tree(directory, verbose=1, dry_run=0):
    """Recursively remove an entire directory tree.

    Any errors are ignored (apart from being reported to stdout if 'verbose'
    is true).
    """
    global _path_created

    if verbose >= 1:
        log.info("removing '%s' (and everything under it)", directory)
    if dry_run:
        return
    cmdtuples = []
    _build_cmdtuple(directory, cmdtuples)
    for cmd in cmdtuples:
        try:
            cmd[0](cmd[1])
            # remove dir from cache if it's already there
            abspath = os.path.abspath(cmd[1])
            if abspath in _path_created:
                del _path_created[abspath]
        except OSError as exc:
            log.warn("error removing %s: %s", directory, exc)

def ensure_relative(path):
    """Take the full path 'path', and make it a relative path.

    This is useful to make 'path' the second argument to os.path.join().
    """
    drive, path = os.path.splitdrive(path)
    if path[0:1] == os.sep:
        path = drive + path[1:]
    return path
lib\distutils\dist.py
"""distutils.dist

Provides the Distribution class, which represents the module distribution
being built/installed/distributed.
"""

import sys, os, re
from email import message_from_file

try:
    import warnings
except ImportError:
    warnings = None

from distutils.errors import *
from distutils.fancy_getopt import FancyGetopt, translate_longopt
from distutils.util import check_environ, strtobool, rfc822_escape
from distutils import log
from distutils.debug import DEBUG

# Regex to define acceptable Distutils command names.  This is not *quite*
# the same as a Python NAME -- I don't allow leading underscores.  The fact
# that they're very similar is no coincidence; the default naming scheme is
# to look for a Python module named after the command.
command_re = re.compile (r'^[a-zA-Z]([a-zA-Z0-9_]*)$')


class Distribution:
    """The core of the Distutils.  Most of the work hiding behind 'setup'
    is really done within a Distribution instance, which farms the work out
    to the Distutils commands specified on the command line.

    Setup scripts will almost never instantiate Distribution directly,
    unless the 'setup()' function is totally inadequate to their needs.
    However, it is conceivable that a setup script might wish to subclass
    Distribution for some specialized purpose, and then pass the subclass
    to 'setup()' as the 'distclass' keyword argument.  If so, it is
    necessary to respect the expectations that 'setup' has of Distribution.
    See the code for 'setup()', in core.py, for details.
    """


    # 'global_options' describes the command-line options that may be
    # supplied to the setup script prior to any actual commands.
    # Eg. "./setup.py -n" or "./setup.py --quiet" both take advantage of
    # these global options.  This list should be kept to a bare minimum,
    # since every global option is also valid as a command option -- and we
    # don't want to pollute the commands with too many options that they
    # have minimal control over.
    # The fourth entry for verbose means that it can be repeated.
    global_options = [('verbose', 'v', "run verbosely (default)", 1),
                      ('quiet', 'q', "run quietly (turns verbosity off)"),
                      ('dry-run', 'n', "don't actually do anything"),
                      ('help', 'h', "show detailed help message"),
                      ('no-user-cfg', None,
                       'ignore pydistutils.cfg in your home directory'),
    ]

    # 'common_usage' is a short (2-3 line) string describing the common
    # usage of the setup script.
    common_usage = """\
Common commands: (see '--help-commands' for more)

  setup.py build      will build the package underneath 'build/'
  setup.py install    will install the package
"""

    # options that are not propagated to the commands
    display_options = [
        ('help-commands', None,
         "list all available commands"),
        ('name', None,
         "print package name"),
        ('version', 'V',
         "print package version"),
        ('fullname', None,
         "print <package name>-<version>"),
        ('author', None,
         "print the author's name"),
        ('author-email', None,
         "print the author's email address"),
        ('maintainer', None,
         "print the maintainer's name"),
        ('maintainer-email', None,
         "print the maintainer's email address"),
        ('contact', None,
         "print the maintainer's name if known, else the author's"),
        ('contact-email', None,
         "print the maintainer's email address if known, else the author's"),
        ('url', None,
         "print the URL for this package"),
        ('license', None,
         "print the license of the package"),
        ('licence', None,
         "alias for --license"),
        ('description', None,
         "print the package description"),
        ('long-description', None,
         "print the long package description"),
        ('platforms', None,
         "print the list of platforms"),
        ('classifiers', None,
         "print the list of classifiers"),
        ('keywords', None,
         "print the list of keywords"),
        ('provides', None,
         "print the list of packages/modules provided"),
        ('requires', None,
         "print the list of packages/modules required"),
        ('obsoletes', None,
         "print the list of packages/modules made obsolete")
        ]
    display_option_names = [translate_longopt(x[0]) for x in display_options]

    # negative options are options that exclude other options
    negative_opt = {'quiet': 'verbose'}


    # -- Creation/initialization methods -------------------------------

    def __init__ (self, attrs=None):
        """Construct a new Distribution instance: initialize all the
        attributes of a Distribution, and then use 'attrs' (a dictionary
        mapping attribute names to values) to assign some of those
        attributes their "real" values.  (Any attributes not mentioned in
        'attrs' will be assigned to some null value: 0, None, an empty list
        or dictionary, etc.)  Most importantly, initialize the
        'command_obj' attribute to the empty dictionary; this will be
        filled in with real command objects by 'parse_command_line()'.
        """

        # Default values for our command-line options
        self.verbose = 1
        self.dry_run = 0
        self.help = 0
        for attr in self.display_option_names:
            setattr(self, attr, 0)

        # Store the distribution meta-data (name, version, author, and so
        # forth) in a separate object -- we're getting to have enough
        # information here (and enough command-line options) that it's
        # worth it.  Also delegate 'get_XXX()' methods to the 'metadata'
        # object in a sneaky and underhanded (but efficient!) way.
        self.metadata = DistributionMetadata()
        for basename in self.metadata._METHOD_BASENAMES:
            method_name = "get_" + basename
            setattr(self, method_name, getattr(self.metadata, method_name))

        # 'cmdclass' maps command names to class objects, so we
        # can 1) quickly figure out which class to instantiate when
        # we need to create a new command object, and 2) have a way
        # for the setup script to override command classes
        self.cmdclass = {}

        # 'command_packages' is a list of packages in which commands
        # are searched for.  The factory for command 'foo' is expected
        # to be named 'foo' in the module 'foo' in one of the packages
        # named here.  This list is searched from the left; an error
        # is raised if no named package provides the command being
        # searched for.  (Always access using get_command_packages().)
        self.command_packages = None

        # 'script_name' and 'script_args' are usually set to sys.argv[0]
        # and sys.argv[1:], but they can be overridden when the caller is
        # not necessarily a setup script run from the command-line.
        self.script_name = None
        self.script_args = None

        # 'command_options' is where we store command options between
        # parsing them (from config files, the command-line, etc.) and when
        # they are actually needed -- ie. when the command in question is
        # instantiated.  It is a dictionary of dictionaries of 2-tuples:
        #   command_options = { command_name : { option : (source, value) } }
        self.command_options = {}

        # 'dist_files' is the list of (command, pyversion, file) that
        # have been created by any dist commands run so far. This is
        # filled regardless of whether the run is dry or not. pyversion
        # gives sysconfig.get_python_version() if the dist file is
        # specific to a Python version, 'any' if it is good for all
        # Python versions on the target platform, and '' for a source
        # file. pyversion should not be used to specify minimum or
        # maximum required Python versions; use the metainfo for that
        # instead.
        self.dist_files = []

        # These options are really the business of various commands, rather
        # than of the Distribution itself.  We provide aliases for them in
        # Distribution as a convenience to the developer.
        self.packages = None
        self.package_data = {}
        self.package_dir = None
        self.py_modules = None
        self.libraries = None
        self.headers = None
        self.ext_modules = None
        self.ext_package = None
        self.include_dirs = None
        self.extra_path = None
        self.scripts = None
        self.data_files = None
        self.password = ''

        # And now initialize bookkeeping stuff that can't be supplied by
        # the caller at all.  'command_obj' maps command names to
        # Command instances -- that's how we enforce that every command
        # class is a singleton.
        self.command_obj = {}

        # 'have_run' maps command names to boolean values; it keeps track
        # of whether we have actually run a particular command, to make it
        # cheap to "run" a command whenever we think we might need to -- if
        # it's already been done, no need for expensive filesystem
        # operations, we just check the 'have_run' dictionary and carry on.
        # It's only safe to query 'have_run' for a command class that has
        # been instantiated -- a false value will be inserted when the
        # command object is created, and replaced with a true value when
        # the command is successfully run.  Thus it's probably best to use
        # '.get()' rather than a straight lookup.
        self.have_run = {}

        # Now we'll use the attrs dictionary (ultimately, keyword args from
        # the setup script) to possibly override any or all of these
        # distribution options.

        if attrs:
            # Pull out the set of command options and work on them
            # specifically.  Note that this order guarantees that aliased
            # command options will override any supplied redundantly
            # through the general options dictionary.
            options = attrs.get('options')
            if options is not None:
                del attrs['options']
                for (command, cmd_options) in options.items():
                    opt_dict = self.get_option_dict(command)
                    for (opt, val) in cmd_options.items():
                        opt_dict[opt] = ("setup script", val)

            if 'licence' in attrs:
                attrs['license'] = attrs['licence']
                del attrs['licence']
                msg = "'licence' distribution option is deprecated; use 'license'"
                if warnings is not None:
                    warnings.warn(msg)
                else:
                    sys.stderr.write(msg + "\n")

            # Now work on the rest of the attributes.  Any attribute that's
            # not already defined is invalid!
            for (key, val) in attrs.items():
                if hasattr(self.metadata, "set_" + key):
                    getattr(self.metadata, "set_" + key)(val)
                elif hasattr(self.metadata, key):
                    setattr(self.metadata, key, val)
                elif hasattr(self, key):
                    setattr(self, key, val)
                else:
                    msg = "Unknown distribution option: %s" % repr(key)
                    if warnings is not None:
                        warnings.warn(msg)
                    else:
                        sys.stderr.write(msg + "\n")

        # no-user-cfg is handled before other command line args
        # because other args override the config files, and this
        # one is needed before we can load the config files.
        # If attrs['script_args'] wasn't passed, assume false.
        #
        # This also make sure we just look at the global options
        self.want_user_cfg = True

        if self.script_args is not None:
            for arg in self.script_args:
                if not arg.startswith('-'):
                    break
                if arg == '--no-user-cfg':
                    self.want_user_cfg = False
                    break

        self.finalize_options()

    def get_option_dict(self, command):
        """Get the option dictionary for a given command.  If that
        command's option dictionary hasn't been created yet, then create it
        and return the new dictionary; otherwise, return the existing
        option dictionary.
        """
        dict = self.command_options.get(command)
        if dict is None:
            dict = self.command_options[command] = {}
        return dict

    def dump_option_dicts(self, header=None, commands=None, indent=""):
        from pprint import pformat

        if commands is None:             # dump all command option dicts
            commands = sorted(self.command_options.keys())

        if header is not None:
            self.announce(indent + header)
            indent = indent + "  "

        if not commands:
            self.announce(indent + "no commands known yet")
            return

        for cmd_name in commands:
            opt_dict = self.command_options.get(cmd_name)
            if opt_dict is None:
                self.announce(indent +
                              "no option dict for '%s' command" % cmd_name)
            else:
                self.announce(indent +
                              "option dict for '%s' command:" % cmd_name)
                out = pformat(opt_dict)
                for line in out.split('\n'):
                    self.announce(indent + "  " + line)

    # -- Config file finding/parsing methods ---------------------------

    def find_config_files(self):
        """Find as many configuration files as should be processed for this
        platform, and return a list of filenames in the order in which they
        should be parsed.  The filenames returned are guaranteed to exist
        (modulo nasty race conditions).

        There are three possible config files: distutils.cfg in the
        Distutils installation directory (ie. where the top-level
        Distutils __inst__.py file lives), a file in the user's home
        directory named .pydistutils.cfg on Unix and pydistutils.cfg
        on Windows/Mac; and setup.cfg in the current directory.

        The file in the user's home directory can be disabled with the
        --no-user-cfg option.
        """
        files = []
        check_environ()

        # Where to look for the system-wide Distutils config file
        sys_dir = os.path.dirname(sys.modules['distutils'].__file__)

        # Look for the system config file
        sys_file = os.path.join(sys_dir, "distutils.cfg")
        if os.path.isfile(sys_file):
            files.append(sys_file)

        # What to call the per-user config file
        if os.name == 'posix':
            user_filename = ".pydistutils.cfg"
        else:
            user_filename = "pydistutils.cfg"

        # And look for the user config file
        if self.want_user_cfg:
            user_file = os.path.join(os.path.expanduser('~'), user_filename)
            if os.path.isfile(user_file):
                files.append(user_file)

        # All platforms support local setup.cfg
        local_file = "setup.cfg"
        if os.path.isfile(local_file):
            files.append(local_file)

        if DEBUG:
            self.announce("using config files: %s" % ', '.join(files))

        return files

    def parse_config_files(self, filenames=None):
        from configparser import ConfigParser

        # Ignore install directory options if we have a venv
        if sys.prefix != sys.base_prefix:
            ignore_options = [
                'install-base', 'install-platbase', 'install-lib',
                'install-platlib', 'install-purelib', 'install-headers',
                'install-scripts', 'install-data', 'prefix', 'exec-prefix',
                'home', 'user', 'root']
        else:
            ignore_options = []

        ignore_options = frozenset(ignore_options)

        if filenames is None:
            filenames = self.find_config_files()

        if DEBUG:
            self.announce("Distribution.parse_config_files():")

        parser = ConfigParser()
        for filename in filenames:
            if DEBUG:
                self.announce("  reading %s" % filename)
            parser.read(filename)
            for section in parser.sections():
                options = parser.options(section)
                opt_dict = self.get_option_dict(section)

                for opt in options:
                    if opt != '__name__' and opt not in ignore_options:
                        val = parser.get(section,opt)
                        opt = opt.replace('-', '_')
                        opt_dict[opt] = (filename, val)

            # Make the ConfigParser forget everything (so we retain
            # the original filenames that options come from)
            parser.__init__()

        # If there was a "global" section in the config file, use it
        # to set Distribution options.

        if 'global' in self.command_options:
            for (opt, (src, val)) in self.command_options['global'].items():
                alias = self.negative_opt.get(opt)
                try:
                    if alias:
                        setattr(self, alias, not strtobool(val))
                    elif opt in ('verbose', 'dry_run'): # ugh!
                        setattr(self, opt, strtobool(val))
                    else:
                        setattr(self, opt, val)
                except ValueError as msg:
                    raise DistutilsOptionError(msg)

    # -- Command-line parsing methods ----------------------------------

    def parse_command_line(self):
        """Parse the setup script's command line, taken from the
        'script_args' instance attribute (which defaults to 'sys.argv[1:]'
        -- see 'setup()' in core.py).  This list is first processed for
        "global options" -- options that set attributes of the Distribution
        instance.  Then, it is alternately scanned for Distutils commands
        and options for that command.  Each new command terminates the
        options for the previous command.  The allowed options for a
        command are determined by the 'user_options' attribute of the
        command class -- thus, we have to be able to load command classes
        in order to parse the command line.  Any error in that 'options'
        attribute raises DistutilsGetoptError; any error on the
        command-line raises DistutilsArgError.  If no Distutils commands
        were found on the command line, raises DistutilsArgError.  Return
        true if command-line was successfully parsed and we should carry
        on with executing commands; false if no errors but we shouldn't
        execute commands (currently, this only happens if user asks for
        help).
        """
        #
        # We now have enough information to show the Macintosh dialog
        # that allows the user to interactively specify the "command line".
        #
        toplevel_options = self._get_toplevel_options()

        # We have to parse the command line a bit at a time -- global
        # options, then the first command, then its options, and so on --
        # because each command will be handled by a different class, and
        # the options that are valid for a particular class aren't known
        # until we have loaded the command class, which doesn't happen
        # until we know what the command is.

        self.commands = []
        parser = FancyGetopt(toplevel_options + self.display_options)
        parser.set_negative_aliases(self.negative_opt)
        parser.set_aliases({'licence': 'license'})
        args = parser.getopt(args=self.script_args, object=self)
        option_order = parser.get_option_order()
        log.set_verbosity(self.verbose)

        # for display options we return immediately
        if self.handle_display_options(option_order):
            return
        while args:
            args = self._parse_command_opts(parser, args)
            if args is None:            # user asked for help (and got it)
                return

        # Handle the cases of --help as a "global" option, ie.
        # "setup.py --help" and "setup.py --help command ...".  For the
        # former, we show global options (--verbose, --dry-run, etc.)
        # and display-only options (--name, --version, etc.); for the
        # latter, we omit the display-only options and show help for
        # each command listed on the command line.
        if self.help:
            self._show_help(parser,
                            display_options=len(self.commands) == 0,
                            commands=self.commands)
            return

        # Oops, no commands found -- an end-user error
        if not self.commands:
            raise DistutilsArgError("no commands supplied")

        # All is well: return true
        return True

    def _get_toplevel_options(self):
        """Return the non-display options recognized at the top level.

        This includes options that are recognized *only* at the top
        level as well as options recognized for commands.
        """
        return self.global_options + [
            ("command-packages=", None,
             "list of packages that provide distutils commands"),
            ]

    def _parse_command_opts(self, parser, args):
        """Parse the command-line options for a single command.
        'parser' must be a FancyGetopt instance; 'args' must be the list
        of arguments, starting with the current command (whose options
        we are about to parse).  Returns a new version of 'args' with
        the next command at the front of the list; will be the empty
        list if there are no more commands on the command line.  Returns
        None if the user asked for help on this command.
        """
        # late import because of mutual dependence between these modules
        from distutils.cmd import Command

        # Pull the current command from the head of the command line
        command = args[0]
        if not command_re.match(command):
            raise SystemExit("invalid command name '%s'" % command)
        self.commands.append(command)

        # Dig up the command class that implements this command, so we
        # 1) know that it's a valid command, and 2) know which options
        # it takes.
        try:
            cmd_class = self.get_command_class(command)
        except DistutilsModuleError as msg:
            raise DistutilsArgError(msg)

        # Require that the command class be derived from Command -- want
        # to be sure that the basic "command" interface is implemented.
        if not issubclass(cmd_class, Command):
            raise DistutilsClassError(
                  "command class %s must subclass Command" % cmd_class)

        # Also make sure that the command object provides a list of its
        # known options.
        if not (hasattr(cmd_class, 'user_options') and
                isinstance(cmd_class.user_options, list)):
            raise DistutilsClassError(("command class %s must provide " +
                   "'user_options' attribute (a list of tuples)") % \
                  cmd_class)

        # If the command class has a list of negative alias options,
        # merge it in with the global negative aliases.
        negative_opt = self.negative_opt
        if hasattr(cmd_class, 'negative_opt'):
            negative_opt = negative_opt.copy()
            negative_opt.update(cmd_class.negative_opt)

        # Check for help_options in command class.  They have a different
        # format (tuple of four) so we need to preprocess them here.
        if (hasattr(cmd_class, 'help_options') and
            isinstance(cmd_class.help_options, list)):
            help_options = fix_help_options(cmd_class.help_options)
        else:
            help_options = []


        # All commands support the global options too, just by adding
        # in 'global_options'.
        parser.set_option_table(self.global_options +
                                cmd_class.user_options +
                                help_options)
        parser.set_negative_aliases(negative_opt)
        (args, opts) = parser.getopt(args[1:])
        if hasattr(opts, 'help') and opts.help:
            self._show_help(parser, display_options=0, commands=[cmd_class])
            return

        if (hasattr(cmd_class, 'help_options') and
            isinstance(cmd_class.help_options, list)):
            help_option_found=0
            for (help_option, short, desc, func) in cmd_class.help_options:
                if hasattr(opts, parser.get_attr_name(help_option)):
                    help_option_found=1
                    if callable(func):
                        func()
                    else:
                        raise DistutilsClassError(
                            "invalid help function %r for help option '%s': "
                            "must be a callable object (function, etc.)"
                            % (func, help_option))

            if help_option_found:
                return

        # Put the options from the command-line into their official
        # holding pen, the 'command_options' dictionary.
        opt_dict = self.get_option_dict(command)
        for (name, value) in vars(opts).items():
            opt_dict[name] = ("command line", value)

        return args

    def finalize_options(self):
        """Set final values for all the options on the Distribution
        instance, analogous to the .finalize_options() method of Command
        objects.
        """
        for attr in ('keywords', 'platforms'):
            value = getattr(self.metadata, attr)
            if value is None:
                continue
            if isinstance(value, str):
                value = [elm.strip() for elm in value.split(',')]
                setattr(self.metadata, attr, value)

    def _show_help(self, parser, global_options=1, display_options=1,
                   commands=[]):
        """Show help for the setup script command-line in the form of
        several lists of command-line options.  'parser' should be a
        FancyGetopt instance; do not expect it to be returned in the
        same state, as its option table will be reset to make it
        generate the correct help text.

        If 'global_options' is true, lists the global options:
        --verbose, --dry-run, etc.  If 'display_options' is true, lists
        the "display-only" options: --name, --version, etc.  Finally,
        lists per-command help for every command name or command class
        in 'commands'.
        """
        # late import because of mutual dependence between these modules
        from distutils.core import gen_usage
        from distutils.cmd import Command

        if global_options:
            if display_options:
                options = self._get_toplevel_options()
            else:
                options = self.global_options
            parser.set_option_table(options)
            parser.print_help(self.common_usage + "\nGlobal options:")
            print('')

        if display_options:
            parser.set_option_table(self.display_options)
            parser.print_help(
                "Information display options (just display " +
                "information, ignore any commands)")
            print('')

        for command in self.commands:
            if isinstance(command, type) and issubclass(command, Command):
                klass = command
            else:
                klass = self.get_command_class(command)
            if (hasattr(klass, 'help_options') and
                isinstance(klass.help_options, list)):
                parser.set_option_table(klass.user_options +
                                        fix_help_options(klass.help_options))
            else:
                parser.set_option_table(klass.user_options)
            parser.print_help("Options for '%s' command:" % klass.__name__)
            print('')

        print(gen_usage(self.script_name))

    def handle_display_options(self, option_order):
        """If there were any non-global "display-only" options
        (--help-commands or the metadata display options) on the command
        line, display the requested info and return true; else return
        false.
        """
        from distutils.core import gen_usage

        # User just wants a list of commands -- we'll print it out and stop
        # processing now (ie. if they ran "setup --help-commands foo bar",
        # we ignore "foo bar").
        if self.help_commands:
            self.print_commands()
            print('')
            print(gen_usage(self.script_name))
            return 1

        # If user supplied any of the "display metadata" options, then
        # display that metadata in the order in which the user supplied the
        # metadata options.
        any_display_options = 0
        is_display_option = {}
        for option in self.display_options:
            is_display_option[option[0]] = 1

        for (opt, val) in option_order:
            if val and is_display_option.get(opt):
                opt = translate_longopt(opt)
                value = getattr(self.metadata, "get_"+opt)()
                if opt in ['keywords', 'platforms']:
                    print(','.join(value))
                elif opt in ('classifiers', 'provides', 'requires',
                             'obsoletes'):
                    print('\n'.join(value))
                else:
                    print(value)
                any_display_options = 1

        return any_display_options

    def print_command_list(self, commands, header, max_length):
        """Print a subset of the list of all commands -- used by
        'print_commands()'.
        """
        print(header + ":")

        for cmd in commands:
            klass = self.cmdclass.get(cmd)
            if not klass:
                klass = self.get_command_class(cmd)
            try:
                description = klass.description
            except AttributeError:
                description = "(no description available)"

            print("  %-*s  %s" % (max_length, cmd, description))

    def print_commands(self):
        """Print out a help message listing all available commands with a
        description of each.  The list is divided into "standard commands"
        (listed in distutils.command.__all__) and "extra commands"
        (mentioned in self.cmdclass, but not a standard command).  The
        descriptions come from the command class attribute
        'description'.
        """
        import distutils.command
        std_commands = distutils.command.__all__
        is_std = {}
        for cmd in std_commands:
            is_std[cmd] = 1

        extra_commands = []
        for cmd in self.cmdclass.keys():
            if not is_std.get(cmd):
                extra_commands.append(cmd)

        max_length = 0
        for cmd in (std_commands + extra_commands):
            if len(cmd) > max_length:
                max_length = len(cmd)

        self.print_command_list(std_commands,
                                "Standard commands",
                                max_length)
        if extra_commands:
            print()
            self.print_command_list(extra_commands,
                                    "Extra commands",
                                    max_length)

    def get_command_list(self):
        """Get a list of (command, description) tuples.
        The list is divided into "standard commands" (listed in
        distutils.command.__all__) and "extra commands" (mentioned in
        self.cmdclass, but not a standard command).  The descriptions come
        from the command class attribute 'description'.
        """
        # Currently this is only used on Mac OS, for the Mac-only GUI
        # Distutils interface (by Jack Jansen)
        import distutils.command
        std_commands = distutils.command.__all__
        is_std = {}
        for cmd in std_commands:
            is_std[cmd] = 1

        extra_commands = []
        for cmd in self.cmdclass.keys():
            if not is_std.get(cmd):
                extra_commands.append(cmd)

        rv = []
        for cmd in (std_commands + extra_commands):
            klass = self.cmdclass.get(cmd)
            if not klass:
                klass = self.get_command_class(cmd)
            try:
                description = klass.description
            except AttributeError:
                description = "(no description available)"
            rv.append((cmd, description))
        return rv

    # -- Command class/object methods ----------------------------------

    def get_command_packages(self):
        """Return a list of packages from which commands are loaded."""
        pkgs = self.command_packages
        if not isinstance(pkgs, list):
            if pkgs is None:
                pkgs = ''
            pkgs = [pkg.strip() for pkg in pkgs.split(',') if pkg != '']
            if "distutils.command" not in pkgs:
                pkgs.insert(0, "distutils.command")
            self.command_packages = pkgs
        return pkgs

    def get_command_class(self, command):
        """Return the class that implements the Distutils command named by
        'command'.  First we check the 'cmdclass' dictionary; if the
        command is mentioned there, we fetch the class object from the
        dictionary and return it.  Otherwise we load the command module
        ("distutils.command." + command) and fetch the command class from
        the module.  The loaded class is also stored in 'cmdclass'
        to speed future calls to 'get_command_class()'.

        Raises DistutilsModuleError if the expected module could not be
        found, or if that module does not define the expected class.
        """
        klass = self.cmdclass.get(command)
        if klass:
            return klass

        for pkgname in self.get_command_packages():
            module_name = "%s.%s" % (pkgname, command)
            klass_name = command

            try:
                __import__ (module_name)
                module = sys.modules[module_name]
            except ImportError:
                continue

            try:
                klass = getattr(module, klass_name)
            except AttributeError:
                raise DistutilsModuleError(
                      "invalid command '%s' (no class '%s' in module '%s')"
                      % (command, klass_name, module_name))

            self.cmdclass[command] = klass
            return klass

        raise DistutilsModuleError("invalid command '%s'" % command)

    def get_command_obj(self, command, create=1):
        """Return the command object for 'command'.  Normally this object
        is cached on a previous call to 'get_command_obj()'; if no command
        object for 'command' is in the cache, then we either create and
        return it (if 'create' is true) or return None.
        """
        cmd_obj = self.command_obj.get(command)
        if not cmd_obj and create:
            if DEBUG:
                self.announce("Distribution.get_command_obj(): " \
                              "creating '%s' command object" % command)

            klass = self.get_command_class(command)
            cmd_obj = self.command_obj[command] = klass(self)
            self.have_run[command] = 0

            # Set any options that were supplied in config files
            # or on the command line.  (NB. support for error
            # reporting is lame here: any errors aren't reported
            # until 'finalize_options()' is called, which means
            # we won't report the source of the error.)
            options = self.command_options.get(command)
            if options:
                self._set_command_options(cmd_obj, options)

        return cmd_obj

    def _set_command_options(self, command_obj, option_dict=None):
        """Set the options for 'command_obj' from 'option_dict'.  Basically
        this means copying elements of a dictionary ('option_dict') to
        attributes of an instance ('command').

        'command_obj' must be a Command instance.  If 'option_dict' is not
        supplied, uses the standard option dictionary for this command
        (from 'self.command_options').
        """
        command_name = command_obj.get_command_name()
        if option_dict is None:
            option_dict = self.get_option_dict(command_name)

        if DEBUG:
            self.announce("  setting options for '%s' command:" % command_name)
        for (option, (source, value)) in option_dict.items():
            if DEBUG:
                self.announce("    %s = %s (from %s)" % (option, value,
                                                         source))
            try:
                bool_opts = [translate_longopt(o)
                             for o in command_obj.boolean_options]
            except AttributeError:
                bool_opts = []
            try:
                neg_opt = command_obj.negative_opt
            except AttributeError:
                neg_opt = {}

            try:
                is_string = isinstance(value, str)
                if option in neg_opt and is_string:
                    setattr(command_obj, neg_opt[option], not strtobool(value))
                elif option in bool_opts and is_string:
                    setattr(command_obj, option, strtobool(value))
                elif hasattr(command_obj, option):
                    setattr(command_obj, option, value)
                else:
                    raise DistutilsOptionError(
                          "error in %s: command '%s' has no such option '%s'"
                          % (source, command_name, option))
            except ValueError as msg:
                raise DistutilsOptionError(msg)

    def reinitialize_command(self, command, reinit_subcommands=0):
        """Reinitializes a command to the state it was in when first
        returned by 'get_command_obj()': ie., initialized but not yet
        finalized.  This provides the opportunity to sneak option
        values in programmatically, overriding or supplementing
        user-supplied values from the config files and command line.
        You'll have to re-finalize the command object (by calling
        'finalize_options()' or 'ensure_finalized()') before using it for
        real.

        'command' should be a command name (string) or command object.  If
        'reinit_subcommands' is true, also reinitializes the command's
        sub-commands, as declared by the 'sub_commands' class attribute (if
        it has one).  See the "install" command for an example.  Only
        reinitializes the sub-commands that actually matter, ie. those
        whose test predicates return true.

        Returns the reinitialized command object.
        """
        from distutils.cmd import Command
        if not isinstance(command, Command):
            command_name = command
            command = self.get_command_obj(command_name)
        else:
            command_name = command.get_command_name()

        if not command.finalized:
            return command
        command.initialize_options()
        command.finalized = 0
        self.have_run[command_name] = 0
        self._set_command_options(command)

        if reinit_subcommands:
            for sub in command.get_sub_commands():
                self.reinitialize_command(sub, reinit_subcommands)

        return command

    # -- Methods that operate on the Distribution ----------------------

    def announce(self, msg, level=log.INFO):
        log.log(level, msg)

    def run_commands(self):
        """Run each command that was seen on the setup script command line.
        Uses the list of commands found and cache of command objects
        created by 'get_command_obj()'.
        """
        for cmd in self.commands:
            self.run_command(cmd)

    # -- Methods that operate on its Commands --------------------------

    def run_command(self, command):
        """Do whatever it takes to run a command (including nothing at all,
        if the command has already been run).  Specifically: if we have
        already created and run the command named by 'command', return
        silently without doing anything.  If the command named by 'command'
        doesn't even have a command object yet, create one.  Then invoke
        'run()' on that command object (or an existing one).
        """
        # Already been here, done that? then return silently.
        if self.have_run.get(command):
            return

        log.info("running %s", command)
        cmd_obj = self.get_command_obj(command)
        cmd_obj.ensure_finalized()
        cmd_obj.run()
        self.have_run[command] = 1


    # -- Distribution query methods ------------------------------------

    def has_pure_modules(self):
        return len(self.packages or self.py_modules or []) > 0

    def has_ext_modules(self):
        return self.ext_modules and len(self.ext_modules) > 0

    def has_c_libraries(self):
        return self.libraries and len(self.libraries) > 0

    def has_modules(self):
        return self.has_pure_modules() or self.has_ext_modules()

    def has_headers(self):
        return self.headers and len(self.headers) > 0

    def has_scripts(self):
        return self.scripts and len(self.scripts) > 0

    def has_data_files(self):
        return self.data_files and len(self.data_files) > 0

    def is_pure(self):
        return (self.has_pure_modules() and
                not self.has_ext_modules() and
                not self.has_c_libraries())

    # -- Metadata query methods ----------------------------------------

    # If you're looking for 'get_name()', 'get_version()', and so forth,
    # they are defined in a sneaky way: the constructor binds self.get_XXX
    # to self.metadata.get_XXX.  The actual code is in the
    # DistributionMetadata class, below.

class DistributionMetadata:
    """Dummy class to hold the distribution meta-data: name, version,
    author, and so forth.
    """

    _METHOD_BASENAMES = ("name", "version", "author", "author_email",
                         "maintainer", "maintainer_email", "url",
                         "license", "description", "long_description",
                         "keywords", "platforms", "fullname", "contact",
                         "contact_email", "license", "classifiers",
                         "download_url",
                         # PEP 314
                         "provides", "requires", "obsoletes",
                         )

    def __init__(self, path=None):
        if path is not None:
            self.read_pkg_file(open(path))
        else:
            self.name = None
            self.version = None
            self.author = None
            self.author_email = None
            self.maintainer = None
            self.maintainer_email = None
            self.url = None
            self.license = None
            self.description = None
            self.long_description = None
            self.keywords = None
            self.platforms = None
            self.classifiers = None
            self.download_url = None
            # PEP 314
            self.provides = None
            self.requires = None
            self.obsoletes = None

    def read_pkg_file(self, file):
        """Reads the metadata values from a file object."""
        msg = message_from_file(file)

        def _read_field(name):
            value = msg[name]
            if value == 'UNKNOWN':
                return None
            return value

        def _read_list(name):
            values = msg.get_all(name, None)
            if values == []:
                return None
            return values

        metadata_version = msg['metadata-version']
        self.name = _read_field('name')
        self.version = _read_field('version')
        self.description = _read_field('summary')
        # we are filling author only.
        self.author = _read_field('author')
        self.maintainer = None
        self.author_email = _read_field('author-email')
        self.maintainer_email = None
        self.url = _read_field('home-page')
        self.license = _read_field('license')

        if 'download-url' in msg:
            self.download_url = _read_field('download-url')
        else:
            self.download_url = None

        self.long_description = _read_field('description')
        self.description = _read_field('summary')

        if 'keywords' in msg:
            self.keywords = _read_field('keywords').split(',')

        self.platforms = _read_list('platform')
        self.classifiers = _read_list('classifier')

        # PEP 314 - these fields only exist in 1.1
        if metadata_version == '1.1':
            self.requires = _read_list('requires')
            self.provides = _read_list('provides')
            self.obsoletes = _read_list('obsoletes')
        else:
            self.requires = None
            self.provides = None
            self.obsoletes = None

    def write_pkg_info(self, base_dir):
        """Write the PKG-INFO file into the release tree.
        """
        with open(os.path.join(base_dir, 'PKG-INFO'), 'w',
                  encoding='UTF-8') as pkg_info:
            self.write_pkg_file(pkg_info)

    def write_pkg_file(self, file):
        """Write the PKG-INFO format data to a file object.
        """
        version = '1.0'
        if (self.provides or self.requires or self.obsoletes or
            self.classifiers or self.download_url):
            version = '1.1'

        file.write('Metadata-Version: %s\n' % version)
        file.write('Name: %s\n' % self.get_name() )
        file.write('Version: %s\n' % self.get_version() )
        file.write('Summary: %s\n' % self.get_description() )
        file.write('Home-page: %s\n' % self.get_url() )
        file.write('Author: %s\n' % self.get_contact() )
        file.write('Author-email: %s\n' % self.get_contact_email() )
        file.write('License: %s\n' % self.get_license() )
        if self.download_url:
            file.write('Download-URL: %s\n' % self.download_url)

        long_desc = rfc822_escape(self.get_long_description())
        file.write('Description: %s\n' % long_desc)

        keywords = ','.join(self.get_keywords())
        if keywords:
            file.write('Keywords: %s\n' % keywords )

        self._write_list(file, 'Platform', self.get_platforms())
        self._write_list(file, 'Classifier', self.get_classifiers())

        # PEP 314
        self._write_list(file, 'Requires', self.get_requires())
        self._write_list(file, 'Provides', self.get_provides())
        self._write_list(file, 'Obsoletes', self.get_obsoletes())

    def _write_list(self, file, name, values):
        for value in values:
            file.write('%s: %s\n' % (name, value))

    # -- Metadata query methods ----------------------------------------

    def get_name(self):
        return self.name or "UNKNOWN"

    def get_version(self):
        return self.version or "0.0.0"

    def get_fullname(self):
        return "%s-%s" % (self.get_name(), self.get_version())

    def get_author(self):
        return self.author or "UNKNOWN"

    def get_author_email(self):
        return self.author_email or "UNKNOWN"

    def get_maintainer(self):
        return self.maintainer or "UNKNOWN"

    def get_maintainer_email(self):
        return self.maintainer_email or "UNKNOWN"

    def get_contact(self):
        return self.maintainer or self.author or "UNKNOWN"

    def get_contact_email(self):
        return self.maintainer_email or self.author_email or "UNKNOWN"

    def get_url(self):
        return self.url or "UNKNOWN"

    def get_license(self):
        return self.license or "UNKNOWN"
    get_licence = get_license

    def get_description(self):
        return self.description or "UNKNOWN"

    def get_long_description(self):
        return self.long_description or "UNKNOWN"

    def get_keywords(self):
        return self.keywords or []

    def get_platforms(self):
        return self.platforms or ["UNKNOWN"]

    def get_classifiers(self):
        return self.classifiers or []

    def get_download_url(self):
        return self.download_url or "UNKNOWN"

    # PEP 314
    def get_requires(self):
        return self.requires or []

    def set_requires(self, value):
        import distutils.versionpredicate
        for v in value:
            distutils.versionpredicate.VersionPredicate(v)
        self.requires = value

    def get_provides(self):
        return self.provides or []

    def set_provides(self, value):
        value = [v.strip() for v in value]
        for v in value:
            import distutils.versionpredicate
            distutils.versionpredicate.split_provision(v)
        self.provides = value

    def get_obsoletes(self):
        return self.obsoletes or []

    def set_obsoletes(self, value):
        import distutils.versionpredicate
        for v in value:
            distutils.versionpredicate.VersionPredicate(v)
        self.obsoletes = value

def fix_help_options(options):
    """Convert a 4-tuple 'help_options' list as found in various command
    classes to the 3-tuple form required by FancyGetopt.
    """
    new_options = []
    for help_tuple in options:
        new_options.append(help_tuple[0:3])
    return new_options
lib\distutils\errors.py
"""distutils.errors

Provides exceptions used by the Distutils modules.  Note that Distutils
modules may raise standard exceptions; in particular, SystemExit is
usually raised for errors that are obviously the end-user's fault
(eg. bad command-line arguments).

This module is safe to use in "from ... import *" mode; it only exports
symbols whose names start with "Distutils" and end with "Error"."""

class DistutilsError (Exception):
    """The root of all Distutils evil."""
    pass

class DistutilsModuleError (DistutilsError):
    """Unable to load an expected module, or to find an expected class
    within some module (in particular, command modules and classes)."""
    pass

class DistutilsClassError (DistutilsError):
    """Some command class (or possibly distribution class, if anyone
    feels a need to subclass Distribution) is found not to be holding
    up its end of the bargain, ie. implementing some part of the
    "command "interface."""
    pass

class DistutilsGetoptError (DistutilsError):
    """The option table provided to 'fancy_getopt()' is bogus."""
    pass

class DistutilsArgError (DistutilsError):
    """Raised by fancy_getopt in response to getopt.error -- ie. an
    error in the command line usage."""
    pass

class DistutilsFileError (DistutilsError):
    """Any problems in the filesystem: expected file not found, etc.
    Typically this is for problems that we detect before OSError
    could be raised."""
    pass

class DistutilsOptionError (DistutilsError):
    """Syntactic/semantic errors in command options, such as use of
    mutually conflicting options, or inconsistent options,
    badly-spelled values, etc.  No distinction is made between option
    values originating in the setup script, the command line, config
    files, or what-have-you -- but if we *know* something originated in
    the setup script, we'll raise DistutilsSetupError instead."""
    pass

class DistutilsSetupError (DistutilsError):
    """For errors that can be definitely blamed on the setup script,
    such as invalid keyword arguments to 'setup()'."""
    pass

class DistutilsPlatformError (DistutilsError):
    """We don't know how to do something on the current platform (but
    we do know how to do it on some platform) -- eg. trying to compile
    C files on a platform not supported by a CCompiler subclass."""
    pass

class DistutilsExecError (DistutilsError):
    """Any problems executing an external program (such as the C
    compiler, when compiling C files)."""
    pass

class DistutilsInternalError (DistutilsError):
    """Internal inconsistencies or impossibilities (obviously, this
    should never be seen if the code is working!)."""
    pass

class DistutilsTemplateError (DistutilsError):
    """Syntax error in a file list template."""

class DistutilsByteCompileError(DistutilsError):
    """Byte compile error."""

# Exception classes used by the CCompiler implementation classes
class CCompilerError (Exception):
    """Some compile/link operation failed."""

class PreprocessError (CCompilerError):
    """Failure to preprocess one or more C/C++ files."""

class CompileError (CCompilerError):
    """Failure to compile one or more C/C++ source files."""

class LibError (CCompilerError):
    """Failure to create a static library from one or more C/C++ object
    files."""

class LinkError (CCompilerError):
    """Failure to link one or more C/C++ object files into an executable
    or shared library file."""

class UnknownFileError (CCompilerError):
    """Attempt to process an unknown file type."""
lib\distutils\extension.py
"""distutils.extension

Provides the Extension class, used to describe C/C++ extension
modules in setup scripts."""

import os
import sys
import warnings

# This class is really only used by the "build_ext" command, so it might
# make sense to put it in distutils.command.build_ext.  However, that
# module is already big enough, and I want to make this class a bit more
# complex to simplify some common cases ("foo" module in "foo.c") and do
# better error-checking ("foo.c" actually exists).
#
# Also, putting this in build_ext.py means every setup script would have to
# import that large-ish module (indirectly, through distutils.core) in
# order to do anything.

class Extension:
    """Just a collection of attributes that describes an extension
    module and everything needed to build it (hopefully in a portable
    way, but there are hooks that let you be as unportable as you need).

    Instance attributes:
      name : string
        the full name of the extension, including any packages -- ie.
        *not* a filename or pathname, but Python dotted name
      sources : [string]
        list of source filenames, relative to the distribution root
        (where the setup script lives), in Unix form (slash-separated)
        for portability.  Source files may be C, C++, SWIG (.i),
        platform-specific resource files, or whatever else is recognized
        by the "build_ext" command as source for a Python extension.
      include_dirs : [string]
        list of directories to search for C/C++ header files (in Unix
        form for portability)
      define_macros : [(name : string, value : string|None)]
        list of macros to define; each macro is defined using a 2-tuple,
        where 'value' is either the string to define it to or None to
        define it without a particular value (equivalent of "#define
        FOO" in source or -DFOO on Unix C compiler command line)
      undef_macros : [string]
        list of macros to undefine explicitly
      library_dirs : [string]
        list of directories to search for C/C++ libraries at link time
      libraries : [string]
        list of library names (not filenames or paths) to link against
      runtime_library_dirs : [string]
        list of directories to search for C/C++ libraries at run time
        (for shared extensions, this is when the extension is loaded)
      extra_objects : [string]
        list of extra files to link with (eg. object files not implied
        by 'sources', static library that must be explicitly specified,
        binary resource files, etc.)
      extra_compile_args : [string]
        any extra platform- and compiler-specific information to use
        when compiling the source files in 'sources'.  For platforms and
        compilers where "command line" makes sense, this is typically a
        list of command-line arguments, but for other platforms it could
        be anything.
      extra_link_args : [string]
        any extra platform- and compiler-specific information to use
        when linking object files together to create the extension (or
        to create a new static Python interpreter).  Similar
        interpretation as for 'extra_compile_args'.
      export_symbols : [string]
        list of symbols to be exported from a shared extension.  Not
        used on all platforms, and not generally necessary for Python
        extensions, which typically export exactly one symbol: "init" +
        extension_name.
      swig_opts : [string]
        any extra options to pass to SWIG if a source file has the .i
        extension.
      depends : [string]
        list of files that the extension depends on
      language : string
        extension language (i.e. "c", "c++", "objc"). Will be detected
        from the source extensions if not provided.
      optional : boolean
        specifies that a build failure in the extension should not abort the
        build process, but simply not install the failing extension.
    """

    # When adding arguments to this constructor, be sure to update
    # setup_keywords in core.py.
    def __init__(self, name, sources,
                  include_dirs=None,
                  define_macros=None,
                  undef_macros=None,
                  library_dirs=None,
                  libraries=None,
                  runtime_library_dirs=None,
                  extra_objects=None,
                  extra_compile_args=None,
                  extra_link_args=None,
                  export_symbols=None,
                  swig_opts = None,
                  depends=None,
                  language=None,
                  optional=None,
                  **kw                      # To catch unknown keywords
                 ):
        if not isinstance(name, str):
            raise AssertionError("'name' must be a string")
        if not (isinstance(sources, list) and
                all(isinstance(v, str) for v in sources)):
            raise AssertionError("'sources' must be a list of strings")

        self.name = name
        self.sources = sources
        self.include_dirs = include_dirs or []
        self.define_macros = define_macros or []
        self.undef_macros = undef_macros or []
        self.library_dirs = library_dirs or []
        self.libraries = libraries or []
        self.runtime_library_dirs = runtime_library_dirs or []
        self.extra_objects = extra_objects or []
        self.extra_compile_args = extra_compile_args or []
        self.extra_link_args = extra_link_args or []
        self.export_symbols = export_symbols or []
        self.swig_opts = swig_opts or []
        self.depends = depends or []
        self.language = language
        self.optional = optional

        # If there are unknown keyword options, warn about them
        if len(kw) > 0:
            options = [repr(option) for option in kw]
            options = ', '.join(sorted(options))
            msg = "Unknown Extension options: %s" % options
            warnings.warn(msg)

def read_setup_file(filename):
    """Reads a Setup file and returns Extension instances."""
    from distutils.sysconfig import (parse_makefile, expand_makefile_vars,
                                     _variable_rx)

    from distutils.text_file import TextFile
    from distutils.util import split_quoted

    # First pass over the file to gather "VAR = VALUE" assignments.
    vars = parse_makefile(filename)

    # Second pass to gobble up the real content: lines of the form
    #   <module> ... [<sourcefile> ...] [<cpparg> ...] [<library> ...]
    file = TextFile(filename,
                    strip_comments=1, skip_blanks=1, join_lines=1,
                    lstrip_ws=1, rstrip_ws=1)
    try:
        extensions = []

        while True:
            line = file.readline()
            if line is None:                # eof
                break
            if _variable_rx.match(line):    # VAR=VALUE, handled in first pass
                continue

            if line[0] == line[-1] == "*":
                file.warn("'%s' lines not handled yet" % line)
                continue

            line = expand_makefile_vars(line, vars)
            words = split_quoted(line)

            # NB. this parses a slightly different syntax than the old
            # makesetup script: here, there must be exactly one extension per
            # line, and it must be the first word of the line.  I have no idea
            # why the old syntax supported multiple extensions per line, as
            # they all wind up being the same.

            module = words[0]
            ext = Extension(module, [])
            append_next_word = None

            for word in words[1:]:
                if append_next_word is not None:
                    append_next_word.append(word)
                    append_next_word = None
                    continue

                suffix = os.path.splitext(word)[1]
                switch = word[0:2] ; value = word[2:]

                if suffix in (".c", ".cc", ".cpp", ".cxx", ".c++", ".m", ".mm"):
                    # hmm, should we do something about C vs. C++ sources?
                    # or leave it up to the CCompiler implementation to
                    # worry about?
                    ext.sources.append(word)
                elif switch == "-I":
                    ext.include_dirs.append(value)
                elif switch == "-D":
                    equals = value.find("=")
                    if equals == -1:        # bare "-DFOO" -- no value
                        ext.define_macros.append((value, None))
                    else:                   # "-DFOO=blah"
                        ext.define_macros.append((value[0:equals],
                                                  value[equals+2:]))
                elif switch == "-U":
                    ext.undef_macros.append(value)
                elif switch == "-C":        # only here 'cause makesetup has it!
                    ext.extra_compile_args.append(word)
                elif switch == "-l":
                    ext.libraries.append(value)
                elif switch == "-L":
                    ext.library_dirs.append(value)
                elif switch == "-R":
                    ext.runtime_library_dirs.append(value)
                elif word == "-rpath":
                    append_next_word = ext.runtime_library_dirs
                elif word == "-Xlinker":
                    append_next_word = ext.extra_link_args
                elif word == "-Xcompiler":
                    append_next_word = ext.extra_compile_args
                elif switch == "-u":
                    ext.extra_link_args.append(word)
                    if not value:
                        append_next_word = ext.extra_link_args
                elif suffix in (".a", ".so", ".sl", ".o", ".dylib"):
                    # NB. a really faithful emulation of makesetup would
                    # append a .o file to extra_objects only if it
                    # had a slash in it; otherwise, it would s/.o/.c/
                    # and append it to sources.  Hmmmm.
                    ext.extra_objects.append(word)
                else:
                    file.warn("unrecognized argument '%s'" % word)

            extensions.append(ext)
    finally:
        file.close()

    return extensions
lib\distutils\fancy_getopt.py
"""distutils.fancy_getopt

Wrapper around the standard getopt module that provides the following
additional features:
  * short and long options are tied together
  * options have help strings, so fancy_getopt could potentially
    create a complete usage summary
  * options set attributes of a passed-in object
"""

import sys, string, re
import getopt
from distutils.errors import *

# Much like command_re in distutils.core, this is close to but not quite
# the same as a Python NAME -- except, in the spirit of most GNU
# utilities, we use '-' in place of '_'.  (The spirit of LISP lives on!)
# The similarities to NAME are again not a coincidence...
longopt_pat = r'[a-zA-Z](?:[a-zA-Z0-9-]*)'
longopt_re = re.compile(r'^%s$' % longopt_pat)

# For recognizing "negative alias" options, eg. "quiet=!verbose"
neg_alias_re = re.compile("^(%s)=!(%s)$" % (longopt_pat, longopt_pat))

# This is used to translate long options to legitimate Python identifiers
# (for use as attributes of some object).
longopt_xlate = str.maketrans('-', '_')

class FancyGetopt:
    """Wrapper around the standard 'getopt()' module that provides some
    handy extra functionality:
      * short and long options are tied together
      * options have help strings, and help text can be assembled
        from them
      * options set attributes of a passed-in object
      * boolean options can have "negative aliases" -- eg. if
        --quiet is the "negative alias" of --verbose, then "--quiet"
        on the command line sets 'verbose' to false
    """

    def __init__(self, option_table=None):
        # The option table is (currently) a list of tuples.  The
        # tuples may have 3 or four values:
        #   (long_option, short_option, help_string [, repeatable])
        # if an option takes an argument, its long_option should have '='
        # appended; short_option should just be a single character, no ':'
        # in any case.  If a long_option doesn't have a corresponding
        # short_option, short_option should be None.  All option tuples
        # must have long options.
        self.option_table = option_table

        # 'option_index' maps long option names to entries in the option
        # table (ie. those 3-tuples).
        self.option_index = {}
        if self.option_table:
            self._build_index()

        # 'alias' records (duh) alias options; {'foo': 'bar'} means
        # --foo is an alias for --bar
        self.alias = {}

        # 'negative_alias' keeps track of options that are the boolean
        # opposite of some other option
        self.negative_alias = {}

        # These keep track of the information in the option table.  We
        # don't actually populate these structures until we're ready to
        # parse the command-line, since the 'option_table' passed in here
        # isn't necessarily the final word.
        self.short_opts = []
        self.long_opts = []
        self.short2long = {}
        self.attr_name = {}
        self.takes_arg = {}

        # And 'option_order' is filled up in 'getopt()'; it records the
        # original order of options (and their values) on the command-line,
        # but expands short options, converts aliases, etc.
        self.option_order = []

    def _build_index(self):
        self.option_index.clear()
        for option in self.option_table:
            self.option_index[option[0]] = option

    def set_option_table(self, option_table):
        self.option_table = option_table
        self._build_index()

    def add_option(self, long_option, short_option=None, help_string=None):
        if long_option in self.option_index:
            raise DistutilsGetoptError(
                  "option conflict: already an option '%s'" % long_option)
        else:
            option = (long_option, short_option, help_string)
            self.option_table.append(option)
            self.option_index[long_option] = option

    def has_option(self, long_option):
        """Return true if the option table for this parser has an
        option with long name 'long_option'."""
        return long_option in self.option_index

    def get_attr_name(self, long_option):
        """Translate long option name 'long_option' to the form it
        has as an attribute of some object: ie., translate hyphens
        to underscores."""
        return long_option.translate(longopt_xlate)

    def _check_alias_dict(self, aliases, what):
        assert isinstance(aliases, dict)
        for (alias, opt) in aliases.items():
            if alias not in self.option_index:
                raise DistutilsGetoptError(("invalid %s '%s': "
                       "option '%s' not defined") % (what, alias, alias))
            if opt not in self.option_index:
                raise DistutilsGetoptError(("invalid %s '%s': "
                       "aliased option '%s' not defined") % (what, alias, opt))

    def set_aliases(self, alias):
        """Set the aliases for this option parser."""
        self._check_alias_dict(alias, "alias")
        self.alias = alias

    def set_negative_aliases(self, negative_alias):
        """Set the negative aliases for this option parser.
        'negative_alias' should be a dictionary mapping option names to
        option names, both the key and value must already be defined
        in the option table."""
        self._check_alias_dict(negative_alias, "negative alias")
        self.negative_alias = negative_alias

    def _grok_option_table(self):
        """Populate the various data structures that keep tabs on the
        option table.  Called by 'getopt()' before it can do anything
        worthwhile.
        """
        self.long_opts = []
        self.short_opts = []
        self.short2long.clear()
        self.repeat = {}

        for option in self.option_table:
            if len(option) == 3:
                long, short, help = option
                repeat = 0
            elif len(option) == 4:
                long, short, help, repeat = option
            else:
                # the option table is part of the code, so simply
                # assert that it is correct
                raise ValueError("invalid option tuple: %r" % (option,))

            # Type- and value-check the option names
            if not isinstance(long, str) or len(long) < 2:
                raise DistutilsGetoptError(("invalid long option '%s': "
                       "must be a string of length >= 2") % long)

            if (not ((short is None) or
                     (isinstance(short, str) and len(short) == 1))):
                raise DistutilsGetoptError("invalid short option '%s': "
                       "must a single character or None" % short)

            self.repeat[long] = repeat
            self.long_opts.append(long)

            if long[-1] == '=':             # option takes an argument?
                if short: short = short + ':'
                long = long[0:-1]
                self.takes_arg[long] = 1
            else:
                # Is option is a "negative alias" for some other option (eg.
                # "quiet" == "!verbose")?
                alias_to = self.negative_alias.get(long)
                if alias_to is not None:
                    if self.takes_arg[alias_to]:
                        raise DistutilsGetoptError(
                              "invalid negative alias '%s': "
                              "aliased option '%s' takes a value"
                              % (long, alias_to))

                    self.long_opts[-1] = long # XXX redundant?!
                self.takes_arg[long] = 0

            # If this is an alias option, make sure its "takes arg" flag is
            # the same as the option it's aliased to.
            alias_to = self.alias.get(long)
            if alias_to is not None:
                if self.takes_arg[long] != self.takes_arg[alias_to]:
                    raise DistutilsGetoptError(
                          "invalid alias '%s': inconsistent with "
                          "aliased option '%s' (one of them takes a value, "
                          "the other doesn't"
                          % (long, alias_to))

            # Now enforce some bondage on the long option name, so we can
            # later translate it to an attribute name on some object.  Have
            # to do this a bit late to make sure we've removed any trailing
            # '='.
            if not longopt_re.match(long):
                raise DistutilsGetoptError(
                       "invalid long option name '%s' "
                       "(must be letters, numbers, hyphens only" % long)

            self.attr_name[long] = self.get_attr_name(long)
            if short:
                self.short_opts.append(short)
                self.short2long[short[0]] = long

    def getopt(self, args=None, object=None):
        """Parse command-line options in args. Store as attributes on object.

        If 'args' is None or not supplied, uses 'sys.argv[1:]'.  If
        'object' is None or not supplied, creates a new OptionDummy
        object, stores option values there, and returns a tuple (args,
        object).  If 'object' is supplied, it is modified in place and
        'getopt()' just returns 'args'; in both cases, the returned
        'args' is a modified copy of the passed-in 'args' list, which
        is left untouched.
        """
        if args is None:
            args = sys.argv[1:]
        if object is None:
            object = OptionDummy()
            created_object = True
        else:
            created_object = False

        self._grok_option_table()

        short_opts = ' '.join(self.short_opts)
        try:
            opts, args = getopt.getopt(args, short_opts, self.long_opts)
        except getopt.error as msg:
            raise DistutilsArgError(msg)

        for opt, val in opts:
            if len(opt) == 2 and opt[0] == '-': # it's a short option
                opt = self.short2long[opt[1]]
            else:
                assert len(opt) > 2 and opt[:2] == '--'
                opt = opt[2:]

            alias = self.alias.get(opt)
            if alias:
                opt = alias

            if not self.takes_arg[opt]:     # boolean option?
                assert val == '', "boolean option can't have value"
                alias = self.negative_alias.get(opt)
                if alias:
                    opt = alias
                    val = 0
                else:
                    val = 1

            attr = self.attr_name[opt]
            # The only repeating option at the moment is 'verbose'.
            # It has a negative option -q quiet, which should set verbose = 0.
            if val and self.repeat.get(attr) is not None:
                val = getattr(object, attr, 0) + 1
            setattr(object, attr, val)
            self.option_order.append((opt, val))

        # for opts
        if created_object:
            return args, object
        else:
            return args

    def get_option_order(self):
        """Returns the list of (option, value) tuples processed by the
        previous run of 'getopt()'.  Raises RuntimeError if
        'getopt()' hasn't been called yet.
        """
        if self.option_order is None:
            raise RuntimeError("'getopt()' hasn't been called yet")
        else:
            return self.option_order

    def generate_help(self, header=None):
        """Generate help text (a list of strings, one per suggested line of
        output) from the option table for this FancyGetopt object.
        """
        # Blithely assume the option table is good: probably wouldn't call
        # 'generate_help()' unless you've already called 'getopt()'.

        # First pass: determine maximum length of long option names
        max_opt = 0
        for option in self.option_table:
            long = option[0]
            short = option[1]
            l = len(long)
            if long[-1] == '=':
                l = l - 1
            if short is not None:
                l = l + 5                   # " (-x)" where short == 'x'
            if l > max_opt:
                max_opt = l

        opt_width = max_opt + 2 + 2 + 2     # room for indent + dashes + gutter

        # Typical help block looks like this:
        #   --foo       controls foonabulation
        # Help block for longest option looks like this:
        #   --flimflam  set the flim-flam level
        # and with wrapped text:
        #   --flimflam  set the flim-flam level (must be between
        #               0 and 100, except on Tuesdays)
        # Options with short names will have the short name shown (but
        # it doesn't contribute to max_opt):
        #   --foo (-f)  controls foonabulation
        # If adding the short option would make the left column too wide,
        # we push the explanation off to the next line
        #   --flimflam (-l)
        #               set the flim-flam level
        # Important parameters:
        #   - 2 spaces before option block start lines
        #   - 2 dashes for each long option name
        #   - min. 2 spaces between option and explanation (gutter)
        #   - 5 characters (incl. space) for short option name

        # Now generate lines of help text.  (If 80 columns were good enough
        # for Jesus, then 78 columns are good enough for me!)
        line_width = 78
        text_width = line_width - opt_width
        big_indent = ' ' * opt_width
        if header:
            lines = [header]
        else:
            lines = ['Option summary:']

        for option in self.option_table:
            long, short, help = option[:3]
            text = wrap_text(help, text_width)
            if long[-1] == '=':
                long = long[0:-1]

            # Case 1: no short option at all (makes life easy)
            if short is None:
                if text:
                    lines.append("  --%-*s  %s" % (max_opt, long, text[0]))
                else:
                    lines.append("  --%-*s  " % (max_opt, long))

            # Case 2: we have a short option, so we have to include it
            # just after the long option
            else:
                opt_names = "%s (-%s)" % (long, short)
                if text:
                    lines.append("  --%-*s  %s" %
                                 (max_opt, opt_names, text[0]))
                else:
                    lines.append("  --%-*s" % opt_names)

            for l in text[1:]:
                lines.append(big_indent + l)
        return lines

    def print_help(self, header=None, file=None):
        if file is None:
            file = sys.stdout
        for line in self.generate_help(header):
            file.write(line + "\n")


def fancy_getopt(options, negative_opt, object, args):
    parser = FancyGetopt(options)
    parser.set_negative_aliases(negative_opt)
    return parser.getopt(args, object)


WS_TRANS = {ord(_wschar) : ' ' for _wschar in string.whitespace}

def wrap_text(text, width):
    """wrap_text(text : string, width : int) -> [string]

    Split 'text' into multiple lines of no more than 'width' characters
    each, and return the list of strings that results.
    """
    if text is None:
        return []
    if len(text) <= width:
        return [text]

    text = text.expandtabs()
    text = text.translate(WS_TRANS)
    chunks = re.split(r'( +|-+)', text)
    chunks = [ch for ch in chunks if ch] # ' - ' results in empty strings
    lines = []

    while chunks:
        cur_line = []                   # list of chunks (to-be-joined)
        cur_len = 0                     # length of current line

        while chunks:
            l = len(chunks[0])
            if cur_len + l <= width:    # can squeeze (at least) this chunk in
                cur_line.append(chunks[0])
                del chunks[0]
                cur_len = cur_len + l
            else:                       # this line is full
                # drop last chunk if all space
                if cur_line and cur_line[-1][0] == ' ':
                    del cur_line[-1]
                break

        if chunks:                      # any chunks left to process?
            # if the current line is still empty, then we had a single
            # chunk that's too big too fit on a line -- so we break
            # down and break it up at the line width
            if cur_len == 0:
                cur_line.append(chunks[0][0:width])
                chunks[0] = chunks[0][width:]

            # all-whitespace chunks at the end of a line can be discarded
            # (and we know from the re.split above that if a chunk has
            # *any* whitespace, it is *all* whitespace)
            if chunks[0][0] == ' ':
                del chunks[0]

        # and store this line in the list-of-all-lines -- as a single
        # string, of course!
        lines.append(''.join(cur_line))

    return lines


def translate_longopt(opt):
    """Convert a long option name to a valid Python identifier by
    changing "-" to "_".
    """
    return opt.translate(longopt_xlate)


class OptionDummy:
    """Dummy class just used as a place to hold command-line option
    values as instance attributes."""

    def __init__(self, options=[]):
        """Create a new OptionDummy instance.  The attributes listed in
        'options' will be initialized to None."""
        for opt in options:
            setattr(self, opt, None)


if __name__ == "__main__":
    text = """\
Tra-la-la, supercalifragilisticexpialidocious.
How *do* you spell that odd word, anyways?
(Someone ask Mary -- she'll know [or she'll
say, "How should I know?"].)"""

    for w in (10, 20, 30, 40):
        print("width: %d" % w)
        print("\n".join(wrap_text(text, w)))
        print()
lib\distutils\filelist.py
"""distutils.filelist

Provides the FileList class, used for poking about the filesystem
and building lists of files.
"""

import os, re
import fnmatch
from distutils.util import convert_path
from distutils.errors import DistutilsTemplateError, DistutilsInternalError
from distutils import log

class FileList:
    """A list of files built by on exploring the filesystem and filtered by
    applying various patterns to what we find there.

    Instance attributes:
      dir
        directory from which files will be taken -- only used if
        'allfiles' not supplied to constructor
      files
        list of filenames currently being built/filtered/manipulated
      allfiles
        complete list of files under consideration (ie. without any
        filtering applied)
    """

    def __init__(self, warn=None, debug_print=None):
        # ignore argument to FileList, but keep them for backwards
        # compatibility
        self.allfiles = None
        self.files = []

    def set_allfiles(self, allfiles):
        self.allfiles = allfiles

    def findall(self, dir=os.curdir):
        self.allfiles = findall(dir)

    def debug_print(self, msg):
        """Print 'msg' to stdout if the global DEBUG (taken from the
        DISTUTILS_DEBUG environment variable) flag is true.
        """
        from distutils.debug import DEBUG
        if DEBUG:
            print(msg)

    # -- List-like methods ---------------------------------------------

    def append(self, item):
        self.files.append(item)

    def extend(self, items):
        self.files.extend(items)

    def sort(self):
        # Not a strict lexical sort!
        sortable_files = sorted(map(os.path.split, self.files))
        self.files = []
        for sort_tuple in sortable_files:
            self.files.append(os.path.join(*sort_tuple))


    # -- Other miscellaneous utility methods ---------------------------

    def remove_duplicates(self):
        # Assumes list has been sorted!
        for i in range(len(self.files) - 1, 0, -1):
            if self.files[i] == self.files[i - 1]:
                del self.files[i]


    # -- "File template" methods ---------------------------------------

    def _parse_template_line(self, line):
        words = line.split()
        action = words[0]

        patterns = dir = dir_pattern = None

        if action in ('include', 'exclude',
                      'global-include', 'global-exclude'):
            if len(words) < 2:
                raise DistutilsTemplateError(
                      "'%s' expects <pattern1> <pattern2> ..." % action)
            patterns = [convert_path(w) for w in words[1:]]
        elif action in ('recursive-include', 'recursive-exclude'):
            if len(words) < 3:
                raise DistutilsTemplateError(
                      "'%s' expects <dir> <pattern1> <pattern2> ..." % action)
            dir = convert_path(words[1])
            patterns = [convert_path(w) for w in words[2:]]
        elif action in ('graft', 'prune'):
            if len(words) != 2:
                raise DistutilsTemplateError(
                      "'%s' expects a single <dir_pattern>" % action)
            dir_pattern = convert_path(words[1])
        else:
            raise DistutilsTemplateError("unknown action '%s'" % action)

        return (action, patterns, dir, dir_pattern)

    def process_template_line(self, line):
        # Parse the line: split it up, make sure the right number of words
        # is there, and return the relevant words.  'action' is always
        # defined: it's the first word of the line.  Which of the other
        # three are defined depends on the action; it'll be either
        # patterns, (dir and patterns), or (dir_pattern).
        (action, patterns, dir, dir_pattern) = self._parse_template_line(line)

        # OK, now we know that the action is valid and we have the
        # right number of words on the line for that action -- so we
        # can proceed with minimal error-checking.
        if action == 'include':
            self.debug_print("include " + ' '.join(patterns))
            for pattern in patterns:
                if not self.include_pattern(pattern, anchor=1):
                    log.warn("warning: no files found matching '%s'",
                             pattern)

        elif action == 'exclude':
            self.debug_print("exclude " + ' '.join(patterns))
            for pattern in patterns:
                if not self.exclude_pattern(pattern, anchor=1):
                    log.warn(("warning: no previously-included files "
                              "found matching '%s'"), pattern)

        elif action == 'global-include':
            self.debug_print("global-include " + ' '.join(patterns))
            for pattern in patterns:
                if not self.include_pattern(pattern, anchor=0):
                    log.warn(("warning: no files found matching '%s' "
                              "anywhere in distribution"), pattern)

        elif action == 'global-exclude':
            self.debug_print("global-exclude " + ' '.join(patterns))
            for pattern in patterns:
                if not self.exclude_pattern(pattern, anchor=0):
                    log.warn(("warning: no previously-included files matching "
                              "'%s' found anywhere in distribution"),
                             pattern)

        elif action == 'recursive-include':
            self.debug_print("recursive-include %s %s" %
                             (dir, ' '.join(patterns)))
            for pattern in patterns:
                if not self.include_pattern(pattern, prefix=dir):
                    log.warn(("warning: no files found matching '%s' "
                                "under directory '%s'"),
                             pattern, dir)

        elif action == 'recursive-exclude':
            self.debug_print("recursive-exclude %s %s" %
                             (dir, ' '.join(patterns)))
            for pattern in patterns:
                if not self.exclude_pattern(pattern, prefix=dir):
                    log.warn(("warning: no previously-included files matching "
                              "'%s' found under directory '%s'"),
                             pattern, dir)

        elif action == 'graft':
            self.debug_print("graft " + dir_pattern)
            if not self.include_pattern(None, prefix=dir_pattern):
                log.warn("warning: no directories found matching '%s'",
                         dir_pattern)

        elif action == 'prune':
            self.debug_print("prune " + dir_pattern)
            if not self.exclude_pattern(None, prefix=dir_pattern):
                log.warn(("no previously-included directories found "
                          "matching '%s'"), dir_pattern)
        else:
            raise DistutilsInternalError(
                  "this cannot happen: invalid action '%s'" % action)


    # -- Filtering/selection methods -----------------------------------

    def include_pattern(self, pattern, anchor=1, prefix=None, is_regex=0):
        """Select strings (presumably filenames) from 'self.files' that
        match 'pattern', a Unix-style wildcard (glob) pattern.  Patterns
        are not quite the same as implemented by the 'fnmatch' module: '*'
        and '?'  match non-special characters, where "special" is platform-
        dependent: slash on Unix; colon, slash, and backslash on
        DOS/Windows; and colon on Mac OS.

        If 'anchor' is true (the default), then the pattern match is more
        stringent: "*.py" will match "foo.py" but not "foo/bar.py".  If
        'anchor' is false, both of these will match.

        If 'prefix' is supplied, then only filenames starting with 'prefix'
        (itself a pattern) and ending with 'pattern', with anything in between
        them, will match.  'anchor' is ignored in this case.

        If 'is_regex' is true, 'anchor' and 'prefix' are ignored, and
        'pattern' is assumed to be either a string containing a regex or a
        regex object -- no translation is done, the regex is just compiled
        and used as-is.

        Selected strings will be added to self.files.

        Return True if files are found, False otherwise.
        """
        # XXX docstring lying about what the special chars are?
        files_found = False
        pattern_re = translate_pattern(pattern, anchor, prefix, is_regex)
        self.debug_print("include_pattern: applying regex r'%s'" %
                         pattern_re.pattern)

        # delayed loading of allfiles list
        if self.allfiles is None:
            self.findall()

        for name in self.allfiles:
            if pattern_re.search(name):
                self.debug_print(" adding " + name)
                self.files.append(name)
                files_found = True
        return files_found


    def exclude_pattern (self, pattern,
                         anchor=1, prefix=None, is_regex=0):
        """Remove strings (presumably filenames) from 'files' that match
        'pattern'.  Other parameters are the same as for
        'include_pattern()', above.
        The list 'self.files' is modified in place.
        Return True if files are found, False otherwise.
        """
        files_found = False
        pattern_re = translate_pattern(pattern, anchor, prefix, is_regex)
        self.debug_print("exclude_pattern: applying regex r'%s'" %
                         pattern_re.pattern)
        for i in range(len(self.files)-1, -1, -1):
            if pattern_re.search(self.files[i]):
                self.debug_print(" removing " + self.files[i])
                del self.files[i]
                files_found = True
        return files_found


# ----------------------------------------------------------------------
# Utility functions

def findall(dir=os.curdir):
    """Find all files under 'dir' and return the list of full filenames
    (relative to 'dir').
    """
    from stat import ST_MODE, S_ISREG, S_ISDIR, S_ISLNK

    list = []
    stack = [dir]
    pop = stack.pop
    push = stack.append

    while stack:
        dir = pop()
        names = os.listdir(dir)

        for name in names:
            if dir != os.curdir:        # avoid the dreaded "./" syndrome
                fullname = os.path.join(dir, name)
            else:
                fullname = name

            # Avoid excess stat calls -- just one will do, thank you!
            stat = os.stat(fullname)
            mode = stat[ST_MODE]
            if S_ISREG(mode):
                list.append(fullname)
            elif S_ISDIR(mode) and not S_ISLNK(mode):
                push(fullname)
    return list


def glob_to_re(pattern):
    """Translate a shell-like glob pattern to a regular expression; return
    a string containing the regex.  Differs from 'fnmatch.translate()' in
    that '*' does not match "special characters" (which are
    platform-specific).
    """
    pattern_re = fnmatch.translate(pattern)

    # '?' and '*' in the glob pattern become '.' and '.*' in the RE, which
    # IMHO is wrong -- '?' and '*' aren't supposed to match slash in Unix,
    # and by extension they shouldn't match such "special characters" under
    # any OS.  So change all non-escaped dots in the RE to match any
    # character except the special characters (currently: just os.sep).
    sep = os.sep
    if os.sep == '\\':
        # we're using a regex to manipulate a regex, so we need
        # to escape the backslash twice
        sep = r'\\\\'
    escaped = r'\1[^%s]' % sep
    pattern_re = re.sub(r'((?<!\\)(\\\\)*)\.', escaped, pattern_re)
    return pattern_re


def translate_pattern(pattern, anchor=1, prefix=None, is_regex=0):
    """Translate a shell-like wildcard pattern to a compiled regular
    expression.  Return the compiled regex.  If 'is_regex' true,
    then 'pattern' is directly compiled to a regex (if it's a string)
    or just returned as-is (assumes it's a regex object).
    """
    if is_regex:
        if isinstance(pattern, str):
            return re.compile(pattern)
        else:
            return pattern

    if pattern:
        pattern_re = glob_to_re(pattern)
    else:
        pattern_re = ''

    if prefix is not None:
        # ditch end of pattern character
        empty_pattern = glob_to_re('')
        prefix_re = glob_to_re(prefix)[:-len(empty_pattern)]
        sep = os.sep
        if os.sep == '\\':
            sep = r'\\'
        pattern_re = "^" + sep.join((prefix_re, ".*" + pattern_re))
    else:                               # no prefix -- respect anchor flag
        if anchor:
            pattern_re = "^" + pattern_re

    return re.compile(pattern_re)
lib\distutils\file_util.py
"""distutils.file_util

Utility functions for operating on single files.
"""

import os
from distutils.errors import DistutilsFileError
from distutils import log

# for generating verbose output in 'copy_file()'
_copy_action = { None:   'copying',
                 'hard': 'hard linking',
                 'sym':  'symbolically linking' }


def _copy_file_contents(src, dst, buffer_size=16*1024):
    """Copy the file 'src' to 'dst'; both must be filenames.  Any error
    opening either file, reading from 'src', or writing to 'dst', raises
    DistutilsFileError.  Data is read/written in chunks of 'buffer_size'
    bytes (default 16k).  No attempt is made to handle anything apart from
    regular files.
    """
    # Stolen from shutil module in the standard library, but with
    # custom error-handling added.
    fsrc = None
    fdst = None
    try:
        try:
            fsrc = open(src, 'rb')
        except OSError as e:
            raise DistutilsFileError("could not open '%s': %s" % (src, e.strerror))

        if os.path.exists(dst):
            try:
                os.unlink(dst)
            except OSError as e:
                raise DistutilsFileError(
                      "could not delete '%s': %s" % (dst, e.strerror))

        try:
            fdst = open(dst, 'wb')
        except OSError as e:
            raise DistutilsFileError(
                  "could not create '%s': %s" % (dst, e.strerror))

        while True:
            try:
                buf = fsrc.read(buffer_size)
            except OSError as e:
                raise DistutilsFileError(
                      "could not read from '%s': %s" % (src, e.strerror))

            if not buf:
                break

            try:
                fdst.write(buf)
            except OSError as e:
                raise DistutilsFileError(
                      "could not write to '%s': %s" % (dst, e.strerror))
    finally:
        if fdst:
            fdst.close()
        if fsrc:
            fsrc.close()

def copy_file(src, dst, preserve_mode=1, preserve_times=1, update=0,
              link=None, verbose=1, dry_run=0):
    """Copy a file 'src' to 'dst'.  If 'dst' is a directory, then 'src' is
    copied there with the same name; otherwise, it must be a filename.  (If
    the file exists, it will be ruthlessly clobbered.)  If 'preserve_mode'
    is true (the default), the file's mode (type and permission bits, or
    whatever is analogous on the current platform) is copied.  If
    'preserve_times' is true (the default), the last-modified and
    last-access times are copied as well.  If 'update' is true, 'src' will
    only be copied if 'dst' does not exist, or if 'dst' does exist but is
    older than 'src'.

    'link' allows you to make hard links (os.link) or symbolic links
    (os.symlink) instead of copying: set it to "hard" or "sym"; if it is
    None (the default), files are copied.  Don't set 'link' on systems that
    don't support it: 'copy_file()' doesn't check if hard or symbolic
    linking is available. If hardlink fails, falls back to
    _copy_file_contents().

    Under Mac OS, uses the native file copy function in macostools; on
    other systems, uses '_copy_file_contents()' to copy file contents.

    Return a tuple (dest_name, copied): 'dest_name' is the actual name of
    the output file, and 'copied' is true if the file was copied (or would
    have been copied, if 'dry_run' true).
    """
    # XXX if the destination file already exists, we clobber it if
    # copying, but blow up if linking.  Hmmm.  And I don't know what
    # macostools.copyfile() does.  Should definitely be consistent, and
    # should probably blow up if destination exists and we would be
    # changing it (ie. it's not already a hard/soft link to src OR
    # (not update) and (src newer than dst).

    from distutils.dep_util import newer
    from stat import ST_ATIME, ST_MTIME, ST_MODE, S_IMODE

    if not os.path.isfile(src):
        raise DistutilsFileError(
              "can't copy '%s': doesn't exist or not a regular file" % src)

    if os.path.isdir(dst):
        dir = dst
        dst = os.path.join(dst, os.path.basename(src))
    else:
        dir = os.path.dirname(dst)

    if update and not newer(src, dst):
        if verbose >= 1:
            log.debug("not copying %s (output up-to-date)", src)
        return (dst, 0)

    try:
        action = _copy_action[link]
    except KeyError:
        raise ValueError("invalid value '%s' for 'link' argument" % link)

    if verbose >= 1:
        if os.path.basename(dst) == os.path.basename(src):
            log.info("%s %s -> %s", action, src, dir)
        else:
            log.info("%s %s -> %s", action, src, dst)

    if dry_run:
        return (dst, 1)

    # If linking (hard or symbolic), use the appropriate system call
    # (Unix only, of course, but that's the caller's responsibility)
    elif link == 'hard':
        if not (os.path.exists(dst) and os.path.samefile(src, dst)):
            try:
                os.link(src, dst)
                return (dst, 1)
            except OSError:
                # If hard linking fails, fall back on copying file
                # (some special filesystems don't support hard linking
                #  even under Unix, see issue #8876).
                pass
    elif link == 'sym':
        if not (os.path.exists(dst) and os.path.samefile(src, dst)):
            os.symlink(src, dst)
            return (dst, 1)

    # Otherwise (non-Mac, not linking), copy the file contents and
    # (optionally) copy the times and mode.
    _copy_file_contents(src, dst)
    if preserve_mode or preserve_times:
        st = os.stat(src)

        # According to David Ascher <[email protected]>, utime() should be done
        # before chmod() (at least under NT).
        if preserve_times:
            os.utime(dst, (st[ST_ATIME], st[ST_MTIME]))
        if preserve_mode:
            os.chmod(dst, S_IMODE(st[ST_MODE]))

    return (dst, 1)


# XXX I suspect this is Unix-specific -- need porting help!
def move_file (src, dst,
               verbose=1,
               dry_run=0):

    """Move a file 'src' to 'dst'.  If 'dst' is a directory, the file will
    be moved into it with the same name; otherwise, 'src' is just renamed
    to 'dst'.  Return the new full name of the file.

    Handles cross-device moves on Unix using 'copy_file()'.  What about
    other systems???
    """
    from os.path import exists, isfile, isdir, basename, dirname
    import errno

    if verbose >= 1:
        log.info("moving %s -> %s", src, dst)

    if dry_run:
        return dst

    if not isfile(src):
        raise DistutilsFileError("can't move '%s': not a regular file" % src)

    if isdir(dst):
        dst = os.path.join(dst, basename(src))
    elif exists(dst):
        raise DistutilsFileError(
              "can't move '%s': destination '%s' already exists" %
              (src, dst))

    if not isdir(dirname(dst)):
        raise DistutilsFileError(
              "can't move '%s': destination '%s' not a valid path" %
              (src, dst))

    copy_it = False
    try:
        os.rename(src, dst)
    except OSError as e:
        (num, msg) = e.args
        if num == errno.EXDEV:
            copy_it = True
        else:
            raise DistutilsFileError(
                  "couldn't move '%s' to '%s': %s" % (src, dst, msg))

    if copy_it:
        copy_file(src, dst, verbose=verbose)
        try:
            os.unlink(src)
        except OSError as e:
            (num, msg) = e.args
            try:
                os.unlink(dst)
            except OSError:
                pass
            raise DistutilsFileError(
                  "couldn't move '%s' to '%s' by copy/delete: "
                  "delete '%s' failed: %s"
                  % (src, dst, src, msg))
    return dst


def write_file (filename, contents):
    """Create a file with the specified name and write 'contents' (a
    sequence of strings without line terminators) to it.
    """
    f = open(filename, "w")
    try:
        for line in contents:
            f.write(line + "\n")
    finally:
        f.close()
lib\distutils\log.py
"""A simple log mechanism styled after PEP 282."""

# The class here is styled after PEP 282 so that it could later be
# replaced with a standard Python logging implementation.

DEBUG = 1
INFO = 2
WARN = 3
ERROR = 4
FATAL = 5

import sys

class Log:

    def __init__(self, threshold=WARN):
        self.threshold = threshold

    def _log(self, level, msg, args):
        if level not in (DEBUG, INFO, WARN, ERROR, FATAL):
            raise ValueError('%s wrong log level' % str(level))

        if level >= self.threshold:
            if args:
                msg = msg % args
            if level in (WARN, ERROR, FATAL):
                stream = sys.stderr
            else:
                stream = sys.stdout
            if stream.errors == 'strict':
                # emulate backslashreplace error handler
                encoding = stream.encoding
                msg = msg.encode(encoding, "backslashreplace").decode(encoding)
            stream.write('%s\n' % msg)
            stream.flush()

    def log(self, level, msg, *args):
        self._log(level, msg, args)

    def debug(self, msg, *args):
        self._log(DEBUG, msg, args)

    def info(self, msg, *args):
        self._log(INFO, msg, args)

    def warn(self, msg, *args):
        self._log(WARN, msg, args)

    def error(self, msg, *args):
        self._log(ERROR, msg, args)

    def fatal(self, msg, *args):
        self._log(FATAL, msg, args)

_global_log = Log()
log = _global_log.log
debug = _global_log.debug
info = _global_log.info
warn = _global_log.warn
error = _global_log.error
fatal = _global_log.fatal

def set_threshold(level):
    # return the old threshold for use from tests
    old = _global_log.threshold
    _global_log.threshold = level
    return old

def set_verbosity(v):
    if v <= 0:
        set_threshold(WARN)
    elif v == 1:
        set_threshold(INFO)
    elif v >= 2:
        set_threshold(DEBUG)
lib\distutils\msvc9compiler.py
"""distutils.msvc9compiler

Contains MSVCCompiler, an implementation of the abstract CCompiler class
for the Microsoft Visual Studio 2008.

The module is compatible with VS 2005 and VS 2008. You can find legacy support
for older versions of VS in distutils.msvccompiler.
"""

# Written by Perry Stoll
# hacked by Robin Becker and Thomas Heller to do a better job of
#   finding DevStudio (through the registry)
# ported to VS2005 and VS 2008 by Christian Heimes

import os
import subprocess
import sys
import re

from distutils.errors import DistutilsExecError, DistutilsPlatformError, \
                             CompileError, LibError, LinkError
from distutils.ccompiler import CCompiler, gen_preprocess_options, \
                                gen_lib_options
from distutils import log
from distutils.util import get_platform

import winreg

RegOpenKeyEx = winreg.OpenKeyEx
RegEnumKey = winreg.EnumKey
RegEnumValue = winreg.EnumValue
RegError = winreg.error

HKEYS = (winreg.HKEY_USERS,
         winreg.HKEY_CURRENT_USER,
         winreg.HKEY_LOCAL_MACHINE,
         winreg.HKEY_CLASSES_ROOT)

NATIVE_WIN64 = (sys.platform == 'win32' and sys.maxsize > 2**32)
if NATIVE_WIN64:
    # Visual C++ is a 32-bit application, so we need to look in
    # the corresponding registry branch, if we're running a
    # 64-bit Python on Win64
    VS_BASE = r"Software\Wow6432Node\Microsoft\VisualStudio\%0.1f"
    WINSDK_BASE = r"Software\Wow6432Node\Microsoft\Microsoft SDKs\Windows"
    NET_BASE = r"Software\Wow6432Node\Microsoft\.NETFramework"
else:
    VS_BASE = r"Software\Microsoft\VisualStudio\%0.1f"
    WINSDK_BASE = r"Software\Microsoft\Microsoft SDKs\Windows"
    NET_BASE = r"Software\Microsoft\.NETFramework"

# A map keyed by get_platform() return values to values accepted by
# 'vcvarsall.bat'.  Note a cross-compile may combine these (eg, 'x86_amd64' is
# the param to cross-compile on x86 targetting amd64.)
PLAT_TO_VCVARS = {
    'win32' : 'x86',
    'win-amd64' : 'amd64',
    'win-ia64' : 'ia64',
}

class Reg:
    """Helper class to read values from the registry
    """

    def get_value(cls, path, key):
        for base in HKEYS:
            d = cls.read_values(base, path)
            if d and key in d:
                return d[key]
        raise KeyError(key)
    get_value = classmethod(get_value)

    def read_keys(cls, base, key):
        """Return list of registry keys."""
        try:
            handle = RegOpenKeyEx(base, key)
        except RegError:
            return None
        L = []
        i = 0
        while True:
            try:
                k = RegEnumKey(handle, i)
            except RegError:
                break
            L.append(k)
            i += 1
        return L
    read_keys = classmethod(read_keys)

    def read_values(cls, base, key):
        """Return dict of registry keys and values.

        All names are converted to lowercase.
        """
        try:
            handle = RegOpenKeyEx(base, key)
        except RegError:
            return None
        d = {}
        i = 0
        while True:
            try:
                name, value, type = RegEnumValue(handle, i)
            except RegError:
                break
            name = name.lower()
            d[cls.convert_mbcs(name)] = cls.convert_mbcs(value)
            i += 1
        return d
    read_values = classmethod(read_values)

    def convert_mbcs(s):
        dec = getattr(s, "decode", None)
        if dec is not None:
            try:
                s = dec("mbcs")
            except UnicodeError:
                pass
        return s
    convert_mbcs = staticmethod(convert_mbcs)

class MacroExpander:

    def __init__(self, version):
        self.macros = {}
        self.vsbase = VS_BASE % version
        self.load_macros(version)

    def set_macro(self, macro, path, key):
        self.macros["$(%s)" % macro] = Reg.get_value(path, key)

    def load_macros(self, version):
        self.set_macro("VCInstallDir", self.vsbase + r"\Setup\VC", "productdir")
        self.set_macro("VSInstallDir", self.vsbase + r"\Setup\VS", "productdir")
        self.set_macro("FrameworkDir", NET_BASE, "installroot")
        try:
            if version >= 8.0:
                self.set_macro("FrameworkSDKDir", NET_BASE,
                               "sdkinstallrootv2.0")
            else:
                raise KeyError("sdkinstallrootv2.0")
        except KeyError:
            raise DistutilsPlatformError(
            """Python was built with Visual Studio 2008;
extensions must be built with a compiler than can generate compatible binaries.
Visual Studio 2008 was not found on this system. If you have Cygwin installed,
you can try compiling with MingW32, by passing "-c mingw32" to setup.py.""")

        if version >= 9.0:
            self.set_macro("FrameworkVersion", self.vsbase, "clr version")
            self.set_macro("WindowsSdkDir", WINSDK_BASE, "currentinstallfolder")
        else:
            p = r"Software\Microsoft\NET Framework Setup\Product"
            for base in HKEYS:
                try:
                    h = RegOpenKeyEx(base, p)
                except RegError:
                    continue
                key = RegEnumKey(h, 0)
                d = Reg.get_value(base, r"%s\%s" % (p, key))
                self.macros["$(FrameworkVersion)"] = d["version"]

    def sub(self, s):
        for k, v in self.macros.items():
            s = s.replace(k, v)
        return s

def get_build_version():
    """Return the version of MSVC that was used to build Python.

    For Python 2.3 and up, the version number is included in
    sys.version.  For earlier versions, assume the compiler is MSVC 6.
    """
    prefix = "MSC v."
    i = sys.version.find(prefix)
    if i == -1:
        return 6
    i = i + len(prefix)
    s, rest = sys.version[i:].split(" ", 1)
    majorVersion = int(s[:-2]) - 6
    minorVersion = int(s[2:3]) / 10.0
    # I don't think paths are affected by minor version in version 6
    if majorVersion == 6:
        minorVersion = 0
    if majorVersion >= 6:
        return majorVersion + minorVersion
    # else we don't know what version of the compiler this is
    return None

def normalize_and_reduce_paths(paths):
    """Return a list of normalized paths with duplicates removed.

    The current order of paths is maintained.
    """
    # Paths are normalized so things like:  /a and /a/ aren't both preserved.
    reduced_paths = []
    for p in paths:
        np = os.path.normpath(p)
        # XXX(nnorwitz): O(n**2), if reduced_paths gets long perhaps use a set.
        if np not in reduced_paths:
            reduced_paths.append(np)
    return reduced_paths

def removeDuplicates(variable):
    """Remove duplicate values of an environment variable.
    """
    oldList = variable.split(os.pathsep)
    newList = []
    for i in oldList:
        if i not in newList:
            newList.append(i)
    newVariable = os.pathsep.join(newList)
    return newVariable

def find_vcvarsall(version):
    """Find the vcvarsall.bat file

    At first it tries to find the productdir of VS 2008 in the registry. If
    that fails it falls back to the VS90COMNTOOLS env var.
    """
    vsbase = VS_BASE % version
    try:
        productdir = Reg.get_value(r"%s\Setup\VC" % vsbase,
                                   "productdir")
    except KeyError:
        log.debug("Unable to find productdir in registry")
        productdir = None

    if not productdir or not os.path.isdir(productdir):
        toolskey = "VS%0.f0COMNTOOLS" % version
        toolsdir = os.environ.get(toolskey, None)

        if toolsdir and os.path.isdir(toolsdir):
            productdir = os.path.join(toolsdir, os.pardir, os.pardir, "VC")
            productdir = os.path.abspath(productdir)
            if not os.path.isdir(productdir):
                log.debug("%s is not a valid directory" % productdir)
                return None
        else:
            log.debug("Env var %s is not set or invalid" % toolskey)
    if not productdir:
        log.debug("No productdir found")
        return None
    vcvarsall = os.path.join(productdir, "vcvarsall.bat")
    if os.path.isfile(vcvarsall):
        return vcvarsall
    log.debug("Unable to find vcvarsall.bat")
    return None

def query_vcvarsall(version, arch="x86"):
    """Launch vcvarsall.bat and read the settings from its environment
    """
    vcvarsall = find_vcvarsall(version)
    interesting = set(("include", "lib", "libpath", "path"))
    result = {}

    if vcvarsall is None:
        raise DistutilsPlatformError("Unable to find vcvarsall.bat")
    log.debug("Calling 'vcvarsall.bat %s' (version=%s)", arch, version)
    popen = subprocess.Popen('"%s" %s & set' % (vcvarsall, arch),
                             stdout=subprocess.PIPE,
                             stderr=subprocess.PIPE)
    try:
        stdout, stderr = popen.communicate()
        if popen.wait() != 0:
            raise DistutilsPlatformError(stderr.decode("mbcs"))

        stdout = stdout.decode("mbcs")
        for line in stdout.split("\n"):
            line = Reg.convert_mbcs(line)
            if '=' not in line:
                continue
            line = line.strip()
            key, value = line.split('=', 1)
            key = key.lower()
            if key in interesting:
                if value.endswith(os.pathsep):
                    value = value[:-1]
                result[key] = removeDuplicates(value)

    finally:
        popen.stdout.close()
        popen.stderr.close()

    if len(result) != len(interesting):
        raise ValueError(str(list(result.keys())))

    return result

# More globals
VERSION = get_build_version()
# MACROS = MacroExpander(VERSION)

class MSVCCompiler(CCompiler) :
    """Concrete class that implements an interface to Microsoft Visual C++,
       as defined by the CCompiler abstract class."""

    compiler_type = 'msvc'

    # Just set this so CCompiler's constructor doesn't barf.  We currently
    # don't use the 'set_executables()' bureaucracy provided by CCompiler,
    # as it really isn't necessary for this sort of single-compiler class.
    # Would be nice to have a consistent interface with UnixCCompiler,
    # though, so it's worth thinking about.
    executables = {}

    # Private class data (need to distinguish C from C++ source for compiler)
    _c_extensions = ['.c']
    _cpp_extensions = ['.cc', '.cpp', '.cxx']
    _rc_extensions = ['.rc']
    _mc_extensions = ['.mc']

    # Needed for the filename generation methods provided by the
    # base class, CCompiler.
    src_extensions = (_c_extensions + _cpp_extensions +
                      _rc_extensions + _mc_extensions)
    res_extension = '.res'
    obj_extension = '.obj'
    static_lib_extension = '.lib'
    shared_lib_extension = '.dll'
    static_lib_format = shared_lib_format = '%s%s'
    exe_extension = '.exe'

    def __init__(self, verbose=0, dry_run=0, force=0):
        CCompiler.__init__ (self, verbose, dry_run, force)
        if VERSION < 8.0: # ironpython: only throw if you try to use it
            raise DistutilsPlatformError("VC %0.1f is not supported by this module" % VERSION)
        self.__version = VERSION
        self.__root = r"Software\Microsoft\VisualStudio"
        # self.__macros = MACROS
        self.__paths = []
        # target platform (.plat_name is consistent with 'bdist')
        self.plat_name = None
        self.__arch = None # deprecated name
        self.initialized = False

    def initialize(self, plat_name=None):
        # multi-init means we would need to check platform same each time...
        assert not self.initialized, "don't init multiple times"
        if plat_name is None:
            plat_name = get_platform()
        # sanity check for platforms to prevent obscure errors later.
        ok_plats = 'win32', 'win-amd64', 'win-ia64'
        if plat_name not in ok_plats:
            raise DistutilsPlatformError("--plat-name must be one of %s" %
                                         (ok_plats,))

        if "DISTUTILS_USE_SDK" in os.environ and "MSSdk" in os.environ and self.find_exe("cl.exe"):
            # Assume that the SDK set up everything alright; don't try to be
            # smarter
            self.cc = "cl.exe"
            self.linker = "link.exe"
            self.lib = "lib.exe"
            self.rc = "rc.exe"
            self.mc = "mc.exe"
        else:
            # On x86, 'vcvars32.bat amd64' creates an env that doesn't work;
            # to cross compile, you use 'x86_amd64'.
            # On AMD64, 'vcvars32.bat amd64' is a native build env; to cross
            # compile use 'x86' (ie, it runs the x86 compiler directly)
            # No idea how itanium handles this, if at all.
            if plat_name == get_platform() or plat_name == 'win32':
                # native build or cross-compile to win32
                plat_spec = PLAT_TO_VCVARS[plat_name]
            else:
                # cross compile from win32 -> some 64bit
                plat_spec = PLAT_TO_VCVARS[get_platform()] + '_' + \
                            PLAT_TO_VCVARS[plat_name]

            vc_env = query_vcvarsall(VERSION, plat_spec)

            self.__paths = vc_env['path'].split(os.pathsep)
            os.environ['lib'] = vc_env['lib']
            os.environ['include'] = vc_env['include']

            if len(self.__paths) == 0:
                raise DistutilsPlatformError("Python was built with %s, "
                       "and extensions need to be built with the same "
                       "version of the compiler, but it isn't installed."
                       % self.__product)

            self.cc = self.find_exe("cl.exe")
            self.linker = self.find_exe("link.exe")
            self.lib = self.find_exe("lib.exe")
            self.rc = self.find_exe("rc.exe")   # resource compiler
            self.mc = self.find_exe("mc.exe")   # message compiler
            #self.set_path_env_var('lib')
            #self.set_path_env_var('include')

        # extend the MSVC path with the current path
        try:
            for p in os.environ['path'].split(';'):
                self.__paths.append(p)
        except KeyError:
            pass
        self.__paths = normalize_and_reduce_paths(self.__paths)
        os.environ['path'] = ";".join(self.__paths)

        self.preprocess_options = None
        if self.__arch == "x86":
            self.compile_options = [ '/nologo', '/Ox', '/MD', '/W3',
                                     '/DNDEBUG']
            self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3',
                                          '/Z7', '/D_DEBUG']
        else:
            # Win64
            self.compile_options = [ '/nologo', '/Ox', '/MD', '/W3', '/GS-' ,
                                     '/DNDEBUG']
            self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3', '/GS-',
                                          '/Z7', '/D_DEBUG']

        self.ldflags_shared = ['/DLL', '/nologo', '/INCREMENTAL:NO']
        if self.__version >= 7:
            self.ldflags_shared_debug = [
                '/DLL', '/nologo', '/INCREMENTAL:no', '/DEBUG'
                ]
        self.ldflags_static = [ '/nologo']

        self.initialized = True

    # -- Worker methods ------------------------------------------------

    def object_filenames(self,
                         source_filenames,
                         strip_dir=0,
                         output_dir=''):
        # Copied from ccompiler.py, extended to return .res as 'object'-file
        # for .rc input file
        if output_dir is None: output_dir = ''
        obj_names = []
        for src_name in source_filenames:
            (base, ext) = os.path.splitext (src_name)
            base = os.path.splitdrive(base)[1] # Chop off the drive
            base = base[os.path.isabs(base):]  # If abs, chop off leading /
            if ext not in self.src_extensions:
                # Better to raise an exception instead of silently continuing
                # and later complain about sources and targets having
                # different lengths
                raise CompileError ("Don't know how to compile %s" % src_name)
            if strip_dir:
                base = os.path.basename (base)
            if ext in self._rc_extensions:
                obj_names.append (os.path.join (output_dir,
                                                base + self.res_extension))
            elif ext in self._mc_extensions:
                obj_names.append (os.path.join (output_dir,
                                                base + self.res_extension))
            else:
                obj_names.append (os.path.join (output_dir,
                                                base + self.obj_extension))
        return obj_names


    def compile(self, sources,
                output_dir=None, macros=None, include_dirs=None, debug=0,
                extra_preargs=None, extra_postargs=None, depends=None):

        if not self.initialized:
            self.initialize()
        compile_info = self._setup_compile(output_dir, macros, include_dirs,
                                           sources, depends, extra_postargs)
        macros, objects, extra_postargs, pp_opts, build = compile_info

        compile_opts = extra_preargs or []
        compile_opts.append ('/c')
        if debug:
            compile_opts.extend(self.compile_options_debug)
        else:
            compile_opts.extend(self.compile_options)

        for obj in objects:
            try:
                src, ext = build[obj]
            except KeyError:
                continue
            if debug:
                # pass the full pathname to MSVC in debug mode,
                # this allows the debugger to find the source file
                # without asking the user to browse for it
                src = os.path.abspath(src)

            if ext in self._c_extensions:
                input_opt = "/Tc" + src
            elif ext in self._cpp_extensions:
                input_opt = "/Tp" + src
            elif ext in self._rc_extensions:
                # compile .RC to .RES file
                input_opt = src
                output_opt = "/fo" + obj
                try:
                    self.spawn([self.rc] + pp_opts +
                               [output_opt] + [input_opt])
                except DistutilsExecError as msg:
                    raise CompileError(msg)
                continue
            elif ext in self._mc_extensions:
                # Compile .MC to .RC file to .RES file.
                #   * '-h dir' specifies the directory for the
                #     generated include file
                #   * '-r dir' specifies the target directory of the
                #     generated RC file and the binary message resource
                #     it includes
                #
                # For now (since there are no options to change this),
                # we use the source-directory for the include file and
                # the build directory for the RC file and message
                # resources. This works at least for win32all.
                h_dir = os.path.dirname(src)
                rc_dir = os.path.dirname(obj)
                try:
                    # first compile .MC to .RC and .H file
                    self.spawn([self.mc] +
                               ['-h', h_dir, '-r', rc_dir] + [src])
                    base, _ = os.path.splitext (os.path.basename (src))
                    rc_file = os.path.join (rc_dir, base + '.rc')
                    # then compile .RC to .RES file
                    self.spawn([self.rc] +
                               ["/fo" + obj] + [rc_file])

                except DistutilsExecError as msg:
                    raise CompileError(msg)
                continue
            else:
                # how to handle this file?
                raise CompileError("Don't know how to compile %s to %s"
                                   % (src, obj))

            output_opt = "/Fo" + obj
            try:
                self.spawn([self.cc] + compile_opts + pp_opts +
                           [input_opt, output_opt] +
                           extra_postargs)
            except DistutilsExecError as msg:
                raise CompileError(msg)

        return objects


    def create_static_lib(self,
                          objects,
                          output_libname,
                          output_dir=None,
                          debug=0,
                          target_lang=None):

        if not self.initialized:
            self.initialize()
        (objects, output_dir) = self._fix_object_args(objects, output_dir)
        output_filename = self.library_filename(output_libname,
                                                output_dir=output_dir)

        if self._need_link(objects, output_filename):
            lib_args = objects + ['/OUT:' + output_filename]
            if debug:
                pass # XXX what goes here?
            try:
                self.spawn([self.lib] + lib_args)
            except DistutilsExecError as msg:
                raise LibError(msg)
        else:
            log.debug("skipping %s (up-to-date)", output_filename)


    def link(self,
             target_desc,
             objects,
             output_filename,
             output_dir=None,
             libraries=None,
             library_dirs=None,
             runtime_library_dirs=None,
             export_symbols=None,
             debug=0,
             extra_preargs=None,
             extra_postargs=None,
             build_temp=None,
             target_lang=None):

        if not self.initialized:
            self.initialize()
        (objects, output_dir) = self._fix_object_args(objects, output_dir)
        fixed_args = self._fix_lib_args(libraries, library_dirs,
                                        runtime_library_dirs)
        (libraries, library_dirs, runtime_library_dirs) = fixed_args

        if runtime_library_dirs:
            self.warn ("I don't know what to do with 'runtime_library_dirs': "
                       + str (runtime_library_dirs))

        lib_opts = gen_lib_options(self,
                                   library_dirs, runtime_library_dirs,
                                   libraries)
        if output_dir is not None:
            output_filename = os.path.join(output_dir, output_filename)

        if self._need_link(objects, output_filename):
            if target_desc == CCompiler.EXECUTABLE:
                if debug:
                    ldflags = self.ldflags_shared_debug[1:]
                else:
                    ldflags = self.ldflags_shared[1:]
            else:
                if debug:
                    ldflags = self.ldflags_shared_debug
                else:
                    ldflags = self.ldflags_shared

            export_opts = []
            for sym in (export_symbols or []):
                export_opts.append("/EXPORT:" + sym)

            ld_args = (ldflags + lib_opts + export_opts +
                       objects + ['/OUT:' + output_filename])

            # The MSVC linker generates .lib and .exp files, which cannot be
            # suppressed by any linker switches. The .lib files may even be
            # needed! Make sure they are generated in the temporary build
            # directory. Since they have different names for debug and release
            # builds, they can go into the same directory.
            build_temp = os.path.dirname(objects[0])
            if export_symbols is not None:
                (dll_name, dll_ext) = os.path.splitext(
                    os.path.basename(output_filename))
                implib_file = os.path.join(
                    build_temp,
                    self.library_filename(dll_name))
                ld_args.append ('/IMPLIB:' + implib_file)

            self.manifest_setup_ldargs(output_filename, build_temp, ld_args)

            if extra_preargs:
                ld_args[:0] = extra_preargs
            if extra_postargs:
                ld_args.extend(extra_postargs)

            self.mkpath(os.path.dirname(output_filename))
            try:
                self.spawn([self.linker] + ld_args)
            except DistutilsExecError as msg:
                raise LinkError(msg)

            # embed the manifest
            # XXX - this is somewhat fragile - if mt.exe fails, distutils
            # will still consider the DLL up-to-date, but it will not have a
            # manifest.  Maybe we should link to a temp file?  OTOH, that
            # implies a build environment error that shouldn't go undetected.
            mfinfo = self.manifest_get_embed_info(target_desc, ld_args)
            if mfinfo is not None:
                mffilename, mfid = mfinfo
                out_arg = '-outputresource:%s;%s' % (output_filename, mfid)
                try:
                    self.spawn(['mt.exe', '-nologo', '-manifest',
                                mffilename, out_arg])
                except DistutilsExecError as msg:
                    raise LinkError(msg)
        else:
            log.debug("skipping %s (up-to-date)", output_filename)

    def manifest_setup_ldargs(self, output_filename, build_temp, ld_args):
        # If we need a manifest at all, an embedded manifest is recommended.
        # See MSDN article titled
        # "How to: Embed a Manifest Inside a C/C++ Application"
        # (currently at http://msdn2.microsoft.com/en-us/library/ms235591(VS.80).aspx)
        # Ask the linker to generate the manifest in the temp dir, so
        # we can check it, and possibly embed it, later.
        temp_manifest = os.path.join(
                build_temp,
                os.path.basename(output_filename) + ".manifest")
        ld_args.append('/MANIFESTFILE:' + temp_manifest)

    def manifest_get_embed_info(self, target_desc, ld_args):
        # If a manifest should be embedded, return a tuple of
        # (manifest_filename, resource_id).  Returns None if no manifest
        # should be embedded.  See http://bugs.python.org/issue7833 for why
        # we want to avoid any manifest for extension modules if we can)
        for arg in ld_args:
            if arg.startswith("/MANIFESTFILE:"):
                temp_manifest = arg.split(":", 1)[1]
                break
        else:
            # no /MANIFESTFILE so nothing to do.
            return None
        if target_desc == CCompiler.EXECUTABLE:
            # by default, executables always get the manifest with the
            # CRT referenced.
            mfid = 1
        else:
            # Extension modules try and avoid any manifest if possible.
            mfid = 2
            temp_manifest = self._remove_visual_c_ref(temp_manifest)
        if temp_manifest is None:
            return None
        return temp_manifest, mfid

    def _remove_visual_c_ref(self, manifest_file):
        try:
            # Remove references to the Visual C runtime, so they will
            # fall through to the Visual C dependency of Python.exe.
            # This way, when installed for a restricted user (e.g.
            # runtimes are not in WinSxS folder, but in Python's own
            # folder), the runtimes do not need to be in every folder
            # with .pyd's.
            # Returns either the filename of the modified manifest or
            # None if no manifest should be embedded.
            manifest_f = open(manifest_file)
            try:
                manifest_buf = manifest_f.read()
            finally:
                manifest_f.close()
            pattern = re.compile(
                r"""<assemblyIdentity.*?name=("|')Microsoft\."""\
                r"""VC\d{2}\.CRT("|').*?(/>|</assemblyIdentity>)""",
                re.DOTALL)
            manifest_buf = re.sub(pattern, "", manifest_buf)
            pattern = "<dependentAssembly>\s*</dependentAssembly>"
            manifest_buf = re.sub(pattern, "", manifest_buf)
            # Now see if any other assemblies are referenced - if not, we
            # don't want a manifest embedded.
            pattern = re.compile(
                r"""<assemblyIdentity.*?name=(?:"|')(.+?)(?:"|')"""
                r""".*?(?:/>|</assemblyIdentity>)""", re.DOTALL)
            if re.search(pattern, manifest_buf) is None:
                return None

            manifest_f = open(manifest_file, 'w')
            try:
                manifest_f.write(manifest_buf)
                return manifest_file
            finally:
                manifest_f.close()
        except OSError:
            pass

    # -- Miscellaneous methods -----------------------------------------
    # These are all used by the 'gen_lib_options() function, in
    # ccompiler.py.

    def library_dir_option(self, dir):
        return "/LIBPATH:" + dir

    def runtime_library_dir_option(self, dir):
        raise DistutilsPlatformError(
              "don't know how to set runtime library search path for MSVC++")

    def library_option(self, lib):
        return self.library_filename(lib)


    def find_library_file(self, dirs, lib, debug=0):
        # Prefer a debugging library if found (and requested), but deal
        # with it if we don't have one.
        if debug:
            try_names = [lib + "_d", lib]
        else:
            try_names = [lib]
        for dir in dirs:
            for name in try_names:
                libfile = os.path.join(dir, self.library_filename (name))
                if os.path.exists(libfile):
                    return libfile
        else:
            # Oops, didn't find it in *any* of 'dirs'
            return None

    # Helper methods for using the MSVC registry settings

    def find_exe(self, exe):
        """Return path to an MSVC executable program.

        Tries to find the program in several places: first, one of the
        MSVC program search paths from the registry; next, the directories
        in the PATH environment variable.  If any of those work, return an
        absolute path that is known to exist.  If none of them work, just
        return the original program name, 'exe'.
        """
        for p in self.__paths:
            fn = os.path.join(os.path.abspath(p), exe)
            if os.path.isfile(fn):
                return fn

        # didn't find it; try existing path
        for p in os.environ['Path'].split(';'):
            fn = os.path.join(os.path.abspath(p),exe)
            if os.path.isfile(fn):
                return fn

        return exe
lib\distutils\msvccompiler.py
"""distutils.msvccompiler

Contains MSVCCompiler, an implementation of the abstract CCompiler class
for the Microsoft Visual Studio.
"""

# Written by Perry Stoll
# hacked by Robin Becker and Thomas Heller to do a better job of
#   finding DevStudio (through the registry)

import sys, os
from distutils.errors import \
     DistutilsExecError, DistutilsPlatformError, \
     CompileError, LibError, LinkError
from distutils.ccompiler import \
     CCompiler, gen_preprocess_options, gen_lib_options
from distutils import log

_can_read_reg = False
try:
    import winreg

    _can_read_reg = True
    hkey_mod = winreg

    RegOpenKeyEx = winreg.OpenKeyEx
    RegEnumKey = winreg.EnumKey
    RegEnumValue = winreg.EnumValue
    RegError = winreg.error

except ImportError:
    try:
        import win32api
        import win32con
        _can_read_reg = True
        hkey_mod = win32con

        RegOpenKeyEx = win32api.RegOpenKeyEx
        RegEnumKey = win32api.RegEnumKey
        RegEnumValue = win32api.RegEnumValue
        RegError = win32api.error
    except ImportError:
        log.info("Warning: Can't read registry to find the "
                 "necessary compiler setting\n"
                 "Make sure that Python modules winreg, "
                 "win32api or win32con are installed.")
        pass

if _can_read_reg:
    HKEYS = (hkey_mod.HKEY_USERS,
             hkey_mod.HKEY_CURRENT_USER,
             hkey_mod.HKEY_LOCAL_MACHINE,
             hkey_mod.HKEY_CLASSES_ROOT)

def read_keys(base, key):
    """Return list of registry keys."""
    try:
        handle = RegOpenKeyEx(base, key)
    except RegError:
        return None
    L = []
    i = 0
    while True:
        try:
            k = RegEnumKey(handle, i)
        except RegError:
            break
        L.append(k)
        i += 1
    return L

def read_values(base, key):
    """Return dict of registry keys and values.

    All names are converted to lowercase.
    """
    try:
        handle = RegOpenKeyEx(base, key)
    except RegError:
        return None
    d = {}
    i = 0
    while True:
        try:
            name, value, type = RegEnumValue(handle, i)
        except RegError:
            break
        name = name.lower()
        d[convert_mbcs(name)] = convert_mbcs(value)
        i += 1
    return d

def convert_mbcs(s):
    dec = getattr(s, "decode", None)
    if dec is not None:
        try:
            s = dec("mbcs")
        except UnicodeError:
            pass
    return s

class MacroExpander:
    def __init__(self, version):
        self.macros = {}
        self.load_macros(version)

    def set_macro(self, macro, path, key):
        for base in HKEYS:
            d = read_values(base, path)
            if d:
                self.macros["$(%s)" % macro] = d[key]
                break

    def load_macros(self, version):
        vsbase = r"Software\Microsoft\VisualStudio\%0.1f" % version
        self.set_macro("VCInstallDir", vsbase + r"\Setup\VC", "productdir")
        self.set_macro("VSInstallDir", vsbase + r"\Setup\VS", "productdir")
        net = r"Software\Microsoft\.NETFramework"
        self.set_macro("FrameworkDir", net, "installroot")
        try:
            if version > 7.0:
                self.set_macro("FrameworkSDKDir", net, "sdkinstallrootv1.1")
            else:
                self.set_macro("FrameworkSDKDir", net, "sdkinstallroot")
        except KeyError as exc: #
            raise DistutilsPlatformError(
            """Python was built with Visual Studio 2003;
extensions must be built with a compiler than can generate compatible binaries.
Visual Studio 2003 was not found on this system. If you have Cygwin installed,
you can try compiling with MingW32, by passing "-c mingw32" to setup.py.""")

        p = r"Software\Microsoft\NET Framework Setup\Product"
        for base in HKEYS:
            try:
                h = RegOpenKeyEx(base, p)
            except RegError:
                continue
            key = RegEnumKey(h, 0)
            d = read_values(base, r"%s\%s" % (p, key))
            self.macros["$(FrameworkVersion)"] = d["version"]

    def sub(self, s):
        for k, v in self.macros.items():
            s = s.replace(k, v)
        return s

def get_build_version():
    """Return the version of MSVC that was used to build Python.

    For Python 2.3 and up, the version number is included in
    sys.version.  For earlier versions, assume the compiler is MSVC 6.
    """
    prefix = "MSC v."
    i = sys.version.find(prefix)
    if i == -1:
        return 6
    i = i + len(prefix)
    s, rest = sys.version[i:].split(" ", 1)
    majorVersion = int(s[:-2]) - 6
    minorVersion = int(s[2:3]) / 10.0
    # I don't think paths are affected by minor version in version 6
    if majorVersion == 6:
        minorVersion = 0
    if majorVersion >= 6:
        return majorVersion + minorVersion
    # else we don't know what version of the compiler this is
    return None

def get_build_architecture():
    """Return the processor architecture.

    Possible results are "Intel", "Itanium", or "AMD64".
    """

    prefix = " bit ("
    i = sys.version.find(prefix)
    if i == -1:
        return "Intel"
    j = sys.version.find(")", i)
    return sys.version[i+len(prefix):j]

def normalize_and_reduce_paths(paths):
    """Return a list of normalized paths with duplicates removed.

    The current order of paths is maintained.
    """
    # Paths are normalized so things like:  /a and /a/ aren't both preserved.
    reduced_paths = []
    for p in paths:
        np = os.path.normpath(p)
        # XXX(nnorwitz): O(n**2), if reduced_paths gets long perhaps use a set.
        if np not in reduced_paths:
            reduced_paths.append(np)
    return reduced_paths


class MSVCCompiler(CCompiler) :
    """Concrete class that implements an interface to Microsoft Visual C++,
       as defined by the CCompiler abstract class."""

    compiler_type = 'msvc'

    # Just set this so CCompiler's constructor doesn't barf.  We currently
    # don't use the 'set_executables()' bureaucracy provided by CCompiler,
    # as it really isn't necessary for this sort of single-compiler class.
    # Would be nice to have a consistent interface with UnixCCompiler,
    # though, so it's worth thinking about.
    executables = {}

    # Private class data (need to distinguish C from C++ source for compiler)
    _c_extensions = ['.c']
    _cpp_extensions = ['.cc', '.cpp', '.cxx']
    _rc_extensions = ['.rc']
    _mc_extensions = ['.mc']

    # Needed for the filename generation methods provided by the
    # base class, CCompiler.
    src_extensions = (_c_extensions + _cpp_extensions +
                      _rc_extensions + _mc_extensions)
    res_extension = '.res'
    obj_extension = '.obj'
    static_lib_extension = '.lib'
    shared_lib_extension = '.dll'
    static_lib_format = shared_lib_format = '%s%s'
    exe_extension = '.exe'

    def __init__(self, verbose=0, dry_run=0, force=0):
        CCompiler.__init__ (self, verbose, dry_run, force)
        self.__version = get_build_version()
        self.__arch = get_build_architecture()
        if self.__arch == "Intel":
            # x86
            if self.__version >= 7:
                self.__root = r"Software\Microsoft\VisualStudio"
                self.__macros = MacroExpander(self.__version)
            else:
                self.__root = r"Software\Microsoft\Devstudio"
            self.__product = "Visual Studio version %s" % self.__version
        else:
            # Win64. Assume this was built with the platform SDK
            self.__product = "Microsoft SDK compiler %s" % (self.__version + 6)

        self.initialized = False

    def initialize(self):
        self.__paths = []
        if "DISTUTILS_USE_SDK" in os.environ and "MSSdk" in os.environ and self.find_exe("cl.exe"):
            # Assume that the SDK set up everything alright; don't try to be
            # smarter
            self.cc = "cl.exe"
            self.linker = "link.exe"
            self.lib = "lib.exe"
            self.rc = "rc.exe"
            self.mc = "mc.exe"
        else:
            self.__paths = self.get_msvc_paths("path")

            if len(self.__paths) == 0:
                raise DistutilsPlatformError("Python was built with %s, "
                       "and extensions need to be built with the same "
                       "version of the compiler, but it isn't installed."
                       % self.__product)

            self.cc = self.find_exe("cl.exe")
            self.linker = self.find_exe("link.exe")
            self.lib = self.find_exe("lib.exe")
            self.rc = self.find_exe("rc.exe")   # resource compiler
            self.mc = self.find_exe("mc.exe")   # message compiler
            self.set_path_env_var('lib')
            self.set_path_env_var('include')

        # extend the MSVC path with the current path
        try:
            for p in os.environ['path'].split(';'):
                self.__paths.append(p)
        except KeyError:
            pass
        self.__paths = normalize_and_reduce_paths(self.__paths)
        os.environ['path'] = ";".join(self.__paths)

        self.preprocess_options = None
        if self.__arch == "Intel":
            self.compile_options = [ '/nologo', '/Ox', '/MD', '/W3', '/GX' ,
                                     '/DNDEBUG']
            self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3', '/GX',
                                          '/Z7', '/D_DEBUG']
        else:
            # Win64
            self.compile_options = [ '/nologo', '/Ox', '/MD', '/W3', '/GS-' ,
                                     '/DNDEBUG']
            self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3', '/GS-',
                                          '/Z7', '/D_DEBUG']

        self.ldflags_shared = ['/DLL', '/nologo', '/INCREMENTAL:NO']
        if self.__version >= 7:
            self.ldflags_shared_debug = [
                '/DLL', '/nologo', '/INCREMENTAL:no', '/DEBUG'
                ]
        else:
            self.ldflags_shared_debug = [
                '/DLL', '/nologo', '/INCREMENTAL:no', '/pdb:None', '/DEBUG'
                ]
        self.ldflags_static = [ '/nologo']

        self.initialized = True

    # -- Worker methods ------------------------------------------------

    def object_filenames(self,
                         source_filenames,
                         strip_dir=0,
                         output_dir=''):
        # Copied from ccompiler.py, extended to return .res as 'object'-file
        # for .rc input file
        if output_dir is None: output_dir = ''
        obj_names = []
        for src_name in source_filenames:
            (base, ext) = os.path.splitext (src_name)
            base = os.path.splitdrive(base)[1] # Chop off the drive
            base = base[os.path.isabs(base):]  # If abs, chop off leading /
            if ext not in self.src_extensions:
                # Better to raise an exception instead of silently continuing
                # and later complain about sources and targets having
                # different lengths
                raise CompileError ("Don't know how to compile %s" % src_name)
            if strip_dir:
                base = os.path.basename (base)
            if ext in self._rc_extensions:
                obj_names.append (os.path.join (output_dir,
                                                base + self.res_extension))
            elif ext in self._mc_extensions:
                obj_names.append (os.path.join (output_dir,
                                                base + self.res_extension))
            else:
                obj_names.append (os.path.join (output_dir,
                                                base + self.obj_extension))
        return obj_names


    def compile(self, sources,
                output_dir=None, macros=None, include_dirs=None, debug=0,
                extra_preargs=None, extra_postargs=None, depends=None):

        if not self.initialized:
            self.initialize()
        compile_info = self._setup_compile(output_dir, macros, include_dirs,
                                           sources, depends, extra_postargs)
        macros, objects, extra_postargs, pp_opts, build = compile_info

        compile_opts = extra_preargs or []
        compile_opts.append ('/c')
        if debug:
            compile_opts.extend(self.compile_options_debug)
        else:
            compile_opts.extend(self.compile_options)

        for obj in objects:
            try:
                src, ext = build[obj]
            except KeyError:
                continue
            if debug:
                # pass the full pathname to MSVC in debug mode,
                # this allows the debugger to find the source file
                # without asking the user to browse for it
                src = os.path.abspath(src)

            if ext in self._c_extensions:
                input_opt = "/Tc" + src
            elif ext in self._cpp_extensions:
                input_opt = "/Tp" + src
            elif ext in self._rc_extensions:
                # compile .RC to .RES file
                input_opt = src
                output_opt = "/fo" + obj
                try:
                    self.spawn([self.rc] + pp_opts +
                               [output_opt] + [input_opt])
                except DistutilsExecError as msg:
                    raise CompileError(msg)
                continue
            elif ext in self._mc_extensions:
                # Compile .MC to .RC file to .RES file.
                #   * '-h dir' specifies the directory for the
                #     generated include file
                #   * '-r dir' specifies the target directory of the
                #     generated RC file and the binary message resource
                #     it includes
                #
                # For now (since there are no options to change this),
                # we use the source-directory for the include file and
                # the build directory for the RC file and message
                # resources. This works at least for win32all.
                h_dir = os.path.dirname(src)
                rc_dir = os.path.dirname(obj)
                try:
                    # first compile .MC to .RC and .H file
                    self.spawn([self.mc] +
                               ['-h', h_dir, '-r', rc_dir] + [src])
                    base, _ = os.path.splitext (os.path.basename (src))
                    rc_file = os.path.join (rc_dir, base + '.rc')
                    # then compile .RC to .RES file
                    self.spawn([self.rc] +
                               ["/fo" + obj] + [rc_file])

                except DistutilsExecError as msg:
                    raise CompileError(msg)
                continue
            else:
                # how to handle this file?
                raise CompileError("Don't know how to compile %s to %s"
                                   % (src, obj))

            output_opt = "/Fo" + obj
            try:
                self.spawn([self.cc] + compile_opts + pp_opts +
                           [input_opt, output_opt] +
                           extra_postargs)
            except DistutilsExecError as msg:
                raise CompileError(msg)

        return objects


    def create_static_lib(self,
                          objects,
                          output_libname,
                          output_dir=None,
                          debug=0,
                          target_lang=None):

        if not self.initialized:
            self.initialize()
        (objects, output_dir) = self._fix_object_args(objects, output_dir)
        output_filename = self.library_filename(output_libname,
                                                output_dir=output_dir)

        if self._need_link(objects, output_filename):
            lib_args = objects + ['/OUT:' + output_filename]
            if debug:
                pass # XXX what goes here?
            try:
                self.spawn([self.lib] + lib_args)
            except DistutilsExecError as msg:
                raise LibError(msg)
        else:
            log.debug("skipping %s (up-to-date)", output_filename)


    def link(self,
             target_desc,
             objects,
             output_filename,
             output_dir=None,
             libraries=None,
             library_dirs=None,
             runtime_library_dirs=None,
             export_symbols=None,
             debug=0,
             extra_preargs=None,
             extra_postargs=None,
             build_temp=None,
             target_lang=None):

        if not self.initialized:
            self.initialize()
        (objects, output_dir) = self._fix_object_args(objects, output_dir)
        fixed_args = self._fix_lib_args(libraries, library_dirs,
                                        runtime_library_dirs)
        (libraries, library_dirs, runtime_library_dirs) = fixed_args

        if runtime_library_dirs:
            self.warn ("I don't know what to do with 'runtime_library_dirs': "
                       + str (runtime_library_dirs))

        lib_opts = gen_lib_options(self,
                                   library_dirs, runtime_library_dirs,
                                   libraries)
        if output_dir is not None:
            output_filename = os.path.join(output_dir, output_filename)

        if self._need_link(objects, output_filename):
            if target_desc == CCompiler.EXECUTABLE:
                if debug:
                    ldflags = self.ldflags_shared_debug[1:]
                else:
                    ldflags = self.ldflags_shared[1:]
            else:
                if debug:
                    ldflags = self.ldflags_shared_debug
                else:
                    ldflags = self.ldflags_shared

            export_opts = []
            for sym in (export_symbols or []):
                export_opts.append("/EXPORT:" + sym)

            ld_args = (ldflags + lib_opts + export_opts +
                       objects + ['/OUT:' + output_filename])

            # The MSVC linker generates .lib and .exp files, which cannot be
            # suppressed by any linker switches. The .lib files may even be
            # needed! Make sure they are generated in the temporary build
            # directory. Since they have different names for debug and release
            # builds, they can go into the same directory.
            if export_symbols is not None:
                (dll_name, dll_ext) = os.path.splitext(
                    os.path.basename(output_filename))
                implib_file = os.path.join(
                    os.path.dirname(objects[0]),
                    self.library_filename(dll_name))
                ld_args.append ('/IMPLIB:' + implib_file)

            if extra_preargs:
                ld_args[:0] = extra_preargs
            if extra_postargs:
                ld_args.extend(extra_postargs)

            self.mkpath(os.path.dirname(output_filename))
            try:
                self.spawn([self.linker] + ld_args)
            except DistutilsExecError as msg:
                raise LinkError(msg)

        else:
            log.debug("skipping %s (up-to-date)", output_filename)


    # -- Miscellaneous methods -----------------------------------------
    # These are all used by the 'gen_lib_options() function, in
    # ccompiler.py.

    def library_dir_option(self, dir):
        return "/LIBPATH:" + dir

    def runtime_library_dir_option(self, dir):
        raise DistutilsPlatformError(
              "don't know how to set runtime library search path for MSVC++")

    def library_option(self, lib):
        return self.library_filename(lib)


    def find_library_file(self, dirs, lib, debug=0):
        # Prefer a debugging library if found (and requested), but deal
        # with it if we don't have one.
        if debug:
            try_names = [lib + "_d", lib]
        else:
            try_names = [lib]
        for dir in dirs:
            for name in try_names:
                libfile = os.path.join(dir, self.library_filename (name))
                if os.path.exists(libfile):
                    return libfile
        else:
            # Oops, didn't find it in *any* of 'dirs'
            return None

    # Helper methods for using the MSVC registry settings

    def find_exe(self, exe):
        """Return path to an MSVC executable program.

        Tries to find the program in several places: first, one of the
        MSVC program search paths from the registry; next, the directories
        in the PATH environment variable.  If any of those work, return an
        absolute path that is known to exist.  If none of them work, just
        return the original program name, 'exe'.
        """
        for p in self.__paths:
            fn = os.path.join(os.path.abspath(p), exe)
            if os.path.isfile(fn):
                return fn

        # didn't find it; try existing path
        for p in os.environ['Path'].split(';'):
            fn = os.path.join(os.path.abspath(p),exe)
            if os.path.isfile(fn):
                return fn

        return exe

    def get_msvc_paths(self, path, platform='x86'):
        """Get a list of devstudio directories (include, lib or path).

        Return a list of strings.  The list will be empty if unable to
        access the registry or appropriate registry keys not found.
        """
        if not _can_read_reg:
            return []

        path = path + " dirs"
        if self.__version >= 7:
            key = (r"%s\%0.1f\VC\VC_OBJECTS_PLATFORM_INFO\Win32\Directories"
                   % (self.__root, self.__version))
        else:
            key = (r"%s\6.0\Build System\Components\Platforms"
                   r"\Win32 (%s)\Directories" % (self.__root, platform))

        for base in HKEYS:
            d = read_values(base, key)
            if d:
                if self.__version >= 7:
                    return self.__macros.sub(d[path]).split(";")
                else:
                    return d[path].split(";")
        # MSVC 6 seems to create the registry entries we need only when
        # the GUI is run.
        if self.__version == 6:
            for base in HKEYS:
                if read_values(base, r"%s\6.0" % self.__root) is not None:
                    self.warn("It seems you have Visual Studio 6 installed, "
                        "but the expected registry settings are not present.\n"
                        "You must at least run the Visual Studio GUI once "
                        "so that these entries are created.")
                    break
        return []

    def set_path_env_var(self, name):
        """Set environment variable 'name' to an MSVC path type value.

        This is equivalent to a SET command prior to execution of spawned
        commands.
        """

        if name == "lib":
            p = self.get_msvc_paths("library")
        else:
            p = self.get_msvc_paths(name)
        if p:
            os.environ[name] = ';'.join(p)


if get_build_version() >= 8.0:
    log.debug("Importing new compiler from distutils.msvc9compiler")
    OldMSVCCompiler = MSVCCompiler
    from distutils.msvc9compiler import MSVCCompiler
    # get_build_architecture not really relevant now we support cross-compile
    from distutils.msvc9compiler import MacroExpander
lib\distutils\README
 
lib\distutils\spawn.py
"""distutils.spawn

Provides the 'spawn()' function, a front-end to various platform-
specific functions for launching another program in a sub-process.
Also provides the 'find_executable()' to search the path for a given
executable name.
"""

import sys
import os

from distutils.errors import DistutilsPlatformError, DistutilsExecError
from distutils.debug import DEBUG
from distutils import log

def spawn(cmd, search_path=1, verbose=0, dry_run=0):
    """Run another program, specified as a command list 'cmd', in a new process.

    'cmd' is just the argument list for the new process, ie.
    cmd[0] is the program to run and cmd[1:] are the rest of its arguments.
    There is no way to run a program with a name different from that of its
    executable.

    If 'search_path' is true (the default), the system's executable
    search path will be used to find the program; otherwise, cmd[0]
    must be the exact path to the executable.  If 'dry_run' is true,
    the command will not actually be run.

    Raise DistutilsExecError if running the program fails in any way; just
    return on success.
    """
    # cmd is documented as a list, but just in case some code passes a tuple
    # in, protect our %-formatting code against horrible death
    cmd = list(cmd)
    if os.name == 'posix':
        _spawn_posix(cmd, search_path, dry_run=dry_run)
    elif os.name == 'nt':
        _spawn_nt(cmd, search_path, dry_run=dry_run)
    else:
        raise DistutilsPlatformError(
              "don't know how to spawn programs on platform '%s'" % os.name)

def _nt_quote_args(args):
    """Quote command-line arguments for DOS/Windows conventions.

    Just wraps every argument which contains blanks in double quotes, and
    returns a new argument list.
    """
    # XXX this doesn't seem very robust to me -- but if the Windows guys
    # say it'll work, I guess I'll have to accept it.  (What if an arg
    # contains quotes?  What other magic characters, other than spaces,
    # have to be escaped?  Is there an escaping mechanism other than
    # quoting?)
    for i, arg in enumerate(args):
        if ' ' in arg:
            args[i] = '"%s"' % arg
    return args

def _spawn_nt(cmd, search_path=1, verbose=0, dry_run=0):
    executable = cmd[0]
    cmd = _nt_quote_args(cmd)
    if search_path:
        # either we find one or it stays the same
        executable = find_executable(executable) or executable
    log.info(' '.join([executable] + cmd[1:]))
    if not dry_run:
        # spawn for NT requires a full path to the .exe
        try:
            rc = os.spawnv(os.P_WAIT, executable, cmd)
        except OSError as exc:
            # this seems to happen when the command isn't found
            if not DEBUG:
                cmd = executable
            raise DistutilsExecError(
                  "command %r failed: %s" % (cmd, exc.args[-1]))
        if rc != 0:
            # and this reflects the command running but failing
            if not DEBUG:
                cmd = executable
            raise DistutilsExecError(
                  "command %r failed with exit status %d" % (cmd, rc))

if sys.platform == 'darwin':
    from distutils import sysconfig
    _cfg_target = None
    _cfg_target_split = None

def _spawn_posix(cmd, search_path=1, verbose=0, dry_run=0):
    log.info(' '.join(cmd))
    if dry_run:
        return
    executable = cmd[0]
    exec_fn = search_path and os.execvp or os.execv
    env = None
    if sys.platform == 'darwin':
        global _cfg_target, _cfg_target_split
        if _cfg_target is None:
            _cfg_target = sysconfig.get_config_var(
                                  'MACOSX_DEPLOYMENT_TARGET') or ''
            if _cfg_target:
                _cfg_target_split = [int(x) for x in _cfg_target.split('.')]
        if _cfg_target:
            # ensure that the deployment target of build process is not less
            # than that used when the interpreter was built. This ensures
            # extension modules are built with correct compatibility values
            cur_target = os.environ.get('MACOSX_DEPLOYMENT_TARGET', _cfg_target)
            if _cfg_target_split > [int(x) for x in cur_target.split('.')]:
                my_msg = ('$MACOSX_DEPLOYMENT_TARGET mismatch: '
                          'now "%s" but "%s" during configure'
                                % (cur_target, _cfg_target))
                raise DistutilsPlatformError(my_msg)
            env = dict(os.environ,
                       MACOSX_DEPLOYMENT_TARGET=cur_target)
            exec_fn = search_path and os.execvpe or os.execve
    pid = os.fork()
    if pid == 0: # in the child
        try:
            if env is None:
                exec_fn(executable, cmd)
            else:
                exec_fn(executable, cmd, env)
        except OSError as e:
            if not DEBUG:
                cmd = executable
            sys.stderr.write("unable to execute %r: %s\n"
                             % (cmd, e.strerror))
            os._exit(1)

        if not DEBUG:
            cmd = executable
        sys.stderr.write("unable to execute %r for unknown reasons" % cmd)
        os._exit(1)
    else: # in the parent
        # Loop until the child either exits or is terminated by a signal
        # (ie. keep waiting if it's merely stopped)
        while True:
            try:
                pid, status = os.waitpid(pid, 0)
            except OSError as exc:
                import errno
                if exc.errno == errno.EINTR:
                    continue
                if not DEBUG:
                    cmd = executable
                raise DistutilsExecError(
                      "command %r failed: %s" % (cmd, exc.args[-1]))
            if os.WIFSIGNALED(status):
                if not DEBUG:
                    cmd = executable
                raise DistutilsExecError(
                      "command %r terminated by signal %d"
                      % (cmd, os.WTERMSIG(status)))
            elif os.WIFEXITED(status):
                exit_status = os.WEXITSTATUS(status)
                if exit_status == 0:
                    return   # hey, it succeeded!
                else:
                    if not DEBUG:
                        cmd = executable
                    raise DistutilsExecError(
                          "command %r failed with exit status %d"
                          % (cmd, exit_status))
            elif os.WIFSTOPPED(status):
                continue
            else:
                if not DEBUG:
                    cmd = executable
                raise DistutilsExecError(
                      "unknown error executing %r: termination status %d"
                      % (cmd, status))

def find_executable(executable, path=None):
    """Tries to find 'executable' in the directories listed in 'path'.

    A string listing directories separated by 'os.pathsep'; defaults to
    os.environ['PATH'].  Returns the complete filename or None if not found.
    """
    if path is None:
        path = os.environ['PATH']

    paths = path.split(os.pathsep)
    base, ext = os.path.splitext(executable)

    if (sys.platform == 'win32') and (ext != '.exe'):
        executable = executable + '.exe'

    if not os.path.isfile(executable):
        for p in paths:
            f = os.path.join(p, executable)
            if os.path.isfile(f):
                # the file exists, we have a shot at spawn working
                return f
        return None
    else:
        return executable
lib\distutils\sysconfig.py
"""Provide access to Python's configuration information.  The specific
configuration variables available depend heavily on the platform and
configuration.  The values may be retrieved using
get_config_var(name), and the list of variables is available via
get_config_vars().keys().  Additional convenience functions are also
available.

Written by:   Fred L. Drake, Jr.
Email:        <[email protected]>
"""

import os
import re
import sys

from .errors import DistutilsPlatformError

# These are needed in a couple of spots, so just compute them once.
PREFIX = os.path.normpath(sys.prefix)
EXEC_PREFIX = os.path.normpath(sys.exec_prefix)
BASE_PREFIX = os.path.normpath(sys.base_prefix)
BASE_EXEC_PREFIX = os.path.normpath(sys.base_exec_prefix)

# Path to the base directory of the project. On Windows the binary may
# live in project/PCBuild9.  If we're dealing with an x64 Windows build,
# it'll live in project/PCbuild/amd64.
# set for cross builds
if "_PYTHON_PROJECT_BASE" in os.environ:
    project_base = os.path.abspath(os.environ["_PYTHON_PROJECT_BASE"])
else:
    project_base = os.path.dirname(os.path.abspath(sys.executable))
if os.name == "nt" and "pcbuild" in project_base[-8:].lower():
    project_base = os.path.abspath(os.path.join(project_base, os.path.pardir))
# PC/VS7.1
if os.name == "nt" and "\\pc\\v" in project_base[-10:].lower():
    project_base = os.path.abspath(os.path.join(project_base, os.path.pardir,
                                                os.path.pardir))
# PC/AMD64
if os.name == "nt" and "\\pcbuild\\amd64" in project_base[-14:].lower():
    project_base = os.path.abspath(os.path.join(project_base, os.path.pardir,
                                                os.path.pardir))

# python_build: (Boolean) if true, we're either building Python or
# building an extension with an un-installed Python, so we use
# different (hard-wired) directories.
# Setup.local is available for Makefile builds including VPATH builds,
# Setup.dist is available on Windows
def _is_python_source_dir(d):
    for fn in ("Setup.dist", "Setup.local"):
        if os.path.isfile(os.path.join(d, "Modules", fn)):
            return True
    return False
_sys_home = getattr(sys, '_home', None)
if _sys_home and os.name == 'nt' and \
    _sys_home.lower().endswith(('pcbuild', 'pcbuild\\amd64')):
    _sys_home = os.path.dirname(_sys_home)
    if _sys_home.endswith('pcbuild'):   # must be amd64
        _sys_home = os.path.dirname(_sys_home)
def _python_build():
    if _sys_home:
        return _is_python_source_dir(_sys_home)
    return _is_python_source_dir(project_base)
python_build = _python_build()

# Calculate the build qualifier flags if they are defined.  Adding the flags
# to the include and lib directories only makes sense for an installation, not
# an in-source build.
build_flags = ''
try:
    if not python_build:
        build_flags = sys.abiflags
except AttributeError:
    # It's not a configure-based build, so the sys module doesn't have
    # this attribute, which is fine.
    pass

def get_python_version():
    """Return a string containing the major and minor Python version,
    leaving off the patchlevel.  Sample return values could be '1.5'
    or '2.2'.
    """
    return sys.version[:3]


def get_python_inc(plat_specific=0, prefix=None):
    """Return the directory containing installed Python header files.

    If 'plat_specific' is false (the default), this is the path to the
    non-platform-specific header files, i.e. Python.h and so on;
    otherwise, this is the path to platform-specific header files
    (namely pyconfig.h).

    If 'prefix' is supplied, use it instead of sys.base_prefix or
    sys.base_exec_prefix -- i.e., ignore 'plat_specific'.
    """
    if prefix is None:
        prefix = plat_specific and BASE_EXEC_PREFIX or BASE_PREFIX
    if os.name == "posix":
        if python_build:
            # Assume the executable is in the build directory.  The
            # pyconfig.h file should be in the same directory.  Since
            # the build directory may not be the source directory, we
            # must use "srcdir" from the makefile to find the "Include"
            # directory.
            base = _sys_home or project_base
            if plat_specific:
                return base
            if _sys_home:
                incdir = os.path.join(_sys_home, get_config_var('AST_H_DIR'))
            else:
                incdir = os.path.join(get_config_var('srcdir'), 'Include')
            return os.path.normpath(incdir)
        python_dir = 'python' + get_python_version() + build_flags
        return os.path.join(prefix, "include", python_dir)
    elif os.name == "nt":
        return os.path.join(prefix, "include")
    else:
        raise DistutilsPlatformError(
            "I don't know where Python installs its C header files "
            "on platform '%s'" % os.name)


def get_python_lib(plat_specific=0, standard_lib=0, prefix=None):
    """Return the directory containing the Python library (standard or
    site additions).

    If 'plat_specific' is true, return the directory containing
    platform-specific modules, i.e. any module from a non-pure-Python
    module distribution; otherwise, return the platform-shared library
    directory.  If 'standard_lib' is true, return the directory
    containing standard Python library modules; otherwise, return the
    directory for site-specific modules.

    If 'prefix' is supplied, use it instead of sys.base_prefix or
    sys.base_exec_prefix -- i.e., ignore 'plat_specific'.
    """
    if prefix is None:
        if standard_lib:
            prefix = plat_specific and BASE_EXEC_PREFIX or BASE_PREFIX
        else:
            prefix = plat_specific and EXEC_PREFIX or PREFIX

    if os.name == "posix":
        libpython = os.path.join(prefix,
                                 "lib", "ironpython" + get_python_version())
        if standard_lib:
            return libpython
        else:
            return os.path.join(libpython, "site-packages")
    elif os.name == "nt":
        if standard_lib:
            return os.path.join(prefix, "Lib")
        else:
            return os.path.join(prefix, "Lib", "site-packages")
    else:
        raise DistutilsPlatformError(
            "I don't know where Python installs its library "
            "on platform '%s'" % os.name)



def customize_compiler(compiler):
    """Do any platform-specific customization of a CCompiler instance.

    Mainly needed on Unix, so we can plug in the information that
    varies across Unices and is stored in Python's Makefile.
    """
    if compiler.compiler_type == "unix":
        if sys.platform == "darwin":
            # Perform first-time customization of compiler-related
            # config vars on OS X now that we know we need a compiler.
            # This is primarily to support Pythons from binary
            # installers.  The kind and paths to build tools on
            # the user system may vary significantly from the system
            # that Python itself was built on.  Also the user OS
            # version and build tools may not support the same set
            # of CPU architectures for universal builds.
            global _config_vars
            # Use get_config_var() to ensure _config_vars is initialized.
            if not get_config_var('CUSTOMIZED_OSX_COMPILER'):
                import _osx_support
                _osx_support.customize_compiler(_config_vars)
                _config_vars['CUSTOMIZED_OSX_COMPILER'] = 'True'

        (cc, cxx, opt, cflags, ccshared, ldshared, shlib_suffix, ar, ar_flags) = \
            get_config_vars('CC', 'CXX', 'OPT', 'CFLAGS',
                            'CCSHARED', 'LDSHARED', 'SHLIB_SUFFIX', 'AR', 'ARFLAGS')

        if 'CC' in os.environ:
            newcc = os.environ['CC']
            if (sys.platform == 'darwin'
                    and 'LDSHARED' not in os.environ
                    and ldshared.startswith(cc)):
                # On OS X, if CC is overridden, use that as the default
                #       command for LDSHARED as well
                ldshared = newcc + ldshared[len(cc):]
            cc = newcc
        if 'CXX' in os.environ:
            cxx = os.environ['CXX']
        if 'LDSHARED' in os.environ:
            ldshared = os.environ['LDSHARED']
        if 'CPP' in os.environ:
            cpp = os.environ['CPP']
        else:
            cpp = cc + " -E"           # not always
        if 'LDFLAGS' in os.environ:
            ldshared = ldshared + ' ' + os.environ['LDFLAGS']
        if 'CFLAGS' in os.environ:
            cflags = opt + ' ' + os.environ['CFLAGS']
            ldshared = ldshared + ' ' + os.environ['CFLAGS']
        if 'CPPFLAGS' in os.environ:
            cpp = cpp + ' ' + os.environ['CPPFLAGS']
            cflags = cflags + ' ' + os.environ['CPPFLAGS']
            ldshared = ldshared + ' ' + os.environ['CPPFLAGS']
        if 'AR' in os.environ:
            ar = os.environ['AR']
        if 'ARFLAGS' in os.environ:
            archiver = ar + ' ' + os.environ['ARFLAGS']
        else:
            archiver = ar + ' ' + ar_flags

        cc_cmd = cc + ' ' + cflags
        compiler.set_executables(
            preprocessor=cpp,
            compiler=cc_cmd,
            compiler_so=cc_cmd + ' ' + ccshared,
            compiler_cxx=cxx,
            linker_so=ldshared,
            linker_exe=cc,
            archiver=archiver)

        compiler.shared_lib_extension = shlib_suffix


def get_config_h_filename():
    """Return full pathname of installed pyconfig.h file."""
    if python_build:
        if os.name == "nt":
            inc_dir = os.path.join(_sys_home or project_base, "PC")
        else:
            inc_dir = _sys_home or project_base
    else:
        inc_dir = get_python_inc(plat_specific=1)

    return os.path.join(inc_dir, 'pyconfig.h')


def get_makefile_filename():
    """Return full pathname of installed Makefile from the Python build."""
    if python_build:
        return os.path.join(_sys_home or project_base, "Makefile")
    lib_dir = get_python_lib(plat_specific=0, standard_lib=1)
    config_file = 'config-{}{}'.format(get_python_version(), build_flags)
    return os.path.join(lib_dir, config_file, 'Makefile')


def parse_config_h(fp, g=None):
    """Parse a config.h-style file.

    A dictionary containing name/value pairs is returned.  If an
    optional dictionary is passed in as the second argument, it is
    used instead of a new dictionary.
    """
    if g is None:
        g = {}
    define_rx = re.compile("#define ([A-Z][A-Za-z0-9_]+) (.*)\n")
    undef_rx = re.compile("/[*] #undef ([A-Z][A-Za-z0-9_]+) [*]/\n")
    #
    while True:
        line = fp.readline()
        if not line:
            break
        m = define_rx.match(line)
        if m:
            n, v = m.group(1, 2)
            try: v = int(v)
            except ValueError: pass
            g[n] = v
        else:
            m = undef_rx.match(line)
            if m:
                g[m.group(1)] = 0
    return g


# Regexes needed for parsing Makefile (and similar syntaxes,
# like old-style Setup files).
_variable_rx = re.compile("([a-zA-Z][a-zA-Z0-9_]+)\s*=\s*(.*)")
_findvar1_rx = re.compile(r"\$\(([A-Za-z][A-Za-z0-9_]*)\)")
_findvar2_rx = re.compile(r"\${([A-Za-z][A-Za-z0-9_]*)}")

def parse_makefile(fn, g=None):
    """Parse a Makefile-style file.

    A dictionary containing name/value pairs is returned.  If an
    optional dictionary is passed in as the second argument, it is
    used instead of a new dictionary.
    """
    from distutils.text_file import TextFile
    fp = TextFile(fn, strip_comments=1, skip_blanks=1, join_lines=1, errors="surrogateescape")

    if g is None:
        g = {}
    done = {}
    notdone = {}

    while True:
        line = fp.readline()
        if line is None: # eof
            break
        m = _variable_rx.match(line)
        if m:
            n, v = m.group(1, 2)
            v = v.strip()
            # `$$' is a literal `$' in make
            tmpv = v.replace('$$', '')

            if "$" in tmpv:
                notdone[n] = v
            else:
                try:
                    v = int(v)
                except ValueError:
                    # insert literal `$'
                    done[n] = v.replace('$$', '$')
                else:
                    done[n] = v

    # Variables with a 'PY_' prefix in the makefile. These need to
    # be made available without that prefix through sysconfig.
    # Special care is needed to ensure that variable expansion works, even
    # if the expansion uses the name without a prefix.
    renamed_variables = ('CFLAGS', 'LDFLAGS', 'CPPFLAGS')

    # do variable interpolation here
    while notdone:
        for name in list(notdone):
            value = notdone[name]
            m = _findvar1_rx.search(value) or _findvar2_rx.search(value)
            if m:
                n = m.group(1)
                found = True
                if n in done:
                    item = str(done[n])
                elif n in notdone:
                    # get it on a subsequent round
                    found = False
                elif n in os.environ:
                    # do it like make: fall back to environment
                    item = os.environ[n]

                elif n in renamed_variables:
                    if name.startswith('PY_') and name[3:] in renamed_variables:
                        item = ""

                    elif 'PY_' + n in notdone:
                        found = False

                    else:
                        item = str(done['PY_' + n])
                else:
                    done[n] = item = ""
                if found:
                    after = value[m.end():]
                    value = value[:m.start()] + item + after
                    if "$" in after:
                        notdone[name] = value
                    else:
                        try: value = int(value)
                        except ValueError:
                            done[name] = value.strip()
                        else:
                            done[name] = value
                        del notdone[name]

                        if name.startswith('PY_') \
                            and name[3:] in renamed_variables:

                            name = name[3:]
                            if name not in done:
                                done[name] = value
            else:
                # bogus variable reference; just drop it since we can't deal
                del notdone[name]

    fp.close()

    # strip spurious spaces
    for k, v in done.items():
        if isinstance(v, str):
            done[k] = v.strip()

    # save the results in the global dictionary
    g.update(done)
    return g


def expand_makefile_vars(s, vars):
    """Expand Makefile-style variables -- "${foo}" or "$(foo)" -- in
    'string' according to 'vars' (a dictionary mapping variable names to
    values).  Variables not present in 'vars' are silently expanded to the
    empty string.  The variable values in 'vars' should not contain further
    variable expansions; if 'vars' is the output of 'parse_makefile()',
    you're fine.  Returns a variable-expanded version of 's'.
    """

    # This algorithm does multiple expansion, so if vars['foo'] contains
    # "${bar}", it will expand ${foo} to ${bar}, and then expand
    # ${bar}... and so forth.  This is fine as long as 'vars' comes from
    # 'parse_makefile()', which takes care of such expansions eagerly,
    # according to make's variable expansion semantics.

    while True:
        m = _findvar1_rx.search(s) or _findvar2_rx.search(s)
        if m:
            (beg, end) = m.span()
            s = s[0:beg] + vars.get(m.group(1)) + s[end:]
        else:
            break
    return s


_config_vars = None

def _init_posix():
    """Initialize the module as appropriate for POSIX systems."""
    # _sysconfigdata is generated at build time, see the sysconfig module
    from _sysconfigdata import build_time_vars # ironpython
    global _config_vars
    _config_vars = {}
    _config_vars.update(build_time_vars)


def _init_nt():
    """Initialize the module as appropriate for NT"""
    g = {}
    # set basic install directories
    g['LIBDEST'] = get_python_lib(plat_specific=0, standard_lib=1)
    g['BINLIBDEST'] = get_python_lib(plat_specific=1, standard_lib=1)

    # XXX hmmm.. a normal install puts include files here
    g['INCLUDEPY'] = get_python_inc(plat_specific=0)

    g['EXT_SUFFIX'] = '.pyd'
    g['EXE'] = ".exe"
    g['VERSION'] = get_python_version().replace(".", "")
    g['BINDIR'] = os.path.dirname(os.path.abspath(sys.executable))

    global _config_vars
    _config_vars = g


def get_config_vars(*args):
    """With no arguments, return a dictionary of all configuration
    variables relevant for the current platform.  Generally this includes
    everything needed to build extensions and install both pure modules and
    extensions.  On Unix, this means every variable defined in Python's
    installed Makefile; on Windows it's a much smaller set.

    With arguments, return a list of values that result from looking up
    each argument in the configuration variable dictionary.
    """
    global _config_vars
    if _config_vars is None:
        func = globals().get("_init_" + os.name)
        if func:
            func()
        else:
            _config_vars = {}

        # Normalized versions of prefix and exec_prefix are handy to have;
        # in fact, these are the standard versions used most places in the
        # Distutils.
        _config_vars['prefix'] = PREFIX
        _config_vars['exec_prefix'] = EXEC_PREFIX

        # For backward compatibility, see issue19555
        SO = _config_vars.get('EXT_SUFFIX')
        if SO is not None:
            _config_vars['SO'] = SO

        # Always convert srcdir to an absolute path
        srcdir = _config_vars.get('srcdir', project_base)
        if os.name == 'posix':
            if python_build:
                # If srcdir is a relative path (typically '.' or '..')
                # then it should be interpreted relative to the directory
                # containing Makefile.
                base = os.path.dirname(get_makefile_filename())
                srcdir = os.path.join(base, srcdir)
            else:
                # srcdir is not meaningful since the installation is
                # spread about the filesystem.  We choose the
                # directory containing the Makefile since we know it
                # exists.
                srcdir = os.path.dirname(get_makefile_filename())
        _config_vars['srcdir'] = os.path.abspath(os.path.normpath(srcdir))

        # Convert srcdir into an absolute path if it appears necessary.
        # Normally it is relative to the build directory.  However, during
        # testing, for example, we might be running a non-installed python
        # from a different directory.
        if python_build and os.name == "posix":
            base = project_base
            if (not os.path.isabs(_config_vars['srcdir']) and
                base != os.getcwd()):
                # srcdir is relative and we are not in the same directory
                # as the executable. Assume executable is in the build
                # directory and make srcdir absolute.
                srcdir = os.path.join(base, _config_vars['srcdir'])
                _config_vars['srcdir'] = os.path.normpath(srcdir)

        # OS X platforms require special customization to handle
        # multi-architecture, multi-os-version installers
        if sys.platform == 'darwin':
            import _osx_support
            _osx_support.customize_config_vars(_config_vars)

    if args:
        vals = []
        for name in args:
            vals.append(_config_vars.get(name))
        return vals
    else:
        return _config_vars

def get_config_var(name):
    """Return the value of a single variable using the dictionary
    returned by 'get_config_vars()'.  Equivalent to
    get_config_vars().get(name)
    """
    if name == 'SO':
        import warnings
        warnings.warn('SO is deprecated, use EXT_SUFFIX', DeprecationWarning, 2)
    return get_config_vars().get(name)
lib\distutils\text_file.py
"""text_file

provides the TextFile class, which gives an interface to text files
that (optionally) takes care of stripping comments, ignoring blank
lines, and joining lines with backslashes."""

import sys, os, io


class TextFile:
    """Provides a file-like object that takes care of all the things you
       commonly want to do when processing a text file that has some
       line-by-line syntax: strip comments (as long as "#" is your
       comment character), skip blank lines, join adjacent lines by
       escaping the newline (ie. backslash at end of line), strip
       leading and/or trailing whitespace.  All of these are optional
       and independently controllable.

       Provides a 'warn()' method so you can generate warning messages that
       report physical line number, even if the logical line in question
       spans multiple physical lines.  Also provides 'unreadline()' for
       implementing line-at-a-time lookahead.

       Constructor is called as:

           TextFile (filename=None, file=None, **options)

       It bombs (RuntimeError) if both 'filename' and 'file' are None;
       'filename' should be a string, and 'file' a file object (or
       something that provides 'readline()' and 'close()' methods).  It is
       recommended that you supply at least 'filename', so that TextFile
       can include it in warning messages.  If 'file' is not supplied,
       TextFile creates its own using 'io.open()'.

       The options are all boolean, and affect the value returned by
       'readline()':
         strip_comments [default: true]
           strip from "#" to end-of-line, as well as any whitespace
           leading up to the "#" -- unless it is escaped by a backslash
         lstrip_ws [default: false]
           strip leading whitespace from each line before returning it
         rstrip_ws [default: true]
           strip trailing whitespace (including line terminator!) from
           each line before returning it
         skip_blanks [default: true}
           skip lines that are empty *after* stripping comments and
           whitespace.  (If both lstrip_ws and rstrip_ws are false,
           then some lines may consist of solely whitespace: these will
           *not* be skipped, even if 'skip_blanks' is true.)
         join_lines [default: false]
           if a backslash is the last non-newline character on a line
           after stripping comments and whitespace, join the following line
           to it to form one "logical line"; if N consecutive lines end
           with a backslash, then N+1 physical lines will be joined to
           form one logical line.
         collapse_join [default: false]
           strip leading whitespace from lines that are joined to their
           predecessor; only matters if (join_lines and not lstrip_ws)
         errors [default: 'strict']
           error handler used to decode the file content

       Note that since 'rstrip_ws' can strip the trailing newline, the
       semantics of 'readline()' must differ from those of the builtin file
       object's 'readline()' method!  In particular, 'readline()' returns
       None for end-of-file: an empty string might just be a blank line (or
       an all-whitespace line), if 'rstrip_ws' is true but 'skip_blanks' is
       not."""

    default_options = { 'strip_comments': 1,
                        'skip_blanks':    1,
                        'lstrip_ws':      0,
                        'rstrip_ws':      1,
                        'join_lines':     0,
                        'collapse_join':  0,
                        'errors':         'strict',
                      }

    def __init__(self, filename=None, file=None, **options):
        """Construct a new TextFile object.  At least one of 'filename'
           (a string) and 'file' (a file-like object) must be supplied.
           They keyword argument options are described above and affect
           the values returned by 'readline()'."""
        if filename is None and file is None:
            raise RuntimeError("you must supply either or both of 'filename' and 'file'")

        # set values for all options -- either from client option hash
        # or fallback to default_options
        for opt in self.default_options.keys():
            if opt in options:
                setattr(self, opt, options[opt])
            else:
                setattr(self, opt, self.default_options[opt])

        # sanity check client option hash
        for opt in options.keys():
            if opt not in self.default_options:
                raise KeyError("invalid TextFile option '%s'" % opt)

        if file is None:
            self.open(filename)
        else:
            self.filename = filename
            self.file = file
            self.current_line = 0       # assuming that file is at BOF!

        # 'linebuf' is a stack of lines that will be emptied before we
        # actually read from the file; it's only populated by an
        # 'unreadline()' operation
        self.linebuf = []

    def open(self, filename):
        """Open a new file named 'filename'.  This overrides both the
           'filename' and 'file' arguments to the constructor."""
        self.filename = filename
        self.file = io.open(self.filename, 'r', errors=self.errors)
        self.current_line = 0

    def close(self):
        """Close the current file and forget everything we know about it
           (filename, current line number)."""
        file = self.file
        self.file = None
        self.filename = None
        self.current_line = None
        file.close()

    def gen_error(self, msg, line=None):
        outmsg = []
        if line is None:
            line = self.current_line
        outmsg.append(self.filename + ", ")
        if isinstance(line, (list, tuple)):
            outmsg.append("lines %d-%d: " % tuple(line))
        else:
            outmsg.append("line %d: " % line)
        outmsg.append(str(msg))
        return "".join(outmsg)

    def error(self, msg, line=None):
        raise ValueError("error: " + self.gen_error(msg, line))

    def warn(self, msg, line=None):
        """Print (to stderr) a warning message tied to the current logical
           line in the current file.  If the current logical line in the
           file spans multiple physical lines, the warning refers to the
           whole range, eg. "lines 3-5".  If 'line' supplied, it overrides
           the current line number; it may be a list or tuple to indicate a
           range of physical lines, or an integer for a single physical
           line."""
        sys.stderr.write("warning: " + self.gen_error(msg, line) + "\n")

    def readline(self):
        """Read and return a single logical line from the current file (or
           from an internal buffer if lines have previously been "unread"
           with 'unreadline()').  If the 'join_lines' option is true, this
           may involve reading multiple physical lines concatenated into a
           single string.  Updates the current line number, so calling
           'warn()' after 'readline()' emits a warning about the physical
           line(s) just read.  Returns None on end-of-file, since the empty
           string can occur if 'rstrip_ws' is true but 'strip_blanks' is
           not."""
        # If any "unread" lines waiting in 'linebuf', return the top
        # one.  (We don't actually buffer read-ahead data -- lines only
        # get put in 'linebuf' if the client explicitly does an
        # 'unreadline()'.
        if self.linebuf:
            line = self.linebuf[-1]
            del self.linebuf[-1]
            return line

        buildup_line = ''

        while True:
            # read the line, make it None if EOF
            line = self.file.readline()
            if line == '':
                line = None

            if self.strip_comments and line:

                # Look for the first "#" in the line.  If none, never
                # mind.  If we find one and it's the first character, or
                # is not preceded by "\", then it starts a comment --
                # strip the comment, strip whitespace before it, and
                # carry on.  Otherwise, it's just an escaped "#", so
                # unescape it (and any other escaped "#"'s that might be
                # lurking in there) and otherwise leave the line alone.

                pos = line.find("#")
                if pos == -1: # no "#" -- no comments
                    pass

                # It's definitely a comment -- either "#" is the first
                # character, or it's elsewhere and unescaped.
                elif pos == 0 or line[pos-1] != "\\":
                    # Have to preserve the trailing newline, because it's
                    # the job of a later step (rstrip_ws) to remove it --
                    # and if rstrip_ws is false, we'd better preserve it!
                    # (NB. this means that if the final line is all comment
                    # and has no trailing newline, we will think that it's
                    # EOF; I think that's OK.)
                    eol = (line[-1] == '\n') and '\n' or ''
                    line = line[0:pos] + eol

                    # If all that's left is whitespace, then skip line
                    # *now*, before we try to join it to 'buildup_line' --
                    # that way constructs like
                    #   hello \\
                    #   # comment that should be ignored
                    #   there
                    # result in "hello there".
                    if line.strip() == "":
                        continue
                else: # it's an escaped "#"
                    line = line.replace("\\#", "#")

            # did previous line end with a backslash? then accumulate
            if self.join_lines and buildup_line:
                # oops: end of file
                if line is None:
                    self.warn("continuation line immediately precedes "
                              "end-of-file")
                    return buildup_line

                if self.collapse_join:
                    line = line.lstrip()
                line = buildup_line + line

                # careful: pay attention to line number when incrementing it
                if isinstance(self.current_line, list):
                    self.current_line[1] = self.current_line[1] + 1
                else:
                    self.current_line = [self.current_line,
                                         self.current_line + 1]
            # just an ordinary line, read it as usual
            else:
                if line is None: # eof
                    return None

                # still have to be careful about incrementing the line number!
                if isinstance(self.current_line, list):
                    self.current_line = self.current_line[1] + 1
                else:
                    self.current_line = self.current_line + 1

            # strip whitespace however the client wants (leading and
            # trailing, or one or the other, or neither)
            if self.lstrip_ws and self.rstrip_ws:
                line = line.strip()
            elif self.lstrip_ws:
                line = line.lstrip()
            elif self.rstrip_ws:
                line = line.rstrip()

            # blank line (whether we rstrip'ed or not)? skip to next line
            # if appropriate
            if (line == '' or line == '\n') and self.skip_blanks:
                continue

            if self.join_lines:
                if line[-1] == '\\':
                    buildup_line = line[:-1]
                    continue

                if line[-2:] == '\\\n':
                    buildup_line = line[0:-2] + '\n'
                    continue

            # well, I guess there's some actual content there: return it
            return line

    def readlines(self):
        """Read and return the list of all logical lines remaining in the
           current file."""
        lines = []
        while True:
            line = self.readline()
            if line is None:
                return lines
            lines.append(line)

    def unreadline(self, line):
        """Push 'line' (a string) onto an internal buffer that will be
           checked by future 'readline()' calls.  Handy for implementing
           a parser with line-at-a-time lookahead."""
        self.linebuf.append(line)
lib\distutils\unixccompiler.py
"""distutils.unixccompiler

Contains the UnixCCompiler class, a subclass of CCompiler that handles
the "typical" Unix-style command-line C compiler:
  * macros defined with -Dname[=value]
  * macros undefined with -Uname
  * include search directories specified with -Idir
  * libraries specified with -lllib
  * library search directories specified with -Ldir
  * compile handled by 'cc' (or similar) executable with -c option:
    compiles .c to .o
  * link static library handled by 'ar' command (possibly with 'ranlib')
  * link shared library handled by 'cc -shared'
"""

import os, sys, re

from distutils import sysconfig
from distutils.dep_util import newer
from distutils.ccompiler import \
     CCompiler, gen_preprocess_options, gen_lib_options
from distutils.errors import \
     DistutilsExecError, CompileError, LibError, LinkError
from distutils import log

if sys.platform == 'darwin':
    import _osx_support

# XXX Things not currently handled:
#   * optimization/debug/warning flags; we just use whatever's in Python's
#     Makefile and live with it.  Is this adequate?  If not, we might
#     have to have a bunch of subclasses GNUCCompiler, SGICCompiler,
#     SunCCompiler, and I suspect down that road lies madness.
#   * even if we don't know a warning flag from an optimization flag,
#     we need some way for outsiders to feed preprocessor/compiler/linker
#     flags in to us -- eg. a sysadmin might want to mandate certain flags
#     via a site config file, or a user might want to set something for
#     compiling this module distribution only via the setup.py command
#     line, whatever.  As long as these options come from something on the
#     current system, they can be as system-dependent as they like, and we
#     should just happily stuff them into the preprocessor/compiler/linker
#     options and carry on.


class UnixCCompiler(CCompiler):

    compiler_type = 'unix'

    # These are used by CCompiler in two places: the constructor sets
    # instance attributes 'preprocessor', 'compiler', etc. from them, and
    # 'set_executable()' allows any of these to be set.  The defaults here
    # are pretty generic; they will probably have to be set by an outsider
    # (eg. using information discovered by the sysconfig about building
    # Python extensions).
    executables = {'preprocessor' : None,
                   'compiler'     : ["cc"],
                   'compiler_so'  : ["cc"],
                   'compiler_cxx' : ["cc"],
                   'linker_so'    : ["cc", "-shared"],
                   'linker_exe'   : ["cc"],
                   'archiver'     : ["ar", "-cr"],
                   'ranlib'       : None,
                  }

    if sys.platform[:6] == "darwin":
        executables['ranlib'] = ["ranlib"]

    # Needed for the filename generation methods provided by the base
    # class, CCompiler.  NB. whoever instantiates/uses a particular
    # UnixCCompiler instance should set 'shared_lib_ext' -- we set a
    # reasonable common default here, but it's not necessarily used on all
    # Unices!

    src_extensions = [".c",".C",".cc",".cxx",".cpp",".m"]
    obj_extension = ".o"
    static_lib_extension = ".a"
    shared_lib_extension = ".so"
    dylib_lib_extension = ".dylib"
    static_lib_format = shared_lib_format = dylib_lib_format = "lib%s%s"
    if sys.platform == "cygwin":
        exe_extension = ".exe"

    def preprocess(self, source, output_file=None, macros=None,
                   include_dirs=None, extra_preargs=None, extra_postargs=None):
        fixed_args = self._fix_compile_args(None, macros, include_dirs)
        ignore, macros, include_dirs = fixed_args
        pp_opts = gen_preprocess_options(macros, include_dirs)
        pp_args = self.preprocessor + pp_opts
        if output_file:
            pp_args.extend(['-o', output_file])
        if extra_preargs:
            pp_args[:0] = extra_preargs
        if extra_postargs:
            pp_args.extend(extra_postargs)
        pp_args.append(source)

        # We need to preprocess: either we're being forced to, or we're
        # generating output to stdout, or there's a target output file and
        # the source file is newer than the target (or the target doesn't
        # exist).
        if self.force or output_file is None or newer(source, output_file):
            if output_file:
                self.mkpath(os.path.dirname(output_file))
            try:
                self.spawn(pp_args)
            except DistutilsExecError as msg:
                raise CompileError(msg)

    def _compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts):
        compiler_so = self.compiler_so
        if sys.platform == 'darwin':
            compiler_so = _osx_support.compiler_fixup(compiler_so,
                                                    cc_args + extra_postargs)
        try:
            self.spawn(compiler_so + cc_args + [src, '-o', obj] +
                       extra_postargs)
        except DistutilsExecError as msg:
            raise CompileError(msg)

    def create_static_lib(self, objects, output_libname,
                          output_dir=None, debug=0, target_lang=None):
        objects, output_dir = self._fix_object_args(objects, output_dir)

        output_filename = \
            self.library_filename(output_libname, output_dir=output_dir)

        if self._need_link(objects, output_filename):
            self.mkpath(os.path.dirname(output_filename))
            self.spawn(self.archiver +
                       [output_filename] +
                       objects + self.objects)

            # Not many Unices required ranlib anymore -- SunOS 4.x is, I
            # think the only major Unix that does.  Maybe we need some
            # platform intelligence here to skip ranlib if it's not
            # needed -- or maybe Python's configure script took care of
            # it for us, hence the check for leading colon.
            if self.ranlib:
                try:
                    self.spawn(self.ranlib + [output_filename])
                except DistutilsExecError as msg:
                    raise LibError(msg)
        else:
            log.debug("skipping %s (up-to-date)", output_filename)

    def link(self, target_desc, objects,
             output_filename, output_dir=None, libraries=None,
             library_dirs=None, runtime_library_dirs=None,
             export_symbols=None, debug=0, extra_preargs=None,
             extra_postargs=None, build_temp=None, target_lang=None):
        objects, output_dir = self._fix_object_args(objects, output_dir)
        fixed_args = self._fix_lib_args(libraries, library_dirs,
                                        runtime_library_dirs)
        libraries, library_dirs, runtime_library_dirs = fixed_args

        lib_opts = gen_lib_options(self, library_dirs, runtime_library_dirs,
                                   libraries)
        if not isinstance(output_dir, (str, type(None))):
            raise TypeError("'output_dir' must be a string or None")
        if output_dir is not None:
            output_filename = os.path.join(output_dir, output_filename)

        if self._need_link(objects, output_filename):
            ld_args = (objects + self.objects +
                       lib_opts + ['-o', output_filename])
            if debug:
                ld_args[:0] = ['-g']
            if extra_preargs:
                ld_args[:0] = extra_preargs
            if extra_postargs:
                ld_args.extend(extra_postargs)
            self.mkpath(os.path.dirname(output_filename))
            try:
                if target_desc == CCompiler.EXECUTABLE:
                    linker = self.linker_exe[:]
                else:
                    linker = self.linker_so[:]
                if target_lang == "c++" and self.compiler_cxx:
                    # skip over environment variable settings if /usr/bin/env
                    # is used to set up the linker's environment.
                    # This is needed on OSX. Note: this assumes that the
                    # normal and C++ compiler have the same environment
                    # settings.
                    i = 0
                    if os.path.basename(linker[0]) == "env":
                        i = 1
                        while '=' in linker[i]:
                            i += 1
                    linker[i] = self.compiler_cxx[i]

                if sys.platform == 'darwin':
                    linker = _osx_support.compiler_fixup(linker, ld_args)

                self.spawn(linker + ld_args)
            except DistutilsExecError as msg:
                raise LinkError(msg)
        else:
            log.debug("skipping %s (up-to-date)", output_filename)

    # -- Miscellaneous methods -----------------------------------------
    # These are all used by the 'gen_lib_options() function, in
    # ccompiler.py.

    def library_dir_option(self, dir):
        return "-L" + dir

    def _is_gcc(self, compiler_name):
        return "gcc" in compiler_name or "g++" in compiler_name

    def runtime_library_dir_option(self, dir):
        # XXX Hackish, at the very least.  See Python bug #445902:
        # http://sourceforge.net/tracker/index.php
        #   ?func=detail&aid=445902&group_id=5470&atid=105470
        # Linkers on different platforms need different options to
        # specify that directories need to be added to the list of
        # directories searched for dependencies when a dynamic library
        # is sought.  GCC on GNU systems (Linux, FreeBSD, ...) has to
        # be told to pass the -R option through to the linker, whereas
        # other compilers and gcc on other systems just know this.
        # Other compilers may need something slightly different.  At
        # this time, there's no way to determine this information from
        # the configuration data stored in the Python installation, so
        # we use this hack.
        compiler = os.path.basename(sysconfig.get_config_var("CC"))
        if sys.platform[:6] == "darwin":
            # MacOSX's linker doesn't understand the -R flag at all
            return "-L" + dir
        elif sys.platform[:5] == "hp-ux":
            if self._is_gcc(compiler):
                return ["-Wl,+s", "-L" + dir]
            return ["+s", "-L" + dir]
        elif sys.platform[:7] == "irix646" or sys.platform[:6] == "osf1V5":
            return ["-rpath", dir]
        else:
            if self._is_gcc(compiler):
                # gcc on non-GNU systems does not need -Wl, but can
                # use it anyway.  Since distutils has always passed in
                # -Wl whenever gcc was used in the past it is probably
                # safest to keep doing so.
                if sysconfig.get_config_var("GNULD") == "yes":
                    # GNU ld needs an extra option to get a RUNPATH
                    # instead of just an RPATH.
                    return "-Wl,--enable-new-dtags,-R" + dir
                else:
                    return "-Wl,-R" + dir
            else:
                # No idea how --enable-new-dtags would be passed on to
                # ld if this system was using GNU ld.  Don't know if a
                # system like this even exists.
                return "-R" + dir

    def library_option(self, lib):
        return "-l" + lib

    def find_library_file(self, dirs, lib, debug=0):
        shared_f = self.library_filename(lib, lib_type='shared')
        dylib_f = self.library_filename(lib, lib_type='dylib')
        static_f = self.library_filename(lib, lib_type='static')

        if sys.platform == 'darwin':
            # On OSX users can specify an alternate SDK using
            # '-isysroot', calculate the SDK root if it is specified
            # (and use it further on)
            cflags = sysconfig.get_config_var('CFLAGS')
            m = re.search(r'-isysroot\s+(\S+)', cflags)
            if m is None:
                sysroot = '/'
            else:
                sysroot = m.group(1)



        for dir in dirs:
            shared = os.path.join(dir, shared_f)
            dylib = os.path.join(dir, dylib_f)
            static = os.path.join(dir, static_f)

            if sys.platform == 'darwin' and (
                dir.startswith('/System/') or (
                dir.startswith('/usr/') and not dir.startswith('/usr/local/'))):

                shared = os.path.join(sysroot, dir[1:], shared_f)
                dylib = os.path.join(sysroot, dir[1:], dylib_f)
                static = os.path.join(sysroot, dir[1:], static_f)

            # We're second-guessing the linker here, with not much hard
            # data to go on: GCC seems to prefer the shared library, so I'm
            # assuming that *all* Unix C compilers do.  And of course I'm
            # ignoring even GCC's "-static" option.  So sue me.
            if os.path.exists(dylib):
                return dylib
            elif os.path.exists(shared):
                return shared
            elif os.path.exists(static):
                return static

        # Oops, didn't find it in *any* of 'dirs'
        return None
lib\distutils\util.py
"""distutils.util

Miscellaneous utility functions -- anything that doesn't fit into
one of the other *util.py modules.
"""

import os
import re
import importlib.util
import sys
import string
from distutils.errors import DistutilsPlatformError
from distutils.dep_util import newer
from distutils.spawn import spawn
from distutils import log
from distutils.errors import DistutilsByteCompileError

def get_platform ():
    """Return a string that identifies the current platform.  This is used
    mainly to distinguish platform-specific build directories and
    platform-specific built distributions.  Typically includes the OS name
    and version and the architecture (as supplied by 'os.uname()'),
    although the exact information included depends on the OS; eg. for IRIX
    the architecture isn't particularly important (IRIX only runs on SGI
    hardware), but for Linux the kernel version isn't particularly
    important.

    Examples of returned values:
       linux-i586
       linux-alpha (?)
       solaris-2.6-sun4u
       irix-5.3
       irix64-6.2

    Windows will return one of:
       win-amd64 (64bit Windows on AMD64 (aka x86_64, Intel64, EM64T, etc)
       win-ia64 (64bit Windows on Itanium)
       win32 (all others - specifically, sys.platform is returned)

    For other non-POSIX platforms, currently just returns 'sys.platform'.
    """
    if os.name == 'nt':
        # sniff sys.version for architecture.
        prefix = " bit ("
        i = sys.version.find(prefix)
        if i == -1:
            return sys.platform
        j = sys.version.find(")", i)
        look = sys.version[i+len(prefix):j].lower()
        if look == 'amd64':
            return 'win-amd64'
        if look == 'itanium':
            return 'win-ia64'
        return sys.platform

    # Set for cross builds explicitly
    if "_PYTHON_HOST_PLATFORM" in os.environ:
        return os.environ["_PYTHON_HOST_PLATFORM"]

    if os.name != "posix" or not hasattr(os, 'uname'):
        # XXX what about the architecture? NT is Intel or Alpha,
        # Mac OS is M68k or PPC, etc.
        return sys.platform

    # Try to distinguish various flavours of Unix

    (osname, host, release, version, machine) = os.uname()

    # Convert the OS name to lowercase, remove '/' characters
    # (to accommodate BSD/OS), and translate spaces (for "Power Macintosh")
    osname = osname.lower().replace('/', '')
    machine = machine.replace(' ', '_')
    machine = machine.replace('/', '-')

    if osname[:5] == "linux":
        # At least on Linux/Intel, 'machine' is the processor --
        # i386, etc.
        # XXX what about Alpha, SPARC, etc?
        return  "%s-%s" % (osname, machine)
    elif osname[:5] == "sunos":
        if release[0] >= "5":           # SunOS 5 == Solaris 2
            osname = "solaris"
            release = "%d.%s" % (int(release[0]) - 3, release[2:])
            # We can't use "platform.architecture()[0]" because a
            # bootstrap problem. We use a dict to get an error
            # if some suspicious happens.
            bitness = {2147483647:"32bit", 9223372036854775807:"64bit"}
            machine += ".%s" % bitness[sys.maxsize]
        # fall through to standard osname-release-machine representation
    elif osname[:4] == "irix":              # could be "irix64"!
        return "%s-%s" % (osname, release)
    elif osname[:3] == "aix":
        return "%s-%s.%s" % (osname, version, release)
    elif osname[:6] == "cygwin":
        osname = "cygwin"
        rel_re = re.compile (r'[\d.]+', re.ASCII)
        m = rel_re.match(release)
        if m:
            release = m.group()
    elif osname[:6] == "darwin":
        import _osx_support, distutils.sysconfig
        osname, release, machine = _osx_support.get_platform_osx(
                                        distutils.sysconfig.get_config_vars(),
                                        osname, release, machine)

    return "%s-%s-%s" % (osname, release, machine)

# get_platform ()


def convert_path (pathname):
    """Return 'pathname' as a name that will work on the native filesystem,
    i.e. split it on '/' and put it back together again using the current
    directory separator.  Needed because filenames in the setup script are
    always supplied in Unix style, and have to be converted to the local
    convention before we can actually use them in the filesystem.  Raises
    ValueError on non-Unix-ish systems if 'pathname' either starts or
    ends with a slash.
    """
    if os.sep == '/':
        return pathname
    if not pathname:
        return pathname
    if pathname[0] == '/':
        raise ValueError("path '%s' cannot be absolute" % pathname)
    if pathname[-1] == '/':
        raise ValueError("path '%s' cannot end with '/'" % pathname)

    paths = pathname.split('/')
    while '.' in paths:
        paths.remove('.')
    if not paths:
        return os.curdir
    return os.path.join(*paths)

# convert_path ()


def change_root (new_root, pathname):
    """Return 'pathname' with 'new_root' prepended.  If 'pathname' is
    relative, this is equivalent to "os.path.join(new_root,pathname)".
    Otherwise, it requires making 'pathname' relative and then joining the
    two, which is tricky on DOS/Windows and Mac OS.
    """
    if os.name == 'posix':
        if not os.path.isabs(pathname):
            return os.path.join(new_root, pathname)
        else:
            return os.path.join(new_root, pathname[1:])

    elif os.name == 'nt':
        (drive, path) = os.path.splitdrive(pathname)
        if path[0] == '\\':
            path = path[1:]
        return os.path.join(new_root, path)

    else:
        raise DistutilsPlatformError("nothing known about platform '%s'" % os.name)


_environ_checked = 0
def check_environ ():
    """Ensure that 'os.environ' has all the environment variables we
    guarantee that users can use in config files, command-line options,
    etc.  Currently this includes:
      HOME - user's home directory (Unix only)
      PLAT - description of the current platform, including hardware
             and OS (see 'get_platform()')
    """
    global _environ_checked
    if _environ_checked:
        return

    if os.name == 'posix' and 'HOME' not in os.environ:
        import pwd
        os.environ['HOME'] = pwd.getpwuid(os.getuid())[5]

    if 'PLAT' not in os.environ:
        os.environ['PLAT'] = get_platform()

    _environ_checked = 1


def subst_vars (s, local_vars):
    """Perform shell/Perl-style variable substitution on 'string'.  Every
    occurrence of '$' followed by a name is considered a variable, and
    variable is substituted by the value found in the 'local_vars'
    dictionary, or in 'os.environ' if it's not in 'local_vars'.
    'os.environ' is first checked/augmented to guarantee that it contains
    certain values: see 'check_environ()'.  Raise ValueError for any
    variables not found in either 'local_vars' or 'os.environ'.
    """
    check_environ()
    def _subst (match, local_vars=local_vars):
        var_name = match.group(1)
        if var_name in local_vars:
            return str(local_vars[var_name])
        else:
            return os.environ[var_name]

    try:
        return re.sub(r'\$([a-zA-Z_][a-zA-Z_0-9]*)', _subst, s)
    except KeyError as var:
        raise ValueError("invalid variable '$%s'" % var)

# subst_vars ()


def grok_environment_error (exc, prefix="error: "):
    # Function kept for backward compatibility.
    # Used to try clever things with EnvironmentErrors,
    # but nowadays str(exception) produces good messages.
    return prefix + str(exc)


# Needed by 'split_quoted()'
_wordchars_re = _squote_re = _dquote_re = None
def _init_regex():
    global _wordchars_re, _squote_re, _dquote_re
    _wordchars_re = re.compile(r'[^\\\'\"%s ]*' % string.whitespace)
    _squote_re = re.compile(r"'(?:[^'\\]|\\.)*'")
    _dquote_re = re.compile(r'"(?:[^"\\]|\\.)*"')

def split_quoted (s):
    """Split a string up according to Unix shell-like rules for quotes and
    backslashes.  In short: words are delimited by spaces, as long as those
    spaces are not escaped by a backslash, or inside a quoted string.
    Single and double quotes are equivalent, and the quote characters can
    be backslash-escaped.  The backslash is stripped from any two-character
    escape sequence, leaving only the escaped character.  The quote
    characters are stripped from any quoted string.  Returns a list of
    words.
    """

    # This is a nice algorithm for splitting up a single string, since it
    # doesn't require character-by-character examination.  It was a little
    # bit of a brain-bender to get it working right, though...
    if _wordchars_re is None: _init_regex()

    s = s.strip()
    words = []
    pos = 0

    while s:
        m = _wordchars_re.match(s, pos)
        end = m.end()
        if end == len(s):
            words.append(s[:end])
            break

        if s[end] in string.whitespace: # unescaped, unquoted whitespace: now
            words.append(s[:end])       # we definitely have a word delimiter
            s = s[end:].lstrip()
            pos = 0

        elif s[end] == '\\':            # preserve whatever is being escaped;
                                        # will become part of the current word
            s = s[:end] + s[end+1:]
            pos = end+1

        else:
            if s[end] == "'":           # slurp singly-quoted string
                m = _squote_re.match(s, end)
            elif s[end] == '"':         # slurp doubly-quoted string
                m = _dquote_re.match(s, end)
            else:
                raise RuntimeError("this can't happen (bad char '%c')" % s[end])

            if m is None:
                raise ValueError("bad string (mismatched %s quotes?)" % s[end])

            (beg, end) = m.span()
            s = s[:beg] + s[beg+1:end-1] + s[end:]
            pos = m.end() - 2

        if pos >= len(s):
            words.append(s)
            break

    return words

# split_quoted ()


def execute (func, args, msg=None, verbose=0, dry_run=0):
    """Perform some action that affects the outside world (eg.  by
    writing to the filesystem).  Such actions are special because they
    are disabled by the 'dry_run' flag.  This method takes care of all
    that bureaucracy for you; all you have to do is supply the
    function to call and an argument tuple for it (to embody the
    "external action" being performed), and an optional message to
    print.
    """
    if msg is None:
        msg = "%s%r" % (func.__name__, args)
        if msg[-2:] == ',)':        # correct for singleton tuple
            msg = msg[0:-2] + ')'

    log.info(msg)
    if not dry_run:
        func(*args)


def strtobool (val):
    """Convert a string representation of truth to true (1) or false (0).

    True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
    are 'n', 'no', 'f', 'false', 'off', and '0'.  Raises ValueError if
    'val' is anything else.
    """
    val = val.lower()
    if val in ('y', 'yes', 't', 'true', 'on', '1'):
        return 1
    elif val in ('n', 'no', 'f', 'false', 'off', '0'):
        return 0
    else:
        raise ValueError("invalid truth value %r" % (val,))


def byte_compile (py_files,
                  optimize=0, force=0,
                  prefix=None, base_dir=None,
                  verbose=1, dry_run=0,
                  direct=None):
    """Byte-compile a collection of Python source files to either .pyc
    or .pyo files in a __pycache__ subdirectory.  'py_files' is a list
    of files to compile; any files that don't end in ".py" are silently
    skipped.  'optimize' must be one of the following:
      0 - don't optimize (generate .pyc)
      1 - normal optimization (like "python -O")
      2 - extra optimization (like "python -OO")
    If 'force' is true, all files are recompiled regardless of
    timestamps.

    The source filename encoded in each bytecode file defaults to the
    filenames listed in 'py_files'; you can modify these with 'prefix' and
    'basedir'.  'prefix' is a string that will be stripped off of each
    source filename, and 'base_dir' is a directory name that will be
    prepended (after 'prefix' is stripped).  You can supply either or both
    (or neither) of 'prefix' and 'base_dir', as you wish.

    If 'dry_run' is true, doesn't actually do anything that would
    affect the filesystem.

    Byte-compilation is either done directly in this interpreter process
    with the standard py_compile module, or indirectly by writing a
    temporary script and executing it.  Normally, you should let
    'byte_compile()' figure out to use direct compilation or not (see
    the source for details).  The 'direct' flag is used by the script
    generated in indirect mode; unless you know what you're doing, leave
    it set to None.
    """
    # nothing is done if sys.dont_write_bytecode is True
    if sys.dont_write_bytecode:
        raise DistutilsByteCompileError('byte-compiling is disabled.')

    # First, if the caller didn't force us into direct or indirect mode,
    # figure out which mode we should be in.  We take a conservative
    # approach: choose direct mode *only* if the current interpreter is
    # in debug mode and optimize is 0.  If we're not in debug mode (-O
    # or -OO), we don't know which level of optimization this
    # interpreter is running with, so we can't do direct
    # byte-compilation and be certain that it's the right thing.  Thus,
    # always compile indirectly if the current interpreter is in either
    # optimize mode, or if either optimization level was requested by
    # the caller.
    if direct is None:
        direct = (__debug__ and optimize == 0)

    # "Indirect" byte-compilation: write a temporary script and then
    # run it with the appropriate flags.
    if not direct:
        try:
            from tempfile import mkstemp
            (script_fd, script_name) = mkstemp(".py")
        except ImportError:
            from tempfile import mktemp
            (script_fd, script_name) = None, mktemp(".py")
        log.info("writing byte-compilation script '%s'", script_name)
        if not dry_run:
            if script_fd is not None:
                script = os.fdopen(script_fd, "w")
            else:
                script = open(script_name, "w")

            script.write("""\
from distutils.util import byte_compile
files = [
""")

            # XXX would be nice to write absolute filenames, just for
            # safety's sake (script should be more robust in the face of
            # chdir'ing before running it).  But this requires abspath'ing
            # 'prefix' as well, and that breaks the hack in build_lib's
            # 'byte_compile()' method that carefully tacks on a trailing
            # slash (os.sep really) to make sure the prefix here is "just
            # right".  This whole prefix business is rather delicate -- the
            # problem is that it's really a directory, but I'm treating it
            # as a dumb string, so trailing slashes and so forth matter.

            #py_files = map(os.path.abspath, py_files)
            #if prefix:
            #    prefix = os.path.abspath(prefix)

            script.write(",\n".join(map(repr, py_files)) + "]\n")
            script.write("""
byte_compile(files, optimize=%r, force=%r,
             prefix=%r, base_dir=%r,
             verbose=%r, dry_run=0,
             direct=1)
""" % (optimize, force, prefix, base_dir, verbose))

            script.close()

        cmd = [sys.executable, script_name]
        if optimize == 1:
            cmd.insert(1, "-O")
        elif optimize == 2:
            cmd.insert(1, "-OO")
        spawn(cmd, dry_run=dry_run)
        execute(os.remove, (script_name,), "removing %s" % script_name,
                dry_run=dry_run)

    # "Direct" byte-compilation: use the py_compile module to compile
    # right here, right now.  Note that the script generated in indirect
    # mode simply calls 'byte_compile()' in direct mode, a weird sort of
    # cross-process recursion.  Hey, it works!
    else:
        from py_compile import compile

        for file in py_files:
            if file[-3:] != ".py":
                # This lets us be lazy and not filter filenames in
                # the "install_lib" command.
                continue

            # Terminology from the py_compile module:
            #   cfile - byte-compiled file
            #   dfile - purported source filename (same as 'file' by default)
            if optimize >= 0:
                cfile = importlib.util.cache_from_source(
                    file, debug_override=not optimize)
            else:
                cfile = importlib.util.cache_from_source(file)
            dfile = file
            if prefix:
                if file[:len(prefix)] != prefix:
                    raise ValueError("invalid prefix: filename %r doesn't start with %r"
                           % (file, prefix))
                dfile = dfile[len(prefix):]
            if base_dir:
                dfile = os.path.join(base_dir, dfile)

            cfile_base = os.path.basename(cfile)
            if direct:
                if force or newer(file, cfile):
                    log.info("byte-compiling %s to %s", file, cfile_base)
                    if not dry_run:
                        compile(file, cfile, dfile)
                else:
                    log.debug("skipping byte-compilation of %s to %s",
                              file, cfile_base)

# byte_compile ()

def rfc822_escape (header):
    """Return a version of the string escaped for inclusion in an
    RFC-822 header, by ensuring there are 8 spaces space after each newline.
    """
    lines = header.split('\n')
    sep = '\n' + 8 * ' '
    return sep.join(lines)

# 2to3 support

def run_2to3(files, fixer_names=None, options=None, explicit=None):
    """Invoke 2to3 on a list of Python files.
    The files should all come from the build area, as the
    modification is done in-place. To reduce the build time,
    only files modified since the last invocation of this
    function should be passed in the files argument."""

    if not files:
        return

    # Make this class local, to delay import of 2to3
    from lib2to3.refactor import RefactoringTool, get_fixers_from_package
    class DistutilsRefactoringTool(RefactoringTool):
        def log_error(self, msg, *args, **kw):
            log.error(msg, *args)

        def log_message(self, msg, *args):
            log.info(msg, *args)

        def log_debug(self, msg, *args):
            log.debug(msg, *args)

    if fixer_names is None:
        fixer_names = get_fixers_from_package('lib2to3.fixes')
    r = DistutilsRefactoringTool(fixer_names, options=options)
    r.refactor(files, write=True)

def copydir_run_2to3(src, dest, template=None, fixer_names=None,
                     options=None, explicit=None):
    """Recursively copy a directory, only copying new and changed files,
    running run_2to3 over all newly copied Python modules afterward.

    If you give a template string, it's parsed like a MANIFEST.in.
    """
    from distutils.dir_util import mkpath
    from distutils.file_util import copy_file
    from distutils.filelist import FileList
    filelist = FileList()
    curdir = os.getcwd()
    os.chdir(src)
    try:
        filelist.findall()
    finally:
        os.chdir(curdir)
    filelist.files[:] = filelist.allfiles
    if template:
        for line in template.splitlines():
            line = line.strip()
            if not line: continue
            filelist.process_template_line(line)
    copied = []
    for filename in filelist.files:
        outname = os.path.join(dest, filename)
        mkpath(os.path.dirname(outname))
        res = copy_file(os.path.join(src, filename), outname, update=1)
        if res[1]: copied.append(outname)
    run_2to3([fn for fn in copied if fn.lower().endswith('.py')],
             fixer_names=fixer_names, options=options, explicit=explicit)
    return copied

class Mixin2to3:
    '''Mixin class for commands that run 2to3.
    To configure 2to3, setup scripts may either change
    the class variables, or inherit from individual commands
    to override how 2to3 is invoked.'''

    # provide list of fixers to run;
    # defaults to all from lib2to3.fixers
    fixer_names = None

    # options dictionary
    options = None

    # list of fixers to invoke even though they are marked as explicit
    explicit = None

    def run_2to3(self, files):
        return run_2to3(files, self.fixer_names, self.options, self.explicit)
lib\distutils\version.py
#
# distutils/version.py
#
# Implements multiple version numbering conventions for the
# Python Module Distribution Utilities.
#
# $Id$
#

"""Provides classes to represent module version numbers (one class for
each style of version numbering).  There are currently two such classes
implemented: StrictVersion and LooseVersion.

Every version number class implements the following interface:
  * the 'parse' method takes a string and parses it to some internal
    representation; if the string is an invalid version number,
    'parse' raises a ValueError exception
  * the class constructor takes an optional string argument which,
    if supplied, is passed to 'parse'
  * __str__ reconstructs the string that was passed to 'parse' (or
    an equivalent string -- ie. one that will generate an equivalent
    version number instance)
  * __repr__ generates Python code to recreate the version number instance
  * _cmp compares the current instance with either another instance
    of the same class or a string (which will be parsed to an instance
    of the same class, thus must follow the same rules)
"""

import re

class Version:
    """Abstract base class for version numbering classes.  Just provides
    constructor (__init__) and reproducer (__repr__), because those
    seem to be the same for all version numbering classes; and route
    rich comparisons to _cmp.
    """

    def __init__ (self, vstring=None):
        if vstring:
            self.parse(vstring)

    def __repr__ (self):
        return "%s ('%s')" % (self.__class__.__name__, str(self))

    def __eq__(self, other):
        c = self._cmp(other)
        if c is NotImplemented:
            return c
        return c == 0

    def __ne__(self, other):
        c = self._cmp(other)
        if c is NotImplemented:
            return c
        return c != 0

    def __lt__(self, other):
        c = self._cmp(other)
        if c is NotImplemented:
            return c
        return c < 0

    def __le__(self, other):
        c = self._cmp(other)
        if c is NotImplemented:
            return c
        return c <= 0

    def __gt__(self, other):
        c = self._cmp(other)
        if c is NotImplemented:
            return c
        return c > 0

    def __ge__(self, other):
        c = self._cmp(other)
        if c is NotImplemented:
            return c
        return c >= 0


# Interface for version-number classes -- must be implemented
# by the following classes (the concrete ones -- Version should
# be treated as an abstract class).
#    __init__ (string) - create and take same action as 'parse'
#                        (string parameter is optional)
#    parse (string)    - convert a string representation to whatever
#                        internal representation is appropriate for
#                        this style of version numbering
#    __str__ (self)    - convert back to a string; should be very similar
#                        (if not identical to) the string supplied to parse
#    __repr__ (self)   - generate Python code to recreate
#                        the instance
#    _cmp (self, other) - compare two version numbers ('other' may
#                        be an unparsed version string, or another
#                        instance of your version class)


class StrictVersion (Version):

    """Version numbering for anal retentives and software idealists.
    Implements the standard interface for version number classes as
    described above.  A version number consists of two or three
    dot-separated numeric components, with an optional "pre-release" tag
    on the end.  The pre-release tag consists of the letter 'a' or 'b'
    followed by a number.  If the numeric components of two version
    numbers are equal, then one with a pre-release tag will always
    be deemed earlier (lesser) than one without.

    The following are valid version numbers (shown in the order that
    would be obtained by sorting according to the supplied cmp function):

        0.4       0.4.0  (these two are equivalent)
        0.4.1
        0.5a1
        0.5b3
        0.5
        0.9.6
        1.0
        1.0.4a3
        1.0.4b1
        1.0.4

    The following are examples of invalid version numbers:

        1
        2.7.2.2
        1.3.a4
        1.3pl1
        1.3c4

    The rationale for this version numbering system will be explained
    in the distutils documentation.
    """

    version_re = re.compile(r'^(\d+) \. (\d+) (\. (\d+))? ([ab](\d+))?$',
                            re.VERBOSE | re.ASCII)


    def parse (self, vstring):
        match = self.version_re.match(vstring)
        if not match:
            raise ValueError("invalid version number '%s'" % vstring)

        (major, minor, patch, prerelease, prerelease_num) = \
            match.group(1, 2, 4, 5, 6)

        if patch:
            self.version = tuple(map(int, [major, minor, patch]))
        else:
            self.version = tuple(map(int, [major, minor])) + (0,)

        if prerelease:
            self.prerelease = (prerelease[0], int(prerelease_num))
        else:
            self.prerelease = None


    def __str__ (self):

        if self.version[2] == 0:
            vstring = '.'.join(map(str, self.version[0:2]))
        else:
            vstring = '.'.join(map(str, self.version))

        if self.prerelease:
            vstring = vstring + self.prerelease[0] + str(self.prerelease[1])

        return vstring


    def _cmp (self, other):
        if isinstance(other, str):
            other = StrictVersion(other)

        if self.version != other.version:
            # numeric versions don't match
            # prerelease stuff doesn't matter
            if self.version < other.version:
                return -1
            else:
                return 1

        # have to compare prerelease
        # case 1: neither has prerelease; they're equal
        # case 2: self has prerelease, other doesn't; other is greater
        # case 3: self doesn't have prerelease, other does: self is greater
        # case 4: both have prerelease: must compare them!

        if (not self.prerelease and not other.prerelease):
            return 0
        elif (self.prerelease and not other.prerelease):
            return -1
        elif (not self.prerelease and other.prerelease):
            return 1
        elif (self.prerelease and other.prerelease):
            if self.prerelease == other.prerelease:
                return 0
            elif self.prerelease < other.prerelease:
                return -1
            else:
                return 1
        else:
            assert False, "never get here"

# end class StrictVersion


# The rules according to Greg Stein:
# 1) a version number has 1 or more numbers separated by a period or by
#    sequences of letters. If only periods, then these are compared
#    left-to-right to determine an ordering.
# 2) sequences of letters are part of the tuple for comparison and are
#    compared lexicographically
# 3) recognize the numeric components may have leading zeroes
#
# The LooseVersion class below implements these rules: a version number
# string is split up into a tuple of integer and string components, and
# comparison is a simple tuple comparison.  This means that version
# numbers behave in a predictable and obvious way, but a way that might
# not necessarily be how people *want* version numbers to behave.  There
# wouldn't be a problem if people could stick to purely numeric version
# numbers: just split on period and compare the numbers as tuples.
# However, people insist on putting letters into their version numbers;
# the most common purpose seems to be:
#   - indicating a "pre-release" version
#     ('alpha', 'beta', 'a', 'b', 'pre', 'p')
#   - indicating a post-release patch ('p', 'pl', 'patch')
# but of course this can't cover all version number schemes, and there's
# no way to know what a programmer means without asking him.
#
# The problem is what to do with letters (and other non-numeric
# characters) in a version number.  The current implementation does the
# obvious and predictable thing: keep them as strings and compare
# lexically within a tuple comparison.  This has the desired effect if
# an appended letter sequence implies something "post-release":
# eg. "0.99" < "0.99pl14" < "1.0", and "5.001" < "5.001m" < "5.002".
#
# However, if letters in a version number imply a pre-release version,
# the "obvious" thing isn't correct.  Eg. you would expect that
# "1.5.1" < "1.5.2a2" < "1.5.2", but under the tuple/lexical comparison
# implemented here, this just isn't so.
#
# Two possible solutions come to mind.  The first is to tie the
# comparison algorithm to a particular set of semantic rules, as has
# been done in the StrictVersion class above.  This works great as long
# as everyone can go along with bondage and discipline.  Hopefully a
# (large) subset of Python module programmers will agree that the
# particular flavour of bondage and discipline provided by StrictVersion
# provides enough benefit to be worth using, and will submit their
# version numbering scheme to its domination.  The free-thinking
# anarchists in the lot will never give in, though, and something needs
# to be done to accommodate them.
#
# Perhaps a "moderately strict" version class could be implemented that
# lets almost anything slide (syntactically), and makes some heuristic
# assumptions about non-digits in version number strings.  This could
# sink into special-case-hell, though; if I was as talented and
# idiosyncratic as Larry Wall, I'd go ahead and implement a class that
# somehow knows that "1.2.1" < "1.2.2a2" < "1.2.2" < "1.2.2pl3", and is
# just as happy dealing with things like "2g6" and "1.13++".  I don't
# think I'm smart enough to do it right though.
#
# In any case, I've coded the test suite for this module (see
# ../test/test_version.py) specifically to fail on things like comparing
# "1.2a2" and "1.2".  That's not because the *code* is doing anything
# wrong, it's because the simple, obvious design doesn't match my
# complicated, hairy expectations for real-world version numbers.  It
# would be a snap to fix the test suite to say, "Yep, LooseVersion does
# the Right Thing" (ie. the code matches the conception).  But I'd rather
# have a conception that matches common notions about version numbers.

class LooseVersion (Version):

    """Version numbering for anarchists and software realists.
    Implements the standard interface for version number classes as
    described above.  A version number consists of a series of numbers,
    separated by either periods or strings of letters.  When comparing
    version numbers, the numeric components will be compared
    numerically, and the alphabetic components lexically.  The following
    are all valid version numbers, in no particular order:

        1.5.1
        1.5.2b2
        161
        3.10a
        8.02
        3.4j
        1996.07.12
        3.2.pl0
        3.1.1.6
        2g6
        11g
        0.960923
        2.2beta29
        1.13++
        5.5.kw
        2.0b1pl0

    In fact, there is no such thing as an invalid version number under
    this scheme; the rules for comparison are simple and predictable,
    but may not always give the results you want (for some definition
    of "want").
    """

    component_re = re.compile(r'(\d+ | [a-z]+ | \.)', re.VERBOSE)

    def __init__ (self, vstring=None):
        if vstring:
            self.parse(vstring)


    def parse (self, vstring):
        # I've given up on thinking I can reconstruct the version string
        # from the parsed tuple -- so I just store the string here for
        # use by __str__
        self.vstring = vstring
        components = [x for x in self.component_re.split(vstring)
                              if x and x != '.']
        for i, obj in enumerate(components):
            try:
                components[i] = int(obj)
            except ValueError:
                pass

        self.version = components


    def __str__ (self):
        return self.vstring


    def __repr__ (self):
        return "LooseVersion ('%s')" % str(self)


    def _cmp (self, other):
        if isinstance(other, str):
            other = LooseVersion(other)

        if self.version == other.version:
            return 0
        if self.version < other.version:
            return -1
        if self.version > other.version:
            return 1


# end class LooseVersion
lib\distutils\versionpredicate.py
"""Module for parsing and testing package version predicate strings.
"""
import re
import distutils.version
import operator


re_validPackage = re.compile(r"(?i)^\s*([a-z_]\w*(?:\.[a-z_]\w*)*)(.*)",
    re.ASCII)
# (package) (rest)

re_paren = re.compile(r"^\s*\((.*)\)\s*$") # (list) inside of parentheses
re_splitComparison = re.compile(r"^\s*(<=|>=|<|>|!=|==)\s*([^\s,]+)\s*$")
# (comp) (version)


def splitUp(pred):
    """Parse a single version comparison.

    Return (comparison string, StrictVersion)
    """
    res = re_splitComparison.match(pred)
    if not res:
        raise ValueError("bad package restriction syntax: %r" % pred)
    comp, verStr = res.groups()
    return (comp, distutils.version.StrictVersion(verStr))

compmap = {"<": operator.lt, "<=": operator.le, "==": operator.eq,
           ">": operator.gt, ">=": operator.ge, "!=": operator.ne}

class VersionPredicate:
    """Parse and test package version predicates.

    >>> v = VersionPredicate('pyepat.abc (>1.0, <3333.3a1, !=1555.1b3)')

    The `name` attribute provides the full dotted name that is given::

    >>> v.name
    'pyepat.abc'

    The str() of a `VersionPredicate` provides a normalized
    human-readable version of the expression::

    >>> print(v)
    pyepat.abc (> 1.0, < 3333.3a1, != 1555.1b3)

    The `satisfied_by()` method can be used to determine with a given
    version number is included in the set described by the version
    restrictions::

    >>> v.satisfied_by('1.1')
    True
    >>> v.satisfied_by('1.4')
    True
    >>> v.satisfied_by('1.0')
    False
    >>> v.satisfied_by('4444.4')
    False
    >>> v.satisfied_by('1555.1b3')
    False

    `VersionPredicate` is flexible in accepting extra whitespace::

    >>> v = VersionPredicate(' pat( ==  0.1  )  ')
    >>> v.name
    'pat'
    >>> v.satisfied_by('0.1')
    True
    >>> v.satisfied_by('0.2')
    False

    If any version numbers passed in do not conform to the
    restrictions of `StrictVersion`, a `ValueError` is raised::

    >>> v = VersionPredicate('p1.p2.p3.p4(>=1.0, <=1.3a1, !=1.2zb3)')
    Traceback (most recent call last):
      ...
    ValueError: invalid version number '1.2zb3'

    It the module or package name given does not conform to what's
    allowed as a legal module or package name, `ValueError` is
    raised::

    >>> v = VersionPredicate('foo-bar')
    Traceback (most recent call last):
      ...
    ValueError: expected parenthesized list: '-bar'

    >>> v = VersionPredicate('foo bar (12.21)')
    Traceback (most recent call last):
      ...
    ValueError: expected parenthesized list: 'bar (12.21)'

    """

    def __init__(self, versionPredicateStr):
        """Parse a version predicate string.
        """
        # Fields:
        #    name:  package name
        #    pred:  list of (comparison string, StrictVersion)

        versionPredicateStr = versionPredicateStr.strip()
        if not versionPredicateStr:
            raise ValueError("empty package restriction")
        match = re_validPackage.match(versionPredicateStr)
        if not match:
            raise ValueError("bad package name in %r" % versionPredicateStr)
        self.name, paren = match.groups()
        paren = paren.strip()
        if paren:
            match = re_paren.match(paren)
            if not match:
                raise ValueError("expected parenthesized list: %r" % paren)
            str = match.groups()[0]
            self.pred = [splitUp(aPred) for aPred in str.split(",")]
            if not self.pred:
                raise ValueError("empty parenthesized list in %r"
                                 % versionPredicateStr)
        else:
            self.pred = []

    def __str__(self):
        if self.pred:
            seq = [cond + " " + str(ver) for cond, ver in self.pred]
            return self.name + " (" + ", ".join(seq) + ")"
        else:
            return self.name

    def satisfied_by(self, version):
        """True if version is compatible with all the predicates in self.
        The parameter version must be acceptable to the StrictVersion
        constructor.  It may be either a string or StrictVersion.
        """
        for cond, ver in self.pred:
            if not compmap[cond](version, ver):
                return False
        return True


_provision_rx = None

def split_provision(value):
    """Return the name and optional version number of a provision.

    The version number, if given, will be returned as a `StrictVersion`
    instance, otherwise it will be `None`.

    >>> split_provision('mypkg')
    ('mypkg', None)
    >>> split_provision(' mypkg( 1.2 ) ')
    ('mypkg', StrictVersion ('1.2'))
    """
    global _provision_rx
    if _provision_rx is None:
        _provision_rx = re.compile(
            "([a-zA-Z_]\w*(?:\.[a-zA-Z_]\w*)*)(?:\s*\(\s*([^)\s]+)\s*\))?$",
            re.ASCII)
    value = value.strip()
    m = _provision_rx.match(value)
    if not m:
        raise ValueError("illegal provides specification: %r" % value)
    ver = m.group(2) or None
    if ver:
        ver = distutils.version.StrictVersion(ver)
    return m.group(1), ver
lib\distutils\__init__.py
"""distutils

The main package for the Python Module Distribution Utilities.  Normally
used from a setup script as

   from distutils.core import setup

   setup (...)
"""

import sys

__version__ = sys.version[:sys.version.index(' ')]
lib\distutils\command\bdist.py
"""distutils.command.bdist

Implements the Distutils 'bdist' command (create a built [binary]
distribution)."""

import os
from distutils.core import Command
from distutils.errors import *
from distutils.util import get_platform


def show_formats():
    """Print list of available formats (arguments to "--format" option).
    """
    from distutils.fancy_getopt import FancyGetopt
    formats = []
    for format in bdist.format_commands:
        formats.append(("formats=" + format, None,
                        bdist.format_command[format][1]))
    pretty_printer = FancyGetopt(formats)
    pretty_printer.print_help("List of available distribution formats:")


class bdist(Command):

    description = "create a built (binary) distribution"

    user_options = [('bdist-base=', 'b',
                     "temporary directory for creating built distributions"),
                    ('plat-name=', 'p',
                     "platform name to embed in generated filenames "
                     "(default: %s)" % get_platform()),
                    ('formats=', None,
                     "formats for distribution (comma-separated list)"),
                    ('dist-dir=', 'd',
                     "directory to put final built distributions in "
                     "[default: dist]"),
                    ('skip-build', None,
                     "skip rebuilding everything (for testing/debugging)"),
                    ('owner=', 'u',
                     "Owner name used when creating a tar file"
                     " [default: current user]"),
                    ('group=', 'g',
                     "Group name used when creating a tar file"
                     " [default: current group]"),
                   ]

    boolean_options = ['skip-build']

    help_options = [
        ('help-formats', None,
         "lists available distribution formats", show_formats),
        ]

    # The following commands do not take a format option from bdist
    no_format_option = ('bdist_rpm',)

    # This won't do in reality: will need to distinguish RPM-ish Linux,
    # Debian-ish Linux, Solaris, FreeBSD, ..., Windows, Mac OS.
    default_format = {'posix': 'gztar',
                      'nt': 'zip'}

    # Establish the preferred order (for the --help-formats option).
    format_commands = ['rpm', 'gztar', 'bztar', 'ztar', 'tar',
                       'wininst', 'zip', 'msi']

    # And the real information.
    format_command = {'rpm':   ('bdist_rpm',  "RPM distribution"),
                      'gztar': ('bdist_dumb', "gzip'ed tar file"),
                      'bztar': ('bdist_dumb', "bzip2'ed tar file"),
                      'ztar':  ('bdist_dumb', "compressed tar file"),
                      'tar':   ('bdist_dumb', "tar file"),
                      'wininst': ('bdist_wininst',
                                  "Windows executable installer"),
                      'zip':   ('bdist_dumb', "ZIP file"),
                      'msi':   ('bdist_msi',  "Microsoft Installer")
                      }


    def initialize_options(self):
        self.bdist_base = None
        self.plat_name = None
        self.formats = None
        self.dist_dir = None
        self.skip_build = 0
        self.group = None
        self.owner = None

    def finalize_options(self):
        # have to finalize 'plat_name' before 'bdist_base'
        if self.plat_name is None:
            if self.skip_build:
                self.plat_name = get_platform()
            else:
                self.plat_name = self.get_finalized_command('build').plat_name

        # 'bdist_base' -- parent of per-built-distribution-format
        # temporary directories (eg. we'll probably have
        # "build/bdist.<plat>/dumb", "build/bdist.<plat>/rpm", etc.)
        if self.bdist_base is None:
            build_base = self.get_finalized_command('build').build_base
            self.bdist_base = os.path.join(build_base,
                                           'bdist.' + self.plat_name)

        self.ensure_string_list('formats')
        if self.formats is None:
            try:
                self.formats = [self.default_format[os.name]]
            except KeyError:
                raise DistutilsPlatformError(
                      "don't know how to create built distributions "
                      "on platform %s" % os.name)

        if self.dist_dir is None:
            self.dist_dir = "dist"

    def run(self):
        # Figure out which sub-commands we need to run.
        commands = []
        for format in self.formats:
            try:
                commands.append(self.format_command[format][0])
            except KeyError:
                raise DistutilsOptionError("invalid format '%s'" % format)

        # Reinitialize and run each command.
        for i in range(len(self.formats)):
            cmd_name = commands[i]
            sub_cmd = self.reinitialize_command(cmd_name)
            if cmd_name not in self.no_format_option:
                sub_cmd.format = self.formats[i]

            # passing the owner and group names for tar archiving
            if cmd_name == 'bdist_dumb':
                sub_cmd.owner = self.owner
                sub_cmd.group = self.group

            # If we're going to need to run this command again, tell it to
            # keep its temporary files around so subsequent runs go faster.
            if cmd_name in commands[i+1:]:
                sub_cmd.keep_temp = 1
            self.run_command(cmd_name)
lib\distutils\command\bdist_dumb.py
"""distutils.command.bdist_dumb

Implements the Distutils 'bdist_dumb' command (create a "dumb" built
distribution -- i.e., just an archive to be unpacked under $prefix or
$exec_prefix)."""

import os
from distutils.core import Command
from distutils.util import get_platform
from distutils.dir_util import remove_tree, ensure_relative
from distutils.errors import *
from distutils.sysconfig import get_python_version
from distutils import log

class bdist_dumb(Command):

    description = "create a \"dumb\" built distribution"

    user_options = [('bdist-dir=', 'd',
                     "temporary directory for creating the distribution"),
                    ('plat-name=', 'p',
                     "platform name to embed in generated filenames "
                     "(default: %s)" % get_platform()),
                    ('format=', 'f',
                     "archive format to create (tar, ztar, gztar, zip)"),
                    ('keep-temp', 'k',
                     "keep the pseudo-installation tree around after " +
                     "creating the distribution archive"),
                    ('dist-dir=', 'd',
                     "directory to put final built distributions in"),
                    ('skip-build', None,
                     "skip rebuilding everything (for testing/debugging)"),
                    ('relative', None,
                     "build the archive using relative paths"
                     "(default: false)"),
                    ('owner=', 'u',
                     "Owner name used when creating a tar file"
                     " [default: current user]"),
                    ('group=', 'g',
                     "Group name used when creating a tar file"
                     " [default: current group]"),
                   ]

    boolean_options = ['keep-temp', 'skip-build', 'relative']

    default_format = { 'posix': 'gztar',
                       'nt': 'zip' }

    def initialize_options(self):
        self.bdist_dir = None
        self.plat_name = None
        self.format = None
        self.keep_temp = 0
        self.dist_dir = None
        self.skip_build = None
        self.relative = 0
        self.owner = None
        self.group = None

    def finalize_options(self):
        if self.bdist_dir is None:
            bdist_base = self.get_finalized_command('bdist').bdist_base
            self.bdist_dir = os.path.join(bdist_base, 'dumb')

        if self.format is None:
            try:
                self.format = self.default_format[os.name]
            except KeyError:
                raise DistutilsPlatformError(
                       "don't know how to create dumb built distributions "
                       "on platform %s" % os.name)

        self.set_undefined_options('bdist',
                                   ('dist_dir', 'dist_dir'),
                                   ('plat_name', 'plat_name'),
                                   ('skip_build', 'skip_build'))

    def run(self):
        if not self.skip_build:
            self.run_command('build')

        install = self.reinitialize_command('install', reinit_subcommands=1)
        install.root = self.bdist_dir
        install.skip_build = self.skip_build
        install.warn_dir = 0

        log.info("installing to %s" % self.bdist_dir)
        self.run_command('install')

        # And make an archive relative to the root of the
        # pseudo-installation tree.
        archive_basename = "%s.%s" % (self.distribution.get_fullname(),
                                      self.plat_name)

        pseudoinstall_root = os.path.join(self.dist_dir, archive_basename)
        if not self.relative:
            archive_root = self.bdist_dir
        else:
            if (self.distribution.has_ext_modules() and
                (install.install_base != install.install_platbase)):
                raise DistutilsPlatformError(
                       "can't make a dumb built distribution where "
                       "base and platbase are different (%s, %s)"
                       % (repr(install.install_base),
                          repr(install.install_platbase)))
            else:
                archive_root = os.path.join(self.bdist_dir,
                                   ensure_relative(install.install_base))

        # Make the archive
        filename = self.make_archive(pseudoinstall_root,
                                     self.format, root_dir=archive_root,
                                     owner=self.owner, group=self.group)
        if self.distribution.has_ext_modules():
            pyversion = get_python_version()
        else:
            pyversion = 'any'
        self.distribution.dist_files.append(('bdist_dumb', pyversion,
                                             filename))

        if not self.keep_temp:
            remove_tree(self.bdist_dir, dry_run=self.dry_run)
lib\distutils\command\bdist_msi.py
# Copyright (C) 2005, 2006 Martin von Löwis
# Licensed to PSF under a Contributor Agreement.
# The bdist_wininst command proper
# based on bdist_wininst
"""
Implements the bdist_msi command.
"""

import sys, os
from distutils.core import Command
from distutils.dir_util import remove_tree
from distutils.sysconfig import get_python_version
from distutils.version import StrictVersion
from distutils.errors import DistutilsOptionError
from distutils.util import get_platform
from distutils import log
import msilib
from msilib import schema, sequence, text
from msilib import Directory, Feature, Dialog, add_data

class PyDialog(Dialog):
    """Dialog class with a fixed layout: controls at the top, then a ruler,
    then a list of buttons: back, next, cancel. Optionally a bitmap at the
    left."""
    def __init__(self, *args, **kw):
        """Dialog(database, name, x, y, w, h, attributes, title, first,
        default, cancel, bitmap=true)"""
        Dialog.__init__(self, *args)
        ruler = self.h - 36
        bmwidth = 152*ruler/328
        #if kw.get("bitmap", True):
        #    self.bitmap("Bitmap", 0, 0, bmwidth, ruler, "PythonWin")
        self.line("BottomLine", 0, ruler, self.w, 0)

    def title(self, title):
        "Set the title text of the dialog at the top."
        # name, x, y, w, h, flags=Visible|Enabled|Transparent|NoPrefix,
        # text, in VerdanaBold10
        self.text("Title", 15, 10, 320, 60, 0x30003,
                  r"{\VerdanaBold10}%s" % title)

    def back(self, title, next, name = "Back", active = 1):
        """Add a back button with a given title, the tab-next button,
        its name in the Control table, possibly initially disabled.

        Return the button, so that events can be associated"""
        if active:
            flags = 3 # Visible|Enabled
        else:
            flags = 1 # Visible
        return self.pushbutton(name, 180, self.h-27 , 56, 17, flags, title, next)

    def cancel(self, title, next, name = "Cancel", active = 1):
        """Add a cancel button with a given title, the tab-next button,
        its name in the Control table, possibly initially disabled.

        Return the button, so that events can be associated"""
        if active:
            flags = 3 # Visible|Enabled
        else:
            flags = 1 # Visible
        return self.pushbutton(name, 304, self.h-27, 56, 17, flags, title, next)

    def next(self, title, next, name = "Next", active = 1):
        """Add a Next button with a given title, the tab-next button,
        its name in the Control table, possibly initially disabled.

        Return the button, so that events can be associated"""
        if active:
            flags = 3 # Visible|Enabled
        else:
            flags = 1 # Visible
        return self.pushbutton(name, 236, self.h-27, 56, 17, flags, title, next)

    def xbutton(self, name, title, next, xpos):
        """Add a button with a given title, the tab-next button,
        its name in the Control table, giving its x position; the
        y-position is aligned with the other buttons.

        Return the button, so that events can be associated"""
        return self.pushbutton(name, int(self.w*xpos - 28), self.h-27, 56, 17, 3, title, next)

class bdist_msi(Command):

    description = "create a Microsoft Installer (.msi) binary distribution"

    user_options = [('bdist-dir=', None,
                     "temporary directory for creating the distribution"),
                    ('plat-name=', 'p',
                     "platform name to embed in generated filenames "
                     "(default: %s)" % get_platform()),
                    ('keep-temp', 'k',
                     "keep the pseudo-installation tree around after " +
                     "creating the distribution archive"),
                    ('target-version=', None,
                     "require a specific python version" +
                     " on the target system"),
                    ('no-target-compile', 'c',
                     "do not compile .py to .pyc on the target system"),
                    ('no-target-optimize', 'o',
                     "do not compile .py to .pyo (optimized)"
                     "on the target system"),
                    ('dist-dir=', 'd',
                     "directory to put final built distributions in"),
                    ('skip-build', None,
                     "skip rebuilding everything (for testing/debugging)"),
                    ('install-script=', None,
                     "basename of installation script to be run after"
                     "installation or before deinstallation"),
                    ('pre-install-script=', None,
                     "Fully qualified filename of a script to be run before "
                     "any files are installed.  This script need not be in the "
                     "distribution"),
                   ]

    boolean_options = ['keep-temp', 'no-target-compile', 'no-target-optimize',
                       'skip-build']

    all_versions = ['2.0', '2.1', '2.2', '2.3', '2.4',
                    '2.5', '2.6', '2.7', '2.8', '2.9',
                    '3.0', '3.1', '3.2', '3.3', '3.4',
                    '3.5', '3.6', '3.7', '3.8', '3.9']
    other_version = 'X'

    def initialize_options(self):
        self.bdist_dir = None
        self.plat_name = None
        self.keep_temp = 0
        self.no_target_compile = 0
        self.no_target_optimize = 0
        self.target_version = None
        self.dist_dir = None
        self.skip_build = None
        self.install_script = None
        self.pre_install_script = None
        self.versions = None

    def finalize_options(self):
        self.set_undefined_options('bdist', ('skip_build', 'skip_build'))

        if self.bdist_dir is None:
            bdist_base = self.get_finalized_command('bdist').bdist_base
            self.bdist_dir = os.path.join(bdist_base, 'msi')

        short_version = get_python_version()
        if (not self.target_version) and self.distribution.has_ext_modules():
            self.target_version = short_version

        if self.target_version:
            self.versions = [self.target_version]
            if not self.skip_build and self.distribution.has_ext_modules()\
               and self.target_version != short_version:
                raise DistutilsOptionError(
                      "target version can only be %s, or the '--skip-build'"
                      " option must be specified" % (short_version,))
        else:
            self.versions = list(self.all_versions)

        self.set_undefined_options('bdist',
                                   ('dist_dir', 'dist_dir'),
                                   ('plat_name', 'plat_name'),
                                   )

        if self.pre_install_script:
            raise DistutilsOptionError(
                  "the pre-install-script feature is not yet implemented")

        if self.install_script:
            for script in self.distribution.scripts:
                if self.install_script == os.path.basename(script):
                    break
            else:
                raise DistutilsOptionError(
                      "install_script '%s' not found in scripts"
                      % self.install_script)
        self.install_script_key = None

    def run(self):
        if not self.skip_build:
            self.run_command('build')

        install = self.reinitialize_command('install', reinit_subcommands=1)
        install.prefix = self.bdist_dir
        install.skip_build = self.skip_build
        install.warn_dir = 0

        install_lib = self.reinitialize_command('install_lib')
        # we do not want to include pyc or pyo files
        install_lib.compile = 0
        install_lib.optimize = 0

        if self.distribution.has_ext_modules():
            # If we are building an installer for a Python version other
            # than the one we are currently running, then we need to ensure
            # our build_lib reflects the other Python version rather than ours.
            # Note that for target_version!=sys.version, we must have skipped the
            # build step, so there is no issue with enforcing the build of this
            # version.
            target_version = self.target_version
            if not target_version:
                assert self.skip_build, "Should have already checked this"
                target_version = sys.version[0:3]
            plat_specifier = ".%s-%s" % (self.plat_name, target_version)
            build = self.get_finalized_command('build')
            build.build_lib = os.path.join(build.build_base,
                                           'lib' + plat_specifier)

        log.info("installing to %s", self.bdist_dir)
        install.ensure_finalized()

        # avoid warning of 'install_lib' about installing
        # into a directory not in sys.path
        sys.path.insert(0, os.path.join(self.bdist_dir, 'PURELIB'))

        install.run()

        del sys.path[0]

        self.mkpath(self.dist_dir)
        fullname = self.distribution.get_fullname()
        installer_name = self.get_installer_filename(fullname)
        installer_name = os.path.abspath(installer_name)
        if os.path.exists(installer_name): os.unlink(installer_name)

        metadata = self.distribution.metadata
        author = metadata.author
        if not author:
            author = metadata.maintainer
        if not author:
            author = "UNKNOWN"
        version = metadata.get_version()
        # ProductVersion must be strictly numeric
        # XXX need to deal with prerelease versions
        sversion = "%d.%d.%d" % StrictVersion(version).version
        # Prefix ProductName with Python x.y, so that
        # it sorts together with the other Python packages
        # in Add-Remove-Programs (APR)
        fullname = self.distribution.get_fullname()
        if self.target_version:
            product_name = "Python %s %s" % (self.target_version, fullname)
        else:
            product_name = "Python %s" % (fullname)
        self.db = msilib.init_database(installer_name, schema,
                product_name, msilib.gen_uuid(),
                sversion, author)
        msilib.add_tables(self.db, sequence)
        props = [('DistVersion', version)]
        email = metadata.author_email or metadata.maintainer_email
        if email:
            props.append(("ARPCONTACT", email))
        if metadata.url:
            props.append(("ARPURLINFOABOUT", metadata.url))
        if props:
            add_data(self.db, 'Property', props)

        self.add_find_python()
        self.add_files()
        self.add_scripts()
        self.add_ui()
        self.db.Commit()

        if hasattr(self.distribution, 'dist_files'):
            tup = 'bdist_msi', self.target_version or 'any', fullname
            self.distribution.dist_files.append(tup)

        if not self.keep_temp:
            remove_tree(self.bdist_dir, dry_run=self.dry_run)

    def add_files(self):
        db = self.db
        cab = msilib.CAB("distfiles")
        rootdir = os.path.abspath(self.bdist_dir)

        root = Directory(db, cab, None, rootdir, "TARGETDIR", "SourceDir")
        f = Feature(db, "Python", "Python", "Everything",
                    0, 1, directory="TARGETDIR")

        items = [(f, root, '')]
        for version in self.versions + [self.other_version]:
            target = "TARGETDIR" + version
            name = default = "Python" + version
            desc = "Everything"
            if version is self.other_version:
                title = "Python from another location"
                level = 2
            else:
                title = "Python %s from registry" % version
                level = 1
            f = Feature(db, name, title, desc, 1, level, directory=target)
            dir = Directory(db, cab, root, rootdir, target, default)
            items.append((f, dir, version))
        db.Commit()

        seen = {}
        for feature, dir, version in items:
            todo = [dir]
            while todo:
                dir = todo.pop()
                for file in os.listdir(dir.absolute):
                    afile = os.path.join(dir.absolute, file)
                    if os.path.isdir(afile):
                        short = "%s|%s" % (dir.make_short(file), file)
                        default = file + version
                        newdir = Directory(db, cab, dir, file, default, short)
                        todo.append(newdir)
                    else:
                        if not dir.component:
                            dir.start_component(dir.logical, feature, 0)
                        if afile not in seen:
                            key = seen[afile] = dir.add_file(file)
                            if file==self.install_script:
                                if self.install_script_key:
                                    raise DistutilsOptionError(
                                          "Multiple files with name %s" % file)
                                self.install_script_key = '[#%s]' % key
                        else:
                            key = seen[afile]
                            add_data(self.db, "DuplicateFile",
                                [(key + version, dir.component, key, None, dir.logical)])
            db.Commit()
        cab.commit(db)

    def add_find_python(self):
        """Adds code to the installer to compute the location of Python.

        Properties PYTHON.MACHINE.X.Y and PYTHON.USER.X.Y will be set from the
        registry for each version of Python.

        Properties TARGETDIRX.Y will be set from PYTHON.USER.X.Y if defined,
        else from PYTHON.MACHINE.X.Y.

        Properties PYTHONX.Y will be set to TARGETDIRX.Y\\python.exe"""

        start = 402
        for ver in self.versions:
            install_path = r"SOFTWARE\Python\PythonCore\%s\InstallPath" % ver
            machine_reg = "python.machine." + ver
            user_reg = "python.user." + ver
            machine_prop = "PYTHON.MACHINE." + ver
            user_prop = "PYTHON.USER." + ver
            machine_action = "PythonFromMachine" + ver
            user_action = "PythonFromUser" + ver
            exe_action = "PythonExe" + ver
            target_dir_prop = "TARGETDIR" + ver
            exe_prop = "PYTHON" + ver
            if msilib.Win64:
                # type: msidbLocatorTypeRawValue + msidbLocatorType64bit
                Type = 2+16
            else:
                Type = 2
            add_data(self.db, "RegLocator",
                    [(machine_reg, 2, install_path, None, Type),
                     (user_reg, 1, install_path, None, Type)])
            add_data(self.db, "AppSearch",
                    [(machine_prop, machine_reg),
                     (user_prop, user_reg)])
            add_data(self.db, "CustomAction",
                    [(machine_action, 51+256, target_dir_prop, "[" + machine_prop + "]"),
                     (user_action, 51+256, target_dir_prop, "[" + user_prop + "]"),
                     (exe_action, 51+256, exe_prop, "[" + target_dir_prop + "]\\python.exe"),
                    ])
            add_data(self.db, "InstallExecuteSequence",
                    [(machine_action, machine_prop, start),
                     (user_action, user_prop, start + 1),
                     (exe_action, None, start + 2),
                    ])
            add_data(self.db, "InstallUISequence",
                    [(machine_action, machine_prop, start),
                     (user_action, user_prop, start + 1),
                     (exe_action, None, start + 2),
                    ])
            add_data(self.db, "Condition",
                    [("Python" + ver, 0, "NOT TARGETDIR" + ver)])
            start += 4
            assert start < 500

    def add_scripts(self):
        if self.install_script:
            start = 6800
            for ver in self.versions + [self.other_version]:
                install_action = "install_script." + ver
                exe_prop = "PYTHON" + ver
                add_data(self.db, "CustomAction",
                        [(install_action, 50, exe_prop, self.install_script_key)])
                add_data(self.db, "InstallExecuteSequence",
                        [(install_action, "&Python%s=3" % ver, start)])
                start += 1
        # XXX pre-install scripts are currently refused in finalize_options()
        #     but if this feature is completed, it will also need to add
        #     entries for each version as the above code does
        if self.pre_install_script:
            scriptfn = os.path.join(self.bdist_dir, "preinstall.bat")
            f = open(scriptfn, "w")
            # The batch file will be executed with [PYTHON], so that %1
            # is the path to the Python interpreter; %0 will be the path
            # of the batch file.
            # rem ="""
            # %1 %0
            # exit
            # """
            # <actual script>
            f.write('rem ="""\n%1 %0\nexit\n"""\n')
            f.write(open(self.pre_install_script).read())
            f.close()
            add_data(self.db, "Binary",
                [("PreInstall", msilib.Binary(scriptfn))
                ])
            add_data(self.db, "CustomAction",
                [("PreInstall", 2, "PreInstall", None)
                ])
            add_data(self.db, "InstallExecuteSequence",
                    [("PreInstall", "NOT Installed", 450)])


    def add_ui(self):
        db = self.db
        x = y = 50
        w = 370
        h = 300
        title = "[ProductName] Setup"

        # see "Dialog Style Bits"
        modal = 3      # visible | modal
        modeless = 1   # visible
        track_disk_space = 32

        # UI customization properties
        add_data(db, "Property",
                 # See "DefaultUIFont Property"
                 [("DefaultUIFont", "DlgFont8"),
                  # See "ErrorDialog Style Bit"
                  ("ErrorDialog", "ErrorDlg"),
                  ("Progress1", "Install"),   # modified in maintenance type dlg
                  ("Progress2", "installs"),
                  ("MaintenanceForm_Action", "Repair"),
                  # possible values: ALL, JUSTME
                  ("WhichUsers", "ALL")
                 ])

        # Fonts, see "TextStyle Table"
        add_data(db, "TextStyle",
                 [("DlgFont8", "Tahoma", 9, None, 0),
                  ("DlgFontBold8", "Tahoma", 8, None, 1), #bold
                  ("VerdanaBold10", "Verdana", 10, None, 1),
                  ("VerdanaRed9", "Verdana", 9, 255, 0),
                 ])

        # UI Sequences, see "InstallUISequence Table", "Using a Sequence Table"
        # Numbers indicate sequence; see sequence.py for how these action integrate
        add_data(db, "InstallUISequence",
                 [("PrepareDlg", "Not Privileged or Windows9x or Installed", 140),
                  ("WhichUsersDlg", "Privileged and not Windows9x and not Installed", 141),
                  # In the user interface, assume all-users installation if privileged.
                  ("SelectFeaturesDlg", "Not Installed", 1230),
                  # XXX no support for resume installations yet
                  #("ResumeDlg", "Installed AND (RESUME OR Preselected)", 1240),
                  ("MaintenanceTypeDlg", "Installed AND NOT RESUME AND NOT Preselected", 1250),
                  ("ProgressDlg", None, 1280)])

        add_data(db, 'ActionText', text.ActionText)
        add_data(db, 'UIText', text.UIText)
        #####################################################################
        # Standard dialogs: FatalError, UserExit, ExitDialog
        fatal=PyDialog(db, "FatalError", x, y, w, h, modal, title,
                     "Finish", "Finish", "Finish")
        fatal.title("[ProductName] Installer ended prematurely")
        fatal.back("< Back", "Finish", active = 0)
        fatal.cancel("Cancel", "Back", active = 0)
        fatal.text("Description1", 15, 70, 320, 80, 0x30003,
                   "[ProductName] setup ended prematurely because of an error.  Your system has not been modified.  To install this program at a later time, please run the installation again.")
        fatal.text("Description2", 15, 155, 320, 20, 0x30003,
                   "Click the Finish button to exit the Installer.")
        c=fatal.next("Finish", "Cancel", name="Finish")
        c.event("EndDialog", "Exit")

        user_exit=PyDialog(db, "UserExit", x, y, w, h, modal, title,
                     "Finish", "Finish", "Finish")
        user_exit.title("[ProductName] Installer was interrupted")
        user_exit.back("< Back", "Finish", active = 0)
        user_exit.cancel("Cancel", "Back", active = 0)
        user_exit.text("Description1", 15, 70, 320, 80, 0x30003,
                   "[ProductName] setup was interrupted.  Your system has not been modified.  "
                   "To install this program at a later time, please run the installation again.")
        user_exit.text("Description2", 15, 155, 320, 20, 0x30003,
                   "Click the Finish button to exit the Installer.")
        c = user_exit.next("Finish", "Cancel", name="Finish")
        c.event("EndDialog", "Exit")

        exit_dialog = PyDialog(db, "ExitDialog", x, y, w, h, modal, title,
                             "Finish", "Finish", "Finish")
        exit_dialog.title("Completing the [ProductName] Installer")
        exit_dialog.back("< Back", "Finish", active = 0)
        exit_dialog.cancel("Cancel", "Back", active = 0)
        exit_dialog.text("Description", 15, 235, 320, 20, 0x30003,
                   "Click the Finish button to exit the Installer.")
        c = exit_dialog.next("Finish", "Cancel", name="Finish")
        c.event("EndDialog", "Return")

        #####################################################################
        # Required dialog: FilesInUse, ErrorDlg
        inuse = PyDialog(db, "FilesInUse",
                         x, y, w, h,
                         19,                # KeepModeless|Modal|Visible
                         title,
                         "Retry", "Retry", "Retry", bitmap=False)
        inuse.text("Title", 15, 6, 200, 15, 0x30003,
                   r"{\DlgFontBold8}Files in Use")
        inuse.text("Description", 20, 23, 280, 20, 0x30003,
               "Some files that need to be updated are currently in use.")
        inuse.text("Text", 20, 55, 330, 50, 3,
                   "The following applications are using files that need to be updated by this setup. Close these applications and then click Retry to continue the installation or Cancel to exit it.")
        inuse.control("List", "ListBox", 20, 107, 330, 130, 7, "FileInUseProcess",
                      None, None, None)
        c=inuse.back("Exit", "Ignore", name="Exit")
        c.event("EndDialog", "Exit")
        c=inuse.next("Ignore", "Retry", name="Ignore")
        c.event("EndDialog", "Ignore")
        c=inuse.cancel("Retry", "Exit", name="Retry")
        c.event("EndDialog","Retry")

        # See "Error Dialog". See "ICE20" for the required names of the controls.
        error = Dialog(db, "ErrorDlg",
                       50, 10, 330, 101,
                       65543,       # Error|Minimize|Modal|Visible
                       title,
                       "ErrorText", None, None)
        error.text("ErrorText", 50,9,280,48,3, "")
        #error.control("ErrorIcon", "Icon", 15, 9, 24, 24, 5242881, None, "py.ico", None, None)
        error.pushbutton("N",120,72,81,21,3,"No",None).event("EndDialog","ErrorNo")
        error.pushbutton("Y",240,72,81,21,3,"Yes",None).event("EndDialog","ErrorYes")
        error.pushbutton("A",0,72,81,21,3,"Abort",None).event("EndDialog","ErrorAbort")
        error.pushbutton("C",42,72,81,21,3,"Cancel",None).event("EndDialog","ErrorCancel")
        error.pushbutton("I",81,72,81,21,3,"Ignore",None).event("EndDialog","ErrorIgnore")
        error.pushbutton("O",159,72,81,21,3,"Ok",None).event("EndDialog","ErrorOk")
        error.pushbutton("R",198,72,81,21,3,"Retry",None).event("EndDialog","ErrorRetry")

        #####################################################################
        # Global "Query Cancel" dialog
        cancel = Dialog(db, "CancelDlg", 50, 10, 260, 85, 3, title,
                        "No", "No", "No")
        cancel.text("Text", 48, 15, 194, 30, 3,
                    "Are you sure you want to cancel [ProductName] installation?")
        #cancel.control("Icon", "Icon", 15, 15, 24, 24, 5242881, None,
        #               "py.ico", None, None)
        c=cancel.pushbutton("Yes", 72, 57, 56, 17, 3, "Yes", "No")
        c.event("EndDialog", "Exit")

        c=cancel.pushbutton("No", 132, 57, 56, 17, 3, "No", "Yes")
        c.event("EndDialog", "Return")

        #####################################################################
        # Global "Wait for costing" dialog
        costing = Dialog(db, "WaitForCostingDlg", 50, 10, 260, 85, modal, title,
                         "Return", "Return", "Return")
        costing.text("Text", 48, 15, 194, 30, 3,
                     "Please wait while the installer finishes determining your disk space requirements.")
        c = costing.pushbutton("Return", 102, 57, 56, 17, 3, "Return", None)
        c.event("EndDialog", "Exit")

        #####################################################################
        # Preparation dialog: no user input except cancellation
        prep = PyDialog(db, "PrepareDlg", x, y, w, h, modeless, title,
                        "Cancel", "Cancel", "Cancel")
        prep.text("Description", 15, 70, 320, 40, 0x30003,
                  "Please wait while the Installer prepares to guide you through the installation.")
        prep.title("Welcome to the [ProductName] Installer")
        c=prep.text("ActionText", 15, 110, 320, 20, 0x30003, "Pondering...")
        c.mapping("ActionText", "Text")
        c=prep.text("ActionData", 15, 135, 320, 30, 0x30003, None)
        c.mapping("ActionData", "Text")
        prep.back("Back", None, active=0)
        prep.next("Next", None, active=0)
        c=prep.cancel("Cancel", None)
        c.event("SpawnDialog", "CancelDlg")

        #####################################################################
        # Feature (Python directory) selection
        seldlg = PyDialog(db, "SelectFeaturesDlg", x, y, w, h, modal, title,
                        "Next", "Next", "Cancel")
        seldlg.title("Select Python Installations")

        seldlg.text("Hint", 15, 30, 300, 20, 3,
                    "Select the Python locations where %s should be installed."
                    % self.distribution.get_fullname())

        seldlg.back("< Back", None, active=0)
        c = seldlg.next("Next >", "Cancel")
        order = 1
        c.event("[TARGETDIR]", "[SourceDir]", ordering=order)
        for version in self.versions + [self.other_version]:
            order += 1
            c.event("[TARGETDIR]", "[TARGETDIR%s]" % version,
                    "FEATURE_SELECTED AND &Python%s=3" % version,
                    ordering=order)
        c.event("SpawnWaitDialog", "WaitForCostingDlg", ordering=order + 1)
        c.event("EndDialog", "Return", ordering=order + 2)
        c = seldlg.cancel("Cancel", "Features")
        c.event("SpawnDialog", "CancelDlg")

        c = seldlg.control("Features", "SelectionTree", 15, 60, 300, 120, 3,
                           "FEATURE", None, "PathEdit", None)
        c.event("[FEATURE_SELECTED]", "1")
        ver = self.other_version
        install_other_cond = "FEATURE_SELECTED AND &Python%s=3" % ver
        dont_install_other_cond = "FEATURE_SELECTED AND &Python%s<>3" % ver

        c = seldlg.text("Other", 15, 200, 300, 15, 3,
                        "Provide an alternate Python location")
        c.condition("Enable", install_other_cond)
        c.condition("Show", install_other_cond)
        c.condition("Disable", dont_install_other_cond)
        c.condition("Hide", dont_install_other_cond)

        c = seldlg.control("PathEdit", "PathEdit", 15, 215, 300, 16, 1,
                           "TARGETDIR" + ver, None, "Next", None)
        c.condition("Enable", install_other_cond)
        c.condition("Show", install_other_cond)
        c.condition("Disable", dont_install_other_cond)
        c.condition("Hide", dont_install_other_cond)

        #####################################################################
        # Disk cost
        cost = PyDialog(db, "DiskCostDlg", x, y, w, h, modal, title,
                        "OK", "OK", "OK", bitmap=False)
        cost.text("Title", 15, 6, 200, 15, 0x30003,
                  "{\DlgFontBold8}Disk Space Requirements")
        cost.text("Description", 20, 20, 280, 20, 0x30003,
                  "The disk space required for the installation of the selected features.")
        cost.text("Text", 20, 53, 330, 60, 3,
                  "The highlighted volumes (if any) do not have enough disk space "
              "available for the currently selected features.  You can either "
              "remove some files from the highlighted volumes, or choose to "
              "install less features onto local drive(s), or select different "
              "destination drive(s).")
        cost.control("VolumeList", "VolumeCostList", 20, 100, 330, 150, 393223,
                     None, "{120}{70}{70}{70}{70}", None, None)
        cost.xbutton("OK", "Ok", None, 0.5).event("EndDialog", "Return")

        #####################################################################
        # WhichUsers Dialog. Only available on NT, and for privileged users.
        # This must be run before FindRelatedProducts, because that will
        # take into account whether the previous installation was per-user
        # or per-machine. We currently don't support going back to this
        # dialog after "Next" was selected; to support this, we would need to
        # find how to reset the ALLUSERS property, and how to re-run
        # FindRelatedProducts.
        # On Windows9x, the ALLUSERS property is ignored on the command line
        # and in the Property table, but installer fails according to the documentation
        # if a dialog attempts to set ALLUSERS.
        whichusers = PyDialog(db, "WhichUsersDlg", x, y, w, h, modal, title,
                            "AdminInstall", "Next", "Cancel")
        whichusers.title("Select whether to install [ProductName] for all users of this computer.")
        # A radio group with two options: allusers, justme
        g = whichusers.radiogroup("AdminInstall", 15, 60, 260, 50, 3,
                                  "WhichUsers", "", "Next")
        g.add("ALL", 0, 5, 150, 20, "Install for all users")
        g.add("JUSTME", 0, 25, 150, 20, "Install just for me")

        whichusers.back("Back", None, active=0)

        c = whichusers.next("Next >", "Cancel")
        c.event("[ALLUSERS]", "1", 'WhichUsers="ALL"', 1)
        c.event("EndDialog", "Return", ordering = 2)

        c = whichusers.cancel("Cancel", "AdminInstall")
        c.event("SpawnDialog", "CancelDlg")

        #####################################################################
        # Installation Progress dialog (modeless)
        progress = PyDialog(db, "ProgressDlg", x, y, w, h, modeless, title,
                            "Cancel", "Cancel", "Cancel", bitmap=False)
        progress.text("Title", 20, 15, 200, 15, 0x30003,
                      "{\DlgFontBold8}[Progress1] [ProductName]")
        progress.text("Text", 35, 65, 300, 30, 3,
                      "Please wait while the Installer [Progress2] [ProductName]. "
                      "This may take several minutes.")
        progress.text("StatusLabel", 35, 100, 35, 20, 3, "Status:")

        c=progress.text("ActionText", 70, 100, w-70, 20, 3, "Pondering...")
        c.mapping("ActionText", "Text")

        #c=progress.text("ActionData", 35, 140, 300, 20, 3, None)
        #c.mapping("ActionData", "Text")

        c=progress.control("ProgressBar", "ProgressBar", 35, 120, 300, 10, 65537,
                           None, "Progress done", None, None)
        c.mapping("SetProgress", "Progress")

        progress.back("< Back", "Next", active=False)
        progress.next("Next >", "Cancel", active=False)
        progress.cancel("Cancel", "Back").event("SpawnDialog", "CancelDlg")

        ###################################################################
        # Maintenance type: repair/uninstall
        maint = PyDialog(db, "MaintenanceTypeDlg", x, y, w, h, modal, title,
                         "Next", "Next", "Cancel")
        maint.title("Welcome to the [ProductName] Setup Wizard")
        maint.text("BodyText", 15, 63, 330, 42, 3,
                   "Select whether you want to repair or remove [ProductName].")
        g=maint.radiogroup("RepairRadioGroup", 15, 108, 330, 60, 3,
                            "MaintenanceForm_Action", "", "Next")
        #g.add("Change", 0, 0, 200, 17, "&Change [ProductName]")
        g.add("Repair", 0, 18, 200, 17, "&Repair [ProductName]")
        g.add("Remove", 0, 36, 200, 17, "Re&move [ProductName]")

        maint.back("< Back", None, active=False)
        c=maint.next("Finish", "Cancel")
        # Change installation: Change progress dialog to "Change", then ask
        # for feature selection
        #c.event("[Progress1]", "Change", 'MaintenanceForm_Action="Change"', 1)
        #c.event("[Progress2]", "changes", 'MaintenanceForm_Action="Change"', 2)

        # Reinstall: Change progress dialog to "Repair", then invoke reinstall
        # Also set list of reinstalled features to "ALL"
        c.event("[REINSTALL]", "ALL", 'MaintenanceForm_Action="Repair"', 5)
        c.event("[Progress1]", "Repairing", 'MaintenanceForm_Action="Repair"', 6)
        c.event("[Progress2]", "repairs", 'MaintenanceForm_Action="Repair"', 7)
        c.event("Reinstall", "ALL", 'MaintenanceForm_Action="Repair"', 8)

        # Uninstall: Change progress to "Remove", then invoke uninstall
        # Also set list of removed features to "ALL"
        c.event("[REMOVE]", "ALL", 'MaintenanceForm_Action="Remove"', 11)
        c.event("[Progress1]", "Removing", 'MaintenanceForm_Action="Remove"', 12)
        c.event("[Progress2]", "removes", 'MaintenanceForm_Action="Remove"', 13)
        c.event("Remove", "ALL", 'MaintenanceForm_Action="Remove"', 14)

        # Close dialog when maintenance action scheduled
        c.event("EndDialog", "Return", 'MaintenanceForm_Action<>"Change"', 20)
        #c.event("NewDialog", "SelectFeaturesDlg", 'MaintenanceForm_Action="Change"', 21)

        maint.cancel("Cancel", "RepairRadioGroup").event("SpawnDialog", "CancelDlg")

    def get_installer_filename(self, fullname):
        # Factored out to allow overriding in subclasses
        if self.target_version:
            base_name = "%s.%s-py%s.msi" % (fullname, self.plat_name,
                                            self.target_version)
        else:
            base_name = "%s.%s.msi" % (fullname, self.plat_name)
        installer_name = os.path.join(self.dist_dir, base_name)
        return installer_name
lib\distutils\command\bdist_rpm.py
"""distutils.command.bdist_rpm

Implements the Distutils 'bdist_rpm' command (create RPM source and binary
distributions)."""

import subprocess, sys, os
from distutils.core import Command
from distutils.debug import DEBUG
from distutils.util import get_platform
from distutils.file_util import write_file
from distutils.errors import *
from distutils.sysconfig import get_python_version
from distutils import log

class bdist_rpm(Command):

    description = "create an RPM distribution"

    user_options = [
        ('bdist-base=', None,
         "base directory for creating built distributions"),
        ('rpm-base=', None,
         "base directory for creating RPMs (defaults to \"rpm\" under "
         "--bdist-base; must be specified for RPM 2)"),
        ('dist-dir=', 'd',
         "directory to put final RPM files in "
         "(and .spec files if --spec-only)"),
        ('python=', None,
         "path to Python interpreter to hard-code in the .spec file "
         "(default: \"python\")"),
        ('fix-python', None,
         "hard-code the exact path to the current Python interpreter in "
         "the .spec file"),
        ('spec-only', None,
         "only regenerate spec file"),
        ('source-only', None,
         "only generate source RPM"),
        ('binary-only', None,
         "only generate binary RPM"),
        ('use-bzip2', None,
         "use bzip2 instead of gzip to create source distribution"),

        # More meta-data: too RPM-specific to put in the setup script,
        # but needs to go in the .spec file -- so we make these options
        # to "bdist_rpm".  The idea is that packagers would put this
        # info in setup.cfg, although they are of course free to
        # supply it on the command line.
        ('distribution-name=', None,
         "name of the (Linux) distribution to which this "
         "RPM applies (*not* the name of the module distribution!)"),
        ('group=', None,
         "package classification [default: \"Development/Libraries\"]"),
        ('release=', None,
         "RPM release number"),
        ('serial=', None,
         "RPM serial number"),
        ('vendor=', None,
         "RPM \"vendor\" (eg. \"Joe Blow <[email protected]>\") "
         "[default: maintainer or author from setup script]"),
        ('packager=', None,
         "RPM packager (eg. \"Jane Doe <[email protected]>\")"
         "[default: vendor]"),
        ('doc-files=', None,
         "list of documentation files (space or comma-separated)"),
        ('changelog=', None,
         "RPM changelog"),
        ('icon=', None,
         "name of icon file"),
        ('provides=', None,
         "capabilities provided by this package"),
        ('requires=', None,
         "capabilities required by this package"),
        ('conflicts=', None,
         "capabilities which conflict with this package"),
        ('build-requires=', None,
         "capabilities required to build this package"),
        ('obsoletes=', None,
         "capabilities made obsolete by this package"),
        ('no-autoreq', None,
         "do not automatically calculate dependencies"),

        # Actions to take when building RPM
        ('keep-temp', 'k',
         "don't clean up RPM build directory"),
        ('no-keep-temp', None,
         "clean up RPM build directory [default]"),
        ('use-rpm-opt-flags', None,
         "compile with RPM_OPT_FLAGS when building from source RPM"),
        ('no-rpm-opt-flags', None,
         "do not pass any RPM CFLAGS to compiler"),
        ('rpm3-mode', None,
         "RPM 3 compatibility mode (default)"),
        ('rpm2-mode', None,
         "RPM 2 compatibility mode"),

        # Add the hooks necessary for specifying custom scripts
        ('prep-script=', None,
         "Specify a script for the PREP phase of RPM building"),
        ('build-script=', None,
         "Specify a script for the BUILD phase of RPM building"),

        ('pre-install=', None,
         "Specify a script for the pre-INSTALL phase of RPM building"),
        ('install-script=', None,
         "Specify a script for the INSTALL phase of RPM building"),
        ('post-install=', None,
         "Specify a script for the post-INSTALL phase of RPM building"),

        ('pre-uninstall=', None,
         "Specify a script for the pre-UNINSTALL phase of RPM building"),
        ('post-uninstall=', None,
         "Specify a script for the post-UNINSTALL phase of RPM building"),

        ('clean-script=', None,
         "Specify a script for the CLEAN phase of RPM building"),

        ('verify-script=', None,
         "Specify a script for the VERIFY phase of the RPM build"),

        # Allow a packager to explicitly force an architecture
        ('force-arch=', None,
         "Force an architecture onto the RPM build process"),

        ('quiet', 'q',
         "Run the INSTALL phase of RPM building in quiet mode"),
        ]

    boolean_options = ['keep-temp', 'use-rpm-opt-flags', 'rpm3-mode',
                       'no-autoreq', 'quiet']

    negative_opt = {'no-keep-temp': 'keep-temp',
                    'no-rpm-opt-flags': 'use-rpm-opt-flags',
                    'rpm2-mode': 'rpm3-mode'}


    def initialize_options(self):
        self.bdist_base = None
        self.rpm_base = None
        self.dist_dir = None
        self.python = None
        self.fix_python = None
        self.spec_only = None
        self.binary_only = None
        self.source_only = None
        self.use_bzip2 = None

        self.distribution_name = None
        self.group = None
        self.release = None
        self.serial = None
        self.vendor = None
        self.packager = None
        self.doc_files = None
        self.changelog = None
        self.icon = None

        self.prep_script = None
        self.build_script = None
        self.install_script = None
        self.clean_script = None
        self.verify_script = None
        self.pre_install = None
        self.post_install = None
        self.pre_uninstall = None
        self.post_uninstall = None
        self.prep = None
        self.provides = None
        self.requires = None
        self.conflicts = None
        self.build_requires = None
        self.obsoletes = None

        self.keep_temp = 0
        self.use_rpm_opt_flags = 1
        self.rpm3_mode = 1
        self.no_autoreq = 0

        self.force_arch = None
        self.quiet = 0

    def finalize_options(self):
        self.set_undefined_options('bdist', ('bdist_base', 'bdist_base'))
        if self.rpm_base is None:
            if not self.rpm3_mode:
                raise DistutilsOptionError(
                      "you must specify --rpm-base in RPM 2 mode")
            self.rpm_base = os.path.join(self.bdist_base, "rpm")

        if self.python is None:
            if self.fix_python:
                self.python = sys.executable
            else:
                self.python = "python3"
        elif self.fix_python:
            raise DistutilsOptionError(
                  "--python and --fix-python are mutually exclusive options")

        if os.name != 'posix':
            raise DistutilsPlatformError("don't know how to create RPM "
                   "distributions on platform %s" % os.name)
        if self.binary_only and self.source_only:
            raise DistutilsOptionError(
                  "cannot supply both '--source-only' and '--binary-only'")

        # don't pass CFLAGS to pure python distributions
        if not self.distribution.has_ext_modules():
            self.use_rpm_opt_flags = 0

        self.set_undefined_options('bdist', ('dist_dir', 'dist_dir'))
        self.finalize_package_data()

    def finalize_package_data(self):
        self.ensure_string('group', "Development/Libraries")
        self.ensure_string('vendor',
                           "%s <%s>" % (self.distribution.get_contact(),
                                        self.distribution.get_contact_email()))
        self.ensure_string('packager')
        self.ensure_string_list('doc_files')
        if isinstance(self.doc_files, list):
            for readme in ('README', 'README.txt'):
                if os.path.exists(readme) and readme not in self.doc_files:
                    self.doc_files.append(readme)

        self.ensure_string('release', "1")
        self.ensure_string('serial')   # should it be an int?

        self.ensure_string('distribution_name')

        self.ensure_string('changelog')
          # Format changelog correctly
        self.changelog = self._format_changelog(self.changelog)

        self.ensure_filename('icon')

        self.ensure_filename('prep_script')
        self.ensure_filename('build_script')
        self.ensure_filename('install_script')
        self.ensure_filename('clean_script')
        self.ensure_filename('verify_script')
        self.ensure_filename('pre_install')
        self.ensure_filename('post_install')
        self.ensure_filename('pre_uninstall')
        self.ensure_filename('post_uninstall')

        # XXX don't forget we punted on summaries and descriptions -- they
        # should be handled here eventually!

        # Now *this* is some meta-data that belongs in the setup script...
        self.ensure_string_list('provides')
        self.ensure_string_list('requires')
        self.ensure_string_list('conflicts')
        self.ensure_string_list('build_requires')
        self.ensure_string_list('obsoletes')

        self.ensure_string('force_arch')

    def run(self):
        if DEBUG:
            print("before _get_package_data():")
            print("vendor =", self.vendor)
            print("packager =", self.packager)
            print("doc_files =", self.doc_files)
            print("changelog =", self.changelog)

        # make directories
        if self.spec_only:
            spec_dir = self.dist_dir
            self.mkpath(spec_dir)
        else:
            rpm_dir = {}
            for d in ('SOURCES', 'SPECS', 'BUILD', 'RPMS', 'SRPMS'):
                rpm_dir[d] = os.path.join(self.rpm_base, d)
                self.mkpath(rpm_dir[d])
            spec_dir = rpm_dir['SPECS']

        # Spec file goes into 'dist_dir' if '--spec-only specified',
        # build/rpm.<plat> otherwise.
        spec_path = os.path.join(spec_dir,
                                 "%s.spec" % self.distribution.get_name())
        self.execute(write_file,
                     (spec_path,
                      self._make_spec_file()),
                     "writing '%s'" % spec_path)

        if self.spec_only: # stop if requested
            return

        # Make a source distribution and copy to SOURCES directory with
        # optional icon.
        saved_dist_files = self.distribution.dist_files[:]
        sdist = self.reinitialize_command('sdist')
        if self.use_bzip2:
            sdist.formats = ['bztar']
        else:
            sdist.formats = ['gztar']
        self.run_command('sdist')
        self.distribution.dist_files = saved_dist_files

        source = sdist.get_archive_files()[0]
        source_dir = rpm_dir['SOURCES']
        self.copy_file(source, source_dir)

        if self.icon:
            if os.path.exists(self.icon):
                self.copy_file(self.icon, source_dir)
            else:
                raise DistutilsFileError(
                      "icon file '%s' does not exist" % self.icon)

        # build package
        log.info("building RPMs")
        rpm_cmd = ['rpm']
        if os.path.exists('/usr/bin/rpmbuild') or \
           os.path.exists('/bin/rpmbuild'):
            rpm_cmd = ['rpmbuild']

        if self.source_only: # what kind of RPMs?
            rpm_cmd.append('-bs')
        elif self.binary_only:
            rpm_cmd.append('-bb')
        else:
            rpm_cmd.append('-ba')
        rpm_cmd.extend(['--define', '__python %s' % self.python])
        if self.rpm3_mode:
            rpm_cmd.extend(['--define',
                             '_topdir %s' % os.path.abspath(self.rpm_base)])
        if not self.keep_temp:
            rpm_cmd.append('--clean')

        if self.quiet:
            rpm_cmd.append('--quiet')

        rpm_cmd.append(spec_path)
        # Determine the binary rpm names that should be built out of this spec
        # file
        # Note that some of these may not be really built (if the file
        # list is empty)
        nvr_string = "%{name}-%{version}-%{release}"
        src_rpm = nvr_string + ".src.rpm"
        non_src_rpm = "%{arch}/" + nvr_string + ".%{arch}.rpm"
        q_cmd = r"rpm -q --qf '%s %s\n' --specfile '%s'" % (
            src_rpm, non_src_rpm, spec_path)

        out = os.popen(q_cmd)
        try:
            binary_rpms = []
            source_rpm = None
            while True:
                line = out.readline()
                if not line:
                    break
                l = line.strip().split()
                assert(len(l) == 2)
                binary_rpms.append(l[1])
                # The source rpm is named after the first entry in the spec file
                if source_rpm is None:
                    source_rpm = l[0]

            status = out.close()
            if status:
                raise DistutilsExecError("Failed to execute: %s" % repr(q_cmd))

        finally:
            out.close()

        self.spawn(rpm_cmd)

        if not self.dry_run:
            if self.distribution.has_ext_modules():
                pyversion = get_python_version()
            else:
                pyversion = 'any'

            if not self.binary_only:
                srpm = os.path.join(rpm_dir['SRPMS'], source_rpm)
                assert(os.path.exists(srpm))
                self.move_file(srpm, self.dist_dir)
                filename = os.path.join(self.dist_dir, source_rpm)
                self.distribution.dist_files.append(
                    ('bdist_rpm', pyversion, filename))

            if not self.source_only:
                for rpm in binary_rpms:
                    rpm = os.path.join(rpm_dir['RPMS'], rpm)
                    if os.path.exists(rpm):
                        self.move_file(rpm, self.dist_dir)
                        filename = os.path.join(self.dist_dir,
                                                os.path.basename(rpm))
                        self.distribution.dist_files.append(
                            ('bdist_rpm', pyversion, filename))

    def _dist_path(self, path):
        return os.path.join(self.dist_dir, os.path.basename(path))

    def _make_spec_file(self):
        """Generate the text of an RPM spec file and return it as a
        list of strings (one per line).
        """
        # definitions and headers
        spec_file = [
            '%define name ' + self.distribution.get_name(),
            '%define version ' + self.distribution.get_version().replace('-','_'),
            '%define unmangled_version ' + self.distribution.get_version(),
            '%define release ' + self.release.replace('-','_'),
            '',
            'Summary: ' + self.distribution.get_description(),
            ]

        # Workaround for #14443 which affects some RPM based systems such as
        # RHEL6 (and probably derivatives)
        vendor_hook = subprocess.getoutput('rpm --eval %{__os_install_post}')
        # Generate a potential replacement value for __os_install_post (whilst
        # normalizing the whitespace to simplify the test for whether the
        # invocation of brp-python-bytecompile passes in __python):
        vendor_hook = '\n'.join(['  %s \\' % line.strip()
                                 for line in vendor_hook.splitlines()])
        problem = "brp-python-bytecompile \\\n"
        fixed = "brp-python-bytecompile %{__python} \\\n"
        fixed_hook = vendor_hook.replace(problem, fixed)
        if fixed_hook != vendor_hook:
            spec_file.append('# Workaround for http://bugs.python.org/issue14443')
            spec_file.append('%define __os_install_post ' + fixed_hook + '\n')

        # put locale summaries into spec file
        # XXX not supported for now (hard to put a dictionary
        # in a config file -- arg!)
        #for locale in self.summaries.keys():
        #    spec_file.append('Summary(%s): %s' % (locale,
        #                                          self.summaries[locale]))

        spec_file.extend([
            'Name: %{name}',
            'Version: %{version}',
            'Release: %{release}',])

        # XXX yuck! this filename is available from the "sdist" command,
        # but only after it has run: and we create the spec file before
        # running "sdist", in case of --spec-only.
        if self.use_bzip2:
            spec_file.append('Source0: %{name}-%{unmangled_version}.tar.bz2')
        else:
            spec_file.append('Source0: %{name}-%{unmangled_version}.tar.gz')

        spec_file.extend([
            'License: ' + self.distribution.get_license(),
            'Group: ' + self.group,
            'BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-buildroot',
            'Prefix: %{_prefix}', ])

        if not self.force_arch:
            # noarch if no extension modules
            if not self.distribution.has_ext_modules():
                spec_file.append('BuildArch: noarch')
        else:
            spec_file.append( 'BuildArch: %s' % self.force_arch )

        for field in ('Vendor',
                      'Packager',
                      'Provides',
                      'Requires',
                      'Conflicts',
                      'Obsoletes',
                      ):
            val = getattr(self, field.lower())
            if isinstance(val, list):
                spec_file.append('%s: %s' % (field, ' '.join(val)))
            elif val is not None:
                spec_file.append('%s: %s' % (field, val))


        if self.distribution.get_url() != 'UNKNOWN':
            spec_file.append('Url: ' + self.distribution.get_url())

        if self.distribution_name:
            spec_file.append('Distribution: ' + self.distribution_name)

        if self.build_requires:
            spec_file.append('BuildRequires: ' +
                             ' '.join(self.build_requires))

        if self.icon:
            spec_file.append('Icon: ' + os.path.basename(self.icon))

        if self.no_autoreq:
            spec_file.append('AutoReq: 0')

        spec_file.extend([
            '',
            '%description',
            self.distribution.get_long_description()
            ])

        # put locale descriptions into spec file
        # XXX again, suppressed because config file syntax doesn't
        # easily support this ;-(
        #for locale in self.descriptions.keys():
        #    spec_file.extend([
        #        '',
        #        '%description -l ' + locale,
        #        self.descriptions[locale],
        #        ])

        # rpm scripts
        # figure out default build script
        def_setup_call = "%s %s" % (self.python,os.path.basename(sys.argv[0]))
        def_build = "%s build" % def_setup_call
        if self.use_rpm_opt_flags:
            def_build = 'env CFLAGS="$RPM_OPT_FLAGS" ' + def_build

        # insert contents of files

        # XXX this is kind of misleading: user-supplied options are files
        # that we open and interpolate into the spec file, but the defaults
        # are just text that we drop in as-is.  Hmmm.

        install_cmd = ('%s install -O1 --root=$RPM_BUILD_ROOT '
                       '--record=INSTALLED_FILES') % def_setup_call

        script_options = [
            ('prep', 'prep_script', "%setup -n %{name}-%{unmangled_version}"),
            ('build', 'build_script', def_build),
            ('install', 'install_script', install_cmd),
            ('clean', 'clean_script', "rm -rf $RPM_BUILD_ROOT"),
            ('verifyscript', 'verify_script', None),
            ('pre', 'pre_install', None),
            ('post', 'post_install', None),
            ('preun', 'pre_uninstall', None),
            ('postun', 'post_uninstall', None),
        ]

        for (rpm_opt, attr, default) in script_options:
            # Insert contents of file referred to, if no file is referred to
            # use 'default' as contents of script
            val = getattr(self, attr)
            if val or default:
                spec_file.extend([
                    '',
                    '%' + rpm_opt,])
                if val:
                    spec_file.extend(open(val, 'r').read().split('\n'))
                else:
                    spec_file.append(default)


        # files section
        spec_file.extend([
            '',
            '%files -f INSTALLED_FILES',
            '%defattr(-,root,root)',
            ])

        if self.doc_files:
            spec_file.append('%doc ' + ' '.join(self.doc_files))

        if self.changelog:
            spec_file.extend([
                '',
                '%changelog',])
            spec_file.extend(self.changelog)

        return spec_file

    def _format_changelog(self, changelog):
        """Format the changelog correctly and convert it to a list of strings
        """
        if not changelog:
            return changelog
        new_changelog = []
        for line in changelog.strip().split('\n'):
            line = line.strip()
            if line[0] == '*':
                new_changelog.extend(['', line])
            elif line[0] == '-':
                new_changelog.append(line)
            else:
                new_changelog.append('  ' + line)

        # strip trailing newline inserted by first changelog entry
        if not new_changelog[0]:
            del new_changelog[0]

        return new_changelog
lib\distutils\command\bdist_wininst.py
"""distutils.command.bdist_wininst

Implements the Distutils 'bdist_wininst' command: create a windows installer
exe-program."""

import sys, os
from distutils.core import Command
from distutils.util import get_platform
from distutils.dir_util import create_tree, remove_tree
from distutils.errors import *
from distutils.sysconfig import get_python_version
from distutils import log

class bdist_wininst(Command):

    description = "create an executable installer for MS Windows"

    user_options = [('bdist-dir=', None,
                     "temporary directory for creating the distribution"),
                    ('plat-name=', 'p',
                     "platform name to embed in generated filenames "
                     "(default: %s)" % get_platform()),
                    ('keep-temp', 'k',
                     "keep the pseudo-installation tree around after " +
                     "creating the distribution archive"),
                    ('target-version=', None,
                     "require a specific python version" +
                     " on the target system"),
                    ('no-target-compile', 'c',
                     "do not compile .py to .pyc on the target system"),
                    ('no-target-optimize', 'o',
                     "do not compile .py to .pyo (optimized)"
                     "on the target system"),
                    ('dist-dir=', 'd',
                     "directory to put final built distributions in"),
                    ('bitmap=', 'b',
                     "bitmap to use for the installer instead of python-powered logo"),
                    ('title=', 't',
                     "title to display on the installer background instead of default"),
                    ('skip-build', None,
                     "skip rebuilding everything (for testing/debugging)"),
                    ('install-script=', None,
                     "basename of installation script to be run after"
                     "installation or before deinstallation"),
                    ('pre-install-script=', None,
                     "Fully qualified filename of a script to be run before "
                     "any files are installed.  This script need not be in the "
                     "distribution"),
                    ('user-access-control=', None,
                     "specify Vista's UAC handling - 'none'/default=no "
                     "handling, 'auto'=use UAC if target Python installed for "
                     "all users, 'force'=always use UAC"),
                   ]

    boolean_options = ['keep-temp', 'no-target-compile', 'no-target-optimize',
                       'skip-build']

    def initialize_options(self):
        self.bdist_dir = None
        self.plat_name = None
        self.keep_temp = 0
        self.no_target_compile = 0
        self.no_target_optimize = 0
        self.target_version = None
        self.dist_dir = None
        self.bitmap = None
        self.title = None
        self.skip_build = None
        self.install_script = None
        self.pre_install_script = None
        self.user_access_control = None


    def finalize_options(self):
        self.set_undefined_options('bdist', ('skip_build', 'skip_build'))

        if self.bdist_dir is None:
            if self.skip_build and self.plat_name:
                # If build is skipped and plat_name is overridden, bdist will
                # not see the correct 'plat_name' - so set that up manually.
                bdist = self.distribution.get_command_obj('bdist')
                bdist.plat_name = self.plat_name
                # next the command will be initialized using that name
            bdist_base = self.get_finalized_command('bdist').bdist_base
            self.bdist_dir = os.path.join(bdist_base, 'wininst')

        if not self.target_version:
            self.target_version = ""

        if not self.skip_build and self.distribution.has_ext_modules():
            short_version = get_python_version()
            if self.target_version and self.target_version != short_version:
                raise DistutilsOptionError(
                      "target version can only be %s, or the '--skip-build'" \
                      " option must be specified" % (short_version,))
            self.target_version = short_version

        self.set_undefined_options('bdist',
                                   ('dist_dir', 'dist_dir'),
                                   ('plat_name', 'plat_name'),
                                  )

        if self.install_script:
            for script in self.distribution.scripts:
                if self.install_script == os.path.basename(script):
                    break
            else:
                raise DistutilsOptionError(
                      "install_script '%s' not found in scripts"
                      % self.install_script)

    def run(self):
        if (sys.platform != "win32" and
            (self.distribution.has_ext_modules() or
             self.distribution.has_c_libraries())):
            raise DistutilsPlatformError \
                  ("distribution contains extensions and/or C libraries; "
                   "must be compiled on a Windows 32 platform")

        if not self.skip_build:
            self.run_command('build')

        install = self.reinitialize_command('install', reinit_subcommands=1)
        install.root = self.bdist_dir
        install.skip_build = self.skip_build
        install.warn_dir = 0
        install.plat_name = self.plat_name

        install_lib = self.reinitialize_command('install_lib')
        # we do not want to include pyc or pyo files
        install_lib.compile = 0
        install_lib.optimize = 0

        if self.distribution.has_ext_modules():
            # If we are building an installer for a Python version other
            # than the one we are currently running, then we need to ensure
            # our build_lib reflects the other Python version rather than ours.
            # Note that for target_version!=sys.version, we must have skipped the
            # build step, so there is no issue with enforcing the build of this
            # version.
            target_version = self.target_version
            if not target_version:
                assert self.skip_build, "Should have already checked this"
                target_version = sys.version[0:3]
            plat_specifier = ".%s-%s" % (self.plat_name, target_version)
            build = self.get_finalized_command('build')
            build.build_lib = os.path.join(build.build_base,
                                           'lib' + plat_specifier)

        # Use a custom scheme for the zip-file, because we have to decide
        # at installation time which scheme to use.
        for key in ('purelib', 'platlib', 'headers', 'scripts', 'data'):
            value = key.upper()
            if key == 'headers':
                value = value + '/Include/$dist_name'
            setattr(install,
                    'install_' + key,
                    value)

        log.info("installing to %s", self.bdist_dir)
        install.ensure_finalized()

        # avoid warning of 'install_lib' about installing
        # into a directory not in sys.path
        sys.path.insert(0, os.path.join(self.bdist_dir, 'PURELIB'))

        install.run()

        del sys.path[0]

        # And make an archive relative to the root of the
        # pseudo-installation tree.
        from tempfile import mktemp
        archive_basename = mktemp()
        fullname = self.distribution.get_fullname()
        arcname = self.make_archive(archive_basename, "zip",
                                    root_dir=self.bdist_dir)
        # create an exe containing the zip-file
        self.create_exe(arcname, fullname, self.bitmap)
        if self.distribution.has_ext_modules():
            pyversion = get_python_version()
        else:
            pyversion = 'any'
        self.distribution.dist_files.append(('bdist_wininst', pyversion,
                                             self.get_installer_filename(fullname)))
        # remove the zip-file again
        log.debug("removing temporary file '%s'", arcname)
        os.remove(arcname)

        if not self.keep_temp:
            remove_tree(self.bdist_dir, dry_run=self.dry_run)

    def get_inidata(self):
        # Return data describing the installation.
        lines = []
        metadata = self.distribution.metadata

        # Write the [metadata] section.
        lines.append("[metadata]")

        # 'info' will be displayed in the installer's dialog box,
        # describing the items to be installed.
        info = (metadata.long_description or '') + '\n'

        # Escape newline characters
        def escape(s):
            return s.replace("\n", "\\n")

        for name in ["author", "author_email", "description", "maintainer",
                     "maintainer_email", "name", "url", "version"]:
            data = getattr(metadata, name, "")
            if data:
                info = info + ("\n    %s: %s" % \
                               (name.capitalize(), escape(data)))
                lines.append("%s=%s" % (name, escape(data)))

        # The [setup] section contains entries controlling
        # the installer runtime.
        lines.append("\n[Setup]")
        if self.install_script:
            lines.append("install_script=%s" % self.install_script)
        lines.append("info=%s" % escape(info))
        lines.append("target_compile=%d" % (not self.no_target_compile))
        lines.append("target_optimize=%d" % (not self.no_target_optimize))
        if self.target_version:
            lines.append("target_version=%s" % self.target_version)
        if self.user_access_control:
            lines.append("user_access_control=%s" % self.user_access_control)

        title = self.title or self.distribution.get_fullname()
        lines.append("title=%s" % escape(title))
        import time
        import distutils
        build_info = "Built %s with distutils-%s" % \
                     (time.ctime(time.time()), distutils.__version__)
        lines.append("build_info=%s" % build_info)
        return "\n".join(lines)

    def create_exe(self, arcname, fullname, bitmap=None):
        import struct

        self.mkpath(self.dist_dir)

        cfgdata = self.get_inidata()

        installer_name = self.get_installer_filename(fullname)
        self.announce("creating %s" % installer_name)

        if bitmap:
            bitmapdata = open(bitmap, "rb").read()
            bitmaplen = len(bitmapdata)
        else:
            bitmaplen = 0

        file = open(installer_name, "wb")
        file.write(self.get_exe_bytes())
        if bitmap:
            file.write(bitmapdata)

        # Convert cfgdata from unicode to ascii, mbcs encoded
        if isinstance(cfgdata, str):
            cfgdata = cfgdata.encode("mbcs")

        # Append the pre-install script
        cfgdata = cfgdata + b"\0"
        if self.pre_install_script:
            # We need to normalize newlines, so we open in text mode and
            # convert back to bytes. "latin-1" simply avoids any possible
            # failures.
            with open(self.pre_install_script, "r",
                encoding="latin-1") as script:
                script_data = script.read().encode("latin-1")
            cfgdata = cfgdata + script_data + b"\n\0"
        else:
            # empty pre-install script
            cfgdata = cfgdata + b"\0"
        file.write(cfgdata)

        # The 'magic number' 0x1234567B is used to make sure that the
        # binary layout of 'cfgdata' is what the wininst.exe binary
        # expects.  If the layout changes, increment that number, make
        # the corresponding changes to the wininst.exe sources, and
        # recompile them.
        header = struct.pack("<iii",
                             0x1234567B,       # tag
                             len(cfgdata),     # length
                             bitmaplen,        # number of bytes in bitmap
                             )
        file.write(header)
        file.write(open(arcname, "rb").read())

    def get_installer_filename(self, fullname):
        # Factored out to allow overriding in subclasses
        if self.target_version:
            # if we create an installer for a specific python version,
            # it's better to include this in the name
            installer_name = os.path.join(self.dist_dir,
                                          "%s.%s-py%s.exe" %
                                           (fullname, self.plat_name, self.target_version))
        else:
            installer_name = os.path.join(self.dist_dir,
                                          "%s.%s.exe" % (fullname, self.plat_name))
        return installer_name

    def get_exe_bytes(self):
        from distutils.msvccompiler import get_build_version
        # If a target-version other than the current version has been
        # specified, then using the MSVC version from *this* build is no good.
        # Without actually finding and executing the target version and parsing
        # its sys.version, we just hard-code our knowledge of old versions.
        # NOTE: Possible alternative is to allow "--target-version" to
        # specify a Python executable rather than a simple version string.
        # We can then execute this program to obtain any info we need, such
        # as the real sys.version string for the build.
        cur_version = get_python_version()
        if self.target_version and self.target_version != cur_version:
            # If the target version is *later* than us, then we assume they
            # use what we use
            # string compares seem wrong, but are what sysconfig.py itself uses
            if self.target_version > cur_version:
                bv = get_build_version()
            else:
                if self.target_version < "2.4":
                    bv = 6.0
                else:
                    bv = 7.1
        else:
            # for current version - use authoritative check.
            bv = get_build_version()

        # wininst-x.y.exe is in the same directory as this file
        directory = os.path.dirname(__file__)
        # we must use a wininst-x.y.exe built with the same C compiler
        # used for python.  XXX What about mingw, borland, and so on?

        # if plat_name starts with "win" but is not "win32"
        # we want to strip "win" and leave the rest (e.g. -amd64)
        # for all other cases, we don't want any suffix
        if self.plat_name != 'win32' and self.plat_name[:3] == 'win':
            sfix = self.plat_name[3:]
        else:
            sfix = ''

        filename = os.path.join(directory, "wininst-%.1f%s.exe" % (bv, sfix))
        f = open(filename, "rb")
        try:
            return f.read()
        finally:
            f.close()
lib\distutils\command\build.py
"""distutils.command.build

Implements the Distutils 'build' command."""

import sys, os
from distutils.core import Command
from distutils.errors import DistutilsOptionError
from distutils.util import get_platform


def show_compilers():
    from distutils.ccompiler import show_compilers
    show_compilers()


class build(Command):

    description = "build everything needed to install"

    user_options = [
        ('build-base=', 'b',
         "base directory for build library"),
        ('build-purelib=', None,
         "build directory for platform-neutral distributions"),
        ('build-platlib=', None,
         "build directory for platform-specific distributions"),
        ('build-lib=', None,
         "build directory for all distribution (defaults to either " +
         "build-purelib or build-platlib"),
        ('build-scripts=', None,
         "build directory for scripts"),
        ('build-temp=', 't',
         "temporary build directory"),
        ('plat-name=', 'p',
         "platform name to build for, if supported "
         "(default: %s)" % get_platform()),
        ('compiler=', 'c',
         "specify the compiler type"),
        ('debug', 'g',
         "compile extensions and libraries with debugging information"),
        ('force', 'f',
         "forcibly build everything (ignore file timestamps)"),
        ('executable=', 'e',
         "specify final destination interpreter path (build.py)"),
        ]

    boolean_options = ['debug', 'force']

    help_options = [
        ('help-compiler', None,
         "list available compilers", show_compilers),
        ]

    def initialize_options(self):
        self.build_base = 'build'
        # these are decided only after 'build_base' has its final value
        # (unless overridden by the user or client)
        self.build_purelib = None
        self.build_platlib = None
        self.build_lib = None
        self.build_temp = None
        self.build_scripts = None
        self.compiler = None
        self.plat_name = None
        self.debug = None
        self.force = 0
        self.executable = None

    def finalize_options(self):
        if self.plat_name is None:
            self.plat_name = get_platform()
        else:
            # plat-name only supported for windows (other platforms are
            # supported via ./configure flags, if at all).  Avoid misleading
            # other platforms.
            if os.name != 'nt':
                raise DistutilsOptionError(
                            "--plat-name only supported on Windows (try "
                            "using './configure --help' on your platform)")

        plat_specifier = ".%s-%s" % (self.plat_name, sys.version[0:3])

        # Make it so Python 2.x and Python 2.x with --with-pydebug don't
        # share the same build directories. Doing so confuses the build
        # process for C modules
        if hasattr(sys, 'gettotalrefcount'):
            plat_specifier += '-pydebug'

        # 'build_purelib' and 'build_platlib' just default to 'lib' and
        # 'lib.<plat>' under the base build directory.  We only use one of
        # them for a given distribution, though --
        if self.build_purelib is None:
            self.build_purelib = os.path.join(self.build_base, 'lib')
        if self.build_platlib is None:
            self.build_platlib = os.path.join(self.build_base,
                                              'lib' + plat_specifier)

        # 'build_lib' is the actual directory that we will use for this
        # particular module distribution -- if user didn't supply it, pick
        # one of 'build_purelib' or 'build_platlib'.
        if self.build_lib is None:
            if self.distribution.ext_modules:
                self.build_lib = self.build_platlib
            else:
                self.build_lib = self.build_purelib

        # 'build_temp' -- temporary directory for compiler turds,
        # "build/temp.<plat>"
        if self.build_temp is None:
            self.build_temp = os.path.join(self.build_base,
                                           'temp' + plat_specifier)
        if self.build_scripts is None:
            self.build_scripts = os.path.join(self.build_base,
                                              'scripts-' + sys.version[0:3])

        if self.executable is None:
            self.executable = os.path.normpath(sys.executable)

    def run(self):
        # Run all relevant sub-commands.  This will be some subset of:
        #  - build_py      - pure Python modules
        #  - build_clib    - standalone C libraries
        #  - build_ext     - Python extensions
        #  - build_scripts - (Python) scripts
        for cmd_name in self.get_sub_commands():
            self.run_command(cmd_name)


    # -- Predicates for the sub-command list ---------------------------

    def has_pure_modules(self):
        return self.distribution.has_pure_modules()

    def has_c_libraries(self):
        return self.distribution.has_c_libraries()

    def has_ext_modules(self):
        return self.distribution.has_ext_modules()

    def has_scripts(self):
        return self.distribution.has_scripts()


    sub_commands = [('build_py',      has_pure_modules),
                    ('build_clib',    has_c_libraries),
                    ('build_ext',     has_ext_modules),
                    ('build_scripts', has_scripts),
                   ]
lib\distutils\command\build_clib.py
"""distutils.command.build_clib

Implements the Distutils 'build_clib' command, to build a C/C++ library
that is included in the module distribution and needed by an extension
module."""


# XXX this module has *lots* of code ripped-off quite transparently from
# build_ext.py -- not surprisingly really, as the work required to build
# a static library from a collection of C source files is not really all
# that different from what's required to build a shared object file from
# a collection of C source files.  Nevertheless, I haven't done the
# necessary refactoring to account for the overlap in code between the
# two modules, mainly because a number of subtle details changed in the
# cut 'n paste.  Sigh.

import os
from distutils.core import Command
from distutils.errors import *
from distutils.sysconfig import customize_compiler
from distutils import log

def show_compilers():
    from distutils.ccompiler import show_compilers
    show_compilers()


class build_clib(Command):

    description = "build C/C++ libraries used by Python extensions"

    user_options = [
        ('build-clib=', 'b',
         "directory to build C/C++ libraries to"),
        ('build-temp=', 't',
         "directory to put temporary build by-products"),
        ('debug', 'g',
         "compile with debugging information"),
        ('force', 'f',
         "forcibly build everything (ignore file timestamps)"),
        ('compiler=', 'c',
         "specify the compiler type"),
        ]

    boolean_options = ['debug', 'force']

    help_options = [
        ('help-compiler', None,
         "list available compilers", show_compilers),
        ]

    def initialize_options(self):
        self.build_clib = None
        self.build_temp = None

        # List of libraries to build
        self.libraries = None

        # Compilation options for all libraries
        self.include_dirs = None
        self.define = None
        self.undef = None
        self.debug = None
        self.force = 0
        self.compiler = None


    def finalize_options(self):
        # This might be confusing: both build-clib and build-temp default
        # to build-temp as defined by the "build" command.  This is because
        # I think that C libraries are really just temporary build
        # by-products, at least from the point of view of building Python
        # extensions -- but I want to keep my options open.
        self.set_undefined_options('build',
                                   ('build_temp', 'build_clib'),
                                   ('build_temp', 'build_temp'),
                                   ('compiler', 'compiler'),
                                   ('debug', 'debug'),
                                   ('force', 'force'))

        self.libraries = self.distribution.libraries
        if self.libraries:
            self.check_library_list(self.libraries)

        if self.include_dirs is None:
            self.include_dirs = self.distribution.include_dirs or []
        if isinstance(self.include_dirs, str):
            self.include_dirs = self.include_dirs.split(os.pathsep)

        # XXX same as for build_ext -- what about 'self.define' and
        # 'self.undef' ?


    def run(self):
        if not self.libraries:
            return

        # Yech -- this is cut 'n pasted from build_ext.py!
        from distutils.ccompiler import new_compiler
        self.compiler = new_compiler(compiler=self.compiler,
                                     dry_run=self.dry_run,
                                     force=self.force)
        customize_compiler(self.compiler)

        if self.include_dirs is not None:
            self.compiler.set_include_dirs(self.include_dirs)
        if self.define is not None:
            # 'define' option is a list of (name,value) tuples
            for (name,value) in self.define:
                self.compiler.define_macro(name, value)
        if self.undef is not None:
            for macro in self.undef:
                self.compiler.undefine_macro(macro)

        self.build_libraries(self.libraries)


    def check_library_list(self, libraries):
        """Ensure that the list of libraries is valid.

        `library` is presumably provided as a command option 'libraries'.
        This method checks that it is a list of 2-tuples, where the tuples
        are (library_name, build_info_dict).

        Raise DistutilsSetupError if the structure is invalid anywhere;
        just returns otherwise.
        """
        if not isinstance(libraries, list):
            raise DistutilsSetupError(
                  "'libraries' option must be a list of tuples")

        for lib in libraries:
            if not isinstance(lib, tuple) and len(lib) != 2:
                raise DistutilsSetupError(
                      "each element of 'libraries' must a 2-tuple")

            name, build_info = lib

            if not isinstance(name, str):
                raise DistutilsSetupError(
                      "first element of each tuple in 'libraries' "
                      "must be a string (the library name)")

            if '/' in name or (os.sep != '/' and os.sep in name):
                raise DistutilsSetupError("bad library name '%s': "
                       "may not contain directory separators" % lib[0])

            if not isinstance(build_info, dict):
                raise DistutilsSetupError(
                      "second element of each tuple in 'libraries' "
                      "must be a dictionary (build info)")


    def get_library_names(self):
        # Assume the library list is valid -- 'check_library_list()' is
        # called from 'finalize_options()', so it should be!
        if not self.libraries:
            return None

        lib_names = []
        for (lib_name, build_info) in self.libraries:
            lib_names.append(lib_name)
        return lib_names


    def get_source_files(self):
        self.check_library_list(self.libraries)
        filenames = []
        for (lib_name, build_info) in self.libraries:
            sources = build_info.get('sources')
            if sources is None or not isinstance(sources, (list, tuple)):
                raise DistutilsSetupError(
                       "in 'libraries' option (library '%s'), "
                       "'sources' must be present and must be "
                       "a list of source filenames" % lib_name)

            filenames.extend(sources)
        return filenames


    def build_libraries(self, libraries):
        for (lib_name, build_info) in libraries:
            sources = build_info.get('sources')
            if sources is None or not isinstance(sources, (list, tuple)):
                raise DistutilsSetupError(
                       "in 'libraries' option (library '%s'), "
                       "'sources' must be present and must be "
                       "a list of source filenames" % lib_name)
            sources = list(sources)

            log.info("building '%s' library", lib_name)

            # First, compile the source code to object files in the library
            # directory.  (This should probably change to putting object
            # files in a temporary build directory.)
            macros = build_info.get('macros')
            include_dirs = build_info.get('include_dirs')
            objects = self.compiler.compile(sources,
                                            output_dir=self.build_temp,
                                            macros=macros,
                                            include_dirs=include_dirs,
                                            debug=self.debug)

            # Now "link" the object files together into a static library.
            # (On Unix at least, this isn't really linking -- it just
            # builds an archive.  Whatever.)
            self.compiler.create_static_lib(objects, lib_name,
                                            output_dir=self.build_clib,
                                            debug=self.debug)
lib\distutils\command\build_ext.py
"""distutils.command.build_ext

Implements the Distutils 'build_ext' command, for building extension
modules (currently limited to C extensions, should accommodate C++
extensions ASAP)."""

import sys, os, re
from distutils.core import Command
from distutils.errors import *
from distutils.sysconfig import customize_compiler, get_python_version
from distutils.sysconfig import get_config_h_filename
from distutils.dep_util import newer_group
from distutils.extension import Extension
from distutils.util import get_platform
from distutils import log

from site import USER_BASE

if os.name == 'nt':
    from distutils.msvccompiler import get_build_version
    MSVC_VERSION = int(get_build_version())

# An extension name is just a dot-separated list of Python NAMEs (ie.
# the same as a fully-qualified module name).
extension_name_re = re.compile \
    (r'^[a-zA-Z_][a-zA-Z_0-9]*(\.[a-zA-Z_][a-zA-Z_0-9]*)*$')


def show_compilers ():
    from distutils.ccompiler import show_compilers
    show_compilers()


class build_ext(Command):

    description = "build C/C++ extensions (compile/link to build directory)"

    # XXX thoughts on how to deal with complex command-line options like
    # these, i.e. how to make it so fancy_getopt can suck them off the
    # command line and make it look like setup.py defined the appropriate
    # lists of tuples of what-have-you.
    #   - each command needs a callback to process its command-line options
    #   - Command.__init__() needs access to its share of the whole
    #     command line (must ultimately come from
    #     Distribution.parse_command_line())
    #   - it then calls the current command class' option-parsing
    #     callback to deal with weird options like -D, which have to
    #     parse the option text and churn out some custom data
    #     structure
    #   - that data structure (in this case, a list of 2-tuples)
    #     will then be present in the command object by the time
    #     we get to finalize_options() (i.e. the constructor
    #     takes care of both command-line and client options
    #     in between initialize_options() and finalize_options())

    sep_by = " (separated by '%s')" % os.pathsep
    user_options = [
        ('build-lib=', 'b',
         "directory for compiled extension modules"),
        ('build-temp=', 't',
         "directory for temporary files (build by-products)"),
        ('plat-name=', 'p',
         "platform name to cross-compile for, if supported "
         "(default: %s)" % get_platform()),
        ('inplace', 'i',
         "ignore build-lib and put compiled extensions into the source " +
         "directory alongside your pure Python modules"),
        ('include-dirs=', 'I',
         "list of directories to search for header files" + sep_by),
        ('define=', 'D',
         "C preprocessor macros to define"),
        ('undef=', 'U',
         "C preprocessor macros to undefine"),
        ('libraries=', 'l',
         "external C libraries to link with"),
        ('library-dirs=', 'L',
         "directories to search for external C libraries" + sep_by),
        ('rpath=', 'R',
         "directories to search for shared C libraries at runtime"),
        ('link-objects=', 'O',
         "extra explicit link objects to include in the link"),
        ('debug', 'g',
         "compile/link with debugging information"),
        ('force', 'f',
         "forcibly build everything (ignore file timestamps)"),
        ('compiler=', 'c',
         "specify the compiler type"),
        ('swig-cpp', None,
         "make SWIG create C++ files (default is C)"),
        ('swig-opts=', None,
         "list of SWIG command line options"),
        ('swig=', None,
         "path to the SWIG executable"),
        ('user', None,
         "add user include, library and rpath")
        ]

    boolean_options = ['inplace', 'debug', 'force', 'swig-cpp', 'user']

    help_options = [
        ('help-compiler', None,
         "list available compilers", show_compilers),
        ]

    def initialize_options(self):
        self.extensions = None
        self.build_lib = None
        self.plat_name = None
        self.build_temp = None
        self.inplace = 0
        self.package = None

        self.include_dirs = None
        self.define = None
        self.undef = None
        self.libraries = None
        self.library_dirs = None
        self.rpath = None
        self.link_objects = None
        self.debug = None
        self.force = None
        self.compiler = None
        self.swig = None
        self.swig_cpp = None
        self.swig_opts = None
        self.user = None

    def finalize_options(self):
        from distutils import sysconfig

        self.set_undefined_options('build',
                                   ('build_lib', 'build_lib'),
                                   ('build_temp', 'build_temp'),
                                   ('compiler', 'compiler'),
                                   ('debug', 'debug'),
                                   ('force', 'force'),
                                   ('plat_name', 'plat_name'),
                                   )

        if self.package is None:
            self.package = self.distribution.ext_package

        self.extensions = self.distribution.ext_modules

        # Make sure Python's include directories (for Python.h, pyconfig.h,
        # etc.) are in the include search path.
        py_include = sysconfig.get_python_inc()
        plat_py_include = sysconfig.get_python_inc(plat_specific=1)
        if self.include_dirs is None:
            self.include_dirs = self.distribution.include_dirs or []
        if isinstance(self.include_dirs, str):
            self.include_dirs = self.include_dirs.split(os.pathsep)

        # If in a virtualenv, add its include directory
        # Issue 16116
        if sys.exec_prefix != sys.base_exec_prefix:
            self.include_dirs.append(os.path.join(sys.exec_prefix, 'include'))

        # Put the Python "system" include dir at the end, so that
        # any local include dirs take precedence.
        self.include_dirs.append(py_include)
        if plat_py_include != py_include:
            self.include_dirs.append(plat_py_include)

        self.ensure_string_list('libraries')

        # Life is easier if we're not forever checking for None, so
        # simplify these options to empty lists if unset
        if self.libraries is None:
            self.libraries = []
        if self.library_dirs is None:
            self.library_dirs = []
        elif isinstance(self.library_dirs, str):
            self.library_dirs = self.library_dirs.split(os.pathsep)

        if self.rpath is None:
            self.rpath = []
        elif isinstance(self.rpath, str):
            self.rpath = self.rpath.split(os.pathsep)

        # for extensions under windows use different directories
        # for Release and Debug builds.
        # also Python's library directory must be appended to library_dirs
        if os.name == 'nt':
            # the 'libs' directory is for binary installs - we assume that
            # must be the *native* platform.  But we don't really support
            # cross-compiling via a binary install anyway, so we let it go.
            self.library_dirs.append(os.path.join(sys.exec_prefix, 'libs'))
            if sys.base_exec_prefix != sys.prefix:  # Issue 16116
                self.library_dirs.append(os.path.join(sys.base_exec_prefix, 'libs'))
            if self.debug:
                self.build_temp = os.path.join(self.build_temp, "Debug")
            else:
                self.build_temp = os.path.join(self.build_temp, "Release")

            # Append the source distribution include and library directories,
            # this allows distutils on windows to work in the source tree
            self.include_dirs.append(os.path.dirname(get_config_h_filename()))
            _sys_home = getattr(sys, '_home', None)
            if _sys_home:
                self.library_dirs.append(_sys_home)
            if MSVC_VERSION >= 9:
                # Use the .lib files for the correct architecture
                if self.plat_name == 'win32':
                    suffix = ''
                else:
                    # win-amd64 or win-ia64
                    suffix = self.plat_name[4:]
                new_lib = os.path.join(sys.exec_prefix, 'PCbuild')
                if suffix:
                    new_lib = os.path.join(new_lib, suffix)
                self.library_dirs.append(new_lib)

            elif MSVC_VERSION == 8:
                self.library_dirs.append(os.path.join(sys.exec_prefix,
                                         'PC', 'VS8.0'))
            elif MSVC_VERSION == 7:
                self.library_dirs.append(os.path.join(sys.exec_prefix,
                                         'PC', 'VS7.1'))
            else:
                self.library_dirs.append(os.path.join(sys.exec_prefix,
                                         'PC', 'VC6'))

        # for extensions under Cygwin and AtheOS Python's library directory must be
        # appended to library_dirs
        if sys.platform[:6] == 'cygwin' or sys.platform[:6] == 'atheos':
            if sys.executable.startswith(os.path.join(sys.exec_prefix, "bin")):
                # building third party extensions
                self.library_dirs.append(os.path.join(sys.prefix, "lib",
                                                      "python" + get_python_version(),
                                                      "config"))
            else:
                # building python standard extensions
                self.library_dirs.append('.')

        # For building extensions with a shared Python library,
        # Python's library directory must be appended to library_dirs
        # See Issues: #1600860, #4366
        if (sysconfig.get_config_var('Py_ENABLE_SHARED')):
            if not sysconfig.python_build:
                # building third party extensions
                self.library_dirs.append(sysconfig.get_config_var('LIBDIR'))
            else:
                # building python standard extensions
                self.library_dirs.append('.')

        # The argument parsing will result in self.define being a string, but
        # it has to be a list of 2-tuples.  All the preprocessor symbols
        # specified by the 'define' option will be set to '1'.  Multiple
        # symbols can be separated with commas.

        if self.define:
            defines = self.define.split(',')
            self.define = [(symbol, '1') for symbol in defines]

        # The option for macros to undefine is also a string from the
        # option parsing, but has to be a list.  Multiple symbols can also
        # be separated with commas here.
        if self.undef:
            self.undef = self.undef.split(',')

        if self.swig_opts is None:
            self.swig_opts = []
        else:
            self.swig_opts = self.swig_opts.split(' ')

        # Finally add the user include and library directories if requested
        if self.user:
            user_include = os.path.join(USER_BASE, "include")
            user_lib = os.path.join(USER_BASE, "lib")
            if os.path.isdir(user_include):
                self.include_dirs.append(user_include)
            if os.path.isdir(user_lib):
                self.library_dirs.append(user_lib)
                self.rpath.append(user_lib)

    def run(self):
        from distutils.ccompiler import new_compiler

        # 'self.extensions', as supplied by setup.py, is a list of
        # Extension instances.  See the documentation for Extension (in
        # distutils.extension) for details.
        #
        # For backwards compatibility with Distutils 0.8.2 and earlier, we
        # also allow the 'extensions' list to be a list of tuples:
        #    (ext_name, build_info)
        # where build_info is a dictionary containing everything that
        # Extension instances do except the name, with a few things being
        # differently named.  We convert these 2-tuples to Extension
        # instances as needed.

        if not self.extensions:
            return

        # If we were asked to build any C/C++ libraries, make sure that the
        # directory where we put them is in the library search path for
        # linking extensions.
        if self.distribution.has_c_libraries():
            build_clib = self.get_finalized_command('build_clib')
            self.libraries.extend(build_clib.get_library_names() or [])
            self.library_dirs.append(build_clib.build_clib)

        # Setup the CCompiler object that we'll use to do all the
        # compiling and linking
        self.compiler = new_compiler(compiler=self.compiler,
                                     verbose=self.verbose,
                                     dry_run=self.dry_run,
                                     force=self.force)
        customize_compiler(self.compiler)
        # If we are cross-compiling, init the compiler now (if we are not
        # cross-compiling, init would not hurt, but people may rely on
        # late initialization of compiler even if they shouldn't...)
        if os.name == 'nt' and self.plat_name != get_platform():
            self.compiler.initialize(self.plat_name)

        # And make sure that any compile/link-related options (which might
        # come from the command-line or from the setup script) are set in
        # that CCompiler object -- that way, they automatically apply to
        # all compiling and linking done here.
        if self.include_dirs is not None:
            self.compiler.set_include_dirs(self.include_dirs)
        if self.define is not None:
            # 'define' option is a list of (name,value) tuples
            for (name, value) in self.define:
                self.compiler.define_macro(name, value)
        if self.undef is not None:
            for macro in self.undef:
                self.compiler.undefine_macro(macro)
        if self.libraries is not None:
            self.compiler.set_libraries(self.libraries)
        if self.library_dirs is not None:
            self.compiler.set_library_dirs(self.library_dirs)
        if self.rpath is not None:
            self.compiler.set_runtime_library_dirs(self.rpath)
        if self.link_objects is not None:
            self.compiler.set_link_objects(self.link_objects)

        # Now actually compile and link everything.
        self.build_extensions()

    def check_extensions_list(self, extensions):
        """Ensure that the list of extensions (presumably provided as a
        command option 'extensions') is valid, i.e. it is a list of
        Extension objects.  We also support the old-style list of 2-tuples,
        where the tuples are (ext_name, build_info), which are converted to
        Extension instances here.

        Raise DistutilsSetupError if the structure is invalid anywhere;
        just returns otherwise.
        """
        if not isinstance(extensions, list):
            raise DistutilsSetupError(
                  "'ext_modules' option must be a list of Extension instances")

        for i, ext in enumerate(extensions):
            if isinstance(ext, Extension):
                continue                # OK! (assume type-checking done
                                        # by Extension constructor)

            if not isinstance(ext, tuple) or len(ext) != 2:
                raise DistutilsSetupError(
                       "each element of 'ext_modules' option must be an "
                       "Extension instance or 2-tuple")

            ext_name, build_info = ext

            log.warn(("old-style (ext_name, build_info) tuple found in "
                      "ext_modules for extension '%s'"
                      "-- please convert to Extension instance" % ext_name))

            if not (isinstance(ext_name, str) and
                    extension_name_re.match(ext_name)):
                raise DistutilsSetupError(
                       "first element of each tuple in 'ext_modules' "
                       "must be the extension name (a string)")

            if not isinstance(build_info, dict):
                raise DistutilsSetupError(
                       "second element of each tuple in 'ext_modules' "
                       "must be a dictionary (build info)")

            # OK, the (ext_name, build_info) dict is type-safe: convert it
            # to an Extension instance.
            ext = Extension(ext_name, build_info['sources'])

            # Easy stuff: one-to-one mapping from dict elements to
            # instance attributes.
            for key in ('include_dirs', 'library_dirs', 'libraries',
                        'extra_objects', 'extra_compile_args',
                        'extra_link_args'):
                val = build_info.get(key)
                if val is not None:
                    setattr(ext, key, val)

            # Medium-easy stuff: same syntax/semantics, different names.
            ext.runtime_library_dirs = build_info.get('rpath')
            if 'def_file' in build_info:
                log.warn("'def_file' element of build info dict "
                         "no longer supported")

            # Non-trivial stuff: 'macros' split into 'define_macros'
            # and 'undef_macros'.
            macros = build_info.get('macros')
            if macros:
                ext.define_macros = []
                ext.undef_macros = []
                for macro in macros:
                    if not (isinstance(macro, tuple) and len(macro) in (1, 2)):
                        raise DistutilsSetupError(
                              "'macros' element of build info dict "
                              "must be 1- or 2-tuple")
                    if len(macro) == 1:
                        ext.undef_macros.append(macro[0])
                    elif len(macro) == 2:
                        ext.define_macros.append(macro)

            extensions[i] = ext

    def get_source_files(self):
        self.check_extensions_list(self.extensions)
        filenames = []

        # Wouldn't it be neat if we knew the names of header files too...
        for ext in self.extensions:
            filenames.extend(ext.sources)
        return filenames

    def get_outputs(self):
        # Sanity check the 'extensions' list -- can't assume this is being
        # done in the same run as a 'build_extensions()' call (in fact, we
        # can probably assume that it *isn't*!).
        self.check_extensions_list(self.extensions)

        # And build the list of output (built) filenames.  Note that this
        # ignores the 'inplace' flag, and assumes everything goes in the
        # "build" tree.
        outputs = []
        for ext in self.extensions:
            outputs.append(self.get_ext_fullpath(ext.name))
        return outputs

    def build_extensions(self):
        # First, sanity-check the 'extensions' list
        self.check_extensions_list(self.extensions)

        for ext in self.extensions:
            try:
                self.build_extension(ext)
            except (CCompilerError, DistutilsError, CompileError) as e:
                if not ext.optional:
                    raise
                self.warn('building extension "%s" failed: %s' %
                          (ext.name, e))

    def build_extension(self, ext):
        sources = ext.sources
        if sources is None or not isinstance(sources, (list, tuple)):
            raise DistutilsSetupError(
                  "in 'ext_modules' option (extension '%s'), "
                  "'sources' must be present and must be "
                  "a list of source filenames" % ext.name)
        sources = list(sources)

        ext_path = self.get_ext_fullpath(ext.name)
        depends = sources + ext.depends
        if not (self.force or newer_group(depends, ext_path, 'newer')):
            log.debug("skipping '%s' extension (up-to-date)", ext.name)
            return
        else:
            log.info("building '%s' extension", ext.name)

        # First, scan the sources for SWIG definition files (.i), run
        # SWIG on 'em to create .c files, and modify the sources list
        # accordingly.
        sources = self.swig_sources(sources, ext)

        # Next, compile the source code to object files.

        # XXX not honouring 'define_macros' or 'undef_macros' -- the
        # CCompiler API needs to change to accommodate this, and I
        # want to do one thing at a time!

        # Two possible sources for extra compiler arguments:
        #   - 'extra_compile_args' in Extension object
        #   - CFLAGS environment variable (not particularly
        #     elegant, but people seem to expect it and I
        #     guess it's useful)
        # The environment variable should take precedence, and
        # any sensible compiler will give precedence to later
        # command line args.  Hence we combine them in order:
        extra_args = ext.extra_compile_args or []

        macros = ext.define_macros[:]
        for undef in ext.undef_macros:
            macros.append((undef,))

        objects = self.compiler.compile(sources,
                                         output_dir=self.build_temp,
                                         macros=macros,
                                         include_dirs=ext.include_dirs,
                                         debug=self.debug,
                                         extra_postargs=extra_args,
                                         depends=ext.depends)

        # XXX -- this is a Vile HACK!
        #
        # The setup.py script for Python on Unix needs to be able to
        # get this list so it can perform all the clean up needed to
        # avoid keeping object files around when cleaning out a failed
        # build of an extension module.  Since Distutils does not
        # track dependencies, we have to get rid of intermediates to
        # ensure all the intermediates will be properly re-built.
        #
        self._built_objects = objects[:]

        # Now link the object files together into a "shared object" --
        # of course, first we have to figure out all the other things
        # that go into the mix.
        if ext.extra_objects:
            objects.extend(ext.extra_objects)
        extra_args = ext.extra_link_args or []

        # Detect target language, if not provided
        language = ext.language or self.compiler.detect_language(sources)

        self.compiler.link_shared_object(
            objects, ext_path,
            libraries=self.get_libraries(ext),
            library_dirs=ext.library_dirs,
            runtime_library_dirs=ext.runtime_library_dirs,
            extra_postargs=extra_args,
            export_symbols=self.get_export_symbols(ext),
            debug=self.debug,
            build_temp=self.build_temp,
            target_lang=language)

    def swig_sources(self, sources, extension):
        """Walk the list of source files in 'sources', looking for SWIG
        interface (.i) files.  Run SWIG on all that are found, and
        return a modified 'sources' list with SWIG source files replaced
        by the generated C (or C++) files.
        """
        new_sources = []
        swig_sources = []
        swig_targets = {}

        # XXX this drops generated C/C++ files into the source tree, which
        # is fine for developers who want to distribute the generated
        # source -- but there should be an option to put SWIG output in
        # the temp dir.

        if self.swig_cpp:
            log.warn("--swig-cpp is deprecated - use --swig-opts=-c++")

        if self.swig_cpp or ('-c++' in self.swig_opts) or \
           ('-c++' in extension.swig_opts):
            target_ext = '.cpp'
        else:
            target_ext = '.c'

        for source in sources:
            (base, ext) = os.path.splitext(source)
            if ext == ".i":             # SWIG interface file
                new_sources.append(base + '_wrap' + target_ext)
                swig_sources.append(source)
                swig_targets[source] = new_sources[-1]
            else:
                new_sources.append(source)

        if not swig_sources:
            return new_sources

        swig = self.swig or self.find_swig()
        swig_cmd = [swig, "-python"]
        swig_cmd.extend(self.swig_opts)
        if self.swig_cpp:
            swig_cmd.append("-c++")

        # Do not override commandline arguments
        if not self.swig_opts:
            for o in extension.swig_opts:
                swig_cmd.append(o)

        for source in swig_sources:
            target = swig_targets[source]
            log.info("swigging %s to %s", source, target)
            self.spawn(swig_cmd + ["-o", target, source])

        return new_sources

    def find_swig(self):
        """Return the name of the SWIG executable.  On Unix, this is
        just "swig" -- it should be in the PATH.  Tries a bit harder on
        Windows.
        """
        if os.name == "posix":
            return "swig"
        elif os.name == "nt":
            # Look for SWIG in its standard installation directory on
            # Windows (or so I presume!).  If we find it there, great;
            # if not, act like Unix and assume it's in the PATH.
            for vers in ("1.3", "1.2", "1.1"):
                fn = os.path.join("c:\\swig%s" % vers, "swig.exe")
                if os.path.isfile(fn):
                    return fn
            else:
                return "swig.exe"
        else:
            raise DistutilsPlatformError(
                  "I don't know how to find (much less run) SWIG "
                  "on platform '%s'" % os.name)

    # -- Name generators -----------------------------------------------
    # (extension names, filenames, whatever)
    def get_ext_fullpath(self, ext_name):
        """Returns the path of the filename for a given extension.

        The file is located in `build_lib` or directly in the package
        (inplace option).
        """
        fullname = self.get_ext_fullname(ext_name)
        modpath = fullname.split('.')
        filename = self.get_ext_filename(modpath[-1])

        if not self.inplace:
            # no further work needed
            # returning :
            #   build_dir/package/path/filename
            filename = os.path.join(*modpath[:-1]+[filename])
            return os.path.join(self.build_lib, filename)

        # the inplace option requires to find the package directory
        # using the build_py command for that
        package = '.'.join(modpath[0:-1])
        build_py = self.get_finalized_command('build_py')
        package_dir = os.path.abspath(build_py.get_package_dir(package))

        # returning
        #   package_dir/filename
        return os.path.join(package_dir, filename)

    def get_ext_fullname(self, ext_name):
        """Returns the fullname of a given extension name.

        Adds the `package.` prefix"""
        if self.package is None:
            return ext_name
        else:
            return self.package + '.' + ext_name

    def get_ext_filename(self, ext_name):
        r"""Convert the name of an extension (eg. "foo.bar") into the name
        of the file from which it will be loaded (eg. "foo/bar.so", or
        "foo\bar.pyd").
        """
        from distutils.sysconfig import get_config_var
        ext_path = ext_name.split('.')
        # extensions in debug_mode are named 'module_d.pyd' under windows
        ext_suffix = get_config_var('EXT_SUFFIX')
        if os.name == 'nt' and self.debug:
            return os.path.join(*ext_path) + '_d' + ext_suffix
        return os.path.join(*ext_path) + ext_suffix

    def get_export_symbols(self, ext):
        """Return the list of symbols that a shared extension has to
        export.  This either uses 'ext.export_symbols' or, if it's not
        provided, "PyInit_" + module_name.  Only relevant on Windows, where
        the .pyd file (DLL) must export the module "PyInit_" function.
        """
        initfunc_name = "PyInit_" + ext.name.split('.')[-1]
        if initfunc_name not in ext.export_symbols:
            ext.export_symbols.append(initfunc_name)
        return ext.export_symbols

    def get_libraries(self, ext):
        """Return the list of libraries to link against when building a
        shared extension.  On most platforms, this is just 'ext.libraries';
        on Windows, we add the Python library (eg. python20.dll).
        """
        # The python library is always needed on Windows.  For MSVC, this
        # is redundant, since the library is mentioned in a pragma in
        # pyconfig.h that MSVC groks.  The other Windows compilers all seem
        # to need it mentioned explicitly, though, so that's what we do.
        # Append '_d' to the python import library on debug builds.
        if sys.platform == "win32":
            from distutils.msvccompiler import MSVCCompiler
            if not isinstance(self.compiler, MSVCCompiler):
                template = "python%d%d"
                if self.debug:
                    template = template + '_d'
                pythonlib = (template %
                       (sys.hexversion >> 24, (sys.hexversion >> 16) & 0xff))
                # don't extend ext.libraries, it may be shared with other
                # extensions, it is a reference to the original list
                return ext.libraries + [pythonlib]
            else:
                return ext.libraries
        elif sys.platform[:6] == "cygwin":
            template = "python%d.%d"
            pythonlib = (template %
                   (sys.hexversion >> 24, (sys.hexversion >> 16) & 0xff))
            # don't extend ext.libraries, it may be shared with other
            # extensions, it is a reference to the original list
            return ext.libraries + [pythonlib]
        elif sys.platform[:6] == "atheos":
            from distutils import sysconfig

            template = "python%d.%d"
            pythonlib = (template %
                   (sys.hexversion >> 24, (sys.hexversion >> 16) & 0xff))
            # Get SHLIBS from Makefile
            extra = []
            for lib in sysconfig.get_config_var('SHLIBS').split():
                if lib.startswith('-l'):
                    extra.append(lib[2:])
                else:
                    extra.append(lib)
            # don't extend ext.libraries, it may be shared with other
            # extensions, it is a reference to the original list
            return ext.libraries + [pythonlib, "m"] + extra
        elif sys.platform == 'darwin':
            # Don't use the default code below
            return ext.libraries
        elif sys.platform[:3] == 'aix':
            # Don't use the default code below
            return ext.libraries
        else:
            from distutils import sysconfig
            if sysconfig.get_config_var('Py_ENABLE_SHARED'):
                pythonlib = 'python{}.{}{}'.format(
                    sys.hexversion >> 24, (sys.hexversion >> 16) & 0xff,
                    sys.abiflags)
                return ext.libraries + [pythonlib]
            else:
                return ext.libraries
lib\distutils\command\build_py.py
"""distutils.command.build_py

Implements the Distutils 'build_py' command."""

import os
import importlib.util
import sys
from glob import glob

from distutils.core import Command
from distutils.errors import *
from distutils.util import convert_path, Mixin2to3
from distutils import log

class build_py (Command):

    description = "\"build\" pure Python modules (copy to build directory)"

    user_options = [
        ('build-lib=', 'd', "directory to \"build\" (copy) to"),
        ('compile', 'c', "compile .py to .pyc"),
        ('no-compile', None, "don't compile .py files [default]"),
        ('optimize=', 'O',
         "also compile with optimization: -O1 for \"python -O\", "
         "-O2 for \"python -OO\", and -O0 to disable [default: -O0]"),
        ('force', 'f', "forcibly build everything (ignore file timestamps)"),
        ]

    boolean_options = ['compile', 'force']
    negative_opt = {'no-compile' : 'compile'}

    def initialize_options(self):
        self.build_lib = None
        self.py_modules = None
        self.package = None
        self.package_data = None
        self.package_dir = None
        self.compile = 0
        self.optimize = 0
        self.force = None

    def finalize_options(self):
        self.set_undefined_options('build',
                                   ('build_lib', 'build_lib'),
                                   ('force', 'force'))

        # Get the distribution options that are aliases for build_py
        # options -- list of packages and list of modules.
        self.packages = self.distribution.packages
        self.py_modules = self.distribution.py_modules
        self.package_data = self.distribution.package_data
        self.package_dir = {}
        if self.distribution.package_dir:
            for name, path in self.distribution.package_dir.items():
                self.package_dir[name] = convert_path(path)
        self.data_files = self.get_data_files()

        # Ick, copied straight from install_lib.py (fancy_getopt needs a
        # type system!  Hell, *everything* needs a type system!!!)
        if not isinstance(self.optimize, int):
            try:
                self.optimize = int(self.optimize)
                assert 0 <= self.optimize <= 2
            except (ValueError, AssertionError):
                raise DistutilsOptionError("optimize must be 0, 1, or 2")

    def run(self):
        # XXX copy_file by default preserves atime and mtime.  IMHO this is
        # the right thing to do, but perhaps it should be an option -- in
        # particular, a site administrator might want installed files to
        # reflect the time of installation rather than the last
        # modification time before the installed release.

        # XXX copy_file by default preserves mode, which appears to be the
        # wrong thing to do: if a file is read-only in the working
        # directory, we want it to be installed read/write so that the next
        # installation of the same module distribution can overwrite it
        # without problems.  (This might be a Unix-specific issue.)  Thus
        # we turn off 'preserve_mode' when copying to the build directory,
        # since the build directory is supposed to be exactly what the
        # installation will look like (ie. we preserve mode when
        # installing).

        # Two options control which modules will be installed: 'packages'
        # and 'py_modules'.  The former lets us work with whole packages, not
        # specifying individual modules at all; the latter is for
        # specifying modules one-at-a-time.

        if self.py_modules:
            self.build_modules()
        if self.packages:
            self.build_packages()
            self.build_package_data()

        self.byte_compile(self.get_outputs(include_bytecode=0))

    def get_data_files(self):
        """Generate list of '(package,src_dir,build_dir,filenames)' tuples"""
        data = []
        if not self.packages:
            return data
        for package in self.packages:
            # Locate package source directory
            src_dir = self.get_package_dir(package)

            # Compute package build directory
            build_dir = os.path.join(*([self.build_lib] + package.split('.')))

            # Length of path to strip from found files
            plen = 0
            if src_dir:
                plen = len(src_dir)+1

            # Strip directory from globbed filenames
            filenames = [
                file[plen:] for file in self.find_data_files(package, src_dir)
                ]
            data.append((package, src_dir, build_dir, filenames))
        return data

    def find_data_files(self, package, src_dir):
        """Return filenames for package's data files in 'src_dir'"""
        globs = (self.package_data.get('', [])
                 + self.package_data.get(package, []))
        files = []
        for pattern in globs:
            # Each pattern has to be converted to a platform-specific path
            filelist = glob(os.path.join(src_dir, convert_path(pattern)))
            # Files that match more than one pattern are only added once
            files.extend([fn for fn in filelist if fn not in files
                and os.path.isfile(fn)])
        return files

    def build_package_data(self):
        """Copy data files into build directory"""
        lastdir = None
        for package, src_dir, build_dir, filenames in self.data_files:
            for filename in filenames:
                target = os.path.join(build_dir, filename)
                self.mkpath(os.path.dirname(target))
                self.copy_file(os.path.join(src_dir, filename), target,
                               preserve_mode=False)

    def get_package_dir(self, package):
        """Return the directory, relative to the top of the source
           distribution, where package 'package' should be found
           (at least according to the 'package_dir' option, if any)."""
        path = package.split('.')

        if not self.package_dir:
            if path:
                return os.path.join(*path)
            else:
                return ''
        else:
            tail = []
            while path:
                try:
                    pdir = self.package_dir['.'.join(path)]
                except KeyError:
                    tail.insert(0, path[-1])
                    del path[-1]
                else:
                    tail.insert(0, pdir)
                    return os.path.join(*tail)
            else:
                # Oops, got all the way through 'path' without finding a
                # match in package_dir.  If package_dir defines a directory
                # for the root (nameless) package, then fallback on it;
                # otherwise, we might as well have not consulted
                # package_dir at all, as we just use the directory implied
                # by 'tail' (which should be the same as the original value
                # of 'path' at this point).
                pdir = self.package_dir.get('')
                if pdir is not None:
                    tail.insert(0, pdir)

                if tail:
                    return os.path.join(*tail)
                else:
                    return ''

    def check_package(self, package, package_dir):
        # Empty dir name means current directory, which we can probably
        # assume exists.  Also, os.path.exists and isdir don't know about
        # my "empty string means current dir" convention, so we have to
        # circumvent them.
        if package_dir != "":
            if not os.path.exists(package_dir):
                raise DistutilsFileError(
                      "package directory '%s' does not exist" % package_dir)
            if not os.path.isdir(package_dir):
                raise DistutilsFileError(
                       "supposed package directory '%s' exists, "
                       "but is not a directory" % package_dir)

        # Require __init__.py for all but the "root package"
        if package:
            init_py = os.path.join(package_dir, "__init__.py")
            if os.path.isfile(init_py):
                return init_py
            else:
                log.warn(("package init file '%s' not found " +
                          "(or not a regular file)"), init_py)

        # Either not in a package at all (__init__.py not expected), or
        # __init__.py doesn't exist -- so don't return the filename.
        return None

    def check_module(self, module, module_file):
        if not os.path.isfile(module_file):
            log.warn("file %s (for module %s) not found", module_file, module)
            return False
        else:
            return True

    def find_package_modules(self, package, package_dir):
        self.check_package(package, package_dir)
        module_files = glob(os.path.join(package_dir, "*.py"))
        modules = []
        setup_script = os.path.abspath(self.distribution.script_name)

        for f in module_files:
            abs_f = os.path.abspath(f)
            if abs_f != setup_script:
                module = os.path.splitext(os.path.basename(f))[0]
                modules.append((package, module, f))
            else:
                self.debug_print("excluding %s" % setup_script)
        return modules

    def find_modules(self):
        """Finds individually-specified Python modules, ie. those listed by
        module name in 'self.py_modules'.  Returns a list of tuples (package,
        module_base, filename): 'package' is a tuple of the path through
        package-space to the module; 'module_base' is the bare (no
        packages, no dots) module name, and 'filename' is the path to the
        ".py" file (relative to the distribution root) that implements the
        module.
        """
        # Map package names to tuples of useful info about the package:
        #    (package_dir, checked)
        # package_dir - the directory where we'll find source files for
        #   this package
        # checked - true if we have checked that the package directory
        #   is valid (exists, contains __init__.py, ... ?)
        packages = {}

        # List of (package, module, filename) tuples to return
        modules = []

        # We treat modules-in-packages almost the same as toplevel modules,
        # just the "package" for a toplevel is empty (either an empty
        # string or empty list, depending on context).  Differences:
        #   - don't check for __init__.py in directory for empty package
        for module in self.py_modules:
            path = module.split('.')
            package = '.'.join(path[0:-1])
            module_base = path[-1]

            try:
                (package_dir, checked) = packages[package]
            except KeyError:
                package_dir = self.get_package_dir(package)
                checked = 0

            if not checked:
                init_py = self.check_package(package, package_dir)
                packages[package] = (package_dir, 1)
                if init_py:
                    modules.append((package, "__init__", init_py))

            # XXX perhaps we should also check for just .pyc files
            # (so greedy closed-source bastards can distribute Python
            # modules too)
            module_file = os.path.join(package_dir, module_base + ".py")
            if not self.check_module(module, module_file):
                continue

            modules.append((package, module_base, module_file))

        return modules

    def find_all_modules(self):
        """Compute the list of all modules that will be built, whether
        they are specified one-module-at-a-time ('self.py_modules') or
        by whole packages ('self.packages').  Return a list of tuples
        (package, module, module_file), just like 'find_modules()' and
        'find_package_modules()' do."""
        modules = []
        if self.py_modules:
            modules.extend(self.find_modules())
        if self.packages:
            for package in self.packages:
                package_dir = self.get_package_dir(package)
                m = self.find_package_modules(package, package_dir)
                modules.extend(m)
        return modules

    def get_source_files(self):
        return [module[-1] for module in self.find_all_modules()]

    def get_module_outfile(self, build_dir, package, module):
        outfile_path = [build_dir] + list(package) + [module + ".py"]
        return os.path.join(*outfile_path)

    def get_outputs(self, include_bytecode=1):
        modules = self.find_all_modules()
        outputs = []
        for (package, module, module_file) in modules:
            package = package.split('.')
            filename = self.get_module_outfile(self.build_lib, package, module)
            outputs.append(filename)
            if include_bytecode:
                if self.compile:
                    outputs.append(importlib.util.cache_from_source(
                        filename, debug_override=True))
                if self.optimize > 0:
                    outputs.append(importlib.util.cache_from_source(
                        filename, debug_override=False))

        outputs += [
            os.path.join(build_dir, filename)
            for package, src_dir, build_dir, filenames in self.data_files
            for filename in filenames
            ]

        return outputs

    def build_module(self, module, module_file, package):
        if isinstance(package, str):
            package = package.split('.')
        elif not isinstance(package, (list, tuple)):
            raise TypeError(
                  "'package' must be a string (dot-separated), list, or tuple")

        # Now put the module source file into the "build" area -- this is
        # easy, we just copy it somewhere under self.build_lib (the build
        # directory for Python source).
        outfile = self.get_module_outfile(self.build_lib, package, module)
        dir = os.path.dirname(outfile)
        self.mkpath(dir)
        return self.copy_file(module_file, outfile, preserve_mode=0)

    def build_modules(self):
        modules = self.find_modules()
        for (package, module, module_file) in modules:
            # Now "build" the module -- ie. copy the source file to
            # self.build_lib (the build directory for Python source).
            # (Actually, it gets copied to the directory for this package
            # under self.build_lib.)
            self.build_module(module, module_file, package)

    def build_packages(self):
        for package in self.packages:
            # Get list of (package, module, module_file) tuples based on
            # scanning the package directory.  'package' is only included
            # in the tuple so that 'find_modules()' and
            # 'find_package_tuples()' have a consistent interface; it's
            # ignored here (apart from a sanity check).  Also, 'module' is
            # the *unqualified* module name (ie. no dots, no package -- we
            # already know its package!), and 'module_file' is the path to
            # the .py file, relative to the current directory
            # (ie. including 'package_dir').
            package_dir = self.get_package_dir(package)
            modules = self.find_package_modules(package, package_dir)

            # Now loop over the modules we found, "building" each one (just
            # copy it to self.build_lib).
            for (package_, module, module_file) in modules:
                assert package == package_
                self.build_module(module, module_file, package)

    def byte_compile(self, files):
        if sys.dont_write_bytecode:
            self.warn('byte-compiling is disabled, skipping.')
            return

        from distutils.util import byte_compile
        prefix = self.build_lib
        if prefix[-1] != os.sep:
            prefix = prefix + os.sep

        # XXX this code is essentially the same as the 'byte_compile()
        # method of the "install_lib" command, except for the determination
        # of the 'prefix' string.  Hmmm.
        if self.compile:
            byte_compile(files, optimize=0,
                         force=self.force, prefix=prefix, dry_run=self.dry_run)
        if self.optimize > 0:
            byte_compile(files, optimize=self.optimize,
                         force=self.force, prefix=prefix, dry_run=self.dry_run)

class build_py_2to3(build_py, Mixin2to3):
    def run(self):
        self.updated_files = []

        # Base class code
        if self.py_modules:
            self.build_modules()
        if self.packages:
            self.build_packages()
            self.build_package_data()

        # 2to3
        self.run_2to3(self.updated_files)

        # Remaining base class code
        self.byte_compile(self.get_outputs(include_bytecode=0))

    def build_module(self, module, module_file, package):
        res = build_py.build_module(self, module, module_file, package)
        if res[1]:
            # file was copied
            self.updated_files.append(res[0])
        return res
lib\distutils\command\build_scripts.py
"""distutils.command.build_scripts

Implements the Distutils 'build_scripts' command."""

import os, re
from stat import ST_MODE
from distutils import sysconfig
from distutils.core import Command
from distutils.dep_util import newer
from distutils.util import convert_path, Mixin2to3
from distutils import log
import tokenize

# check if Python is called on the first line with this expression
first_line_re = re.compile(b'^#!.*python[0-9.]*([ \t].*)?$')

class build_scripts(Command):

    description = "\"build\" scripts (copy and fixup #! line)"

    user_options = [
        ('build-dir=', 'd', "directory to \"build\" (copy) to"),
        ('force', 'f', "forcibly build everything (ignore file timestamps"),
        ('executable=', 'e', "specify final destination interpreter path"),
        ]

    boolean_options = ['force']


    def initialize_options(self):
        self.build_dir = None
        self.scripts = None
        self.force = None
        self.executable = None
        self.outfiles = None

    def finalize_options(self):
        self.set_undefined_options('build',
                                   ('build_scripts', 'build_dir'),
                                   ('force', 'force'),
                                   ('executable', 'executable'))
        self.scripts = self.distribution.scripts

    def get_source_files(self):
        return self.scripts

    def run(self):
        if not self.scripts:
            return
        self.copy_scripts()


    def copy_scripts(self):
        """Copy each script listed in 'self.scripts'; if it's marked as a
        Python script in the Unix way (first line matches 'first_line_re',
        ie. starts with "\#!" and contains "python"), then adjust the first
        line to refer to the current Python interpreter as we copy.
        """
        self.mkpath(self.build_dir)
        outfiles = []
        updated_files = []
        for script in self.scripts:
            adjust = False
            script = convert_path(script)
            outfile = os.path.join(self.build_dir, os.path.basename(script))
            outfiles.append(outfile)

            if not self.force and not newer(script, outfile):
                log.debug("not copying %s (up-to-date)", script)
                continue

            # Always open the file, but ignore failures in dry-run mode --
            # that way, we'll get accurate feedback if we can read the
            # script.
            try:
                f = open(script, "rb")
            except OSError:
                if not self.dry_run:
                    raise
                f = None
            else:
                encoding, lines = tokenize.detect_encoding(f.readline)
                f.seek(0)
                first_line = f.readline()
                if not first_line:
                    self.warn("%s is an empty file (skipping)" % script)
                    continue

                match = first_line_re.match(first_line)
                if match:
                    adjust = True
                    post_interp = match.group(1) or b''

            if adjust:
                log.info("copying and adjusting %s -> %s", script,
                         self.build_dir)
                updated_files.append(outfile)
                if not self.dry_run:
                    if not sysconfig.python_build:
                        executable = self.executable
                    else:
                        executable = os.path.join(
                            sysconfig.get_config_var("BINDIR"),
                           "python%s%s" % (sysconfig.get_config_var("VERSION"),
                                           sysconfig.get_config_var("EXE")))
                    executable = os.fsencode(executable)
                    shebang = b"#!" + executable + post_interp + b"\n"
                    # Python parser starts to read a script using UTF-8 until
                    # it gets a #coding:xxx cookie. The shebang has to be the
                    # first line of a file, the #coding:xxx cookie cannot be
                    # written before. So the shebang has to be decodable from
                    # UTF-8.
                    try:
                        shebang.decode('utf-8')
                    except UnicodeDecodeError:
                        raise ValueError(
                            "The shebang ({!r}) is not decodable "
                            "from utf-8".format(shebang))
                    # If the script is encoded to a custom encoding (use a
                    # #coding:xxx cookie), the shebang has to be decodable from
                    # the script encoding too.
                    try:
                        shebang.decode(encoding)
                    except UnicodeDecodeError:
                        raise ValueError(
                            "The shebang ({!r}) is not decodable "
                            "from the script encoding ({})"
                            .format(shebang, encoding))
                    with open(outfile, "wb") as outf:
                        outf.write(shebang)
                        outf.writelines(f.readlines())
                if f:
                    f.close()
            else:
                if f:
                    f.close()
                updated_files.append(outfile)
                self.copy_file(script, outfile)

        if os.name == 'posix':
            for file in outfiles:
                if self.dry_run:
                    log.info("changing mode of %s", file)
                else:
                    oldmode = os.stat(file)[ST_MODE] & 0o7777
                    newmode = (oldmode | 0o555) & 0o7777
                    if newmode != oldmode:
                        log.info("changing mode of %s from %o to %o",
                                 file, oldmode, newmode)
                        os.chmod(file, newmode)
        # XXX should we modify self.outfiles?
        return outfiles, updated_files

class build_scripts_2to3(build_scripts, Mixin2to3):

    def copy_scripts(self):
        outfiles, updated_files = build_scripts.copy_scripts(self)
        if not self.dry_run:
            self.run_2to3(updated_files)
        return outfiles, updated_files
lib\distutils\command\check.py
"""distutils.command.check

Implements the Distutils 'check' command.
"""
from distutils.core import Command
from distutils.errors import DistutilsSetupError

try:
    # docutils is installed
    from docutils.utils import Reporter
    from docutils.parsers.rst import Parser
    from docutils import frontend
    from docutils import nodes
    from io import StringIO

    class SilentReporter(Reporter):

        def __init__(self, source, report_level, halt_level, stream=None,
                     debug=0, encoding='ascii', error_handler='replace'):
            self.messages = []
            Reporter.__init__(self, source, report_level, halt_level, stream,
                              debug, encoding, error_handler)

        def system_message(self, level, message, *children, **kwargs):
            self.messages.append((level, message, children, kwargs))
            return nodes.system_message(message, level=level,
                                        type=self.levels[level],
                                        *children, **kwargs)

    HAS_DOCUTILS = True
except Exception:
    # Catch all exceptions because exceptions besides ImportError probably
    # indicate that docutils is not ported to Py3k.
    HAS_DOCUTILS = False

class check(Command):
    """This command checks the meta-data of the package.
    """
    description = ("perform some checks on the package")
    user_options = [('metadata', 'm', 'Verify meta-data'),
                    ('restructuredtext', 'r',
                     ('Checks if long string meta-data syntax '
                      'are reStructuredText-compliant')),
                    ('strict', 's',
                     'Will exit with an error if a check fails')]

    boolean_options = ['metadata', 'restructuredtext', 'strict']

    def initialize_options(self):
        """Sets default values for options."""
        self.restructuredtext = 0
        self.metadata = 1
        self.strict = 0
        self._warnings = 0

    def finalize_options(self):
        pass

    def warn(self, msg):
        """Counts the number of warnings that occurs."""
        self._warnings += 1
        return Command.warn(self, msg)

    def run(self):
        """Runs the command."""
        # perform the various tests
        if self.metadata:
            self.check_metadata()
        if self.restructuredtext:
            if HAS_DOCUTILS:
                self.check_restructuredtext()
            elif self.strict:
                raise DistutilsSetupError('The docutils package is needed.')

        # let's raise an error in strict mode, if we have at least
        # one warning
        if self.strict and self._warnings > 0:
            raise DistutilsSetupError('Please correct your package.')

    def check_metadata(self):
        """Ensures that all required elements of meta-data are supplied.

        name, version, URL, (author and author_email) or
        (maintainer and maintainer_email)).

        Warns if any are missing.
        """
        metadata = self.distribution.metadata

        missing = []
        for attr in ('name', 'version', 'url'):
            if not (hasattr(metadata, attr) and getattr(metadata, attr)):
                missing.append(attr)

        if missing:
            self.warn("missing required meta-data: %s"  % ', '.join(missing))
        if metadata.author:
            if not metadata.author_email:
                self.warn("missing meta-data: if 'author' supplied, " +
                          "'author_email' must be supplied too")
        elif metadata.maintainer:
            if not metadata.maintainer_email:
                self.warn("missing meta-data: if 'maintainer' supplied, " +
                          "'maintainer_email' must be supplied too")
        else:
            self.warn("missing meta-data: either (author and author_email) " +
                      "or (maintainer and maintainer_email) " +
                      "must be supplied")

    def check_restructuredtext(self):
        """Checks if the long string fields are reST-compliant."""
        data = self.distribution.get_long_description()
        for warning in self._check_rst_data(data):
            line = warning[-1].get('line')
            if line is None:
                warning = warning[1]
            else:
                warning = '%s (line %s)' % (warning[1], line)
            self.warn(warning)

    def _check_rst_data(self, data):
        """Returns warnings when the provided data doesn't compile."""
        source_path = StringIO()
        parser = Parser()
        settings = frontend.OptionParser(components=(Parser,)).get_default_values()
        settings.tab_width = 4
        settings.pep_references = None
        settings.rfc_references = None
        reporter = SilentReporter(source_path,
                          settings.report_level,
                          settings.halt_level,
                          stream=settings.warning_stream,
                          debug=settings.debug,
                          encoding=settings.error_encoding,
                          error_handler=settings.error_encoding_error_handler)

        document = nodes.document(settings, reporter, source=source_path)
        document.note_source(source_path, -1)
        try:
            parser.parse(data, document)
        except AttributeError as e:
            reporter.messages.append(
                (-1, 'Could not finish the parsing: %s.' % e, '', {}))

        return reporter.messages
lib\distutils\command\clean.py
"""distutils.command.clean

Implements the Distutils 'clean' command."""

# contributed by Bastian Kleineidam <[email protected]>, added 2000-03-18

import os
from distutils.core import Command
from distutils.dir_util import remove_tree
from distutils import log

class clean(Command):

    description = "clean up temporary files from 'build' command"
    user_options = [
        ('build-base=', 'b',
         "base build directory (default: 'build.build-base')"),
        ('build-lib=', None,
         "build directory for all modules (default: 'build.build-lib')"),
        ('build-temp=', 't',
         "temporary build directory (default: 'build.build-temp')"),
        ('build-scripts=', None,
         "build directory for scripts (default: 'build.build-scripts')"),
        ('bdist-base=', None,
         "temporary directory for built distributions"),
        ('all', 'a',
         "remove all build output, not just temporary by-products")
    ]

    boolean_options = ['all']

    def initialize_options(self):
        self.build_base = None
        self.build_lib = None
        self.build_temp = None
        self.build_scripts = None
        self.bdist_base = None
        self.all = None

    def finalize_options(self):
        self.set_undefined_options('build',
                                   ('build_base', 'build_base'),
                                   ('build_lib', 'build_lib'),
                                   ('build_scripts', 'build_scripts'),
                                   ('build_temp', 'build_temp'))
        self.set_undefined_options('bdist',
                                   ('bdist_base', 'bdist_base'))

    def run(self):
        # remove the build/temp.<plat> directory (unless it's already
        # gone)
        if os.path.exists(self.build_temp):
            remove_tree(self.build_temp, dry_run=self.dry_run)
        else:
            log.debug("'%s' does not exist -- can't clean it",
                      self.build_temp)

        if self.all:
            # remove build directories
            for directory in (self.build_lib,
                              self.bdist_base,
                              self.build_scripts):
                if os.path.exists(directory):
                    remove_tree(directory, dry_run=self.dry_run)
                else:
                    log.warn("'%s' does not exist -- can't clean it",
                             directory)

        # just for the heck of it, try to remove the base build directory:
        # we might have emptied it right now, but if not we don't care
        if not self.dry_run:
            try:
                os.rmdir(self.build_base)
                log.info("removing '%s'", self.build_base)
            except OSError:
                pass
lib\distutils\command\command_template
 
lib\distutils\command\config.py
"""distutils.command.config

Implements the Distutils 'config' command, a (mostly) empty command class
that exists mainly to be sub-classed by specific module distributions and
applications.  The idea is that while every "config" command is different,
at least they're all named the same, and users always see "config" in the
list of standard commands.  Also, this is a good place to put common
configure-like tasks: "try to compile this C code", or "figure out where
this header file lives".
"""

import sys, os, re

from distutils.core import Command
from distutils.errors import DistutilsExecError
from distutils.sysconfig import customize_compiler
from distutils import log

LANG_EXT = {"c": ".c", "c++": ".cxx"}

class config(Command):

    description = "prepare to build"

    user_options = [
        ('compiler=', None,
         "specify the compiler type"),
        ('cc=', None,
         "specify the compiler executable"),
        ('include-dirs=', 'I',
         "list of directories to search for header files"),
        ('define=', 'D',
         "C preprocessor macros to define"),
        ('undef=', 'U',
         "C preprocessor macros to undefine"),
        ('libraries=', 'l',
         "external C libraries to link with"),
        ('library-dirs=', 'L',
         "directories to search for external C libraries"),

        ('noisy', None,
         "show every action (compile, link, run, ...) taken"),
        ('dump-source', None,
         "dump generated source files before attempting to compile them"),
        ]


    # The three standard command methods: since the "config" command
    # does nothing by default, these are empty.

    def initialize_options(self):
        self.compiler = None
        self.cc = None
        self.include_dirs = None
        self.libraries = None
        self.library_dirs = None

        # maximal output for now
        self.noisy = 1
        self.dump_source = 1

        # list of temporary files generated along-the-way that we have
        # to clean at some point
        self.temp_files = []

    def finalize_options(self):
        if self.include_dirs is None:
            self.include_dirs = self.distribution.include_dirs or []
        elif isinstance(self.include_dirs, str):
            self.include_dirs = self.include_dirs.split(os.pathsep)

        if self.libraries is None:
            self.libraries = []
        elif isinstance(self.libraries, str):
            self.libraries = [self.libraries]

        if self.library_dirs is None:
            self.library_dirs = []
        elif isinstance(self.library_dirs, str):
            self.library_dirs = self.library_dirs.split(os.pathsep)

    def run(self):
        pass

    # Utility methods for actual "config" commands.  The interfaces are
    # loosely based on Autoconf macros of similar names.  Sub-classes
    # may use these freely.

    def _check_compiler(self):
        """Check that 'self.compiler' really is a CCompiler object;
        if not, make it one.
        """
        # We do this late, and only on-demand, because this is an expensive
        # import.
        from distutils.ccompiler import CCompiler, new_compiler
        if not isinstance(self.compiler, CCompiler):
            self.compiler = new_compiler(compiler=self.compiler,
                                         dry_run=self.dry_run, force=1)
            customize_compiler(self.compiler)
            if self.include_dirs:
                self.compiler.set_include_dirs(self.include_dirs)
            if self.libraries:
                self.compiler.set_libraries(self.libraries)
            if self.library_dirs:
                self.compiler.set_library_dirs(self.library_dirs)

    def _gen_temp_sourcefile(self, body, headers, lang):
        filename = "_configtest" + LANG_EXT[lang]
        file = open(filename, "w")
        if headers:
            for header in headers:
                file.write("#include <%s>\n" % header)
            file.write("\n")
        file.write(body)
        if body[-1] != "\n":
            file.write("\n")
        file.close()
        return filename

    def _preprocess(self, body, headers, include_dirs, lang):
        src = self._gen_temp_sourcefile(body, headers, lang)
        out = "_configtest.i"
        self.temp_files.extend([src, out])
        self.compiler.preprocess(src, out, include_dirs=include_dirs)
        return (src, out)

    def _compile(self, body, headers, include_dirs, lang):
        src = self._gen_temp_sourcefile(body, headers, lang)
        if self.dump_source:
            dump_file(src, "compiling '%s':" % src)
        (obj,) = self.compiler.object_filenames([src])
        self.temp_files.extend([src, obj])
        self.compiler.compile([src], include_dirs=include_dirs)
        return (src, obj)

    def _link(self, body, headers, include_dirs, libraries, library_dirs,
              lang):
        (src, obj) = self._compile(body, headers, include_dirs, lang)
        prog = os.path.splitext(os.path.basename(src))[0]
        self.compiler.link_executable([obj], prog,
                                      libraries=libraries,
                                      library_dirs=library_dirs,
                                      target_lang=lang)

        if self.compiler.exe_extension is not None:
            prog = prog + self.compiler.exe_extension
        self.temp_files.append(prog)

        return (src, obj, prog)

    def _clean(self, *filenames):
        if not filenames:
            filenames = self.temp_files
            self.temp_files = []
        log.info("removing: %s", ' '.join(filenames))
        for filename in filenames:
            try:
                os.remove(filename)
            except OSError:
                pass


    # XXX these ignore the dry-run flag: what to do, what to do? even if
    # you want a dry-run build, you still need some sort of configuration
    # info.  My inclination is to make it up to the real config command to
    # consult 'dry_run', and assume a default (minimal) configuration if
    # true.  The problem with trying to do it here is that you'd have to
    # return either true or false from all the 'try' methods, neither of
    # which is correct.

    # XXX need access to the header search path and maybe default macros.

    def try_cpp(self, body=None, headers=None, include_dirs=None, lang="c"):
        """Construct a source file from 'body' (a string containing lines
        of C/C++ code) and 'headers' (a list of header files to include)
        and run it through the preprocessor.  Return true if the
        preprocessor succeeded, false if there were any errors.
        ('body' probably isn't of much use, but what the heck.)
        """
        from distutils.ccompiler import CompileError
        self._check_compiler()
        ok = True
        try:
            self._preprocess(body, headers, include_dirs, lang)
        except CompileError:
            ok = False

        self._clean()
        return ok

    def search_cpp(self, pattern, body=None, headers=None, include_dirs=None,
                   lang="c"):
        """Construct a source file (just like 'try_cpp()'), run it through
        the preprocessor, and return true if any line of the output matches
        'pattern'.  'pattern' should either be a compiled regex object or a
        string containing a regex.  If both 'body' and 'headers' are None,
        preprocesses an empty file -- which can be useful to determine the
        symbols the preprocessor and compiler set by default.
        """
        self._check_compiler()
        src, out = self._preprocess(body, headers, include_dirs, lang)

        if isinstance(pattern, str):
            pattern = re.compile(pattern)

        file = open(out)
        match = False
        while True:
            line = file.readline()
            if line == '':
                break
            if pattern.search(line):
                match = True
                break

        file.close()
        self._clean()
        return match

    def try_compile(self, body, headers=None, include_dirs=None, lang="c"):
        """Try to compile a source file built from 'body' and 'headers'.
        Return true on success, false otherwise.
        """
        from distutils.ccompiler import CompileError
        self._check_compiler()
        try:
            self._compile(body, headers, include_dirs, lang)
            ok = True
        except CompileError:
            ok = False

        log.info(ok and "success!" or "failure.")
        self._clean()
        return ok

    def try_link(self, body, headers=None, include_dirs=None, libraries=None,
                 library_dirs=None, lang="c"):
        """Try to compile and link a source file, built from 'body' and
        'headers', to executable form.  Return true on success, false
        otherwise.
        """
        from distutils.ccompiler import CompileError, LinkError
        self._check_compiler()
        try:
            self._link(body, headers, include_dirs,
                       libraries, library_dirs, lang)
            ok = True
        except (CompileError, LinkError):
            ok = False

        log.info(ok and "success!" or "failure.")
        self._clean()
        return ok

    def try_run(self, body, headers=None, include_dirs=None, libraries=None,
                library_dirs=None, lang="c"):
        """Try to compile, link to an executable, and run a program
        built from 'body' and 'headers'.  Return true on success, false
        otherwise.
        """
        from distutils.ccompiler import CompileError, LinkError
        self._check_compiler()
        try:
            src, obj, exe = self._link(body, headers, include_dirs,
                                       libraries, library_dirs, lang)
            self.spawn([exe])
            ok = True
        except (CompileError, LinkError, DistutilsExecError):
            ok = False

        log.info(ok and "success!" or "failure.")
        self._clean()
        return ok


    # -- High-level methods --------------------------------------------
    # (these are the ones that are actually likely to be useful
    # when implementing a real-world config command!)

    def check_func(self, func, headers=None, include_dirs=None,
                   libraries=None, library_dirs=None, decl=0, call=0):
        """Determine if function 'func' is available by constructing a
        source file that refers to 'func', and compiles and links it.
        If everything succeeds, returns true; otherwise returns false.

        The constructed source file starts out by including the header
        files listed in 'headers'.  If 'decl' is true, it then declares
        'func' (as "int func()"); you probably shouldn't supply 'headers'
        and set 'decl' true in the same call, or you might get errors about
        a conflicting declarations for 'func'.  Finally, the constructed
        'main()' function either references 'func' or (if 'call' is true)
        calls it.  'libraries' and 'library_dirs' are used when
        linking.
        """
        self._check_compiler()
        body = []
        if decl:
            body.append("int %s ();" % func)
        body.append("int main () {")
        if call:
            body.append("  %s();" % func)
        else:
            body.append("  %s;" % func)
        body.append("}")
        body = "\n".join(body) + "\n"

        return self.try_link(body, headers, include_dirs,
                             libraries, library_dirs)

    def check_lib(self, library, library_dirs=None, headers=None,
                  include_dirs=None, other_libraries=[]):
        """Determine if 'library' is available to be linked against,
        without actually checking that any particular symbols are provided
        by it.  'headers' will be used in constructing the source file to
        be compiled, but the only effect of this is to check if all the
        header files listed are available.  Any libraries listed in
        'other_libraries' will be included in the link, in case 'library'
        has symbols that depend on other libraries.
        """
        self._check_compiler()
        return self.try_link("int main (void) { }", headers, include_dirs,
                             [library] + other_libraries, library_dirs)

    def check_header(self, header, include_dirs=None, library_dirs=None,
                     lang="c"):
        """Determine if the system header file named by 'header_file'
        exists and can be found by the preprocessor; return true if so,
        false otherwise.
        """
        return self.try_cpp(body="/* No body */", headers=[header],
                            include_dirs=include_dirs)


def dump_file(filename, head=None):
    """Dumps a file content into log.info.

    If head is not None, will be dumped before the file content.
    """
    if head is None:
        log.info('%s' % filename)
    else:
        log.info(head)
    file = open(filename)
    try:
        log.info(file.read())
    finally:
        file.close()
lib\distutils\command\install.py
"""distutils.command.install

Implements the Distutils 'install' command."""

import sys
import os

from distutils import log
from distutils.core import Command
from distutils.debug import DEBUG
from distutils.sysconfig import get_config_vars
from distutils.errors import DistutilsPlatformError
from distutils.file_util import write_file
from distutils.util import convert_path, subst_vars, change_root
from distutils.util import get_platform
from distutils.errors import DistutilsOptionError

from site import USER_BASE
from site import USER_SITE
HAS_USER_SITE = True

WINDOWS_SCHEME = {
    'purelib': '$base/Lib/site-packages',
    'platlib': '$base/Lib/site-packages',
    'headers': '$base/Include/$dist_name',
    'scripts': '$base/Scripts',
    'data'   : '$base',
}

INSTALL_SCHEMES = {
    'unix_prefix': {
        'purelib': '$base/lib/python$py_version_short/site-packages',
        'platlib': '$platbase/lib/python$py_version_short/site-packages',
        'headers': '$base/include/python$py_version_short$abiflags/$dist_name',
        'scripts': '$base/bin',
        'data'   : '$base',
        },
    'unix_home': {
        'purelib': '$base/lib/python',
        'platlib': '$base/lib/python',
        'headers': '$base/include/python/$dist_name',
        'scripts': '$base/bin',
        'data'   : '$base',
        },
    'nt': WINDOWS_SCHEME,
    }

# user site schemes
if HAS_USER_SITE:
    INSTALL_SCHEMES['nt_user'] = {
        'purelib': '$usersite',
        'platlib': '$usersite',
        'headers': '$userbase/Python$py_version_nodot/Include/$dist_name',
        'scripts': '$userbase/Scripts',
        'data'   : '$userbase',
        }

    INSTALL_SCHEMES['unix_user'] = {
        'purelib': '$usersite',
        'platlib': '$usersite',
        'headers':
            '$userbase/include/python$py_version_short$abiflags/$dist_name',
        'scripts': '$userbase/bin',
        'data'   : '$userbase',
        }

# The keys to an installation scheme; if any new types of files are to be
# installed, be sure to add an entry to every installation scheme above,
# and to SCHEME_KEYS here.
SCHEME_KEYS = ('purelib', 'platlib', 'headers', 'scripts', 'data')


class install(Command):

    description = "install everything from build directory"

    user_options = [
        # Select installation scheme and set base director(y|ies)
        ('prefix=', None,
         "installation prefix"),
        ('exec-prefix=', None,
         "(Unix only) prefix for platform-specific files"),
        ('home=', None,
         "(Unix only) home directory to install under"),

        # Or, just set the base director(y|ies)
        ('install-base=', None,
         "base installation directory (instead of --prefix or --home)"),
        ('install-platbase=', None,
         "base installation directory for platform-specific files " +
         "(instead of --exec-prefix or --home)"),
        ('root=', None,
         "install everything relative to this alternate root directory"),

        # Or, explicitly set the installation scheme
        ('install-purelib=', None,
         "installation directory for pure Python module distributions"),
        ('install-platlib=', None,
         "installation directory for non-pure module distributions"),
        ('install-lib=', None,
         "installation directory for all module distributions " +
         "(overrides --install-purelib and --install-platlib)"),

        ('install-headers=', None,
         "installation directory for C/C++ headers"),
        ('install-scripts=', None,
         "installation directory for Python scripts"),
        ('install-data=', None,
         "installation directory for data files"),

        # Byte-compilation options -- see install_lib.py for details, as
        # these are duplicated from there (but only install_lib does
        # anything with them).
        ('compile', 'c', "compile .py to .pyc [default]"),
        ('no-compile', None, "don't compile .py files"),
        ('optimize=', 'O',
         "also compile with optimization: -O1 for \"python -O\", "
         "-O2 for \"python -OO\", and -O0 to disable [default: -O0]"),

        # Miscellaneous control options
        ('force', 'f',
         "force installation (overwrite any existing files)"),
        ('skip-build', None,
         "skip rebuilding everything (for testing/debugging)"),

        # Where to install documentation (eventually!)
        #('doc-format=', None, "format of documentation to generate"),
        #('install-man=', None, "directory for Unix man pages"),
        #('install-html=', None, "directory for HTML documentation"),
        #('install-info=', None, "directory for GNU info files"),

        ('record=', None,
         "filename in which to record list of installed files"),
        ]

    boolean_options = ['compile', 'force', 'skip-build']

    if HAS_USER_SITE:
        user_options.append(('user', None,
                             "install in user site-package '%s'" % USER_SITE))
        boolean_options.append('user')

    negative_opt = {'no-compile' : 'compile'}


    def initialize_options(self):
        """Initializes options."""
        # High-level options: these select both an installation base
        # and scheme.
        self.prefix = None
        self.exec_prefix = None
        self.home = None
        self.user = 0

        # These select only the installation base; it's up to the user to
        # specify the installation scheme (currently, that means supplying
        # the --install-{platlib,purelib,scripts,data} options).
        self.install_base = None
        self.install_platbase = None
        self.root = None

        # These options are the actual installation directories; if not
        # supplied by the user, they are filled in using the installation
        # scheme implied by prefix/exec-prefix/home and the contents of
        # that installation scheme.
        self.install_purelib = None     # for pure module distributions
        self.install_platlib = None     # non-pure (dists w/ extensions)
        self.install_headers = None     # for C/C++ headers
        self.install_lib = None         # set to either purelib or platlib
        self.install_scripts = None
        self.install_data = None
        self.install_userbase = USER_BASE
        self.install_usersite = USER_SITE

        self.compile = None
        self.optimize = None

        # These two are for putting non-packagized distributions into their
        # own directory and creating a .pth file if it makes sense.
        # 'extra_path' comes from the setup file; 'install_path_file' can
        # be turned off if it makes no sense to install a .pth file.  (But
        # better to install it uselessly than to guess wrong and not
        # install it when it's necessary and would be used!)  Currently,
        # 'install_path_file' is always true unless some outsider meddles
        # with it.
        self.extra_path = None
        self.install_path_file = 1

        # 'force' forces installation, even if target files are not
        # out-of-date.  'skip_build' skips running the "build" command,
        # handy if you know it's not necessary.  'warn_dir' (which is *not*
        # a user option, it's just there so the bdist_* commands can turn
        # it off) determines whether we warn about installing to a
        # directory not in sys.path.
        self.force = 0
        self.skip_build = 0
        self.warn_dir = 1

        # These are only here as a conduit from the 'build' command to the
        # 'install_*' commands that do the real work.  ('build_base' isn't
        # actually used anywhere, but it might be useful in future.)  They
        # are not user options, because if the user told the install
        # command where the build directory is, that wouldn't affect the
        # build command.
        self.build_base = None
        self.build_lib = None

        # Not defined yet because we don't know anything about
        # documentation yet.
        #self.install_man = None
        #self.install_html = None
        #self.install_info = None

        self.record = None


    # -- Option finalizing methods -------------------------------------
    # (This is rather more involved than for most commands,
    # because this is where the policy for installing third-
    # party Python modules on various platforms given a wide
    # array of user input is decided.  Yes, it's quite complex!)

    def finalize_options(self):
        """Finalizes options."""
        # This method (and its pliant slaves, like 'finalize_unix()',
        # 'finalize_other()', and 'select_scheme()') is where the default
        # installation directories for modules, extension modules, and
        # anything else we care to install from a Python module
        # distribution.  Thus, this code makes a pretty important policy
        # statement about how third-party stuff is added to a Python
        # installation!  Note that the actual work of installation is done
        # by the relatively simple 'install_*' commands; they just take
        # their orders from the installation directory options determined
        # here.

        # Check for errors/inconsistencies in the options; first, stuff
        # that's wrong on any platform.

        if ((self.prefix or self.exec_prefix or self.home) and
            (self.install_base or self.install_platbase)):
            raise DistutilsOptionError(
                   "must supply either prefix/exec-prefix/home or " +
                   "install-base/install-platbase -- not both")

        if self.home and (self.prefix or self.exec_prefix):
            raise DistutilsOptionError(
                  "must supply either home or prefix/exec-prefix -- not both")

        if self.user and (self.prefix or self.exec_prefix or self.home or
                self.install_base or self.install_platbase):
            raise DistutilsOptionError("can't combine user with prefix, "
                                       "exec_prefix/home, or install_(plat)base")

        # Next, stuff that's wrong (or dubious) only on certain platforms.
        if os.name != "posix":
            if self.exec_prefix:
                self.warn("exec-prefix option ignored on this platform")
                self.exec_prefix = None

        # Now the interesting logic -- so interesting that we farm it out
        # to other methods.  The goal of these methods is to set the final
        # values for the install_{lib,scripts,data,...}  options, using as
        # input a heady brew of prefix, exec_prefix, home, install_base,
        # install_platbase, user-supplied versions of
        # install_{purelib,platlib,lib,scripts,data,...}, and the
        # INSTALL_SCHEME dictionary above.  Phew!

        self.dump_dirs("pre-finalize_{unix,other}")

        if os.name == 'posix':
            self.finalize_unix()
        else:
            self.finalize_other()

        self.dump_dirs("post-finalize_{unix,other}()")

        # Expand configuration variables, tilde, etc. in self.install_base
        # and self.install_platbase -- that way, we can use $base or
        # $platbase in the other installation directories and not worry
        # about needing recursive variable expansion (shudder).

        py_version = sys.version.split()[0]
        (prefix, exec_prefix) = get_config_vars('prefix', 'exec_prefix')
        try:
            abiflags = sys.abiflags
        except AttributeError:
            # sys.abiflags may not be defined on all platforms.
            abiflags = ''
        self.config_vars = {'dist_name': self.distribution.get_name(),
                            'dist_version': self.distribution.get_version(),
                            'dist_fullname': self.distribution.get_fullname(),
                            'py_version': py_version,
                            'py_version_short': py_version[0:3],
                            'py_version_nodot': py_version[0] + py_version[2],
                            'sys_prefix': prefix,
                            'prefix': prefix,
                            'sys_exec_prefix': exec_prefix,
                            'exec_prefix': exec_prefix,
                            'abiflags': abiflags,
                           }

        if HAS_USER_SITE:
            self.config_vars['userbase'] = self.install_userbase
            self.config_vars['usersite'] = self.install_usersite

        self.expand_basedirs()

        self.dump_dirs("post-expand_basedirs()")

        # Now define config vars for the base directories so we can expand
        # everything else.
        self.config_vars['base'] = self.install_base
        self.config_vars['platbase'] = self.install_platbase

        if DEBUG:
            from pprint import pprint
            print("config vars:")
            pprint(self.config_vars)

        # Expand "~" and configuration variables in the installation
        # directories.
        self.expand_dirs()

        self.dump_dirs("post-expand_dirs()")

        # Create directories in the home dir:
        if self.user:
            self.create_home_path()

        # Pick the actual directory to install all modules to: either
        # install_purelib or install_platlib, depending on whether this
        # module distribution is pure or not.  Of course, if the user
        # already specified install_lib, use their selection.
        if self.install_lib is None:
            if self.distribution.ext_modules: # has extensions: non-pure
                self.install_lib = self.install_platlib
            else:
                self.install_lib = self.install_purelib


        # Convert directories from Unix /-separated syntax to the local
        # convention.
        self.convert_paths('lib', 'purelib', 'platlib',
                           'scripts', 'data', 'headers',
                           'userbase', 'usersite')

        # Well, we're not actually fully completely finalized yet: we still
        # have to deal with 'extra_path', which is the hack for allowing
        # non-packagized module distributions (hello, Numerical Python!) to
        # get their own directories.
        self.handle_extra_path()
        self.install_libbase = self.install_lib # needed for .pth file
        self.install_lib = os.path.join(self.install_lib, self.extra_dirs)

        # If a new root directory was supplied, make all the installation
        # dirs relative to it.
        if self.root is not None:
            self.change_roots('libbase', 'lib', 'purelib', 'platlib',
                              'scripts', 'data', 'headers')

        self.dump_dirs("after prepending root")

        # Find out the build directories, ie. where to install from.
        self.set_undefined_options('build',
                                   ('build_base', 'build_base'),
                                   ('build_lib', 'build_lib'))

        # Punt on doc directories for now -- after all, we're punting on
        # documentation completely!

    def dump_dirs(self, msg):
        """Dumps the list of user options."""
        if not DEBUG:
            return
        from distutils.fancy_getopt import longopt_xlate
        log.debug(msg + ":")
        for opt in self.user_options:
            opt_name = opt[0]
            if opt_name[-1] == "=":
                opt_name = opt_name[0:-1]
            if opt_name in self.negative_opt:
                opt_name = self.negative_opt[opt_name]
                opt_name = opt_name.translate(longopt_xlate)
                val = not getattr(self, opt_name)
            else:
                opt_name = opt_name.translate(longopt_xlate)
                val = getattr(self, opt_name)
            log.debug("  %s: %s" % (opt_name, val))

    def finalize_unix(self):
        """Finalizes options for posix platforms."""
        if self.install_base is not None or self.install_platbase is not None:
            if ((self.install_lib is None and
                 self.install_purelib is None and
                 self.install_platlib is None) or
                self.install_headers is None or
                self.install_scripts is None or
                self.install_data is None):
                raise DistutilsOptionError(
                      "install-base or install-platbase supplied, but "
                      "installation scheme is incomplete")
            return

        if self.user:
            if self.install_userbase is None:
                raise DistutilsPlatformError(
                    "User base directory is not specified")
            self.install_base = self.install_platbase = self.install_userbase
            self.select_scheme("unix_user")
        elif self.home is not None:
            self.install_base = self.install_platbase = self.home
            self.select_scheme("unix_home")
        else:
            if self.prefix is None:
                if self.exec_prefix is not None:
                    raise DistutilsOptionError(
                          "must not supply exec-prefix without prefix")

                self.prefix = os.path.normpath(sys.prefix)
                self.exec_prefix = os.path.normpath(sys.exec_prefix)

            else:
                if self.exec_prefix is None:
                    self.exec_prefix = self.prefix

            self.install_base = self.prefix
            self.install_platbase = self.exec_prefix
            self.select_scheme("unix_prefix")

    def finalize_other(self):
        """Finalizes options for non-posix platforms"""
        if self.user:
            if self.install_userbase is None:
                raise DistutilsPlatformError(
                    "User base directory is not specified")
            self.install_base = self.install_platbase = self.install_userbase
            self.select_scheme(os.name + "_user")
        elif self.home is not None:
            self.install_base = self.install_platbase = self.home
            self.select_scheme("unix_home")
        else:
            if self.prefix is None:
                self.prefix = os.path.normpath(sys.prefix)

            self.install_base = self.install_platbase = self.prefix
            try:
                self.select_scheme(os.name)
            except KeyError:
                raise DistutilsPlatformError(
                      "I don't know how to install stuff on '%s'" % os.name)

    def select_scheme(self, name):
        """Sets the install directories by applying the install schemes."""
        # it's the caller's problem if they supply a bad name!
        scheme = INSTALL_SCHEMES[name]
        for key in SCHEME_KEYS:
            attrname = 'install_' + key
            if getattr(self, attrname) is None:
                setattr(self, attrname, scheme[key])

    def _expand_attrs(self, attrs):
        for attr in attrs:
            val = getattr(self, attr)
            if val is not None:
                if os.name == 'posix' or os.name == 'nt':
                    val = os.path.expanduser(val)
                val = subst_vars(val, self.config_vars)
                setattr(self, attr, val)

    def expand_basedirs(self):
        """Calls `os.path.expanduser` on install_base, install_platbase and
        root."""
        self._expand_attrs(['install_base', 'install_platbase', 'root'])

    def expand_dirs(self):
        """Calls `os.path.expanduser` on install dirs."""
        self._expand_attrs(['install_purelib', 'install_platlib',
                            'install_lib', 'install_headers',
                            'install_scripts', 'install_data',])

    def convert_paths(self, *names):
        """Call `convert_path` over `names`."""
        for name in names:
            attr = "install_" + name
            setattr(self, attr, convert_path(getattr(self, attr)))

    def handle_extra_path(self):
        """Set `path_file` and `extra_dirs` using `extra_path`."""
        if self.extra_path is None:
            self.extra_path = self.distribution.extra_path

        if self.extra_path is not None:
            if isinstance(self.extra_path, str):
                self.extra_path = self.extra_path.split(',')

            if len(self.extra_path) == 1:
                path_file = extra_dirs = self.extra_path[0]
            elif len(self.extra_path) == 2:
                path_file, extra_dirs = self.extra_path
            else:
                raise DistutilsOptionError(
                      "'extra_path' option must be a list, tuple, or "
                      "comma-separated string with 1 or 2 elements")

            # convert to local form in case Unix notation used (as it
            # should be in setup scripts)
            extra_dirs = convert_path(extra_dirs)
        else:
            path_file = None
            extra_dirs = ''

        # XXX should we warn if path_file and not extra_dirs? (in which
        # case the path file would be harmless but pointless)
        self.path_file = path_file
        self.extra_dirs = extra_dirs

    def change_roots(self, *names):
        """Change the install directories pointed by name using root."""
        for name in names:
            attr = "install_" + name
            setattr(self, attr, change_root(self.root, getattr(self, attr)))

    def create_home_path(self):
        """Create directories under ~."""
        if not self.user:
            return
        home = convert_path(os.path.expanduser("~"))
        for name, path in self.config_vars.items():
            if path.startswith(home) and not os.path.isdir(path):
                self.debug_print("os.makedirs('%s', 0o700)" % path)
                os.makedirs(path, 0o700)

    # -- Command execution methods -------------------------------------

    def run(self):
        """Runs the command."""
        # Obviously have to build before we can install
        if not self.skip_build:
            self.run_command('build')
            # If we built for any other platform, we can't install.
            build_plat = self.distribution.get_command_obj('build').plat_name
            # check warn_dir - it is a clue that the 'install' is happening
            # internally, and not to sys.path, so we don't check the platform
            # matches what we are running.
            if self.warn_dir and build_plat != get_platform():
                raise DistutilsPlatformError("Can't install when "
                                             "cross-compiling")

        # Run all sub-commands (at least those that need to be run)
        for cmd_name in self.get_sub_commands():
            self.run_command(cmd_name)

        if self.path_file:
            self.create_path_file()

        # write list of installed files, if requested.
        if self.record:
            outputs = self.get_outputs()
            if self.root:               # strip any package prefix
                root_len = len(self.root)
                for counter in range(len(outputs)):
                    outputs[counter] = outputs[counter][root_len:]
            self.execute(write_file,
                         (self.record, outputs),
                         "writing list of installed files to '%s'" %
                         self.record)

        sys_path = map(os.path.normpath, sys.path)
        sys_path = map(os.path.normcase, sys_path)
        install_lib = os.path.normcase(os.path.normpath(self.install_lib))
        if (self.warn_dir and
            not (self.path_file and self.install_path_file) and
            install_lib not in sys_path):
            log.debug(("modules installed to '%s', which is not in "
                       "Python's module search path (sys.path) -- "
                       "you'll have to change the search path yourself"),
                       self.install_lib)

    def create_path_file(self):
        """Creates the .pth file"""
        filename = os.path.join(self.install_libbase,
                                self.path_file + ".pth")
        if self.install_path_file:
            self.execute(write_file,
                         (filename, [self.extra_dirs]),
                         "creating %s" % filename)
        else:
            self.warn("path file '%s' not created" % filename)


    # -- Reporting methods ---------------------------------------------

    def get_outputs(self):
        """Assembles the outputs of all the sub-commands."""
        outputs = []
        for cmd_name in self.get_sub_commands():
            cmd = self.get_finalized_command(cmd_name)
            # Add the contents of cmd.get_outputs(), ensuring
            # that outputs doesn't contain duplicate entries
            for filename in cmd.get_outputs():
                if filename not in outputs:
                    outputs.append(filename)

        if self.path_file and self.install_path_file:
            outputs.append(os.path.join(self.install_libbase,
                                        self.path_file + ".pth"))

        return outputs

    def get_inputs(self):
        """Returns the inputs of all the sub-commands"""
        # XXX gee, this looks familiar ;-(
        inputs = []
        for cmd_name in self.get_sub_commands():
            cmd = self.get_finalized_command(cmd_name)
            inputs.extend(cmd.get_inputs())

        return inputs

    # -- Predicates for sub-command list -------------------------------

    def has_lib(self):
        """Returns true if the current distribution has any Python
        modules to install."""
        return (self.distribution.has_pure_modules() or
                self.distribution.has_ext_modules())

    def has_headers(self):
        """Returns true if the current distribution has any headers to
        install."""
        return self.distribution.has_headers()

    def has_scripts(self):
        """Returns true if the current distribution has any scripts to.
        install."""
        return self.distribution.has_scripts()

    def has_data(self):
        """Returns true if the current distribution has any data to.
        install."""
        return self.distribution.has_data_files()

    # 'sub_commands': a list of commands this command might have to run to
    # get its work done.  See cmd.py for more info.
    sub_commands = [('install_lib',     has_lib),
                    ('install_headers', has_headers),
                    ('install_scripts', has_scripts),
                    ('install_data',    has_data),
                    ('install_egg_info', lambda self:True),
                   ]
lib\distutils\command\install_data.py
"""distutils.command.install_data

Implements the Distutils 'install_data' command, for installing
platform-independent data files."""

# contributed by Bastian Kleineidam

import os
from distutils.core import Command
from distutils.util import change_root, convert_path

class install_data(Command):

    description = "install data files"

    user_options = [
        ('install-dir=', 'd',
         "base directory for installing data files "
         "(default: installation base dir)"),
        ('root=', None,
         "install everything relative to this alternate root directory"),
        ('force', 'f', "force installation (overwrite existing files)"),
        ]

    boolean_options = ['force']

    def initialize_options(self):
        self.install_dir = None
        self.outfiles = []
        self.root = None
        self.force = 0
        self.data_files = self.distribution.data_files
        self.warn_dir = 1

    def finalize_options(self):
        self.set_undefined_options('install',
                                   ('install_data', 'install_dir'),
                                   ('root', 'root'),
                                   ('force', 'force'),
                                  )

    def run(self):
        self.mkpath(self.install_dir)
        for f in self.data_files:
            if isinstance(f, str):
                # it's a simple file, so copy it
                f = convert_path(f)
                if self.warn_dir:
                    self.warn("setup script did not provide a directory for "
                              "'%s' -- installing right in '%s'" %
                              (f, self.install_dir))
                (out, _) = self.copy_file(f, self.install_dir)
                self.outfiles.append(out)
            else:
                # it's a tuple with path to install to and a list of files
                dir = convert_path(f[0])
                if not os.path.isabs(dir):
                    dir = os.path.join(self.install_dir, dir)
                elif self.root:
                    dir = change_root(self.root, dir)
                self.mkpath(dir)

                if f[1] == []:
                    # If there are no files listed, the user must be
                    # trying to create an empty directory, so add the
                    # directory to the list of output files.
                    self.outfiles.append(dir)
                else:
                    # Copy files, adding them to the list of output files.
                    for data in f[1]:
                        data = convert_path(data)
                        (out, _) = self.copy_file(data, dir)
                        self.outfiles.append(out)

    def get_inputs(self):
        return self.data_files or []

    def get_outputs(self):
        return self.outfiles
lib\distutils\command\install_egg_info.py
"""distutils.command.install_egg_info

Implements the Distutils 'install_egg_info' command, for installing
a package's PKG-INFO metadata."""


from distutils.cmd import Command
from distutils import log, dir_util
import os, sys, re

class install_egg_info(Command):
    """Install an .egg-info file for the package"""

    description = "Install package's PKG-INFO metadata as an .egg-info file"
    user_options = [
        ('install-dir=', 'd', "directory to install to"),
    ]

    def initialize_options(self):
        self.install_dir = None

    def finalize_options(self):
        self.set_undefined_options('install_lib',('install_dir','install_dir'))
        basename = "%s-%s-py%s.egg-info" % (
            to_filename(safe_name(self.distribution.get_name())),
            to_filename(safe_version(self.distribution.get_version())),
            sys.version[:3]
        )
        self.target = os.path.join(self.install_dir, basename)
        self.outputs = [self.target]

    def run(self):
        target = self.target
        if os.path.isdir(target) and not os.path.islink(target):
            dir_util.remove_tree(target, dry_run=self.dry_run)
        elif os.path.exists(target):
            self.execute(os.unlink,(self.target,),"Removing "+target)
        elif not os.path.isdir(self.install_dir):
            self.execute(os.makedirs, (self.install_dir,),
                         "Creating "+self.install_dir)
        log.info("Writing %s", target)
        if not self.dry_run:
            with open(target, 'w', encoding='UTF-8') as f:
                self.distribution.metadata.write_pkg_file(f)

    def get_outputs(self):
        return self.outputs


# The following routines are taken from setuptools' pkg_resources module and
# can be replaced by importing them from pkg_resources once it is included
# in the stdlib.

def safe_name(name):
    """Convert an arbitrary string to a standard distribution name

    Any runs of non-alphanumeric/. characters are replaced with a single '-'.
    """
    return re.sub('[^A-Za-z0-9.]+', '-', name)


def safe_version(version):
    """Convert an arbitrary string to a standard version string

    Spaces become dots, and all other non-alphanumeric characters become
    dashes, with runs of multiple dashes condensed to a single dash.
    """
    version = version.replace(' ','.')
    return re.sub('[^A-Za-z0-9.]+', '-', version)


def to_filename(name):
    """Convert a project or version name to its filename-escaped form

    Any '-' characters are currently replaced with '_'.
    """
    return name.replace('-','_')
lib\distutils\command\install_headers.py
"""distutils.command.install_headers

Implements the Distutils 'install_headers' command, to install C/C++ header
files to the Python include directory."""

from distutils.core import Command


# XXX force is never used
class install_headers(Command):

    description = "install C/C++ header files"

    user_options = [('install-dir=', 'd',
                     "directory to install header files to"),
                    ('force', 'f',
                     "force installation (overwrite existing files)"),
                   ]

    boolean_options = ['force']

    def initialize_options(self):
        self.install_dir = None
        self.force = 0
        self.outfiles = []

    def finalize_options(self):
        self.set_undefined_options('install',
                                   ('install_headers', 'install_dir'),
                                   ('force', 'force'))


    def run(self):
        headers = self.distribution.headers
        if not headers:
            return

        self.mkpath(self.install_dir)
        for header in headers:
            (out, _) = self.copy_file(header, self.install_dir)
            self.outfiles.append(out)

    def get_inputs(self):
        return self.distribution.headers or []

    def get_outputs(self):
        return self.outfiles
lib\distutils\command\install_lib.py
"""distutils.command.install_lib

Implements the Distutils 'install_lib' command
(install all Python modules)."""

import os
import importlib.util
import sys

from distutils.core import Command
from distutils.errors import DistutilsOptionError


# Extension for Python source files.
PYTHON_SOURCE_EXTENSION = ".py"

class install_lib(Command):

    description = "install all Python modules (extensions and pure Python)"

    # The byte-compilation options are a tad confusing.  Here are the
    # possible scenarios:
    #   1) no compilation at all (--no-compile --no-optimize)
    #   2) compile .pyc only (--compile --no-optimize; default)
    #   3) compile .pyc and "level 1" .pyo (--compile --optimize)
    #   4) compile "level 1" .pyo only (--no-compile --optimize)
    #   5) compile .pyc and "level 2" .pyo (--compile --optimize-more)
    #   6) compile "level 2" .pyo only (--no-compile --optimize-more)
    #
    # The UI for this is two option, 'compile' and 'optimize'.
    # 'compile' is strictly boolean, and only decides whether to
    # generate .pyc files.  'optimize' is three-way (0, 1, or 2), and
    # decides both whether to generate .pyo files and what level of
    # optimization to use.

    user_options = [
        ('install-dir=', 'd', "directory to install to"),
        ('build-dir=','b', "build directory (where to install from)"),
        ('force', 'f', "force installation (overwrite existing files)"),
        ('compile', 'c', "compile .py to .pyc [default]"),
        ('no-compile', None, "don't compile .py files"),
        ('optimize=', 'O',
         "also compile with optimization: -O1 for \"python -O\", "
         "-O2 for \"python -OO\", and -O0 to disable [default: -O0]"),
        ('skip-build', None, "skip the build steps"),
        ]

    boolean_options = ['force', 'compile', 'skip-build']
    negative_opt = {'no-compile' : 'compile'}

    def initialize_options(self):
        # let the 'install' command dictate our installation directory
        self.install_dir = None
        self.build_dir = None
        self.force = 0
        self.compile = None
        self.optimize = None
        self.skip_build = None

    def finalize_options(self):
        # Get all the information we need to install pure Python modules
        # from the umbrella 'install' command -- build (source) directory,
        # install (target) directory, and whether to compile .py files.
        self.set_undefined_options('install',
                                   ('build_lib', 'build_dir'),
                                   ('install_lib', 'install_dir'),
                                   ('force', 'force'),
                                   ('compile', 'compile'),
                                   ('optimize', 'optimize'),
                                   ('skip_build', 'skip_build'),
                                  )

        if self.compile is None:
            self.compile = True
        if self.optimize is None:
            self.optimize = False

        if not isinstance(self.optimize, int):
            try:
                self.optimize = int(self.optimize)
                if self.optimize not in (0, 1, 2):
                    raise AssertionError
            except (ValueError, AssertionError):
                raise DistutilsOptionError("optimize must be 0, 1, or 2")

    def run(self):
        # Make sure we have built everything we need first
        self.build()

        # Install everything: simply dump the entire contents of the build
        # directory to the installation directory (that's the beauty of
        # having a build directory!)
        outfiles = self.install()

        # (Optionally) compile .py to .pyc
        if outfiles is not None and self.distribution.has_pure_modules():
            self.byte_compile(outfiles)

    # -- Top-level worker functions ------------------------------------
    # (called from 'run()')

    def build(self):
        if not self.skip_build:
            if self.distribution.has_pure_modules():
                self.run_command('build_py')
            if self.distribution.has_ext_modules():
                self.run_command('build_ext')

    def install(self):
        if os.path.isdir(self.build_dir):
            outfiles = self.copy_tree(self.build_dir, self.install_dir)
        else:
            self.warn("'%s' does not exist -- no Python modules to install" %
                      self.build_dir)
            return
        return outfiles

    def byte_compile(self, files):
        if sys.dont_write_bytecode:
            self.warn('byte-compiling is disabled, skipping.')
            return

        from distutils.util import byte_compile

        # Get the "--root" directory supplied to the "install" command,
        # and use it as a prefix to strip off the purported filename
        # encoded in bytecode files.  This is far from complete, but it
        # should at least generate usable bytecode in RPM distributions.
        install_root = self.get_finalized_command('install').root

        if self.compile:
            byte_compile(files, optimize=0,
                         force=self.force, prefix=install_root,
                         dry_run=self.dry_run)
        if self.optimize > 0:
            byte_compile(files, optimize=self.optimize,
                         force=self.force, prefix=install_root,
                         verbose=self.verbose, dry_run=self.dry_run)


    # -- Utility methods -----------------------------------------------

    def _mutate_outputs(self, has_any, build_cmd, cmd_option, output_dir):
        if not has_any:
            return []

        build_cmd = self.get_finalized_command(build_cmd)
        build_files = build_cmd.get_outputs()
        build_dir = getattr(build_cmd, cmd_option)

        prefix_len = len(build_dir) + len(os.sep)
        outputs = []
        for file in build_files:
            outputs.append(os.path.join(output_dir, file[prefix_len:]))

        return outputs

    def _bytecode_filenames(self, py_filenames):
        bytecode_files = []
        for py_file in py_filenames:
            # Since build_py handles package data installation, the
            # list of outputs can contain more than just .py files.
            # Make sure we only report bytecode for the .py files.
            ext = os.path.splitext(os.path.normcase(py_file))[1]
            if ext != PYTHON_SOURCE_EXTENSION:
                continue
            if self.compile:
                bytecode_files.append(importlib.util.cache_from_source(
                    py_file, debug_override=True))
            if self.optimize > 0:
                bytecode_files.append(importlib.util.cache_from_source(
                    py_file, debug_override=False))

        return bytecode_files


    # -- External interface --------------------------------------------
    # (called by outsiders)

    def get_outputs(self):
        """Return the list of files that would be installed if this command
        were actually run.  Not affected by the "dry-run" flag or whether
        modules have actually been built yet.
        """
        pure_outputs = \
            self._mutate_outputs(self.distribution.has_pure_modules(),
                                 'build_py', 'build_lib',
                                 self.install_dir)
        if self.compile:
            bytecode_outputs = self._bytecode_filenames(pure_outputs)
        else:
            bytecode_outputs = []

        ext_outputs = \
            self._mutate_outputs(self.distribution.has_ext_modules(),
                                 'build_ext', 'build_lib',
                                 self.install_dir)

        return pure_outputs + bytecode_outputs + ext_outputs

    def get_inputs(self):
        """Get the list of files that are input to this command, ie. the
        files that get installed as they are named in the build tree.
        The files in this list correspond one-to-one to the output
        filenames returned by 'get_outputs()'.
        """
        inputs = []

        if self.distribution.has_pure_modules():
            build_py = self.get_finalized_command('build_py')
            inputs.extend(build_py.get_outputs())

        if self.distribution.has_ext_modules():
            build_ext = self.get_finalized_command('build_ext')
            inputs.extend(build_ext.get_outputs())

        return inputs
lib\distutils\command\install_scripts.py
"""distutils.command.install_scripts

Implements the Distutils 'install_scripts' command, for installing
Python scripts."""

# contributed by Bastian Kleineidam

import os
from distutils.core import Command
from distutils import log
from stat import ST_MODE


class install_scripts(Command):

    description = "install scripts (Python or otherwise)"

    user_options = [
        ('install-dir=', 'd', "directory to install scripts to"),
        ('build-dir=','b', "build directory (where to install from)"),
        ('force', 'f', "force installation (overwrite existing files)"),
        ('skip-build', None, "skip the build steps"),
    ]

    boolean_options = ['force', 'skip-build']

    def initialize_options(self):
        self.install_dir = None
        self.force = 0
        self.build_dir = None
        self.skip_build = None

    def finalize_options(self):
        self.set_undefined_options('build', ('build_scripts', 'build_dir'))
        self.set_undefined_options('install',
                                   ('install_scripts', 'install_dir'),
                                   ('force', 'force'),
                                   ('skip_build', 'skip_build'),
                                  )

    def run(self):
        if not self.skip_build:
            self.run_command('build_scripts')
        self.outfiles = self.copy_tree(self.build_dir, self.install_dir)
        if os.name == 'posix':
            # Set the executable bits (owner, group, and world) on
            # all the scripts we just installed.
            for file in self.get_outputs():
                if self.dry_run:
                    log.info("changing mode of %s", file)
                else:
                    mode = ((os.stat(file)[ST_MODE]) | 0o555) & 0o7777
                    log.info("changing mode of %s to %o", file, mode)
                    os.chmod(file, mode)

    def get_inputs(self):
        return self.distribution.scripts or []

    def get_outputs(self):
        return self.outfiles or []
lib\distutils\command\register.py
"""distutils.command.register

Implements the Distutils 'register' command (register with the repository).
"""

# created 2002/10/21, Richard Jones

import os, string, getpass
import io
import urllib.parse, urllib.request
from warnings import warn

from distutils.core import PyPIRCCommand
from distutils.errors import *
from distutils import log

class register(PyPIRCCommand):

    description = ("register the distribution with the Python package index")
    user_options = PyPIRCCommand.user_options + [
        ('list-classifiers', None,
         'list the valid Trove classifiers'),
        ('strict', None ,
         'Will stop the registering if the meta-data are not fully compliant')
        ]
    boolean_options = PyPIRCCommand.boolean_options + [
        'verify', 'list-classifiers', 'strict']

    sub_commands = [('check', lambda self: True)]

    def initialize_options(self):
        PyPIRCCommand.initialize_options(self)
        self.list_classifiers = 0
        self.strict = 0

    def finalize_options(self):
        PyPIRCCommand.finalize_options(self)
        # setting options for the `check` subcommand
        check_options = {'strict': ('register', self.strict),
                         'restructuredtext': ('register', 1)}
        self.distribution.command_options['check'] = check_options

    def run(self):
        self.finalize_options()
        self._set_config()

        # Run sub commands
        for cmd_name in self.get_sub_commands():
            self.run_command(cmd_name)

        if self.dry_run:
            self.verify_metadata()
        elif self.list_classifiers:
            self.classifiers()
        else:
            self.send_metadata()

    def check_metadata(self):
        """Deprecated API."""
        warn("distutils.command.register.check_metadata is deprecated, \
              use the check command instead", PendingDeprecationWarning)
        check = self.distribution.get_command_obj('check')
        check.ensure_finalized()
        check.strict = self.strict
        check.restructuredtext = 1
        check.run()

    def _set_config(self):
        ''' Reads the configuration file and set attributes.
        '''
        config = self._read_pypirc()
        if config != {}:
            self.username = config['username']
            self.password = config['password']
            self.repository = config['repository']
            self.realm = config['realm']
            self.has_config = True
        else:
            if self.repository not in ('pypi', self.DEFAULT_REPOSITORY):
                raise ValueError('%s not found in .pypirc' % self.repository)
            if self.repository == 'pypi':
                self.repository = self.DEFAULT_REPOSITORY
            self.has_config = False

    def classifiers(self):
        ''' Fetch the list of classifiers from the server.
        '''
        url = self.repository+'?:action=list_classifiers'
        response = urllib.request.urlopen(url)
        log.info(self._read_pypi_response(response))

    def verify_metadata(self):
        ''' Send the metadata to the package index server to be checked.
        '''
        # send the info to the server and report the result
        (code, result) = self.post_to_server(self.build_post_data('verify'))
        log.info('Server response (%s): %s' % (code, result))

    def send_metadata(self):
        ''' Send the metadata to the package index server.

            Well, do the following:
            1. figure who the user is, and then
            2. send the data as a Basic auth'ed POST.

            First we try to read the username/password from $HOME/.pypirc,
            which is a ConfigParser-formatted file with a section
            [distutils] containing username and password entries (both
            in clear text). Eg:

                [distutils]
                index-servers =
                    pypi

                [pypi]
                username: fred
                password: sekrit

            Otherwise, to figure who the user is, we offer the user three
            choices:

             1. use existing login,
             2. register as a new user, or
             3. set the password to a random string and email the user.

        '''
        # see if we can short-cut and get the username/password from the
        # config
        if self.has_config:
            choice = '1'
            username = self.username
            password = self.password
        else:
            choice = 'x'
            username = password = ''

        # get the user's login info
        choices = '1 2 3 4'.split()
        while choice not in choices:
            self.announce('''\
We need to know who you are, so please choose either:
 1. use your existing login,
 2. register as a new user,
 3. have the server generate a new password for you (and email it to you), or
 4. quit
Your selection [default 1]: ''', log.INFO)
            choice = input()
            if not choice:
                choice = '1'
            elif choice not in choices:
                print('Please choose one of the four options!')

        if choice == '1':
            # get the username and password
            while not username:
                username = input('Username: ')
            while not password:
                password = getpass.getpass('Password: ')

            # set up the authentication
            auth = urllib.request.HTTPPasswordMgr()
            host = urllib.parse.urlparse(self.repository)[1]
            auth.add_password(self.realm, host, username, password)
            # send the info to the server and report the result
            code, result = self.post_to_server(self.build_post_data('submit'),
                auth)
            self.announce('Server response (%s): %s' % (code, result),
                          log.INFO)

            # possibly save the login
            if code == 200:
                if self.has_config:
                    # sharing the password in the distribution instance
                    # so the upload command can reuse it
                    self.distribution.password = password
                else:
                    self.announce(('I can store your PyPI login so future '
                                   'submissions will be faster.'), log.INFO)
                    self.announce('(the login will be stored in %s)' % \
                                  self._get_rc_file(), log.INFO)
                    choice = 'X'
                    while choice.lower() not in 'yn':
                        choice = input('Save your login (y/N)?')
                        if not choice:
                            choice = 'n'
                    if choice.lower() == 'y':
                        self._store_pypirc(username, password)

        elif choice == '2':
            data = {':action': 'user'}
            data['name'] = data['password'] = data['email'] = ''
            data['confirm'] = None
            while not data['name']:
                data['name'] = input('Username: ')
            while data['password'] != data['confirm']:
                while not data['password']:
                    data['password'] = getpass.getpass('Password: ')
                while not data['confirm']:
                    data['confirm'] = getpass.getpass(' Confirm: ')
                if data['password'] != data['confirm']:
                    data['password'] = ''
                    data['confirm'] = None
                    print("Password and confirm don't match!")
            while not data['email']:
                data['email'] = input('   EMail: ')
            code, result = self.post_to_server(data)
            if code != 200:
                log.info('Server response (%s): %s' % (code, result))
            else:
                log.info('You will receive an email shortly.')
                log.info(('Follow the instructions in it to '
                          'complete registration.'))
        elif choice == '3':
            data = {':action': 'password_reset'}
            data['email'] = ''
            while not data['email']:
                data['email'] = input('Your email address: ')
            code, result = self.post_to_server(data)
            log.info('Server response (%s): %s' % (code, result))

    def build_post_data(self, action):
        # figure the data to send - the metadata plus some additional
        # information used by the package server
        meta = self.distribution.metadata
        data = {
            ':action': action,
            'metadata_version' : '1.0',
            'name': meta.get_name(),
            'version': meta.get_version(),
            'summary': meta.get_description(),
            'home_page': meta.get_url(),
            'author': meta.get_contact(),
            'author_email': meta.get_contact_email(),
            'license': meta.get_licence(),
            'description': meta.get_long_description(),
            'keywords': meta.get_keywords(),
            'platform': meta.get_platforms(),
            'classifiers': meta.get_classifiers(),
            'download_url': meta.get_download_url(),
            # PEP 314
            'provides': meta.get_provides(),
            'requires': meta.get_requires(),
            'obsoletes': meta.get_obsoletes(),
        }
        if data['provides'] or data['requires'] or data['obsoletes']:
            data['metadata_version'] = '1.1'
        return data

    def post_to_server(self, data, auth=None):
        ''' Post a query to the server, and return a string response.
        '''
        if 'name' in data:
            self.announce('Registering %s to %s' % (data['name'],
                                                    self.repository),
                                                    log.INFO)
        # Build up the MIME payload for the urllib2 POST data
        boundary = '--------------GHSKFJDLGDS7543FJKLFHRE75642756743254'
        sep_boundary = '\n--' + boundary
        end_boundary = sep_boundary + '--'
        body = io.StringIO()
        for key, value in data.items():
            # handle multiple entries for the same name
            if type(value) not in (type([]), type( () )):
                value = [value]
            for value in value:
                value = str(value)
                body.write(sep_boundary)
                body.write('\nContent-Disposition: form-data; name="%s"'%key)
                body.write("\n\n")
                body.write(value)
                if value and value[-1] == '\r':
                    body.write('\n')  # write an extra newline (lurve Macs)
        body.write(end_boundary)
        body.write("\n")
        body = body.getvalue().encode("utf-8")

        # build the Request
        headers = {
            'Content-type': 'multipart/form-data; boundary=%s; charset=utf-8'%boundary,
            'Content-length': str(len(body))
        }
        req = urllib.request.Request(self.repository, body, headers)

        # handle HTTP and include the Basic Auth handler
        opener = urllib.request.build_opener(
            urllib.request.HTTPBasicAuthHandler(password_mgr=auth)
        )
        data = ''
        try:
            result = opener.open(req)
        except urllib.error.HTTPError as e:
            if self.show_response:
                data = e.fp.read()
            result = e.code, e.msg
        except urllib.error.URLError as e:
            result = 500, str(e)
        else:
            if self.show_response:
                data = result.read()
            result = 200, 'OK'
        if self.show_response:
            dashes = '-' * 75
            self.announce('%s%r%s' % (dashes, data, dashes))
        return result
lib\distutils\command\sdist.py
"""distutils.command.sdist

Implements the Distutils 'sdist' command (create a source distribution)."""

import os
import string
import sys
from types import *
from glob import glob
from warnings import warn

from distutils.core import Command
from distutils import dir_util, dep_util, file_util, archive_util
from distutils.text_file import TextFile
from distutils.errors import *
from distutils.filelist import FileList
from distutils import log
from distutils.util import convert_path

def show_formats():
    """Print all possible values for the 'formats' option (used by
    the "--help-formats" command-line option).
    """
    from distutils.fancy_getopt import FancyGetopt
    from distutils.archive_util import ARCHIVE_FORMATS
    formats = []
    for format in ARCHIVE_FORMATS.keys():
        formats.append(("formats=" + format, None,
                        ARCHIVE_FORMATS[format][2]))
    formats.sort()
    FancyGetopt(formats).print_help(
        "List of available source distribution formats:")

class sdist(Command):

    description = "create a source distribution (tarball, zip file, etc.)"

    def checking_metadata(self):
        """Callable used for the check sub-command.

        Placed here so user_options can view it"""
        return self.metadata_check

    user_options = [
        ('template=', 't',
         "name of manifest template file [default: MANIFEST.in]"),
        ('manifest=', 'm',
         "name of manifest file [default: MANIFEST]"),
        ('use-defaults', None,
         "include the default file set in the manifest "
         "[default; disable with --no-defaults]"),
        ('no-defaults', None,
         "don't include the default file set"),
        ('prune', None,
         "specifically exclude files/directories that should not be "
         "distributed (build tree, RCS/CVS dirs, etc.) "
         "[default; disable with --no-prune]"),
        ('no-prune', None,
         "don't automatically exclude anything"),
        ('manifest-only', 'o',
         "just regenerate the manifest and then stop "
         "(implies --force-manifest)"),
        ('force-manifest', 'f',
         "forcibly regenerate the manifest and carry on as usual. "
         "Deprecated: now the manifest is always regenerated."),
        ('formats=', None,
         "formats for source distribution (comma-separated list)"),
        ('keep-temp', 'k',
         "keep the distribution tree around after creating " +
         "archive file(s)"),
        ('dist-dir=', 'd',
         "directory to put the source distribution archive(s) in "
         "[default: dist]"),
        ('metadata-check', None,
         "Ensure that all required elements of meta-data "
         "are supplied. Warn if any missing. [default]"),
        ('owner=', 'u',
         "Owner name used when creating a tar file [default: current user]"),
        ('group=', 'g',
         "Group name used when creating a tar file [default: current group]"),
        ]

    boolean_options = ['use-defaults', 'prune',
                       'manifest-only', 'force-manifest',
                       'keep-temp', 'metadata-check']

    help_options = [
        ('help-formats', None,
         "list available distribution formats", show_formats),
        ]

    negative_opt = {'no-defaults': 'use-defaults',
                    'no-prune': 'prune' }

    default_format = {'posix': 'gztar',
                      'nt': 'zip' }

    sub_commands = [('check', checking_metadata)]

    def initialize_options(self):
        # 'template' and 'manifest' are, respectively, the names of
        # the manifest template and manifest file.
        self.template = None
        self.manifest = None

        # 'use_defaults': if true, we will include the default file set
        # in the manifest
        self.use_defaults = 1
        self.prune = 1

        self.manifest_only = 0
        self.force_manifest = 0

        self.formats = None
        self.keep_temp = 0
        self.dist_dir = None

        self.archive_files = None
        self.metadata_check = 1
        self.owner = None
        self.group = None

    def finalize_options(self):
        if self.manifest is None:
            self.manifest = "MANIFEST"
        if self.template is None:
            self.template = "MANIFEST.in"

        self.ensure_string_list('formats')
        if self.formats is None:
            try:
                self.formats = [self.default_format[os.name]]
            except KeyError:
                raise DistutilsPlatformError(
                      "don't know how to create source distributions "
                      "on platform %s" % os.name)

        bad_format = archive_util.check_archive_formats(self.formats)
        if bad_format:
            raise DistutilsOptionError(
                  "unknown archive format '%s'" % bad_format)

        if self.dist_dir is None:
            self.dist_dir = "dist"

    def run(self):
        # 'filelist' contains the list of files that will make up the
        # manifest
        self.filelist = FileList()

        # Run sub commands
        for cmd_name in self.get_sub_commands():
            self.run_command(cmd_name)

        # Do whatever it takes to get the list of files to process
        # (process the manifest template, read an existing manifest,
        # whatever).  File list is accumulated in 'self.filelist'.
        self.get_file_list()

        # If user just wanted us to regenerate the manifest, stop now.
        if self.manifest_only:
            return

        # Otherwise, go ahead and create the source distribution tarball,
        # or zipfile, or whatever.
        self.make_distribution()

    def check_metadata(self):
        """Deprecated API."""
        warn("distutils.command.sdist.check_metadata is deprecated, \
              use the check command instead", PendingDeprecationWarning)
        check = self.distribution.get_command_obj('check')
        check.ensure_finalized()
        check.run()

    def get_file_list(self):
        """Figure out the list of files to include in the source
        distribution, and put it in 'self.filelist'.  This might involve
        reading the manifest template (and writing the manifest), or just
        reading the manifest, or just using the default file set -- it all
        depends on the user's options.
        """
        # new behavior when using a template:
        # the file list is recalculated every time because
        # even if MANIFEST.in or setup.py are not changed
        # the user might have added some files in the tree that
        # need to be included.
        #
        #  This makes --force the default and only behavior with templates.
        template_exists = os.path.isfile(self.template)
        if not template_exists and self._manifest_is_not_generated():
            self.read_manifest()
            self.filelist.sort()
            self.filelist.remove_duplicates()
            return

        if not template_exists:
            self.warn(("manifest template '%s' does not exist " +
                        "(using default file list)") %
                        self.template)
        self.filelist.findall()

        if self.use_defaults:
            self.add_defaults()

        if template_exists:
            self.read_template()

        if self.prune:
            self.prune_file_list()

        self.filelist.sort()
        self.filelist.remove_duplicates()
        self.write_manifest()

    def add_defaults(self):
        """Add all the default files to self.filelist:
          - README or README.txt
          - setup.py
          - test/test*.py
          - all pure Python modules mentioned in setup script
          - all files pointed by package_data (build_py)
          - all files defined in data_files.
          - all files defined as scripts.
          - all C sources listed as part of extensions or C libraries
            in the setup script (doesn't catch C headers!)
        Warns if (README or README.txt) or setup.py are missing; everything
        else is optional.
        """
        standards = [('README', 'README.txt'), self.distribution.script_name]
        for fn in standards:
            if isinstance(fn, tuple):
                alts = fn
                got_it = False
                for fn in alts:
                    if os.path.exists(fn):
                        got_it = True
                        self.filelist.append(fn)
                        break

                if not got_it:
                    self.warn("standard file not found: should have one of " +
                              ', '.join(alts))
            else:
                if os.path.exists(fn):
                    self.filelist.append(fn)
                else:
                    self.warn("standard file '%s' not found" % fn)

        optional = ['test/test*.py', 'setup.cfg']
        for pattern in optional:
            files = filter(os.path.isfile, glob(pattern))
            self.filelist.extend(files)

        # build_py is used to get:
        #  - python modules
        #  - files defined in package_data
        build_py = self.get_finalized_command('build_py')

        # getting python files
        if self.distribution.has_pure_modules():
            self.filelist.extend(build_py.get_source_files())

        # getting package_data files
        # (computed in build_py.data_files by build_py.finalize_options)
        for pkg, src_dir, build_dir, filenames in build_py.data_files:
            for filename in filenames:
                self.filelist.append(os.path.join(src_dir, filename))

        # getting distribution.data_files
        if self.distribution.has_data_files():
            for item in self.distribution.data_files:
                if isinstance(item, str): # plain file
                    item = convert_path(item)
                    if os.path.isfile(item):
                        self.filelist.append(item)
                else:    # a (dirname, filenames) tuple
                    dirname, filenames = item
                    for f in filenames:
                        f = convert_path(f)
                        if os.path.isfile(f):
                            self.filelist.append(f)

        if self.distribution.has_ext_modules():
            build_ext = self.get_finalized_command('build_ext')
            self.filelist.extend(build_ext.get_source_files())

        if self.distribution.has_c_libraries():
            build_clib = self.get_finalized_command('build_clib')
            self.filelist.extend(build_clib.get_source_files())

        if self.distribution.has_scripts():
            build_scripts = self.get_finalized_command('build_scripts')
            self.filelist.extend(build_scripts.get_source_files())

    def read_template(self):
        """Read and parse manifest template file named by self.template.

        (usually "MANIFEST.in") The parsing and processing is done by
        'self.filelist', which updates itself accordingly.
        """
        log.info("reading manifest template '%s'", self.template)
        template = TextFile(self.template, strip_comments=1, skip_blanks=1,
                            join_lines=1, lstrip_ws=1, rstrip_ws=1,
                            collapse_join=1)

        try:
            while True:
                line = template.readline()
                if line is None:            # end of file
                    break

                try:
                    self.filelist.process_template_line(line)
                # the call above can raise a DistutilsTemplateError for
                # malformed lines, or a ValueError from the lower-level
                # convert_path function
                except (DistutilsTemplateError, ValueError) as msg:
                    self.warn("%s, line %d: %s" % (template.filename,
                                                   template.current_line,
                                                   msg))
        finally:
            template.close()

    def prune_file_list(self):
        """Prune off branches that might slip into the file list as created
        by 'read_template()', but really don't belong there:
          * the build tree (typically "build")
          * the release tree itself (only an issue if we ran "sdist"
            previously with --keep-temp, or it aborted)
          * any RCS, CVS, .svn, .hg, .git, .bzr, _darcs directories
        """
        build = self.get_finalized_command('build')
        base_dir = self.distribution.get_fullname()

        self.filelist.exclude_pattern(None, prefix=build.build_base)
        self.filelist.exclude_pattern(None, prefix=base_dir)

        if sys.platform == 'win32':
            seps = r'/|\\'
        else:
            seps = '/'

        vcs_dirs = ['RCS', 'CVS', r'\.svn', r'\.hg', r'\.git', r'\.bzr',
                    '_darcs']
        vcs_ptrn = r'(^|%s)(%s)(%s).*' % (seps, '|'.join(vcs_dirs), seps)
        self.filelist.exclude_pattern(vcs_ptrn, is_regex=1)

    def write_manifest(self):
        """Write the file list in 'self.filelist' (presumably as filled in
        by 'add_defaults()' and 'read_template()') to the manifest file
        named by 'self.manifest'.
        """
        if self._manifest_is_not_generated():
            log.info("not writing to manually maintained "
                     "manifest file '%s'" % self.manifest)
            return

        content = self.filelist.files[:]
        content.insert(0, '# file GENERATED by distutils, do NOT edit')
        self.execute(file_util.write_file, (self.manifest, content),
                     "writing manifest file '%s'" % self.manifest)

    def _manifest_is_not_generated(self):
        # check for special comment used in 3.1.3 and higher
        if not os.path.isfile(self.manifest):
            return False

        fp = open(self.manifest)
        try:
            first_line = fp.readline()
        finally:
            fp.close()
        return first_line != '# file GENERATED by distutils, do NOT edit\n'

    def read_manifest(self):
        """Read the manifest file (named by 'self.manifest') and use it to
        fill in 'self.filelist', the list of files to include in the source
        distribution.
        """
        log.info("reading manifest file '%s'", self.manifest)
        manifest = open(self.manifest)
        for line in manifest:
            # ignore comments and blank lines
            line = line.strip()
            if line.startswith('#') or not line:
                continue
            self.filelist.append(line)
        manifest.close()

    def make_release_tree(self, base_dir, files):
        """Create the directory tree that will become the source
        distribution archive.  All directories implied by the filenames in
        'files' are created under 'base_dir', and then we hard link or copy
        (if hard linking is unavailable) those files into place.
        Essentially, this duplicates the developer's source tree, but in a
        directory named after the distribution, containing only the files
        to be distributed.
        """
        # Create all the directories under 'base_dir' necessary to
        # put 'files' there; the 'mkpath()' is just so we don't die
        # if the manifest happens to be empty.
        self.mkpath(base_dir)
        dir_util.create_tree(base_dir, files, dry_run=self.dry_run)

        # And walk over the list of files, either making a hard link (if
        # os.link exists) to each one that doesn't already exist in its
        # corresponding location under 'base_dir', or copying each file
        # that's out-of-date in 'base_dir'.  (Usually, all files will be
        # out-of-date, because by default we blow away 'base_dir' when
        # we're done making the distribution archives.)

        if hasattr(os, 'link'):        # can make hard links on this system
            link = 'hard'
            msg = "making hard links in %s..." % base_dir
        else:                           # nope, have to copy
            link = None
            msg = "copying files to %s..." % base_dir

        if not files:
            log.warn("no files to distribute -- empty manifest?")
        else:
            log.info(msg)
        for file in files:
            if not os.path.isfile(file):
                log.warn("'%s' not a regular file -- skipping" % file)
            else:
                dest = os.path.join(base_dir, file)
                self.copy_file(file, dest, link=link)

        self.distribution.metadata.write_pkg_info(base_dir)

    def make_distribution(self):
        """Create the source distribution(s).  First, we create the release
        tree with 'make_release_tree()'; then, we create all required
        archive files (according to 'self.formats') from the release tree.
        Finally, we clean up by blowing away the release tree (unless
        'self.keep_temp' is true).  The list of archive files created is
        stored so it can be retrieved later by 'get_archive_files()'.
        """
        # Don't warn about missing meta-data here -- should be (and is!)
        # done elsewhere.
        base_dir = self.distribution.get_fullname()
        base_name = os.path.join(self.dist_dir, base_dir)

        self.make_release_tree(base_dir, self.filelist.files)
        archive_files = []              # remember names of files we create
        # tar archive must be created last to avoid overwrite and remove
        if 'tar' in self.formats:
            self.formats.append(self.formats.pop(self.formats.index('tar')))

        for fmt in self.formats:
            file = self.make_archive(base_name, fmt, base_dir=base_dir,
                                     owner=self.owner, group=self.group)
            archive_files.append(file)
            self.distribution.dist_files.append(('sdist', '', file))

        self.archive_files = archive_files

        if not self.keep_temp:
            dir_util.remove_tree(base_dir, dry_run=self.dry_run)

    def get_archive_files(self):
        """Return the list of archive files created when the command
        was run, or None if the command hasn't run yet.
        """
        return self.archive_files
lib\distutils\command\upload.py
"""distutils.command.upload

Implements the Distutils 'upload' subcommand (upload package to PyPI)."""

import sys
import os, io
import socket
import platform
from base64 import standard_b64encode
from urllib.request import urlopen, Request, HTTPError
from urllib.parse import urlparse
from distutils.errors import DistutilsError, DistutilsOptionError
from distutils.core import PyPIRCCommand
from distutils.spawn import spawn
from distutils import log

# this keeps compatibility for 2.3 and 2.4
if sys.version < "2.5":
    from md5 import md5
else:
    from hashlib import md5

class upload(PyPIRCCommand):

    description = "upload binary package to PyPI"

    user_options = PyPIRCCommand.user_options + [
        ('sign', 's',
         'sign files to upload using gpg'),
        ('identity=', 'i', 'GPG identity used to sign files'),
        ]

    boolean_options = PyPIRCCommand.boolean_options + ['sign']

    def initialize_options(self):
        PyPIRCCommand.initialize_options(self)
        self.username = ''
        self.password = ''
        self.show_response = 0
        self.sign = False
        self.identity = None

    def finalize_options(self):
        PyPIRCCommand.finalize_options(self)
        if self.identity and not self.sign:
            raise DistutilsOptionError(
                "Must use --sign for --identity to have meaning"
            )
        config = self._read_pypirc()
        if config != {}:
            self.username = config['username']
            self.password = config['password']
            self.repository = config['repository']
            self.realm = config['realm']

        # getting the password from the distribution
        # if previously set by the register command
        if not self.password and self.distribution.password:
            self.password = self.distribution.password

    def run(self):
        if not self.distribution.dist_files:
            raise DistutilsOptionError("No dist file created in earlier command")
        for command, pyversion, filename in self.distribution.dist_files:
            self.upload_file(command, pyversion, filename)

    def upload_file(self, command, pyversion, filename):
        # Makes sure the repository URL is compliant
        schema, netloc, url, params, query, fragments = \
            urlparse(self.repository)
        if params or query or fragments:
            raise AssertionError("Incompatible url %s" % self.repository)

        if schema not in ('http', 'https'):
            raise AssertionError("unsupported schema " + schema)

        # Sign if requested
        if self.sign:
            gpg_args = ["gpg", "--detach-sign", "-a", filename]
            if self.identity:
                gpg_args[2:2] = ["--local-user", self.identity]
            spawn(gpg_args,
                  dry_run=self.dry_run)

        # Fill in the data - send all the meta-data in case we need to
        # register a new release
        f = open(filename,'rb')
        try:
            content = f.read()
        finally:
            f.close()
        meta = self.distribution.metadata
        data = {
            # action
            ':action': 'file_upload',
            'protcol_version': '1',

            # identify release
            'name': meta.get_name(),
            'version': meta.get_version(),

            # file content
            'content': (os.path.basename(filename),content),
            'filetype': command,
            'pyversion': pyversion,
            'md5_digest': md5(content).hexdigest(),

            # additional meta-data
            'metadata_version' : '1.0',
            'summary': meta.get_description(),
            'home_page': meta.get_url(),
            'author': meta.get_contact(),
            'author_email': meta.get_contact_email(),
            'license': meta.get_licence(),
            'description': meta.get_long_description(),
            'keywords': meta.get_keywords(),
            'platform': meta.get_platforms(),
            'classifiers': meta.get_classifiers(),
            'download_url': meta.get_download_url(),
            # PEP 314
            'provides': meta.get_provides(),
            'requires': meta.get_requires(),
            'obsoletes': meta.get_obsoletes(),
            }
        comment = ''
        if command == 'bdist_rpm':
            dist, version, id = platform.dist()
            if dist:
                comment = 'built for %s %s' % (dist, version)
        elif command == 'bdist_dumb':
            comment = 'built for %s' % platform.platform(terse=1)
        data['comment'] = comment

        if self.sign:
            data['gpg_signature'] = (os.path.basename(filename) + ".asc",
                                     open(filename+".asc", "rb").read())

        # set up the authentication
        user_pass = (self.username + ":" + self.password).encode('ascii')
        # The exact encoding of the authentication string is debated.
        # Anyway PyPI only accepts ascii for both username or password.
        auth = "Basic " + standard_b64encode(user_pass).decode('ascii')

        # Build up the MIME payload for the POST data
        boundary = '--------------GHSKFJDLGDS7543FJKLFHRE75642756743254'
        sep_boundary = b'\r\n--' + boundary.encode('ascii')
        end_boundary = sep_boundary + b'--\r\n'
        body = io.BytesIO()
        for key, value in data.items():
            title = '\r\nContent-Disposition: form-data; name="%s"' % key
            # handle multiple entries for the same name
            if type(value) != type([]):
                value = [value]
            for value in value:
                if type(value) is tuple:
                    title += '; filename="%s"' % value[0]
                    value = value[1]
                else:
                    value = str(value).encode('utf-8')
                body.write(sep_boundary)
                body.write(title.encode('utf-8'))
                body.write(b"\r\n\r\n")
                body.write(value)
                if value and value[-1:] == b'\r':
                    body.write(b'\n')  # write an extra newline (lurve Macs)
        body.write(end_boundary)
        body = body.getvalue()

        self.announce("Submitting %s to %s" % (filename, self.repository), log.INFO)

        # build the Request
        headers = {'Content-type':
                        'multipart/form-data; boundary=%s' % boundary,
                   'Content-length': str(len(body)),
                   'Authorization': auth}

        request = Request(self.repository, data=body,
                          headers=headers)
        # send the data
        try:
            result = urlopen(request)
            status = result.getcode()
            reason = result.msg
        except OSError as e:
            self.announce(str(e), log.ERROR)
            raise
        except HTTPError as e:
            status = e.code
            reason = e.msg

        if status == 200:
            self.announce('Server response (%s): %s' % (status, reason),
                          log.INFO)
        else:
            msg = 'Upload failed (%s): %s' % (status, reason)
            self.announce(msg, log.ERROR)
            raise DistutilsError(msg)
        if self.show_response:
            text = self._read_pypi_response(result)
            msg = '\n'.join(('-' * 75, text, '-' * 75))
            self.announce(msg, log.INFO)
lib\distutils\command\wininst-10.0-amd64.exe
md5: F8A38FD27DA720881C0AF1AC99B8C1AD | sha1: 2ED31938119E2EBDEB0F5539C985E9965AEF72D7 | sha256: B2E32B3FA44B3A9A8FDFA906627355F6F48B4821929F9BCE5DED2D07894361D4 | sha512: AAFA05BC5BD68687B998FE4D9A619CAECC65D14F317AF7A05AC0ECAB7E231891E8719029245DC84EDDCE20BDD4C0CC6F4FFAFDF8200227746B28CC6628564495
lib\distutils\command\wininst-10.0.exe
md5: 2124A793AC7D675E1B2D5FDEE19A87D0 | sha1: 3A1A6AE7C218E41C4EB303C548DB9EC06BD6A6B5 | sha256: 1AA3927C7985386D42759656665C7B422EE226DF16A19446AF6D9A6613B8AE9B | sha512: D5B7B789108C00901E96A3F336C2176A6E7F50E73CB485974E8BB7AF1B513B099E88EB6800ED1F0C53969A86A6870130A477C9B17CAD0E00F9DE4AC90252E051
lib\distutils\command\wininst-6.0.exe
md5: 7B112B1FB864C90EC5B65EAB21CB40B8 | sha1: E7B73361F722FC7CBB93EF98A8D26E34F4D49767 | sha256: 751941B4E09898C31791EFEB5F90FC7367C89831D4A98637ED505E40763E287B | sha512: BF9CDEFF39CC4FA48457C55AD02E3856B5B27998535AED801A469252F01E7676462332FA3F93877753E963D037472F615C1FC5FC2E996316621B4E0A180CB5F5
lib\distutils\command\wininst-7.1.exe
md5: AE6CE17005C63B7E9BF15A2A21ABB315 | sha1: 9B6BDFB9D648FA422F54EC07B8C8EA70389C09EB | sha256: 4A3387A54EECA83F3A8FF1F5F282F7966C9E7BFE159C8EB45444CAB01B3E167E | sha512: C883A5F599540D636EFC8C0ABC05AAB7BAD0AA1B10AB507F43F18E0FBA905A10B94FF2F1BA10AE0FEE15CC1B90A165A768DC078FDA0AC27474F0EEF66F6A11AF
lib\distutils\command\wininst-8.0.exe
md5: ED0FDE686788CAEC4F2CB1EC9C31680C | sha1: 81AE63B87EAA9FA5637835D2122C50953AE19D34 | sha256: E362670F93CDD952335B1A41E5529F184F2022EA4D41817A9781B150B062511C | sha512: D90D5E74A9BE23816A93490ED30C0AAE9F7F038A42BD14AA2CE78E95967B4AABD848F006F00ADE619C9976755658D45AA0F5B6D5BABBBB2D59A6ED3A3A12AC6B
lib\distutils\command\wininst-9.0-amd64.exe
md5: E2312F199976D03A7CF41E453C5AF246 | sha1: C723BF05F7132C9B66C4F91D6CC363D08B4ED622 | sha256: 84FE7824717BB55D7F32C7487E37012A1BC6CD4C8C0202BE4BFB07E770F8DC51 | sha512: A5CAD97D8BCF893B79EED436AE8DF232D7E53DF86A0ED38B381C128C5D8C76C0CAAD41407ED564F2EA2725236EB98EA6D29413886EA22371920BF2B498B49686
lib\distutils\command\wininst-9.0.exe
md5: 94A363CD532D88AC33997C25657A19B5 | sha1: A98F1A8361D0183651C0EF457B9AC4339E429BEA | sha256: 13B98844B2FA4A39A4D8EBB414FC79450D5AB4F0C8F5141AC06D40B2A0431EA4 | sha512: 3B1C87A67F63E4276453EC1E322F0C13896DD0524EF35F4E4037A481CE354FEAA98440F85B784C0B90A900C59EF115654F687457180EA433EA0100427F5C26F5
lib\distutils\command\__init__.py
"""distutils.command

Package containing implementation of all the standard Distutils
commands."""

__all__ = ['build',
           'build_py',
           'build_ext',
           'build_clib',
           'build_scripts',
           'clean',
           'install',
           'install_lib',
           'install_headers',
           'install_scripts',
           'install_data',
           'sdist',
           'register',
           'bdist',
           'bdist_dumb',
           'bdist_rpm',
           'bdist_wininst',
           'check',
           'upload',
           # These two are reserved for future use:
           #'bdist_sdux',
           #'bdist_pkgtool',
           # Note:
           # bdist_packager is not included because it only provides
           # an abstract base class
          ]
lib\email\architecture.rst
 
lib\email\base64mime.py
# Copyright (C) 2002-2007 Python Software Foundation
# Author: Ben Gertzfield
# Contact: [email protected]

"""Base64 content transfer encoding per RFCs 2045-2047.

This module handles the content transfer encoding method defined in RFC 2045
to encode arbitrary 8-bit data using the three 8-bit bytes in four 7-bit
characters encoding known as Base64.

It is used in the MIME standards for email to attach images, audio, and text
using some 8-bit character sets to messages.

This module provides an interface to encode and decode both headers and bodies
with Base64 encoding.

RFC 2045 defines a method for including character set information in an
`encoded-word' in a header.  This method is commonly used for 8-bit real names
in To:, From:, Cc:, etc. fields, as well as Subject: lines.

This module does not do the line wrapping or end-of-line character conversion
necessary for proper internationalized headers; it only does dumb encoding and
decoding.  To deal with the various line wrapping issues, use the email.header
module.
"""

__all__ = [
    'body_decode',
    'body_encode',
    'decode',
    'decodestring',
    'header_encode',
    'header_length',
    ]


from base64 import b64encode
from binascii import b2a_base64, a2b_base64

CRLF = '\r\n'
NL = '\n'
EMPTYSTRING = ''

# See also Charset.py
MISC_LEN = 7



# Helpers
def header_length(bytearray):
    """Return the length of s when it is encoded with base64."""
    groups_of_3, leftover = divmod(len(bytearray), 3)
    # 4 bytes out for each 3 bytes (or nonzero fraction thereof) in.
    n = groups_of_3 * 4
    if leftover:
        n += 4
    return n



def header_encode(header_bytes, charset='iso-8859-1'):
    """Encode a single header line with Base64 encoding in a given charset.

    charset names the character set to use to encode the header.  It defaults
    to iso-8859-1.  Base64 encoding is defined in RFC 2045.
    """
    if not header_bytes:
        return ""
    if isinstance(header_bytes, str):
        header_bytes = header_bytes.encode(charset)
    encoded = b64encode(header_bytes).decode("ascii")
    return '=?%s?b?%s?=' % (charset, encoded)



def body_encode(s, maxlinelen=76, eol=NL):
    r"""Encode a string with base64.

    Each line will be wrapped at, at most, maxlinelen characters (defaults to
    76 characters).

    Each line of encoded text will end with eol, which defaults to "\n".  Set
    this to "\r\n" if you will be using the result of this function directly
    in an email.
    """
    if not s:
        return s

    encvec = []
    max_unencoded = maxlinelen * 3 // 4
    for i in range(0, len(s), max_unencoded):
        # BAW: should encode() inherit b2a_base64()'s dubious behavior in
        # adding a newline to the encoded string?
        enc = b2a_base64(s[i:i + max_unencoded]).decode("ascii")
        if enc.endswith(NL) and eol != NL:
            enc = enc[:-1] + eol
        encvec.append(enc)
    return EMPTYSTRING.join(encvec)



def decode(string):
    """Decode a raw base64 string, returning a bytes object.

    This function does not parse a full MIME header value encoded with
    base64 (like =?iso-8895-1?b?bmloISBuaWgh?=) -- please use the high
    level email.header class for that functionality.
    """
    if not string:
        return bytes()
    elif isinstance(string, str):
        return a2b_base64(string.encode('raw-unicode-escape'))
    else:
        return a2b_base64(string)


# For convenience and backwards compatibility w/ standard base64 module
body_decode = decode
decodestring = decode
lib\email\charset.py
# Copyright (C) 2001-2007 Python Software Foundation
# Author: Ben Gertzfield, Barry Warsaw
# Contact: [email protected]

__all__ = [
    'Charset',
    'add_alias',
    'add_charset',
    'add_codec',
    ]

from functools import partial

import email.base64mime
import email.quoprimime

from email import errors
from email.encoders import encode_7or8bit



# Flags for types of header encodings
QP          = 1 # Quoted-Printable
BASE64      = 2 # Base64
SHORTEST    = 3 # the shorter of QP and base64, but only for headers

# In "=?charset?q?hello_world?=", the =?, ?q?, and ?= add up to 7
RFC2047_CHROME_LEN = 7

DEFAULT_CHARSET = 'us-ascii'
UNKNOWN8BIT = 'unknown-8bit'
EMPTYSTRING = ''



# Defaults
CHARSETS = {
    # input        header enc  body enc output conv
    'iso-8859-1':  (QP,        QP,      None),
    'iso-8859-2':  (QP,        QP,      None),
    'iso-8859-3':  (QP,        QP,      None),
    'iso-8859-4':  (QP,        QP,      None),
    # iso-8859-5 is Cyrillic, and not especially used
    # iso-8859-6 is Arabic, also not particularly used
    # iso-8859-7 is Greek, QP will not make it readable
    # iso-8859-8 is Hebrew, QP will not make it readable
    'iso-8859-9':  (QP,        QP,      None),
    'iso-8859-10': (QP,        QP,      None),
    # iso-8859-11 is Thai, QP will not make it readable
    'iso-8859-13': (QP,        QP,      None),
    'iso-8859-14': (QP,        QP,      None),
    'iso-8859-15': (QP,        QP,      None),
    'iso-8859-16': (QP,        QP,      None),
    'windows-1252':(QP,        QP,      None),
    'viscii':      (QP,        QP,      None),
    'us-ascii':    (None,      None,    None),
    'big5':        (BASE64,    BASE64,  None),
    'gb2312':      (BASE64,    BASE64,  None),
    'euc-jp':      (BASE64,    None,    'iso-2022-jp'),
    'shift_jis':   (BASE64,    None,    'iso-2022-jp'),
    'iso-2022-jp': (BASE64,    None,    None),
    'koi8-r':      (BASE64,    BASE64,  None),
    'utf-8':       (SHORTEST,  BASE64, 'utf-8'),
    }

# Aliases for other commonly-used names for character sets.  Map
# them to the real ones used in email.
ALIASES = {
    'latin_1': 'iso-8859-1',
    'latin-1': 'iso-8859-1',
    'latin_2': 'iso-8859-2',
    'latin-2': 'iso-8859-2',
    'latin_3': 'iso-8859-3',
    'latin-3': 'iso-8859-3',
    'latin_4': 'iso-8859-4',
    'latin-4': 'iso-8859-4',
    'latin_5': 'iso-8859-9',
    'latin-5': 'iso-8859-9',
    'latin_6': 'iso-8859-10',
    'latin-6': 'iso-8859-10',
    'latin_7': 'iso-8859-13',
    'latin-7': 'iso-8859-13',
    'latin_8': 'iso-8859-14',
    'latin-8': 'iso-8859-14',
    'latin_9': 'iso-8859-15',
    'latin-9': 'iso-8859-15',
    'latin_10':'iso-8859-16',
    'latin-10':'iso-8859-16',
    'cp949':   'ks_c_5601-1987',
    'euc_jp':  'euc-jp',
    'euc_kr':  'euc-kr',
    'ascii':   'us-ascii',
    }


# Map charsets to their Unicode codec strings.
CODEC_MAP = {
    'gb2312':      'eucgb2312_cn',
    'big5':        'big5_tw',
    # Hack: We don't want *any* conversion for stuff marked us-ascii, as all
    # sorts of garbage might be sent to us in the guise of 7-bit us-ascii.
    # Let that stuff pass through without conversion to/from Unicode.
    'us-ascii':    None,
    }



# Convenience functions for extending the above mappings
def add_charset(charset, header_enc=None, body_enc=None, output_charset=None):
    """Add character set properties to the global registry.

    charset is the input character set, and must be the canonical name of a
    character set.

    Optional header_enc and body_enc is either Charset.QP for
    quoted-printable, Charset.BASE64 for base64 encoding, Charset.SHORTEST for
    the shortest of qp or base64 encoding, or None for no encoding.  SHORTEST
    is only valid for header_enc.  It describes how message headers and
    message bodies in the input charset are to be encoded.  Default is no
    encoding.

    Optional output_charset is the character set that the output should be
    in.  Conversions will proceed from input charset, to Unicode, to the
    output charset when the method Charset.convert() is called.  The default
    is to output in the same character set as the input.

    Both input_charset and output_charset must have Unicode codec entries in
    the module's charset-to-codec mapping; use add_codec(charset, codecname)
    to add codecs the module does not know about.  See the codecs module's
    documentation for more information.
    """
    if body_enc == SHORTEST:
        raise ValueError('SHORTEST not allowed for body_enc')
    CHARSETS[charset] = (header_enc, body_enc, output_charset)


def add_alias(alias, canonical):
    """Add a character set alias.

    alias is the alias name, e.g. latin-1
    canonical is the character set's canonical name, e.g. iso-8859-1
    """
    ALIASES[alias] = canonical


def add_codec(charset, codecname):
    """Add a codec that map characters in the given charset to/from Unicode.

    charset is the canonical name of a character set.  codecname is the name
    of a Python codec, as appropriate for the second argument to the unicode()
    built-in, or to the encode() method of a Unicode string.
    """
    CODEC_MAP[charset] = codecname



# Convenience function for encoding strings, taking into account
# that they might be unknown-8bit (ie: have surrogate-escaped bytes)
def _encode(string, codec):
    if codec == UNKNOWN8BIT:
        return string.encode('ascii', 'surrogateescape')
    else:
        return string.encode(codec)



class Charset:
    """Map character sets to their email properties.

    This class provides information about the requirements imposed on email
    for a specific character set.  It also provides convenience routines for
    converting between character sets, given the availability of the
    applicable codecs.  Given a character set, it will do its best to provide
    information on how to use that character set in an email in an
    RFC-compliant way.

    Certain character sets must be encoded with quoted-printable or base64
    when used in email headers or bodies.  Certain character sets must be
    converted outright, and are not allowed in email.  Instances of this
    module expose the following information about a character set:

    input_charset: The initial character set specified.  Common aliases
                   are converted to their `official' email names (e.g. latin_1
                   is converted to iso-8859-1).  Defaults to 7-bit us-ascii.

    header_encoding: If the character set must be encoded before it can be
                     used in an email header, this attribute will be set to
                     Charset.QP (for quoted-printable), Charset.BASE64 (for
                     base64 encoding), or Charset.SHORTEST for the shortest of
                     QP or BASE64 encoding.  Otherwise, it will be None.

    body_encoding: Same as header_encoding, but describes the encoding for the
                   mail message's body, which indeed may be different than the
                   header encoding.  Charset.SHORTEST is not allowed for
                   body_encoding.

    output_charset: Some character sets must be converted before they can be
                    used in email headers or bodies.  If the input_charset is
                    one of them, this attribute will contain the name of the
                    charset output will be converted to.  Otherwise, it will
                    be None.

    input_codec: The name of the Python codec used to convert the
                 input_charset to Unicode.  If no conversion codec is
                 necessary, this attribute will be None.

    output_codec: The name of the Python codec used to convert Unicode
                  to the output_charset.  If no conversion codec is necessary,
                  this attribute will have the same value as the input_codec.
    """
    def __init__(self, input_charset=DEFAULT_CHARSET):
        # RFC 2046, $4.1.2 says charsets are not case sensitive.  We coerce to
        # unicode because its .lower() is locale insensitive.  If the argument
        # is already a unicode, we leave it at that, but ensure that the
        # charset is ASCII, as the standard (RFC XXX) requires.
        try:
            if isinstance(input_charset, str):
                input_charset.encode('ascii')
            else:
                input_charset = str(input_charset, 'ascii')
        except UnicodeError:
            raise errors.CharsetError(input_charset)
        input_charset = input_charset.lower()
        # Set the input charset after filtering through the aliases
        self.input_charset = ALIASES.get(input_charset, input_charset)
        # We can try to guess which encoding and conversion to use by the
        # charset_map dictionary.  Try that first, but let the user override
        # it.
        henc, benc, conv = CHARSETS.get(self.input_charset,
                                        (SHORTEST, BASE64, None))
        if not conv:
            conv = self.input_charset
        # Set the attributes, allowing the arguments to override the default.
        self.header_encoding = henc
        self.body_encoding = benc
        self.output_charset = ALIASES.get(conv, conv)
        # Now set the codecs.  If one isn't defined for input_charset,
        # guess and try a Unicode codec with the same name as input_codec.
        self.input_codec = CODEC_MAP.get(self.input_charset,
                                         self.input_charset)
        self.output_codec = CODEC_MAP.get(self.output_charset,
                                          self.output_charset)

    def __str__(self):
        return self.input_charset.lower()

    __repr__ = __str__

    def __eq__(self, other):
        return str(self) == str(other).lower()

    def __ne__(self, other):
        return not self.__eq__(other)

    def get_body_encoding(self):
        """Return the content-transfer-encoding used for body encoding.

        This is either the string `quoted-printable' or `base64' depending on
        the encoding used, or it is a function in which case you should call
        the function with a single argument, the Message object being
        encoded.  The function should then set the Content-Transfer-Encoding
        header itself to whatever is appropriate.

        Returns "quoted-printable" if self.body_encoding is QP.
        Returns "base64" if self.body_encoding is BASE64.
        Returns conversion function otherwise.
        """
        assert self.body_encoding != SHORTEST
        if self.body_encoding == QP:
            return 'quoted-printable'
        elif self.body_encoding == BASE64:
            return 'base64'
        else:
            return encode_7or8bit

    def get_output_charset(self):
        """Return the output character set.

        This is self.output_charset if that is not None, otherwise it is
        self.input_charset.
        """
        return self.output_charset or self.input_charset

    def header_encode(self, string):
        """Header-encode a string by converting it first to bytes.

        The type of encoding (base64 or quoted-printable) will be based on
        this charset's `header_encoding`.

        :param string: A unicode string for the header.  It must be possible
            to encode this string to bytes using the character set's
            output codec.
        :return: The encoded string, with RFC 2047 chrome.
        """
        codec = self.output_codec or 'us-ascii'
        header_bytes = _encode(string, codec)
        # 7bit/8bit encodings return the string unchanged (modulo conversions)
        encoder_module = self._get_encoder(header_bytes)
        if encoder_module is None:
            return string
        return encoder_module.header_encode(header_bytes, codec)

    def header_encode_lines(self, string, maxlengths):
        """Header-encode a string by converting it first to bytes.

        This is similar to `header_encode()` except that the string is fit
        into maximum line lengths as given by the argument.

        :param string: A unicode string for the header.  It must be possible
            to encode this string to bytes using the character set's
            output codec.
        :param maxlengths: Maximum line length iterator.  Each element
            returned from this iterator will provide the next maximum line
            length.  This parameter is used as an argument to built-in next()
            and should never be exhausted.  The maximum line lengths should
            not count the RFC 2047 chrome.  These line lengths are only a
            hint; the splitter does the best it can.
        :return: Lines of encoded strings, each with RFC 2047 chrome.
        """
        # See which encoding we should use.
        codec = self.output_codec or 'us-ascii'
        header_bytes = _encode(string, codec)
        encoder_module = self._get_encoder(header_bytes)
        encoder = partial(encoder_module.header_encode, charset=codec)
        # Calculate the number of characters that the RFC 2047 chrome will
        # contribute to each line.
        charset = self.get_output_charset()
        extra = len(charset) + RFC2047_CHROME_LEN
        # Now comes the hard part.  We must encode bytes but we can't split on
        # bytes because some character sets are variable length and each
        # encoded word must stand on its own.  So the problem is you have to
        # encode to bytes to figure out this word's length, but you must split
        # on characters.  This causes two problems: first, we don't know how
        # many octets a specific substring of unicode characters will get
        # encoded to, and second, we don't know how many ASCII characters
        # those octets will get encoded to.  Unless we try it.  Which seems
        # inefficient.  In the interest of being correct rather than fast (and
        # in the hope that there will be few encoded headers in any such
        # message), brute force it. :(
        lines = []
        current_line = []
        maxlen = next(maxlengths) - extra
        for character in string:
            current_line.append(character)
            this_line = EMPTYSTRING.join(current_line)
            length = encoder_module.header_length(_encode(this_line, charset))
            if length > maxlen:
                # This last character doesn't fit so pop it off.
                current_line.pop()
                # Does nothing fit on the first line?
                if not lines and not current_line:
                    lines.append(None)
                else:
                    separator = (' ' if lines else '')
                    joined_line = EMPTYSTRING.join(current_line)
                    header_bytes = _encode(joined_line, codec)
                    lines.append(encoder(header_bytes))
                current_line = [character]
                maxlen = next(maxlengths) - extra
        joined_line = EMPTYSTRING.join(current_line)
        header_bytes = _encode(joined_line, codec)
        lines.append(encoder(header_bytes))
        return lines

    def _get_encoder(self, header_bytes):
        if self.header_encoding == BASE64:
            return email.base64mime
        elif self.header_encoding == QP:
            return email.quoprimime
        elif self.header_encoding == SHORTEST:
            len64 = email.base64mime.header_length(header_bytes)
            lenqp = email.quoprimime.header_length(header_bytes)
            if len64 < lenqp:
                return email.base64mime
            else:
                return email.quoprimime
        else:
            return None

    def body_encode(self, string):
        """Body-encode a string by converting it first to bytes.

        The type of encoding (base64 or quoted-printable) will be based on
        self.body_encoding.  If body_encoding is None, we assume the
        output charset is a 7bit encoding, so re-encoding the decoded
        string using the ascii codec produces the correct string version
        of the content.
        """
        if not string:
            return string
        if self.body_encoding is BASE64:
            if isinstance(string, str):
                string = string.encode(self.output_charset)
            return email.base64mime.body_encode(string)
        elif self.body_encoding is QP:
            # quopromime.body_encode takes a string, but operates on it as if
            # it were a list of byte codes.  For a (minimal) history on why
            # this is so, see changeset 0cf700464177.  To correctly encode a
            # character set, then, we must turn it into pseudo bytes via the
            # latin1 charset, which will encode any byte as a single code point
            # between 0 and 255, which is what body_encode is expecting.
            if isinstance(string, str):
                string = string.encode(self.output_charset)
            string = string.decode('latin1')
            return email.quoprimime.body_encode(string)
        else:
            if isinstance(string, str):
                string = string.encode(self.output_charset).decode('ascii')
            return string
lib\email\contentmanager.py
import binascii
import email.charset
import email.message
import email.errors
from email import quoprimime

class ContentManager:

    def __init__(self):
        self.get_handlers = {}
        self.set_handlers = {}

    def add_get_handler(self, key, handler):
        self.get_handlers[key] = handler

    def get_content(self, msg, *args, **kw):
        content_type = msg.get_content_type()
        if content_type in self.get_handlers:
            return self.get_handlers[content_type](msg, *args, **kw)
        maintype = msg.get_content_maintype()
        if maintype in self.get_handlers:
            return self.get_handlers[maintype](msg, *args, **kw)
        if '' in self.get_handlers:
            return self.get_handlers[''](msg, *args, **kw)
        raise KeyError(content_type)

    def add_set_handler(self, typekey, handler):
        self.set_handlers[typekey] = handler

    def set_content(self, msg, obj, *args, **kw):
        if msg.get_content_maintype() == 'multipart':
            # XXX: is this error a good idea or not?  We can remove it later,
            # but we can't add it later, so do it for now.
            raise TypeError("set_content not valid on multipart")
        handler = self._find_set_handler(msg, obj)
        msg.clear_content()
        handler(msg, obj, *args, **kw)

    def _find_set_handler(self, msg, obj):
        full_path_for_error = None
        for typ in type(obj).__mro__:
            if typ in self.set_handlers:
                return self.set_handlers[typ]
            qname = typ.__qualname__
            modname = getattr(typ, '__module__', '')
            full_path = '.'.join((modname, qname)) if modname else qname
            if full_path_for_error is None:
                full_path_for_error = full_path
            if full_path in self.set_handlers:
                return self.set_handlers[full_path]
            if qname in self.set_handlers:
                return self.set_handlers[qname]
            name = typ.__name__
            if name in self.set_handlers:
                return self.set_handlers[name]
        if None in self.set_handlers:
            return self.set_handlers[None]
        raise KeyError(full_path_for_error)


raw_data_manager = ContentManager()


def get_text_content(msg, errors='replace'):
    content = msg.get_payload(decode=True)
    charset = msg.get_param('charset', 'ASCII')
    return content.decode(charset, errors=errors)
raw_data_manager.add_get_handler('text', get_text_content)


def get_non_text_content(msg):
    return msg.get_payload(decode=True)
for maintype in 'audio image video application'.split():
    raw_data_manager.add_get_handler(maintype, get_non_text_content)


def get_message_content(msg):
    return msg.get_payload(0)
for subtype in 'rfc822 external-body'.split():
    raw_data_manager.add_get_handler('message/'+subtype, get_message_content)


def get_and_fixup_unknown_message_content(msg):
    # If we don't understand a message subtype, we are supposed to treat it as
    # if it were application/octet-stream, per
    # tools.ietf.org/html/rfc2046#section-5.2.4.  Feedparser doesn't do that,
    # so do our best to fix things up.  Note that it is *not* appropriate to
    # model message/partial content as Message objects, so they are handled
    # here as well.  (How to reassemble them is out of scope for this comment :)
    return bytes(msg.get_payload(0))
raw_data_manager.add_get_handler('message',
                                 get_and_fixup_unknown_message_content)


def _prepare_set(msg, maintype, subtype, headers):
    msg['Content-Type'] = '/'.join((maintype, subtype))
    if headers:
        if not hasattr(headers[0], 'name'):
            mp = msg.policy
            headers = [mp.header_factory(*mp.header_source_parse([header]))
                       for header in headers]
        try:
            for header in headers:
                if header.defects:
                    raise header.defects[0]
                msg[header.name] = header
        except email.errors.HeaderDefect as exc:
            raise ValueError("Invalid header: {}".format(
                                header.fold(policy=msg.policy))) from exc


def _finalize_set(msg, disposition, filename, cid, params):
    if disposition is None and filename is not None:
        disposition = 'attachment'
    if disposition is not None:
        msg['Content-Disposition'] = disposition
    if filename is not None:
        msg.set_param('filename',
                      filename,
                      header='Content-Disposition',
                      replace=True)
    if cid is not None:
        msg['Content-ID'] = cid
    if params is not None:
        for key, value in params.items():
            msg.set_param(key, value)


# XXX: This is a cleaned-up version of base64mime.body_encode.  It would
# be nice to drop both this and quoprimime.body_encode in favor of
# enhanced binascii routines that accepted a max_line_length parameter.
def _encode_base64(data, max_line_length):
    encoded_lines = []
    unencoded_bytes_per_line = max_line_length * 3 // 4
    for i in range(0, len(data), unencoded_bytes_per_line):
        thisline = data[i:i+unencoded_bytes_per_line]
        encoded_lines.append(binascii.b2a_base64(thisline).decode('ascii'))
    return ''.join(encoded_lines)


def _encode_text(string, charset, cte, policy):
    lines = string.encode(charset).splitlines()
    linesep = policy.linesep.encode('ascii')
    def embeded_body(lines): return linesep.join(lines) + linesep
    def normal_body(lines): return b'\n'.join(lines) + b'\n'
    if cte==None:
        # Use heuristics to decide on the "best" encoding.
        try:
            return '7bit', normal_body(lines).decode('ascii')
        except UnicodeDecodeError:
            pass
        if (policy.cte_type == '8bit' and
                max(len(x) for x in lines) <= policy.max_line_length):
            return '8bit', normal_body(lines).decode('ascii', 'surrogateescape')
        sniff = embeded_body(lines[:10])
        sniff_qp = quoprimime.body_encode(sniff.decode('latin-1'),
                                          policy.max_line_length)
        sniff_base64 = binascii.b2a_base64(sniff)
        # This is a little unfair to qp; it includes lineseps, base64 doesn't.
        if len(sniff_qp) > len(sniff_base64):
            cte = 'base64'
        else:
            cte = 'quoted-printable'
            if len(lines) <= 10:
                return cte, sniff_qp
    if cte == '7bit':
        data = normal_body(lines).decode('ascii')
    elif cte == '8bit':
        data = normal_body(lines).decode('ascii', 'surrogateescape')
    elif cte == 'quoted-printable':
        data = quoprimime.body_encode(normal_body(lines).decode('latin-1'),
                                      policy.max_line_length)
    elif cte == 'base64':
        data = _encode_base64(embeded_body(lines), policy.max_line_length)
    else:
        raise ValueError("Unknown content transfer encoding {}".format(cte))
    return cte, data


def set_text_content(msg, string, subtype="plain", charset='utf-8', cte=None,
                     disposition=None, filename=None, cid=None,
                     params=None, headers=None):
    _prepare_set(msg, 'text', subtype, headers)
    cte, payload = _encode_text(string, charset, cte, msg.policy)
    msg.set_payload(payload)
    msg.set_param('charset',
                  email.charset.ALIASES.get(charset, charset),
                  replace=True)
    msg['Content-Transfer-Encoding'] = cte
    _finalize_set(msg, disposition, filename, cid, params)
raw_data_manager.add_set_handler(str, set_text_content)


def set_message_content(msg, message, subtype="rfc822", cte=None,
                       disposition=None, filename=None, cid=None,
                       params=None, headers=None):
    if subtype == 'partial':
        raise ValueError("message/partial is not supported for Message objects")
    if subtype == 'rfc822':
        if cte not in (None, '7bit', '8bit', 'binary'):
            # http://tools.ietf.org/html/rfc2046#section-5.2.1 mandate.
            raise ValueError(
                "message/rfc822 parts do not support cte={}".format(cte))
        # 8bit will get coerced on serialization if policy.cte_type='7bit'.  We
        # may end up claiming 8bit when it isn't needed, but the only negative
        # result of that should be a gateway that needs to coerce to 7bit
        # having to look through the whole embedded message to discover whether
        # or not it actually has to do anything.
        cte = '8bit' if cte is None else cte
    elif subtype == 'external-body':
        if cte not in (None, '7bit'):
            # http://tools.ietf.org/html/rfc2046#section-5.2.3 mandate.
            raise ValueError(
                "message/external-body parts do not support cte={}".format(cte))
        cte = '7bit'
    elif cte is None:
        # http://tools.ietf.org/html/rfc2046#section-5.2.4 says all future
        # subtypes should be restricted to 7bit, so assume that.
        cte = '7bit'
    _prepare_set(msg, 'message', subtype, headers)
    msg.set_payload([message])
    msg['Content-Transfer-Encoding'] = cte
    _finalize_set(msg, disposition, filename, cid, params)
raw_data_manager.add_set_handler(email.message.Message, set_message_content)


def set_bytes_content(msg, data, maintype, subtype, cte='base64',
                     disposition=None, filename=None, cid=None,
                     params=None, headers=None):
    _prepare_set(msg, maintype, subtype, headers)
    if cte == 'base64':
        data = _encode_base64(data, max_line_length=msg.policy.max_line_length)
    elif cte == 'quoted-printable':
        # XXX: quoprimime.body_encode won't encode newline characters in data,
        # so we can't use it.  This means max_line_length is ignored.  Another
        # bug to fix later.  (Note: encoders.quopri is broken on line ends.)
        data = binascii.b2a_qp(data, istext=False, header=False, quotetabs=True)
        data = data.decode('ascii')
    elif cte == '7bit':
        # Make sure it really is only ASCII.  The early warning here seems
        # worth the overhead...if you care write your own content manager :).
        data.encode('ascii')
    elif cte in ('8bit', 'binary'):
        data = data.decode('ascii', 'surrogateescape')
    msg.set_payload(data)
    msg['Content-Transfer-Encoding'] = cte
    _finalize_set(msg, disposition, filename, cid, params)
for typ in (bytes, bytearray, memoryview):
    raw_data_manager.add_set_handler(typ, set_bytes_content)
lib\email\encoders.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Encodings and related functions."""

__all__ = [
    'encode_7or8bit',
    'encode_base64',
    'encode_noop',
    'encode_quopri',
    ]


from base64 import encodebytes as _bencode
from quopri import encodestring as _encodestring



def _qencode(s):
    enc = _encodestring(s, quotetabs=True)
    # Must encode spaces, which quopri.encodestring() doesn't do
    return enc.replace(b' ', b'=20')


def encode_base64(msg):
    """Encode the message's payload in Base64.

    Also, add an appropriate Content-Transfer-Encoding header.
    """
    orig = msg.get_payload(decode=True)
    encdata = str(_bencode(orig), 'ascii')
    msg.set_payload(encdata)
    msg['Content-Transfer-Encoding'] = 'base64'



def encode_quopri(msg):
    """Encode the message's payload in quoted-printable.

    Also, add an appropriate Content-Transfer-Encoding header.
    """
    orig = msg.get_payload(decode=True)
    encdata = _qencode(orig)
    msg.set_payload(encdata)
    msg['Content-Transfer-Encoding'] = 'quoted-printable'



def encode_7or8bit(msg):
    """Set the Content-Transfer-Encoding header to 7bit or 8bit."""
    orig = msg.get_payload(decode=True)
    if orig is None:
        # There's no payload.  For backwards compatibility we use 7bit
        msg['Content-Transfer-Encoding'] = '7bit'
        return
    # We play a trick to make this go fast.  If decoding from ASCII succeeds,
    # we know the data must be 7bit, otherwise treat it as 8bit.
    try:
        orig.decode('ascii')
    except UnicodeError:
        msg['Content-Transfer-Encoding'] = '8bit'
    else:
        msg['Content-Transfer-Encoding'] = '7bit'



def encode_noop(msg):
    """Do nothing."""
lib\email\errors.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""email package exception classes."""


class MessageError(Exception):
    """Base class for errors in the email package."""


class MessageParseError(MessageError):
    """Base class for message parsing errors."""


class HeaderParseError(MessageParseError):
    """Error while parsing headers."""


class BoundaryError(MessageParseError):
    """Couldn't find terminating boundary."""


class MultipartConversionError(MessageError, TypeError):
    """Conversion to a multipart is prohibited."""


class CharsetError(MessageError):
    """An illegal charset was given."""


# These are parsing defects which the parser was able to work around.
class MessageDefect(ValueError):
    """Base class for a message defect."""

    def __init__(self, line=None):
        if line is not None:
            super().__init__(line)
        self.line = line

class NoBoundaryInMultipartDefect(MessageDefect):
    """A message claimed to be a multipart but had no boundary parameter."""

class StartBoundaryNotFoundDefect(MessageDefect):
    """The claimed start boundary was never found."""

class CloseBoundaryNotFoundDefect(MessageDefect):
    """A start boundary was found, but not the corresponding close boundary."""

class FirstHeaderLineIsContinuationDefect(MessageDefect):
    """A message had a continuation line as its first header line."""

class MisplacedEnvelopeHeaderDefect(MessageDefect):
    """A 'Unix-from' header was found in the middle of a header block."""

class MissingHeaderBodySeparatorDefect(MessageDefect):
    """Found line with no leading whitespace and no colon before blank line."""
# XXX: backward compatibility, just in case (it was never emitted).
MalformedHeaderDefect = MissingHeaderBodySeparatorDefect

class MultipartInvariantViolationDefect(MessageDefect):
    """A message claimed to be a multipart but no subparts were found."""

class InvalidMultipartContentTransferEncodingDefect(MessageDefect):
    """An invalid content transfer encoding was set on the multipart itself."""

class UndecodableBytesDefect(MessageDefect):
    """Header contained bytes that could not be decoded"""

class InvalidBase64PaddingDefect(MessageDefect):
    """base64 encoded sequence had an incorrect length"""

class InvalidBase64CharactersDefect(MessageDefect):
    """base64 encoded sequence had characters not in base64 alphabet"""

# These errors are specific to header parsing.

class HeaderDefect(MessageDefect):
    """Base class for a header defect."""

    def __init__(self, *args, **kw):
        super().__init__(*args, **kw)

class InvalidHeaderDefect(HeaderDefect):
    """Header is not valid, message gives details."""

class HeaderMissingRequiredValue(HeaderDefect):
    """A header that must have a value had none"""

class NonPrintableDefect(HeaderDefect):
    """ASCII characters outside the ascii-printable range found"""

    def __init__(self, non_printables):
        super().__init__(non_printables)
        self.non_printables = non_printables

    def __str__(self):
        return ("the following ASCII non-printables found in header: "
            "{}".format(self.non_printables))

class ObsoleteHeaderDefect(HeaderDefect):
    """Header uses syntax declared obsolete by RFC 5322"""

class NonASCIILocalPartDefect(HeaderDefect):
    """local_part contains non-ASCII characters"""
    # This defect only occurs during unicode parsing, not when
    # parsing messages decoded from binary.
lib\email\feedparser.py
# Copyright (C) 2004-2006 Python Software Foundation
# Authors: Baxter, Wouters and Warsaw
# Contact: [email protected]

"""FeedParser - An email feed parser.

The feed parser implements an interface for incrementally parsing an email
message, line by line.  This has advantages for certain applications, such as
those reading email messages off a socket.

FeedParser.feed() is the primary interface for pushing new data into the
parser.  It returns when there's nothing more it can do with the available
data.  When you have no more data to push into the parser, call .close().
This completes the parsing and returns the root message object.

The other advantage of this parser is that it will never raise a parsing
exception.  Instead, when it finds something unexpected, it adds a 'defect' to
the current message.  Defects are just instances that live on the message
object's .defects attribute.
"""

__all__ = ['FeedParser', 'BytesFeedParser']

import re

from email import errors
from email import message
from email._policybase import compat32

NLCRE = re.compile('\r\n|\r|\n')
NLCRE_bol = re.compile('(\r\n|\r|\n)')
NLCRE_eol = re.compile('(\r\n|\r|\n)\Z')
NLCRE_crack = re.compile('(\r\n|\r|\n)')
# RFC 2822 $3.6.8 Optional fields.  ftext is %d33-57 / %d59-126, Any character
# except controls, SP, and ":".
headerRE = re.compile(r'^(From |[\041-\071\073-\176]*:|[\t ])')
EMPTYSTRING = ''
NL = '\n'

NeedMoreData = object()



class BufferedSubFile(object):
    """A file-ish object that can have new data loaded into it.

    You can also push and pop line-matching predicates onto a stack.  When the
    current predicate matches the current line, a false EOF response
    (i.e. empty string) is returned instead.  This lets the parser adhere to a
    simple abstraction -- it parses until EOF closes the current message.
    """
    def __init__(self):
        # Chunks of the last partial line pushed into this object.
        self._partial = []
        # The list of full, pushed lines, in reverse order
        self._lines = []
        # The stack of false-EOF checking predicates.
        self._eofstack = []
        # A flag indicating whether the file has been closed or not.
        self._closed = False

    def push_eof_matcher(self, pred):
        self._eofstack.append(pred)

    def pop_eof_matcher(self):
        return self._eofstack.pop()

    def close(self):
        # Don't forget any trailing partial line.
        self.pushlines(''.join(self._partial).splitlines(True))
        self._partial = []
        self._closed = True

    def readline(self):
        if not self._lines:
            if self._closed:
                return ''
            return NeedMoreData
        # Pop the line off the stack and see if it matches the current
        # false-EOF predicate.
        line = self._lines.pop()
        # RFC 2046, section 5.1.2 requires us to recognize outer level
        # boundaries at any level of inner nesting.  Do this, but be sure it's
        # in the order of most to least nested.
        for ateof in self._eofstack[::-1]:
            if ateof(line):
                # We're at the false EOF.  But push the last line back first.
                self._lines.append(line)
                return ''
        return line

    def unreadline(self, line):
        # Let the consumer push a line back into the buffer.
        assert line is not NeedMoreData
        self._lines.append(line)

    def push(self, data):
        """Push some new data into this object."""
        # Crack into lines, but preserve the linesep characters on the end of each
        parts = data.splitlines(True)

        if not parts or not parts[0].endswith(('\n', '\r')):
            # No new complete lines, so just accumulate partials
            self._partial += parts
            return

        if self._partial:
            # If there are previous leftovers, complete them now
            self._partial.append(parts[0])
            parts[0:1] = ''.join(self._partial).splitlines(True)
            del self._partial[:]

        # If the last element of the list does not end in a newline, then treat
        # it as a partial line.  We only check for '\n' here because a line
        # ending with '\r' might be a line that was split in the middle of a
        # '\r\n' sequence (see bugs 1555570 and 1721862).
        if not parts[-1].endswith('\n'):
            self._partial = [parts.pop()]
        self.pushlines(parts)

    def pushlines(self, lines):
        # Reverse and insert at the front of the lines.
        self._lines[:0] = lines[::-1]

    def __iter__(self):
        return self

    def __next__(self):
        line = self.readline()
        if line == '':
            raise StopIteration
        return line



class FeedParser:
    """A feed-style parser of email."""

    def __init__(self, _factory=None, *, policy=compat32):
        """_factory is called with no arguments to create a new message obj

        The policy keyword specifies a policy object that controls a number of
        aspects of the parser's operation.  The default policy maintains
        backward compatibility.

        """
        self.policy = policy
        self._factory_kwds = lambda: {'policy': self.policy}
        if _factory is None:
            # What this should be:
            #self._factory = policy.default_message_factory
            # but, because we are post 3.4 feature freeze, fix with temp hack:
            if self.policy is compat32:
                self._factory = message.Message
            else:
                self._factory = message.EmailMessage
        else:
            self._factory = _factory
            try:
                _factory(policy=self.policy)
            except TypeError:
                # Assume this is an old-style factory
                self._factory_kwds = lambda: {}
        self._input = BufferedSubFile()
        self._msgstack = []
        self._parse = self._parsegen().__next__
        self._cur = None
        self._last = None
        self._headersonly = False

    # Non-public interface for supporting Parser's headersonly flag
    def _set_headersonly(self):
        self._headersonly = True

    def feed(self, data):
        """Push more data into the parser."""
        self._input.push(data)
        self._call_parse()

    def _call_parse(self):
        try:
            self._parse()
        except StopIteration:
            pass

    def close(self):
        """Parse all remaining data and return the root message object."""
        self._input.close()
        self._call_parse()
        root = self._pop_message()
        assert not self._msgstack
        # Look for final set of defects
        if root.get_content_maintype() == 'multipart' \
               and not root.is_multipart():
            defect = errors.MultipartInvariantViolationDefect()
            self.policy.handle_defect(root, defect)
        return root

    def _new_message(self):
        msg = self._factory(**self._factory_kwds())
        if self._cur and self._cur.get_content_type() == 'multipart/digest':
            msg.set_default_type('message/rfc822')
        if self._msgstack:
            self._msgstack[-1].attach(msg)
        self._msgstack.append(msg)
        self._cur = msg
        self._last = msg

    def _pop_message(self):
        retval = self._msgstack.pop()
        if self._msgstack:
            self._cur = self._msgstack[-1]
        else:
            self._cur = None
        return retval

    def _parsegen(self):
        # Create a new message and start by parsing headers.
        self._new_message()
        headers = []
        # Collect the headers, searching for a line that doesn't match the RFC
        # 2822 header or continuation pattern (including an empty line).
        for line in self._input:
            if line is NeedMoreData:
                yield NeedMoreData
                continue
            if not headerRE.match(line):
                # If we saw the RFC defined header/body separator
                # (i.e. newline), just throw it away. Otherwise the line is
                # part of the body so push it back.
                if not NLCRE.match(line):
                    defect = errors.MissingHeaderBodySeparatorDefect()
                    self.policy.handle_defect(self._cur, defect)
                    self._input.unreadline(line)
                break
            headers.append(line)
        # Done with the headers, so parse them and figure out what we're
        # supposed to see in the body of the message.
        self._parse_headers(headers)
        # Headers-only parsing is a backwards compatibility hack, which was
        # necessary in the older parser, which could raise errors.  All
        # remaining lines in the input are thrown into the message body.
        if self._headersonly:
            lines = []
            while True:
                line = self._input.readline()
                if line is NeedMoreData:
                    yield NeedMoreData
                    continue
                if line == '':
                    break
                lines.append(line)
            self._cur.set_payload(EMPTYSTRING.join(lines))
            return
        if self._cur.get_content_type() == 'message/delivery-status':
            # message/delivery-status contains blocks of headers separated by
            # a blank line.  We'll represent each header block as a separate
            # nested message object, but the processing is a bit different
            # than standard message/* types because there is no body for the
            # nested messages.  A blank line separates the subparts.
            while True:
                self._input.push_eof_matcher(NLCRE.match)
                for retval in self._parsegen():
                    if retval is NeedMoreData:
                        yield NeedMoreData
                        continue
                    break
                msg = self._pop_message()
                # We need to pop the EOF matcher in order to tell if we're at
                # the end of the current file, not the end of the last block
                # of message headers.
                self._input.pop_eof_matcher()
                # The input stream must be sitting at the newline or at the
                # EOF.  We want to see if we're at the end of this subpart, so
                # first consume the blank line, then test the next line to see
                # if we're at this subpart's EOF.
                while True:
                    line = self._input.readline()
                    if line is NeedMoreData:
                        yield NeedMoreData
                        continue
                    break
                while True:
                    line = self._input.readline()
                    if line is NeedMoreData:
                        yield NeedMoreData
                        continue
                    break
                if line == '':
                    break
                # Not at EOF so this is a line we're going to need.
                self._input.unreadline(line)
            return
        if self._cur.get_content_maintype() == 'message':
            # The message claims to be a message/* type, then what follows is
            # another RFC 2822 message.
            for retval in self._parsegen():
                if retval is NeedMoreData:
                    yield NeedMoreData
                    continue
                break
            self._pop_message()
            return
        if self._cur.get_content_maintype() == 'multipart':
            boundary = self._cur.get_boundary()
            if boundary is None:
                # The message /claims/ to be a multipart but it has not
                # defined a boundary.  That's a problem which we'll handle by
                # reading everything until the EOF and marking the message as
                # defective.
                defect = errors.NoBoundaryInMultipartDefect()
                self.policy.handle_defect(self._cur, defect)
                lines = []
                for line in self._input:
                    if line is NeedMoreData:
                        yield NeedMoreData
                        continue
                    lines.append(line)
                self._cur.set_payload(EMPTYSTRING.join(lines))
                return
            # Make sure a valid content type was specified per RFC 2045:6.4.
            if (self._cur.get('content-transfer-encoding', '8bit').lower()
                    not in ('7bit', '8bit', 'binary')):
                defect = errors.InvalidMultipartContentTransferEncodingDefect()
                self.policy.handle_defect(self._cur, defect)
            # Create a line match predicate which matches the inter-part
            # boundary as well as the end-of-multipart boundary.  Don't push
            # this onto the input stream until we've scanned past the
            # preamble.
            separator = '--' + boundary
            boundaryre = re.compile(
                '(?P<sep>' + re.escape(separator) +
                r')(?P<end>--)?(?P<ws>[ \t]*)(?P<linesep>\r\n|\r|\n)?$')
            capturing_preamble = True
            preamble = []
            linesep = False
            close_boundary_seen = False
            while True:
                line = self._input.readline()
                if line is NeedMoreData:
                    yield NeedMoreData
                    continue
                if line == '':
                    break
                mo = boundaryre.match(line)
                if mo:
                    # If we're looking at the end boundary, we're done with
                    # this multipart.  If there was a newline at the end of
                    # the closing boundary, then we need to initialize the
                    # epilogue with the empty string (see below).
                    if mo.group('end'):
                        close_boundary_seen = True
                        linesep = mo.group('linesep')
                        break
                    # We saw an inter-part boundary.  Were we in the preamble?
                    if capturing_preamble:
                        if preamble:
                            # According to RFC 2046, the last newline belongs
                            # to the boundary.
                            lastline = preamble[-1]
                            eolmo = NLCRE_eol.search(lastline)
                            if eolmo:
                                preamble[-1] = lastline[:-len(eolmo.group(0))]
                            self._cur.preamble = EMPTYSTRING.join(preamble)
                        capturing_preamble = False
                        self._input.unreadline(line)
                        continue
                    # We saw a boundary separating two parts.  Consume any
                    # multiple boundary lines that may be following.  Our
                    # interpretation of RFC 2046 BNF grammar does not produce
                    # body parts within such double boundaries.
                    while True:
                        line = self._input.readline()
                        if line is NeedMoreData:
                            yield NeedMoreData
                            continue
                        mo = boundaryre.match(line)
                        if not mo:
                            self._input.unreadline(line)
                            break
                    # Recurse to parse this subpart; the input stream points
                    # at the subpart's first line.
                    self._input.push_eof_matcher(boundaryre.match)
                    for retval in self._parsegen():
                        if retval is NeedMoreData:
                            yield NeedMoreData
                            continue
                        break
                    # Because of RFC 2046, the newline preceding the boundary
                    # separator actually belongs to the boundary, not the
                    # previous subpart's payload (or epilogue if the previous
                    # part is a multipart).
                    if self._last.get_content_maintype() == 'multipart':
                        epilogue = self._last.epilogue
                        if epilogue == '':
                            self._last.epilogue = None
                        elif epilogue is not None:
                            mo = NLCRE_eol.search(epilogue)
                            if mo:
                                end = len(mo.group(0))
                                self._last.epilogue = epilogue[:-end]
                    else:
                        payload = self._last._payload
                        if isinstance(payload, str):
                            mo = NLCRE_eol.search(payload)
                            if mo:
                                payload = payload[:-len(mo.group(0))]
                                self._last._payload = payload
                    self._input.pop_eof_matcher()
                    self._pop_message()
                    # Set the multipart up for newline cleansing, which will
                    # happen if we're in a nested multipart.
                    self._last = self._cur
                else:
                    # I think we must be in the preamble
                    assert capturing_preamble
                    preamble.append(line)
            # We've seen either the EOF or the end boundary.  If we're still
            # capturing the preamble, we never saw the start boundary.  Note
            # that as a defect and store the captured text as the payload.
            if capturing_preamble:
                defect = errors.StartBoundaryNotFoundDefect()
                self.policy.handle_defect(self._cur, defect)
                self._cur.set_payload(EMPTYSTRING.join(preamble))
                epilogue = []
                for line in self._input:
                    if line is NeedMoreData:
                        yield NeedMoreData
                        continue
                self._cur.epilogue = EMPTYSTRING.join(epilogue)
                return
            # If we're not processing the preamble, then we might have seen
            # EOF without seeing that end boundary...that is also a defect.
            if not close_boundary_seen:
                defect = errors.CloseBoundaryNotFoundDefect()
                self.policy.handle_defect(self._cur, defect)
                return
            # Everything from here to the EOF is epilogue.  If the end boundary
            # ended in a newline, we'll need to make sure the epilogue isn't
            # None
            if linesep:
                epilogue = ['']
            else:
                epilogue = []
            for line in self._input:
                if line is NeedMoreData:
                    yield NeedMoreData
                    continue
                epilogue.append(line)
            # Any CRLF at the front of the epilogue is not technically part of
            # the epilogue.  Also, watch out for an empty string epilogue,
            # which means a single newline.
            if epilogue:
                firstline = epilogue[0]
                bolmo = NLCRE_bol.match(firstline)
                if bolmo:
                    epilogue[0] = firstline[len(bolmo.group(0)):]
            self._cur.epilogue = EMPTYSTRING.join(epilogue)
            return
        # Otherwise, it's some non-multipart type, so the entire rest of the
        # file contents becomes the payload.
        lines = []
        for line in self._input:
            if line is NeedMoreData:
                yield NeedMoreData
                continue
            lines.append(line)
        self._cur.set_payload(EMPTYSTRING.join(lines))

    def _parse_headers(self, lines):
        # Passed a list of lines that make up the headers for the current msg
        lastheader = ''
        lastvalue = []
        for lineno, line in enumerate(lines):
            # Check for continuation
            if line[0] in ' \t':
                if not lastheader:
                    # The first line of the headers was a continuation.  This
                    # is illegal, so let's note the defect, store the illegal
                    # line, and ignore it for purposes of headers.
                    defect = errors.FirstHeaderLineIsContinuationDefect(line)
                    self.policy.handle_defect(self._cur, defect)
                    continue
                lastvalue.append(line)
                continue
            if lastheader:
                self._cur.set_raw(*self.policy.header_source_parse(lastvalue))
                lastheader, lastvalue = '', []
            # Check for envelope header, i.e. unix-from
            if line.startswith('From '):
                if lineno == 0:
                    # Strip off the trailing newline
                    mo = NLCRE_eol.search(line)
                    if mo:
                        line = line[:-len(mo.group(0))]
                    self._cur.set_unixfrom(line)
                    continue
                elif lineno == len(lines) - 1:
                    # Something looking like a unix-from at the end - it's
                    # probably the first line of the body, so push back the
                    # line and stop.
                    self._input.unreadline(line)
                    return
                else:
                    # Weirdly placed unix-from line.  Note this as a defect
                    # and ignore it.
                    defect = errors.MisplacedEnvelopeHeaderDefect(line)
                    self._cur.defects.append(defect)
                    continue
            # Split the line on the colon separating field name from value.
            # There will always be a colon, because if there wasn't the part of
            # the parser that calls us would have started parsing the body.
            i = line.find(':')

            # If the colon is on the start of the line the header is clearly
            # malformed, but we might be able to salvage the rest of the
            # message. Track the error but keep going.
            if i == 0:
                defect = errors.InvalidHeaderDefect("Missing header name.")
                self._cur.defects.append(defect)
                continue

            assert i>0, "_parse_headers fed line with no : and no leading WS"
            lastheader = line[:i]
            lastvalue = [line]
        # Done with all the lines, so handle the last header.
        if lastheader:
            self._cur.set_raw(*self.policy.header_source_parse(lastvalue))


class BytesFeedParser(FeedParser):
    """Like FeedParser, but feed accepts bytes."""

    def feed(self, data):
        super().feed(data.decode('ascii', 'surrogateescape'))
lib\email\generator.py
# Copyright (C) 2001-2010 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Classes to generate plain text from a message object tree."""

__all__ = ['Generator', 'DecodedGenerator', 'BytesGenerator']

import re
import sys
import time
import random

from copy import deepcopy
from io import StringIO, BytesIO
from email.utils import _has_surrogates

UNDERSCORE = '_'
NL = '\n'  # XXX: no longer used by the code below.

fcre = re.compile(r'^From ', re.MULTILINE)



class Generator:
    """Generates output from a Message object tree.

    This basic generator writes the message to the given file object as plain
    text.
    """
    #
    # Public interface
    #

    def __init__(self, outfp, mangle_from_=True, maxheaderlen=None, *,
                 policy=None):
        """Create the generator for message flattening.

        outfp is the output file-like object for writing the message to.  It
        must have a write() method.

        Optional mangle_from_ is a flag that, when True (the default), escapes
        From_ lines in the body of the message by putting a `>' in front of
        them.

        Optional maxheaderlen specifies the longest length for a non-continued
        header.  When a header line is longer (in characters, with tabs
        expanded to 8 spaces) than maxheaderlen, the header will split as
        defined in the Header class.  Set maxheaderlen to zero to disable
        header wrapping.  The default is 78, as recommended (but not required)
        by RFC 2822.

        The policy keyword specifies a policy object that controls a number of
        aspects of the generator's operation.  If no policy is specified,
        the policy associated with the Message object passed to the
        flatten method is used.

        """
        self._fp = outfp
        self._mangle_from_ = mangle_from_
        self.maxheaderlen = maxheaderlen
        self.policy = policy

    def write(self, s):
        # Just delegate to the file object
        self._fp.write(s)

    def flatten(self, msg, unixfrom=False, linesep=None):
        r"""Print the message object tree rooted at msg to the output file
        specified when the Generator instance was created.

        unixfrom is a flag that forces the printing of a Unix From_ delimiter
        before the first object in the message tree.  If the original message
        has no From_ delimiter, a `standard' one is crafted.  By default, this
        is False to inhibit the printing of any From_ delimiter.

        Note that for subobjects, no From_ line is printed.

        linesep specifies the characters used to indicate a new line in
        the output.  The default value is determined by the policy specified
        when the Generator instance was created or, if none was specified,
        from the policy associated with the msg.

        """
        # We use the _XXX constants for operating on data that comes directly
        # from the msg, and _encoded_XXX constants for operating on data that
        # has already been converted (to bytes in the BytesGenerator) and
        # inserted into a temporary buffer.
        policy = msg.policy if self.policy is None else self.policy
        if linesep is not None:
            policy = policy.clone(linesep=linesep)
        if self.maxheaderlen is not None:
            policy = policy.clone(max_line_length=self.maxheaderlen)
        self._NL = policy.linesep
        self._encoded_NL = self._encode(self._NL)
        self._EMPTY = ''
        self._encoded_EMTPY = self._encode('')
        # Because we use clone (below) when we recursively process message
        # subparts, and because clone uses the computed policy (not None),
        # submessages will automatically get set to the computed policy when
        # they are processed by this code.
        old_gen_policy = self.policy
        old_msg_policy = msg.policy
        try:
            self.policy = policy
            msg.policy = policy
            if unixfrom:
                ufrom = msg.get_unixfrom()
                if not ufrom:
                    ufrom = 'From nobody ' + time.ctime(time.time())
                self.write(ufrom + self._NL)
            self._write(msg)
        finally:
            self.policy = old_gen_policy
            msg.policy = old_msg_policy

    def clone(self, fp):
        """Clone this generator with the exact same options."""
        return self.__class__(fp,
                              self._mangle_from_,
                              None, # Use policy setting, which we've adjusted
                              policy=self.policy)

    #
    # Protected interface - undocumented ;/
    #

    # Note that we use 'self.write' when what we are writing is coming from
    # the source, and self._fp.write when what we are writing is coming from a
    # buffer (because the Bytes subclass has already had a chance to transform
    # the data in its write method in that case).  This is an entirely
    # pragmatic split determined by experiment; we could be more general by
    # always using write and having the Bytes subclass write method detect when
    # it has already transformed the input; but, since this whole thing is a
    # hack anyway this seems good enough.

    # Similarly, we have _XXX and _encoded_XXX attributes that are used on
    # source and buffer data, respectively.
    _encoded_EMPTY = ''

    def _new_buffer(self):
        # BytesGenerator overrides this to return BytesIO.
        return StringIO()

    def _encode(self, s):
        # BytesGenerator overrides this to encode strings to bytes.
        return s

    def _write_lines(self, lines):
        # We have to transform the line endings.
        if not lines:
            return
        lines = lines.splitlines(True)
        for line in lines[:-1]:
            self.write(line.rstrip('\r\n'))
            self.write(self._NL)
        laststripped = lines[-1].rstrip('\r\n')
        self.write(laststripped)
        if len(lines[-1]) != len(laststripped):
            self.write(self._NL)

    def _write(self, msg):
        # We can't write the headers yet because of the following scenario:
        # say a multipart message includes the boundary string somewhere in
        # its body.  We'd have to calculate the new boundary /before/ we write
        # the headers so that we can write the correct Content-Type:
        # parameter.
        #
        # The way we do this, so as to make the _handle_*() methods simpler,
        # is to cache any subpart writes into a buffer.  The we write the
        # headers and the buffer contents.  That way, subpart handlers can
        # Do The Right Thing, and can still modify the Content-Type: header if
        # necessary.
        oldfp = self._fp
        try:
            self._munge_cte = None
            self._fp = sfp = self._new_buffer()
            self._dispatch(msg)
        finally:
            self._fp = oldfp
            munge_cte = self._munge_cte
            del self._munge_cte
        # If we munged the cte, copy the message again and re-fix the CTE.
        if munge_cte:
            msg = deepcopy(msg)
            msg.replace_header('content-transfer-encoding', munge_cte[0])
            msg.replace_header('content-type', munge_cte[1])
        # Write the headers.  First we see if the message object wants to
        # handle that itself.  If not, we'll do it generically.
        meth = getattr(msg, '_write_headers', None)
        if meth is None:
            self._write_headers(msg)
        else:
            meth(self)
        self._fp.write(sfp.getvalue())

    def _dispatch(self, msg):
        # Get the Content-Type: for the message, then try to dispatch to
        # self._handle_<maintype>_<subtype>().  If there's no handler for the
        # full MIME type, then dispatch to self._handle_<maintype>().  If
        # that's missing too, then dispatch to self._writeBody().
        main = msg.get_content_maintype()
        sub = msg.get_content_subtype()
        specific = UNDERSCORE.join((main, sub)).replace('-', '_')
        meth = getattr(self, '_handle_' + specific, None)
        if meth is None:
            generic = main.replace('-', '_')
            meth = getattr(self, '_handle_' + generic, None)
            if meth is None:
                meth = self._writeBody
        meth(msg)

    #
    # Default handlers
    #

    def _write_headers(self, msg):
        for h, v in msg.raw_items():
            self.write(self.policy.fold(h, v))
        # A blank line always separates headers from body
        self.write(self._NL)

    #
    # Handlers for writing types and subtypes
    #

    def _handle_text(self, msg):
        payload = msg.get_payload()
        if payload is None:
            return
        if not isinstance(payload, str):
            raise TypeError('string payload expected: %s' % type(payload))
        if _has_surrogates(msg._payload):
            charset = msg.get_param('charset')
            if charset is not None:
                # XXX: This copy stuff is an ugly hack to avoid modifying the
                # existing message.
                msg = deepcopy(msg)
                del msg['content-transfer-encoding']
                msg.set_payload(payload, charset)
                payload = msg.get_payload()
                self._munge_cte = (msg['content-transfer-encoding'],
                                   msg['content-type'])
        if self._mangle_from_:
            payload = fcre.sub('>From ', payload)
        self._write_lines(payload)

    # Default body handler
    _writeBody = _handle_text

    def _handle_multipart(self, msg):
        # The trick here is to write out each part separately, merge them all
        # together, and then make sure that the boundary we've chosen isn't
        # present in the payload.
        msgtexts = []
        subparts = msg.get_payload()
        if subparts is None:
            subparts = []
        elif isinstance(subparts, str):
            # e.g. a non-strict parse of a message with no starting boundary.
            self.write(subparts)
            return
        elif not isinstance(subparts, list):
            # Scalar payload
            subparts = [subparts]
        for part in subparts:
            s = self._new_buffer()
            g = self.clone(s)
            g.flatten(part, unixfrom=False, linesep=self._NL)
            msgtexts.append(s.getvalue())
        # BAW: What about boundaries that are wrapped in double-quotes?
        boundary = msg.get_boundary()
        if not boundary:
            # Create a boundary that doesn't appear in any of the
            # message texts.
            alltext = self._encoded_NL.join(msgtexts)
            boundary = self._make_boundary(alltext)
            msg.set_boundary(boundary)
        # If there's a preamble, write it out, with a trailing CRLF
        if msg.preamble is not None:
            if self._mangle_from_:
                preamble = fcre.sub('>From ', msg.preamble)
            else:
                preamble = msg.preamble
            self._write_lines(preamble)
            self.write(self._NL)
        # dash-boundary transport-padding CRLF
        self.write('--' + boundary + self._NL)
        # body-part
        if msgtexts:
            self._fp.write(msgtexts.pop(0))
        # *encapsulation
        # --> delimiter transport-padding
        # --> CRLF body-part
        for body_part in msgtexts:
            # delimiter transport-padding CRLF
            self.write(self._NL + '--' + boundary + self._NL)
            # body-part
            self._fp.write(body_part)
        # close-delimiter transport-padding
        self.write(self._NL + '--' + boundary + '--' + self._NL)
        if msg.epilogue is not None:
            if self._mangle_from_:
                epilogue = fcre.sub('>From ', msg.epilogue)
            else:
                epilogue = msg.epilogue
            self._write_lines(epilogue)

    def _handle_multipart_signed(self, msg):
        # The contents of signed parts has to stay unmodified in order to keep
        # the signature intact per RFC1847 2.1, so we disable header wrapping.
        # RDM: This isn't enough to completely preserve the part, but it helps.
        p = self.policy
        self.policy = p.clone(max_line_length=0)
        try:
            self._handle_multipart(msg)
        finally:
            self.policy = p

    def _handle_message_delivery_status(self, msg):
        # We can't just write the headers directly to self's file object
        # because this will leave an extra newline between the last header
        # block and the boundary.  Sigh.
        blocks = []
        for part in msg.get_payload():
            s = self._new_buffer()
            g = self.clone(s)
            g.flatten(part, unixfrom=False, linesep=self._NL)
            text = s.getvalue()
            lines = text.split(self._encoded_NL)
            # Strip off the unnecessary trailing empty line
            if lines and lines[-1] == self._encoded_EMPTY:
                blocks.append(self._encoded_NL.join(lines[:-1]))
            else:
                blocks.append(text)
        # Now join all the blocks with an empty line.  This has the lovely
        # effect of separating each block with an empty line, but not adding
        # an extra one after the last one.
        self._fp.write(self._encoded_NL.join(blocks))

    def _handle_message(self, msg):
        s = self._new_buffer()
        g = self.clone(s)
        # The payload of a message/rfc822 part should be a multipart sequence
        # of length 1.  The zeroth element of the list should be the Message
        # object for the subpart.  Extract that object, stringify it, and
        # write it out.
        # Except, it turns out, when it's a string instead, which happens when
        # and only when HeaderParser is used on a message of mime type
        # message/rfc822.  Such messages are generated by, for example,
        # Groupwise when forwarding unadorned messages.  (Issue 7970.)  So
        # in that case we just emit the string body.
        payload = msg._payload
        if isinstance(payload, list):
            g.flatten(msg.get_payload(0), unixfrom=False, linesep=self._NL)
            payload = s.getvalue()
        else:
            payload = self._encode(payload)
        self._fp.write(payload)

    # This used to be a module level function; we use a classmethod for this
    # and _compile_re so we can continue to provide the module level function
    # for backward compatibility by doing
    #   _make_boundary = Generator._make_boundary
    # at the end of the module.  It *is* internal, so we could drop that...
    @classmethod
    def _make_boundary(cls, text=None):
        # Craft a random boundary.  If text is given, ensure that the chosen
        # boundary doesn't appear in the text.
        token = random.randrange(sys.maxsize)
        boundary = ('=' * 15) + (_fmt % token) + '=='
        if text is None:
            return boundary
        b = boundary
        counter = 0
        while True:
            cre = cls._compile_re('^--' + re.escape(b) + '(--)?$', re.MULTILINE)
            if not cre.search(text):
                break
            b = boundary + '.' + str(counter)
            counter += 1
        return b

    @classmethod
    def _compile_re(cls, s, flags):
        return re.compile(s, flags)


class BytesGenerator(Generator):
    """Generates a bytes version of a Message object tree.

    Functionally identical to the base Generator except that the output is
    bytes and not string.  When surrogates were used in the input to encode
    bytes, these are decoded back to bytes for output.  If the policy has
    cte_type set to 7bit, then the message is transformed such that the
    non-ASCII bytes are properly content transfer encoded, using the charset
    unknown-8bit.

    The outfp object must accept bytes in its write method.
    """

    # Bytes versions of this constant for use in manipulating data from
    # the BytesIO buffer.
    _encoded_EMPTY = b''

    def write(self, s):
        self._fp.write(s.encode('ascii', 'surrogateescape'))

    def _new_buffer(self):
        return BytesIO()

    def _encode(self, s):
        return s.encode('ascii')

    def _write_headers(self, msg):
        # This is almost the same as the string version, except for handling
        # strings with 8bit bytes.
        for h, v in msg.raw_items():
            self._fp.write(self.policy.fold_binary(h, v))
        # A blank line always separates headers from body
        self.write(self._NL)

    def _handle_text(self, msg):
        # If the string has surrogates the original source was bytes, so
        # just write it back out.
        if msg._payload is None:
            return
        if _has_surrogates(msg._payload) and not self.policy.cte_type=='7bit':
            if self._mangle_from_:
                msg._payload = fcre.sub(">From ", msg._payload)
            self._write_lines(msg._payload)
        else:
            super(BytesGenerator,self)._handle_text(msg)

    # Default body handler
    _writeBody = _handle_text

    @classmethod
    def _compile_re(cls, s, flags):
        return re.compile(s.encode('ascii'), flags)



_FMT = '[Non-text (%(type)s) part of message omitted, filename %(filename)s]'

class DecodedGenerator(Generator):
    """Generates a text representation of a message.

    Like the Generator base class, except that non-text parts are substituted
    with a format string representing the part.
    """
    def __init__(self, outfp, mangle_from_=True, maxheaderlen=78, fmt=None):
        """Like Generator.__init__() except that an additional optional
        argument is allowed.

        Walks through all subparts of a message.  If the subpart is of main
        type `text', then it prints the decoded payload of the subpart.

        Otherwise, fmt is a format string that is used instead of the message
        payload.  fmt is expanded with the following keywords (in
        %(keyword)s format):

        type       : Full MIME type of the non-text part
        maintype   : Main MIME type of the non-text part
        subtype    : Sub-MIME type of the non-text part
        filename   : Filename of the non-text part
        description: Description associated with the non-text part
        encoding   : Content transfer encoding of the non-text part

        The default value for fmt is None, meaning

        [Non-text (%(type)s) part of message omitted, filename %(filename)s]
        """
        Generator.__init__(self, outfp, mangle_from_, maxheaderlen)
        if fmt is None:
            self._fmt = _FMT
        else:
            self._fmt = fmt

    def _dispatch(self, msg):
        for part in msg.walk():
            maintype = part.get_content_maintype()
            if maintype == 'text':
                print(part.get_payload(decode=False), file=self)
            elif maintype == 'multipart':
                # Just skip this
                pass
            else:
                print(self._fmt % {
                    'type'       : part.get_content_type(),
                    'maintype'   : part.get_content_maintype(),
                    'subtype'    : part.get_content_subtype(),
                    'filename'   : part.get_filename('[no filename]'),
                    'description': part.get('Content-Description',
                                            '[no description]'),
                    'encoding'   : part.get('Content-Transfer-Encoding',
                                            '[no encoding]'),
                    }, file=self)



# Helper used by Generator._make_boundary
_width = len(repr(sys.maxsize-1))
_fmt = '%%0%dd' % _width

# Backward compatibility
_make_boundary = Generator._make_boundary
lib\email\header.py
# Copyright (C) 2002-2007 Python Software Foundation
# Author: Ben Gertzfield, Barry Warsaw
# Contact: [email protected]

"""Header encoding and decoding functionality."""

__all__ = [
    'Header',
    'decode_header',
    'make_header',
    ]

import re
import binascii

import email.quoprimime
import email.base64mime

from email.errors import HeaderParseError
from email import charset as _charset
Charset = _charset.Charset

NL = '\n'
SPACE = ' '
BSPACE = b' '
SPACE8 = ' ' * 8
EMPTYSTRING = ''
MAXLINELEN = 78
FWS = ' \t'

USASCII = Charset('us-ascii')
UTF8 = Charset('utf-8')

# Match encoded-word strings in the form =?charset?q?Hello_World?=
ecre = re.compile(r'''
  =\?                   # literal =?
  (?P<charset>[^?]*?)   # non-greedy up to the next ? is the charset
  \?                    # literal ?
  (?P<encoding>[qb])    # either a "q" or a "b", case insensitive
  \?                    # literal ?
  (?P<encoded>.*?)      # non-greedy up to the next ?= is the encoded string
  \?=                   # literal ?=
  ''', re.VERBOSE | re.IGNORECASE | re.MULTILINE)

# Field name regexp, including trailing colon, but not separating whitespace,
# according to RFC 2822.  Character range is from tilde to exclamation mark.
# For use with .match()
fcre = re.compile(r'[\041-\176]+:$')

# Find a header embedded in a putative header value.  Used to check for
# header injection attack.
_embeded_header = re.compile(r'\n[^ \t]+:')



# Helpers
_max_append = email.quoprimime._max_append



def decode_header(header):
    """Decode a message header value without converting charset.

    Returns a list of (string, charset) pairs containing each of the decoded
    parts of the header.  Charset is None for non-encoded parts of the header,
    otherwise a lower-case string containing the name of the character set
    specified in the encoded string.

    header may be a string that may or may not contain RFC2047 encoded words,
    or it may be a Header object.

    An email.errors.HeaderParseError may be raised when certain decoding error
    occurs (e.g. a base64 decoding exception).
    """
    # If it is a Header object, we can just return the encoded chunks.
    if hasattr(header, '_chunks'):
        return [(_charset._encode(string, str(charset)), str(charset))
                    for string, charset in header._chunks]
    # If no encoding, just return the header with no charset.
    if not ecre.search(header):
        return [(header, None)]
    # First step is to parse all the encoded parts into triplets of the form
    # (encoded_string, encoding, charset).  For unencoded strings, the last
    # two parts will be None.
    words = []
    for line in header.splitlines():
        parts = ecre.split(line)
        first = True
        while parts:
            unencoded = parts.pop(0)
            if first:
                unencoded = unencoded.lstrip()
                first = False
            if unencoded:
                words.append((unencoded, None, None))
            if parts:
                charset = parts.pop(0).lower()
                encoding = parts.pop(0).lower()
                encoded = parts.pop(0)
                words.append((encoded, encoding, charset))
    # Now loop over words and remove words that consist of whitespace
    # between two encoded strings.
    droplist = []
    for n, w in enumerate(words):
        if n>1 and w[1] and words[n-2][1] and words[n-1][0].isspace():
            droplist.append(n-1)
    for d in reversed(droplist):
        del words[d]

    # The next step is to decode each encoded word by applying the reverse
    # base64 or quopri transformation.  decoded_words is now a list of the
    # form (decoded_word, charset).
    decoded_words = []
    for encoded_string, encoding, charset in words:
        if encoding is None:
            # This is an unencoded word.
            decoded_words.append((encoded_string, charset))
        elif encoding == 'q':
            word = email.quoprimime.header_decode(encoded_string)
            decoded_words.append((word, charset))
        elif encoding == 'b':
            paderr = len(encoded_string) % 4   # Postel's law: add missing padding
            if paderr:
                encoded_string += '==='[:4 - paderr]
            try:
                word = email.base64mime.decode(encoded_string)
            except binascii.Error:
                raise HeaderParseError('Base64 decoding error')
            else:
                decoded_words.append((word, charset))
        else:
            raise AssertionError('Unexpected encoding: ' + encoding)
    # Now convert all words to bytes and collapse consecutive runs of
    # similarly encoded words.
    collapsed = []
    last_word = last_charset = None
    for word, charset in decoded_words:
        if isinstance(word, str):
            word = bytes(word, 'raw-unicode-escape')
        if last_word is None:
            last_word = word
            last_charset = charset
        elif charset != last_charset:
            collapsed.append((last_word, last_charset))
            last_word = word
            last_charset = charset
        elif last_charset is None:
            last_word += BSPACE + word
        else:
            last_word += word
    collapsed.append((last_word, last_charset))
    return collapsed



def make_header(decoded_seq, maxlinelen=None, header_name=None,
                continuation_ws=' '):
    """Create a Header from a sequence of pairs as returned by decode_header()

    decode_header() takes a header value string and returns a sequence of
    pairs of the format (decoded_string, charset) where charset is the string
    name of the character set.

    This function takes one of those sequence of pairs and returns a Header
    instance.  Optional maxlinelen, header_name, and continuation_ws are as in
    the Header constructor.
    """
    h = Header(maxlinelen=maxlinelen, header_name=header_name,
               continuation_ws=continuation_ws)
    for s, charset in decoded_seq:
        # None means us-ascii but we can simply pass it on to h.append()
        if charset is not None and not isinstance(charset, Charset):
            charset = Charset(charset)
        h.append(s, charset)
    return h



class Header:
    def __init__(self, s=None, charset=None,
                 maxlinelen=None, header_name=None,
                 continuation_ws=' ', errors='strict'):
        """Create a MIME-compliant header that can contain many character sets.

        Optional s is the initial header value.  If None, the initial header
        value is not set.  You can later append to the header with .append()
        method calls.  s may be a byte string or a Unicode string, but see the
        .append() documentation for semantics.

        Optional charset serves two purposes: it has the same meaning as the
        charset argument to the .append() method.  It also sets the default
        character set for all subsequent .append() calls that omit the charset
        argument.  If charset is not provided in the constructor, the us-ascii
        charset is used both as s's initial charset and as the default for
        subsequent .append() calls.

        The maximum line length can be specified explicitly via maxlinelen. For
        splitting the first line to a shorter value (to account for the field
        header which isn't included in s, e.g. `Subject') pass in the name of
        the field in header_name.  The default maxlinelen is 78 as recommended
        by RFC 2822.

        continuation_ws must be RFC 2822 compliant folding whitespace (usually
        either a space or a hard tab) which will be prepended to continuation
        lines.

        errors is passed through to the .append() call.
        """
        if charset is None:
            charset = USASCII
        elif not isinstance(charset, Charset):
            charset = Charset(charset)
        self._charset = charset
        self._continuation_ws = continuation_ws
        self._chunks = []
        if s is not None:
            self.append(s, charset, errors)
        if maxlinelen is None:
            maxlinelen = MAXLINELEN
        self._maxlinelen = maxlinelen
        if header_name is None:
            self._headerlen = 0
        else:
            # Take the separating colon and space into account.
            self._headerlen = len(header_name) + 2

    def __str__(self):
        """Return the string value of the header."""
        self._normalize()
        uchunks = []
        lastcs = None
        lastspace = None
        for string, charset in self._chunks:
            # We must preserve spaces between encoded and non-encoded word
            # boundaries, which means for us we need to add a space when we go
            # from a charset to None/us-ascii, or from None/us-ascii to a
            # charset.  Only do this for the second and subsequent chunks.
            # Don't add a space if the None/us-ascii string already has
            # a space (trailing or leading depending on transition)
            nextcs = charset
            if nextcs == _charset.UNKNOWN8BIT:
                original_bytes = string.encode('ascii', 'surrogateescape')
                string = original_bytes.decode('ascii', 'replace')
            if uchunks:
                hasspace = string and self._nonctext(string[0])
                if lastcs not in (None, 'us-ascii'):
                    if nextcs in (None, 'us-ascii') and not hasspace:
                        uchunks.append(SPACE)
                        nextcs = None
                elif nextcs not in (None, 'us-ascii') and not lastspace:
                    uchunks.append(SPACE)
            lastspace = string and self._nonctext(string[-1])
            lastcs = nextcs
            uchunks.append(string)
        return EMPTYSTRING.join(uchunks)

    # Rich comparison operators for equality only.  BAW: does it make sense to
    # have or explicitly disable <, <=, >, >= operators?
    def __eq__(self, other):
        # other may be a Header or a string.  Both are fine so coerce
        # ourselves to a unicode (of the unencoded header value), swap the
        # args and do another comparison.
        return other == str(self)

    def __ne__(self, other):
        return not self == other

    def append(self, s, charset=None, errors='strict'):
        """Append a string to the MIME header.

        Optional charset, if given, should be a Charset instance or the name
        of a character set (which will be converted to a Charset instance).  A
        value of None (the default) means that the charset given in the
        constructor is used.

        s may be a byte string or a Unicode string.  If it is a byte string
        (i.e. isinstance(s, str) is false), then charset is the encoding of
        that byte string, and a UnicodeError will be raised if the string
        cannot be decoded with that charset.  If s is a Unicode string, then
        charset is a hint specifying the character set of the characters in
        the string.  In either case, when producing an RFC 2822 compliant
        header using RFC 2047 rules, the string will be encoded using the
        output codec of the charset.  If the string cannot be encoded to the
        output codec, a UnicodeError will be raised.

        Optional `errors' is passed as the errors argument to the decode
        call if s is a byte string.
        """
        if charset is None:
            charset = self._charset
        elif not isinstance(charset, Charset):
            charset = Charset(charset)
        if not isinstance(s, str):
            input_charset = charset.input_codec or 'us-ascii'
            if input_charset == _charset.UNKNOWN8BIT:
                s = s.decode('us-ascii', 'surrogateescape')
            else:
                s = s.decode(input_charset, errors)
        # Ensure that the bytes we're storing can be decoded to the output
        # character set, otherwise an early error is raised.
        output_charset = charset.output_codec or 'us-ascii'
        if output_charset != _charset.UNKNOWN8BIT:
            try:
                s.encode(output_charset, errors)
            except UnicodeEncodeError:
                if output_charset!='us-ascii':
                    raise
                charset = UTF8
        self._chunks.append((s, charset))

    def _nonctext(self, s):
        """True if string s is not a ctext character of RFC822.
        """
        return s.isspace() or s in ('(', ')', '\\')

    def encode(self, splitchars=';, \t', maxlinelen=None, linesep='\n'):
        r"""Encode a message header into an RFC-compliant format.

        There are many issues involved in converting a given string for use in
        an email header.  Only certain character sets are readable in most
        email clients, and as header strings can only contain a subset of
        7-bit ASCII, care must be taken to properly convert and encode (with
        Base64 or quoted-printable) header strings.  In addition, there is a
        75-character length limit on any given encoded header field, so
        line-wrapping must be performed, even with double-byte character sets.

        Optional maxlinelen specifies the maximum length of each generated
        line, exclusive of the linesep string.  Individual lines may be longer
        than maxlinelen if a folding point cannot be found.  The first line
        will be shorter by the length of the header name plus ": " if a header
        name was specified at Header construction time.  The default value for
        maxlinelen is determined at header construction time.

        Optional splitchars is a string containing characters which should be
        given extra weight by the splitting algorithm during normal header
        wrapping.  This is in very rough support of RFC 2822's `higher level
        syntactic breaks':  split points preceded by a splitchar are preferred
        during line splitting, with the characters preferred in the order in
        which they appear in the string.  Space and tab may be included in the
        string to indicate whether preference should be given to one over the
        other as a split point when other split chars do not appear in the line
        being split.  Splitchars does not affect RFC 2047 encoded lines.

        Optional linesep is a string to be used to separate the lines of
        the value.  The default value is the most useful for typical
        Python applications, but it can be set to \r\n to produce RFC-compliant
        line separators when needed.
        """
        self._normalize()
        if maxlinelen is None:
            maxlinelen = self._maxlinelen
        # A maxlinelen of 0 means don't wrap.  For all practical purposes,
        # choosing a huge number here accomplishes that and makes the
        # _ValueFormatter algorithm much simpler.
        if maxlinelen == 0:
            maxlinelen = 1000000
        formatter = _ValueFormatter(self._headerlen, maxlinelen,
                                    self._continuation_ws, splitchars)
        lastcs = None
        hasspace = lastspace = None
        for string, charset in self._chunks:
            if hasspace is not None:
                hasspace = string and self._nonctext(string[0])
                if lastcs not in (None, 'us-ascii'):
                    if not hasspace or charset not in (None, 'us-ascii'):
                        formatter.add_transition()
                elif charset not in (None, 'us-ascii') and not lastspace:
                    formatter.add_transition()
            lastspace = string and self._nonctext(string[-1])
            lastcs = charset
            hasspace = False
            lines = string.splitlines()
            if lines:
                formatter.feed('', lines[0], charset)
            else:
                formatter.feed('', '', charset)
            for line in lines[1:]:
                formatter.newline()
                if charset.header_encoding is not None:
                    formatter.feed(self._continuation_ws, ' ' + line.lstrip(),
                                   charset)
                else:
                    sline = line.lstrip()
                    fws = line[:len(line)-len(sline)]
                    formatter.feed(fws, sline, charset)
            if len(lines) > 1:
                formatter.newline()
        if self._chunks:
            formatter.add_transition()
        value = formatter._str(linesep)
        if _embeded_header.search(value):
            raise HeaderParseError("header value appears to contain "
                "an embedded header: {!r}".format(value))
        return value

    def _normalize(self):
        # Step 1: Normalize the chunks so that all runs of identical charsets
        # get collapsed into a single unicode string.
        chunks = []
        last_charset = None
        last_chunk = []
        for string, charset in self._chunks:
            if charset == last_charset:
                last_chunk.append(string)
            else:
                if last_charset is not None:
                    chunks.append((SPACE.join(last_chunk), last_charset))
                last_chunk = [string]
                last_charset = charset
        if last_chunk:
            chunks.append((SPACE.join(last_chunk), last_charset))
        self._chunks = chunks



class _ValueFormatter:
    def __init__(self, headerlen, maxlen, continuation_ws, splitchars):
        self._maxlen = maxlen
        self._continuation_ws = continuation_ws
        self._continuation_ws_len = len(continuation_ws)
        self._splitchars = splitchars
        self._lines = []
        self._current_line = _Accumulator(headerlen)

    def _str(self, linesep):
        self.newline()
        return linesep.join(self._lines)

    def __str__(self):
        return self._str(NL)

    def newline(self):
        end_of_line = self._current_line.pop()
        if end_of_line != (' ', ''):
            self._current_line.push(*end_of_line)
        if len(self._current_line) > 0:
            if self._current_line.is_onlyws():
                self._lines[-1] += str(self._current_line)
            else:
                self._lines.append(str(self._current_line))
        self._current_line.reset()

    def add_transition(self):
        self._current_line.push(' ', '')

    def feed(self, fws, string, charset):
        # If the charset has no header encoding (i.e. it is an ASCII encoding)
        # then we must split the header at the "highest level syntactic break"
        # possible. Note that we don't have a lot of smarts about field
        # syntax; we just try to break on semi-colons, then commas, then
        # whitespace.  Eventually, this should be pluggable.
        if charset.header_encoding is None:
            self._ascii_split(fws, string, self._splitchars)
            return
        # Otherwise, we're doing either a Base64 or a quoted-printable
        # encoding which means we don't need to split the line on syntactic
        # breaks.  We can basically just find enough characters to fit on the
        # current line, minus the RFC 2047 chrome.  What makes this trickier
        # though is that we have to split at octet boundaries, not character
        # boundaries but it's only safe to split at character boundaries so at
        # best we can only get close.
        encoded_lines = charset.header_encode_lines(string, self._maxlengths())
        # The first element extends the current line, but if it's None then
        # nothing more fit on the current line so start a new line.
        try:
            first_line = encoded_lines.pop(0)
        except IndexError:
            # There are no encoded lines, so we're done.
            return
        if first_line is not None:
            self._append_chunk(fws, first_line)
        try:
            last_line = encoded_lines.pop()
        except IndexError:
            # There was only one line.
            return
        self.newline()
        self._current_line.push(self._continuation_ws, last_line)
        # Everything else are full lines in themselves.
        for line in encoded_lines:
            self._lines.append(self._continuation_ws + line)

    def _maxlengths(self):
        # The first line's length.
        yield self._maxlen - len(self._current_line)
        while True:
            yield self._maxlen - self._continuation_ws_len

    def _ascii_split(self, fws, string, splitchars):
        # The RFC 2822 header folding algorithm is simple in principle but
        # complex in practice.  Lines may be folded any place where "folding
        # white space" appears by inserting a linesep character in front of the
        # FWS.  The complication is that not all spaces or tabs qualify as FWS,
        # and we are also supposed to prefer to break at "higher level
        # syntactic breaks".  We can't do either of these without intimate
        # knowledge of the structure of structured headers, which we don't have
        # here.  So the best we can do here is prefer to break at the specified
        # splitchars, and hope that we don't choose any spaces or tabs that
        # aren't legal FWS.  (This is at least better than the old algorithm,
        # where we would sometimes *introduce* FWS after a splitchar, or the
        # algorithm before that, where we would turn all white space runs into
        # single spaces or tabs.)
        parts = re.split("(["+FWS+"]+)", fws+string)
        if parts[0]:
            parts[:0] = ['']
        else:
            parts.pop(0)
        for fws, part in zip(*[iter(parts)]*2):
            self._append_chunk(fws, part)

    def _append_chunk(self, fws, string):
        self._current_line.push(fws, string)
        if len(self._current_line) > self._maxlen:
            # Find the best split point, working backward from the end.
            # There might be none, on a long first line.
            for ch in self._splitchars:
                for i in range(self._current_line.part_count()-1, 0, -1):
                    if ch.isspace():
                        fws = self._current_line[i][0]
                        if fws and fws[0]==ch:
                            break
                    prevpart = self._current_line[i-1][1]
                    if prevpart and prevpart[-1]==ch:
                        break
                else:
                    continue
                break
            else:
                fws, part = self._current_line.pop()
                if self._current_line._initial_size > 0:
                    # There will be a header, so leave it on a line by itself.
                    self.newline()
                    if not fws:
                        # We don't use continuation_ws here because the whitespace
                        # after a header should always be a space.
                        fws = ' '
                self._current_line.push(fws, part)
                return
            remainder = self._current_line.pop_from(i)
            self._lines.append(str(self._current_line))
            self._current_line.reset(remainder)


class _Accumulator(list):

    def __init__(self, initial_size=0):
        self._initial_size = initial_size
        super().__init__()

    def push(self, fws, string):
        self.append((fws, string))

    def pop_from(self, i=0):
        popped = self[i:]
        self[i:] = []
        return popped

    def pop(self):
        if self.part_count()==0:
            return ('', '')
        return super().pop()

    def __len__(self):
        return sum((len(fws)+len(part) for fws, part in self),
                   self._initial_size)

    def __str__(self):
        return EMPTYSTRING.join((EMPTYSTRING.join((fws, part))
                                for fws, part in self))

    def reset(self, startval=None):
        if startval is None:
            startval = []
        self[:] = startval
        self._initial_size = 0

    def is_onlyws(self):
        return self._initial_size==0 and (not self or str(self).isspace())

    def part_count(self):
        return super().__len__()
lib\email\headerregistry.py
"""Representing and manipulating email headers via custom objects.

This module provides an implementation of the HeaderRegistry API.
The implementation is designed to flexibly follow RFC5322 rules.

Eventually HeaderRegistry will be a public API, but it isn't yet,
and will probably change some before that happens.

"""
from types import MappingProxyType

from email import utils
from email import errors
from email import _header_value_parser as parser

class Address:

    def __init__(self, display_name='', username='', domain='', addr_spec=None):
        """Create an object represeting a full email address.

        An address can have a 'display_name', a 'username', and a 'domain'.  In
        addition to specifying the username and domain separately, they may be
        specified together by using the addr_spec keyword *instead of* the
        username and domain keywords.  If an addr_spec string is specified it
        must be properly quoted according to RFC 5322 rules; an error will be
        raised if it is not.

        An Address object has display_name, username, domain, and addr_spec
        attributes, all of which are read-only.  The addr_spec and the string
        value of the object are both quoted according to RFC5322 rules, but
        without any Content Transfer Encoding.

        """
        # This clause with its potential 'raise' may only happen when an
        # application program creates an Address object using an addr_spec
        # keyword.  The email library code itself must always supply username
        # and domain.
        if addr_spec is not None:
            if username or domain:
                raise TypeError("addrspec specified when username and/or "
                                "domain also specified")
            a_s, rest = parser.get_addr_spec(addr_spec)
            if rest:
                raise ValueError("Invalid addr_spec; only '{}' "
                                 "could be parsed from '{}'".format(
                                    a_s, addr_spec))
            if a_s.all_defects:
                raise a_s.all_defects[0]
            username = a_s.local_part
            domain = a_s.domain
        self._display_name = display_name
        self._username = username
        self._domain = domain

    @property
    def display_name(self):
        return self._display_name

    @property
    def username(self):
        return self._username

    @property
    def domain(self):
        return self._domain

    @property
    def addr_spec(self):
        """The addr_spec (username@domain) portion of the address, quoted
        according to RFC 5322 rules, but with no Content Transfer Encoding.
        """
        nameset = set(self.username)
        if len(nameset) > len(nameset-parser.DOT_ATOM_ENDS):
            lp = parser.quote_string(self.username)
        else:
            lp = self.username
        if self.domain:
            return lp + '@' + self.domain
        if not lp:
            return '<>'
        return lp

    def __repr__(self):
        return "Address(display_name={!r}, username={!r}, domain={!r})".format(
                        self.display_name, self.username, self.domain)

    def __str__(self):
        nameset = set(self.display_name)
        if len(nameset) > len(nameset-parser.SPECIALS):
            disp = parser.quote_string(self.display_name)
        else:
            disp = self.display_name
        if disp:
            addr_spec = '' if self.addr_spec=='<>' else self.addr_spec
            return "{} <{}>".format(disp, addr_spec)
        return self.addr_spec

    def __eq__(self, other):
        if type(other) != type(self):
            return False
        return (self.display_name == other.display_name and
                self.username == other.username and
                self.domain == other.domain)


class Group:

    def __init__(self, display_name=None, addresses=None):
        """Create an object representing an address group.

        An address group consists of a display_name followed by colon and an
        list of addresses (see Address) terminated by a semi-colon.  The Group
        is created by specifying a display_name and a possibly empty list of
        Address objects.  A Group can also be used to represent a single
        address that is not in a group, which is convenient when manipulating
        lists that are a combination of Groups and individual Addresses.  In
        this case the display_name should be set to None.  In particular, the
        string representation of a Group whose display_name is None is the same
        as the Address object, if there is one and only one Address object in
        the addresses list.

        """
        self._display_name = display_name
        self._addresses = tuple(addresses) if addresses else tuple()

    @property
    def display_name(self):
        return self._display_name

    @property
    def addresses(self):
        return self._addresses

    def __repr__(self):
        return "Group(display_name={!r}, addresses={!r}".format(
                 self.display_name, self.addresses)

    def __str__(self):
        if self.display_name is None and len(self.addresses)==1:
            return str(self.addresses[0])
        disp = self.display_name
        if disp is not None:
            nameset = set(disp)
            if len(nameset) > len(nameset-parser.SPECIALS):
                disp = parser.quote_string(disp)
        adrstr = ", ".join(str(x) for x in self.addresses)
        adrstr = ' ' + adrstr if adrstr else adrstr
        return "{}:{};".format(disp, adrstr)

    def __eq__(self, other):
        if type(other) != type(self):
            return False
        return (self.display_name == other.display_name and
                self.addresses == other.addresses)


# Header Classes #

class BaseHeader(str):

    """Base class for message headers.

    Implements generic behavior and provides tools for subclasses.

    A subclass must define a classmethod named 'parse' that takes an unfolded
    value string and a dictionary as its arguments.  The dictionary will
    contain one key, 'defects', initialized to an empty list.  After the call
    the dictionary must contain two additional keys: parse_tree, set to the
    parse tree obtained from parsing the header, and 'decoded', set to the
    string value of the idealized representation of the data from the value.
    (That is, encoded words are decoded, and values that have canonical
    representations are so represented.)

    The defects key is intended to collect parsing defects, which the message
    parser will subsequently dispose of as appropriate.  The parser should not,
    insofar as practical, raise any errors.  Defects should be added to the
    list instead.  The standard header parsers register defects for RFC
    compliance issues, for obsolete RFC syntax, and for unrecoverable parsing
    errors.

    The parse method may add additional keys to the dictionary.  In this case
    the subclass must define an 'init' method, which will be passed the
    dictionary as its keyword arguments.  The method should use (usually by
    setting them as the value of similarly named attributes) and remove all the
    extra keys added by its parse method, and then use super to call its parent
    class with the remaining arguments and keywords.

    The subclass should also make sure that a 'max_count' attribute is defined
    that is either None or 1. XXX: need to better define this API.

    """

    def __new__(cls, name, value):
        kwds = {'defects': []}
        cls.parse(value, kwds)
        if utils._has_surrogates(kwds['decoded']):
            kwds['decoded'] = utils._sanitize(kwds['decoded'])
        self = str.__new__(cls, kwds['decoded'])
        del kwds['decoded']
        self.init(name, **kwds)
        return self

    def init(self, name, *, parse_tree, defects):
        self._name = name
        self._parse_tree = parse_tree
        self._defects = defects

    @property
    def name(self):
        return self._name

    @property
    def defects(self):
        return tuple(self._defects)

    def __reduce__(self):
        return (
            _reconstruct_header,
            (
                self.__class__.__name__,
                self.__class__.__bases__,
                str(self),
            ),
            self.__dict__)

    @classmethod
    def _reconstruct(cls, value):
        return str.__new__(cls, value)

    def fold(self, *, policy):
        """Fold header according to policy.

        The parsed representation of the header is folded according to
        RFC5322 rules, as modified by the policy.  If the parse tree
        contains surrogateescaped bytes, the bytes are CTE encoded using
        the charset 'unknown-8bit".

        Any non-ASCII characters in the parse tree are CTE encoded using
        charset utf-8. XXX: make this a policy setting.

        The returned value is an ASCII-only string possibly containing linesep
        characters, and ending with a linesep character.  The string includes
        the header name and the ': ' separator.

        """
        # At some point we need to only put fws here if it was in the source.
        header = parser.Header([
            parser.HeaderLabel([
                parser.ValueTerminal(self.name, 'header-name'),
                parser.ValueTerminal(':', 'header-sep')]),
            parser.CFWSList([parser.WhiteSpaceTerminal(' ', 'fws')]),
                             self._parse_tree])
        return header.fold(policy=policy)


def _reconstruct_header(cls_name, bases, value):
    return type(cls_name, bases, {})._reconstruct(value)


class UnstructuredHeader:

    max_count = None
    value_parser = staticmethod(parser.get_unstructured)

    @classmethod
    def parse(cls, value, kwds):
        kwds['parse_tree'] = cls.value_parser(value)
        kwds['decoded'] = str(kwds['parse_tree'])


class UniqueUnstructuredHeader(UnstructuredHeader):

    max_count = 1


class DateHeader:

    """Header whose value consists of a single timestamp.

    Provides an additional attribute, datetime, which is either an aware
    datetime using a timezone, or a naive datetime if the timezone
    in the input string is -0000.  Also accepts a datetime as input.
    The 'value' attribute is the normalized form of the timestamp,
    which means it is the output of format_datetime on the datetime.
    """

    max_count = None

    # This is used only for folding, not for creating 'decoded'.
    value_parser = staticmethod(parser.get_unstructured)

    @classmethod
    def parse(cls, value, kwds):
        if not value:
            kwds['defects'].append(errors.HeaderMissingRequiredValue())
            kwds['datetime'] = None
            kwds['decoded'] = ''
            kwds['parse_tree'] = parser.TokenList()
            return
        if isinstance(value, str):
            value = utils.parsedate_to_datetime(value)
        kwds['datetime'] = value
        kwds['decoded'] = utils.format_datetime(kwds['datetime'])
        kwds['parse_tree'] = cls.value_parser(kwds['decoded'])

    def init(self, *args, **kw):
        self._datetime = kw.pop('datetime')
        super().init(*args, **kw)

    @property
    def datetime(self):
        return self._datetime


class UniqueDateHeader(DateHeader):

    max_count = 1


class AddressHeader:

    max_count = None

    @staticmethod
    def value_parser(value):
        address_list, value = parser.get_address_list(value)
        assert not value, 'this should not happen'
        return address_list

    @classmethod
    def parse(cls, value, kwds):
        if isinstance(value, str):
            # We are translating here from the RFC language (address/mailbox)
            # to our API language (group/address).
            kwds['parse_tree'] = address_list = cls.value_parser(value)
            groups = []
            for addr in address_list.addresses:
                groups.append(Group(addr.display_name,
                                    [Address(mb.display_name or '',
                                             mb.local_part or '',
                                             mb.domain or '')
                                     for mb in addr.all_mailboxes]))
            defects = list(address_list.all_defects)
        else:
            # Assume it is Address/Group stuff
            if not hasattr(value, '__iter__'):
                value = [value]
            groups = [Group(None, [item]) if not hasattr(item, 'addresses')
                                          else item
                                    for item in value]
            defects = []
        kwds['groups'] = groups
        kwds['defects'] = defects
        kwds['decoded'] = ', '.join([str(item) for item in groups])
        if 'parse_tree' not in kwds:
            kwds['parse_tree'] = cls.value_parser(kwds['decoded'])

    def init(self, *args, **kw):
        self._groups = tuple(kw.pop('groups'))
        self._addresses = None
        super().init(*args, **kw)

    @property
    def groups(self):
        return self._groups

    @property
    def addresses(self):
        if self._addresses is None:
            self._addresses = tuple([address for group in self._groups
                                             for address in group.addresses])
        return self._addresses


class UniqueAddressHeader(AddressHeader):

    max_count = 1


class SingleAddressHeader(AddressHeader):

    @property
    def address(self):
        if len(self.addresses)!=1:
            raise ValueError(("value of single address header {} is not "
                "a single address").format(self.name))
        return self.addresses[0]


class UniqueSingleAddressHeader(SingleAddressHeader):

    max_count = 1


class MIMEVersionHeader:

    max_count = 1

    value_parser = staticmethod(parser.parse_mime_version)

    @classmethod
    def parse(cls, value, kwds):
        kwds['parse_tree'] = parse_tree = cls.value_parser(value)
        kwds['decoded'] = str(parse_tree)
        kwds['defects'].extend(parse_tree.all_defects)
        kwds['major'] = None if parse_tree.minor is None else parse_tree.major
        kwds['minor'] = parse_tree.minor
        if parse_tree.minor is not None:
            kwds['version'] = '{}.{}'.format(kwds['major'], kwds['minor'])
        else:
            kwds['version'] = None

    def init(self, *args, **kw):
        self._version = kw.pop('version')
        self._major = kw.pop('major')
        self._minor = kw.pop('minor')
        super().init(*args, **kw)

    @property
    def major(self):
        return self._major

    @property
    def minor(self):
        return self._minor

    @property
    def version(self):
        return self._version


class ParameterizedMIMEHeader:

    # Mixin that handles the params dict.  Must be subclassed and
    # a property value_parser for the specific header provided.

    max_count = 1

    @classmethod
    def parse(cls, value, kwds):
        kwds['parse_tree'] = parse_tree = cls.value_parser(value)
        kwds['decoded'] = str(parse_tree)
        kwds['defects'].extend(parse_tree.all_defects)
        if parse_tree.params is None:
            kwds['params'] = {}
        else:
            # The MIME RFCs specify that parameter ordering is arbitrary.
            kwds['params'] = {utils._sanitize(name).lower():
                                    utils._sanitize(value)
                               for name, value in parse_tree.params}

    def init(self, *args, **kw):
        self._params = kw.pop('params')
        super().init(*args, **kw)

    @property
    def params(self):
        return MappingProxyType(self._params)


class ContentTypeHeader(ParameterizedMIMEHeader):

    value_parser = staticmethod(parser.parse_content_type_header)

    def init(self, *args, **kw):
        super().init(*args, **kw)
        self._maintype = utils._sanitize(self._parse_tree.maintype)
        self._subtype = utils._sanitize(self._parse_tree.subtype)

    @property
    def maintype(self):
        return self._maintype

    @property
    def subtype(self):
        return self._subtype

    @property
    def content_type(self):
        return self.maintype + '/' + self.subtype


class ContentDispositionHeader(ParameterizedMIMEHeader):

    value_parser = staticmethod(parser.parse_content_disposition_header)

    def init(self, *args, **kw):
        super().init(*args, **kw)
        cd = self._parse_tree.content_disposition
        self._content_disposition = cd if cd is None else utils._sanitize(cd)

    @property
    def content_disposition(self):
        return self._content_disposition


class ContentTransferEncodingHeader:

    max_count = 1

    value_parser = staticmethod(parser.parse_content_transfer_encoding_header)

    @classmethod
    def parse(cls, value, kwds):
        kwds['parse_tree'] = parse_tree = cls.value_parser(value)
        kwds['decoded'] = str(parse_tree)
        kwds['defects'].extend(parse_tree.all_defects)

    def init(self, *args, **kw):
        super().init(*args, **kw)
        self._cte = utils._sanitize(self._parse_tree.cte)

    @property
    def cte(self):
        return self._cte


# The header factory #

_default_header_map = {
    'subject':                      UniqueUnstructuredHeader,
    'date':                         UniqueDateHeader,
    'resent-date':                  DateHeader,
    'orig-date':                    UniqueDateHeader,
    'sender':                       UniqueSingleAddressHeader,
    'resent-sender':                SingleAddressHeader,
    'to':                           UniqueAddressHeader,
    'resent-to':                    AddressHeader,
    'cc':                           UniqueAddressHeader,
    'resent-cc':                    AddressHeader,
    'bcc':                          UniqueAddressHeader,
    'resent-bcc':                   AddressHeader,
    'from':                         UniqueAddressHeader,
    'resent-from':                  AddressHeader,
    'reply-to':                     UniqueAddressHeader,
    'mime-version':                 MIMEVersionHeader,
    'content-type':                 ContentTypeHeader,
    'content-disposition':          ContentDispositionHeader,
    'content-transfer-encoding':    ContentTransferEncodingHeader,
    }

class HeaderRegistry:

    """A header_factory and header registry."""

    def __init__(self, base_class=BaseHeader, default_class=UnstructuredHeader,
                       use_default_map=True):
        """Create a header_factory that works with the Policy API.

        base_class is the class that will be the last class in the created
        header class's __bases__ list.  default_class is the class that will be
        used if "name" (see __call__) does not appear in the registry.
        use_default_map controls whether or not the default mapping of names to
        specialized classes is copied in to the registry when the factory is
        created.  The default is True.

        """
        self.registry = {}
        self.base_class = base_class
        self.default_class = default_class
        if use_default_map:
            self.registry.update(_default_header_map)

    def map_to_type(self, name, cls):
        """Register cls as the specialized class for handling "name" headers.

        """
        self.registry[name.lower()] = cls

    def __getitem__(self, name):
        cls = self.registry.get(name.lower(), self.default_class)
        return type('_'+cls.__name__, (cls, self.base_class), {})

    def __call__(self, name, value):
        """Create a header instance for header 'name' from 'value'.

        Creates a header instance by creating a specialized class for parsing
        and representing the specified header by combining the factory
        base_class with a specialized class from the registry or the
        default_class, and passing the name and value to the constructed
        class's constructor.

        """
        return self[name](name, value)
lib\email\iterators.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Various types of useful iterators and generators."""

__all__ = [
    'body_line_iterator',
    'typed_subpart_iterator',
    'walk',
    # Do not include _structure() since it's part of the debugging API.
    ]

import sys
from io import StringIO



# This function will become a method of the Message class
def walk(self):
    """Walk over the message tree, yielding each subpart.

    The walk is performed in depth-first order.  This method is a
    generator.
    """
    yield self
    if self.is_multipart():
        for subpart in self.get_payload():
            yield from subpart.walk()



# These two functions are imported into the Iterators.py interface module.
def body_line_iterator(msg, decode=False):
    """Iterate over the parts, returning string payloads line-by-line.

    Optional decode (default False) is passed through to .get_payload().
    """
    for subpart in msg.walk():
        payload = subpart.get_payload(decode=decode)
        if isinstance(payload, str):
            yield from StringIO(payload)


def typed_subpart_iterator(msg, maintype='text', subtype=None):
    """Iterate over the subparts with a given MIME type.

    Use `maintype' as the main MIME type to match against; this defaults to
    "text".  Optional `subtype' is the MIME subtype to match against; if
    omitted, only the main type is matched.
    """
    for subpart in msg.walk():
        if subpart.get_content_maintype() == maintype:
            if subtype is None or subpart.get_content_subtype() == subtype:
                yield subpart



def _structure(msg, fp=None, level=0, include_default=False):
    """A handy debugging aid"""
    if fp is None:
        fp = sys.stdout
    tab = ' ' * (level * 4)
    print(tab + msg.get_content_type(), end='', file=fp)
    if include_default:
        print(' [%s]' % msg.get_default_type(), file=fp)
    else:
        print(file=fp)
    if msg.is_multipart():
        for subpart in msg.get_payload():
            _structure(subpart, fp, level+1, include_default)
lib\email\message.py
# Copyright (C) 2001-2007 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Basic message object for the email package object model."""

__all__ = ['Message']

import re
import uu
import quopri
import warnings
from io import BytesIO, StringIO

# Intrapackage imports
from email import utils
from email import errors
from email._policybase import compat32
from email import charset as _charset
from email._encoded_words import decode_b
Charset = _charset.Charset

SEMISPACE = '; '

# Regular expression that matches `special' characters in parameters, the
# existence of which force quoting of the parameter value.
tspecials = re.compile(r'[ \(\)<>@,;:\\"/\[\]\?=]')


def _splitparam(param):
    # Split header parameters.  BAW: this may be too simple.  It isn't
    # strictly RFC 2045 (section 5.1) compliant, but it catches most headers
    # found in the wild.  We may eventually need a full fledged parser.
    # RDM: we might have a Header here; for now just stringify it.
    a, sep, b = str(param).partition(';')
    if not sep:
        return a.strip(), None
    return a.strip(), b.strip()

def _formatparam(param, value=None, quote=True):
    """Convenience function to format and return a key=value pair.

    This will quote the value if needed or if quote is true.  If value is a
    three tuple (charset, language, value), it will be encoded according
    to RFC2231 rules.  If it contains non-ascii characters it will likewise
    be encoded according to RFC2231 rules, using the utf-8 charset and
    a null language.
    """
    if value is not None and len(value) > 0:
        # A tuple is used for RFC 2231 encoded parameter values where items
        # are (charset, language, value).  charset is a string, not a Charset
        # instance.  RFC 2231 encoded values are never quoted, per RFC.
        if isinstance(value, tuple):
            # Encode as per RFC 2231
            param += '*'
            value = utils.encode_rfc2231(value[2], value[0], value[1])
            return '%s=%s' % (param, value)
        else:
            try:
                value.encode('ascii')
            except UnicodeEncodeError:
                param += '*'
                value = utils.encode_rfc2231(value, 'utf-8', '')
                return '%s=%s' % (param, value)
        # BAW: Please check this.  I think that if quote is set it should
        # force quoting even if not necessary.
        if quote or tspecials.search(value):
            return '%s="%s"' % (param, utils.quote(value))
        else:
            return '%s=%s' % (param, value)
    else:
        return param

def _parseparam(s):
    # RDM This might be a Header, so for now stringify it.
    s = ';' + str(s)
    plist = []
    while s[:1] == ';':
        s = s[1:]
        end = s.find(';')
        while end > 0 and (s.count('"', 0, end) - s.count('\\"', 0, end)) % 2:
            end = s.find(';', end + 1)
        if end < 0:
            end = len(s)
        f = s[:end]
        if '=' in f:
            i = f.index('=')
            f = f[:i].strip().lower() + '=' + f[i+1:].strip()
        plist.append(f.strip())
        s = s[end:]
    return plist


def _unquotevalue(value):
    # This is different than utils.collapse_rfc2231_value() because it doesn't
    # try to convert the value to a unicode.  Message.get_param() and
    # Message.get_params() are both currently defined to return the tuple in
    # the face of RFC 2231 parameters.
    if isinstance(value, tuple):
        return value[0], value[1], utils.unquote(value[2])
    else:
        return utils.unquote(value)



class Message:
    """Basic message object.

    A message object is defined as something that has a bunch of RFC 2822
    headers and a payload.  It may optionally have an envelope header
    (a.k.a. Unix-From or From_ header).  If the message is a container (i.e. a
    multipart or a message/rfc822), then the payload is a list of Message
    objects, otherwise it is a string.

    Message objects implement part of the `mapping' interface, which assumes
    there is exactly one occurrence of the header per message.  Some headers
    do in fact appear multiple times (e.g. Received) and for those headers,
    you must use the explicit API to set or get all the headers.  Not all of
    the mapping methods are implemented.
    """
    def __init__(self, policy=compat32):
        self.policy = policy
        self._headers = []
        self._unixfrom = None
        self._payload = None
        self._charset = None
        # Defaults for multipart messages
        self.preamble = self.epilogue = None
        self.defects = []
        # Default content type
        self._default_type = 'text/plain'

    def __str__(self):
        """Return the entire formatted message as a string.
        """
        return self.as_string()

    def as_string(self, unixfrom=False, maxheaderlen=0, policy=None):
        """Return the entire formatted message as a string.

        Optional 'unixfrom', when true, means include the Unix From_ envelope
        header.  For backward compatibility reasons, if maxheaderlen is
        not specified it defaults to 0, so you must override it explicitly
        if you want a different maxheaderlen.  'policy' is passed to the
        Generator instance used to serialize the mesasge; if it is not
        specified the policy associated with the message instance is used.

        If the message object contains binary data that is not encoded
        according to RFC standards, the non-compliant data will be replaced by
        unicode "unknown character" code points.
        """
        from email.generator import Generator
        policy = self.policy if policy is None else policy
        fp = StringIO()
        g = Generator(fp,
                      mangle_from_=False,
                      maxheaderlen=maxheaderlen,
                      policy=policy)
        g.flatten(self, unixfrom=unixfrom)
        return fp.getvalue()

    def __bytes__(self):
        """Return the entire formatted message as a bytes object.
        """
        return self.as_bytes()

    def as_bytes(self, unixfrom=False, policy=None):
        """Return the entire formatted message as a bytes object.

        Optional 'unixfrom', when true, means include the Unix From_ envelope
        header.  'policy' is passed to the BytesGenerator instance used to
        serialize the message; if not specified the policy associated with
        the message instance is used.
        """
        from email.generator import BytesGenerator
        policy = self.policy if policy is None else policy
        fp = BytesIO()
        g = BytesGenerator(fp, mangle_from_=False, policy=policy)
        g.flatten(self, unixfrom=unixfrom)
        return fp.getvalue()

    def is_multipart(self):
        """Return True if the message consists of multiple parts."""
        return isinstance(self._payload, list)

    #
    # Unix From_ line
    #
    def set_unixfrom(self, unixfrom):
        self._unixfrom = unixfrom

    def get_unixfrom(self):
        return self._unixfrom

    #
    # Payload manipulation.
    #
    def attach(self, payload):
        """Add the given payload to the current payload.

        The current payload will always be a list of objects after this method
        is called.  If you want to set the payload to a scalar object, use
        set_payload() instead.
        """
        if self._payload is None:
            self._payload = [payload]
        else:
            try:
                self._payload.append(payload)
            except AttributeError:
                raise TypeError("Attach is not valid on a message with a"
                                " non-multipart payload")

    def get_payload(self, i=None, decode=False):
        """Return a reference to the payload.

        The payload will either be a list object or a string.  If you mutate
        the list object, you modify the message's payload in place.  Optional
        i returns that index into the payload.

        Optional decode is a flag indicating whether the payload should be
        decoded or not, according to the Content-Transfer-Encoding header
        (default is False).

        When True and the message is not a multipart, the payload will be
        decoded if this header's value is `quoted-printable' or `base64'.  If
        some other encoding is used, or the header is missing, or if the
        payload has bogus data (i.e. bogus base64 or uuencoded data), the
        payload is returned as-is.

        If the message is a multipart and the decode flag is True, then None
        is returned.
        """
        # Here is the logic table for this code, based on the email5.0.0 code:
        #   i     decode  is_multipart  result
        # ------  ------  ------------  ------------------------------
        #  None   True    True          None
        #   i     True    True          None
        #  None   False   True          _payload (a list)
        #   i     False   True          _payload element i (a Message)
        #   i     False   False         error (not a list)
        #   i     True    False         error (not a list)
        #  None   False   False         _payload
        #  None   True    False         _payload decoded (bytes)
        # Note that Barry planned to factor out the 'decode' case, but that
        # isn't so easy now that we handle the 8 bit data, which needs to be
        # converted in both the decode and non-decode path.
        if self.is_multipart():
            if decode:
                return None
            if i is None:
                return self._payload
            else:
                return self._payload[i]
        # For backward compatibility, Use isinstance and this error message
        # instead of the more logical is_multipart test.
        if i is not None and not isinstance(self._payload, list):
            raise TypeError('Expected list, got %s' % type(self._payload))
        payload = self._payload
        # cte might be a Header, so for now stringify it.
        cte = str(self.get('content-transfer-encoding', '')).lower()
        # payload may be bytes here.
        if isinstance(payload, str):
            if utils._has_surrogates(payload):
                bpayload = payload.encode('ascii', 'surrogateescape')
                if not decode:
                    try:
                        payload = bpayload.decode(self.get_param('charset', 'ascii'), 'replace')
                    except LookupError:
                        payload = bpayload.decode('ascii', 'replace')
            elif decode:
                try:
                    bpayload = payload.encode('ascii')
                except UnicodeError:
                    # This won't happen for RFC compliant messages (messages
                    # containing only ASCII code points in the unicode input).
                    # If it does happen, turn the string into bytes in a way
                    # guaranteed not to fail.
                    bpayload = payload.encode('raw-unicode-escape')
        if not decode:
            return payload
        if cte == 'quoted-printable':
            return quopri.decodestring(bpayload)
        elif cte == 'base64':
            # XXX: this is a bit of a hack; decode_b should probably be factored
            # out somewhere, but I haven't figured out where yet.
            value, defects = decode_b(b''.join(bpayload.splitlines()))
            for defect in defects:
                self.policy.handle_defect(self, defect)
            return value
        elif cte in ('x-uuencode', 'uuencode', 'uue', 'x-uue'):
            in_file = BytesIO(bpayload)
            out_file = BytesIO()
            try:
                uu.decode(in_file, out_file, quiet=True)
                return out_file.getvalue()
            except uu.Error:
                # Some decoding problem
                return bpayload
        if isinstance(payload, str):
            return bpayload
        return payload

    def set_payload(self, payload, charset=None):
        """Set the payload to the given value.

        Optional charset sets the message's default character set.  See
        set_charset() for details.
        """
        if hasattr(payload, 'encode'):
            if charset is None:
                self._payload = payload
                return
            if not isinstance(charset, Charset):
                charset = Charset(charset)
            payload = payload.encode(charset.output_charset)
        if hasattr(payload, 'decode'):
            self._payload = payload.decode('ascii', 'surrogateescape')
        else:
            self._payload = payload
        if charset is not None:
            self.set_charset(charset)

    def set_charset(self, charset):
        """Set the charset of the payload to a given character set.

        charset can be a Charset instance, a string naming a character set, or
        None.  If it is a string it will be converted to a Charset instance.
        If charset is None, the charset parameter will be removed from the
        Content-Type field.  Anything else will generate a TypeError.

        The message will be assumed to be of type text/* encoded with
        charset.input_charset.  It will be converted to charset.output_charset
        and encoded properly, if needed, when generating the plain text
        representation of the message.  MIME headers (MIME-Version,
        Content-Type, Content-Transfer-Encoding) will be added as needed.
        """
        if charset is None:
            self.del_param('charset')
            self._charset = None
            return
        if not isinstance(charset, Charset):
            charset = Charset(charset)
        self._charset = charset
        if 'MIME-Version' not in self:
            self.add_header('MIME-Version', '1.0')
        if 'Content-Type' not in self:
            self.add_header('Content-Type', 'text/plain',
                            charset=charset.get_output_charset())
        else:
            self.set_param('charset', charset.get_output_charset())
        if charset != charset.get_output_charset():
            self._payload = charset.body_encode(self._payload)
        if 'Content-Transfer-Encoding' not in self:
            cte = charset.get_body_encoding()
            try:
                cte(self)
            except TypeError:
                # This 'if' is for backward compatibility, it allows unicode
                # through even though that won't work correctly if the
                # message is serialized.
                payload = self._payload
                if payload:
                    try:
                        payload = payload.encode('ascii', 'surrogateescape')
                    except UnicodeError:
                        payload = payload.encode(charset.output_charset)
                self._payload = charset.body_encode(payload)
                self.add_header('Content-Transfer-Encoding', cte)

    def get_charset(self):
        """Return the Charset instance associated with the message's payload.
        """
        return self._charset

    #
    # MAPPING INTERFACE (partial)
    #
    def __len__(self):
        """Return the total number of headers, including duplicates."""
        return len(self._headers)

    def __getitem__(self, name):
        """Get a header value.

        Return None if the header is missing instead of raising an exception.

        Note that if the header appeared multiple times, exactly which
        occurrence gets returned is undefined.  Use get_all() to get all
        the values matching a header field name.
        """
        return self.get(name)

    def __setitem__(self, name, val):
        """Set the value of a header.

        Note: this does not overwrite an existing header with the same field
        name.  Use __delitem__() first to delete any existing headers.
        """
        max_count = self.policy.header_max_count(name)
        if max_count:
            lname = name.lower()
            found = 0
            for k, v in self._headers:
                if k.lower() == lname:
                    found += 1
                    if found >= max_count:
                        raise ValueError("There may be at most {} {} headers "
                                         "in a message".format(max_count, name))
        self._headers.append(self.policy.header_store_parse(name, val))

    def __delitem__(self, name):
        """Delete all occurrences of a header, if present.

        Does not raise an exception if the header is missing.
        """
        name = name.lower()
        newheaders = []
        for k, v in self._headers:
            if k.lower() != name:
                newheaders.append((k, v))
        self._headers = newheaders

    def __contains__(self, name):
        return name.lower() in [k.lower() for k, v in self._headers]

    def __iter__(self):
        for field, value in self._headers:
            yield field

    def keys(self):
        """Return a list of all the message's header field names.

        These will be sorted in the order they appeared in the original
        message, or were added to the message, and may contain duplicates.
        Any fields deleted and re-inserted are always appended to the header
        list.
        """
        return [k for k, v in self._headers]

    def values(self):
        """Return a list of all the message's header values.

        These will be sorted in the order they appeared in the original
        message, or were added to the message, and may contain duplicates.
        Any fields deleted and re-inserted are always appended to the header
        list.
        """
        return [self.policy.header_fetch_parse(k, v)
                for k, v in self._headers]

    def items(self):
        """Get all the message's header fields and values.

        These will be sorted in the order they appeared in the original
        message, or were added to the message, and may contain duplicates.
        Any fields deleted and re-inserted are always appended to the header
        list.
        """
        return [(k, self.policy.header_fetch_parse(k, v))
                for k, v in self._headers]

    def get(self, name, failobj=None):
        """Get a header value.

        Like __getitem__() but return failobj instead of None when the field
        is missing.
        """
        name = name.lower()
        for k, v in self._headers:
            if k.lower() == name:
                return self.policy.header_fetch_parse(k, v)
        return failobj

    #
    # "Internal" methods (public API, but only intended for use by a parser
    # or generator, not normal application code.
    #

    def set_raw(self, name, value):
        """Store name and value in the model without modification.

        This is an "internal" API, intended only for use by a parser.
        """
        self._headers.append((name, value))

    def raw_items(self):
        """Return the (name, value) header pairs without modification.

        This is an "internal" API, intended only for use by a generator.
        """
        return iter(self._headers.copy())

    #
    # Additional useful stuff
    #

    def get_all(self, name, failobj=None):
        """Return a list of all the values for the named field.

        These will be sorted in the order they appeared in the original
        message, and may contain duplicates.  Any fields deleted and
        re-inserted are always appended to the header list.

        If no such fields exist, failobj is returned (defaults to None).
        """
        values = []
        name = name.lower()
        for k, v in self._headers:
            if k.lower() == name:
                values.append(self.policy.header_fetch_parse(k, v))
        if not values:
            return failobj
        return values

    def add_header(self, _name, _value, **_params):
        """Extended header setting.

        name is the header field to add.  keyword arguments can be used to set
        additional parameters for the header field, with underscores converted
        to dashes.  Normally the parameter will be added as key="value" unless
        value is None, in which case only the key will be added.  If a
        parameter value contains non-ASCII characters it can be specified as a
        three-tuple of (charset, language, value), in which case it will be
        encoded according to RFC2231 rules.  Otherwise it will be encoded using
        the utf-8 charset and a language of ''.

        Examples:

        msg.add_header('content-disposition', 'attachment', filename='bud.gif')
        msg.add_header('content-disposition', 'attachment',
                       filename=('utf-8', '', Fußballer.ppt'))
        msg.add_header('content-disposition', 'attachment',
                       filename='Fußballer.ppt'))
        """
        parts = []
        for k, v in _params.items():
            if v is None:
                parts.append(k.replace('_', '-'))
            else:
                parts.append(_formatparam(k.replace('_', '-'), v))
        if _value is not None:
            parts.insert(0, _value)
        self[_name] = SEMISPACE.join(parts)

    def replace_header(self, _name, _value):
        """Replace a header.

        Replace the first matching header found in the message, retaining
        header order and case.  If no matching header was found, a KeyError is
        raised.
        """
        _name = _name.lower()
        for i, (k, v) in zip(range(len(self._headers)), self._headers):
            if k.lower() == _name:
                self._headers[i] = self.policy.header_store_parse(k, _value)
                break
        else:
            raise KeyError(_name)

    #
    # Use these three methods instead of the three above.
    #

    def get_content_type(self):
        """Return the message's content type.

        The returned string is coerced to lower case of the form
        `maintype/subtype'.  If there was no Content-Type header in the
        message, the default type as given by get_default_type() will be
        returned.  Since according to RFC 2045, messages always have a default
        type this will always return a value.

        RFC 2045 defines a message's default type to be text/plain unless it
        appears inside a multipart/digest container, in which case it would be
        message/rfc822.
        """
        missing = object()
        value = self.get('content-type', missing)
        if value is missing:
            # This should have no parameters
            return self.get_default_type()
        ctype = _splitparam(value)[0].lower()
        # RFC 2045, section 5.2 says if its invalid, use text/plain
        if ctype.count('/') != 1:
            return 'text/plain'
        return ctype

    def get_content_maintype(self):
        """Return the message's main content type.

        This is the `maintype' part of the string returned by
        get_content_type().
        """
        ctype = self.get_content_type()
        return ctype.split('/')[0]

    def get_content_subtype(self):
        """Returns the message's sub-content type.

        This is the `subtype' part of the string returned by
        get_content_type().
        """
        ctype = self.get_content_type()
        return ctype.split('/')[1]

    def get_default_type(self):
        """Return the `default' content type.

        Most messages have a default content type of text/plain, except for
        messages that are subparts of multipart/digest containers.  Such
        subparts have a default content type of message/rfc822.
        """
        return self._default_type

    def set_default_type(self, ctype):
        """Set the `default' content type.

        ctype should be either "text/plain" or "message/rfc822", although this
        is not enforced.  The default content type is not stored in the
        Content-Type header.
        """
        self._default_type = ctype

    def _get_params_preserve(self, failobj, header):
        # Like get_params() but preserves the quoting of values.  BAW:
        # should this be part of the public interface?
        missing = object()
        value = self.get(header, missing)
        if value is missing:
            return failobj
        params = []
        for p in _parseparam(value):
            try:
                name, val = p.split('=', 1)
                name = name.strip()
                val = val.strip()
            except ValueError:
                # Must have been a bare attribute
                name = p.strip()
                val = ''
            params.append((name, val))
        params = utils.decode_params(params)
        return params

    def get_params(self, failobj=None, header='content-type', unquote=True):
        """Return the message's Content-Type parameters, as a list.

        The elements of the returned list are 2-tuples of key/value pairs, as
        split on the `=' sign.  The left hand side of the `=' is the key,
        while the right hand side is the value.  If there is no `=' sign in
        the parameter the value is the empty string.  The value is as
        described in the get_param() method.

        Optional failobj is the object to return if there is no Content-Type
        header.  Optional header is the header to search instead of
        Content-Type.  If unquote is True, the value is unquoted.
        """
        missing = object()
        params = self._get_params_preserve(missing, header)
        if params is missing:
            return failobj
        if unquote:
            return [(k, _unquotevalue(v)) for k, v in params]
        else:
            return params

    def get_param(self, param, failobj=None, header='content-type',
                  unquote=True):
        """Return the parameter value if found in the Content-Type header.

        Optional failobj is the object to return if there is no Content-Type
        header, or the Content-Type header has no such parameter.  Optional
        header is the header to search instead of Content-Type.

        Parameter keys are always compared case insensitively.  The return
        value can either be a string, or a 3-tuple if the parameter was RFC
        2231 encoded.  When it's a 3-tuple, the elements of the value are of
        the form (CHARSET, LANGUAGE, VALUE).  Note that both CHARSET and
        LANGUAGE can be None, in which case you should consider VALUE to be
        encoded in the us-ascii charset.  You can usually ignore LANGUAGE.
        The parameter value (either the returned string, or the VALUE item in
        the 3-tuple) is always unquoted, unless unquote is set to False.

        If your application doesn't care whether the parameter was RFC 2231
        encoded, it can turn the return value into a string as follows:

            rawparam = msg.get_param('foo')
            param = email.utils.collapse_rfc2231_value(rawparam)

        """
        if header not in self:
            return failobj
        for k, v in self._get_params_preserve(failobj, header):
            if k.lower() == param.lower():
                if unquote:
                    return _unquotevalue(v)
                else:
                    return v
        return failobj

    def set_param(self, param, value, header='Content-Type', requote=True,
                  charset=None, language='', replace=False):
        """Set a parameter in the Content-Type header.

        If the parameter already exists in the header, its value will be
        replaced with the new value.

        If header is Content-Type and has not yet been defined for this
        message, it will be set to "text/plain" and the new parameter and
        value will be appended as per RFC 2045.

        An alternate header can specified in the header argument, and all
        parameters will be quoted as necessary unless requote is False.

        If charset is specified, the parameter will be encoded according to RFC
        2231.  Optional language specifies the RFC 2231 language, defaulting
        to the empty string.  Both charset and language should be strings.
        """
        if not isinstance(value, tuple) and charset:
            value = (charset, language, value)

        if header not in self and header.lower() == 'content-type':
            ctype = 'text/plain'
        else:
            ctype = self.get(header)
        if not self.get_param(param, header=header):
            if not ctype:
                ctype = _formatparam(param, value, requote)
            else:
                ctype = SEMISPACE.join(
                    [ctype, _formatparam(param, value, requote)])
        else:
            ctype = ''
            for old_param, old_value in self.get_params(header=header,
                                                        unquote=requote):
                append_param = ''
                if old_param.lower() == param.lower():
                    append_param = _formatparam(param, value, requote)
                else:
                    append_param = _formatparam(old_param, old_value, requote)
                if not ctype:
                    ctype = append_param
                else:
                    ctype = SEMISPACE.join([ctype, append_param])
        if ctype != self.get(header):
            if replace:
                self.replace_header(header, ctype)
            else:
                del self[header]
                self[header] = ctype

    def del_param(self, param, header='content-type', requote=True):
        """Remove the given parameter completely from the Content-Type header.

        The header will be re-written in place without the parameter or its
        value. All values will be quoted as necessary unless requote is
        False.  Optional header specifies an alternative to the Content-Type
        header.
        """
        if header not in self:
            return
        new_ctype = ''
        for p, v in self.get_params(header=header, unquote=requote):
            if p.lower() != param.lower():
                if not new_ctype:
                    new_ctype = _formatparam(p, v, requote)
                else:
                    new_ctype = SEMISPACE.join([new_ctype,
                                                _formatparam(p, v, requote)])
        if new_ctype != self.get(header):
            del self[header]
            self[header] = new_ctype

    def set_type(self, type, header='Content-Type', requote=True):
        """Set the main type and subtype for the Content-Type header.

        type must be a string in the form "maintype/subtype", otherwise a
        ValueError is raised.

        This method replaces the Content-Type header, keeping all the
        parameters in place.  If requote is False, this leaves the existing
        header's quoting as is.  Otherwise, the parameters will be quoted (the
        default).

        An alternative header can be specified in the header argument.  When
        the Content-Type header is set, we'll always also add a MIME-Version
        header.
        """
        # BAW: should we be strict?
        if not type.count('/') == 1:
            raise ValueError
        # Set the Content-Type, you get a MIME-Version
        if header.lower() == 'content-type':
            del self['mime-version']
            self['MIME-Version'] = '1.0'
        if header not in self:
            self[header] = type
            return
        params = self.get_params(header=header, unquote=requote)
        del self[header]
        self[header] = type
        # Skip the first param; it's the old type.
        for p, v in params[1:]:
            self.set_param(p, v, header, requote)

    def get_filename(self, failobj=None):
        """Return the filename associated with the payload if present.

        The filename is extracted from the Content-Disposition header's
        `filename' parameter, and it is unquoted.  If that header is missing
        the `filename' parameter, this method falls back to looking for the
        `name' parameter.
        """
        missing = object()
        filename = self.get_param('filename', missing, 'content-disposition')
        if filename is missing:
            filename = self.get_param('name', missing, 'content-type')
        if filename is missing:
            return failobj
        return utils.collapse_rfc2231_value(filename).strip()

    def get_boundary(self, failobj=None):
        """Return the boundary associated with the payload if present.

        The boundary is extracted from the Content-Type header's `boundary'
        parameter, and it is unquoted.
        """
        missing = object()
        boundary = self.get_param('boundary', missing)
        if boundary is missing:
            return failobj
        # RFC 2046 says that boundaries may begin but not end in w/s
        return utils.collapse_rfc2231_value(boundary).rstrip()

    def set_boundary(self, boundary):
        """Set the boundary parameter in Content-Type to 'boundary'.

        This is subtly different than deleting the Content-Type header and
        adding a new one with a new boundary parameter via add_header().  The
        main difference is that using the set_boundary() method preserves the
        order of the Content-Type header in the original message.

        HeaderParseError is raised if the message has no Content-Type header.
        """
        missing = object()
        params = self._get_params_preserve(missing, 'content-type')
        if params is missing:
            # There was no Content-Type header, and we don't know what type
            # to set it to, so raise an exception.
            raise errors.HeaderParseError('No Content-Type header found')
        newparams = []
        foundp = False
        for pk, pv in params:
            if pk.lower() == 'boundary':
                newparams.append(('boundary', '"%s"' % boundary))
                foundp = True
            else:
                newparams.append((pk, pv))
        if not foundp:
            # The original Content-Type header had no boundary attribute.
            # Tack one on the end.  BAW: should we raise an exception
            # instead???
            newparams.append(('boundary', '"%s"' % boundary))
        # Replace the existing Content-Type header with the new value
        newheaders = []
        for h, v in self._headers:
            if h.lower() == 'content-type':
                parts = []
                for k, v in newparams:
                    if v == '':
                        parts.append(k)
                    else:
                        parts.append('%s=%s' % (k, v))
                val = SEMISPACE.join(parts)
                newheaders.append(self.policy.header_store_parse(h, val))

            else:
                newheaders.append((h, v))
        self._headers = newheaders

    def get_content_charset(self, failobj=None):
        """Return the charset parameter of the Content-Type header.

        The returned string is always coerced to lower case.  If there is no
        Content-Type header, or if that header has no charset parameter,
        failobj is returned.
        """
        missing = object()
        charset = self.get_param('charset', missing)
        if charset is missing:
            return failobj
        if isinstance(charset, tuple):
            # RFC 2231 encoded, so decode it, and it better end up as ascii.
            pcharset = charset[0] or 'us-ascii'
            try:
                # LookupError will be raised if the charset isn't known to
                # Python.  UnicodeError will be raised if the encoded text
                # contains a character not in the charset.
                as_bytes = charset[2].encode('raw-unicode-escape')
                charset = str(as_bytes, pcharset)
            except (LookupError, UnicodeError):
                charset = charset[2]
        # charset characters must be in us-ascii range
        try:
            charset.encode('us-ascii')
        except UnicodeError:
            return failobj
        # RFC 2046, $4.1.2 says charsets are not case sensitive
        return charset.lower()

    def get_charsets(self, failobj=None):
        """Return a list containing the charset(s) used in this message.

        The returned list of items describes the Content-Type headers'
        charset parameter for this message and all the subparts in its
        payload.

        Each item will either be a string (the value of the charset parameter
        in the Content-Type header of that part) or the value of the
        'failobj' parameter (defaults to None), if the part does not have a
        main MIME type of "text", or the charset is not defined.

        The list will contain one string for each part of the message, plus
        one for the container message (i.e. self), so that a non-multipart
        message will still return a list of length 1.
        """
        return [part.get_content_charset(failobj) for part in self.walk()]

    # I.e. def walk(self): ...
    from email.iterators import walk

# XXX Support for temporary deprecation hack for is_attachment property.
class _IsAttachment:
    def __init__(self, value):
        self.value = value
    def __call__(self):
        return self.value
    def __bool__(self):
        warnings.warn("is_attachment will be a method, not a property, in 3.5",
                      DeprecationWarning,
                      stacklevel=3)
        return self.value

class MIMEPart(Message):

    def __init__(self, policy=None):
        if policy is None:
            from email.policy import default
            policy = default
        Message.__init__(self, policy)

    @property
    def is_attachment(self):
        c_d = self.get('content-disposition')
        result = False if c_d is None else c_d.content_disposition == 'attachment'
        # XXX transitional hack to raise deprecation if not called.
        return _IsAttachment(result)

    def _find_body(self, part, preferencelist):
        if part.is_attachment():
            return
        maintype, subtype = part.get_content_type().split('/')
        if maintype == 'text':
            if subtype in preferencelist:
                yield (preferencelist.index(subtype), part)
            return
        if maintype != 'multipart':
            return
        if subtype != 'related':
            for subpart in part.iter_parts():
                yield from self._find_body(subpart, preferencelist)
            return
        if 'related' in preferencelist:
            yield (preferencelist.index('related'), part)
        candidate = None
        start = part.get_param('start')
        if start:
            for subpart in part.iter_parts():
                if subpart['content-id'] == start:
                    candidate = subpart
                    break
        if candidate is None:
            subparts = part.get_payload()
            candidate = subparts[0] if subparts else None
        if candidate is not None:
            yield from self._find_body(candidate, preferencelist)

    def get_body(self, preferencelist=('related', 'html', 'plain')):
        """Return best candidate mime part for display as 'body' of message.

        Do a depth first search, starting with self, looking for the first part
        matching each of the items in preferencelist, and return the part
        corresponding to the first item that has a match, or None if no items
        have a match.  If 'related' is not included in preferencelist, consider
        the root part of any multipart/related encountered as a candidate
        match.  Ignore parts with 'Content-Disposition: attachment'.
        """
        best_prio = len(preferencelist)
        body = None
        for prio, part in self._find_body(self, preferencelist):
            if prio < best_prio:
                best_prio = prio
                body = part
                if prio == 0:
                    break
        return body

    _body_types = {('text', 'plain'),
                   ('text', 'html'),
                   ('multipart', 'related'),
                   ('multipart', 'alternative')}
    def iter_attachments(self):
        """Return an iterator over the non-main parts of a multipart.

        Skip the first of each occurrence of text/plain, text/html,
        multipart/related, or multipart/alternative in the multipart (unless
        they have a 'Content-Disposition: attachment' header) and include all
        remaining subparts in the returned iterator.  When applied to a
        multipart/related, return all parts except the root part.  Return an
        empty iterator when applied to a multipart/alternative or a
        non-multipart.
        """
        maintype, subtype = self.get_content_type().split('/')
        if maintype != 'multipart' or subtype == 'alternative':
            return
        parts = self.get_payload()
        if maintype == 'multipart' and subtype == 'related':
            # For related, we treat everything but the root as an attachment.
            # The root may be indicated by 'start'; if there's no start or we
            # can't find the named start, treat the first subpart as the root.
            start = self.get_param('start')
            if start:
                found = False
                attachments = []
                for part in parts:
                    if part.get('content-id') == start:
                        found = True
                    else:
                        attachments.append(part)
                if found:
                    yield from attachments
                    return
            parts.pop(0)
            yield from parts
            return
        # Otherwise we more or less invert the remaining logic in get_body.
        # This only really works in edge cases (ex: non-text relateds or
        # alternatives) if the sending agent sets content-disposition.
        seen = []   # Only skip the first example of each candidate type.
        for part in parts:
            maintype, subtype = part.get_content_type().split('/')
            if ((maintype, subtype) in self._body_types and
                    not part.is_attachment() and subtype not in seen):
                seen.append(subtype)
                continue
            yield part

    def iter_parts(self):
        """Return an iterator over all immediate subparts of a multipart.

        Return an empty iterator for a non-multipart.
        """
        if self.get_content_maintype() == 'multipart':
            yield from self.get_payload()

    def get_content(self, *args, content_manager=None, **kw):
        if content_manager is None:
            content_manager = self.policy.content_manager
        return content_manager.get_content(self, *args, **kw)

    def set_content(self, *args, content_manager=None, **kw):
        if content_manager is None:
            content_manager = self.policy.content_manager
        content_manager.set_content(self, *args, **kw)

    def _make_multipart(self, subtype, disallowed_subtypes, boundary):
        if self.get_content_maintype() == 'multipart':
            existing_subtype = self.get_content_subtype()
            disallowed_subtypes = disallowed_subtypes + (subtype,)
            if existing_subtype in disallowed_subtypes:
                raise ValueError("Cannot convert {} to {}".format(
                    existing_subtype, subtype))
        keep_headers = []
        part_headers = []
        for name, value in self._headers:
            if name.lower().startswith('content-'):
                part_headers.append((name, value))
            else:
                keep_headers.append((name, value))
        if part_headers:
            # There is existing content, move it to the first subpart.
            part = type(self)(policy=self.policy)
            part._headers = part_headers
            part._payload = self._payload
            self._payload = [part]
        else:
            self._payload = []
        self._headers = keep_headers
        self['Content-Type'] = 'multipart/' + subtype
        if boundary is not None:
            self.set_param('boundary', boundary)

    def make_related(self, boundary=None):
        self._make_multipart('related', ('alternative', 'mixed'), boundary)

    def make_alternative(self, boundary=None):
        self._make_multipart('alternative', ('mixed',), boundary)

    def make_mixed(self, boundary=None):
        self._make_multipart('mixed', (), boundary)

    def _add_multipart(self, _subtype, *args, _disp=None, **kw):
        if (self.get_content_maintype() != 'multipart' or
                self.get_content_subtype() != _subtype):
            getattr(self, 'make_' + _subtype)()
        part = type(self)(policy=self.policy)
        part.set_content(*args, **kw)
        if _disp and 'content-disposition' not in part:
            part['Content-Disposition'] = _disp
        self.attach(part)

    def add_related(self, *args, **kw):
        self._add_multipart('related', *args, _disp='inline', **kw)

    def add_alternative(self, *args, **kw):
        self._add_multipart('alternative', *args, **kw)

    def add_attachment(self, *args, **kw):
        self._add_multipart('mixed', *args, _disp='attachment', **kw)

    def clear(self):
        self._headers = []
        self._payload = None

    def clear_content(self):
        self._headers = [(n, v) for n, v in self._headers
                         if not n.lower().startswith('content-')]
        self._payload = None


class EmailMessage(MIMEPart):

    def set_content(self, *args, **kw):
        super().set_content(*args, **kw)
        if 'MIME-Version' not in self:
            self['MIME-Version'] = '1.0'
lib\email\parser.py
# Copyright (C) 2001-2007 Python Software Foundation
# Author: Barry Warsaw, Thomas Wouters, Anthony Baxter
# Contact: [email protected]

"""A parser of RFC 2822 and MIME email messages."""

__all__ = ['Parser', 'HeaderParser', 'BytesParser', 'BytesHeaderParser',
           'FeedParser', 'BytesFeedParser']

from io import StringIO, TextIOWrapper

from email.feedparser import FeedParser, BytesFeedParser
from email._policybase import compat32



class Parser:
    def __init__(self, _class=None, *, policy=compat32):
        """Parser of RFC 2822 and MIME email messages.

        Creates an in-memory object tree representing the email message, which
        can then be manipulated and turned over to a Generator to return the
        textual representation of the message.

        The string must be formatted as a block of RFC 2822 headers and header
        continuation lines, optionally preceeded by a `Unix-from' header.  The
        header block is terminated either by the end of the string or by a
        blank line.

        _class is the class to instantiate for new message objects when they
        must be created.  This class must have a constructor that can take
        zero arguments.  Default is Message.Message.

        The policy keyword specifies a policy object that controls a number of
        aspects of the parser's operation.  The default policy maintains
        backward compatibility.

        """
        self._class = _class
        self.policy = policy

    def parse(self, fp, headersonly=False):
        """Create a message structure from the data in a file.

        Reads all the data from the file and returns the root of the message
        structure.  Optional headersonly is a flag specifying whether to stop
        parsing after reading the headers or not.  The default is False,
        meaning it parses the entire contents of the file.
        """
        feedparser = FeedParser(self._class, policy=self.policy)
        if headersonly:
            feedparser._set_headersonly()
        while True:
            data = fp.read(8192)
            if not data:
                break
            feedparser.feed(data)
        return feedparser.close()

    def parsestr(self, text, headersonly=False):
        """Create a message structure from a string.

        Returns the root of the message structure.  Optional headersonly is a
        flag specifying whether to stop parsing after reading the headers or
        not.  The default is False, meaning it parses the entire contents of
        the file.
        """
        return self.parse(StringIO(text), headersonly=headersonly)



class HeaderParser(Parser):
    def parse(self, fp, headersonly=True):
        return Parser.parse(self, fp, True)

    def parsestr(self, text, headersonly=True):
        return Parser.parsestr(self, text, True)


class BytesParser:

    def __init__(self, *args, **kw):
        """Parser of binary RFC 2822 and MIME email messages.

        Creates an in-memory object tree representing the email message, which
        can then be manipulated and turned over to a Generator to return the
        textual representation of the message.

        The input must be formatted as a block of RFC 2822 headers and header
        continuation lines, optionally preceeded by a `Unix-from' header.  The
        header block is terminated either by the end of the input or by a
        blank line.

        _class is the class to instantiate for new message objects when they
        must be created.  This class must have a constructor that can take
        zero arguments.  Default is Message.Message.
        """
        self.parser = Parser(*args, **kw)

    def parse(self, fp, headersonly=False):
        """Create a message structure from the data in a binary file.

        Reads all the data from the file and returns the root of the message
        structure.  Optional headersonly is a flag specifying whether to stop
        parsing after reading the headers or not.  The default is False,
        meaning it parses the entire contents of the file.
        """
        fp = TextIOWrapper(fp, encoding='ascii', errors='surrogateescape')
        try:
            return self.parser.parse(fp, headersonly)
        finally:
            fp.detach()


    def parsebytes(self, text, headersonly=False):
        """Create a message structure from a byte string.

        Returns the root of the message structure.  Optional headersonly is a
        flag specifying whether to stop parsing after reading the headers or
        not.  The default is False, meaning it parses the entire contents of
        the file.
        """
        text = text.decode('ASCII', errors='surrogateescape')
        return self.parser.parsestr(text, headersonly)


class BytesHeaderParser(BytesParser):
    def parse(self, fp, headersonly=True):
        return BytesParser.parse(self, fp, headersonly=True)

    def parsebytes(self, text, headersonly=True):
        return BytesParser.parsebytes(self, text, headersonly=True)
lib\email\policy.py
"""This will be the home for the policy that hooks in the new
code that adds all the email6 features.
"""

from email._policybase import Policy, Compat32, compat32, _extend_docstrings
from email.utils import _has_surrogates
from email.headerregistry import HeaderRegistry as HeaderRegistry
from email.contentmanager import raw_data_manager

__all__ = [
    'Compat32',
    'compat32',
    'Policy',
    'EmailPolicy',
    'default',
    'strict',
    'SMTP',
    'HTTP',
    ]

@_extend_docstrings
class EmailPolicy(Policy):

    """+
    PROVISIONAL

    The API extensions enabled by this policy are currently provisional.
    Refer to the documentation for details.

    This policy adds new header parsing and folding algorithms.  Instead of
    simple strings, headers are custom objects with custom attributes
    depending on the type of the field.  The folding algorithm fully
    implements RFCs 2047 and 5322.

    In addition to the settable attributes listed above that apply to
    all Policies, this policy adds the following additional attributes:

    refold_source       -- if the value for a header in the Message object
                           came from the parsing of some source, this attribute
                           indicates whether or not a generator should refold
                           that value when transforming the message back into
                           stream form.  The possible values are:

                           none  -- all source values use original folding
                           long  -- source values that have any line that is
                                    longer than max_line_length will be
                                    refolded
                           all  -- all values are refolded.

                           The default is 'long'.

    header_factory      -- a callable that takes two arguments, 'name' and
                           'value', where 'name' is a header field name and
                           'value' is an unfolded header field value, and
                           returns a string-like object that represents that
                           header.  A default header_factory is provided that
                           understands some of the RFC5322 header field types.
                           (Currently address fields and date fields have
                           special treatment, while all other fields are
                           treated as unstructured.  This list will be
                           completed before the extension is marked stable.)

    content_manager     -- an object with at least two methods: get_content
                           and set_content.  When the get_content or
                           set_content method of a Message object is called,
                           it calls the corresponding method of this object,
                           passing it the message object as its first argument,
                           and any arguments or keywords that were passed to
                           it as additional arguments.  The default
                           content_manager is
                           :data:`~email.contentmanager.raw_data_manager`.

    """

    refold_source = 'long'
    header_factory = HeaderRegistry()
    content_manager = raw_data_manager

    def __init__(self, **kw):
        # Ensure that each new instance gets a unique header factory
        # (as opposed to clones, which share the factory).
        if 'header_factory' not in kw:
            object.__setattr__(self, 'header_factory', HeaderRegistry())
        super().__init__(**kw)

    def header_max_count(self, name):
        """+
        The implementation for this class returns the max_count attribute from
        the specialized header class that would be used to construct a header
        of type 'name'.
        """
        return self.header_factory[name].max_count

    # The logic of the next three methods is chosen such that it is possible to
    # switch a Message object between a Compat32 policy and a policy derived
    # from this class and have the results stay consistent.  This allows a
    # Message object constructed with this policy to be passed to a library
    # that only handles Compat32 objects, or to receive such an object and
    # convert it to use the newer style by just changing its policy.  It is
    # also chosen because it postpones the relatively expensive full rfc5322
    # parse until as late as possible when parsing from source, since in many
    # applications only a few headers will actually be inspected.

    def header_source_parse(self, sourcelines):
        """+
        The name is parsed as everything up to the ':' and returned unmodified.
        The value is determined by stripping leading whitespace off the
        remainder of the first line, joining all subsequent lines together, and
        stripping any trailing carriage return or linefeed characters.  (This
        is the same as Compat32).

        """
        name, value = sourcelines[0].split(':', 1)
        value = value.lstrip(' \t') + ''.join(sourcelines[1:])
        return (name, value.rstrip('\r\n'))

    def header_store_parse(self, name, value):
        """+
        The name is returned unchanged.  If the input value has a 'name'
        attribute and it matches the name ignoring case, the value is returned
        unchanged.  Otherwise the name and value are passed to header_factory
        method, and the resulting custom header object is returned as the
        value.  In this case a ValueError is raised if the input value contains
        CR or LF characters.

        """
        if hasattr(value, 'name') and value.name.lower() == name.lower():
            return (name, value)
        if isinstance(value, str) and len(value.splitlines())>1:
            raise ValueError("Header values may not contain linefeed "
                             "or carriage return characters")
        return (name, self.header_factory(name, value))

    def header_fetch_parse(self, name, value):
        """+
        If the value has a 'name' attribute, it is returned to unmodified.
        Otherwise the name and the value with any linesep characters removed
        are passed to the header_factory method, and the resulting custom
        header object is returned.  Any surrogateescaped bytes get turned
        into the unicode unknown-character glyph.

        """
        if hasattr(value, 'name'):
            return value
        return self.header_factory(name, ''.join(value.splitlines()))

    def fold(self, name, value):
        """+
        Header folding is controlled by the refold_source policy setting.  A
        value is considered to be a 'source value' if and only if it does not
        have a 'name' attribute (having a 'name' attribute means it is a header
        object of some sort).  If a source value needs to be refolded according
        to the policy, it is converted into a custom header object by passing
        the name and the value with any linesep characters removed to the
        header_factory method.  Folding of a custom header object is done by
        calling its fold method with the current policy.

        Source values are split into lines using splitlines.  If the value is
        not to be refolded, the lines are rejoined using the linesep from the
        policy and returned.  The exception is lines containing non-ascii
        binary data.  In that case the value is refolded regardless of the
        refold_source setting, which causes the binary data to be CTE encoded
        using the unknown-8bit charset.

        """
        return self._fold(name, value, refold_binary=True)

    def fold_binary(self, name, value):
        """+
        The same as fold if cte_type is 7bit, except that the returned value is
        bytes.

        If cte_type is 8bit, non-ASCII binary data is converted back into
        bytes.  Headers with binary data are not refolded, regardless of the
        refold_header setting, since there is no way to know whether the binary
        data consists of single byte characters or multibyte characters.

        """
        folded = self._fold(name, value, refold_binary=self.cte_type=='7bit')
        return folded.encode('ascii', 'surrogateescape')

    def _fold(self, name, value, refold_binary=False):
        if hasattr(value, 'name'):
            return value.fold(policy=self)
        maxlen = self.max_line_length if self.max_line_length else float('inf')
        lines = value.splitlines()
        refold = (self.refold_source == 'all' or
                  self.refold_source == 'long' and
                    (lines and len(lines[0])+len(name)+2 > maxlen or
                     any(len(x) > maxlen for x in lines[1:])))
        if refold or refold_binary and _has_surrogates(value):
            return self.header_factory(name, ''.join(lines)).fold(policy=self)
        return name + ': ' + self.linesep.join(lines) + self.linesep


default = EmailPolicy()
# Make the default policy use the class default header_factory
del default.header_factory
strict = default.clone(raise_on_defect=True)
SMTP = default.clone(linesep='\r\n')
HTTP = default.clone(linesep='\r\n', max_line_length=None)
lib\email\quoprimime.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Ben Gertzfield
# Contact: [email protected]

"""Quoted-printable content transfer encoding per RFCs 2045-2047.

This module handles the content transfer encoding method defined in RFC 2045
to encode US ASCII-like 8-bit data called `quoted-printable'.  It is used to
safely encode text that is in a character set similar to the 7-bit US ASCII
character set, but that includes some 8-bit characters that are normally not
allowed in email bodies or headers.

Quoted-printable is very space-inefficient for encoding binary files; use the
email.base64mime module for that instead.

This module provides an interface to encode and decode both headers and bodies
with quoted-printable encoding.

RFC 2045 defines a method for including character set information in an
`encoded-word' in a header.  This method is commonly used for 8-bit real names
in To:/From:/Cc: etc. fields, as well as Subject: lines.

This module does not do the line wrapping or end-of-line character
conversion necessary for proper internationalized headers; it only
does dumb encoding and decoding.  To deal with the various line
wrapping issues, use the email.header module.
"""

__all__ = [
    'body_decode',
    'body_encode',
    'body_length',
    'decode',
    'decodestring',
    'header_decode',
    'header_encode',
    'header_length',
    'quote',
    'unquote',
    ]

import re

from string import ascii_letters, digits, hexdigits

CRLF = '\r\n'
NL = '\n'
EMPTYSTRING = ''

# Build a mapping of octets to the expansion of that octet.  Since we're only
# going to have 256 of these things, this isn't terribly inefficient
# space-wise.  Remember that headers and bodies have different sets of safe
# characters.  Initialize both maps with the full expansion, and then override
# the safe bytes with the more compact form.
_QUOPRI_MAP = ['=%02X' % c for c in range(256)]
_QUOPRI_HEADER_MAP = _QUOPRI_MAP[:]
_QUOPRI_BODY_MAP = _QUOPRI_MAP[:]

# Safe header bytes which need no encoding.
for c in b'-!*+/' + ascii_letters.encode('ascii') + digits.encode('ascii'):
    _QUOPRI_HEADER_MAP[c] = chr(c)
# Headers have one other special encoding; spaces become underscores.
_QUOPRI_HEADER_MAP[ord(' ')] = '_'

# Safe body bytes which need no encoding.
for c in (b' !"#$%&\'()*+,-./0123456789:;<>'
          b'?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`'
          b'abcdefghijklmnopqrstuvwxyz{|}~\t'):
    _QUOPRI_BODY_MAP[c] = chr(c)



# Helpers
def header_check(octet):
    """Return True if the octet should be escaped with header quopri."""
    return chr(octet) != _QUOPRI_HEADER_MAP[octet]


def body_check(octet):
    """Return True if the octet should be escaped with body quopri."""
    return chr(octet) != _QUOPRI_BODY_MAP[octet]


def header_length(bytearray):
    """Return a header quoted-printable encoding length.

    Note that this does not include any RFC 2047 chrome added by
    `header_encode()`.

    :param bytearray: An array of bytes (a.k.a. octets).
    :return: The length in bytes of the byte array when it is encoded with
        quoted-printable for headers.
    """
    return sum(len(_QUOPRI_HEADER_MAP[octet]) for octet in bytearray)


def body_length(bytearray):
    """Return a body quoted-printable encoding length.

    :param bytearray: An array of bytes (a.k.a. octets).
    :return: The length in bytes of the byte array when it is encoded with
        quoted-printable for bodies.
    """
    return sum(len(_QUOPRI_BODY_MAP[octet]) for octet in bytearray)


def _max_append(L, s, maxlen, extra=''):
    if not isinstance(s, str):
        s = chr(s)
    if not L:
        L.append(s.lstrip())
    elif len(L[-1]) + len(s) <= maxlen:
        L[-1] += extra + s
    else:
        L.append(s.lstrip())


def unquote(s):
    """Turn a string in the form =AB to the ASCII character with value 0xab"""
    return chr(int(s[1:3], 16))


def quote(c):
    return _QUOPRI_MAP[ord(c)]


def header_encode(header_bytes, charset='iso-8859-1'):
    """Encode a single header line with quoted-printable (like) encoding.

    Defined in RFC 2045, this `Q' encoding is similar to quoted-printable, but
    used specifically for email header fields to allow charsets with mostly 7
    bit characters (and some 8 bit) to remain more or less readable in non-RFC
    2045 aware mail clients.

    charset names the character set to use in the RFC 2046 header.  It
    defaults to iso-8859-1.
    """
    # Return empty headers as an empty string.
    if not header_bytes:
        return ''
    # Iterate over every byte, encoding if necessary.
    encoded = header_bytes.decode('latin1').translate(_QUOPRI_HEADER_MAP)
    # Now add the RFC chrome to each encoded chunk and glue the chunks
    # together.
    return '=?%s?q?%s?=' % (charset, encoded)


_QUOPRI_BODY_ENCODE_MAP = _QUOPRI_BODY_MAP[:]
for c in b'\r\n':
    _QUOPRI_BODY_ENCODE_MAP[c] = chr(c)

def body_encode(body, maxlinelen=76, eol=NL):
    """Encode with quoted-printable, wrapping at maxlinelen characters.

    Each line of encoded text will end with eol, which defaults to "\\n".  Set
    this to "\\r\\n" if you will be using the result of this function directly
    in an email.

    Each line will be wrapped at, at most, maxlinelen characters before the
    eol string (maxlinelen defaults to 76 characters, the maximum value
    permitted by RFC 2045).  Long lines will have the 'soft line break'
    quoted-printable character "=" appended to them, so the decoded text will
    be identical to the original text.

    The minimum maxlinelen is 4 to have room for a quoted character ("=XX")
    followed by a soft line break.  Smaller values will generate a
    ValueError.

    """

    if maxlinelen < 4:
        raise ValueError("maxlinelen must be at least 4")
    if not body:
        return body

    # quote speacial characters
    body = body.translate(_QUOPRI_BODY_ENCODE_MAP)

    soft_break = '=' + eol
    # leave space for the '=' at the end of a line
    maxlinelen1 = maxlinelen - 1

    encoded_body = []
    append = encoded_body.append

    for line in body.splitlines():
        # break up the line into pieces no longer than maxlinelen - 1
        start = 0
        laststart = len(line) - 1 - maxlinelen
        while start <= laststart:
            stop = start + maxlinelen1
            # make sure we don't break up an escape sequence
            if line[stop - 2] == '=':
                append(line[start:stop - 1])
                start = stop - 2
            elif line[stop - 1] == '=':
                append(line[start:stop])
                start = stop - 1
            else:
                append(line[start:stop] + '=')
                start = stop

        # handle rest of line, special case if line ends in whitespace
        if line and line[-1] in ' \t':
            room = start - laststart
            if room >= 3:
                # It's a whitespace character at end-of-line, and we have room
                # for the three-character quoted encoding.
                q = quote(line[-1])
            elif room == 2:
                # There's room for the whitespace character and a soft break.
                q = line[-1] + soft_break
            else:
                # There's room only for a soft break.  The quoted whitespace
                # will be the only content on the subsequent line.
                q = soft_break + quote(line[-1])
            append(line[start:-1] + q)
        else:
            append(line[start:])

    # add back final newline if present
    if body[-1] in CRLF:
        append('')

    return eol.join(encoded_body)



# BAW: I'm not sure if the intent was for the signature of this function to be
# the same as base64MIME.decode() or not...
def decode(encoded, eol=NL):
    """Decode a quoted-printable string.

    Lines are separated with eol, which defaults to \\n.
    """
    if not encoded:
        return encoded
    # BAW: see comment in encode() above.  Again, we're building up the
    # decoded string with string concatenation, which could be done much more
    # efficiently.
    decoded = ''

    for line in encoded.splitlines():
        line = line.rstrip()
        if not line:
            decoded += eol
            continue

        i = 0
        n = len(line)
        while i < n:
            c = line[i]
            if c != '=':
                decoded += c
                i += 1
            # Otherwise, c == "=".  Are we at the end of the line?  If so, add
            # a soft line break.
            elif i+1 == n:
                i += 1
                continue
            # Decode if in form =AB
            elif i+2 < n and line[i+1] in hexdigits and line[i+2] in hexdigits:
                decoded += unquote(line[i:i+3])
                i += 3
            # Otherwise, not in form =AB, pass literally
            else:
                decoded += c
                i += 1

            if i == n:
                decoded += eol
    # Special case if original string did not end with eol
    if encoded[-1] not in '\r\n' and decoded.endswith(eol):
        decoded = decoded[:-1]
    return decoded


# For convenience and backwards compatibility w/ standard base64 module
body_decode = decode
decodestring = decode



def _unquote_match(match):
    """Turn a match in the form =AB to the ASCII character with value 0xab"""
    s = match.group(0)
    return unquote(s)


# Header decoding is done a bit differently
def header_decode(s):
    """Decode a string encoded with RFC 2045 MIME header `Q' encoding.

    This function does not parse a full MIME header value encoded with
    quoted-printable (like =?iso-8895-1?q?Hello_World?=) -- please use
    the high level email.header class for that functionality.
    """
    s = s.replace('_', ' ')
    return re.sub(r'=[a-fA-F0-9]{2}', _unquote_match, s, flags=re.ASCII)
lib\email\utils.py
# Copyright (C) 2001-2010 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Miscellaneous utilities."""

__all__ = [
    'collapse_rfc2231_value',
    'decode_params',
    'decode_rfc2231',
    'encode_rfc2231',
    'formataddr',
    'formatdate',
    'format_datetime',
    'getaddresses',
    'make_msgid',
    'mktime_tz',
    'parseaddr',
    'parsedate',
    'parsedate_tz',
    'parsedate_to_datetime',
    'unquote',
    ]

import os
import re
import time
import random
import socket
import datetime
import urllib.parse

from email._parseaddr import quote
from email._parseaddr import AddressList as _AddressList
from email._parseaddr import mktime_tz

from email._parseaddr import parsedate, parsedate_tz, _parsedate_tz

# Intrapackage imports
from email.charset import Charset

COMMASPACE = ', '
EMPTYSTRING = ''
UEMPTYSTRING = ''
CRLF = '\r\n'
TICK = "'"

specialsre = re.compile(r'[][\\()<>@,:;".]')
escapesre = re.compile(r'[\\"]')

def _has_surrogates(s):
    """Return True if s contains surrogate-escaped binary data."""
    # This check is based on the fact that unless there are surrogates, utf8
    # (Python's default encoding) can encode any string.  This is the fastest
    # way to check for surrogates, see issue 11454 for timings.
    try:
        s.encode()
        return False
    except UnicodeEncodeError:
        return True

# How to deal with a string containing bytes before handing it to the
# application through the 'normal' interface.
def _sanitize(string):
    # Turn any escaped bytes into unicode 'unknown' char.  If the escaped
    # bytes happen to be utf-8 they will instead get decoded, even if they
    # were invalid in the charset the source was supposed to be in.  This
    # seems like it is not a bad thing; a defect was still registered.
    original_bytes = string.encode('utf-8', 'surrogateescape')
    return original_bytes.decode('utf-8', 'replace')



# Helpers

def formataddr(pair, charset='utf-8'):
    """The inverse of parseaddr(), this takes a 2-tuple of the form
    (realname, email_address) and returns the string value suitable
    for an RFC 2822 From, To or Cc header.

    If the first element of pair is false, then the second element is
    returned unmodified.

    Optional charset if given is the character set that is used to encode
    realname in case realname is not ASCII safe.  Can be an instance of str or
    a Charset-like object which has a header_encode method.  Default is
    'utf-8'.
    """
    name, address = pair
    # The address MUST (per RFC) be ascii, so raise an UnicodeError if it isn't.
    address.encode('ascii')
    if name:
        try:
            name.encode('ascii')
        except UnicodeEncodeError:
            if isinstance(charset, str):
                charset = Charset(charset)
            encoded_name = charset.header_encode(name)
            return "%s <%s>" % (encoded_name, address)
        else:
            quotes = ''
            if specialsre.search(name):
                quotes = '"'
            name = escapesre.sub(r'\\\g<0>', name)
            return '%s%s%s <%s>' % (quotes, name, quotes, address)
    return address



def getaddresses(fieldvalues):
    """Return a list of (REALNAME, EMAIL) for each fieldvalue."""
    all = COMMASPACE.join(fieldvalues)
    a = _AddressList(all)
    return a.addresslist



ecre = re.compile(r'''
  =\?                   # literal =?
  (?P<charset>[^?]*?)   # non-greedy up to the next ? is the charset
  \?                    # literal ?
  (?P<encoding>[qb])    # either a "q" or a "b", case insensitive
  \?                    # literal ?
  (?P<atom>.*?)         # non-greedy up to the next ?= is the atom
  \?=                   # literal ?=
  ''', re.VERBOSE | re.IGNORECASE)


def _format_timetuple_and_zone(timetuple, zone):
    return '%s, %02d %s %04d %02d:%02d:%02d %s' % (
        ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'][timetuple[6]],
        timetuple[2],
        ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
         'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'][timetuple[1] - 1],
        timetuple[0], timetuple[3], timetuple[4], timetuple[5],
        zone)

def formatdate(timeval=None, localtime=False, usegmt=False):
    """Returns a date string as specified by RFC 2822, e.g.:

    Fri, 09 Nov 2001 01:08:47 -0000

    Optional timeval if given is a floating point time value as accepted by
    gmtime() and localtime(), otherwise the current time is used.

    Optional localtime is a flag that when True, interprets timeval, and
    returns a date relative to the local timezone instead of UTC, properly
    taking daylight savings time into account.

    Optional argument usegmt means that the timezone is written out as
    an ascii string, not numeric one (so "GMT" instead of "+0000"). This
    is needed for HTTP, and is only used when localtime==False.
    """
    # Note: we cannot use strftime() because that honors the locale and RFC
    # 2822 requires that day and month names be the English abbreviations.
    if timeval is None:
        timeval = time.time()
    if localtime or usegmt:
        dt = datetime.datetime.fromtimestamp(timeval, datetime.timezone.utc)
    else:
        dt = datetime.datetime.utcfromtimestamp(timeval)
    if localtime:
        dt = dt.astimezone()
        usegmt = False
    return format_datetime(dt, usegmt)

def format_datetime(dt, usegmt=False):
    """Turn a datetime into a date string as specified in RFC 2822.

    If usegmt is True, dt must be an aware datetime with an offset of zero.  In
    this case 'GMT' will be rendered instead of the normal +0000 required by
    RFC2822.  This is to support HTTP headers involving date stamps.
    """
    now = dt.timetuple()
    if usegmt:
        if dt.tzinfo is None or dt.tzinfo != datetime.timezone.utc:
            raise ValueError("usegmt option requires a UTC datetime")
        zone = 'GMT'
    elif dt.tzinfo is None:
        zone = '-0000'
    else:
        zone = dt.strftime("%z")
    return _format_timetuple_and_zone(now, zone)


def make_msgid(idstring=None, domain=None):
    """Returns a string suitable for RFC 2822 compliant Message-ID, e.g:

    <142480216486.20800.16526388040877946887@nightshade.la.mastaler.com>

    Optional idstring if given is a string used to strengthen the
    uniqueness of the message id.  Optional domain if given provides the
    portion of the message id after the '@'.  It defaults to the locally
    defined hostname.
    """
    timeval = int(time.time()*100)
    pid = os.getpid()
    randint = random.getrandbits(64)
    if idstring is None:
        idstring = ''
    else:
        idstring = '.' + idstring
    if domain is None:
        domain = socket.getfqdn()
    msgid = '<%d.%d.%d%s@%s>' % (timeval, pid, randint, idstring, domain)
    return msgid


def parsedate_to_datetime(data):
    *dtuple, tz = _parsedate_tz(data)
    if tz is None:
        return datetime.datetime(*dtuple[:6])
    return datetime.datetime(*dtuple[:6],
            tzinfo=datetime.timezone(datetime.timedelta(seconds=tz)))


def parseaddr(addr):
    addrs = _AddressList(addr).addresslist
    if not addrs:
        return '', ''
    return addrs[0]


# rfc822.unquote() doesn't properly de-backslash-ify in Python pre-2.3.
def unquote(str):
    """Remove quotes from a string."""
    if len(str) > 1:
        if str.startswith('"') and str.endswith('"'):
            return str[1:-1].replace('\\\\', '\\').replace('\\"', '"')
        if str.startswith('<') and str.endswith('>'):
            return str[1:-1]
    return str



# RFC2231-related functions - parameter encoding and decoding
def decode_rfc2231(s):
    """Decode string according to RFC 2231"""
    parts = s.split(TICK, 2)
    if len(parts) <= 2:
        return None, None, s
    return parts


def encode_rfc2231(s, charset=None, language=None):
    """Encode string according to RFC 2231.

    If neither charset nor language is given, then s is returned as-is.  If
    charset is given but not language, the string is encoded using the empty
    string for language.
    """
    s = urllib.parse.quote(s, safe='', encoding=charset or 'ascii')
    if charset is None and language is None:
        return s
    if language is None:
        language = ''
    return "%s'%s'%s" % (charset, language, s)


rfc2231_continuation = re.compile(r'^(?P<name>\w+)\*((?P<num>[0-9]+)\*?)?$',
    re.ASCII)

def decode_params(params):
    """Decode parameters list according to RFC 2231.

    params is a sequence of 2-tuples containing (param name, string value).
    """
    # Copy params so we don't mess with the original
    params = params[:]
    new_params = []
    # Map parameter's name to a list of continuations.  The values are a
    # 3-tuple of the continuation number, the string value, and a flag
    # specifying whether a particular segment is %-encoded.
    rfc2231_params = {}
    name, value = params.pop(0)
    new_params.append((name, value))
    while params:
        name, value = params.pop(0)
        if name.endswith('*'):
            encoded = True
        else:
            encoded = False
        value = unquote(value)
        mo = rfc2231_continuation.match(name)
        if mo:
            name, num = mo.group('name', 'num')
            if num is not None:
                num = int(num)
            rfc2231_params.setdefault(name, []).append((num, value, encoded))
        else:
            new_params.append((name, '"%s"' % quote(value)))
    if rfc2231_params:
        for name, continuations in rfc2231_params.items():
            value = []
            extended = False
            # Sort by number
            continuations.sort()
            # And now append all values in numerical order, converting
            # %-encodings for the encoded segments.  If any of the
            # continuation names ends in a *, then the entire string, after
            # decoding segments and concatenating, must have the charset and
            # language specifiers at the beginning of the string.
            for num, s, encoded in continuations:
                if encoded:
                    # Decode as "latin-1", so the characters in s directly
                    # represent the percent-encoded octet values.
                    # collapse_rfc2231_value treats this as an octet sequence.
                    s = urllib.parse.unquote(s, encoding="latin-1")
                    extended = True
                value.append(s)
            value = quote(EMPTYSTRING.join(value))
            if extended:
                charset, language, value = decode_rfc2231(value)
                new_params.append((name, (charset, language, '"%s"' % value)))
            else:
                new_params.append((name, '"%s"' % value))
    return new_params

def collapse_rfc2231_value(value, errors='replace',
                           fallback_charset='us-ascii'):
    if not isinstance(value, tuple) or len(value) != 3:
        return unquote(value)
    # While value comes to us as a unicode string, we need it to be a bytes
    # object.  We do not want bytes() normal utf-8 decoder, we want a straight
    # interpretation of the string as character bytes.
    charset, language, text = value
    if charset is None:
        # Issue 17369: if charset/lang is None, decode_rfc2231 couldn't parse
        # the value, so use the fallback_charset.
        charset = fallback_charset
    rawbytes = bytes(text, 'raw-unicode-escape')
    try:
        return str(rawbytes, charset, errors)
    except LookupError:
        # charset is not a known codec.
        return unquote(text)


#
# datetime doesn't provide a localtime function yet, so provide one.  Code
# adapted from the patch in issue 9527.  This may not be perfect, but it is
# better than not having it.
#

def localtime(dt=None, isdst=-1):
    """Return local time as an aware datetime object.

    If called without arguments, return current time.  Otherwise *dt*
    argument should be a datetime instance, and it is converted to the
    local time zone according to the system time zone database.  If *dt* is
    naive (that is, dt.tzinfo is None), it is assumed to be in local time.
    In this case, a positive or zero value for *isdst* causes localtime to
    presume initially that summer time (for example, Daylight Saving Time)
    is or is not (respectively) in effect for the specified time.  A
    negative value for *isdst* causes the localtime() function to attempt
    to divine whether summer time is in effect for the specified time.

    """
    if dt is None:
        return datetime.datetime.now(datetime.timezone.utc).astimezone()
    if dt.tzinfo is not None:
        return dt.astimezone()
    # We have a naive datetime.  Convert to a (localtime) timetuple and pass to
    # system mktime together with the isdst hint.  System mktime will return
    # seconds since epoch.
    tm = dt.timetuple()[:-1] + (isdst,)
    seconds = time.mktime(tm)
    localtm = time.localtime(seconds)
    try:
        delta = datetime.timedelta(seconds=localtm.tm_gmtoff)
        tz = datetime.timezone(delta, localtm.tm_zone)
    except AttributeError:
        # Compute UTC offset and compare with the value implied by tm_isdst.
        # If the values match, use the zone name implied by tm_isdst.
        delta = dt - datetime.datetime(*time.gmtime(seconds)[:6])
        dst = time.daylight and localtm.tm_isdst > 0
        gmtoff = -(time.altzone if dst else time.timezone)
        if delta == datetime.timedelta(seconds=gmtoff):
            tz = datetime.timezone(delta, time.tzname[dst])
        else:
            tz = datetime.timezone(delta)
    return dt.replace(tzinfo=tz)
lib\email\_encoded_words.py
""" Routines for manipulating RFC2047 encoded words.

This is currently a package-private API, but will be considered for promotion
to a public API if there is demand.

"""

# An ecoded word looks like this:
#
#        =?charset[*lang]?cte?encoded_string?=
#
# for more information about charset see the charset module.  Here it is one
# of the preferred MIME charset names (hopefully; you never know when parsing).
# cte (Content Transfer Encoding) is either 'q' or 'b' (ignoring case).  In
# theory other letters could be used for other encodings, but in practice this
# (almost?) never happens.  There could be a public API for adding entries
# to the CTE tables, but YAGNI for now.  'q' is Quoted Printable, 'b' is
# Base64.  The meaning of encoded_string should be obvious.  'lang' is optional
# as indicated by the brackets (they are not part of the syntax) but is almost
# never encountered in practice.
#
# The general interface for a CTE decoder is that it takes the encoded_string
# as its argument, and returns a tuple (cte_decoded_string, defects).  The
# cte_decoded_string is the original binary that was encoded using the
# specified cte.  'defects' is a list of MessageDefect instances indicating any
# problems encountered during conversion.  'charset' and 'lang' are the
# corresponding strings extracted from the EW, case preserved.
#
# The general interface for a CTE encoder is that it takes a binary sequence
# as input and returns the cte_encoded_string, which is an ascii-only string.
#
# Each decoder must also supply a length function that takes the binary
# sequence as its argument and returns the length of the resulting encoded
# string.
#
# The main API functions for the module are decode, which calls the decoder
# referenced by the cte specifier, and encode, which adds the appropriate
# RFC 2047 "chrome" to the encoded string, and can optionally automatically
# select the shortest possible encoding.  See their docstrings below for
# details.

import re
import base64
import binascii
import functools
from string import ascii_letters, digits
from email import errors

__all__ = ['decode_q',
           'encode_q',
           'decode_b',
           'encode_b',
           'len_q',
           'len_b',
           'decode',
           'encode',
           ]

#
# Quoted Printable
#

# regex based decoder.
_q_byte_subber = functools.partial(re.compile(br'=([a-fA-F0-9]{2})').sub,
        lambda m: bytes([int(m.group(1), 16)]))

def decode_q(encoded):
    encoded = encoded.replace(b'_', b' ')
    return _q_byte_subber(encoded), []


# dict mapping bytes to their encoded form
class _QByteMap(dict):

    safe = b'-!*+/' + ascii_letters.encode('ascii') + digits.encode('ascii')

    def __missing__(self, key):
        if key in self.safe:
            self[key] = chr(key)
        else:
            self[key] = "={:02X}".format(key)
        return self[key]

_q_byte_map = _QByteMap()

# In headers spaces are mapped to '_'.
_q_byte_map[ord(' ')] = '_'

def encode_q(bstring):
    return ''.join(_q_byte_map[x] for x in bstring)

def len_q(bstring):
    return sum(len(_q_byte_map[x]) for x in bstring)


#
# Base64
#

def decode_b(encoded):
    defects = []
    pad_err = len(encoded) % 4
    if pad_err:
        defects.append(errors.InvalidBase64PaddingDefect())
        padded_encoded = encoded + b'==='[:4-pad_err]
    else:
        padded_encoded = encoded
    try:
        return base64.b64decode(padded_encoded, validate=True), defects
    except binascii.Error:
        # Since we had correct padding, this must an invalid char error.
        defects = [errors.InvalidBase64CharactersDefect()]
        # The non-alphabet characters are ignored as far as padding
        # goes, but we don't know how many there are.  So we'll just
        # try various padding lengths until something works.
        for i in 0, 1, 2, 3:
            try:
                return base64.b64decode(encoded+b'='*i, validate=False), defects
            except binascii.Error:
                if i==0:
                    defects.append(errors.InvalidBase64PaddingDefect())
        else:
            # This should never happen.
            raise AssertionError("unexpected binascii.Error")

def encode_b(bstring):
    return base64.b64encode(bstring).decode('ascii')

def len_b(bstring):
    groups_of_3, leftover = divmod(len(bstring), 3)
    # 4 bytes out for each 3 bytes (or nonzero fraction thereof) in.
    return groups_of_3 * 4 + (4 if leftover else 0)


_cte_decoders = {
    'q': decode_q,
    'b': decode_b,
    }

def decode(ew):
    """Decode encoded word and return (string, charset, lang, defects) tuple.

    An RFC 2047/2243 encoded word has the form:

        =?charset*lang?cte?encoded_string?=

    where '*lang' may be omitted but the other parts may not be.

    This function expects exactly such a string (that is, it does not check the
    syntax and may raise errors if the string is not well formed), and returns
    the encoded_string decoded first from its Content Transfer Encoding and
    then from the resulting bytes into unicode using the specified charset.  If
    the cte-decoded string does not successfully decode using the specified
    character set, a defect is added to the defects list and the unknown octets
    are replaced by the unicode 'unknown' character \\uFDFF.

    The specified charset and language are returned.  The default for language,
    which is rarely if ever encountered, is the empty string.

    """
    _, charset, cte, cte_string, _ = ew.split('?')
    charset, _, lang = charset.partition('*')
    cte = cte.lower()
    # Recover the original bytes and do CTE decoding.
    bstring = cte_string.encode('ascii', 'surrogateescape')
    bstring, defects = _cte_decoders[cte](bstring)
    # Turn the CTE decoded bytes into unicode.
    try:
        string = bstring.decode(charset)
    except UnicodeError:
        defects.append(errors.UndecodableBytesDefect("Encoded word "
            "contains bytes not decodable using {} charset".format(charset)))
        string = bstring.decode(charset, 'surrogateescape')
    except LookupError:
        string = bstring.decode('ascii', 'surrogateescape')
        if charset.lower() != 'unknown-8bit':
            defects.append(errors.CharsetError("Unknown charset {} "
                "in encoded word; decoded as unknown bytes".format(charset)))
    return string, charset, lang, defects


_cte_encoders = {
    'q': encode_q,
    'b': encode_b,
    }

_cte_encode_length = {
    'q': len_q,
    'b': len_b,
    }

def encode(string, charset='utf-8', encoding=None, lang=''):
    """Encode string using the CTE encoding that produces the shorter result.

    Produces an RFC 2047/2243 encoded word of the form:

        =?charset*lang?cte?encoded_string?=

    where '*lang' is omitted unless the 'lang' parameter is given a value.
    Optional argument charset (defaults to utf-8) specifies the charset to use
    to encode the string to binary before CTE encoding it.  Optional argument
    'encoding' is the cte specifier for the encoding that should be used ('q'
    or 'b'); if it is None (the default) the encoding which produces the
    shortest encoded sequence is used, except that 'q' is preferred if it is up
    to five characters longer.  Optional argument 'lang' (default '') gives the
    RFC 2243 language string to specify in the encoded word.

    """
    if charset == 'unknown-8bit':
        bstring = string.encode('ascii', 'surrogateescape')
    else:
        bstring = string.encode(charset)
    if encoding is None:
        qlen = _cte_encode_length['q'](bstring)
        blen = _cte_encode_length['b'](bstring)
        # Bias toward q.  5 is arbitrary.
        encoding = 'q' if qlen - blen < 5 else 'b'
    encoded = _cte_encoders[encoding](bstring)
    if lang:
        lang = '*' + lang
    return "=?{}{}?{}?{}?=".format(charset, lang, encoding, encoded)
lib\email\_header_value_parser.py
"""Header value parser implementing various email-related RFC parsing rules.

The parsing methods defined in this module implement various email related
parsing rules.  Principal among them is RFC 5322, which is the followon
to RFC 2822 and primarily a clarification of the former.  It also implements
RFC 2047 encoded word decoding.

RFC 5322 goes to considerable trouble to maintain backward compatibility with
RFC 822 in the parse phase, while cleaning up the structure on the generation
phase.  This parser supports correct RFC 5322 generation by tagging white space
as folding white space only when folding is allowed in the non-obsolete rule
sets.  Actually, the parser is even more generous when accepting input than RFC
5322 mandates, following the spirit of Postel's Law, which RFC 5322 encourages.
Where possible deviations from the standard are annotated on the 'defects'
attribute of tokens that deviate.

The general structure of the parser follows RFC 5322, and uses its terminology
where there is a direct correspondence.  Where the implementation requires a
somewhat different structure than that used by the formal grammar, new terms
that mimic the closest existing terms are used.  Thus, it really helps to have
a copy of RFC 5322 handy when studying this code.

Input to the parser is a string that has already been unfolded according to
RFC 5322 rules.  According to the RFC this unfolding is the very first step, and
this parser leaves the unfolding step to a higher level message parser, which
will have already detected the line breaks that need unfolding while
determining the beginning and end of each header.

The output of the parser is a TokenList object, which is a list subclass.  A
TokenList is a recursive data structure.  The terminal nodes of the structure
are Terminal objects, which are subclasses of str.  These do not correspond
directly to terminal objects in the formal grammar, but are instead more
practical higher level combinations of true terminals.

All TokenList and Terminal objects have a 'value' attribute, which produces the
semantically meaningful value of that part of the parse subtree.  The value of
all whitespace tokens (no matter how many sub-tokens they may contain) is a
single space, as per the RFC rules.  This includes 'CFWS', which is herein
included in the general class of whitespace tokens.  There is one exception to
the rule that whitespace tokens are collapsed into single spaces in values: in
the value of a 'bare-quoted-string' (a quoted-string with no leading or
trailing whitespace), any whitespace that appeared between the quotation marks
is preserved in the returned value.  Note that in all Terminal strings quoted
pairs are turned into their unquoted values.

All TokenList and Terminal objects also have a string value, which attempts to
be a "canonical" representation of the RFC-compliant form of the substring that
produced the parsed subtree, including minimal use of quoted pair quoting.
Whitespace runs are not collapsed.

Comment tokens also have a 'content' attribute providing the string found
between the parens (including any nested comments) with whitespace preserved.

All TokenList and Terminal objects have a 'defects' attribute which is a
possibly empty list all of the defects found while creating the token.  Defects
may appear on any token in the tree, and a composite list of all defects in the
subtree is available through the 'all_defects' attribute of any node.  (For
Terminal notes x.defects == x.all_defects.)

Each object in a parse tree is called a 'token', and each has a 'token_type'
attribute that gives the name from the RFC 5322 grammar that it represents.
Not all RFC 5322 nodes are produced, and there is one non-RFC 5322 node that
may be produced: 'ptext'.  A 'ptext' is a string of printable ascii characters.
It is returned in place of lists of (ctext/quoted-pair) and
(qtext/quoted-pair).

XXX: provide complete list of token types.
"""

import re
import urllib   # For urllib.parse.unquote
from string import hexdigits
from collections import OrderedDict
from operator import itemgetter
from email import _encoded_words as _ew
from email import errors
from email import utils

#
# Useful constants and functions
#

WSP = set(' \t')
CFWS_LEADER = WSP | set('(')
SPECIALS = set(r'()<>@,:;.\"[]')
ATOM_ENDS = SPECIALS | WSP
DOT_ATOM_ENDS = ATOM_ENDS - set('.')
# '.', '"', and '(' do not end phrases in order to support obs-phrase
PHRASE_ENDS = SPECIALS - set('."(')
TSPECIALS = (SPECIALS | set('/?=')) - set('.')
TOKEN_ENDS = TSPECIALS | WSP
ASPECIALS = TSPECIALS | set("*'%")
ATTRIBUTE_ENDS = ASPECIALS | WSP
EXTENDED_ATTRIBUTE_ENDS = ATTRIBUTE_ENDS - set('%')

def quote_string(value):
    return '"'+str(value).replace('\\', '\\\\').replace('"', r'\"')+'"'

#
# Accumulator for header folding
#

class _Folded:

    def __init__(self, maxlen, policy):
        self.maxlen = maxlen
        self.policy = policy
        self.lastlen = 0
        self.stickyspace = None
        self.firstline = True
        self.done = []
        self.current = []

    def newline(self):
        self.done.extend(self.current)
        self.done.append(self.policy.linesep)
        self.current.clear()
        self.lastlen = 0

    def finalize(self):
        if self.current:
            self.newline()

    def __str__(self):
        return ''.join(self.done)

    def append(self, stoken):
        self.current.append(stoken)

    def append_if_fits(self, token, stoken=None):
        if stoken is None:
            stoken = str(token)
        l = len(stoken)
        if self.stickyspace is not None:
            stickyspace_len = len(self.stickyspace)
            if self.lastlen + stickyspace_len + l <= self.maxlen:
                self.current.append(self.stickyspace)
                self.lastlen += stickyspace_len
                self.current.append(stoken)
                self.lastlen += l
                self.stickyspace = None
                self.firstline = False
                return True
            if token.has_fws:
                ws = token.pop_leading_fws()
                if ws is not None:
                    self.stickyspace += str(ws)
                    stickyspace_len += len(ws)
                token._fold(self)
                return True
            if stickyspace_len and l + 1 <= self.maxlen:
                margin = self.maxlen - l
                if 0 < margin < stickyspace_len:
                    trim = stickyspace_len - margin
                    self.current.append(self.stickyspace[:trim])
                    self.stickyspace = self.stickyspace[trim:]
                    stickyspace_len = trim
                self.newline()
                self.current.append(self.stickyspace)
                self.current.append(stoken)
                self.lastlen = l + stickyspace_len
                self.stickyspace = None
                self.firstline = False
                return True
            if not self.firstline:
                self.newline()
            self.current.append(self.stickyspace)
            self.current.append(stoken)
            self.stickyspace = None
            self.firstline = False
            return True
        if self.lastlen + l <= self.maxlen:
            self.current.append(stoken)
            self.lastlen += l
            return True
        if l < self.maxlen:
            self.newline()
            self.current.append(stoken)
            self.lastlen = l
            return True
        return False

#
# TokenList and its subclasses
#

class TokenList(list):

    token_type = None

    def __init__(self, *args, **kw):
        super().__init__(*args, **kw)
        self.defects = []

    def __str__(self):
        return ''.join(str(x) for x in self)

    def __repr__(self):
        return '{}({})'.format(self.__class__.__name__,
                             super().__repr__())

    @property
    def value(self):
        return ''.join(x.value for x in self if x.value)

    @property
    def all_defects(self):
        return sum((x.all_defects for x in self), self.defects)

    #
    # Folding API
    #
    # parts():
    #
    # return a list of objects that constitute the "higher level syntactic
    # objects" specified by the RFC as the best places to fold a header line.
    # The returned objects must include leading folding white space, even if
    # this means mutating the underlying parse tree of the object.  Each object
    # is only responsible for returning *its* parts, and should not drill down
    # to any lower level except as required to meet the leading folding white
    # space constraint.
    #
    # _fold(folded):
    #
    #   folded: the result accumulator.  This is an instance of _Folded.
    #       (XXX: I haven't finished factoring this out yet, the folding code
    #       pretty much uses this as a state object.) When the folded.current
    #       contains as much text as will fit, the _fold method should call
    #       folded.newline.
    #  folded.lastlen: the current length of the test stored in folded.current.
    #  folded.maxlen: The maximum number of characters that may appear on a
    #       folded line.  Differs from the policy setting in that "no limit" is
    #       represented by +inf, which means it can be used in the trivially
    #       logical fashion in comparisons.
    #
    # Currently no subclasses implement parts, and I think this will remain
    # true.  A subclass only needs to implement _fold when the generic version
    # isn't sufficient.  _fold will need to be implemented primarily when it is
    # possible for encoded words to appear in the specialized token-list, since
    # there is no generic algorithm that can know where exactly the encoded
    # words are allowed.  A _fold implementation is responsible for filling
    # lines in the same general way that the top level _fold does. It may, and
    # should, call the _fold method of sub-objects in a similar fashion to that
    # of the top level _fold.
    #
    # XXX: I'm hoping it will be possible to factor the existing code further
    # to reduce redundancy and make the logic clearer.

    @property
    def parts(self):
        klass = self.__class__
        this = []
        for token in self:
            if token.startswith_fws():
                if this:
                    yield this[0] if len(this)==1 else klass(this)
                    this.clear()
            end_ws = token.pop_trailing_ws()
            this.append(token)
            if end_ws:
                yield klass(this)
                this = [end_ws]
        if this:
            yield this[0] if len(this)==1 else klass(this)

    def startswith_fws(self):
        return self[0].startswith_fws()

    def pop_leading_fws(self):
        if self[0].token_type == 'fws':
            return self.pop(0)
        return self[0].pop_leading_fws()

    def pop_trailing_ws(self):
        if self[-1].token_type == 'cfws':
            return self.pop(-1)
        return self[-1].pop_trailing_ws()

    @property
    def has_fws(self):
        for part in self:
            if part.has_fws:
                return True
        return False

    def has_leading_comment(self):
        return self[0].has_leading_comment()

    @property
    def comments(self):
        comments = []
        for token in self:
            comments.extend(token.comments)
        return comments

    def fold(self, *, policy):
        # max_line_length 0/None means no limit, ie: infinitely long.
        maxlen = policy.max_line_length or float("+inf")
        folded = _Folded(maxlen, policy)
        self._fold(folded)
        folded.finalize()
        return str(folded)

    def as_encoded_word(self, charset):
        # This works only for things returned by 'parts', which include
        # the leading fws, if any, that should be used.
        res = []
        ws = self.pop_leading_fws()
        if ws:
            res.append(ws)
        trailer = self.pop(-1) if self[-1].token_type=='fws' else ''
        res.append(_ew.encode(str(self), charset))
        res.append(trailer)
        return ''.join(res)

    def cte_encode(self, charset, policy):
        res = []
        for part in self:
            res.append(part.cte_encode(charset, policy))
        return ''.join(res)

    def _fold(self, folded):
        for part in self.parts:
            tstr = str(part)
            tlen = len(tstr)
            try:
                str(part).encode('us-ascii')
            except UnicodeEncodeError:
                if any(isinstance(x, errors.UndecodableBytesDefect)
                        for x in part.all_defects):
                    charset = 'unknown-8bit'
                else:
                    # XXX: this should be a policy setting
                    charset = 'utf-8'
                tstr = part.cte_encode(charset, folded.policy)
                tlen = len(tstr)
            if folded.append_if_fits(part, tstr):
                continue
            # Peel off the leading whitespace if any and make it sticky, to
            # avoid infinite recursion.
            ws = part.pop_leading_fws()
            if ws is not None:
                # Peel off the leading whitespace and make it sticky, to
                # avoid infinite recursion.
                folded.stickyspace = str(part.pop(0))
                if folded.append_if_fits(part):
                    continue
            if part.has_fws:
                part._fold(folded)
                continue
            # There are no fold points in this one; it is too long for a single
            # line and can't be split...we just have to put it on its own line.
            folded.append(tstr)
            folded.newline()

    def pprint(self, indent=''):
        print('\n'.join(self._pp(indent='')))

    def ppstr(self, indent=''):
        return '\n'.join(self._pp(indent=''))

    def _pp(self, indent=''):
        yield '{}{}/{}('.format(
            indent,
            self.__class__.__name__,
            self.token_type)
        for token in self:
            if not hasattr(token, '_pp'):
                yield (indent + '    !! invalid element in token '
                                        'list: {!r}'.format(token))
            else:
                yield from token._pp(indent+'    ')
        if self.defects:
            extra = ' Defects: {}'.format(self.defects)
        else:
            extra = ''
        yield '{}){}'.format(indent, extra)


class WhiteSpaceTokenList(TokenList):

    @property
    def value(self):
        return ' '

    @property
    def comments(self):
        return [x.content for x in self if x.token_type=='comment']


class UnstructuredTokenList(TokenList):

    token_type = 'unstructured'

    def _fold(self, folded):
        last_ew = None
        for part in self.parts:
            tstr = str(part)
            is_ew = False
            try:
                str(part).encode('us-ascii')
            except UnicodeEncodeError:
                if any(isinstance(x, errors.UndecodableBytesDefect)
                       for x in part.all_defects):
                    charset = 'unknown-8bit'
                else:
                    charset = 'utf-8'
                if last_ew is not None:
                    # We've already done an EW, combine this one with it
                    # if there's room.
                    chunk = get_unstructured(
                        ''.join(folded.current[last_ew:]+[tstr])).as_encoded_word(charset)
                    oldlastlen = sum(len(x) for x in folded.current[:last_ew])
                    schunk = str(chunk)
                    lchunk = len(schunk)
                    if oldlastlen + lchunk <= folded.maxlen:
                        del folded.current[last_ew:]
                        folded.append(schunk)
                        folded.lastlen = oldlastlen + lchunk
                        continue
                tstr = part.as_encoded_word(charset)
                is_ew = True
            if folded.append_if_fits(part, tstr):
                if is_ew:
                    last_ew = len(folded.current) - 1
                continue
            if is_ew or last_ew:
                # It's too big to fit on the line, but since we've
                # got encoded words we can use encoded word folding.
                part._fold_as_ew(folded)
                continue
            # Peel off the leading whitespace if any and make it sticky, to
            # avoid infinite recursion.
            ws = part.pop_leading_fws()
            if ws is not None:
                folded.stickyspace = str(ws)
                if folded.append_if_fits(part):
                    continue
            if part.has_fws:
                part.fold(folded)
                continue
            # It can't be split...we just have to put it on its own line.
            folded.append(tstr)
            folded.newline()
            last_ew = None

    def cte_encode(self, charset, policy):
        res = []
        last_ew = None
        for part in self:
            spart = str(part)
            try:
                spart.encode('us-ascii')
                res.append(spart)
            except UnicodeEncodeError:
                if last_ew is None:
                    res.append(part.cte_encode(charset, policy))
                    last_ew = len(res)
                else:
                    tl = get_unstructured(''.join(res[last_ew:] + [spart]))
                    res.append(tl.as_encoded_word())
        return ''.join(res)


class Phrase(TokenList):

    token_type = 'phrase'

    def _fold(self, folded):
        # As with Unstructured, we can have pure ASCII with or without
        # surrogateescape encoded bytes, or we could have unicode.  But this
        # case is more complicated, since we have to deal with the various
        # sub-token types and how they can be composed in the face of
        # unicode-that-needs-CTE-encoding, and the fact that if a token a
        # comment that becomes a barrier across which we can't compose encoded
        # words.
        last_ew = None
        for part in self.parts:
            tstr = str(part)
            tlen = len(tstr)
            has_ew = False
            try:
                str(part).encode('us-ascii')
            except UnicodeEncodeError:
                if any(isinstance(x, errors.UndecodableBytesDefect)
                        for x in part.all_defects):
                    charset = 'unknown-8bit'
                else:
                    charset = 'utf-8'
                if last_ew is not None and not part.has_leading_comment():
                    # We've already done an EW, let's see if we can combine
                    # this one with it.  The last_ew logic ensures that all we
                    # have at this point is atoms, no comments or quoted
                    # strings.  So we can treat the text between the last
                    # encoded word and the content of this token as
                    # unstructured text, and things will work correctly.  But
                    # we have to strip off any trailing comment on this token
                    # first, and if it is a quoted string we have to pull out
                    # the content (we're encoding it, so it no longer needs to
                    # be quoted).
                    if part[-1].token_type == 'cfws' and part.comments:
                        remainder = part.pop(-1)
                    else:
                        remainder = ''
                    for i, token in enumerate(part):
                        if token.token_type == 'bare-quoted-string':
                            part[i] = UnstructuredTokenList(token[:])
                    chunk = get_unstructured(
                        ''.join(folded.current[last_ew:]+[tstr])).as_encoded_word(charset)
                    schunk = str(chunk)
                    lchunk = len(schunk)
                    if last_ew + lchunk <= folded.maxlen:
                        del folded.current[last_ew:]
                        folded.append(schunk)
                        folded.lastlen = sum(len(x) for x in folded.current)
                        continue
                tstr = part.as_encoded_word(charset)
                tlen = len(tstr)
                has_ew = True
            if folded.append_if_fits(part, tstr):
                if has_ew and not part.comments:
                    last_ew = len(folded.current) - 1
                elif part.comments or part.token_type == 'quoted-string':
                    # If a comment is involved we can't combine EWs.  And if a
                    # quoted string is involved, it's not worth the effort to
                    # try to combine them.
                    last_ew = None
                continue
            part._fold(folded)

    def cte_encode(self, charset, policy):
        res = []
        last_ew = None
        is_ew = False
        for part in self:
            spart = str(part)
            try:
                spart.encode('us-ascii')
                res.append(spart)
            except UnicodeEncodeError:
                is_ew = True
                if last_ew is None:
                    if not part.comments:
                        last_ew = len(res)
                    res.append(part.cte_encode(charset, policy))
                elif not part.has_leading_comment():
                    if part[-1].token_type == 'cfws' and part.comments:
                        remainder = part.pop(-1)
                    else:
                        remainder = ''
                    for i, token in enumerate(part):
                        if token.token_type == 'bare-quoted-string':
                            part[i] = UnstructuredTokenList(token[:])
                    tl = get_unstructured(''.join(res[last_ew:] + [spart]))
                    res[last_ew:] = [tl.as_encoded_word(charset)]
            if part.comments or (not is_ew and part.token_type == 'quoted-string'):
                last_ew = None
        return ''.join(res)

class Word(TokenList):

    token_type = 'word'


class CFWSList(WhiteSpaceTokenList):

    token_type = 'cfws'

    def has_leading_comment(self):
        return bool(self.comments)


class Atom(TokenList):

    token_type = 'atom'


class Token(TokenList):

    token_type = 'token'


class EncodedWord(TokenList):

    token_type = 'encoded-word'
    cte = None
    charset = None
    lang = None

    @property
    def encoded(self):
        if self.cte is not None:
            return self.cte
        _ew.encode(str(self), self.charset)



class QuotedString(TokenList):

    token_type = 'quoted-string'

    @property
    def content(self):
        for x in self:
            if x.token_type == 'bare-quoted-string':
                return x.value

    @property
    def quoted_value(self):
        res = []
        for x in self:
            if x.token_type == 'bare-quoted-string':
                res.append(str(x))
            else:
                res.append(x.value)
        return ''.join(res)

    @property
    def stripped_value(self):
        for token in self:
            if token.token_type == 'bare-quoted-string':
                return token.value


class BareQuotedString(QuotedString):

    token_type = 'bare-quoted-string'

    def __str__(self):
        return quote_string(''.join(str(x) for x in self))

    @property
    def value(self):
        return ''.join(str(x) for x in self)


class Comment(WhiteSpaceTokenList):

    token_type = 'comment'

    def __str__(self):
        return ''.join(sum([
                            ["("],
                            [self.quote(x) for x in self],
                            [")"],
                            ], []))

    def quote(self, value):
        if value.token_type == 'comment':
            return str(value)
        return str(value).replace('\\', '\\\\').replace(
                                  '(', '\(').replace(
                                  ')', '\)')

    @property
    def content(self):
        return ''.join(str(x) for x in self)

    @property
    def comments(self):
        return [self.content]

class AddressList(TokenList):

    token_type = 'address-list'

    @property
    def addresses(self):
        return [x for x in self if x.token_type=='address']

    @property
    def mailboxes(self):
        return sum((x.mailboxes
                    for x in self if x.token_type=='address'), [])

    @property
    def all_mailboxes(self):
        return sum((x.all_mailboxes
                    for x in self if x.token_type=='address'), [])


class Address(TokenList):

    token_type = 'address'

    @property
    def display_name(self):
        if self[0].token_type == 'group':
            return self[0].display_name

    @property
    def mailboxes(self):
        if self[0].token_type == 'mailbox':
            return [self[0]]
        elif self[0].token_type == 'invalid-mailbox':
            return []
        return self[0].mailboxes

    @property
    def all_mailboxes(self):
        if self[0].token_type == 'mailbox':
            return [self[0]]
        elif self[0].token_type == 'invalid-mailbox':
            return [self[0]]
        return self[0].all_mailboxes

class MailboxList(TokenList):

    token_type = 'mailbox-list'

    @property
    def mailboxes(self):
        return [x for x in self if x.token_type=='mailbox']

    @property
    def all_mailboxes(self):
        return [x for x in self
            if x.token_type in ('mailbox', 'invalid-mailbox')]


class GroupList(TokenList):

    token_type = 'group-list'

    @property
    def mailboxes(self):
        if not self or self[0].token_type != 'mailbox-list':
            return []
        return self[0].mailboxes

    @property
    def all_mailboxes(self):
        if not self or self[0].token_type != 'mailbox-list':
            return []
        return self[0].all_mailboxes


class Group(TokenList):

    token_type = "group"

    @property
    def mailboxes(self):
        if self[2].token_type != 'group-list':
            return []
        return self[2].mailboxes

    @property
    def all_mailboxes(self):
        if self[2].token_type != 'group-list':
            return []
        return self[2].all_mailboxes

    @property
    def display_name(self):
        return self[0].display_name


class NameAddr(TokenList):

    token_type = 'name-addr'

    @property
    def display_name(self):
        if len(self) == 1:
            return None
        return self[0].display_name

    @property
    def local_part(self):
        return self[-1].local_part

    @property
    def domain(self):
        return self[-1].domain

    @property
    def route(self):
        return self[-1].route

    @property
    def addr_spec(self):
        return self[-1].addr_spec


class AngleAddr(TokenList):

    token_type = 'angle-addr'

    @property
    def local_part(self):
        for x in self:
            if x.token_type == 'addr-spec':
                return x.local_part

    @property
    def domain(self):
        for x in self:
            if x.token_type == 'addr-spec':
                return x.domain

    @property
    def route(self):
        for x in self:
            if x.token_type == 'obs-route':
                return x.domains

    @property
    def addr_spec(self):
        for x in self:
            if x.token_type == 'addr-spec':
                return x.addr_spec
        else:
            return '<>'


class ObsRoute(TokenList):

    token_type = 'obs-route'

    @property
    def domains(self):
        return [x.domain for x in self if x.token_type == 'domain']


class Mailbox(TokenList):

    token_type = 'mailbox'

    @property
    def display_name(self):
        if self[0].token_type == 'name-addr':
            return self[0].display_name

    @property
    def local_part(self):
        return self[0].local_part

    @property
    def domain(self):
        return self[0].domain

    @property
    def route(self):
        if self[0].token_type == 'name-addr':
            return self[0].route

    @property
    def addr_spec(self):
        return self[0].addr_spec


class InvalidMailbox(TokenList):

    token_type = 'invalid-mailbox'

    @property
    def display_name(self):
        return None

    local_part = domain = route = addr_spec = display_name


class Domain(TokenList):

    token_type = 'domain'

    @property
    def domain(self):
        return ''.join(super().value.split())


class DotAtom(TokenList):

    token_type = 'dot-atom'


class DotAtomText(TokenList):

    token_type = 'dot-atom-text'


class AddrSpec(TokenList):

    token_type = 'addr-spec'

    @property
    def local_part(self):
        return self[0].local_part

    @property
    def domain(self):
        if len(self) < 3:
            return None
        return self[-1].domain

    @property
    def value(self):
        if len(self) < 3:
            return self[0].value
        return self[0].value.rstrip()+self[1].value+self[2].value.lstrip()

    @property
    def addr_spec(self):
        nameset = set(self.local_part)
        if len(nameset) > len(nameset-DOT_ATOM_ENDS):
            lp = quote_string(self.local_part)
        else:
            lp = self.local_part
        if self.domain is not None:
            return lp + '@' + self.domain
        return lp


class ObsLocalPart(TokenList):

    token_type = 'obs-local-part'


class DisplayName(Phrase):

    token_type = 'display-name'

    @property
    def display_name(self):
        res = TokenList(self)
        if res[0].token_type == 'cfws':
            res.pop(0)
        else:
            if res[0][0].token_type == 'cfws':
                res[0] = TokenList(res[0][1:])
        if res[-1].token_type == 'cfws':
            res.pop()
        else:
            if res[-1][-1].token_type == 'cfws':
                res[-1] = TokenList(res[-1][:-1])
        return res.value

    @property
    def value(self):
        quote = False
        if self.defects:
            quote = True
        else:
            for x in self:
                if x.token_type == 'quoted-string':
                    quote = True
        if quote:
            pre = post = ''
            if self[0].token_type=='cfws' or self[0][0].token_type=='cfws':
                pre = ' '
            if self[-1].token_type=='cfws' or self[-1][-1].token_type=='cfws':
                post = ' '
            return pre+quote_string(self.display_name)+post
        else:
            return super().value


class LocalPart(TokenList):

    token_type = 'local-part'

    @property
    def value(self):
        if self[0].token_type == "quoted-string":
            return self[0].quoted_value
        else:
            return self[0].value

    @property
    def local_part(self):
        # Strip whitespace from front, back, and around dots.
        res = [DOT]
        last = DOT
        last_is_tl = False
        for tok in self[0] + [DOT]:
            if tok.token_type == 'cfws':
                continue
            if (last_is_tl and tok.token_type == 'dot' and
                    last[-1].token_type == 'cfws'):
                res[-1] = TokenList(last[:-1])
            is_tl = isinstance(tok, TokenList)
            if (is_tl and last.token_type == 'dot' and
                    tok[0].token_type == 'cfws'):
                res.append(TokenList(tok[1:]))
            else:
                res.append(tok)
            last = res[-1]
            last_is_tl = is_tl
        res = TokenList(res[1:-1])
        return res.value


class DomainLiteral(TokenList):

    token_type = 'domain-literal'

    @property
    def domain(self):
        return ''.join(super().value.split())

    @property
    def ip(self):
        for x in self:
            if x.token_type == 'ptext':
                return x.value


class MIMEVersion(TokenList):

    token_type = 'mime-version'
    major = None
    minor = None


class Parameter(TokenList):

    token_type = 'parameter'
    sectioned = False
    extended = False
    charset = 'us-ascii'

    @property
    def section_number(self):
        # Because the first token, the attribute (name) eats CFWS, the second
        # token is always the section if there is one.
        return self[1].number if self.sectioned else 0

    @property
    def param_value(self):
        # This is part of the "handle quoted extended parameters" hack.
        for token in self:
            if token.token_type == 'value':
                return token.stripped_value
            if token.token_type == 'quoted-string':
                for token in token:
                    if token.token_type == 'bare-quoted-string':
                        for token in token:
                            if token.token_type == 'value':
                                return token.stripped_value
        return ''


class InvalidParameter(Parameter):

    token_type = 'invalid-parameter'


class Attribute(TokenList):

    token_type = 'attribute'

    @property
    def stripped_value(self):
        for token in self:
            if token.token_type.endswith('attrtext'):
                return token.value

class Section(TokenList):

    token_type = 'section'
    number = None


class Value(TokenList):

    token_type = 'value'

    @property
    def stripped_value(self):
        token = self[0]
        if token.token_type == 'cfws':
            token = self[1]
        if token.token_type.endswith(
                ('quoted-string', 'attribute', 'extended-attribute')):
            return token.stripped_value
        return self.value


class MimeParameters(TokenList):

    token_type = 'mime-parameters'

    @property
    def params(self):
        # The RFC specifically states that the ordering of parameters is not
        # guaranteed and may be reordered by the transport layer.  So we have
        # to assume the RFC 2231 pieces can come in any order.  However, we
        # output them in the order that we first see a given name, which gives
        # us a stable __str__.
        params = OrderedDict()
        for token in self:
            if not token.token_type.endswith('parameter'):
                continue
            if token[0].token_type != 'attribute':
                continue
            name = token[0].value.strip()
            if name not in params:
                params[name] = []
            params[name].append((token.section_number, token))
        for name, parts in params.items():
            parts = sorted(parts, key=itemgetter(0))
            first_param = parts[0][1]
            charset = first_param.charset
            # Our arbitrary error recovery is to ignore duplicate parameters,
            # to use appearance order if there are duplicate rfc 2231 parts,
            # and to ignore gaps.  This mimics the error recovery of get_param.
            if not first_param.extended and len(parts) > 1:
                if parts[1][0] == 0:
                    parts[1][1].defects.append(errors.InvalidHeaderDefect(
                        'duplicate parameter name; duplicate(s) ignored'))
                    parts = parts[:1]
                # Else assume the *0* was missing...note that this is different
                # from get_param, but we registered a defect for this earlier.
            value_parts = []
            i = 0
            for section_number, param in parts:
                if section_number != i:
                    # We could get fancier here and look for a complete
                    # duplicate extended parameter and ignore the second one
                    # seen.  But we're not doing that.  The old code didn't.
                    if not param.extended:
                        param.defects.append(errors.InvalidHeaderDefect(
                            'duplicate parameter name; duplicate ignored'))
                        continue
                    else:
                        param.defects.append(errors.InvalidHeaderDefect(
                            "inconsistent RFC2231 parameter numbering"))
                i += 1
                value = param.param_value
                if param.extended:
                    try:
                        value = urllib.parse.unquote_to_bytes(value)
                    except UnicodeEncodeError:
                        # source had surrogate escaped bytes.  What we do now
                        # is a bit of an open question.  I'm not sure this is
                        # the best choice, but it is what the old algorithm did
                        value = urllib.parse.unquote(value, encoding='latin-1')
                    else:
                        try:
                            value = value.decode(charset, 'surrogateescape')
                        except LookupError:
                            # XXX: there should really be a custom defect for
                            # unknown character set to make it easy to find,
                            # because otherwise unknown charset is a silent
                            # failure.
                            value = value.decode('us-ascii', 'surrogateescape')
                        if utils._has_surrogates(value):
                            param.defects.append(errors.UndecodableBytesDefect())
                value_parts.append(value)
            value = ''.join(value_parts)
            yield name, value

    def __str__(self):
        params = []
        for name, value in self.params:
            if value:
                params.append('{}={}'.format(name, quote_string(value)))
            else:
                params.append(name)
        params = '; '.join(params)
        return ' ' + params if params else ''


class ParameterizedHeaderValue(TokenList):

    @property
    def params(self):
        for token in reversed(self):
            if token.token_type == 'mime-parameters':
                return token.params
        return {}

    @property
    def parts(self):
        if self and self[-1].token_type == 'mime-parameters':
            # We don't want to start a new line if all of the params don't fit
            # after the value, so unwrap the parameter list.
            return TokenList(self[:-1] + self[-1])
        return TokenList(self).parts


class ContentType(ParameterizedHeaderValue):

    token_type = 'content-type'
    maintype = 'text'
    subtype = 'plain'


class ContentDisposition(ParameterizedHeaderValue):

    token_type = 'content-disposition'
    content_disposition = None


class ContentTransferEncoding(TokenList):

    token_type = 'content-transfer-encoding'
    cte = '7bit'


class HeaderLabel(TokenList):

    token_type = 'header-label'


class Header(TokenList):

    token_type = 'header'

    def _fold(self, folded):
        folded.append(str(self.pop(0)))
        folded.lastlen = len(folded.current[0])
        # The first line of the header is different from all others: we don't
        # want to start a new object on a new line if it has any fold points in
        # it that would allow part of it to be on the first header line.
        # Further, if the first fold point would fit on the new line, we want
        # to do that, but if it doesn't we want to put it on the first line.
        # Folded supports this via the stickyspace attribute.  If this
        # attribute is not None, it does the special handling.
        folded.stickyspace = str(self.pop(0)) if self[0].token_type == 'cfws' else ''
        rest = self.pop(0)
        if self:
            raise ValueError("Malformed Header token list")
        rest._fold(folded)


#
# Terminal classes and instances
#

class Terminal(str):

    def __new__(cls, value, token_type):
        self = super().__new__(cls, value)
        self.token_type = token_type
        self.defects = []
        return self

    def __repr__(self):
        return "{}({})".format(self.__class__.__name__, super().__repr__())

    @property
    def all_defects(self):
        return list(self.defects)

    def _pp(self, indent=''):
        return ["{}{}/{}({}){}".format(
            indent,
            self.__class__.__name__,
            self.token_type,
            super().__repr__(),
            '' if not self.defects else ' {}'.format(self.defects),
            )]

    def cte_encode(self, charset, policy):
        value = str(self)
        try:
            value.encode('us-ascii')
            return value
        except UnicodeEncodeError:
            return _ew.encode(value, charset)

    def pop_trailing_ws(self):
        # This terminates the recursion.
        return None

    def pop_leading_fws(self):
        # This terminates the recursion.
        return None

    @property
    def comments(self):
        return []

    def has_leading_comment(self):
        return False

    def __getnewargs__(self):
        return(str(self), self.token_type)


class WhiteSpaceTerminal(Terminal):

    @property
    def value(self):
        return ' '

    def startswith_fws(self):
        return True

    has_fws = True


class ValueTerminal(Terminal):

    @property
    def value(self):
        return self

    def startswith_fws(self):
        return False

    has_fws = False

    def as_encoded_word(self, charset):
        return _ew.encode(str(self), charset)


class EWWhiteSpaceTerminal(WhiteSpaceTerminal):

    @property
    def value(self):
        return ''

    @property
    def encoded(self):
        return self[:]

    def __str__(self):
        return ''

    has_fws = True


# XXX these need to become classes and used as instances so
# that a program can't change them in a parse tree and screw
# up other parse trees.  Maybe should have  tests for that, too.
DOT = ValueTerminal('.', 'dot')
ListSeparator = ValueTerminal(',', 'list-separator')
RouteComponentMarker = ValueTerminal('@', 'route-component-marker')

#
# Parser
#

# Parse strings according to RFC822/2047/2822/5322 rules.
#
# This is a stateless parser.  Each get_XXX function accepts a string and
# returns either a Terminal or a TokenList representing the RFC object named
# by the method and a string containing the remaining unparsed characters
# from the input.  Thus a parser method consumes the next syntactic construct
# of a given type and returns a token representing the construct plus the
# unparsed remainder of the input string.
#
# For example, if the first element of a structured header is a 'phrase',
# then:
#
#     phrase, value = get_phrase(value)
#
# returns the complete phrase from the start of the string value, plus any
# characters left in the string after the phrase is removed.

_wsp_splitter = re.compile(r'([{}]+)'.format(''.join(WSP))).split
_non_atom_end_matcher = re.compile(r"[^{}]+".format(
    ''.join(ATOM_ENDS).replace('\\','\\\\').replace(']','\]'))).match
_non_printable_finder = re.compile(r"[\x00-\x20\x7F]").findall
_non_token_end_matcher = re.compile(r"[^{}]+".format(
    ''.join(TOKEN_ENDS).replace('\\','\\\\').replace(']','\]'))).match
_non_attribute_end_matcher = re.compile(r"[^{}]+".format(
    ''.join(ATTRIBUTE_ENDS).replace('\\','\\\\').replace(']','\]'))).match
_non_extended_attribute_end_matcher = re.compile(r"[^{}]+".format(
    ''.join(EXTENDED_ATTRIBUTE_ENDS).replace(
                                    '\\','\\\\').replace(']','\]'))).match

def _validate_xtext(xtext):
    """If input token contains ASCII non-printables, register a defect."""

    non_printables = _non_printable_finder(xtext)
    if non_printables:
        xtext.defects.append(errors.NonPrintableDefect(non_printables))
    if utils._has_surrogates(xtext):
        xtext.defects.append(errors.UndecodableBytesDefect(
            "Non-ASCII characters found in header token"))

def _get_ptext_to_endchars(value, endchars):
    """Scan printables/quoted-pairs until endchars and return unquoted ptext.

    This function turns a run of qcontent, ccontent-without-comments, or
    dtext-with-quoted-printables into a single string by unquoting any
    quoted printables.  It returns the string, the remaining value, and
    a flag that is True iff there were any quoted printables decoded.

    """
    fragment, *remainder = _wsp_splitter(value, 1)
    vchars = []
    escape = False
    had_qp = False
    for pos in range(len(fragment)):
        if fragment[pos] == '\\':
            if escape:
                escape = False
                had_qp = True
            else:
                escape = True
                continue
        if escape:
            escape = False
        elif fragment[pos] in endchars:
            break
        vchars.append(fragment[pos])
    else:
        pos = pos + 1
    return ''.join(vchars), ''.join([fragment[pos:]] + remainder), had_qp

def get_fws(value):
    """FWS = 1*WSP

    This isn't the RFC definition.  We're using fws to represent tokens where
    folding can be done, but when we are parsing the *un*folding has already
    been done so we don't need to watch out for CRLF.

    """
    newvalue = value.lstrip()
    fws = WhiteSpaceTerminal(value[:len(value)-len(newvalue)], 'fws')
    return fws, newvalue

def get_encoded_word(value):
    """ encoded-word = "=?" charset "?" encoding "?" encoded-text "?="

    """
    ew = EncodedWord()
    if not value.startswith('=?'):
        raise errors.HeaderParseError(
            "expected encoded word but found {}".format(value))
    tok, *remainder = value[2:].split('?=', 1)
    if tok == value[2:]:
        raise errors.HeaderParseError(
            "expected encoded word but found {}".format(value))
    remstr = ''.join(remainder)
    if len(remstr) > 1 and remstr[0] in hexdigits and remstr[1] in hexdigits:
        # The ? after the CTE was followed by an encoded word escape (=XX).
        rest, *remainder = remstr.split('?=', 1)
        tok = tok + '?=' + rest
    if len(tok.split()) > 1:
        ew.defects.append(errors.InvalidHeaderDefect(
            "whitespace inside encoded word"))
    ew.cte = value
    value = ''.join(remainder)
    try:
        text, charset, lang, defects = _ew.decode('=?' + tok + '?=')
    except ValueError:
        raise errors.HeaderParseError(
            "encoded word format invalid: '{}'".format(ew.cte))
    ew.charset = charset
    ew.lang = lang
    ew.defects.extend(defects)
    while text:
        if text[0] in WSP:
            token, text = get_fws(text)
            ew.append(token)
            continue
        chars, *remainder = _wsp_splitter(text, 1)
        vtext = ValueTerminal(chars, 'vtext')
        _validate_xtext(vtext)
        ew.append(vtext)
        text = ''.join(remainder)
    return ew, value

def get_unstructured(value):
    """unstructured = (*([FWS] vchar) *WSP) / obs-unstruct
       obs-unstruct = *((*LF *CR *(obs-utext) *LF *CR)) / FWS)
       obs-utext = %d0 / obs-NO-WS-CTL / LF / CR

       obs-NO-WS-CTL is control characters except WSP/CR/LF.

    So, basically, we have printable runs, plus control characters or nulls in
    the obsolete syntax, separated by whitespace.  Since RFC 2047 uses the
    obsolete syntax in its specification, but requires whitespace on either
    side of the encoded words, I can see no reason to need to separate the
    non-printable-non-whitespace from the printable runs if they occur, so we
    parse this into xtext tokens separated by WSP tokens.

    Because an 'unstructured' value must by definition constitute the entire
    value, this 'get' routine does not return a remaining value, only the
    parsed TokenList.

    """
    # XXX: but what about bare CR and LF?  They might signal the start or
    # end of an encoded word.  YAGNI for now, since our current parsers
    # will never send us strings with bare CR or LF.

    unstructured = UnstructuredTokenList()
    while value:
        if value[0] in WSP:
            token, value = get_fws(value)
            unstructured.append(token)
            continue
        if value.startswith('=?'):
            try:
                token, value = get_encoded_word(value)
            except errors.HeaderParseError:
                # XXX: Need to figure out how to register defects when
                # appropriate here.
                pass
            else:
                have_ws = True
                if len(unstructured) > 0:
                    if unstructured[-1].token_type != 'fws':
                        unstructured.defects.append(errors.InvalidHeaderDefect(
                            "missing whitespace before encoded word"))
                        have_ws = False
                if have_ws and len(unstructured) > 1:
                    if unstructured[-2].token_type == 'encoded-word':
                        unstructured[-1] = EWWhiteSpaceTerminal(
                            unstructured[-1], 'fws')
                unstructured.append(token)
                continue
        tok, *remainder = _wsp_splitter(value, 1)
        vtext = ValueTerminal(tok, 'vtext')
        _validate_xtext(vtext)
        unstructured.append(vtext)
        value = ''.join(remainder)
    return unstructured

def get_qp_ctext(value):
    """ctext = <printable ascii except \ ( )>

    This is not the RFC ctext, since we are handling nested comments in comment
    and unquoting quoted-pairs here.  We allow anything except the '()'
    characters, but if we find any ASCII other than the RFC defined printable
    ASCII an NonPrintableDefect is added to the token's defects list.  Since
    quoted pairs are converted to their unquoted values, what is returned is
    a 'ptext' token.  In this case it is a WhiteSpaceTerminal, so it's value
    is ' '.

    """
    ptext, value, _ = _get_ptext_to_endchars(value, '()')
    ptext = WhiteSpaceTerminal(ptext, 'ptext')
    _validate_xtext(ptext)
    return ptext, value

def get_qcontent(value):
    """qcontent = qtext / quoted-pair

    We allow anything except the DQUOTE character, but if we find any ASCII
    other than the RFC defined printable ASCII an NonPrintableDefect is
    added to the token's defects list.  Any quoted pairs are converted to their
    unquoted values, so what is returned is a 'ptext' token.  In this case it
    is a ValueTerminal.

    """
    ptext, value, _ = _get_ptext_to_endchars(value, '"')
    ptext = ValueTerminal(ptext, 'ptext')
    _validate_xtext(ptext)
    return ptext, value

def get_atext(value):
    """atext = <matches _atext_matcher>

    We allow any non-ATOM_ENDS in atext, but add an InvalidATextDefect to
    the token's defects list if we find non-atext characters.
    """
    m = _non_atom_end_matcher(value)
    if not m:
        raise errors.HeaderParseError(
            "expected atext but found '{}'".format(value))
    atext = m.group()
    value = value[len(atext):]
    atext = ValueTerminal(atext, 'atext')
    _validate_xtext(atext)
    return atext, value

def get_bare_quoted_string(value):
    """bare-quoted-string = DQUOTE *([FWS] qcontent) [FWS] DQUOTE

    A quoted-string without the leading or trailing white space.  Its
    value is the text between the quote marks, with whitespace
    preserved and quoted pairs decoded.
    """
    if value[0] != '"':
        raise errors.HeaderParseError(
            "expected '\"' but found '{}'".format(value))
    bare_quoted_string = BareQuotedString()
    value = value[1:]
    while value and value[0] != '"':
        if value[0] in WSP:
            token, value = get_fws(value)
        elif value[:2] == '=?':
            try:
                token, value = get_encoded_word(value)
                bare_quoted_string.defects.append(errors.InvalidHeaderDefect(
                    "encoded word inside quoted string"))
            except errors.HeaderParseError:
                token, value = get_qcontent(value)
        else:
            token, value = get_qcontent(value)
        bare_quoted_string.append(token)
    if not value:
        bare_quoted_string.defects.append(errors.InvalidHeaderDefect(
            "end of header inside quoted string"))
        return bare_quoted_string, value
    return bare_quoted_string, value[1:]

def get_comment(value):
    """comment = "(" *([FWS] ccontent) [FWS] ")"
       ccontent = ctext / quoted-pair / comment

    We handle nested comments here, and quoted-pair in our qp-ctext routine.
    """
    if value and value[0] != '(':
        raise errors.HeaderParseError(
            "expected '(' but found '{}'".format(value))
    comment = Comment()
    value = value[1:]
    while value and value[0] != ")":
        if value[0] in WSP:
            token, value = get_fws(value)
        elif value[0] == '(':
            token, value = get_comment(value)
        else:
            token, value = get_qp_ctext(value)
        comment.append(token)
    if not value:
        comment.defects.append(errors.InvalidHeaderDefect(
            "end of header inside comment"))
        return comment, value
    return comment, value[1:]

def get_cfws(value):
    """CFWS = (1*([FWS] comment) [FWS]) / FWS

    """
    cfws = CFWSList()
    while value and value[0] in CFWS_LEADER:
        if value[0] in WSP:
            token, value = get_fws(value)
        else:
            token, value = get_comment(value)
        cfws.append(token)
    return cfws, value

def get_quoted_string(value):
    """quoted-string = [CFWS] <bare-quoted-string> [CFWS]

    'bare-quoted-string' is an intermediate class defined by this
    parser and not by the RFC grammar.  It is the quoted string
    without any attached CFWS.
    """
    quoted_string = QuotedString()
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        quoted_string.append(token)
    token, value = get_bare_quoted_string(value)
    quoted_string.append(token)
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        quoted_string.append(token)
    return quoted_string, value

def get_atom(value):
    """atom = [CFWS] 1*atext [CFWS]

    An atom could be an rfc2047 encoded word.
    """
    atom = Atom()
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        atom.append(token)
    if value and value[0] in ATOM_ENDS:
        raise errors.HeaderParseError(
            "expected atom but found '{}'".format(value))
    if value.startswith('=?'):
        try:
            token, value = get_encoded_word(value)
        except errors.HeaderParseError:
            # XXX: need to figure out how to register defects when
            # appropriate here.
            token, value = get_atext(value)
    else:
        token, value = get_atext(value)
    atom.append(token)
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        atom.append(token)
    return atom, value

def get_dot_atom_text(value):
    """ dot-text = 1*atext *("." 1*atext)

    """
    dot_atom_text = DotAtomText()
    if not value or value[0] in ATOM_ENDS:
        raise errors.HeaderParseError("expected atom at a start of "
            "dot-atom-text but found '{}'".format(value))
    while value and value[0] not in ATOM_ENDS:
        token, value = get_atext(value)
        dot_atom_text.append(token)
        if value and value[0] == '.':
            dot_atom_text.append(DOT)
            value = value[1:]
    if dot_atom_text[-1] is DOT:
        raise errors.HeaderParseError("expected atom at end of dot-atom-text "
            "but found '{}'".format('.'+value))
    return dot_atom_text, value

def get_dot_atom(value):
    """ dot-atom = [CFWS] dot-atom-text [CFWS]

    Any place we can have a dot atom, we could instead have an rfc2047 encoded
    word.
    """
    dot_atom = DotAtom()
    if value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        dot_atom.append(token)
    if value.startswith('=?'):
        try:
            token, value = get_encoded_word(value)
        except errors.HeaderParseError:
            # XXX: need to figure out how to register defects when
            # appropriate here.
            token, value = get_dot_atom_text(value)
    else:
        token, value = get_dot_atom_text(value)
    dot_atom.append(token)
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        dot_atom.append(token)
    return dot_atom, value

def get_word(value):
    """word = atom / quoted-string

    Either atom or quoted-string may start with CFWS.  We have to peel off this
    CFWS first to determine which type of word to parse.  Afterward we splice
    the leading CFWS, if any, into the parsed sub-token.

    If neither an atom or a quoted-string is found before the next special, a
    HeaderParseError is raised.

    The token returned is either an Atom or a QuotedString, as appropriate.
    This means the 'word' level of the formal grammar is not represented in the
    parse tree; this is because having that extra layer when manipulating the
    parse tree is more confusing than it is helpful.

    """
    if value[0] in CFWS_LEADER:
        leader, value = get_cfws(value)
    else:
        leader = None
    if value[0]=='"':
        token, value = get_quoted_string(value)
    elif value[0] in SPECIALS:
        raise errors.HeaderParseError("Expected 'atom' or 'quoted-string' "
                                      "but found '{}'".format(value))
    else:
        token, value = get_atom(value)
    if leader is not None:
        token[:0] = [leader]
    return token, value

def get_phrase(value):
    """ phrase = 1*word / obs-phrase
        obs-phrase = word *(word / "." / CFWS)

    This means a phrase can be a sequence of words, periods, and CFWS in any
    order as long as it starts with at least one word.  If anything other than
    words is detected, an ObsoleteHeaderDefect is added to the token's defect
    list.  We also accept a phrase that starts with CFWS followed by a dot;
    this is registered as an InvalidHeaderDefect, since it is not supported by
    even the obsolete grammar.

    """
    phrase = Phrase()
    try:
        token, value = get_word(value)
        phrase.append(token)
    except errors.HeaderParseError:
        phrase.defects.append(errors.InvalidHeaderDefect(
            "phrase does not start with word"))
    while value and value[0] not in PHRASE_ENDS:
        if value[0]=='.':
            phrase.append(DOT)
            phrase.defects.append(errors.ObsoleteHeaderDefect(
                "period in 'phrase'"))
            value = value[1:]
        else:
            try:
                token, value = get_word(value)
            except errors.HeaderParseError:
                if value[0] in CFWS_LEADER:
                    token, value = get_cfws(value)
                    phrase.defects.append(errors.ObsoleteHeaderDefect(
                        "comment found without atom"))
                else:
                    raise
            phrase.append(token)
    return phrase, value

def get_local_part(value):
    """ local-part = dot-atom / quoted-string / obs-local-part

    """
    local_part = LocalPart()
    leader = None
    if value[0] in CFWS_LEADER:
        leader, value = get_cfws(value)
    if not value:
        raise errors.HeaderParseError(
            "expected local-part but found '{}'".format(value))
    try:
        token, value = get_dot_atom(value)
    except errors.HeaderParseError:
        try:
            token, value = get_word(value)
        except errors.HeaderParseError:
            if value[0] != '\\' and value[0] in PHRASE_ENDS:
                raise
            token = TokenList()
    if leader is not None:
        token[:0] = [leader]
    local_part.append(token)
    if value and (value[0]=='\\' or value[0] not in PHRASE_ENDS):
        obs_local_part, value = get_obs_local_part(str(local_part) + value)
        if obs_local_part.token_type == 'invalid-obs-local-part':
            local_part.defects.append(errors.InvalidHeaderDefect(
                "local-part is not dot-atom, quoted-string, or obs-local-part"))
        else:
            local_part.defects.append(errors.ObsoleteHeaderDefect(
                "local-part is not a dot-atom (contains CFWS)"))
        local_part[0] = obs_local_part
    try:
        local_part.value.encode('ascii')
    except UnicodeEncodeError:
        local_part.defects.append(errors.NonASCIILocalPartDefect(
                "local-part contains non-ASCII characters)"))
    return local_part, value

def get_obs_local_part(value):
    """ obs-local-part = word *("." word)
    """
    obs_local_part = ObsLocalPart()
    last_non_ws_was_dot = False
    while value and (value[0]=='\\' or value[0] not in PHRASE_ENDS):
        if value[0] == '.':
            if last_non_ws_was_dot:
                obs_local_part.defects.append(errors.InvalidHeaderDefect(
                    "invalid repeated '.'"))
            obs_local_part.append(DOT)
            last_non_ws_was_dot = True
            value = value[1:]
            continue
        elif value[0]=='\\':
            obs_local_part.append(ValueTerminal(value[0],
                                                'misplaced-special'))
            value = value[1:]
            obs_local_part.defects.append(errors.InvalidHeaderDefect(
                "'\\' character outside of quoted-string/ccontent"))
            last_non_ws_was_dot = False
            continue
        if obs_local_part and obs_local_part[-1].token_type != 'dot':
            obs_local_part.defects.append(errors.InvalidHeaderDefect(
                "missing '.' between words"))
        try:
            token, value = get_word(value)
            last_non_ws_was_dot = False
        except errors.HeaderParseError:
            if value[0] not in CFWS_LEADER:
                raise
            token, value = get_cfws(value)
        obs_local_part.append(token)
    if (obs_local_part[0].token_type == 'dot' or
            obs_local_part[0].token_type=='cfws' and
            obs_local_part[1].token_type=='dot'):
        obs_local_part.defects.append(errors.InvalidHeaderDefect(
            "Invalid leading '.' in local part"))
    if (obs_local_part[-1].token_type == 'dot' or
            obs_local_part[-1].token_type=='cfws' and
            obs_local_part[-2].token_type=='dot'):
        obs_local_part.defects.append(errors.InvalidHeaderDefect(
            "Invalid trailing '.' in local part"))
    if obs_local_part.defects:
        obs_local_part.token_type = 'invalid-obs-local-part'
    return obs_local_part, value

def get_dtext(value):
    """ dtext = <printable ascii except \ [ ]> / obs-dtext
        obs-dtext = obs-NO-WS-CTL / quoted-pair

    We allow anything except the excluded characters, but if we find any
    ASCII other than the RFC defined printable ASCII an NonPrintableDefect is
    added to the token's defects list.  Quoted pairs are converted to their
    unquoted values, so what is returned is a ptext token, in this case a
    ValueTerminal.  If there were quoted-printables, an ObsoleteHeaderDefect is
    added to the returned token's defect list.

    """
    ptext, value, had_qp = _get_ptext_to_endchars(value, '[]')
    ptext = ValueTerminal(ptext, 'ptext')
    if had_qp:
        ptext.defects.append(errors.ObsoleteHeaderDefect(
            "quoted printable found in domain-literal"))
    _validate_xtext(ptext)
    return ptext, value

def _check_for_early_dl_end(value, domain_literal):
    if value:
        return False
    domain_literal.append(errors.InvalidHeaderDefect(
        "end of input inside domain-literal"))
    domain_literal.append(ValueTerminal(']', 'domain-literal-end'))
    return True

def get_domain_literal(value):
    """ domain-literal = [CFWS] "[" *([FWS] dtext) [FWS] "]" [CFWS]

    """
    domain_literal = DomainLiteral()
    if value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        domain_literal.append(token)
    if not value:
        raise errors.HeaderParseError("expected domain-literal")
    if value[0] != '[':
        raise errors.HeaderParseError("expected '[' at start of domain-literal "
                "but found '{}'".format(value))
    value = value[1:]
    if _check_for_early_dl_end(value, domain_literal):
        return domain_literal, value
    domain_literal.append(ValueTerminal('[', 'domain-literal-start'))
    if value[0] in WSP:
        token, value = get_fws(value)
        domain_literal.append(token)
    token, value = get_dtext(value)
    domain_literal.append(token)
    if _check_for_early_dl_end(value, domain_literal):
        return domain_literal, value
    if value[0] in WSP:
        token, value = get_fws(value)
        domain_literal.append(token)
    if _check_for_early_dl_end(value, domain_literal):
        return domain_literal, value
    if value[0] != ']':
        raise errors.HeaderParseError("expected ']' at end of domain-literal "
                "but found '{}'".format(value))
    domain_literal.append(ValueTerminal(']', 'domain-literal-end'))
    value = value[1:]
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        domain_literal.append(token)
    return domain_literal, value

def get_domain(value):
    """ domain = dot-atom / domain-literal / obs-domain
        obs-domain = atom *("." atom))

    """
    domain = Domain()
    leader = None
    if value[0] in CFWS_LEADER:
        leader, value = get_cfws(value)
    if not value:
        raise errors.HeaderParseError(
            "expected domain but found '{}'".format(value))
    if value[0] == '[':
        token, value = get_domain_literal(value)
        if leader is not None:
            token[:0] = [leader]
        domain.append(token)
        return domain, value
    try:
        token, value = get_dot_atom(value)
    except errors.HeaderParseError:
        token, value = get_atom(value)
    if leader is not None:
        token[:0] = [leader]
    domain.append(token)
    if value and value[0] == '.':
        domain.defects.append(errors.ObsoleteHeaderDefect(
            "domain is not a dot-atom (contains CFWS)"))
        if domain[0].token_type == 'dot-atom':
            domain[:] = domain[0]
        while value and value[0] == '.':
            domain.append(DOT)
            token, value = get_atom(value[1:])
            domain.append(token)
    return domain, value

def get_addr_spec(value):
    """ addr-spec = local-part "@" domain

    """
    addr_spec = AddrSpec()
    token, value = get_local_part(value)
    addr_spec.append(token)
    if not value or value[0] != '@':
        addr_spec.defects.append(errors.InvalidHeaderDefect(
            "add-spec local part with no domain"))
        return addr_spec, value
    addr_spec.append(ValueTerminal('@', 'address-at-symbol'))
    token, value = get_domain(value[1:])
    addr_spec.append(token)
    return addr_spec, value

def get_obs_route(value):
    """ obs-route = obs-domain-list ":"
        obs-domain-list = *(CFWS / ",") "@" domain *("," [CFWS] ["@" domain])

        Returns an obs-route token with the appropriate sub-tokens (that is,
        there is no obs-domain-list in the parse tree).
    """
    obs_route = ObsRoute()
    while value and (value[0]==',' or value[0] in CFWS_LEADER):
        if value[0] in CFWS_LEADER:
            token, value = get_cfws(value)
            obs_route.append(token)
        elif value[0] == ',':
            obs_route.append(ListSeparator)
            value = value[1:]
    if not value or value[0] != '@':
        raise errors.HeaderParseError(
            "expected obs-route domain but found '{}'".format(value))
    obs_route.append(RouteComponentMarker)
    token, value = get_domain(value[1:])
    obs_route.append(token)
    while value and value[0]==',':
        obs_route.append(ListSeparator)
        value = value[1:]
        if not value:
            break
        if value[0] in CFWS_LEADER:
            token, value = get_cfws(value)
            obs_route.append(token)
        if value[0] == '@':
            obs_route.append(RouteComponentMarker)
            token, value = get_domain(value[1:])
            obs_route.append(token)
    if not value:
        raise errors.HeaderParseError("end of header while parsing obs-route")
    if value[0] != ':':
        raise errors.HeaderParseError( "expected ':' marking end of "
            "obs-route but found '{}'".format(value))
    obs_route.append(ValueTerminal(':', 'end-of-obs-route-marker'))
    return obs_route, value[1:]

def get_angle_addr(value):
    """ angle-addr = [CFWS] "<" addr-spec ">" [CFWS] / obs-angle-addr
        obs-angle-addr = [CFWS] "<" obs-route addr-spec ">" [CFWS]

    """
    angle_addr = AngleAddr()
    if value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        angle_addr.append(token)
    if not value or value[0] != '<':
        raise errors.HeaderParseError(
            "expected angle-addr but found '{}'".format(value))
    angle_addr.append(ValueTerminal('<', 'angle-addr-start'))
    value = value[1:]
    # Although it is not legal per RFC5322, SMTP uses '<>' in certain
    # circumstances.
    if value[0] == '>':
        angle_addr.append(ValueTerminal('>', 'angle-addr-end'))
        angle_addr.defects.append(errors.InvalidHeaderDefect(
            "null addr-spec in angle-addr"))
        value = value[1:]
        return angle_addr, value
    try:
        token, value = get_addr_spec(value)
    except errors.HeaderParseError:
        try:
            token, value = get_obs_route(value)
            angle_addr.defects.append(errors.ObsoleteHeaderDefect(
                "obsolete route specification in angle-addr"))
        except errors.HeaderParseError:
            raise errors.HeaderParseError(
                "expected addr-spec or obs-route but found '{}'".format(value))
        angle_addr.append(token)
        token, value = get_addr_spec(value)
    angle_addr.append(token)
    if value and value[0] == '>':
        value = value[1:]
    else:
        angle_addr.defects.append(errors.InvalidHeaderDefect(
            "missing trailing '>' on angle-addr"))
    angle_addr.append(ValueTerminal('>', 'angle-addr-end'))
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        angle_addr.append(token)
    return angle_addr, value

def get_display_name(value):
    """ display-name = phrase

    Because this is simply a name-rule, we don't return a display-name
    token containing a phrase, but rather a display-name token with
    the content of the phrase.

    """
    display_name = DisplayName()
    token, value = get_phrase(value)
    display_name.extend(token[:])
    display_name.defects = token.defects[:]
    return display_name, value


def get_name_addr(value):
    """ name-addr = [display-name] angle-addr

    """
    name_addr = NameAddr()
    # Both the optional display name and the angle-addr can start with cfws.
    leader = None
    if value[0] in CFWS_LEADER:
        leader, value = get_cfws(value)
        if not value:
            raise errors.HeaderParseError(
                "expected name-addr but found '{}'".format(leader))
    if value[0] != '<':
        if value[0] in PHRASE_ENDS:
            raise errors.HeaderParseError(
                "expected name-addr but found '{}'".format(value))
        token, value = get_display_name(value)
        if not value:
            raise errors.HeaderParseError(
                "expected name-addr but found '{}'".format(token))
        if leader is not None:
            token[0][:0] = [leader]
            leader = None
        name_addr.append(token)
    token, value = get_angle_addr(value)
    if leader is not None:
        token[:0] = [leader]
    name_addr.append(token)
    return name_addr, value

def get_mailbox(value):
    """ mailbox = name-addr / addr-spec

    """
    # The only way to figure out if we are dealing with a name-addr or an
    # addr-spec is to try parsing each one.
    mailbox = Mailbox()
    try:
        token, value = get_name_addr(value)
    except errors.HeaderParseError:
        try:
            token, value = get_addr_spec(value)
        except errors.HeaderParseError:
            raise errors.HeaderParseError(
                "expected mailbox but found '{}'".format(value))
    if any(isinstance(x, errors.InvalidHeaderDefect)
                       for x in token.all_defects):
        mailbox.token_type = 'invalid-mailbox'
    mailbox.append(token)
    return mailbox, value

def get_invalid_mailbox(value, endchars):
    """ Read everything up to one of the chars in endchars.

    This is outside the formal grammar.  The InvalidMailbox TokenList that is
    returned acts like a Mailbox, but the data attributes are None.

    """
    invalid_mailbox = InvalidMailbox()
    while value and value[0] not in endchars:
        if value[0] in PHRASE_ENDS:
            invalid_mailbox.append(ValueTerminal(value[0],
                                                 'misplaced-special'))
            value = value[1:]
        else:
            token, value = get_phrase(value)
            invalid_mailbox.append(token)
    return invalid_mailbox, value

def get_mailbox_list(value):
    """ mailbox-list = (mailbox *("," mailbox)) / obs-mbox-list
        obs-mbox-list = *([CFWS] ",") mailbox *("," [mailbox / CFWS])

    For this routine we go outside the formal grammar in order to improve error
    handling.  We recognize the end of the mailbox list only at the end of the
    value or at a ';' (the group terminator).  This is so that we can turn
    invalid mailboxes into InvalidMailbox tokens and continue parsing any
    remaining valid mailboxes.  We also allow all mailbox entries to be null,
    and this condition is handled appropriately at a higher level.

    """
    mailbox_list = MailboxList()
    while value and value[0] != ';':
        try:
            token, value = get_mailbox(value)
            mailbox_list.append(token)
        except errors.HeaderParseError:
            leader = None
            if value[0] in CFWS_LEADER:
                leader, value = get_cfws(value)
                if not value or value[0] in ',;':
                    mailbox_list.append(leader)
                    mailbox_list.defects.append(errors.ObsoleteHeaderDefect(
                        "empty element in mailbox-list"))
                else:
                    token, value = get_invalid_mailbox(value, ',;')
                    if leader is not None:
                        token[:0] = [leader]
                    mailbox_list.append(token)
                    mailbox_list.defects.append(errors.InvalidHeaderDefect(
                        "invalid mailbox in mailbox-list"))
            elif value[0] == ',':
                mailbox_list.defects.append(errors.ObsoleteHeaderDefect(
                    "empty element in mailbox-list"))
            else:
                token, value = get_invalid_mailbox(value, ',;')
                if leader is not None:
                    token[:0] = [leader]
                mailbox_list.append(token)
                mailbox_list.defects.append(errors.InvalidHeaderDefect(
                    "invalid mailbox in mailbox-list"))
        if value and value[0] not in ',;':
            # Crap after mailbox; treat it as an invalid mailbox.
            # The mailbox info will still be available.
            mailbox = mailbox_list[-1]
            mailbox.token_type = 'invalid-mailbox'
            token, value = get_invalid_mailbox(value, ',;')
            mailbox.extend(token)
            mailbox_list.defects.append(errors.InvalidHeaderDefect(
                "invalid mailbox in mailbox-list"))
        if value and value[0] == ',':
            mailbox_list.append(ListSeparator)
            value = value[1:]
    return mailbox_list, value


def get_group_list(value):
    """ group-list = mailbox-list / CFWS / obs-group-list
        obs-group-list = 1*([CFWS] ",") [CFWS]

    """
    group_list = GroupList()
    if not value:
        group_list.defects.append(errors.InvalidHeaderDefect(
            "end of header before group-list"))
        return group_list, value
    leader = None
    if value and value[0] in CFWS_LEADER:
        leader, value = get_cfws(value)
        if not value:
            # This should never happen in email parsing, since CFWS-only is a
            # legal alternative to group-list in a group, which is the only
            # place group-list appears.
            group_list.defects.append(errors.InvalidHeaderDefect(
                "end of header in group-list"))
            group_list.append(leader)
            return group_list, value
        if value[0] == ';':
            group_list.append(leader)
            return group_list, value
    token, value = get_mailbox_list(value)
    if len(token.all_mailboxes)==0:
        if leader is not None:
            group_list.append(leader)
        group_list.extend(token)
        group_list.defects.append(errors.ObsoleteHeaderDefect(
            "group-list with empty entries"))
        return group_list, value
    if leader is not None:
        token[:0] = [leader]
    group_list.append(token)
    return group_list, value

def get_group(value):
    """ group = display-name ":" [group-list] ";" [CFWS]

    """
    group = Group()
    token, value = get_display_name(value)
    if not value or value[0] != ':':
        raise errors.HeaderParseError("expected ':' at end of group "
            "display name but found '{}'".format(value))
    group.append(token)
    group.append(ValueTerminal(':', 'group-display-name-terminator'))
    value = value[1:]
    if value and value[0] == ';':
        group.append(ValueTerminal(';', 'group-terminator'))
        return group, value[1:]
    token, value = get_group_list(value)
    group.append(token)
    if not value:
        group.defects.append(errors.InvalidHeaderDefect(
            "end of header in group"))
    if value[0] != ';':
        raise errors.HeaderParseError(
            "expected ';' at end of group but found {}".format(value))
    group.append(ValueTerminal(';', 'group-terminator'))
    value = value[1:]
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        group.append(token)
    return group, value

def get_address(value):
    """ address = mailbox / group

    Note that counter-intuitively, an address can be either a single address or
    a list of addresses (a group).  This is why the returned Address object has
    a 'mailboxes' attribute which treats a single address as a list of length
    one.  When you need to differentiate between to two cases, extract the single
    element, which is either a mailbox or a group token.

    """
    # The formal grammar isn't very helpful when parsing an address.  mailbox
    # and group, especially when allowing for obsolete forms, start off very
    # similarly.  It is only when you reach one of @, <, or : that you know
    # what you've got.  So, we try each one in turn, starting with the more
    # likely of the two.  We could perhaps make this more efficient by looking
    # for a phrase and then branching based on the next character, but that
    # would be a premature optimization.
    address = Address()
    try:
        token, value = get_group(value)
    except errors.HeaderParseError:
        try:
            token, value = get_mailbox(value)
        except errors.HeaderParseError:
            raise errors.HeaderParseError(
                "expected address but found '{}'".format(value))
    address.append(token)
    return address, value

def get_address_list(value):
    """ address_list = (address *("," address)) / obs-addr-list
        obs-addr-list = *([CFWS] ",") address *("," [address / CFWS])

    We depart from the formal grammar here by continuing to parse until the end
    of the input, assuming the input to be entirely composed of an
    address-list.  This is always true in email parsing, and allows us
    to skip invalid addresses to parse additional valid ones.

    """
    address_list = AddressList()
    while value:
        try:
            token, value = get_address(value)
            address_list.append(token)
        except errors.HeaderParseError as err:
            leader = None
            if value[0] in CFWS_LEADER:
                leader, value = get_cfws(value)
                if not value or value[0] == ',':
                    address_list.append(leader)
                    address_list.defects.append(errors.ObsoleteHeaderDefect(
                        "address-list entry with no content"))
                else:
                    token, value = get_invalid_mailbox(value, ',')
                    if leader is not None:
                        token[:0] = [leader]
                    address_list.append(Address([token]))
                    address_list.defects.append(errors.InvalidHeaderDefect(
                        "invalid address in address-list"))
            elif value[0] == ',':
                address_list.defects.append(errors.ObsoleteHeaderDefect(
                    "empty element in address-list"))
            else:
                token, value = get_invalid_mailbox(value, ',')
                if leader is not None:
                    token[:0] = [leader]
                address_list.append(Address([token]))
                address_list.defects.append(errors.InvalidHeaderDefect(
                    "invalid address in address-list"))
        if value and value[0] != ',':
            # Crap after address; treat it as an invalid mailbox.
            # The mailbox info will still be available.
            mailbox = address_list[-1][0]
            mailbox.token_type = 'invalid-mailbox'
            token, value = get_invalid_mailbox(value, ',')
            mailbox.extend(token)
            address_list.defects.append(errors.InvalidHeaderDefect(
                "invalid address in address-list"))
        if value:  # Must be a , at this point.
            address_list.append(ValueTerminal(',', 'list-separator'))
            value = value[1:]
    return address_list, value

#
# XXX: As I begin to add additional header parsers, I'm realizing we probably
# have two level of parser routines: the get_XXX methods that get a token in
# the grammar, and parse_XXX methods that parse an entire field value.  So
# get_address_list above should really be a parse_ method, as probably should
# be get_unstructured.
#

def parse_mime_version(value):
    """ mime-version = [CFWS] 1*digit [CFWS] "." [CFWS] 1*digit [CFWS]

    """
    # The [CFWS] is implicit in the RFC 2045 BNF.
    # XXX: This routine is a bit verbose, should factor out a get_int method.
    mime_version = MIMEVersion()
    if not value:
        mime_version.defects.append(errors.HeaderMissingRequiredValue(
            "Missing MIME version number (eg: 1.0)"))
        return mime_version
    if value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        mime_version.append(token)
        if not value:
            mime_version.defects.append(errors.HeaderMissingRequiredValue(
                "Expected MIME version number but found only CFWS"))
    digits = ''
    while value and value[0] != '.' and value[0] not in CFWS_LEADER:
        digits += value[0]
        value = value[1:]
    if not digits.isdigit():
        mime_version.defects.append(errors.InvalidHeaderDefect(
            "Expected MIME major version number but found {!r}".format(digits)))
        mime_version.append(ValueTerminal(digits, 'xtext'))
    else:
        mime_version.major = int(digits)
        mime_version.append(ValueTerminal(digits, 'digits'))
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        mime_version.append(token)
    if not value or value[0] != '.':
        if mime_version.major is not None:
            mime_version.defects.append(errors.InvalidHeaderDefect(
                "Incomplete MIME version; found only major number"))
        if value:
            mime_version.append(ValueTerminal(value, 'xtext'))
        return mime_version
    mime_version.append(ValueTerminal('.', 'version-separator'))
    value = value[1:]
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        mime_version.append(token)
    if not value:
        if mime_version.major is not None:
            mime_version.defects.append(errors.InvalidHeaderDefect(
                "Incomplete MIME version; found only major number"))
        return mime_version
    digits = ''
    while value and value[0] not in CFWS_LEADER:
        digits += value[0]
        value = value[1:]
    if not digits.isdigit():
        mime_version.defects.append(errors.InvalidHeaderDefect(
            "Expected MIME minor version number but found {!r}".format(digits)))
        mime_version.append(ValueTerminal(digits, 'xtext'))
    else:
        mime_version.minor = int(digits)
        mime_version.append(ValueTerminal(digits, 'digits'))
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        mime_version.append(token)
    if value:
        mime_version.defects.append(errors.InvalidHeaderDefect(
            "Excess non-CFWS text after MIME version"))
        mime_version.append(ValueTerminal(value, 'xtext'))
    return mime_version

def get_invalid_parameter(value):
    """ Read everything up to the next ';'.

    This is outside the formal grammar.  The InvalidParameter TokenList that is
    returned acts like a Parameter, but the data attributes are None.

    """
    invalid_parameter = InvalidParameter()
    while value and value[0] != ';':
        if value[0] in PHRASE_ENDS:
            invalid_parameter.append(ValueTerminal(value[0],
                                                   'misplaced-special'))
            value = value[1:]
        else:
            token, value = get_phrase(value)
            invalid_parameter.append(token)
    return invalid_parameter, value

def get_ttext(value):
    """ttext = <matches _ttext_matcher>

    We allow any non-TOKEN_ENDS in ttext, but add defects to the token's
    defects list if we find non-ttext characters.  We also register defects for
    *any* non-printables even though the RFC doesn't exclude all of them,
    because we follow the spirit of RFC 5322.

    """
    m = _non_token_end_matcher(value)
    if not m:
        raise errors.HeaderParseError(
            "expected ttext but found '{}'".format(value))
    ttext = m.group()
    value = value[len(ttext):]
    ttext = ValueTerminal(ttext, 'ttext')
    _validate_xtext(ttext)
    return ttext, value

def get_token(value):
    """token = [CFWS] 1*ttext [CFWS]

    The RFC equivalent of ttext is any US-ASCII chars except space, ctls, or
    tspecials.  We also exclude tabs even though the RFC doesn't.

    The RFC implies the CFWS but is not explicit about it in the BNF.

    """
    mtoken = Token()
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        mtoken.append(token)
    if value and value[0] in TOKEN_ENDS:
        raise errors.HeaderParseError(
            "expected token but found '{}'".format(value))
    token, value = get_ttext(value)
    mtoken.append(token)
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        mtoken.append(token)
    return mtoken, value

def get_attrtext(value):
    """attrtext = 1*(any non-ATTRIBUTE_ENDS character)

    We allow any non-ATTRIBUTE_ENDS in attrtext, but add defects to the
    token's defects list if we find non-attrtext characters.  We also register
    defects for *any* non-printables even though the RFC doesn't exclude all of
    them, because we follow the spirit of RFC 5322.

    """
    m = _non_attribute_end_matcher(value)
    if not m:
        raise errors.HeaderParseError(
            "expected attrtext but found {!r}".format(value))
    attrtext = m.group()
    value = value[len(attrtext):]
    attrtext = ValueTerminal(attrtext, 'attrtext')
    _validate_xtext(attrtext)
    return attrtext, value

def get_attribute(value):
    """ [CFWS] 1*attrtext [CFWS]

    This version of the BNF makes the CFWS explicit, and as usual we use a
    value terminal for the actual run of characters.  The RFC equivalent of
    attrtext is the token characters, with the subtraction of '*', "'", and '%'.
    We include tab in the excluded set just as we do for token.

    """
    attribute = Attribute()
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        attribute.append(token)
    if value and value[0] in ATTRIBUTE_ENDS:
        raise errors.HeaderParseError(
            "expected token but found '{}'".format(value))
    token, value = get_attrtext(value)
    attribute.append(token)
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        attribute.append(token)
    return attribute, value

def get_extended_attrtext(value):
    """attrtext = 1*(any non-ATTRIBUTE_ENDS character plus '%')

    This is a special parsing routine so that we get a value that
    includes % escapes as a single string (which we decode as a single
    string later).

    """
    m = _non_extended_attribute_end_matcher(value)
    if not m:
        raise errors.HeaderParseError(
            "expected extended attrtext but found {!r}".format(value))
    attrtext = m.group()
    value = value[len(attrtext):]
    attrtext = ValueTerminal(attrtext, 'extended-attrtext')
    _validate_xtext(attrtext)
    return attrtext, value

def get_extended_attribute(value):
    """ [CFWS] 1*extended_attrtext [CFWS]

    This is like the non-extended version except we allow % characters, so that
    we can pick up an encoded value as a single string.

    """
    # XXX: should we have an ExtendedAttribute TokenList?
    attribute = Attribute()
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        attribute.append(token)
    if value and value[0] in EXTENDED_ATTRIBUTE_ENDS:
        raise errors.HeaderParseError(
            "expected token but found '{}'".format(value))
    token, value = get_extended_attrtext(value)
    attribute.append(token)
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        attribute.append(token)
    return attribute, value

def get_section(value):
    """ '*' digits

    The formal BNF is more complicated because leading 0s are not allowed.  We
    check for that and add a defect.  We also assume no CFWS is allowed between
    the '*' and the digits, though the RFC is not crystal clear on that.
    The caller should already have dealt with leading CFWS.

    """
    section = Section()
    if not value or value[0] != '*':
        raise errors.HeaderParseError("Expected section but found {}".format(
                                        value))
    section.append(ValueTerminal('*', 'section-marker'))
    value = value[1:]
    if not value or not value[0].isdigit():
        raise errors.HeaderParseError("Expected section number but "
                                      "found {}".format(value))
    digits = ''
    while value and value[0].isdigit():
        digits += value[0]
        value = value[1:]
    if digits[0] == '0' and digits != '0':
        section.defects.append(errors.InvalidHeaderError("section number"
            "has an invalid leading 0"))
    section.number = int(digits)
    section.append(ValueTerminal(digits, 'digits'))
    return section, value


def get_value(value):
    """ quoted-string / attribute

    """
    v = Value()
    if not value:
        raise errors.HeaderParseError("Expected value but found end of string")
    leader = None
    if value[0] in CFWS_LEADER:
        leader, value = get_cfws(value)
    if not value:
        raise errors.HeaderParseError("Expected value but found "
                                      "only {}".format(leader))
    if value[0] == '"':
        token, value = get_quoted_string(value)
    else:
        token, value = get_extended_attribute(value)
    if leader is not None:
        token[:0] = [leader]
    v.append(token)
    return v, value

def get_parameter(value):
    """ attribute [section] ["*"] [CFWS] "=" value

    The CFWS is implied by the RFC but not made explicit in the BNF.  This
    simplified form of the BNF from the RFC is made to conform with the RFC BNF
    through some extra checks.  We do it this way because it makes both error
    recovery and working with the resulting parse tree easier.
    """
    # It is possible CFWS would also be implicitly allowed between the section
    # and the 'extended-attribute' marker (the '*') , but we've never seen that
    # in the wild and we will therefore ignore the possibility.
    param = Parameter()
    token, value = get_attribute(value)
    param.append(token)
    if not value or value[0] == ';':
        param.defects.append(errors.InvalidHeaderDefect("Parameter contains "
            "name ({}) but no value".format(token)))
        return param, value
    if value[0] == '*':
        try:
            token, value = get_section(value)
            param.sectioned = True
            param.append(token)
        except errors.HeaderParseError:
            pass
        if not value:
            raise errors.HeaderParseError("Incomplete parameter")
        if value[0] == '*':
            param.append(ValueTerminal('*', 'extended-parameter-marker'))
            value = value[1:]
            param.extended = True
    if value[0] != '=':
        raise errors.HeaderParseError("Parameter not followed by '='")
    param.append(ValueTerminal('=', 'parameter-separator'))
    value = value[1:]
    leader = None
    if value and value[0] in CFWS_LEADER:
        token, value = get_cfws(value)
        param.append(token)
    remainder = None
    appendto = param
    if param.extended and value and value[0] == '"':
        # Now for some serious hackery to handle the common invalid case of
        # double quotes around an extended value.  We also accept (with defect)
        # a value marked as encoded that isn't really.
        qstring, remainder = get_quoted_string(value)
        inner_value = qstring.stripped_value
        semi_valid = False
        if param.section_number == 0:
            if inner_value and inner_value[0] == "'":
                semi_valid = True
            else:
                token, rest = get_attrtext(inner_value)
                if rest and rest[0] == "'":
                    semi_valid = True
        else:
            try:
                token, rest = get_extended_attrtext(inner_value)
            except:
                pass
            else:
                if not rest:
                    semi_valid = True
        if semi_valid:
            param.defects.append(errors.InvalidHeaderDefect(
                "Quoted string value for extended parameter is invalid"))
            param.append(qstring)
            for t in qstring:
                if t.token_type == 'bare-quoted-string':
                    t[:] = []
                    appendto = t
                    break
            value = inner_value
        else:
            remainder = None
            param.defects.append(errors.InvalidHeaderDefect(
                "Parameter marked as extended but appears to have a "
                "quoted string value that is non-encoded"))
    if value and value[0] == "'":
        token = None
    else:
        token, value = get_value(value)
    if not param.extended or param.section_number > 0:
        if not value or value[0] != "'":
            appendto.append(token)
            if remainder is not None:
                assert not value, value
                value = remainder
            return param, value
        param.defects.append(errors.InvalidHeaderDefect(
            "Apparent initial-extended-value but attribute "
            "was not marked as extended or was not initial section"))
    if not value:
        # Assume the charset/lang is missing and the token is the value.
        param.defects.append(errors.InvalidHeaderDefect(
            "Missing required charset/lang delimiters"))
        appendto.append(token)
        if remainder is None:
            return param, value
    else:
        if token is not None:
            for t in token:
                if t.token_type == 'extended-attrtext':
                    break
            t.token_type == 'attrtext'
            appendto.append(t)
            param.charset = t.value
        if value[0] != "'":
            raise errors.HeaderParseError("Expected RFC2231 char/lang encoding "
                                          "delimiter, but found {!r}".format(value))
        appendto.append(ValueTerminal("'", 'RFC2231 delimiter'))
        value = value[1:]
        if value and value[0] != "'":
            token, value = get_attrtext(value)
            appendto.append(token)
            param.lang = token.value
            if not value or value[0] != "'":
                raise errors.HeaderParseError("Expected RFC2231 char/lang encoding "
                                  "delimiter, but found {}".format(value))
        appendto.append(ValueTerminal("'", 'RFC2231 delimiter'))
        value = value[1:]
    if remainder is not None:
        # Treat the rest of value as bare quoted string content.
        v = Value()
        while value:
            if value[0] in WSP:
                token, value = get_fws(value)
            else:
                token, value = get_qcontent(value)
            v.append(token)
        token = v
    else:
        token, value = get_value(value)
    appendto.append(token)
    if remainder is not None:
        assert not value, value
        value = remainder
    return param, value

def parse_mime_parameters(value):
    """ parameter *( ";" parameter )

    That BNF is meant to indicate this routine should only be called after
    finding and handling the leading ';'.  There is no corresponding rule in
    the formal RFC grammar, but it is more convenient for us for the set of
    parameters to be treated as its own TokenList.

    This is 'parse' routine because it consumes the reminaing value, but it
    would never be called to parse a full header.  Instead it is called to
    parse everything after the non-parameter value of a specific MIME header.

    """
    mime_parameters = MimeParameters()
    while value:
        try:
            token, value = get_parameter(value)
            mime_parameters.append(token)
        except errors.HeaderParseError as err:
            leader = None
            if value[0] in CFWS_LEADER:
                leader, value = get_cfws(value)
            if not value:
                mime_parameters.append(leader)
                return mime_parameters
            if value[0] == ';':
                if leader is not None:
                    mime_parameters.append(leader)
                mime_parameters.defects.append(errors.InvalidHeaderDefect(
                    "parameter entry with no content"))
            else:
                token, value = get_invalid_parameter(value)
                if leader:
                    token[:0] = [leader]
                mime_parameters.append(token)
                mime_parameters.defects.append(errors.InvalidHeaderDefect(
                    "invalid parameter {!r}".format(token)))
        if value and value[0] != ';':
            # Junk after the otherwise valid parameter.  Mark it as
            # invalid, but it will have a value.
            param = mime_parameters[-1]
            param.token_type = 'invalid-parameter'
            token, value = get_invalid_parameter(value)
            param.extend(token)
            mime_parameters.defects.append(errors.InvalidHeaderDefect(
                "parameter with invalid trailing text {!r}".format(token)))
        if value:
            # Must be a ';' at this point.
            mime_parameters.append(ValueTerminal(';', 'parameter-separator'))
            value = value[1:]
    return mime_parameters

def _find_mime_parameters(tokenlist, value):
    """Do our best to find the parameters in an invalid MIME header

    """
    while value and value[0] != ';':
        if value[0] in PHRASE_ENDS:
            tokenlist.append(ValueTerminal(value[0], 'misplaced-special'))
            value = value[1:]
        else:
            token, value = get_phrase(value)
            tokenlist.append(token)
    if not value:
        return
    tokenlist.append(ValueTerminal(';', 'parameter-separator'))
    tokenlist.append(parse_mime_parameters(value[1:]))

def parse_content_type_header(value):
    """ maintype "/" subtype *( ";" parameter )

    The maintype and substype are tokens.  Theoretically they could
    be checked against the official IANA list + x-token, but we
    don't do that.
    """
    ctype = ContentType()
    recover = False
    if not value:
        ctype.defects.append(errors.HeaderMissingRequiredValue(
            "Missing content type specification"))
        return ctype
    try:
        token, value = get_token(value)
    except errors.HeaderParseError:
        ctype.defects.append(errors.InvalidHeaderDefect(
            "Expected content maintype but found {!r}".format(value)))
        _find_mime_parameters(ctype, value)
        return ctype
    ctype.append(token)
    # XXX: If we really want to follow the formal grammer we should make
    # mantype and subtype specialized TokenLists here.  Probably not worth it.
    if not value or value[0] != '/':
        ctype.defects.append(errors.InvalidHeaderDefect(
            "Invalid content type"))
        if value:
            _find_mime_parameters(ctype, value)
        return ctype
    ctype.maintype = token.value.strip().lower()
    ctype.append(ValueTerminal('/', 'content-type-separator'))
    value = value[1:]
    try:
        token, value = get_token(value)
    except errors.HeaderParseError:
        ctype.defects.append(errors.InvalidHeaderDefect(
            "Expected content subtype but found {!r}".format(value)))
        _find_mime_parameters(ctype, value)
        return ctype
    ctype.append(token)
    ctype.subtype = token.value.strip().lower()
    if not value:
        return ctype
    if value[0] != ';':
        ctype.defects.append(errors.InvalidHeaderDefect(
            "Only parameters are valid after content type, but "
            "found {!r}".format(value)))
        # The RFC requires that a syntactically invalid content-type be treated
        # as text/plain.  Perhaps we should postel this, but we should probably
        # only do that if we were checking the subtype value against IANA.
        del ctype.maintype, ctype.subtype
        _find_mime_parameters(ctype, value)
        return ctype
    ctype.append(ValueTerminal(';', 'parameter-separator'))
    ctype.append(parse_mime_parameters(value[1:]))
    return ctype

def parse_content_disposition_header(value):
    """ disposition-type *( ";" parameter )

    """
    disp_header = ContentDisposition()
    if not value:
        disp_header.defects.append(errors.HeaderMissingRequiredValue(
            "Missing content disposition"))
        return disp_header
    try:
        token, value = get_token(value)
    except errors.HeaderParseError:
        disp_header.defects.append(errors.InvalidHeaderDefect(
            "Expected content disposition but found {!r}".format(value)))
        _find_mime_parameters(disp_header, value)
        return disp_header
    disp_header.append(token)
    disp_header.content_disposition = token.value.strip().lower()
    if not value:
        return disp_header
    if value[0] != ';':
        disp_header.defects.append(errors.InvalidHeaderDefect(
            "Only parameters are valid after content disposition, but "
            "found {!r}".format(value)))
        _find_mime_parameters(disp_header, value)
        return disp_header
    disp_header.append(ValueTerminal(';', 'parameter-separator'))
    disp_header.append(parse_mime_parameters(value[1:]))
    return disp_header

def parse_content_transfer_encoding_header(value):
    """ mechanism

    """
    # We should probably validate the values, since the list is fixed.
    cte_header = ContentTransferEncoding()
    if not value:
        cte_header.defects.append(errors.HeaderMissingRequiredValue(
            "Missing content transfer encoding"))
        return cte_header
    try:
        token, value = get_token(value)
    except errors.HeaderParseError:
        cte_header.defects.append(errors.InvalidHeaderDefect(
            "Expected content transfer encoding but found {!r}".format(value)))
    else:
        cte_header.append(token)
        cte_header.cte = token.value.strip().lower()
    if not value:
        return cte_header
    while value:
        cte_header.defects.append(errors.InvalidHeaderDefect(
            "Extra text after content transfer encoding"))
        if value[0] in PHRASE_ENDS:
            cte_header.append(ValueTerminal(value[0], 'misplaced-special'))
            value = value[1:]
        else:
            token, value = get_phrase(value)
            cte_header.append(token)
    return cte_header
lib\email\_parseaddr.py
# Copyright (C) 2002-2007 Python Software Foundation
# Contact: [email protected]

"""Email address parsing code.

Lifted directly from rfc822.py.  This should eventually be rewritten.
"""

__all__ = [
    'mktime_tz',
    'parsedate',
    'parsedate_tz',
    'quote',
    ]

import time, calendar

SPACE = ' '
EMPTYSTRING = ''
COMMASPACE = ', '

# Parse a date field
_monthnames = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul',
               'aug', 'sep', 'oct', 'nov', 'dec',
               'january', 'february', 'march', 'april', 'may', 'june', 'july',
               'august', 'september', 'october', 'november', 'december']

_daynames = ['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun']

# The timezone table does not include the military time zones defined
# in RFC822, other than Z.  According to RFC1123, the description in
# RFC822 gets the signs wrong, so we can't rely on any such time
# zones.  RFC1123 recommends that numeric timezone indicators be used
# instead of timezone names.

_timezones = {'UT':0, 'UTC':0, 'GMT':0, 'Z':0,
              'AST': -400, 'ADT': -300,  # Atlantic (used in Canada)
              'EST': -500, 'EDT': -400,  # Eastern
              'CST': -600, 'CDT': -500,  # Central
              'MST': -700, 'MDT': -600,  # Mountain
              'PST': -800, 'PDT': -700   # Pacific
              }


def parsedate_tz(data):
    """Convert a date string to a time tuple.

    Accounts for military timezones.
    """
    res = _parsedate_tz(data)
    if not res:
        return
    if res[9] is None:
        res[9] = 0
    return tuple(res)

def _parsedate_tz(data):
    """Convert date to extended time tuple.

    The last (additional) element is the time zone offset in seconds, except if
    the timezone was specified as -0000.  In that case the last element is
    None.  This indicates a UTC timestamp that explicitly declaims knowledge of
    the source timezone, as opposed to a +0000 timestamp that indicates the
    source timezone really was UTC.

    """
    if not data:
        return
    data = data.split()
    # The FWS after the comma after the day-of-week is optional, so search and
    # adjust for this.
    if data[0].endswith(',') or data[0].lower() in _daynames:
        # There's a dayname here. Skip it
        del data[0]
    else:
        i = data[0].rfind(',')
        if i >= 0:
            data[0] = data[0][i+1:]
    if len(data) == 3: # RFC 850 date, deprecated
        stuff = data[0].split('-')
        if len(stuff) == 3:
            data = stuff + data[1:]
    if len(data) == 4:
        s = data[3]
        i = s.find('+')
        if i == -1:
            i = s.find('-')
        if i > 0:
            data[3:] = [s[:i], s[i:]]
        else:
            data.append('') # Dummy tz
    if len(data) < 5:
        return None
    data = data[:5]
    [dd, mm, yy, tm, tz] = data
    mm = mm.lower()
    if mm not in _monthnames:
        dd, mm = mm, dd.lower()
        if mm not in _monthnames:
            return None
    mm = _monthnames.index(mm) + 1
    if mm > 12:
        mm -= 12
    if dd[-1] == ',':
        dd = dd[:-1]
    i = yy.find(':')
    if i > 0:
        yy, tm = tm, yy
    if yy[-1] == ',':
        yy = yy[:-1]
    if not yy[0].isdigit():
        yy, tz = tz, yy
    if tm[-1] == ',':
        tm = tm[:-1]
    tm = tm.split(':')
    if len(tm) == 2:
        [thh, tmm] = tm
        tss = '0'
    elif len(tm) == 3:
        [thh, tmm, tss] = tm
    elif len(tm) == 1 and '.' in tm[0]:
        # Some non-compliant MUAs use '.' to separate time elements.
        tm = tm[0].split('.')
        if len(tm) == 2:
            [thh, tmm] = tm
            tss = 0
        elif len(tm) == 3:
            [thh, tmm, tss] = tm
    else:
        return None
    try:
        yy = int(yy)
        dd = int(dd)
        thh = int(thh)
        tmm = int(tmm)
        tss = int(tss)
    except ValueError:
        return None
    # Check for a yy specified in two-digit format, then convert it to the
    # appropriate four-digit format, according to the POSIX standard. RFC 822
    # calls for a two-digit yy, but RFC 2822 (which obsoletes RFC 822)
    # mandates a 4-digit yy. For more information, see the documentation for
    # the time module.
    if yy < 100:
        # The year is between 1969 and 1999 (inclusive).
        if yy > 68:
            yy += 1900
        # The year is between 2000 and 2068 (inclusive).
        else:
            yy += 2000
    tzoffset = None
    tz = tz.upper()
    if tz in _timezones:
        tzoffset = _timezones[tz]
    else:
        try:
            tzoffset = int(tz)
        except ValueError:
            pass
        if tzoffset==0 and tz.startswith('-'):
            tzoffset = None
    # Convert a timezone offset into seconds ; -0500 -> -18000
    if tzoffset:
        if tzoffset < 0:
            tzsign = -1
            tzoffset = -tzoffset
        else:
            tzsign = 1
        tzoffset = tzsign * ( (tzoffset//100)*3600 + (tzoffset % 100)*60)
    # Daylight Saving Time flag is set to -1, since DST is unknown.
    return [yy, mm, dd, thh, tmm, tss, 0, 1, -1, tzoffset]


def parsedate(data):
    """Convert a time string to a time tuple."""
    t = parsedate_tz(data)
    if isinstance(t, tuple):
        return t[:9]
    else:
        return t


def mktime_tz(data):
    """Turn a 10-tuple as returned by parsedate_tz() into a POSIX timestamp."""
    if data[9] is None:
        # No zone info, so localtime is better assumption than GMT
        return time.mktime(data[:8] + (-1,))
    else:
        t = calendar.timegm(data)
        return t - data[9]


def quote(str):
    """Prepare string to be used in a quoted string.

    Turns backslash and double quote characters into quoted pairs.  These
    are the only characters that need to be quoted inside a quoted string.
    Does not add the surrounding double quotes.
    """
    return str.replace('\\', '\\\\').replace('"', '\\"')


class AddrlistClass:
    """Address parser class by Ben Escoto.

    To understand what this class does, it helps to have a copy of RFC 2822 in
    front of you.

    Note: this class interface is deprecated and may be removed in the future.
    Use email.utils.AddressList instead.
    """

    def __init__(self, field):
        """Initialize a new instance.

        `field' is an unparsed address header field, containing
        one or more addresses.
        """
        self.specials = '()<>@,:;.\"[]'
        self.pos = 0
        self.LWS = ' \t'
        self.CR = '\r\n'
        self.FWS = self.LWS + self.CR
        self.atomends = self.specials + self.LWS + self.CR
        # Note that RFC 2822 now specifies `.' as obs-phrase, meaning that it
        # is obsolete syntax.  RFC 2822 requires that we recognize obsolete
        # syntax, so allow dots in phrases.
        self.phraseends = self.atomends.replace('.', '')
        self.field = field
        self.commentlist = []

    def gotonext(self):
        """Skip white space and extract comments."""
        wslist = []
        while self.pos < len(self.field):
            if self.field[self.pos] in self.LWS + '\n\r':
                if self.field[self.pos] not in '\n\r':
                    wslist.append(self.field[self.pos])
                self.pos += 1
            elif self.field[self.pos] == '(':
                self.commentlist.append(self.getcomment())
            else:
                break
        return EMPTYSTRING.join(wslist)

    def getaddrlist(self):
        """Parse all addresses.

        Returns a list containing all of the addresses.
        """
        result = []
        while self.pos < len(self.field):
            ad = self.getaddress()
            if ad:
                result += ad
            else:
                result.append(('', ''))
        return result

    def getaddress(self):
        """Parse the next address."""
        self.commentlist = []
        self.gotonext()

        oldpos = self.pos
        oldcl = self.commentlist
        plist = self.getphraselist()

        self.gotonext()
        returnlist = []

        if self.pos >= len(self.field):
            # Bad email address technically, no domain.
            if plist:
                returnlist = [(SPACE.join(self.commentlist), plist[0])]

        elif self.field[self.pos] in '.@':
            # email address is just an addrspec
            # this isn't very efficient since we start over
            self.pos = oldpos
            self.commentlist = oldcl
            addrspec = self.getaddrspec()
            returnlist = [(SPACE.join(self.commentlist), addrspec)]

        elif self.field[self.pos] == ':':
            # address is a group
            returnlist = []

            fieldlen = len(self.field)
            self.pos += 1
            while self.pos < len(self.field):
                self.gotonext()
                if self.pos < fieldlen and self.field[self.pos] == ';':
                    self.pos += 1
                    break
                returnlist = returnlist + self.getaddress()

        elif self.field[self.pos] == '<':
            # Address is a phrase then a route addr
            routeaddr = self.getrouteaddr()

            if self.commentlist:
                returnlist = [(SPACE.join(plist) + ' (' +
                               ' '.join(self.commentlist) + ')', routeaddr)]
            else:
                returnlist = [(SPACE.join(plist), routeaddr)]

        else:
            if plist:
                returnlist = [(SPACE.join(self.commentlist), plist[0])]
            elif self.field[self.pos] in self.specials:
                self.pos += 1

        self.gotonext()
        if self.pos < len(self.field) and self.field[self.pos] == ',':
            self.pos += 1
        return returnlist

    def getrouteaddr(self):
        """Parse a route address (Return-path value).

        This method just skips all the route stuff and returns the addrspec.
        """
        if self.field[self.pos] != '<':
            return

        expectroute = False
        self.pos += 1
        self.gotonext()
        adlist = ''
        while self.pos < len(self.field):
            if expectroute:
                self.getdomain()
                expectroute = False
            elif self.field[self.pos] == '>':
                self.pos += 1
                break
            elif self.field[self.pos] == '@':
                self.pos += 1
                expectroute = True
            elif self.field[self.pos] == ':':
                self.pos += 1
            else:
                adlist = self.getaddrspec()
                self.pos += 1
                break
            self.gotonext()

        return adlist

    def getaddrspec(self):
        """Parse an RFC 2822 addr-spec."""
        aslist = []

        self.gotonext()
        while self.pos < len(self.field):
            preserve_ws = True
            if self.field[self.pos] == '.':
                if aslist and not aslist[-1].strip():
                    aslist.pop()
                aslist.append('.')
                self.pos += 1
                preserve_ws = False
            elif self.field[self.pos] == '"':
                aslist.append('"%s"' % quote(self.getquote()))
            elif self.field[self.pos] in self.atomends:
                if aslist and not aslist[-1].strip():
                    aslist.pop()
                break
            else:
                aslist.append(self.getatom())
            ws = self.gotonext()
            if preserve_ws and ws:
                aslist.append(ws)

        if self.pos >= len(self.field) or self.field[self.pos] != '@':
            return EMPTYSTRING.join(aslist)

        aslist.append('@')
        self.pos += 1
        self.gotonext()
        return EMPTYSTRING.join(aslist) + self.getdomain()

    def getdomain(self):
        """Get the complete domain name from an address."""
        sdlist = []
        while self.pos < len(self.field):
            if self.field[self.pos] in self.LWS:
                self.pos += 1
            elif self.field[self.pos] == '(':
                self.commentlist.append(self.getcomment())
            elif self.field[self.pos] == '[':
                sdlist.append(self.getdomainliteral())
            elif self.field[self.pos] == '.':
                self.pos += 1
                sdlist.append('.')
            elif self.field[self.pos] in self.atomends:
                break
            else:
                sdlist.append(self.getatom())
        return EMPTYSTRING.join(sdlist)

    def getdelimited(self, beginchar, endchars, allowcomments=True):
        """Parse a header fragment delimited by special characters.

        `beginchar' is the start character for the fragment.
        If self is not looking at an instance of `beginchar' then
        getdelimited returns the empty string.

        `endchars' is a sequence of allowable end-delimiting characters.
        Parsing stops when one of these is encountered.

        If `allowcomments' is non-zero, embedded RFC 2822 comments are allowed
        within the parsed fragment.
        """
        if self.field[self.pos] != beginchar:
            return ''

        slist = ['']
        quote = False
        self.pos += 1
        while self.pos < len(self.field):
            if quote:
                slist.append(self.field[self.pos])
                quote = False
            elif self.field[self.pos] in endchars:
                self.pos += 1
                break
            elif allowcomments and self.field[self.pos] == '(':
                slist.append(self.getcomment())
                continue        # have already advanced pos from getcomment
            elif self.field[self.pos] == '\\':
                quote = True
            else:
                slist.append(self.field[self.pos])
            self.pos += 1

        return EMPTYSTRING.join(slist)

    def getquote(self):
        """Get a quote-delimited fragment from self's field."""
        return self.getdelimited('"', '"\r', False)

    def getcomment(self):
        """Get a parenthesis-delimited fragment from self's field."""
        return self.getdelimited('(', ')\r', True)

    def getdomainliteral(self):
        """Parse an RFC 2822 domain-literal."""
        return '[%s]' % self.getdelimited('[', ']\r', False)

    def getatom(self, atomends=None):
        """Parse an RFC 2822 atom.

        Optional atomends specifies a different set of end token delimiters
        (the default is to use self.atomends).  This is used e.g. in
        getphraselist() since phrase endings must not include the `.' (which
        is legal in phrases)."""
        atomlist = ['']
        if atomends is None:
            atomends = self.atomends

        while self.pos < len(self.field):
            if self.field[self.pos] in atomends:
                break
            else:
                atomlist.append(self.field[self.pos])
            self.pos += 1

        return EMPTYSTRING.join(atomlist)

    def getphraselist(self):
        """Parse a sequence of RFC 2822 phrases.

        A phrase is a sequence of words, which are in turn either RFC 2822
        atoms or quoted-strings.  Phrases are canonicalized by squeezing all
        runs of continuous whitespace into one space.
        """
        plist = []

        while self.pos < len(self.field):
            if self.field[self.pos] in self.FWS:
                self.pos += 1
            elif self.field[self.pos] == '"':
                plist.append(self.getquote())
            elif self.field[self.pos] == '(':
                self.commentlist.append(self.getcomment())
            elif self.field[self.pos] in self.phraseends:
                break
            else:
                plist.append(self.getatom(self.phraseends))

        return plist

class AddressList(AddrlistClass):
    """An AddressList encapsulates a list of parsed RFC 2822 addresses."""
    def __init__(self, field):
        AddrlistClass.__init__(self, field)
        if field:
            self.addresslist = self.getaddrlist()
        else:
            self.addresslist = []

    def __len__(self):
        return len(self.addresslist)

    def __add__(self, other):
        # Set union
        newaddr = AddressList(None)
        newaddr.addresslist = self.addresslist[:]
        for x in other.addresslist:
            if not x in self.addresslist:
                newaddr.addresslist.append(x)
        return newaddr

    def __iadd__(self, other):
        # Set union, in-place
        for x in other.addresslist:
            if not x in self.addresslist:
                self.addresslist.append(x)
        return self

    def __sub__(self, other):
        # Set difference
        newaddr = AddressList(None)
        for x in self.addresslist:
            if not x in other.addresslist:
                newaddr.addresslist.append(x)
        return newaddr

    def __isub__(self, other):
        # Set difference, in-place
        for x in other.addresslist:
            if x in self.addresslist:
                self.addresslist.remove(x)
        return self

    def __getitem__(self, index):
        # Make indexing, slices, and 'in' work
        return self.addresslist[index]
lib\email\_policybase.py
"""Policy framework for the email package.

Allows fine grained feature control of how the package parses and emits data.
"""

import abc
from email import header
from email import charset as _charset
from email.utils import _has_surrogates

__all__ = [
    'Policy',
    'Compat32',
    'compat32',
    ]


class _PolicyBase:

    """Policy Object basic framework.

    This class is useless unless subclassed.  A subclass should define
    class attributes with defaults for any values that are to be
    managed by the Policy object.  The constructor will then allow
    non-default values to be set for these attributes at instance
    creation time.  The instance will be callable, taking these same
    attributes keyword arguments, and returning a new instance
    identical to the called instance except for those values changed
    by the keyword arguments.  Instances may be added, yielding new
    instances with any non-default values from the right hand
    operand overriding those in the left hand operand.  That is,

        A + B == A(<non-default values of B>)

    The repr of an instance can be used to reconstruct the object
    if and only if the repr of the values can be used to reconstruct
    those values.

    """

    def __init__(self, **kw):
        """Create new Policy, possibly overriding some defaults.

        See class docstring for a list of overridable attributes.

        """
        for name, value in kw.items():
            if hasattr(self, name):
                super(_PolicyBase,self).__setattr__(name, value)
            else:
                raise TypeError(
                    "{!r} is an invalid keyword argument for {}".format(
                        name, self.__class__.__name__))

    def __repr__(self):
        args = [ "{}={!r}".format(name, value)
                 for name, value in self.__dict__.items() ]
        return "{}({})".format(self.__class__.__name__, ', '.join(args))

    def clone(self, **kw):
        """Return a new instance with specified attributes changed.

        The new instance has the same attribute values as the current object,
        except for the changes passed in as keyword arguments.

        """
        newpolicy = self.__class__.__new__(self.__class__)
        for attr, value in self.__dict__.items():
            object.__setattr__(newpolicy, attr, value)
        for attr, value in kw.items():
            if not hasattr(self, attr):
                raise TypeError(
                    "{!r} is an invalid keyword argument for {}".format(
                        attr, self.__class__.__name__))
            object.__setattr__(newpolicy, attr, value)
        return newpolicy

    def __setattr__(self, name, value):
        if hasattr(self, name):
            msg = "{!r} object attribute {!r} is read-only"
        else:
            msg = "{!r} object has no attribute {!r}"
        raise AttributeError(msg.format(self.__class__.__name__, name))

    def __add__(self, other):
        """Non-default values from right operand override those from left.

        The object returned is a new instance of the subclass.

        """
        return self.clone(**other.__dict__)


def _append_doc(doc, added_doc):
    doc = doc.rsplit('\n', 1)[0]
    added_doc = added_doc.split('\n', 1)[1]
    return doc + '\n' + added_doc

def _extend_docstrings(cls):
    if cls.__doc__ and cls.__doc__.startswith('+'):
        cls.__doc__ = _append_doc(cls.__bases__[0].__doc__, cls.__doc__)
    for name, attr in cls.__dict__.items():
        if attr.__doc__ and attr.__doc__.startswith('+'):
            for c in (c for base in cls.__bases__ for c in base.mro()):
                doc = getattr(getattr(c, name), '__doc__')
                if doc:
                    attr.__doc__ = _append_doc(doc, attr.__doc__)
                    break
    return cls


class Policy(_PolicyBase, metaclass=abc.ABCMeta):

    r"""Controls for how messages are interpreted and formatted.

    Most of the classes and many of the methods in the email package accept
    Policy objects as parameters.  A Policy object contains a set of values and
    functions that control how input is interpreted and how output is rendered.
    For example, the parameter 'raise_on_defect' controls whether or not an RFC
    violation results in an error being raised or not, while 'max_line_length'
    controls the maximum length of output lines when a Message is serialized.

    Any valid attribute may be overridden when a Policy is created by passing
    it as a keyword argument to the constructor.  Policy objects are immutable,
    but a new Policy object can be created with only certain values changed by
    calling the Policy instance with keyword arguments.  Policy objects can
    also be added, producing a new Policy object in which the non-default
    attributes set in the right hand operand overwrite those specified in the
    left operand.

    Settable attributes:

    raise_on_defect     -- If true, then defects should be raised as errors.
                           Default: False.

    linesep             -- string containing the value to use as separation
                           between output lines.  Default '\n'.

    cte_type            -- Type of allowed content transfer encodings

                           7bit  -- ASCII only
                           8bit  -- Content-Transfer-Encoding: 8bit is allowed

                           Default: 8bit.  Also controls the disposition of
                           (RFC invalid) binary data in headers; see the
                           documentation of the binary_fold method.

    max_line_length     -- maximum length of lines, excluding 'linesep',
                           during serialization.  None or 0 means no line
                           wrapping is done.  Default is 78.

    """

    raise_on_defect = False
    linesep = '\n'
    cte_type = '8bit'
    max_line_length = 78

    def handle_defect(self, obj, defect):
        """Based on policy, either raise defect or call register_defect.

            handle_defect(obj, defect)

        defect should be a Defect subclass, but in any case must be an
        Exception subclass.  obj is the object on which the defect should be
        registered if it is not raised.  If the raise_on_defect is True, the
        defect is raised as an error, otherwise the object and the defect are
        passed to register_defect.

        This method is intended to be called by parsers that discover defects.
        The email package parsers always call it with Defect instances.

        """
        if self.raise_on_defect:
            raise defect
        self.register_defect(obj, defect)

    def register_defect(self, obj, defect):
        """Record 'defect' on 'obj'.

        Called by handle_defect if raise_on_defect is False.  This method is
        part of the Policy API so that Policy subclasses can implement custom
        defect handling.  The default implementation calls the append method of
        the defects attribute of obj.  The objects used by the email package by
        default that get passed to this method will always have a defects
        attribute with an append method.

        """
        obj.defects.append(defect)

    def header_max_count(self, name):
        """Return the maximum allowed number of headers named 'name'.

        Called when a header is added to a Message object.  If the returned
        value is not 0 or None, and there are already a number of headers with
        the name 'name' equal to the value returned, a ValueError is raised.

        Because the default behavior of Message's __setitem__ is to append the
        value to the list of headers, it is easy to create duplicate headers
        without realizing it.  This method allows certain headers to be limited
        in the number of instances of that header that may be added to a
        Message programmatically.  (The limit is not observed by the parser,
        which will faithfully produce as many headers as exist in the message
        being parsed.)

        The default implementation returns None for all header names.
        """
        return None

    @abc.abstractmethod
    def header_source_parse(self, sourcelines):
        """Given a list of linesep terminated strings constituting the lines of
        a single header, return the (name, value) tuple that should be stored
        in the model.  The input lines should retain their terminating linesep
        characters.  The lines passed in by the email package may contain
        surrogateescaped binary data.
        """
        raise NotImplementedError

    @abc.abstractmethod
    def header_store_parse(self, name, value):
        """Given the header name and the value provided by the application
        program, return the (name, value) that should be stored in the model.
        """
        raise NotImplementedError

    @abc.abstractmethod
    def header_fetch_parse(self, name, value):
        """Given the header name and the value from the model, return the value
        to be returned to the application program that is requesting that
        header.  The value passed in by the email package may contain
        surrogateescaped binary data if the lines were parsed by a BytesParser.
        The returned value should not contain any surrogateescaped data.

        """
        raise NotImplementedError

    @abc.abstractmethod
    def fold(self, name, value):
        """Given the header name and the value from the model, return a string
        containing linesep characters that implement the folding of the header
        according to the policy controls.  The value passed in by the email
        package may contain surrogateescaped binary data if the lines were
        parsed by a BytesParser.  The returned value should not contain any
        surrogateescaped data.

        """
        raise NotImplementedError

    @abc.abstractmethod
    def fold_binary(self, name, value):
        """Given the header name and the value from the model, return binary
        data containing linesep characters that implement the folding of the
        header according to the policy controls.  The value passed in by the
        email package may contain surrogateescaped binary data.

        """
        raise NotImplementedError


@_extend_docstrings
class Compat32(Policy):

    """+
    This particular policy is the backward compatibility Policy.  It
    replicates the behavior of the email package version 5.1.
    """

    def _sanitize_header(self, name, value):
        # If the header value contains surrogates, return a Header using
        # the unknown-8bit charset to encode the bytes as encoded words.
        if not isinstance(value, str):
            # Assume it is already a header object
            return value
        if _has_surrogates(value):
            return header.Header(value, charset=_charset.UNKNOWN8BIT,
                                 header_name=name)
        else:
            return value

    def header_source_parse(self, sourcelines):
        """+
        The name is parsed as everything up to the ':' and returned unmodified.
        The value is determined by stripping leading whitespace off the
        remainder of the first line, joining all subsequent lines together, and
        stripping any trailing carriage return or linefeed characters.

        """
        name, value = sourcelines[0].split(':', 1)
        value = value.lstrip(' \t') + ''.join(sourcelines[1:])
        return (name, value.rstrip('\r\n'))

    def header_store_parse(self, name, value):
        """+
        The name and value are returned unmodified.
        """
        return (name, value)

    def header_fetch_parse(self, name, value):
        """+
        If the value contains binary data, it is converted into a Header object
        using the unknown-8bit charset.  Otherwise it is returned unmodified.
        """
        return self._sanitize_header(name, value)

    def fold(self, name, value):
        """+
        Headers are folded using the Header folding algorithm, which preserves
        existing line breaks in the value, and wraps each resulting line to the
        max_line_length.  Non-ASCII binary data are CTE encoded using the
        unknown-8bit charset.

        """
        return self._fold(name, value, sanitize=True)

    def fold_binary(self, name, value):
        """+
        Headers are folded using the Header folding algorithm, which preserves
        existing line breaks in the value, and wraps each resulting line to the
        max_line_length.  If cte_type is 7bit, non-ascii binary data is CTE
        encoded using the unknown-8bit charset.  Otherwise the original source
        header is used, with its existing line breaks and/or binary data.

        """
        folded = self._fold(name, value, sanitize=self.cte_type=='7bit')
        return folded.encode('ascii', 'surrogateescape')

    def _fold(self, name, value, sanitize):
        parts = []
        parts.append('%s: ' % name)
        if isinstance(value, str):
            if _has_surrogates(value):
                if sanitize:
                    h = header.Header(value,
                                      charset=_charset.UNKNOWN8BIT,
                                      header_name=name)
                else:
                    # If we have raw 8bit data in a byte string, we have no idea
                    # what the encoding is.  There is no safe way to split this
                    # string.  If it's ascii-subset, then we could do a normal
                    # ascii split, but if it's multibyte then we could break the
                    # string.  There's no way to know so the least harm seems to
                    # be to not split the string and risk it being too long.
                    parts.append(value)
                    h = None
            else:
                h = header.Header(value, header_name=name)
        else:
            # Assume it is a Header-like object.
            h = value
        if h is not None:
            parts.append(h.encode(linesep=self.linesep,
                                  maxlinelen=self.max_line_length))
        parts.append(self.linesep)
        return ''.join(parts)


compat32 = Compat32()
lib\email\__init__.py
# Copyright (C) 2001-2007 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""A package for parsing, handling, and generating email messages."""

__version__ = '5.1.0'

__all__ = [
    'base64mime',
    'charset',
    'encoders',
    'errors',
    'feedparser',
    'generator',
    'header',
    'iterators',
    'message',
    'message_from_file',
    'message_from_binary_file',
    'message_from_string',
    'message_from_bytes',
    'mime',
    'parser',
    'quoprimime',
    'utils',
    ]



# Some convenience routines.  Don't import Parser and Message as side-effects
# of importing email since those cascadingly import most of the rest of the
# email package.
def message_from_string(s, *args, **kws):
    """Parse a string into a Message object model.

    Optional _class and strict are passed to the Parser constructor.
    """
    from email.parser import Parser
    return Parser(*args, **kws).parsestr(s)

def message_from_bytes(s, *args, **kws):
    """Parse a bytes string into a Message object model.

    Optional _class and strict are passed to the Parser constructor.
    """
    from email.parser import BytesParser
    return BytesParser(*args, **kws).parsebytes(s)

def message_from_file(fp, *args, **kws):
    """Read a file and parse its contents into a Message object model.

    Optional _class and strict are passed to the Parser constructor.
    """
    from email.parser import Parser
    return Parser(*args, **kws).parse(fp)

def message_from_binary_file(fp, *args, **kws):
    """Read a binary file and parse its contents into a Message object model.

    Optional _class and strict are passed to the Parser constructor.
    """
    from email.parser import BytesParser
    return BytesParser(*args, **kws).parse(fp)
lib\email\mime\application.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Keith Dart
# Contact: [email protected]

"""Class representing application/* type MIME documents."""

__all__ = ["MIMEApplication"]

from email import encoders
from email.mime.nonmultipart import MIMENonMultipart


class MIMEApplication(MIMENonMultipart):
    """Class for generating application/* MIME documents."""

    def __init__(self, _data, _subtype='octet-stream',
                 _encoder=encoders.encode_base64, **_params):
        """Create an application/* type MIME document.

        _data is a string containing the raw application data.

        _subtype is the MIME content type subtype, defaulting to
        'octet-stream'.

        _encoder is a function which will perform the actual encoding for
        transport of the application data, defaulting to base64 encoding.

        Any additional keyword arguments are passed to the base class
        constructor, which turns them into parameters on the Content-Type
        header.
        """
        if _subtype is None:
            raise TypeError('Invalid application MIME subtype')
        MIMENonMultipart.__init__(self, 'application', _subtype, **_params)
        self.set_payload(_data)
        _encoder(self)
lib\email\mime\audio.py
# Copyright (C) 2001-2007 Python Software Foundation
# Author: Anthony Baxter
# Contact: [email protected]

"""Class representing audio/* type MIME documents."""

__all__ = ['MIMEAudio']

import sndhdr

from io import BytesIO
from email import encoders
from email.mime.nonmultipart import MIMENonMultipart



_sndhdr_MIMEmap = {'au'  : 'basic',
                   'wav' :'x-wav',
                   'aiff':'x-aiff',
                   'aifc':'x-aiff',
                   }

# There are others in sndhdr that don't have MIME types. :(
# Additional ones to be added to sndhdr? midi, mp3, realaudio, wma??
def _whatsnd(data):
    """Try to identify a sound file type.

    sndhdr.what() has a pretty cruddy interface, unfortunately.  This is why
    we re-do it here.  It would be easier to reverse engineer the Unix 'file'
    command and use the standard 'magic' file, as shipped with a modern Unix.
    """
    hdr = data[:512]
    fakefile = BytesIO(hdr)
    for testfn in sndhdr.tests:
        res = testfn(hdr, fakefile)
        if res is not None:
            return _sndhdr_MIMEmap.get(res[0])
    return None



class MIMEAudio(MIMENonMultipart):
    """Class for generating audio/* MIME documents."""

    def __init__(self, _audiodata, _subtype=None,
                 _encoder=encoders.encode_base64, **_params):
        """Create an audio/* type MIME document.

        _audiodata is a string containing the raw audio data.  If this data
        can be decoded by the standard Python `sndhdr' module, then the
        subtype will be automatically included in the Content-Type header.
        Otherwise, you can specify  the specific audio subtype via the
        _subtype parameter.  If _subtype is not given, and no subtype can be
        guessed, a TypeError is raised.

        _encoder is a function which will perform the actual encoding for
        transport of the image data.  It takes one argument, which is this
        Image instance.  It should use get_payload() and set_payload() to
        change the payload to the encoded form.  It should also add any
        Content-Transfer-Encoding or other headers to the message as
        necessary.  The default encoding is Base64.

        Any additional keyword arguments are passed to the base class
        constructor, which turns them into parameters on the Content-Type
        header.
        """
        if _subtype is None:
            _subtype = _whatsnd(_audiodata)
        if _subtype is None:
            raise TypeError('Could not find audio MIME subtype')
        MIMENonMultipart.__init__(self, 'audio', _subtype, **_params)
        self.set_payload(_audiodata)
        _encoder(self)
lib\email\mime\base.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Base class for MIME specializations."""

__all__ = ['MIMEBase']

from email import message



class MIMEBase(message.Message):
    """Base class for MIME specializations."""

    def __init__(self, _maintype, _subtype, **_params):
        """This constructor adds a Content-Type: and a MIME-Version: header.

        The Content-Type: header is taken from the _maintype and _subtype
        arguments.  Additional parameters for this header are taken from the
        keyword arguments.
        """
        message.Message.__init__(self)
        ctype = '%s/%s' % (_maintype, _subtype)
        self.add_header('Content-Type', ctype, **_params)
        self['MIME-Version'] = '1.0'
lib\email\mime\image.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Class representing image/* type MIME documents."""

__all__ = ['MIMEImage']

import imghdr

from email import encoders
from email.mime.nonmultipart import MIMENonMultipart



class MIMEImage(MIMENonMultipart):
    """Class for generating image/* type MIME documents."""

    def __init__(self, _imagedata, _subtype=None,
                 _encoder=encoders.encode_base64, **_params):
        """Create an image/* type MIME document.

        _imagedata is a string containing the raw image data.  If this data
        can be decoded by the standard Python `imghdr' module, then the
        subtype will be automatically included in the Content-Type header.
        Otherwise, you can specify the specific image subtype via the _subtype
        parameter.

        _encoder is a function which will perform the actual encoding for
        transport of the image data.  It takes one argument, which is this
        Image instance.  It should use get_payload() and set_payload() to
        change the payload to the encoded form.  It should also add any
        Content-Transfer-Encoding or other headers to the message as
        necessary.  The default encoding is Base64.

        Any additional keyword arguments are passed to the base class
        constructor, which turns them into parameters on the Content-Type
        header.
        """
        if _subtype is None:
            _subtype = imghdr.what(None, _imagedata)
        if _subtype is None:
            raise TypeError('Could not guess image MIME subtype')
        MIMENonMultipart.__init__(self, 'image', _subtype, **_params)
        self.set_payload(_imagedata)
        _encoder(self)
lib\email\mime\message.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Class representing message/* MIME documents."""

__all__ = ['MIMEMessage']

from email import message
from email.mime.nonmultipart import MIMENonMultipart



class MIMEMessage(MIMENonMultipart):
    """Class representing message/* MIME documents."""

    def __init__(self, _msg, _subtype='rfc822'):
        """Create a message/* type MIME document.

        _msg is a message object and must be an instance of Message, or a
        derived class of Message, otherwise a TypeError is raised.

        Optional _subtype defines the subtype of the contained message.  The
        default is "rfc822" (this is defined by the MIME standard, even though
        the term "rfc822" is technically outdated by RFC 2822).
        """
        MIMENonMultipart.__init__(self, 'message', _subtype)
        if not isinstance(_msg, message.Message):
            raise TypeError('Argument is not an instance of Message')
        # It's convenient to use this base class method.  We need to do it
        # this way or we'll get an exception
        message.Message.attach(self, _msg)
        # And be sure our default type is set correctly
        self.set_default_type('message/rfc822')
lib\email\mime\multipart.py
# Copyright (C) 2002-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Base class for MIME multipart/* type messages."""

__all__ = ['MIMEMultipart']

from email.mime.base import MIMEBase



class MIMEMultipart(MIMEBase):
    """Base class for MIME multipart/* type messages."""

    def __init__(self, _subtype='mixed', boundary=None, _subparts=None,
                 **_params):
        """Creates a multipart/* type message.

        By default, creates a multipart/mixed message, with proper
        Content-Type and MIME-Version headers.

        _subtype is the subtype of the multipart content type, defaulting to
        `mixed'.

        boundary is the multipart boundary string.  By default it is
        calculated as needed.

        _subparts is a sequence of initial subparts for the payload.  It
        must be an iterable object, such as a list.  You can always
        attach new subparts to the message by using the attach() method.

        Additional parameters for the Content-Type header are taken from the
        keyword arguments (or passed into the _params argument).
        """
        MIMEBase.__init__(self, 'multipart', _subtype, **_params)

        # Initialise _payload to an empty list as the Message superclass's
        # implementation of is_multipart assumes that _payload is a list for
        # multipart messages.
        self._payload = []

        if _subparts:
            for p in _subparts:
                self.attach(p)
        if boundary:
            self.set_boundary(boundary)
lib\email\mime\nonmultipart.py
# Copyright (C) 2002-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Base class for MIME type messages that are not multipart."""

__all__ = ['MIMENonMultipart']

from email import errors
from email.mime.base import MIMEBase



class MIMENonMultipart(MIMEBase):
    """Base class for MIME non-multipart type messages."""

    def attach(self, payload):
        # The public API prohibits attaching multiple subparts to MIMEBase
        # derived subtypes since none of them are, by definition, of content
        # type multipart/*
        raise errors.MultipartConversionError(
            'Cannot attach additional subparts to non-multipart/*')
lib\email\mime\text.py
# Copyright (C) 2001-2006 Python Software Foundation
# Author: Barry Warsaw
# Contact: [email protected]

"""Class representing text/* type MIME documents."""

__all__ = ['MIMEText']

from email.mime.nonmultipart import MIMENonMultipart



class MIMEText(MIMENonMultipart):
    """Class for generating text/* type MIME documents."""

    def __init__(self, _text, _subtype='plain', _charset=None):
        """Create a text/* type MIME document.

        _text is the string for this message object.

        _subtype is the MIME sub content type, defaulting to "plain".

        _charset is the character set parameter added to the Content-Type
        header.  This defaults to "us-ascii".  Note that as a side-effect, the
        Content-Transfer-Encoding header will also be set.
        """

        # If no _charset was specified, check to see if there are non-ascii
        # characters present. If not, use 'us-ascii', otherwise use utf-8.
        # XXX: This can be removed once #7304 is fixed.
        if _charset is None:
            try:
                _text.encode('us-ascii')
                _charset = 'us-ascii'
            except UnicodeEncodeError:
                _charset = 'utf-8'

        MIMENonMultipart.__init__(self, 'text', _subtype,
                                  **{'charset': _charset})

        self.set_payload(_text, _charset)
lib\email\mime\__init__.py
lib\encodings\aliases.py
""" Encoding Aliases Support

    This module is used by the encodings package search function to
    map encodings names to module names.

    Note that the search function normalizes the encoding names before
    doing the lookup, so the mapping will have to map normalized
    encoding names to module names.

    Contents:

        The following aliases dictionary contains mappings of all IANA
        character set names for which the Python core library provides
        codecs. In addition to these, a few Python specific codec
        aliases have also been added.

"""
aliases = {

    # Please keep this list sorted alphabetically by value !

    # ascii codec
    '646'                : 'ascii',
    'ansi_x3.4_1968'     : 'ascii',
    'ansi_x3_4_1968'     : 'ascii', # some email headers use this non-standard name
    'ansi_x3.4_1986'     : 'ascii',
    'cp367'              : 'ascii',
    'csascii'            : 'ascii',
    'ibm367'             : 'ascii',
    'iso646_us'          : 'ascii',
    'iso_646.irv_1991'   : 'ascii',
    'iso_ir_6'           : 'ascii',
    'us'                 : 'ascii',
    'us_ascii'           : 'ascii',

    # base64_codec codec
    'base64'             : 'base64_codec',
    'base_64'            : 'base64_codec',

    # big5 codec
    'big5_tw'            : 'big5',
    'csbig5'             : 'big5',

    # big5hkscs codec
    'big5_hkscs'         : 'big5hkscs',
    'hkscs'              : 'big5hkscs',

    # bz2_codec codec
    'bz2'                : 'bz2_codec',

    # cp037 codec
    '037'                : 'cp037',
    'csibm037'           : 'cp037',
    'ebcdic_cp_ca'       : 'cp037',
    'ebcdic_cp_nl'       : 'cp037',
    'ebcdic_cp_us'       : 'cp037',
    'ebcdic_cp_wt'       : 'cp037',
    'ibm037'             : 'cp037',
    'ibm039'             : 'cp037',

    # cp1026 codec
    '1026'               : 'cp1026',
    'csibm1026'          : 'cp1026',
    'ibm1026'            : 'cp1026',

    # cp1125 codec
    '1125'                : 'cp1125',
    'ibm1125'             : 'cp1125',
    'cp866u'              : 'cp1125',
    'ruscii'              : 'cp1125',

    # cp1140 codec
    '1140'               : 'cp1140',
    'ibm1140'            : 'cp1140',

    # cp1250 codec
    '1250'               : 'cp1250',
    'windows_1250'       : 'cp1250',

    # cp1251 codec
    '1251'               : 'cp1251',
    'windows_1251'       : 'cp1251',

    # cp1252 codec
    '1252'               : 'cp1252',
    'windows_1252'       : 'cp1252',

    # cp1253 codec
    '1253'               : 'cp1253',
    'windows_1253'       : 'cp1253',

    # cp1254 codec
    '1254'               : 'cp1254',
    'windows_1254'       : 'cp1254',

    # cp1255 codec
    '1255'               : 'cp1255',
    'windows_1255'       : 'cp1255',

    # cp1256 codec
    '1256'               : 'cp1256',
    'windows_1256'       : 'cp1256',

    # cp1257 codec
    '1257'               : 'cp1257',
    'windows_1257'       : 'cp1257',

    # cp1258 codec
    '1258'               : 'cp1258',
    'windows_1258'       : 'cp1258',

    # cp273 codec
    '273'                : 'cp273',
    'ibm273'             : 'cp273',
    'csibm273'           : 'cp273',

    # cp424 codec
    '424'                : 'cp424',
    'csibm424'           : 'cp424',
    'ebcdic_cp_he'       : 'cp424',
    'ibm424'             : 'cp424',

    # cp437 codec
    '437'                : 'cp437',
    'cspc8codepage437'   : 'cp437',
    'ibm437'             : 'cp437',

    # cp500 codec
    '500'                : 'cp500',
    'csibm500'           : 'cp500',
    'ebcdic_cp_be'       : 'cp500',
    'ebcdic_cp_ch'       : 'cp500',
    'ibm500'             : 'cp500',

    # cp775 codec
    '775'                : 'cp775',
    'cspc775baltic'      : 'cp775',
    'ibm775'             : 'cp775',

    # cp850 codec
    '850'                : 'cp850',
    'cspc850multilingual' : 'cp850',
    'ibm850'             : 'cp850',

    # cp852 codec
    '852'                : 'cp852',
    'cspcp852'           : 'cp852',
    'ibm852'             : 'cp852',

    # cp855 codec
    '855'                : 'cp855',
    'csibm855'           : 'cp855',
    'ibm855'             : 'cp855',

    # cp857 codec
    '857'                : 'cp857',
    'csibm857'           : 'cp857',
    'ibm857'             : 'cp857',

    # cp858 codec
    '858'                : 'cp858',
    'csibm858'           : 'cp858',
    'ibm858'             : 'cp858',

    # cp860 codec
    '860'                : 'cp860',
    'csibm860'           : 'cp860',
    'ibm860'             : 'cp860',

    # cp861 codec
    '861'                : 'cp861',
    'cp_is'              : 'cp861',
    'csibm861'           : 'cp861',
    'ibm861'             : 'cp861',

    # cp862 codec
    '862'                : 'cp862',
    'cspc862latinhebrew' : 'cp862',
    'ibm862'             : 'cp862',

    # cp863 codec
    '863'                : 'cp863',
    'csibm863'           : 'cp863',
    'ibm863'             : 'cp863',

    # cp864 codec
    '864'                : 'cp864',
    'csibm864'           : 'cp864',
    'ibm864'             : 'cp864',

    # cp865 codec
    '865'                : 'cp865',
    'csibm865'           : 'cp865',
    'ibm865'             : 'cp865',

    # cp866 codec
    '866'                : 'cp866',
    'csibm866'           : 'cp866',
    'ibm866'             : 'cp866',

    # cp869 codec
    '869'                : 'cp869',
    'cp_gr'              : 'cp869',
    'csibm869'           : 'cp869',
    'ibm869'             : 'cp869',

    # cp932 codec
    '932'                : 'cp932',
    'ms932'              : 'cp932',
    'mskanji'            : 'cp932',
    'ms_kanji'           : 'cp932',

    # cp949 codec
    '949'                : 'cp949',
    'ms949'              : 'cp949',
    'uhc'                : 'cp949',

    # cp950 codec
    '950'                : 'cp950',
    'ms950'              : 'cp950',

    # euc_jis_2004 codec
    'jisx0213'           : 'euc_jis_2004',
    'eucjis2004'         : 'euc_jis_2004',
    'euc_jis2004'        : 'euc_jis_2004',

    # euc_jisx0213 codec
    'eucjisx0213'        : 'euc_jisx0213',

    # euc_jp codec
    'eucjp'              : 'euc_jp',
    'ujis'               : 'euc_jp',
    'u_jis'              : 'euc_jp',

    # euc_kr codec
    'euckr'              : 'euc_kr',
    'korean'             : 'euc_kr',
    'ksc5601'            : 'euc_kr',
    'ks_c_5601'          : 'euc_kr',
    'ks_c_5601_1987'     : 'euc_kr',
    'ksx1001'            : 'euc_kr',
    'ks_x_1001'          : 'euc_kr',

    # gb18030 codec
    'gb18030_2000'       : 'gb18030',

    # gb2312 codec
    'chinese'            : 'gb2312',
    'csiso58gb231280'    : 'gb2312',
    'euc_cn'             : 'gb2312',
    'euccn'              : 'gb2312',
    'eucgb2312_cn'       : 'gb2312',
    'gb2312_1980'        : 'gb2312',
    'gb2312_80'          : 'gb2312',
    'iso_ir_58'          : 'gb2312',

    # gbk codec
    '936'                : 'gbk',
    'cp936'              : 'gbk',
    'ms936'              : 'gbk',

    # hex_codec codec
    'hex'                : 'hex_codec',

    # hp_roman8 codec
    'roman8'             : 'hp_roman8',
    'r8'                 : 'hp_roman8',
    'csHPRoman8'         : 'hp_roman8',

    # hz codec
    'hzgb'               : 'hz',
    'hz_gb'              : 'hz',
    'hz_gb_2312'         : 'hz',

    # iso2022_jp codec
    'csiso2022jp'        : 'iso2022_jp',
    'iso2022jp'          : 'iso2022_jp',
    'iso_2022_jp'        : 'iso2022_jp',

    # iso2022_jp_1 codec
    'iso2022jp_1'        : 'iso2022_jp_1',
    'iso_2022_jp_1'      : 'iso2022_jp_1',

    # iso2022_jp_2 codec
    'iso2022jp_2'        : 'iso2022_jp_2',
    'iso_2022_jp_2'      : 'iso2022_jp_2',

    # iso2022_jp_2004 codec
    'iso_2022_jp_2004'   : 'iso2022_jp_2004',
    'iso2022jp_2004'     : 'iso2022_jp_2004',

    # iso2022_jp_3 codec
    'iso2022jp_3'        : 'iso2022_jp_3',
    'iso_2022_jp_3'      : 'iso2022_jp_3',

    # iso2022_jp_ext codec
    'iso2022jp_ext'      : 'iso2022_jp_ext',
    'iso_2022_jp_ext'    : 'iso2022_jp_ext',

    # iso2022_kr codec
    'csiso2022kr'        : 'iso2022_kr',
    'iso2022kr'          : 'iso2022_kr',
    'iso_2022_kr'        : 'iso2022_kr',

    # iso8859_10 codec
    'csisolatin6'        : 'iso8859_10',
    'iso_8859_10'        : 'iso8859_10',
    'iso_8859_10_1992'   : 'iso8859_10',
    'iso_ir_157'         : 'iso8859_10',
    'l6'                 : 'iso8859_10',
    'latin6'             : 'iso8859_10',

    # iso8859_11 codec
    'thai'               : 'iso8859_11',
    'iso_8859_11'        : 'iso8859_11',
    'iso_8859_11_2001'   : 'iso8859_11',

    # iso8859_13 codec
    'iso_8859_13'        : 'iso8859_13',
    'l7'                 : 'iso8859_13',
    'latin7'             : 'iso8859_13',

    # iso8859_14 codec
    'iso_8859_14'        : 'iso8859_14',
    'iso_8859_14_1998'   : 'iso8859_14',
    'iso_celtic'         : 'iso8859_14',
    'iso_ir_199'         : 'iso8859_14',
    'l8'                 : 'iso8859_14',
    'latin8'             : 'iso8859_14',

    # iso8859_15 codec
    'iso_8859_15'        : 'iso8859_15',
    'l9'                 : 'iso8859_15',
    'latin9'             : 'iso8859_15',

    # iso8859_16 codec
    'iso_8859_16'        : 'iso8859_16',
    'iso_8859_16_2001'   : 'iso8859_16',
    'iso_ir_226'         : 'iso8859_16',
    'l10'                : 'iso8859_16',
    'latin10'            : 'iso8859_16',

    # iso8859_2 codec
    'csisolatin2'        : 'iso8859_2',
    'iso_8859_2'         : 'iso8859_2',
    'iso_8859_2_1987'    : 'iso8859_2',
    'iso_ir_101'         : 'iso8859_2',
    'l2'                 : 'iso8859_2',
    'latin2'             : 'iso8859_2',

    # iso8859_3 codec
    'csisolatin3'        : 'iso8859_3',
    'iso_8859_3'         : 'iso8859_3',
    'iso_8859_3_1988'    : 'iso8859_3',
    'iso_ir_109'         : 'iso8859_3',
    'l3'                 : 'iso8859_3',
    'latin3'             : 'iso8859_3',

    # iso8859_4 codec
    'csisolatin4'        : 'iso8859_4',
    'iso_8859_4'         : 'iso8859_4',
    'iso_8859_4_1988'    : 'iso8859_4',
    'iso_ir_110'         : 'iso8859_4',
    'l4'                 : 'iso8859_4',
    'latin4'             : 'iso8859_4',

    # iso8859_5 codec
    'csisolatincyrillic' : 'iso8859_5',
    'cyrillic'           : 'iso8859_5',
    'iso_8859_5'         : 'iso8859_5',
    'iso_8859_5_1988'    : 'iso8859_5',
    'iso_ir_144'         : 'iso8859_5',

    # iso8859_6 codec
    'arabic'             : 'iso8859_6',
    'asmo_708'           : 'iso8859_6',
    'csisolatinarabic'   : 'iso8859_6',
    'ecma_114'           : 'iso8859_6',
    'iso_8859_6'         : 'iso8859_6',
    'iso_8859_6_1987'    : 'iso8859_6',
    'iso_ir_127'         : 'iso8859_6',

    # iso8859_7 codec
    'csisolatingreek'    : 'iso8859_7',
    'ecma_118'           : 'iso8859_7',
    'elot_928'           : 'iso8859_7',
    'greek'              : 'iso8859_7',
    'greek8'             : 'iso8859_7',
    'iso_8859_7'         : 'iso8859_7',
    'iso_8859_7_1987'    : 'iso8859_7',
    'iso_ir_126'         : 'iso8859_7',

    # iso8859_8 codec
    'csisolatinhebrew'   : 'iso8859_8',
    'hebrew'             : 'iso8859_8',
    'iso_8859_8'         : 'iso8859_8',
    'iso_8859_8_1988'    : 'iso8859_8',
    'iso_ir_138'         : 'iso8859_8',

    # iso8859_9 codec
    'csisolatin5'        : 'iso8859_9',
    'iso_8859_9'         : 'iso8859_9',
    'iso_8859_9_1989'    : 'iso8859_9',
    'iso_ir_148'         : 'iso8859_9',
    'l5'                 : 'iso8859_9',
    'latin5'             : 'iso8859_9',

    # johab codec
    'cp1361'             : 'johab',
    'ms1361'             : 'johab',

    # koi8_r codec
    'cskoi8r'            : 'koi8_r',

    # latin_1 codec
    #
    # Note that the latin_1 codec is implemented internally in C and a
    # lot faster than the charmap codec iso8859_1 which uses the same
    # encoding. This is why we discourage the use of the iso8859_1
    # codec and alias it to latin_1 instead.
    #
    '8859'               : 'latin_1',
    'cp819'              : 'latin_1',
    'csisolatin1'        : 'latin_1',
    'ibm819'             : 'latin_1',
    'iso8859'            : 'latin_1',
    'iso8859_1'          : 'latin_1',
    'iso_8859_1'         : 'latin_1',
    'iso_8859_1_1987'    : 'latin_1',
    'iso_ir_100'         : 'latin_1',
    'l1'                 : 'latin_1',
    'latin'              : 'latin_1',
    'latin1'             : 'latin_1',

    # mac_cyrillic codec
    'maccyrillic'        : 'mac_cyrillic',

    # mac_greek codec
    'macgreek'           : 'mac_greek',

    # mac_iceland codec
    'maciceland'         : 'mac_iceland',

    # mac_latin2 codec
    'maccentraleurope'   : 'mac_latin2',
    'maclatin2'          : 'mac_latin2',

    # mac_roman codec
    'macintosh'          : 'mac_roman',
    'macroman'           : 'mac_roman',

    # mac_turkish codec
    'macturkish'         : 'mac_turkish',

    # mbcs codec
    'dbcs'               : 'mbcs',

    # ptcp154 codec
    'csptcp154'          : 'ptcp154',
    'pt154'              : 'ptcp154',
    'cp154'              : 'ptcp154',
    'cyrillic_asian'     : 'ptcp154',

    # quopri_codec codec
    'quopri'             : 'quopri_codec',
    'quoted_printable'   : 'quopri_codec',
    'quotedprintable'    : 'quopri_codec',

    # rot_13 codec
    'rot13'              : 'rot_13',

    # shift_jis codec
    'csshiftjis'         : 'shift_jis',
    'shiftjis'           : 'shift_jis',
    'sjis'               : 'shift_jis',
    's_jis'              : 'shift_jis',

    # shift_jis_2004 codec
    'shiftjis2004'       : 'shift_jis_2004',
    'sjis_2004'          : 'shift_jis_2004',
    's_jis_2004'         : 'shift_jis_2004',

    # shift_jisx0213 codec
    'shiftjisx0213'      : 'shift_jisx0213',
    'sjisx0213'          : 'shift_jisx0213',
    's_jisx0213'         : 'shift_jisx0213',

    # tactis codec
    'tis260'             : 'tactis',

    # tis_620 codec
    'tis620'             : 'tis_620',
    'tis_620_0'          : 'tis_620',
    'tis_620_2529_0'     : 'tis_620',
    'tis_620_2529_1'     : 'tis_620',
    'iso_ir_166'         : 'tis_620',

    # utf_16 codec
    'u16'                : 'utf_16',
    'utf16'              : 'utf_16',

    # utf_16_be codec
    'unicodebigunmarked' : 'utf_16_be',
    'utf_16be'           : 'utf_16_be',

    # utf_16_le codec
    'unicodelittleunmarked' : 'utf_16_le',
    'utf_16le'           : 'utf_16_le',

    # utf_32 codec
    'u32'                : 'utf_32',
    'utf32'              : 'utf_32',

    # utf_32_be codec
    'utf_32be'           : 'utf_32_be',

    # utf_32_le codec
    'utf_32le'           : 'utf_32_le',

    # utf_7 codec
    'u7'                 : 'utf_7',
    'utf7'               : 'utf_7',
    'unicode_1_1_utf_7'  : 'utf_7',

    # utf_8 codec
    'u8'                 : 'utf_8',
    'utf'                : 'utf_8',
    'utf8'               : 'utf_8',
    'utf8_ucs2'          : 'utf_8',
    'utf8_ucs4'          : 'utf_8',

    # uu_codec codec
    'uu'                 : 'uu_codec',

    # zlib_codec codec
    'zip'                : 'zlib_codec',
    'zlib'               : 'zlib_codec',

    # temporary mac CJK aliases, will be replaced by proper codecs in 3.1
    'x_mac_japanese'      : 'shift_jis',
    'x_mac_korean'        : 'euc_kr',
    'x_mac_simp_chinese'  : 'gb2312',
    'x_mac_trad_chinese'  : 'big5',
}
lib\encodings\ascii.py
""" Python 'ascii' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

class Codec(codecs.Codec):

    # Note: Binding these as C functions will result in the class not
    # converting them to methods. This is intended.
    encode = codecs.ascii_encode
    decode = codecs.ascii_decode

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.ascii_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.ascii_decode(input, self.errors)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

class StreamConverter(StreamWriter,StreamReader):

    encode = codecs.ascii_decode
    decode = codecs.ascii_encode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='ascii',
        encode=Codec.encode,
        decode=Codec.decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )
lib\encodings\base64_codec.py
"""Python 'base64_codec' Codec - base64 content transfer encoding.

This codec de/encodes from bytes to bytes.

Written by Marc-Andre Lemburg ([email protected]).
"""

import codecs
import base64

### Codec APIs

def base64_encode(input, errors='strict'):
    assert errors == 'strict'
    return (base64.encodebytes(input), len(input))

def base64_decode(input, errors='strict'):
    assert errors == 'strict'
    return (base64.decodebytes(input), len(input))

class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):
        return base64_encode(input, errors)
    def decode(self, input, errors='strict'):
        return base64_decode(input, errors)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        assert self.errors == 'strict'
        return base64.encodebytes(input)

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        assert self.errors == 'strict'
        return base64.decodebytes(input)

class StreamWriter(Codec, codecs.StreamWriter):
    charbuffertype = bytes

class StreamReader(Codec, codecs.StreamReader):
    charbuffertype = bytes

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='base64',
        encode=base64_encode,
        decode=base64_decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
        _is_text_encoding=False,
    )
lib\encodings\big5.py
#
# big5.py: Python Unicode Codec for BIG5
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_tw, codecs
import _multibytecodec as mbc

codec = _codecs_tw.getcodec('big5')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='big5',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\big5hkscs.py
#
# big5hkscs.py: Python Unicode Codec for BIG5HKSCS
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_hk, codecs
import _multibytecodec as mbc

codec = _codecs_hk.getcodec('big5hkscs')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='big5hkscs',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\bz2_codec.py
"""Python 'bz2_codec' Codec - bz2 compression encoding.

This codec de/encodes from bytes to bytes and is therefore usable with
bytes.transform() and bytes.untransform().

Adapted by Raymond Hettinger from zlib_codec.py which was written
by Marc-Andre Lemburg ([email protected]).
"""

import codecs
import bz2 # this codec needs the optional bz2 module !

### Codec APIs

def bz2_encode(input, errors='strict'):
    assert errors == 'strict'
    return (bz2.compress(input), len(input))

def bz2_decode(input, errors='strict'):
    assert errors == 'strict'
    return (bz2.decompress(input), len(input))

class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):
        return bz2_encode(input, errors)
    def decode(self, input, errors='strict'):
        return bz2_decode(input, errors)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def __init__(self, errors='strict'):
        assert errors == 'strict'
        self.errors = errors
        self.compressobj = bz2.BZ2Compressor()

    def encode(self, input, final=False):
        if final:
            c = self.compressobj.compress(input)
            return c + self.compressobj.flush()
        else:
            return self.compressobj.compress(input)

    def reset(self):
        self.compressobj = bz2.BZ2Compressor()

class IncrementalDecoder(codecs.IncrementalDecoder):
    def __init__(self, errors='strict'):
        assert errors == 'strict'
        self.errors = errors
        self.decompressobj = bz2.BZ2Decompressor()

    def decode(self, input, final=False):
        try:
            return self.decompressobj.decompress(input)
        except EOFError:
            return ''

    def reset(self):
        self.decompressobj = bz2.BZ2Decompressor()

class StreamWriter(Codec, codecs.StreamWriter):
    charbuffertype = bytes

class StreamReader(Codec, codecs.StreamReader):
    charbuffertype = bytes

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name="bz2",
        encode=bz2_encode,
        decode=bz2_decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
        _is_text_encoding=False,
    )
lib\encodings\charmap.py
""" Generic Python Character Mapping Codec.

    Use this codec directly rather than through the automatic
    conversion mechanisms supplied by unicode() and .encode().


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    # Note: Binding these as C functions will result in the class not
    # converting them to methods. This is intended.
    encode = codecs.charmap_encode
    decode = codecs.charmap_decode

class IncrementalEncoder(codecs.IncrementalEncoder):
    def __init__(self, errors='strict', mapping=None):
        codecs.IncrementalEncoder.__init__(self, errors)
        self.mapping = mapping

    def encode(self, input, final=False):
        return codecs.charmap_encode(input, self.errors, self.mapping)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def __init__(self, errors='strict', mapping=None):
        codecs.IncrementalDecoder.__init__(self, errors)
        self.mapping = mapping

    def decode(self, input, final=False):
        return codecs.charmap_decode(input, self.errors, self.mapping)[0]

class StreamWriter(Codec,codecs.StreamWriter):

    def __init__(self,stream,errors='strict',mapping=None):
        codecs.StreamWriter.__init__(self,stream,errors)
        self.mapping = mapping

    def encode(self,input,errors='strict'):
        return Codec.encode(input,errors,self.mapping)

class StreamReader(Codec,codecs.StreamReader):

    def __init__(self,stream,errors='strict',mapping=None):
        codecs.StreamReader.__init__(self,stream,errors)
        self.mapping = mapping

    def decode(self,input,errors='strict'):
        return Codec.decode(input,errors,self.mapping)

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='charmap',
        encode=Codec.encode,
        decode=Codec.decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )
lib\encodings\cp037.py
""" Python Character Mapping Codec cp037 generated from 'MAPPINGS/VENDORS/MICSFT/EBCDIC/CP037.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp037',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x9c'     #  0x04 -> CONTROL
    '\t'       #  0x05 -> HORIZONTAL TABULATION
    '\x86'     #  0x06 -> CONTROL
    '\x7f'     #  0x07 -> DELETE
    '\x97'     #  0x08 -> CONTROL
    '\x8d'     #  0x09 -> CONTROL
    '\x8e'     #  0x0A -> CONTROL
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x9d'     #  0x14 -> CONTROL
    '\x85'     #  0x15 -> CONTROL
    '\x08'     #  0x16 -> BACKSPACE
    '\x87'     #  0x17 -> CONTROL
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x92'     #  0x1A -> CONTROL
    '\x8f'     #  0x1B -> CONTROL
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    '\x80'     #  0x20 -> CONTROL
    '\x81'     #  0x21 -> CONTROL
    '\x82'     #  0x22 -> CONTROL
    '\x83'     #  0x23 -> CONTROL
    '\x84'     #  0x24 -> CONTROL
    '\n'       #  0x25 -> LINE FEED
    '\x17'     #  0x26 -> END OF TRANSMISSION BLOCK
    '\x1b'     #  0x27 -> ESCAPE
    '\x88'     #  0x28 -> CONTROL
    '\x89'     #  0x29 -> CONTROL
    '\x8a'     #  0x2A -> CONTROL
    '\x8b'     #  0x2B -> CONTROL
    '\x8c'     #  0x2C -> CONTROL
    '\x05'     #  0x2D -> ENQUIRY
    '\x06'     #  0x2E -> ACKNOWLEDGE
    '\x07'     #  0x2F -> BELL
    '\x90'     #  0x30 -> CONTROL
    '\x91'     #  0x31 -> CONTROL
    '\x16'     #  0x32 -> SYNCHRONOUS IDLE
    '\x93'     #  0x33 -> CONTROL
    '\x94'     #  0x34 -> CONTROL
    '\x95'     #  0x35 -> CONTROL
    '\x96'     #  0x36 -> CONTROL
    '\x04'     #  0x37 -> END OF TRANSMISSION
    '\x98'     #  0x38 -> CONTROL
    '\x99'     #  0x39 -> CONTROL
    '\x9a'     #  0x3A -> CONTROL
    '\x9b'     #  0x3B -> CONTROL
    '\x14'     #  0x3C -> DEVICE CONTROL FOUR
    '\x15'     #  0x3D -> NEGATIVE ACKNOWLEDGE
    '\x9e'     #  0x3E -> CONTROL
    '\x1a'     #  0x3F -> SUBSTITUTE
    ' '        #  0x40 -> SPACE
    '\xa0'     #  0x41 -> NO-BREAK SPACE
    '\xe2'     #  0x42 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x43 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x44 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0x45 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe3'     #  0x46 -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x47 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x48 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xf1'     #  0x49 -> LATIN SMALL LETTER N WITH TILDE
    '\xa2'     #  0x4A -> CENT SIGN
    '.'        #  0x4B -> FULL STOP
    '<'        #  0x4C -> LESS-THAN SIGN
    '('        #  0x4D -> LEFT PARENTHESIS
    '+'        #  0x4E -> PLUS SIGN
    '|'        #  0x4F -> VERTICAL LINE
    '&'        #  0x50 -> AMPERSAND
    '\xe9'     #  0x51 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0x52 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x53 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x54 -> LATIN SMALL LETTER E WITH GRAVE
    '\xed'     #  0x55 -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0x56 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x57 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xec'     #  0x58 -> LATIN SMALL LETTER I WITH GRAVE
    '\xdf'     #  0x59 -> LATIN SMALL LETTER SHARP S (GERMAN)
    '!'        #  0x5A -> EXCLAMATION MARK
    '$'        #  0x5B -> DOLLAR SIGN
    '*'        #  0x5C -> ASTERISK
    ')'        #  0x5D -> RIGHT PARENTHESIS
    ';'        #  0x5E -> SEMICOLON
    '\xac'     #  0x5F -> NOT SIGN
    '-'        #  0x60 -> HYPHEN-MINUS
    '/'        #  0x61 -> SOLIDUS
    '\xc2'     #  0x62 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc4'     #  0x63 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc0'     #  0x64 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0x65 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc3'     #  0x66 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc5'     #  0x67 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'     #  0x68 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xd1'     #  0x69 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xa6'     #  0x6A -> BROKEN BAR
    ','        #  0x6B -> COMMA
    '%'        #  0x6C -> PERCENT SIGN
    '_'        #  0x6D -> LOW LINE
    '>'        #  0x6E -> GREATER-THAN SIGN
    '?'        #  0x6F -> QUESTION MARK
    '\xf8'     #  0x70 -> LATIN SMALL LETTER O WITH STROKE
    '\xc9'     #  0x71 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0x72 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0x73 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0x74 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0x75 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0x76 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0x77 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0x78 -> LATIN CAPITAL LETTER I WITH GRAVE
    '`'        #  0x79 -> GRAVE ACCENT
    ':'        #  0x7A -> COLON
    '#'        #  0x7B -> NUMBER SIGN
    '@'        #  0x7C -> COMMERCIAL AT
    "'"        #  0x7D -> APOSTROPHE
    '='        #  0x7E -> EQUALS SIGN
    '"'        #  0x7F -> QUOTATION MARK
    '\xd8'     #  0x80 -> LATIN CAPITAL LETTER O WITH STROKE
    'a'        #  0x81 -> LATIN SMALL LETTER A
    'b'        #  0x82 -> LATIN SMALL LETTER B
    'c'        #  0x83 -> LATIN SMALL LETTER C
    'd'        #  0x84 -> LATIN SMALL LETTER D
    'e'        #  0x85 -> LATIN SMALL LETTER E
    'f'        #  0x86 -> LATIN SMALL LETTER F
    'g'        #  0x87 -> LATIN SMALL LETTER G
    'h'        #  0x88 -> LATIN SMALL LETTER H
    'i'        #  0x89 -> LATIN SMALL LETTER I
    '\xab'     #  0x8A -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x8B -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xf0'     #  0x8C -> LATIN SMALL LETTER ETH (ICELANDIC)
    '\xfd'     #  0x8D -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'     #  0x8E -> LATIN SMALL LETTER THORN (ICELANDIC)
    '\xb1'     #  0x8F -> PLUS-MINUS SIGN
    '\xb0'     #  0x90 -> DEGREE SIGN
    'j'        #  0x91 -> LATIN SMALL LETTER J
    'k'        #  0x92 -> LATIN SMALL LETTER K
    'l'        #  0x93 -> LATIN SMALL LETTER L
    'm'        #  0x94 -> LATIN SMALL LETTER M
    'n'        #  0x95 -> LATIN SMALL LETTER N
    'o'        #  0x96 -> LATIN SMALL LETTER O
    'p'        #  0x97 -> LATIN SMALL LETTER P
    'q'        #  0x98 -> LATIN SMALL LETTER Q
    'r'        #  0x99 -> LATIN SMALL LETTER R
    '\xaa'     #  0x9A -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x9B -> MASCULINE ORDINAL INDICATOR
    '\xe6'     #  0x9C -> LATIN SMALL LIGATURE AE
    '\xb8'     #  0x9D -> CEDILLA
    '\xc6'     #  0x9E -> LATIN CAPITAL LIGATURE AE
    '\xa4'     #  0x9F -> CURRENCY SIGN
    '\xb5'     #  0xA0 -> MICRO SIGN
    '~'        #  0xA1 -> TILDE
    's'        #  0xA2 -> LATIN SMALL LETTER S
    't'        #  0xA3 -> LATIN SMALL LETTER T
    'u'        #  0xA4 -> LATIN SMALL LETTER U
    'v'        #  0xA5 -> LATIN SMALL LETTER V
    'w'        #  0xA6 -> LATIN SMALL LETTER W
    'x'        #  0xA7 -> LATIN SMALL LETTER X
    'y'        #  0xA8 -> LATIN SMALL LETTER Y
    'z'        #  0xA9 -> LATIN SMALL LETTER Z
    '\xa1'     #  0xAA -> INVERTED EXCLAMATION MARK
    '\xbf'     #  0xAB -> INVERTED QUESTION MARK
    '\xd0'     #  0xAC -> LATIN CAPITAL LETTER ETH (ICELANDIC)
    '\xdd'     #  0xAD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'     #  0xAE -> LATIN CAPITAL LETTER THORN (ICELANDIC)
    '\xae'     #  0xAF -> REGISTERED SIGN
    '^'        #  0xB0 -> CIRCUMFLEX ACCENT
    '\xa3'     #  0xB1 -> POUND SIGN
    '\xa5'     #  0xB2 -> YEN SIGN
    '\xb7'     #  0xB3 -> MIDDLE DOT
    '\xa9'     #  0xB4 -> COPYRIGHT SIGN
    '\xa7'     #  0xB5 -> SECTION SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xbc'     #  0xB7 -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xB8 -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xB9 -> VULGAR FRACTION THREE QUARTERS
    '['        #  0xBA -> LEFT SQUARE BRACKET
    ']'        #  0xBB -> RIGHT SQUARE BRACKET
    '\xaf'     #  0xBC -> MACRON
    '\xa8'     #  0xBD -> DIAERESIS
    '\xb4'     #  0xBE -> ACUTE ACCENT
    '\xd7'     #  0xBF -> MULTIPLICATION SIGN
    '{'        #  0xC0 -> LEFT CURLY BRACKET
    'A'        #  0xC1 -> LATIN CAPITAL LETTER A
    'B'        #  0xC2 -> LATIN CAPITAL LETTER B
    'C'        #  0xC3 -> LATIN CAPITAL LETTER C
    'D'        #  0xC4 -> LATIN CAPITAL LETTER D
    'E'        #  0xC5 -> LATIN CAPITAL LETTER E
    'F'        #  0xC6 -> LATIN CAPITAL LETTER F
    'G'        #  0xC7 -> LATIN CAPITAL LETTER G
    'H'        #  0xC8 -> LATIN CAPITAL LETTER H
    'I'        #  0xC9 -> LATIN CAPITAL LETTER I
    '\xad'     #  0xCA -> SOFT HYPHEN
    '\xf4'     #  0xCB -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0xCC -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf2'     #  0xCD -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xCE -> LATIN SMALL LETTER O WITH ACUTE
    '\xf5'     #  0xCF -> LATIN SMALL LETTER O WITH TILDE
    '}'        #  0xD0 -> RIGHT CURLY BRACKET
    'J'        #  0xD1 -> LATIN CAPITAL LETTER J
    'K'        #  0xD2 -> LATIN CAPITAL LETTER K
    'L'        #  0xD3 -> LATIN CAPITAL LETTER L
    'M'        #  0xD4 -> LATIN CAPITAL LETTER M
    'N'        #  0xD5 -> LATIN CAPITAL LETTER N
    'O'        #  0xD6 -> LATIN CAPITAL LETTER O
    'P'        #  0xD7 -> LATIN CAPITAL LETTER P
    'Q'        #  0xD8 -> LATIN CAPITAL LETTER Q
    'R'        #  0xD9 -> LATIN CAPITAL LETTER R
    '\xb9'     #  0xDA -> SUPERSCRIPT ONE
    '\xfb'     #  0xDB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xDC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xf9'     #  0xDD -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xDE -> LATIN SMALL LETTER U WITH ACUTE
    '\xff'     #  0xDF -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\\'       #  0xE0 -> REVERSE SOLIDUS
    '\xf7'     #  0xE1 -> DIVISION SIGN
    'S'        #  0xE2 -> LATIN CAPITAL LETTER S
    'T'        #  0xE3 -> LATIN CAPITAL LETTER T
    'U'        #  0xE4 -> LATIN CAPITAL LETTER U
    'V'        #  0xE5 -> LATIN CAPITAL LETTER V
    'W'        #  0xE6 -> LATIN CAPITAL LETTER W
    'X'        #  0xE7 -> LATIN CAPITAL LETTER X
    'Y'        #  0xE8 -> LATIN CAPITAL LETTER Y
    'Z'        #  0xE9 -> LATIN CAPITAL LETTER Z
    '\xb2'     #  0xEA -> SUPERSCRIPT TWO
    '\xd4'     #  0xEB -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd6'     #  0xEC -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd2'     #  0xED -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd5'     #  0xEF -> LATIN CAPITAL LETTER O WITH TILDE
    '0'        #  0xF0 -> DIGIT ZERO
    '1'        #  0xF1 -> DIGIT ONE
    '2'        #  0xF2 -> DIGIT TWO
    '3'        #  0xF3 -> DIGIT THREE
    '4'        #  0xF4 -> DIGIT FOUR
    '5'        #  0xF5 -> DIGIT FIVE
    '6'        #  0xF6 -> DIGIT SIX
    '7'        #  0xF7 -> DIGIT SEVEN
    '8'        #  0xF8 -> DIGIT EIGHT
    '9'        #  0xF9 -> DIGIT NINE
    '\xb3'     #  0xFA -> SUPERSCRIPT THREE
    '\xdb'     #  0xFB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xFC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xd9'     #  0xFD -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xFE -> LATIN CAPITAL LETTER U WITH ACUTE
    '\x9f'     #  0xFF -> CONTROL
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1006.py
""" Python Character Mapping Codec cp1006 generated from 'MAPPINGS/VENDORS/MISC/CP1006.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1006',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u06f0'   #  0xA1 -> EXTENDED ARABIC-INDIC DIGIT ZERO
    '\u06f1'   #  0xA2 -> EXTENDED ARABIC-INDIC DIGIT ONE
    '\u06f2'   #  0xA3 -> EXTENDED ARABIC-INDIC DIGIT TWO
    '\u06f3'   #  0xA4 -> EXTENDED ARABIC-INDIC DIGIT THREE
    '\u06f4'   #  0xA5 -> EXTENDED ARABIC-INDIC DIGIT FOUR
    '\u06f5'   #  0xA6 -> EXTENDED ARABIC-INDIC DIGIT FIVE
    '\u06f6'   #  0xA7 -> EXTENDED ARABIC-INDIC DIGIT SIX
    '\u06f7'   #  0xA8 -> EXTENDED ARABIC-INDIC DIGIT SEVEN
    '\u06f8'   #  0xA9 -> EXTENDED ARABIC-INDIC DIGIT EIGHT
    '\u06f9'   #  0xAA -> EXTENDED ARABIC-INDIC DIGIT NINE
    '\u060c'   #  0xAB -> ARABIC COMMA
    '\u061b'   #  0xAC -> ARABIC SEMICOLON
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\u061f'   #  0xAE -> ARABIC QUESTION MARK
    '\ufe81'   #  0xAF -> ARABIC LETTER ALEF WITH MADDA ABOVE ISOLATED FORM
    '\ufe8d'   #  0xB0 -> ARABIC LETTER ALEF ISOLATED FORM
    '\ufe8e'   #  0xB1 -> ARABIC LETTER ALEF FINAL FORM
    '\ufe8e'   #  0xB2 -> ARABIC LETTER ALEF FINAL FORM
    '\ufe8f'   #  0xB3 -> ARABIC LETTER BEH ISOLATED FORM
    '\ufe91'   #  0xB4 -> ARABIC LETTER BEH INITIAL FORM
    '\ufb56'   #  0xB5 -> ARABIC LETTER PEH ISOLATED FORM
    '\ufb58'   #  0xB6 -> ARABIC LETTER PEH INITIAL FORM
    '\ufe93'   #  0xB7 -> ARABIC LETTER TEH MARBUTA ISOLATED FORM
    '\ufe95'   #  0xB8 -> ARABIC LETTER TEH ISOLATED FORM
    '\ufe97'   #  0xB9 -> ARABIC LETTER TEH INITIAL FORM
    '\ufb66'   #  0xBA -> ARABIC LETTER TTEH ISOLATED FORM
    '\ufb68'   #  0xBB -> ARABIC LETTER TTEH INITIAL FORM
    '\ufe99'   #  0xBC -> ARABIC LETTER THEH ISOLATED FORM
    '\ufe9b'   #  0xBD -> ARABIC LETTER THEH INITIAL FORM
    '\ufe9d'   #  0xBE -> ARABIC LETTER JEEM ISOLATED FORM
    '\ufe9f'   #  0xBF -> ARABIC LETTER JEEM INITIAL FORM
    '\ufb7a'   #  0xC0 -> ARABIC LETTER TCHEH ISOLATED FORM
    '\ufb7c'   #  0xC1 -> ARABIC LETTER TCHEH INITIAL FORM
    '\ufea1'   #  0xC2 -> ARABIC LETTER HAH ISOLATED FORM
    '\ufea3'   #  0xC3 -> ARABIC LETTER HAH INITIAL FORM
    '\ufea5'   #  0xC4 -> ARABIC LETTER KHAH ISOLATED FORM
    '\ufea7'   #  0xC5 -> ARABIC LETTER KHAH INITIAL FORM
    '\ufea9'   #  0xC6 -> ARABIC LETTER DAL ISOLATED FORM
    '\ufb84'   #  0xC7 -> ARABIC LETTER DAHAL ISOLATED FORMN
    '\ufeab'   #  0xC8 -> ARABIC LETTER THAL ISOLATED FORM
    '\ufead'   #  0xC9 -> ARABIC LETTER REH ISOLATED FORM
    '\ufb8c'   #  0xCA -> ARABIC LETTER RREH ISOLATED FORM
    '\ufeaf'   #  0xCB -> ARABIC LETTER ZAIN ISOLATED FORM
    '\ufb8a'   #  0xCC -> ARABIC LETTER JEH ISOLATED FORM
    '\ufeb1'   #  0xCD -> ARABIC LETTER SEEN ISOLATED FORM
    '\ufeb3'   #  0xCE -> ARABIC LETTER SEEN INITIAL FORM
    '\ufeb5'   #  0xCF -> ARABIC LETTER SHEEN ISOLATED FORM
    '\ufeb7'   #  0xD0 -> ARABIC LETTER SHEEN INITIAL FORM
    '\ufeb9'   #  0xD1 -> ARABIC LETTER SAD ISOLATED FORM
    '\ufebb'   #  0xD2 -> ARABIC LETTER SAD INITIAL FORM
    '\ufebd'   #  0xD3 -> ARABIC LETTER DAD ISOLATED FORM
    '\ufebf'   #  0xD4 -> ARABIC LETTER DAD INITIAL FORM
    '\ufec1'   #  0xD5 -> ARABIC LETTER TAH ISOLATED FORM
    '\ufec5'   #  0xD6 -> ARABIC LETTER ZAH ISOLATED FORM
    '\ufec9'   #  0xD7 -> ARABIC LETTER AIN ISOLATED FORM
    '\ufeca'   #  0xD8 -> ARABIC LETTER AIN FINAL FORM
    '\ufecb'   #  0xD9 -> ARABIC LETTER AIN INITIAL FORM
    '\ufecc'   #  0xDA -> ARABIC LETTER AIN MEDIAL FORM
    '\ufecd'   #  0xDB -> ARABIC LETTER GHAIN ISOLATED FORM
    '\ufece'   #  0xDC -> ARABIC LETTER GHAIN FINAL FORM
    '\ufecf'   #  0xDD -> ARABIC LETTER GHAIN INITIAL FORM
    '\ufed0'   #  0xDE -> ARABIC LETTER GHAIN MEDIAL FORM
    '\ufed1'   #  0xDF -> ARABIC LETTER FEH ISOLATED FORM
    '\ufed3'   #  0xE0 -> ARABIC LETTER FEH INITIAL FORM
    '\ufed5'   #  0xE1 -> ARABIC LETTER QAF ISOLATED FORM
    '\ufed7'   #  0xE2 -> ARABIC LETTER QAF INITIAL FORM
    '\ufed9'   #  0xE3 -> ARABIC LETTER KAF ISOLATED FORM
    '\ufedb'   #  0xE4 -> ARABIC LETTER KAF INITIAL FORM
    '\ufb92'   #  0xE5 -> ARABIC LETTER GAF ISOLATED FORM
    '\ufb94'   #  0xE6 -> ARABIC LETTER GAF INITIAL FORM
    '\ufedd'   #  0xE7 -> ARABIC LETTER LAM ISOLATED FORM
    '\ufedf'   #  0xE8 -> ARABIC LETTER LAM INITIAL FORM
    '\ufee0'   #  0xE9 -> ARABIC LETTER LAM MEDIAL FORM
    '\ufee1'   #  0xEA -> ARABIC LETTER MEEM ISOLATED FORM
    '\ufee3'   #  0xEB -> ARABIC LETTER MEEM INITIAL FORM
    '\ufb9e'   #  0xEC -> ARABIC LETTER NOON GHUNNA ISOLATED FORM
    '\ufee5'   #  0xED -> ARABIC LETTER NOON ISOLATED FORM
    '\ufee7'   #  0xEE -> ARABIC LETTER NOON INITIAL FORM
    '\ufe85'   #  0xEF -> ARABIC LETTER WAW WITH HAMZA ABOVE ISOLATED FORM
    '\ufeed'   #  0xF0 -> ARABIC LETTER WAW ISOLATED FORM
    '\ufba6'   #  0xF1 -> ARABIC LETTER HEH GOAL ISOLATED FORM
    '\ufba8'   #  0xF2 -> ARABIC LETTER HEH GOAL INITIAL FORM
    '\ufba9'   #  0xF3 -> ARABIC LETTER HEH GOAL MEDIAL FORM
    '\ufbaa'   #  0xF4 -> ARABIC LETTER HEH DOACHASHMEE ISOLATED FORM
    '\ufe80'   #  0xF5 -> ARABIC LETTER HAMZA ISOLATED FORM
    '\ufe89'   #  0xF6 -> ARABIC LETTER YEH WITH HAMZA ABOVE ISOLATED FORM
    '\ufe8a'   #  0xF7 -> ARABIC LETTER YEH WITH HAMZA ABOVE FINAL FORM
    '\ufe8b'   #  0xF8 -> ARABIC LETTER YEH WITH HAMZA ABOVE INITIAL FORM
    '\ufef1'   #  0xF9 -> ARABIC LETTER YEH ISOLATED FORM
    '\ufef2'   #  0xFA -> ARABIC LETTER YEH FINAL FORM
    '\ufef3'   #  0xFB -> ARABIC LETTER YEH INITIAL FORM
    '\ufbb0'   #  0xFC -> ARABIC LETTER YEH BARREE WITH HAMZA ABOVE ISOLATED FORM
    '\ufbae'   #  0xFD -> ARABIC LETTER YEH BARREE ISOLATED FORM
    '\ufe7c'   #  0xFE -> ARABIC SHADDA ISOLATED FORM
    '\ufe7d'   #  0xFF -> ARABIC SHADDA MEDIAL FORM
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1026.py
""" Python Character Mapping Codec cp1026 generated from 'MAPPINGS/VENDORS/MICSFT/EBCDIC/CP1026.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1026',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x9c'     #  0x04 -> CONTROL
    '\t'       #  0x05 -> HORIZONTAL TABULATION
    '\x86'     #  0x06 -> CONTROL
    '\x7f'     #  0x07 -> DELETE
    '\x97'     #  0x08 -> CONTROL
    '\x8d'     #  0x09 -> CONTROL
    '\x8e'     #  0x0A -> CONTROL
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x9d'     #  0x14 -> CONTROL
    '\x85'     #  0x15 -> CONTROL
    '\x08'     #  0x16 -> BACKSPACE
    '\x87'     #  0x17 -> CONTROL
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x92'     #  0x1A -> CONTROL
    '\x8f'     #  0x1B -> CONTROL
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    '\x80'     #  0x20 -> CONTROL
    '\x81'     #  0x21 -> CONTROL
    '\x82'     #  0x22 -> CONTROL
    '\x83'     #  0x23 -> CONTROL
    '\x84'     #  0x24 -> CONTROL
    '\n'       #  0x25 -> LINE FEED
    '\x17'     #  0x26 -> END OF TRANSMISSION BLOCK
    '\x1b'     #  0x27 -> ESCAPE
    '\x88'     #  0x28 -> CONTROL
    '\x89'     #  0x29 -> CONTROL
    '\x8a'     #  0x2A -> CONTROL
    '\x8b'     #  0x2B -> CONTROL
    '\x8c'     #  0x2C -> CONTROL
    '\x05'     #  0x2D -> ENQUIRY
    '\x06'     #  0x2E -> ACKNOWLEDGE
    '\x07'     #  0x2F -> BELL
    '\x90'     #  0x30 -> CONTROL
    '\x91'     #  0x31 -> CONTROL
    '\x16'     #  0x32 -> SYNCHRONOUS IDLE
    '\x93'     #  0x33 -> CONTROL
    '\x94'     #  0x34 -> CONTROL
    '\x95'     #  0x35 -> CONTROL
    '\x96'     #  0x36 -> CONTROL
    '\x04'     #  0x37 -> END OF TRANSMISSION
    '\x98'     #  0x38 -> CONTROL
    '\x99'     #  0x39 -> CONTROL
    '\x9a'     #  0x3A -> CONTROL
    '\x9b'     #  0x3B -> CONTROL
    '\x14'     #  0x3C -> DEVICE CONTROL FOUR
    '\x15'     #  0x3D -> NEGATIVE ACKNOWLEDGE
    '\x9e'     #  0x3E -> CONTROL
    '\x1a'     #  0x3F -> SUBSTITUTE
    ' '        #  0x40 -> SPACE
    '\xa0'     #  0x41 -> NO-BREAK SPACE
    '\xe2'     #  0x42 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x43 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x44 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0x45 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe3'     #  0x46 -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x47 -> LATIN SMALL LETTER A WITH RING ABOVE
    '{'        #  0x48 -> LEFT CURLY BRACKET
    '\xf1'     #  0x49 -> LATIN SMALL LETTER N WITH TILDE
    '\xc7'     #  0x4A -> LATIN CAPITAL LETTER C WITH CEDILLA
    '.'        #  0x4B -> FULL STOP
    '<'        #  0x4C -> LESS-THAN SIGN
    '('        #  0x4D -> LEFT PARENTHESIS
    '+'        #  0x4E -> PLUS SIGN
    '!'        #  0x4F -> EXCLAMATION MARK
    '&'        #  0x50 -> AMPERSAND
    '\xe9'     #  0x51 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0x52 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x53 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x54 -> LATIN SMALL LETTER E WITH GRAVE
    '\xed'     #  0x55 -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0x56 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x57 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xec'     #  0x58 -> LATIN SMALL LETTER I WITH GRAVE
    '\xdf'     #  0x59 -> LATIN SMALL LETTER SHARP S (GERMAN)
    '\u011e'   #  0x5A -> LATIN CAPITAL LETTER G WITH BREVE
    '\u0130'   #  0x5B -> LATIN CAPITAL LETTER I WITH DOT ABOVE
    '*'        #  0x5C -> ASTERISK
    ')'        #  0x5D -> RIGHT PARENTHESIS
    ';'        #  0x5E -> SEMICOLON
    '^'        #  0x5F -> CIRCUMFLEX ACCENT
    '-'        #  0x60 -> HYPHEN-MINUS
    '/'        #  0x61 -> SOLIDUS
    '\xc2'     #  0x62 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc4'     #  0x63 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc0'     #  0x64 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0x65 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc3'     #  0x66 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc5'     #  0x67 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '['        #  0x68 -> LEFT SQUARE BRACKET
    '\xd1'     #  0x69 -> LATIN CAPITAL LETTER N WITH TILDE
    '\u015f'   #  0x6A -> LATIN SMALL LETTER S WITH CEDILLA
    ','        #  0x6B -> COMMA
    '%'        #  0x6C -> PERCENT SIGN
    '_'        #  0x6D -> LOW LINE
    '>'        #  0x6E -> GREATER-THAN SIGN
    '?'        #  0x6F -> QUESTION MARK
    '\xf8'     #  0x70 -> LATIN SMALL LETTER O WITH STROKE
    '\xc9'     #  0x71 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0x72 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0x73 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0x74 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0x75 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0x76 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0x77 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0x78 -> LATIN CAPITAL LETTER I WITH GRAVE
    '\u0131'   #  0x79 -> LATIN SMALL LETTER DOTLESS I
    ':'        #  0x7A -> COLON
    '\xd6'     #  0x7B -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\u015e'   #  0x7C -> LATIN CAPITAL LETTER S WITH CEDILLA
    "'"        #  0x7D -> APOSTROPHE
    '='        #  0x7E -> EQUALS SIGN
    '\xdc'     #  0x7F -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xd8'     #  0x80 -> LATIN CAPITAL LETTER O WITH STROKE
    'a'        #  0x81 -> LATIN SMALL LETTER A
    'b'        #  0x82 -> LATIN SMALL LETTER B
    'c'        #  0x83 -> LATIN SMALL LETTER C
    'd'        #  0x84 -> LATIN SMALL LETTER D
    'e'        #  0x85 -> LATIN SMALL LETTER E
    'f'        #  0x86 -> LATIN SMALL LETTER F
    'g'        #  0x87 -> LATIN SMALL LETTER G
    'h'        #  0x88 -> LATIN SMALL LETTER H
    'i'        #  0x89 -> LATIN SMALL LETTER I
    '\xab'     #  0x8A -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x8B -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '}'        #  0x8C -> RIGHT CURLY BRACKET
    '`'        #  0x8D -> GRAVE ACCENT
    '\xa6'     #  0x8E -> BROKEN BAR
    '\xb1'     #  0x8F -> PLUS-MINUS SIGN
    '\xb0'     #  0x90 -> DEGREE SIGN
    'j'        #  0x91 -> LATIN SMALL LETTER J
    'k'        #  0x92 -> LATIN SMALL LETTER K
    'l'        #  0x93 -> LATIN SMALL LETTER L
    'm'        #  0x94 -> LATIN SMALL LETTER M
    'n'        #  0x95 -> LATIN SMALL LETTER N
    'o'        #  0x96 -> LATIN SMALL LETTER O
    'p'        #  0x97 -> LATIN SMALL LETTER P
    'q'        #  0x98 -> LATIN SMALL LETTER Q
    'r'        #  0x99 -> LATIN SMALL LETTER R
    '\xaa'     #  0x9A -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x9B -> MASCULINE ORDINAL INDICATOR
    '\xe6'     #  0x9C -> LATIN SMALL LIGATURE AE
    '\xb8'     #  0x9D -> CEDILLA
    '\xc6'     #  0x9E -> LATIN CAPITAL LIGATURE AE
    '\xa4'     #  0x9F -> CURRENCY SIGN
    '\xb5'     #  0xA0 -> MICRO SIGN
    '\xf6'     #  0xA1 -> LATIN SMALL LETTER O WITH DIAERESIS
    's'        #  0xA2 -> LATIN SMALL LETTER S
    't'        #  0xA3 -> LATIN SMALL LETTER T
    'u'        #  0xA4 -> LATIN SMALL LETTER U
    'v'        #  0xA5 -> LATIN SMALL LETTER V
    'w'        #  0xA6 -> LATIN SMALL LETTER W
    'x'        #  0xA7 -> LATIN SMALL LETTER X
    'y'        #  0xA8 -> LATIN SMALL LETTER Y
    'z'        #  0xA9 -> LATIN SMALL LETTER Z
    '\xa1'     #  0xAA -> INVERTED EXCLAMATION MARK
    '\xbf'     #  0xAB -> INVERTED QUESTION MARK
    ']'        #  0xAC -> RIGHT SQUARE BRACKET
    '$'        #  0xAD -> DOLLAR SIGN
    '@'        #  0xAE -> COMMERCIAL AT
    '\xae'     #  0xAF -> REGISTERED SIGN
    '\xa2'     #  0xB0 -> CENT SIGN
    '\xa3'     #  0xB1 -> POUND SIGN
    '\xa5'     #  0xB2 -> YEN SIGN
    '\xb7'     #  0xB3 -> MIDDLE DOT
    '\xa9'     #  0xB4 -> COPYRIGHT SIGN
    '\xa7'     #  0xB5 -> SECTION SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xbc'     #  0xB7 -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xB8 -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xB9 -> VULGAR FRACTION THREE QUARTERS
    '\xac'     #  0xBA -> NOT SIGN
    '|'        #  0xBB -> VERTICAL LINE
    '\xaf'     #  0xBC -> MACRON
    '\xa8'     #  0xBD -> DIAERESIS
    '\xb4'     #  0xBE -> ACUTE ACCENT
    '\xd7'     #  0xBF -> MULTIPLICATION SIGN
    '\xe7'     #  0xC0 -> LATIN SMALL LETTER C WITH CEDILLA
    'A'        #  0xC1 -> LATIN CAPITAL LETTER A
    'B'        #  0xC2 -> LATIN CAPITAL LETTER B
    'C'        #  0xC3 -> LATIN CAPITAL LETTER C
    'D'        #  0xC4 -> LATIN CAPITAL LETTER D
    'E'        #  0xC5 -> LATIN CAPITAL LETTER E
    'F'        #  0xC6 -> LATIN CAPITAL LETTER F
    'G'        #  0xC7 -> LATIN CAPITAL LETTER G
    'H'        #  0xC8 -> LATIN CAPITAL LETTER H
    'I'        #  0xC9 -> LATIN CAPITAL LETTER I
    '\xad'     #  0xCA -> SOFT HYPHEN
    '\xf4'     #  0xCB -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '~'        #  0xCC -> TILDE
    '\xf2'     #  0xCD -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xCE -> LATIN SMALL LETTER O WITH ACUTE
    '\xf5'     #  0xCF -> LATIN SMALL LETTER O WITH TILDE
    '\u011f'   #  0xD0 -> LATIN SMALL LETTER G WITH BREVE
    'J'        #  0xD1 -> LATIN CAPITAL LETTER J
    'K'        #  0xD2 -> LATIN CAPITAL LETTER K
    'L'        #  0xD3 -> LATIN CAPITAL LETTER L
    'M'        #  0xD4 -> LATIN CAPITAL LETTER M
    'N'        #  0xD5 -> LATIN CAPITAL LETTER N
    'O'        #  0xD6 -> LATIN CAPITAL LETTER O
    'P'        #  0xD7 -> LATIN CAPITAL LETTER P
    'Q'        #  0xD8 -> LATIN CAPITAL LETTER Q
    'R'        #  0xD9 -> LATIN CAPITAL LETTER R
    '\xb9'     #  0xDA -> SUPERSCRIPT ONE
    '\xfb'     #  0xDB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\\'       #  0xDC -> REVERSE SOLIDUS
    '\xf9'     #  0xDD -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xDE -> LATIN SMALL LETTER U WITH ACUTE
    '\xff'     #  0xDF -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\xfc'     #  0xE0 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xf7'     #  0xE1 -> DIVISION SIGN
    'S'        #  0xE2 -> LATIN CAPITAL LETTER S
    'T'        #  0xE3 -> LATIN CAPITAL LETTER T
    'U'        #  0xE4 -> LATIN CAPITAL LETTER U
    'V'        #  0xE5 -> LATIN CAPITAL LETTER V
    'W'        #  0xE6 -> LATIN CAPITAL LETTER W
    'X'        #  0xE7 -> LATIN CAPITAL LETTER X
    'Y'        #  0xE8 -> LATIN CAPITAL LETTER Y
    'Z'        #  0xE9 -> LATIN CAPITAL LETTER Z
    '\xb2'     #  0xEA -> SUPERSCRIPT TWO
    '\xd4'     #  0xEB -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '#'        #  0xEC -> NUMBER SIGN
    '\xd2'     #  0xED -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd5'     #  0xEF -> LATIN CAPITAL LETTER O WITH TILDE
    '0'        #  0xF0 -> DIGIT ZERO
    '1'        #  0xF1 -> DIGIT ONE
    '2'        #  0xF2 -> DIGIT TWO
    '3'        #  0xF3 -> DIGIT THREE
    '4'        #  0xF4 -> DIGIT FOUR
    '5'        #  0xF5 -> DIGIT FIVE
    '6'        #  0xF6 -> DIGIT SIX
    '7'        #  0xF7 -> DIGIT SEVEN
    '8'        #  0xF8 -> DIGIT EIGHT
    '9'        #  0xF9 -> DIGIT NINE
    '\xb3'     #  0xFA -> SUPERSCRIPT THREE
    '\xdb'     #  0xFB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '"'        #  0xFC -> QUOTATION MARK
    '\xd9'     #  0xFD -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xFE -> LATIN CAPITAL LETTER U WITH ACUTE
    '\x9f'     #  0xFF -> CONTROL
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1125.py
""" Python Character Mapping Codec for CP1125

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1125',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x0410,     #  CYRILLIC CAPITAL LETTER A
    0x0081: 0x0411,     #  CYRILLIC CAPITAL LETTER BE
    0x0082: 0x0412,     #  CYRILLIC CAPITAL LETTER VE
    0x0083: 0x0413,     #  CYRILLIC CAPITAL LETTER GHE
    0x0084: 0x0414,     #  CYRILLIC CAPITAL LETTER DE
    0x0085: 0x0415,     #  CYRILLIC CAPITAL LETTER IE
    0x0086: 0x0416,     #  CYRILLIC CAPITAL LETTER ZHE
    0x0087: 0x0417,     #  CYRILLIC CAPITAL LETTER ZE
    0x0088: 0x0418,     #  CYRILLIC CAPITAL LETTER I
    0x0089: 0x0419,     #  CYRILLIC CAPITAL LETTER SHORT I
    0x008a: 0x041a,     #  CYRILLIC CAPITAL LETTER KA
    0x008b: 0x041b,     #  CYRILLIC CAPITAL LETTER EL
    0x008c: 0x041c,     #  CYRILLIC CAPITAL LETTER EM
    0x008d: 0x041d,     #  CYRILLIC CAPITAL LETTER EN
    0x008e: 0x041e,     #  CYRILLIC CAPITAL LETTER O
    0x008f: 0x041f,     #  CYRILLIC CAPITAL LETTER PE
    0x0090: 0x0420,     #  CYRILLIC CAPITAL LETTER ER
    0x0091: 0x0421,     #  CYRILLIC CAPITAL LETTER ES
    0x0092: 0x0422,     #  CYRILLIC CAPITAL LETTER TE
    0x0093: 0x0423,     #  CYRILLIC CAPITAL LETTER U
    0x0094: 0x0424,     #  CYRILLIC CAPITAL LETTER EF
    0x0095: 0x0425,     #  CYRILLIC CAPITAL LETTER HA
    0x0096: 0x0426,     #  CYRILLIC CAPITAL LETTER TSE
    0x0097: 0x0427,     #  CYRILLIC CAPITAL LETTER CHE
    0x0098: 0x0428,     #  CYRILLIC CAPITAL LETTER SHA
    0x0099: 0x0429,     #  CYRILLIC CAPITAL LETTER SHCHA
    0x009a: 0x042a,     #  CYRILLIC CAPITAL LETTER HARD SIGN
    0x009b: 0x042b,     #  CYRILLIC CAPITAL LETTER YERU
    0x009c: 0x042c,     #  CYRILLIC CAPITAL LETTER SOFT SIGN
    0x009d: 0x042d,     #  CYRILLIC CAPITAL LETTER E
    0x009e: 0x042e,     #  CYRILLIC CAPITAL LETTER YU
    0x009f: 0x042f,     #  CYRILLIC CAPITAL LETTER YA
    0x00a0: 0x0430,     #  CYRILLIC SMALL LETTER A
    0x00a1: 0x0431,     #  CYRILLIC SMALL LETTER BE
    0x00a2: 0x0432,     #  CYRILLIC SMALL LETTER VE
    0x00a3: 0x0433,     #  CYRILLIC SMALL LETTER GHE
    0x00a4: 0x0434,     #  CYRILLIC SMALL LETTER DE
    0x00a5: 0x0435,     #  CYRILLIC SMALL LETTER IE
    0x00a6: 0x0436,     #  CYRILLIC SMALL LETTER ZHE
    0x00a7: 0x0437,     #  CYRILLIC SMALL LETTER ZE
    0x00a8: 0x0438,     #  CYRILLIC SMALL LETTER I
    0x00a9: 0x0439,     #  CYRILLIC SMALL LETTER SHORT I
    0x00aa: 0x043a,     #  CYRILLIC SMALL LETTER KA
    0x00ab: 0x043b,     #  CYRILLIC SMALL LETTER EL
    0x00ac: 0x043c,     #  CYRILLIC SMALL LETTER EM
    0x00ad: 0x043d,     #  CYRILLIC SMALL LETTER EN
    0x00ae: 0x043e,     #  CYRILLIC SMALL LETTER O
    0x00af: 0x043f,     #  CYRILLIC SMALL LETTER PE
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x0440,     #  CYRILLIC SMALL LETTER ER
    0x00e1: 0x0441,     #  CYRILLIC SMALL LETTER ES
    0x00e2: 0x0442,     #  CYRILLIC SMALL LETTER TE
    0x00e3: 0x0443,     #  CYRILLIC SMALL LETTER U
    0x00e4: 0x0444,     #  CYRILLIC SMALL LETTER EF
    0x00e5: 0x0445,     #  CYRILLIC SMALL LETTER HA
    0x00e6: 0x0446,     #  CYRILLIC SMALL LETTER TSE
    0x00e7: 0x0447,     #  CYRILLIC SMALL LETTER CHE
    0x00e8: 0x0448,     #  CYRILLIC SMALL LETTER SHA
    0x00e9: 0x0449,     #  CYRILLIC SMALL LETTER SHCHA
    0x00ea: 0x044a,     #  CYRILLIC SMALL LETTER HARD SIGN
    0x00eb: 0x044b,     #  CYRILLIC SMALL LETTER YERU
    0x00ec: 0x044c,     #  CYRILLIC SMALL LETTER SOFT SIGN
    0x00ed: 0x044d,     #  CYRILLIC SMALL LETTER E
    0x00ee: 0x044e,     #  CYRILLIC SMALL LETTER YU
    0x00ef: 0x044f,     #  CYRILLIC SMALL LETTER YA
    0x00f0: 0x0401,     #  CYRILLIC CAPITAL LETTER IO
    0x00f1: 0x0451,     #  CYRILLIC SMALL LETTER IO
    0x00f2: 0x0490,     #  CYRILLIC CAPITAL LETTER GHE WITH UPTURN
    0x00f3: 0x0491,     #  CYRILLIC SMALL LETTER GHE WITH UPTURN
    0x00f4: 0x0404,     #  CYRILLIC CAPITAL LETTER UKRAINIAN IE
    0x00f5: 0x0454,     #  CYRILLIC SMALL LETTER UKRAINIAN IE
    0x00f6: 0x0406,     #  CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    0x00f7: 0x0456,     #  CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    0x00f8: 0x0407,     #  CYRILLIC CAPITAL LETTER YI
    0x00f9: 0x0457,     #  CYRILLIC SMALL LETTER YI
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x2116,     #  NUMERO SIGN
    0x00fd: 0x00a4,     #  CURRENCY SIGN
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\u0410'   #  0x0080 -> CYRILLIC CAPITAL LETTER A
    '\u0411'   #  0x0081 -> CYRILLIC CAPITAL LETTER BE
    '\u0412'   #  0x0082 -> CYRILLIC CAPITAL LETTER VE
    '\u0413'   #  0x0083 -> CYRILLIC CAPITAL LETTER GHE
    '\u0414'   #  0x0084 -> CYRILLIC CAPITAL LETTER DE
    '\u0415'   #  0x0085 -> CYRILLIC CAPITAL LETTER IE
    '\u0416'   #  0x0086 -> CYRILLIC CAPITAL LETTER ZHE
    '\u0417'   #  0x0087 -> CYRILLIC CAPITAL LETTER ZE
    '\u0418'   #  0x0088 -> CYRILLIC CAPITAL LETTER I
    '\u0419'   #  0x0089 -> CYRILLIC CAPITAL LETTER SHORT I
    '\u041a'   #  0x008a -> CYRILLIC CAPITAL LETTER KA
    '\u041b'   #  0x008b -> CYRILLIC CAPITAL LETTER EL
    '\u041c'   #  0x008c -> CYRILLIC CAPITAL LETTER EM
    '\u041d'   #  0x008d -> CYRILLIC CAPITAL LETTER EN
    '\u041e'   #  0x008e -> CYRILLIC CAPITAL LETTER O
    '\u041f'   #  0x008f -> CYRILLIC CAPITAL LETTER PE
    '\u0420'   #  0x0090 -> CYRILLIC CAPITAL LETTER ER
    '\u0421'   #  0x0091 -> CYRILLIC CAPITAL LETTER ES
    '\u0422'   #  0x0092 -> CYRILLIC CAPITAL LETTER TE
    '\u0423'   #  0x0093 -> CYRILLIC CAPITAL LETTER U
    '\u0424'   #  0x0094 -> CYRILLIC CAPITAL LETTER EF
    '\u0425'   #  0x0095 -> CYRILLIC CAPITAL LETTER HA
    '\u0426'   #  0x0096 -> CYRILLIC CAPITAL LETTER TSE
    '\u0427'   #  0x0097 -> CYRILLIC CAPITAL LETTER CHE
    '\u0428'   #  0x0098 -> CYRILLIC CAPITAL LETTER SHA
    '\u0429'   #  0x0099 -> CYRILLIC CAPITAL LETTER SHCHA
    '\u042a'   #  0x009a -> CYRILLIC CAPITAL LETTER HARD SIGN
    '\u042b'   #  0x009b -> CYRILLIC CAPITAL LETTER YERU
    '\u042c'   #  0x009c -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u042d'   #  0x009d -> CYRILLIC CAPITAL LETTER E
    '\u042e'   #  0x009e -> CYRILLIC CAPITAL LETTER YU
    '\u042f'   #  0x009f -> CYRILLIC CAPITAL LETTER YA
    '\u0430'   #  0x00a0 -> CYRILLIC SMALL LETTER A
    '\u0431'   #  0x00a1 -> CYRILLIC SMALL LETTER BE
    '\u0432'   #  0x00a2 -> CYRILLIC SMALL LETTER VE
    '\u0433'   #  0x00a3 -> CYRILLIC SMALL LETTER GHE
    '\u0434'   #  0x00a4 -> CYRILLIC SMALL LETTER DE
    '\u0435'   #  0x00a5 -> CYRILLIC SMALL LETTER IE
    '\u0436'   #  0x00a6 -> CYRILLIC SMALL LETTER ZHE
    '\u0437'   #  0x00a7 -> CYRILLIC SMALL LETTER ZE
    '\u0438'   #  0x00a8 -> CYRILLIC SMALL LETTER I
    '\u0439'   #  0x00a9 -> CYRILLIC SMALL LETTER SHORT I
    '\u043a'   #  0x00aa -> CYRILLIC SMALL LETTER KA
    '\u043b'   #  0x00ab -> CYRILLIC SMALL LETTER EL
    '\u043c'   #  0x00ac -> CYRILLIC SMALL LETTER EM
    '\u043d'   #  0x00ad -> CYRILLIC SMALL LETTER EN
    '\u043e'   #  0x00ae -> CYRILLIC SMALL LETTER O
    '\u043f'   #  0x00af -> CYRILLIC SMALL LETTER PE
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u0440'   #  0x00e0 -> CYRILLIC SMALL LETTER ER
    '\u0441'   #  0x00e1 -> CYRILLIC SMALL LETTER ES
    '\u0442'   #  0x00e2 -> CYRILLIC SMALL LETTER TE
    '\u0443'   #  0x00e3 -> CYRILLIC SMALL LETTER U
    '\u0444'   #  0x00e4 -> CYRILLIC SMALL LETTER EF
    '\u0445'   #  0x00e5 -> CYRILLIC SMALL LETTER HA
    '\u0446'   #  0x00e6 -> CYRILLIC SMALL LETTER TSE
    '\u0447'   #  0x00e7 -> CYRILLIC SMALL LETTER CHE
    '\u0448'   #  0x00e8 -> CYRILLIC SMALL LETTER SHA
    '\u0449'   #  0x00e9 -> CYRILLIC SMALL LETTER SHCHA
    '\u044a'   #  0x00ea -> CYRILLIC SMALL LETTER HARD SIGN
    '\u044b'   #  0x00eb -> CYRILLIC SMALL LETTER YERU
    '\u044c'   #  0x00ec -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u044d'   #  0x00ed -> CYRILLIC SMALL LETTER E
    '\u044e'   #  0x00ee -> CYRILLIC SMALL LETTER YU
    '\u044f'   #  0x00ef -> CYRILLIC SMALL LETTER YA
    '\u0401'   #  0x00f0 -> CYRILLIC CAPITAL LETTER IO
    '\u0451'   #  0x00f1 -> CYRILLIC SMALL LETTER IO
    '\u0490'   #  0x00f2 -> CYRILLIC CAPITAL LETTER GHE WITH UPTURN
    '\u0491'   #  0x00f3 -> CYRILLIC SMALL LETTER GHE WITH UPTURN
    '\u0404'   #  0x00f4 -> CYRILLIC CAPITAL LETTER UKRAINIAN IE
    '\u0454'   #  0x00f5 -> CYRILLIC SMALL LETTER UKRAINIAN IE
    '\u0406'   #  0x00f6 -> CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0456'   #  0x00f7 -> CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0407'   #  0x00f8 -> CYRILLIC CAPITAL LETTER YI
    '\u0457'   #  0x00f9 -> CYRILLIC SMALL LETTER YI
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u2116'   #  0x00fc -> NUMERO SIGN
    '\xa4'     #  0x00fd -> CURRENCY SIGN
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a4: 0x00fd,     #  CURRENCY SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x0401: 0x00f0,     #  CYRILLIC CAPITAL LETTER IO
    0x0404: 0x00f4,     #  CYRILLIC CAPITAL LETTER UKRAINIAN IE
    0x0406: 0x00f6,     #  CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    0x0407: 0x00f8,     #  CYRILLIC CAPITAL LETTER YI
    0x0410: 0x0080,     #  CYRILLIC CAPITAL LETTER A
    0x0411: 0x0081,     #  CYRILLIC CAPITAL LETTER BE
    0x0412: 0x0082,     #  CYRILLIC CAPITAL LETTER VE
    0x0413: 0x0083,     #  CYRILLIC CAPITAL LETTER GHE
    0x0414: 0x0084,     #  CYRILLIC CAPITAL LETTER DE
    0x0415: 0x0085,     #  CYRILLIC CAPITAL LETTER IE
    0x0416: 0x0086,     #  CYRILLIC CAPITAL LETTER ZHE
    0x0417: 0x0087,     #  CYRILLIC CAPITAL LETTER ZE
    0x0418: 0x0088,     #  CYRILLIC CAPITAL LETTER I
    0x0419: 0x0089,     #  CYRILLIC CAPITAL LETTER SHORT I
    0x041a: 0x008a,     #  CYRILLIC CAPITAL LETTER KA
    0x041b: 0x008b,     #  CYRILLIC CAPITAL LETTER EL
    0x041c: 0x008c,     #  CYRILLIC CAPITAL LETTER EM
    0x041d: 0x008d,     #  CYRILLIC CAPITAL LETTER EN
    0x041e: 0x008e,     #  CYRILLIC CAPITAL LETTER O
    0x041f: 0x008f,     #  CYRILLIC CAPITAL LETTER PE
    0x0420: 0x0090,     #  CYRILLIC CAPITAL LETTER ER
    0x0421: 0x0091,     #  CYRILLIC CAPITAL LETTER ES
    0x0422: 0x0092,     #  CYRILLIC CAPITAL LETTER TE
    0x0423: 0x0093,     #  CYRILLIC CAPITAL LETTER U
    0x0424: 0x0094,     #  CYRILLIC CAPITAL LETTER EF
    0x0425: 0x0095,     #  CYRILLIC CAPITAL LETTER HA
    0x0426: 0x0096,     #  CYRILLIC CAPITAL LETTER TSE
    0x0427: 0x0097,     #  CYRILLIC CAPITAL LETTER CHE
    0x0428: 0x0098,     #  CYRILLIC CAPITAL LETTER SHA
    0x0429: 0x0099,     #  CYRILLIC CAPITAL LETTER SHCHA
    0x042a: 0x009a,     #  CYRILLIC CAPITAL LETTER HARD SIGN
    0x042b: 0x009b,     #  CYRILLIC CAPITAL LETTER YERU
    0x042c: 0x009c,     #  CYRILLIC CAPITAL LETTER SOFT SIGN
    0x042d: 0x009d,     #  CYRILLIC CAPITAL LETTER E
    0x042e: 0x009e,     #  CYRILLIC CAPITAL LETTER YU
    0x042f: 0x009f,     #  CYRILLIC CAPITAL LETTER YA
    0x0430: 0x00a0,     #  CYRILLIC SMALL LETTER A
    0x0431: 0x00a1,     #  CYRILLIC SMALL LETTER BE
    0x0432: 0x00a2,     #  CYRILLIC SMALL LETTER VE
    0x0433: 0x00a3,     #  CYRILLIC SMALL LETTER GHE
    0x0434: 0x00a4,     #  CYRILLIC SMALL LETTER DE
    0x0435: 0x00a5,     #  CYRILLIC SMALL LETTER IE
    0x0436: 0x00a6,     #  CYRILLIC SMALL LETTER ZHE
    0x0437: 0x00a7,     #  CYRILLIC SMALL LETTER ZE
    0x0438: 0x00a8,     #  CYRILLIC SMALL LETTER I
    0x0439: 0x00a9,     #  CYRILLIC SMALL LETTER SHORT I
    0x043a: 0x00aa,     #  CYRILLIC SMALL LETTER KA
    0x043b: 0x00ab,     #  CYRILLIC SMALL LETTER EL
    0x043c: 0x00ac,     #  CYRILLIC SMALL LETTER EM
    0x043d: 0x00ad,     #  CYRILLIC SMALL LETTER EN
    0x043e: 0x00ae,     #  CYRILLIC SMALL LETTER O
    0x043f: 0x00af,     #  CYRILLIC SMALL LETTER PE
    0x0440: 0x00e0,     #  CYRILLIC SMALL LETTER ER
    0x0441: 0x00e1,     #  CYRILLIC SMALL LETTER ES
    0x0442: 0x00e2,     #  CYRILLIC SMALL LETTER TE
    0x0443: 0x00e3,     #  CYRILLIC SMALL LETTER U
    0x0444: 0x00e4,     #  CYRILLIC SMALL LETTER EF
    0x0445: 0x00e5,     #  CYRILLIC SMALL LETTER HA
    0x0446: 0x00e6,     #  CYRILLIC SMALL LETTER TSE
    0x0447: 0x00e7,     #  CYRILLIC SMALL LETTER CHE
    0x0448: 0x00e8,     #  CYRILLIC SMALL LETTER SHA
    0x0449: 0x00e9,     #  CYRILLIC SMALL LETTER SHCHA
    0x044a: 0x00ea,     #  CYRILLIC SMALL LETTER HARD SIGN
    0x044b: 0x00eb,     #  CYRILLIC SMALL LETTER YERU
    0x044c: 0x00ec,     #  CYRILLIC SMALL LETTER SOFT SIGN
    0x044d: 0x00ed,     #  CYRILLIC SMALL LETTER E
    0x044e: 0x00ee,     #  CYRILLIC SMALL LETTER YU
    0x044f: 0x00ef,     #  CYRILLIC SMALL LETTER YA
    0x0451: 0x00f1,     #  CYRILLIC SMALL LETTER IO
    0x0454: 0x00f5,     #  CYRILLIC SMALL LETTER UKRAINIAN IE
    0x0456: 0x00f7,     #  CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    0x0457: 0x00f9,     #  CYRILLIC SMALL LETTER YI
    0x0490: 0x00f2,     #  CYRILLIC CAPITAL LETTER GHE WITH UPTURN
    0x0491: 0x00f3,     #  CYRILLIC SMALL LETTER GHE WITH UPTURN
    0x2116: 0x00fc,     #  NUMERO SIGN
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp1140.py
""" Python Character Mapping Codec cp1140 generated from 'python-mappings/CP1140.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1140',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x9c'     #  0x04 -> CONTROL
    '\t'       #  0x05 -> HORIZONTAL TABULATION
    '\x86'     #  0x06 -> CONTROL
    '\x7f'     #  0x07 -> DELETE
    '\x97'     #  0x08 -> CONTROL
    '\x8d'     #  0x09 -> CONTROL
    '\x8e'     #  0x0A -> CONTROL
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x9d'     #  0x14 -> CONTROL
    '\x85'     #  0x15 -> CONTROL
    '\x08'     #  0x16 -> BACKSPACE
    '\x87'     #  0x17 -> CONTROL
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x92'     #  0x1A -> CONTROL
    '\x8f'     #  0x1B -> CONTROL
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    '\x80'     #  0x20 -> CONTROL
    '\x81'     #  0x21 -> CONTROL
    '\x82'     #  0x22 -> CONTROL
    '\x83'     #  0x23 -> CONTROL
    '\x84'     #  0x24 -> CONTROL
    '\n'       #  0x25 -> LINE FEED
    '\x17'     #  0x26 -> END OF TRANSMISSION BLOCK
    '\x1b'     #  0x27 -> ESCAPE
    '\x88'     #  0x28 -> CONTROL
    '\x89'     #  0x29 -> CONTROL
    '\x8a'     #  0x2A -> CONTROL
    '\x8b'     #  0x2B -> CONTROL
    '\x8c'     #  0x2C -> CONTROL
    '\x05'     #  0x2D -> ENQUIRY
    '\x06'     #  0x2E -> ACKNOWLEDGE
    '\x07'     #  0x2F -> BELL
    '\x90'     #  0x30 -> CONTROL
    '\x91'     #  0x31 -> CONTROL
    '\x16'     #  0x32 -> SYNCHRONOUS IDLE
    '\x93'     #  0x33 -> CONTROL
    '\x94'     #  0x34 -> CONTROL
    '\x95'     #  0x35 -> CONTROL
    '\x96'     #  0x36 -> CONTROL
    '\x04'     #  0x37 -> END OF TRANSMISSION
    '\x98'     #  0x38 -> CONTROL
    '\x99'     #  0x39 -> CONTROL
    '\x9a'     #  0x3A -> CONTROL
    '\x9b'     #  0x3B -> CONTROL
    '\x14'     #  0x3C -> DEVICE CONTROL FOUR
    '\x15'     #  0x3D -> NEGATIVE ACKNOWLEDGE
    '\x9e'     #  0x3E -> CONTROL
    '\x1a'     #  0x3F -> SUBSTITUTE
    ' '        #  0x40 -> SPACE
    '\xa0'     #  0x41 -> NO-BREAK SPACE
    '\xe2'     #  0x42 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x43 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x44 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0x45 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe3'     #  0x46 -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x47 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x48 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xf1'     #  0x49 -> LATIN SMALL LETTER N WITH TILDE
    '\xa2'     #  0x4A -> CENT SIGN
    '.'        #  0x4B -> FULL STOP
    '<'        #  0x4C -> LESS-THAN SIGN
    '('        #  0x4D -> LEFT PARENTHESIS
    '+'        #  0x4E -> PLUS SIGN
    '|'        #  0x4F -> VERTICAL LINE
    '&'        #  0x50 -> AMPERSAND
    '\xe9'     #  0x51 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0x52 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x53 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x54 -> LATIN SMALL LETTER E WITH GRAVE
    '\xed'     #  0x55 -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0x56 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x57 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xec'     #  0x58 -> LATIN SMALL LETTER I WITH GRAVE
    '\xdf'     #  0x59 -> LATIN SMALL LETTER SHARP S (GERMAN)
    '!'        #  0x5A -> EXCLAMATION MARK
    '$'        #  0x5B -> DOLLAR SIGN
    '*'        #  0x5C -> ASTERISK
    ')'        #  0x5D -> RIGHT PARENTHESIS
    ';'        #  0x5E -> SEMICOLON
    '\xac'     #  0x5F -> NOT SIGN
    '-'        #  0x60 -> HYPHEN-MINUS
    '/'        #  0x61 -> SOLIDUS
    '\xc2'     #  0x62 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc4'     #  0x63 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc0'     #  0x64 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0x65 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc3'     #  0x66 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc5'     #  0x67 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'     #  0x68 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xd1'     #  0x69 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xa6'     #  0x6A -> BROKEN BAR
    ','        #  0x6B -> COMMA
    '%'        #  0x6C -> PERCENT SIGN
    '_'        #  0x6D -> LOW LINE
    '>'        #  0x6E -> GREATER-THAN SIGN
    '?'        #  0x6F -> QUESTION MARK
    '\xf8'     #  0x70 -> LATIN SMALL LETTER O WITH STROKE
    '\xc9'     #  0x71 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0x72 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0x73 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0x74 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0x75 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0x76 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0x77 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0x78 -> LATIN CAPITAL LETTER I WITH GRAVE
    '`'        #  0x79 -> GRAVE ACCENT
    ':'        #  0x7A -> COLON
    '#'        #  0x7B -> NUMBER SIGN
    '@'        #  0x7C -> COMMERCIAL AT
    "'"        #  0x7D -> APOSTROPHE
    '='        #  0x7E -> EQUALS SIGN
    '"'        #  0x7F -> QUOTATION MARK
    '\xd8'     #  0x80 -> LATIN CAPITAL LETTER O WITH STROKE
    'a'        #  0x81 -> LATIN SMALL LETTER A
    'b'        #  0x82 -> LATIN SMALL LETTER B
    'c'        #  0x83 -> LATIN SMALL LETTER C
    'd'        #  0x84 -> LATIN SMALL LETTER D
    'e'        #  0x85 -> LATIN SMALL LETTER E
    'f'        #  0x86 -> LATIN SMALL LETTER F
    'g'        #  0x87 -> LATIN SMALL LETTER G
    'h'        #  0x88 -> LATIN SMALL LETTER H
    'i'        #  0x89 -> LATIN SMALL LETTER I
    '\xab'     #  0x8A -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x8B -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xf0'     #  0x8C -> LATIN SMALL LETTER ETH (ICELANDIC)
    '\xfd'     #  0x8D -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'     #  0x8E -> LATIN SMALL LETTER THORN (ICELANDIC)
    '\xb1'     #  0x8F -> PLUS-MINUS SIGN
    '\xb0'     #  0x90 -> DEGREE SIGN
    'j'        #  0x91 -> LATIN SMALL LETTER J
    'k'        #  0x92 -> LATIN SMALL LETTER K
    'l'        #  0x93 -> LATIN SMALL LETTER L
    'm'        #  0x94 -> LATIN SMALL LETTER M
    'n'        #  0x95 -> LATIN SMALL LETTER N
    'o'        #  0x96 -> LATIN SMALL LETTER O
    'p'        #  0x97 -> LATIN SMALL LETTER P
    'q'        #  0x98 -> LATIN SMALL LETTER Q
    'r'        #  0x99 -> LATIN SMALL LETTER R
    '\xaa'     #  0x9A -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x9B -> MASCULINE ORDINAL INDICATOR
    '\xe6'     #  0x9C -> LATIN SMALL LIGATURE AE
    '\xb8'     #  0x9D -> CEDILLA
    '\xc6'     #  0x9E -> LATIN CAPITAL LIGATURE AE
    '\u20ac'   #  0x9F -> EURO SIGN
    '\xb5'     #  0xA0 -> MICRO SIGN
    '~'        #  0xA1 -> TILDE
    's'        #  0xA2 -> LATIN SMALL LETTER S
    't'        #  0xA3 -> LATIN SMALL LETTER T
    'u'        #  0xA4 -> LATIN SMALL LETTER U
    'v'        #  0xA5 -> LATIN SMALL LETTER V
    'w'        #  0xA6 -> LATIN SMALL LETTER W
    'x'        #  0xA7 -> LATIN SMALL LETTER X
    'y'        #  0xA8 -> LATIN SMALL LETTER Y
    'z'        #  0xA9 -> LATIN SMALL LETTER Z
    '\xa1'     #  0xAA -> INVERTED EXCLAMATION MARK
    '\xbf'     #  0xAB -> INVERTED QUESTION MARK
    '\xd0'     #  0xAC -> LATIN CAPITAL LETTER ETH (ICELANDIC)
    '\xdd'     #  0xAD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'     #  0xAE -> LATIN CAPITAL LETTER THORN (ICELANDIC)
    '\xae'     #  0xAF -> REGISTERED SIGN
    '^'        #  0xB0 -> CIRCUMFLEX ACCENT
    '\xa3'     #  0xB1 -> POUND SIGN
    '\xa5'     #  0xB2 -> YEN SIGN
    '\xb7'     #  0xB3 -> MIDDLE DOT
    '\xa9'     #  0xB4 -> COPYRIGHT SIGN
    '\xa7'     #  0xB5 -> SECTION SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xbc'     #  0xB7 -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xB8 -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xB9 -> VULGAR FRACTION THREE QUARTERS
    '['        #  0xBA -> LEFT SQUARE BRACKET
    ']'        #  0xBB -> RIGHT SQUARE BRACKET
    '\xaf'     #  0xBC -> MACRON
    '\xa8'     #  0xBD -> DIAERESIS
    '\xb4'     #  0xBE -> ACUTE ACCENT
    '\xd7'     #  0xBF -> MULTIPLICATION SIGN
    '{'        #  0xC0 -> LEFT CURLY BRACKET
    'A'        #  0xC1 -> LATIN CAPITAL LETTER A
    'B'        #  0xC2 -> LATIN CAPITAL LETTER B
    'C'        #  0xC3 -> LATIN CAPITAL LETTER C
    'D'        #  0xC4 -> LATIN CAPITAL LETTER D
    'E'        #  0xC5 -> LATIN CAPITAL LETTER E
    'F'        #  0xC6 -> LATIN CAPITAL LETTER F
    'G'        #  0xC7 -> LATIN CAPITAL LETTER G
    'H'        #  0xC8 -> LATIN CAPITAL LETTER H
    'I'        #  0xC9 -> LATIN CAPITAL LETTER I
    '\xad'     #  0xCA -> SOFT HYPHEN
    '\xf4'     #  0xCB -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0xCC -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf2'     #  0xCD -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xCE -> LATIN SMALL LETTER O WITH ACUTE
    '\xf5'     #  0xCF -> LATIN SMALL LETTER O WITH TILDE
    '}'        #  0xD0 -> RIGHT CURLY BRACKET
    'J'        #  0xD1 -> LATIN CAPITAL LETTER J
    'K'        #  0xD2 -> LATIN CAPITAL LETTER K
    'L'        #  0xD3 -> LATIN CAPITAL LETTER L
    'M'        #  0xD4 -> LATIN CAPITAL LETTER M
    'N'        #  0xD5 -> LATIN CAPITAL LETTER N
    'O'        #  0xD6 -> LATIN CAPITAL LETTER O
    'P'        #  0xD7 -> LATIN CAPITAL LETTER P
    'Q'        #  0xD8 -> LATIN CAPITAL LETTER Q
    'R'        #  0xD9 -> LATIN CAPITAL LETTER R
    '\xb9'     #  0xDA -> SUPERSCRIPT ONE
    '\xfb'     #  0xDB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xDC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xf9'     #  0xDD -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xDE -> LATIN SMALL LETTER U WITH ACUTE
    '\xff'     #  0xDF -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\\'       #  0xE0 -> REVERSE SOLIDUS
    '\xf7'     #  0xE1 -> DIVISION SIGN
    'S'        #  0xE2 -> LATIN CAPITAL LETTER S
    'T'        #  0xE3 -> LATIN CAPITAL LETTER T
    'U'        #  0xE4 -> LATIN CAPITAL LETTER U
    'V'        #  0xE5 -> LATIN CAPITAL LETTER V
    'W'        #  0xE6 -> LATIN CAPITAL LETTER W
    'X'        #  0xE7 -> LATIN CAPITAL LETTER X
    'Y'        #  0xE8 -> LATIN CAPITAL LETTER Y
    'Z'        #  0xE9 -> LATIN CAPITAL LETTER Z
    '\xb2'     #  0xEA -> SUPERSCRIPT TWO
    '\xd4'     #  0xEB -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd6'     #  0xEC -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd2'     #  0xED -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd5'     #  0xEF -> LATIN CAPITAL LETTER O WITH TILDE
    '0'        #  0xF0 -> DIGIT ZERO
    '1'        #  0xF1 -> DIGIT ONE
    '2'        #  0xF2 -> DIGIT TWO
    '3'        #  0xF3 -> DIGIT THREE
    '4'        #  0xF4 -> DIGIT FOUR
    '5'        #  0xF5 -> DIGIT FIVE
    '6'        #  0xF6 -> DIGIT SIX
    '7'        #  0xF7 -> DIGIT SEVEN
    '8'        #  0xF8 -> DIGIT EIGHT
    '9'        #  0xF9 -> DIGIT NINE
    '\xb3'     #  0xFA -> SUPERSCRIPT THREE
    '\xdb'     #  0xFB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xFC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xd9'     #  0xFD -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xFE -> LATIN CAPITAL LETTER U WITH ACUTE
    '\x9f'     #  0xFF -> CONTROL
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1250.py
""" Python Character Mapping Codec cp1250 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1250.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1250',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\ufffe'   #  0x81 -> UNDEFINED
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\ufffe'   #  0x83 -> UNDEFINED
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\ufffe'   #  0x88 -> UNDEFINED
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\u0160'   #  0x8A -> LATIN CAPITAL LETTER S WITH CARON
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u015a'   #  0x8C -> LATIN CAPITAL LETTER S WITH ACUTE
    '\u0164'   #  0x8D -> LATIN CAPITAL LETTER T WITH CARON
    '\u017d'   #  0x8E -> LATIN CAPITAL LETTER Z WITH CARON
    '\u0179'   #  0x8F -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\ufffe'   #  0x90 -> UNDEFINED
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\ufffe'   #  0x98 -> UNDEFINED
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\u0161'   #  0x9A -> LATIN SMALL LETTER S WITH CARON
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u015b'   #  0x9C -> LATIN SMALL LETTER S WITH ACUTE
    '\u0165'   #  0x9D -> LATIN SMALL LETTER T WITH CARON
    '\u017e'   #  0x9E -> LATIN SMALL LETTER Z WITH CARON
    '\u017a'   #  0x9F -> LATIN SMALL LETTER Z WITH ACUTE
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u02c7'   #  0xA1 -> CARON
    '\u02d8'   #  0xA2 -> BREVE
    '\u0141'   #  0xA3 -> LATIN CAPITAL LETTER L WITH STROKE
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\u0104'   #  0xA5 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u015e'   #  0xAA -> LATIN CAPITAL LETTER S WITH CEDILLA
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\u017b'   #  0xAF -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u02db'   #  0xB2 -> OGONEK
    '\u0142'   #  0xB3 -> LATIN SMALL LETTER L WITH STROKE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\u0105'   #  0xB9 -> LATIN SMALL LETTER A WITH OGONEK
    '\u015f'   #  0xBA -> LATIN SMALL LETTER S WITH CEDILLA
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u013d'   #  0xBC -> LATIN CAPITAL LETTER L WITH CARON
    '\u02dd'   #  0xBD -> DOUBLE ACUTE ACCENT
    '\u013e'   #  0xBE -> LATIN SMALL LETTER L WITH CARON
    '\u017c'   #  0xBF -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\u0154'   #  0xC0 -> LATIN CAPITAL LETTER R WITH ACUTE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\u0102'   #  0xC3 -> LATIN CAPITAL LETTER A WITH BREVE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\u0139'   #  0xC5 -> LATIN CAPITAL LETTER L WITH ACUTE
    '\u0106'   #  0xC6 -> LATIN CAPITAL LETTER C WITH ACUTE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\u010c'   #  0xC8 -> LATIN CAPITAL LETTER C WITH CARON
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0118'   #  0xCA -> LATIN CAPITAL LETTER E WITH OGONEK
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\u011a'   #  0xCC -> LATIN CAPITAL LETTER E WITH CARON
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\u010e'   #  0xCF -> LATIN CAPITAL LETTER D WITH CARON
    '\u0110'   #  0xD0 -> LATIN CAPITAL LETTER D WITH STROKE
    '\u0143'   #  0xD1 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\u0147'   #  0xD2 -> LATIN CAPITAL LETTER N WITH CARON
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u0150'   #  0xD5 -> LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\u0158'   #  0xD8 -> LATIN CAPITAL LETTER R WITH CARON
    '\u016e'   #  0xD9 -> LATIN CAPITAL LETTER U WITH RING ABOVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\u0170'   #  0xDB -> LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xdd'     #  0xDD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\u0162'   #  0xDE -> LATIN CAPITAL LETTER T WITH CEDILLA
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\u0155'   #  0xE0 -> LATIN SMALL LETTER R WITH ACUTE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\u0103'   #  0xE3 -> LATIN SMALL LETTER A WITH BREVE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u013a'   #  0xE5 -> LATIN SMALL LETTER L WITH ACUTE
    '\u0107'   #  0xE6 -> LATIN SMALL LETTER C WITH ACUTE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\u010d'   #  0xE8 -> LATIN SMALL LETTER C WITH CARON
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\u0119'   #  0xEA -> LATIN SMALL LETTER E WITH OGONEK
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\u011b'   #  0xEC -> LATIN SMALL LETTER E WITH CARON
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\u010f'   #  0xEF -> LATIN SMALL LETTER D WITH CARON
    '\u0111'   #  0xF0 -> LATIN SMALL LETTER D WITH STROKE
    '\u0144'   #  0xF1 -> LATIN SMALL LETTER N WITH ACUTE
    '\u0148'   #  0xF2 -> LATIN SMALL LETTER N WITH CARON
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\u0151'   #  0xF5 -> LATIN SMALL LETTER O WITH DOUBLE ACUTE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\u0159'   #  0xF8 -> LATIN SMALL LETTER R WITH CARON
    '\u016f'   #  0xF9 -> LATIN SMALL LETTER U WITH RING ABOVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\u0171'   #  0xFB -> LATIN SMALL LETTER U WITH DOUBLE ACUTE
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xfd'     #  0xFD -> LATIN SMALL LETTER Y WITH ACUTE
    '\u0163'   #  0xFE -> LATIN SMALL LETTER T WITH CEDILLA
    '\u02d9'   #  0xFF -> DOT ABOVE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1251.py
""" Python Character Mapping Codec cp1251 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1251.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1251',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u0402'   #  0x80 -> CYRILLIC CAPITAL LETTER DJE
    '\u0403'   #  0x81 -> CYRILLIC CAPITAL LETTER GJE
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\u0453'   #  0x83 -> CYRILLIC SMALL LETTER GJE
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\u20ac'   #  0x88 -> EURO SIGN
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\u0409'   #  0x8A -> CYRILLIC CAPITAL LETTER LJE
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u040a'   #  0x8C -> CYRILLIC CAPITAL LETTER NJE
    '\u040c'   #  0x8D -> CYRILLIC CAPITAL LETTER KJE
    '\u040b'   #  0x8E -> CYRILLIC CAPITAL LETTER TSHE
    '\u040f'   #  0x8F -> CYRILLIC CAPITAL LETTER DZHE
    '\u0452'   #  0x90 -> CYRILLIC SMALL LETTER DJE
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\ufffe'   #  0x98 -> UNDEFINED
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\u0459'   #  0x9A -> CYRILLIC SMALL LETTER LJE
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u045a'   #  0x9C -> CYRILLIC SMALL LETTER NJE
    '\u045c'   #  0x9D -> CYRILLIC SMALL LETTER KJE
    '\u045b'   #  0x9E -> CYRILLIC SMALL LETTER TSHE
    '\u045f'   #  0x9F -> CYRILLIC SMALL LETTER DZHE
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u040e'   #  0xA1 -> CYRILLIC CAPITAL LETTER SHORT U
    '\u045e'   #  0xA2 -> CYRILLIC SMALL LETTER SHORT U
    '\u0408'   #  0xA3 -> CYRILLIC CAPITAL LETTER JE
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\u0490'   #  0xA5 -> CYRILLIC CAPITAL LETTER GHE WITH UPTURN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\u0401'   #  0xA8 -> CYRILLIC CAPITAL LETTER IO
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u0404'   #  0xAA -> CYRILLIC CAPITAL LETTER UKRAINIAN IE
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\u0407'   #  0xAF -> CYRILLIC CAPITAL LETTER YI
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u0406'   #  0xB2 -> CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0456'   #  0xB3 -> CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0491'   #  0xB4 -> CYRILLIC SMALL LETTER GHE WITH UPTURN
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\u0451'   #  0xB8 -> CYRILLIC SMALL LETTER IO
    '\u2116'   #  0xB9 -> NUMERO SIGN
    '\u0454'   #  0xBA -> CYRILLIC SMALL LETTER UKRAINIAN IE
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u0458'   #  0xBC -> CYRILLIC SMALL LETTER JE
    '\u0405'   #  0xBD -> CYRILLIC CAPITAL LETTER DZE
    '\u0455'   #  0xBE -> CYRILLIC SMALL LETTER DZE
    '\u0457'   #  0xBF -> CYRILLIC SMALL LETTER YI
    '\u0410'   #  0xC0 -> CYRILLIC CAPITAL LETTER A
    '\u0411'   #  0xC1 -> CYRILLIC CAPITAL LETTER BE
    '\u0412'   #  0xC2 -> CYRILLIC CAPITAL LETTER VE
    '\u0413'   #  0xC3 -> CYRILLIC CAPITAL LETTER GHE
    '\u0414'   #  0xC4 -> CYRILLIC CAPITAL LETTER DE
    '\u0415'   #  0xC5 -> CYRILLIC CAPITAL LETTER IE
    '\u0416'   #  0xC6 -> CYRILLIC CAPITAL LETTER ZHE
    '\u0417'   #  0xC7 -> CYRILLIC CAPITAL LETTER ZE
    '\u0418'   #  0xC8 -> CYRILLIC CAPITAL LETTER I
    '\u0419'   #  0xC9 -> CYRILLIC CAPITAL LETTER SHORT I
    '\u041a'   #  0xCA -> CYRILLIC CAPITAL LETTER KA
    '\u041b'   #  0xCB -> CYRILLIC CAPITAL LETTER EL
    '\u041c'   #  0xCC -> CYRILLIC CAPITAL LETTER EM
    '\u041d'   #  0xCD -> CYRILLIC CAPITAL LETTER EN
    '\u041e'   #  0xCE -> CYRILLIC CAPITAL LETTER O
    '\u041f'   #  0xCF -> CYRILLIC CAPITAL LETTER PE
    '\u0420'   #  0xD0 -> CYRILLIC CAPITAL LETTER ER
    '\u0421'   #  0xD1 -> CYRILLIC CAPITAL LETTER ES
    '\u0422'   #  0xD2 -> CYRILLIC CAPITAL LETTER TE
    '\u0423'   #  0xD3 -> CYRILLIC CAPITAL LETTER U
    '\u0424'   #  0xD4 -> CYRILLIC CAPITAL LETTER EF
    '\u0425'   #  0xD5 -> CYRILLIC CAPITAL LETTER HA
    '\u0426'   #  0xD6 -> CYRILLIC CAPITAL LETTER TSE
    '\u0427'   #  0xD7 -> CYRILLIC CAPITAL LETTER CHE
    '\u0428'   #  0xD8 -> CYRILLIC CAPITAL LETTER SHA
    '\u0429'   #  0xD9 -> CYRILLIC CAPITAL LETTER SHCHA
    '\u042a'   #  0xDA -> CYRILLIC CAPITAL LETTER HARD SIGN
    '\u042b'   #  0xDB -> CYRILLIC CAPITAL LETTER YERU
    '\u042c'   #  0xDC -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u042d'   #  0xDD -> CYRILLIC CAPITAL LETTER E
    '\u042e'   #  0xDE -> CYRILLIC CAPITAL LETTER YU
    '\u042f'   #  0xDF -> CYRILLIC CAPITAL LETTER YA
    '\u0430'   #  0xE0 -> CYRILLIC SMALL LETTER A
    '\u0431'   #  0xE1 -> CYRILLIC SMALL LETTER BE
    '\u0432'   #  0xE2 -> CYRILLIC SMALL LETTER VE
    '\u0433'   #  0xE3 -> CYRILLIC SMALL LETTER GHE
    '\u0434'   #  0xE4 -> CYRILLIC SMALL LETTER DE
    '\u0435'   #  0xE5 -> CYRILLIC SMALL LETTER IE
    '\u0436'   #  0xE6 -> CYRILLIC SMALL LETTER ZHE
    '\u0437'   #  0xE7 -> CYRILLIC SMALL LETTER ZE
    '\u0438'   #  0xE8 -> CYRILLIC SMALL LETTER I
    '\u0439'   #  0xE9 -> CYRILLIC SMALL LETTER SHORT I
    '\u043a'   #  0xEA -> CYRILLIC SMALL LETTER KA
    '\u043b'   #  0xEB -> CYRILLIC SMALL LETTER EL
    '\u043c'   #  0xEC -> CYRILLIC SMALL LETTER EM
    '\u043d'   #  0xED -> CYRILLIC SMALL LETTER EN
    '\u043e'   #  0xEE -> CYRILLIC SMALL LETTER O
    '\u043f'   #  0xEF -> CYRILLIC SMALL LETTER PE
    '\u0440'   #  0xF0 -> CYRILLIC SMALL LETTER ER
    '\u0441'   #  0xF1 -> CYRILLIC SMALL LETTER ES
    '\u0442'   #  0xF2 -> CYRILLIC SMALL LETTER TE
    '\u0443'   #  0xF3 -> CYRILLIC SMALL LETTER U
    '\u0444'   #  0xF4 -> CYRILLIC SMALL LETTER EF
    '\u0445'   #  0xF5 -> CYRILLIC SMALL LETTER HA
    '\u0446'   #  0xF6 -> CYRILLIC SMALL LETTER TSE
    '\u0447'   #  0xF7 -> CYRILLIC SMALL LETTER CHE
    '\u0448'   #  0xF8 -> CYRILLIC SMALL LETTER SHA
    '\u0449'   #  0xF9 -> CYRILLIC SMALL LETTER SHCHA
    '\u044a'   #  0xFA -> CYRILLIC SMALL LETTER HARD SIGN
    '\u044b'   #  0xFB -> CYRILLIC SMALL LETTER YERU
    '\u044c'   #  0xFC -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u044d'   #  0xFD -> CYRILLIC SMALL LETTER E
    '\u044e'   #  0xFE -> CYRILLIC SMALL LETTER YU
    '\u044f'   #  0xFF -> CYRILLIC SMALL LETTER YA
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1252.py
""" Python Character Mapping Codec cp1252 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1252.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1252',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\ufffe'   #  0x81 -> UNDEFINED
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\u0192'   #  0x83 -> LATIN SMALL LETTER F WITH HOOK
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\u02c6'   #  0x88 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\u0160'   #  0x8A -> LATIN CAPITAL LETTER S WITH CARON
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u0152'   #  0x8C -> LATIN CAPITAL LIGATURE OE
    '\ufffe'   #  0x8D -> UNDEFINED
    '\u017d'   #  0x8E -> LATIN CAPITAL LETTER Z WITH CARON
    '\ufffe'   #  0x8F -> UNDEFINED
    '\ufffe'   #  0x90 -> UNDEFINED
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\u02dc'   #  0x98 -> SMALL TILDE
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\u0161'   #  0x9A -> LATIN SMALL LETTER S WITH CARON
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u0153'   #  0x9C -> LATIN SMALL LIGATURE OE
    '\ufffe'   #  0x9D -> UNDEFINED
    '\u017e'   #  0x9E -> LATIN SMALL LETTER Z WITH CARON
    '\u0178'   #  0x9F -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xa1'     #  0xA1 -> INVERTED EXCLAMATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xaa'     #  0xAA -> FEMININE ORDINAL INDICATOR
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xba'     #  0xBA -> MASCULINE ORDINAL INDICATOR
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xbf'     #  0xBF -> INVERTED QUESTION MARK
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xd0'     #  0xD0 -> LATIN CAPITAL LETTER ETH
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xdd'     #  0xDD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'     #  0xDE -> LATIN CAPITAL LETTER THORN
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf0'     #  0xF0 -> LATIN SMALL LETTER ETH
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xfd'     #  0xFD -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'     #  0xFE -> LATIN SMALL LETTER THORN
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1253.py
""" Python Character Mapping Codec cp1253 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1253.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1253',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\ufffe'   #  0x81 -> UNDEFINED
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\u0192'   #  0x83 -> LATIN SMALL LETTER F WITH HOOK
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\ufffe'   #  0x88 -> UNDEFINED
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\ufffe'   #  0x8A -> UNDEFINED
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\ufffe'   #  0x8C -> UNDEFINED
    '\ufffe'   #  0x8D -> UNDEFINED
    '\ufffe'   #  0x8E -> UNDEFINED
    '\ufffe'   #  0x8F -> UNDEFINED
    '\ufffe'   #  0x90 -> UNDEFINED
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\ufffe'   #  0x98 -> UNDEFINED
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\ufffe'   #  0x9A -> UNDEFINED
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\ufffe'   #  0x9C -> UNDEFINED
    '\ufffe'   #  0x9D -> UNDEFINED
    '\ufffe'   #  0x9E -> UNDEFINED
    '\ufffe'   #  0x9F -> UNDEFINED
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0385'   #  0xA1 -> GREEK DIALYTIKA TONOS
    '\u0386'   #  0xA2 -> GREEK CAPITAL LETTER ALPHA WITH TONOS
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\ufffe'   #  0xAA -> UNDEFINED
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\u2015'   #  0xAF -> HORIZONTAL BAR
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\u0384'   #  0xB4 -> GREEK TONOS
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\u0388'   #  0xB8 -> GREEK CAPITAL LETTER EPSILON WITH TONOS
    '\u0389'   #  0xB9 -> GREEK CAPITAL LETTER ETA WITH TONOS
    '\u038a'   #  0xBA -> GREEK CAPITAL LETTER IOTA WITH TONOS
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u038c'   #  0xBC -> GREEK CAPITAL LETTER OMICRON WITH TONOS
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\u038e'   #  0xBE -> GREEK CAPITAL LETTER UPSILON WITH TONOS
    '\u038f'   #  0xBF -> GREEK CAPITAL LETTER OMEGA WITH TONOS
    '\u0390'   #  0xC0 -> GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
    '\u0391'   #  0xC1 -> GREEK CAPITAL LETTER ALPHA
    '\u0392'   #  0xC2 -> GREEK CAPITAL LETTER BETA
    '\u0393'   #  0xC3 -> GREEK CAPITAL LETTER GAMMA
    '\u0394'   #  0xC4 -> GREEK CAPITAL LETTER DELTA
    '\u0395'   #  0xC5 -> GREEK CAPITAL LETTER EPSILON
    '\u0396'   #  0xC6 -> GREEK CAPITAL LETTER ZETA
    '\u0397'   #  0xC7 -> GREEK CAPITAL LETTER ETA
    '\u0398'   #  0xC8 -> GREEK CAPITAL LETTER THETA
    '\u0399'   #  0xC9 -> GREEK CAPITAL LETTER IOTA
    '\u039a'   #  0xCA -> GREEK CAPITAL LETTER KAPPA
    '\u039b'   #  0xCB -> GREEK CAPITAL LETTER LAMDA
    '\u039c'   #  0xCC -> GREEK CAPITAL LETTER MU
    '\u039d'   #  0xCD -> GREEK CAPITAL LETTER NU
    '\u039e'   #  0xCE -> GREEK CAPITAL LETTER XI
    '\u039f'   #  0xCF -> GREEK CAPITAL LETTER OMICRON
    '\u03a0'   #  0xD0 -> GREEK CAPITAL LETTER PI
    '\u03a1'   #  0xD1 -> GREEK CAPITAL LETTER RHO
    '\ufffe'   #  0xD2 -> UNDEFINED
    '\u03a3'   #  0xD3 -> GREEK CAPITAL LETTER SIGMA
    '\u03a4'   #  0xD4 -> GREEK CAPITAL LETTER TAU
    '\u03a5'   #  0xD5 -> GREEK CAPITAL LETTER UPSILON
    '\u03a6'   #  0xD6 -> GREEK CAPITAL LETTER PHI
    '\u03a7'   #  0xD7 -> GREEK CAPITAL LETTER CHI
    '\u03a8'   #  0xD8 -> GREEK CAPITAL LETTER PSI
    '\u03a9'   #  0xD9 -> GREEK CAPITAL LETTER OMEGA
    '\u03aa'   #  0xDA -> GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    '\u03ab'   #  0xDB -> GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    '\u03ac'   #  0xDC -> GREEK SMALL LETTER ALPHA WITH TONOS
    '\u03ad'   #  0xDD -> GREEK SMALL LETTER EPSILON WITH TONOS
    '\u03ae'   #  0xDE -> GREEK SMALL LETTER ETA WITH TONOS
    '\u03af'   #  0xDF -> GREEK SMALL LETTER IOTA WITH TONOS
    '\u03b0'   #  0xE0 -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
    '\u03b1'   #  0xE1 -> GREEK SMALL LETTER ALPHA
    '\u03b2'   #  0xE2 -> GREEK SMALL LETTER BETA
    '\u03b3'   #  0xE3 -> GREEK SMALL LETTER GAMMA
    '\u03b4'   #  0xE4 -> GREEK SMALL LETTER DELTA
    '\u03b5'   #  0xE5 -> GREEK SMALL LETTER EPSILON
    '\u03b6'   #  0xE6 -> GREEK SMALL LETTER ZETA
    '\u03b7'   #  0xE7 -> GREEK SMALL LETTER ETA
    '\u03b8'   #  0xE8 -> GREEK SMALL LETTER THETA
    '\u03b9'   #  0xE9 -> GREEK SMALL LETTER IOTA
    '\u03ba'   #  0xEA -> GREEK SMALL LETTER KAPPA
    '\u03bb'   #  0xEB -> GREEK SMALL LETTER LAMDA
    '\u03bc'   #  0xEC -> GREEK SMALL LETTER MU
    '\u03bd'   #  0xED -> GREEK SMALL LETTER NU
    '\u03be'   #  0xEE -> GREEK SMALL LETTER XI
    '\u03bf'   #  0xEF -> GREEK SMALL LETTER OMICRON
    '\u03c0'   #  0xF0 -> GREEK SMALL LETTER PI
    '\u03c1'   #  0xF1 -> GREEK SMALL LETTER RHO
    '\u03c2'   #  0xF2 -> GREEK SMALL LETTER FINAL SIGMA
    '\u03c3'   #  0xF3 -> GREEK SMALL LETTER SIGMA
    '\u03c4'   #  0xF4 -> GREEK SMALL LETTER TAU
    '\u03c5'   #  0xF5 -> GREEK SMALL LETTER UPSILON
    '\u03c6'   #  0xF6 -> GREEK SMALL LETTER PHI
    '\u03c7'   #  0xF7 -> GREEK SMALL LETTER CHI
    '\u03c8'   #  0xF8 -> GREEK SMALL LETTER PSI
    '\u03c9'   #  0xF9 -> GREEK SMALL LETTER OMEGA
    '\u03ca'   #  0xFA -> GREEK SMALL LETTER IOTA WITH DIALYTIKA
    '\u03cb'   #  0xFB -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    '\u03cc'   #  0xFC -> GREEK SMALL LETTER OMICRON WITH TONOS
    '\u03cd'   #  0xFD -> GREEK SMALL LETTER UPSILON WITH TONOS
    '\u03ce'   #  0xFE -> GREEK SMALL LETTER OMEGA WITH TONOS
    '\ufffe'   #  0xFF -> UNDEFINED
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1254.py
""" Python Character Mapping Codec cp1254 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1254.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1254',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\ufffe'   #  0x81 -> UNDEFINED
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\u0192'   #  0x83 -> LATIN SMALL LETTER F WITH HOOK
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\u02c6'   #  0x88 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\u0160'   #  0x8A -> LATIN CAPITAL LETTER S WITH CARON
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u0152'   #  0x8C -> LATIN CAPITAL LIGATURE OE
    '\ufffe'   #  0x8D -> UNDEFINED
    '\ufffe'   #  0x8E -> UNDEFINED
    '\ufffe'   #  0x8F -> UNDEFINED
    '\ufffe'   #  0x90 -> UNDEFINED
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\u02dc'   #  0x98 -> SMALL TILDE
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\u0161'   #  0x9A -> LATIN SMALL LETTER S WITH CARON
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u0153'   #  0x9C -> LATIN SMALL LIGATURE OE
    '\ufffe'   #  0x9D -> UNDEFINED
    '\ufffe'   #  0x9E -> UNDEFINED
    '\u0178'   #  0x9F -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xa1'     #  0xA1 -> INVERTED EXCLAMATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xaa'     #  0xAA -> FEMININE ORDINAL INDICATOR
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xba'     #  0xBA -> MASCULINE ORDINAL INDICATOR
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xbf'     #  0xBF -> INVERTED QUESTION MARK
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\u011e'   #  0xD0 -> LATIN CAPITAL LETTER G WITH BREVE
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u0130'   #  0xDD -> LATIN CAPITAL LETTER I WITH DOT ABOVE
    '\u015e'   #  0xDE -> LATIN CAPITAL LETTER S WITH CEDILLA
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\u011f'   #  0xF0 -> LATIN SMALL LETTER G WITH BREVE
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u0131'   #  0xFD -> LATIN SMALL LETTER DOTLESS I
    '\u015f'   #  0xFE -> LATIN SMALL LETTER S WITH CEDILLA
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1255.py
""" Python Character Mapping Codec cp1255 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1255.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1255',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\ufffe'   #  0x81 -> UNDEFINED
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\u0192'   #  0x83 -> LATIN SMALL LETTER F WITH HOOK
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\u02c6'   #  0x88 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\ufffe'   #  0x8A -> UNDEFINED
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\ufffe'   #  0x8C -> UNDEFINED
    '\ufffe'   #  0x8D -> UNDEFINED
    '\ufffe'   #  0x8E -> UNDEFINED
    '\ufffe'   #  0x8F -> UNDEFINED
    '\ufffe'   #  0x90 -> UNDEFINED
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\u02dc'   #  0x98 -> SMALL TILDE
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\ufffe'   #  0x9A -> UNDEFINED
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\ufffe'   #  0x9C -> UNDEFINED
    '\ufffe'   #  0x9D -> UNDEFINED
    '\ufffe'   #  0x9E -> UNDEFINED
    '\ufffe'   #  0x9F -> UNDEFINED
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xa1'     #  0xA1 -> INVERTED EXCLAMATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\u20aa'   #  0xA4 -> NEW SHEQEL SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xd7'     #  0xAA -> MULTIPLICATION SIGN
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xf7'     #  0xBA -> DIVISION SIGN
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xbf'     #  0xBF -> INVERTED QUESTION MARK
    '\u05b0'   #  0xC0 -> HEBREW POINT SHEVA
    '\u05b1'   #  0xC1 -> HEBREW POINT HATAF SEGOL
    '\u05b2'   #  0xC2 -> HEBREW POINT HATAF PATAH
    '\u05b3'   #  0xC3 -> HEBREW POINT HATAF QAMATS
    '\u05b4'   #  0xC4 -> HEBREW POINT HIRIQ
    '\u05b5'   #  0xC5 -> HEBREW POINT TSERE
    '\u05b6'   #  0xC6 -> HEBREW POINT SEGOL
    '\u05b7'   #  0xC7 -> HEBREW POINT PATAH
    '\u05b8'   #  0xC8 -> HEBREW POINT QAMATS
    '\u05b9'   #  0xC9 -> HEBREW POINT HOLAM
    '\ufffe'   #  0xCA -> UNDEFINED
    '\u05bb'   #  0xCB -> HEBREW POINT QUBUTS
    '\u05bc'   #  0xCC -> HEBREW POINT DAGESH OR MAPIQ
    '\u05bd'   #  0xCD -> HEBREW POINT METEG
    '\u05be'   #  0xCE -> HEBREW PUNCTUATION MAQAF
    '\u05bf'   #  0xCF -> HEBREW POINT RAFE
    '\u05c0'   #  0xD0 -> HEBREW PUNCTUATION PASEQ
    '\u05c1'   #  0xD1 -> HEBREW POINT SHIN DOT
    '\u05c2'   #  0xD2 -> HEBREW POINT SIN DOT
    '\u05c3'   #  0xD3 -> HEBREW PUNCTUATION SOF PASUQ
    '\u05f0'   #  0xD4 -> HEBREW LIGATURE YIDDISH DOUBLE VAV
    '\u05f1'   #  0xD5 -> HEBREW LIGATURE YIDDISH VAV YOD
    '\u05f2'   #  0xD6 -> HEBREW LIGATURE YIDDISH DOUBLE YOD
    '\u05f3'   #  0xD7 -> HEBREW PUNCTUATION GERESH
    '\u05f4'   #  0xD8 -> HEBREW PUNCTUATION GERSHAYIM
    '\ufffe'   #  0xD9 -> UNDEFINED
    '\ufffe'   #  0xDA -> UNDEFINED
    '\ufffe'   #  0xDB -> UNDEFINED
    '\ufffe'   #  0xDC -> UNDEFINED
    '\ufffe'   #  0xDD -> UNDEFINED
    '\ufffe'   #  0xDE -> UNDEFINED
    '\ufffe'   #  0xDF -> UNDEFINED
    '\u05d0'   #  0xE0 -> HEBREW LETTER ALEF
    '\u05d1'   #  0xE1 -> HEBREW LETTER BET
    '\u05d2'   #  0xE2 -> HEBREW LETTER GIMEL
    '\u05d3'   #  0xE3 -> HEBREW LETTER DALET
    '\u05d4'   #  0xE4 -> HEBREW LETTER HE
    '\u05d5'   #  0xE5 -> HEBREW LETTER VAV
    '\u05d6'   #  0xE6 -> HEBREW LETTER ZAYIN
    '\u05d7'   #  0xE7 -> HEBREW LETTER HET
    '\u05d8'   #  0xE8 -> HEBREW LETTER TET
    '\u05d9'   #  0xE9 -> HEBREW LETTER YOD
    '\u05da'   #  0xEA -> HEBREW LETTER FINAL KAF
    '\u05db'   #  0xEB -> HEBREW LETTER KAF
    '\u05dc'   #  0xEC -> HEBREW LETTER LAMED
    '\u05dd'   #  0xED -> HEBREW LETTER FINAL MEM
    '\u05de'   #  0xEE -> HEBREW LETTER MEM
    '\u05df'   #  0xEF -> HEBREW LETTER FINAL NUN
    '\u05e0'   #  0xF0 -> HEBREW LETTER NUN
    '\u05e1'   #  0xF1 -> HEBREW LETTER SAMEKH
    '\u05e2'   #  0xF2 -> HEBREW LETTER AYIN
    '\u05e3'   #  0xF3 -> HEBREW LETTER FINAL PE
    '\u05e4'   #  0xF4 -> HEBREW LETTER PE
    '\u05e5'   #  0xF5 -> HEBREW LETTER FINAL TSADI
    '\u05e6'   #  0xF6 -> HEBREW LETTER TSADI
    '\u05e7'   #  0xF7 -> HEBREW LETTER QOF
    '\u05e8'   #  0xF8 -> HEBREW LETTER RESH
    '\u05e9'   #  0xF9 -> HEBREW LETTER SHIN
    '\u05ea'   #  0xFA -> HEBREW LETTER TAV
    '\ufffe'   #  0xFB -> UNDEFINED
    '\ufffe'   #  0xFC -> UNDEFINED
    '\u200e'   #  0xFD -> LEFT-TO-RIGHT MARK
    '\u200f'   #  0xFE -> RIGHT-TO-LEFT MARK
    '\ufffe'   #  0xFF -> UNDEFINED
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1256.py
""" Python Character Mapping Codec cp1256 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1256.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1256',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\u067e'   #  0x81 -> ARABIC LETTER PEH
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\u0192'   #  0x83 -> LATIN SMALL LETTER F WITH HOOK
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\u02c6'   #  0x88 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\u0679'   #  0x8A -> ARABIC LETTER TTEH
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u0152'   #  0x8C -> LATIN CAPITAL LIGATURE OE
    '\u0686'   #  0x8D -> ARABIC LETTER TCHEH
    '\u0698'   #  0x8E -> ARABIC LETTER JEH
    '\u0688'   #  0x8F -> ARABIC LETTER DDAL
    '\u06af'   #  0x90 -> ARABIC LETTER GAF
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\u06a9'   #  0x98 -> ARABIC LETTER KEHEH
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\u0691'   #  0x9A -> ARABIC LETTER RREH
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u0153'   #  0x9C -> LATIN SMALL LIGATURE OE
    '\u200c'   #  0x9D -> ZERO WIDTH NON-JOINER
    '\u200d'   #  0x9E -> ZERO WIDTH JOINER
    '\u06ba'   #  0x9F -> ARABIC LETTER NOON GHUNNA
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u060c'   #  0xA1 -> ARABIC COMMA
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u06be'   #  0xAA -> ARABIC LETTER HEH DOACHASHMEE
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\u061b'   #  0xBA -> ARABIC SEMICOLON
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\u061f'   #  0xBF -> ARABIC QUESTION MARK
    '\u06c1'   #  0xC0 -> ARABIC LETTER HEH GOAL
    '\u0621'   #  0xC1 -> ARABIC LETTER HAMZA
    '\u0622'   #  0xC2 -> ARABIC LETTER ALEF WITH MADDA ABOVE
    '\u0623'   #  0xC3 -> ARABIC LETTER ALEF WITH HAMZA ABOVE
    '\u0624'   #  0xC4 -> ARABIC LETTER WAW WITH HAMZA ABOVE
    '\u0625'   #  0xC5 -> ARABIC LETTER ALEF WITH HAMZA BELOW
    '\u0626'   #  0xC6 -> ARABIC LETTER YEH WITH HAMZA ABOVE
    '\u0627'   #  0xC7 -> ARABIC LETTER ALEF
    '\u0628'   #  0xC8 -> ARABIC LETTER BEH
    '\u0629'   #  0xC9 -> ARABIC LETTER TEH MARBUTA
    '\u062a'   #  0xCA -> ARABIC LETTER TEH
    '\u062b'   #  0xCB -> ARABIC LETTER THEH
    '\u062c'   #  0xCC -> ARABIC LETTER JEEM
    '\u062d'   #  0xCD -> ARABIC LETTER HAH
    '\u062e'   #  0xCE -> ARABIC LETTER KHAH
    '\u062f'   #  0xCF -> ARABIC LETTER DAL
    '\u0630'   #  0xD0 -> ARABIC LETTER THAL
    '\u0631'   #  0xD1 -> ARABIC LETTER REH
    '\u0632'   #  0xD2 -> ARABIC LETTER ZAIN
    '\u0633'   #  0xD3 -> ARABIC LETTER SEEN
    '\u0634'   #  0xD4 -> ARABIC LETTER SHEEN
    '\u0635'   #  0xD5 -> ARABIC LETTER SAD
    '\u0636'   #  0xD6 -> ARABIC LETTER DAD
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\u0637'   #  0xD8 -> ARABIC LETTER TAH
    '\u0638'   #  0xD9 -> ARABIC LETTER ZAH
    '\u0639'   #  0xDA -> ARABIC LETTER AIN
    '\u063a'   #  0xDB -> ARABIC LETTER GHAIN
    '\u0640'   #  0xDC -> ARABIC TATWEEL
    '\u0641'   #  0xDD -> ARABIC LETTER FEH
    '\u0642'   #  0xDE -> ARABIC LETTER QAF
    '\u0643'   #  0xDF -> ARABIC LETTER KAF
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\u0644'   #  0xE1 -> ARABIC LETTER LAM
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\u0645'   #  0xE3 -> ARABIC LETTER MEEM
    '\u0646'   #  0xE4 -> ARABIC LETTER NOON
    '\u0647'   #  0xE5 -> ARABIC LETTER HEH
    '\u0648'   #  0xE6 -> ARABIC LETTER WAW
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\u0649'   #  0xEC -> ARABIC LETTER ALEF MAKSURA
    '\u064a'   #  0xED -> ARABIC LETTER YEH
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\u064b'   #  0xF0 -> ARABIC FATHATAN
    '\u064c'   #  0xF1 -> ARABIC DAMMATAN
    '\u064d'   #  0xF2 -> ARABIC KASRATAN
    '\u064e'   #  0xF3 -> ARABIC FATHA
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\u064f'   #  0xF5 -> ARABIC DAMMA
    '\u0650'   #  0xF6 -> ARABIC KASRA
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\u0651'   #  0xF8 -> ARABIC SHADDA
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\u0652'   #  0xFA -> ARABIC SUKUN
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u200e'   #  0xFD -> LEFT-TO-RIGHT MARK
    '\u200f'   #  0xFE -> RIGHT-TO-LEFT MARK
    '\u06d2'   #  0xFF -> ARABIC LETTER YEH BARREE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1257.py
""" Python Character Mapping Codec cp1257 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1257.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1257',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\ufffe'   #  0x81 -> UNDEFINED
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\ufffe'   #  0x83 -> UNDEFINED
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\ufffe'   #  0x88 -> UNDEFINED
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\ufffe'   #  0x8A -> UNDEFINED
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\ufffe'   #  0x8C -> UNDEFINED
    '\xa8'     #  0x8D -> DIAERESIS
    '\u02c7'   #  0x8E -> CARON
    '\xb8'     #  0x8F -> CEDILLA
    '\ufffe'   #  0x90 -> UNDEFINED
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\ufffe'   #  0x98 -> UNDEFINED
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\ufffe'   #  0x9A -> UNDEFINED
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\ufffe'   #  0x9C -> UNDEFINED
    '\xaf'     #  0x9D -> MACRON
    '\u02db'   #  0x9E -> OGONEK
    '\ufffe'   #  0x9F -> UNDEFINED
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\ufffe'   #  0xA1 -> UNDEFINED
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\ufffe'   #  0xA5 -> UNDEFINED
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xd8'     #  0xA8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u0156'   #  0xAA -> LATIN CAPITAL LETTER R WITH CEDILLA
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xc6'     #  0xAF -> LATIN CAPITAL LETTER AE
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xf8'     #  0xB8 -> LATIN SMALL LETTER O WITH STROKE
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\u0157'   #  0xBA -> LATIN SMALL LETTER R WITH CEDILLA
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xe6'     #  0xBF -> LATIN SMALL LETTER AE
    '\u0104'   #  0xC0 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\u012e'   #  0xC1 -> LATIN CAPITAL LETTER I WITH OGONEK
    '\u0100'   #  0xC2 -> LATIN CAPITAL LETTER A WITH MACRON
    '\u0106'   #  0xC3 -> LATIN CAPITAL LETTER C WITH ACUTE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\u0118'   #  0xC6 -> LATIN CAPITAL LETTER E WITH OGONEK
    '\u0112'   #  0xC7 -> LATIN CAPITAL LETTER E WITH MACRON
    '\u010c'   #  0xC8 -> LATIN CAPITAL LETTER C WITH CARON
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0179'   #  0xCA -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\u0116'   #  0xCB -> LATIN CAPITAL LETTER E WITH DOT ABOVE
    '\u0122'   #  0xCC -> LATIN CAPITAL LETTER G WITH CEDILLA
    '\u0136'   #  0xCD -> LATIN CAPITAL LETTER K WITH CEDILLA
    '\u012a'   #  0xCE -> LATIN CAPITAL LETTER I WITH MACRON
    '\u013b'   #  0xCF -> LATIN CAPITAL LETTER L WITH CEDILLA
    '\u0160'   #  0xD0 -> LATIN CAPITAL LETTER S WITH CARON
    '\u0143'   #  0xD1 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\u0145'   #  0xD2 -> LATIN CAPITAL LETTER N WITH CEDILLA
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\u014c'   #  0xD4 -> LATIN CAPITAL LETTER O WITH MACRON
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\u0172'   #  0xD8 -> LATIN CAPITAL LETTER U WITH OGONEK
    '\u0141'   #  0xD9 -> LATIN CAPITAL LETTER L WITH STROKE
    '\u015a'   #  0xDA -> LATIN CAPITAL LETTER S WITH ACUTE
    '\u016a'   #  0xDB -> LATIN CAPITAL LETTER U WITH MACRON
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u017b'   #  0xDD -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\u017d'   #  0xDE -> LATIN CAPITAL LETTER Z WITH CARON
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\u0105'   #  0xE0 -> LATIN SMALL LETTER A WITH OGONEK
    '\u012f'   #  0xE1 -> LATIN SMALL LETTER I WITH OGONEK
    '\u0101'   #  0xE2 -> LATIN SMALL LETTER A WITH MACRON
    '\u0107'   #  0xE3 -> LATIN SMALL LETTER C WITH ACUTE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\u0119'   #  0xE6 -> LATIN SMALL LETTER E WITH OGONEK
    '\u0113'   #  0xE7 -> LATIN SMALL LETTER E WITH MACRON
    '\u010d'   #  0xE8 -> LATIN SMALL LETTER C WITH CARON
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\u017a'   #  0xEA -> LATIN SMALL LETTER Z WITH ACUTE
    '\u0117'   #  0xEB -> LATIN SMALL LETTER E WITH DOT ABOVE
    '\u0123'   #  0xEC -> LATIN SMALL LETTER G WITH CEDILLA
    '\u0137'   #  0xED -> LATIN SMALL LETTER K WITH CEDILLA
    '\u012b'   #  0xEE -> LATIN SMALL LETTER I WITH MACRON
    '\u013c'   #  0xEF -> LATIN SMALL LETTER L WITH CEDILLA
    '\u0161'   #  0xF0 -> LATIN SMALL LETTER S WITH CARON
    '\u0144'   #  0xF1 -> LATIN SMALL LETTER N WITH ACUTE
    '\u0146'   #  0xF2 -> LATIN SMALL LETTER N WITH CEDILLA
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\u014d'   #  0xF4 -> LATIN SMALL LETTER O WITH MACRON
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\u0173'   #  0xF8 -> LATIN SMALL LETTER U WITH OGONEK
    '\u0142'   #  0xF9 -> LATIN SMALL LETTER L WITH STROKE
    '\u015b'   #  0xFA -> LATIN SMALL LETTER S WITH ACUTE
    '\u016b'   #  0xFB -> LATIN SMALL LETTER U WITH MACRON
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u017c'   #  0xFD -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\u017e'   #  0xFE -> LATIN SMALL LETTER Z WITH CARON
    '\u02d9'   #  0xFF -> DOT ABOVE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp1258.py
""" Python Character Mapping Codec cp1258 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1258.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp1258',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\ufffe'   #  0x81 -> UNDEFINED
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\u0192'   #  0x83 -> LATIN SMALL LETTER F WITH HOOK
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\u02c6'   #  0x88 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\ufffe'   #  0x8A -> UNDEFINED
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u0152'   #  0x8C -> LATIN CAPITAL LIGATURE OE
    '\ufffe'   #  0x8D -> UNDEFINED
    '\ufffe'   #  0x8E -> UNDEFINED
    '\ufffe'   #  0x8F -> UNDEFINED
    '\ufffe'   #  0x90 -> UNDEFINED
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\u02dc'   #  0x98 -> SMALL TILDE
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\ufffe'   #  0x9A -> UNDEFINED
    '\u203a'   #  0x9B -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u0153'   #  0x9C -> LATIN SMALL LIGATURE OE
    '\ufffe'   #  0x9D -> UNDEFINED
    '\ufffe'   #  0x9E -> UNDEFINED
    '\u0178'   #  0x9F -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xa1'     #  0xA1 -> INVERTED EXCLAMATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xaa'     #  0xAA -> FEMININE ORDINAL INDICATOR
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xba'     #  0xBA -> MASCULINE ORDINAL INDICATOR
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xbf'     #  0xBF -> INVERTED QUESTION MARK
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\u0102'   #  0xC3 -> LATIN CAPITAL LETTER A WITH BREVE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\u0300'   #  0xCC -> COMBINING GRAVE ACCENT
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\u0110'   #  0xD0 -> LATIN CAPITAL LETTER D WITH STROKE
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\u0309'   #  0xD2 -> COMBINING HOOK ABOVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u01a0'   #  0xD5 -> LATIN CAPITAL LETTER O WITH HORN
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u01af'   #  0xDD -> LATIN CAPITAL LETTER U WITH HORN
    '\u0303'   #  0xDE -> COMBINING TILDE
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\u0103'   #  0xE3 -> LATIN SMALL LETTER A WITH BREVE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\u0301'   #  0xEC -> COMBINING ACUTE ACCENT
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\u0111'   #  0xF0 -> LATIN SMALL LETTER D WITH STROKE
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\u0323'   #  0xF2 -> COMBINING DOT BELOW
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\u01a1'   #  0xF5 -> LATIN SMALL LETTER O WITH HORN
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u01b0'   #  0xFD -> LATIN SMALL LETTER U WITH HORN
    '\u20ab'   #  0xFE -> DONG SIGN
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp273.py
""" Python Character Mapping Codec cp273 generated from 'python-mappings/CP273.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp273',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'      #  0x00 -> NULL (NUL)
    '\x01'      #  0x01 -> START OF HEADING (SOH)
    '\x02'      #  0x02 -> START OF TEXT (STX)
    '\x03'      #  0x03 -> END OF TEXT (ETX)
    '\x9c'      #  0x04 -> STRING TERMINATOR (ST)
    '\t'        #  0x05 -> CHARACTER TABULATION (HT)
    '\x86'      #  0x06 -> START OF SELECTED AREA (SSA)
    '\x7f'      #  0x07 -> DELETE (DEL)
    '\x97'      #  0x08 -> END OF GUARDED AREA (EPA)
    '\x8d'      #  0x09 -> REVERSE LINE FEED (RI)
    '\x8e'      #  0x0A -> SINGLE-SHIFT TWO (SS2)
    '\x0b'      #  0x0B -> LINE TABULATION (VT)
    '\x0c'      #  0x0C -> FORM FEED (FF)
    '\r'        #  0x0D -> CARRIAGE RETURN (CR)
    '\x0e'      #  0x0E -> SHIFT OUT (SO)
    '\x0f'      #  0x0F -> SHIFT IN (SI)
    '\x10'      #  0x10 -> DATALINK ESCAPE (DLE)
    '\x11'      #  0x11 -> DEVICE CONTROL ONE (DC1)
    '\x12'      #  0x12 -> DEVICE CONTROL TWO (DC2)
    '\x13'      #  0x13 -> DEVICE CONTROL THREE (DC3)
    '\x9d'      #  0x14 -> OPERATING SYSTEM COMMAND (OSC)
    '\x85'      #  0x15 -> NEXT LINE (NEL)
    '\x08'      #  0x16 -> BACKSPACE (BS)
    '\x87'      #  0x17 -> END OF SELECTED AREA (ESA)
    '\x18'      #  0x18 -> CANCEL (CAN)
    '\x19'      #  0x19 -> END OF MEDIUM (EM)
    '\x92'      #  0x1A -> PRIVATE USE TWO (PU2)
    '\x8f'      #  0x1B -> SINGLE-SHIFT THREE (SS3)
    '\x1c'      #  0x1C -> FILE SEPARATOR (IS4)
    '\x1d'      #  0x1D -> GROUP SEPARATOR (IS3)
    '\x1e'      #  0x1E -> RECORD SEPARATOR (IS2)
    '\x1f'      #  0x1F -> UNIT SEPARATOR (IS1)
    '\x80'      #  0x20 -> PADDING CHARACTER (PAD)
    '\x81'      #  0x21 -> HIGH OCTET PRESET (HOP)
    '\x82'      #  0x22 -> BREAK PERMITTED HERE (BPH)
    '\x83'      #  0x23 -> NO BREAK HERE (NBH)
    '\x84'      #  0x24 -> INDEX (IND)
    '\n'        #  0x25 -> LINE FEED (LF)
    '\x17'      #  0x26 -> END OF TRANSMISSION BLOCK (ETB)
    '\x1b'      #  0x27 -> ESCAPE (ESC)
    '\x88'      #  0x28 -> CHARACTER TABULATION SET (HTS)
    '\x89'      #  0x29 -> CHARACTER TABULATION WITH JUSTIFICATION (HTJ)
    '\x8a'      #  0x2A -> LINE TABULATION SET (VTS)
    '\x8b'      #  0x2B -> PARTIAL LINE FORWARD (PLD)
    '\x8c'      #  0x2C -> PARTIAL LINE BACKWARD (PLU)
    '\x05'      #  0x2D -> ENQUIRY (ENQ)
    '\x06'      #  0x2E -> ACKNOWLEDGE (ACK)
    '\x07'      #  0x2F -> BELL (BEL)
    '\x90'      #  0x30 -> DEVICE CONTROL STRING (DCS)
    '\x91'      #  0x31 -> PRIVATE USE ONE (PU1)
    '\x16'      #  0x32 -> SYNCHRONOUS IDLE (SYN)
    '\x93'      #  0x33 -> SET TRANSMIT STATE (STS)
    '\x94'      #  0x34 -> CANCEL CHARACTER (CCH)
    '\x95'      #  0x35 -> MESSAGE WAITING (MW)
    '\x96'      #  0x36 -> START OF GUARDED AREA (SPA)
    '\x04'      #  0x37 -> END OF TRANSMISSION (EOT)
    '\x98'      #  0x38 -> START OF STRING (SOS)
    '\x99'      #  0x39 -> SINGLE GRAPHIC CHARACTER INTRODUCER (SGCI)
    '\x9a'      #  0x3A -> SINGLE CHARACTER INTRODUCER (SCI)
    '\x9b'      #  0x3B -> CONTROL SEQUENCE INTRODUCER (CSI)
    '\x14'      #  0x3C -> DEVICE CONTROL FOUR (DC4)
    '\x15'      #  0x3D -> NEGATIVE ACKNOWLEDGE (NAK)
    '\x9e'      #  0x3E -> PRIVACY MESSAGE (PM)
    '\x1a'      #  0x3F -> SUBSTITUTE (SUB)
    ' '         #  0x40 -> SPACE
    '\xa0'      #  0x41 -> NO-BREAK SPACE
    '\xe2'      #  0x42 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '{'         #  0x43 -> LEFT CURLY BRACKET
    '\xe0'      #  0x44 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'      #  0x45 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe3'      #  0x46 -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'      #  0x47 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'      #  0x48 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xf1'      #  0x49 -> LATIN SMALL LETTER N WITH TILDE
    '\xc4'      #  0x4A -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '.'         #  0x4B -> FULL STOP
    '<'         #  0x4C -> LESS-THAN SIGN
    '('         #  0x4D -> LEFT PARENTHESIS
    '+'         #  0x4E -> PLUS SIGN
    '!'         #  0x4F -> EXCLAMATION MARK
    '&'         #  0x50 -> AMPERSAND
    '\xe9'      #  0x51 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'      #  0x52 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'      #  0x53 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'      #  0x54 -> LATIN SMALL LETTER E WITH GRAVE
    '\xed'      #  0x55 -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'      #  0x56 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'      #  0x57 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xec'      #  0x58 -> LATIN SMALL LETTER I WITH GRAVE
    '~'         #  0x59 -> TILDE
    '\xdc'      #  0x5A -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '$'         #  0x5B -> DOLLAR SIGN
    '*'         #  0x5C -> ASTERISK
    ')'         #  0x5D -> RIGHT PARENTHESIS
    ';'         #  0x5E -> SEMICOLON
    '^'         #  0x5F -> CIRCUMFLEX ACCENT
    '-'         #  0x60 -> HYPHEN-MINUS
    '/'         #  0x61 -> SOLIDUS
    '\xc2'      #  0x62 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '['         #  0x63 -> LEFT SQUARE BRACKET
    '\xc0'      #  0x64 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'      #  0x65 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc3'      #  0x66 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc5'      #  0x67 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'      #  0x68 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xd1'      #  0x69 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xf6'      #  0x6A -> LATIN SMALL LETTER O WITH DIAERESIS
    ','         #  0x6B -> COMMA
    '%'         #  0x6C -> PERCENT SIGN
    '_'         #  0x6D -> LOW LINE
    '>'         #  0x6E -> GREATER-THAN SIGN
    '?'         #  0x6F -> QUESTION MARK
    '\xf8'      #  0x70 -> LATIN SMALL LETTER O WITH STROKE
    '\xc9'      #  0x71 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'      #  0x72 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'      #  0x73 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'      #  0x74 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'      #  0x75 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'      #  0x76 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'      #  0x77 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'      #  0x78 -> LATIN CAPITAL LETTER I WITH GRAVE
    '`'         #  0x79 -> GRAVE ACCENT
    ':'         #  0x7A -> COLON
    '#'         #  0x7B -> NUMBER SIGN
    '\xa7'      #  0x7C -> SECTION SIGN
    "'"         #  0x7D -> APOSTROPHE
    '='         #  0x7E -> EQUALS SIGN
    '"'         #  0x7F -> QUOTATION MARK
    '\xd8'      #  0x80 -> LATIN CAPITAL LETTER O WITH STROKE
    'a'         #  0x81 -> LATIN SMALL LETTER A
    'b'         #  0x82 -> LATIN SMALL LETTER B
    'c'         #  0x83 -> LATIN SMALL LETTER C
    'd'         #  0x84 -> LATIN SMALL LETTER D
    'e'         #  0x85 -> LATIN SMALL LETTER E
    'f'         #  0x86 -> LATIN SMALL LETTER F
    'g'         #  0x87 -> LATIN SMALL LETTER G
    'h'         #  0x88 -> LATIN SMALL LETTER H
    'i'         #  0x89 -> LATIN SMALL LETTER I
    '\xab'      #  0x8A -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'      #  0x8B -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xf0'      #  0x8C -> LATIN SMALL LETTER ETH (Icelandic)
    '\xfd'      #  0x8D -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'      #  0x8E -> LATIN SMALL LETTER THORN (Icelandic)
    '\xb1'      #  0x8F -> PLUS-MINUS SIGN
    '\xb0'      #  0x90 -> DEGREE SIGN
    'j'         #  0x91 -> LATIN SMALL LETTER J
    'k'         #  0x92 -> LATIN SMALL LETTER K
    'l'         #  0x93 -> LATIN SMALL LETTER L
    'm'         #  0x94 -> LATIN SMALL LETTER M
    'n'         #  0x95 -> LATIN SMALL LETTER N
    'o'         #  0x96 -> LATIN SMALL LETTER O
    'p'         #  0x97 -> LATIN SMALL LETTER P
    'q'         #  0x98 -> LATIN SMALL LETTER Q
    'r'         #  0x99 -> LATIN SMALL LETTER R
    '\xaa'      #  0x9A -> FEMININE ORDINAL INDICATOR
    '\xba'      #  0x9B -> MASCULINE ORDINAL INDICATOR
    '\xe6'      #  0x9C -> LATIN SMALL LETTER AE
    '\xb8'      #  0x9D -> CEDILLA
    '\xc6'      #  0x9E -> LATIN CAPITAL LETTER AE
    '\xa4'      #  0x9F -> CURRENCY SIGN
    '\xb5'      #  0xA0 -> MICRO SIGN
    '\xdf'      #  0xA1 -> LATIN SMALL LETTER SHARP S (German)
    's'         #  0xA2 -> LATIN SMALL LETTER S
    't'         #  0xA3 -> LATIN SMALL LETTER T
    'u'         #  0xA4 -> LATIN SMALL LETTER U
    'v'         #  0xA5 -> LATIN SMALL LETTER V
    'w'         #  0xA6 -> LATIN SMALL LETTER W
    'x'         #  0xA7 -> LATIN SMALL LETTER X
    'y'         #  0xA8 -> LATIN SMALL LETTER Y
    'z'         #  0xA9 -> LATIN SMALL LETTER Z
    '\xa1'      #  0xAA -> INVERTED EXCLAMATION MARK
    '\xbf'      #  0xAB -> INVERTED QUESTION MARK
    '\xd0'      #  0xAC -> LATIN CAPITAL LETTER ETH (Icelandic)
    '\xdd'      #  0xAD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'      #  0xAE -> LATIN CAPITAL LETTER THORN (Icelandic)
    '\xae'      #  0xAF -> REGISTERED SIGN
    '\xa2'      #  0xB0 -> CENT SIGN
    '\xa3'      #  0xB1 -> POUND SIGN
    '\xa5'      #  0xB2 -> YEN SIGN
    '\xb7'      #  0xB3 -> MIDDLE DOT
    '\xa9'      #  0xB4 -> COPYRIGHT SIGN
    '@'         #  0xB5 -> COMMERCIAL AT
    '\xb6'      #  0xB6 -> PILCROW SIGN
    '\xbc'      #  0xB7 -> VULGAR FRACTION ONE QUARTER
    '\xbd'      #  0xB8 -> VULGAR FRACTION ONE HALF
    '\xbe'      #  0xB9 -> VULGAR FRACTION THREE QUARTERS
    '\xac'      #  0xBA -> NOT SIGN
    '|'         #  0xBB -> VERTICAL LINE
    '\u203e'    #  0xBC -> OVERLINE
    '\xa8'      #  0xBD -> DIAERESIS
    '\xb4'      #  0xBE -> ACUTE ACCENT
    '\xd7'      #  0xBF -> MULTIPLICATION SIGN
    '\xe4'      #  0xC0 -> LATIN SMALL LETTER A WITH DIAERESIS
    'A'         #  0xC1 -> LATIN CAPITAL LETTER A
    'B'         #  0xC2 -> LATIN CAPITAL LETTER B
    'C'         #  0xC3 -> LATIN CAPITAL LETTER C
    'D'         #  0xC4 -> LATIN CAPITAL LETTER D
    'E'         #  0xC5 -> LATIN CAPITAL LETTER E
    'F'         #  0xC6 -> LATIN CAPITAL LETTER F
    'G'         #  0xC7 -> LATIN CAPITAL LETTER G
    'H'         #  0xC8 -> LATIN CAPITAL LETTER H
    'I'         #  0xC9 -> LATIN CAPITAL LETTER I
    '\xad'      #  0xCA -> SOFT HYPHEN
    '\xf4'      #  0xCB -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xa6'      #  0xCC -> BROKEN BAR
    '\xf2'      #  0xCD -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'      #  0xCE -> LATIN SMALL LETTER O WITH ACUTE
    '\xf5'      #  0xCF -> LATIN SMALL LETTER O WITH TILDE
    '\xfc'      #  0xD0 -> LATIN SMALL LETTER U WITH DIAERESIS
    'J'         #  0xD1 -> LATIN CAPITAL LETTER J
    'K'         #  0xD2 -> LATIN CAPITAL LETTER K
    'L'         #  0xD3 -> LATIN CAPITAL LETTER L
    'M'         #  0xD4 -> LATIN CAPITAL LETTER M
    'N'         #  0xD5 -> LATIN CAPITAL LETTER N
    'O'         #  0xD6 -> LATIN CAPITAL LETTER O
    'P'         #  0xD7 -> LATIN CAPITAL LETTER P
    'Q'         #  0xD8 -> LATIN CAPITAL LETTER Q
    'R'         #  0xD9 -> LATIN CAPITAL LETTER R
    '\xb9'      #  0xDA -> SUPERSCRIPT ONE
    '\xfb'      #  0xDB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '}'         #  0xDC -> RIGHT CURLY BRACKET
    '\xf9'      #  0xDD -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'      #  0xDE -> LATIN SMALL LETTER U WITH ACUTE
    '\xff'      #  0xDF -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\xd6'      #  0xE0 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xf7'      #  0xE1 -> DIVISION SIGN
    'S'         #  0xE2 -> LATIN CAPITAL LETTER S
    'T'         #  0xE3 -> LATIN CAPITAL LETTER T
    'U'         #  0xE4 -> LATIN CAPITAL LETTER U
    'V'         #  0xE5 -> LATIN CAPITAL LETTER V
    'W'         #  0xE6 -> LATIN CAPITAL LETTER W
    'X'         #  0xE7 -> LATIN CAPITAL LETTER X
    'Y'         #  0xE8 -> LATIN CAPITAL LETTER Y
    'Z'         #  0xE9 -> LATIN CAPITAL LETTER Z
    '\xb2'      #  0xEA -> SUPERSCRIPT TWO
    '\xd4'      #  0xEB -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\\'        #  0xEC -> REVERSE SOLIDUS
    '\xd2'      #  0xED -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'      #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd5'      #  0xEF -> LATIN CAPITAL LETTER O WITH TILDE
    '0'         #  0xF0 -> DIGIT ZERO
    '1'         #  0xF1 -> DIGIT ONE
    '2'         #  0xF2 -> DIGIT TWO
    '3'         #  0xF3 -> DIGIT THREE
    '4'         #  0xF4 -> DIGIT FOUR
    '5'         #  0xF5 -> DIGIT FIVE
    '6'         #  0xF6 -> DIGIT SIX
    '7'         #  0xF7 -> DIGIT SEVEN
    '8'         #  0xF8 -> DIGIT EIGHT
    '9'         #  0xF9 -> DIGIT NINE
    '\xb3'      #  0xFA -> SUPERSCRIPT THREE
    '\xdb'      #  0xFB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    ']'         #  0xFC -> RIGHT SQUARE BRACKET
    '\xd9'      #  0xFD -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'      #  0xFE -> LATIN CAPITAL LETTER U WITH ACUTE
    '\x9f'      #  0xFF -> APPLICATION PROGRAM COMMAND (APC)
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp424.py
""" Python Character Mapping Codec cp424 generated from 'MAPPINGS/VENDORS/MISC/CP424.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp424',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x9c'     #  0x04 -> SELECT
    '\t'       #  0x05 -> HORIZONTAL TABULATION
    '\x86'     #  0x06 -> REQUIRED NEW LINE
    '\x7f'     #  0x07 -> DELETE
    '\x97'     #  0x08 -> GRAPHIC ESCAPE
    '\x8d'     #  0x09 -> SUPERSCRIPT
    '\x8e'     #  0x0A -> REPEAT
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x9d'     #  0x14 -> RESTORE/ENABLE PRESENTATION
    '\x85'     #  0x15 -> NEW LINE
    '\x08'     #  0x16 -> BACKSPACE
    '\x87'     #  0x17 -> PROGRAM OPERATOR COMMUNICATION
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x92'     #  0x1A -> UNIT BACK SPACE
    '\x8f'     #  0x1B -> CUSTOMER USE ONE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    '\x80'     #  0x20 -> DIGIT SELECT
    '\x81'     #  0x21 -> START OF SIGNIFICANCE
    '\x82'     #  0x22 -> FIELD SEPARATOR
    '\x83'     #  0x23 -> WORD UNDERSCORE
    '\x84'     #  0x24 -> BYPASS OR INHIBIT PRESENTATION
    '\n'       #  0x25 -> LINE FEED
    '\x17'     #  0x26 -> END OF TRANSMISSION BLOCK
    '\x1b'     #  0x27 -> ESCAPE
    '\x88'     #  0x28 -> SET ATTRIBUTE
    '\x89'     #  0x29 -> START FIELD EXTENDED
    '\x8a'     #  0x2A -> SET MODE OR SWITCH
    '\x8b'     #  0x2B -> CONTROL SEQUENCE PREFIX
    '\x8c'     #  0x2C -> MODIFY FIELD ATTRIBUTE
    '\x05'     #  0x2D -> ENQUIRY
    '\x06'     #  0x2E -> ACKNOWLEDGE
    '\x07'     #  0x2F -> BELL
    '\x90'     #  0x30 -> <reserved>
    '\x91'     #  0x31 -> <reserved>
    '\x16'     #  0x32 -> SYNCHRONOUS IDLE
    '\x93'     #  0x33 -> INDEX RETURN
    '\x94'     #  0x34 -> PRESENTATION POSITION
    '\x95'     #  0x35 -> TRANSPARENT
    '\x96'     #  0x36 -> NUMERIC BACKSPACE
    '\x04'     #  0x37 -> END OF TRANSMISSION
    '\x98'     #  0x38 -> SUBSCRIPT
    '\x99'     #  0x39 -> INDENT TABULATION
    '\x9a'     #  0x3A -> REVERSE FORM FEED
    '\x9b'     #  0x3B -> CUSTOMER USE THREE
    '\x14'     #  0x3C -> DEVICE CONTROL FOUR
    '\x15'     #  0x3D -> NEGATIVE ACKNOWLEDGE
    '\x9e'     #  0x3E -> <reserved>
    '\x1a'     #  0x3F -> SUBSTITUTE
    ' '        #  0x40 -> SPACE
    '\u05d0'   #  0x41 -> HEBREW LETTER ALEF
    '\u05d1'   #  0x42 -> HEBREW LETTER BET
    '\u05d2'   #  0x43 -> HEBREW LETTER GIMEL
    '\u05d3'   #  0x44 -> HEBREW LETTER DALET
    '\u05d4'   #  0x45 -> HEBREW LETTER HE
    '\u05d5'   #  0x46 -> HEBREW LETTER VAV
    '\u05d6'   #  0x47 -> HEBREW LETTER ZAYIN
    '\u05d7'   #  0x48 -> HEBREW LETTER HET
    '\u05d8'   #  0x49 -> HEBREW LETTER TET
    '\xa2'     #  0x4A -> CENT SIGN
    '.'        #  0x4B -> FULL STOP
    '<'        #  0x4C -> LESS-THAN SIGN
    '('        #  0x4D -> LEFT PARENTHESIS
    '+'        #  0x4E -> PLUS SIGN
    '|'        #  0x4F -> VERTICAL LINE
    '&'        #  0x50 -> AMPERSAND
    '\u05d9'   #  0x51 -> HEBREW LETTER YOD
    '\u05da'   #  0x52 -> HEBREW LETTER FINAL KAF
    '\u05db'   #  0x53 -> HEBREW LETTER KAF
    '\u05dc'   #  0x54 -> HEBREW LETTER LAMED
    '\u05dd'   #  0x55 -> HEBREW LETTER FINAL MEM
    '\u05de'   #  0x56 -> HEBREW LETTER MEM
    '\u05df'   #  0x57 -> HEBREW LETTER FINAL NUN
    '\u05e0'   #  0x58 -> HEBREW LETTER NUN
    '\u05e1'   #  0x59 -> HEBREW LETTER SAMEKH
    '!'        #  0x5A -> EXCLAMATION MARK
    '$'        #  0x5B -> DOLLAR SIGN
    '*'        #  0x5C -> ASTERISK
    ')'        #  0x5D -> RIGHT PARENTHESIS
    ';'        #  0x5E -> SEMICOLON
    '\xac'     #  0x5F -> NOT SIGN
    '-'        #  0x60 -> HYPHEN-MINUS
    '/'        #  0x61 -> SOLIDUS
    '\u05e2'   #  0x62 -> HEBREW LETTER AYIN
    '\u05e3'   #  0x63 -> HEBREW LETTER FINAL PE
    '\u05e4'   #  0x64 -> HEBREW LETTER PE
    '\u05e5'   #  0x65 -> HEBREW LETTER FINAL TSADI
    '\u05e6'   #  0x66 -> HEBREW LETTER TSADI
    '\u05e7'   #  0x67 -> HEBREW LETTER QOF
    '\u05e8'   #  0x68 -> HEBREW LETTER RESH
    '\u05e9'   #  0x69 -> HEBREW LETTER SHIN
    '\xa6'     #  0x6A -> BROKEN BAR
    ','        #  0x6B -> COMMA
    '%'        #  0x6C -> PERCENT SIGN
    '_'        #  0x6D -> LOW LINE
    '>'        #  0x6E -> GREATER-THAN SIGN
    '?'        #  0x6F -> QUESTION MARK
    '\ufffe'   #  0x70 -> UNDEFINED
    '\u05ea'   #  0x71 -> HEBREW LETTER TAV
    '\ufffe'   #  0x72 -> UNDEFINED
    '\ufffe'   #  0x73 -> UNDEFINED
    '\xa0'     #  0x74 -> NO-BREAK SPACE
    '\ufffe'   #  0x75 -> UNDEFINED
    '\ufffe'   #  0x76 -> UNDEFINED
    '\ufffe'   #  0x77 -> UNDEFINED
    '\u2017'   #  0x78 -> DOUBLE LOW LINE
    '`'        #  0x79 -> GRAVE ACCENT
    ':'        #  0x7A -> COLON
    '#'        #  0x7B -> NUMBER SIGN
    '@'        #  0x7C -> COMMERCIAL AT
    "'"        #  0x7D -> APOSTROPHE
    '='        #  0x7E -> EQUALS SIGN
    '"'        #  0x7F -> QUOTATION MARK
    '\ufffe'   #  0x80 -> UNDEFINED
    'a'        #  0x81 -> LATIN SMALL LETTER A
    'b'        #  0x82 -> LATIN SMALL LETTER B
    'c'        #  0x83 -> LATIN SMALL LETTER C
    'd'        #  0x84 -> LATIN SMALL LETTER D
    'e'        #  0x85 -> LATIN SMALL LETTER E
    'f'        #  0x86 -> LATIN SMALL LETTER F
    'g'        #  0x87 -> LATIN SMALL LETTER G
    'h'        #  0x88 -> LATIN SMALL LETTER H
    'i'        #  0x89 -> LATIN SMALL LETTER I
    '\xab'     #  0x8A -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x8B -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\ufffe'   #  0x8C -> UNDEFINED
    '\ufffe'   #  0x8D -> UNDEFINED
    '\ufffe'   #  0x8E -> UNDEFINED
    '\xb1'     #  0x8F -> PLUS-MINUS SIGN
    '\xb0'     #  0x90 -> DEGREE SIGN
    'j'        #  0x91 -> LATIN SMALL LETTER J
    'k'        #  0x92 -> LATIN SMALL LETTER K
    'l'        #  0x93 -> LATIN SMALL LETTER L
    'm'        #  0x94 -> LATIN SMALL LETTER M
    'n'        #  0x95 -> LATIN SMALL LETTER N
    'o'        #  0x96 -> LATIN SMALL LETTER O
    'p'        #  0x97 -> LATIN SMALL LETTER P
    'q'        #  0x98 -> LATIN SMALL LETTER Q
    'r'        #  0x99 -> LATIN SMALL LETTER R
    '\ufffe'   #  0x9A -> UNDEFINED
    '\ufffe'   #  0x9B -> UNDEFINED
    '\ufffe'   #  0x9C -> UNDEFINED
    '\xb8'     #  0x9D -> CEDILLA
    '\ufffe'   #  0x9E -> UNDEFINED
    '\xa4'     #  0x9F -> CURRENCY SIGN
    '\xb5'     #  0xA0 -> MICRO SIGN
    '~'        #  0xA1 -> TILDE
    's'        #  0xA2 -> LATIN SMALL LETTER S
    't'        #  0xA3 -> LATIN SMALL LETTER T
    'u'        #  0xA4 -> LATIN SMALL LETTER U
    'v'        #  0xA5 -> LATIN SMALL LETTER V
    'w'        #  0xA6 -> LATIN SMALL LETTER W
    'x'        #  0xA7 -> LATIN SMALL LETTER X
    'y'        #  0xA8 -> LATIN SMALL LETTER Y
    'z'        #  0xA9 -> LATIN SMALL LETTER Z
    '\ufffe'   #  0xAA -> UNDEFINED
    '\ufffe'   #  0xAB -> UNDEFINED
    '\ufffe'   #  0xAC -> UNDEFINED
    '\ufffe'   #  0xAD -> UNDEFINED
    '\ufffe'   #  0xAE -> UNDEFINED
    '\xae'     #  0xAF -> REGISTERED SIGN
    '^'        #  0xB0 -> CIRCUMFLEX ACCENT
    '\xa3'     #  0xB1 -> POUND SIGN
    '\xa5'     #  0xB2 -> YEN SIGN
    '\xb7'     #  0xB3 -> MIDDLE DOT
    '\xa9'     #  0xB4 -> COPYRIGHT SIGN
    '\xa7'     #  0xB5 -> SECTION SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xbc'     #  0xB7 -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xB8 -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xB9 -> VULGAR FRACTION THREE QUARTERS
    '['        #  0xBA -> LEFT SQUARE BRACKET
    ']'        #  0xBB -> RIGHT SQUARE BRACKET
    '\xaf'     #  0xBC -> MACRON
    '\xa8'     #  0xBD -> DIAERESIS
    '\xb4'     #  0xBE -> ACUTE ACCENT
    '\xd7'     #  0xBF -> MULTIPLICATION SIGN
    '{'        #  0xC0 -> LEFT CURLY BRACKET
    'A'        #  0xC1 -> LATIN CAPITAL LETTER A
    'B'        #  0xC2 -> LATIN CAPITAL LETTER B
    'C'        #  0xC3 -> LATIN CAPITAL LETTER C
    'D'        #  0xC4 -> LATIN CAPITAL LETTER D
    'E'        #  0xC5 -> LATIN CAPITAL LETTER E
    'F'        #  0xC6 -> LATIN CAPITAL LETTER F
    'G'        #  0xC7 -> LATIN CAPITAL LETTER G
    'H'        #  0xC8 -> LATIN CAPITAL LETTER H
    'I'        #  0xC9 -> LATIN CAPITAL LETTER I
    '\xad'     #  0xCA -> SOFT HYPHEN
    '\ufffe'   #  0xCB -> UNDEFINED
    '\ufffe'   #  0xCC -> UNDEFINED
    '\ufffe'   #  0xCD -> UNDEFINED
    '\ufffe'   #  0xCE -> UNDEFINED
    '\ufffe'   #  0xCF -> UNDEFINED
    '}'        #  0xD0 -> RIGHT CURLY BRACKET
    'J'        #  0xD1 -> LATIN CAPITAL LETTER J
    'K'        #  0xD2 -> LATIN CAPITAL LETTER K
    'L'        #  0xD3 -> LATIN CAPITAL LETTER L
    'M'        #  0xD4 -> LATIN CAPITAL LETTER M
    'N'        #  0xD5 -> LATIN CAPITAL LETTER N
    'O'        #  0xD6 -> LATIN CAPITAL LETTER O
    'P'        #  0xD7 -> LATIN CAPITAL LETTER P
    'Q'        #  0xD8 -> LATIN CAPITAL LETTER Q
    'R'        #  0xD9 -> LATIN CAPITAL LETTER R
    '\xb9'     #  0xDA -> SUPERSCRIPT ONE
    '\ufffe'   #  0xDB -> UNDEFINED
    '\ufffe'   #  0xDC -> UNDEFINED
    '\ufffe'   #  0xDD -> UNDEFINED
    '\ufffe'   #  0xDE -> UNDEFINED
    '\ufffe'   #  0xDF -> UNDEFINED
    '\\'       #  0xE0 -> REVERSE SOLIDUS
    '\xf7'     #  0xE1 -> DIVISION SIGN
    'S'        #  0xE2 -> LATIN CAPITAL LETTER S
    'T'        #  0xE3 -> LATIN CAPITAL LETTER T
    'U'        #  0xE4 -> LATIN CAPITAL LETTER U
    'V'        #  0xE5 -> LATIN CAPITAL LETTER V
    'W'        #  0xE6 -> LATIN CAPITAL LETTER W
    'X'        #  0xE7 -> LATIN CAPITAL LETTER X
    'Y'        #  0xE8 -> LATIN CAPITAL LETTER Y
    'Z'        #  0xE9 -> LATIN CAPITAL LETTER Z
    '\xb2'     #  0xEA -> SUPERSCRIPT TWO
    '\ufffe'   #  0xEB -> UNDEFINED
    '\ufffe'   #  0xEC -> UNDEFINED
    '\ufffe'   #  0xED -> UNDEFINED
    '\ufffe'   #  0xEE -> UNDEFINED
    '\ufffe'   #  0xEF -> UNDEFINED
    '0'        #  0xF0 -> DIGIT ZERO
    '1'        #  0xF1 -> DIGIT ONE
    '2'        #  0xF2 -> DIGIT TWO
    '3'        #  0xF3 -> DIGIT THREE
    '4'        #  0xF4 -> DIGIT FOUR
    '5'        #  0xF5 -> DIGIT FIVE
    '6'        #  0xF6 -> DIGIT SIX
    '7'        #  0xF7 -> DIGIT SEVEN
    '8'        #  0xF8 -> DIGIT EIGHT
    '9'        #  0xF9 -> DIGIT NINE
    '\xb3'     #  0xFA -> SUPERSCRIPT THREE
    '\ufffe'   #  0xFB -> UNDEFINED
    '\ufffe'   #  0xFC -> UNDEFINED
    '\ufffe'   #  0xFD -> UNDEFINED
    '\ufffe'   #  0xFE -> UNDEFINED
    '\x9f'     #  0xFF -> EIGHT ONES
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp437.py
""" Python Character Mapping Codec cp437 generated from 'VENDORS/MICSFT/PC/CP437.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp437',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x0085: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0086: 0x00e5,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0089: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x008a: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x008b: 0x00ef,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x008c: 0x00ee,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x008d: 0x00ec,     #  LATIN SMALL LETTER I WITH GRAVE
    0x008e: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x008f: 0x00c5,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00e6,     #  LATIN SMALL LIGATURE AE
    0x0092: 0x00c6,     #  LATIN CAPITAL LIGATURE AE
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x0095: 0x00f2,     #  LATIN SMALL LETTER O WITH GRAVE
    0x0096: 0x00fb,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x0097: 0x00f9,     #  LATIN SMALL LETTER U WITH GRAVE
    0x0098: 0x00ff,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x0099: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00a2,     #  CENT SIGN
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00a5,     #  YEN SIGN
    0x009e: 0x20a7,     #  PESETA SIGN
    0x009f: 0x0192,     #  LATIN SMALL LETTER F WITH HOOK
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00f1,     #  LATIN SMALL LETTER N WITH TILDE
    0x00a5: 0x00d1,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00a6: 0x00aa,     #  FEMININE ORDINAL INDICATOR
    0x00a7: 0x00ba,     #  MASCULINE ORDINAL INDICATOR
    0x00a8: 0x00bf,     #  INVERTED QUESTION MARK
    0x00a9: 0x2310,     #  REVERSED NOT SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00a1,     #  INVERTED EXCLAMATION MARK
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x03b1,     #  GREEK SMALL LETTER ALPHA
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x0393,     #  GREEK CAPITAL LETTER GAMMA
    0x00e3: 0x03c0,     #  GREEK SMALL LETTER PI
    0x00e4: 0x03a3,     #  GREEK CAPITAL LETTER SIGMA
    0x00e5: 0x03c3,     #  GREEK SMALL LETTER SIGMA
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x03c4,     #  GREEK SMALL LETTER TAU
    0x00e8: 0x03a6,     #  GREEK CAPITAL LETTER PHI
    0x00e9: 0x0398,     #  GREEK CAPITAL LETTER THETA
    0x00ea: 0x03a9,     #  GREEK CAPITAL LETTER OMEGA
    0x00eb: 0x03b4,     #  GREEK SMALL LETTER DELTA
    0x00ec: 0x221e,     #  INFINITY
    0x00ed: 0x03c6,     #  GREEK SMALL LETTER PHI
    0x00ee: 0x03b5,     #  GREEK SMALL LETTER EPSILON
    0x00ef: 0x2229,     #  INTERSECTION
    0x00f0: 0x2261,     #  IDENTICAL TO
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2265,     #  GREATER-THAN OR EQUAL TO
    0x00f3: 0x2264,     #  LESS-THAN OR EQUAL TO
    0x00f4: 0x2320,     #  TOP HALF INTEGRAL
    0x00f5: 0x2321,     #  BOTTOM HALF INTEGRAL
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x2248,     #  ALMOST EQUAL TO
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x207f,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x0085 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe5'     #  0x0086 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'     #  0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x008a -> LATIN SMALL LETTER E WITH GRAVE
    '\xef'     #  0x008b -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xee'     #  0x008c -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xec'     #  0x008d -> LATIN SMALL LETTER I WITH GRAVE
    '\xc4'     #  0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x008f -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xe6'     #  0x0091 -> LATIN SMALL LIGATURE AE
    '\xc6'     #  0x0092 -> LATIN CAPITAL LIGATURE AE
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf2'     #  0x0095 -> LATIN SMALL LETTER O WITH GRAVE
    '\xfb'     #  0x0096 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xf9'     #  0x0097 -> LATIN SMALL LETTER U WITH GRAVE
    '\xff'     #  0x0098 -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\xd6'     #  0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xa2'     #  0x009b -> CENT SIGN
    '\xa3'     #  0x009c -> POUND SIGN
    '\xa5'     #  0x009d -> YEN SIGN
    '\u20a7'   #  0x009e -> PESETA SIGN
    '\u0192'   #  0x009f -> LATIN SMALL LETTER F WITH HOOK
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xf1'     #  0x00a4 -> LATIN SMALL LETTER N WITH TILDE
    '\xd1'     #  0x00a5 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xaa'     #  0x00a6 -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x00a7 -> MASCULINE ORDINAL INDICATOR
    '\xbf'     #  0x00a8 -> INVERTED QUESTION MARK
    '\u2310'   #  0x00a9 -> REVERSED NOT SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xa1'     #  0x00ad -> INVERTED EXCLAMATION MARK
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u03b1'   #  0x00e0 -> GREEK SMALL LETTER ALPHA
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\u0393'   #  0x00e2 -> GREEK CAPITAL LETTER GAMMA
    '\u03c0'   #  0x00e3 -> GREEK SMALL LETTER PI
    '\u03a3'   #  0x00e4 -> GREEK CAPITAL LETTER SIGMA
    '\u03c3'   #  0x00e5 -> GREEK SMALL LETTER SIGMA
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\u03c4'   #  0x00e7 -> GREEK SMALL LETTER TAU
    '\u03a6'   #  0x00e8 -> GREEK CAPITAL LETTER PHI
    '\u0398'   #  0x00e9 -> GREEK CAPITAL LETTER THETA
    '\u03a9'   #  0x00ea -> GREEK CAPITAL LETTER OMEGA
    '\u03b4'   #  0x00eb -> GREEK SMALL LETTER DELTA
    '\u221e'   #  0x00ec -> INFINITY
    '\u03c6'   #  0x00ed -> GREEK SMALL LETTER PHI
    '\u03b5'   #  0x00ee -> GREEK SMALL LETTER EPSILON
    '\u2229'   #  0x00ef -> INTERSECTION
    '\u2261'   #  0x00f0 -> IDENTICAL TO
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2265'   #  0x00f2 -> GREATER-THAN OR EQUAL TO
    '\u2264'   #  0x00f3 -> LESS-THAN OR EQUAL TO
    '\u2320'   #  0x00f4 -> TOP HALF INTEGRAL
    '\u2321'   #  0x00f5 -> BOTTOM HALF INTEGRAL
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\u2248'   #  0x00f7 -> ALMOST EQUAL TO
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u207f'   #  0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a1: 0x00ad,     #  INVERTED EXCLAMATION MARK
    0x00a2: 0x009b,     #  CENT SIGN
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a5: 0x009d,     #  YEN SIGN
    0x00aa: 0x00a6,     #  FEMININE ORDINAL INDICATOR
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00ba: 0x00a7,     #  MASCULINE ORDINAL INDICATOR
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00bf: 0x00a8,     #  INVERTED QUESTION MARK
    0x00c4: 0x008e,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c5: 0x008f,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x00c6: 0x0092,     #  LATIN CAPITAL LIGATURE AE
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00d1: 0x00a5,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00d6: 0x0099,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e0: 0x0085,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e4: 0x0084,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e5: 0x0086,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x00e6: 0x0091,     #  LATIN SMALL LIGATURE AE
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008a,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0088,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00eb: 0x0089,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ec: 0x008d,     #  LATIN SMALL LETTER I WITH GRAVE
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00ee: 0x008c,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x00ef: 0x008b,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x00f1: 0x00a4,     #  LATIN SMALL LETTER N WITH TILDE
    0x00f2: 0x0095,     #  LATIN SMALL LETTER O WITH GRAVE
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f6: 0x0094,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f9: 0x0097,     #  LATIN SMALL LETTER U WITH GRAVE
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fb: 0x0096,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x00ff: 0x0098,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x0192: 0x009f,     #  LATIN SMALL LETTER F WITH HOOK
    0x0393: 0x00e2,     #  GREEK CAPITAL LETTER GAMMA
    0x0398: 0x00e9,     #  GREEK CAPITAL LETTER THETA
    0x03a3: 0x00e4,     #  GREEK CAPITAL LETTER SIGMA
    0x03a6: 0x00e8,     #  GREEK CAPITAL LETTER PHI
    0x03a9: 0x00ea,     #  GREEK CAPITAL LETTER OMEGA
    0x03b1: 0x00e0,     #  GREEK SMALL LETTER ALPHA
    0x03b4: 0x00eb,     #  GREEK SMALL LETTER DELTA
    0x03b5: 0x00ee,     #  GREEK SMALL LETTER EPSILON
    0x03c0: 0x00e3,     #  GREEK SMALL LETTER PI
    0x03c3: 0x00e5,     #  GREEK SMALL LETTER SIGMA
    0x03c4: 0x00e7,     #  GREEK SMALL LETTER TAU
    0x03c6: 0x00ed,     #  GREEK SMALL LETTER PHI
    0x207f: 0x00fc,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x20a7: 0x009e,     #  PESETA SIGN
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x221e: 0x00ec,     #  INFINITY
    0x2229: 0x00ef,     #  INTERSECTION
    0x2248: 0x00f7,     #  ALMOST EQUAL TO
    0x2261: 0x00f0,     #  IDENTICAL TO
    0x2264: 0x00f3,     #  LESS-THAN OR EQUAL TO
    0x2265: 0x00f2,     #  GREATER-THAN OR EQUAL TO
    0x2310: 0x00a9,     #  REVERSED NOT SIGN
    0x2320: 0x00f4,     #  TOP HALF INTEGRAL
    0x2321: 0x00f5,     #  BOTTOM HALF INTEGRAL
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp500.py
""" Python Character Mapping Codec cp500 generated from 'MAPPINGS/VENDORS/MICSFT/EBCDIC/CP500.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp500',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x9c'     #  0x04 -> CONTROL
    '\t'       #  0x05 -> HORIZONTAL TABULATION
    '\x86'     #  0x06 -> CONTROL
    '\x7f'     #  0x07 -> DELETE
    '\x97'     #  0x08 -> CONTROL
    '\x8d'     #  0x09 -> CONTROL
    '\x8e'     #  0x0A -> CONTROL
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x9d'     #  0x14 -> CONTROL
    '\x85'     #  0x15 -> CONTROL
    '\x08'     #  0x16 -> BACKSPACE
    '\x87'     #  0x17 -> CONTROL
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x92'     #  0x1A -> CONTROL
    '\x8f'     #  0x1B -> CONTROL
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    '\x80'     #  0x20 -> CONTROL
    '\x81'     #  0x21 -> CONTROL
    '\x82'     #  0x22 -> CONTROL
    '\x83'     #  0x23 -> CONTROL
    '\x84'     #  0x24 -> CONTROL
    '\n'       #  0x25 -> LINE FEED
    '\x17'     #  0x26 -> END OF TRANSMISSION BLOCK
    '\x1b'     #  0x27 -> ESCAPE
    '\x88'     #  0x28 -> CONTROL
    '\x89'     #  0x29 -> CONTROL
    '\x8a'     #  0x2A -> CONTROL
    '\x8b'     #  0x2B -> CONTROL
    '\x8c'     #  0x2C -> CONTROL
    '\x05'     #  0x2D -> ENQUIRY
    '\x06'     #  0x2E -> ACKNOWLEDGE
    '\x07'     #  0x2F -> BELL
    '\x90'     #  0x30 -> CONTROL
    '\x91'     #  0x31 -> CONTROL
    '\x16'     #  0x32 -> SYNCHRONOUS IDLE
    '\x93'     #  0x33 -> CONTROL
    '\x94'     #  0x34 -> CONTROL
    '\x95'     #  0x35 -> CONTROL
    '\x96'     #  0x36 -> CONTROL
    '\x04'     #  0x37 -> END OF TRANSMISSION
    '\x98'     #  0x38 -> CONTROL
    '\x99'     #  0x39 -> CONTROL
    '\x9a'     #  0x3A -> CONTROL
    '\x9b'     #  0x3B -> CONTROL
    '\x14'     #  0x3C -> DEVICE CONTROL FOUR
    '\x15'     #  0x3D -> NEGATIVE ACKNOWLEDGE
    '\x9e'     #  0x3E -> CONTROL
    '\x1a'     #  0x3F -> SUBSTITUTE
    ' '        #  0x40 -> SPACE
    '\xa0'     #  0x41 -> NO-BREAK SPACE
    '\xe2'     #  0x42 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x43 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x44 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0x45 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe3'     #  0x46 -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x47 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x48 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xf1'     #  0x49 -> LATIN SMALL LETTER N WITH TILDE
    '['        #  0x4A -> LEFT SQUARE BRACKET
    '.'        #  0x4B -> FULL STOP
    '<'        #  0x4C -> LESS-THAN SIGN
    '('        #  0x4D -> LEFT PARENTHESIS
    '+'        #  0x4E -> PLUS SIGN
    '!'        #  0x4F -> EXCLAMATION MARK
    '&'        #  0x50 -> AMPERSAND
    '\xe9'     #  0x51 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0x52 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x53 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x54 -> LATIN SMALL LETTER E WITH GRAVE
    '\xed'     #  0x55 -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0x56 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x57 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xec'     #  0x58 -> LATIN SMALL LETTER I WITH GRAVE
    '\xdf'     #  0x59 -> LATIN SMALL LETTER SHARP S (GERMAN)
    ']'        #  0x5A -> RIGHT SQUARE BRACKET
    '$'        #  0x5B -> DOLLAR SIGN
    '*'        #  0x5C -> ASTERISK
    ')'        #  0x5D -> RIGHT PARENTHESIS
    ';'        #  0x5E -> SEMICOLON
    '^'        #  0x5F -> CIRCUMFLEX ACCENT
    '-'        #  0x60 -> HYPHEN-MINUS
    '/'        #  0x61 -> SOLIDUS
    '\xc2'     #  0x62 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc4'     #  0x63 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc0'     #  0x64 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0x65 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc3'     #  0x66 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc5'     #  0x67 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'     #  0x68 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xd1'     #  0x69 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xa6'     #  0x6A -> BROKEN BAR
    ','        #  0x6B -> COMMA
    '%'        #  0x6C -> PERCENT SIGN
    '_'        #  0x6D -> LOW LINE
    '>'        #  0x6E -> GREATER-THAN SIGN
    '?'        #  0x6F -> QUESTION MARK
    '\xf8'     #  0x70 -> LATIN SMALL LETTER O WITH STROKE
    '\xc9'     #  0x71 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0x72 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0x73 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0x74 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0x75 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0x76 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0x77 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0x78 -> LATIN CAPITAL LETTER I WITH GRAVE
    '`'        #  0x79 -> GRAVE ACCENT
    ':'        #  0x7A -> COLON
    '#'        #  0x7B -> NUMBER SIGN
    '@'        #  0x7C -> COMMERCIAL AT
    "'"        #  0x7D -> APOSTROPHE
    '='        #  0x7E -> EQUALS SIGN
    '"'        #  0x7F -> QUOTATION MARK
    '\xd8'     #  0x80 -> LATIN CAPITAL LETTER O WITH STROKE
    'a'        #  0x81 -> LATIN SMALL LETTER A
    'b'        #  0x82 -> LATIN SMALL LETTER B
    'c'        #  0x83 -> LATIN SMALL LETTER C
    'd'        #  0x84 -> LATIN SMALL LETTER D
    'e'        #  0x85 -> LATIN SMALL LETTER E
    'f'        #  0x86 -> LATIN SMALL LETTER F
    'g'        #  0x87 -> LATIN SMALL LETTER G
    'h'        #  0x88 -> LATIN SMALL LETTER H
    'i'        #  0x89 -> LATIN SMALL LETTER I
    '\xab'     #  0x8A -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x8B -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xf0'     #  0x8C -> LATIN SMALL LETTER ETH (ICELANDIC)
    '\xfd'     #  0x8D -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'     #  0x8E -> LATIN SMALL LETTER THORN (ICELANDIC)
    '\xb1'     #  0x8F -> PLUS-MINUS SIGN
    '\xb0'     #  0x90 -> DEGREE SIGN
    'j'        #  0x91 -> LATIN SMALL LETTER J
    'k'        #  0x92 -> LATIN SMALL LETTER K
    'l'        #  0x93 -> LATIN SMALL LETTER L
    'm'        #  0x94 -> LATIN SMALL LETTER M
    'n'        #  0x95 -> LATIN SMALL LETTER N
    'o'        #  0x96 -> LATIN SMALL LETTER O
    'p'        #  0x97 -> LATIN SMALL LETTER P
    'q'        #  0x98 -> LATIN SMALL LETTER Q
    'r'        #  0x99 -> LATIN SMALL LETTER R
    '\xaa'     #  0x9A -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x9B -> MASCULINE ORDINAL INDICATOR
    '\xe6'     #  0x9C -> LATIN SMALL LIGATURE AE
    '\xb8'     #  0x9D -> CEDILLA
    '\xc6'     #  0x9E -> LATIN CAPITAL LIGATURE AE
    '\xa4'     #  0x9F -> CURRENCY SIGN
    '\xb5'     #  0xA0 -> MICRO SIGN
    '~'        #  0xA1 -> TILDE
    's'        #  0xA2 -> LATIN SMALL LETTER S
    't'        #  0xA3 -> LATIN SMALL LETTER T
    'u'        #  0xA4 -> LATIN SMALL LETTER U
    'v'        #  0xA5 -> LATIN SMALL LETTER V
    'w'        #  0xA6 -> LATIN SMALL LETTER W
    'x'        #  0xA7 -> LATIN SMALL LETTER X
    'y'        #  0xA8 -> LATIN SMALL LETTER Y
    'z'        #  0xA9 -> LATIN SMALL LETTER Z
    '\xa1'     #  0xAA -> INVERTED EXCLAMATION MARK
    '\xbf'     #  0xAB -> INVERTED QUESTION MARK
    '\xd0'     #  0xAC -> LATIN CAPITAL LETTER ETH (ICELANDIC)
    '\xdd'     #  0xAD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'     #  0xAE -> LATIN CAPITAL LETTER THORN (ICELANDIC)
    '\xae'     #  0xAF -> REGISTERED SIGN
    '\xa2'     #  0xB0 -> CENT SIGN
    '\xa3'     #  0xB1 -> POUND SIGN
    '\xa5'     #  0xB2 -> YEN SIGN
    '\xb7'     #  0xB3 -> MIDDLE DOT
    '\xa9'     #  0xB4 -> COPYRIGHT SIGN
    '\xa7'     #  0xB5 -> SECTION SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xbc'     #  0xB7 -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xB8 -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xB9 -> VULGAR FRACTION THREE QUARTERS
    '\xac'     #  0xBA -> NOT SIGN
    '|'        #  0xBB -> VERTICAL LINE
    '\xaf'     #  0xBC -> MACRON
    '\xa8'     #  0xBD -> DIAERESIS
    '\xb4'     #  0xBE -> ACUTE ACCENT
    '\xd7'     #  0xBF -> MULTIPLICATION SIGN
    '{'        #  0xC0 -> LEFT CURLY BRACKET
    'A'        #  0xC1 -> LATIN CAPITAL LETTER A
    'B'        #  0xC2 -> LATIN CAPITAL LETTER B
    'C'        #  0xC3 -> LATIN CAPITAL LETTER C
    'D'        #  0xC4 -> LATIN CAPITAL LETTER D
    'E'        #  0xC5 -> LATIN CAPITAL LETTER E
    'F'        #  0xC6 -> LATIN CAPITAL LETTER F
    'G'        #  0xC7 -> LATIN CAPITAL LETTER G
    'H'        #  0xC8 -> LATIN CAPITAL LETTER H
    'I'        #  0xC9 -> LATIN CAPITAL LETTER I
    '\xad'     #  0xCA -> SOFT HYPHEN
    '\xf4'     #  0xCB -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0xCC -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf2'     #  0xCD -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xCE -> LATIN SMALL LETTER O WITH ACUTE
    '\xf5'     #  0xCF -> LATIN SMALL LETTER O WITH TILDE
    '}'        #  0xD0 -> RIGHT CURLY BRACKET
    'J'        #  0xD1 -> LATIN CAPITAL LETTER J
    'K'        #  0xD2 -> LATIN CAPITAL LETTER K
    'L'        #  0xD3 -> LATIN CAPITAL LETTER L
    'M'        #  0xD4 -> LATIN CAPITAL LETTER M
    'N'        #  0xD5 -> LATIN CAPITAL LETTER N
    'O'        #  0xD6 -> LATIN CAPITAL LETTER O
    'P'        #  0xD7 -> LATIN CAPITAL LETTER P
    'Q'        #  0xD8 -> LATIN CAPITAL LETTER Q
    'R'        #  0xD9 -> LATIN CAPITAL LETTER R
    '\xb9'     #  0xDA -> SUPERSCRIPT ONE
    '\xfb'     #  0xDB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xDC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xf9'     #  0xDD -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xDE -> LATIN SMALL LETTER U WITH ACUTE
    '\xff'     #  0xDF -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\\'       #  0xE0 -> REVERSE SOLIDUS
    '\xf7'     #  0xE1 -> DIVISION SIGN
    'S'        #  0xE2 -> LATIN CAPITAL LETTER S
    'T'        #  0xE3 -> LATIN CAPITAL LETTER T
    'U'        #  0xE4 -> LATIN CAPITAL LETTER U
    'V'        #  0xE5 -> LATIN CAPITAL LETTER V
    'W'        #  0xE6 -> LATIN CAPITAL LETTER W
    'X'        #  0xE7 -> LATIN CAPITAL LETTER X
    'Y'        #  0xE8 -> LATIN CAPITAL LETTER Y
    'Z'        #  0xE9 -> LATIN CAPITAL LETTER Z
    '\xb2'     #  0xEA -> SUPERSCRIPT TWO
    '\xd4'     #  0xEB -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd6'     #  0xEC -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd2'     #  0xED -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd5'     #  0xEF -> LATIN CAPITAL LETTER O WITH TILDE
    '0'        #  0xF0 -> DIGIT ZERO
    '1'        #  0xF1 -> DIGIT ONE
    '2'        #  0xF2 -> DIGIT TWO
    '3'        #  0xF3 -> DIGIT THREE
    '4'        #  0xF4 -> DIGIT FOUR
    '5'        #  0xF5 -> DIGIT FIVE
    '6'        #  0xF6 -> DIGIT SIX
    '7'        #  0xF7 -> DIGIT SEVEN
    '8'        #  0xF8 -> DIGIT EIGHT
    '9'        #  0xF9 -> DIGIT NINE
    '\xb3'     #  0xFA -> SUPERSCRIPT THREE
    '\xdb'     #  0xFB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xFC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xd9'     #  0xFD -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xFE -> LATIN CAPITAL LETTER U WITH ACUTE
    '\x9f'     #  0xFF -> CONTROL
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp65001.py
"""
Code page 65001: Windows UTF-8 (CP_UTF8).
"""

import codecs
import functools

if not hasattr(codecs, 'code_page_encode'):
    raise LookupError("cp65001 encoding is only available on Windows")

### Codec APIs

encode = functools.partial(codecs.code_page_encode, 65001)
decode = functools.partial(codecs.code_page_decode, 65001)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return encode(input, self.errors)[0]

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    _buffer_decode = decode

class StreamWriter(codecs.StreamWriter):
    encode = encode

class StreamReader(codecs.StreamReader):
    decode = decode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp65001',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\cp720.py
"""Python Character Mapping Codec cp720 generated on Windows:
Vista 6.0.6002 SP2 Multiprocessor Free with the command:
  python Tools/unicode/genwincodec.py 720
"""#"


import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp720',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'      #  0x00 -> CONTROL CHARACTER
    '\x01'      #  0x01 -> CONTROL CHARACTER
    '\x02'      #  0x02 -> CONTROL CHARACTER
    '\x03'      #  0x03 -> CONTROL CHARACTER
    '\x04'      #  0x04 -> CONTROL CHARACTER
    '\x05'      #  0x05 -> CONTROL CHARACTER
    '\x06'      #  0x06 -> CONTROL CHARACTER
    '\x07'      #  0x07 -> CONTROL CHARACTER
    '\x08'      #  0x08 -> CONTROL CHARACTER
    '\t'        #  0x09 -> CONTROL CHARACTER
    '\n'        #  0x0A -> CONTROL CHARACTER
    '\x0b'      #  0x0B -> CONTROL CHARACTER
    '\x0c'      #  0x0C -> CONTROL CHARACTER
    '\r'        #  0x0D -> CONTROL CHARACTER
    '\x0e'      #  0x0E -> CONTROL CHARACTER
    '\x0f'      #  0x0F -> CONTROL CHARACTER
    '\x10'      #  0x10 -> CONTROL CHARACTER
    '\x11'      #  0x11 -> CONTROL CHARACTER
    '\x12'      #  0x12 -> CONTROL CHARACTER
    '\x13'      #  0x13 -> CONTROL CHARACTER
    '\x14'      #  0x14 -> CONTROL CHARACTER
    '\x15'      #  0x15 -> CONTROL CHARACTER
    '\x16'      #  0x16 -> CONTROL CHARACTER
    '\x17'      #  0x17 -> CONTROL CHARACTER
    '\x18'      #  0x18 -> CONTROL CHARACTER
    '\x19'      #  0x19 -> CONTROL CHARACTER
    '\x1a'      #  0x1A -> CONTROL CHARACTER
    '\x1b'      #  0x1B -> CONTROL CHARACTER
    '\x1c'      #  0x1C -> CONTROL CHARACTER
    '\x1d'      #  0x1D -> CONTROL CHARACTER
    '\x1e'      #  0x1E -> CONTROL CHARACTER
    '\x1f'      #  0x1F -> CONTROL CHARACTER
    ' '         #  0x20 -> SPACE
    '!'         #  0x21 -> EXCLAMATION MARK
    '"'         #  0x22 -> QUOTATION MARK
    '#'         #  0x23 -> NUMBER SIGN
    '$'         #  0x24 -> DOLLAR SIGN
    '%'         #  0x25 -> PERCENT SIGN
    '&'         #  0x26 -> AMPERSAND
    "'"         #  0x27 -> APOSTROPHE
    '('         #  0x28 -> LEFT PARENTHESIS
    ')'         #  0x29 -> RIGHT PARENTHESIS
    '*'         #  0x2A -> ASTERISK
    '+'         #  0x2B -> PLUS SIGN
    ','         #  0x2C -> COMMA
    '-'         #  0x2D -> HYPHEN-MINUS
    '.'         #  0x2E -> FULL STOP
    '/'         #  0x2F -> SOLIDUS
    '0'         #  0x30 -> DIGIT ZERO
    '1'         #  0x31 -> DIGIT ONE
    '2'         #  0x32 -> DIGIT TWO
    '3'         #  0x33 -> DIGIT THREE
    '4'         #  0x34 -> DIGIT FOUR
    '5'         #  0x35 -> DIGIT FIVE
    '6'         #  0x36 -> DIGIT SIX
    '7'         #  0x37 -> DIGIT SEVEN
    '8'         #  0x38 -> DIGIT EIGHT
    '9'         #  0x39 -> DIGIT NINE
    ':'         #  0x3A -> COLON
    ';'         #  0x3B -> SEMICOLON
    '<'         #  0x3C -> LESS-THAN SIGN
    '='         #  0x3D -> EQUALS SIGN
    '>'         #  0x3E -> GREATER-THAN SIGN
    '?'         #  0x3F -> QUESTION MARK
    '@'         #  0x40 -> COMMERCIAL AT
    'A'         #  0x41 -> LATIN CAPITAL LETTER A
    'B'         #  0x42 -> LATIN CAPITAL LETTER B
    'C'         #  0x43 -> LATIN CAPITAL LETTER C
    'D'         #  0x44 -> LATIN CAPITAL LETTER D
    'E'         #  0x45 -> LATIN CAPITAL LETTER E
    'F'         #  0x46 -> LATIN CAPITAL LETTER F
    'G'         #  0x47 -> LATIN CAPITAL LETTER G
    'H'         #  0x48 -> LATIN CAPITAL LETTER H
    'I'         #  0x49 -> LATIN CAPITAL LETTER I
    'J'         #  0x4A -> LATIN CAPITAL LETTER J
    'K'         #  0x4B -> LATIN CAPITAL LETTER K
    'L'         #  0x4C -> LATIN CAPITAL LETTER L
    'M'         #  0x4D -> LATIN CAPITAL LETTER M
    'N'         #  0x4E -> LATIN CAPITAL LETTER N
    'O'         #  0x4F -> LATIN CAPITAL LETTER O
    'P'         #  0x50 -> LATIN CAPITAL LETTER P
    'Q'         #  0x51 -> LATIN CAPITAL LETTER Q
    'R'         #  0x52 -> LATIN CAPITAL LETTER R
    'S'         #  0x53 -> LATIN CAPITAL LETTER S
    'T'         #  0x54 -> LATIN CAPITAL LETTER T
    'U'         #  0x55 -> LATIN CAPITAL LETTER U
    'V'         #  0x56 -> LATIN CAPITAL LETTER V
    'W'         #  0x57 -> LATIN CAPITAL LETTER W
    'X'         #  0x58 -> LATIN CAPITAL LETTER X
    'Y'         #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'         #  0x5A -> LATIN CAPITAL LETTER Z
    '['         #  0x5B -> LEFT SQUARE BRACKET
    '\\'        #  0x5C -> REVERSE SOLIDUS
    ']'         #  0x5D -> RIGHT SQUARE BRACKET
    '^'         #  0x5E -> CIRCUMFLEX ACCENT
    '_'         #  0x5F -> LOW LINE
    '`'         #  0x60 -> GRAVE ACCENT
    'a'         #  0x61 -> LATIN SMALL LETTER A
    'b'         #  0x62 -> LATIN SMALL LETTER B
    'c'         #  0x63 -> LATIN SMALL LETTER C
    'd'         #  0x64 -> LATIN SMALL LETTER D
    'e'         #  0x65 -> LATIN SMALL LETTER E
    'f'         #  0x66 -> LATIN SMALL LETTER F
    'g'         #  0x67 -> LATIN SMALL LETTER G
    'h'         #  0x68 -> LATIN SMALL LETTER H
    'i'         #  0x69 -> LATIN SMALL LETTER I
    'j'         #  0x6A -> LATIN SMALL LETTER J
    'k'         #  0x6B -> LATIN SMALL LETTER K
    'l'         #  0x6C -> LATIN SMALL LETTER L
    'm'         #  0x6D -> LATIN SMALL LETTER M
    'n'         #  0x6E -> LATIN SMALL LETTER N
    'o'         #  0x6F -> LATIN SMALL LETTER O
    'p'         #  0x70 -> LATIN SMALL LETTER P
    'q'         #  0x71 -> LATIN SMALL LETTER Q
    'r'         #  0x72 -> LATIN SMALL LETTER R
    's'         #  0x73 -> LATIN SMALL LETTER S
    't'         #  0x74 -> LATIN SMALL LETTER T
    'u'         #  0x75 -> LATIN SMALL LETTER U
    'v'         #  0x76 -> LATIN SMALL LETTER V
    'w'         #  0x77 -> LATIN SMALL LETTER W
    'x'         #  0x78 -> LATIN SMALL LETTER X
    'y'         #  0x79 -> LATIN SMALL LETTER Y
    'z'         #  0x7A -> LATIN SMALL LETTER Z
    '{'         #  0x7B -> LEFT CURLY BRACKET
    '|'         #  0x7C -> VERTICAL LINE
    '}'         #  0x7D -> RIGHT CURLY BRACKET
    '~'         #  0x7E -> TILDE
    '\x7f'      #  0x7F -> CONTROL CHARACTER
    '\x80'
    '\x81'
    '\xe9'      #  0x82 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'      #  0x83 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\x84'
    '\xe0'      #  0x85 -> LATIN SMALL LETTER A WITH GRAVE
    '\x86'
    '\xe7'      #  0x87 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'      #  0x88 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'      #  0x89 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'      #  0x8A -> LATIN SMALL LETTER E WITH GRAVE
    '\xef'      #  0x8B -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xee'      #  0x8C -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\x8d'
    '\x8e'
    '\x8f'
    '\x90'
    '\u0651'    #  0x91 -> ARABIC SHADDA
    '\u0652'    #  0x92 -> ARABIC SUKUN
    '\xf4'      #  0x93 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xa4'      #  0x94 -> CURRENCY SIGN
    '\u0640'    #  0x95 -> ARABIC TATWEEL
    '\xfb'      #  0x96 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xf9'      #  0x97 -> LATIN SMALL LETTER U WITH GRAVE
    '\u0621'    #  0x98 -> ARABIC LETTER HAMZA
    '\u0622'    #  0x99 -> ARABIC LETTER ALEF WITH MADDA ABOVE
    '\u0623'    #  0x9A -> ARABIC LETTER ALEF WITH HAMZA ABOVE
    '\u0624'    #  0x9B -> ARABIC LETTER WAW WITH HAMZA ABOVE
    '\xa3'      #  0x9C -> POUND SIGN
    '\u0625'    #  0x9D -> ARABIC LETTER ALEF WITH HAMZA BELOW
    '\u0626'    #  0x9E -> ARABIC LETTER YEH WITH HAMZA ABOVE
    '\u0627'    #  0x9F -> ARABIC LETTER ALEF
    '\u0628'    #  0xA0 -> ARABIC LETTER BEH
    '\u0629'    #  0xA1 -> ARABIC LETTER TEH MARBUTA
    '\u062a'    #  0xA2 -> ARABIC LETTER TEH
    '\u062b'    #  0xA3 -> ARABIC LETTER THEH
    '\u062c'    #  0xA4 -> ARABIC LETTER JEEM
    '\u062d'    #  0xA5 -> ARABIC LETTER HAH
    '\u062e'    #  0xA6 -> ARABIC LETTER KHAH
    '\u062f'    #  0xA7 -> ARABIC LETTER DAL
    '\u0630'    #  0xA8 -> ARABIC LETTER THAL
    '\u0631'    #  0xA9 -> ARABIC LETTER REH
    '\u0632'    #  0xAA -> ARABIC LETTER ZAIN
    '\u0633'    #  0xAB -> ARABIC LETTER SEEN
    '\u0634'    #  0xAC -> ARABIC LETTER SHEEN
    '\u0635'    #  0xAD -> ARABIC LETTER SAD
    '\xab'      #  0xAE -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'      #  0xAF -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'    #  0xB0 -> LIGHT SHADE
    '\u2592'    #  0xB1 -> MEDIUM SHADE
    '\u2593'    #  0xB2 -> DARK SHADE
    '\u2502'    #  0xB3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'    #  0xB4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'    #  0xB5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'    #  0xB6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'    #  0xB7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'    #  0xB8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'    #  0xB9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'    #  0xBA -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'    #  0xBB -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'    #  0xBC -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'    #  0xBD -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'    #  0xBE -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'    #  0xBF -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'    #  0xC0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'    #  0xC1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'    #  0xC2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'    #  0xC3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'    #  0xC4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'    #  0xC5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'    #  0xC6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'    #  0xC7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'    #  0xC8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'    #  0xC9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'    #  0xCA -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'    #  0xCB -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'    #  0xCC -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'    #  0xCD -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'    #  0xCE -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'    #  0xCF -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'    #  0xD0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'    #  0xD1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'    #  0xD2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'    #  0xD3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'    #  0xD4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'    #  0xD5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'    #  0xD6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'    #  0xD7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'    #  0xD8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'    #  0xD9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'    #  0xDA -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'    #  0xDB -> FULL BLOCK
    '\u2584'    #  0xDC -> LOWER HALF BLOCK
    '\u258c'    #  0xDD -> LEFT HALF BLOCK
    '\u2590'    #  0xDE -> RIGHT HALF BLOCK
    '\u2580'    #  0xDF -> UPPER HALF BLOCK
    '\u0636'    #  0xE0 -> ARABIC LETTER DAD
    '\u0637'    #  0xE1 -> ARABIC LETTER TAH
    '\u0638'    #  0xE2 -> ARABIC LETTER ZAH
    '\u0639'    #  0xE3 -> ARABIC LETTER AIN
    '\u063a'    #  0xE4 -> ARABIC LETTER GHAIN
    '\u0641'    #  0xE5 -> ARABIC LETTER FEH
    '\xb5'      #  0xE6 -> MICRO SIGN
    '\u0642'    #  0xE7 -> ARABIC LETTER QAF
    '\u0643'    #  0xE8 -> ARABIC LETTER KAF
    '\u0644'    #  0xE9 -> ARABIC LETTER LAM
    '\u0645'    #  0xEA -> ARABIC LETTER MEEM
    '\u0646'    #  0xEB -> ARABIC LETTER NOON
    '\u0647'    #  0xEC -> ARABIC LETTER HEH
    '\u0648'    #  0xED -> ARABIC LETTER WAW
    '\u0649'    #  0xEE -> ARABIC LETTER ALEF MAKSURA
    '\u064a'    #  0xEF -> ARABIC LETTER YEH
    '\u2261'    #  0xF0 -> IDENTICAL TO
    '\u064b'    #  0xF1 -> ARABIC FATHATAN
    '\u064c'    #  0xF2 -> ARABIC DAMMATAN
    '\u064d'    #  0xF3 -> ARABIC KASRATAN
    '\u064e'    #  0xF4 -> ARABIC FATHA
    '\u064f'    #  0xF5 -> ARABIC DAMMA
    '\u0650'    #  0xF6 -> ARABIC KASRA
    '\u2248'    #  0xF7 -> ALMOST EQUAL TO
    '\xb0'      #  0xF8 -> DEGREE SIGN
    '\u2219'    #  0xF9 -> BULLET OPERATOR
    '\xb7'      #  0xFA -> MIDDLE DOT
    '\u221a'    #  0xFB -> SQUARE ROOT
    '\u207f'    #  0xFC -> SUPERSCRIPT LATIN SMALL LETTER N
    '\xb2'      #  0xFD -> SUPERSCRIPT TWO
    '\u25a0'    #  0xFE -> BLACK SQUARE
    '\xa0'      #  0xFF -> NO-BREAK SPACE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp737.py
""" Python Character Mapping Codec cp737 generated from 'VENDORS/MICSFT/PC/CP737.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp737',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x0391,     #  GREEK CAPITAL LETTER ALPHA
    0x0081: 0x0392,     #  GREEK CAPITAL LETTER BETA
    0x0082: 0x0393,     #  GREEK CAPITAL LETTER GAMMA
    0x0083: 0x0394,     #  GREEK CAPITAL LETTER DELTA
    0x0084: 0x0395,     #  GREEK CAPITAL LETTER EPSILON
    0x0085: 0x0396,     #  GREEK CAPITAL LETTER ZETA
    0x0086: 0x0397,     #  GREEK CAPITAL LETTER ETA
    0x0087: 0x0398,     #  GREEK CAPITAL LETTER THETA
    0x0088: 0x0399,     #  GREEK CAPITAL LETTER IOTA
    0x0089: 0x039a,     #  GREEK CAPITAL LETTER KAPPA
    0x008a: 0x039b,     #  GREEK CAPITAL LETTER LAMDA
    0x008b: 0x039c,     #  GREEK CAPITAL LETTER MU
    0x008c: 0x039d,     #  GREEK CAPITAL LETTER NU
    0x008d: 0x039e,     #  GREEK CAPITAL LETTER XI
    0x008e: 0x039f,     #  GREEK CAPITAL LETTER OMICRON
    0x008f: 0x03a0,     #  GREEK CAPITAL LETTER PI
    0x0090: 0x03a1,     #  GREEK CAPITAL LETTER RHO
    0x0091: 0x03a3,     #  GREEK CAPITAL LETTER SIGMA
    0x0092: 0x03a4,     #  GREEK CAPITAL LETTER TAU
    0x0093: 0x03a5,     #  GREEK CAPITAL LETTER UPSILON
    0x0094: 0x03a6,     #  GREEK CAPITAL LETTER PHI
    0x0095: 0x03a7,     #  GREEK CAPITAL LETTER CHI
    0x0096: 0x03a8,     #  GREEK CAPITAL LETTER PSI
    0x0097: 0x03a9,     #  GREEK CAPITAL LETTER OMEGA
    0x0098: 0x03b1,     #  GREEK SMALL LETTER ALPHA
    0x0099: 0x03b2,     #  GREEK SMALL LETTER BETA
    0x009a: 0x03b3,     #  GREEK SMALL LETTER GAMMA
    0x009b: 0x03b4,     #  GREEK SMALL LETTER DELTA
    0x009c: 0x03b5,     #  GREEK SMALL LETTER EPSILON
    0x009d: 0x03b6,     #  GREEK SMALL LETTER ZETA
    0x009e: 0x03b7,     #  GREEK SMALL LETTER ETA
    0x009f: 0x03b8,     #  GREEK SMALL LETTER THETA
    0x00a0: 0x03b9,     #  GREEK SMALL LETTER IOTA
    0x00a1: 0x03ba,     #  GREEK SMALL LETTER KAPPA
    0x00a2: 0x03bb,     #  GREEK SMALL LETTER LAMDA
    0x00a3: 0x03bc,     #  GREEK SMALL LETTER MU
    0x00a4: 0x03bd,     #  GREEK SMALL LETTER NU
    0x00a5: 0x03be,     #  GREEK SMALL LETTER XI
    0x00a6: 0x03bf,     #  GREEK SMALL LETTER OMICRON
    0x00a7: 0x03c0,     #  GREEK SMALL LETTER PI
    0x00a8: 0x03c1,     #  GREEK SMALL LETTER RHO
    0x00a9: 0x03c3,     #  GREEK SMALL LETTER SIGMA
    0x00aa: 0x03c2,     #  GREEK SMALL LETTER FINAL SIGMA
    0x00ab: 0x03c4,     #  GREEK SMALL LETTER TAU
    0x00ac: 0x03c5,     #  GREEK SMALL LETTER UPSILON
    0x00ad: 0x03c6,     #  GREEK SMALL LETTER PHI
    0x00ae: 0x03c7,     #  GREEK SMALL LETTER CHI
    0x00af: 0x03c8,     #  GREEK SMALL LETTER PSI
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x03c9,     #  GREEK SMALL LETTER OMEGA
    0x00e1: 0x03ac,     #  GREEK SMALL LETTER ALPHA WITH TONOS
    0x00e2: 0x03ad,     #  GREEK SMALL LETTER EPSILON WITH TONOS
    0x00e3: 0x03ae,     #  GREEK SMALL LETTER ETA WITH TONOS
    0x00e4: 0x03ca,     #  GREEK SMALL LETTER IOTA WITH DIALYTIKA
    0x00e5: 0x03af,     #  GREEK SMALL LETTER IOTA WITH TONOS
    0x00e6: 0x03cc,     #  GREEK SMALL LETTER OMICRON WITH TONOS
    0x00e7: 0x03cd,     #  GREEK SMALL LETTER UPSILON WITH TONOS
    0x00e8: 0x03cb,     #  GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    0x00e9: 0x03ce,     #  GREEK SMALL LETTER OMEGA WITH TONOS
    0x00ea: 0x0386,     #  GREEK CAPITAL LETTER ALPHA WITH TONOS
    0x00eb: 0x0388,     #  GREEK CAPITAL LETTER EPSILON WITH TONOS
    0x00ec: 0x0389,     #  GREEK CAPITAL LETTER ETA WITH TONOS
    0x00ed: 0x038a,     #  GREEK CAPITAL LETTER IOTA WITH TONOS
    0x00ee: 0x038c,     #  GREEK CAPITAL LETTER OMICRON WITH TONOS
    0x00ef: 0x038e,     #  GREEK CAPITAL LETTER UPSILON WITH TONOS
    0x00f0: 0x038f,     #  GREEK CAPITAL LETTER OMEGA WITH TONOS
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2265,     #  GREATER-THAN OR EQUAL TO
    0x00f3: 0x2264,     #  LESS-THAN OR EQUAL TO
    0x00f4: 0x03aa,     #  GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    0x00f5: 0x03ab,     #  GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x2248,     #  ALMOST EQUAL TO
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x207f,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\u0391'   #  0x0080 -> GREEK CAPITAL LETTER ALPHA
    '\u0392'   #  0x0081 -> GREEK CAPITAL LETTER BETA
    '\u0393'   #  0x0082 -> GREEK CAPITAL LETTER GAMMA
    '\u0394'   #  0x0083 -> GREEK CAPITAL LETTER DELTA
    '\u0395'   #  0x0084 -> GREEK CAPITAL LETTER EPSILON
    '\u0396'   #  0x0085 -> GREEK CAPITAL LETTER ZETA
    '\u0397'   #  0x0086 -> GREEK CAPITAL LETTER ETA
    '\u0398'   #  0x0087 -> GREEK CAPITAL LETTER THETA
    '\u0399'   #  0x0088 -> GREEK CAPITAL LETTER IOTA
    '\u039a'   #  0x0089 -> GREEK CAPITAL LETTER KAPPA
    '\u039b'   #  0x008a -> GREEK CAPITAL LETTER LAMDA
    '\u039c'   #  0x008b -> GREEK CAPITAL LETTER MU
    '\u039d'   #  0x008c -> GREEK CAPITAL LETTER NU
    '\u039e'   #  0x008d -> GREEK CAPITAL LETTER XI
    '\u039f'   #  0x008e -> GREEK CAPITAL LETTER OMICRON
    '\u03a0'   #  0x008f -> GREEK CAPITAL LETTER PI
    '\u03a1'   #  0x0090 -> GREEK CAPITAL LETTER RHO
    '\u03a3'   #  0x0091 -> GREEK CAPITAL LETTER SIGMA
    '\u03a4'   #  0x0092 -> GREEK CAPITAL LETTER TAU
    '\u03a5'   #  0x0093 -> GREEK CAPITAL LETTER UPSILON
    '\u03a6'   #  0x0094 -> GREEK CAPITAL LETTER PHI
    '\u03a7'   #  0x0095 -> GREEK CAPITAL LETTER CHI
    '\u03a8'   #  0x0096 -> GREEK CAPITAL LETTER PSI
    '\u03a9'   #  0x0097 -> GREEK CAPITAL LETTER OMEGA
    '\u03b1'   #  0x0098 -> GREEK SMALL LETTER ALPHA
    '\u03b2'   #  0x0099 -> GREEK SMALL LETTER BETA
    '\u03b3'   #  0x009a -> GREEK SMALL LETTER GAMMA
    '\u03b4'   #  0x009b -> GREEK SMALL LETTER DELTA
    '\u03b5'   #  0x009c -> GREEK SMALL LETTER EPSILON
    '\u03b6'   #  0x009d -> GREEK SMALL LETTER ZETA
    '\u03b7'   #  0x009e -> GREEK SMALL LETTER ETA
    '\u03b8'   #  0x009f -> GREEK SMALL LETTER THETA
    '\u03b9'   #  0x00a0 -> GREEK SMALL LETTER IOTA
    '\u03ba'   #  0x00a1 -> GREEK SMALL LETTER KAPPA
    '\u03bb'   #  0x00a2 -> GREEK SMALL LETTER LAMDA
    '\u03bc'   #  0x00a3 -> GREEK SMALL LETTER MU
    '\u03bd'   #  0x00a4 -> GREEK SMALL LETTER NU
    '\u03be'   #  0x00a5 -> GREEK SMALL LETTER XI
    '\u03bf'   #  0x00a6 -> GREEK SMALL LETTER OMICRON
    '\u03c0'   #  0x00a7 -> GREEK SMALL LETTER PI
    '\u03c1'   #  0x00a8 -> GREEK SMALL LETTER RHO
    '\u03c3'   #  0x00a9 -> GREEK SMALL LETTER SIGMA
    '\u03c2'   #  0x00aa -> GREEK SMALL LETTER FINAL SIGMA
    '\u03c4'   #  0x00ab -> GREEK SMALL LETTER TAU
    '\u03c5'   #  0x00ac -> GREEK SMALL LETTER UPSILON
    '\u03c6'   #  0x00ad -> GREEK SMALL LETTER PHI
    '\u03c7'   #  0x00ae -> GREEK SMALL LETTER CHI
    '\u03c8'   #  0x00af -> GREEK SMALL LETTER PSI
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u03c9'   #  0x00e0 -> GREEK SMALL LETTER OMEGA
    '\u03ac'   #  0x00e1 -> GREEK SMALL LETTER ALPHA WITH TONOS
    '\u03ad'   #  0x00e2 -> GREEK SMALL LETTER EPSILON WITH TONOS
    '\u03ae'   #  0x00e3 -> GREEK SMALL LETTER ETA WITH TONOS
    '\u03ca'   #  0x00e4 -> GREEK SMALL LETTER IOTA WITH DIALYTIKA
    '\u03af'   #  0x00e5 -> GREEK SMALL LETTER IOTA WITH TONOS
    '\u03cc'   #  0x00e6 -> GREEK SMALL LETTER OMICRON WITH TONOS
    '\u03cd'   #  0x00e7 -> GREEK SMALL LETTER UPSILON WITH TONOS
    '\u03cb'   #  0x00e8 -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    '\u03ce'   #  0x00e9 -> GREEK SMALL LETTER OMEGA WITH TONOS
    '\u0386'   #  0x00ea -> GREEK CAPITAL LETTER ALPHA WITH TONOS
    '\u0388'   #  0x00eb -> GREEK CAPITAL LETTER EPSILON WITH TONOS
    '\u0389'   #  0x00ec -> GREEK CAPITAL LETTER ETA WITH TONOS
    '\u038a'   #  0x00ed -> GREEK CAPITAL LETTER IOTA WITH TONOS
    '\u038c'   #  0x00ee -> GREEK CAPITAL LETTER OMICRON WITH TONOS
    '\u038e'   #  0x00ef -> GREEK CAPITAL LETTER UPSILON WITH TONOS
    '\u038f'   #  0x00f0 -> GREEK CAPITAL LETTER OMEGA WITH TONOS
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2265'   #  0x00f2 -> GREATER-THAN OR EQUAL TO
    '\u2264'   #  0x00f3 -> LESS-THAN OR EQUAL TO
    '\u03aa'   #  0x00f4 -> GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    '\u03ab'   #  0x00f5 -> GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\u2248'   #  0x00f7 -> ALMOST EQUAL TO
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u207f'   #  0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x0386: 0x00ea,     #  GREEK CAPITAL LETTER ALPHA WITH TONOS
    0x0388: 0x00eb,     #  GREEK CAPITAL LETTER EPSILON WITH TONOS
    0x0389: 0x00ec,     #  GREEK CAPITAL LETTER ETA WITH TONOS
    0x038a: 0x00ed,     #  GREEK CAPITAL LETTER IOTA WITH TONOS
    0x038c: 0x00ee,     #  GREEK CAPITAL LETTER OMICRON WITH TONOS
    0x038e: 0x00ef,     #  GREEK CAPITAL LETTER UPSILON WITH TONOS
    0x038f: 0x00f0,     #  GREEK CAPITAL LETTER OMEGA WITH TONOS
    0x0391: 0x0080,     #  GREEK CAPITAL LETTER ALPHA
    0x0392: 0x0081,     #  GREEK CAPITAL LETTER BETA
    0x0393: 0x0082,     #  GREEK CAPITAL LETTER GAMMA
    0x0394: 0x0083,     #  GREEK CAPITAL LETTER DELTA
    0x0395: 0x0084,     #  GREEK CAPITAL LETTER EPSILON
    0x0396: 0x0085,     #  GREEK CAPITAL LETTER ZETA
    0x0397: 0x0086,     #  GREEK CAPITAL LETTER ETA
    0x0398: 0x0087,     #  GREEK CAPITAL LETTER THETA
    0x0399: 0x0088,     #  GREEK CAPITAL LETTER IOTA
    0x039a: 0x0089,     #  GREEK CAPITAL LETTER KAPPA
    0x039b: 0x008a,     #  GREEK CAPITAL LETTER LAMDA
    0x039c: 0x008b,     #  GREEK CAPITAL LETTER MU
    0x039d: 0x008c,     #  GREEK CAPITAL LETTER NU
    0x039e: 0x008d,     #  GREEK CAPITAL LETTER XI
    0x039f: 0x008e,     #  GREEK CAPITAL LETTER OMICRON
    0x03a0: 0x008f,     #  GREEK CAPITAL LETTER PI
    0x03a1: 0x0090,     #  GREEK CAPITAL LETTER RHO
    0x03a3: 0x0091,     #  GREEK CAPITAL LETTER SIGMA
    0x03a4: 0x0092,     #  GREEK CAPITAL LETTER TAU
    0x03a5: 0x0093,     #  GREEK CAPITAL LETTER UPSILON
    0x03a6: 0x0094,     #  GREEK CAPITAL LETTER PHI
    0x03a7: 0x0095,     #  GREEK CAPITAL LETTER CHI
    0x03a8: 0x0096,     #  GREEK CAPITAL LETTER PSI
    0x03a9: 0x0097,     #  GREEK CAPITAL LETTER OMEGA
    0x03aa: 0x00f4,     #  GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    0x03ab: 0x00f5,     #  GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    0x03ac: 0x00e1,     #  GREEK SMALL LETTER ALPHA WITH TONOS
    0x03ad: 0x00e2,     #  GREEK SMALL LETTER EPSILON WITH TONOS
    0x03ae: 0x00e3,     #  GREEK SMALL LETTER ETA WITH TONOS
    0x03af: 0x00e5,     #  GREEK SMALL LETTER IOTA WITH TONOS
    0x03b1: 0x0098,     #  GREEK SMALL LETTER ALPHA
    0x03b2: 0x0099,     #  GREEK SMALL LETTER BETA
    0x03b3: 0x009a,     #  GREEK SMALL LETTER GAMMA
    0x03b4: 0x009b,     #  GREEK SMALL LETTER DELTA
    0x03b5: 0x009c,     #  GREEK SMALL LETTER EPSILON
    0x03b6: 0x009d,     #  GREEK SMALL LETTER ZETA
    0x03b7: 0x009e,     #  GREEK SMALL LETTER ETA
    0x03b8: 0x009f,     #  GREEK SMALL LETTER THETA
    0x03b9: 0x00a0,     #  GREEK SMALL LETTER IOTA
    0x03ba: 0x00a1,     #  GREEK SMALL LETTER KAPPA
    0x03bb: 0x00a2,     #  GREEK SMALL LETTER LAMDA
    0x03bc: 0x00a3,     #  GREEK SMALL LETTER MU
    0x03bd: 0x00a4,     #  GREEK SMALL LETTER NU
    0x03be: 0x00a5,     #  GREEK SMALL LETTER XI
    0x03bf: 0x00a6,     #  GREEK SMALL LETTER OMICRON
    0x03c0: 0x00a7,     #  GREEK SMALL LETTER PI
    0x03c1: 0x00a8,     #  GREEK SMALL LETTER RHO
    0x03c2: 0x00aa,     #  GREEK SMALL LETTER FINAL SIGMA
    0x03c3: 0x00a9,     #  GREEK SMALL LETTER SIGMA
    0x03c4: 0x00ab,     #  GREEK SMALL LETTER TAU
    0x03c5: 0x00ac,     #  GREEK SMALL LETTER UPSILON
    0x03c6: 0x00ad,     #  GREEK SMALL LETTER PHI
    0x03c7: 0x00ae,     #  GREEK SMALL LETTER CHI
    0x03c8: 0x00af,     #  GREEK SMALL LETTER PSI
    0x03c9: 0x00e0,     #  GREEK SMALL LETTER OMEGA
    0x03ca: 0x00e4,     #  GREEK SMALL LETTER IOTA WITH DIALYTIKA
    0x03cb: 0x00e8,     #  GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    0x03cc: 0x00e6,     #  GREEK SMALL LETTER OMICRON WITH TONOS
    0x03cd: 0x00e7,     #  GREEK SMALL LETTER UPSILON WITH TONOS
    0x03ce: 0x00e9,     #  GREEK SMALL LETTER OMEGA WITH TONOS
    0x207f: 0x00fc,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x2248: 0x00f7,     #  ALMOST EQUAL TO
    0x2264: 0x00f3,     #  LESS-THAN OR EQUAL TO
    0x2265: 0x00f2,     #  GREATER-THAN OR EQUAL TO
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp775.py
""" Python Character Mapping Codec cp775 generated from 'VENDORS/MICSFT/PC/CP775.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp775',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x0106,     #  LATIN CAPITAL LETTER C WITH ACUTE
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x0101,     #  LATIN SMALL LETTER A WITH MACRON
    0x0084: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x0085: 0x0123,     #  LATIN SMALL LETTER G WITH CEDILLA
    0x0086: 0x00e5,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x0087: 0x0107,     #  LATIN SMALL LETTER C WITH ACUTE
    0x0088: 0x0142,     #  LATIN SMALL LETTER L WITH STROKE
    0x0089: 0x0113,     #  LATIN SMALL LETTER E WITH MACRON
    0x008a: 0x0156,     #  LATIN CAPITAL LETTER R WITH CEDILLA
    0x008b: 0x0157,     #  LATIN SMALL LETTER R WITH CEDILLA
    0x008c: 0x012b,     #  LATIN SMALL LETTER I WITH MACRON
    0x008d: 0x0179,     #  LATIN CAPITAL LETTER Z WITH ACUTE
    0x008e: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x008f: 0x00c5,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00e6,     #  LATIN SMALL LIGATURE AE
    0x0092: 0x00c6,     #  LATIN CAPITAL LIGATURE AE
    0x0093: 0x014d,     #  LATIN SMALL LETTER O WITH MACRON
    0x0094: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x0095: 0x0122,     #  LATIN CAPITAL LETTER G WITH CEDILLA
    0x0096: 0x00a2,     #  CENT SIGN
    0x0097: 0x015a,     #  LATIN CAPITAL LETTER S WITH ACUTE
    0x0098: 0x015b,     #  LATIN SMALL LETTER S WITH ACUTE
    0x0099: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00f8,     #  LATIN SMALL LETTER O WITH STROKE
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00d8,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x009e: 0x00d7,     #  MULTIPLICATION SIGN
    0x009f: 0x00a4,     #  CURRENCY SIGN
    0x00a0: 0x0100,     #  LATIN CAPITAL LETTER A WITH MACRON
    0x00a1: 0x012a,     #  LATIN CAPITAL LETTER I WITH MACRON
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x017b,     #  LATIN CAPITAL LETTER Z WITH DOT ABOVE
    0x00a4: 0x017c,     #  LATIN SMALL LETTER Z WITH DOT ABOVE
    0x00a5: 0x017a,     #  LATIN SMALL LETTER Z WITH ACUTE
    0x00a6: 0x201d,     #  RIGHT DOUBLE QUOTATION MARK
    0x00a7: 0x00a6,     #  BROKEN BAR
    0x00a8: 0x00a9,     #  COPYRIGHT SIGN
    0x00a9: 0x00ae,     #  REGISTERED SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x0141,     #  LATIN CAPITAL LETTER L WITH STROKE
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x0104,     #  LATIN CAPITAL LETTER A WITH OGONEK
    0x00b6: 0x010c,     #  LATIN CAPITAL LETTER C WITH CARON
    0x00b7: 0x0118,     #  LATIN CAPITAL LETTER E WITH OGONEK
    0x00b8: 0x0116,     #  LATIN CAPITAL LETTER E WITH DOT ABOVE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x012e,     #  LATIN CAPITAL LETTER I WITH OGONEK
    0x00be: 0x0160,     #  LATIN CAPITAL LETTER S WITH CARON
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x0172,     #  LATIN CAPITAL LETTER U WITH OGONEK
    0x00c7: 0x016a,     #  LATIN CAPITAL LETTER U WITH MACRON
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x017d,     #  LATIN CAPITAL LETTER Z WITH CARON
    0x00d0: 0x0105,     #  LATIN SMALL LETTER A WITH OGONEK
    0x00d1: 0x010d,     #  LATIN SMALL LETTER C WITH CARON
    0x00d2: 0x0119,     #  LATIN SMALL LETTER E WITH OGONEK
    0x00d3: 0x0117,     #  LATIN SMALL LETTER E WITH DOT ABOVE
    0x00d4: 0x012f,     #  LATIN SMALL LETTER I WITH OGONEK
    0x00d5: 0x0161,     #  LATIN SMALL LETTER S WITH CARON
    0x00d6: 0x0173,     #  LATIN SMALL LETTER U WITH OGONEK
    0x00d7: 0x016b,     #  LATIN SMALL LETTER U WITH MACRON
    0x00d8: 0x017e,     #  LATIN SMALL LETTER Z WITH CARON
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x00d3,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S (GERMAN)
    0x00e2: 0x014c,     #  LATIN CAPITAL LETTER O WITH MACRON
    0x00e3: 0x0143,     #  LATIN CAPITAL LETTER N WITH ACUTE
    0x00e4: 0x00f5,     #  LATIN SMALL LETTER O WITH TILDE
    0x00e5: 0x00d5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x0144,     #  LATIN SMALL LETTER N WITH ACUTE
    0x00e8: 0x0136,     #  LATIN CAPITAL LETTER K WITH CEDILLA
    0x00e9: 0x0137,     #  LATIN SMALL LETTER K WITH CEDILLA
    0x00ea: 0x013b,     #  LATIN CAPITAL LETTER L WITH CEDILLA
    0x00eb: 0x013c,     #  LATIN SMALL LETTER L WITH CEDILLA
    0x00ec: 0x0146,     #  LATIN SMALL LETTER N WITH CEDILLA
    0x00ed: 0x0112,     #  LATIN CAPITAL LETTER E WITH MACRON
    0x00ee: 0x0145,     #  LATIN CAPITAL LETTER N WITH CEDILLA
    0x00ef: 0x2019,     #  RIGHT SINGLE QUOTATION MARK
    0x00f0: 0x00ad,     #  SOFT HYPHEN
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x201c,     #  LEFT DOUBLE QUOTATION MARK
    0x00f3: 0x00be,     #  VULGAR FRACTION THREE QUARTERS
    0x00f4: 0x00b6,     #  PILCROW SIGN
    0x00f5: 0x00a7,     #  SECTION SIGN
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x201e,     #  DOUBLE LOW-9 QUOTATION MARK
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x00b9,     #  SUPERSCRIPT ONE
    0x00fc: 0x00b3,     #  SUPERSCRIPT THREE
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\u0106'   #  0x0080 -> LATIN CAPITAL LETTER C WITH ACUTE
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\u0101'   #  0x0083 -> LATIN SMALL LETTER A WITH MACRON
    '\xe4'     #  0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u0123'   #  0x0085 -> LATIN SMALL LETTER G WITH CEDILLA
    '\xe5'     #  0x0086 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\u0107'   #  0x0087 -> LATIN SMALL LETTER C WITH ACUTE
    '\u0142'   #  0x0088 -> LATIN SMALL LETTER L WITH STROKE
    '\u0113'   #  0x0089 -> LATIN SMALL LETTER E WITH MACRON
    '\u0156'   #  0x008a -> LATIN CAPITAL LETTER R WITH CEDILLA
    '\u0157'   #  0x008b -> LATIN SMALL LETTER R WITH CEDILLA
    '\u012b'   #  0x008c -> LATIN SMALL LETTER I WITH MACRON
    '\u0179'   #  0x008d -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\xc4'     #  0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x008f -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xe6'     #  0x0091 -> LATIN SMALL LIGATURE AE
    '\xc6'     #  0x0092 -> LATIN CAPITAL LIGATURE AE
    '\u014d'   #  0x0093 -> LATIN SMALL LETTER O WITH MACRON
    '\xf6'     #  0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\u0122'   #  0x0095 -> LATIN CAPITAL LETTER G WITH CEDILLA
    '\xa2'     #  0x0096 -> CENT SIGN
    '\u015a'   #  0x0097 -> LATIN CAPITAL LETTER S WITH ACUTE
    '\u015b'   #  0x0098 -> LATIN SMALL LETTER S WITH ACUTE
    '\xd6'     #  0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xf8'     #  0x009b -> LATIN SMALL LETTER O WITH STROKE
    '\xa3'     #  0x009c -> POUND SIGN
    '\xd8'     #  0x009d -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd7'     #  0x009e -> MULTIPLICATION SIGN
    '\xa4'     #  0x009f -> CURRENCY SIGN
    '\u0100'   #  0x00a0 -> LATIN CAPITAL LETTER A WITH MACRON
    '\u012a'   #  0x00a1 -> LATIN CAPITAL LETTER I WITH MACRON
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\u017b'   #  0x00a3 -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\u017c'   #  0x00a4 -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\u017a'   #  0x00a5 -> LATIN SMALL LETTER Z WITH ACUTE
    '\u201d'   #  0x00a6 -> RIGHT DOUBLE QUOTATION MARK
    '\xa6'     #  0x00a7 -> BROKEN BAR
    '\xa9'     #  0x00a8 -> COPYRIGHT SIGN
    '\xae'     #  0x00a9 -> REGISTERED SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\u0141'   #  0x00ad -> LATIN CAPITAL LETTER L WITH STROKE
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u0104'   #  0x00b5 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\u010c'   #  0x00b6 -> LATIN CAPITAL LETTER C WITH CARON
    '\u0118'   #  0x00b7 -> LATIN CAPITAL LETTER E WITH OGONEK
    '\u0116'   #  0x00b8 -> LATIN CAPITAL LETTER E WITH DOT ABOVE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u012e'   #  0x00bd -> LATIN CAPITAL LETTER I WITH OGONEK
    '\u0160'   #  0x00be -> LATIN CAPITAL LETTER S WITH CARON
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u0172'   #  0x00c6 -> LATIN CAPITAL LETTER U WITH OGONEK
    '\u016a'   #  0x00c7 -> LATIN CAPITAL LETTER U WITH MACRON
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u017d'   #  0x00cf -> LATIN CAPITAL LETTER Z WITH CARON
    '\u0105'   #  0x00d0 -> LATIN SMALL LETTER A WITH OGONEK
    '\u010d'   #  0x00d1 -> LATIN SMALL LETTER C WITH CARON
    '\u0119'   #  0x00d2 -> LATIN SMALL LETTER E WITH OGONEK
    '\u0117'   #  0x00d3 -> LATIN SMALL LETTER E WITH DOT ABOVE
    '\u012f'   #  0x00d4 -> LATIN SMALL LETTER I WITH OGONEK
    '\u0161'   #  0x00d5 -> LATIN SMALL LETTER S WITH CARON
    '\u0173'   #  0x00d6 -> LATIN SMALL LETTER U WITH OGONEK
    '\u016b'   #  0x00d7 -> LATIN SMALL LETTER U WITH MACRON
    '\u017e'   #  0x00d8 -> LATIN SMALL LETTER Z WITH CARON
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\xd3'     #  0x00e0 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S (GERMAN)
    '\u014c'   #  0x00e2 -> LATIN CAPITAL LETTER O WITH MACRON
    '\u0143'   #  0x00e3 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\xf5'     #  0x00e4 -> LATIN SMALL LETTER O WITH TILDE
    '\xd5'     #  0x00e5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\u0144'   #  0x00e7 -> LATIN SMALL LETTER N WITH ACUTE
    '\u0136'   #  0x00e8 -> LATIN CAPITAL LETTER K WITH CEDILLA
    '\u0137'   #  0x00e9 -> LATIN SMALL LETTER K WITH CEDILLA
    '\u013b'   #  0x00ea -> LATIN CAPITAL LETTER L WITH CEDILLA
    '\u013c'   #  0x00eb -> LATIN SMALL LETTER L WITH CEDILLA
    '\u0146'   #  0x00ec -> LATIN SMALL LETTER N WITH CEDILLA
    '\u0112'   #  0x00ed -> LATIN CAPITAL LETTER E WITH MACRON
    '\u0145'   #  0x00ee -> LATIN CAPITAL LETTER N WITH CEDILLA
    '\u2019'   #  0x00ef -> RIGHT SINGLE QUOTATION MARK
    '\xad'     #  0x00f0 -> SOFT HYPHEN
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u201c'   #  0x00f2 -> LEFT DOUBLE QUOTATION MARK
    '\xbe'     #  0x00f3 -> VULGAR FRACTION THREE QUARTERS
    '\xb6'     #  0x00f4 -> PILCROW SIGN
    '\xa7'     #  0x00f5 -> SECTION SIGN
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\u201e'   #  0x00f7 -> DOUBLE LOW-9 QUOTATION MARK
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\xb9'     #  0x00fb -> SUPERSCRIPT ONE
    '\xb3'     #  0x00fc -> SUPERSCRIPT THREE
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a2: 0x0096,     #  CENT SIGN
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a4: 0x009f,     #  CURRENCY SIGN
    0x00a6: 0x00a7,     #  BROKEN BAR
    0x00a7: 0x00f5,     #  SECTION SIGN
    0x00a9: 0x00a8,     #  COPYRIGHT SIGN
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00ad: 0x00f0,     #  SOFT HYPHEN
    0x00ae: 0x00a9,     #  REGISTERED SIGN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b3: 0x00fc,     #  SUPERSCRIPT THREE
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b6: 0x00f4,     #  PILCROW SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00b9: 0x00fb,     #  SUPERSCRIPT ONE
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00be: 0x00f3,     #  VULGAR FRACTION THREE QUARTERS
    0x00c4: 0x008e,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c5: 0x008f,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x00c6: 0x0092,     #  LATIN CAPITAL LIGATURE AE
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00d3: 0x00e0,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00d5: 0x00e5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00d6: 0x0099,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00d7: 0x009e,     #  MULTIPLICATION SIGN
    0x00d8: 0x009d,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S (GERMAN)
    0x00e4: 0x0084,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e5: 0x0086,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x00e6: 0x0091,     #  LATIN SMALL LIGATURE AE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f5: 0x00e4,     #  LATIN SMALL LETTER O WITH TILDE
    0x00f6: 0x0094,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f8: 0x009b,     #  LATIN SMALL LETTER O WITH STROKE
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0100: 0x00a0,     #  LATIN CAPITAL LETTER A WITH MACRON
    0x0101: 0x0083,     #  LATIN SMALL LETTER A WITH MACRON
    0x0104: 0x00b5,     #  LATIN CAPITAL LETTER A WITH OGONEK
    0x0105: 0x00d0,     #  LATIN SMALL LETTER A WITH OGONEK
    0x0106: 0x0080,     #  LATIN CAPITAL LETTER C WITH ACUTE
    0x0107: 0x0087,     #  LATIN SMALL LETTER C WITH ACUTE
    0x010c: 0x00b6,     #  LATIN CAPITAL LETTER C WITH CARON
    0x010d: 0x00d1,     #  LATIN SMALL LETTER C WITH CARON
    0x0112: 0x00ed,     #  LATIN CAPITAL LETTER E WITH MACRON
    0x0113: 0x0089,     #  LATIN SMALL LETTER E WITH MACRON
    0x0116: 0x00b8,     #  LATIN CAPITAL LETTER E WITH DOT ABOVE
    0x0117: 0x00d3,     #  LATIN SMALL LETTER E WITH DOT ABOVE
    0x0118: 0x00b7,     #  LATIN CAPITAL LETTER E WITH OGONEK
    0x0119: 0x00d2,     #  LATIN SMALL LETTER E WITH OGONEK
    0x0122: 0x0095,     #  LATIN CAPITAL LETTER G WITH CEDILLA
    0x0123: 0x0085,     #  LATIN SMALL LETTER G WITH CEDILLA
    0x012a: 0x00a1,     #  LATIN CAPITAL LETTER I WITH MACRON
    0x012b: 0x008c,     #  LATIN SMALL LETTER I WITH MACRON
    0x012e: 0x00bd,     #  LATIN CAPITAL LETTER I WITH OGONEK
    0x012f: 0x00d4,     #  LATIN SMALL LETTER I WITH OGONEK
    0x0136: 0x00e8,     #  LATIN CAPITAL LETTER K WITH CEDILLA
    0x0137: 0x00e9,     #  LATIN SMALL LETTER K WITH CEDILLA
    0x013b: 0x00ea,     #  LATIN CAPITAL LETTER L WITH CEDILLA
    0x013c: 0x00eb,     #  LATIN SMALL LETTER L WITH CEDILLA
    0x0141: 0x00ad,     #  LATIN CAPITAL LETTER L WITH STROKE
    0x0142: 0x0088,     #  LATIN SMALL LETTER L WITH STROKE
    0x0143: 0x00e3,     #  LATIN CAPITAL LETTER N WITH ACUTE
    0x0144: 0x00e7,     #  LATIN SMALL LETTER N WITH ACUTE
    0x0145: 0x00ee,     #  LATIN CAPITAL LETTER N WITH CEDILLA
    0x0146: 0x00ec,     #  LATIN SMALL LETTER N WITH CEDILLA
    0x014c: 0x00e2,     #  LATIN CAPITAL LETTER O WITH MACRON
    0x014d: 0x0093,     #  LATIN SMALL LETTER O WITH MACRON
    0x0156: 0x008a,     #  LATIN CAPITAL LETTER R WITH CEDILLA
    0x0157: 0x008b,     #  LATIN SMALL LETTER R WITH CEDILLA
    0x015a: 0x0097,     #  LATIN CAPITAL LETTER S WITH ACUTE
    0x015b: 0x0098,     #  LATIN SMALL LETTER S WITH ACUTE
    0x0160: 0x00be,     #  LATIN CAPITAL LETTER S WITH CARON
    0x0161: 0x00d5,     #  LATIN SMALL LETTER S WITH CARON
    0x016a: 0x00c7,     #  LATIN CAPITAL LETTER U WITH MACRON
    0x016b: 0x00d7,     #  LATIN SMALL LETTER U WITH MACRON
    0x0172: 0x00c6,     #  LATIN CAPITAL LETTER U WITH OGONEK
    0x0173: 0x00d6,     #  LATIN SMALL LETTER U WITH OGONEK
    0x0179: 0x008d,     #  LATIN CAPITAL LETTER Z WITH ACUTE
    0x017a: 0x00a5,     #  LATIN SMALL LETTER Z WITH ACUTE
    0x017b: 0x00a3,     #  LATIN CAPITAL LETTER Z WITH DOT ABOVE
    0x017c: 0x00a4,     #  LATIN SMALL LETTER Z WITH DOT ABOVE
    0x017d: 0x00cf,     #  LATIN CAPITAL LETTER Z WITH CARON
    0x017e: 0x00d8,     #  LATIN SMALL LETTER Z WITH CARON
    0x2019: 0x00ef,     #  RIGHT SINGLE QUOTATION MARK
    0x201c: 0x00f2,     #  LEFT DOUBLE QUOTATION MARK
    0x201d: 0x00a6,     #  RIGHT DOUBLE QUOTATION MARK
    0x201e: 0x00f7,     #  DOUBLE LOW-9 QUOTATION MARK
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp850.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP850.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp850',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x0085: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0086: 0x00e5,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0089: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x008a: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x008b: 0x00ef,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x008c: 0x00ee,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x008d: 0x00ec,     #  LATIN SMALL LETTER I WITH GRAVE
    0x008e: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x008f: 0x00c5,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00e6,     #  LATIN SMALL LIGATURE AE
    0x0092: 0x00c6,     #  LATIN CAPITAL LIGATURE AE
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x0095: 0x00f2,     #  LATIN SMALL LETTER O WITH GRAVE
    0x0096: 0x00fb,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x0097: 0x00f9,     #  LATIN SMALL LETTER U WITH GRAVE
    0x0098: 0x00ff,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x0099: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00f8,     #  LATIN SMALL LETTER O WITH STROKE
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00d8,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x009e: 0x00d7,     #  MULTIPLICATION SIGN
    0x009f: 0x0192,     #  LATIN SMALL LETTER F WITH HOOK
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00f1,     #  LATIN SMALL LETTER N WITH TILDE
    0x00a5: 0x00d1,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00a6: 0x00aa,     #  FEMININE ORDINAL INDICATOR
    0x00a7: 0x00ba,     #  MASCULINE ORDINAL INDICATOR
    0x00a8: 0x00bf,     #  INVERTED QUESTION MARK
    0x00a9: 0x00ae,     #  REGISTERED SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00a1,     #  INVERTED EXCLAMATION MARK
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x00c1,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00b6: 0x00c2,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00b7: 0x00c0,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x00b8: 0x00a9,     #  COPYRIGHT SIGN
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x00a2,     #  CENT SIGN
    0x00be: 0x00a5,     #  YEN SIGN
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x00e3,     #  LATIN SMALL LETTER A WITH TILDE
    0x00c7: 0x00c3,     #  LATIN CAPITAL LETTER A WITH TILDE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x00a4,     #  CURRENCY SIGN
    0x00d0: 0x00f0,     #  LATIN SMALL LETTER ETH
    0x00d1: 0x00d0,     #  LATIN CAPITAL LETTER ETH
    0x00d2: 0x00ca,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x00d3: 0x00cb,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00d4: 0x00c8,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x00d5: 0x0131,     #  LATIN SMALL LETTER DOTLESS I
    0x00d6: 0x00cd,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00d7: 0x00ce,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00d8: 0x00cf,     #  LATIN CAPITAL LETTER I WITH DIAERESIS
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x00a6,     #  BROKEN BAR
    0x00de: 0x00cc,     #  LATIN CAPITAL LETTER I WITH GRAVE
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x00d3,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x00d4,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00e3: 0x00d2,     #  LATIN CAPITAL LETTER O WITH GRAVE
    0x00e4: 0x00f5,     #  LATIN SMALL LETTER O WITH TILDE
    0x00e5: 0x00d5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x00fe,     #  LATIN SMALL LETTER THORN
    0x00e8: 0x00de,     #  LATIN CAPITAL LETTER THORN
    0x00e9: 0x00da,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00ea: 0x00db,     #  LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    0x00eb: 0x00d9,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x00ec: 0x00fd,     #  LATIN SMALL LETTER Y WITH ACUTE
    0x00ed: 0x00dd,     #  LATIN CAPITAL LETTER Y WITH ACUTE
    0x00ee: 0x00af,     #  MACRON
    0x00ef: 0x00b4,     #  ACUTE ACCENT
    0x00f0: 0x00ad,     #  SOFT HYPHEN
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2017,     #  DOUBLE LOW LINE
    0x00f3: 0x00be,     #  VULGAR FRACTION THREE QUARTERS
    0x00f4: 0x00b6,     #  PILCROW SIGN
    0x00f5: 0x00a7,     #  SECTION SIGN
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x00b8,     #  CEDILLA
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x00a8,     #  DIAERESIS
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x00b9,     #  SUPERSCRIPT ONE
    0x00fc: 0x00b3,     #  SUPERSCRIPT THREE
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x0085 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe5'     #  0x0086 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'     #  0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x008a -> LATIN SMALL LETTER E WITH GRAVE
    '\xef'     #  0x008b -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xee'     #  0x008c -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xec'     #  0x008d -> LATIN SMALL LETTER I WITH GRAVE
    '\xc4'     #  0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x008f -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xe6'     #  0x0091 -> LATIN SMALL LIGATURE AE
    '\xc6'     #  0x0092 -> LATIN CAPITAL LIGATURE AE
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf2'     #  0x0095 -> LATIN SMALL LETTER O WITH GRAVE
    '\xfb'     #  0x0096 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xf9'     #  0x0097 -> LATIN SMALL LETTER U WITH GRAVE
    '\xff'     #  0x0098 -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\xd6'     #  0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xf8'     #  0x009b -> LATIN SMALL LETTER O WITH STROKE
    '\xa3'     #  0x009c -> POUND SIGN
    '\xd8'     #  0x009d -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd7'     #  0x009e -> MULTIPLICATION SIGN
    '\u0192'   #  0x009f -> LATIN SMALL LETTER F WITH HOOK
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xf1'     #  0x00a4 -> LATIN SMALL LETTER N WITH TILDE
    '\xd1'     #  0x00a5 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xaa'     #  0x00a6 -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x00a7 -> MASCULINE ORDINAL INDICATOR
    '\xbf'     #  0x00a8 -> INVERTED QUESTION MARK
    '\xae'     #  0x00a9 -> REGISTERED SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xa1'     #  0x00ad -> INVERTED EXCLAMATION MARK
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\xc1'     #  0x00b5 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0x00b6 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc0'     #  0x00b7 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xa9'     #  0x00b8 -> COPYRIGHT SIGN
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\xa2'     #  0x00bd -> CENT SIGN
    '\xa5'     #  0x00be -> YEN SIGN
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\xe3'     #  0x00c6 -> LATIN SMALL LETTER A WITH TILDE
    '\xc3'     #  0x00c7 -> LATIN CAPITAL LETTER A WITH TILDE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\xa4'     #  0x00cf -> CURRENCY SIGN
    '\xf0'     #  0x00d0 -> LATIN SMALL LETTER ETH
    '\xd0'     #  0x00d1 -> LATIN CAPITAL LETTER ETH
    '\xca'     #  0x00d2 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0x00d3 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0x00d4 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\u0131'   #  0x00d5 -> LATIN SMALL LETTER DOTLESS I
    '\xcd'     #  0x00d6 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0x00d7 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0x00d8 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\xa6'     #  0x00dd -> BROKEN BAR
    '\xcc'     #  0x00de -> LATIN CAPITAL LETTER I WITH GRAVE
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\xd3'     #  0x00e0 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\xd4'     #  0x00e2 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd2'     #  0x00e3 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xf5'     #  0x00e4 -> LATIN SMALL LETTER O WITH TILDE
    '\xd5'     #  0x00e5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\xfe'     #  0x00e7 -> LATIN SMALL LETTER THORN
    '\xde'     #  0x00e8 -> LATIN CAPITAL LETTER THORN
    '\xda'     #  0x00e9 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0x00ea -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xd9'     #  0x00eb -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xfd'     #  0x00ec -> LATIN SMALL LETTER Y WITH ACUTE
    '\xdd'     #  0x00ed -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xaf'     #  0x00ee -> MACRON
    '\xb4'     #  0x00ef -> ACUTE ACCENT
    '\xad'     #  0x00f0 -> SOFT HYPHEN
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2017'   #  0x00f2 -> DOUBLE LOW LINE
    '\xbe'     #  0x00f3 -> VULGAR FRACTION THREE QUARTERS
    '\xb6'     #  0x00f4 -> PILCROW SIGN
    '\xa7'     #  0x00f5 -> SECTION SIGN
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\xb8'     #  0x00f7 -> CEDILLA
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\xa8'     #  0x00f9 -> DIAERESIS
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\xb9'     #  0x00fb -> SUPERSCRIPT ONE
    '\xb3'     #  0x00fc -> SUPERSCRIPT THREE
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a1: 0x00ad,     #  INVERTED EXCLAMATION MARK
    0x00a2: 0x00bd,     #  CENT SIGN
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a4: 0x00cf,     #  CURRENCY SIGN
    0x00a5: 0x00be,     #  YEN SIGN
    0x00a6: 0x00dd,     #  BROKEN BAR
    0x00a7: 0x00f5,     #  SECTION SIGN
    0x00a8: 0x00f9,     #  DIAERESIS
    0x00a9: 0x00b8,     #  COPYRIGHT SIGN
    0x00aa: 0x00a6,     #  FEMININE ORDINAL INDICATOR
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00ad: 0x00f0,     #  SOFT HYPHEN
    0x00ae: 0x00a9,     #  REGISTERED SIGN
    0x00af: 0x00ee,     #  MACRON
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b3: 0x00fc,     #  SUPERSCRIPT THREE
    0x00b4: 0x00ef,     #  ACUTE ACCENT
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b6: 0x00f4,     #  PILCROW SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00b8: 0x00f7,     #  CEDILLA
    0x00b9: 0x00fb,     #  SUPERSCRIPT ONE
    0x00ba: 0x00a7,     #  MASCULINE ORDINAL INDICATOR
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00be: 0x00f3,     #  VULGAR FRACTION THREE QUARTERS
    0x00bf: 0x00a8,     #  INVERTED QUESTION MARK
    0x00c0: 0x00b7,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x00c1: 0x00b5,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00c2: 0x00b6,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00c3: 0x00c7,     #  LATIN CAPITAL LETTER A WITH TILDE
    0x00c4: 0x008e,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c5: 0x008f,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x00c6: 0x0092,     #  LATIN CAPITAL LIGATURE AE
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c8: 0x00d4,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00ca: 0x00d2,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x00cb: 0x00d3,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00cc: 0x00de,     #  LATIN CAPITAL LETTER I WITH GRAVE
    0x00cd: 0x00d6,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00ce: 0x00d7,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00cf: 0x00d8,     #  LATIN CAPITAL LETTER I WITH DIAERESIS
    0x00d0: 0x00d1,     #  LATIN CAPITAL LETTER ETH
    0x00d1: 0x00a5,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00d2: 0x00e3,     #  LATIN CAPITAL LETTER O WITH GRAVE
    0x00d3: 0x00e0,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00d4: 0x00e2,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00d5: 0x00e5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00d6: 0x0099,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00d7: 0x009e,     #  MULTIPLICATION SIGN
    0x00d8: 0x009d,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x00d9: 0x00eb,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x00da: 0x00e9,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00db: 0x00ea,     #  LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00dd: 0x00ed,     #  LATIN CAPITAL LETTER Y WITH ACUTE
    0x00de: 0x00e8,     #  LATIN CAPITAL LETTER THORN
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e0: 0x0085,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e3: 0x00c6,     #  LATIN SMALL LETTER A WITH TILDE
    0x00e4: 0x0084,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e5: 0x0086,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x00e6: 0x0091,     #  LATIN SMALL LIGATURE AE
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008a,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0088,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00eb: 0x0089,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ec: 0x008d,     #  LATIN SMALL LETTER I WITH GRAVE
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00ee: 0x008c,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x00ef: 0x008b,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x00f0: 0x00d0,     #  LATIN SMALL LETTER ETH
    0x00f1: 0x00a4,     #  LATIN SMALL LETTER N WITH TILDE
    0x00f2: 0x0095,     #  LATIN SMALL LETTER O WITH GRAVE
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f5: 0x00e4,     #  LATIN SMALL LETTER O WITH TILDE
    0x00f6: 0x0094,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f8: 0x009b,     #  LATIN SMALL LETTER O WITH STROKE
    0x00f9: 0x0097,     #  LATIN SMALL LETTER U WITH GRAVE
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fb: 0x0096,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x00fd: 0x00ec,     #  LATIN SMALL LETTER Y WITH ACUTE
    0x00fe: 0x00e7,     #  LATIN SMALL LETTER THORN
    0x00ff: 0x0098,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x0131: 0x00d5,     #  LATIN SMALL LETTER DOTLESS I
    0x0192: 0x009f,     #  LATIN SMALL LETTER F WITH HOOK
    0x2017: 0x00f2,     #  DOUBLE LOW LINE
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp852.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP852.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp852',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x0085: 0x016f,     #  LATIN SMALL LETTER U WITH RING ABOVE
    0x0086: 0x0107,     #  LATIN SMALL LETTER C WITH ACUTE
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x0142,     #  LATIN SMALL LETTER L WITH STROKE
    0x0089: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x008a: 0x0150,     #  LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
    0x008b: 0x0151,     #  LATIN SMALL LETTER O WITH DOUBLE ACUTE
    0x008c: 0x00ee,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x008d: 0x0179,     #  LATIN CAPITAL LETTER Z WITH ACUTE
    0x008e: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x008f: 0x0106,     #  LATIN CAPITAL LETTER C WITH ACUTE
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x0139,     #  LATIN CAPITAL LETTER L WITH ACUTE
    0x0092: 0x013a,     #  LATIN SMALL LETTER L WITH ACUTE
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x0095: 0x013d,     #  LATIN CAPITAL LETTER L WITH CARON
    0x0096: 0x013e,     #  LATIN SMALL LETTER L WITH CARON
    0x0097: 0x015a,     #  LATIN CAPITAL LETTER S WITH ACUTE
    0x0098: 0x015b,     #  LATIN SMALL LETTER S WITH ACUTE
    0x0099: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x0164,     #  LATIN CAPITAL LETTER T WITH CARON
    0x009c: 0x0165,     #  LATIN SMALL LETTER T WITH CARON
    0x009d: 0x0141,     #  LATIN CAPITAL LETTER L WITH STROKE
    0x009e: 0x00d7,     #  MULTIPLICATION SIGN
    0x009f: 0x010d,     #  LATIN SMALL LETTER C WITH CARON
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x0104,     #  LATIN CAPITAL LETTER A WITH OGONEK
    0x00a5: 0x0105,     #  LATIN SMALL LETTER A WITH OGONEK
    0x00a6: 0x017d,     #  LATIN CAPITAL LETTER Z WITH CARON
    0x00a7: 0x017e,     #  LATIN SMALL LETTER Z WITH CARON
    0x00a8: 0x0118,     #  LATIN CAPITAL LETTER E WITH OGONEK
    0x00a9: 0x0119,     #  LATIN SMALL LETTER E WITH OGONEK
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x017a,     #  LATIN SMALL LETTER Z WITH ACUTE
    0x00ac: 0x010c,     #  LATIN CAPITAL LETTER C WITH CARON
    0x00ad: 0x015f,     #  LATIN SMALL LETTER S WITH CEDILLA
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x00c1,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00b6: 0x00c2,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00b7: 0x011a,     #  LATIN CAPITAL LETTER E WITH CARON
    0x00b8: 0x015e,     #  LATIN CAPITAL LETTER S WITH CEDILLA
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x017b,     #  LATIN CAPITAL LETTER Z WITH DOT ABOVE
    0x00be: 0x017c,     #  LATIN SMALL LETTER Z WITH DOT ABOVE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x0102,     #  LATIN CAPITAL LETTER A WITH BREVE
    0x00c7: 0x0103,     #  LATIN SMALL LETTER A WITH BREVE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x00a4,     #  CURRENCY SIGN
    0x00d0: 0x0111,     #  LATIN SMALL LETTER D WITH STROKE
    0x00d1: 0x0110,     #  LATIN CAPITAL LETTER D WITH STROKE
    0x00d2: 0x010e,     #  LATIN CAPITAL LETTER D WITH CARON
    0x00d3: 0x00cb,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00d4: 0x010f,     #  LATIN SMALL LETTER D WITH CARON
    0x00d5: 0x0147,     #  LATIN CAPITAL LETTER N WITH CARON
    0x00d6: 0x00cd,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00d7: 0x00ce,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00d8: 0x011b,     #  LATIN SMALL LETTER E WITH CARON
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x0162,     #  LATIN CAPITAL LETTER T WITH CEDILLA
    0x00de: 0x016e,     #  LATIN CAPITAL LETTER U WITH RING ABOVE
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x00d3,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x00d4,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00e3: 0x0143,     #  LATIN CAPITAL LETTER N WITH ACUTE
    0x00e4: 0x0144,     #  LATIN SMALL LETTER N WITH ACUTE
    0x00e5: 0x0148,     #  LATIN SMALL LETTER N WITH CARON
    0x00e6: 0x0160,     #  LATIN CAPITAL LETTER S WITH CARON
    0x00e7: 0x0161,     #  LATIN SMALL LETTER S WITH CARON
    0x00e8: 0x0154,     #  LATIN CAPITAL LETTER R WITH ACUTE
    0x00e9: 0x00da,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00ea: 0x0155,     #  LATIN SMALL LETTER R WITH ACUTE
    0x00eb: 0x0170,     #  LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
    0x00ec: 0x00fd,     #  LATIN SMALL LETTER Y WITH ACUTE
    0x00ed: 0x00dd,     #  LATIN CAPITAL LETTER Y WITH ACUTE
    0x00ee: 0x0163,     #  LATIN SMALL LETTER T WITH CEDILLA
    0x00ef: 0x00b4,     #  ACUTE ACCENT
    0x00f0: 0x00ad,     #  SOFT HYPHEN
    0x00f1: 0x02dd,     #  DOUBLE ACUTE ACCENT
    0x00f2: 0x02db,     #  OGONEK
    0x00f3: 0x02c7,     #  CARON
    0x00f4: 0x02d8,     #  BREVE
    0x00f5: 0x00a7,     #  SECTION SIGN
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x00b8,     #  CEDILLA
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x00a8,     #  DIAERESIS
    0x00fa: 0x02d9,     #  DOT ABOVE
    0x00fb: 0x0171,     #  LATIN SMALL LETTER U WITH DOUBLE ACUTE
    0x00fc: 0x0158,     #  LATIN CAPITAL LETTER R WITH CARON
    0x00fd: 0x0159,     #  LATIN SMALL LETTER R WITH CARON
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u016f'   #  0x0085 -> LATIN SMALL LETTER U WITH RING ABOVE
    '\u0107'   #  0x0086 -> LATIN SMALL LETTER C WITH ACUTE
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\u0142'   #  0x0088 -> LATIN SMALL LETTER L WITH STROKE
    '\xeb'     #  0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\u0150'   #  0x008a -> LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
    '\u0151'   #  0x008b -> LATIN SMALL LETTER O WITH DOUBLE ACUTE
    '\xee'     #  0x008c -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\u0179'   #  0x008d -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\xc4'     #  0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\u0106'   #  0x008f -> LATIN CAPITAL LETTER C WITH ACUTE
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0139'   #  0x0091 -> LATIN CAPITAL LETTER L WITH ACUTE
    '\u013a'   #  0x0092 -> LATIN SMALL LETTER L WITH ACUTE
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\u013d'   #  0x0095 -> LATIN CAPITAL LETTER L WITH CARON
    '\u013e'   #  0x0096 -> LATIN SMALL LETTER L WITH CARON
    '\u015a'   #  0x0097 -> LATIN CAPITAL LETTER S WITH ACUTE
    '\u015b'   #  0x0098 -> LATIN SMALL LETTER S WITH ACUTE
    '\xd6'     #  0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u0164'   #  0x009b -> LATIN CAPITAL LETTER T WITH CARON
    '\u0165'   #  0x009c -> LATIN SMALL LETTER T WITH CARON
    '\u0141'   #  0x009d -> LATIN CAPITAL LETTER L WITH STROKE
    '\xd7'     #  0x009e -> MULTIPLICATION SIGN
    '\u010d'   #  0x009f -> LATIN SMALL LETTER C WITH CARON
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\u0104'   #  0x00a4 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\u0105'   #  0x00a5 -> LATIN SMALL LETTER A WITH OGONEK
    '\u017d'   #  0x00a6 -> LATIN CAPITAL LETTER Z WITH CARON
    '\u017e'   #  0x00a7 -> LATIN SMALL LETTER Z WITH CARON
    '\u0118'   #  0x00a8 -> LATIN CAPITAL LETTER E WITH OGONEK
    '\u0119'   #  0x00a9 -> LATIN SMALL LETTER E WITH OGONEK
    '\xac'     #  0x00aa -> NOT SIGN
    '\u017a'   #  0x00ab -> LATIN SMALL LETTER Z WITH ACUTE
    '\u010c'   #  0x00ac -> LATIN CAPITAL LETTER C WITH CARON
    '\u015f'   #  0x00ad -> LATIN SMALL LETTER S WITH CEDILLA
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\xc1'     #  0x00b5 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0x00b6 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\u011a'   #  0x00b7 -> LATIN CAPITAL LETTER E WITH CARON
    '\u015e'   #  0x00b8 -> LATIN CAPITAL LETTER S WITH CEDILLA
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u017b'   #  0x00bd -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\u017c'   #  0x00be -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u0102'   #  0x00c6 -> LATIN CAPITAL LETTER A WITH BREVE
    '\u0103'   #  0x00c7 -> LATIN SMALL LETTER A WITH BREVE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\xa4'     #  0x00cf -> CURRENCY SIGN
    '\u0111'   #  0x00d0 -> LATIN SMALL LETTER D WITH STROKE
    '\u0110'   #  0x00d1 -> LATIN CAPITAL LETTER D WITH STROKE
    '\u010e'   #  0x00d2 -> LATIN CAPITAL LETTER D WITH CARON
    '\xcb'     #  0x00d3 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\u010f'   #  0x00d4 -> LATIN SMALL LETTER D WITH CARON
    '\u0147'   #  0x00d5 -> LATIN CAPITAL LETTER N WITH CARON
    '\xcd'     #  0x00d6 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0x00d7 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\u011b'   #  0x00d8 -> LATIN SMALL LETTER E WITH CARON
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u0162'   #  0x00dd -> LATIN CAPITAL LETTER T WITH CEDILLA
    '\u016e'   #  0x00de -> LATIN CAPITAL LETTER U WITH RING ABOVE
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\xd3'     #  0x00e0 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\xd4'     #  0x00e2 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u0143'   #  0x00e3 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\u0144'   #  0x00e4 -> LATIN SMALL LETTER N WITH ACUTE
    '\u0148'   #  0x00e5 -> LATIN SMALL LETTER N WITH CARON
    '\u0160'   #  0x00e6 -> LATIN CAPITAL LETTER S WITH CARON
    '\u0161'   #  0x00e7 -> LATIN SMALL LETTER S WITH CARON
    '\u0154'   #  0x00e8 -> LATIN CAPITAL LETTER R WITH ACUTE
    '\xda'     #  0x00e9 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\u0155'   #  0x00ea -> LATIN SMALL LETTER R WITH ACUTE
    '\u0170'   #  0x00eb -> LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
    '\xfd'     #  0x00ec -> LATIN SMALL LETTER Y WITH ACUTE
    '\xdd'     #  0x00ed -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\u0163'   #  0x00ee -> LATIN SMALL LETTER T WITH CEDILLA
    '\xb4'     #  0x00ef -> ACUTE ACCENT
    '\xad'     #  0x00f0 -> SOFT HYPHEN
    '\u02dd'   #  0x00f1 -> DOUBLE ACUTE ACCENT
    '\u02db'   #  0x00f2 -> OGONEK
    '\u02c7'   #  0x00f3 -> CARON
    '\u02d8'   #  0x00f4 -> BREVE
    '\xa7'     #  0x00f5 -> SECTION SIGN
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\xb8'     #  0x00f7 -> CEDILLA
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\xa8'     #  0x00f9 -> DIAERESIS
    '\u02d9'   #  0x00fa -> DOT ABOVE
    '\u0171'   #  0x00fb -> LATIN SMALL LETTER U WITH DOUBLE ACUTE
    '\u0158'   #  0x00fc -> LATIN CAPITAL LETTER R WITH CARON
    '\u0159'   #  0x00fd -> LATIN SMALL LETTER R WITH CARON
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a4: 0x00cf,     #  CURRENCY SIGN
    0x00a7: 0x00f5,     #  SECTION SIGN
    0x00a8: 0x00f9,     #  DIAERESIS
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00ad: 0x00f0,     #  SOFT HYPHEN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b4: 0x00ef,     #  ACUTE ACCENT
    0x00b8: 0x00f7,     #  CEDILLA
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00c1: 0x00b5,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00c2: 0x00b6,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00c4: 0x008e,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00cb: 0x00d3,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00cd: 0x00d6,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00ce: 0x00d7,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00d3: 0x00e0,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00d4: 0x00e2,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00d6: 0x0099,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00d7: 0x009e,     #  MULTIPLICATION SIGN
    0x00da: 0x00e9,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00dd: 0x00ed,     #  LATIN CAPITAL LETTER Y WITH ACUTE
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e4: 0x0084,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00eb: 0x0089,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00ee: 0x008c,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f6: 0x0094,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x00fd: 0x00ec,     #  LATIN SMALL LETTER Y WITH ACUTE
    0x0102: 0x00c6,     #  LATIN CAPITAL LETTER A WITH BREVE
    0x0103: 0x00c7,     #  LATIN SMALL LETTER A WITH BREVE
    0x0104: 0x00a4,     #  LATIN CAPITAL LETTER A WITH OGONEK
    0x0105: 0x00a5,     #  LATIN SMALL LETTER A WITH OGONEK
    0x0106: 0x008f,     #  LATIN CAPITAL LETTER C WITH ACUTE
    0x0107: 0x0086,     #  LATIN SMALL LETTER C WITH ACUTE
    0x010c: 0x00ac,     #  LATIN CAPITAL LETTER C WITH CARON
    0x010d: 0x009f,     #  LATIN SMALL LETTER C WITH CARON
    0x010e: 0x00d2,     #  LATIN CAPITAL LETTER D WITH CARON
    0x010f: 0x00d4,     #  LATIN SMALL LETTER D WITH CARON
    0x0110: 0x00d1,     #  LATIN CAPITAL LETTER D WITH STROKE
    0x0111: 0x00d0,     #  LATIN SMALL LETTER D WITH STROKE
    0x0118: 0x00a8,     #  LATIN CAPITAL LETTER E WITH OGONEK
    0x0119: 0x00a9,     #  LATIN SMALL LETTER E WITH OGONEK
    0x011a: 0x00b7,     #  LATIN CAPITAL LETTER E WITH CARON
    0x011b: 0x00d8,     #  LATIN SMALL LETTER E WITH CARON
    0x0139: 0x0091,     #  LATIN CAPITAL LETTER L WITH ACUTE
    0x013a: 0x0092,     #  LATIN SMALL LETTER L WITH ACUTE
    0x013d: 0x0095,     #  LATIN CAPITAL LETTER L WITH CARON
    0x013e: 0x0096,     #  LATIN SMALL LETTER L WITH CARON
    0x0141: 0x009d,     #  LATIN CAPITAL LETTER L WITH STROKE
    0x0142: 0x0088,     #  LATIN SMALL LETTER L WITH STROKE
    0x0143: 0x00e3,     #  LATIN CAPITAL LETTER N WITH ACUTE
    0x0144: 0x00e4,     #  LATIN SMALL LETTER N WITH ACUTE
    0x0147: 0x00d5,     #  LATIN CAPITAL LETTER N WITH CARON
    0x0148: 0x00e5,     #  LATIN SMALL LETTER N WITH CARON
    0x0150: 0x008a,     #  LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
    0x0151: 0x008b,     #  LATIN SMALL LETTER O WITH DOUBLE ACUTE
    0x0154: 0x00e8,     #  LATIN CAPITAL LETTER R WITH ACUTE
    0x0155: 0x00ea,     #  LATIN SMALL LETTER R WITH ACUTE
    0x0158: 0x00fc,     #  LATIN CAPITAL LETTER R WITH CARON
    0x0159: 0x00fd,     #  LATIN SMALL LETTER R WITH CARON
    0x015a: 0x0097,     #  LATIN CAPITAL LETTER S WITH ACUTE
    0x015b: 0x0098,     #  LATIN SMALL LETTER S WITH ACUTE
    0x015e: 0x00b8,     #  LATIN CAPITAL LETTER S WITH CEDILLA
    0x015f: 0x00ad,     #  LATIN SMALL LETTER S WITH CEDILLA
    0x0160: 0x00e6,     #  LATIN CAPITAL LETTER S WITH CARON
    0x0161: 0x00e7,     #  LATIN SMALL LETTER S WITH CARON
    0x0162: 0x00dd,     #  LATIN CAPITAL LETTER T WITH CEDILLA
    0x0163: 0x00ee,     #  LATIN SMALL LETTER T WITH CEDILLA
    0x0164: 0x009b,     #  LATIN CAPITAL LETTER T WITH CARON
    0x0165: 0x009c,     #  LATIN SMALL LETTER T WITH CARON
    0x016e: 0x00de,     #  LATIN CAPITAL LETTER U WITH RING ABOVE
    0x016f: 0x0085,     #  LATIN SMALL LETTER U WITH RING ABOVE
    0x0170: 0x00eb,     #  LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
    0x0171: 0x00fb,     #  LATIN SMALL LETTER U WITH DOUBLE ACUTE
    0x0179: 0x008d,     #  LATIN CAPITAL LETTER Z WITH ACUTE
    0x017a: 0x00ab,     #  LATIN SMALL LETTER Z WITH ACUTE
    0x017b: 0x00bd,     #  LATIN CAPITAL LETTER Z WITH DOT ABOVE
    0x017c: 0x00be,     #  LATIN SMALL LETTER Z WITH DOT ABOVE
    0x017d: 0x00a6,     #  LATIN CAPITAL LETTER Z WITH CARON
    0x017e: 0x00a7,     #  LATIN SMALL LETTER Z WITH CARON
    0x02c7: 0x00f3,     #  CARON
    0x02d8: 0x00f4,     #  BREVE
    0x02d9: 0x00fa,     #  DOT ABOVE
    0x02db: 0x00f2,     #  OGONEK
    0x02dd: 0x00f1,     #  DOUBLE ACUTE ACCENT
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp855.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP855.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp855',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x0452,     #  CYRILLIC SMALL LETTER DJE
    0x0081: 0x0402,     #  CYRILLIC CAPITAL LETTER DJE
    0x0082: 0x0453,     #  CYRILLIC SMALL LETTER GJE
    0x0083: 0x0403,     #  CYRILLIC CAPITAL LETTER GJE
    0x0084: 0x0451,     #  CYRILLIC SMALL LETTER IO
    0x0085: 0x0401,     #  CYRILLIC CAPITAL LETTER IO
    0x0086: 0x0454,     #  CYRILLIC SMALL LETTER UKRAINIAN IE
    0x0087: 0x0404,     #  CYRILLIC CAPITAL LETTER UKRAINIAN IE
    0x0088: 0x0455,     #  CYRILLIC SMALL LETTER DZE
    0x0089: 0x0405,     #  CYRILLIC CAPITAL LETTER DZE
    0x008a: 0x0456,     #  CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    0x008b: 0x0406,     #  CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    0x008c: 0x0457,     #  CYRILLIC SMALL LETTER YI
    0x008d: 0x0407,     #  CYRILLIC CAPITAL LETTER YI
    0x008e: 0x0458,     #  CYRILLIC SMALL LETTER JE
    0x008f: 0x0408,     #  CYRILLIC CAPITAL LETTER JE
    0x0090: 0x0459,     #  CYRILLIC SMALL LETTER LJE
    0x0091: 0x0409,     #  CYRILLIC CAPITAL LETTER LJE
    0x0092: 0x045a,     #  CYRILLIC SMALL LETTER NJE
    0x0093: 0x040a,     #  CYRILLIC CAPITAL LETTER NJE
    0x0094: 0x045b,     #  CYRILLIC SMALL LETTER TSHE
    0x0095: 0x040b,     #  CYRILLIC CAPITAL LETTER TSHE
    0x0096: 0x045c,     #  CYRILLIC SMALL LETTER KJE
    0x0097: 0x040c,     #  CYRILLIC CAPITAL LETTER KJE
    0x0098: 0x045e,     #  CYRILLIC SMALL LETTER SHORT U
    0x0099: 0x040e,     #  CYRILLIC CAPITAL LETTER SHORT U
    0x009a: 0x045f,     #  CYRILLIC SMALL LETTER DZHE
    0x009b: 0x040f,     #  CYRILLIC CAPITAL LETTER DZHE
    0x009c: 0x044e,     #  CYRILLIC SMALL LETTER YU
    0x009d: 0x042e,     #  CYRILLIC CAPITAL LETTER YU
    0x009e: 0x044a,     #  CYRILLIC SMALL LETTER HARD SIGN
    0x009f: 0x042a,     #  CYRILLIC CAPITAL LETTER HARD SIGN
    0x00a0: 0x0430,     #  CYRILLIC SMALL LETTER A
    0x00a1: 0x0410,     #  CYRILLIC CAPITAL LETTER A
    0x00a2: 0x0431,     #  CYRILLIC SMALL LETTER BE
    0x00a3: 0x0411,     #  CYRILLIC CAPITAL LETTER BE
    0x00a4: 0x0446,     #  CYRILLIC SMALL LETTER TSE
    0x00a5: 0x0426,     #  CYRILLIC CAPITAL LETTER TSE
    0x00a6: 0x0434,     #  CYRILLIC SMALL LETTER DE
    0x00a7: 0x0414,     #  CYRILLIC CAPITAL LETTER DE
    0x00a8: 0x0435,     #  CYRILLIC SMALL LETTER IE
    0x00a9: 0x0415,     #  CYRILLIC CAPITAL LETTER IE
    0x00aa: 0x0444,     #  CYRILLIC SMALL LETTER EF
    0x00ab: 0x0424,     #  CYRILLIC CAPITAL LETTER EF
    0x00ac: 0x0433,     #  CYRILLIC SMALL LETTER GHE
    0x00ad: 0x0413,     #  CYRILLIC CAPITAL LETTER GHE
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x0445,     #  CYRILLIC SMALL LETTER HA
    0x00b6: 0x0425,     #  CYRILLIC CAPITAL LETTER HA
    0x00b7: 0x0438,     #  CYRILLIC SMALL LETTER I
    0x00b8: 0x0418,     #  CYRILLIC CAPITAL LETTER I
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x0439,     #  CYRILLIC SMALL LETTER SHORT I
    0x00be: 0x0419,     #  CYRILLIC CAPITAL LETTER SHORT I
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x043a,     #  CYRILLIC SMALL LETTER KA
    0x00c7: 0x041a,     #  CYRILLIC CAPITAL LETTER KA
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x00a4,     #  CURRENCY SIGN
    0x00d0: 0x043b,     #  CYRILLIC SMALL LETTER EL
    0x00d1: 0x041b,     #  CYRILLIC CAPITAL LETTER EL
    0x00d2: 0x043c,     #  CYRILLIC SMALL LETTER EM
    0x00d3: 0x041c,     #  CYRILLIC CAPITAL LETTER EM
    0x00d4: 0x043d,     #  CYRILLIC SMALL LETTER EN
    0x00d5: 0x041d,     #  CYRILLIC CAPITAL LETTER EN
    0x00d6: 0x043e,     #  CYRILLIC SMALL LETTER O
    0x00d7: 0x041e,     #  CYRILLIC CAPITAL LETTER O
    0x00d8: 0x043f,     #  CYRILLIC SMALL LETTER PE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x041f,     #  CYRILLIC CAPITAL LETTER PE
    0x00de: 0x044f,     #  CYRILLIC SMALL LETTER YA
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x042f,     #  CYRILLIC CAPITAL LETTER YA
    0x00e1: 0x0440,     #  CYRILLIC SMALL LETTER ER
    0x00e2: 0x0420,     #  CYRILLIC CAPITAL LETTER ER
    0x00e3: 0x0441,     #  CYRILLIC SMALL LETTER ES
    0x00e4: 0x0421,     #  CYRILLIC CAPITAL LETTER ES
    0x00e5: 0x0442,     #  CYRILLIC SMALL LETTER TE
    0x00e6: 0x0422,     #  CYRILLIC CAPITAL LETTER TE
    0x00e7: 0x0443,     #  CYRILLIC SMALL LETTER U
    0x00e8: 0x0423,     #  CYRILLIC CAPITAL LETTER U
    0x00e9: 0x0436,     #  CYRILLIC SMALL LETTER ZHE
    0x00ea: 0x0416,     #  CYRILLIC CAPITAL LETTER ZHE
    0x00eb: 0x0432,     #  CYRILLIC SMALL LETTER VE
    0x00ec: 0x0412,     #  CYRILLIC CAPITAL LETTER VE
    0x00ed: 0x044c,     #  CYRILLIC SMALL LETTER SOFT SIGN
    0x00ee: 0x042c,     #  CYRILLIC CAPITAL LETTER SOFT SIGN
    0x00ef: 0x2116,     #  NUMERO SIGN
    0x00f0: 0x00ad,     #  SOFT HYPHEN
    0x00f1: 0x044b,     #  CYRILLIC SMALL LETTER YERU
    0x00f2: 0x042b,     #  CYRILLIC CAPITAL LETTER YERU
    0x00f3: 0x0437,     #  CYRILLIC SMALL LETTER ZE
    0x00f4: 0x0417,     #  CYRILLIC CAPITAL LETTER ZE
    0x00f5: 0x0448,     #  CYRILLIC SMALL LETTER SHA
    0x00f6: 0x0428,     #  CYRILLIC CAPITAL LETTER SHA
    0x00f7: 0x044d,     #  CYRILLIC SMALL LETTER E
    0x00f8: 0x042d,     #  CYRILLIC CAPITAL LETTER E
    0x00f9: 0x0449,     #  CYRILLIC SMALL LETTER SHCHA
    0x00fa: 0x0429,     #  CYRILLIC CAPITAL LETTER SHCHA
    0x00fb: 0x0447,     #  CYRILLIC SMALL LETTER CHE
    0x00fc: 0x0427,     #  CYRILLIC CAPITAL LETTER CHE
    0x00fd: 0x00a7,     #  SECTION SIGN
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\u0452'   #  0x0080 -> CYRILLIC SMALL LETTER DJE
    '\u0402'   #  0x0081 -> CYRILLIC CAPITAL LETTER DJE
    '\u0453'   #  0x0082 -> CYRILLIC SMALL LETTER GJE
    '\u0403'   #  0x0083 -> CYRILLIC CAPITAL LETTER GJE
    '\u0451'   #  0x0084 -> CYRILLIC SMALL LETTER IO
    '\u0401'   #  0x0085 -> CYRILLIC CAPITAL LETTER IO
    '\u0454'   #  0x0086 -> CYRILLIC SMALL LETTER UKRAINIAN IE
    '\u0404'   #  0x0087 -> CYRILLIC CAPITAL LETTER UKRAINIAN IE
    '\u0455'   #  0x0088 -> CYRILLIC SMALL LETTER DZE
    '\u0405'   #  0x0089 -> CYRILLIC CAPITAL LETTER DZE
    '\u0456'   #  0x008a -> CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0406'   #  0x008b -> CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0457'   #  0x008c -> CYRILLIC SMALL LETTER YI
    '\u0407'   #  0x008d -> CYRILLIC CAPITAL LETTER YI
    '\u0458'   #  0x008e -> CYRILLIC SMALL LETTER JE
    '\u0408'   #  0x008f -> CYRILLIC CAPITAL LETTER JE
    '\u0459'   #  0x0090 -> CYRILLIC SMALL LETTER LJE
    '\u0409'   #  0x0091 -> CYRILLIC CAPITAL LETTER LJE
    '\u045a'   #  0x0092 -> CYRILLIC SMALL LETTER NJE
    '\u040a'   #  0x0093 -> CYRILLIC CAPITAL LETTER NJE
    '\u045b'   #  0x0094 -> CYRILLIC SMALL LETTER TSHE
    '\u040b'   #  0x0095 -> CYRILLIC CAPITAL LETTER TSHE
    '\u045c'   #  0x0096 -> CYRILLIC SMALL LETTER KJE
    '\u040c'   #  0x0097 -> CYRILLIC CAPITAL LETTER KJE
    '\u045e'   #  0x0098 -> CYRILLIC SMALL LETTER SHORT U
    '\u040e'   #  0x0099 -> CYRILLIC CAPITAL LETTER SHORT U
    '\u045f'   #  0x009a -> CYRILLIC SMALL LETTER DZHE
    '\u040f'   #  0x009b -> CYRILLIC CAPITAL LETTER DZHE
    '\u044e'   #  0x009c -> CYRILLIC SMALL LETTER YU
    '\u042e'   #  0x009d -> CYRILLIC CAPITAL LETTER YU
    '\u044a'   #  0x009e -> CYRILLIC SMALL LETTER HARD SIGN
    '\u042a'   #  0x009f -> CYRILLIC CAPITAL LETTER HARD SIGN
    '\u0430'   #  0x00a0 -> CYRILLIC SMALL LETTER A
    '\u0410'   #  0x00a1 -> CYRILLIC CAPITAL LETTER A
    '\u0431'   #  0x00a2 -> CYRILLIC SMALL LETTER BE
    '\u0411'   #  0x00a3 -> CYRILLIC CAPITAL LETTER BE
    '\u0446'   #  0x00a4 -> CYRILLIC SMALL LETTER TSE
    '\u0426'   #  0x00a5 -> CYRILLIC CAPITAL LETTER TSE
    '\u0434'   #  0x00a6 -> CYRILLIC SMALL LETTER DE
    '\u0414'   #  0x00a7 -> CYRILLIC CAPITAL LETTER DE
    '\u0435'   #  0x00a8 -> CYRILLIC SMALL LETTER IE
    '\u0415'   #  0x00a9 -> CYRILLIC CAPITAL LETTER IE
    '\u0444'   #  0x00aa -> CYRILLIC SMALL LETTER EF
    '\u0424'   #  0x00ab -> CYRILLIC CAPITAL LETTER EF
    '\u0433'   #  0x00ac -> CYRILLIC SMALL LETTER GHE
    '\u0413'   #  0x00ad -> CYRILLIC CAPITAL LETTER GHE
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u0445'   #  0x00b5 -> CYRILLIC SMALL LETTER HA
    '\u0425'   #  0x00b6 -> CYRILLIC CAPITAL LETTER HA
    '\u0438'   #  0x00b7 -> CYRILLIC SMALL LETTER I
    '\u0418'   #  0x00b8 -> CYRILLIC CAPITAL LETTER I
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u0439'   #  0x00bd -> CYRILLIC SMALL LETTER SHORT I
    '\u0419'   #  0x00be -> CYRILLIC CAPITAL LETTER SHORT I
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u043a'   #  0x00c6 -> CYRILLIC SMALL LETTER KA
    '\u041a'   #  0x00c7 -> CYRILLIC CAPITAL LETTER KA
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\xa4'     #  0x00cf -> CURRENCY SIGN
    '\u043b'   #  0x00d0 -> CYRILLIC SMALL LETTER EL
    '\u041b'   #  0x00d1 -> CYRILLIC CAPITAL LETTER EL
    '\u043c'   #  0x00d2 -> CYRILLIC SMALL LETTER EM
    '\u041c'   #  0x00d3 -> CYRILLIC CAPITAL LETTER EM
    '\u043d'   #  0x00d4 -> CYRILLIC SMALL LETTER EN
    '\u041d'   #  0x00d5 -> CYRILLIC CAPITAL LETTER EN
    '\u043e'   #  0x00d6 -> CYRILLIC SMALL LETTER O
    '\u041e'   #  0x00d7 -> CYRILLIC CAPITAL LETTER O
    '\u043f'   #  0x00d8 -> CYRILLIC SMALL LETTER PE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u041f'   #  0x00dd -> CYRILLIC CAPITAL LETTER PE
    '\u044f'   #  0x00de -> CYRILLIC SMALL LETTER YA
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u042f'   #  0x00e0 -> CYRILLIC CAPITAL LETTER YA
    '\u0440'   #  0x00e1 -> CYRILLIC SMALL LETTER ER
    '\u0420'   #  0x00e2 -> CYRILLIC CAPITAL LETTER ER
    '\u0441'   #  0x00e3 -> CYRILLIC SMALL LETTER ES
    '\u0421'   #  0x00e4 -> CYRILLIC CAPITAL LETTER ES
    '\u0442'   #  0x00e5 -> CYRILLIC SMALL LETTER TE
    '\u0422'   #  0x00e6 -> CYRILLIC CAPITAL LETTER TE
    '\u0443'   #  0x00e7 -> CYRILLIC SMALL LETTER U
    '\u0423'   #  0x00e8 -> CYRILLIC CAPITAL LETTER U
    '\u0436'   #  0x00e9 -> CYRILLIC SMALL LETTER ZHE
    '\u0416'   #  0x00ea -> CYRILLIC CAPITAL LETTER ZHE
    '\u0432'   #  0x00eb -> CYRILLIC SMALL LETTER VE
    '\u0412'   #  0x00ec -> CYRILLIC CAPITAL LETTER VE
    '\u044c'   #  0x00ed -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u042c'   #  0x00ee -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u2116'   #  0x00ef -> NUMERO SIGN
    '\xad'     #  0x00f0 -> SOFT HYPHEN
    '\u044b'   #  0x00f1 -> CYRILLIC SMALL LETTER YERU
    '\u042b'   #  0x00f2 -> CYRILLIC CAPITAL LETTER YERU
    '\u0437'   #  0x00f3 -> CYRILLIC SMALL LETTER ZE
    '\u0417'   #  0x00f4 -> CYRILLIC CAPITAL LETTER ZE
    '\u0448'   #  0x00f5 -> CYRILLIC SMALL LETTER SHA
    '\u0428'   #  0x00f6 -> CYRILLIC CAPITAL LETTER SHA
    '\u044d'   #  0x00f7 -> CYRILLIC SMALL LETTER E
    '\u042d'   #  0x00f8 -> CYRILLIC CAPITAL LETTER E
    '\u0449'   #  0x00f9 -> CYRILLIC SMALL LETTER SHCHA
    '\u0429'   #  0x00fa -> CYRILLIC CAPITAL LETTER SHCHA
    '\u0447'   #  0x00fb -> CYRILLIC SMALL LETTER CHE
    '\u0427'   #  0x00fc -> CYRILLIC CAPITAL LETTER CHE
    '\xa7'     #  0x00fd -> SECTION SIGN
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a4: 0x00cf,     #  CURRENCY SIGN
    0x00a7: 0x00fd,     #  SECTION SIGN
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ad: 0x00f0,     #  SOFT HYPHEN
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x0401: 0x0085,     #  CYRILLIC CAPITAL LETTER IO
    0x0402: 0x0081,     #  CYRILLIC CAPITAL LETTER DJE
    0x0403: 0x0083,     #  CYRILLIC CAPITAL LETTER GJE
    0x0404: 0x0087,     #  CYRILLIC CAPITAL LETTER UKRAINIAN IE
    0x0405: 0x0089,     #  CYRILLIC CAPITAL LETTER DZE
    0x0406: 0x008b,     #  CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    0x0407: 0x008d,     #  CYRILLIC CAPITAL LETTER YI
    0x0408: 0x008f,     #  CYRILLIC CAPITAL LETTER JE
    0x0409: 0x0091,     #  CYRILLIC CAPITAL LETTER LJE
    0x040a: 0x0093,     #  CYRILLIC CAPITAL LETTER NJE
    0x040b: 0x0095,     #  CYRILLIC CAPITAL LETTER TSHE
    0x040c: 0x0097,     #  CYRILLIC CAPITAL LETTER KJE
    0x040e: 0x0099,     #  CYRILLIC CAPITAL LETTER SHORT U
    0x040f: 0x009b,     #  CYRILLIC CAPITAL LETTER DZHE
    0x0410: 0x00a1,     #  CYRILLIC CAPITAL LETTER A
    0x0411: 0x00a3,     #  CYRILLIC CAPITAL LETTER BE
    0x0412: 0x00ec,     #  CYRILLIC CAPITAL LETTER VE
    0x0413: 0x00ad,     #  CYRILLIC CAPITAL LETTER GHE
    0x0414: 0x00a7,     #  CYRILLIC CAPITAL LETTER DE
    0x0415: 0x00a9,     #  CYRILLIC CAPITAL LETTER IE
    0x0416: 0x00ea,     #  CYRILLIC CAPITAL LETTER ZHE
    0x0417: 0x00f4,     #  CYRILLIC CAPITAL LETTER ZE
    0x0418: 0x00b8,     #  CYRILLIC CAPITAL LETTER I
    0x0419: 0x00be,     #  CYRILLIC CAPITAL LETTER SHORT I
    0x041a: 0x00c7,     #  CYRILLIC CAPITAL LETTER KA
    0x041b: 0x00d1,     #  CYRILLIC CAPITAL LETTER EL
    0x041c: 0x00d3,     #  CYRILLIC CAPITAL LETTER EM
    0x041d: 0x00d5,     #  CYRILLIC CAPITAL LETTER EN
    0x041e: 0x00d7,     #  CYRILLIC CAPITAL LETTER O
    0x041f: 0x00dd,     #  CYRILLIC CAPITAL LETTER PE
    0x0420: 0x00e2,     #  CYRILLIC CAPITAL LETTER ER
    0x0421: 0x00e4,     #  CYRILLIC CAPITAL LETTER ES
    0x0422: 0x00e6,     #  CYRILLIC CAPITAL LETTER TE
    0x0423: 0x00e8,     #  CYRILLIC CAPITAL LETTER U
    0x0424: 0x00ab,     #  CYRILLIC CAPITAL LETTER EF
    0x0425: 0x00b6,     #  CYRILLIC CAPITAL LETTER HA
    0x0426: 0x00a5,     #  CYRILLIC CAPITAL LETTER TSE
    0x0427: 0x00fc,     #  CYRILLIC CAPITAL LETTER CHE
    0x0428: 0x00f6,     #  CYRILLIC CAPITAL LETTER SHA
    0x0429: 0x00fa,     #  CYRILLIC CAPITAL LETTER SHCHA
    0x042a: 0x009f,     #  CYRILLIC CAPITAL LETTER HARD SIGN
    0x042b: 0x00f2,     #  CYRILLIC CAPITAL LETTER YERU
    0x042c: 0x00ee,     #  CYRILLIC CAPITAL LETTER SOFT SIGN
    0x042d: 0x00f8,     #  CYRILLIC CAPITAL LETTER E
    0x042e: 0x009d,     #  CYRILLIC CAPITAL LETTER YU
    0x042f: 0x00e0,     #  CYRILLIC CAPITAL LETTER YA
    0x0430: 0x00a0,     #  CYRILLIC SMALL LETTER A
    0x0431: 0x00a2,     #  CYRILLIC SMALL LETTER BE
    0x0432: 0x00eb,     #  CYRILLIC SMALL LETTER VE
    0x0433: 0x00ac,     #  CYRILLIC SMALL LETTER GHE
    0x0434: 0x00a6,     #  CYRILLIC SMALL LETTER DE
    0x0435: 0x00a8,     #  CYRILLIC SMALL LETTER IE
    0x0436: 0x00e9,     #  CYRILLIC SMALL LETTER ZHE
    0x0437: 0x00f3,     #  CYRILLIC SMALL LETTER ZE
    0x0438: 0x00b7,     #  CYRILLIC SMALL LETTER I
    0x0439: 0x00bd,     #  CYRILLIC SMALL LETTER SHORT I
    0x043a: 0x00c6,     #  CYRILLIC SMALL LETTER KA
    0x043b: 0x00d0,     #  CYRILLIC SMALL LETTER EL
    0x043c: 0x00d2,     #  CYRILLIC SMALL LETTER EM
    0x043d: 0x00d4,     #  CYRILLIC SMALL LETTER EN
    0x043e: 0x00d6,     #  CYRILLIC SMALL LETTER O
    0x043f: 0x00d8,     #  CYRILLIC SMALL LETTER PE
    0x0440: 0x00e1,     #  CYRILLIC SMALL LETTER ER
    0x0441: 0x00e3,     #  CYRILLIC SMALL LETTER ES
    0x0442: 0x00e5,     #  CYRILLIC SMALL LETTER TE
    0x0443: 0x00e7,     #  CYRILLIC SMALL LETTER U
    0x0444: 0x00aa,     #  CYRILLIC SMALL LETTER EF
    0x0445: 0x00b5,     #  CYRILLIC SMALL LETTER HA
    0x0446: 0x00a4,     #  CYRILLIC SMALL LETTER TSE
    0x0447: 0x00fb,     #  CYRILLIC SMALL LETTER CHE
    0x0448: 0x00f5,     #  CYRILLIC SMALL LETTER SHA
    0x0449: 0x00f9,     #  CYRILLIC SMALL LETTER SHCHA
    0x044a: 0x009e,     #  CYRILLIC SMALL LETTER HARD SIGN
    0x044b: 0x00f1,     #  CYRILLIC SMALL LETTER YERU
    0x044c: 0x00ed,     #  CYRILLIC SMALL LETTER SOFT SIGN
    0x044d: 0x00f7,     #  CYRILLIC SMALL LETTER E
    0x044e: 0x009c,     #  CYRILLIC SMALL LETTER YU
    0x044f: 0x00de,     #  CYRILLIC SMALL LETTER YA
    0x0451: 0x0084,     #  CYRILLIC SMALL LETTER IO
    0x0452: 0x0080,     #  CYRILLIC SMALL LETTER DJE
    0x0453: 0x0082,     #  CYRILLIC SMALL LETTER GJE
    0x0454: 0x0086,     #  CYRILLIC SMALL LETTER UKRAINIAN IE
    0x0455: 0x0088,     #  CYRILLIC SMALL LETTER DZE
    0x0456: 0x008a,     #  CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    0x0457: 0x008c,     #  CYRILLIC SMALL LETTER YI
    0x0458: 0x008e,     #  CYRILLIC SMALL LETTER JE
    0x0459: 0x0090,     #  CYRILLIC SMALL LETTER LJE
    0x045a: 0x0092,     #  CYRILLIC SMALL LETTER NJE
    0x045b: 0x0094,     #  CYRILLIC SMALL LETTER TSHE
    0x045c: 0x0096,     #  CYRILLIC SMALL LETTER KJE
    0x045e: 0x0098,     #  CYRILLIC SMALL LETTER SHORT U
    0x045f: 0x009a,     #  CYRILLIC SMALL LETTER DZHE
    0x2116: 0x00ef,     #  NUMERO SIGN
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp856.py
""" Python Character Mapping Codec cp856 generated from 'MAPPINGS/VENDORS/MISC/CP856.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp856',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u05d0'   #  0x80 -> HEBREW LETTER ALEF
    '\u05d1'   #  0x81 -> HEBREW LETTER BET
    '\u05d2'   #  0x82 -> HEBREW LETTER GIMEL
    '\u05d3'   #  0x83 -> HEBREW LETTER DALET
    '\u05d4'   #  0x84 -> HEBREW LETTER HE
    '\u05d5'   #  0x85 -> HEBREW LETTER VAV
    '\u05d6'   #  0x86 -> HEBREW LETTER ZAYIN
    '\u05d7'   #  0x87 -> HEBREW LETTER HET
    '\u05d8'   #  0x88 -> HEBREW LETTER TET
    '\u05d9'   #  0x89 -> HEBREW LETTER YOD
    '\u05da'   #  0x8A -> HEBREW LETTER FINAL KAF
    '\u05db'   #  0x8B -> HEBREW LETTER KAF
    '\u05dc'   #  0x8C -> HEBREW LETTER LAMED
    '\u05dd'   #  0x8D -> HEBREW LETTER FINAL MEM
    '\u05de'   #  0x8E -> HEBREW LETTER MEM
    '\u05df'   #  0x8F -> HEBREW LETTER FINAL NUN
    '\u05e0'   #  0x90 -> HEBREW LETTER NUN
    '\u05e1'   #  0x91 -> HEBREW LETTER SAMEKH
    '\u05e2'   #  0x92 -> HEBREW LETTER AYIN
    '\u05e3'   #  0x93 -> HEBREW LETTER FINAL PE
    '\u05e4'   #  0x94 -> HEBREW LETTER PE
    '\u05e5'   #  0x95 -> HEBREW LETTER FINAL TSADI
    '\u05e6'   #  0x96 -> HEBREW LETTER TSADI
    '\u05e7'   #  0x97 -> HEBREW LETTER QOF
    '\u05e8'   #  0x98 -> HEBREW LETTER RESH
    '\u05e9'   #  0x99 -> HEBREW LETTER SHIN
    '\u05ea'   #  0x9A -> HEBREW LETTER TAV
    '\ufffe'   #  0x9B -> UNDEFINED
    '\xa3'     #  0x9C -> POUND SIGN
    '\ufffe'   #  0x9D -> UNDEFINED
    '\xd7'     #  0x9E -> MULTIPLICATION SIGN
    '\ufffe'   #  0x9F -> UNDEFINED
    '\ufffe'   #  0xA0 -> UNDEFINED
    '\ufffe'   #  0xA1 -> UNDEFINED
    '\ufffe'   #  0xA2 -> UNDEFINED
    '\ufffe'   #  0xA3 -> UNDEFINED
    '\ufffe'   #  0xA4 -> UNDEFINED
    '\ufffe'   #  0xA5 -> UNDEFINED
    '\ufffe'   #  0xA6 -> UNDEFINED
    '\ufffe'   #  0xA7 -> UNDEFINED
    '\ufffe'   #  0xA8 -> UNDEFINED
    '\xae'     #  0xA9 -> REGISTERED SIGN
    '\xac'     #  0xAA -> NOT SIGN
    '\xbd'     #  0xAB -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0xAC -> VULGAR FRACTION ONE QUARTER
    '\ufffe'   #  0xAD -> UNDEFINED
    '\xab'     #  0xAE -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xAF -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0xB0 -> LIGHT SHADE
    '\u2592'   #  0xB1 -> MEDIUM SHADE
    '\u2593'   #  0xB2 -> DARK SHADE
    '\u2502'   #  0xB3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0xB4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\ufffe'   #  0xB5 -> UNDEFINED
    '\ufffe'   #  0xB6 -> UNDEFINED
    '\ufffe'   #  0xB7 -> UNDEFINED
    '\xa9'     #  0xB8 -> COPYRIGHT SIGN
    '\u2563'   #  0xB9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0xBA -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0xBB -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0xBC -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\xa2'     #  0xBD -> CENT SIGN
    '\xa5'     #  0xBE -> YEN SIGN
    '\u2510'   #  0xBF -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0xC0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0xC1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0xC2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0xC3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0xC4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0xC5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\ufffe'   #  0xC6 -> UNDEFINED
    '\ufffe'   #  0xC7 -> UNDEFINED
    '\u255a'   #  0xC8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0xC9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0xCA -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0xCB -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0xCC -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0xCD -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0xCE -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\xa4'     #  0xCF -> CURRENCY SIGN
    '\ufffe'   #  0xD0 -> UNDEFINED
    '\ufffe'   #  0xD1 -> UNDEFINED
    '\ufffe'   #  0xD2 -> UNDEFINED
    '\ufffe'   #  0xD3 -> UNDEFINEDS
    '\ufffe'   #  0xD4 -> UNDEFINED
    '\ufffe'   #  0xD5 -> UNDEFINED
    '\ufffe'   #  0xD6 -> UNDEFINEDE
    '\ufffe'   #  0xD7 -> UNDEFINED
    '\ufffe'   #  0xD8 -> UNDEFINED
    '\u2518'   #  0xD9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0xDA -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0xDB -> FULL BLOCK
    '\u2584'   #  0xDC -> LOWER HALF BLOCK
    '\xa6'     #  0xDD -> BROKEN BAR
    '\ufffe'   #  0xDE -> UNDEFINED
    '\u2580'   #  0xDF -> UPPER HALF BLOCK
    '\ufffe'   #  0xE0 -> UNDEFINED
    '\ufffe'   #  0xE1 -> UNDEFINED
    '\ufffe'   #  0xE2 -> UNDEFINED
    '\ufffe'   #  0xE3 -> UNDEFINED
    '\ufffe'   #  0xE4 -> UNDEFINED
    '\ufffe'   #  0xE5 -> UNDEFINED
    '\xb5'     #  0xE6 -> MICRO SIGN
    '\ufffe'   #  0xE7 -> UNDEFINED
    '\ufffe'   #  0xE8 -> UNDEFINED
    '\ufffe'   #  0xE9 -> UNDEFINED
    '\ufffe'   #  0xEA -> UNDEFINED
    '\ufffe'   #  0xEB -> UNDEFINED
    '\ufffe'   #  0xEC -> UNDEFINED
    '\ufffe'   #  0xED -> UNDEFINED
    '\xaf'     #  0xEE -> MACRON
    '\xb4'     #  0xEF -> ACUTE ACCENT
    '\xad'     #  0xF0 -> SOFT HYPHEN
    '\xb1'     #  0xF1 -> PLUS-MINUS SIGN
    '\u2017'   #  0xF2 -> DOUBLE LOW LINE
    '\xbe'     #  0xF3 -> VULGAR FRACTION THREE QUARTERS
    '\xb6'     #  0xF4 -> PILCROW SIGN
    '\xa7'     #  0xF5 -> SECTION SIGN
    '\xf7'     #  0xF6 -> DIVISION SIGN
    '\xb8'     #  0xF7 -> CEDILLA
    '\xb0'     #  0xF8 -> DEGREE SIGN
    '\xa8'     #  0xF9 -> DIAERESIS
    '\xb7'     #  0xFA -> MIDDLE DOT
    '\xb9'     #  0xFB -> SUPERSCRIPT ONE
    '\xb3'     #  0xFC -> SUPERSCRIPT THREE
    '\xb2'     #  0xFD -> SUPERSCRIPT TWO
    '\u25a0'   #  0xFE -> BLACK SQUARE
    '\xa0'     #  0xFF -> NO-BREAK SPACE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp857.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP857.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp857',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x0085: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0086: 0x00e5,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0089: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x008a: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x008b: 0x00ef,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x008c: 0x00ee,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x008d: 0x0131,     #  LATIN SMALL LETTER DOTLESS I
    0x008e: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x008f: 0x00c5,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00e6,     #  LATIN SMALL LIGATURE AE
    0x0092: 0x00c6,     #  LATIN CAPITAL LIGATURE AE
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x0095: 0x00f2,     #  LATIN SMALL LETTER O WITH GRAVE
    0x0096: 0x00fb,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x0097: 0x00f9,     #  LATIN SMALL LETTER U WITH GRAVE
    0x0098: 0x0130,     #  LATIN CAPITAL LETTER I WITH DOT ABOVE
    0x0099: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00f8,     #  LATIN SMALL LETTER O WITH STROKE
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00d8,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x009e: 0x015e,     #  LATIN CAPITAL LETTER S WITH CEDILLA
    0x009f: 0x015f,     #  LATIN SMALL LETTER S WITH CEDILLA
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00f1,     #  LATIN SMALL LETTER N WITH TILDE
    0x00a5: 0x00d1,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00a6: 0x011e,     #  LATIN CAPITAL LETTER G WITH BREVE
    0x00a7: 0x011f,     #  LATIN SMALL LETTER G WITH BREVE
    0x00a8: 0x00bf,     #  INVERTED QUESTION MARK
    0x00a9: 0x00ae,     #  REGISTERED SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00a1,     #  INVERTED EXCLAMATION MARK
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x00c1,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00b6: 0x00c2,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00b7: 0x00c0,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x00b8: 0x00a9,     #  COPYRIGHT SIGN
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x00a2,     #  CENT SIGN
    0x00be: 0x00a5,     #  YEN SIGN
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x00e3,     #  LATIN SMALL LETTER A WITH TILDE
    0x00c7: 0x00c3,     #  LATIN CAPITAL LETTER A WITH TILDE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x00a4,     #  CURRENCY SIGN
    0x00d0: 0x00ba,     #  MASCULINE ORDINAL INDICATOR
    0x00d1: 0x00aa,     #  FEMININE ORDINAL INDICATOR
    0x00d2: 0x00ca,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x00d3: 0x00cb,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00d4: 0x00c8,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x00d5: None,       #  UNDEFINED
    0x00d6: 0x00cd,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00d7: 0x00ce,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00d8: 0x00cf,     #  LATIN CAPITAL LETTER I WITH DIAERESIS
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x00a6,     #  BROKEN BAR
    0x00de: 0x00cc,     #  LATIN CAPITAL LETTER I WITH GRAVE
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x00d3,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x00d4,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00e3: 0x00d2,     #  LATIN CAPITAL LETTER O WITH GRAVE
    0x00e4: 0x00f5,     #  LATIN SMALL LETTER O WITH TILDE
    0x00e5: 0x00d5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: None,       #  UNDEFINED
    0x00e8: 0x00d7,     #  MULTIPLICATION SIGN
    0x00e9: 0x00da,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00ea: 0x00db,     #  LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    0x00eb: 0x00d9,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x00ed: 0x00ff,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x00ee: 0x00af,     #  MACRON
    0x00ef: 0x00b4,     #  ACUTE ACCENT
    0x00f0: 0x00ad,     #  SOFT HYPHEN
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: None,       #  UNDEFINED
    0x00f3: 0x00be,     #  VULGAR FRACTION THREE QUARTERS
    0x00f4: 0x00b6,     #  PILCROW SIGN
    0x00f5: 0x00a7,     #  SECTION SIGN
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x00b8,     #  CEDILLA
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x00a8,     #  DIAERESIS
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x00b9,     #  SUPERSCRIPT ONE
    0x00fc: 0x00b3,     #  SUPERSCRIPT THREE
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x0085 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe5'     #  0x0086 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'     #  0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x008a -> LATIN SMALL LETTER E WITH GRAVE
    '\xef'     #  0x008b -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xee'     #  0x008c -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\u0131'   #  0x008d -> LATIN SMALL LETTER DOTLESS I
    '\xc4'     #  0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x008f -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xe6'     #  0x0091 -> LATIN SMALL LIGATURE AE
    '\xc6'     #  0x0092 -> LATIN CAPITAL LIGATURE AE
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf2'     #  0x0095 -> LATIN SMALL LETTER O WITH GRAVE
    '\xfb'     #  0x0096 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xf9'     #  0x0097 -> LATIN SMALL LETTER U WITH GRAVE
    '\u0130'   #  0x0098 -> LATIN CAPITAL LETTER I WITH DOT ABOVE
    '\xd6'     #  0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xf8'     #  0x009b -> LATIN SMALL LETTER O WITH STROKE
    '\xa3'     #  0x009c -> POUND SIGN
    '\xd8'     #  0x009d -> LATIN CAPITAL LETTER O WITH STROKE
    '\u015e'   #  0x009e -> LATIN CAPITAL LETTER S WITH CEDILLA
    '\u015f'   #  0x009f -> LATIN SMALL LETTER S WITH CEDILLA
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xf1'     #  0x00a4 -> LATIN SMALL LETTER N WITH TILDE
    '\xd1'     #  0x00a5 -> LATIN CAPITAL LETTER N WITH TILDE
    '\u011e'   #  0x00a6 -> LATIN CAPITAL LETTER G WITH BREVE
    '\u011f'   #  0x00a7 -> LATIN SMALL LETTER G WITH BREVE
    '\xbf'     #  0x00a8 -> INVERTED QUESTION MARK
    '\xae'     #  0x00a9 -> REGISTERED SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xa1'     #  0x00ad -> INVERTED EXCLAMATION MARK
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\xc1'     #  0x00b5 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0x00b6 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc0'     #  0x00b7 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xa9'     #  0x00b8 -> COPYRIGHT SIGN
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\xa2'     #  0x00bd -> CENT SIGN
    '\xa5'     #  0x00be -> YEN SIGN
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\xe3'     #  0x00c6 -> LATIN SMALL LETTER A WITH TILDE
    '\xc3'     #  0x00c7 -> LATIN CAPITAL LETTER A WITH TILDE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\xa4'     #  0x00cf -> CURRENCY SIGN
    '\xba'     #  0x00d0 -> MASCULINE ORDINAL INDICATOR
    '\xaa'     #  0x00d1 -> FEMININE ORDINAL INDICATOR
    '\xca'     #  0x00d2 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0x00d3 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0x00d4 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\ufffe'   #  0x00d5 -> UNDEFINED
    '\xcd'     #  0x00d6 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0x00d7 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0x00d8 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\xa6'     #  0x00dd -> BROKEN BAR
    '\xcc'     #  0x00de -> LATIN CAPITAL LETTER I WITH GRAVE
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\xd3'     #  0x00e0 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\xd4'     #  0x00e2 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd2'     #  0x00e3 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xf5'     #  0x00e4 -> LATIN SMALL LETTER O WITH TILDE
    '\xd5'     #  0x00e5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\ufffe'   #  0x00e7 -> UNDEFINED
    '\xd7'     #  0x00e8 -> MULTIPLICATION SIGN
    '\xda'     #  0x00e9 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0x00ea -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xd9'     #  0x00eb -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xec'     #  0x00ec -> LATIN SMALL LETTER I WITH GRAVE
    '\xff'     #  0x00ed -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\xaf'     #  0x00ee -> MACRON
    '\xb4'     #  0x00ef -> ACUTE ACCENT
    '\xad'     #  0x00f0 -> SOFT HYPHEN
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\ufffe'   #  0x00f2 -> UNDEFINED
    '\xbe'     #  0x00f3 -> VULGAR FRACTION THREE QUARTERS
    '\xb6'     #  0x00f4 -> PILCROW SIGN
    '\xa7'     #  0x00f5 -> SECTION SIGN
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\xb8'     #  0x00f7 -> CEDILLA
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\xa8'     #  0x00f9 -> DIAERESIS
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\xb9'     #  0x00fb -> SUPERSCRIPT ONE
    '\xb3'     #  0x00fc -> SUPERSCRIPT THREE
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a1: 0x00ad,     #  INVERTED EXCLAMATION MARK
    0x00a2: 0x00bd,     #  CENT SIGN
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a4: 0x00cf,     #  CURRENCY SIGN
    0x00a5: 0x00be,     #  YEN SIGN
    0x00a6: 0x00dd,     #  BROKEN BAR
    0x00a7: 0x00f5,     #  SECTION SIGN
    0x00a8: 0x00f9,     #  DIAERESIS
    0x00a9: 0x00b8,     #  COPYRIGHT SIGN
    0x00aa: 0x00d1,     #  FEMININE ORDINAL INDICATOR
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00ad: 0x00f0,     #  SOFT HYPHEN
    0x00ae: 0x00a9,     #  REGISTERED SIGN
    0x00af: 0x00ee,     #  MACRON
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b3: 0x00fc,     #  SUPERSCRIPT THREE
    0x00b4: 0x00ef,     #  ACUTE ACCENT
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b6: 0x00f4,     #  PILCROW SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00b8: 0x00f7,     #  CEDILLA
    0x00b9: 0x00fb,     #  SUPERSCRIPT ONE
    0x00ba: 0x00d0,     #  MASCULINE ORDINAL INDICATOR
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00be: 0x00f3,     #  VULGAR FRACTION THREE QUARTERS
    0x00bf: 0x00a8,     #  INVERTED QUESTION MARK
    0x00c0: 0x00b7,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x00c1: 0x00b5,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00c2: 0x00b6,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00c3: 0x00c7,     #  LATIN CAPITAL LETTER A WITH TILDE
    0x00c4: 0x008e,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c5: 0x008f,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x00c6: 0x0092,     #  LATIN CAPITAL LIGATURE AE
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c8: 0x00d4,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00ca: 0x00d2,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x00cb: 0x00d3,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00cc: 0x00de,     #  LATIN CAPITAL LETTER I WITH GRAVE
    0x00cd: 0x00d6,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00ce: 0x00d7,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00cf: 0x00d8,     #  LATIN CAPITAL LETTER I WITH DIAERESIS
    0x00d1: 0x00a5,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00d2: 0x00e3,     #  LATIN CAPITAL LETTER O WITH GRAVE
    0x00d3: 0x00e0,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00d4: 0x00e2,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00d5: 0x00e5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00d6: 0x0099,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00d7: 0x00e8,     #  MULTIPLICATION SIGN
    0x00d8: 0x009d,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x00d9: 0x00eb,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x00da: 0x00e9,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00db: 0x00ea,     #  LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e0: 0x0085,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e3: 0x00c6,     #  LATIN SMALL LETTER A WITH TILDE
    0x00e4: 0x0084,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e5: 0x0086,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x00e6: 0x0091,     #  LATIN SMALL LIGATURE AE
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008a,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0088,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00eb: 0x0089,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ec: 0x00ec,     #  LATIN SMALL LETTER I WITH GRAVE
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00ee: 0x008c,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x00ef: 0x008b,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x00f1: 0x00a4,     #  LATIN SMALL LETTER N WITH TILDE
    0x00f2: 0x0095,     #  LATIN SMALL LETTER O WITH GRAVE
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f5: 0x00e4,     #  LATIN SMALL LETTER O WITH TILDE
    0x00f6: 0x0094,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f8: 0x009b,     #  LATIN SMALL LETTER O WITH STROKE
    0x00f9: 0x0097,     #  LATIN SMALL LETTER U WITH GRAVE
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fb: 0x0096,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x00ff: 0x00ed,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x011e: 0x00a6,     #  LATIN CAPITAL LETTER G WITH BREVE
    0x011f: 0x00a7,     #  LATIN SMALL LETTER G WITH BREVE
    0x0130: 0x0098,     #  LATIN CAPITAL LETTER I WITH DOT ABOVE
    0x0131: 0x008d,     #  LATIN SMALL LETTER DOTLESS I
    0x015e: 0x009e,     #  LATIN CAPITAL LETTER S WITH CEDILLA
    0x015f: 0x009f,     #  LATIN SMALL LETTER S WITH CEDILLA
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp858.py
""" Python Character Mapping Codec for CP858, modified from cp850.

"""

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp858',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x0085: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0086: 0x00e5,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0089: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x008a: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x008b: 0x00ef,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x008c: 0x00ee,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x008d: 0x00ec,     #  LATIN SMALL LETTER I WITH GRAVE
    0x008e: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x008f: 0x00c5,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00e6,     #  LATIN SMALL LIGATURE AE
    0x0092: 0x00c6,     #  LATIN CAPITAL LIGATURE AE
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x0095: 0x00f2,     #  LATIN SMALL LETTER O WITH GRAVE
    0x0096: 0x00fb,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x0097: 0x00f9,     #  LATIN SMALL LETTER U WITH GRAVE
    0x0098: 0x00ff,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x0099: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00f8,     #  LATIN SMALL LETTER O WITH STROKE
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00d8,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x009e: 0x00d7,     #  MULTIPLICATION SIGN
    0x009f: 0x0192,     #  LATIN SMALL LETTER F WITH HOOK
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00f1,     #  LATIN SMALL LETTER N WITH TILDE
    0x00a5: 0x00d1,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00a6: 0x00aa,     #  FEMININE ORDINAL INDICATOR
    0x00a7: 0x00ba,     #  MASCULINE ORDINAL INDICATOR
    0x00a8: 0x00bf,     #  INVERTED QUESTION MARK
    0x00a9: 0x00ae,     #  REGISTERED SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00a1,     #  INVERTED EXCLAMATION MARK
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x00c1,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00b6: 0x00c2,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00b7: 0x00c0,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x00b8: 0x00a9,     #  COPYRIGHT SIGN
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x00a2,     #  CENT SIGN
    0x00be: 0x00a5,     #  YEN SIGN
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x00e3,     #  LATIN SMALL LETTER A WITH TILDE
    0x00c7: 0x00c3,     #  LATIN CAPITAL LETTER A WITH TILDE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x00a4,     #  CURRENCY SIGN
    0x00d0: 0x00f0,     #  LATIN SMALL LETTER ETH
    0x00d1: 0x00d0,     #  LATIN CAPITAL LETTER ETH
    0x00d2: 0x00ca,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x00d3: 0x00cb,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00d4: 0x00c8,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x00d5: 0x20ac,     #  EURO SIGN
    0x00d6: 0x00cd,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00d7: 0x00ce,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00d8: 0x00cf,     #  LATIN CAPITAL LETTER I WITH DIAERESIS
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x00a6,     #  BROKEN BAR
    0x00de: 0x00cc,     #  LATIN CAPITAL LETTER I WITH GRAVE
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x00d3,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x00d4,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00e3: 0x00d2,     #  LATIN CAPITAL LETTER O WITH GRAVE
    0x00e4: 0x00f5,     #  LATIN SMALL LETTER O WITH TILDE
    0x00e5: 0x00d5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x00fe,     #  LATIN SMALL LETTER THORN
    0x00e8: 0x00de,     #  LATIN CAPITAL LETTER THORN
    0x00e9: 0x00da,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00ea: 0x00db,     #  LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    0x00eb: 0x00d9,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x00ec: 0x00fd,     #  LATIN SMALL LETTER Y WITH ACUTE
    0x00ed: 0x00dd,     #  LATIN CAPITAL LETTER Y WITH ACUTE
    0x00ee: 0x00af,     #  MACRON
    0x00ef: 0x00b4,     #  ACUTE ACCENT
    0x00f0: 0x00ad,     #  SOFT HYPHEN
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2017,     #  DOUBLE LOW LINE
    0x00f3: 0x00be,     #  VULGAR FRACTION THREE QUARTERS
    0x00f4: 0x00b6,     #  PILCROW SIGN
    0x00f5: 0x00a7,     #  SECTION SIGN
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x00b8,     #  CEDILLA
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x00a8,     #  DIAERESIS
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x00b9,     #  SUPERSCRIPT ONE
    0x00fc: 0x00b3,     #  SUPERSCRIPT THREE
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x0085 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe5'     #  0x0086 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'     #  0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x008a -> LATIN SMALL LETTER E WITH GRAVE
    '\xef'     #  0x008b -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xee'     #  0x008c -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xec'     #  0x008d -> LATIN SMALL LETTER I WITH GRAVE
    '\xc4'     #  0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x008f -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xe6'     #  0x0091 -> LATIN SMALL LIGATURE AE
    '\xc6'     #  0x0092 -> LATIN CAPITAL LIGATURE AE
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf2'     #  0x0095 -> LATIN SMALL LETTER O WITH GRAVE
    '\xfb'     #  0x0096 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xf9'     #  0x0097 -> LATIN SMALL LETTER U WITH GRAVE
    '\xff'     #  0x0098 -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\xd6'     #  0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xf8'     #  0x009b -> LATIN SMALL LETTER O WITH STROKE
    '\xa3'     #  0x009c -> POUND SIGN
    '\xd8'     #  0x009d -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd7'     #  0x009e -> MULTIPLICATION SIGN
    '\u0192'   #  0x009f -> LATIN SMALL LETTER F WITH HOOK
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xf1'     #  0x00a4 -> LATIN SMALL LETTER N WITH TILDE
    '\xd1'     #  0x00a5 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xaa'     #  0x00a6 -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x00a7 -> MASCULINE ORDINAL INDICATOR
    '\xbf'     #  0x00a8 -> INVERTED QUESTION MARK
    '\xae'     #  0x00a9 -> REGISTERED SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xa1'     #  0x00ad -> INVERTED EXCLAMATION MARK
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\xc1'     #  0x00b5 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0x00b6 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc0'     #  0x00b7 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xa9'     #  0x00b8 -> COPYRIGHT SIGN
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\xa2'     #  0x00bd -> CENT SIGN
    '\xa5'     #  0x00be -> YEN SIGN
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\xe3'     #  0x00c6 -> LATIN SMALL LETTER A WITH TILDE
    '\xc3'     #  0x00c7 -> LATIN CAPITAL LETTER A WITH TILDE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\xa4'     #  0x00cf -> CURRENCY SIGN
    '\xf0'     #  0x00d0 -> LATIN SMALL LETTER ETH
    '\xd0'     #  0x00d1 -> LATIN CAPITAL LETTER ETH
    '\xca'     #  0x00d2 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0x00d3 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0x00d4 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\u20ac'   #  0x00d5 -> EURO SIGN
    '\xcd'     #  0x00d6 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0x00d7 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0x00d8 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\xa6'     #  0x00dd -> BROKEN BAR
    '\xcc'     #  0x00de -> LATIN CAPITAL LETTER I WITH GRAVE
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\xd3'     #  0x00e0 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\xd4'     #  0x00e2 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd2'     #  0x00e3 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xf5'     #  0x00e4 -> LATIN SMALL LETTER O WITH TILDE
    '\xd5'     #  0x00e5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\xfe'     #  0x00e7 -> LATIN SMALL LETTER THORN
    '\xde'     #  0x00e8 -> LATIN CAPITAL LETTER THORN
    '\xda'     #  0x00e9 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0x00ea -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xd9'     #  0x00eb -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xfd'     #  0x00ec -> LATIN SMALL LETTER Y WITH ACUTE
    '\xdd'     #  0x00ed -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xaf'     #  0x00ee -> MACRON
    '\xb4'     #  0x00ef -> ACUTE ACCENT
    '\xad'     #  0x00f0 -> SOFT HYPHEN
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2017'   #  0x00f2 -> DOUBLE LOW LINE
    '\xbe'     #  0x00f3 -> VULGAR FRACTION THREE QUARTERS
    '\xb6'     #  0x00f4 -> PILCROW SIGN
    '\xa7'     #  0x00f5 -> SECTION SIGN
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\xb8'     #  0x00f7 -> CEDILLA
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\xa8'     #  0x00f9 -> DIAERESIS
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\xb9'     #  0x00fb -> SUPERSCRIPT ONE
    '\xb3'     #  0x00fc -> SUPERSCRIPT THREE
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a1: 0x00ad,     #  INVERTED EXCLAMATION MARK
    0x00a2: 0x00bd,     #  CENT SIGN
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a4: 0x00cf,     #  CURRENCY SIGN
    0x00a5: 0x00be,     #  YEN SIGN
    0x00a6: 0x00dd,     #  BROKEN BAR
    0x00a7: 0x00f5,     #  SECTION SIGN
    0x00a8: 0x00f9,     #  DIAERESIS
    0x00a9: 0x00b8,     #  COPYRIGHT SIGN
    0x00aa: 0x00a6,     #  FEMININE ORDINAL INDICATOR
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00ad: 0x00f0,     #  SOFT HYPHEN
    0x00ae: 0x00a9,     #  REGISTERED SIGN
    0x00af: 0x00ee,     #  MACRON
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b3: 0x00fc,     #  SUPERSCRIPT THREE
    0x00b4: 0x00ef,     #  ACUTE ACCENT
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b6: 0x00f4,     #  PILCROW SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00b8: 0x00f7,     #  CEDILLA
    0x00b9: 0x00fb,     #  SUPERSCRIPT ONE
    0x00ba: 0x00a7,     #  MASCULINE ORDINAL INDICATOR
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00be: 0x00f3,     #  VULGAR FRACTION THREE QUARTERS
    0x00bf: 0x00a8,     #  INVERTED QUESTION MARK
    0x00c0: 0x00b7,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x00c1: 0x00b5,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00c2: 0x00b6,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00c3: 0x00c7,     #  LATIN CAPITAL LETTER A WITH TILDE
    0x00c4: 0x008e,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c5: 0x008f,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x00c6: 0x0092,     #  LATIN CAPITAL LIGATURE AE
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c8: 0x00d4,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00ca: 0x00d2,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x00cb: 0x00d3,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00cc: 0x00de,     #  LATIN CAPITAL LETTER I WITH GRAVE
    0x00cd: 0x00d6,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00ce: 0x00d7,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00cf: 0x00d8,     #  LATIN CAPITAL LETTER I WITH DIAERESIS
    0x00d0: 0x00d1,     #  LATIN CAPITAL LETTER ETH
    0x00d1: 0x00a5,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00d2: 0x00e3,     #  LATIN CAPITAL LETTER O WITH GRAVE
    0x00d3: 0x00e0,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00d4: 0x00e2,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00d5: 0x00e5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00d6: 0x0099,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00d7: 0x009e,     #  MULTIPLICATION SIGN
    0x00d8: 0x009d,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x00d9: 0x00eb,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x00da: 0x00e9,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00db: 0x00ea,     #  LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00dd: 0x00ed,     #  LATIN CAPITAL LETTER Y WITH ACUTE
    0x00de: 0x00e8,     #  LATIN CAPITAL LETTER THORN
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e0: 0x0085,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e3: 0x00c6,     #  LATIN SMALL LETTER A WITH TILDE
    0x00e4: 0x0084,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e5: 0x0086,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x00e6: 0x0091,     #  LATIN SMALL LIGATURE AE
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008a,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0088,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00eb: 0x0089,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ec: 0x008d,     #  LATIN SMALL LETTER I WITH GRAVE
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00ee: 0x008c,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x00ef: 0x008b,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x00f0: 0x00d0,     #  LATIN SMALL LETTER ETH
    0x00f1: 0x00a4,     #  LATIN SMALL LETTER N WITH TILDE
    0x00f2: 0x0095,     #  LATIN SMALL LETTER O WITH GRAVE
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f5: 0x00e4,     #  LATIN SMALL LETTER O WITH TILDE
    0x00f6: 0x0094,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f8: 0x009b,     #  LATIN SMALL LETTER O WITH STROKE
    0x00f9: 0x0097,     #  LATIN SMALL LETTER U WITH GRAVE
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fb: 0x0096,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x00fd: 0x00ec,     #  LATIN SMALL LETTER Y WITH ACUTE
    0x00fe: 0x00e7,     #  LATIN SMALL LETTER THORN
    0x00ff: 0x0098,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x20ac: 0x00d5,     #  EURO SIGN
    0x0192: 0x009f,     #  LATIN SMALL LETTER F WITH HOOK
    0x2017: 0x00f2,     #  DOUBLE LOW LINE
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp860.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP860.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp860',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00e3,     #  LATIN SMALL LETTER A WITH TILDE
    0x0085: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0086: 0x00c1,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0089: 0x00ca,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x008a: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x008b: 0x00cd,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x008c: 0x00d4,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x008d: 0x00ec,     #  LATIN SMALL LETTER I WITH GRAVE
    0x008e: 0x00c3,     #  LATIN CAPITAL LETTER A WITH TILDE
    0x008f: 0x00c2,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00c0,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x0092: 0x00c8,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00f5,     #  LATIN SMALL LETTER O WITH TILDE
    0x0095: 0x00f2,     #  LATIN SMALL LETTER O WITH GRAVE
    0x0096: 0x00da,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x0097: 0x00f9,     #  LATIN SMALL LETTER U WITH GRAVE
    0x0098: 0x00cc,     #  LATIN CAPITAL LETTER I WITH GRAVE
    0x0099: 0x00d5,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00a2,     #  CENT SIGN
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00d9,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x009e: 0x20a7,     #  PESETA SIGN
    0x009f: 0x00d3,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00f1,     #  LATIN SMALL LETTER N WITH TILDE
    0x00a5: 0x00d1,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00a6: 0x00aa,     #  FEMININE ORDINAL INDICATOR
    0x00a7: 0x00ba,     #  MASCULINE ORDINAL INDICATOR
    0x00a8: 0x00bf,     #  INVERTED QUESTION MARK
    0x00a9: 0x00d2,     #  LATIN CAPITAL LETTER O WITH GRAVE
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00a1,     #  INVERTED EXCLAMATION MARK
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x03b1,     #  GREEK SMALL LETTER ALPHA
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x0393,     #  GREEK CAPITAL LETTER GAMMA
    0x00e3: 0x03c0,     #  GREEK SMALL LETTER PI
    0x00e4: 0x03a3,     #  GREEK CAPITAL LETTER SIGMA
    0x00e5: 0x03c3,     #  GREEK SMALL LETTER SIGMA
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x03c4,     #  GREEK SMALL LETTER TAU
    0x00e8: 0x03a6,     #  GREEK CAPITAL LETTER PHI
    0x00e9: 0x0398,     #  GREEK CAPITAL LETTER THETA
    0x00ea: 0x03a9,     #  GREEK CAPITAL LETTER OMEGA
    0x00eb: 0x03b4,     #  GREEK SMALL LETTER DELTA
    0x00ec: 0x221e,     #  INFINITY
    0x00ed: 0x03c6,     #  GREEK SMALL LETTER PHI
    0x00ee: 0x03b5,     #  GREEK SMALL LETTER EPSILON
    0x00ef: 0x2229,     #  INTERSECTION
    0x00f0: 0x2261,     #  IDENTICAL TO
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2265,     #  GREATER-THAN OR EQUAL TO
    0x00f3: 0x2264,     #  LESS-THAN OR EQUAL TO
    0x00f4: 0x2320,     #  TOP HALF INTEGRAL
    0x00f5: 0x2321,     #  BOTTOM HALF INTEGRAL
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x2248,     #  ALMOST EQUAL TO
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x207f,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0x0084 -> LATIN SMALL LETTER A WITH TILDE
    '\xe0'     #  0x0085 -> LATIN SMALL LETTER A WITH GRAVE
    '\xc1'     #  0x0086 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'     #  0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xca'     #  0x0089 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xe8'     #  0x008a -> LATIN SMALL LETTER E WITH GRAVE
    '\xcd'     #  0x008b -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xd4'     #  0x008c -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xec'     #  0x008d -> LATIN SMALL LETTER I WITH GRAVE
    '\xc3'     #  0x008e -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc2'     #  0x008f -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xc0'     #  0x0091 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc8'     #  0x0092 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0x0094 -> LATIN SMALL LETTER O WITH TILDE
    '\xf2'     #  0x0095 -> LATIN SMALL LETTER O WITH GRAVE
    '\xda'     #  0x0096 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xf9'     #  0x0097 -> LATIN SMALL LETTER U WITH GRAVE
    '\xcc'     #  0x0098 -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xd5'     #  0x0099 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xa2'     #  0x009b -> CENT SIGN
    '\xa3'     #  0x009c -> POUND SIGN
    '\xd9'     #  0x009d -> LATIN CAPITAL LETTER U WITH GRAVE
    '\u20a7'   #  0x009e -> PESETA SIGN
    '\xd3'     #  0x009f -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xf1'     #  0x00a4 -> LATIN SMALL LETTER N WITH TILDE
    '\xd1'     #  0x00a5 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xaa'     #  0x00a6 -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x00a7 -> MASCULINE ORDINAL INDICATOR
    '\xbf'     #  0x00a8 -> INVERTED QUESTION MARK
    '\xd2'     #  0x00a9 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xa1'     #  0x00ad -> INVERTED EXCLAMATION MARK
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u03b1'   #  0x00e0 -> GREEK SMALL LETTER ALPHA
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\u0393'   #  0x00e2 -> GREEK CAPITAL LETTER GAMMA
    '\u03c0'   #  0x00e3 -> GREEK SMALL LETTER PI
    '\u03a3'   #  0x00e4 -> GREEK CAPITAL LETTER SIGMA
    '\u03c3'   #  0x00e5 -> GREEK SMALL LETTER SIGMA
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\u03c4'   #  0x00e7 -> GREEK SMALL LETTER TAU
    '\u03a6'   #  0x00e8 -> GREEK CAPITAL LETTER PHI
    '\u0398'   #  0x00e9 -> GREEK CAPITAL LETTER THETA
    '\u03a9'   #  0x00ea -> GREEK CAPITAL LETTER OMEGA
    '\u03b4'   #  0x00eb -> GREEK SMALL LETTER DELTA
    '\u221e'   #  0x00ec -> INFINITY
    '\u03c6'   #  0x00ed -> GREEK SMALL LETTER PHI
    '\u03b5'   #  0x00ee -> GREEK SMALL LETTER EPSILON
    '\u2229'   #  0x00ef -> INTERSECTION
    '\u2261'   #  0x00f0 -> IDENTICAL TO
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2265'   #  0x00f2 -> GREATER-THAN OR EQUAL TO
    '\u2264'   #  0x00f3 -> LESS-THAN OR EQUAL TO
    '\u2320'   #  0x00f4 -> TOP HALF INTEGRAL
    '\u2321'   #  0x00f5 -> BOTTOM HALF INTEGRAL
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\u2248'   #  0x00f7 -> ALMOST EQUAL TO
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u207f'   #  0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a1: 0x00ad,     #  INVERTED EXCLAMATION MARK
    0x00a2: 0x009b,     #  CENT SIGN
    0x00a3: 0x009c,     #  POUND SIGN
    0x00aa: 0x00a6,     #  FEMININE ORDINAL INDICATOR
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00ba: 0x00a7,     #  MASCULINE ORDINAL INDICATOR
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00bf: 0x00a8,     #  INVERTED QUESTION MARK
    0x00c0: 0x0091,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x00c1: 0x0086,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00c2: 0x008f,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00c3: 0x008e,     #  LATIN CAPITAL LETTER A WITH TILDE
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c8: 0x0092,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00ca: 0x0089,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x00cc: 0x0098,     #  LATIN CAPITAL LETTER I WITH GRAVE
    0x00cd: 0x008b,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00d1: 0x00a5,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00d2: 0x00a9,     #  LATIN CAPITAL LETTER O WITH GRAVE
    0x00d3: 0x009f,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00d4: 0x008c,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00d5: 0x0099,     #  LATIN CAPITAL LETTER O WITH TILDE
    0x00d9: 0x009d,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x00da: 0x0096,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e0: 0x0085,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e3: 0x0084,     #  LATIN SMALL LETTER A WITH TILDE
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008a,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0088,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00ec: 0x008d,     #  LATIN SMALL LETTER I WITH GRAVE
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00f1: 0x00a4,     #  LATIN SMALL LETTER N WITH TILDE
    0x00f2: 0x0095,     #  LATIN SMALL LETTER O WITH GRAVE
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f5: 0x0094,     #  LATIN SMALL LETTER O WITH TILDE
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f9: 0x0097,     #  LATIN SMALL LETTER U WITH GRAVE
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0393: 0x00e2,     #  GREEK CAPITAL LETTER GAMMA
    0x0398: 0x00e9,     #  GREEK CAPITAL LETTER THETA
    0x03a3: 0x00e4,     #  GREEK CAPITAL LETTER SIGMA
    0x03a6: 0x00e8,     #  GREEK CAPITAL LETTER PHI
    0x03a9: 0x00ea,     #  GREEK CAPITAL LETTER OMEGA
    0x03b1: 0x00e0,     #  GREEK SMALL LETTER ALPHA
    0x03b4: 0x00eb,     #  GREEK SMALL LETTER DELTA
    0x03b5: 0x00ee,     #  GREEK SMALL LETTER EPSILON
    0x03c0: 0x00e3,     #  GREEK SMALL LETTER PI
    0x03c3: 0x00e5,     #  GREEK SMALL LETTER SIGMA
    0x03c4: 0x00e7,     #  GREEK SMALL LETTER TAU
    0x03c6: 0x00ed,     #  GREEK SMALL LETTER PHI
    0x207f: 0x00fc,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x20a7: 0x009e,     #  PESETA SIGN
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x221e: 0x00ec,     #  INFINITY
    0x2229: 0x00ef,     #  INTERSECTION
    0x2248: 0x00f7,     #  ALMOST EQUAL TO
    0x2261: 0x00f0,     #  IDENTICAL TO
    0x2264: 0x00f3,     #  LESS-THAN OR EQUAL TO
    0x2265: 0x00f2,     #  GREATER-THAN OR EQUAL TO
    0x2320: 0x00f4,     #  TOP HALF INTEGRAL
    0x2321: 0x00f5,     #  BOTTOM HALF INTEGRAL
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp861.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP861.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp861',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x0085: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0086: 0x00e5,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0089: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x008a: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x008b: 0x00d0,     #  LATIN CAPITAL LETTER ETH
    0x008c: 0x00f0,     #  LATIN SMALL LETTER ETH
    0x008d: 0x00de,     #  LATIN CAPITAL LETTER THORN
    0x008e: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x008f: 0x00c5,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00e6,     #  LATIN SMALL LIGATURE AE
    0x0092: 0x00c6,     #  LATIN CAPITAL LIGATURE AE
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x0095: 0x00fe,     #  LATIN SMALL LETTER THORN
    0x0096: 0x00fb,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x0097: 0x00dd,     #  LATIN CAPITAL LETTER Y WITH ACUTE
    0x0098: 0x00fd,     #  LATIN SMALL LETTER Y WITH ACUTE
    0x0099: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00f8,     #  LATIN SMALL LETTER O WITH STROKE
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00d8,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x009e: 0x20a7,     #  PESETA SIGN
    0x009f: 0x0192,     #  LATIN SMALL LETTER F WITH HOOK
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00c1,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00a5: 0x00cd,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00a6: 0x00d3,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00a7: 0x00da,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00a8: 0x00bf,     #  INVERTED QUESTION MARK
    0x00a9: 0x2310,     #  REVERSED NOT SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00a1,     #  INVERTED EXCLAMATION MARK
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x03b1,     #  GREEK SMALL LETTER ALPHA
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x0393,     #  GREEK CAPITAL LETTER GAMMA
    0x00e3: 0x03c0,     #  GREEK SMALL LETTER PI
    0x00e4: 0x03a3,     #  GREEK CAPITAL LETTER SIGMA
    0x00e5: 0x03c3,     #  GREEK SMALL LETTER SIGMA
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x03c4,     #  GREEK SMALL LETTER TAU
    0x00e8: 0x03a6,     #  GREEK CAPITAL LETTER PHI
    0x00e9: 0x0398,     #  GREEK CAPITAL LETTER THETA
    0x00ea: 0x03a9,     #  GREEK CAPITAL LETTER OMEGA
    0x00eb: 0x03b4,     #  GREEK SMALL LETTER DELTA
    0x00ec: 0x221e,     #  INFINITY
    0x00ed: 0x03c6,     #  GREEK SMALL LETTER PHI
    0x00ee: 0x03b5,     #  GREEK SMALL LETTER EPSILON
    0x00ef: 0x2229,     #  INTERSECTION
    0x00f0: 0x2261,     #  IDENTICAL TO
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2265,     #  GREATER-THAN OR EQUAL TO
    0x00f3: 0x2264,     #  LESS-THAN OR EQUAL TO
    0x00f4: 0x2320,     #  TOP HALF INTEGRAL
    0x00f5: 0x2321,     #  BOTTOM HALF INTEGRAL
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x2248,     #  ALMOST EQUAL TO
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x207f,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x0085 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe5'     #  0x0086 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'     #  0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x008a -> LATIN SMALL LETTER E WITH GRAVE
    '\xd0'     #  0x008b -> LATIN CAPITAL LETTER ETH
    '\xf0'     #  0x008c -> LATIN SMALL LETTER ETH
    '\xde'     #  0x008d -> LATIN CAPITAL LETTER THORN
    '\xc4'     #  0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x008f -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xe6'     #  0x0091 -> LATIN SMALL LIGATURE AE
    '\xc6'     #  0x0092 -> LATIN CAPITAL LIGATURE AE
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xfe'     #  0x0095 -> LATIN SMALL LETTER THORN
    '\xfb'     #  0x0096 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xdd'     #  0x0097 -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xfd'     #  0x0098 -> LATIN SMALL LETTER Y WITH ACUTE
    '\xd6'     #  0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xf8'     #  0x009b -> LATIN SMALL LETTER O WITH STROKE
    '\xa3'     #  0x009c -> POUND SIGN
    '\xd8'     #  0x009d -> LATIN CAPITAL LETTER O WITH STROKE
    '\u20a7'   #  0x009e -> PESETA SIGN
    '\u0192'   #  0x009f -> LATIN SMALL LETTER F WITH HOOK
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xc1'     #  0x00a4 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xcd'     #  0x00a5 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xd3'     #  0x00a6 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xda'     #  0x00a7 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xbf'     #  0x00a8 -> INVERTED QUESTION MARK
    '\u2310'   #  0x00a9 -> REVERSED NOT SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xa1'     #  0x00ad -> INVERTED EXCLAMATION MARK
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u03b1'   #  0x00e0 -> GREEK SMALL LETTER ALPHA
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\u0393'   #  0x00e2 -> GREEK CAPITAL LETTER GAMMA
    '\u03c0'   #  0x00e3 -> GREEK SMALL LETTER PI
    '\u03a3'   #  0x00e4 -> GREEK CAPITAL LETTER SIGMA
    '\u03c3'   #  0x00e5 -> GREEK SMALL LETTER SIGMA
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\u03c4'   #  0x00e7 -> GREEK SMALL LETTER TAU
    '\u03a6'   #  0x00e8 -> GREEK CAPITAL LETTER PHI
    '\u0398'   #  0x00e9 -> GREEK CAPITAL LETTER THETA
    '\u03a9'   #  0x00ea -> GREEK CAPITAL LETTER OMEGA
    '\u03b4'   #  0x00eb -> GREEK SMALL LETTER DELTA
    '\u221e'   #  0x00ec -> INFINITY
    '\u03c6'   #  0x00ed -> GREEK SMALL LETTER PHI
    '\u03b5'   #  0x00ee -> GREEK SMALL LETTER EPSILON
    '\u2229'   #  0x00ef -> INTERSECTION
    '\u2261'   #  0x00f0 -> IDENTICAL TO
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2265'   #  0x00f2 -> GREATER-THAN OR EQUAL TO
    '\u2264'   #  0x00f3 -> LESS-THAN OR EQUAL TO
    '\u2320'   #  0x00f4 -> TOP HALF INTEGRAL
    '\u2321'   #  0x00f5 -> BOTTOM HALF INTEGRAL
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\u2248'   #  0x00f7 -> ALMOST EQUAL TO
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u207f'   #  0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a1: 0x00ad,     #  INVERTED EXCLAMATION MARK
    0x00a3: 0x009c,     #  POUND SIGN
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00bf: 0x00a8,     #  INVERTED QUESTION MARK
    0x00c1: 0x00a4,     #  LATIN CAPITAL LETTER A WITH ACUTE
    0x00c4: 0x008e,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c5: 0x008f,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x00c6: 0x0092,     #  LATIN CAPITAL LIGATURE AE
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00cd: 0x00a5,     #  LATIN CAPITAL LETTER I WITH ACUTE
    0x00d0: 0x008b,     #  LATIN CAPITAL LETTER ETH
    0x00d3: 0x00a6,     #  LATIN CAPITAL LETTER O WITH ACUTE
    0x00d6: 0x0099,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00d8: 0x009d,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x00da: 0x00a7,     #  LATIN CAPITAL LETTER U WITH ACUTE
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00dd: 0x0097,     #  LATIN CAPITAL LETTER Y WITH ACUTE
    0x00de: 0x008d,     #  LATIN CAPITAL LETTER THORN
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e0: 0x0085,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e4: 0x0084,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e5: 0x0086,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x00e6: 0x0091,     #  LATIN SMALL LIGATURE AE
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008a,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0088,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00eb: 0x0089,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00f0: 0x008c,     #  LATIN SMALL LETTER ETH
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f6: 0x0094,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f8: 0x009b,     #  LATIN SMALL LETTER O WITH STROKE
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fb: 0x0096,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x00fd: 0x0098,     #  LATIN SMALL LETTER Y WITH ACUTE
    0x00fe: 0x0095,     #  LATIN SMALL LETTER THORN
    0x0192: 0x009f,     #  LATIN SMALL LETTER F WITH HOOK
    0x0393: 0x00e2,     #  GREEK CAPITAL LETTER GAMMA
    0x0398: 0x00e9,     #  GREEK CAPITAL LETTER THETA
    0x03a3: 0x00e4,     #  GREEK CAPITAL LETTER SIGMA
    0x03a6: 0x00e8,     #  GREEK CAPITAL LETTER PHI
    0x03a9: 0x00ea,     #  GREEK CAPITAL LETTER OMEGA
    0x03b1: 0x00e0,     #  GREEK SMALL LETTER ALPHA
    0x03b4: 0x00eb,     #  GREEK SMALL LETTER DELTA
    0x03b5: 0x00ee,     #  GREEK SMALL LETTER EPSILON
    0x03c0: 0x00e3,     #  GREEK SMALL LETTER PI
    0x03c3: 0x00e5,     #  GREEK SMALL LETTER SIGMA
    0x03c4: 0x00e7,     #  GREEK SMALL LETTER TAU
    0x03c6: 0x00ed,     #  GREEK SMALL LETTER PHI
    0x207f: 0x00fc,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x20a7: 0x009e,     #  PESETA SIGN
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x221e: 0x00ec,     #  INFINITY
    0x2229: 0x00ef,     #  INTERSECTION
    0x2248: 0x00f7,     #  ALMOST EQUAL TO
    0x2261: 0x00f0,     #  IDENTICAL TO
    0x2264: 0x00f3,     #  LESS-THAN OR EQUAL TO
    0x2265: 0x00f2,     #  GREATER-THAN OR EQUAL TO
    0x2310: 0x00a9,     #  REVERSED NOT SIGN
    0x2320: 0x00f4,     #  TOP HALF INTEGRAL
    0x2321: 0x00f5,     #  BOTTOM HALF INTEGRAL
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp862.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP862.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp862',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x05d0,     #  HEBREW LETTER ALEF
    0x0081: 0x05d1,     #  HEBREW LETTER BET
    0x0082: 0x05d2,     #  HEBREW LETTER GIMEL
    0x0083: 0x05d3,     #  HEBREW LETTER DALET
    0x0084: 0x05d4,     #  HEBREW LETTER HE
    0x0085: 0x05d5,     #  HEBREW LETTER VAV
    0x0086: 0x05d6,     #  HEBREW LETTER ZAYIN
    0x0087: 0x05d7,     #  HEBREW LETTER HET
    0x0088: 0x05d8,     #  HEBREW LETTER TET
    0x0089: 0x05d9,     #  HEBREW LETTER YOD
    0x008a: 0x05da,     #  HEBREW LETTER FINAL KAF
    0x008b: 0x05db,     #  HEBREW LETTER KAF
    0x008c: 0x05dc,     #  HEBREW LETTER LAMED
    0x008d: 0x05dd,     #  HEBREW LETTER FINAL MEM
    0x008e: 0x05de,     #  HEBREW LETTER MEM
    0x008f: 0x05df,     #  HEBREW LETTER FINAL NUN
    0x0090: 0x05e0,     #  HEBREW LETTER NUN
    0x0091: 0x05e1,     #  HEBREW LETTER SAMEKH
    0x0092: 0x05e2,     #  HEBREW LETTER AYIN
    0x0093: 0x05e3,     #  HEBREW LETTER FINAL PE
    0x0094: 0x05e4,     #  HEBREW LETTER PE
    0x0095: 0x05e5,     #  HEBREW LETTER FINAL TSADI
    0x0096: 0x05e6,     #  HEBREW LETTER TSADI
    0x0097: 0x05e7,     #  HEBREW LETTER QOF
    0x0098: 0x05e8,     #  HEBREW LETTER RESH
    0x0099: 0x05e9,     #  HEBREW LETTER SHIN
    0x009a: 0x05ea,     #  HEBREW LETTER TAV
    0x009b: 0x00a2,     #  CENT SIGN
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00a5,     #  YEN SIGN
    0x009e: 0x20a7,     #  PESETA SIGN
    0x009f: 0x0192,     #  LATIN SMALL LETTER F WITH HOOK
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00f1,     #  LATIN SMALL LETTER N WITH TILDE
    0x00a5: 0x00d1,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00a6: 0x00aa,     #  FEMININE ORDINAL INDICATOR
    0x00a7: 0x00ba,     #  MASCULINE ORDINAL INDICATOR
    0x00a8: 0x00bf,     #  INVERTED QUESTION MARK
    0x00a9: 0x2310,     #  REVERSED NOT SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00a1,     #  INVERTED EXCLAMATION MARK
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x03b1,     #  GREEK SMALL LETTER ALPHA
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S (GERMAN)
    0x00e2: 0x0393,     #  GREEK CAPITAL LETTER GAMMA
    0x00e3: 0x03c0,     #  GREEK SMALL LETTER PI
    0x00e4: 0x03a3,     #  GREEK CAPITAL LETTER SIGMA
    0x00e5: 0x03c3,     #  GREEK SMALL LETTER SIGMA
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x03c4,     #  GREEK SMALL LETTER TAU
    0x00e8: 0x03a6,     #  GREEK CAPITAL LETTER PHI
    0x00e9: 0x0398,     #  GREEK CAPITAL LETTER THETA
    0x00ea: 0x03a9,     #  GREEK CAPITAL LETTER OMEGA
    0x00eb: 0x03b4,     #  GREEK SMALL LETTER DELTA
    0x00ec: 0x221e,     #  INFINITY
    0x00ed: 0x03c6,     #  GREEK SMALL LETTER PHI
    0x00ee: 0x03b5,     #  GREEK SMALL LETTER EPSILON
    0x00ef: 0x2229,     #  INTERSECTION
    0x00f0: 0x2261,     #  IDENTICAL TO
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2265,     #  GREATER-THAN OR EQUAL TO
    0x00f3: 0x2264,     #  LESS-THAN OR EQUAL TO
    0x00f4: 0x2320,     #  TOP HALF INTEGRAL
    0x00f5: 0x2321,     #  BOTTOM HALF INTEGRAL
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x2248,     #  ALMOST EQUAL TO
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x207f,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\u05d0'   #  0x0080 -> HEBREW LETTER ALEF
    '\u05d1'   #  0x0081 -> HEBREW LETTER BET
    '\u05d2'   #  0x0082 -> HEBREW LETTER GIMEL
    '\u05d3'   #  0x0083 -> HEBREW LETTER DALET
    '\u05d4'   #  0x0084 -> HEBREW LETTER HE
    '\u05d5'   #  0x0085 -> HEBREW LETTER VAV
    '\u05d6'   #  0x0086 -> HEBREW LETTER ZAYIN
    '\u05d7'   #  0x0087 -> HEBREW LETTER HET
    '\u05d8'   #  0x0088 -> HEBREW LETTER TET
    '\u05d9'   #  0x0089 -> HEBREW LETTER YOD
    '\u05da'   #  0x008a -> HEBREW LETTER FINAL KAF
    '\u05db'   #  0x008b -> HEBREW LETTER KAF
    '\u05dc'   #  0x008c -> HEBREW LETTER LAMED
    '\u05dd'   #  0x008d -> HEBREW LETTER FINAL MEM
    '\u05de'   #  0x008e -> HEBREW LETTER MEM
    '\u05df'   #  0x008f -> HEBREW LETTER FINAL NUN
    '\u05e0'   #  0x0090 -> HEBREW LETTER NUN
    '\u05e1'   #  0x0091 -> HEBREW LETTER SAMEKH
    '\u05e2'   #  0x0092 -> HEBREW LETTER AYIN
    '\u05e3'   #  0x0093 -> HEBREW LETTER FINAL PE
    '\u05e4'   #  0x0094 -> HEBREW LETTER PE
    '\u05e5'   #  0x0095 -> HEBREW LETTER FINAL TSADI
    '\u05e6'   #  0x0096 -> HEBREW LETTER TSADI
    '\u05e7'   #  0x0097 -> HEBREW LETTER QOF
    '\u05e8'   #  0x0098 -> HEBREW LETTER RESH
    '\u05e9'   #  0x0099 -> HEBREW LETTER SHIN
    '\u05ea'   #  0x009a -> HEBREW LETTER TAV
    '\xa2'     #  0x009b -> CENT SIGN
    '\xa3'     #  0x009c -> POUND SIGN
    '\xa5'     #  0x009d -> YEN SIGN
    '\u20a7'   #  0x009e -> PESETA SIGN
    '\u0192'   #  0x009f -> LATIN SMALL LETTER F WITH HOOK
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xf1'     #  0x00a4 -> LATIN SMALL LETTER N WITH TILDE
    '\xd1'     #  0x00a5 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xaa'     #  0x00a6 -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x00a7 -> MASCULINE ORDINAL INDICATOR
    '\xbf'     #  0x00a8 -> INVERTED QUESTION MARK
    '\u2310'   #  0x00a9 -> REVERSED NOT SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xa1'     #  0x00ad -> INVERTED EXCLAMATION MARK
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u03b1'   #  0x00e0 -> GREEK SMALL LETTER ALPHA
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S (GERMAN)
    '\u0393'   #  0x00e2 -> GREEK CAPITAL LETTER GAMMA
    '\u03c0'   #  0x00e3 -> GREEK SMALL LETTER PI
    '\u03a3'   #  0x00e4 -> GREEK CAPITAL LETTER SIGMA
    '\u03c3'   #  0x00e5 -> GREEK SMALL LETTER SIGMA
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\u03c4'   #  0x00e7 -> GREEK SMALL LETTER TAU
    '\u03a6'   #  0x00e8 -> GREEK CAPITAL LETTER PHI
    '\u0398'   #  0x00e9 -> GREEK CAPITAL LETTER THETA
    '\u03a9'   #  0x00ea -> GREEK CAPITAL LETTER OMEGA
    '\u03b4'   #  0x00eb -> GREEK SMALL LETTER DELTA
    '\u221e'   #  0x00ec -> INFINITY
    '\u03c6'   #  0x00ed -> GREEK SMALL LETTER PHI
    '\u03b5'   #  0x00ee -> GREEK SMALL LETTER EPSILON
    '\u2229'   #  0x00ef -> INTERSECTION
    '\u2261'   #  0x00f0 -> IDENTICAL TO
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2265'   #  0x00f2 -> GREATER-THAN OR EQUAL TO
    '\u2264'   #  0x00f3 -> LESS-THAN OR EQUAL TO
    '\u2320'   #  0x00f4 -> TOP HALF INTEGRAL
    '\u2321'   #  0x00f5 -> BOTTOM HALF INTEGRAL
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\u2248'   #  0x00f7 -> ALMOST EQUAL TO
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u207f'   #  0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a1: 0x00ad,     #  INVERTED EXCLAMATION MARK
    0x00a2: 0x009b,     #  CENT SIGN
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a5: 0x009d,     #  YEN SIGN
    0x00aa: 0x00a6,     #  FEMININE ORDINAL INDICATOR
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00ba: 0x00a7,     #  MASCULINE ORDINAL INDICATOR
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00bf: 0x00a8,     #  INVERTED QUESTION MARK
    0x00d1: 0x00a5,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S (GERMAN)
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00f1: 0x00a4,     #  LATIN SMALL LETTER N WITH TILDE
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x0192: 0x009f,     #  LATIN SMALL LETTER F WITH HOOK
    0x0393: 0x00e2,     #  GREEK CAPITAL LETTER GAMMA
    0x0398: 0x00e9,     #  GREEK CAPITAL LETTER THETA
    0x03a3: 0x00e4,     #  GREEK CAPITAL LETTER SIGMA
    0x03a6: 0x00e8,     #  GREEK CAPITAL LETTER PHI
    0x03a9: 0x00ea,     #  GREEK CAPITAL LETTER OMEGA
    0x03b1: 0x00e0,     #  GREEK SMALL LETTER ALPHA
    0x03b4: 0x00eb,     #  GREEK SMALL LETTER DELTA
    0x03b5: 0x00ee,     #  GREEK SMALL LETTER EPSILON
    0x03c0: 0x00e3,     #  GREEK SMALL LETTER PI
    0x03c3: 0x00e5,     #  GREEK SMALL LETTER SIGMA
    0x03c4: 0x00e7,     #  GREEK SMALL LETTER TAU
    0x03c6: 0x00ed,     #  GREEK SMALL LETTER PHI
    0x05d0: 0x0080,     #  HEBREW LETTER ALEF
    0x05d1: 0x0081,     #  HEBREW LETTER BET
    0x05d2: 0x0082,     #  HEBREW LETTER GIMEL
    0x05d3: 0x0083,     #  HEBREW LETTER DALET
    0x05d4: 0x0084,     #  HEBREW LETTER HE
    0x05d5: 0x0085,     #  HEBREW LETTER VAV
    0x05d6: 0x0086,     #  HEBREW LETTER ZAYIN
    0x05d7: 0x0087,     #  HEBREW LETTER HET
    0x05d8: 0x0088,     #  HEBREW LETTER TET
    0x05d9: 0x0089,     #  HEBREW LETTER YOD
    0x05da: 0x008a,     #  HEBREW LETTER FINAL KAF
    0x05db: 0x008b,     #  HEBREW LETTER KAF
    0x05dc: 0x008c,     #  HEBREW LETTER LAMED
    0x05dd: 0x008d,     #  HEBREW LETTER FINAL MEM
    0x05de: 0x008e,     #  HEBREW LETTER MEM
    0x05df: 0x008f,     #  HEBREW LETTER FINAL NUN
    0x05e0: 0x0090,     #  HEBREW LETTER NUN
    0x05e1: 0x0091,     #  HEBREW LETTER SAMEKH
    0x05e2: 0x0092,     #  HEBREW LETTER AYIN
    0x05e3: 0x0093,     #  HEBREW LETTER FINAL PE
    0x05e4: 0x0094,     #  HEBREW LETTER PE
    0x05e5: 0x0095,     #  HEBREW LETTER FINAL TSADI
    0x05e6: 0x0096,     #  HEBREW LETTER TSADI
    0x05e7: 0x0097,     #  HEBREW LETTER QOF
    0x05e8: 0x0098,     #  HEBREW LETTER RESH
    0x05e9: 0x0099,     #  HEBREW LETTER SHIN
    0x05ea: 0x009a,     #  HEBREW LETTER TAV
    0x207f: 0x00fc,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x20a7: 0x009e,     #  PESETA SIGN
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x221e: 0x00ec,     #  INFINITY
    0x2229: 0x00ef,     #  INTERSECTION
    0x2248: 0x00f7,     #  ALMOST EQUAL TO
    0x2261: 0x00f0,     #  IDENTICAL TO
    0x2264: 0x00f3,     #  LESS-THAN OR EQUAL TO
    0x2265: 0x00f2,     #  GREATER-THAN OR EQUAL TO
    0x2310: 0x00a9,     #  REVERSED NOT SIGN
    0x2320: 0x00f4,     #  TOP HALF INTEGRAL
    0x2321: 0x00f5,     #  BOTTOM HALF INTEGRAL
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp863.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP863.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp863',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00c2,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x0085: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0086: 0x00b6,     #  PILCROW SIGN
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0089: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x008a: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x008b: 0x00ef,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x008c: 0x00ee,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x008d: 0x2017,     #  DOUBLE LOW LINE
    0x008e: 0x00c0,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x008f: 0x00a7,     #  SECTION SIGN
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00c8,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x0092: 0x00ca,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00cb,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x0095: 0x00cf,     #  LATIN CAPITAL LETTER I WITH DIAERESIS
    0x0096: 0x00fb,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x0097: 0x00f9,     #  LATIN SMALL LETTER U WITH GRAVE
    0x0098: 0x00a4,     #  CURRENCY SIGN
    0x0099: 0x00d4,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00a2,     #  CENT SIGN
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00d9,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x009e: 0x00db,     #  LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    0x009f: 0x0192,     #  LATIN SMALL LETTER F WITH HOOK
    0x00a0: 0x00a6,     #  BROKEN BAR
    0x00a1: 0x00b4,     #  ACUTE ACCENT
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00a8,     #  DIAERESIS
    0x00a5: 0x00b8,     #  CEDILLA
    0x00a6: 0x00b3,     #  SUPERSCRIPT THREE
    0x00a7: 0x00af,     #  MACRON
    0x00a8: 0x00ce,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00a9: 0x2310,     #  REVERSED NOT SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00be,     #  VULGAR FRACTION THREE QUARTERS
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x03b1,     #  GREEK SMALL LETTER ALPHA
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x0393,     #  GREEK CAPITAL LETTER GAMMA
    0x00e3: 0x03c0,     #  GREEK SMALL LETTER PI
    0x00e4: 0x03a3,     #  GREEK CAPITAL LETTER SIGMA
    0x00e5: 0x03c3,     #  GREEK SMALL LETTER SIGMA
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x03c4,     #  GREEK SMALL LETTER TAU
    0x00e8: 0x03a6,     #  GREEK CAPITAL LETTER PHI
    0x00e9: 0x0398,     #  GREEK CAPITAL LETTER THETA
    0x00ea: 0x03a9,     #  GREEK CAPITAL LETTER OMEGA
    0x00eb: 0x03b4,     #  GREEK SMALL LETTER DELTA
    0x00ec: 0x221e,     #  INFINITY
    0x00ed: 0x03c6,     #  GREEK SMALL LETTER PHI
    0x00ee: 0x03b5,     #  GREEK SMALL LETTER EPSILON
    0x00ef: 0x2229,     #  INTERSECTION
    0x00f0: 0x2261,     #  IDENTICAL TO
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2265,     #  GREATER-THAN OR EQUAL TO
    0x00f3: 0x2264,     #  LESS-THAN OR EQUAL TO
    0x00f4: 0x2320,     #  TOP HALF INTEGRAL
    0x00f5: 0x2321,     #  BOTTOM HALF INTEGRAL
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x2248,     #  ALMOST EQUAL TO
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x207f,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xc2'     #  0x0084 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xe0'     #  0x0085 -> LATIN SMALL LETTER A WITH GRAVE
    '\xb6'     #  0x0086 -> PILCROW SIGN
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'     #  0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x008a -> LATIN SMALL LETTER E WITH GRAVE
    '\xef'     #  0x008b -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xee'     #  0x008c -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\u2017'   #  0x008d -> DOUBLE LOW LINE
    '\xc0'     #  0x008e -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xa7'     #  0x008f -> SECTION SIGN
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xc8'     #  0x0091 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xca'     #  0x0092 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xcb'     #  0x0094 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcf'     #  0x0095 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xfb'     #  0x0096 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xf9'     #  0x0097 -> LATIN SMALL LETTER U WITH GRAVE
    '\xa4'     #  0x0098 -> CURRENCY SIGN
    '\xd4'     #  0x0099 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xa2'     #  0x009b -> CENT SIGN
    '\xa3'     #  0x009c -> POUND SIGN
    '\xd9'     #  0x009d -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xdb'     #  0x009e -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\u0192'   #  0x009f -> LATIN SMALL LETTER F WITH HOOK
    '\xa6'     #  0x00a0 -> BROKEN BAR
    '\xb4'     #  0x00a1 -> ACUTE ACCENT
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xa8'     #  0x00a4 -> DIAERESIS
    '\xb8'     #  0x00a5 -> CEDILLA
    '\xb3'     #  0x00a6 -> SUPERSCRIPT THREE
    '\xaf'     #  0x00a7 -> MACRON
    '\xce'     #  0x00a8 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\u2310'   #  0x00a9 -> REVERSED NOT SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xbe'     #  0x00ad -> VULGAR FRACTION THREE QUARTERS
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u03b1'   #  0x00e0 -> GREEK SMALL LETTER ALPHA
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\u0393'   #  0x00e2 -> GREEK CAPITAL LETTER GAMMA
    '\u03c0'   #  0x00e3 -> GREEK SMALL LETTER PI
    '\u03a3'   #  0x00e4 -> GREEK CAPITAL LETTER SIGMA
    '\u03c3'   #  0x00e5 -> GREEK SMALL LETTER SIGMA
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\u03c4'   #  0x00e7 -> GREEK SMALL LETTER TAU
    '\u03a6'   #  0x00e8 -> GREEK CAPITAL LETTER PHI
    '\u0398'   #  0x00e9 -> GREEK CAPITAL LETTER THETA
    '\u03a9'   #  0x00ea -> GREEK CAPITAL LETTER OMEGA
    '\u03b4'   #  0x00eb -> GREEK SMALL LETTER DELTA
    '\u221e'   #  0x00ec -> INFINITY
    '\u03c6'   #  0x00ed -> GREEK SMALL LETTER PHI
    '\u03b5'   #  0x00ee -> GREEK SMALL LETTER EPSILON
    '\u2229'   #  0x00ef -> INTERSECTION
    '\u2261'   #  0x00f0 -> IDENTICAL TO
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2265'   #  0x00f2 -> GREATER-THAN OR EQUAL TO
    '\u2264'   #  0x00f3 -> LESS-THAN OR EQUAL TO
    '\u2320'   #  0x00f4 -> TOP HALF INTEGRAL
    '\u2321'   #  0x00f5 -> BOTTOM HALF INTEGRAL
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\u2248'   #  0x00f7 -> ALMOST EQUAL TO
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u207f'   #  0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a2: 0x009b,     #  CENT SIGN
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a4: 0x0098,     #  CURRENCY SIGN
    0x00a6: 0x00a0,     #  BROKEN BAR
    0x00a7: 0x008f,     #  SECTION SIGN
    0x00a8: 0x00a4,     #  DIAERESIS
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00af: 0x00a7,     #  MACRON
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b3: 0x00a6,     #  SUPERSCRIPT THREE
    0x00b4: 0x00a1,     #  ACUTE ACCENT
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b6: 0x0086,     #  PILCROW SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00b8: 0x00a5,     #  CEDILLA
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00be: 0x00ad,     #  VULGAR FRACTION THREE QUARTERS
    0x00c0: 0x008e,     #  LATIN CAPITAL LETTER A WITH GRAVE
    0x00c2: 0x0084,     #  LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c8: 0x0091,     #  LATIN CAPITAL LETTER E WITH GRAVE
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00ca: 0x0092,     #  LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    0x00cb: 0x0094,     #  LATIN CAPITAL LETTER E WITH DIAERESIS
    0x00ce: 0x00a8,     #  LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    0x00cf: 0x0095,     #  LATIN CAPITAL LETTER I WITH DIAERESIS
    0x00d4: 0x0099,     #  LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    0x00d9: 0x009d,     #  LATIN CAPITAL LETTER U WITH GRAVE
    0x00db: 0x009e,     #  LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e0: 0x0085,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008a,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0088,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00eb: 0x0089,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ee: 0x008c,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x00ef: 0x008b,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f9: 0x0097,     #  LATIN SMALL LETTER U WITH GRAVE
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fb: 0x0096,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0192: 0x009f,     #  LATIN SMALL LETTER F WITH HOOK
    0x0393: 0x00e2,     #  GREEK CAPITAL LETTER GAMMA
    0x0398: 0x00e9,     #  GREEK CAPITAL LETTER THETA
    0x03a3: 0x00e4,     #  GREEK CAPITAL LETTER SIGMA
    0x03a6: 0x00e8,     #  GREEK CAPITAL LETTER PHI
    0x03a9: 0x00ea,     #  GREEK CAPITAL LETTER OMEGA
    0x03b1: 0x00e0,     #  GREEK SMALL LETTER ALPHA
    0x03b4: 0x00eb,     #  GREEK SMALL LETTER DELTA
    0x03b5: 0x00ee,     #  GREEK SMALL LETTER EPSILON
    0x03c0: 0x00e3,     #  GREEK SMALL LETTER PI
    0x03c3: 0x00e5,     #  GREEK SMALL LETTER SIGMA
    0x03c4: 0x00e7,     #  GREEK SMALL LETTER TAU
    0x03c6: 0x00ed,     #  GREEK SMALL LETTER PHI
    0x2017: 0x008d,     #  DOUBLE LOW LINE
    0x207f: 0x00fc,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x221e: 0x00ec,     #  INFINITY
    0x2229: 0x00ef,     #  INTERSECTION
    0x2248: 0x00f7,     #  ALMOST EQUAL TO
    0x2261: 0x00f0,     #  IDENTICAL TO
    0x2264: 0x00f3,     #  LESS-THAN OR EQUAL TO
    0x2265: 0x00f2,     #  GREATER-THAN OR EQUAL TO
    0x2310: 0x00a9,     #  REVERSED NOT SIGN
    0x2320: 0x00f4,     #  TOP HALF INTEGRAL
    0x2321: 0x00f5,     #  BOTTOM HALF INTEGRAL
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp864.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP864.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp864',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0025: 0x066a,     #  ARABIC PERCENT SIGN
    0x0080: 0x00b0,     #  DEGREE SIGN
    0x0081: 0x00b7,     #  MIDDLE DOT
    0x0082: 0x2219,     #  BULLET OPERATOR
    0x0083: 0x221a,     #  SQUARE ROOT
    0x0084: 0x2592,     #  MEDIUM SHADE
    0x0085: 0x2500,     #  FORMS LIGHT HORIZONTAL
    0x0086: 0x2502,     #  FORMS LIGHT VERTICAL
    0x0087: 0x253c,     #  FORMS LIGHT VERTICAL AND HORIZONTAL
    0x0088: 0x2524,     #  FORMS LIGHT VERTICAL AND LEFT
    0x0089: 0x252c,     #  FORMS LIGHT DOWN AND HORIZONTAL
    0x008a: 0x251c,     #  FORMS LIGHT VERTICAL AND RIGHT
    0x008b: 0x2534,     #  FORMS LIGHT UP AND HORIZONTAL
    0x008c: 0x2510,     #  FORMS LIGHT DOWN AND LEFT
    0x008d: 0x250c,     #  FORMS LIGHT DOWN AND RIGHT
    0x008e: 0x2514,     #  FORMS LIGHT UP AND RIGHT
    0x008f: 0x2518,     #  FORMS LIGHT UP AND LEFT
    0x0090: 0x03b2,     #  GREEK SMALL BETA
    0x0091: 0x221e,     #  INFINITY
    0x0092: 0x03c6,     #  GREEK SMALL PHI
    0x0093: 0x00b1,     #  PLUS-OR-MINUS SIGN
    0x0094: 0x00bd,     #  FRACTION 1/2
    0x0095: 0x00bc,     #  FRACTION 1/4
    0x0096: 0x2248,     #  ALMOST EQUAL TO
    0x0097: 0x00ab,     #  LEFT POINTING GUILLEMET
    0x0098: 0x00bb,     #  RIGHT POINTING GUILLEMET
    0x0099: 0xfef7,     #  ARABIC LIGATURE LAM WITH ALEF WITH HAMZA ABOVE ISOLATED FORM
    0x009a: 0xfef8,     #  ARABIC LIGATURE LAM WITH ALEF WITH HAMZA ABOVE FINAL FORM
    0x009b: None,       #  UNDEFINED
    0x009c: None,       #  UNDEFINED
    0x009d: 0xfefb,     #  ARABIC LIGATURE LAM WITH ALEF ISOLATED FORM
    0x009e: 0xfefc,     #  ARABIC LIGATURE LAM WITH ALEF FINAL FORM
    0x009f: None,       #  UNDEFINED
    0x00a1: 0x00ad,     #  SOFT HYPHEN
    0x00a2: 0xfe82,     #  ARABIC LETTER ALEF WITH MADDA ABOVE FINAL FORM
    0x00a5: 0xfe84,     #  ARABIC LETTER ALEF WITH HAMZA ABOVE FINAL FORM
    0x00a6: None,       #  UNDEFINED
    0x00a7: None,       #  UNDEFINED
    0x00a8: 0xfe8e,     #  ARABIC LETTER ALEF FINAL FORM
    0x00a9: 0xfe8f,     #  ARABIC LETTER BEH ISOLATED FORM
    0x00aa: 0xfe95,     #  ARABIC LETTER TEH ISOLATED FORM
    0x00ab: 0xfe99,     #  ARABIC LETTER THEH ISOLATED FORM
    0x00ac: 0x060c,     #  ARABIC COMMA
    0x00ad: 0xfe9d,     #  ARABIC LETTER JEEM ISOLATED FORM
    0x00ae: 0xfea1,     #  ARABIC LETTER HAH ISOLATED FORM
    0x00af: 0xfea5,     #  ARABIC LETTER KHAH ISOLATED FORM
    0x00b0: 0x0660,     #  ARABIC-INDIC DIGIT ZERO
    0x00b1: 0x0661,     #  ARABIC-INDIC DIGIT ONE
    0x00b2: 0x0662,     #  ARABIC-INDIC DIGIT TWO
    0x00b3: 0x0663,     #  ARABIC-INDIC DIGIT THREE
    0x00b4: 0x0664,     #  ARABIC-INDIC DIGIT FOUR
    0x00b5: 0x0665,     #  ARABIC-INDIC DIGIT FIVE
    0x00b6: 0x0666,     #  ARABIC-INDIC DIGIT SIX
    0x00b7: 0x0667,     #  ARABIC-INDIC DIGIT SEVEN
    0x00b8: 0x0668,     #  ARABIC-INDIC DIGIT EIGHT
    0x00b9: 0x0669,     #  ARABIC-INDIC DIGIT NINE
    0x00ba: 0xfed1,     #  ARABIC LETTER FEH ISOLATED FORM
    0x00bb: 0x061b,     #  ARABIC SEMICOLON
    0x00bc: 0xfeb1,     #  ARABIC LETTER SEEN ISOLATED FORM
    0x00bd: 0xfeb5,     #  ARABIC LETTER SHEEN ISOLATED FORM
    0x00be: 0xfeb9,     #  ARABIC LETTER SAD ISOLATED FORM
    0x00bf: 0x061f,     #  ARABIC QUESTION MARK
    0x00c0: 0x00a2,     #  CENT SIGN
    0x00c1: 0xfe80,     #  ARABIC LETTER HAMZA ISOLATED FORM
    0x00c2: 0xfe81,     #  ARABIC LETTER ALEF WITH MADDA ABOVE ISOLATED FORM
    0x00c3: 0xfe83,     #  ARABIC LETTER ALEF WITH HAMZA ABOVE ISOLATED FORM
    0x00c4: 0xfe85,     #  ARABIC LETTER WAW WITH HAMZA ABOVE ISOLATED FORM
    0x00c5: 0xfeca,     #  ARABIC LETTER AIN FINAL FORM
    0x00c6: 0xfe8b,     #  ARABIC LETTER YEH WITH HAMZA ABOVE INITIAL FORM
    0x00c7: 0xfe8d,     #  ARABIC LETTER ALEF ISOLATED FORM
    0x00c8: 0xfe91,     #  ARABIC LETTER BEH INITIAL FORM
    0x00c9: 0xfe93,     #  ARABIC LETTER TEH MARBUTA ISOLATED FORM
    0x00ca: 0xfe97,     #  ARABIC LETTER TEH INITIAL FORM
    0x00cb: 0xfe9b,     #  ARABIC LETTER THEH INITIAL FORM
    0x00cc: 0xfe9f,     #  ARABIC LETTER JEEM INITIAL FORM
    0x00cd: 0xfea3,     #  ARABIC LETTER HAH INITIAL FORM
    0x00ce: 0xfea7,     #  ARABIC LETTER KHAH INITIAL FORM
    0x00cf: 0xfea9,     #  ARABIC LETTER DAL ISOLATED FORM
    0x00d0: 0xfeab,     #  ARABIC LETTER THAL ISOLATED FORM
    0x00d1: 0xfead,     #  ARABIC LETTER REH ISOLATED FORM
    0x00d2: 0xfeaf,     #  ARABIC LETTER ZAIN ISOLATED FORM
    0x00d3: 0xfeb3,     #  ARABIC LETTER SEEN INITIAL FORM
    0x00d4: 0xfeb7,     #  ARABIC LETTER SHEEN INITIAL FORM
    0x00d5: 0xfebb,     #  ARABIC LETTER SAD INITIAL FORM
    0x00d6: 0xfebf,     #  ARABIC LETTER DAD INITIAL FORM
    0x00d7: 0xfec1,     #  ARABIC LETTER TAH ISOLATED FORM
    0x00d8: 0xfec5,     #  ARABIC LETTER ZAH ISOLATED FORM
    0x00d9: 0xfecb,     #  ARABIC LETTER AIN INITIAL FORM
    0x00da: 0xfecf,     #  ARABIC LETTER GHAIN INITIAL FORM
    0x00db: 0x00a6,     #  BROKEN VERTICAL BAR
    0x00dc: 0x00ac,     #  NOT SIGN
    0x00dd: 0x00f7,     #  DIVISION SIGN
    0x00de: 0x00d7,     #  MULTIPLICATION SIGN
    0x00df: 0xfec9,     #  ARABIC LETTER AIN ISOLATED FORM
    0x00e0: 0x0640,     #  ARABIC TATWEEL
    0x00e1: 0xfed3,     #  ARABIC LETTER FEH INITIAL FORM
    0x00e2: 0xfed7,     #  ARABIC LETTER QAF INITIAL FORM
    0x00e3: 0xfedb,     #  ARABIC LETTER KAF INITIAL FORM
    0x00e4: 0xfedf,     #  ARABIC LETTER LAM INITIAL FORM
    0x00e5: 0xfee3,     #  ARABIC LETTER MEEM INITIAL FORM
    0x00e6: 0xfee7,     #  ARABIC LETTER NOON INITIAL FORM
    0x00e7: 0xfeeb,     #  ARABIC LETTER HEH INITIAL FORM
    0x00e8: 0xfeed,     #  ARABIC LETTER WAW ISOLATED FORM
    0x00e9: 0xfeef,     #  ARABIC LETTER ALEF MAKSURA ISOLATED FORM
    0x00ea: 0xfef3,     #  ARABIC LETTER YEH INITIAL FORM
    0x00eb: 0xfebd,     #  ARABIC LETTER DAD ISOLATED FORM
    0x00ec: 0xfecc,     #  ARABIC LETTER AIN MEDIAL FORM
    0x00ed: 0xfece,     #  ARABIC LETTER GHAIN FINAL FORM
    0x00ee: 0xfecd,     #  ARABIC LETTER GHAIN ISOLATED FORM
    0x00ef: 0xfee1,     #  ARABIC LETTER MEEM ISOLATED FORM
    0x00f0: 0xfe7d,     #  ARABIC SHADDA MEDIAL FORM
    0x00f1: 0x0651,     #  ARABIC SHADDAH
    0x00f2: 0xfee5,     #  ARABIC LETTER NOON ISOLATED FORM
    0x00f3: 0xfee9,     #  ARABIC LETTER HEH ISOLATED FORM
    0x00f4: 0xfeec,     #  ARABIC LETTER HEH MEDIAL FORM
    0x00f5: 0xfef0,     #  ARABIC LETTER ALEF MAKSURA FINAL FORM
    0x00f6: 0xfef2,     #  ARABIC LETTER YEH FINAL FORM
    0x00f7: 0xfed0,     #  ARABIC LETTER GHAIN MEDIAL FORM
    0x00f8: 0xfed5,     #  ARABIC LETTER QAF ISOLATED FORM
    0x00f9: 0xfef5,     #  ARABIC LIGATURE LAM WITH ALEF WITH MADDA ABOVE ISOLATED FORM
    0x00fa: 0xfef6,     #  ARABIC LIGATURE LAM WITH ALEF WITH MADDA ABOVE FINAL FORM
    0x00fb: 0xfedd,     #  ARABIC LETTER LAM ISOLATED FORM
    0x00fc: 0xfed9,     #  ARABIC LETTER KAF ISOLATED FORM
    0x00fd: 0xfef1,     #  ARABIC LETTER YEH ISOLATED FORM
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: None,       #  UNDEFINED
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '\u066a'   #  0x0025 -> ARABIC PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xb0'     #  0x0080 -> DEGREE SIGN
    '\xb7'     #  0x0081 -> MIDDLE DOT
    '\u2219'   #  0x0082 -> BULLET OPERATOR
    '\u221a'   #  0x0083 -> SQUARE ROOT
    '\u2592'   #  0x0084 -> MEDIUM SHADE
    '\u2500'   #  0x0085 -> FORMS LIGHT HORIZONTAL
    '\u2502'   #  0x0086 -> FORMS LIGHT VERTICAL
    '\u253c'   #  0x0087 -> FORMS LIGHT VERTICAL AND HORIZONTAL
    '\u2524'   #  0x0088 -> FORMS LIGHT VERTICAL AND LEFT
    '\u252c'   #  0x0089 -> FORMS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x008a -> FORMS LIGHT VERTICAL AND RIGHT
    '\u2534'   #  0x008b -> FORMS LIGHT UP AND HORIZONTAL
    '\u2510'   #  0x008c -> FORMS LIGHT DOWN AND LEFT
    '\u250c'   #  0x008d -> FORMS LIGHT DOWN AND RIGHT
    '\u2514'   #  0x008e -> FORMS LIGHT UP AND RIGHT
    '\u2518'   #  0x008f -> FORMS LIGHT UP AND LEFT
    '\u03b2'   #  0x0090 -> GREEK SMALL BETA
    '\u221e'   #  0x0091 -> INFINITY
    '\u03c6'   #  0x0092 -> GREEK SMALL PHI
    '\xb1'     #  0x0093 -> PLUS-OR-MINUS SIGN
    '\xbd'     #  0x0094 -> FRACTION 1/2
    '\xbc'     #  0x0095 -> FRACTION 1/4
    '\u2248'   #  0x0096 -> ALMOST EQUAL TO
    '\xab'     #  0x0097 -> LEFT POINTING GUILLEMET
    '\xbb'     #  0x0098 -> RIGHT POINTING GUILLEMET
    '\ufef7'   #  0x0099 -> ARABIC LIGATURE LAM WITH ALEF WITH HAMZA ABOVE ISOLATED FORM
    '\ufef8'   #  0x009a -> ARABIC LIGATURE LAM WITH ALEF WITH HAMZA ABOVE FINAL FORM
    '\ufffe'   #  0x009b -> UNDEFINED
    '\ufffe'   #  0x009c -> UNDEFINED
    '\ufefb'   #  0x009d -> ARABIC LIGATURE LAM WITH ALEF ISOLATED FORM
    '\ufefc'   #  0x009e -> ARABIC LIGATURE LAM WITH ALEF FINAL FORM
    '\ufffe'   #  0x009f -> UNDEFINED
    '\xa0'     #  0x00a0 -> NON-BREAKING SPACE
    '\xad'     #  0x00a1 -> SOFT HYPHEN
    '\ufe82'   #  0x00a2 -> ARABIC LETTER ALEF WITH MADDA ABOVE FINAL FORM
    '\xa3'     #  0x00a3 -> POUND SIGN
    '\xa4'     #  0x00a4 -> CURRENCY SIGN
    '\ufe84'   #  0x00a5 -> ARABIC LETTER ALEF WITH HAMZA ABOVE FINAL FORM
    '\ufffe'   #  0x00a6 -> UNDEFINED
    '\ufffe'   #  0x00a7 -> UNDEFINED
    '\ufe8e'   #  0x00a8 -> ARABIC LETTER ALEF FINAL FORM
    '\ufe8f'   #  0x00a9 -> ARABIC LETTER BEH ISOLATED FORM
    '\ufe95'   #  0x00aa -> ARABIC LETTER TEH ISOLATED FORM
    '\ufe99'   #  0x00ab -> ARABIC LETTER THEH ISOLATED FORM
    '\u060c'   #  0x00ac -> ARABIC COMMA
    '\ufe9d'   #  0x00ad -> ARABIC LETTER JEEM ISOLATED FORM
    '\ufea1'   #  0x00ae -> ARABIC LETTER HAH ISOLATED FORM
    '\ufea5'   #  0x00af -> ARABIC LETTER KHAH ISOLATED FORM
    '\u0660'   #  0x00b0 -> ARABIC-INDIC DIGIT ZERO
    '\u0661'   #  0x00b1 -> ARABIC-INDIC DIGIT ONE
    '\u0662'   #  0x00b2 -> ARABIC-INDIC DIGIT TWO
    '\u0663'   #  0x00b3 -> ARABIC-INDIC DIGIT THREE
    '\u0664'   #  0x00b4 -> ARABIC-INDIC DIGIT FOUR
    '\u0665'   #  0x00b5 -> ARABIC-INDIC DIGIT FIVE
    '\u0666'   #  0x00b6 -> ARABIC-INDIC DIGIT SIX
    '\u0667'   #  0x00b7 -> ARABIC-INDIC DIGIT SEVEN
    '\u0668'   #  0x00b8 -> ARABIC-INDIC DIGIT EIGHT
    '\u0669'   #  0x00b9 -> ARABIC-INDIC DIGIT NINE
    '\ufed1'   #  0x00ba -> ARABIC LETTER FEH ISOLATED FORM
    '\u061b'   #  0x00bb -> ARABIC SEMICOLON
    '\ufeb1'   #  0x00bc -> ARABIC LETTER SEEN ISOLATED FORM
    '\ufeb5'   #  0x00bd -> ARABIC LETTER SHEEN ISOLATED FORM
    '\ufeb9'   #  0x00be -> ARABIC LETTER SAD ISOLATED FORM
    '\u061f'   #  0x00bf -> ARABIC QUESTION MARK
    '\xa2'     #  0x00c0 -> CENT SIGN
    '\ufe80'   #  0x00c1 -> ARABIC LETTER HAMZA ISOLATED FORM
    '\ufe81'   #  0x00c2 -> ARABIC LETTER ALEF WITH MADDA ABOVE ISOLATED FORM
    '\ufe83'   #  0x00c3 -> ARABIC LETTER ALEF WITH HAMZA ABOVE ISOLATED FORM
    '\ufe85'   #  0x00c4 -> ARABIC LETTER WAW WITH HAMZA ABOVE ISOLATED FORM
    '\ufeca'   #  0x00c5 -> ARABIC LETTER AIN FINAL FORM
    '\ufe8b'   #  0x00c6 -> ARABIC LETTER YEH WITH HAMZA ABOVE INITIAL FORM
    '\ufe8d'   #  0x00c7 -> ARABIC LETTER ALEF ISOLATED FORM
    '\ufe91'   #  0x00c8 -> ARABIC LETTER BEH INITIAL FORM
    '\ufe93'   #  0x00c9 -> ARABIC LETTER TEH MARBUTA ISOLATED FORM
    '\ufe97'   #  0x00ca -> ARABIC LETTER TEH INITIAL FORM
    '\ufe9b'   #  0x00cb -> ARABIC LETTER THEH INITIAL FORM
    '\ufe9f'   #  0x00cc -> ARABIC LETTER JEEM INITIAL FORM
    '\ufea3'   #  0x00cd -> ARABIC LETTER HAH INITIAL FORM
    '\ufea7'   #  0x00ce -> ARABIC LETTER KHAH INITIAL FORM
    '\ufea9'   #  0x00cf -> ARABIC LETTER DAL ISOLATED FORM
    '\ufeab'   #  0x00d0 -> ARABIC LETTER THAL ISOLATED FORM
    '\ufead'   #  0x00d1 -> ARABIC LETTER REH ISOLATED FORM
    '\ufeaf'   #  0x00d2 -> ARABIC LETTER ZAIN ISOLATED FORM
    '\ufeb3'   #  0x00d3 -> ARABIC LETTER SEEN INITIAL FORM
    '\ufeb7'   #  0x00d4 -> ARABIC LETTER SHEEN INITIAL FORM
    '\ufebb'   #  0x00d5 -> ARABIC LETTER SAD INITIAL FORM
    '\ufebf'   #  0x00d6 -> ARABIC LETTER DAD INITIAL FORM
    '\ufec1'   #  0x00d7 -> ARABIC LETTER TAH ISOLATED FORM
    '\ufec5'   #  0x00d8 -> ARABIC LETTER ZAH ISOLATED FORM
    '\ufecb'   #  0x00d9 -> ARABIC LETTER AIN INITIAL FORM
    '\ufecf'   #  0x00da -> ARABIC LETTER GHAIN INITIAL FORM
    '\xa6'     #  0x00db -> BROKEN VERTICAL BAR
    '\xac'     #  0x00dc -> NOT SIGN
    '\xf7'     #  0x00dd -> DIVISION SIGN
    '\xd7'     #  0x00de -> MULTIPLICATION SIGN
    '\ufec9'   #  0x00df -> ARABIC LETTER AIN ISOLATED FORM
    '\u0640'   #  0x00e0 -> ARABIC TATWEEL
    '\ufed3'   #  0x00e1 -> ARABIC LETTER FEH INITIAL FORM
    '\ufed7'   #  0x00e2 -> ARABIC LETTER QAF INITIAL FORM
    '\ufedb'   #  0x00e3 -> ARABIC LETTER KAF INITIAL FORM
    '\ufedf'   #  0x00e4 -> ARABIC LETTER LAM INITIAL FORM
    '\ufee3'   #  0x00e5 -> ARABIC LETTER MEEM INITIAL FORM
    '\ufee7'   #  0x00e6 -> ARABIC LETTER NOON INITIAL FORM
    '\ufeeb'   #  0x00e7 -> ARABIC LETTER HEH INITIAL FORM
    '\ufeed'   #  0x00e8 -> ARABIC LETTER WAW ISOLATED FORM
    '\ufeef'   #  0x00e9 -> ARABIC LETTER ALEF MAKSURA ISOLATED FORM
    '\ufef3'   #  0x00ea -> ARABIC LETTER YEH INITIAL FORM
    '\ufebd'   #  0x00eb -> ARABIC LETTER DAD ISOLATED FORM
    '\ufecc'   #  0x00ec -> ARABIC LETTER AIN MEDIAL FORM
    '\ufece'   #  0x00ed -> ARABIC LETTER GHAIN FINAL FORM
    '\ufecd'   #  0x00ee -> ARABIC LETTER GHAIN ISOLATED FORM
    '\ufee1'   #  0x00ef -> ARABIC LETTER MEEM ISOLATED FORM
    '\ufe7d'   #  0x00f0 -> ARABIC SHADDA MEDIAL FORM
    '\u0651'   #  0x00f1 -> ARABIC SHADDAH
    '\ufee5'   #  0x00f2 -> ARABIC LETTER NOON ISOLATED FORM
    '\ufee9'   #  0x00f3 -> ARABIC LETTER HEH ISOLATED FORM
    '\ufeec'   #  0x00f4 -> ARABIC LETTER HEH MEDIAL FORM
    '\ufef0'   #  0x00f5 -> ARABIC LETTER ALEF MAKSURA FINAL FORM
    '\ufef2'   #  0x00f6 -> ARABIC LETTER YEH FINAL FORM
    '\ufed0'   #  0x00f7 -> ARABIC LETTER GHAIN MEDIAL FORM
    '\ufed5'   #  0x00f8 -> ARABIC LETTER QAF ISOLATED FORM
    '\ufef5'   #  0x00f9 -> ARABIC LIGATURE LAM WITH ALEF WITH MADDA ABOVE ISOLATED FORM
    '\ufef6'   #  0x00fa -> ARABIC LIGATURE LAM WITH ALEF WITH MADDA ABOVE FINAL FORM
    '\ufedd'   #  0x00fb -> ARABIC LETTER LAM ISOLATED FORM
    '\ufed9'   #  0x00fc -> ARABIC LETTER KAF ISOLATED FORM
    '\ufef1'   #  0x00fd -> ARABIC LETTER YEH ISOLATED FORM
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\ufffe'   #  0x00ff -> UNDEFINED
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00a0,     #  NON-BREAKING SPACE
    0x00a2: 0x00c0,     #  CENT SIGN
    0x00a3: 0x00a3,     #  POUND SIGN
    0x00a4: 0x00a4,     #  CURRENCY SIGN
    0x00a6: 0x00db,     #  BROKEN VERTICAL BAR
    0x00ab: 0x0097,     #  LEFT POINTING GUILLEMET
    0x00ac: 0x00dc,     #  NOT SIGN
    0x00ad: 0x00a1,     #  SOFT HYPHEN
    0x00b0: 0x0080,     #  DEGREE SIGN
    0x00b1: 0x0093,     #  PLUS-OR-MINUS SIGN
    0x00b7: 0x0081,     #  MIDDLE DOT
    0x00bb: 0x0098,     #  RIGHT POINTING GUILLEMET
    0x00bc: 0x0095,     #  FRACTION 1/4
    0x00bd: 0x0094,     #  FRACTION 1/2
    0x00d7: 0x00de,     #  MULTIPLICATION SIGN
    0x00f7: 0x00dd,     #  DIVISION SIGN
    0x03b2: 0x0090,     #  GREEK SMALL BETA
    0x03c6: 0x0092,     #  GREEK SMALL PHI
    0x060c: 0x00ac,     #  ARABIC COMMA
    0x061b: 0x00bb,     #  ARABIC SEMICOLON
    0x061f: 0x00bf,     #  ARABIC QUESTION MARK
    0x0640: 0x00e0,     #  ARABIC TATWEEL
    0x0651: 0x00f1,     #  ARABIC SHADDAH
    0x0660: 0x00b0,     #  ARABIC-INDIC DIGIT ZERO
    0x0661: 0x00b1,     #  ARABIC-INDIC DIGIT ONE
    0x0662: 0x00b2,     #  ARABIC-INDIC DIGIT TWO
    0x0663: 0x00b3,     #  ARABIC-INDIC DIGIT THREE
    0x0664: 0x00b4,     #  ARABIC-INDIC DIGIT FOUR
    0x0665: 0x00b5,     #  ARABIC-INDIC DIGIT FIVE
    0x0666: 0x00b6,     #  ARABIC-INDIC DIGIT SIX
    0x0667: 0x00b7,     #  ARABIC-INDIC DIGIT SEVEN
    0x0668: 0x00b8,     #  ARABIC-INDIC DIGIT EIGHT
    0x0669: 0x00b9,     #  ARABIC-INDIC DIGIT NINE
    0x066a: 0x0025,     #  ARABIC PERCENT SIGN
    0x2219: 0x0082,     #  BULLET OPERATOR
    0x221a: 0x0083,     #  SQUARE ROOT
    0x221e: 0x0091,     #  INFINITY
    0x2248: 0x0096,     #  ALMOST EQUAL TO
    0x2500: 0x0085,     #  FORMS LIGHT HORIZONTAL
    0x2502: 0x0086,     #  FORMS LIGHT VERTICAL
    0x250c: 0x008d,     #  FORMS LIGHT DOWN AND RIGHT
    0x2510: 0x008c,     #  FORMS LIGHT DOWN AND LEFT
    0x2514: 0x008e,     #  FORMS LIGHT UP AND RIGHT
    0x2518: 0x008f,     #  FORMS LIGHT UP AND LEFT
    0x251c: 0x008a,     #  FORMS LIGHT VERTICAL AND RIGHT
    0x2524: 0x0088,     #  FORMS LIGHT VERTICAL AND LEFT
    0x252c: 0x0089,     #  FORMS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x008b,     #  FORMS LIGHT UP AND HORIZONTAL
    0x253c: 0x0087,     #  FORMS LIGHT VERTICAL AND HORIZONTAL
    0x2592: 0x0084,     #  MEDIUM SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
    0xfe7d: 0x00f0,     #  ARABIC SHADDA MEDIAL FORM
    0xfe80: 0x00c1,     #  ARABIC LETTER HAMZA ISOLATED FORM
    0xfe81: 0x00c2,     #  ARABIC LETTER ALEF WITH MADDA ABOVE ISOLATED FORM
    0xfe82: 0x00a2,     #  ARABIC LETTER ALEF WITH MADDA ABOVE FINAL FORM
    0xfe83: 0x00c3,     #  ARABIC LETTER ALEF WITH HAMZA ABOVE ISOLATED FORM
    0xfe84: 0x00a5,     #  ARABIC LETTER ALEF WITH HAMZA ABOVE FINAL FORM
    0xfe85: 0x00c4,     #  ARABIC LETTER WAW WITH HAMZA ABOVE ISOLATED FORM
    0xfe8b: 0x00c6,     #  ARABIC LETTER YEH WITH HAMZA ABOVE INITIAL FORM
    0xfe8d: 0x00c7,     #  ARABIC LETTER ALEF ISOLATED FORM
    0xfe8e: 0x00a8,     #  ARABIC LETTER ALEF FINAL FORM
    0xfe8f: 0x00a9,     #  ARABIC LETTER BEH ISOLATED FORM
    0xfe91: 0x00c8,     #  ARABIC LETTER BEH INITIAL FORM
    0xfe93: 0x00c9,     #  ARABIC LETTER TEH MARBUTA ISOLATED FORM
    0xfe95: 0x00aa,     #  ARABIC LETTER TEH ISOLATED FORM
    0xfe97: 0x00ca,     #  ARABIC LETTER TEH INITIAL FORM
    0xfe99: 0x00ab,     #  ARABIC LETTER THEH ISOLATED FORM
    0xfe9b: 0x00cb,     #  ARABIC LETTER THEH INITIAL FORM
    0xfe9d: 0x00ad,     #  ARABIC LETTER JEEM ISOLATED FORM
    0xfe9f: 0x00cc,     #  ARABIC LETTER JEEM INITIAL FORM
    0xfea1: 0x00ae,     #  ARABIC LETTER HAH ISOLATED FORM
    0xfea3: 0x00cd,     #  ARABIC LETTER HAH INITIAL FORM
    0xfea5: 0x00af,     #  ARABIC LETTER KHAH ISOLATED FORM
    0xfea7: 0x00ce,     #  ARABIC LETTER KHAH INITIAL FORM
    0xfea9: 0x00cf,     #  ARABIC LETTER DAL ISOLATED FORM
    0xfeab: 0x00d0,     #  ARABIC LETTER THAL ISOLATED FORM
    0xfead: 0x00d1,     #  ARABIC LETTER REH ISOLATED FORM
    0xfeaf: 0x00d2,     #  ARABIC LETTER ZAIN ISOLATED FORM
    0xfeb1: 0x00bc,     #  ARABIC LETTER SEEN ISOLATED FORM
    0xfeb3: 0x00d3,     #  ARABIC LETTER SEEN INITIAL FORM
    0xfeb5: 0x00bd,     #  ARABIC LETTER SHEEN ISOLATED FORM
    0xfeb7: 0x00d4,     #  ARABIC LETTER SHEEN INITIAL FORM
    0xfeb9: 0x00be,     #  ARABIC LETTER SAD ISOLATED FORM
    0xfebb: 0x00d5,     #  ARABIC LETTER SAD INITIAL FORM
    0xfebd: 0x00eb,     #  ARABIC LETTER DAD ISOLATED FORM
    0xfebf: 0x00d6,     #  ARABIC LETTER DAD INITIAL FORM
    0xfec1: 0x00d7,     #  ARABIC LETTER TAH ISOLATED FORM
    0xfec5: 0x00d8,     #  ARABIC LETTER ZAH ISOLATED FORM
    0xfec9: 0x00df,     #  ARABIC LETTER AIN ISOLATED FORM
    0xfeca: 0x00c5,     #  ARABIC LETTER AIN FINAL FORM
    0xfecb: 0x00d9,     #  ARABIC LETTER AIN INITIAL FORM
    0xfecc: 0x00ec,     #  ARABIC LETTER AIN MEDIAL FORM
    0xfecd: 0x00ee,     #  ARABIC LETTER GHAIN ISOLATED FORM
    0xfece: 0x00ed,     #  ARABIC LETTER GHAIN FINAL FORM
    0xfecf: 0x00da,     #  ARABIC LETTER GHAIN INITIAL FORM
    0xfed0: 0x00f7,     #  ARABIC LETTER GHAIN MEDIAL FORM
    0xfed1: 0x00ba,     #  ARABIC LETTER FEH ISOLATED FORM
    0xfed3: 0x00e1,     #  ARABIC LETTER FEH INITIAL FORM
    0xfed5: 0x00f8,     #  ARABIC LETTER QAF ISOLATED FORM
    0xfed7: 0x00e2,     #  ARABIC LETTER QAF INITIAL FORM
    0xfed9: 0x00fc,     #  ARABIC LETTER KAF ISOLATED FORM
    0xfedb: 0x00e3,     #  ARABIC LETTER KAF INITIAL FORM
    0xfedd: 0x00fb,     #  ARABIC LETTER LAM ISOLATED FORM
    0xfedf: 0x00e4,     #  ARABIC LETTER LAM INITIAL FORM
    0xfee1: 0x00ef,     #  ARABIC LETTER MEEM ISOLATED FORM
    0xfee3: 0x00e5,     #  ARABIC LETTER MEEM INITIAL FORM
    0xfee5: 0x00f2,     #  ARABIC LETTER NOON ISOLATED FORM
    0xfee7: 0x00e6,     #  ARABIC LETTER NOON INITIAL FORM
    0xfee9: 0x00f3,     #  ARABIC LETTER HEH ISOLATED FORM
    0xfeeb: 0x00e7,     #  ARABIC LETTER HEH INITIAL FORM
    0xfeec: 0x00f4,     #  ARABIC LETTER HEH MEDIAL FORM
    0xfeed: 0x00e8,     #  ARABIC LETTER WAW ISOLATED FORM
    0xfeef: 0x00e9,     #  ARABIC LETTER ALEF MAKSURA ISOLATED FORM
    0xfef0: 0x00f5,     #  ARABIC LETTER ALEF MAKSURA FINAL FORM
    0xfef1: 0x00fd,     #  ARABIC LETTER YEH ISOLATED FORM
    0xfef2: 0x00f6,     #  ARABIC LETTER YEH FINAL FORM
    0xfef3: 0x00ea,     #  ARABIC LETTER YEH INITIAL FORM
    0xfef5: 0x00f9,     #  ARABIC LIGATURE LAM WITH ALEF WITH MADDA ABOVE ISOLATED FORM
    0xfef6: 0x00fa,     #  ARABIC LIGATURE LAM WITH ALEF WITH MADDA ABOVE FINAL FORM
    0xfef7: 0x0099,     #  ARABIC LIGATURE LAM WITH ALEF WITH HAMZA ABOVE ISOLATED FORM
    0xfef8: 0x009a,     #  ARABIC LIGATURE LAM WITH ALEF WITH HAMZA ABOVE FINAL FORM
    0xfefb: 0x009d,     #  ARABIC LIGATURE LAM WITH ALEF ISOLATED FORM
    0xfefc: 0x009e,     #  ARABIC LIGATURE LAM WITH ALEF FINAL FORM
}
lib\encodings\cp865.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP865.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp865',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0081: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x0082: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x0083: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x0084: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x0085: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0086: 0x00e5,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x0087: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x0088: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0089: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x008a: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x008b: 0x00ef,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x008c: 0x00ee,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x008d: 0x00ec,     #  LATIN SMALL LETTER I WITH GRAVE
    0x008e: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x008f: 0x00c5,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x0090: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0091: 0x00e6,     #  LATIN SMALL LIGATURE AE
    0x0092: 0x00c6,     #  LATIN CAPITAL LIGATURE AE
    0x0093: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x0094: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x0095: 0x00f2,     #  LATIN SMALL LETTER O WITH GRAVE
    0x0096: 0x00fb,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x0097: 0x00f9,     #  LATIN SMALL LETTER U WITH GRAVE
    0x0098: 0x00ff,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x0099: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x009a: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x009b: 0x00f8,     #  LATIN SMALL LETTER O WITH STROKE
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x00d8,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x009e: 0x20a7,     #  PESETA SIGN
    0x009f: 0x0192,     #  LATIN SMALL LETTER F WITH HOOK
    0x00a0: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00a1: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00a2: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00a3: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00a4: 0x00f1,     #  LATIN SMALL LETTER N WITH TILDE
    0x00a5: 0x00d1,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00a6: 0x00aa,     #  FEMININE ORDINAL INDICATOR
    0x00a7: 0x00ba,     #  MASCULINE ORDINAL INDICATOR
    0x00a8: 0x00bf,     #  INVERTED QUESTION MARK
    0x00a9: 0x2310,     #  REVERSED NOT SIGN
    0x00aa: 0x00ac,     #  NOT SIGN
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x00bc,     #  VULGAR FRACTION ONE QUARTER
    0x00ad: 0x00a1,     #  INVERTED EXCLAMATION MARK
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00a4,     #  CURRENCY SIGN
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x03b1,     #  GREEK SMALL LETTER ALPHA
    0x00e1: 0x00df,     #  LATIN SMALL LETTER SHARP S
    0x00e2: 0x0393,     #  GREEK CAPITAL LETTER GAMMA
    0x00e3: 0x03c0,     #  GREEK SMALL LETTER PI
    0x00e4: 0x03a3,     #  GREEK CAPITAL LETTER SIGMA
    0x00e5: 0x03c3,     #  GREEK SMALL LETTER SIGMA
    0x00e6: 0x00b5,     #  MICRO SIGN
    0x00e7: 0x03c4,     #  GREEK SMALL LETTER TAU
    0x00e8: 0x03a6,     #  GREEK CAPITAL LETTER PHI
    0x00e9: 0x0398,     #  GREEK CAPITAL LETTER THETA
    0x00ea: 0x03a9,     #  GREEK CAPITAL LETTER OMEGA
    0x00eb: 0x03b4,     #  GREEK SMALL LETTER DELTA
    0x00ec: 0x221e,     #  INFINITY
    0x00ed: 0x03c6,     #  GREEK SMALL LETTER PHI
    0x00ee: 0x03b5,     #  GREEK SMALL LETTER EPSILON
    0x00ef: 0x2229,     #  INTERSECTION
    0x00f0: 0x2261,     #  IDENTICAL TO
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x2265,     #  GREATER-THAN OR EQUAL TO
    0x00f3: 0x2264,     #  LESS-THAN OR EQUAL TO
    0x00f4: 0x2320,     #  TOP HALF INTEGRAL
    0x00f5: 0x2321,     #  BOTTOM HALF INTEGRAL
    0x00f6: 0x00f7,     #  DIVISION SIGN
    0x00f7: 0x2248,     #  ALMOST EQUAL TO
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x207f,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x00fd: 0x00b2,     #  SUPERSCRIPT TWO
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\xc7'     #  0x0080 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xfc'     #  0x0081 -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xe9'     #  0x0082 -> LATIN SMALL LETTER E WITH ACUTE
    '\xe2'     #  0x0083 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x0084 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe0'     #  0x0085 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe5'     #  0x0086 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x0087 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xea'     #  0x0088 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x0089 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xe8'     #  0x008a -> LATIN SMALL LETTER E WITH GRAVE
    '\xef'     #  0x008b -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xee'     #  0x008c -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xec'     #  0x008d -> LATIN SMALL LETTER I WITH GRAVE
    '\xc4'     #  0x008e -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x008f -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc9'     #  0x0090 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xe6'     #  0x0091 -> LATIN SMALL LIGATURE AE
    '\xc6'     #  0x0092 -> LATIN CAPITAL LIGATURE AE
    '\xf4'     #  0x0093 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x0094 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf2'     #  0x0095 -> LATIN SMALL LETTER O WITH GRAVE
    '\xfb'     #  0x0096 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xf9'     #  0x0097 -> LATIN SMALL LETTER U WITH GRAVE
    '\xff'     #  0x0098 -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\xd6'     #  0x0099 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x009a -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xf8'     #  0x009b -> LATIN SMALL LETTER O WITH STROKE
    '\xa3'     #  0x009c -> POUND SIGN
    '\xd8'     #  0x009d -> LATIN CAPITAL LETTER O WITH STROKE
    '\u20a7'   #  0x009e -> PESETA SIGN
    '\u0192'   #  0x009f -> LATIN SMALL LETTER F WITH HOOK
    '\xe1'     #  0x00a0 -> LATIN SMALL LETTER A WITH ACUTE
    '\xed'     #  0x00a1 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf3'     #  0x00a2 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0x00a3 -> LATIN SMALL LETTER U WITH ACUTE
    '\xf1'     #  0x00a4 -> LATIN SMALL LETTER N WITH TILDE
    '\xd1'     #  0x00a5 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xaa'     #  0x00a6 -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0x00a7 -> MASCULINE ORDINAL INDICATOR
    '\xbf'     #  0x00a8 -> INVERTED QUESTION MARK
    '\u2310'   #  0x00a9 -> REVERSED NOT SIGN
    '\xac'     #  0x00aa -> NOT SIGN
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\xbc'     #  0x00ac -> VULGAR FRACTION ONE QUARTER
    '\xa1'     #  0x00ad -> INVERTED EXCLAMATION MARK
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xa4'     #  0x00af -> CURRENCY SIGN
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u03b1'   #  0x00e0 -> GREEK SMALL LETTER ALPHA
    '\xdf'     #  0x00e1 -> LATIN SMALL LETTER SHARP S
    '\u0393'   #  0x00e2 -> GREEK CAPITAL LETTER GAMMA
    '\u03c0'   #  0x00e3 -> GREEK SMALL LETTER PI
    '\u03a3'   #  0x00e4 -> GREEK CAPITAL LETTER SIGMA
    '\u03c3'   #  0x00e5 -> GREEK SMALL LETTER SIGMA
    '\xb5'     #  0x00e6 -> MICRO SIGN
    '\u03c4'   #  0x00e7 -> GREEK SMALL LETTER TAU
    '\u03a6'   #  0x00e8 -> GREEK CAPITAL LETTER PHI
    '\u0398'   #  0x00e9 -> GREEK CAPITAL LETTER THETA
    '\u03a9'   #  0x00ea -> GREEK CAPITAL LETTER OMEGA
    '\u03b4'   #  0x00eb -> GREEK SMALL LETTER DELTA
    '\u221e'   #  0x00ec -> INFINITY
    '\u03c6'   #  0x00ed -> GREEK SMALL LETTER PHI
    '\u03b5'   #  0x00ee -> GREEK SMALL LETTER EPSILON
    '\u2229'   #  0x00ef -> INTERSECTION
    '\u2261'   #  0x00f0 -> IDENTICAL TO
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u2265'   #  0x00f2 -> GREATER-THAN OR EQUAL TO
    '\u2264'   #  0x00f3 -> LESS-THAN OR EQUAL TO
    '\u2320'   #  0x00f4 -> TOP HALF INTEGRAL
    '\u2321'   #  0x00f5 -> BOTTOM HALF INTEGRAL
    '\xf7'     #  0x00f6 -> DIVISION SIGN
    '\u2248'   #  0x00f7 -> ALMOST EQUAL TO
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u207f'   #  0x00fc -> SUPERSCRIPT LATIN SMALL LETTER N
    '\xb2'     #  0x00fd -> SUPERSCRIPT TWO
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a1: 0x00ad,     #  INVERTED EXCLAMATION MARK
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a4: 0x00af,     #  CURRENCY SIGN
    0x00aa: 0x00a6,     #  FEMININE ORDINAL INDICATOR
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x00aa,     #  NOT SIGN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x00fd,     #  SUPERSCRIPT TWO
    0x00b5: 0x00e6,     #  MICRO SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x00ba: 0x00a7,     #  MASCULINE ORDINAL INDICATOR
    0x00bc: 0x00ac,     #  VULGAR FRACTION ONE QUARTER
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x00bf: 0x00a8,     #  INVERTED QUESTION MARK
    0x00c4: 0x008e,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c5: 0x008f,     #  LATIN CAPITAL LETTER A WITH RING ABOVE
    0x00c6: 0x0092,     #  LATIN CAPITAL LIGATURE AE
    0x00c7: 0x0080,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c9: 0x0090,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00d1: 0x00a5,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00d6: 0x0099,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00d8: 0x009d,     #  LATIN CAPITAL LETTER O WITH STROKE
    0x00dc: 0x009a,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00df: 0x00e1,     #  LATIN SMALL LETTER SHARP S
    0x00e0: 0x0085,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e1: 0x00a0,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0083,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e4: 0x0084,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e5: 0x0086,     #  LATIN SMALL LETTER A WITH RING ABOVE
    0x00e6: 0x0091,     #  LATIN SMALL LIGATURE AE
    0x00e7: 0x0087,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008a,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x0082,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0088,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00eb: 0x0089,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ec: 0x008d,     #  LATIN SMALL LETTER I WITH GRAVE
    0x00ed: 0x00a1,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00ee: 0x008c,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x00ef: 0x008b,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x00f1: 0x00a4,     #  LATIN SMALL LETTER N WITH TILDE
    0x00f2: 0x0095,     #  LATIN SMALL LETTER O WITH GRAVE
    0x00f3: 0x00a2,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0093,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f6: 0x0094,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x00f6,     #  DIVISION SIGN
    0x00f8: 0x009b,     #  LATIN SMALL LETTER O WITH STROKE
    0x00f9: 0x0097,     #  LATIN SMALL LETTER U WITH GRAVE
    0x00fa: 0x00a3,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fb: 0x0096,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x00fc: 0x0081,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x00ff: 0x0098,     #  LATIN SMALL LETTER Y WITH DIAERESIS
    0x0192: 0x009f,     #  LATIN SMALL LETTER F WITH HOOK
    0x0393: 0x00e2,     #  GREEK CAPITAL LETTER GAMMA
    0x0398: 0x00e9,     #  GREEK CAPITAL LETTER THETA
    0x03a3: 0x00e4,     #  GREEK CAPITAL LETTER SIGMA
    0x03a6: 0x00e8,     #  GREEK CAPITAL LETTER PHI
    0x03a9: 0x00ea,     #  GREEK CAPITAL LETTER OMEGA
    0x03b1: 0x00e0,     #  GREEK SMALL LETTER ALPHA
    0x03b4: 0x00eb,     #  GREEK SMALL LETTER DELTA
    0x03b5: 0x00ee,     #  GREEK SMALL LETTER EPSILON
    0x03c0: 0x00e3,     #  GREEK SMALL LETTER PI
    0x03c3: 0x00e5,     #  GREEK SMALL LETTER SIGMA
    0x03c4: 0x00e7,     #  GREEK SMALL LETTER TAU
    0x03c6: 0x00ed,     #  GREEK SMALL LETTER PHI
    0x207f: 0x00fc,     #  SUPERSCRIPT LATIN SMALL LETTER N
    0x20a7: 0x009e,     #  PESETA SIGN
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x221e: 0x00ec,     #  INFINITY
    0x2229: 0x00ef,     #  INTERSECTION
    0x2248: 0x00f7,     #  ALMOST EQUAL TO
    0x2261: 0x00f0,     #  IDENTICAL TO
    0x2264: 0x00f3,     #  LESS-THAN OR EQUAL TO
    0x2265: 0x00f2,     #  GREATER-THAN OR EQUAL TO
    0x2310: 0x00a9,     #  REVERSED NOT SIGN
    0x2320: 0x00f4,     #  TOP HALF INTEGRAL
    0x2321: 0x00f5,     #  BOTTOM HALF INTEGRAL
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp866.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP866.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp866',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x0410,     #  CYRILLIC CAPITAL LETTER A
    0x0081: 0x0411,     #  CYRILLIC CAPITAL LETTER BE
    0x0082: 0x0412,     #  CYRILLIC CAPITAL LETTER VE
    0x0083: 0x0413,     #  CYRILLIC CAPITAL LETTER GHE
    0x0084: 0x0414,     #  CYRILLIC CAPITAL LETTER DE
    0x0085: 0x0415,     #  CYRILLIC CAPITAL LETTER IE
    0x0086: 0x0416,     #  CYRILLIC CAPITAL LETTER ZHE
    0x0087: 0x0417,     #  CYRILLIC CAPITAL LETTER ZE
    0x0088: 0x0418,     #  CYRILLIC CAPITAL LETTER I
    0x0089: 0x0419,     #  CYRILLIC CAPITAL LETTER SHORT I
    0x008a: 0x041a,     #  CYRILLIC CAPITAL LETTER KA
    0x008b: 0x041b,     #  CYRILLIC CAPITAL LETTER EL
    0x008c: 0x041c,     #  CYRILLIC CAPITAL LETTER EM
    0x008d: 0x041d,     #  CYRILLIC CAPITAL LETTER EN
    0x008e: 0x041e,     #  CYRILLIC CAPITAL LETTER O
    0x008f: 0x041f,     #  CYRILLIC CAPITAL LETTER PE
    0x0090: 0x0420,     #  CYRILLIC CAPITAL LETTER ER
    0x0091: 0x0421,     #  CYRILLIC CAPITAL LETTER ES
    0x0092: 0x0422,     #  CYRILLIC CAPITAL LETTER TE
    0x0093: 0x0423,     #  CYRILLIC CAPITAL LETTER U
    0x0094: 0x0424,     #  CYRILLIC CAPITAL LETTER EF
    0x0095: 0x0425,     #  CYRILLIC CAPITAL LETTER HA
    0x0096: 0x0426,     #  CYRILLIC CAPITAL LETTER TSE
    0x0097: 0x0427,     #  CYRILLIC CAPITAL LETTER CHE
    0x0098: 0x0428,     #  CYRILLIC CAPITAL LETTER SHA
    0x0099: 0x0429,     #  CYRILLIC CAPITAL LETTER SHCHA
    0x009a: 0x042a,     #  CYRILLIC CAPITAL LETTER HARD SIGN
    0x009b: 0x042b,     #  CYRILLIC CAPITAL LETTER YERU
    0x009c: 0x042c,     #  CYRILLIC CAPITAL LETTER SOFT SIGN
    0x009d: 0x042d,     #  CYRILLIC CAPITAL LETTER E
    0x009e: 0x042e,     #  CYRILLIC CAPITAL LETTER YU
    0x009f: 0x042f,     #  CYRILLIC CAPITAL LETTER YA
    0x00a0: 0x0430,     #  CYRILLIC SMALL LETTER A
    0x00a1: 0x0431,     #  CYRILLIC SMALL LETTER BE
    0x00a2: 0x0432,     #  CYRILLIC SMALL LETTER VE
    0x00a3: 0x0433,     #  CYRILLIC SMALL LETTER GHE
    0x00a4: 0x0434,     #  CYRILLIC SMALL LETTER DE
    0x00a5: 0x0435,     #  CYRILLIC SMALL LETTER IE
    0x00a6: 0x0436,     #  CYRILLIC SMALL LETTER ZHE
    0x00a7: 0x0437,     #  CYRILLIC SMALL LETTER ZE
    0x00a8: 0x0438,     #  CYRILLIC SMALL LETTER I
    0x00a9: 0x0439,     #  CYRILLIC SMALL LETTER SHORT I
    0x00aa: 0x043a,     #  CYRILLIC SMALL LETTER KA
    0x00ab: 0x043b,     #  CYRILLIC SMALL LETTER EL
    0x00ac: 0x043c,     #  CYRILLIC SMALL LETTER EM
    0x00ad: 0x043d,     #  CYRILLIC SMALL LETTER EN
    0x00ae: 0x043e,     #  CYRILLIC SMALL LETTER O
    0x00af: 0x043f,     #  CYRILLIC SMALL LETTER PE
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x2561,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x00b6: 0x2562,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x00b7: 0x2556,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x00b8: 0x2555,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x255c,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x00be: 0x255b,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x255e,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x00c7: 0x255f,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x2567,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x00d0: 0x2568,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x00d1: 0x2564,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x00d2: 0x2565,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x00d3: 0x2559,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x00d4: 0x2558,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x00d5: 0x2552,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x00d6: 0x2553,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x00d7: 0x256b,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x00d8: 0x256a,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x258c,     #  LEFT HALF BLOCK
    0x00de: 0x2590,     #  RIGHT HALF BLOCK
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x0440,     #  CYRILLIC SMALL LETTER ER
    0x00e1: 0x0441,     #  CYRILLIC SMALL LETTER ES
    0x00e2: 0x0442,     #  CYRILLIC SMALL LETTER TE
    0x00e3: 0x0443,     #  CYRILLIC SMALL LETTER U
    0x00e4: 0x0444,     #  CYRILLIC SMALL LETTER EF
    0x00e5: 0x0445,     #  CYRILLIC SMALL LETTER HA
    0x00e6: 0x0446,     #  CYRILLIC SMALL LETTER TSE
    0x00e7: 0x0447,     #  CYRILLIC SMALL LETTER CHE
    0x00e8: 0x0448,     #  CYRILLIC SMALL LETTER SHA
    0x00e9: 0x0449,     #  CYRILLIC SMALL LETTER SHCHA
    0x00ea: 0x044a,     #  CYRILLIC SMALL LETTER HARD SIGN
    0x00eb: 0x044b,     #  CYRILLIC SMALL LETTER YERU
    0x00ec: 0x044c,     #  CYRILLIC SMALL LETTER SOFT SIGN
    0x00ed: 0x044d,     #  CYRILLIC SMALL LETTER E
    0x00ee: 0x044e,     #  CYRILLIC SMALL LETTER YU
    0x00ef: 0x044f,     #  CYRILLIC SMALL LETTER YA
    0x00f0: 0x0401,     #  CYRILLIC CAPITAL LETTER IO
    0x00f1: 0x0451,     #  CYRILLIC SMALL LETTER IO
    0x00f2: 0x0404,     #  CYRILLIC CAPITAL LETTER UKRAINIAN IE
    0x00f3: 0x0454,     #  CYRILLIC SMALL LETTER UKRAINIAN IE
    0x00f4: 0x0407,     #  CYRILLIC CAPITAL LETTER YI
    0x00f5: 0x0457,     #  CYRILLIC SMALL LETTER YI
    0x00f6: 0x040e,     #  CYRILLIC CAPITAL LETTER SHORT U
    0x00f7: 0x045e,     #  CYRILLIC SMALL LETTER SHORT U
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x2219,     #  BULLET OPERATOR
    0x00fa: 0x00b7,     #  MIDDLE DOT
    0x00fb: 0x221a,     #  SQUARE ROOT
    0x00fc: 0x2116,     #  NUMERO SIGN
    0x00fd: 0x00a4,     #  CURRENCY SIGN
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\u0410'   #  0x0080 -> CYRILLIC CAPITAL LETTER A
    '\u0411'   #  0x0081 -> CYRILLIC CAPITAL LETTER BE
    '\u0412'   #  0x0082 -> CYRILLIC CAPITAL LETTER VE
    '\u0413'   #  0x0083 -> CYRILLIC CAPITAL LETTER GHE
    '\u0414'   #  0x0084 -> CYRILLIC CAPITAL LETTER DE
    '\u0415'   #  0x0085 -> CYRILLIC CAPITAL LETTER IE
    '\u0416'   #  0x0086 -> CYRILLIC CAPITAL LETTER ZHE
    '\u0417'   #  0x0087 -> CYRILLIC CAPITAL LETTER ZE
    '\u0418'   #  0x0088 -> CYRILLIC CAPITAL LETTER I
    '\u0419'   #  0x0089 -> CYRILLIC CAPITAL LETTER SHORT I
    '\u041a'   #  0x008a -> CYRILLIC CAPITAL LETTER KA
    '\u041b'   #  0x008b -> CYRILLIC CAPITAL LETTER EL
    '\u041c'   #  0x008c -> CYRILLIC CAPITAL LETTER EM
    '\u041d'   #  0x008d -> CYRILLIC CAPITAL LETTER EN
    '\u041e'   #  0x008e -> CYRILLIC CAPITAL LETTER O
    '\u041f'   #  0x008f -> CYRILLIC CAPITAL LETTER PE
    '\u0420'   #  0x0090 -> CYRILLIC CAPITAL LETTER ER
    '\u0421'   #  0x0091 -> CYRILLIC CAPITAL LETTER ES
    '\u0422'   #  0x0092 -> CYRILLIC CAPITAL LETTER TE
    '\u0423'   #  0x0093 -> CYRILLIC CAPITAL LETTER U
    '\u0424'   #  0x0094 -> CYRILLIC CAPITAL LETTER EF
    '\u0425'   #  0x0095 -> CYRILLIC CAPITAL LETTER HA
    '\u0426'   #  0x0096 -> CYRILLIC CAPITAL LETTER TSE
    '\u0427'   #  0x0097 -> CYRILLIC CAPITAL LETTER CHE
    '\u0428'   #  0x0098 -> CYRILLIC CAPITAL LETTER SHA
    '\u0429'   #  0x0099 -> CYRILLIC CAPITAL LETTER SHCHA
    '\u042a'   #  0x009a -> CYRILLIC CAPITAL LETTER HARD SIGN
    '\u042b'   #  0x009b -> CYRILLIC CAPITAL LETTER YERU
    '\u042c'   #  0x009c -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u042d'   #  0x009d -> CYRILLIC CAPITAL LETTER E
    '\u042e'   #  0x009e -> CYRILLIC CAPITAL LETTER YU
    '\u042f'   #  0x009f -> CYRILLIC CAPITAL LETTER YA
    '\u0430'   #  0x00a0 -> CYRILLIC SMALL LETTER A
    '\u0431'   #  0x00a1 -> CYRILLIC SMALL LETTER BE
    '\u0432'   #  0x00a2 -> CYRILLIC SMALL LETTER VE
    '\u0433'   #  0x00a3 -> CYRILLIC SMALL LETTER GHE
    '\u0434'   #  0x00a4 -> CYRILLIC SMALL LETTER DE
    '\u0435'   #  0x00a5 -> CYRILLIC SMALL LETTER IE
    '\u0436'   #  0x00a6 -> CYRILLIC SMALL LETTER ZHE
    '\u0437'   #  0x00a7 -> CYRILLIC SMALL LETTER ZE
    '\u0438'   #  0x00a8 -> CYRILLIC SMALL LETTER I
    '\u0439'   #  0x00a9 -> CYRILLIC SMALL LETTER SHORT I
    '\u043a'   #  0x00aa -> CYRILLIC SMALL LETTER KA
    '\u043b'   #  0x00ab -> CYRILLIC SMALL LETTER EL
    '\u043c'   #  0x00ac -> CYRILLIC SMALL LETTER EM
    '\u043d'   #  0x00ad -> CYRILLIC SMALL LETTER EN
    '\u043e'   #  0x00ae -> CYRILLIC SMALL LETTER O
    '\u043f'   #  0x00af -> CYRILLIC SMALL LETTER PE
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u2561'   #  0x00b5 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u2562'   #  0x00b6 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2556'   #  0x00b7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2555'   #  0x00b8 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255c'   #  0x00bd -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255b'   #  0x00be -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u255e'   #  0x00c6 -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0x00c7 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u2567'   #  0x00cf -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0x00d0 -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2564'   #  0x00d1 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0x00d2 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2559'   #  0x00d3 -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u2558'   #  0x00d4 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2552'   #  0x00d5 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u2553'   #  0x00d6 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u256b'   #  0x00d7 -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256a'   #  0x00d8 -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u258c'   #  0x00dd -> LEFT HALF BLOCK
    '\u2590'   #  0x00de -> RIGHT HALF BLOCK
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u0440'   #  0x00e0 -> CYRILLIC SMALL LETTER ER
    '\u0441'   #  0x00e1 -> CYRILLIC SMALL LETTER ES
    '\u0442'   #  0x00e2 -> CYRILLIC SMALL LETTER TE
    '\u0443'   #  0x00e3 -> CYRILLIC SMALL LETTER U
    '\u0444'   #  0x00e4 -> CYRILLIC SMALL LETTER EF
    '\u0445'   #  0x00e5 -> CYRILLIC SMALL LETTER HA
    '\u0446'   #  0x00e6 -> CYRILLIC SMALL LETTER TSE
    '\u0447'   #  0x00e7 -> CYRILLIC SMALL LETTER CHE
    '\u0448'   #  0x00e8 -> CYRILLIC SMALL LETTER SHA
    '\u0449'   #  0x00e9 -> CYRILLIC SMALL LETTER SHCHA
    '\u044a'   #  0x00ea -> CYRILLIC SMALL LETTER HARD SIGN
    '\u044b'   #  0x00eb -> CYRILLIC SMALL LETTER YERU
    '\u044c'   #  0x00ec -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u044d'   #  0x00ed -> CYRILLIC SMALL LETTER E
    '\u044e'   #  0x00ee -> CYRILLIC SMALL LETTER YU
    '\u044f'   #  0x00ef -> CYRILLIC SMALL LETTER YA
    '\u0401'   #  0x00f0 -> CYRILLIC CAPITAL LETTER IO
    '\u0451'   #  0x00f1 -> CYRILLIC SMALL LETTER IO
    '\u0404'   #  0x00f2 -> CYRILLIC CAPITAL LETTER UKRAINIAN IE
    '\u0454'   #  0x00f3 -> CYRILLIC SMALL LETTER UKRAINIAN IE
    '\u0407'   #  0x00f4 -> CYRILLIC CAPITAL LETTER YI
    '\u0457'   #  0x00f5 -> CYRILLIC SMALL LETTER YI
    '\u040e'   #  0x00f6 -> CYRILLIC CAPITAL LETTER SHORT U
    '\u045e'   #  0x00f7 -> CYRILLIC SMALL LETTER SHORT U
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\u2219'   #  0x00f9 -> BULLET OPERATOR
    '\xb7'     #  0x00fa -> MIDDLE DOT
    '\u221a'   #  0x00fb -> SQUARE ROOT
    '\u2116'   #  0x00fc -> NUMERO SIGN
    '\xa4'     #  0x00fd -> CURRENCY SIGN
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a4: 0x00fd,     #  CURRENCY SIGN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b7: 0x00fa,     #  MIDDLE DOT
    0x0401: 0x00f0,     #  CYRILLIC CAPITAL LETTER IO
    0x0404: 0x00f2,     #  CYRILLIC CAPITAL LETTER UKRAINIAN IE
    0x0407: 0x00f4,     #  CYRILLIC CAPITAL LETTER YI
    0x040e: 0x00f6,     #  CYRILLIC CAPITAL LETTER SHORT U
    0x0410: 0x0080,     #  CYRILLIC CAPITAL LETTER A
    0x0411: 0x0081,     #  CYRILLIC CAPITAL LETTER BE
    0x0412: 0x0082,     #  CYRILLIC CAPITAL LETTER VE
    0x0413: 0x0083,     #  CYRILLIC CAPITAL LETTER GHE
    0x0414: 0x0084,     #  CYRILLIC CAPITAL LETTER DE
    0x0415: 0x0085,     #  CYRILLIC CAPITAL LETTER IE
    0x0416: 0x0086,     #  CYRILLIC CAPITAL LETTER ZHE
    0x0417: 0x0087,     #  CYRILLIC CAPITAL LETTER ZE
    0x0418: 0x0088,     #  CYRILLIC CAPITAL LETTER I
    0x0419: 0x0089,     #  CYRILLIC CAPITAL LETTER SHORT I
    0x041a: 0x008a,     #  CYRILLIC CAPITAL LETTER KA
    0x041b: 0x008b,     #  CYRILLIC CAPITAL LETTER EL
    0x041c: 0x008c,     #  CYRILLIC CAPITAL LETTER EM
    0x041d: 0x008d,     #  CYRILLIC CAPITAL LETTER EN
    0x041e: 0x008e,     #  CYRILLIC CAPITAL LETTER O
    0x041f: 0x008f,     #  CYRILLIC CAPITAL LETTER PE
    0x0420: 0x0090,     #  CYRILLIC CAPITAL LETTER ER
    0x0421: 0x0091,     #  CYRILLIC CAPITAL LETTER ES
    0x0422: 0x0092,     #  CYRILLIC CAPITAL LETTER TE
    0x0423: 0x0093,     #  CYRILLIC CAPITAL LETTER U
    0x0424: 0x0094,     #  CYRILLIC CAPITAL LETTER EF
    0x0425: 0x0095,     #  CYRILLIC CAPITAL LETTER HA
    0x0426: 0x0096,     #  CYRILLIC CAPITAL LETTER TSE
    0x0427: 0x0097,     #  CYRILLIC CAPITAL LETTER CHE
    0x0428: 0x0098,     #  CYRILLIC CAPITAL LETTER SHA
    0x0429: 0x0099,     #  CYRILLIC CAPITAL LETTER SHCHA
    0x042a: 0x009a,     #  CYRILLIC CAPITAL LETTER HARD SIGN
    0x042b: 0x009b,     #  CYRILLIC CAPITAL LETTER YERU
    0x042c: 0x009c,     #  CYRILLIC CAPITAL LETTER SOFT SIGN
    0x042d: 0x009d,     #  CYRILLIC CAPITAL LETTER E
    0x042e: 0x009e,     #  CYRILLIC CAPITAL LETTER YU
    0x042f: 0x009f,     #  CYRILLIC CAPITAL LETTER YA
    0x0430: 0x00a0,     #  CYRILLIC SMALL LETTER A
    0x0431: 0x00a1,     #  CYRILLIC SMALL LETTER BE
    0x0432: 0x00a2,     #  CYRILLIC SMALL LETTER VE
    0x0433: 0x00a3,     #  CYRILLIC SMALL LETTER GHE
    0x0434: 0x00a4,     #  CYRILLIC SMALL LETTER DE
    0x0435: 0x00a5,     #  CYRILLIC SMALL LETTER IE
    0x0436: 0x00a6,     #  CYRILLIC SMALL LETTER ZHE
    0x0437: 0x00a7,     #  CYRILLIC SMALL LETTER ZE
    0x0438: 0x00a8,     #  CYRILLIC SMALL LETTER I
    0x0439: 0x00a9,     #  CYRILLIC SMALL LETTER SHORT I
    0x043a: 0x00aa,     #  CYRILLIC SMALL LETTER KA
    0x043b: 0x00ab,     #  CYRILLIC SMALL LETTER EL
    0x043c: 0x00ac,     #  CYRILLIC SMALL LETTER EM
    0x043d: 0x00ad,     #  CYRILLIC SMALL LETTER EN
    0x043e: 0x00ae,     #  CYRILLIC SMALL LETTER O
    0x043f: 0x00af,     #  CYRILLIC SMALL LETTER PE
    0x0440: 0x00e0,     #  CYRILLIC SMALL LETTER ER
    0x0441: 0x00e1,     #  CYRILLIC SMALL LETTER ES
    0x0442: 0x00e2,     #  CYRILLIC SMALL LETTER TE
    0x0443: 0x00e3,     #  CYRILLIC SMALL LETTER U
    0x0444: 0x00e4,     #  CYRILLIC SMALL LETTER EF
    0x0445: 0x00e5,     #  CYRILLIC SMALL LETTER HA
    0x0446: 0x00e6,     #  CYRILLIC SMALL LETTER TSE
    0x0447: 0x00e7,     #  CYRILLIC SMALL LETTER CHE
    0x0448: 0x00e8,     #  CYRILLIC SMALL LETTER SHA
    0x0449: 0x00e9,     #  CYRILLIC SMALL LETTER SHCHA
    0x044a: 0x00ea,     #  CYRILLIC SMALL LETTER HARD SIGN
    0x044b: 0x00eb,     #  CYRILLIC SMALL LETTER YERU
    0x044c: 0x00ec,     #  CYRILLIC SMALL LETTER SOFT SIGN
    0x044d: 0x00ed,     #  CYRILLIC SMALL LETTER E
    0x044e: 0x00ee,     #  CYRILLIC SMALL LETTER YU
    0x044f: 0x00ef,     #  CYRILLIC SMALL LETTER YA
    0x0451: 0x00f1,     #  CYRILLIC SMALL LETTER IO
    0x0454: 0x00f3,     #  CYRILLIC SMALL LETTER UKRAINIAN IE
    0x0457: 0x00f5,     #  CYRILLIC SMALL LETTER YI
    0x045e: 0x00f7,     #  CYRILLIC SMALL LETTER SHORT U
    0x2116: 0x00fc,     #  NUMERO SIGN
    0x2219: 0x00f9,     #  BULLET OPERATOR
    0x221a: 0x00fb,     #  SQUARE ROOT
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2552: 0x00d5,     #  BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    0x2553: 0x00d6,     #  BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2555: 0x00b8,     #  BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    0x2556: 0x00b7,     #  BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x2558: 0x00d4,     #  BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    0x2559: 0x00d3,     #  BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255b: 0x00be,     #  BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    0x255c: 0x00bd,     #  BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x255e: 0x00c6,     #  BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    0x255f: 0x00c7,     #  BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2561: 0x00b5,     #  BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    0x2562: 0x00b6,     #  BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2564: 0x00d1,     #  BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    0x2565: 0x00d2,     #  BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2567: 0x00cf,     #  BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    0x2568: 0x00d0,     #  BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256a: 0x00d8,     #  BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    0x256b: 0x00d7,     #  BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x258c: 0x00dd,     #  LEFT HALF BLOCK
    0x2590: 0x00de,     #  RIGHT HALF BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp869.py
""" Python Character Mapping Codec generated from 'VENDORS/MICSFT/PC/CP869.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp869',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: None,       #  UNDEFINED
    0x0081: None,       #  UNDEFINED
    0x0082: None,       #  UNDEFINED
    0x0083: None,       #  UNDEFINED
    0x0084: None,       #  UNDEFINED
    0x0085: None,       #  UNDEFINED
    0x0086: 0x0386,     #  GREEK CAPITAL LETTER ALPHA WITH TONOS
    0x0087: None,       #  UNDEFINED
    0x0088: 0x00b7,     #  MIDDLE DOT
    0x0089: 0x00ac,     #  NOT SIGN
    0x008a: 0x00a6,     #  BROKEN BAR
    0x008b: 0x2018,     #  LEFT SINGLE QUOTATION MARK
    0x008c: 0x2019,     #  RIGHT SINGLE QUOTATION MARK
    0x008d: 0x0388,     #  GREEK CAPITAL LETTER EPSILON WITH TONOS
    0x008e: 0x2015,     #  HORIZONTAL BAR
    0x008f: 0x0389,     #  GREEK CAPITAL LETTER ETA WITH TONOS
    0x0090: 0x038a,     #  GREEK CAPITAL LETTER IOTA WITH TONOS
    0x0091: 0x03aa,     #  GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    0x0092: 0x038c,     #  GREEK CAPITAL LETTER OMICRON WITH TONOS
    0x0093: None,       #  UNDEFINED
    0x0094: None,       #  UNDEFINED
    0x0095: 0x038e,     #  GREEK CAPITAL LETTER UPSILON WITH TONOS
    0x0096: 0x03ab,     #  GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    0x0097: 0x00a9,     #  COPYRIGHT SIGN
    0x0098: 0x038f,     #  GREEK CAPITAL LETTER OMEGA WITH TONOS
    0x0099: 0x00b2,     #  SUPERSCRIPT TWO
    0x009a: 0x00b3,     #  SUPERSCRIPT THREE
    0x009b: 0x03ac,     #  GREEK SMALL LETTER ALPHA WITH TONOS
    0x009c: 0x00a3,     #  POUND SIGN
    0x009d: 0x03ad,     #  GREEK SMALL LETTER EPSILON WITH TONOS
    0x009e: 0x03ae,     #  GREEK SMALL LETTER ETA WITH TONOS
    0x009f: 0x03af,     #  GREEK SMALL LETTER IOTA WITH TONOS
    0x00a0: 0x03ca,     #  GREEK SMALL LETTER IOTA WITH DIALYTIKA
    0x00a1: 0x0390,     #  GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
    0x00a2: 0x03cc,     #  GREEK SMALL LETTER OMICRON WITH TONOS
    0x00a3: 0x03cd,     #  GREEK SMALL LETTER UPSILON WITH TONOS
    0x00a4: 0x0391,     #  GREEK CAPITAL LETTER ALPHA
    0x00a5: 0x0392,     #  GREEK CAPITAL LETTER BETA
    0x00a6: 0x0393,     #  GREEK CAPITAL LETTER GAMMA
    0x00a7: 0x0394,     #  GREEK CAPITAL LETTER DELTA
    0x00a8: 0x0395,     #  GREEK CAPITAL LETTER EPSILON
    0x00a9: 0x0396,     #  GREEK CAPITAL LETTER ZETA
    0x00aa: 0x0397,     #  GREEK CAPITAL LETTER ETA
    0x00ab: 0x00bd,     #  VULGAR FRACTION ONE HALF
    0x00ac: 0x0398,     #  GREEK CAPITAL LETTER THETA
    0x00ad: 0x0399,     #  GREEK CAPITAL LETTER IOTA
    0x00ae: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00af: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00b0: 0x2591,     #  LIGHT SHADE
    0x00b1: 0x2592,     #  MEDIUM SHADE
    0x00b2: 0x2593,     #  DARK SHADE
    0x00b3: 0x2502,     #  BOX DRAWINGS LIGHT VERTICAL
    0x00b4: 0x2524,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x00b5: 0x039a,     #  GREEK CAPITAL LETTER KAPPA
    0x00b6: 0x039b,     #  GREEK CAPITAL LETTER LAMDA
    0x00b7: 0x039c,     #  GREEK CAPITAL LETTER MU
    0x00b8: 0x039d,     #  GREEK CAPITAL LETTER NU
    0x00b9: 0x2563,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x00ba: 0x2551,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x00bb: 0x2557,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x00bc: 0x255d,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x00bd: 0x039e,     #  GREEK CAPITAL LETTER XI
    0x00be: 0x039f,     #  GREEK CAPITAL LETTER OMICRON
    0x00bf: 0x2510,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x00c0: 0x2514,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x00c1: 0x2534,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x00c2: 0x252c,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x00c3: 0x251c,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x00c4: 0x2500,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x00c5: 0x253c,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x00c6: 0x03a0,     #  GREEK CAPITAL LETTER PI
    0x00c7: 0x03a1,     #  GREEK CAPITAL LETTER RHO
    0x00c8: 0x255a,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x00c9: 0x2554,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x00ca: 0x2569,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x00cb: 0x2566,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x00cc: 0x2560,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x00cd: 0x2550,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x00ce: 0x256c,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x00cf: 0x03a3,     #  GREEK CAPITAL LETTER SIGMA
    0x00d0: 0x03a4,     #  GREEK CAPITAL LETTER TAU
    0x00d1: 0x03a5,     #  GREEK CAPITAL LETTER UPSILON
    0x00d2: 0x03a6,     #  GREEK CAPITAL LETTER PHI
    0x00d3: 0x03a7,     #  GREEK CAPITAL LETTER CHI
    0x00d4: 0x03a8,     #  GREEK CAPITAL LETTER PSI
    0x00d5: 0x03a9,     #  GREEK CAPITAL LETTER OMEGA
    0x00d6: 0x03b1,     #  GREEK SMALL LETTER ALPHA
    0x00d7: 0x03b2,     #  GREEK SMALL LETTER BETA
    0x00d8: 0x03b3,     #  GREEK SMALL LETTER GAMMA
    0x00d9: 0x2518,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x00da: 0x250c,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x00db: 0x2588,     #  FULL BLOCK
    0x00dc: 0x2584,     #  LOWER HALF BLOCK
    0x00dd: 0x03b4,     #  GREEK SMALL LETTER DELTA
    0x00de: 0x03b5,     #  GREEK SMALL LETTER EPSILON
    0x00df: 0x2580,     #  UPPER HALF BLOCK
    0x00e0: 0x03b6,     #  GREEK SMALL LETTER ZETA
    0x00e1: 0x03b7,     #  GREEK SMALL LETTER ETA
    0x00e2: 0x03b8,     #  GREEK SMALL LETTER THETA
    0x00e3: 0x03b9,     #  GREEK SMALL LETTER IOTA
    0x00e4: 0x03ba,     #  GREEK SMALL LETTER KAPPA
    0x00e5: 0x03bb,     #  GREEK SMALL LETTER LAMDA
    0x00e6: 0x03bc,     #  GREEK SMALL LETTER MU
    0x00e7: 0x03bd,     #  GREEK SMALL LETTER NU
    0x00e8: 0x03be,     #  GREEK SMALL LETTER XI
    0x00e9: 0x03bf,     #  GREEK SMALL LETTER OMICRON
    0x00ea: 0x03c0,     #  GREEK SMALL LETTER PI
    0x00eb: 0x03c1,     #  GREEK SMALL LETTER RHO
    0x00ec: 0x03c3,     #  GREEK SMALL LETTER SIGMA
    0x00ed: 0x03c2,     #  GREEK SMALL LETTER FINAL SIGMA
    0x00ee: 0x03c4,     #  GREEK SMALL LETTER TAU
    0x00ef: 0x0384,     #  GREEK TONOS
    0x00f0: 0x00ad,     #  SOFT HYPHEN
    0x00f1: 0x00b1,     #  PLUS-MINUS SIGN
    0x00f2: 0x03c5,     #  GREEK SMALL LETTER UPSILON
    0x00f3: 0x03c6,     #  GREEK SMALL LETTER PHI
    0x00f4: 0x03c7,     #  GREEK SMALL LETTER CHI
    0x00f5: 0x00a7,     #  SECTION SIGN
    0x00f6: 0x03c8,     #  GREEK SMALL LETTER PSI
    0x00f7: 0x0385,     #  GREEK DIALYTIKA TONOS
    0x00f8: 0x00b0,     #  DEGREE SIGN
    0x00f9: 0x00a8,     #  DIAERESIS
    0x00fa: 0x03c9,     #  GREEK SMALL LETTER OMEGA
    0x00fb: 0x03cb,     #  GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    0x00fc: 0x03b0,     #  GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
    0x00fd: 0x03ce,     #  GREEK SMALL LETTER OMEGA WITH TONOS
    0x00fe: 0x25a0,     #  BLACK SQUARE
    0x00ff: 0x00a0,     #  NO-BREAK SPACE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> NULL
    '\x01'     #  0x0001 -> START OF HEADING
    '\x02'     #  0x0002 -> START OF TEXT
    '\x03'     #  0x0003 -> END OF TEXT
    '\x04'     #  0x0004 -> END OF TRANSMISSION
    '\x05'     #  0x0005 -> ENQUIRY
    '\x06'     #  0x0006 -> ACKNOWLEDGE
    '\x07'     #  0x0007 -> BELL
    '\x08'     #  0x0008 -> BACKSPACE
    '\t'       #  0x0009 -> HORIZONTAL TABULATION
    '\n'       #  0x000a -> LINE FEED
    '\x0b'     #  0x000b -> VERTICAL TABULATION
    '\x0c'     #  0x000c -> FORM FEED
    '\r'       #  0x000d -> CARRIAGE RETURN
    '\x0e'     #  0x000e -> SHIFT OUT
    '\x0f'     #  0x000f -> SHIFT IN
    '\x10'     #  0x0010 -> DATA LINK ESCAPE
    '\x11'     #  0x0011 -> DEVICE CONTROL ONE
    '\x12'     #  0x0012 -> DEVICE CONTROL TWO
    '\x13'     #  0x0013 -> DEVICE CONTROL THREE
    '\x14'     #  0x0014 -> DEVICE CONTROL FOUR
    '\x15'     #  0x0015 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x0016 -> SYNCHRONOUS IDLE
    '\x17'     #  0x0017 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x0018 -> CANCEL
    '\x19'     #  0x0019 -> END OF MEDIUM
    '\x1a'     #  0x001a -> SUBSTITUTE
    '\x1b'     #  0x001b -> ESCAPE
    '\x1c'     #  0x001c -> FILE SEPARATOR
    '\x1d'     #  0x001d -> GROUP SEPARATOR
    '\x1e'     #  0x001e -> RECORD SEPARATOR
    '\x1f'     #  0x001f -> UNIT SEPARATOR
    ' '        #  0x0020 -> SPACE
    '!'        #  0x0021 -> EXCLAMATION MARK
    '"'        #  0x0022 -> QUOTATION MARK
    '#'        #  0x0023 -> NUMBER SIGN
    '$'        #  0x0024 -> DOLLAR SIGN
    '%'        #  0x0025 -> PERCENT SIGN
    '&'        #  0x0026 -> AMPERSAND
    "'"        #  0x0027 -> APOSTROPHE
    '('        #  0x0028 -> LEFT PARENTHESIS
    ')'        #  0x0029 -> RIGHT PARENTHESIS
    '*'        #  0x002a -> ASTERISK
    '+'        #  0x002b -> PLUS SIGN
    ','        #  0x002c -> COMMA
    '-'        #  0x002d -> HYPHEN-MINUS
    '.'        #  0x002e -> FULL STOP
    '/'        #  0x002f -> SOLIDUS
    '0'        #  0x0030 -> DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE
    ':'        #  0x003a -> COLON
    ';'        #  0x003b -> SEMICOLON
    '<'        #  0x003c -> LESS-THAN SIGN
    '='        #  0x003d -> EQUALS SIGN
    '>'        #  0x003e -> GREATER-THAN SIGN
    '?'        #  0x003f -> QUESTION MARK
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET
    '\\'       #  0x005c -> REVERSE SOLIDUS
    ']'        #  0x005d -> RIGHT SQUARE BRACKET
    '^'        #  0x005e -> CIRCUMFLEX ACCENT
    '_'        #  0x005f -> LOW LINE
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET
    '|'        #  0x007c -> VERTICAL LINE
    '}'        #  0x007d -> RIGHT CURLY BRACKET
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> DELETE
    '\ufffe'   #  0x0080 -> UNDEFINED
    '\ufffe'   #  0x0081 -> UNDEFINED
    '\ufffe'   #  0x0082 -> UNDEFINED
    '\ufffe'   #  0x0083 -> UNDEFINED
    '\ufffe'   #  0x0084 -> UNDEFINED
    '\ufffe'   #  0x0085 -> UNDEFINED
    '\u0386'   #  0x0086 -> GREEK CAPITAL LETTER ALPHA WITH TONOS
    '\ufffe'   #  0x0087 -> UNDEFINED
    '\xb7'     #  0x0088 -> MIDDLE DOT
    '\xac'     #  0x0089 -> NOT SIGN
    '\xa6'     #  0x008a -> BROKEN BAR
    '\u2018'   #  0x008b -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x008c -> RIGHT SINGLE QUOTATION MARK
    '\u0388'   #  0x008d -> GREEK CAPITAL LETTER EPSILON WITH TONOS
    '\u2015'   #  0x008e -> HORIZONTAL BAR
    '\u0389'   #  0x008f -> GREEK CAPITAL LETTER ETA WITH TONOS
    '\u038a'   #  0x0090 -> GREEK CAPITAL LETTER IOTA WITH TONOS
    '\u03aa'   #  0x0091 -> GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    '\u038c'   #  0x0092 -> GREEK CAPITAL LETTER OMICRON WITH TONOS
    '\ufffe'   #  0x0093 -> UNDEFINED
    '\ufffe'   #  0x0094 -> UNDEFINED
    '\u038e'   #  0x0095 -> GREEK CAPITAL LETTER UPSILON WITH TONOS
    '\u03ab'   #  0x0096 -> GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    '\xa9'     #  0x0097 -> COPYRIGHT SIGN
    '\u038f'   #  0x0098 -> GREEK CAPITAL LETTER OMEGA WITH TONOS
    '\xb2'     #  0x0099 -> SUPERSCRIPT TWO
    '\xb3'     #  0x009a -> SUPERSCRIPT THREE
    '\u03ac'   #  0x009b -> GREEK SMALL LETTER ALPHA WITH TONOS
    '\xa3'     #  0x009c -> POUND SIGN
    '\u03ad'   #  0x009d -> GREEK SMALL LETTER EPSILON WITH TONOS
    '\u03ae'   #  0x009e -> GREEK SMALL LETTER ETA WITH TONOS
    '\u03af'   #  0x009f -> GREEK SMALL LETTER IOTA WITH TONOS
    '\u03ca'   #  0x00a0 -> GREEK SMALL LETTER IOTA WITH DIALYTIKA
    '\u0390'   #  0x00a1 -> GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
    '\u03cc'   #  0x00a2 -> GREEK SMALL LETTER OMICRON WITH TONOS
    '\u03cd'   #  0x00a3 -> GREEK SMALL LETTER UPSILON WITH TONOS
    '\u0391'   #  0x00a4 -> GREEK CAPITAL LETTER ALPHA
    '\u0392'   #  0x00a5 -> GREEK CAPITAL LETTER BETA
    '\u0393'   #  0x00a6 -> GREEK CAPITAL LETTER GAMMA
    '\u0394'   #  0x00a7 -> GREEK CAPITAL LETTER DELTA
    '\u0395'   #  0x00a8 -> GREEK CAPITAL LETTER EPSILON
    '\u0396'   #  0x00a9 -> GREEK CAPITAL LETTER ZETA
    '\u0397'   #  0x00aa -> GREEK CAPITAL LETTER ETA
    '\xbd'     #  0x00ab -> VULGAR FRACTION ONE HALF
    '\u0398'   #  0x00ac -> GREEK CAPITAL LETTER THETA
    '\u0399'   #  0x00ad -> GREEK CAPITAL LETTER IOTA
    '\xab'     #  0x00ae -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0x00af -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2591'   #  0x00b0 -> LIGHT SHADE
    '\u2592'   #  0x00b1 -> MEDIUM SHADE
    '\u2593'   #  0x00b2 -> DARK SHADE
    '\u2502'   #  0x00b3 -> BOX DRAWINGS LIGHT VERTICAL
    '\u2524'   #  0x00b4 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u039a'   #  0x00b5 -> GREEK CAPITAL LETTER KAPPA
    '\u039b'   #  0x00b6 -> GREEK CAPITAL LETTER LAMDA
    '\u039c'   #  0x00b7 -> GREEK CAPITAL LETTER MU
    '\u039d'   #  0x00b8 -> GREEK CAPITAL LETTER NU
    '\u2563'   #  0x00b9 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2551'   #  0x00ba -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2557'   #  0x00bb -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u255d'   #  0x00bc -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u039e'   #  0x00bd -> GREEK CAPITAL LETTER XI
    '\u039f'   #  0x00be -> GREEK CAPITAL LETTER OMICRON
    '\u2510'   #  0x00bf -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x00c0 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2534'   #  0x00c1 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u252c'   #  0x00c2 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u251c'   #  0x00c3 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2500'   #  0x00c4 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u253c'   #  0x00c5 -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u03a0'   #  0x00c6 -> GREEK CAPITAL LETTER PI
    '\u03a1'   #  0x00c7 -> GREEK CAPITAL LETTER RHO
    '\u255a'   #  0x00c8 -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u2554'   #  0x00c9 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2569'   #  0x00ca -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u2566'   #  0x00cb -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2560'   #  0x00cc -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2550'   #  0x00cd -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u256c'   #  0x00ce -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\u03a3'   #  0x00cf -> GREEK CAPITAL LETTER SIGMA
    '\u03a4'   #  0x00d0 -> GREEK CAPITAL LETTER TAU
    '\u03a5'   #  0x00d1 -> GREEK CAPITAL LETTER UPSILON
    '\u03a6'   #  0x00d2 -> GREEK CAPITAL LETTER PHI
    '\u03a7'   #  0x00d3 -> GREEK CAPITAL LETTER CHI
    '\u03a8'   #  0x00d4 -> GREEK CAPITAL LETTER PSI
    '\u03a9'   #  0x00d5 -> GREEK CAPITAL LETTER OMEGA
    '\u03b1'   #  0x00d6 -> GREEK SMALL LETTER ALPHA
    '\u03b2'   #  0x00d7 -> GREEK SMALL LETTER BETA
    '\u03b3'   #  0x00d8 -> GREEK SMALL LETTER GAMMA
    '\u2518'   #  0x00d9 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u250c'   #  0x00da -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2588'   #  0x00db -> FULL BLOCK
    '\u2584'   #  0x00dc -> LOWER HALF BLOCK
    '\u03b4'   #  0x00dd -> GREEK SMALL LETTER DELTA
    '\u03b5'   #  0x00de -> GREEK SMALL LETTER EPSILON
    '\u2580'   #  0x00df -> UPPER HALF BLOCK
    '\u03b6'   #  0x00e0 -> GREEK SMALL LETTER ZETA
    '\u03b7'   #  0x00e1 -> GREEK SMALL LETTER ETA
    '\u03b8'   #  0x00e2 -> GREEK SMALL LETTER THETA
    '\u03b9'   #  0x00e3 -> GREEK SMALL LETTER IOTA
    '\u03ba'   #  0x00e4 -> GREEK SMALL LETTER KAPPA
    '\u03bb'   #  0x00e5 -> GREEK SMALL LETTER LAMDA
    '\u03bc'   #  0x00e6 -> GREEK SMALL LETTER MU
    '\u03bd'   #  0x00e7 -> GREEK SMALL LETTER NU
    '\u03be'   #  0x00e8 -> GREEK SMALL LETTER XI
    '\u03bf'   #  0x00e9 -> GREEK SMALL LETTER OMICRON
    '\u03c0'   #  0x00ea -> GREEK SMALL LETTER PI
    '\u03c1'   #  0x00eb -> GREEK SMALL LETTER RHO
    '\u03c3'   #  0x00ec -> GREEK SMALL LETTER SIGMA
    '\u03c2'   #  0x00ed -> GREEK SMALL LETTER FINAL SIGMA
    '\u03c4'   #  0x00ee -> GREEK SMALL LETTER TAU
    '\u0384'   #  0x00ef -> GREEK TONOS
    '\xad'     #  0x00f0 -> SOFT HYPHEN
    '\xb1'     #  0x00f1 -> PLUS-MINUS SIGN
    '\u03c5'   #  0x00f2 -> GREEK SMALL LETTER UPSILON
    '\u03c6'   #  0x00f3 -> GREEK SMALL LETTER PHI
    '\u03c7'   #  0x00f4 -> GREEK SMALL LETTER CHI
    '\xa7'     #  0x00f5 -> SECTION SIGN
    '\u03c8'   #  0x00f6 -> GREEK SMALL LETTER PSI
    '\u0385'   #  0x00f7 -> GREEK DIALYTIKA TONOS
    '\xb0'     #  0x00f8 -> DEGREE SIGN
    '\xa8'     #  0x00f9 -> DIAERESIS
    '\u03c9'   #  0x00fa -> GREEK SMALL LETTER OMEGA
    '\u03cb'   #  0x00fb -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    '\u03b0'   #  0x00fc -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
    '\u03ce'   #  0x00fd -> GREEK SMALL LETTER OMEGA WITH TONOS
    '\u25a0'   #  0x00fe -> BLACK SQUARE
    '\xa0'     #  0x00ff -> NO-BREAK SPACE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  NULL
    0x0001: 0x0001,     #  START OF HEADING
    0x0002: 0x0002,     #  START OF TEXT
    0x0003: 0x0003,     #  END OF TEXT
    0x0004: 0x0004,     #  END OF TRANSMISSION
    0x0005: 0x0005,     #  ENQUIRY
    0x0006: 0x0006,     #  ACKNOWLEDGE
    0x0007: 0x0007,     #  BELL
    0x0008: 0x0008,     #  BACKSPACE
    0x0009: 0x0009,     #  HORIZONTAL TABULATION
    0x000a: 0x000a,     #  LINE FEED
    0x000b: 0x000b,     #  VERTICAL TABULATION
    0x000c: 0x000c,     #  FORM FEED
    0x000d: 0x000d,     #  CARRIAGE RETURN
    0x000e: 0x000e,     #  SHIFT OUT
    0x000f: 0x000f,     #  SHIFT IN
    0x0010: 0x0010,     #  DATA LINK ESCAPE
    0x0011: 0x0011,     #  DEVICE CONTROL ONE
    0x0012: 0x0012,     #  DEVICE CONTROL TWO
    0x0013: 0x0013,     #  DEVICE CONTROL THREE
    0x0014: 0x0014,     #  DEVICE CONTROL FOUR
    0x0015: 0x0015,     #  NEGATIVE ACKNOWLEDGE
    0x0016: 0x0016,     #  SYNCHRONOUS IDLE
    0x0017: 0x0017,     #  END OF TRANSMISSION BLOCK
    0x0018: 0x0018,     #  CANCEL
    0x0019: 0x0019,     #  END OF MEDIUM
    0x001a: 0x001a,     #  SUBSTITUTE
    0x001b: 0x001b,     #  ESCAPE
    0x001c: 0x001c,     #  FILE SEPARATOR
    0x001d: 0x001d,     #  GROUP SEPARATOR
    0x001e: 0x001e,     #  RECORD SEPARATOR
    0x001f: 0x001f,     #  UNIT SEPARATOR
    0x0020: 0x0020,     #  SPACE
    0x0021: 0x0021,     #  EXCLAMATION MARK
    0x0022: 0x0022,     #  QUOTATION MARK
    0x0023: 0x0023,     #  NUMBER SIGN
    0x0024: 0x0024,     #  DOLLAR SIGN
    0x0025: 0x0025,     #  PERCENT SIGN
    0x0026: 0x0026,     #  AMPERSAND
    0x0027: 0x0027,     #  APOSTROPHE
    0x0028: 0x0028,     #  LEFT PARENTHESIS
    0x0029: 0x0029,     #  RIGHT PARENTHESIS
    0x002a: 0x002a,     #  ASTERISK
    0x002b: 0x002b,     #  PLUS SIGN
    0x002c: 0x002c,     #  COMMA
    0x002d: 0x002d,     #  HYPHEN-MINUS
    0x002e: 0x002e,     #  FULL STOP
    0x002f: 0x002f,     #  SOLIDUS
    0x0030: 0x0030,     #  DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE
    0x003a: 0x003a,     #  COLON
    0x003b: 0x003b,     #  SEMICOLON
    0x003c: 0x003c,     #  LESS-THAN SIGN
    0x003d: 0x003d,     #  EQUALS SIGN
    0x003e: 0x003e,     #  GREATER-THAN SIGN
    0x003f: 0x003f,     #  QUESTION MARK
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET
    0x005c: 0x005c,     #  REVERSE SOLIDUS
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT
    0x005f: 0x005f,     #  LOW LINE
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET
    0x007c: 0x007c,     #  VERTICAL LINE
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  DELETE
    0x00a0: 0x00ff,     #  NO-BREAK SPACE
    0x00a3: 0x009c,     #  POUND SIGN
    0x00a6: 0x008a,     #  BROKEN BAR
    0x00a7: 0x00f5,     #  SECTION SIGN
    0x00a8: 0x00f9,     #  DIAERESIS
    0x00a9: 0x0097,     #  COPYRIGHT SIGN
    0x00ab: 0x00ae,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00ac: 0x0089,     #  NOT SIGN
    0x00ad: 0x00f0,     #  SOFT HYPHEN
    0x00b0: 0x00f8,     #  DEGREE SIGN
    0x00b1: 0x00f1,     #  PLUS-MINUS SIGN
    0x00b2: 0x0099,     #  SUPERSCRIPT TWO
    0x00b3: 0x009a,     #  SUPERSCRIPT THREE
    0x00b7: 0x0088,     #  MIDDLE DOT
    0x00bb: 0x00af,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    0x00bd: 0x00ab,     #  VULGAR FRACTION ONE HALF
    0x0384: 0x00ef,     #  GREEK TONOS
    0x0385: 0x00f7,     #  GREEK DIALYTIKA TONOS
    0x0386: 0x0086,     #  GREEK CAPITAL LETTER ALPHA WITH TONOS
    0x0388: 0x008d,     #  GREEK CAPITAL LETTER EPSILON WITH TONOS
    0x0389: 0x008f,     #  GREEK CAPITAL LETTER ETA WITH TONOS
    0x038a: 0x0090,     #  GREEK CAPITAL LETTER IOTA WITH TONOS
    0x038c: 0x0092,     #  GREEK CAPITAL LETTER OMICRON WITH TONOS
    0x038e: 0x0095,     #  GREEK CAPITAL LETTER UPSILON WITH TONOS
    0x038f: 0x0098,     #  GREEK CAPITAL LETTER OMEGA WITH TONOS
    0x0390: 0x00a1,     #  GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
    0x0391: 0x00a4,     #  GREEK CAPITAL LETTER ALPHA
    0x0392: 0x00a5,     #  GREEK CAPITAL LETTER BETA
    0x0393: 0x00a6,     #  GREEK CAPITAL LETTER GAMMA
    0x0394: 0x00a7,     #  GREEK CAPITAL LETTER DELTA
    0x0395: 0x00a8,     #  GREEK CAPITAL LETTER EPSILON
    0x0396: 0x00a9,     #  GREEK CAPITAL LETTER ZETA
    0x0397: 0x00aa,     #  GREEK CAPITAL LETTER ETA
    0x0398: 0x00ac,     #  GREEK CAPITAL LETTER THETA
    0x0399: 0x00ad,     #  GREEK CAPITAL LETTER IOTA
    0x039a: 0x00b5,     #  GREEK CAPITAL LETTER KAPPA
    0x039b: 0x00b6,     #  GREEK CAPITAL LETTER LAMDA
    0x039c: 0x00b7,     #  GREEK CAPITAL LETTER MU
    0x039d: 0x00b8,     #  GREEK CAPITAL LETTER NU
    0x039e: 0x00bd,     #  GREEK CAPITAL LETTER XI
    0x039f: 0x00be,     #  GREEK CAPITAL LETTER OMICRON
    0x03a0: 0x00c6,     #  GREEK CAPITAL LETTER PI
    0x03a1: 0x00c7,     #  GREEK CAPITAL LETTER RHO
    0x03a3: 0x00cf,     #  GREEK CAPITAL LETTER SIGMA
    0x03a4: 0x00d0,     #  GREEK CAPITAL LETTER TAU
    0x03a5: 0x00d1,     #  GREEK CAPITAL LETTER UPSILON
    0x03a6: 0x00d2,     #  GREEK CAPITAL LETTER PHI
    0x03a7: 0x00d3,     #  GREEK CAPITAL LETTER CHI
    0x03a8: 0x00d4,     #  GREEK CAPITAL LETTER PSI
    0x03a9: 0x00d5,     #  GREEK CAPITAL LETTER OMEGA
    0x03aa: 0x0091,     #  GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    0x03ab: 0x0096,     #  GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    0x03ac: 0x009b,     #  GREEK SMALL LETTER ALPHA WITH TONOS
    0x03ad: 0x009d,     #  GREEK SMALL LETTER EPSILON WITH TONOS
    0x03ae: 0x009e,     #  GREEK SMALL LETTER ETA WITH TONOS
    0x03af: 0x009f,     #  GREEK SMALL LETTER IOTA WITH TONOS
    0x03b0: 0x00fc,     #  GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
    0x03b1: 0x00d6,     #  GREEK SMALL LETTER ALPHA
    0x03b2: 0x00d7,     #  GREEK SMALL LETTER BETA
    0x03b3: 0x00d8,     #  GREEK SMALL LETTER GAMMA
    0x03b4: 0x00dd,     #  GREEK SMALL LETTER DELTA
    0x03b5: 0x00de,     #  GREEK SMALL LETTER EPSILON
    0x03b6: 0x00e0,     #  GREEK SMALL LETTER ZETA
    0x03b7: 0x00e1,     #  GREEK SMALL LETTER ETA
    0x03b8: 0x00e2,     #  GREEK SMALL LETTER THETA
    0x03b9: 0x00e3,     #  GREEK SMALL LETTER IOTA
    0x03ba: 0x00e4,     #  GREEK SMALL LETTER KAPPA
    0x03bb: 0x00e5,     #  GREEK SMALL LETTER LAMDA
    0x03bc: 0x00e6,     #  GREEK SMALL LETTER MU
    0x03bd: 0x00e7,     #  GREEK SMALL LETTER NU
    0x03be: 0x00e8,     #  GREEK SMALL LETTER XI
    0x03bf: 0x00e9,     #  GREEK SMALL LETTER OMICRON
    0x03c0: 0x00ea,     #  GREEK SMALL LETTER PI
    0x03c1: 0x00eb,     #  GREEK SMALL LETTER RHO
    0x03c2: 0x00ed,     #  GREEK SMALL LETTER FINAL SIGMA
    0x03c3: 0x00ec,     #  GREEK SMALL LETTER SIGMA
    0x03c4: 0x00ee,     #  GREEK SMALL LETTER TAU
    0x03c5: 0x00f2,     #  GREEK SMALL LETTER UPSILON
    0x03c6: 0x00f3,     #  GREEK SMALL LETTER PHI
    0x03c7: 0x00f4,     #  GREEK SMALL LETTER CHI
    0x03c8: 0x00f6,     #  GREEK SMALL LETTER PSI
    0x03c9: 0x00fa,     #  GREEK SMALL LETTER OMEGA
    0x03ca: 0x00a0,     #  GREEK SMALL LETTER IOTA WITH DIALYTIKA
    0x03cb: 0x00fb,     #  GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    0x03cc: 0x00a2,     #  GREEK SMALL LETTER OMICRON WITH TONOS
    0x03cd: 0x00a3,     #  GREEK SMALL LETTER UPSILON WITH TONOS
    0x03ce: 0x00fd,     #  GREEK SMALL LETTER OMEGA WITH TONOS
    0x2015: 0x008e,     #  HORIZONTAL BAR
    0x2018: 0x008b,     #  LEFT SINGLE QUOTATION MARK
    0x2019: 0x008c,     #  RIGHT SINGLE QUOTATION MARK
    0x2500: 0x00c4,     #  BOX DRAWINGS LIGHT HORIZONTAL
    0x2502: 0x00b3,     #  BOX DRAWINGS LIGHT VERTICAL
    0x250c: 0x00da,     #  BOX DRAWINGS LIGHT DOWN AND RIGHT
    0x2510: 0x00bf,     #  BOX DRAWINGS LIGHT DOWN AND LEFT
    0x2514: 0x00c0,     #  BOX DRAWINGS LIGHT UP AND RIGHT
    0x2518: 0x00d9,     #  BOX DRAWINGS LIGHT UP AND LEFT
    0x251c: 0x00c3,     #  BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    0x2524: 0x00b4,     #  BOX DRAWINGS LIGHT VERTICAL AND LEFT
    0x252c: 0x00c2,     #  BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    0x2534: 0x00c1,     #  BOX DRAWINGS LIGHT UP AND HORIZONTAL
    0x253c: 0x00c5,     #  BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    0x2550: 0x00cd,     #  BOX DRAWINGS DOUBLE HORIZONTAL
    0x2551: 0x00ba,     #  BOX DRAWINGS DOUBLE VERTICAL
    0x2554: 0x00c9,     #  BOX DRAWINGS DOUBLE DOWN AND RIGHT
    0x2557: 0x00bb,     #  BOX DRAWINGS DOUBLE DOWN AND LEFT
    0x255a: 0x00c8,     #  BOX DRAWINGS DOUBLE UP AND RIGHT
    0x255d: 0x00bc,     #  BOX DRAWINGS DOUBLE UP AND LEFT
    0x2560: 0x00cc,     #  BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    0x2563: 0x00b9,     #  BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    0x2566: 0x00cb,     #  BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    0x2569: 0x00ca,     #  BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    0x256c: 0x00ce,     #  BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    0x2580: 0x00df,     #  UPPER HALF BLOCK
    0x2584: 0x00dc,     #  LOWER HALF BLOCK
    0x2588: 0x00db,     #  FULL BLOCK
    0x2591: 0x00b0,     #  LIGHT SHADE
    0x2592: 0x00b1,     #  MEDIUM SHADE
    0x2593: 0x00b2,     #  DARK SHADE
    0x25a0: 0x00fe,     #  BLACK SQUARE
}
lib\encodings\cp874.py
""" Python Character Mapping Codec cp874 generated from 'MAPPINGS/VENDORS/MICSFT/WINDOWS/CP874.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp874',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\ufffe'   #  0x81 -> UNDEFINED
    '\ufffe'   #  0x82 -> UNDEFINED
    '\ufffe'   #  0x83 -> UNDEFINED
    '\ufffe'   #  0x84 -> UNDEFINED
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\ufffe'   #  0x86 -> UNDEFINED
    '\ufffe'   #  0x87 -> UNDEFINED
    '\ufffe'   #  0x88 -> UNDEFINED
    '\ufffe'   #  0x89 -> UNDEFINED
    '\ufffe'   #  0x8A -> UNDEFINED
    '\ufffe'   #  0x8B -> UNDEFINED
    '\ufffe'   #  0x8C -> UNDEFINED
    '\ufffe'   #  0x8D -> UNDEFINED
    '\ufffe'   #  0x8E -> UNDEFINED
    '\ufffe'   #  0x8F -> UNDEFINED
    '\ufffe'   #  0x90 -> UNDEFINED
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\ufffe'   #  0x98 -> UNDEFINED
    '\ufffe'   #  0x99 -> UNDEFINED
    '\ufffe'   #  0x9A -> UNDEFINED
    '\ufffe'   #  0x9B -> UNDEFINED
    '\ufffe'   #  0x9C -> UNDEFINED
    '\ufffe'   #  0x9D -> UNDEFINED
    '\ufffe'   #  0x9E -> UNDEFINED
    '\ufffe'   #  0x9F -> UNDEFINED
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0e01'   #  0xA1 -> THAI CHARACTER KO KAI
    '\u0e02'   #  0xA2 -> THAI CHARACTER KHO KHAI
    '\u0e03'   #  0xA3 -> THAI CHARACTER KHO KHUAT
    '\u0e04'   #  0xA4 -> THAI CHARACTER KHO KHWAI
    '\u0e05'   #  0xA5 -> THAI CHARACTER KHO KHON
    '\u0e06'   #  0xA6 -> THAI CHARACTER KHO RAKHANG
    '\u0e07'   #  0xA7 -> THAI CHARACTER NGO NGU
    '\u0e08'   #  0xA8 -> THAI CHARACTER CHO CHAN
    '\u0e09'   #  0xA9 -> THAI CHARACTER CHO CHING
    '\u0e0a'   #  0xAA -> THAI CHARACTER CHO CHANG
    '\u0e0b'   #  0xAB -> THAI CHARACTER SO SO
    '\u0e0c'   #  0xAC -> THAI CHARACTER CHO CHOE
    '\u0e0d'   #  0xAD -> THAI CHARACTER YO YING
    '\u0e0e'   #  0xAE -> THAI CHARACTER DO CHADA
    '\u0e0f'   #  0xAF -> THAI CHARACTER TO PATAK
    '\u0e10'   #  0xB0 -> THAI CHARACTER THO THAN
    '\u0e11'   #  0xB1 -> THAI CHARACTER THO NANGMONTHO
    '\u0e12'   #  0xB2 -> THAI CHARACTER THO PHUTHAO
    '\u0e13'   #  0xB3 -> THAI CHARACTER NO NEN
    '\u0e14'   #  0xB4 -> THAI CHARACTER DO DEK
    '\u0e15'   #  0xB5 -> THAI CHARACTER TO TAO
    '\u0e16'   #  0xB6 -> THAI CHARACTER THO THUNG
    '\u0e17'   #  0xB7 -> THAI CHARACTER THO THAHAN
    '\u0e18'   #  0xB8 -> THAI CHARACTER THO THONG
    '\u0e19'   #  0xB9 -> THAI CHARACTER NO NU
    '\u0e1a'   #  0xBA -> THAI CHARACTER BO BAIMAI
    '\u0e1b'   #  0xBB -> THAI CHARACTER PO PLA
    '\u0e1c'   #  0xBC -> THAI CHARACTER PHO PHUNG
    '\u0e1d'   #  0xBD -> THAI CHARACTER FO FA
    '\u0e1e'   #  0xBE -> THAI CHARACTER PHO PHAN
    '\u0e1f'   #  0xBF -> THAI CHARACTER FO FAN
    '\u0e20'   #  0xC0 -> THAI CHARACTER PHO SAMPHAO
    '\u0e21'   #  0xC1 -> THAI CHARACTER MO MA
    '\u0e22'   #  0xC2 -> THAI CHARACTER YO YAK
    '\u0e23'   #  0xC3 -> THAI CHARACTER RO RUA
    '\u0e24'   #  0xC4 -> THAI CHARACTER RU
    '\u0e25'   #  0xC5 -> THAI CHARACTER LO LING
    '\u0e26'   #  0xC6 -> THAI CHARACTER LU
    '\u0e27'   #  0xC7 -> THAI CHARACTER WO WAEN
    '\u0e28'   #  0xC8 -> THAI CHARACTER SO SALA
    '\u0e29'   #  0xC9 -> THAI CHARACTER SO RUSI
    '\u0e2a'   #  0xCA -> THAI CHARACTER SO SUA
    '\u0e2b'   #  0xCB -> THAI CHARACTER HO HIP
    '\u0e2c'   #  0xCC -> THAI CHARACTER LO CHULA
    '\u0e2d'   #  0xCD -> THAI CHARACTER O ANG
    '\u0e2e'   #  0xCE -> THAI CHARACTER HO NOKHUK
    '\u0e2f'   #  0xCF -> THAI CHARACTER PAIYANNOI
    '\u0e30'   #  0xD0 -> THAI CHARACTER SARA A
    '\u0e31'   #  0xD1 -> THAI CHARACTER MAI HAN-AKAT
    '\u0e32'   #  0xD2 -> THAI CHARACTER SARA AA
    '\u0e33'   #  0xD3 -> THAI CHARACTER SARA AM
    '\u0e34'   #  0xD4 -> THAI CHARACTER SARA I
    '\u0e35'   #  0xD5 -> THAI CHARACTER SARA II
    '\u0e36'   #  0xD6 -> THAI CHARACTER SARA UE
    '\u0e37'   #  0xD7 -> THAI CHARACTER SARA UEE
    '\u0e38'   #  0xD8 -> THAI CHARACTER SARA U
    '\u0e39'   #  0xD9 -> THAI CHARACTER SARA UU
    '\u0e3a'   #  0xDA -> THAI CHARACTER PHINTHU
    '\ufffe'   #  0xDB -> UNDEFINED
    '\ufffe'   #  0xDC -> UNDEFINED
    '\ufffe'   #  0xDD -> UNDEFINED
    '\ufffe'   #  0xDE -> UNDEFINED
    '\u0e3f'   #  0xDF -> THAI CURRENCY SYMBOL BAHT
    '\u0e40'   #  0xE0 -> THAI CHARACTER SARA E
    '\u0e41'   #  0xE1 -> THAI CHARACTER SARA AE
    '\u0e42'   #  0xE2 -> THAI CHARACTER SARA O
    '\u0e43'   #  0xE3 -> THAI CHARACTER SARA AI MAIMUAN
    '\u0e44'   #  0xE4 -> THAI CHARACTER SARA AI MAIMALAI
    '\u0e45'   #  0xE5 -> THAI CHARACTER LAKKHANGYAO
    '\u0e46'   #  0xE6 -> THAI CHARACTER MAIYAMOK
    '\u0e47'   #  0xE7 -> THAI CHARACTER MAITAIKHU
    '\u0e48'   #  0xE8 -> THAI CHARACTER MAI EK
    '\u0e49'   #  0xE9 -> THAI CHARACTER MAI THO
    '\u0e4a'   #  0xEA -> THAI CHARACTER MAI TRI
    '\u0e4b'   #  0xEB -> THAI CHARACTER MAI CHATTAWA
    '\u0e4c'   #  0xEC -> THAI CHARACTER THANTHAKHAT
    '\u0e4d'   #  0xED -> THAI CHARACTER NIKHAHIT
    '\u0e4e'   #  0xEE -> THAI CHARACTER YAMAKKAN
    '\u0e4f'   #  0xEF -> THAI CHARACTER FONGMAN
    '\u0e50'   #  0xF0 -> THAI DIGIT ZERO
    '\u0e51'   #  0xF1 -> THAI DIGIT ONE
    '\u0e52'   #  0xF2 -> THAI DIGIT TWO
    '\u0e53'   #  0xF3 -> THAI DIGIT THREE
    '\u0e54'   #  0xF4 -> THAI DIGIT FOUR
    '\u0e55'   #  0xF5 -> THAI DIGIT FIVE
    '\u0e56'   #  0xF6 -> THAI DIGIT SIX
    '\u0e57'   #  0xF7 -> THAI DIGIT SEVEN
    '\u0e58'   #  0xF8 -> THAI DIGIT EIGHT
    '\u0e59'   #  0xF9 -> THAI DIGIT NINE
    '\u0e5a'   #  0xFA -> THAI CHARACTER ANGKHANKHU
    '\u0e5b'   #  0xFB -> THAI CHARACTER KHOMUT
    '\ufffe'   #  0xFC -> UNDEFINED
    '\ufffe'   #  0xFD -> UNDEFINED
    '\ufffe'   #  0xFE -> UNDEFINED
    '\ufffe'   #  0xFF -> UNDEFINED
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp875.py
""" Python Character Mapping Codec cp875 generated from 'MAPPINGS/VENDORS/MICSFT/EBCDIC/CP875.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='cp875',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x9c'     #  0x04 -> CONTROL
    '\t'       #  0x05 -> HORIZONTAL TABULATION
    '\x86'     #  0x06 -> CONTROL
    '\x7f'     #  0x07 -> DELETE
    '\x97'     #  0x08 -> CONTROL
    '\x8d'     #  0x09 -> CONTROL
    '\x8e'     #  0x0A -> CONTROL
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x9d'     #  0x14 -> CONTROL
    '\x85'     #  0x15 -> CONTROL
    '\x08'     #  0x16 -> BACKSPACE
    '\x87'     #  0x17 -> CONTROL
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x92'     #  0x1A -> CONTROL
    '\x8f'     #  0x1B -> CONTROL
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    '\x80'     #  0x20 -> CONTROL
    '\x81'     #  0x21 -> CONTROL
    '\x82'     #  0x22 -> CONTROL
    '\x83'     #  0x23 -> CONTROL
    '\x84'     #  0x24 -> CONTROL
    '\n'       #  0x25 -> LINE FEED
    '\x17'     #  0x26 -> END OF TRANSMISSION BLOCK
    '\x1b'     #  0x27 -> ESCAPE
    '\x88'     #  0x28 -> CONTROL
    '\x89'     #  0x29 -> CONTROL
    '\x8a'     #  0x2A -> CONTROL
    '\x8b'     #  0x2B -> CONTROL
    '\x8c'     #  0x2C -> CONTROL
    '\x05'     #  0x2D -> ENQUIRY
    '\x06'     #  0x2E -> ACKNOWLEDGE
    '\x07'     #  0x2F -> BELL
    '\x90'     #  0x30 -> CONTROL
    '\x91'     #  0x31 -> CONTROL
    '\x16'     #  0x32 -> SYNCHRONOUS IDLE
    '\x93'     #  0x33 -> CONTROL
    '\x94'     #  0x34 -> CONTROL
    '\x95'     #  0x35 -> CONTROL
    '\x96'     #  0x36 -> CONTROL
    '\x04'     #  0x37 -> END OF TRANSMISSION
    '\x98'     #  0x38 -> CONTROL
    '\x99'     #  0x39 -> CONTROL
    '\x9a'     #  0x3A -> CONTROL
    '\x9b'     #  0x3B -> CONTROL
    '\x14'     #  0x3C -> DEVICE CONTROL FOUR
    '\x15'     #  0x3D -> NEGATIVE ACKNOWLEDGE
    '\x9e'     #  0x3E -> CONTROL
    '\x1a'     #  0x3F -> SUBSTITUTE
    ' '        #  0x40 -> SPACE
    '\u0391'   #  0x41 -> GREEK CAPITAL LETTER ALPHA
    '\u0392'   #  0x42 -> GREEK CAPITAL LETTER BETA
    '\u0393'   #  0x43 -> GREEK CAPITAL LETTER GAMMA
    '\u0394'   #  0x44 -> GREEK CAPITAL LETTER DELTA
    '\u0395'   #  0x45 -> GREEK CAPITAL LETTER EPSILON
    '\u0396'   #  0x46 -> GREEK CAPITAL LETTER ZETA
    '\u0397'   #  0x47 -> GREEK CAPITAL LETTER ETA
    '\u0398'   #  0x48 -> GREEK CAPITAL LETTER THETA
    '\u0399'   #  0x49 -> GREEK CAPITAL LETTER IOTA
    '['        #  0x4A -> LEFT SQUARE BRACKET
    '.'        #  0x4B -> FULL STOP
    '<'        #  0x4C -> LESS-THAN SIGN
    '('        #  0x4D -> LEFT PARENTHESIS
    '+'        #  0x4E -> PLUS SIGN
    '!'        #  0x4F -> EXCLAMATION MARK
    '&'        #  0x50 -> AMPERSAND
    '\u039a'   #  0x51 -> GREEK CAPITAL LETTER KAPPA
    '\u039b'   #  0x52 -> GREEK CAPITAL LETTER LAMDA
    '\u039c'   #  0x53 -> GREEK CAPITAL LETTER MU
    '\u039d'   #  0x54 -> GREEK CAPITAL LETTER NU
    '\u039e'   #  0x55 -> GREEK CAPITAL LETTER XI
    '\u039f'   #  0x56 -> GREEK CAPITAL LETTER OMICRON
    '\u03a0'   #  0x57 -> GREEK CAPITAL LETTER PI
    '\u03a1'   #  0x58 -> GREEK CAPITAL LETTER RHO
    '\u03a3'   #  0x59 -> GREEK CAPITAL LETTER SIGMA
    ']'        #  0x5A -> RIGHT SQUARE BRACKET
    '$'        #  0x5B -> DOLLAR SIGN
    '*'        #  0x5C -> ASTERISK
    ')'        #  0x5D -> RIGHT PARENTHESIS
    ';'        #  0x5E -> SEMICOLON
    '^'        #  0x5F -> CIRCUMFLEX ACCENT
    '-'        #  0x60 -> HYPHEN-MINUS
    '/'        #  0x61 -> SOLIDUS
    '\u03a4'   #  0x62 -> GREEK CAPITAL LETTER TAU
    '\u03a5'   #  0x63 -> GREEK CAPITAL LETTER UPSILON
    '\u03a6'   #  0x64 -> GREEK CAPITAL LETTER PHI
    '\u03a7'   #  0x65 -> GREEK CAPITAL LETTER CHI
    '\u03a8'   #  0x66 -> GREEK CAPITAL LETTER PSI
    '\u03a9'   #  0x67 -> GREEK CAPITAL LETTER OMEGA
    '\u03aa'   #  0x68 -> GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    '\u03ab'   #  0x69 -> GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    '|'        #  0x6A -> VERTICAL LINE
    ','        #  0x6B -> COMMA
    '%'        #  0x6C -> PERCENT SIGN
    '_'        #  0x6D -> LOW LINE
    '>'        #  0x6E -> GREATER-THAN SIGN
    '?'        #  0x6F -> QUESTION MARK
    '\xa8'     #  0x70 -> DIAERESIS
    '\u0386'   #  0x71 -> GREEK CAPITAL LETTER ALPHA WITH TONOS
    '\u0388'   #  0x72 -> GREEK CAPITAL LETTER EPSILON WITH TONOS
    '\u0389'   #  0x73 -> GREEK CAPITAL LETTER ETA WITH TONOS
    '\xa0'     #  0x74 -> NO-BREAK SPACE
    '\u038a'   #  0x75 -> GREEK CAPITAL LETTER IOTA WITH TONOS
    '\u038c'   #  0x76 -> GREEK CAPITAL LETTER OMICRON WITH TONOS
    '\u038e'   #  0x77 -> GREEK CAPITAL LETTER UPSILON WITH TONOS
    '\u038f'   #  0x78 -> GREEK CAPITAL LETTER OMEGA WITH TONOS
    '`'        #  0x79 -> GRAVE ACCENT
    ':'        #  0x7A -> COLON
    '#'        #  0x7B -> NUMBER SIGN
    '@'        #  0x7C -> COMMERCIAL AT
    "'"        #  0x7D -> APOSTROPHE
    '='        #  0x7E -> EQUALS SIGN
    '"'        #  0x7F -> QUOTATION MARK
    '\u0385'   #  0x80 -> GREEK DIALYTIKA TONOS
    'a'        #  0x81 -> LATIN SMALL LETTER A
    'b'        #  0x82 -> LATIN SMALL LETTER B
    'c'        #  0x83 -> LATIN SMALL LETTER C
    'd'        #  0x84 -> LATIN SMALL LETTER D
    'e'        #  0x85 -> LATIN SMALL LETTER E
    'f'        #  0x86 -> LATIN SMALL LETTER F
    'g'        #  0x87 -> LATIN SMALL LETTER G
    'h'        #  0x88 -> LATIN SMALL LETTER H
    'i'        #  0x89 -> LATIN SMALL LETTER I
    '\u03b1'   #  0x8A -> GREEK SMALL LETTER ALPHA
    '\u03b2'   #  0x8B -> GREEK SMALL LETTER BETA
    '\u03b3'   #  0x8C -> GREEK SMALL LETTER GAMMA
    '\u03b4'   #  0x8D -> GREEK SMALL LETTER DELTA
    '\u03b5'   #  0x8E -> GREEK SMALL LETTER EPSILON
    '\u03b6'   #  0x8F -> GREEK SMALL LETTER ZETA
    '\xb0'     #  0x90 -> DEGREE SIGN
    'j'        #  0x91 -> LATIN SMALL LETTER J
    'k'        #  0x92 -> LATIN SMALL LETTER K
    'l'        #  0x93 -> LATIN SMALL LETTER L
    'm'        #  0x94 -> LATIN SMALL LETTER M
    'n'        #  0x95 -> LATIN SMALL LETTER N
    'o'        #  0x96 -> LATIN SMALL LETTER O
    'p'        #  0x97 -> LATIN SMALL LETTER P
    'q'        #  0x98 -> LATIN SMALL LETTER Q
    'r'        #  0x99 -> LATIN SMALL LETTER R
    '\u03b7'   #  0x9A -> GREEK SMALL LETTER ETA
    '\u03b8'   #  0x9B -> GREEK SMALL LETTER THETA
    '\u03b9'   #  0x9C -> GREEK SMALL LETTER IOTA
    '\u03ba'   #  0x9D -> GREEK SMALL LETTER KAPPA
    '\u03bb'   #  0x9E -> GREEK SMALL LETTER LAMDA
    '\u03bc'   #  0x9F -> GREEK SMALL LETTER MU
    '\xb4'     #  0xA0 -> ACUTE ACCENT
    '~'        #  0xA1 -> TILDE
    's'        #  0xA2 -> LATIN SMALL LETTER S
    't'        #  0xA3 -> LATIN SMALL LETTER T
    'u'        #  0xA4 -> LATIN SMALL LETTER U
    'v'        #  0xA5 -> LATIN SMALL LETTER V
    'w'        #  0xA6 -> LATIN SMALL LETTER W
    'x'        #  0xA7 -> LATIN SMALL LETTER X
    'y'        #  0xA8 -> LATIN SMALL LETTER Y
    'z'        #  0xA9 -> LATIN SMALL LETTER Z
    '\u03bd'   #  0xAA -> GREEK SMALL LETTER NU
    '\u03be'   #  0xAB -> GREEK SMALL LETTER XI
    '\u03bf'   #  0xAC -> GREEK SMALL LETTER OMICRON
    '\u03c0'   #  0xAD -> GREEK SMALL LETTER PI
    '\u03c1'   #  0xAE -> GREEK SMALL LETTER RHO
    '\u03c3'   #  0xAF -> GREEK SMALL LETTER SIGMA
    '\xa3'     #  0xB0 -> POUND SIGN
    '\u03ac'   #  0xB1 -> GREEK SMALL LETTER ALPHA WITH TONOS
    '\u03ad'   #  0xB2 -> GREEK SMALL LETTER EPSILON WITH TONOS
    '\u03ae'   #  0xB3 -> GREEK SMALL LETTER ETA WITH TONOS
    '\u03ca'   #  0xB4 -> GREEK SMALL LETTER IOTA WITH DIALYTIKA
    '\u03af'   #  0xB5 -> GREEK SMALL LETTER IOTA WITH TONOS
    '\u03cc'   #  0xB6 -> GREEK SMALL LETTER OMICRON WITH TONOS
    '\u03cd'   #  0xB7 -> GREEK SMALL LETTER UPSILON WITH TONOS
    '\u03cb'   #  0xB8 -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    '\u03ce'   #  0xB9 -> GREEK SMALL LETTER OMEGA WITH TONOS
    '\u03c2'   #  0xBA -> GREEK SMALL LETTER FINAL SIGMA
    '\u03c4'   #  0xBB -> GREEK SMALL LETTER TAU
    '\u03c5'   #  0xBC -> GREEK SMALL LETTER UPSILON
    '\u03c6'   #  0xBD -> GREEK SMALL LETTER PHI
    '\u03c7'   #  0xBE -> GREEK SMALL LETTER CHI
    '\u03c8'   #  0xBF -> GREEK SMALL LETTER PSI
    '{'        #  0xC0 -> LEFT CURLY BRACKET
    'A'        #  0xC1 -> LATIN CAPITAL LETTER A
    'B'        #  0xC2 -> LATIN CAPITAL LETTER B
    'C'        #  0xC3 -> LATIN CAPITAL LETTER C
    'D'        #  0xC4 -> LATIN CAPITAL LETTER D
    'E'        #  0xC5 -> LATIN CAPITAL LETTER E
    'F'        #  0xC6 -> LATIN CAPITAL LETTER F
    'G'        #  0xC7 -> LATIN CAPITAL LETTER G
    'H'        #  0xC8 -> LATIN CAPITAL LETTER H
    'I'        #  0xC9 -> LATIN CAPITAL LETTER I
    '\xad'     #  0xCA -> SOFT HYPHEN
    '\u03c9'   #  0xCB -> GREEK SMALL LETTER OMEGA
    '\u0390'   #  0xCC -> GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
    '\u03b0'   #  0xCD -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
    '\u2018'   #  0xCE -> LEFT SINGLE QUOTATION MARK
    '\u2015'   #  0xCF -> HORIZONTAL BAR
    '}'        #  0xD0 -> RIGHT CURLY BRACKET
    'J'        #  0xD1 -> LATIN CAPITAL LETTER J
    'K'        #  0xD2 -> LATIN CAPITAL LETTER K
    'L'        #  0xD3 -> LATIN CAPITAL LETTER L
    'M'        #  0xD4 -> LATIN CAPITAL LETTER M
    'N'        #  0xD5 -> LATIN CAPITAL LETTER N
    'O'        #  0xD6 -> LATIN CAPITAL LETTER O
    'P'        #  0xD7 -> LATIN CAPITAL LETTER P
    'Q'        #  0xD8 -> LATIN CAPITAL LETTER Q
    'R'        #  0xD9 -> LATIN CAPITAL LETTER R
    '\xb1'     #  0xDA -> PLUS-MINUS SIGN
    '\xbd'     #  0xDB -> VULGAR FRACTION ONE HALF
    '\x1a'     #  0xDC -> SUBSTITUTE
    '\u0387'   #  0xDD -> GREEK ANO TELEIA
    '\u2019'   #  0xDE -> RIGHT SINGLE QUOTATION MARK
    '\xa6'     #  0xDF -> BROKEN BAR
    '\\'       #  0xE0 -> REVERSE SOLIDUS
    '\x1a'     #  0xE1 -> SUBSTITUTE
    'S'        #  0xE2 -> LATIN CAPITAL LETTER S
    'T'        #  0xE3 -> LATIN CAPITAL LETTER T
    'U'        #  0xE4 -> LATIN CAPITAL LETTER U
    'V'        #  0xE5 -> LATIN CAPITAL LETTER V
    'W'        #  0xE6 -> LATIN CAPITAL LETTER W
    'X'        #  0xE7 -> LATIN CAPITAL LETTER X
    'Y'        #  0xE8 -> LATIN CAPITAL LETTER Y
    'Z'        #  0xE9 -> LATIN CAPITAL LETTER Z
    '\xb2'     #  0xEA -> SUPERSCRIPT TWO
    '\xa7'     #  0xEB -> SECTION SIGN
    '\x1a'     #  0xEC -> SUBSTITUTE
    '\x1a'     #  0xED -> SUBSTITUTE
    '\xab'     #  0xEE -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xEF -> NOT SIGN
    '0'        #  0xF0 -> DIGIT ZERO
    '1'        #  0xF1 -> DIGIT ONE
    '2'        #  0xF2 -> DIGIT TWO
    '3'        #  0xF3 -> DIGIT THREE
    '4'        #  0xF4 -> DIGIT FOUR
    '5'        #  0xF5 -> DIGIT FIVE
    '6'        #  0xF6 -> DIGIT SIX
    '7'        #  0xF7 -> DIGIT SEVEN
    '8'        #  0xF8 -> DIGIT EIGHT
    '9'        #  0xF9 -> DIGIT NINE
    '\xb3'     #  0xFA -> SUPERSCRIPT THREE
    '\xa9'     #  0xFB -> COPYRIGHT SIGN
    '\x1a'     #  0xFC -> SUBSTITUTE
    '\x1a'     #  0xFD -> SUBSTITUTE
    '\xbb'     #  0xFE -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\x9f'     #  0xFF -> CONTROL
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\cp932.py
#
# cp932.py: Python Unicode Codec for CP932
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_jp, codecs
import _multibytecodec as mbc

codec = _codecs_jp.getcodec('cp932')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='cp932',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\cp949.py
#
# cp949.py: Python Unicode Codec for CP949
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_kr, codecs
import _multibytecodec as mbc

codec = _codecs_kr.getcodec('cp949')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='cp949',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\cp950.py
#
# cp950.py: Python Unicode Codec for CP950
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_tw, codecs
import _multibytecodec as mbc

codec = _codecs_tw.getcodec('cp950')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='cp950',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\euc_jisx0213.py
#
# euc_jisx0213.py: Python Unicode Codec for EUC_JISX0213
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_jp, codecs
import _multibytecodec as mbc

codec = _codecs_jp.getcodec('euc_jisx0213')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='euc_jisx0213',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\euc_jis_2004.py
#
# euc_jis_2004.py: Python Unicode Codec for EUC_JIS_2004
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_jp, codecs
import _multibytecodec as mbc

codec = _codecs_jp.getcodec('euc_jis_2004')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='euc_jis_2004',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\euc_jp.py
#
# euc_jp.py: Python Unicode Codec for EUC_JP
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_jp, codecs
import _multibytecodec as mbc

codec = _codecs_jp.getcodec('euc_jp')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='euc_jp',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\euc_kr.py
#
# euc_kr.py: Python Unicode Codec for EUC_KR
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_kr, codecs
import _multibytecodec as mbc

codec = _codecs_kr.getcodec('euc_kr')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='euc_kr',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\gb18030.py
#
# gb18030.py: Python Unicode Codec for GB18030
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_cn, codecs
import _multibytecodec as mbc

codec = _codecs_cn.getcodec('gb18030')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='gb18030',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\gb2312.py
#
# gb2312.py: Python Unicode Codec for GB2312
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_cn, codecs
import _multibytecodec as mbc

codec = _codecs_cn.getcodec('gb2312')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='gb2312',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\gbk.py
#
# gbk.py: Python Unicode Codec for GBK
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_cn, codecs
import _multibytecodec as mbc

codec = _codecs_cn.getcodec('gbk')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='gbk',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\hex_codec.py
"""Python 'hex_codec' Codec - 2-digit hex content transfer encoding.

This codec de/encodes from bytes to bytes.

Written by Marc-Andre Lemburg ([email protected]).
"""

import codecs
import binascii

### Codec APIs

def hex_encode(input, errors='strict'):
    assert errors == 'strict'
    return (binascii.b2a_hex(input), len(input))

def hex_decode(input, errors='strict'):
    assert errors == 'strict'
    return (binascii.a2b_hex(input), len(input))

class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):
        return hex_encode(input, errors)
    def decode(self, input, errors='strict'):
        return hex_decode(input, errors)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        assert self.errors == 'strict'
        return binascii.b2a_hex(input)

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        assert self.errors == 'strict'
        return binascii.a2b_hex(input)

class StreamWriter(Codec, codecs.StreamWriter):
    charbuffertype = bytes

class StreamReader(Codec, codecs.StreamReader):
    charbuffertype = bytes

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='hex',
        encode=hex_encode,
        decode=hex_decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
        _is_text_encoding=False,
    )
lib\encodings\hp_roman8.py
""" Python Character Mapping Codec generated from 'hp_roman8.txt' with gencodec.py.

    Based on data from ftp://dkuug.dk/i18n/charmaps/HP-ROMAN8 (Keld Simonsen)

    Original source: LaserJet IIP Printer User's Manual HP part no
    33471-90901, Hewlet-Packard, June 1989.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='hp-roman8',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xc0'     #  0xA1 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc2'     #  0xA2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc8'     #  0xA3 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xca'     #  0xA4 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xA5 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xce'     #  0xA6 -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xA7 -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xb4'     #  0xA8 -> ACUTE ACCENT
    '\u02cb'   #  0xA9 -> MODIFIER LETTER GRAVE ACCENT (MANDARIN CHINESE FOURTH TONE)
    '\u02c6'   #  0xAA -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\xa8'     #  0xAB -> DIAERESIS
    '\u02dc'   #  0xAC -> SMALL TILDE
    '\xd9'     #  0xAD -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xdb'     #  0xAE -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\u20a4'   #  0xAF -> LIRA SIGN
    '\xaf'     #  0xB0 -> MACRON
    '\xdd'     #  0xB1 -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xfd'     #  0xB2 -> LATIN SMALL LETTER Y WITH ACUTE
    '\xb0'     #  0xB3 -> DEGREE SIGN
    '\xc7'     #  0xB4 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xe7'     #  0xB5 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xd1'     #  0xB6 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xf1'     #  0xB7 -> LATIN SMALL LETTER N WITH TILDE
    '\xa1'     #  0xB8 -> INVERTED EXCLAMATION MARK
    '\xbf'     #  0xB9 -> INVERTED QUESTION MARK
    '\xa4'     #  0xBA -> CURRENCY SIGN
    '\xa3'     #  0xBB -> POUND SIGN
    '\xa5'     #  0xBC -> YEN SIGN
    '\xa7'     #  0xBD -> SECTION SIGN
    '\u0192'   #  0xBE -> LATIN SMALL LETTER F WITH HOOK
    '\xa2'     #  0xBF -> CENT SIGN
    '\xe2'     #  0xC0 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xea'     #  0xC1 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xf4'     #  0xC2 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xfb'     #  0xC3 -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xe1'     #  0xC4 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe9'     #  0xC5 -> LATIN SMALL LETTER E WITH ACUTE
    '\xf3'     #  0xC6 -> LATIN SMALL LETTER O WITH ACUTE
    '\xfa'     #  0xC7 -> LATIN SMALL LETTER U WITH ACUTE
    '\xe0'     #  0xC8 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe8'     #  0xC9 -> LATIN SMALL LETTER E WITH GRAVE
    '\xf2'     #  0xCA -> LATIN SMALL LETTER O WITH GRAVE
    '\xf9'     #  0xCB -> LATIN SMALL LETTER U WITH GRAVE
    '\xe4'     #  0xCC -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xeb'     #  0xCD -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xf6'     #  0xCE -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xfc'     #  0xCF -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xc5'     #  0xD0 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xee'     #  0xD1 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xd8'     #  0xD2 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xc6'     #  0xD3 -> LATIN CAPITAL LETTER AE
    '\xe5'     #  0xD4 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xed'     #  0xD5 -> LATIN SMALL LETTER I WITH ACUTE
    '\xf8'     #  0xD6 -> LATIN SMALL LETTER O WITH STROKE
    '\xe6'     #  0xD7 -> LATIN SMALL LETTER AE
    '\xc4'     #  0xD8 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xec'     #  0xD9 -> LATIN SMALL LETTER I WITH GRAVE
    '\xd6'     #  0xDA -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0xDB -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xc9'     #  0xDC -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xef'     #  0xDD -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xdf'     #  0xDE -> LATIN SMALL LETTER SHARP S (GERMAN)
    '\xd4'     #  0xDF -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xc1'     #  0xE0 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc3'     #  0xE1 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xe3'     #  0xE2 -> LATIN SMALL LETTER A WITH TILDE
    '\xd0'     #  0xE3 -> LATIN CAPITAL LETTER ETH (ICELANDIC)
    '\xf0'     #  0xE4 -> LATIN SMALL LETTER ETH (ICELANDIC)
    '\xcd'     #  0xE5 -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xcc'     #  0xE6 -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xd3'     #  0xE7 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd2'     #  0xE8 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd5'     #  0xE9 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xf5'     #  0xEA -> LATIN SMALL LETTER O WITH TILDE
    '\u0160'   #  0xEB -> LATIN CAPITAL LETTER S WITH CARON
    '\u0161'   #  0xEC -> LATIN SMALL LETTER S WITH CARON
    '\xda'     #  0xED -> LATIN CAPITAL LETTER U WITH ACUTE
    '\u0178'   #  0xEE -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\xff'     #  0xEF -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\xde'     #  0xF0 -> LATIN CAPITAL LETTER THORN (ICELANDIC)
    '\xfe'     #  0xF1 -> LATIN SMALL LETTER THORN (ICELANDIC)
    '\xb7'     #  0xF2 -> MIDDLE DOT
    '\xb5'     #  0xF3 -> MICRO SIGN
    '\xb6'     #  0xF4 -> PILCROW SIGN
    '\xbe'     #  0xF5 -> VULGAR FRACTION THREE QUARTERS
    '\u2014'   #  0xF6 -> EM DASH
    '\xbc'     #  0xF7 -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xF8 -> VULGAR FRACTION ONE HALF
    '\xaa'     #  0xF9 -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0xFA -> MASCULINE ORDINAL INDICATOR
    '\xab'     #  0xFB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u25a0'   #  0xFC -> BLACK SQUARE
    '\xbb'     #  0xFD -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xb1'     #  0xFE -> PLUS-MINUS SIGN
    '\ufffe'
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\hz.py
#
# hz.py: Python Unicode Codec for HZ
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_cn, codecs
import _multibytecodec as mbc

codec = _codecs_cn.getcodec('hz')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='hz',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\idna.py
# This module implements the RFCs 3490 (IDNA) and 3491 (Nameprep)

import stringprep, re, codecs
from unicodedata import ucd_3_2_0 as unicodedata

# IDNA section 3.1
dots = re.compile("[\u002E\u3002\uFF0E\uFF61]")

# IDNA section 5
ace_prefix = b"xn--"
sace_prefix = "xn--"

# This assumes query strings, so AllowUnassigned is true
def nameprep(label):
    # Map
    newlabel = []
    for c in label:
        if stringprep.in_table_b1(c):
            # Map to nothing
            continue
        newlabel.append(stringprep.map_table_b2(c))
    label = "".join(newlabel)

    # Normalize
    label = unicodedata.normalize("NFKC", label)

    # Prohibit
    for c in label:
        if stringprep.in_table_c12(c) or \
           stringprep.in_table_c22(c) or \
           stringprep.in_table_c3(c) or \
           stringprep.in_table_c4(c) or \
           stringprep.in_table_c5(c) or \
           stringprep.in_table_c6(c) or \
           stringprep.in_table_c7(c) or \
           stringprep.in_table_c8(c) or \
           stringprep.in_table_c9(c):
            raise UnicodeError("Invalid character %r" % c)

    # Check bidi
    RandAL = [stringprep.in_table_d1(x) for x in label]
    for c in RandAL:
        if c:
            # There is a RandAL char in the string. Must perform further
            # tests:
            # 1) The characters in section 5.8 MUST be prohibited.
            # This is table C.8, which was already checked
            # 2) If a string contains any RandALCat character, the string
            # MUST NOT contain any LCat character.
            if any(stringprep.in_table_d2(x) for x in label):
                raise UnicodeError("Violation of BIDI requirement 2")

            # 3) If a string contains any RandALCat character, a
            # RandALCat character MUST be the first character of the
            # string, and a RandALCat character MUST be the last
            # character of the string.
            if not RandAL[0] or not RandAL[-1]:
                raise UnicodeError("Violation of BIDI requirement 3")

    return label

def ToASCII(label):
    try:
        # Step 1: try ASCII
        label = label.encode("ascii")
    except UnicodeError:
        pass
    else:
        # Skip to step 3: UseSTD3ASCIIRules is false, so
        # Skip to step 8.
        if 0 < len(label) < 64:
            return label
        raise UnicodeError("label empty or too long")

    # Step 2: nameprep
    label = nameprep(label)

    # Step 3: UseSTD3ASCIIRules is false
    # Step 4: try ASCII
    try:
        label = label.encode("ascii")
    except UnicodeError:
        pass
    else:
        # Skip to step 8.
        if 0 < len(label) < 64:
            return label
        raise UnicodeError("label empty or too long")

    # Step 5: Check ACE prefix
    if label.startswith(sace_prefix):
        raise UnicodeError("Label starts with ACE prefix")

    # Step 6: Encode with PUNYCODE
    label = label.encode("punycode")

    # Step 7: Prepend ACE prefix
    label = ace_prefix + label

    # Step 8: Check size
    if 0 < len(label) < 64:
        return label
    raise UnicodeError("label empty or too long")

def ToUnicode(label):
    # Step 1: Check for ASCII
    if isinstance(label, bytes):
        pure_ascii = True
    else:
        try:
            label = label.encode("ascii")
            pure_ascii = True
        except UnicodeError:
            pure_ascii = False
    if not pure_ascii:
        # Step 2: Perform nameprep
        label = nameprep(label)
        # It doesn't say this, but apparently, it should be ASCII now
        try:
            label = label.encode("ascii")
        except UnicodeError:
            raise UnicodeError("Invalid character in IDN label")
    # Step 3: Check for ACE prefix
    if not label.startswith(ace_prefix):
        return str(label, "ascii")

    # Step 4: Remove ACE prefix
    label1 = label[len(ace_prefix):]

    # Step 5: Decode using PUNYCODE
    result = label1.decode("punycode")

    # Step 6: Apply ToASCII
    label2 = ToASCII(result)

    # Step 7: Compare the result of step 6 with the one of step 3
    # label2 will already be in lower case.
    if str(label, "ascii").lower() != str(label2, "ascii"):
        raise UnicodeError("IDNA does not round-trip", label, label2)

    # Step 8: return the result of step 5
    return result

### Codec APIs

class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):

        if errors != 'strict':
            # IDNA is quite clear that implementations must be strict
            raise UnicodeError("unsupported error handling "+errors)

        if not input:
            return b'', 0

        try:
            result = input.encode('ascii')
        except UnicodeEncodeError:
            pass
        else:
            # ASCII name: fast path
            labels = result.split(b'.')
            for label in labels[:-1]:
                if not (0 < len(label) < 64):
                    raise UnicodeError("label empty or too long")
            if len(labels[-1]) >= 64:
                raise UnicodeError("label too long")
            return result, len(input)

        result = bytearray()
        labels = dots.split(input)
        if labels and not labels[-1]:
            trailing_dot = b'.'
            del labels[-1]
        else:
            trailing_dot = b''
        for label in labels:
            if result:
                # Join with U+002E
                result.extend(b'.')
            result.extend(ToASCII(label))
        return bytes(result+trailing_dot), len(input)

    def decode(self, input, errors='strict'):

        if errors != 'strict':
            raise UnicodeError("Unsupported error handling "+errors)

        if not input:
            return "", 0

        # IDNA allows decoding to operate on Unicode strings, too.
        if not isinstance(input, bytes):
            # XXX obviously wrong, see #3232
            input = bytes(input)

        if ace_prefix not in input:
            # Fast path
            try:
                return input.decode('ascii'), len(input)
            except UnicodeDecodeError:
                pass

        labels = input.split(b".")

        if labels and len(labels[-1]) == 0:
            trailing_dot = '.'
            del labels[-1]
        else:
            trailing_dot = ''

        result = []
        for label in labels:
            result.append(ToUnicode(label))

        return ".".join(result)+trailing_dot, len(input)

class IncrementalEncoder(codecs.BufferedIncrementalEncoder):
    def _buffer_encode(self, input, errors, final):
        if errors != 'strict':
            # IDNA is quite clear that implementations must be strict
            raise UnicodeError("unsupported error handling "+errors)

        if not input:
            return (b'', 0)

        labels = dots.split(input)
        trailing_dot = b''
        if labels:
            if not labels[-1]:
                trailing_dot = b'.'
                del labels[-1]
            elif not final:
                # Keep potentially unfinished label until the next call
                del labels[-1]
                if labels:
                    trailing_dot = b'.'

        result = bytearray()
        size = 0
        for label in labels:
            if size:
                # Join with U+002E
                result.extend(b'.')
                size += 1
            result.extend(ToASCII(label))
            size += len(label)

        result += trailing_dot
        size += len(trailing_dot)
        return (bytes(result), size)

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    def _buffer_decode(self, input, errors, final):
        if errors != 'strict':
            raise UnicodeError("Unsupported error handling "+errors)

        if not input:
            return ("", 0)

        # IDNA allows decoding to operate on Unicode strings, too.
        if isinstance(input, str):
            labels = dots.split(input)
        else:
            # Must be ASCII string
            input = str(input, "ascii")
            labels = input.split(".")

        trailing_dot = ''
        if labels:
            if not labels[-1]:
                trailing_dot = '.'
                del labels[-1]
            elif not final:
                # Keep potentially unfinished label until the next call
                del labels[-1]
                if labels:
                    trailing_dot = '.'

        result = []
        size = 0
        for label in labels:
            result.append(ToUnicode(label))
            if size:
                size += 1
            size += len(label)

        result = ".".join(result) + trailing_dot
        size += len(trailing_dot)
        return (result, size)

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='idna',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )
lib\encodings\iso2022_jp.py
#
# iso2022_jp.py: Python Unicode Codec for ISO2022_JP
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_iso2022, codecs
import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_jp')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='iso2022_jp',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\iso2022_jp_1.py
#
# iso2022_jp_1.py: Python Unicode Codec for ISO2022_JP_1
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_iso2022, codecs
import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_jp_1')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='iso2022_jp_1',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\iso2022_jp_2.py
#
# iso2022_jp_2.py: Python Unicode Codec for ISO2022_JP_2
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_iso2022, codecs
import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_jp_2')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='iso2022_jp_2',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\iso2022_jp_2004.py
#
# iso2022_jp_2004.py: Python Unicode Codec for ISO2022_JP_2004
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_iso2022, codecs
import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_jp_2004')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='iso2022_jp_2004',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\iso2022_jp_3.py
#
# iso2022_jp_3.py: Python Unicode Codec for ISO2022_JP_3
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_iso2022, codecs
import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_jp_3')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='iso2022_jp_3',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\iso2022_jp_ext.py
#
# iso2022_jp_ext.py: Python Unicode Codec for ISO2022_JP_EXT
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_iso2022, codecs
import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_jp_ext')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='iso2022_jp_ext',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\iso2022_kr.py
#
# iso2022_kr.py: Python Unicode Codec for ISO2022_KR
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_iso2022, codecs
import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_kr')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='iso2022_kr',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\iso8859_1.py
""" Python Character Mapping Codec iso8859_1 generated from 'MAPPINGS/ISO8859/8859-1.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-1',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xa1'     #  0xA1 -> INVERTED EXCLAMATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xaa'     #  0xAA -> FEMININE ORDINAL INDICATOR
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xba'     #  0xBA -> MASCULINE ORDINAL INDICATOR
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xbf'     #  0xBF -> INVERTED QUESTION MARK
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xd0'     #  0xD0 -> LATIN CAPITAL LETTER ETH (Icelandic)
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xdd'     #  0xDD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'     #  0xDE -> LATIN CAPITAL LETTER THORN (Icelandic)
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S (German)
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf0'     #  0xF0 -> LATIN SMALL LETTER ETH (Icelandic)
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xfd'     #  0xFD -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'     #  0xFE -> LATIN SMALL LETTER THORN (Icelandic)
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_10.py
""" Python Character Mapping Codec iso8859_10 generated from 'MAPPINGS/ISO8859/8859-10.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-10',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0104'   #  0xA1 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\u0112'   #  0xA2 -> LATIN CAPITAL LETTER E WITH MACRON
    '\u0122'   #  0xA3 -> LATIN CAPITAL LETTER G WITH CEDILLA
    '\u012a'   #  0xA4 -> LATIN CAPITAL LETTER I WITH MACRON
    '\u0128'   #  0xA5 -> LATIN CAPITAL LETTER I WITH TILDE
    '\u0136'   #  0xA6 -> LATIN CAPITAL LETTER K WITH CEDILLA
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\u013b'   #  0xA8 -> LATIN CAPITAL LETTER L WITH CEDILLA
    '\u0110'   #  0xA9 -> LATIN CAPITAL LETTER D WITH STROKE
    '\u0160'   #  0xAA -> LATIN CAPITAL LETTER S WITH CARON
    '\u0166'   #  0xAB -> LATIN CAPITAL LETTER T WITH STROKE
    '\u017d'   #  0xAC -> LATIN CAPITAL LETTER Z WITH CARON
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\u016a'   #  0xAE -> LATIN CAPITAL LETTER U WITH MACRON
    '\u014a'   #  0xAF -> LATIN CAPITAL LETTER ENG
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\u0105'   #  0xB1 -> LATIN SMALL LETTER A WITH OGONEK
    '\u0113'   #  0xB2 -> LATIN SMALL LETTER E WITH MACRON
    '\u0123'   #  0xB3 -> LATIN SMALL LETTER G WITH CEDILLA
    '\u012b'   #  0xB4 -> LATIN SMALL LETTER I WITH MACRON
    '\u0129'   #  0xB5 -> LATIN SMALL LETTER I WITH TILDE
    '\u0137'   #  0xB6 -> LATIN SMALL LETTER K WITH CEDILLA
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\u013c'   #  0xB8 -> LATIN SMALL LETTER L WITH CEDILLA
    '\u0111'   #  0xB9 -> LATIN SMALL LETTER D WITH STROKE
    '\u0161'   #  0xBA -> LATIN SMALL LETTER S WITH CARON
    '\u0167'   #  0xBB -> LATIN SMALL LETTER T WITH STROKE
    '\u017e'   #  0xBC -> LATIN SMALL LETTER Z WITH CARON
    '\u2015'   #  0xBD -> HORIZONTAL BAR
    '\u016b'   #  0xBE -> LATIN SMALL LETTER U WITH MACRON
    '\u014b'   #  0xBF -> LATIN SMALL LETTER ENG
    '\u0100'   #  0xC0 -> LATIN CAPITAL LETTER A WITH MACRON
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\u012e'   #  0xC7 -> LATIN CAPITAL LETTER I WITH OGONEK
    '\u010c'   #  0xC8 -> LATIN CAPITAL LETTER C WITH CARON
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0118'   #  0xCA -> LATIN CAPITAL LETTER E WITH OGONEK
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\u0116'   #  0xCC -> LATIN CAPITAL LETTER E WITH DOT ABOVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xd0'     #  0xD0 -> LATIN CAPITAL LETTER ETH (Icelandic)
    '\u0145'   #  0xD1 -> LATIN CAPITAL LETTER N WITH CEDILLA
    '\u014c'   #  0xD2 -> LATIN CAPITAL LETTER O WITH MACRON
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\u0168'   #  0xD7 -> LATIN CAPITAL LETTER U WITH TILDE
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\u0172'   #  0xD9 -> LATIN CAPITAL LETTER U WITH OGONEK
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xdd'     #  0xDD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'     #  0xDE -> LATIN CAPITAL LETTER THORN (Icelandic)
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S (German)
    '\u0101'   #  0xE0 -> LATIN SMALL LETTER A WITH MACRON
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\u012f'   #  0xE7 -> LATIN SMALL LETTER I WITH OGONEK
    '\u010d'   #  0xE8 -> LATIN SMALL LETTER C WITH CARON
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\u0119'   #  0xEA -> LATIN SMALL LETTER E WITH OGONEK
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\u0117'   #  0xEC -> LATIN SMALL LETTER E WITH DOT ABOVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf0'     #  0xF0 -> LATIN SMALL LETTER ETH (Icelandic)
    '\u0146'   #  0xF1 -> LATIN SMALL LETTER N WITH CEDILLA
    '\u014d'   #  0xF2 -> LATIN SMALL LETTER O WITH MACRON
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\u0169'   #  0xF7 -> LATIN SMALL LETTER U WITH TILDE
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\u0173'   #  0xF9 -> LATIN SMALL LETTER U WITH OGONEK
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xfd'     #  0xFD -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'     #  0xFE -> LATIN SMALL LETTER THORN (Icelandic)
    '\u0138'   #  0xFF -> LATIN SMALL LETTER KRA
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_11.py
""" Python Character Mapping Codec iso8859_11 generated from 'MAPPINGS/ISO8859/8859-11.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-11',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0e01'   #  0xA1 -> THAI CHARACTER KO KAI
    '\u0e02'   #  0xA2 -> THAI CHARACTER KHO KHAI
    '\u0e03'   #  0xA3 -> THAI CHARACTER KHO KHUAT
    '\u0e04'   #  0xA4 -> THAI CHARACTER KHO KHWAI
    '\u0e05'   #  0xA5 -> THAI CHARACTER KHO KHON
    '\u0e06'   #  0xA6 -> THAI CHARACTER KHO RAKHANG
    '\u0e07'   #  0xA7 -> THAI CHARACTER NGO NGU
    '\u0e08'   #  0xA8 -> THAI CHARACTER CHO CHAN
    '\u0e09'   #  0xA9 -> THAI CHARACTER CHO CHING
    '\u0e0a'   #  0xAA -> THAI CHARACTER CHO CHANG
    '\u0e0b'   #  0xAB -> THAI CHARACTER SO SO
    '\u0e0c'   #  0xAC -> THAI CHARACTER CHO CHOE
    '\u0e0d'   #  0xAD -> THAI CHARACTER YO YING
    '\u0e0e'   #  0xAE -> THAI CHARACTER DO CHADA
    '\u0e0f'   #  0xAF -> THAI CHARACTER TO PATAK
    '\u0e10'   #  0xB0 -> THAI CHARACTER THO THAN
    '\u0e11'   #  0xB1 -> THAI CHARACTER THO NANGMONTHO
    '\u0e12'   #  0xB2 -> THAI CHARACTER THO PHUTHAO
    '\u0e13'   #  0xB3 -> THAI CHARACTER NO NEN
    '\u0e14'   #  0xB4 -> THAI CHARACTER DO DEK
    '\u0e15'   #  0xB5 -> THAI CHARACTER TO TAO
    '\u0e16'   #  0xB6 -> THAI CHARACTER THO THUNG
    '\u0e17'   #  0xB7 -> THAI CHARACTER THO THAHAN
    '\u0e18'   #  0xB8 -> THAI CHARACTER THO THONG
    '\u0e19'   #  0xB9 -> THAI CHARACTER NO NU
    '\u0e1a'   #  0xBA -> THAI CHARACTER BO BAIMAI
    '\u0e1b'   #  0xBB -> THAI CHARACTER PO PLA
    '\u0e1c'   #  0xBC -> THAI CHARACTER PHO PHUNG
    '\u0e1d'   #  0xBD -> THAI CHARACTER FO FA
    '\u0e1e'   #  0xBE -> THAI CHARACTER PHO PHAN
    '\u0e1f'   #  0xBF -> THAI CHARACTER FO FAN
    '\u0e20'   #  0xC0 -> THAI CHARACTER PHO SAMPHAO
    '\u0e21'   #  0xC1 -> THAI CHARACTER MO MA
    '\u0e22'   #  0xC2 -> THAI CHARACTER YO YAK
    '\u0e23'   #  0xC3 -> THAI CHARACTER RO RUA
    '\u0e24'   #  0xC4 -> THAI CHARACTER RU
    '\u0e25'   #  0xC5 -> THAI CHARACTER LO LING
    '\u0e26'   #  0xC6 -> THAI CHARACTER LU
    '\u0e27'   #  0xC7 -> THAI CHARACTER WO WAEN
    '\u0e28'   #  0xC8 -> THAI CHARACTER SO SALA
    '\u0e29'   #  0xC9 -> THAI CHARACTER SO RUSI
    '\u0e2a'   #  0xCA -> THAI CHARACTER SO SUA
    '\u0e2b'   #  0xCB -> THAI CHARACTER HO HIP
    '\u0e2c'   #  0xCC -> THAI CHARACTER LO CHULA
    '\u0e2d'   #  0xCD -> THAI CHARACTER O ANG
    '\u0e2e'   #  0xCE -> THAI CHARACTER HO NOKHUK
    '\u0e2f'   #  0xCF -> THAI CHARACTER PAIYANNOI
    '\u0e30'   #  0xD0 -> THAI CHARACTER SARA A
    '\u0e31'   #  0xD1 -> THAI CHARACTER MAI HAN-AKAT
    '\u0e32'   #  0xD2 -> THAI CHARACTER SARA AA
    '\u0e33'   #  0xD3 -> THAI CHARACTER SARA AM
    '\u0e34'   #  0xD4 -> THAI CHARACTER SARA I
    '\u0e35'   #  0xD5 -> THAI CHARACTER SARA II
    '\u0e36'   #  0xD6 -> THAI CHARACTER SARA UE
    '\u0e37'   #  0xD7 -> THAI CHARACTER SARA UEE
    '\u0e38'   #  0xD8 -> THAI CHARACTER SARA U
    '\u0e39'   #  0xD9 -> THAI CHARACTER SARA UU
    '\u0e3a'   #  0xDA -> THAI CHARACTER PHINTHU
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\u0e3f'   #  0xDF -> THAI CURRENCY SYMBOL BAHT
    '\u0e40'   #  0xE0 -> THAI CHARACTER SARA E
    '\u0e41'   #  0xE1 -> THAI CHARACTER SARA AE
    '\u0e42'   #  0xE2 -> THAI CHARACTER SARA O
    '\u0e43'   #  0xE3 -> THAI CHARACTER SARA AI MAIMUAN
    '\u0e44'   #  0xE4 -> THAI CHARACTER SARA AI MAIMALAI
    '\u0e45'   #  0xE5 -> THAI CHARACTER LAKKHANGYAO
    '\u0e46'   #  0xE6 -> THAI CHARACTER MAIYAMOK
    '\u0e47'   #  0xE7 -> THAI CHARACTER MAITAIKHU
    '\u0e48'   #  0xE8 -> THAI CHARACTER MAI EK
    '\u0e49'   #  0xE9 -> THAI CHARACTER MAI THO
    '\u0e4a'   #  0xEA -> THAI CHARACTER MAI TRI
    '\u0e4b'   #  0xEB -> THAI CHARACTER MAI CHATTAWA
    '\u0e4c'   #  0xEC -> THAI CHARACTER THANTHAKHAT
    '\u0e4d'   #  0xED -> THAI CHARACTER NIKHAHIT
    '\u0e4e'   #  0xEE -> THAI CHARACTER YAMAKKAN
    '\u0e4f'   #  0xEF -> THAI CHARACTER FONGMAN
    '\u0e50'   #  0xF0 -> THAI DIGIT ZERO
    '\u0e51'   #  0xF1 -> THAI DIGIT ONE
    '\u0e52'   #  0xF2 -> THAI DIGIT TWO
    '\u0e53'   #  0xF3 -> THAI DIGIT THREE
    '\u0e54'   #  0xF4 -> THAI DIGIT FOUR
    '\u0e55'   #  0xF5 -> THAI DIGIT FIVE
    '\u0e56'   #  0xF6 -> THAI DIGIT SIX
    '\u0e57'   #  0xF7 -> THAI DIGIT SEVEN
    '\u0e58'   #  0xF8 -> THAI DIGIT EIGHT
    '\u0e59'   #  0xF9 -> THAI DIGIT NINE
    '\u0e5a'   #  0xFA -> THAI CHARACTER ANGKHANKHU
    '\u0e5b'   #  0xFB -> THAI CHARACTER KHOMUT
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_13.py
""" Python Character Mapping Codec iso8859_13 generated from 'MAPPINGS/ISO8859/8859-13.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-13',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u201d'   #  0xA1 -> RIGHT DOUBLE QUOTATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\u201e'   #  0xA5 -> DOUBLE LOW-9 QUOTATION MARK
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xd8'     #  0xA8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u0156'   #  0xAA -> LATIN CAPITAL LETTER R WITH CEDILLA
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xc6'     #  0xAF -> LATIN CAPITAL LETTER AE
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\u201c'   #  0xB4 -> LEFT DOUBLE QUOTATION MARK
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xf8'     #  0xB8 -> LATIN SMALL LETTER O WITH STROKE
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\u0157'   #  0xBA -> LATIN SMALL LETTER R WITH CEDILLA
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xe6'     #  0xBF -> LATIN SMALL LETTER AE
    '\u0104'   #  0xC0 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\u012e'   #  0xC1 -> LATIN CAPITAL LETTER I WITH OGONEK
    '\u0100'   #  0xC2 -> LATIN CAPITAL LETTER A WITH MACRON
    '\u0106'   #  0xC3 -> LATIN CAPITAL LETTER C WITH ACUTE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\u0118'   #  0xC6 -> LATIN CAPITAL LETTER E WITH OGONEK
    '\u0112'   #  0xC7 -> LATIN CAPITAL LETTER E WITH MACRON
    '\u010c'   #  0xC8 -> LATIN CAPITAL LETTER C WITH CARON
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0179'   #  0xCA -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\u0116'   #  0xCB -> LATIN CAPITAL LETTER E WITH DOT ABOVE
    '\u0122'   #  0xCC -> LATIN CAPITAL LETTER G WITH CEDILLA
    '\u0136'   #  0xCD -> LATIN CAPITAL LETTER K WITH CEDILLA
    '\u012a'   #  0xCE -> LATIN CAPITAL LETTER I WITH MACRON
    '\u013b'   #  0xCF -> LATIN CAPITAL LETTER L WITH CEDILLA
    '\u0160'   #  0xD0 -> LATIN CAPITAL LETTER S WITH CARON
    '\u0143'   #  0xD1 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\u0145'   #  0xD2 -> LATIN CAPITAL LETTER N WITH CEDILLA
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\u014c'   #  0xD4 -> LATIN CAPITAL LETTER O WITH MACRON
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\u0172'   #  0xD8 -> LATIN CAPITAL LETTER U WITH OGONEK
    '\u0141'   #  0xD9 -> LATIN CAPITAL LETTER L WITH STROKE
    '\u015a'   #  0xDA -> LATIN CAPITAL LETTER S WITH ACUTE
    '\u016a'   #  0xDB -> LATIN CAPITAL LETTER U WITH MACRON
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u017b'   #  0xDD -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\u017d'   #  0xDE -> LATIN CAPITAL LETTER Z WITH CARON
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S (German)
    '\u0105'   #  0xE0 -> LATIN SMALL LETTER A WITH OGONEK
    '\u012f'   #  0xE1 -> LATIN SMALL LETTER I WITH OGONEK
    '\u0101'   #  0xE2 -> LATIN SMALL LETTER A WITH MACRON
    '\u0107'   #  0xE3 -> LATIN SMALL LETTER C WITH ACUTE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\u0119'   #  0xE6 -> LATIN SMALL LETTER E WITH OGONEK
    '\u0113'   #  0xE7 -> LATIN SMALL LETTER E WITH MACRON
    '\u010d'   #  0xE8 -> LATIN SMALL LETTER C WITH CARON
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\u017a'   #  0xEA -> LATIN SMALL LETTER Z WITH ACUTE
    '\u0117'   #  0xEB -> LATIN SMALL LETTER E WITH DOT ABOVE
    '\u0123'   #  0xEC -> LATIN SMALL LETTER G WITH CEDILLA
    '\u0137'   #  0xED -> LATIN SMALL LETTER K WITH CEDILLA
    '\u012b'   #  0xEE -> LATIN SMALL LETTER I WITH MACRON
    '\u013c'   #  0xEF -> LATIN SMALL LETTER L WITH CEDILLA
    '\u0161'   #  0xF0 -> LATIN SMALL LETTER S WITH CARON
    '\u0144'   #  0xF1 -> LATIN SMALL LETTER N WITH ACUTE
    '\u0146'   #  0xF2 -> LATIN SMALL LETTER N WITH CEDILLA
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\u014d'   #  0xF4 -> LATIN SMALL LETTER O WITH MACRON
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\u0173'   #  0xF8 -> LATIN SMALL LETTER U WITH OGONEK
    '\u0142'   #  0xF9 -> LATIN SMALL LETTER L WITH STROKE
    '\u015b'   #  0xFA -> LATIN SMALL LETTER S WITH ACUTE
    '\u016b'   #  0xFB -> LATIN SMALL LETTER U WITH MACRON
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u017c'   #  0xFD -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\u017e'   #  0xFE -> LATIN SMALL LETTER Z WITH CARON
    '\u2019'   #  0xFF -> RIGHT SINGLE QUOTATION MARK
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_14.py
""" Python Character Mapping Codec iso8859_14 generated from 'MAPPINGS/ISO8859/8859-14.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-14',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u1e02'   #  0xA1 -> LATIN CAPITAL LETTER B WITH DOT ABOVE
    '\u1e03'   #  0xA2 -> LATIN SMALL LETTER B WITH DOT ABOVE
    '\xa3'     #  0xA3 -> POUND SIGN
    '\u010a'   #  0xA4 -> LATIN CAPITAL LETTER C WITH DOT ABOVE
    '\u010b'   #  0xA5 -> LATIN SMALL LETTER C WITH DOT ABOVE
    '\u1e0a'   #  0xA6 -> LATIN CAPITAL LETTER D WITH DOT ABOVE
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\u1e80'   #  0xA8 -> LATIN CAPITAL LETTER W WITH GRAVE
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u1e82'   #  0xAA -> LATIN CAPITAL LETTER W WITH ACUTE
    '\u1e0b'   #  0xAB -> LATIN SMALL LETTER D WITH DOT ABOVE
    '\u1ef2'   #  0xAC -> LATIN CAPITAL LETTER Y WITH GRAVE
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\u0178'   #  0xAF -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\u1e1e'   #  0xB0 -> LATIN CAPITAL LETTER F WITH DOT ABOVE
    '\u1e1f'   #  0xB1 -> LATIN SMALL LETTER F WITH DOT ABOVE
    '\u0120'   #  0xB2 -> LATIN CAPITAL LETTER G WITH DOT ABOVE
    '\u0121'   #  0xB3 -> LATIN SMALL LETTER G WITH DOT ABOVE
    '\u1e40'   #  0xB4 -> LATIN CAPITAL LETTER M WITH DOT ABOVE
    '\u1e41'   #  0xB5 -> LATIN SMALL LETTER M WITH DOT ABOVE
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\u1e56'   #  0xB7 -> LATIN CAPITAL LETTER P WITH DOT ABOVE
    '\u1e81'   #  0xB8 -> LATIN SMALL LETTER W WITH GRAVE
    '\u1e57'   #  0xB9 -> LATIN SMALL LETTER P WITH DOT ABOVE
    '\u1e83'   #  0xBA -> LATIN SMALL LETTER W WITH ACUTE
    '\u1e60'   #  0xBB -> LATIN CAPITAL LETTER S WITH DOT ABOVE
    '\u1ef3'   #  0xBC -> LATIN SMALL LETTER Y WITH GRAVE
    '\u1e84'   #  0xBD -> LATIN CAPITAL LETTER W WITH DIAERESIS
    '\u1e85'   #  0xBE -> LATIN SMALL LETTER W WITH DIAERESIS
    '\u1e61'   #  0xBF -> LATIN SMALL LETTER S WITH DOT ABOVE
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\u0174'   #  0xD0 -> LATIN CAPITAL LETTER W WITH CIRCUMFLEX
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\u1e6a'   #  0xD7 -> LATIN CAPITAL LETTER T WITH DOT ABOVE
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xdd'     #  0xDD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\u0176'   #  0xDE -> LATIN CAPITAL LETTER Y WITH CIRCUMFLEX
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\u0175'   #  0xF0 -> LATIN SMALL LETTER W WITH CIRCUMFLEX
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\u1e6b'   #  0xF7 -> LATIN SMALL LETTER T WITH DOT ABOVE
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xfd'     #  0xFD -> LATIN SMALL LETTER Y WITH ACUTE
    '\u0177'   #  0xFE -> LATIN SMALL LETTER Y WITH CIRCUMFLEX
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_15.py
""" Python Character Mapping Codec iso8859_15 generated from 'MAPPINGS/ISO8859/8859-15.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-15',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xa1'     #  0xA1 -> INVERTED EXCLAMATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\u20ac'   #  0xA4 -> EURO SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\u0160'   #  0xA6 -> LATIN CAPITAL LETTER S WITH CARON
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\u0161'   #  0xA8 -> LATIN SMALL LETTER S WITH CARON
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xaa'     #  0xAA -> FEMININE ORDINAL INDICATOR
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\u017d'   #  0xB4 -> LATIN CAPITAL LETTER Z WITH CARON
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\u017e'   #  0xB8 -> LATIN SMALL LETTER Z WITH CARON
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xba'     #  0xBA -> MASCULINE ORDINAL INDICATOR
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u0152'   #  0xBC -> LATIN CAPITAL LIGATURE OE
    '\u0153'   #  0xBD -> LATIN SMALL LIGATURE OE
    '\u0178'   #  0xBE -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\xbf'     #  0xBF -> INVERTED QUESTION MARK
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xd0'     #  0xD0 -> LATIN CAPITAL LETTER ETH
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xdd'     #  0xDD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'     #  0xDE -> LATIN CAPITAL LETTER THORN
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf0'     #  0xF0 -> LATIN SMALL LETTER ETH
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xfd'     #  0xFD -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'     #  0xFE -> LATIN SMALL LETTER THORN
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_16.py
""" Python Character Mapping Codec iso8859_16 generated from 'MAPPINGS/ISO8859/8859-16.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-16',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0104'   #  0xA1 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\u0105'   #  0xA2 -> LATIN SMALL LETTER A WITH OGONEK
    '\u0141'   #  0xA3 -> LATIN CAPITAL LETTER L WITH STROKE
    '\u20ac'   #  0xA4 -> EURO SIGN
    '\u201e'   #  0xA5 -> DOUBLE LOW-9 QUOTATION MARK
    '\u0160'   #  0xA6 -> LATIN CAPITAL LETTER S WITH CARON
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\u0161'   #  0xA8 -> LATIN SMALL LETTER S WITH CARON
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u0218'   #  0xAA -> LATIN CAPITAL LETTER S WITH COMMA BELOW
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u0179'   #  0xAC -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\u017a'   #  0xAE -> LATIN SMALL LETTER Z WITH ACUTE
    '\u017b'   #  0xAF -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u010c'   #  0xB2 -> LATIN CAPITAL LETTER C WITH CARON
    '\u0142'   #  0xB3 -> LATIN SMALL LETTER L WITH STROKE
    '\u017d'   #  0xB4 -> LATIN CAPITAL LETTER Z WITH CARON
    '\u201d'   #  0xB5 -> RIGHT DOUBLE QUOTATION MARK
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\u017e'   #  0xB8 -> LATIN SMALL LETTER Z WITH CARON
    '\u010d'   #  0xB9 -> LATIN SMALL LETTER C WITH CARON
    '\u0219'   #  0xBA -> LATIN SMALL LETTER S WITH COMMA BELOW
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u0152'   #  0xBC -> LATIN CAPITAL LIGATURE OE
    '\u0153'   #  0xBD -> LATIN SMALL LIGATURE OE
    '\u0178'   #  0xBE -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\u017c'   #  0xBF -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\u0102'   #  0xC3 -> LATIN CAPITAL LETTER A WITH BREVE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\u0106'   #  0xC5 -> LATIN CAPITAL LETTER C WITH ACUTE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\u0110'   #  0xD0 -> LATIN CAPITAL LETTER D WITH STROKE
    '\u0143'   #  0xD1 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u0150'   #  0xD5 -> LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\u015a'   #  0xD7 -> LATIN CAPITAL LETTER S WITH ACUTE
    '\u0170'   #  0xD8 -> LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u0118'   #  0xDD -> LATIN CAPITAL LETTER E WITH OGONEK
    '\u021a'   #  0xDE -> LATIN CAPITAL LETTER T WITH COMMA BELOW
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\u0103'   #  0xE3 -> LATIN SMALL LETTER A WITH BREVE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u0107'   #  0xE5 -> LATIN SMALL LETTER C WITH ACUTE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\u0111'   #  0xF0 -> LATIN SMALL LETTER D WITH STROKE
    '\u0144'   #  0xF1 -> LATIN SMALL LETTER N WITH ACUTE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\u0151'   #  0xF5 -> LATIN SMALL LETTER O WITH DOUBLE ACUTE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\u015b'   #  0xF7 -> LATIN SMALL LETTER S WITH ACUTE
    '\u0171'   #  0xF8 -> LATIN SMALL LETTER U WITH DOUBLE ACUTE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u0119'   #  0xFD -> LATIN SMALL LETTER E WITH OGONEK
    '\u021b'   #  0xFE -> LATIN SMALL LETTER T WITH COMMA BELOW
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_2.py
""" Python Character Mapping Codec iso8859_2 generated from 'MAPPINGS/ISO8859/8859-2.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-2',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0104'   #  0xA1 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\u02d8'   #  0xA2 -> BREVE
    '\u0141'   #  0xA3 -> LATIN CAPITAL LETTER L WITH STROKE
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\u013d'   #  0xA5 -> LATIN CAPITAL LETTER L WITH CARON
    '\u015a'   #  0xA6 -> LATIN CAPITAL LETTER S WITH ACUTE
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\u0160'   #  0xA9 -> LATIN CAPITAL LETTER S WITH CARON
    '\u015e'   #  0xAA -> LATIN CAPITAL LETTER S WITH CEDILLA
    '\u0164'   #  0xAB -> LATIN CAPITAL LETTER T WITH CARON
    '\u0179'   #  0xAC -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\u017d'   #  0xAE -> LATIN CAPITAL LETTER Z WITH CARON
    '\u017b'   #  0xAF -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\u0105'   #  0xB1 -> LATIN SMALL LETTER A WITH OGONEK
    '\u02db'   #  0xB2 -> OGONEK
    '\u0142'   #  0xB3 -> LATIN SMALL LETTER L WITH STROKE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\u013e'   #  0xB5 -> LATIN SMALL LETTER L WITH CARON
    '\u015b'   #  0xB6 -> LATIN SMALL LETTER S WITH ACUTE
    '\u02c7'   #  0xB7 -> CARON
    '\xb8'     #  0xB8 -> CEDILLA
    '\u0161'   #  0xB9 -> LATIN SMALL LETTER S WITH CARON
    '\u015f'   #  0xBA -> LATIN SMALL LETTER S WITH CEDILLA
    '\u0165'   #  0xBB -> LATIN SMALL LETTER T WITH CARON
    '\u017a'   #  0xBC -> LATIN SMALL LETTER Z WITH ACUTE
    '\u02dd'   #  0xBD -> DOUBLE ACUTE ACCENT
    '\u017e'   #  0xBE -> LATIN SMALL LETTER Z WITH CARON
    '\u017c'   #  0xBF -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\u0154'   #  0xC0 -> LATIN CAPITAL LETTER R WITH ACUTE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\u0102'   #  0xC3 -> LATIN CAPITAL LETTER A WITH BREVE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\u0139'   #  0xC5 -> LATIN CAPITAL LETTER L WITH ACUTE
    '\u0106'   #  0xC6 -> LATIN CAPITAL LETTER C WITH ACUTE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\u010c'   #  0xC8 -> LATIN CAPITAL LETTER C WITH CARON
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0118'   #  0xCA -> LATIN CAPITAL LETTER E WITH OGONEK
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\u011a'   #  0xCC -> LATIN CAPITAL LETTER E WITH CARON
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\u010e'   #  0xCF -> LATIN CAPITAL LETTER D WITH CARON
    '\u0110'   #  0xD0 -> LATIN CAPITAL LETTER D WITH STROKE
    '\u0143'   #  0xD1 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\u0147'   #  0xD2 -> LATIN CAPITAL LETTER N WITH CARON
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u0150'   #  0xD5 -> LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\u0158'   #  0xD8 -> LATIN CAPITAL LETTER R WITH CARON
    '\u016e'   #  0xD9 -> LATIN CAPITAL LETTER U WITH RING ABOVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\u0170'   #  0xDB -> LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xdd'     #  0xDD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\u0162'   #  0xDE -> LATIN CAPITAL LETTER T WITH CEDILLA
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\u0155'   #  0xE0 -> LATIN SMALL LETTER R WITH ACUTE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\u0103'   #  0xE3 -> LATIN SMALL LETTER A WITH BREVE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u013a'   #  0xE5 -> LATIN SMALL LETTER L WITH ACUTE
    '\u0107'   #  0xE6 -> LATIN SMALL LETTER C WITH ACUTE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\u010d'   #  0xE8 -> LATIN SMALL LETTER C WITH CARON
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\u0119'   #  0xEA -> LATIN SMALL LETTER E WITH OGONEK
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\u011b'   #  0xEC -> LATIN SMALL LETTER E WITH CARON
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\u010f'   #  0xEF -> LATIN SMALL LETTER D WITH CARON
    '\u0111'   #  0xF0 -> LATIN SMALL LETTER D WITH STROKE
    '\u0144'   #  0xF1 -> LATIN SMALL LETTER N WITH ACUTE
    '\u0148'   #  0xF2 -> LATIN SMALL LETTER N WITH CARON
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\u0151'   #  0xF5 -> LATIN SMALL LETTER O WITH DOUBLE ACUTE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\u0159'   #  0xF8 -> LATIN SMALL LETTER R WITH CARON
    '\u016f'   #  0xF9 -> LATIN SMALL LETTER U WITH RING ABOVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\u0171'   #  0xFB -> LATIN SMALL LETTER U WITH DOUBLE ACUTE
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xfd'     #  0xFD -> LATIN SMALL LETTER Y WITH ACUTE
    '\u0163'   #  0xFE -> LATIN SMALL LETTER T WITH CEDILLA
    '\u02d9'   #  0xFF -> DOT ABOVE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_3.py
""" Python Character Mapping Codec iso8859_3 generated from 'MAPPINGS/ISO8859/8859-3.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-3',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0126'   #  0xA1 -> LATIN CAPITAL LETTER H WITH STROKE
    '\u02d8'   #  0xA2 -> BREVE
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\ufffe'
    '\u0124'   #  0xA6 -> LATIN CAPITAL LETTER H WITH CIRCUMFLEX
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\u0130'   #  0xA9 -> LATIN CAPITAL LETTER I WITH DOT ABOVE
    '\u015e'   #  0xAA -> LATIN CAPITAL LETTER S WITH CEDILLA
    '\u011e'   #  0xAB -> LATIN CAPITAL LETTER G WITH BREVE
    '\u0134'   #  0xAC -> LATIN CAPITAL LETTER J WITH CIRCUMFLEX
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\ufffe'
    '\u017b'   #  0xAF -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\u0127'   #  0xB1 -> LATIN SMALL LETTER H WITH STROKE
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\u0125'   #  0xB6 -> LATIN SMALL LETTER H WITH CIRCUMFLEX
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\u0131'   #  0xB9 -> LATIN SMALL LETTER DOTLESS I
    '\u015f'   #  0xBA -> LATIN SMALL LETTER S WITH CEDILLA
    '\u011f'   #  0xBB -> LATIN SMALL LETTER G WITH BREVE
    '\u0135'   #  0xBC -> LATIN SMALL LETTER J WITH CIRCUMFLEX
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\ufffe'
    '\u017c'   #  0xBF -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\ufffe'
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\u010a'   #  0xC5 -> LATIN CAPITAL LETTER C WITH DOT ABOVE
    '\u0108'   #  0xC6 -> LATIN CAPITAL LETTER C WITH CIRCUMFLEX
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\ufffe'
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u0120'   #  0xD5 -> LATIN CAPITAL LETTER G WITH DOT ABOVE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\u011c'   #  0xD8 -> LATIN CAPITAL LETTER G WITH CIRCUMFLEX
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u016c'   #  0xDD -> LATIN CAPITAL LETTER U WITH BREVE
    '\u015c'   #  0xDE -> LATIN CAPITAL LETTER S WITH CIRCUMFLEX
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\ufffe'
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u010b'   #  0xE5 -> LATIN SMALL LETTER C WITH DOT ABOVE
    '\u0109'   #  0xE6 -> LATIN SMALL LETTER C WITH CIRCUMFLEX
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\ufffe'
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\u0121'   #  0xF5 -> LATIN SMALL LETTER G WITH DOT ABOVE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\u011d'   #  0xF8 -> LATIN SMALL LETTER G WITH CIRCUMFLEX
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u016d'   #  0xFD -> LATIN SMALL LETTER U WITH BREVE
    '\u015d'   #  0xFE -> LATIN SMALL LETTER S WITH CIRCUMFLEX
    '\u02d9'   #  0xFF -> DOT ABOVE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_4.py
""" Python Character Mapping Codec iso8859_4 generated from 'MAPPINGS/ISO8859/8859-4.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-4',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0104'   #  0xA1 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\u0138'   #  0xA2 -> LATIN SMALL LETTER KRA
    '\u0156'   #  0xA3 -> LATIN CAPITAL LETTER R WITH CEDILLA
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\u0128'   #  0xA5 -> LATIN CAPITAL LETTER I WITH TILDE
    '\u013b'   #  0xA6 -> LATIN CAPITAL LETTER L WITH CEDILLA
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\u0160'   #  0xA9 -> LATIN CAPITAL LETTER S WITH CARON
    '\u0112'   #  0xAA -> LATIN CAPITAL LETTER E WITH MACRON
    '\u0122'   #  0xAB -> LATIN CAPITAL LETTER G WITH CEDILLA
    '\u0166'   #  0xAC -> LATIN CAPITAL LETTER T WITH STROKE
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\u017d'   #  0xAE -> LATIN CAPITAL LETTER Z WITH CARON
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\u0105'   #  0xB1 -> LATIN SMALL LETTER A WITH OGONEK
    '\u02db'   #  0xB2 -> OGONEK
    '\u0157'   #  0xB3 -> LATIN SMALL LETTER R WITH CEDILLA
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\u0129'   #  0xB5 -> LATIN SMALL LETTER I WITH TILDE
    '\u013c'   #  0xB6 -> LATIN SMALL LETTER L WITH CEDILLA
    '\u02c7'   #  0xB7 -> CARON
    '\xb8'     #  0xB8 -> CEDILLA
    '\u0161'   #  0xB9 -> LATIN SMALL LETTER S WITH CARON
    '\u0113'   #  0xBA -> LATIN SMALL LETTER E WITH MACRON
    '\u0123'   #  0xBB -> LATIN SMALL LETTER G WITH CEDILLA
    '\u0167'   #  0xBC -> LATIN SMALL LETTER T WITH STROKE
    '\u014a'   #  0xBD -> LATIN CAPITAL LETTER ENG
    '\u017e'   #  0xBE -> LATIN SMALL LETTER Z WITH CARON
    '\u014b'   #  0xBF -> LATIN SMALL LETTER ENG
    '\u0100'   #  0xC0 -> LATIN CAPITAL LETTER A WITH MACRON
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\u012e'   #  0xC7 -> LATIN CAPITAL LETTER I WITH OGONEK
    '\u010c'   #  0xC8 -> LATIN CAPITAL LETTER C WITH CARON
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0118'   #  0xCA -> LATIN CAPITAL LETTER E WITH OGONEK
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\u0116'   #  0xCC -> LATIN CAPITAL LETTER E WITH DOT ABOVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\u012a'   #  0xCF -> LATIN CAPITAL LETTER I WITH MACRON
    '\u0110'   #  0xD0 -> LATIN CAPITAL LETTER D WITH STROKE
    '\u0145'   #  0xD1 -> LATIN CAPITAL LETTER N WITH CEDILLA
    '\u014c'   #  0xD2 -> LATIN CAPITAL LETTER O WITH MACRON
    '\u0136'   #  0xD3 -> LATIN CAPITAL LETTER K WITH CEDILLA
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\u0172'   #  0xD9 -> LATIN CAPITAL LETTER U WITH OGONEK
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u0168'   #  0xDD -> LATIN CAPITAL LETTER U WITH TILDE
    '\u016a'   #  0xDE -> LATIN CAPITAL LETTER U WITH MACRON
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\u0101'   #  0xE0 -> LATIN SMALL LETTER A WITH MACRON
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\u012f'   #  0xE7 -> LATIN SMALL LETTER I WITH OGONEK
    '\u010d'   #  0xE8 -> LATIN SMALL LETTER C WITH CARON
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\u0119'   #  0xEA -> LATIN SMALL LETTER E WITH OGONEK
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\u0117'   #  0xEC -> LATIN SMALL LETTER E WITH DOT ABOVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\u012b'   #  0xEF -> LATIN SMALL LETTER I WITH MACRON
    '\u0111'   #  0xF0 -> LATIN SMALL LETTER D WITH STROKE
    '\u0146'   #  0xF1 -> LATIN SMALL LETTER N WITH CEDILLA
    '\u014d'   #  0xF2 -> LATIN SMALL LETTER O WITH MACRON
    '\u0137'   #  0xF3 -> LATIN SMALL LETTER K WITH CEDILLA
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\u0173'   #  0xF9 -> LATIN SMALL LETTER U WITH OGONEK
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u0169'   #  0xFD -> LATIN SMALL LETTER U WITH TILDE
    '\u016b'   #  0xFE -> LATIN SMALL LETTER U WITH MACRON
    '\u02d9'   #  0xFF -> DOT ABOVE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_5.py
""" Python Character Mapping Codec iso8859_5 generated from 'MAPPINGS/ISO8859/8859-5.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-5',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u0401'   #  0xA1 -> CYRILLIC CAPITAL LETTER IO
    '\u0402'   #  0xA2 -> CYRILLIC CAPITAL LETTER DJE
    '\u0403'   #  0xA3 -> CYRILLIC CAPITAL LETTER GJE
    '\u0404'   #  0xA4 -> CYRILLIC CAPITAL LETTER UKRAINIAN IE
    '\u0405'   #  0xA5 -> CYRILLIC CAPITAL LETTER DZE
    '\u0406'   #  0xA6 -> CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0407'   #  0xA7 -> CYRILLIC CAPITAL LETTER YI
    '\u0408'   #  0xA8 -> CYRILLIC CAPITAL LETTER JE
    '\u0409'   #  0xA9 -> CYRILLIC CAPITAL LETTER LJE
    '\u040a'   #  0xAA -> CYRILLIC CAPITAL LETTER NJE
    '\u040b'   #  0xAB -> CYRILLIC CAPITAL LETTER TSHE
    '\u040c'   #  0xAC -> CYRILLIC CAPITAL LETTER KJE
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\u040e'   #  0xAE -> CYRILLIC CAPITAL LETTER SHORT U
    '\u040f'   #  0xAF -> CYRILLIC CAPITAL LETTER DZHE
    '\u0410'   #  0xB0 -> CYRILLIC CAPITAL LETTER A
    '\u0411'   #  0xB1 -> CYRILLIC CAPITAL LETTER BE
    '\u0412'   #  0xB2 -> CYRILLIC CAPITAL LETTER VE
    '\u0413'   #  0xB3 -> CYRILLIC CAPITAL LETTER GHE
    '\u0414'   #  0xB4 -> CYRILLIC CAPITAL LETTER DE
    '\u0415'   #  0xB5 -> CYRILLIC CAPITAL LETTER IE
    '\u0416'   #  0xB6 -> CYRILLIC CAPITAL LETTER ZHE
    '\u0417'   #  0xB7 -> CYRILLIC CAPITAL LETTER ZE
    '\u0418'   #  0xB8 -> CYRILLIC CAPITAL LETTER I
    '\u0419'   #  0xB9 -> CYRILLIC CAPITAL LETTER SHORT I
    '\u041a'   #  0xBA -> CYRILLIC CAPITAL LETTER KA
    '\u041b'   #  0xBB -> CYRILLIC CAPITAL LETTER EL
    '\u041c'   #  0xBC -> CYRILLIC CAPITAL LETTER EM
    '\u041d'   #  0xBD -> CYRILLIC CAPITAL LETTER EN
    '\u041e'   #  0xBE -> CYRILLIC CAPITAL LETTER O
    '\u041f'   #  0xBF -> CYRILLIC CAPITAL LETTER PE
    '\u0420'   #  0xC0 -> CYRILLIC CAPITAL LETTER ER
    '\u0421'   #  0xC1 -> CYRILLIC CAPITAL LETTER ES
    '\u0422'   #  0xC2 -> CYRILLIC CAPITAL LETTER TE
    '\u0423'   #  0xC3 -> CYRILLIC CAPITAL LETTER U
    '\u0424'   #  0xC4 -> CYRILLIC CAPITAL LETTER EF
    '\u0425'   #  0xC5 -> CYRILLIC CAPITAL LETTER HA
    '\u0426'   #  0xC6 -> CYRILLIC CAPITAL LETTER TSE
    '\u0427'   #  0xC7 -> CYRILLIC CAPITAL LETTER CHE
    '\u0428'   #  0xC8 -> CYRILLIC CAPITAL LETTER SHA
    '\u0429'   #  0xC9 -> CYRILLIC CAPITAL LETTER SHCHA
    '\u042a'   #  0xCA -> CYRILLIC CAPITAL LETTER HARD SIGN
    '\u042b'   #  0xCB -> CYRILLIC CAPITAL LETTER YERU
    '\u042c'   #  0xCC -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u042d'   #  0xCD -> CYRILLIC CAPITAL LETTER E
    '\u042e'   #  0xCE -> CYRILLIC CAPITAL LETTER YU
    '\u042f'   #  0xCF -> CYRILLIC CAPITAL LETTER YA
    '\u0430'   #  0xD0 -> CYRILLIC SMALL LETTER A
    '\u0431'   #  0xD1 -> CYRILLIC SMALL LETTER BE
    '\u0432'   #  0xD2 -> CYRILLIC SMALL LETTER VE
    '\u0433'   #  0xD3 -> CYRILLIC SMALL LETTER GHE
    '\u0434'   #  0xD4 -> CYRILLIC SMALL LETTER DE
    '\u0435'   #  0xD5 -> CYRILLIC SMALL LETTER IE
    '\u0436'   #  0xD6 -> CYRILLIC SMALL LETTER ZHE
    '\u0437'   #  0xD7 -> CYRILLIC SMALL LETTER ZE
    '\u0438'   #  0xD8 -> CYRILLIC SMALL LETTER I
    '\u0439'   #  0xD9 -> CYRILLIC SMALL LETTER SHORT I
    '\u043a'   #  0xDA -> CYRILLIC SMALL LETTER KA
    '\u043b'   #  0xDB -> CYRILLIC SMALL LETTER EL
    '\u043c'   #  0xDC -> CYRILLIC SMALL LETTER EM
    '\u043d'   #  0xDD -> CYRILLIC SMALL LETTER EN
    '\u043e'   #  0xDE -> CYRILLIC SMALL LETTER O
    '\u043f'   #  0xDF -> CYRILLIC SMALL LETTER PE
    '\u0440'   #  0xE0 -> CYRILLIC SMALL LETTER ER
    '\u0441'   #  0xE1 -> CYRILLIC SMALL LETTER ES
    '\u0442'   #  0xE2 -> CYRILLIC SMALL LETTER TE
    '\u0443'   #  0xE3 -> CYRILLIC SMALL LETTER U
    '\u0444'   #  0xE4 -> CYRILLIC SMALL LETTER EF
    '\u0445'   #  0xE5 -> CYRILLIC SMALL LETTER HA
    '\u0446'   #  0xE6 -> CYRILLIC SMALL LETTER TSE
    '\u0447'   #  0xE7 -> CYRILLIC SMALL LETTER CHE
    '\u0448'   #  0xE8 -> CYRILLIC SMALL LETTER SHA
    '\u0449'   #  0xE9 -> CYRILLIC SMALL LETTER SHCHA
    '\u044a'   #  0xEA -> CYRILLIC SMALL LETTER HARD SIGN
    '\u044b'   #  0xEB -> CYRILLIC SMALL LETTER YERU
    '\u044c'   #  0xEC -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u044d'   #  0xED -> CYRILLIC SMALL LETTER E
    '\u044e'   #  0xEE -> CYRILLIC SMALL LETTER YU
    '\u044f'   #  0xEF -> CYRILLIC SMALL LETTER YA
    '\u2116'   #  0xF0 -> NUMERO SIGN
    '\u0451'   #  0xF1 -> CYRILLIC SMALL LETTER IO
    '\u0452'   #  0xF2 -> CYRILLIC SMALL LETTER DJE
    '\u0453'   #  0xF3 -> CYRILLIC SMALL LETTER GJE
    '\u0454'   #  0xF4 -> CYRILLIC SMALL LETTER UKRAINIAN IE
    '\u0455'   #  0xF5 -> CYRILLIC SMALL LETTER DZE
    '\u0456'   #  0xF6 -> CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0457'   #  0xF7 -> CYRILLIC SMALL LETTER YI
    '\u0458'   #  0xF8 -> CYRILLIC SMALL LETTER JE
    '\u0459'   #  0xF9 -> CYRILLIC SMALL LETTER LJE
    '\u045a'   #  0xFA -> CYRILLIC SMALL LETTER NJE
    '\u045b'   #  0xFB -> CYRILLIC SMALL LETTER TSHE
    '\u045c'   #  0xFC -> CYRILLIC SMALL LETTER KJE
    '\xa7'     #  0xFD -> SECTION SIGN
    '\u045e'   #  0xFE -> CYRILLIC SMALL LETTER SHORT U
    '\u045f'   #  0xFF -> CYRILLIC SMALL LETTER DZHE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_6.py
""" Python Character Mapping Codec iso8859_6 generated from 'MAPPINGS/ISO8859/8859-6.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-6',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\u060c'   #  0xAC -> ARABIC COMMA
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\u061b'   #  0xBB -> ARABIC SEMICOLON
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\u061f'   #  0xBF -> ARABIC QUESTION MARK
    '\ufffe'
    '\u0621'   #  0xC1 -> ARABIC LETTER HAMZA
    '\u0622'   #  0xC2 -> ARABIC LETTER ALEF WITH MADDA ABOVE
    '\u0623'   #  0xC3 -> ARABIC LETTER ALEF WITH HAMZA ABOVE
    '\u0624'   #  0xC4 -> ARABIC LETTER WAW WITH HAMZA ABOVE
    '\u0625'   #  0xC5 -> ARABIC LETTER ALEF WITH HAMZA BELOW
    '\u0626'   #  0xC6 -> ARABIC LETTER YEH WITH HAMZA ABOVE
    '\u0627'   #  0xC7 -> ARABIC LETTER ALEF
    '\u0628'   #  0xC8 -> ARABIC LETTER BEH
    '\u0629'   #  0xC9 -> ARABIC LETTER TEH MARBUTA
    '\u062a'   #  0xCA -> ARABIC LETTER TEH
    '\u062b'   #  0xCB -> ARABIC LETTER THEH
    '\u062c'   #  0xCC -> ARABIC LETTER JEEM
    '\u062d'   #  0xCD -> ARABIC LETTER HAH
    '\u062e'   #  0xCE -> ARABIC LETTER KHAH
    '\u062f'   #  0xCF -> ARABIC LETTER DAL
    '\u0630'   #  0xD0 -> ARABIC LETTER THAL
    '\u0631'   #  0xD1 -> ARABIC LETTER REH
    '\u0632'   #  0xD2 -> ARABIC LETTER ZAIN
    '\u0633'   #  0xD3 -> ARABIC LETTER SEEN
    '\u0634'   #  0xD4 -> ARABIC LETTER SHEEN
    '\u0635'   #  0xD5 -> ARABIC LETTER SAD
    '\u0636'   #  0xD6 -> ARABIC LETTER DAD
    '\u0637'   #  0xD7 -> ARABIC LETTER TAH
    '\u0638'   #  0xD8 -> ARABIC LETTER ZAH
    '\u0639'   #  0xD9 -> ARABIC LETTER AIN
    '\u063a'   #  0xDA -> ARABIC LETTER GHAIN
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\u0640'   #  0xE0 -> ARABIC TATWEEL
    '\u0641'   #  0xE1 -> ARABIC LETTER FEH
    '\u0642'   #  0xE2 -> ARABIC LETTER QAF
    '\u0643'   #  0xE3 -> ARABIC LETTER KAF
    '\u0644'   #  0xE4 -> ARABIC LETTER LAM
    '\u0645'   #  0xE5 -> ARABIC LETTER MEEM
    '\u0646'   #  0xE6 -> ARABIC LETTER NOON
    '\u0647'   #  0xE7 -> ARABIC LETTER HEH
    '\u0648'   #  0xE8 -> ARABIC LETTER WAW
    '\u0649'   #  0xE9 -> ARABIC LETTER ALEF MAKSURA
    '\u064a'   #  0xEA -> ARABIC LETTER YEH
    '\u064b'   #  0xEB -> ARABIC FATHATAN
    '\u064c'   #  0xEC -> ARABIC DAMMATAN
    '\u064d'   #  0xED -> ARABIC KASRATAN
    '\u064e'   #  0xEE -> ARABIC FATHA
    '\u064f'   #  0xEF -> ARABIC DAMMA
    '\u0650'   #  0xF0 -> ARABIC KASRA
    '\u0651'   #  0xF1 -> ARABIC SHADDA
    '\u0652'   #  0xF2 -> ARABIC SUKUN
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_7.py
""" Python Character Mapping Codec iso8859_7 generated from 'MAPPINGS/ISO8859/8859-7.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-7',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u2018'   #  0xA1 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xA2 -> RIGHT SINGLE QUOTATION MARK
    '\xa3'     #  0xA3 -> POUND SIGN
    '\u20ac'   #  0xA4 -> EURO SIGN
    '\u20af'   #  0xA5 -> DRACHMA SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u037a'   #  0xAA -> GREEK YPOGEGRAMMENI
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\ufffe'
    '\u2015'   #  0xAF -> HORIZONTAL BAR
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\u0384'   #  0xB4 -> GREEK TONOS
    '\u0385'   #  0xB5 -> GREEK DIALYTIKA TONOS
    '\u0386'   #  0xB6 -> GREEK CAPITAL LETTER ALPHA WITH TONOS
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\u0388'   #  0xB8 -> GREEK CAPITAL LETTER EPSILON WITH TONOS
    '\u0389'   #  0xB9 -> GREEK CAPITAL LETTER ETA WITH TONOS
    '\u038a'   #  0xBA -> GREEK CAPITAL LETTER IOTA WITH TONOS
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u038c'   #  0xBC -> GREEK CAPITAL LETTER OMICRON WITH TONOS
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\u038e'   #  0xBE -> GREEK CAPITAL LETTER UPSILON WITH TONOS
    '\u038f'   #  0xBF -> GREEK CAPITAL LETTER OMEGA WITH TONOS
    '\u0390'   #  0xC0 -> GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
    '\u0391'   #  0xC1 -> GREEK CAPITAL LETTER ALPHA
    '\u0392'   #  0xC2 -> GREEK CAPITAL LETTER BETA
    '\u0393'   #  0xC3 -> GREEK CAPITAL LETTER GAMMA
    '\u0394'   #  0xC4 -> GREEK CAPITAL LETTER DELTA
    '\u0395'   #  0xC5 -> GREEK CAPITAL LETTER EPSILON
    '\u0396'   #  0xC6 -> GREEK CAPITAL LETTER ZETA
    '\u0397'   #  0xC7 -> GREEK CAPITAL LETTER ETA
    '\u0398'   #  0xC8 -> GREEK CAPITAL LETTER THETA
    '\u0399'   #  0xC9 -> GREEK CAPITAL LETTER IOTA
    '\u039a'   #  0xCA -> GREEK CAPITAL LETTER KAPPA
    '\u039b'   #  0xCB -> GREEK CAPITAL LETTER LAMDA
    '\u039c'   #  0xCC -> GREEK CAPITAL LETTER MU
    '\u039d'   #  0xCD -> GREEK CAPITAL LETTER NU
    '\u039e'   #  0xCE -> GREEK CAPITAL LETTER XI
    '\u039f'   #  0xCF -> GREEK CAPITAL LETTER OMICRON
    '\u03a0'   #  0xD0 -> GREEK CAPITAL LETTER PI
    '\u03a1'   #  0xD1 -> GREEK CAPITAL LETTER RHO
    '\ufffe'
    '\u03a3'   #  0xD3 -> GREEK CAPITAL LETTER SIGMA
    '\u03a4'   #  0xD4 -> GREEK CAPITAL LETTER TAU
    '\u03a5'   #  0xD5 -> GREEK CAPITAL LETTER UPSILON
    '\u03a6'   #  0xD6 -> GREEK CAPITAL LETTER PHI
    '\u03a7'   #  0xD7 -> GREEK CAPITAL LETTER CHI
    '\u03a8'   #  0xD8 -> GREEK CAPITAL LETTER PSI
    '\u03a9'   #  0xD9 -> GREEK CAPITAL LETTER OMEGA
    '\u03aa'   #  0xDA -> GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    '\u03ab'   #  0xDB -> GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    '\u03ac'   #  0xDC -> GREEK SMALL LETTER ALPHA WITH TONOS
    '\u03ad'   #  0xDD -> GREEK SMALL LETTER EPSILON WITH TONOS
    '\u03ae'   #  0xDE -> GREEK SMALL LETTER ETA WITH TONOS
    '\u03af'   #  0xDF -> GREEK SMALL LETTER IOTA WITH TONOS
    '\u03b0'   #  0xE0 -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
    '\u03b1'   #  0xE1 -> GREEK SMALL LETTER ALPHA
    '\u03b2'   #  0xE2 -> GREEK SMALL LETTER BETA
    '\u03b3'   #  0xE3 -> GREEK SMALL LETTER GAMMA
    '\u03b4'   #  0xE4 -> GREEK SMALL LETTER DELTA
    '\u03b5'   #  0xE5 -> GREEK SMALL LETTER EPSILON
    '\u03b6'   #  0xE6 -> GREEK SMALL LETTER ZETA
    '\u03b7'   #  0xE7 -> GREEK SMALL LETTER ETA
    '\u03b8'   #  0xE8 -> GREEK SMALL LETTER THETA
    '\u03b9'   #  0xE9 -> GREEK SMALL LETTER IOTA
    '\u03ba'   #  0xEA -> GREEK SMALL LETTER KAPPA
    '\u03bb'   #  0xEB -> GREEK SMALL LETTER LAMDA
    '\u03bc'   #  0xEC -> GREEK SMALL LETTER MU
    '\u03bd'   #  0xED -> GREEK SMALL LETTER NU
    '\u03be'   #  0xEE -> GREEK SMALL LETTER XI
    '\u03bf'   #  0xEF -> GREEK SMALL LETTER OMICRON
    '\u03c0'   #  0xF0 -> GREEK SMALL LETTER PI
    '\u03c1'   #  0xF1 -> GREEK SMALL LETTER RHO
    '\u03c2'   #  0xF2 -> GREEK SMALL LETTER FINAL SIGMA
    '\u03c3'   #  0xF3 -> GREEK SMALL LETTER SIGMA
    '\u03c4'   #  0xF4 -> GREEK SMALL LETTER TAU
    '\u03c5'   #  0xF5 -> GREEK SMALL LETTER UPSILON
    '\u03c6'   #  0xF6 -> GREEK SMALL LETTER PHI
    '\u03c7'   #  0xF7 -> GREEK SMALL LETTER CHI
    '\u03c8'   #  0xF8 -> GREEK SMALL LETTER PSI
    '\u03c9'   #  0xF9 -> GREEK SMALL LETTER OMEGA
    '\u03ca'   #  0xFA -> GREEK SMALL LETTER IOTA WITH DIALYTIKA
    '\u03cb'   #  0xFB -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    '\u03cc'   #  0xFC -> GREEK SMALL LETTER OMICRON WITH TONOS
    '\u03cd'   #  0xFD -> GREEK SMALL LETTER UPSILON WITH TONOS
    '\u03ce'   #  0xFE -> GREEK SMALL LETTER OMEGA WITH TONOS
    '\ufffe'
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_8.py
""" Python Character Mapping Codec iso8859_8 generated from 'MAPPINGS/ISO8859/8859-8.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-8',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\ufffe'
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xd7'     #  0xAA -> MULTIPLICATION SIGN
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xf7'     #  0xBA -> DIVISION SIGN
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\u2017'   #  0xDF -> DOUBLE LOW LINE
    '\u05d0'   #  0xE0 -> HEBREW LETTER ALEF
    '\u05d1'   #  0xE1 -> HEBREW LETTER BET
    '\u05d2'   #  0xE2 -> HEBREW LETTER GIMEL
    '\u05d3'   #  0xE3 -> HEBREW LETTER DALET
    '\u05d4'   #  0xE4 -> HEBREW LETTER HE
    '\u05d5'   #  0xE5 -> HEBREW LETTER VAV
    '\u05d6'   #  0xE6 -> HEBREW LETTER ZAYIN
    '\u05d7'   #  0xE7 -> HEBREW LETTER HET
    '\u05d8'   #  0xE8 -> HEBREW LETTER TET
    '\u05d9'   #  0xE9 -> HEBREW LETTER YOD
    '\u05da'   #  0xEA -> HEBREW LETTER FINAL KAF
    '\u05db'   #  0xEB -> HEBREW LETTER KAF
    '\u05dc'   #  0xEC -> HEBREW LETTER LAMED
    '\u05dd'   #  0xED -> HEBREW LETTER FINAL MEM
    '\u05de'   #  0xEE -> HEBREW LETTER MEM
    '\u05df'   #  0xEF -> HEBREW LETTER FINAL NUN
    '\u05e0'   #  0xF0 -> HEBREW LETTER NUN
    '\u05e1'   #  0xF1 -> HEBREW LETTER SAMEKH
    '\u05e2'   #  0xF2 -> HEBREW LETTER AYIN
    '\u05e3'   #  0xF3 -> HEBREW LETTER FINAL PE
    '\u05e4'   #  0xF4 -> HEBREW LETTER PE
    '\u05e5'   #  0xF5 -> HEBREW LETTER FINAL TSADI
    '\u05e6'   #  0xF6 -> HEBREW LETTER TSADI
    '\u05e7'   #  0xF7 -> HEBREW LETTER QOF
    '\u05e8'   #  0xF8 -> HEBREW LETTER RESH
    '\u05e9'   #  0xF9 -> HEBREW LETTER SHIN
    '\u05ea'   #  0xFA -> HEBREW LETTER TAV
    '\ufffe'
    '\ufffe'
    '\u200e'   #  0xFD -> LEFT-TO-RIGHT MARK
    '\u200f'   #  0xFE -> RIGHT-TO-LEFT MARK
    '\ufffe'
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\iso8859_9.py
""" Python Character Mapping Codec iso8859_9 generated from 'MAPPINGS/ISO8859/8859-9.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-9',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xa1'     #  0xA1 -> INVERTED EXCLAMATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xaa'     #  0xAA -> FEMININE ORDINAL INDICATOR
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xba'     #  0xBA -> MASCULINE ORDINAL INDICATOR
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xbf'     #  0xBF -> INVERTED QUESTION MARK
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\u011e'   #  0xD0 -> LATIN CAPITAL LETTER G WITH BREVE
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u0130'   #  0xDD -> LATIN CAPITAL LETTER I WITH DOT ABOVE
    '\u015e'   #  0xDE -> LATIN CAPITAL LETTER S WITH CEDILLA
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\u011f'   #  0xF0 -> LATIN SMALL LETTER G WITH BREVE
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u0131'   #  0xFD -> LATIN SMALL LETTER DOTLESS I
    '\u015f'   #  0xFE -> LATIN SMALL LETTER S WITH CEDILLA
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\johab.py
#
# johab.py: Python Unicode Codec for JOHAB
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_kr, codecs
import _multibytecodec as mbc

codec = _codecs_kr.getcodec('johab')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='johab',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\koi8_r.py
""" Python Character Mapping Codec koi8_r generated from 'MAPPINGS/VENDORS/MISC/KOI8-R.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='koi8-r',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u2500'   #  0x80 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u2502'   #  0x81 -> BOX DRAWINGS LIGHT VERTICAL
    '\u250c'   #  0x82 -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2510'   #  0x83 -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x84 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2518'   #  0x85 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u251c'   #  0x86 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2524'   #  0x87 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u252c'   #  0x88 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u2534'   #  0x89 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u253c'   #  0x8A -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u2580'   #  0x8B -> UPPER HALF BLOCK
    '\u2584'   #  0x8C -> LOWER HALF BLOCK
    '\u2588'   #  0x8D -> FULL BLOCK
    '\u258c'   #  0x8E -> LEFT HALF BLOCK
    '\u2590'   #  0x8F -> RIGHT HALF BLOCK
    '\u2591'   #  0x90 -> LIGHT SHADE
    '\u2592'   #  0x91 -> MEDIUM SHADE
    '\u2593'   #  0x92 -> DARK SHADE
    '\u2320'   #  0x93 -> TOP HALF INTEGRAL
    '\u25a0'   #  0x94 -> BLACK SQUARE
    '\u2219'   #  0x95 -> BULLET OPERATOR
    '\u221a'   #  0x96 -> SQUARE ROOT
    '\u2248'   #  0x97 -> ALMOST EQUAL TO
    '\u2264'   #  0x98 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0x99 -> GREATER-THAN OR EQUAL TO
    '\xa0'     #  0x9A -> NO-BREAK SPACE
    '\u2321'   #  0x9B -> BOTTOM HALF INTEGRAL
    '\xb0'     #  0x9C -> DEGREE SIGN
    '\xb2'     #  0x9D -> SUPERSCRIPT TWO
    '\xb7'     #  0x9E -> MIDDLE DOT
    '\xf7'     #  0x9F -> DIVISION SIGN
    '\u2550'   #  0xA0 -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u2551'   #  0xA1 -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2552'   #  0xA2 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u0451'   #  0xA3 -> CYRILLIC SMALL LETTER IO
    '\u2553'   #  0xA4 -> BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
    '\u2554'   #  0xA5 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u2555'   #  0xA6 -> BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
    '\u2556'   #  0xA7 -> BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
    '\u2557'   #  0xA8 -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u2558'   #  0xA9 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2559'   #  0xAA -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0xAB -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u255b'   #  0xAC -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u255c'   #  0xAD -> BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
    '\u255d'   #  0xAE -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255e'   #  0xAF -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0xB0 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u2560'   #  0xB1 -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2561'   #  0xB2 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u0401'   #  0xB3 -> CYRILLIC CAPITAL LETTER IO
    '\u2562'   #  0xB4 -> BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
    '\u2563'   #  0xB5 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u2564'   #  0xB6 -> BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
    '\u2565'   #  0xB7 -> BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
    '\u2566'   #  0xB8 -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2567'   #  0xB9 -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0xBA -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2569'   #  0xBB -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u256a'   #  0xBC -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u256b'   #  0xBD -> BOX DRAWINGS VERTICAL DOUBLE AND HORIZONTAL SINGLE
    '\u256c'   #  0xBE -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\xa9'     #  0xBF -> COPYRIGHT SIGN
    '\u044e'   #  0xC0 -> CYRILLIC SMALL LETTER YU
    '\u0430'   #  0xC1 -> CYRILLIC SMALL LETTER A
    '\u0431'   #  0xC2 -> CYRILLIC SMALL LETTER BE
    '\u0446'   #  0xC3 -> CYRILLIC SMALL LETTER TSE
    '\u0434'   #  0xC4 -> CYRILLIC SMALL LETTER DE
    '\u0435'   #  0xC5 -> CYRILLIC SMALL LETTER IE
    '\u0444'   #  0xC6 -> CYRILLIC SMALL LETTER EF
    '\u0433'   #  0xC7 -> CYRILLIC SMALL LETTER GHE
    '\u0445'   #  0xC8 -> CYRILLIC SMALL LETTER HA
    '\u0438'   #  0xC9 -> CYRILLIC SMALL LETTER I
    '\u0439'   #  0xCA -> CYRILLIC SMALL LETTER SHORT I
    '\u043a'   #  0xCB -> CYRILLIC SMALL LETTER KA
    '\u043b'   #  0xCC -> CYRILLIC SMALL LETTER EL
    '\u043c'   #  0xCD -> CYRILLIC SMALL LETTER EM
    '\u043d'   #  0xCE -> CYRILLIC SMALL LETTER EN
    '\u043e'   #  0xCF -> CYRILLIC SMALL LETTER O
    '\u043f'   #  0xD0 -> CYRILLIC SMALL LETTER PE
    '\u044f'   #  0xD1 -> CYRILLIC SMALL LETTER YA
    '\u0440'   #  0xD2 -> CYRILLIC SMALL LETTER ER
    '\u0441'   #  0xD3 -> CYRILLIC SMALL LETTER ES
    '\u0442'   #  0xD4 -> CYRILLIC SMALL LETTER TE
    '\u0443'   #  0xD5 -> CYRILLIC SMALL LETTER U
    '\u0436'   #  0xD6 -> CYRILLIC SMALL LETTER ZHE
    '\u0432'   #  0xD7 -> CYRILLIC SMALL LETTER VE
    '\u044c'   #  0xD8 -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u044b'   #  0xD9 -> CYRILLIC SMALL LETTER YERU
    '\u0437'   #  0xDA -> CYRILLIC SMALL LETTER ZE
    '\u0448'   #  0xDB -> CYRILLIC SMALL LETTER SHA
    '\u044d'   #  0xDC -> CYRILLIC SMALL LETTER E
    '\u0449'   #  0xDD -> CYRILLIC SMALL LETTER SHCHA
    '\u0447'   #  0xDE -> CYRILLIC SMALL LETTER CHE
    '\u044a'   #  0xDF -> CYRILLIC SMALL LETTER HARD SIGN
    '\u042e'   #  0xE0 -> CYRILLIC CAPITAL LETTER YU
    '\u0410'   #  0xE1 -> CYRILLIC CAPITAL LETTER A
    '\u0411'   #  0xE2 -> CYRILLIC CAPITAL LETTER BE
    '\u0426'   #  0xE3 -> CYRILLIC CAPITAL LETTER TSE
    '\u0414'   #  0xE4 -> CYRILLIC CAPITAL LETTER DE
    '\u0415'   #  0xE5 -> CYRILLIC CAPITAL LETTER IE
    '\u0424'   #  0xE6 -> CYRILLIC CAPITAL LETTER EF
    '\u0413'   #  0xE7 -> CYRILLIC CAPITAL LETTER GHE
    '\u0425'   #  0xE8 -> CYRILLIC CAPITAL LETTER HA
    '\u0418'   #  0xE9 -> CYRILLIC CAPITAL LETTER I
    '\u0419'   #  0xEA -> CYRILLIC CAPITAL LETTER SHORT I
    '\u041a'   #  0xEB -> CYRILLIC CAPITAL LETTER KA
    '\u041b'   #  0xEC -> CYRILLIC CAPITAL LETTER EL
    '\u041c'   #  0xED -> CYRILLIC CAPITAL LETTER EM
    '\u041d'   #  0xEE -> CYRILLIC CAPITAL LETTER EN
    '\u041e'   #  0xEF -> CYRILLIC CAPITAL LETTER O
    '\u041f'   #  0xF0 -> CYRILLIC CAPITAL LETTER PE
    '\u042f'   #  0xF1 -> CYRILLIC CAPITAL LETTER YA
    '\u0420'   #  0xF2 -> CYRILLIC CAPITAL LETTER ER
    '\u0421'   #  0xF3 -> CYRILLIC CAPITAL LETTER ES
    '\u0422'   #  0xF4 -> CYRILLIC CAPITAL LETTER TE
    '\u0423'   #  0xF5 -> CYRILLIC CAPITAL LETTER U
    '\u0416'   #  0xF6 -> CYRILLIC CAPITAL LETTER ZHE
    '\u0412'   #  0xF7 -> CYRILLIC CAPITAL LETTER VE
    '\u042c'   #  0xF8 -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u042b'   #  0xF9 -> CYRILLIC CAPITAL LETTER YERU
    '\u0417'   #  0xFA -> CYRILLIC CAPITAL LETTER ZE
    '\u0428'   #  0xFB -> CYRILLIC CAPITAL LETTER SHA
    '\u042d'   #  0xFC -> CYRILLIC CAPITAL LETTER E
    '\u0429'   #  0xFD -> CYRILLIC CAPITAL LETTER SHCHA
    '\u0427'   #  0xFE -> CYRILLIC CAPITAL LETTER CHE
    '\u042a'   #  0xFF -> CYRILLIC CAPITAL LETTER HARD SIGN
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\koi8_u.py
""" Python Character Mapping Codec koi8_u generated from 'python-mappings/KOI8-U.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='koi8-u',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u2500'   #  0x80 -> BOX DRAWINGS LIGHT HORIZONTAL
    '\u2502'   #  0x81 -> BOX DRAWINGS LIGHT VERTICAL
    '\u250c'   #  0x82 -> BOX DRAWINGS LIGHT DOWN AND RIGHT
    '\u2510'   #  0x83 -> BOX DRAWINGS LIGHT DOWN AND LEFT
    '\u2514'   #  0x84 -> BOX DRAWINGS LIGHT UP AND RIGHT
    '\u2518'   #  0x85 -> BOX DRAWINGS LIGHT UP AND LEFT
    '\u251c'   #  0x86 -> BOX DRAWINGS LIGHT VERTICAL AND RIGHT
    '\u2524'   #  0x87 -> BOX DRAWINGS LIGHT VERTICAL AND LEFT
    '\u252c'   #  0x88 -> BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
    '\u2534'   #  0x89 -> BOX DRAWINGS LIGHT UP AND HORIZONTAL
    '\u253c'   #  0x8A -> BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
    '\u2580'   #  0x8B -> UPPER HALF BLOCK
    '\u2584'   #  0x8C -> LOWER HALF BLOCK
    '\u2588'   #  0x8D -> FULL BLOCK
    '\u258c'   #  0x8E -> LEFT HALF BLOCK
    '\u2590'   #  0x8F -> RIGHT HALF BLOCK
    '\u2591'   #  0x90 -> LIGHT SHADE
    '\u2592'   #  0x91 -> MEDIUM SHADE
    '\u2593'   #  0x92 -> DARK SHADE
    '\u2320'   #  0x93 -> TOP HALF INTEGRAL
    '\u25a0'   #  0x94 -> BLACK SQUARE
    '\u2219'   #  0x95 -> BULLET OPERATOR
    '\u221a'   #  0x96 -> SQUARE ROOT
    '\u2248'   #  0x97 -> ALMOST EQUAL TO
    '\u2264'   #  0x98 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0x99 -> GREATER-THAN OR EQUAL TO
    '\xa0'     #  0x9A -> NO-BREAK SPACE
    '\u2321'   #  0x9B -> BOTTOM HALF INTEGRAL
    '\xb0'     #  0x9C -> DEGREE SIGN
    '\xb2'     #  0x9D -> SUPERSCRIPT TWO
    '\xb7'     #  0x9E -> MIDDLE DOT
    '\xf7'     #  0x9F -> DIVISION SIGN
    '\u2550'   #  0xA0 -> BOX DRAWINGS DOUBLE HORIZONTAL
    '\u2551'   #  0xA1 -> BOX DRAWINGS DOUBLE VERTICAL
    '\u2552'   #  0xA2 -> BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
    '\u0451'   #  0xA3 -> CYRILLIC SMALL LETTER IO
    '\u0454'   #  0xA4 -> CYRILLIC SMALL LETTER UKRAINIAN IE
    '\u2554'   #  0xA5 -> BOX DRAWINGS DOUBLE DOWN AND RIGHT
    '\u0456'   #  0xA6 -> CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0457'   #  0xA7 -> CYRILLIC SMALL LETTER YI (UKRAINIAN)
    '\u2557'   #  0xA8 -> BOX DRAWINGS DOUBLE DOWN AND LEFT
    '\u2558'   #  0xA9 -> BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
    '\u2559'   #  0xAA -> BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
    '\u255a'   #  0xAB -> BOX DRAWINGS DOUBLE UP AND RIGHT
    '\u255b'   #  0xAC -> BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
    '\u0491'   #  0xAD -> CYRILLIC SMALL LETTER UKRAINIAN GHE WITH UPTURN
    '\u255d'   #  0xAE -> BOX DRAWINGS DOUBLE UP AND LEFT
    '\u255e'   #  0xAF -> BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
    '\u255f'   #  0xB0 -> BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
    '\u2560'   #  0xB1 -> BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
    '\u2561'   #  0xB2 -> BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
    '\u0401'   #  0xB3 -> CYRILLIC CAPITAL LETTER IO
    '\u0404'   #  0xB4 -> CYRILLIC CAPITAL LETTER UKRAINIAN IE
    '\u2563'   #  0xB5 -> BOX DRAWINGS DOUBLE VERTICAL AND LEFT
    '\u0406'   #  0xB6 -> CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0407'   #  0xB7 -> CYRILLIC CAPITAL LETTER YI (UKRAINIAN)
    '\u2566'   #  0xB8 -> BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
    '\u2567'   #  0xB9 -> BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
    '\u2568'   #  0xBA -> BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
    '\u2569'   #  0xBB -> BOX DRAWINGS DOUBLE UP AND HORIZONTAL
    '\u256a'   #  0xBC -> BOX DRAWINGS VERTICAL SINGLE AND HORIZONTAL DOUBLE
    '\u0490'   #  0xBD -> CYRILLIC CAPITAL LETTER UKRAINIAN GHE WITH UPTURN
    '\u256c'   #  0xBE -> BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
    '\xa9'     #  0xBF -> COPYRIGHT SIGN
    '\u044e'   #  0xC0 -> CYRILLIC SMALL LETTER YU
    '\u0430'   #  0xC1 -> CYRILLIC SMALL LETTER A
    '\u0431'   #  0xC2 -> CYRILLIC SMALL LETTER BE
    '\u0446'   #  0xC3 -> CYRILLIC SMALL LETTER TSE
    '\u0434'   #  0xC4 -> CYRILLIC SMALL LETTER DE
    '\u0435'   #  0xC5 -> CYRILLIC SMALL LETTER IE
    '\u0444'   #  0xC6 -> CYRILLIC SMALL LETTER EF
    '\u0433'   #  0xC7 -> CYRILLIC SMALL LETTER GHE
    '\u0445'   #  0xC8 -> CYRILLIC SMALL LETTER HA
    '\u0438'   #  0xC9 -> CYRILLIC SMALL LETTER I
    '\u0439'   #  0xCA -> CYRILLIC SMALL LETTER SHORT I
    '\u043a'   #  0xCB -> CYRILLIC SMALL LETTER KA
    '\u043b'   #  0xCC -> CYRILLIC SMALL LETTER EL
    '\u043c'   #  0xCD -> CYRILLIC SMALL LETTER EM
    '\u043d'   #  0xCE -> CYRILLIC SMALL LETTER EN
    '\u043e'   #  0xCF -> CYRILLIC SMALL LETTER O
    '\u043f'   #  0xD0 -> CYRILLIC SMALL LETTER PE
    '\u044f'   #  0xD1 -> CYRILLIC SMALL LETTER YA
    '\u0440'   #  0xD2 -> CYRILLIC SMALL LETTER ER
    '\u0441'   #  0xD3 -> CYRILLIC SMALL LETTER ES
    '\u0442'   #  0xD4 -> CYRILLIC SMALL LETTER TE
    '\u0443'   #  0xD5 -> CYRILLIC SMALL LETTER U
    '\u0436'   #  0xD6 -> CYRILLIC SMALL LETTER ZHE
    '\u0432'   #  0xD7 -> CYRILLIC SMALL LETTER VE
    '\u044c'   #  0xD8 -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u044b'   #  0xD9 -> CYRILLIC SMALL LETTER YERU
    '\u0437'   #  0xDA -> CYRILLIC SMALL LETTER ZE
    '\u0448'   #  0xDB -> CYRILLIC SMALL LETTER SHA
    '\u044d'   #  0xDC -> CYRILLIC SMALL LETTER E
    '\u0449'   #  0xDD -> CYRILLIC SMALL LETTER SHCHA
    '\u0447'   #  0xDE -> CYRILLIC SMALL LETTER CHE
    '\u044a'   #  0xDF -> CYRILLIC SMALL LETTER HARD SIGN
    '\u042e'   #  0xE0 -> CYRILLIC CAPITAL LETTER YU
    '\u0410'   #  0xE1 -> CYRILLIC CAPITAL LETTER A
    '\u0411'   #  0xE2 -> CYRILLIC CAPITAL LETTER BE
    '\u0426'   #  0xE3 -> CYRILLIC CAPITAL LETTER TSE
    '\u0414'   #  0xE4 -> CYRILLIC CAPITAL LETTER DE
    '\u0415'   #  0xE5 -> CYRILLIC CAPITAL LETTER IE
    '\u0424'   #  0xE6 -> CYRILLIC CAPITAL LETTER EF
    '\u0413'   #  0xE7 -> CYRILLIC CAPITAL LETTER GHE
    '\u0425'   #  0xE8 -> CYRILLIC CAPITAL LETTER HA
    '\u0418'   #  0xE9 -> CYRILLIC CAPITAL LETTER I
    '\u0419'   #  0xEA -> CYRILLIC CAPITAL LETTER SHORT I
    '\u041a'   #  0xEB -> CYRILLIC CAPITAL LETTER KA
    '\u041b'   #  0xEC -> CYRILLIC CAPITAL LETTER EL
    '\u041c'   #  0xED -> CYRILLIC CAPITAL LETTER EM
    '\u041d'   #  0xEE -> CYRILLIC CAPITAL LETTER EN
    '\u041e'   #  0xEF -> CYRILLIC CAPITAL LETTER O
    '\u041f'   #  0xF0 -> CYRILLIC CAPITAL LETTER PE
    '\u042f'   #  0xF1 -> CYRILLIC CAPITAL LETTER YA
    '\u0420'   #  0xF2 -> CYRILLIC CAPITAL LETTER ER
    '\u0421'   #  0xF3 -> CYRILLIC CAPITAL LETTER ES
    '\u0422'   #  0xF4 -> CYRILLIC CAPITAL LETTER TE
    '\u0423'   #  0xF5 -> CYRILLIC CAPITAL LETTER U
    '\u0416'   #  0xF6 -> CYRILLIC CAPITAL LETTER ZHE
    '\u0412'   #  0xF7 -> CYRILLIC CAPITAL LETTER VE
    '\u042c'   #  0xF8 -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u042b'   #  0xF9 -> CYRILLIC CAPITAL LETTER YERU
    '\u0417'   #  0xFA -> CYRILLIC CAPITAL LETTER ZE
    '\u0428'   #  0xFB -> CYRILLIC CAPITAL LETTER SHA
    '\u042d'   #  0xFC -> CYRILLIC CAPITAL LETTER E
    '\u0429'   #  0xFD -> CYRILLIC CAPITAL LETTER SHCHA
    '\u0427'   #  0xFE -> CYRILLIC CAPITAL LETTER CHE
    '\u042a'   #  0xFF -> CYRILLIC CAPITAL LETTER HARD SIGN
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\latin_1.py
""" Python 'latin-1' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

class Codec(codecs.Codec):

    # Note: Binding these as C functions will result in the class not
    # converting them to methods. This is intended.
    encode = codecs.latin_1_encode
    decode = codecs.latin_1_decode

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.latin_1_encode(input,self.errors)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.latin_1_decode(input,self.errors)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

class StreamConverter(StreamWriter,StreamReader):

    encode = codecs.latin_1_decode
    decode = codecs.latin_1_encode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='iso8859-1',
        encode=Codec.encode,
        decode=Codec.decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\mac_arabic.py
""" Python Character Mapping Codec generated from 'VENDORS/APPLE/ARABIC.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_map)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_map)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-arabic',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )

### Decoding Map

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({
    0x0080: 0x00c4,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x0081: 0x00a0,     #  NO-BREAK SPACE, right-left
    0x0082: 0x00c7,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x0083: 0x00c9,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x0084: 0x00d1,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x0085: 0x00d6,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x0086: 0x00dc,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x0087: 0x00e1,     #  LATIN SMALL LETTER A WITH ACUTE
    0x0088: 0x00e0,     #  LATIN SMALL LETTER A WITH GRAVE
    0x0089: 0x00e2,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x008a: 0x00e4,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x008b: 0x06ba,     #  ARABIC LETTER NOON GHUNNA
    0x008c: 0x00ab,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK, right-left
    0x008d: 0x00e7,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x008e: 0x00e9,     #  LATIN SMALL LETTER E WITH ACUTE
    0x008f: 0x00e8,     #  LATIN SMALL LETTER E WITH GRAVE
    0x0090: 0x00ea,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x0091: 0x00eb,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x0092: 0x00ed,     #  LATIN SMALL LETTER I WITH ACUTE
    0x0093: 0x2026,     #  HORIZONTAL ELLIPSIS, right-left
    0x0094: 0x00ee,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x0095: 0x00ef,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x0096: 0x00f1,     #  LATIN SMALL LETTER N WITH TILDE
    0x0097: 0x00f3,     #  LATIN SMALL LETTER O WITH ACUTE
    0x0098: 0x00bb,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK, right-left
    0x0099: 0x00f4,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x009a: 0x00f6,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x009b: 0x00f7,     #  DIVISION SIGN, right-left
    0x009c: 0x00fa,     #  LATIN SMALL LETTER U WITH ACUTE
    0x009d: 0x00f9,     #  LATIN SMALL LETTER U WITH GRAVE
    0x009e: 0x00fb,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x009f: 0x00fc,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x00a0: 0x0020,     #  SPACE, right-left
    0x00a1: 0x0021,     #  EXCLAMATION MARK, right-left
    0x00a2: 0x0022,     #  QUOTATION MARK, right-left
    0x00a3: 0x0023,     #  NUMBER SIGN, right-left
    0x00a4: 0x0024,     #  DOLLAR SIGN, right-left
    0x00a5: 0x066a,     #  ARABIC PERCENT SIGN
    0x00a6: 0x0026,     #  AMPERSAND, right-left
    0x00a7: 0x0027,     #  APOSTROPHE, right-left
    0x00a8: 0x0028,     #  LEFT PARENTHESIS, right-left
    0x00a9: 0x0029,     #  RIGHT PARENTHESIS, right-left
    0x00aa: 0x002a,     #  ASTERISK, right-left
    0x00ab: 0x002b,     #  PLUS SIGN, right-left
    0x00ac: 0x060c,     #  ARABIC COMMA
    0x00ad: 0x002d,     #  HYPHEN-MINUS, right-left
    0x00ae: 0x002e,     #  FULL STOP, right-left
    0x00af: 0x002f,     #  SOLIDUS, right-left
    0x00b0: 0x0660,     #  ARABIC-INDIC DIGIT ZERO, right-left (need override)
    0x00b1: 0x0661,     #  ARABIC-INDIC DIGIT ONE, right-left (need override)
    0x00b2: 0x0662,     #  ARABIC-INDIC DIGIT TWO, right-left (need override)
    0x00b3: 0x0663,     #  ARABIC-INDIC DIGIT THREE, right-left (need override)
    0x00b4: 0x0664,     #  ARABIC-INDIC DIGIT FOUR, right-left (need override)
    0x00b5: 0x0665,     #  ARABIC-INDIC DIGIT FIVE, right-left (need override)
    0x00b6: 0x0666,     #  ARABIC-INDIC DIGIT SIX, right-left (need override)
    0x00b7: 0x0667,     #  ARABIC-INDIC DIGIT SEVEN, right-left (need override)
    0x00b8: 0x0668,     #  ARABIC-INDIC DIGIT EIGHT, right-left (need override)
    0x00b9: 0x0669,     #  ARABIC-INDIC DIGIT NINE, right-left (need override)
    0x00ba: 0x003a,     #  COLON, right-left
    0x00bb: 0x061b,     #  ARABIC SEMICOLON
    0x00bc: 0x003c,     #  LESS-THAN SIGN, right-left
    0x00bd: 0x003d,     #  EQUALS SIGN, right-left
    0x00be: 0x003e,     #  GREATER-THAN SIGN, right-left
    0x00bf: 0x061f,     #  ARABIC QUESTION MARK
    0x00c0: 0x274a,     #  EIGHT TEARDROP-SPOKED PROPELLER ASTERISK, right-left
    0x00c1: 0x0621,     #  ARABIC LETTER HAMZA
    0x00c2: 0x0622,     #  ARABIC LETTER ALEF WITH MADDA ABOVE
    0x00c3: 0x0623,     #  ARABIC LETTER ALEF WITH HAMZA ABOVE
    0x00c4: 0x0624,     #  ARABIC LETTER WAW WITH HAMZA ABOVE
    0x00c5: 0x0625,     #  ARABIC LETTER ALEF WITH HAMZA BELOW
    0x00c6: 0x0626,     #  ARABIC LETTER YEH WITH HAMZA ABOVE
    0x00c7: 0x0627,     #  ARABIC LETTER ALEF
    0x00c8: 0x0628,     #  ARABIC LETTER BEH
    0x00c9: 0x0629,     #  ARABIC LETTER TEH MARBUTA
    0x00ca: 0x062a,     #  ARABIC LETTER TEH
    0x00cb: 0x062b,     #  ARABIC LETTER THEH
    0x00cc: 0x062c,     #  ARABIC LETTER JEEM
    0x00cd: 0x062d,     #  ARABIC LETTER HAH
    0x00ce: 0x062e,     #  ARABIC LETTER KHAH
    0x00cf: 0x062f,     #  ARABIC LETTER DAL
    0x00d0: 0x0630,     #  ARABIC LETTER THAL
    0x00d1: 0x0631,     #  ARABIC LETTER REH
    0x00d2: 0x0632,     #  ARABIC LETTER ZAIN
    0x00d3: 0x0633,     #  ARABIC LETTER SEEN
    0x00d4: 0x0634,     #  ARABIC LETTER SHEEN
    0x00d5: 0x0635,     #  ARABIC LETTER SAD
    0x00d6: 0x0636,     #  ARABIC LETTER DAD
    0x00d7: 0x0637,     #  ARABIC LETTER TAH
    0x00d8: 0x0638,     #  ARABIC LETTER ZAH
    0x00d9: 0x0639,     #  ARABIC LETTER AIN
    0x00da: 0x063a,     #  ARABIC LETTER GHAIN
    0x00db: 0x005b,     #  LEFT SQUARE BRACKET, right-left
    0x00dc: 0x005c,     #  REVERSE SOLIDUS, right-left
    0x00dd: 0x005d,     #  RIGHT SQUARE BRACKET, right-left
    0x00de: 0x005e,     #  CIRCUMFLEX ACCENT, right-left
    0x00df: 0x005f,     #  LOW LINE, right-left
    0x00e0: 0x0640,     #  ARABIC TATWEEL
    0x00e1: 0x0641,     #  ARABIC LETTER FEH
    0x00e2: 0x0642,     #  ARABIC LETTER QAF
    0x00e3: 0x0643,     #  ARABIC LETTER KAF
    0x00e4: 0x0644,     #  ARABIC LETTER LAM
    0x00e5: 0x0645,     #  ARABIC LETTER MEEM
    0x00e6: 0x0646,     #  ARABIC LETTER NOON
    0x00e7: 0x0647,     #  ARABIC LETTER HEH
    0x00e8: 0x0648,     #  ARABIC LETTER WAW
    0x00e9: 0x0649,     #  ARABIC LETTER ALEF MAKSURA
    0x00ea: 0x064a,     #  ARABIC LETTER YEH
    0x00eb: 0x064b,     #  ARABIC FATHATAN
    0x00ec: 0x064c,     #  ARABIC DAMMATAN
    0x00ed: 0x064d,     #  ARABIC KASRATAN
    0x00ee: 0x064e,     #  ARABIC FATHA
    0x00ef: 0x064f,     #  ARABIC DAMMA
    0x00f0: 0x0650,     #  ARABIC KASRA
    0x00f1: 0x0651,     #  ARABIC SHADDA
    0x00f2: 0x0652,     #  ARABIC SUKUN
    0x00f3: 0x067e,     #  ARABIC LETTER PEH
    0x00f4: 0x0679,     #  ARABIC LETTER TTEH
    0x00f5: 0x0686,     #  ARABIC LETTER TCHEH
    0x00f6: 0x06d5,     #  ARABIC LETTER AE
    0x00f7: 0x06a4,     #  ARABIC LETTER VEH
    0x00f8: 0x06af,     #  ARABIC LETTER GAF
    0x00f9: 0x0688,     #  ARABIC LETTER DDAL
    0x00fa: 0x0691,     #  ARABIC LETTER RREH
    0x00fb: 0x007b,     #  LEFT CURLY BRACKET, right-left
    0x00fc: 0x007c,     #  VERTICAL LINE, right-left
    0x00fd: 0x007d,     #  RIGHT CURLY BRACKET, right-left
    0x00fe: 0x0698,     #  ARABIC LETTER JEH
    0x00ff: 0x06d2,     #  ARABIC LETTER YEH BARREE
})

### Decoding Table

decoding_table = (
    '\x00'     #  0x0000 -> CONTROL CHARACTER
    '\x01'     #  0x0001 -> CONTROL CHARACTER
    '\x02'     #  0x0002 -> CONTROL CHARACTER
    '\x03'     #  0x0003 -> CONTROL CHARACTER
    '\x04'     #  0x0004 -> CONTROL CHARACTER
    '\x05'     #  0x0005 -> CONTROL CHARACTER
    '\x06'     #  0x0006 -> CONTROL CHARACTER
    '\x07'     #  0x0007 -> CONTROL CHARACTER
    '\x08'     #  0x0008 -> CONTROL CHARACTER
    '\t'       #  0x0009 -> CONTROL CHARACTER
    '\n'       #  0x000a -> CONTROL CHARACTER
    '\x0b'     #  0x000b -> CONTROL CHARACTER
    '\x0c'     #  0x000c -> CONTROL CHARACTER
    '\r'       #  0x000d -> CONTROL CHARACTER
    '\x0e'     #  0x000e -> CONTROL CHARACTER
    '\x0f'     #  0x000f -> CONTROL CHARACTER
    '\x10'     #  0x0010 -> CONTROL CHARACTER
    '\x11'     #  0x0011 -> CONTROL CHARACTER
    '\x12'     #  0x0012 -> CONTROL CHARACTER
    '\x13'     #  0x0013 -> CONTROL CHARACTER
    '\x14'     #  0x0014 -> CONTROL CHARACTER
    '\x15'     #  0x0015 -> CONTROL CHARACTER
    '\x16'     #  0x0016 -> CONTROL CHARACTER
    '\x17'     #  0x0017 -> CONTROL CHARACTER
    '\x18'     #  0x0018 -> CONTROL CHARACTER
    '\x19'     #  0x0019 -> CONTROL CHARACTER
    '\x1a'     #  0x001a -> CONTROL CHARACTER
    '\x1b'     #  0x001b -> CONTROL CHARACTER
    '\x1c'     #  0x001c -> CONTROL CHARACTER
    '\x1d'     #  0x001d -> CONTROL CHARACTER
    '\x1e'     #  0x001e -> CONTROL CHARACTER
    '\x1f'     #  0x001f -> CONTROL CHARACTER
    ' '        #  0x0020 -> SPACE, left-right
    '!'        #  0x0021 -> EXCLAMATION MARK, left-right
    '"'        #  0x0022 -> QUOTATION MARK, left-right
    '#'        #  0x0023 -> NUMBER SIGN, left-right
    '$'        #  0x0024 -> DOLLAR SIGN, left-right
    '%'        #  0x0025 -> PERCENT SIGN, left-right
    '&'        #  0x0026 -> AMPERSAND, left-right
    "'"        #  0x0027 -> APOSTROPHE, left-right
    '('        #  0x0028 -> LEFT PARENTHESIS, left-right
    ')'        #  0x0029 -> RIGHT PARENTHESIS, left-right
    '*'        #  0x002a -> ASTERISK, left-right
    '+'        #  0x002b -> PLUS SIGN, left-right
    ','        #  0x002c -> COMMA, left-right; in Arabic-script context, displayed as 0x066C ARABIC THOUSANDS SEPARATOR
    '-'        #  0x002d -> HYPHEN-MINUS, left-right
    '.'        #  0x002e -> FULL STOP, left-right; in Arabic-script context, displayed as 0x066B ARABIC DECIMAL SEPARATOR
    '/'        #  0x002f -> SOLIDUS, left-right
    '0'        #  0x0030 -> DIGIT ZERO;  in Arabic-script context, displayed as 0x0660 ARABIC-INDIC DIGIT ZERO
    '1'        #  0x0031 -> DIGIT ONE;   in Arabic-script context, displayed as 0x0661 ARABIC-INDIC DIGIT ONE
    '2'        #  0x0032 -> DIGIT TWO;   in Arabic-script context, displayed as 0x0662 ARABIC-INDIC DIGIT TWO
    '3'        #  0x0033 -> DIGIT THREE; in Arabic-script context, displayed as 0x0663 ARABIC-INDIC DIGIT THREE
    '4'        #  0x0034 -> DIGIT FOUR;  in Arabic-script context, displayed as 0x0664 ARABIC-INDIC DIGIT FOUR
    '5'        #  0x0035 -> DIGIT FIVE;  in Arabic-script context, displayed as 0x0665 ARABIC-INDIC DIGIT FIVE
    '6'        #  0x0036 -> DIGIT SIX;   in Arabic-script context, displayed as 0x0666 ARABIC-INDIC DIGIT SIX
    '7'        #  0x0037 -> DIGIT SEVEN; in Arabic-script context, displayed as 0x0667 ARABIC-INDIC DIGIT SEVEN
    '8'        #  0x0038 -> DIGIT EIGHT; in Arabic-script context, displayed as 0x0668 ARABIC-INDIC DIGIT EIGHT
    '9'        #  0x0039 -> DIGIT NINE;  in Arabic-script context, displayed as 0x0669 ARABIC-INDIC DIGIT NINE
    ':'        #  0x003a -> COLON, left-right
    ';'        #  0x003b -> SEMICOLON, left-right
    '<'        #  0x003c -> LESS-THAN SIGN, left-right
    '='        #  0x003d -> EQUALS SIGN, left-right
    '>'        #  0x003e -> GREATER-THAN SIGN, left-right
    '?'        #  0x003f -> QUESTION MARK, left-right
    '@'        #  0x0040 -> COMMERCIAL AT
    'A'        #  0x0041 -> LATIN CAPITAL LETTER A
    'B'        #  0x0042 -> LATIN CAPITAL LETTER B
    'C'        #  0x0043 -> LATIN CAPITAL LETTER C
    'D'        #  0x0044 -> LATIN CAPITAL LETTER D
    'E'        #  0x0045 -> LATIN CAPITAL LETTER E
    'F'        #  0x0046 -> LATIN CAPITAL LETTER F
    'G'        #  0x0047 -> LATIN CAPITAL LETTER G
    'H'        #  0x0048 -> LATIN CAPITAL LETTER H
    'I'        #  0x0049 -> LATIN CAPITAL LETTER I
    'J'        #  0x004a -> LATIN CAPITAL LETTER J
    'K'        #  0x004b -> LATIN CAPITAL LETTER K
    'L'        #  0x004c -> LATIN CAPITAL LETTER L
    'M'        #  0x004d -> LATIN CAPITAL LETTER M
    'N'        #  0x004e -> LATIN CAPITAL LETTER N
    'O'        #  0x004f -> LATIN CAPITAL LETTER O
    'P'        #  0x0050 -> LATIN CAPITAL LETTER P
    'Q'        #  0x0051 -> LATIN CAPITAL LETTER Q
    'R'        #  0x0052 -> LATIN CAPITAL LETTER R
    'S'        #  0x0053 -> LATIN CAPITAL LETTER S
    'T'        #  0x0054 -> LATIN CAPITAL LETTER T
    'U'        #  0x0055 -> LATIN CAPITAL LETTER U
    'V'        #  0x0056 -> LATIN CAPITAL LETTER V
    'W'        #  0x0057 -> LATIN CAPITAL LETTER W
    'X'        #  0x0058 -> LATIN CAPITAL LETTER X
    'Y'        #  0x0059 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x005a -> LATIN CAPITAL LETTER Z
    '['        #  0x005b -> LEFT SQUARE BRACKET, left-right
    '\\'       #  0x005c -> REVERSE SOLIDUS, left-right
    ']'        #  0x005d -> RIGHT SQUARE BRACKET, left-right
    '^'        #  0x005e -> CIRCUMFLEX ACCENT, left-right
    '_'        #  0x005f -> LOW LINE, left-right
    '`'        #  0x0060 -> GRAVE ACCENT
    'a'        #  0x0061 -> LATIN SMALL LETTER A
    'b'        #  0x0062 -> LATIN SMALL LETTER B
    'c'        #  0x0063 -> LATIN SMALL LETTER C
    'd'        #  0x0064 -> LATIN SMALL LETTER D
    'e'        #  0x0065 -> LATIN SMALL LETTER E
    'f'        #  0x0066 -> LATIN SMALL LETTER F
    'g'        #  0x0067 -> LATIN SMALL LETTER G
    'h'        #  0x0068 -> LATIN SMALL LETTER H
    'i'        #  0x0069 -> LATIN SMALL LETTER I
    'j'        #  0x006a -> LATIN SMALL LETTER J
    'k'        #  0x006b -> LATIN SMALL LETTER K
    'l'        #  0x006c -> LATIN SMALL LETTER L
    'm'        #  0x006d -> LATIN SMALL LETTER M
    'n'        #  0x006e -> LATIN SMALL LETTER N
    'o'        #  0x006f -> LATIN SMALL LETTER O
    'p'        #  0x0070 -> LATIN SMALL LETTER P
    'q'        #  0x0071 -> LATIN SMALL LETTER Q
    'r'        #  0x0072 -> LATIN SMALL LETTER R
    's'        #  0x0073 -> LATIN SMALL LETTER S
    't'        #  0x0074 -> LATIN SMALL LETTER T
    'u'        #  0x0075 -> LATIN SMALL LETTER U
    'v'        #  0x0076 -> LATIN SMALL LETTER V
    'w'        #  0x0077 -> LATIN SMALL LETTER W
    'x'        #  0x0078 -> LATIN SMALL LETTER X
    'y'        #  0x0079 -> LATIN SMALL LETTER Y
    'z'        #  0x007a -> LATIN SMALL LETTER Z
    '{'        #  0x007b -> LEFT CURLY BRACKET, left-right
    '|'        #  0x007c -> VERTICAL LINE, left-right
    '}'        #  0x007d -> RIGHT CURLY BRACKET, left-right
    '~'        #  0x007e -> TILDE
    '\x7f'     #  0x007f -> CONTROL CHARACTER
    '\xc4'     #  0x0080 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xa0'     #  0x0081 -> NO-BREAK SPACE, right-left
    '\xc7'     #  0x0082 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc9'     #  0x0083 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xd1'     #  0x0084 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd6'     #  0x0085 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x0086 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x0087 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe0'     #  0x0088 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe2'     #  0x0089 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x008a -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u06ba'   #  0x008b -> ARABIC LETTER NOON GHUNNA
    '\xab'     #  0x008c -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK, right-left
    '\xe7'     #  0x008d -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe9'     #  0x008e -> LATIN SMALL LETTER E WITH ACUTE
    '\xe8'     #  0x008f -> LATIN SMALL LETTER E WITH GRAVE
    '\xea'     #  0x0090 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x0091 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xed'     #  0x0092 -> LATIN SMALL LETTER I WITH ACUTE
    '\u2026'   #  0x0093 -> HORIZONTAL ELLIPSIS, right-left
    '\xee'     #  0x0094 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x0095 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf1'     #  0x0096 -> LATIN SMALL LETTER N WITH TILDE
    '\xf3'     #  0x0097 -> LATIN SMALL LETTER O WITH ACUTE
    '\xbb'     #  0x0098 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK, right-left
    '\xf4'     #  0x0099 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x009a -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0x009b -> DIVISION SIGN, right-left
    '\xfa'     #  0x009c -> LATIN SMALL LETTER U WITH ACUTE
    '\xf9'     #  0x009d -> LATIN SMALL LETTER U WITH GRAVE
    '\xfb'     #  0x009e -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0x009f -> LATIN SMALL LETTER U WITH DIAERESIS
    ' '        #  0x00a0 -> SPACE, right-left
    '!'        #  0x00a1 -> EXCLAMATION MARK, right-left
    '"'        #  0x00a2 -> QUOTATION MARK, right-left
    '#'        #  0x00a3 -> NUMBER SIGN, right-left
    '$'        #  0x00a4 -> DOLLAR SIGN, right-left
    '\u066a'   #  0x00a5 -> ARABIC PERCENT SIGN
    '&'        #  0x00a6 -> AMPERSAND, right-left
    "'"        #  0x00a7 -> APOSTROPHE, right-left
    '('        #  0x00a8 -> LEFT PARENTHESIS, right-left
    ')'        #  0x00a9 -> RIGHT PARENTHESIS, right-left
    '*'        #  0x00aa -> ASTERISK, right-left
    '+'        #  0x00ab -> PLUS SIGN, right-left
    '\u060c'   #  0x00ac -> ARABIC COMMA
    '-'        #  0x00ad -> HYPHEN-MINUS, right-left
    '.'        #  0x00ae -> FULL STOP, right-left
    '/'        #  0x00af -> SOLIDUS, right-left
    '\u0660'   #  0x00b0 -> ARABIC-INDIC DIGIT ZERO, right-left (need override)
    '\u0661'   #  0x00b1 -> ARABIC-INDIC DIGIT ONE, right-left (need override)
    '\u0662'   #  0x00b2 -> ARABIC-INDIC DIGIT TWO, right-left (need override)
    '\u0663'   #  0x00b3 -> ARABIC-INDIC DIGIT THREE, right-left (need override)
    '\u0664'   #  0x00b4 -> ARABIC-INDIC DIGIT FOUR, right-left (need override)
    '\u0665'   #  0x00b5 -> ARABIC-INDIC DIGIT FIVE, right-left (need override)
    '\u0666'   #  0x00b6 -> ARABIC-INDIC DIGIT SIX, right-left (need override)
    '\u0667'   #  0x00b7 -> ARABIC-INDIC DIGIT SEVEN, right-left (need override)
    '\u0668'   #  0x00b8 -> ARABIC-INDIC DIGIT EIGHT, right-left (need override)
    '\u0669'   #  0x00b9 -> ARABIC-INDIC DIGIT NINE, right-left (need override)
    ':'        #  0x00ba -> COLON, right-left
    '\u061b'   #  0x00bb -> ARABIC SEMICOLON
    '<'        #  0x00bc -> LESS-THAN SIGN, right-left
    '='        #  0x00bd -> EQUALS SIGN, right-left
    '>'        #  0x00be -> GREATER-THAN SIGN, right-left
    '\u061f'   #  0x00bf -> ARABIC QUESTION MARK
    '\u274a'   #  0x00c0 -> EIGHT TEARDROP-SPOKED PROPELLER ASTERISK, right-left
    '\u0621'   #  0x00c1 -> ARABIC LETTER HAMZA
    '\u0622'   #  0x00c2 -> ARABIC LETTER ALEF WITH MADDA ABOVE
    '\u0623'   #  0x00c3 -> ARABIC LETTER ALEF WITH HAMZA ABOVE
    '\u0624'   #  0x00c4 -> ARABIC LETTER WAW WITH HAMZA ABOVE
    '\u0625'   #  0x00c5 -> ARABIC LETTER ALEF WITH HAMZA BELOW
    '\u0626'   #  0x00c6 -> ARABIC LETTER YEH WITH HAMZA ABOVE
    '\u0627'   #  0x00c7 -> ARABIC LETTER ALEF
    '\u0628'   #  0x00c8 -> ARABIC LETTER BEH
    '\u0629'   #  0x00c9 -> ARABIC LETTER TEH MARBUTA
    '\u062a'   #  0x00ca -> ARABIC LETTER TEH
    '\u062b'   #  0x00cb -> ARABIC LETTER THEH
    '\u062c'   #  0x00cc -> ARABIC LETTER JEEM
    '\u062d'   #  0x00cd -> ARABIC LETTER HAH
    '\u062e'   #  0x00ce -> ARABIC LETTER KHAH
    '\u062f'   #  0x00cf -> ARABIC LETTER DAL
    '\u0630'   #  0x00d0 -> ARABIC LETTER THAL
    '\u0631'   #  0x00d1 -> ARABIC LETTER REH
    '\u0632'   #  0x00d2 -> ARABIC LETTER ZAIN
    '\u0633'   #  0x00d3 -> ARABIC LETTER SEEN
    '\u0634'   #  0x00d4 -> ARABIC LETTER SHEEN
    '\u0635'   #  0x00d5 -> ARABIC LETTER SAD
    '\u0636'   #  0x00d6 -> ARABIC LETTER DAD
    '\u0637'   #  0x00d7 -> ARABIC LETTER TAH
    '\u0638'   #  0x00d8 -> ARABIC LETTER ZAH
    '\u0639'   #  0x00d9 -> ARABIC LETTER AIN
    '\u063a'   #  0x00da -> ARABIC LETTER GHAIN
    '['        #  0x00db -> LEFT SQUARE BRACKET, right-left
    '\\'       #  0x00dc -> REVERSE SOLIDUS, right-left
    ']'        #  0x00dd -> RIGHT SQUARE BRACKET, right-left
    '^'        #  0x00de -> CIRCUMFLEX ACCENT, right-left
    '_'        #  0x00df -> LOW LINE, right-left
    '\u0640'   #  0x00e0 -> ARABIC TATWEEL
    '\u0641'   #  0x00e1 -> ARABIC LETTER FEH
    '\u0642'   #  0x00e2 -> ARABIC LETTER QAF
    '\u0643'   #  0x00e3 -> ARABIC LETTER KAF
    '\u0644'   #  0x00e4 -> ARABIC LETTER LAM
    '\u0645'   #  0x00e5 -> ARABIC LETTER MEEM
    '\u0646'   #  0x00e6 -> ARABIC LETTER NOON
    '\u0647'   #  0x00e7 -> ARABIC LETTER HEH
    '\u0648'   #  0x00e8 -> ARABIC LETTER WAW
    '\u0649'   #  0x00e9 -> ARABIC LETTER ALEF MAKSURA
    '\u064a'   #  0x00ea -> ARABIC LETTER YEH
    '\u064b'   #  0x00eb -> ARABIC FATHATAN
    '\u064c'   #  0x00ec -> ARABIC DAMMATAN
    '\u064d'   #  0x00ed -> ARABIC KASRATAN
    '\u064e'   #  0x00ee -> ARABIC FATHA
    '\u064f'   #  0x00ef -> ARABIC DAMMA
    '\u0650'   #  0x00f0 -> ARABIC KASRA
    '\u0651'   #  0x00f1 -> ARABIC SHADDA
    '\u0652'   #  0x00f2 -> ARABIC SUKUN
    '\u067e'   #  0x00f3 -> ARABIC LETTER PEH
    '\u0679'   #  0x00f4 -> ARABIC LETTER TTEH
    '\u0686'   #  0x00f5 -> ARABIC LETTER TCHEH
    '\u06d5'   #  0x00f6 -> ARABIC LETTER AE
    '\u06a4'   #  0x00f7 -> ARABIC LETTER VEH
    '\u06af'   #  0x00f8 -> ARABIC LETTER GAF
    '\u0688'   #  0x00f9 -> ARABIC LETTER DDAL
    '\u0691'   #  0x00fa -> ARABIC LETTER RREH
    '{'        #  0x00fb -> LEFT CURLY BRACKET, right-left
    '|'        #  0x00fc -> VERTICAL LINE, right-left
    '}'        #  0x00fd -> RIGHT CURLY BRACKET, right-left
    '\u0698'   #  0x00fe -> ARABIC LETTER JEH
    '\u06d2'   #  0x00ff -> ARABIC LETTER YEH BARREE
)

### Encoding Map

encoding_map = {
    0x0000: 0x0000,     #  CONTROL CHARACTER
    0x0001: 0x0001,     #  CONTROL CHARACTER
    0x0002: 0x0002,     #  CONTROL CHARACTER
    0x0003: 0x0003,     #  CONTROL CHARACTER
    0x0004: 0x0004,     #  CONTROL CHARACTER
    0x0005: 0x0005,     #  CONTROL CHARACTER
    0x0006: 0x0006,     #  CONTROL CHARACTER
    0x0007: 0x0007,     #  CONTROL CHARACTER
    0x0008: 0x0008,     #  CONTROL CHARACTER
    0x0009: 0x0009,     #  CONTROL CHARACTER
    0x000a: 0x000a,     #  CONTROL CHARACTER
    0x000b: 0x000b,     #  CONTROL CHARACTER
    0x000c: 0x000c,     #  CONTROL CHARACTER
    0x000d: 0x000d,     #  CONTROL CHARACTER
    0x000e: 0x000e,     #  CONTROL CHARACTER
    0x000f: 0x000f,     #  CONTROL CHARACTER
    0x0010: 0x0010,     #  CONTROL CHARACTER
    0x0011: 0x0011,     #  CONTROL CHARACTER
    0x0012: 0x0012,     #  CONTROL CHARACTER
    0x0013: 0x0013,     #  CONTROL CHARACTER
    0x0014: 0x0014,     #  CONTROL CHARACTER
    0x0015: 0x0015,     #  CONTROL CHARACTER
    0x0016: 0x0016,     #  CONTROL CHARACTER
    0x0017: 0x0017,     #  CONTROL CHARACTER
    0x0018: 0x0018,     #  CONTROL CHARACTER
    0x0019: 0x0019,     #  CONTROL CHARACTER
    0x001a: 0x001a,     #  CONTROL CHARACTER
    0x001b: 0x001b,     #  CONTROL CHARACTER
    0x001c: 0x001c,     #  CONTROL CHARACTER
    0x001d: 0x001d,     #  CONTROL CHARACTER
    0x001e: 0x001e,     #  CONTROL CHARACTER
    0x001f: 0x001f,     #  CONTROL CHARACTER
    0x0020: 0x0020,     #  SPACE, left-right
    0x0020: 0x00a0,     #  SPACE, right-left
    0x0021: 0x0021,     #  EXCLAMATION MARK, left-right
    0x0021: 0x00a1,     #  EXCLAMATION MARK, right-left
    0x0022: 0x0022,     #  QUOTATION MARK, left-right
    0x0022: 0x00a2,     #  QUOTATION MARK, right-left
    0x0023: 0x0023,     #  NUMBER SIGN, left-right
    0x0023: 0x00a3,     #  NUMBER SIGN, right-left
    0x0024: 0x0024,     #  DOLLAR SIGN, left-right
    0x0024: 0x00a4,     #  DOLLAR SIGN, right-left
    0x0025: 0x0025,     #  PERCENT SIGN, left-right
    0x0026: 0x0026,     #  AMPERSAND, left-right
    0x0026: 0x00a6,     #  AMPERSAND, right-left
    0x0027: 0x0027,     #  APOSTROPHE, left-right
    0x0027: 0x00a7,     #  APOSTROPHE, right-left
    0x0028: 0x0028,     #  LEFT PARENTHESIS, left-right
    0x0028: 0x00a8,     #  LEFT PARENTHESIS, right-left
    0x0029: 0x0029,     #  RIGHT PARENTHESIS, left-right
    0x0029: 0x00a9,     #  RIGHT PARENTHESIS, right-left
    0x002a: 0x002a,     #  ASTERISK, left-right
    0x002a: 0x00aa,     #  ASTERISK, right-left
    0x002b: 0x002b,     #  PLUS SIGN, left-right
    0x002b: 0x00ab,     #  PLUS SIGN, right-left
    0x002c: 0x002c,     #  COMMA, left-right; in Arabic-script context, displayed as 0x066C ARABIC THOUSANDS SEPARATOR
    0x002d: 0x002d,     #  HYPHEN-MINUS, left-right
    0x002d: 0x00ad,     #  HYPHEN-MINUS, right-left
    0x002e: 0x002e,     #  FULL STOP, left-right; in Arabic-script context, displayed as 0x066B ARABIC DECIMAL SEPARATOR
    0x002e: 0x00ae,     #  FULL STOP, right-left
    0x002f: 0x002f,     #  SOLIDUS, left-right
    0x002f: 0x00af,     #  SOLIDUS, right-left
    0x0030: 0x0030,     #  DIGIT ZERO;  in Arabic-script context, displayed as 0x0660 ARABIC-INDIC DIGIT ZERO
    0x0031: 0x0031,     #  DIGIT ONE;   in Arabic-script context, displayed as 0x0661 ARABIC-INDIC DIGIT ONE
    0x0032: 0x0032,     #  DIGIT TWO;   in Arabic-script context, displayed as 0x0662 ARABIC-INDIC DIGIT TWO
    0x0033: 0x0033,     #  DIGIT THREE; in Arabic-script context, displayed as 0x0663 ARABIC-INDIC DIGIT THREE
    0x0034: 0x0034,     #  DIGIT FOUR;  in Arabic-script context, displayed as 0x0664 ARABIC-INDIC DIGIT FOUR
    0x0035: 0x0035,     #  DIGIT FIVE;  in Arabic-script context, displayed as 0x0665 ARABIC-INDIC DIGIT FIVE
    0x0036: 0x0036,     #  DIGIT SIX;   in Arabic-script context, displayed as 0x0666 ARABIC-INDIC DIGIT SIX
    0x0037: 0x0037,     #  DIGIT SEVEN; in Arabic-script context, displayed as 0x0667 ARABIC-INDIC DIGIT SEVEN
    0x0038: 0x0038,     #  DIGIT EIGHT; in Arabic-script context, displayed as 0x0668 ARABIC-INDIC DIGIT EIGHT
    0x0039: 0x0039,     #  DIGIT NINE;  in Arabic-script context, displayed as 0x0669 ARABIC-INDIC DIGIT NINE
    0x003a: 0x003a,     #  COLON, left-right
    0x003a: 0x00ba,     #  COLON, right-left
    0x003b: 0x003b,     #  SEMICOLON, left-right
    0x003c: 0x003c,     #  LESS-THAN SIGN, left-right
    0x003c: 0x00bc,     #  LESS-THAN SIGN, right-left
    0x003d: 0x003d,     #  EQUALS SIGN, left-right
    0x003d: 0x00bd,     #  EQUALS SIGN, right-left
    0x003e: 0x003e,     #  GREATER-THAN SIGN, left-right
    0x003e: 0x00be,     #  GREATER-THAN SIGN, right-left
    0x003f: 0x003f,     #  QUESTION MARK, left-right
    0x0040: 0x0040,     #  COMMERCIAL AT
    0x0041: 0x0041,     #  LATIN CAPITAL LETTER A
    0x0042: 0x0042,     #  LATIN CAPITAL LETTER B
    0x0043: 0x0043,     #  LATIN CAPITAL LETTER C
    0x0044: 0x0044,     #  LATIN CAPITAL LETTER D
    0x0045: 0x0045,     #  LATIN CAPITAL LETTER E
    0x0046: 0x0046,     #  LATIN CAPITAL LETTER F
    0x0047: 0x0047,     #  LATIN CAPITAL LETTER G
    0x0048: 0x0048,     #  LATIN CAPITAL LETTER H
    0x0049: 0x0049,     #  LATIN CAPITAL LETTER I
    0x004a: 0x004a,     #  LATIN CAPITAL LETTER J
    0x004b: 0x004b,     #  LATIN CAPITAL LETTER K
    0x004c: 0x004c,     #  LATIN CAPITAL LETTER L
    0x004d: 0x004d,     #  LATIN CAPITAL LETTER M
    0x004e: 0x004e,     #  LATIN CAPITAL LETTER N
    0x004f: 0x004f,     #  LATIN CAPITAL LETTER O
    0x0050: 0x0050,     #  LATIN CAPITAL LETTER P
    0x0051: 0x0051,     #  LATIN CAPITAL LETTER Q
    0x0052: 0x0052,     #  LATIN CAPITAL LETTER R
    0x0053: 0x0053,     #  LATIN CAPITAL LETTER S
    0x0054: 0x0054,     #  LATIN CAPITAL LETTER T
    0x0055: 0x0055,     #  LATIN CAPITAL LETTER U
    0x0056: 0x0056,     #  LATIN CAPITAL LETTER V
    0x0057: 0x0057,     #  LATIN CAPITAL LETTER W
    0x0058: 0x0058,     #  LATIN CAPITAL LETTER X
    0x0059: 0x0059,     #  LATIN CAPITAL LETTER Y
    0x005a: 0x005a,     #  LATIN CAPITAL LETTER Z
    0x005b: 0x005b,     #  LEFT SQUARE BRACKET, left-right
    0x005b: 0x00db,     #  LEFT SQUARE BRACKET, right-left
    0x005c: 0x005c,     #  REVERSE SOLIDUS, left-right
    0x005c: 0x00dc,     #  REVERSE SOLIDUS, right-left
    0x005d: 0x005d,     #  RIGHT SQUARE BRACKET, left-right
    0x005d: 0x00dd,     #  RIGHT SQUARE BRACKET, right-left
    0x005e: 0x005e,     #  CIRCUMFLEX ACCENT, left-right
    0x005e: 0x00de,     #  CIRCUMFLEX ACCENT, right-left
    0x005f: 0x005f,     #  LOW LINE, left-right
    0x005f: 0x00df,     #  LOW LINE, right-left
    0x0060: 0x0060,     #  GRAVE ACCENT
    0x0061: 0x0061,     #  LATIN SMALL LETTER A
    0x0062: 0x0062,     #  LATIN SMALL LETTER B
    0x0063: 0x0063,     #  LATIN SMALL LETTER C
    0x0064: 0x0064,     #  LATIN SMALL LETTER D
    0x0065: 0x0065,     #  LATIN SMALL LETTER E
    0x0066: 0x0066,     #  LATIN SMALL LETTER F
    0x0067: 0x0067,     #  LATIN SMALL LETTER G
    0x0068: 0x0068,     #  LATIN SMALL LETTER H
    0x0069: 0x0069,     #  LATIN SMALL LETTER I
    0x006a: 0x006a,     #  LATIN SMALL LETTER J
    0x006b: 0x006b,     #  LATIN SMALL LETTER K
    0x006c: 0x006c,     #  LATIN SMALL LETTER L
    0x006d: 0x006d,     #  LATIN SMALL LETTER M
    0x006e: 0x006e,     #  LATIN SMALL LETTER N
    0x006f: 0x006f,     #  LATIN SMALL LETTER O
    0x0070: 0x0070,     #  LATIN SMALL LETTER P
    0x0071: 0x0071,     #  LATIN SMALL LETTER Q
    0x0072: 0x0072,     #  LATIN SMALL LETTER R
    0x0073: 0x0073,     #  LATIN SMALL LETTER S
    0x0074: 0x0074,     #  LATIN SMALL LETTER T
    0x0075: 0x0075,     #  LATIN SMALL LETTER U
    0x0076: 0x0076,     #  LATIN SMALL LETTER V
    0x0077: 0x0077,     #  LATIN SMALL LETTER W
    0x0078: 0x0078,     #  LATIN SMALL LETTER X
    0x0079: 0x0079,     #  LATIN SMALL LETTER Y
    0x007a: 0x007a,     #  LATIN SMALL LETTER Z
    0x007b: 0x007b,     #  LEFT CURLY BRACKET, left-right
    0x007b: 0x00fb,     #  LEFT CURLY BRACKET, right-left
    0x007c: 0x007c,     #  VERTICAL LINE, left-right
    0x007c: 0x00fc,     #  VERTICAL LINE, right-left
    0x007d: 0x007d,     #  RIGHT CURLY BRACKET, left-right
    0x007d: 0x00fd,     #  RIGHT CURLY BRACKET, right-left
    0x007e: 0x007e,     #  TILDE
    0x007f: 0x007f,     #  CONTROL CHARACTER
    0x00a0: 0x0081,     #  NO-BREAK SPACE, right-left
    0x00ab: 0x008c,     #  LEFT-POINTING DOUBLE ANGLE QUOTATION MARK, right-left
    0x00bb: 0x0098,     #  RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK, right-left
    0x00c4: 0x0080,     #  LATIN CAPITAL LETTER A WITH DIAERESIS
    0x00c7: 0x0082,     #  LATIN CAPITAL LETTER C WITH CEDILLA
    0x00c9: 0x0083,     #  LATIN CAPITAL LETTER E WITH ACUTE
    0x00d1: 0x0084,     #  LATIN CAPITAL LETTER N WITH TILDE
    0x00d6: 0x0085,     #  LATIN CAPITAL LETTER O WITH DIAERESIS
    0x00dc: 0x0086,     #  LATIN CAPITAL LETTER U WITH DIAERESIS
    0x00e0: 0x0088,     #  LATIN SMALL LETTER A WITH GRAVE
    0x00e1: 0x0087,     #  LATIN SMALL LETTER A WITH ACUTE
    0x00e2: 0x0089,     #  LATIN SMALL LETTER A WITH CIRCUMFLEX
    0x00e4: 0x008a,     #  LATIN SMALL LETTER A WITH DIAERESIS
    0x00e7: 0x008d,     #  LATIN SMALL LETTER C WITH CEDILLA
    0x00e8: 0x008f,     #  LATIN SMALL LETTER E WITH GRAVE
    0x00e9: 0x008e,     #  LATIN SMALL LETTER E WITH ACUTE
    0x00ea: 0x0090,     #  LATIN SMALL LETTER E WITH CIRCUMFLEX
    0x00eb: 0x0091,     #  LATIN SMALL LETTER E WITH DIAERESIS
    0x00ed: 0x0092,     #  LATIN SMALL LETTER I WITH ACUTE
    0x00ee: 0x0094,     #  LATIN SMALL LETTER I WITH CIRCUMFLEX
    0x00ef: 0x0095,     #  LATIN SMALL LETTER I WITH DIAERESIS
    0x00f1: 0x0096,     #  LATIN SMALL LETTER N WITH TILDE
    0x00f3: 0x0097,     #  LATIN SMALL LETTER O WITH ACUTE
    0x00f4: 0x0099,     #  LATIN SMALL LETTER O WITH CIRCUMFLEX
    0x00f6: 0x009a,     #  LATIN SMALL LETTER O WITH DIAERESIS
    0x00f7: 0x009b,     #  DIVISION SIGN, right-left
    0x00f9: 0x009d,     #  LATIN SMALL LETTER U WITH GRAVE
    0x00fa: 0x009c,     #  LATIN SMALL LETTER U WITH ACUTE
    0x00fb: 0x009e,     #  LATIN SMALL LETTER U WITH CIRCUMFLEX
    0x00fc: 0x009f,     #  LATIN SMALL LETTER U WITH DIAERESIS
    0x060c: 0x00ac,     #  ARABIC COMMA
    0x061b: 0x00bb,     #  ARABIC SEMICOLON
    0x061f: 0x00bf,     #  ARABIC QUESTION MARK
    0x0621: 0x00c1,     #  ARABIC LETTER HAMZA
    0x0622: 0x00c2,     #  ARABIC LETTER ALEF WITH MADDA ABOVE
    0x0623: 0x00c3,     #  ARABIC LETTER ALEF WITH HAMZA ABOVE
    0x0624: 0x00c4,     #  ARABIC LETTER WAW WITH HAMZA ABOVE
    0x0625: 0x00c5,     #  ARABIC LETTER ALEF WITH HAMZA BELOW
    0x0626: 0x00c6,     #  ARABIC LETTER YEH WITH HAMZA ABOVE
    0x0627: 0x00c7,     #  ARABIC LETTER ALEF
    0x0628: 0x00c8,     #  ARABIC LETTER BEH
    0x0629: 0x00c9,     #  ARABIC LETTER TEH MARBUTA
    0x062a: 0x00ca,     #  ARABIC LETTER TEH
    0x062b: 0x00cb,     #  ARABIC LETTER THEH
    0x062c: 0x00cc,     #  ARABIC LETTER JEEM
    0x062d: 0x00cd,     #  ARABIC LETTER HAH
    0x062e: 0x00ce,     #  ARABIC LETTER KHAH
    0x062f: 0x00cf,     #  ARABIC LETTER DAL
    0x0630: 0x00d0,     #  ARABIC LETTER THAL
    0x0631: 0x00d1,     #  ARABIC LETTER REH
    0x0632: 0x00d2,     #  ARABIC LETTER ZAIN
    0x0633: 0x00d3,     #  ARABIC LETTER SEEN
    0x0634: 0x00d4,     #  ARABIC LETTER SHEEN
    0x0635: 0x00d5,     #  ARABIC LETTER SAD
    0x0636: 0x00d6,     #  ARABIC LETTER DAD
    0x0637: 0x00d7,     #  ARABIC LETTER TAH
    0x0638: 0x00d8,     #  ARABIC LETTER ZAH
    0x0639: 0x00d9,     #  ARABIC LETTER AIN
    0x063a: 0x00da,     #  ARABIC LETTER GHAIN
    0x0640: 0x00e0,     #  ARABIC TATWEEL
    0x0641: 0x00e1,     #  ARABIC LETTER FEH
    0x0642: 0x00e2,     #  ARABIC LETTER QAF
    0x0643: 0x00e3,     #  ARABIC LETTER KAF
    0x0644: 0x00e4,     #  ARABIC LETTER LAM
    0x0645: 0x00e5,     #  ARABIC LETTER MEEM
    0x0646: 0x00e6,     #  ARABIC LETTER NOON
    0x0647: 0x00e7,     #  ARABIC LETTER HEH
    0x0648: 0x00e8,     #  ARABIC LETTER WAW
    0x0649: 0x00e9,     #  ARABIC LETTER ALEF MAKSURA
    0x064a: 0x00ea,     #  ARABIC LETTER YEH
    0x064b: 0x00eb,     #  ARABIC FATHATAN
    0x064c: 0x00ec,     #  ARABIC DAMMATAN
    0x064d: 0x00ed,     #  ARABIC KASRATAN
    0x064e: 0x00ee,     #  ARABIC FATHA
    0x064f: 0x00ef,     #  ARABIC DAMMA
    0x0650: 0x00f0,     #  ARABIC KASRA
    0x0651: 0x00f1,     #  ARABIC SHADDA
    0x0652: 0x00f2,     #  ARABIC SUKUN
    0x0660: 0x00b0,     #  ARABIC-INDIC DIGIT ZERO, right-left (need override)
    0x0661: 0x00b1,     #  ARABIC-INDIC DIGIT ONE, right-left (need override)
    0x0662: 0x00b2,     #  ARABIC-INDIC DIGIT TWO, right-left (need override)
    0x0663: 0x00b3,     #  ARABIC-INDIC DIGIT THREE, right-left (need override)
    0x0664: 0x00b4,     #  ARABIC-INDIC DIGIT FOUR, right-left (need override)
    0x0665: 0x00b5,     #  ARABIC-INDIC DIGIT FIVE, right-left (need override)
    0x0666: 0x00b6,     #  ARABIC-INDIC DIGIT SIX, right-left (need override)
    0x0667: 0x00b7,     #  ARABIC-INDIC DIGIT SEVEN, right-left (need override)
    0x0668: 0x00b8,     #  ARABIC-INDIC DIGIT EIGHT, right-left (need override)
    0x0669: 0x00b9,     #  ARABIC-INDIC DIGIT NINE, right-left (need override)
    0x066a: 0x00a5,     #  ARABIC PERCENT SIGN
    0x0679: 0x00f4,     #  ARABIC LETTER TTEH
    0x067e: 0x00f3,     #  ARABIC LETTER PEH
    0x0686: 0x00f5,     #  ARABIC LETTER TCHEH
    0x0688: 0x00f9,     #  ARABIC LETTER DDAL
    0x0691: 0x00fa,     #  ARABIC LETTER RREH
    0x0698: 0x00fe,     #  ARABIC LETTER JEH
    0x06a4: 0x00f7,     #  ARABIC LETTER VEH
    0x06af: 0x00f8,     #  ARABIC LETTER GAF
    0x06ba: 0x008b,     #  ARABIC LETTER NOON GHUNNA
    0x06d2: 0x00ff,     #  ARABIC LETTER YEH BARREE
    0x06d5: 0x00f6,     #  ARABIC LETTER AE
    0x2026: 0x0093,     #  HORIZONTAL ELLIPSIS, right-left
    0x274a: 0x00c0,     #  EIGHT TEARDROP-SPOKED PROPELLER ASTERISK, right-left
}
lib\encodings\mac_centeuro.py
""" Python Character Mapping Codec mac_centeuro generated from 'MAPPINGS/VENDORS/APPLE/CENTEURO.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-centeuro',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\u0100'   #  0x81 -> LATIN CAPITAL LETTER A WITH MACRON
    '\u0101'   #  0x82 -> LATIN SMALL LETTER A WITH MACRON
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0104'   #  0x84 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x87 -> LATIN SMALL LETTER A WITH ACUTE
    '\u0105'   #  0x88 -> LATIN SMALL LETTER A WITH OGONEK
    '\u010c'   #  0x89 -> LATIN CAPITAL LETTER C WITH CARON
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u010d'   #  0x8B -> LATIN SMALL LETTER C WITH CARON
    '\u0106'   #  0x8C -> LATIN CAPITAL LETTER C WITH ACUTE
    '\u0107'   #  0x8D -> LATIN SMALL LETTER C WITH ACUTE
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\u0179'   #  0x8F -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\u017a'   #  0x90 -> LATIN SMALL LETTER Z WITH ACUTE
    '\u010e'   #  0x91 -> LATIN CAPITAL LETTER D WITH CARON
    '\xed'     #  0x92 -> LATIN SMALL LETTER I WITH ACUTE
    '\u010f'   #  0x93 -> LATIN SMALL LETTER D WITH CARON
    '\u0112'   #  0x94 -> LATIN CAPITAL LETTER E WITH MACRON
    '\u0113'   #  0x95 -> LATIN SMALL LETTER E WITH MACRON
    '\u0116'   #  0x96 -> LATIN CAPITAL LETTER E WITH DOT ABOVE
    '\xf3'     #  0x97 -> LATIN SMALL LETTER O WITH ACUTE
    '\u0117'   #  0x98 -> LATIN SMALL LETTER E WITH DOT ABOVE
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf5'     #  0x9B -> LATIN SMALL LETTER O WITH TILDE
    '\xfa'     #  0x9C -> LATIN SMALL LETTER U WITH ACUTE
    '\u011a'   #  0x9D -> LATIN CAPITAL LETTER E WITH CARON
    '\u011b'   #  0x9E -> LATIN SMALL LETTER E WITH CARON
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u2020'   #  0xA0 -> DAGGER
    '\xb0'     #  0xA1 -> DEGREE SIGN
    '\u0118'   #  0xA2 -> LATIN CAPITAL LETTER E WITH OGONEK
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa7'     #  0xA4 -> SECTION SIGN
    '\u2022'   #  0xA5 -> BULLET
    '\xb6'     #  0xA6 -> PILCROW SIGN
    '\xdf'     #  0xA7 -> LATIN SMALL LETTER SHARP S
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u2122'   #  0xAA -> TRADE MARK SIGN
    '\u0119'   #  0xAB -> LATIN SMALL LETTER E WITH OGONEK
    '\xa8'     #  0xAC -> DIAERESIS
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\u0123'   #  0xAE -> LATIN SMALL LETTER G WITH CEDILLA
    '\u012e'   #  0xAF -> LATIN CAPITAL LETTER I WITH OGONEK
    '\u012f'   #  0xB0 -> LATIN SMALL LETTER I WITH OGONEK
    '\u012a'   #  0xB1 -> LATIN CAPITAL LETTER I WITH MACRON
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\u012b'   #  0xB4 -> LATIN SMALL LETTER I WITH MACRON
    '\u0136'   #  0xB5 -> LATIN CAPITAL LETTER K WITH CEDILLA
    '\u2202'   #  0xB6 -> PARTIAL DIFFERENTIAL
    '\u2211'   #  0xB7 -> N-ARY SUMMATION
    '\u0142'   #  0xB8 -> LATIN SMALL LETTER L WITH STROKE
    '\u013b'   #  0xB9 -> LATIN CAPITAL LETTER L WITH CEDILLA
    '\u013c'   #  0xBA -> LATIN SMALL LETTER L WITH CEDILLA
    '\u013d'   #  0xBB -> LATIN CAPITAL LETTER L WITH CARON
    '\u013e'   #  0xBC -> LATIN SMALL LETTER L WITH CARON
    '\u0139'   #  0xBD -> LATIN CAPITAL LETTER L WITH ACUTE
    '\u013a'   #  0xBE -> LATIN SMALL LETTER L WITH ACUTE
    '\u0145'   #  0xBF -> LATIN CAPITAL LETTER N WITH CEDILLA
    '\u0146'   #  0xC0 -> LATIN SMALL LETTER N WITH CEDILLA
    '\u0143'   #  0xC1 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\xac'     #  0xC2 -> NOT SIGN
    '\u221a'   #  0xC3 -> SQUARE ROOT
    '\u0144'   #  0xC4 -> LATIN SMALL LETTER N WITH ACUTE
    '\u0147'   #  0xC5 -> LATIN CAPITAL LETTER N WITH CARON
    '\u2206'   #  0xC6 -> INCREMENT
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\u0148'   #  0xCB -> LATIN SMALL LETTER N WITH CARON
    '\u0150'   #  0xCC -> LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
    '\xd5'     #  0xCD -> LATIN CAPITAL LETTER O WITH TILDE
    '\u0151'   #  0xCE -> LATIN SMALL LETTER O WITH DOUBLE ACUTE
    '\u014c'   #  0xCF -> LATIN CAPITAL LETTER O WITH MACRON
    '\u2013'   #  0xD0 -> EN DASH
    '\u2014'   #  0xD1 -> EM DASH
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u25ca'   #  0xD7 -> LOZENGE
    '\u014d'   #  0xD8 -> LATIN SMALL LETTER O WITH MACRON
    '\u0154'   #  0xD9 -> LATIN CAPITAL LETTER R WITH ACUTE
    '\u0155'   #  0xDA -> LATIN SMALL LETTER R WITH ACUTE
    '\u0158'   #  0xDB -> LATIN CAPITAL LETTER R WITH CARON
    '\u2039'   #  0xDC -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u203a'   #  0xDD -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u0159'   #  0xDE -> LATIN SMALL LETTER R WITH CARON
    '\u0156'   #  0xDF -> LATIN CAPITAL LETTER R WITH CEDILLA
    '\u0157'   #  0xE0 -> LATIN SMALL LETTER R WITH CEDILLA
    '\u0160'   #  0xE1 -> LATIN CAPITAL LETTER S WITH CARON
    '\u201a'   #  0xE2 -> SINGLE LOW-9 QUOTATION MARK
    '\u201e'   #  0xE3 -> DOUBLE LOW-9 QUOTATION MARK
    '\u0161'   #  0xE4 -> LATIN SMALL LETTER S WITH CARON
    '\u015a'   #  0xE5 -> LATIN CAPITAL LETTER S WITH ACUTE
    '\u015b'   #  0xE6 -> LATIN SMALL LETTER S WITH ACUTE
    '\xc1'     #  0xE7 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\u0164'   #  0xE8 -> LATIN CAPITAL LETTER T WITH CARON
    '\u0165'   #  0xE9 -> LATIN SMALL LETTER T WITH CARON
    '\xcd'     #  0xEA -> LATIN CAPITAL LETTER I WITH ACUTE
    '\u017d'   #  0xEB -> LATIN CAPITAL LETTER Z WITH CARON
    '\u017e'   #  0xEC -> LATIN SMALL LETTER Z WITH CARON
    '\u016a'   #  0xED -> LATIN CAPITAL LETTER U WITH MACRON
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xEF -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u016b'   #  0xF0 -> LATIN SMALL LETTER U WITH MACRON
    '\u016e'   #  0xF1 -> LATIN CAPITAL LETTER U WITH RING ABOVE
    '\xda'     #  0xF2 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\u016f'   #  0xF3 -> LATIN SMALL LETTER U WITH RING ABOVE
    '\u0170'   #  0xF4 -> LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
    '\u0171'   #  0xF5 -> LATIN SMALL LETTER U WITH DOUBLE ACUTE
    '\u0172'   #  0xF6 -> LATIN CAPITAL LETTER U WITH OGONEK
    '\u0173'   #  0xF7 -> LATIN SMALL LETTER U WITH OGONEK
    '\xdd'     #  0xF8 -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xfd'     #  0xF9 -> LATIN SMALL LETTER Y WITH ACUTE
    '\u0137'   #  0xFA -> LATIN SMALL LETTER K WITH CEDILLA
    '\u017b'   #  0xFB -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\u0141'   #  0xFC -> LATIN CAPITAL LETTER L WITH STROKE
    '\u017c'   #  0xFD -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\u0122'   #  0xFE -> LATIN CAPITAL LETTER G WITH CEDILLA
    '\u02c7'   #  0xFF -> CARON
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_croatian.py
""" Python Character Mapping Codec mac_croatian generated from 'MAPPINGS/VENDORS/APPLE/CROATIAN.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-croatian',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x81 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'     #  0x82 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xd1'     #  0x84 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x87 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe0'     #  0x88 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe2'     #  0x89 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe3'     #  0x8B -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x8C -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x8D -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\xe8'     #  0x8F -> LATIN SMALL LETTER E WITH GRAVE
    '\xea'     #  0x90 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x91 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xed'     #  0x92 -> LATIN SMALL LETTER I WITH ACUTE
    '\xec'     #  0x93 -> LATIN SMALL LETTER I WITH GRAVE
    '\xee'     #  0x94 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x95 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf1'     #  0x96 -> LATIN SMALL LETTER N WITH TILDE
    '\xf3'     #  0x97 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf2'     #  0x98 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf5'     #  0x9B -> LATIN SMALL LETTER O WITH TILDE
    '\xfa'     #  0x9C -> LATIN SMALL LETTER U WITH ACUTE
    '\xf9'     #  0x9D -> LATIN SMALL LETTER U WITH GRAVE
    '\xfb'     #  0x9E -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u2020'   #  0xA0 -> DAGGER
    '\xb0'     #  0xA1 -> DEGREE SIGN
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa7'     #  0xA4 -> SECTION SIGN
    '\u2022'   #  0xA5 -> BULLET
    '\xb6'     #  0xA6 -> PILCROW SIGN
    '\xdf'     #  0xA7 -> LATIN SMALL LETTER SHARP S
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\u0160'   #  0xA9 -> LATIN CAPITAL LETTER S WITH CARON
    '\u2122'   #  0xAA -> TRADE MARK SIGN
    '\xb4'     #  0xAB -> ACUTE ACCENT
    '\xa8'     #  0xAC -> DIAERESIS
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\u017d'   #  0xAE -> LATIN CAPITAL LETTER Z WITH CARON
    '\xd8'     #  0xAF -> LATIN CAPITAL LETTER O WITH STROKE
    '\u221e'   #  0xB0 -> INFINITY
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\u2206'   #  0xB4 -> INCREMENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\u2202'   #  0xB6 -> PARTIAL DIFFERENTIAL
    '\u2211'   #  0xB7 -> N-ARY SUMMATION
    '\u220f'   #  0xB8 -> N-ARY PRODUCT
    '\u0161'   #  0xB9 -> LATIN SMALL LETTER S WITH CARON
    '\u222b'   #  0xBA -> INTEGRAL
    '\xaa'     #  0xBB -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0xBC -> MASCULINE ORDINAL INDICATOR
    '\u03a9'   #  0xBD -> GREEK CAPITAL LETTER OMEGA
    '\u017e'   #  0xBE -> LATIN SMALL LETTER Z WITH CARON
    '\xf8'     #  0xBF -> LATIN SMALL LETTER O WITH STROKE
    '\xbf'     #  0xC0 -> INVERTED QUESTION MARK
    '\xa1'     #  0xC1 -> INVERTED EXCLAMATION MARK
    '\xac'     #  0xC2 -> NOT SIGN
    '\u221a'   #  0xC3 -> SQUARE ROOT
    '\u0192'   #  0xC4 -> LATIN SMALL LETTER F WITH HOOK
    '\u2248'   #  0xC5 -> ALMOST EQUAL TO
    '\u0106'   #  0xC6 -> LATIN CAPITAL LETTER C WITH ACUTE
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u010c'   #  0xC8 -> LATIN CAPITAL LETTER C WITH CARON
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\xc0'     #  0xCB -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc3'     #  0xCC -> LATIN CAPITAL LETTER A WITH TILDE
    '\xd5'     #  0xCD -> LATIN CAPITAL LETTER O WITH TILDE
    '\u0152'   #  0xCE -> LATIN CAPITAL LIGATURE OE
    '\u0153'   #  0xCF -> LATIN SMALL LIGATURE OE
    '\u0110'   #  0xD0 -> LATIN CAPITAL LETTER D WITH STROKE
    '\u2014'   #  0xD1 -> EM DASH
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u25ca'   #  0xD7 -> LOZENGE
    '\uf8ff'   #  0xD8 -> Apple logo
    '\xa9'     #  0xD9 -> COPYRIGHT SIGN
    '\u2044'   #  0xDA -> FRACTION SLASH
    '\u20ac'   #  0xDB -> EURO SIGN
    '\u2039'   #  0xDC -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u203a'   #  0xDD -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\xc6'     #  0xDE -> LATIN CAPITAL LETTER AE
    '\xbb'     #  0xDF -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2013'   #  0xE0 -> EN DASH
    '\xb7'     #  0xE1 -> MIDDLE DOT
    '\u201a'   #  0xE2 -> SINGLE LOW-9 QUOTATION MARK
    '\u201e'   #  0xE3 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2030'   #  0xE4 -> PER MILLE SIGN
    '\xc2'     #  0xE5 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\u0107'   #  0xE6 -> LATIN SMALL LETTER C WITH ACUTE
    '\xc1'     #  0xE7 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\u010d'   #  0xE8 -> LATIN SMALL LETTER C WITH CARON
    '\xc8'     #  0xE9 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0xEA -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xEB -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xEC -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0xED -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xEF -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u0111'   #  0xF0 -> LATIN SMALL LETTER D WITH STROKE
    '\xd2'     #  0xF1 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xda'     #  0xF2 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xF3 -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xd9'     #  0xF4 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\u0131'   #  0xF5 -> LATIN SMALL LETTER DOTLESS I
    '\u02c6'   #  0xF6 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u02dc'   #  0xF7 -> SMALL TILDE
    '\xaf'     #  0xF8 -> MACRON
    '\u03c0'   #  0xF9 -> GREEK SMALL LETTER PI
    '\xcb'     #  0xFA -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\u02da'   #  0xFB -> RING ABOVE
    '\xb8'     #  0xFC -> CEDILLA
    '\xca'     #  0xFD -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xe6'     #  0xFE -> LATIN SMALL LETTER AE
    '\u02c7'   #  0xFF -> CARON
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_cyrillic.py
""" Python Character Mapping Codec mac_cyrillic generated from 'MAPPINGS/VENDORS/APPLE/CYRILLIC.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-cyrillic',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\u0410'   #  0x80 -> CYRILLIC CAPITAL LETTER A
    '\u0411'   #  0x81 -> CYRILLIC CAPITAL LETTER BE
    '\u0412'   #  0x82 -> CYRILLIC CAPITAL LETTER VE
    '\u0413'   #  0x83 -> CYRILLIC CAPITAL LETTER GHE
    '\u0414'   #  0x84 -> CYRILLIC CAPITAL LETTER DE
    '\u0415'   #  0x85 -> CYRILLIC CAPITAL LETTER IE
    '\u0416'   #  0x86 -> CYRILLIC CAPITAL LETTER ZHE
    '\u0417'   #  0x87 -> CYRILLIC CAPITAL LETTER ZE
    '\u0418'   #  0x88 -> CYRILLIC CAPITAL LETTER I
    '\u0419'   #  0x89 -> CYRILLIC CAPITAL LETTER SHORT I
    '\u041a'   #  0x8A -> CYRILLIC CAPITAL LETTER KA
    '\u041b'   #  0x8B -> CYRILLIC CAPITAL LETTER EL
    '\u041c'   #  0x8C -> CYRILLIC CAPITAL LETTER EM
    '\u041d'   #  0x8D -> CYRILLIC CAPITAL LETTER EN
    '\u041e'   #  0x8E -> CYRILLIC CAPITAL LETTER O
    '\u041f'   #  0x8F -> CYRILLIC CAPITAL LETTER PE
    '\u0420'   #  0x90 -> CYRILLIC CAPITAL LETTER ER
    '\u0421'   #  0x91 -> CYRILLIC CAPITAL LETTER ES
    '\u0422'   #  0x92 -> CYRILLIC CAPITAL LETTER TE
    '\u0423'   #  0x93 -> CYRILLIC CAPITAL LETTER U
    '\u0424'   #  0x94 -> CYRILLIC CAPITAL LETTER EF
    '\u0425'   #  0x95 -> CYRILLIC CAPITAL LETTER HA
    '\u0426'   #  0x96 -> CYRILLIC CAPITAL LETTER TSE
    '\u0427'   #  0x97 -> CYRILLIC CAPITAL LETTER CHE
    '\u0428'   #  0x98 -> CYRILLIC CAPITAL LETTER SHA
    '\u0429'   #  0x99 -> CYRILLIC CAPITAL LETTER SHCHA
    '\u042a'   #  0x9A -> CYRILLIC CAPITAL LETTER HARD SIGN
    '\u042b'   #  0x9B -> CYRILLIC CAPITAL LETTER YERU
    '\u042c'   #  0x9C -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u042d'   #  0x9D -> CYRILLIC CAPITAL LETTER E
    '\u042e'   #  0x9E -> CYRILLIC CAPITAL LETTER YU
    '\u042f'   #  0x9F -> CYRILLIC CAPITAL LETTER YA
    '\u2020'   #  0xA0 -> DAGGER
    '\xb0'     #  0xA1 -> DEGREE SIGN
    '\u0490'   #  0xA2 -> CYRILLIC CAPITAL LETTER GHE WITH UPTURN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa7'     #  0xA4 -> SECTION SIGN
    '\u2022'   #  0xA5 -> BULLET
    '\xb6'     #  0xA6 -> PILCROW SIGN
    '\u0406'   #  0xA7 -> CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u2122'   #  0xAA -> TRADE MARK SIGN
    '\u0402'   #  0xAB -> CYRILLIC CAPITAL LETTER DJE
    '\u0452'   #  0xAC -> CYRILLIC SMALL LETTER DJE
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\u0403'   #  0xAE -> CYRILLIC CAPITAL LETTER GJE
    '\u0453'   #  0xAF -> CYRILLIC SMALL LETTER GJE
    '\u221e'   #  0xB0 -> INFINITY
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\u0456'   #  0xB4 -> CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\u0491'   #  0xB6 -> CYRILLIC SMALL LETTER GHE WITH UPTURN
    '\u0408'   #  0xB7 -> CYRILLIC CAPITAL LETTER JE
    '\u0404'   #  0xB8 -> CYRILLIC CAPITAL LETTER UKRAINIAN IE
    '\u0454'   #  0xB9 -> CYRILLIC SMALL LETTER UKRAINIAN IE
    '\u0407'   #  0xBA -> CYRILLIC CAPITAL LETTER YI
    '\u0457'   #  0xBB -> CYRILLIC SMALL LETTER YI
    '\u0409'   #  0xBC -> CYRILLIC CAPITAL LETTER LJE
    '\u0459'   #  0xBD -> CYRILLIC SMALL LETTER LJE
    '\u040a'   #  0xBE -> CYRILLIC CAPITAL LETTER NJE
    '\u045a'   #  0xBF -> CYRILLIC SMALL LETTER NJE
    '\u0458'   #  0xC0 -> CYRILLIC SMALL LETTER JE
    '\u0405'   #  0xC1 -> CYRILLIC CAPITAL LETTER DZE
    '\xac'     #  0xC2 -> NOT SIGN
    '\u221a'   #  0xC3 -> SQUARE ROOT
    '\u0192'   #  0xC4 -> LATIN SMALL LETTER F WITH HOOK
    '\u2248'   #  0xC5 -> ALMOST EQUAL TO
    '\u2206'   #  0xC6 -> INCREMENT
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\u040b'   #  0xCB -> CYRILLIC CAPITAL LETTER TSHE
    '\u045b'   #  0xCC -> CYRILLIC SMALL LETTER TSHE
    '\u040c'   #  0xCD -> CYRILLIC CAPITAL LETTER KJE
    '\u045c'   #  0xCE -> CYRILLIC SMALL LETTER KJE
    '\u0455'   #  0xCF -> CYRILLIC SMALL LETTER DZE
    '\u2013'   #  0xD0 -> EN DASH
    '\u2014'   #  0xD1 -> EM DASH
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u201e'   #  0xD7 -> DOUBLE LOW-9 QUOTATION MARK
    '\u040e'   #  0xD8 -> CYRILLIC CAPITAL LETTER SHORT U
    '\u045e'   #  0xD9 -> CYRILLIC SMALL LETTER SHORT U
    '\u040f'   #  0xDA -> CYRILLIC CAPITAL LETTER DZHE
    '\u045f'   #  0xDB -> CYRILLIC SMALL LETTER DZHE
    '\u2116'   #  0xDC -> NUMERO SIGN
    '\u0401'   #  0xDD -> CYRILLIC CAPITAL LETTER IO
    '\u0451'   #  0xDE -> CYRILLIC SMALL LETTER IO
    '\u044f'   #  0xDF -> CYRILLIC SMALL LETTER YA
    '\u0430'   #  0xE0 -> CYRILLIC SMALL LETTER A
    '\u0431'   #  0xE1 -> CYRILLIC SMALL LETTER BE
    '\u0432'   #  0xE2 -> CYRILLIC SMALL LETTER VE
    '\u0433'   #  0xE3 -> CYRILLIC SMALL LETTER GHE
    '\u0434'   #  0xE4 -> CYRILLIC SMALL LETTER DE
    '\u0435'   #  0xE5 -> CYRILLIC SMALL LETTER IE
    '\u0436'   #  0xE6 -> CYRILLIC SMALL LETTER ZHE
    '\u0437'   #  0xE7 -> CYRILLIC SMALL LETTER ZE
    '\u0438'   #  0xE8 -> CYRILLIC SMALL LETTER I
    '\u0439'   #  0xE9 -> CYRILLIC SMALL LETTER SHORT I
    '\u043a'   #  0xEA -> CYRILLIC SMALL LETTER KA
    '\u043b'   #  0xEB -> CYRILLIC SMALL LETTER EL
    '\u043c'   #  0xEC -> CYRILLIC SMALL LETTER EM
    '\u043d'   #  0xED -> CYRILLIC SMALL LETTER EN
    '\u043e'   #  0xEE -> CYRILLIC SMALL LETTER O
    '\u043f'   #  0xEF -> CYRILLIC SMALL LETTER PE
    '\u0440'   #  0xF0 -> CYRILLIC SMALL LETTER ER
    '\u0441'   #  0xF1 -> CYRILLIC SMALL LETTER ES
    '\u0442'   #  0xF2 -> CYRILLIC SMALL LETTER TE
    '\u0443'   #  0xF3 -> CYRILLIC SMALL LETTER U
    '\u0444'   #  0xF4 -> CYRILLIC SMALL LETTER EF
    '\u0445'   #  0xF5 -> CYRILLIC SMALL LETTER HA
    '\u0446'   #  0xF6 -> CYRILLIC SMALL LETTER TSE
    '\u0447'   #  0xF7 -> CYRILLIC SMALL LETTER CHE
    '\u0448'   #  0xF8 -> CYRILLIC SMALL LETTER SHA
    '\u0449'   #  0xF9 -> CYRILLIC SMALL LETTER SHCHA
    '\u044a'   #  0xFA -> CYRILLIC SMALL LETTER HARD SIGN
    '\u044b'   #  0xFB -> CYRILLIC SMALL LETTER YERU
    '\u044c'   #  0xFC -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u044d'   #  0xFD -> CYRILLIC SMALL LETTER E
    '\u044e'   #  0xFE -> CYRILLIC SMALL LETTER YU
    '\u20ac'   #  0xFF -> EURO SIGN
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_farsi.py
""" Python Character Mapping Codec mac_farsi generated from 'MAPPINGS/VENDORS/APPLE/FARSI.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-farsi',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE, left-right
    '!'        #  0x21 -> EXCLAMATION MARK, left-right
    '"'        #  0x22 -> QUOTATION MARK, left-right
    '#'        #  0x23 -> NUMBER SIGN, left-right
    '$'        #  0x24 -> DOLLAR SIGN, left-right
    '%'        #  0x25 -> PERCENT SIGN, left-right
    '&'        #  0x26 -> AMPERSAND, left-right
    "'"        #  0x27 -> APOSTROPHE, left-right
    '('        #  0x28 -> LEFT PARENTHESIS, left-right
    ')'        #  0x29 -> RIGHT PARENTHESIS, left-right
    '*'        #  0x2A -> ASTERISK, left-right
    '+'        #  0x2B -> PLUS SIGN, left-right
    ','        #  0x2C -> COMMA, left-right; in Arabic-script context, displayed as 0x066C ARABIC THOUSANDS SEPARATOR
    '-'        #  0x2D -> HYPHEN-MINUS, left-right
    '.'        #  0x2E -> FULL STOP, left-right; in Arabic-script context, displayed as 0x066B ARABIC DECIMAL SEPARATOR
    '/'        #  0x2F -> SOLIDUS, left-right
    '0'        #  0x30 -> DIGIT ZERO;  in Arabic-script context, displayed as 0x06F0 EXTENDED ARABIC-INDIC DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE;   in Arabic-script context, displayed as 0x06F1 EXTENDED ARABIC-INDIC DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO;   in Arabic-script context, displayed as 0x06F2 EXTENDED ARABIC-INDIC DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE; in Arabic-script context, displayed as 0x06F3 EXTENDED ARABIC-INDIC DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR;  in Arabic-script context, displayed as 0x06F4 EXTENDED ARABIC-INDIC DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE;  in Arabic-script context, displayed as 0x06F5 EXTENDED ARABIC-INDIC DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX;   in Arabic-script context, displayed as 0x06F6 EXTENDED ARABIC-INDIC DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN; in Arabic-script context, displayed as 0x06F7 EXTENDED ARABIC-INDIC DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT; in Arabic-script context, displayed as 0x06F8 EXTENDED ARABIC-INDIC DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE;  in Arabic-script context, displayed as 0x06F9 EXTENDED ARABIC-INDIC DIGIT NINE
    ':'        #  0x3A -> COLON, left-right
    ';'        #  0x3B -> SEMICOLON, left-right
    '<'        #  0x3C -> LESS-THAN SIGN, left-right
    '='        #  0x3D -> EQUALS SIGN, left-right
    '>'        #  0x3E -> GREATER-THAN SIGN, left-right
    '?'        #  0x3F -> QUESTION MARK, left-right
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET, left-right
    '\\'       #  0x5C -> REVERSE SOLIDUS, left-right
    ']'        #  0x5D -> RIGHT SQUARE BRACKET, left-right
    '^'        #  0x5E -> CIRCUMFLEX ACCENT, left-right
    '_'        #  0x5F -> LOW LINE, left-right
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET, left-right
    '|'        #  0x7C -> VERTICAL LINE, left-right
    '}'        #  0x7D -> RIGHT CURLY BRACKET, left-right
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xa0'     #  0x81 -> NO-BREAK SPACE, right-left
    '\xc7'     #  0x82 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xd1'     #  0x84 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x87 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe0'     #  0x88 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe2'     #  0x89 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u06ba'   #  0x8B -> ARABIC LETTER NOON GHUNNA
    '\xab'     #  0x8C -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK, right-left
    '\xe7'     #  0x8D -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\xe8'     #  0x8F -> LATIN SMALL LETTER E WITH GRAVE
    '\xea'     #  0x90 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x91 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xed'     #  0x92 -> LATIN SMALL LETTER I WITH ACUTE
    '\u2026'   #  0x93 -> HORIZONTAL ELLIPSIS, right-left
    '\xee'     #  0x94 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x95 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf1'     #  0x96 -> LATIN SMALL LETTER N WITH TILDE
    '\xf3'     #  0x97 -> LATIN SMALL LETTER O WITH ACUTE
    '\xbb'     #  0x98 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK, right-left
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0x9B -> DIVISION SIGN, right-left
    '\xfa'     #  0x9C -> LATIN SMALL LETTER U WITH ACUTE
    '\xf9'     #  0x9D -> LATIN SMALL LETTER U WITH GRAVE
    '\xfb'     #  0x9E -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    ' '        #  0xA0 -> SPACE, right-left
    '!'        #  0xA1 -> EXCLAMATION MARK, right-left
    '"'        #  0xA2 -> QUOTATION MARK, right-left
    '#'        #  0xA3 -> NUMBER SIGN, right-left
    '$'        #  0xA4 -> DOLLAR SIGN, right-left
    '\u066a'   #  0xA5 -> ARABIC PERCENT SIGN
    '&'        #  0xA6 -> AMPERSAND, right-left
    "'"        #  0xA7 -> APOSTROPHE, right-left
    '('        #  0xA8 -> LEFT PARENTHESIS, right-left
    ')'        #  0xA9 -> RIGHT PARENTHESIS, right-left
    '*'        #  0xAA -> ASTERISK, right-left
    '+'        #  0xAB -> PLUS SIGN, right-left
    '\u060c'   #  0xAC -> ARABIC COMMA
    '-'        #  0xAD -> HYPHEN-MINUS, right-left
    '.'        #  0xAE -> FULL STOP, right-left
    '/'        #  0xAF -> SOLIDUS, right-left
    '\u06f0'   #  0xB0 -> EXTENDED ARABIC-INDIC DIGIT ZERO, right-left (need override)
    '\u06f1'   #  0xB1 -> EXTENDED ARABIC-INDIC DIGIT ONE, right-left (need override)
    '\u06f2'   #  0xB2 -> EXTENDED ARABIC-INDIC DIGIT TWO, right-left (need override)
    '\u06f3'   #  0xB3 -> EXTENDED ARABIC-INDIC DIGIT THREE, right-left (need override)
    '\u06f4'   #  0xB4 -> EXTENDED ARABIC-INDIC DIGIT FOUR, right-left (need override)
    '\u06f5'   #  0xB5 -> EXTENDED ARABIC-INDIC DIGIT FIVE, right-left (need override)
    '\u06f6'   #  0xB6 -> EXTENDED ARABIC-INDIC DIGIT SIX, right-left (need override)
    '\u06f7'   #  0xB7 -> EXTENDED ARABIC-INDIC DIGIT SEVEN, right-left (need override)
    '\u06f8'   #  0xB8 -> EXTENDED ARABIC-INDIC DIGIT EIGHT, right-left (need override)
    '\u06f9'   #  0xB9 -> EXTENDED ARABIC-INDIC DIGIT NINE, right-left (need override)
    ':'        #  0xBA -> COLON, right-left
    '\u061b'   #  0xBB -> ARABIC SEMICOLON
    '<'        #  0xBC -> LESS-THAN SIGN, right-left
    '='        #  0xBD -> EQUALS SIGN, right-left
    '>'        #  0xBE -> GREATER-THAN SIGN, right-left
    '\u061f'   #  0xBF -> ARABIC QUESTION MARK
    '\u274a'   #  0xC0 -> EIGHT TEARDROP-SPOKED PROPELLER ASTERISK, right-left
    '\u0621'   #  0xC1 -> ARABIC LETTER HAMZA
    '\u0622'   #  0xC2 -> ARABIC LETTER ALEF WITH MADDA ABOVE
    '\u0623'   #  0xC3 -> ARABIC LETTER ALEF WITH HAMZA ABOVE
    '\u0624'   #  0xC4 -> ARABIC LETTER WAW WITH HAMZA ABOVE
    '\u0625'   #  0xC5 -> ARABIC LETTER ALEF WITH HAMZA BELOW
    '\u0626'   #  0xC6 -> ARABIC LETTER YEH WITH HAMZA ABOVE
    '\u0627'   #  0xC7 -> ARABIC LETTER ALEF
    '\u0628'   #  0xC8 -> ARABIC LETTER BEH
    '\u0629'   #  0xC9 -> ARABIC LETTER TEH MARBUTA
    '\u062a'   #  0xCA -> ARABIC LETTER TEH
    '\u062b'   #  0xCB -> ARABIC LETTER THEH
    '\u062c'   #  0xCC -> ARABIC LETTER JEEM
    '\u062d'   #  0xCD -> ARABIC LETTER HAH
    '\u062e'   #  0xCE -> ARABIC LETTER KHAH
    '\u062f'   #  0xCF -> ARABIC LETTER DAL
    '\u0630'   #  0xD0 -> ARABIC LETTER THAL
    '\u0631'   #  0xD1 -> ARABIC LETTER REH
    '\u0632'   #  0xD2 -> ARABIC LETTER ZAIN
    '\u0633'   #  0xD3 -> ARABIC LETTER SEEN
    '\u0634'   #  0xD4 -> ARABIC LETTER SHEEN
    '\u0635'   #  0xD5 -> ARABIC LETTER SAD
    '\u0636'   #  0xD6 -> ARABIC LETTER DAD
    '\u0637'   #  0xD7 -> ARABIC LETTER TAH
    '\u0638'   #  0xD8 -> ARABIC LETTER ZAH
    '\u0639'   #  0xD9 -> ARABIC LETTER AIN
    '\u063a'   #  0xDA -> ARABIC LETTER GHAIN
    '['        #  0xDB -> LEFT SQUARE BRACKET, right-left
    '\\'       #  0xDC -> REVERSE SOLIDUS, right-left
    ']'        #  0xDD -> RIGHT SQUARE BRACKET, right-left
    '^'        #  0xDE -> CIRCUMFLEX ACCENT, right-left
    '_'        #  0xDF -> LOW LINE, right-left
    '\u0640'   #  0xE0 -> ARABIC TATWEEL
    '\u0641'   #  0xE1 -> ARABIC LETTER FEH
    '\u0642'   #  0xE2 -> ARABIC LETTER QAF
    '\u0643'   #  0xE3 -> ARABIC LETTER KAF
    '\u0644'   #  0xE4 -> ARABIC LETTER LAM
    '\u0645'   #  0xE5 -> ARABIC LETTER MEEM
    '\u0646'   #  0xE6 -> ARABIC LETTER NOON
    '\u0647'   #  0xE7 -> ARABIC LETTER HEH
    '\u0648'   #  0xE8 -> ARABIC LETTER WAW
    '\u0649'   #  0xE9 -> ARABIC LETTER ALEF MAKSURA
    '\u064a'   #  0xEA -> ARABIC LETTER YEH
    '\u064b'   #  0xEB -> ARABIC FATHATAN
    '\u064c'   #  0xEC -> ARABIC DAMMATAN
    '\u064d'   #  0xED -> ARABIC KASRATAN
    '\u064e'   #  0xEE -> ARABIC FATHA
    '\u064f'   #  0xEF -> ARABIC DAMMA
    '\u0650'   #  0xF0 -> ARABIC KASRA
    '\u0651'   #  0xF1 -> ARABIC SHADDA
    '\u0652'   #  0xF2 -> ARABIC SUKUN
    '\u067e'   #  0xF3 -> ARABIC LETTER PEH
    '\u0679'   #  0xF4 -> ARABIC LETTER TTEH
    '\u0686'   #  0xF5 -> ARABIC LETTER TCHEH
    '\u06d5'   #  0xF6 -> ARABIC LETTER AE
    '\u06a4'   #  0xF7 -> ARABIC LETTER VEH
    '\u06af'   #  0xF8 -> ARABIC LETTER GAF
    '\u0688'   #  0xF9 -> ARABIC LETTER DDAL
    '\u0691'   #  0xFA -> ARABIC LETTER RREH
    '{'        #  0xFB -> LEFT CURLY BRACKET, right-left
    '|'        #  0xFC -> VERTICAL LINE, right-left
    '}'        #  0xFD -> RIGHT CURLY BRACKET, right-left
    '\u0698'   #  0xFE -> ARABIC LETTER JEH
    '\u06d2'   #  0xFF -> ARABIC LETTER YEH BARREE
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_greek.py
""" Python Character Mapping Codec mac_greek generated from 'MAPPINGS/VENDORS/APPLE/GREEK.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-greek',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xb9'     #  0x81 -> SUPERSCRIPT ONE
    '\xb2'     #  0x82 -> SUPERSCRIPT TWO
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xb3'     #  0x84 -> SUPERSCRIPT THREE
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\u0385'   #  0x87 -> GREEK DIALYTIKA TONOS
    '\xe0'     #  0x88 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe2'     #  0x89 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u0384'   #  0x8B -> GREEK TONOS
    '\xa8'     #  0x8C -> DIAERESIS
    '\xe7'     #  0x8D -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\xe8'     #  0x8F -> LATIN SMALL LETTER E WITH GRAVE
    '\xea'     #  0x90 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x91 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xa3'     #  0x92 -> POUND SIGN
    '\u2122'   #  0x93 -> TRADE MARK SIGN
    '\xee'     #  0x94 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x95 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\u2022'   #  0x96 -> BULLET
    '\xbd'     #  0x97 -> VULGAR FRACTION ONE HALF
    '\u2030'   #  0x98 -> PER MILLE SIGN
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xa6'     #  0x9B -> BROKEN BAR
    '\u20ac'   #  0x9C -> EURO SIGN # before Mac OS 9.2.2, was SOFT HYPHEN
    '\xf9'     #  0x9D -> LATIN SMALL LETTER U WITH GRAVE
    '\xfb'     #  0x9E -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u2020'   #  0xA0 -> DAGGER
    '\u0393'   #  0xA1 -> GREEK CAPITAL LETTER GAMMA
    '\u0394'   #  0xA2 -> GREEK CAPITAL LETTER DELTA
    '\u0398'   #  0xA3 -> GREEK CAPITAL LETTER THETA
    '\u039b'   #  0xA4 -> GREEK CAPITAL LETTER LAMDA
    '\u039e'   #  0xA5 -> GREEK CAPITAL LETTER XI
    '\u03a0'   #  0xA6 -> GREEK CAPITAL LETTER PI
    '\xdf'     #  0xA7 -> LATIN SMALL LETTER SHARP S
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u03a3'   #  0xAA -> GREEK CAPITAL LETTER SIGMA
    '\u03aa'   #  0xAB -> GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
    '\xa7'     #  0xAC -> SECTION SIGN
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\xb0'     #  0xAE -> DEGREE SIGN
    '\xb7'     #  0xAF -> MIDDLE DOT
    '\u0391'   #  0xB0 -> GREEK CAPITAL LETTER ALPHA
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\xa5'     #  0xB4 -> YEN SIGN
    '\u0392'   #  0xB5 -> GREEK CAPITAL LETTER BETA
    '\u0395'   #  0xB6 -> GREEK CAPITAL LETTER EPSILON
    '\u0396'   #  0xB7 -> GREEK CAPITAL LETTER ZETA
    '\u0397'   #  0xB8 -> GREEK CAPITAL LETTER ETA
    '\u0399'   #  0xB9 -> GREEK CAPITAL LETTER IOTA
    '\u039a'   #  0xBA -> GREEK CAPITAL LETTER KAPPA
    '\u039c'   #  0xBB -> GREEK CAPITAL LETTER MU
    '\u03a6'   #  0xBC -> GREEK CAPITAL LETTER PHI
    '\u03ab'   #  0xBD -> GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
    '\u03a8'   #  0xBE -> GREEK CAPITAL LETTER PSI
    '\u03a9'   #  0xBF -> GREEK CAPITAL LETTER OMEGA
    '\u03ac'   #  0xC0 -> GREEK SMALL LETTER ALPHA WITH TONOS
    '\u039d'   #  0xC1 -> GREEK CAPITAL LETTER NU
    '\xac'     #  0xC2 -> NOT SIGN
    '\u039f'   #  0xC3 -> GREEK CAPITAL LETTER OMICRON
    '\u03a1'   #  0xC4 -> GREEK CAPITAL LETTER RHO
    '\u2248'   #  0xC5 -> ALMOST EQUAL TO
    '\u03a4'   #  0xC6 -> GREEK CAPITAL LETTER TAU
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\u03a5'   #  0xCB -> GREEK CAPITAL LETTER UPSILON
    '\u03a7'   #  0xCC -> GREEK CAPITAL LETTER CHI
    '\u0386'   #  0xCD -> GREEK CAPITAL LETTER ALPHA WITH TONOS
    '\u0388'   #  0xCE -> GREEK CAPITAL LETTER EPSILON WITH TONOS
    '\u0153'   #  0xCF -> LATIN SMALL LIGATURE OE
    '\u2013'   #  0xD0 -> EN DASH
    '\u2015'   #  0xD1 -> HORIZONTAL BAR
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u0389'   #  0xD7 -> GREEK CAPITAL LETTER ETA WITH TONOS
    '\u038a'   #  0xD8 -> GREEK CAPITAL LETTER IOTA WITH TONOS
    '\u038c'   #  0xD9 -> GREEK CAPITAL LETTER OMICRON WITH TONOS
    '\u038e'   #  0xDA -> GREEK CAPITAL LETTER UPSILON WITH TONOS
    '\u03ad'   #  0xDB -> GREEK SMALL LETTER EPSILON WITH TONOS
    '\u03ae'   #  0xDC -> GREEK SMALL LETTER ETA WITH TONOS
    '\u03af'   #  0xDD -> GREEK SMALL LETTER IOTA WITH TONOS
    '\u03cc'   #  0xDE -> GREEK SMALL LETTER OMICRON WITH TONOS
    '\u038f'   #  0xDF -> GREEK CAPITAL LETTER OMEGA WITH TONOS
    '\u03cd'   #  0xE0 -> GREEK SMALL LETTER UPSILON WITH TONOS
    '\u03b1'   #  0xE1 -> GREEK SMALL LETTER ALPHA
    '\u03b2'   #  0xE2 -> GREEK SMALL LETTER BETA
    '\u03c8'   #  0xE3 -> GREEK SMALL LETTER PSI
    '\u03b4'   #  0xE4 -> GREEK SMALL LETTER DELTA
    '\u03b5'   #  0xE5 -> GREEK SMALL LETTER EPSILON
    '\u03c6'   #  0xE6 -> GREEK SMALL LETTER PHI
    '\u03b3'   #  0xE7 -> GREEK SMALL LETTER GAMMA
    '\u03b7'   #  0xE8 -> GREEK SMALL LETTER ETA
    '\u03b9'   #  0xE9 -> GREEK SMALL LETTER IOTA
    '\u03be'   #  0xEA -> GREEK SMALL LETTER XI
    '\u03ba'   #  0xEB -> GREEK SMALL LETTER KAPPA
    '\u03bb'   #  0xEC -> GREEK SMALL LETTER LAMDA
    '\u03bc'   #  0xED -> GREEK SMALL LETTER MU
    '\u03bd'   #  0xEE -> GREEK SMALL LETTER NU
    '\u03bf'   #  0xEF -> GREEK SMALL LETTER OMICRON
    '\u03c0'   #  0xF0 -> GREEK SMALL LETTER PI
    '\u03ce'   #  0xF1 -> GREEK SMALL LETTER OMEGA WITH TONOS
    '\u03c1'   #  0xF2 -> GREEK SMALL LETTER RHO
    '\u03c3'   #  0xF3 -> GREEK SMALL LETTER SIGMA
    '\u03c4'   #  0xF4 -> GREEK SMALL LETTER TAU
    '\u03b8'   #  0xF5 -> GREEK SMALL LETTER THETA
    '\u03c9'   #  0xF6 -> GREEK SMALL LETTER OMEGA
    '\u03c2'   #  0xF7 -> GREEK SMALL LETTER FINAL SIGMA
    '\u03c7'   #  0xF8 -> GREEK SMALL LETTER CHI
    '\u03c5'   #  0xF9 -> GREEK SMALL LETTER UPSILON
    '\u03b6'   #  0xFA -> GREEK SMALL LETTER ZETA
    '\u03ca'   #  0xFB -> GREEK SMALL LETTER IOTA WITH DIALYTIKA
    '\u03cb'   #  0xFC -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA
    '\u0390'   #  0xFD -> GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
    '\u03b0'   #  0xFE -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
    '\xad'     #  0xFF -> SOFT HYPHEN # before Mac OS 9.2.2, was undefined
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_iceland.py
""" Python Character Mapping Codec mac_iceland generated from 'MAPPINGS/VENDORS/APPLE/ICELAND.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-iceland',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x81 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'     #  0x82 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xd1'     #  0x84 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x87 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe0'     #  0x88 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe2'     #  0x89 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe3'     #  0x8B -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x8C -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x8D -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\xe8'     #  0x8F -> LATIN SMALL LETTER E WITH GRAVE
    '\xea'     #  0x90 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x91 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xed'     #  0x92 -> LATIN SMALL LETTER I WITH ACUTE
    '\xec'     #  0x93 -> LATIN SMALL LETTER I WITH GRAVE
    '\xee'     #  0x94 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x95 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf1'     #  0x96 -> LATIN SMALL LETTER N WITH TILDE
    '\xf3'     #  0x97 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf2'     #  0x98 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf5'     #  0x9B -> LATIN SMALL LETTER O WITH TILDE
    '\xfa'     #  0x9C -> LATIN SMALL LETTER U WITH ACUTE
    '\xf9'     #  0x9D -> LATIN SMALL LETTER U WITH GRAVE
    '\xfb'     #  0x9E -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xdd'     #  0xA0 -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xb0'     #  0xA1 -> DEGREE SIGN
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa7'     #  0xA4 -> SECTION SIGN
    '\u2022'   #  0xA5 -> BULLET
    '\xb6'     #  0xA6 -> PILCROW SIGN
    '\xdf'     #  0xA7 -> LATIN SMALL LETTER SHARP S
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u2122'   #  0xAA -> TRADE MARK SIGN
    '\xb4'     #  0xAB -> ACUTE ACCENT
    '\xa8'     #  0xAC -> DIAERESIS
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\xc6'     #  0xAE -> LATIN CAPITAL LETTER AE
    '\xd8'     #  0xAF -> LATIN CAPITAL LETTER O WITH STROKE
    '\u221e'   #  0xB0 -> INFINITY
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\xa5'     #  0xB4 -> YEN SIGN
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\u2202'   #  0xB6 -> PARTIAL DIFFERENTIAL
    '\u2211'   #  0xB7 -> N-ARY SUMMATION
    '\u220f'   #  0xB8 -> N-ARY PRODUCT
    '\u03c0'   #  0xB9 -> GREEK SMALL LETTER PI
    '\u222b'   #  0xBA -> INTEGRAL
    '\xaa'     #  0xBB -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0xBC -> MASCULINE ORDINAL INDICATOR
    '\u03a9'   #  0xBD -> GREEK CAPITAL LETTER OMEGA
    '\xe6'     #  0xBE -> LATIN SMALL LETTER AE
    '\xf8'     #  0xBF -> LATIN SMALL LETTER O WITH STROKE
    '\xbf'     #  0xC0 -> INVERTED QUESTION MARK
    '\xa1'     #  0xC1 -> INVERTED EXCLAMATION MARK
    '\xac'     #  0xC2 -> NOT SIGN
    '\u221a'   #  0xC3 -> SQUARE ROOT
    '\u0192'   #  0xC4 -> LATIN SMALL LETTER F WITH HOOK
    '\u2248'   #  0xC5 -> ALMOST EQUAL TO
    '\u2206'   #  0xC6 -> INCREMENT
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\xc0'     #  0xCB -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc3'     #  0xCC -> LATIN CAPITAL LETTER A WITH TILDE
    '\xd5'     #  0xCD -> LATIN CAPITAL LETTER O WITH TILDE
    '\u0152'   #  0xCE -> LATIN CAPITAL LIGATURE OE
    '\u0153'   #  0xCF -> LATIN SMALL LIGATURE OE
    '\u2013'   #  0xD0 -> EN DASH
    '\u2014'   #  0xD1 -> EM DASH
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u25ca'   #  0xD7 -> LOZENGE
    '\xff'     #  0xD8 -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\u0178'   #  0xD9 -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\u2044'   #  0xDA -> FRACTION SLASH
    '\u20ac'   #  0xDB -> EURO SIGN
    '\xd0'     #  0xDC -> LATIN CAPITAL LETTER ETH
    '\xf0'     #  0xDD -> LATIN SMALL LETTER ETH
    '\xde'     #  0xDE -> LATIN CAPITAL LETTER THORN
    '\xfe'     #  0xDF -> LATIN SMALL LETTER THORN
    '\xfd'     #  0xE0 -> LATIN SMALL LETTER Y WITH ACUTE
    '\xb7'     #  0xE1 -> MIDDLE DOT
    '\u201a'   #  0xE2 -> SINGLE LOW-9 QUOTATION MARK
    '\u201e'   #  0xE3 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2030'   #  0xE4 -> PER MILLE SIGN
    '\xc2'     #  0xE5 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xca'     #  0xE6 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xc1'     #  0xE7 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xcb'     #  0xE8 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0xE9 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0xEA -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xEB -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xEC -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0xED -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xEF -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\uf8ff'   #  0xF0 -> Apple logo
    '\xd2'     #  0xF1 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xda'     #  0xF2 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xF3 -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xd9'     #  0xF4 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\u0131'   #  0xF5 -> LATIN SMALL LETTER DOTLESS I
    '\u02c6'   #  0xF6 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u02dc'   #  0xF7 -> SMALL TILDE
    '\xaf'     #  0xF8 -> MACRON
    '\u02d8'   #  0xF9 -> BREVE
    '\u02d9'   #  0xFA -> DOT ABOVE
    '\u02da'   #  0xFB -> RING ABOVE
    '\xb8'     #  0xFC -> CEDILLA
    '\u02dd'   #  0xFD -> DOUBLE ACUTE ACCENT
    '\u02db'   #  0xFE -> OGONEK
    '\u02c7'   #  0xFF -> CARON
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_latin2.py
""" Python Character Mapping Codec mac_latin2 generated from 'MAPPINGS/VENDORS/MICSFT/MAC/LATIN2.TXT' with gencodec.py.

Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.
(c) Copyright 2000 Guido van Rossum.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-latin2',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\u0100'   #  0x81 -> LATIN CAPITAL LETTER A WITH MACRON
    '\u0101'   #  0x82 -> LATIN SMALL LETTER A WITH MACRON
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\u0104'   #  0x84 -> LATIN CAPITAL LETTER A WITH OGONEK
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x87 -> LATIN SMALL LETTER A WITH ACUTE
    '\u0105'   #  0x88 -> LATIN SMALL LETTER A WITH OGONEK
    '\u010c'   #  0x89 -> LATIN CAPITAL LETTER C WITH CARON
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\u010d'   #  0x8B -> LATIN SMALL LETTER C WITH CARON
    '\u0106'   #  0x8C -> LATIN CAPITAL LETTER C WITH ACUTE
    '\u0107'   #  0x8D -> LATIN SMALL LETTER C WITH ACUTE
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\u0179'   #  0x8F -> LATIN CAPITAL LETTER Z WITH ACUTE
    '\u017a'   #  0x90 -> LATIN SMALL LETTER Z WITH ACUTE
    '\u010e'   #  0x91 -> LATIN CAPITAL LETTER D WITH CARON
    '\xed'     #  0x92 -> LATIN SMALL LETTER I WITH ACUTE
    '\u010f'   #  0x93 -> LATIN SMALL LETTER D WITH CARON
    '\u0112'   #  0x94 -> LATIN CAPITAL LETTER E WITH MACRON
    '\u0113'   #  0x95 -> LATIN SMALL LETTER E WITH MACRON
    '\u0116'   #  0x96 -> LATIN CAPITAL LETTER E WITH DOT ABOVE
    '\xf3'     #  0x97 -> LATIN SMALL LETTER O WITH ACUTE
    '\u0117'   #  0x98 -> LATIN SMALL LETTER E WITH DOT ABOVE
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf5'     #  0x9B -> LATIN SMALL LETTER O WITH TILDE
    '\xfa'     #  0x9C -> LATIN SMALL LETTER U WITH ACUTE
    '\u011a'   #  0x9D -> LATIN CAPITAL LETTER E WITH CARON
    '\u011b'   #  0x9E -> LATIN SMALL LETTER E WITH CARON
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u2020'   #  0xA0 -> DAGGER
    '\xb0'     #  0xA1 -> DEGREE SIGN
    '\u0118'   #  0xA2 -> LATIN CAPITAL LETTER E WITH OGONEK
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa7'     #  0xA4 -> SECTION SIGN
    '\u2022'   #  0xA5 -> BULLET
    '\xb6'     #  0xA6 -> PILCROW SIGN
    '\xdf'     #  0xA7 -> LATIN SMALL LETTER SHARP S
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u2122'   #  0xAA -> TRADE MARK SIGN
    '\u0119'   #  0xAB -> LATIN SMALL LETTER E WITH OGONEK
    '\xa8'     #  0xAC -> DIAERESIS
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\u0123'   #  0xAE -> LATIN SMALL LETTER G WITH CEDILLA
    '\u012e'   #  0xAF -> LATIN CAPITAL LETTER I WITH OGONEK
    '\u012f'   #  0xB0 -> LATIN SMALL LETTER I WITH OGONEK
    '\u012a'   #  0xB1 -> LATIN CAPITAL LETTER I WITH MACRON
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\u012b'   #  0xB4 -> LATIN SMALL LETTER I WITH MACRON
    '\u0136'   #  0xB5 -> LATIN CAPITAL LETTER K WITH CEDILLA
    '\u2202'   #  0xB6 -> PARTIAL DIFFERENTIAL
    '\u2211'   #  0xB7 -> N-ARY SUMMATION
    '\u0142'   #  0xB8 -> LATIN SMALL LETTER L WITH STROKE
    '\u013b'   #  0xB9 -> LATIN CAPITAL LETTER L WITH CEDILLA
    '\u013c'   #  0xBA -> LATIN SMALL LETTER L WITH CEDILLA
    '\u013d'   #  0xBB -> LATIN CAPITAL LETTER L WITH CARON
    '\u013e'   #  0xBC -> LATIN SMALL LETTER L WITH CARON
    '\u0139'   #  0xBD -> LATIN CAPITAL LETTER L WITH ACUTE
    '\u013a'   #  0xBE -> LATIN SMALL LETTER L WITH ACUTE
    '\u0145'   #  0xBF -> LATIN CAPITAL LETTER N WITH CEDILLA
    '\u0146'   #  0xC0 -> LATIN SMALL LETTER N WITH CEDILLA
    '\u0143'   #  0xC1 -> LATIN CAPITAL LETTER N WITH ACUTE
    '\xac'     #  0xC2 -> NOT SIGN
    '\u221a'   #  0xC3 -> SQUARE ROOT
    '\u0144'   #  0xC4 -> LATIN SMALL LETTER N WITH ACUTE
    '\u0147'   #  0xC5 -> LATIN CAPITAL LETTER N WITH CARON
    '\u2206'   #  0xC6 -> INCREMENT
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\u0148'   #  0xCB -> LATIN SMALL LETTER N WITH CARON
    '\u0150'   #  0xCC -> LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
    '\xd5'     #  0xCD -> LATIN CAPITAL LETTER O WITH TILDE
    '\u0151'   #  0xCE -> LATIN SMALL LETTER O WITH DOUBLE ACUTE
    '\u014c'   #  0xCF -> LATIN CAPITAL LETTER O WITH MACRON
    '\u2013'   #  0xD0 -> EN DASH
    '\u2014'   #  0xD1 -> EM DASH
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u25ca'   #  0xD7 -> LOZENGE
    '\u014d'   #  0xD8 -> LATIN SMALL LETTER O WITH MACRON
    '\u0154'   #  0xD9 -> LATIN CAPITAL LETTER R WITH ACUTE
    '\u0155'   #  0xDA -> LATIN SMALL LETTER R WITH ACUTE
    '\u0158'   #  0xDB -> LATIN CAPITAL LETTER R WITH CARON
    '\u2039'   #  0xDC -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u203a'   #  0xDD -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u0159'   #  0xDE -> LATIN SMALL LETTER R WITH CARON
    '\u0156'   #  0xDF -> LATIN CAPITAL LETTER R WITH CEDILLA
    '\u0157'   #  0xE0 -> LATIN SMALL LETTER R WITH CEDILLA
    '\u0160'   #  0xE1 -> LATIN CAPITAL LETTER S WITH CARON
    '\u201a'   #  0xE2 -> SINGLE LOW-9 QUOTATION MARK
    '\u201e'   #  0xE3 -> DOUBLE LOW-9 QUOTATION MARK
    '\u0161'   #  0xE4 -> LATIN SMALL LETTER S WITH CARON
    '\u015a'   #  0xE5 -> LATIN CAPITAL LETTER S WITH ACUTE
    '\u015b'   #  0xE6 -> LATIN SMALL LETTER S WITH ACUTE
    '\xc1'     #  0xE7 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\u0164'   #  0xE8 -> LATIN CAPITAL LETTER T WITH CARON
    '\u0165'   #  0xE9 -> LATIN SMALL LETTER T WITH CARON
    '\xcd'     #  0xEA -> LATIN CAPITAL LETTER I WITH ACUTE
    '\u017d'   #  0xEB -> LATIN CAPITAL LETTER Z WITH CARON
    '\u017e'   #  0xEC -> LATIN SMALL LETTER Z WITH CARON
    '\u016a'   #  0xED -> LATIN CAPITAL LETTER U WITH MACRON
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xEF -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\u016b'   #  0xF0 -> LATIN SMALL LETTER U WITH MACRON
    '\u016e'   #  0xF1 -> LATIN CAPITAL LETTER U WITH RING ABOVE
    '\xda'     #  0xF2 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\u016f'   #  0xF3 -> LATIN SMALL LETTER U WITH RING ABOVE
    '\u0170'   #  0xF4 -> LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
    '\u0171'   #  0xF5 -> LATIN SMALL LETTER U WITH DOUBLE ACUTE
    '\u0172'   #  0xF6 -> LATIN CAPITAL LETTER U WITH OGONEK
    '\u0173'   #  0xF7 -> LATIN SMALL LETTER U WITH OGONEK
    '\xdd'     #  0xF8 -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xfd'     #  0xF9 -> LATIN SMALL LETTER Y WITH ACUTE
    '\u0137'   #  0xFA -> LATIN SMALL LETTER K WITH CEDILLA
    '\u017b'   #  0xFB -> LATIN CAPITAL LETTER Z WITH DOT ABOVE
    '\u0141'   #  0xFC -> LATIN CAPITAL LETTER L WITH STROKE
    '\u017c'   #  0xFD -> LATIN SMALL LETTER Z WITH DOT ABOVE
    '\u0122'   #  0xFE -> LATIN CAPITAL LETTER G WITH CEDILLA
    '\u02c7'   #  0xFF -> CARON
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_roman.py
""" Python Character Mapping Codec mac_roman generated from 'MAPPINGS/VENDORS/APPLE/ROMAN.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-roman',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x81 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'     #  0x82 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xd1'     #  0x84 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x87 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe0'     #  0x88 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe2'     #  0x89 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe3'     #  0x8B -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x8C -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x8D -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\xe8'     #  0x8F -> LATIN SMALL LETTER E WITH GRAVE
    '\xea'     #  0x90 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x91 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xed'     #  0x92 -> LATIN SMALL LETTER I WITH ACUTE
    '\xec'     #  0x93 -> LATIN SMALL LETTER I WITH GRAVE
    '\xee'     #  0x94 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x95 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf1'     #  0x96 -> LATIN SMALL LETTER N WITH TILDE
    '\xf3'     #  0x97 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf2'     #  0x98 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf5'     #  0x9B -> LATIN SMALL LETTER O WITH TILDE
    '\xfa'     #  0x9C -> LATIN SMALL LETTER U WITH ACUTE
    '\xf9'     #  0x9D -> LATIN SMALL LETTER U WITH GRAVE
    '\xfb'     #  0x9E -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u2020'   #  0xA0 -> DAGGER
    '\xb0'     #  0xA1 -> DEGREE SIGN
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa7'     #  0xA4 -> SECTION SIGN
    '\u2022'   #  0xA5 -> BULLET
    '\xb6'     #  0xA6 -> PILCROW SIGN
    '\xdf'     #  0xA7 -> LATIN SMALL LETTER SHARP S
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u2122'   #  0xAA -> TRADE MARK SIGN
    '\xb4'     #  0xAB -> ACUTE ACCENT
    '\xa8'     #  0xAC -> DIAERESIS
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\xc6'     #  0xAE -> LATIN CAPITAL LETTER AE
    '\xd8'     #  0xAF -> LATIN CAPITAL LETTER O WITH STROKE
    '\u221e'   #  0xB0 -> INFINITY
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\xa5'     #  0xB4 -> YEN SIGN
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\u2202'   #  0xB6 -> PARTIAL DIFFERENTIAL
    '\u2211'   #  0xB7 -> N-ARY SUMMATION
    '\u220f'   #  0xB8 -> N-ARY PRODUCT
    '\u03c0'   #  0xB9 -> GREEK SMALL LETTER PI
    '\u222b'   #  0xBA -> INTEGRAL
    '\xaa'     #  0xBB -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0xBC -> MASCULINE ORDINAL INDICATOR
    '\u03a9'   #  0xBD -> GREEK CAPITAL LETTER OMEGA
    '\xe6'     #  0xBE -> LATIN SMALL LETTER AE
    '\xf8'     #  0xBF -> LATIN SMALL LETTER O WITH STROKE
    '\xbf'     #  0xC0 -> INVERTED QUESTION MARK
    '\xa1'     #  0xC1 -> INVERTED EXCLAMATION MARK
    '\xac'     #  0xC2 -> NOT SIGN
    '\u221a'   #  0xC3 -> SQUARE ROOT
    '\u0192'   #  0xC4 -> LATIN SMALL LETTER F WITH HOOK
    '\u2248'   #  0xC5 -> ALMOST EQUAL TO
    '\u2206'   #  0xC6 -> INCREMENT
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\xc0'     #  0xCB -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc3'     #  0xCC -> LATIN CAPITAL LETTER A WITH TILDE
    '\xd5'     #  0xCD -> LATIN CAPITAL LETTER O WITH TILDE
    '\u0152'   #  0xCE -> LATIN CAPITAL LIGATURE OE
    '\u0153'   #  0xCF -> LATIN SMALL LIGATURE OE
    '\u2013'   #  0xD0 -> EN DASH
    '\u2014'   #  0xD1 -> EM DASH
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u25ca'   #  0xD7 -> LOZENGE
    '\xff'     #  0xD8 -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\u0178'   #  0xD9 -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\u2044'   #  0xDA -> FRACTION SLASH
    '\u20ac'   #  0xDB -> EURO SIGN
    '\u2039'   #  0xDC -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u203a'   #  0xDD -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\ufb01'   #  0xDE -> LATIN SMALL LIGATURE FI
    '\ufb02'   #  0xDF -> LATIN SMALL LIGATURE FL
    '\u2021'   #  0xE0 -> DOUBLE DAGGER
    '\xb7'     #  0xE1 -> MIDDLE DOT
    '\u201a'   #  0xE2 -> SINGLE LOW-9 QUOTATION MARK
    '\u201e'   #  0xE3 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2030'   #  0xE4 -> PER MILLE SIGN
    '\xc2'     #  0xE5 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xca'     #  0xE6 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xc1'     #  0xE7 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xcb'     #  0xE8 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0xE9 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0xEA -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xEB -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xEC -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0xED -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xEF -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\uf8ff'   #  0xF0 -> Apple logo
    '\xd2'     #  0xF1 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xda'     #  0xF2 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xF3 -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xd9'     #  0xF4 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\u0131'   #  0xF5 -> LATIN SMALL LETTER DOTLESS I
    '\u02c6'   #  0xF6 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u02dc'   #  0xF7 -> SMALL TILDE
    '\xaf'     #  0xF8 -> MACRON
    '\u02d8'   #  0xF9 -> BREVE
    '\u02d9'   #  0xFA -> DOT ABOVE
    '\u02da'   #  0xFB -> RING ABOVE
    '\xb8'     #  0xFC -> CEDILLA
    '\u02dd'   #  0xFD -> DOUBLE ACUTE ACCENT
    '\u02db'   #  0xFE -> OGONEK
    '\u02c7'   #  0xFF -> CARON
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_romanian.py
""" Python Character Mapping Codec mac_romanian generated from 'MAPPINGS/VENDORS/APPLE/ROMANIAN.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-romanian',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x81 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'     #  0x82 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xd1'     #  0x84 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x87 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe0'     #  0x88 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe2'     #  0x89 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe3'     #  0x8B -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x8C -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x8D -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\xe8'     #  0x8F -> LATIN SMALL LETTER E WITH GRAVE
    '\xea'     #  0x90 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x91 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xed'     #  0x92 -> LATIN SMALL LETTER I WITH ACUTE
    '\xec'     #  0x93 -> LATIN SMALL LETTER I WITH GRAVE
    '\xee'     #  0x94 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x95 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf1'     #  0x96 -> LATIN SMALL LETTER N WITH TILDE
    '\xf3'     #  0x97 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf2'     #  0x98 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf5'     #  0x9B -> LATIN SMALL LETTER O WITH TILDE
    '\xfa'     #  0x9C -> LATIN SMALL LETTER U WITH ACUTE
    '\xf9'     #  0x9D -> LATIN SMALL LETTER U WITH GRAVE
    '\xfb'     #  0x9E -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u2020'   #  0xA0 -> DAGGER
    '\xb0'     #  0xA1 -> DEGREE SIGN
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa7'     #  0xA4 -> SECTION SIGN
    '\u2022'   #  0xA5 -> BULLET
    '\xb6'     #  0xA6 -> PILCROW SIGN
    '\xdf'     #  0xA7 -> LATIN SMALL LETTER SHARP S
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u2122'   #  0xAA -> TRADE MARK SIGN
    '\xb4'     #  0xAB -> ACUTE ACCENT
    '\xa8'     #  0xAC -> DIAERESIS
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\u0102'   #  0xAE -> LATIN CAPITAL LETTER A WITH BREVE
    '\u0218'   #  0xAF -> LATIN CAPITAL LETTER S WITH COMMA BELOW # for Unicode 3.0 and later
    '\u221e'   #  0xB0 -> INFINITY
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\xa5'     #  0xB4 -> YEN SIGN
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\u2202'   #  0xB6 -> PARTIAL DIFFERENTIAL
    '\u2211'   #  0xB7 -> N-ARY SUMMATION
    '\u220f'   #  0xB8 -> N-ARY PRODUCT
    '\u03c0'   #  0xB9 -> GREEK SMALL LETTER PI
    '\u222b'   #  0xBA -> INTEGRAL
    '\xaa'     #  0xBB -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0xBC -> MASCULINE ORDINAL INDICATOR
    '\u03a9'   #  0xBD -> GREEK CAPITAL LETTER OMEGA
    '\u0103'   #  0xBE -> LATIN SMALL LETTER A WITH BREVE
    '\u0219'   #  0xBF -> LATIN SMALL LETTER S WITH COMMA BELOW # for Unicode 3.0 and later
    '\xbf'     #  0xC0 -> INVERTED QUESTION MARK
    '\xa1'     #  0xC1 -> INVERTED EXCLAMATION MARK
    '\xac'     #  0xC2 -> NOT SIGN
    '\u221a'   #  0xC3 -> SQUARE ROOT
    '\u0192'   #  0xC4 -> LATIN SMALL LETTER F WITH HOOK
    '\u2248'   #  0xC5 -> ALMOST EQUAL TO
    '\u2206'   #  0xC6 -> INCREMENT
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\xc0'     #  0xCB -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc3'     #  0xCC -> LATIN CAPITAL LETTER A WITH TILDE
    '\xd5'     #  0xCD -> LATIN CAPITAL LETTER O WITH TILDE
    '\u0152'   #  0xCE -> LATIN CAPITAL LIGATURE OE
    '\u0153'   #  0xCF -> LATIN SMALL LIGATURE OE
    '\u2013'   #  0xD0 -> EN DASH
    '\u2014'   #  0xD1 -> EM DASH
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u25ca'   #  0xD7 -> LOZENGE
    '\xff'     #  0xD8 -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\u0178'   #  0xD9 -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\u2044'   #  0xDA -> FRACTION SLASH
    '\u20ac'   #  0xDB -> EURO SIGN
    '\u2039'   #  0xDC -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u203a'   #  0xDD -> SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    '\u021a'   #  0xDE -> LATIN CAPITAL LETTER T WITH COMMA BELOW # for Unicode 3.0 and later
    '\u021b'   #  0xDF -> LATIN SMALL LETTER T WITH COMMA BELOW # for Unicode 3.0 and later
    '\u2021'   #  0xE0 -> DOUBLE DAGGER
    '\xb7'     #  0xE1 -> MIDDLE DOT
    '\u201a'   #  0xE2 -> SINGLE LOW-9 QUOTATION MARK
    '\u201e'   #  0xE3 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2030'   #  0xE4 -> PER MILLE SIGN
    '\xc2'     #  0xE5 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xca'     #  0xE6 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xc1'     #  0xE7 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xcb'     #  0xE8 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0xE9 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0xEA -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xEB -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xEC -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0xED -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xEF -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\uf8ff'   #  0xF0 -> Apple logo
    '\xd2'     #  0xF1 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xda'     #  0xF2 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xF3 -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xd9'     #  0xF4 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\u0131'   #  0xF5 -> LATIN SMALL LETTER DOTLESS I
    '\u02c6'   #  0xF6 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u02dc'   #  0xF7 -> SMALL TILDE
    '\xaf'     #  0xF8 -> MACRON
    '\u02d8'   #  0xF9 -> BREVE
    '\u02d9'   #  0xFA -> DOT ABOVE
    '\u02da'   #  0xFB -> RING ABOVE
    '\xb8'     #  0xFC -> CEDILLA
    '\u02dd'   #  0xFD -> DOUBLE ACUTE ACCENT
    '\u02db'   #  0xFE -> OGONEK
    '\u02c7'   #  0xFF -> CARON
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mac_turkish.py
""" Python Character Mapping Codec mac_turkish generated from 'MAPPINGS/VENDORS/APPLE/TURKISH.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mac-turkish',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> CONTROL CHARACTER
    '\x01'     #  0x01 -> CONTROL CHARACTER
    '\x02'     #  0x02 -> CONTROL CHARACTER
    '\x03'     #  0x03 -> CONTROL CHARACTER
    '\x04'     #  0x04 -> CONTROL CHARACTER
    '\x05'     #  0x05 -> CONTROL CHARACTER
    '\x06'     #  0x06 -> CONTROL CHARACTER
    '\x07'     #  0x07 -> CONTROL CHARACTER
    '\x08'     #  0x08 -> CONTROL CHARACTER
    '\t'       #  0x09 -> CONTROL CHARACTER
    '\n'       #  0x0A -> CONTROL CHARACTER
    '\x0b'     #  0x0B -> CONTROL CHARACTER
    '\x0c'     #  0x0C -> CONTROL CHARACTER
    '\r'       #  0x0D -> CONTROL CHARACTER
    '\x0e'     #  0x0E -> CONTROL CHARACTER
    '\x0f'     #  0x0F -> CONTROL CHARACTER
    '\x10'     #  0x10 -> CONTROL CHARACTER
    '\x11'     #  0x11 -> CONTROL CHARACTER
    '\x12'     #  0x12 -> CONTROL CHARACTER
    '\x13'     #  0x13 -> CONTROL CHARACTER
    '\x14'     #  0x14 -> CONTROL CHARACTER
    '\x15'     #  0x15 -> CONTROL CHARACTER
    '\x16'     #  0x16 -> CONTROL CHARACTER
    '\x17'     #  0x17 -> CONTROL CHARACTER
    '\x18'     #  0x18 -> CONTROL CHARACTER
    '\x19'     #  0x19 -> CONTROL CHARACTER
    '\x1a'     #  0x1A -> CONTROL CHARACTER
    '\x1b'     #  0x1B -> CONTROL CHARACTER
    '\x1c'     #  0x1C -> CONTROL CHARACTER
    '\x1d'     #  0x1D -> CONTROL CHARACTER
    '\x1e'     #  0x1E -> CONTROL CHARACTER
    '\x1f'     #  0x1F -> CONTROL CHARACTER
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> CONTROL CHARACTER
    '\xc4'     #  0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0x81 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc7'     #  0x82 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc9'     #  0x83 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xd1'     #  0x84 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd6'     #  0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xdc'     #  0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xe1'     #  0x87 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe0'     #  0x88 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe2'     #  0x89 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe4'     #  0x8A -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe3'     #  0x8B -> LATIN SMALL LETTER A WITH TILDE
    '\xe5'     #  0x8C -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe7'     #  0x8D -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe9'     #  0x8E -> LATIN SMALL LETTER E WITH ACUTE
    '\xe8'     #  0x8F -> LATIN SMALL LETTER E WITH GRAVE
    '\xea'     #  0x90 -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0x91 -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xed'     #  0x92 -> LATIN SMALL LETTER I WITH ACUTE
    '\xec'     #  0x93 -> LATIN SMALL LETTER I WITH GRAVE
    '\xee'     #  0x94 -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0x95 -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf1'     #  0x96 -> LATIN SMALL LETTER N WITH TILDE
    '\xf3'     #  0x97 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf2'     #  0x98 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf4'     #  0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf6'     #  0x9A -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf5'     #  0x9B -> LATIN SMALL LETTER O WITH TILDE
    '\xfa'     #  0x9C -> LATIN SMALL LETTER U WITH ACUTE
    '\xf9'     #  0x9D -> LATIN SMALL LETTER U WITH GRAVE
    '\xfb'     #  0x9E -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0x9F -> LATIN SMALL LETTER U WITH DIAERESIS
    '\u2020'   #  0xA0 -> DAGGER
    '\xb0'     #  0xA1 -> DEGREE SIGN
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa7'     #  0xA4 -> SECTION SIGN
    '\u2022'   #  0xA5 -> BULLET
    '\xb6'     #  0xA6 -> PILCROW SIGN
    '\xdf'     #  0xA7 -> LATIN SMALL LETTER SHARP S
    '\xae'     #  0xA8 -> REGISTERED SIGN
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u2122'   #  0xAA -> TRADE MARK SIGN
    '\xb4'     #  0xAB -> ACUTE ACCENT
    '\xa8'     #  0xAC -> DIAERESIS
    '\u2260'   #  0xAD -> NOT EQUAL TO
    '\xc6'     #  0xAE -> LATIN CAPITAL LETTER AE
    '\xd8'     #  0xAF -> LATIN CAPITAL LETTER O WITH STROKE
    '\u221e'   #  0xB0 -> INFINITY
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\u2264'   #  0xB2 -> LESS-THAN OR EQUAL TO
    '\u2265'   #  0xB3 -> GREATER-THAN OR EQUAL TO
    '\xa5'     #  0xB4 -> YEN SIGN
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\u2202'   #  0xB6 -> PARTIAL DIFFERENTIAL
    '\u2211'   #  0xB7 -> N-ARY SUMMATION
    '\u220f'   #  0xB8 -> N-ARY PRODUCT
    '\u03c0'   #  0xB9 -> GREEK SMALL LETTER PI
    '\u222b'   #  0xBA -> INTEGRAL
    '\xaa'     #  0xBB -> FEMININE ORDINAL INDICATOR
    '\xba'     #  0xBC -> MASCULINE ORDINAL INDICATOR
    '\u03a9'   #  0xBD -> GREEK CAPITAL LETTER OMEGA
    '\xe6'     #  0xBE -> LATIN SMALL LETTER AE
    '\xf8'     #  0xBF -> LATIN SMALL LETTER O WITH STROKE
    '\xbf'     #  0xC0 -> INVERTED QUESTION MARK
    '\xa1'     #  0xC1 -> INVERTED EXCLAMATION MARK
    '\xac'     #  0xC2 -> NOT SIGN
    '\u221a'   #  0xC3 -> SQUARE ROOT
    '\u0192'   #  0xC4 -> LATIN SMALL LETTER F WITH HOOK
    '\u2248'   #  0xC5 -> ALMOST EQUAL TO
    '\u2206'   #  0xC6 -> INCREMENT
    '\xab'     #  0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbb'     #  0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u2026'   #  0xC9 -> HORIZONTAL ELLIPSIS
    '\xa0'     #  0xCA -> NO-BREAK SPACE
    '\xc0'     #  0xCB -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc3'     #  0xCC -> LATIN CAPITAL LETTER A WITH TILDE
    '\xd5'     #  0xCD -> LATIN CAPITAL LETTER O WITH TILDE
    '\u0152'   #  0xCE -> LATIN CAPITAL LIGATURE OE
    '\u0153'   #  0xCF -> LATIN SMALL LIGATURE OE
    '\u2013'   #  0xD0 -> EN DASH
    '\u2014'   #  0xD1 -> EM DASH
    '\u201c'   #  0xD2 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0xD3 -> RIGHT DOUBLE QUOTATION MARK
    '\u2018'   #  0xD4 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0xD5 -> RIGHT SINGLE QUOTATION MARK
    '\xf7'     #  0xD6 -> DIVISION SIGN
    '\u25ca'   #  0xD7 -> LOZENGE
    '\xff'     #  0xD8 -> LATIN SMALL LETTER Y WITH DIAERESIS
    '\u0178'   #  0xD9 -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\u011e'   #  0xDA -> LATIN CAPITAL LETTER G WITH BREVE
    '\u011f'   #  0xDB -> LATIN SMALL LETTER G WITH BREVE
    '\u0130'   #  0xDC -> LATIN CAPITAL LETTER I WITH DOT ABOVE
    '\u0131'   #  0xDD -> LATIN SMALL LETTER DOTLESS I
    '\u015e'   #  0xDE -> LATIN CAPITAL LETTER S WITH CEDILLA
    '\u015f'   #  0xDF -> LATIN SMALL LETTER S WITH CEDILLA
    '\u2021'   #  0xE0 -> DOUBLE DAGGER
    '\xb7'     #  0xE1 -> MIDDLE DOT
    '\u201a'   #  0xE2 -> SINGLE LOW-9 QUOTATION MARK
    '\u201e'   #  0xE3 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2030'   #  0xE4 -> PER MILLE SIGN
    '\xc2'     #  0xE5 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xca'     #  0xE6 -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xc1'     #  0xE7 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xcb'     #  0xE8 -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xc8'     #  0xE9 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xcd'     #  0xEA -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xEB -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xEC -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xcc'     #  0xED -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xd3'     #  0xEE -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xEF -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\uf8ff'   #  0xF0 -> Apple logo
    '\xd2'     #  0xF1 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xda'     #  0xF2 -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xF3 -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xd9'     #  0xF4 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\uf8a0'   #  0xF5 -> undefined1
    '\u02c6'   #  0xF6 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u02dc'   #  0xF7 -> SMALL TILDE
    '\xaf'     #  0xF8 -> MACRON
    '\u02d8'   #  0xF9 -> BREVE
    '\u02d9'   #  0xFA -> DOT ABOVE
    '\u02da'   #  0xFB -> RING ABOVE
    '\xb8'     #  0xFC -> CEDILLA
    '\u02dd'   #  0xFD -> DOUBLE ACUTE ACCENT
    '\u02db'   #  0xFE -> OGONEK
    '\u02c7'   #  0xFF -> CARON
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\mbcs.py
""" Python 'mbcs' Codec for Windows


Cloned by Mark Hammond ([email protected]) from ascii.py,
which was written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
# Import them explicitly to cause an ImportError
# on non-Windows systems
from codecs import mbcs_encode, mbcs_decode
# for IncrementalDecoder, IncrementalEncoder, ...
import codecs

### Codec APIs

encode = mbcs_encode

def decode(input, errors='strict'):
    return mbcs_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return mbcs_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    _buffer_decode = mbcs_decode

class StreamWriter(codecs.StreamWriter):
    encode = mbcs_encode

class StreamReader(codecs.StreamReader):
    decode = mbcs_decode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='mbcs',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\palmos.py
""" Python Character Mapping Codec for PalmOS 3.5.

Written by Sjoerd Mullender ([email protected]); based on iso8859_15.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):
    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='palmos',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\u20ac'   #  0x80 -> EURO SIGN
    '\x81'     #  0x81 -> <control>
    '\u201a'   #  0x82 -> SINGLE LOW-9 QUOTATION MARK
    '\u0192'   #  0x83 -> LATIN SMALL LETTER F WITH HOOK
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u2020'   #  0x86 -> DAGGER
    '\u2021'   #  0x87 -> DOUBLE DAGGER
    '\u02c6'   #  0x88 -> MODIFIER LETTER CIRCUMFLEX ACCENT
    '\u2030'   #  0x89 -> PER MILLE SIGN
    '\u0160'   #  0x8A -> LATIN CAPITAL LETTER S WITH CARON
    '\u2039'   #  0x8B -> SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    '\u0152'   #  0x8C -> LATIN CAPITAL LIGATURE OE
    '\u2666'   #  0x8D -> BLACK DIAMOND SUIT
    '\u2663'   #  0x8E -> BLACK CLUB SUIT
    '\u2665'   #  0x8F -> BLACK HEART SUIT
    '\u2660'   #  0x90 -> BLACK SPADE SUIT
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\u02dc'   #  0x98 -> SMALL TILDE
    '\u2122'   #  0x99 -> TRADE MARK SIGN
    '\u0161'   #  0x9A -> LATIN SMALL LETTER S WITH CARON
    '\x9b'     #  0x9B -> <control>
    '\u0153'   #  0x9C -> LATIN SMALL LIGATURE OE
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\u0178'   #  0x9F -> LATIN CAPITAL LETTER Y WITH DIAERESIS
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\xa1'     #  0xA1 -> INVERTED EXCLAMATION MARK
    '\xa2'     #  0xA2 -> CENT SIGN
    '\xa3'     #  0xA3 -> POUND SIGN
    '\xa4'     #  0xA4 -> CURRENCY SIGN
    '\xa5'     #  0xA5 -> YEN SIGN
    '\xa6'     #  0xA6 -> BROKEN BAR
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\xa8'     #  0xA8 -> DIAERESIS
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\xaa'     #  0xAA -> FEMININE ORDINAL INDICATOR
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\xad'     #  0xAD -> SOFT HYPHEN
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\xaf'     #  0xAF -> MACRON
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\xb1'     #  0xB1 -> PLUS-MINUS SIGN
    '\xb2'     #  0xB2 -> SUPERSCRIPT TWO
    '\xb3'     #  0xB3 -> SUPERSCRIPT THREE
    '\xb4'     #  0xB4 -> ACUTE ACCENT
    '\xb5'     #  0xB5 -> MICRO SIGN
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\xb8'     #  0xB8 -> CEDILLA
    '\xb9'     #  0xB9 -> SUPERSCRIPT ONE
    '\xba'     #  0xBA -> MASCULINE ORDINAL INDICATOR
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xbc'     #  0xBC -> VULGAR FRACTION ONE QUARTER
    '\xbd'     #  0xBD -> VULGAR FRACTION ONE HALF
    '\xbe'     #  0xBE -> VULGAR FRACTION THREE QUARTERS
    '\xbf'     #  0xBF -> INVERTED QUESTION MARK
    '\xc0'     #  0xC0 -> LATIN CAPITAL LETTER A WITH GRAVE
    '\xc1'     #  0xC1 -> LATIN CAPITAL LETTER A WITH ACUTE
    '\xc2'     #  0xC2 -> LATIN CAPITAL LETTER A WITH CIRCUMFLEX
    '\xc3'     #  0xC3 -> LATIN CAPITAL LETTER A WITH TILDE
    '\xc4'     #  0xC4 -> LATIN CAPITAL LETTER A WITH DIAERESIS
    '\xc5'     #  0xC5 -> LATIN CAPITAL LETTER A WITH RING ABOVE
    '\xc6'     #  0xC6 -> LATIN CAPITAL LETTER AE
    '\xc7'     #  0xC7 -> LATIN CAPITAL LETTER C WITH CEDILLA
    '\xc8'     #  0xC8 -> LATIN CAPITAL LETTER E WITH GRAVE
    '\xc9'     #  0xC9 -> LATIN CAPITAL LETTER E WITH ACUTE
    '\xca'     #  0xCA -> LATIN CAPITAL LETTER E WITH CIRCUMFLEX
    '\xcb'     #  0xCB -> LATIN CAPITAL LETTER E WITH DIAERESIS
    '\xcc'     #  0xCC -> LATIN CAPITAL LETTER I WITH GRAVE
    '\xcd'     #  0xCD -> LATIN CAPITAL LETTER I WITH ACUTE
    '\xce'     #  0xCE -> LATIN CAPITAL LETTER I WITH CIRCUMFLEX
    '\xcf'     #  0xCF -> LATIN CAPITAL LETTER I WITH DIAERESIS
    '\xd0'     #  0xD0 -> LATIN CAPITAL LETTER ETH (Icelandic)
    '\xd1'     #  0xD1 -> LATIN CAPITAL LETTER N WITH TILDE
    '\xd2'     #  0xD2 -> LATIN CAPITAL LETTER O WITH GRAVE
    '\xd3'     #  0xD3 -> LATIN CAPITAL LETTER O WITH ACUTE
    '\xd4'     #  0xD4 -> LATIN CAPITAL LETTER O WITH CIRCUMFLEX
    '\xd5'     #  0xD5 -> LATIN CAPITAL LETTER O WITH TILDE
    '\xd6'     #  0xD6 -> LATIN CAPITAL LETTER O WITH DIAERESIS
    '\xd7'     #  0xD7 -> MULTIPLICATION SIGN
    '\xd8'     #  0xD8 -> LATIN CAPITAL LETTER O WITH STROKE
    '\xd9'     #  0xD9 -> LATIN CAPITAL LETTER U WITH GRAVE
    '\xda'     #  0xDA -> LATIN CAPITAL LETTER U WITH ACUTE
    '\xdb'     #  0xDB -> LATIN CAPITAL LETTER U WITH CIRCUMFLEX
    '\xdc'     #  0xDC -> LATIN CAPITAL LETTER U WITH DIAERESIS
    '\xdd'     #  0xDD -> LATIN CAPITAL LETTER Y WITH ACUTE
    '\xde'     #  0xDE -> LATIN CAPITAL LETTER THORN (Icelandic)
    '\xdf'     #  0xDF -> LATIN SMALL LETTER SHARP S (German)
    '\xe0'     #  0xE0 -> LATIN SMALL LETTER A WITH GRAVE
    '\xe1'     #  0xE1 -> LATIN SMALL LETTER A WITH ACUTE
    '\xe2'     #  0xE2 -> LATIN SMALL LETTER A WITH CIRCUMFLEX
    '\xe3'     #  0xE3 -> LATIN SMALL LETTER A WITH TILDE
    '\xe4'     #  0xE4 -> LATIN SMALL LETTER A WITH DIAERESIS
    '\xe5'     #  0xE5 -> LATIN SMALL LETTER A WITH RING ABOVE
    '\xe6'     #  0xE6 -> LATIN SMALL LETTER AE
    '\xe7'     #  0xE7 -> LATIN SMALL LETTER C WITH CEDILLA
    '\xe8'     #  0xE8 -> LATIN SMALL LETTER E WITH GRAVE
    '\xe9'     #  0xE9 -> LATIN SMALL LETTER E WITH ACUTE
    '\xea'     #  0xEA -> LATIN SMALL LETTER E WITH CIRCUMFLEX
    '\xeb'     #  0xEB -> LATIN SMALL LETTER E WITH DIAERESIS
    '\xec'     #  0xEC -> LATIN SMALL LETTER I WITH GRAVE
    '\xed'     #  0xED -> LATIN SMALL LETTER I WITH ACUTE
    '\xee'     #  0xEE -> LATIN SMALL LETTER I WITH CIRCUMFLEX
    '\xef'     #  0xEF -> LATIN SMALL LETTER I WITH DIAERESIS
    '\xf0'     #  0xF0 -> LATIN SMALL LETTER ETH (Icelandic)
    '\xf1'     #  0xF1 -> LATIN SMALL LETTER N WITH TILDE
    '\xf2'     #  0xF2 -> LATIN SMALL LETTER O WITH GRAVE
    '\xf3'     #  0xF3 -> LATIN SMALL LETTER O WITH ACUTE
    '\xf4'     #  0xF4 -> LATIN SMALL LETTER O WITH CIRCUMFLEX
    '\xf5'     #  0xF5 -> LATIN SMALL LETTER O WITH TILDE
    '\xf6'     #  0xF6 -> LATIN SMALL LETTER O WITH DIAERESIS
    '\xf7'     #  0xF7 -> DIVISION SIGN
    '\xf8'     #  0xF8 -> LATIN SMALL LETTER O WITH STROKE
    '\xf9'     #  0xF9 -> LATIN SMALL LETTER U WITH GRAVE
    '\xfa'     #  0xFA -> LATIN SMALL LETTER U WITH ACUTE
    '\xfb'     #  0xFB -> LATIN SMALL LETTER U WITH CIRCUMFLEX
    '\xfc'     #  0xFC -> LATIN SMALL LETTER U WITH DIAERESIS
    '\xfd'     #  0xFD -> LATIN SMALL LETTER Y WITH ACUTE
    '\xfe'     #  0xFE -> LATIN SMALL LETTER THORN (Icelandic)
    '\xff'     #  0xFF -> LATIN SMALL LETTER Y WITH DIAERESIS
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\ptcp154.py
""" Python Character Mapping Codec generated from 'PTCP154.txt' with gencodec.py.

Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.
(c) Copyright 2000 Guido van Rossum.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='ptcp154',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE (DEL)
    '\u0496'   #  0x80 -> CYRILLIC CAPITAL LETTER ZHE WITH DESCENDER
    '\u0492'   #  0x81 -> CYRILLIC CAPITAL LETTER GHE WITH STROKE
    '\u04ee'   #  0x82 -> CYRILLIC CAPITAL LETTER U WITH MACRON
    '\u0493'   #  0x83 -> CYRILLIC SMALL LETTER GHE WITH STROKE
    '\u201e'   #  0x84 -> DOUBLE LOW-9 QUOTATION MARK
    '\u2026'   #  0x85 -> HORIZONTAL ELLIPSIS
    '\u04b6'   #  0x86 -> CYRILLIC CAPITAL LETTER CHE WITH DESCENDER
    '\u04ae'   #  0x87 -> CYRILLIC CAPITAL LETTER STRAIGHT U
    '\u04b2'   #  0x88 -> CYRILLIC CAPITAL LETTER HA WITH DESCENDER
    '\u04af'   #  0x89 -> CYRILLIC SMALL LETTER STRAIGHT U
    '\u04a0'   #  0x8A -> CYRILLIC CAPITAL LETTER BASHKIR KA
    '\u04e2'   #  0x8B -> CYRILLIC CAPITAL LETTER I WITH MACRON
    '\u04a2'   #  0x8C -> CYRILLIC CAPITAL LETTER EN WITH DESCENDER
    '\u049a'   #  0x8D -> CYRILLIC CAPITAL LETTER KA WITH DESCENDER
    '\u04ba'   #  0x8E -> CYRILLIC CAPITAL LETTER SHHA
    '\u04b8'   #  0x8F -> CYRILLIC CAPITAL LETTER CHE WITH VERTICAL STROKE
    '\u0497'   #  0x90 -> CYRILLIC SMALL LETTER ZHE WITH DESCENDER
    '\u2018'   #  0x91 -> LEFT SINGLE QUOTATION MARK
    '\u2019'   #  0x92 -> RIGHT SINGLE QUOTATION MARK
    '\u201c'   #  0x93 -> LEFT DOUBLE QUOTATION MARK
    '\u201d'   #  0x94 -> RIGHT DOUBLE QUOTATION MARK
    '\u2022'   #  0x95 -> BULLET
    '\u2013'   #  0x96 -> EN DASH
    '\u2014'   #  0x97 -> EM DASH
    '\u04b3'   #  0x98 -> CYRILLIC SMALL LETTER HA WITH DESCENDER
    '\u04b7'   #  0x99 -> CYRILLIC SMALL LETTER CHE WITH DESCENDER
    '\u04a1'   #  0x9A -> CYRILLIC SMALL LETTER BASHKIR KA
    '\u04e3'   #  0x9B -> CYRILLIC SMALL LETTER I WITH MACRON
    '\u04a3'   #  0x9C -> CYRILLIC SMALL LETTER EN WITH DESCENDER
    '\u049b'   #  0x9D -> CYRILLIC SMALL LETTER KA WITH DESCENDER
    '\u04bb'   #  0x9E -> CYRILLIC SMALL LETTER SHHA
    '\u04b9'   #  0x9F -> CYRILLIC SMALL LETTER CHE WITH VERTICAL STROKE
    '\xa0'     #  0xA0 -> NO-BREAK SPACE
    '\u040e'   #  0xA1 -> CYRILLIC CAPITAL LETTER SHORT U (Byelorussian)
    '\u045e'   #  0xA2 -> CYRILLIC SMALL LETTER SHORT U (Byelorussian)
    '\u0408'   #  0xA3 -> CYRILLIC CAPITAL LETTER JE
    '\u04e8'   #  0xA4 -> CYRILLIC CAPITAL LETTER BARRED O
    '\u0498'   #  0xA5 -> CYRILLIC CAPITAL LETTER ZE WITH DESCENDER
    '\u04b0'   #  0xA6 -> CYRILLIC CAPITAL LETTER STRAIGHT U WITH STROKE
    '\xa7'     #  0xA7 -> SECTION SIGN
    '\u0401'   #  0xA8 -> CYRILLIC CAPITAL LETTER IO
    '\xa9'     #  0xA9 -> COPYRIGHT SIGN
    '\u04d8'   #  0xAA -> CYRILLIC CAPITAL LETTER SCHWA
    '\xab'     #  0xAB -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\xac'     #  0xAC -> NOT SIGN
    '\u04ef'   #  0xAD -> CYRILLIC SMALL LETTER U WITH MACRON
    '\xae'     #  0xAE -> REGISTERED SIGN
    '\u049c'   #  0xAF -> CYRILLIC CAPITAL LETTER KA WITH VERTICAL STROKE
    '\xb0'     #  0xB0 -> DEGREE SIGN
    '\u04b1'   #  0xB1 -> CYRILLIC SMALL LETTER STRAIGHT U WITH STROKE
    '\u0406'   #  0xB2 -> CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0456'   #  0xB3 -> CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
    '\u0499'   #  0xB4 -> CYRILLIC SMALL LETTER ZE WITH DESCENDER
    '\u04e9'   #  0xB5 -> CYRILLIC SMALL LETTER BARRED O
    '\xb6'     #  0xB6 -> PILCROW SIGN
    '\xb7'     #  0xB7 -> MIDDLE DOT
    '\u0451'   #  0xB8 -> CYRILLIC SMALL LETTER IO
    '\u2116'   #  0xB9 -> NUMERO SIGN
    '\u04d9'   #  0xBA -> CYRILLIC SMALL LETTER SCHWA
    '\xbb'     #  0xBB -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
    '\u0458'   #  0xBC -> CYRILLIC SMALL LETTER JE
    '\u04aa'   #  0xBD -> CYRILLIC CAPITAL LETTER ES WITH DESCENDER
    '\u04ab'   #  0xBE -> CYRILLIC SMALL LETTER ES WITH DESCENDER
    '\u049d'   #  0xBF -> CYRILLIC SMALL LETTER KA WITH VERTICAL STROKE
    '\u0410'   #  0xC0 -> CYRILLIC CAPITAL LETTER A
    '\u0411'   #  0xC1 -> CYRILLIC CAPITAL LETTER BE
    '\u0412'   #  0xC2 -> CYRILLIC CAPITAL LETTER VE
    '\u0413'   #  0xC3 -> CYRILLIC CAPITAL LETTER GHE
    '\u0414'   #  0xC4 -> CYRILLIC CAPITAL LETTER DE
    '\u0415'   #  0xC5 -> CYRILLIC CAPITAL LETTER IE
    '\u0416'   #  0xC6 -> CYRILLIC CAPITAL LETTER ZHE
    '\u0417'   #  0xC7 -> CYRILLIC CAPITAL LETTER ZE
    '\u0418'   #  0xC8 -> CYRILLIC CAPITAL LETTER I
    '\u0419'   #  0xC9 -> CYRILLIC CAPITAL LETTER SHORT I
    '\u041a'   #  0xCA -> CYRILLIC CAPITAL LETTER KA
    '\u041b'   #  0xCB -> CYRILLIC CAPITAL LETTER EL
    '\u041c'   #  0xCC -> CYRILLIC CAPITAL LETTER EM
    '\u041d'   #  0xCD -> CYRILLIC CAPITAL LETTER EN
    '\u041e'   #  0xCE -> CYRILLIC CAPITAL LETTER O
    '\u041f'   #  0xCF -> CYRILLIC CAPITAL LETTER PE
    '\u0420'   #  0xD0 -> CYRILLIC CAPITAL LETTER ER
    '\u0421'   #  0xD1 -> CYRILLIC CAPITAL LETTER ES
    '\u0422'   #  0xD2 -> CYRILLIC CAPITAL LETTER TE
    '\u0423'   #  0xD3 -> CYRILLIC CAPITAL LETTER U
    '\u0424'   #  0xD4 -> CYRILLIC CAPITAL LETTER EF
    '\u0425'   #  0xD5 -> CYRILLIC CAPITAL LETTER HA
    '\u0426'   #  0xD6 -> CYRILLIC CAPITAL LETTER TSE
    '\u0427'   #  0xD7 -> CYRILLIC CAPITAL LETTER CHE
    '\u0428'   #  0xD8 -> CYRILLIC CAPITAL LETTER SHA
    '\u0429'   #  0xD9 -> CYRILLIC CAPITAL LETTER SHCHA
    '\u042a'   #  0xDA -> CYRILLIC CAPITAL LETTER HARD SIGN
    '\u042b'   #  0xDB -> CYRILLIC CAPITAL LETTER YERU
    '\u042c'   #  0xDC -> CYRILLIC CAPITAL LETTER SOFT SIGN
    '\u042d'   #  0xDD -> CYRILLIC CAPITAL LETTER E
    '\u042e'   #  0xDE -> CYRILLIC CAPITAL LETTER YU
    '\u042f'   #  0xDF -> CYRILLIC CAPITAL LETTER YA
    '\u0430'   #  0xE0 -> CYRILLIC SMALL LETTER A
    '\u0431'   #  0xE1 -> CYRILLIC SMALL LETTER BE
    '\u0432'   #  0xE2 -> CYRILLIC SMALL LETTER VE
    '\u0433'   #  0xE3 -> CYRILLIC SMALL LETTER GHE
    '\u0434'   #  0xE4 -> CYRILLIC SMALL LETTER DE
    '\u0435'   #  0xE5 -> CYRILLIC SMALL LETTER IE
    '\u0436'   #  0xE6 -> CYRILLIC SMALL LETTER ZHE
    '\u0437'   #  0xE7 -> CYRILLIC SMALL LETTER ZE
    '\u0438'   #  0xE8 -> CYRILLIC SMALL LETTER I
    '\u0439'   #  0xE9 -> CYRILLIC SMALL LETTER SHORT I
    '\u043a'   #  0xEA -> CYRILLIC SMALL LETTER KA
    '\u043b'   #  0xEB -> CYRILLIC SMALL LETTER EL
    '\u043c'   #  0xEC -> CYRILLIC SMALL LETTER EM
    '\u043d'   #  0xED -> CYRILLIC SMALL LETTER EN
    '\u043e'   #  0xEE -> CYRILLIC SMALL LETTER O
    '\u043f'   #  0xEF -> CYRILLIC SMALL LETTER PE
    '\u0440'   #  0xF0 -> CYRILLIC SMALL LETTER ER
    '\u0441'   #  0xF1 -> CYRILLIC SMALL LETTER ES
    '\u0442'   #  0xF2 -> CYRILLIC SMALL LETTER TE
    '\u0443'   #  0xF3 -> CYRILLIC SMALL LETTER U
    '\u0444'   #  0xF4 -> CYRILLIC SMALL LETTER EF
    '\u0445'   #  0xF5 -> CYRILLIC SMALL LETTER HA
    '\u0446'   #  0xF6 -> CYRILLIC SMALL LETTER TSE
    '\u0447'   #  0xF7 -> CYRILLIC SMALL LETTER CHE
    '\u0448'   #  0xF8 -> CYRILLIC SMALL LETTER SHA
    '\u0449'   #  0xF9 -> CYRILLIC SMALL LETTER SHCHA
    '\u044a'   #  0xFA -> CYRILLIC SMALL LETTER HARD SIGN
    '\u044b'   #  0xFB -> CYRILLIC SMALL LETTER YERU
    '\u044c'   #  0xFC -> CYRILLIC SMALL LETTER SOFT SIGN
    '\u044d'   #  0xFD -> CYRILLIC SMALL LETTER E
    '\u044e'   #  0xFE -> CYRILLIC SMALL LETTER YU
    '\u044f'   #  0xFF -> CYRILLIC SMALL LETTER YA
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\punycode.py
""" Codec for the Punicode encoding, as specified in RFC 3492

Written by Martin v. Löwis.
"""

import codecs

##################### Encoding #####################################

def segregate(str):
    """3.1 Basic code point segregation"""
    base = bytearray()
    extended = set()
    for c in str:
        if ord(c) < 128:
            base.append(ord(c))
        else:
            extended.add(c)
    extended = sorted(extended)
    return bytes(base), extended

def selective_len(str, max):
    """Return the length of str, considering only characters below max."""
    res = 0
    for c in str:
        if ord(c) < max:
            res += 1
    return res

def selective_find(str, char, index, pos):
    """Return a pair (index, pos), indicating the next occurrence of
    char in str. index is the position of the character considering
    only ordinals up to and including char, and pos is the position in
    the full string. index/pos is the starting position in the full
    string."""

    l = len(str)
    while 1:
        pos += 1
        if pos == l:
            return (-1, -1)
        c = str[pos]
        if c == char:
            return index+1, pos
        elif c < char:
            index += 1

def insertion_unsort(str, extended):
    """3.2 Insertion unsort coding"""
    oldchar = 0x80
    result = []
    oldindex = -1
    for c in extended:
        index = pos = -1
        char = ord(c)
        curlen = selective_len(str, char)
        delta = (curlen+1) * (char - oldchar)
        while 1:
            index,pos = selective_find(str,c,index,pos)
            if index == -1:
                break
            delta += index - oldindex
            result.append(delta-1)
            oldindex = index
            delta = 0
        oldchar = char

    return result

def T(j, bias):
    # Punycode parameters: tmin = 1, tmax = 26, base = 36
    res = 36 * (j + 1) - bias
    if res < 1: return 1
    if res > 26: return 26
    return res

digits = b"abcdefghijklmnopqrstuvwxyz0123456789"
def generate_generalized_integer(N, bias):
    """3.3 Generalized variable-length integers"""
    result = bytearray()
    j = 0
    while 1:
        t = T(j, bias)
        if N < t:
            result.append(digits[N])
            return bytes(result)
        result.append(digits[t + ((N - t) % (36 - t))])
        N = (N - t) // (36 - t)
        j += 1

def adapt(delta, first, numchars):
    if first:
        delta //= 700
    else:
        delta //= 2
    delta += delta // numchars
    # ((base - tmin) * tmax) // 2 == 455
    divisions = 0
    while delta > 455:
        delta = delta // 35 # base - tmin
        divisions += 36
    bias = divisions + (36 * delta // (delta + 38))
    return bias


def generate_integers(baselen, deltas):
    """3.4 Bias adaptation"""
    # Punycode parameters: initial bias = 72, damp = 700, skew = 38
    result = bytearray()
    bias = 72
    for points, delta in enumerate(deltas):
        s = generate_generalized_integer(delta, bias)
        result.extend(s)
        bias = adapt(delta, points==0, baselen+points+1)
    return bytes(result)

def punycode_encode(text):
    base, extended = segregate(text)
    deltas = insertion_unsort(text, extended)
    extended = generate_integers(len(base), deltas)
    if base:
        return base + b"-" + extended
    return extended

##################### Decoding #####################################

def decode_generalized_number(extended, extpos, bias, errors):
    """3.3 Generalized variable-length integers"""
    result = 0
    w = 1
    j = 0
    while 1:
        try:
            char = ord(extended[extpos])
        except IndexError:
            if errors == "strict":
                raise UnicodeError("incomplete punicode string")
            return extpos + 1, None
        extpos += 1
        if 0x41 <= char <= 0x5A: # A-Z
            digit = char - 0x41
        elif 0x30 <= char <= 0x39:
            digit = char - 22 # 0x30-26
        elif errors == "strict":
            raise UnicodeError("Invalid extended code point '%s'"
                               % extended[extpos])
        else:
            return extpos, None
        t = T(j, bias)
        result += digit * w
        if digit < t:
            return extpos, result
        w = w * (36 - t)
        j += 1


def insertion_sort(base, extended, errors):
    """3.2 Insertion unsort coding"""
    char = 0x80
    pos = -1
    bias = 72
    extpos = 0
    while extpos < len(extended):
        newpos, delta = decode_generalized_number(extended, extpos,
                                                  bias, errors)
        if delta is None:
            # There was an error in decoding. We can't continue because
            # synchronization is lost.
            return base
        pos += delta+1
        char += pos // (len(base) + 1)
        if char > 0x10FFFF:
            if errors == "strict":
                raise UnicodeError("Invalid character U+%x" % char)
            char = ord('?')
        pos = pos % (len(base) + 1)
        base = base[:pos] + chr(char) + base[pos:]
        bias = adapt(delta, (extpos == 0), len(base))
        extpos = newpos
    return base

def punycode_decode(text, errors):
    if isinstance(text, str):
        text = text.encode("ascii")
    if isinstance(text, memoryview):
        text = bytes(text)
    pos = text.rfind(b"-")
    if pos == -1:
        base = ""
        extended = str(text, "ascii").upper()
    else:
        base = str(text[:pos], "ascii", errors)
        extended = str(text[pos+1:], "ascii").upper()
    return insertion_sort(base, extended, errors)

### Codec APIs

class Codec(codecs.Codec):

    def encode(self, input, errors='strict'):
        res = punycode_encode(input)
        return res, len(input)

    def decode(self, input, errors='strict'):
        if errors not in ('strict', 'replace', 'ignore'):
            raise UnicodeError("Unsupported error handling "+errors)
        res = punycode_decode(input, errors)
        return res, len(input)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return punycode_encode(input)

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        if self.errors not in ('strict', 'replace', 'ignore'):
            raise UnicodeError("Unsupported error handling "+self.errors)
        return punycode_decode(input, self.errors)

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='punycode',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )
lib\encodings\quopri_codec.py
"""Codec for quoted-printable encoding.

This codec de/encodes from bytes to bytes.
"""

import codecs
import quopri
from io import BytesIO

def quopri_encode(input, errors='strict'):
    assert errors == 'strict'
    f = BytesIO(input)
    g = BytesIO()
    quopri.encode(f, g, quotetabs=True)
    return (g.getvalue(), len(input))

def quopri_decode(input, errors='strict'):
    assert errors == 'strict'
    f = BytesIO(input)
    g = BytesIO()
    quopri.decode(f, g)
    return (g.getvalue(), len(input))

class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):
        return quopri_encode(input, errors)
    def decode(self, input, errors='strict'):
        return quopri_decode(input, errors)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return quopri_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return quopri_decode(input, self.errors)[0]

class StreamWriter(Codec, codecs.StreamWriter):
    charbuffertype = bytes

class StreamReader(Codec, codecs.StreamReader):
    charbuffertype = bytes

# encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='quopri',
        encode=quopri_encode,
        decode=quopri_decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
        _is_text_encoding=False,
    )
lib\encodings\raw_unicode_escape.py
""" Python 'raw-unicode-escape' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

class Codec(codecs.Codec):

    # Note: Binding these as C functions will result in the class not
    # converting them to methods. This is intended.
    encode = codecs.raw_unicode_escape_encode
    decode = codecs.raw_unicode_escape_decode

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.raw_unicode_escape_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.raw_unicode_escape_decode(input, self.errors)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='raw-unicode-escape',
        encode=Codec.encode,
        decode=Codec.decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )
lib\encodings\rot_13.py
#!/usr/bin/env python
""" Python Character Mapping Codec for ROT13.

This codec de/encodes from str to str.

Written by Marc-Andre Lemburg ([email protected]).
"""

import codecs

### Codec APIs

class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):
        return (input.translate(rot13_map), len(input))

    def decode(self, input, errors='strict'):
        return (input.translate(rot13_map), len(input))

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return input.translate(rot13_map)

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return input.translate(rot13_map)

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='rot-13',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
        _is_text_encoding=False,
    )

### Map

rot13_map = codecs.make_identity_dict(range(256))
rot13_map.update({
   0x0041: 0x004e,
   0x0042: 0x004f,
   0x0043: 0x0050,
   0x0044: 0x0051,
   0x0045: 0x0052,
   0x0046: 0x0053,
   0x0047: 0x0054,
   0x0048: 0x0055,
   0x0049: 0x0056,
   0x004a: 0x0057,
   0x004b: 0x0058,
   0x004c: 0x0059,
   0x004d: 0x005a,
   0x004e: 0x0041,
   0x004f: 0x0042,
   0x0050: 0x0043,
   0x0051: 0x0044,
   0x0052: 0x0045,
   0x0053: 0x0046,
   0x0054: 0x0047,
   0x0055: 0x0048,
   0x0056: 0x0049,
   0x0057: 0x004a,
   0x0058: 0x004b,
   0x0059: 0x004c,
   0x005a: 0x004d,
   0x0061: 0x006e,
   0x0062: 0x006f,
   0x0063: 0x0070,
   0x0064: 0x0071,
   0x0065: 0x0072,
   0x0066: 0x0073,
   0x0067: 0x0074,
   0x0068: 0x0075,
   0x0069: 0x0076,
   0x006a: 0x0077,
   0x006b: 0x0078,
   0x006c: 0x0079,
   0x006d: 0x007a,
   0x006e: 0x0061,
   0x006f: 0x0062,
   0x0070: 0x0063,
   0x0071: 0x0064,
   0x0072: 0x0065,
   0x0073: 0x0066,
   0x0074: 0x0067,
   0x0075: 0x0068,
   0x0076: 0x0069,
   0x0077: 0x006a,
   0x0078: 0x006b,
   0x0079: 0x006c,
   0x007a: 0x006d,
})

### Filter API

def rot13(infile, outfile):
    outfile.write(codecs.encode(infile.read(), 'rot-13'))

if __name__ == '__main__':
    import sys
    rot13(sys.stdin, sys.stdout)
lib\encodings\shift_jis.py
#
# shift_jis.py: Python Unicode Codec for SHIFT_JIS
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_jp, codecs
import _multibytecodec as mbc

codec = _codecs_jp.getcodec('shift_jis')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='shift_jis',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\shift_jisx0213.py
#
# shift_jisx0213.py: Python Unicode Codec for SHIFT_JISX0213
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_jp, codecs
import _multibytecodec as mbc

codec = _codecs_jp.getcodec('shift_jisx0213')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='shift_jisx0213',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\shift_jis_2004.py
#
# shift_jis_2004.py: Python Unicode Codec for SHIFT_JIS_2004
#
# Written by Hye-Shik Chang <[email protected]>
#

import _codecs_jp, codecs
import _multibytecodec as mbc

codec = _codecs_jp.getcodec('shift_jis_2004')

class Codec(codecs.Codec):
    encode = codec.encode
    decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
                         codecs.IncrementalEncoder):
    codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
                         codecs.IncrementalDecoder):
    codec = codec

class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
    codec = codec

class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
    codec = codec

def getregentry():
    return codecs.CodecInfo(
        name='shift_jis_2004',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\tis_620.py
""" Python Character Mapping Codec tis_620 generated from 'python-mappings/TIS-620.TXT' with gencodec.py.

"""#"

import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        return codecs.charmap_encode(input,errors,encoding_table)

    def decode(self,input,errors='strict'):
        return codecs.charmap_decode(input,errors,decoding_table)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.charmap_encode(input,self.errors,encoding_table)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.charmap_decode(input,self.errors,decoding_table)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='tis-620',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )


### Decoding Table

decoding_table = (
    '\x00'     #  0x00 -> NULL
    '\x01'     #  0x01 -> START OF HEADING
    '\x02'     #  0x02 -> START OF TEXT
    '\x03'     #  0x03 -> END OF TEXT
    '\x04'     #  0x04 -> END OF TRANSMISSION
    '\x05'     #  0x05 -> ENQUIRY
    '\x06'     #  0x06 -> ACKNOWLEDGE
    '\x07'     #  0x07 -> BELL
    '\x08'     #  0x08 -> BACKSPACE
    '\t'       #  0x09 -> HORIZONTAL TABULATION
    '\n'       #  0x0A -> LINE FEED
    '\x0b'     #  0x0B -> VERTICAL TABULATION
    '\x0c'     #  0x0C -> FORM FEED
    '\r'       #  0x0D -> CARRIAGE RETURN
    '\x0e'     #  0x0E -> SHIFT OUT
    '\x0f'     #  0x0F -> SHIFT IN
    '\x10'     #  0x10 -> DATA LINK ESCAPE
    '\x11'     #  0x11 -> DEVICE CONTROL ONE
    '\x12'     #  0x12 -> DEVICE CONTROL TWO
    '\x13'     #  0x13 -> DEVICE CONTROL THREE
    '\x14'     #  0x14 -> DEVICE CONTROL FOUR
    '\x15'     #  0x15 -> NEGATIVE ACKNOWLEDGE
    '\x16'     #  0x16 -> SYNCHRONOUS IDLE
    '\x17'     #  0x17 -> END OF TRANSMISSION BLOCK
    '\x18'     #  0x18 -> CANCEL
    '\x19'     #  0x19 -> END OF MEDIUM
    '\x1a'     #  0x1A -> SUBSTITUTE
    '\x1b'     #  0x1B -> ESCAPE
    '\x1c'     #  0x1C -> FILE SEPARATOR
    '\x1d'     #  0x1D -> GROUP SEPARATOR
    '\x1e'     #  0x1E -> RECORD SEPARATOR
    '\x1f'     #  0x1F -> UNIT SEPARATOR
    ' '        #  0x20 -> SPACE
    '!'        #  0x21 -> EXCLAMATION MARK
    '"'        #  0x22 -> QUOTATION MARK
    '#'        #  0x23 -> NUMBER SIGN
    '$'        #  0x24 -> DOLLAR SIGN
    '%'        #  0x25 -> PERCENT SIGN
    '&'        #  0x26 -> AMPERSAND
    "'"        #  0x27 -> APOSTROPHE
    '('        #  0x28 -> LEFT PARENTHESIS
    ')'        #  0x29 -> RIGHT PARENTHESIS
    '*'        #  0x2A -> ASTERISK
    '+'        #  0x2B -> PLUS SIGN
    ','        #  0x2C -> COMMA
    '-'        #  0x2D -> HYPHEN-MINUS
    '.'        #  0x2E -> FULL STOP
    '/'        #  0x2F -> SOLIDUS
    '0'        #  0x30 -> DIGIT ZERO
    '1'        #  0x31 -> DIGIT ONE
    '2'        #  0x32 -> DIGIT TWO
    '3'        #  0x33 -> DIGIT THREE
    '4'        #  0x34 -> DIGIT FOUR
    '5'        #  0x35 -> DIGIT FIVE
    '6'        #  0x36 -> DIGIT SIX
    '7'        #  0x37 -> DIGIT SEVEN
    '8'        #  0x38 -> DIGIT EIGHT
    '9'        #  0x39 -> DIGIT NINE
    ':'        #  0x3A -> COLON
    ';'        #  0x3B -> SEMICOLON
    '<'        #  0x3C -> LESS-THAN SIGN
    '='        #  0x3D -> EQUALS SIGN
    '>'        #  0x3E -> GREATER-THAN SIGN
    '?'        #  0x3F -> QUESTION MARK
    '@'        #  0x40 -> COMMERCIAL AT
    'A'        #  0x41 -> LATIN CAPITAL LETTER A
    'B'        #  0x42 -> LATIN CAPITAL LETTER B
    'C'        #  0x43 -> LATIN CAPITAL LETTER C
    'D'        #  0x44 -> LATIN CAPITAL LETTER D
    'E'        #  0x45 -> LATIN CAPITAL LETTER E
    'F'        #  0x46 -> LATIN CAPITAL LETTER F
    'G'        #  0x47 -> LATIN CAPITAL LETTER G
    'H'        #  0x48 -> LATIN CAPITAL LETTER H
    'I'        #  0x49 -> LATIN CAPITAL LETTER I
    'J'        #  0x4A -> LATIN CAPITAL LETTER J
    'K'        #  0x4B -> LATIN CAPITAL LETTER K
    'L'        #  0x4C -> LATIN CAPITAL LETTER L
    'M'        #  0x4D -> LATIN CAPITAL LETTER M
    'N'        #  0x4E -> LATIN CAPITAL LETTER N
    'O'        #  0x4F -> LATIN CAPITAL LETTER O
    'P'        #  0x50 -> LATIN CAPITAL LETTER P
    'Q'        #  0x51 -> LATIN CAPITAL LETTER Q
    'R'        #  0x52 -> LATIN CAPITAL LETTER R
    'S'        #  0x53 -> LATIN CAPITAL LETTER S
    'T'        #  0x54 -> LATIN CAPITAL LETTER T
    'U'        #  0x55 -> LATIN CAPITAL LETTER U
    'V'        #  0x56 -> LATIN CAPITAL LETTER V
    'W'        #  0x57 -> LATIN CAPITAL LETTER W
    'X'        #  0x58 -> LATIN CAPITAL LETTER X
    'Y'        #  0x59 -> LATIN CAPITAL LETTER Y
    'Z'        #  0x5A -> LATIN CAPITAL LETTER Z
    '['        #  0x5B -> LEFT SQUARE BRACKET
    '\\'       #  0x5C -> REVERSE SOLIDUS
    ']'        #  0x5D -> RIGHT SQUARE BRACKET
    '^'        #  0x5E -> CIRCUMFLEX ACCENT
    '_'        #  0x5F -> LOW LINE
    '`'        #  0x60 -> GRAVE ACCENT
    'a'        #  0x61 -> LATIN SMALL LETTER A
    'b'        #  0x62 -> LATIN SMALL LETTER B
    'c'        #  0x63 -> LATIN SMALL LETTER C
    'd'        #  0x64 -> LATIN SMALL LETTER D
    'e'        #  0x65 -> LATIN SMALL LETTER E
    'f'        #  0x66 -> LATIN SMALL LETTER F
    'g'        #  0x67 -> LATIN SMALL LETTER G
    'h'        #  0x68 -> LATIN SMALL LETTER H
    'i'        #  0x69 -> LATIN SMALL LETTER I
    'j'        #  0x6A -> LATIN SMALL LETTER J
    'k'        #  0x6B -> LATIN SMALL LETTER K
    'l'        #  0x6C -> LATIN SMALL LETTER L
    'm'        #  0x6D -> LATIN SMALL LETTER M
    'n'        #  0x6E -> LATIN SMALL LETTER N
    'o'        #  0x6F -> LATIN SMALL LETTER O
    'p'        #  0x70 -> LATIN SMALL LETTER P
    'q'        #  0x71 -> LATIN SMALL LETTER Q
    'r'        #  0x72 -> LATIN SMALL LETTER R
    's'        #  0x73 -> LATIN SMALL LETTER S
    't'        #  0x74 -> LATIN SMALL LETTER T
    'u'        #  0x75 -> LATIN SMALL LETTER U
    'v'        #  0x76 -> LATIN SMALL LETTER V
    'w'        #  0x77 -> LATIN SMALL LETTER W
    'x'        #  0x78 -> LATIN SMALL LETTER X
    'y'        #  0x79 -> LATIN SMALL LETTER Y
    'z'        #  0x7A -> LATIN SMALL LETTER Z
    '{'        #  0x7B -> LEFT CURLY BRACKET
    '|'        #  0x7C -> VERTICAL LINE
    '}'        #  0x7D -> RIGHT CURLY BRACKET
    '~'        #  0x7E -> TILDE
    '\x7f'     #  0x7F -> DELETE
    '\x80'     #  0x80 -> <control>
    '\x81'     #  0x81 -> <control>
    '\x82'     #  0x82 -> <control>
    '\x83'     #  0x83 -> <control>
    '\x84'     #  0x84 -> <control>
    '\x85'     #  0x85 -> <control>
    '\x86'     #  0x86 -> <control>
    '\x87'     #  0x87 -> <control>
    '\x88'     #  0x88 -> <control>
    '\x89'     #  0x89 -> <control>
    '\x8a'     #  0x8A -> <control>
    '\x8b'     #  0x8B -> <control>
    '\x8c'     #  0x8C -> <control>
    '\x8d'     #  0x8D -> <control>
    '\x8e'     #  0x8E -> <control>
    '\x8f'     #  0x8F -> <control>
    '\x90'     #  0x90 -> <control>
    '\x91'     #  0x91 -> <control>
    '\x92'     #  0x92 -> <control>
    '\x93'     #  0x93 -> <control>
    '\x94'     #  0x94 -> <control>
    '\x95'     #  0x95 -> <control>
    '\x96'     #  0x96 -> <control>
    '\x97'     #  0x97 -> <control>
    '\x98'     #  0x98 -> <control>
    '\x99'     #  0x99 -> <control>
    '\x9a'     #  0x9A -> <control>
    '\x9b'     #  0x9B -> <control>
    '\x9c'     #  0x9C -> <control>
    '\x9d'     #  0x9D -> <control>
    '\x9e'     #  0x9E -> <control>
    '\x9f'     #  0x9F -> <control>
    '\ufffe'
    '\u0e01'   #  0xA1 -> THAI CHARACTER KO KAI
    '\u0e02'   #  0xA2 -> THAI CHARACTER KHO KHAI
    '\u0e03'   #  0xA3 -> THAI CHARACTER KHO KHUAT
    '\u0e04'   #  0xA4 -> THAI CHARACTER KHO KHWAI
    '\u0e05'   #  0xA5 -> THAI CHARACTER KHO KHON
    '\u0e06'   #  0xA6 -> THAI CHARACTER KHO RAKHANG
    '\u0e07'   #  0xA7 -> THAI CHARACTER NGO NGU
    '\u0e08'   #  0xA8 -> THAI CHARACTER CHO CHAN
    '\u0e09'   #  0xA9 -> THAI CHARACTER CHO CHING
    '\u0e0a'   #  0xAA -> THAI CHARACTER CHO CHANG
    '\u0e0b'   #  0xAB -> THAI CHARACTER SO SO
    '\u0e0c'   #  0xAC -> THAI CHARACTER CHO CHOE
    '\u0e0d'   #  0xAD -> THAI CHARACTER YO YING
    '\u0e0e'   #  0xAE -> THAI CHARACTER DO CHADA
    '\u0e0f'   #  0xAF -> THAI CHARACTER TO PATAK
    '\u0e10'   #  0xB0 -> THAI CHARACTER THO THAN
    '\u0e11'   #  0xB1 -> THAI CHARACTER THO NANGMONTHO
    '\u0e12'   #  0xB2 -> THAI CHARACTER THO PHUTHAO
    '\u0e13'   #  0xB3 -> THAI CHARACTER NO NEN
    '\u0e14'   #  0xB4 -> THAI CHARACTER DO DEK
    '\u0e15'   #  0xB5 -> THAI CHARACTER TO TAO
    '\u0e16'   #  0xB6 -> THAI CHARACTER THO THUNG
    '\u0e17'   #  0xB7 -> THAI CHARACTER THO THAHAN
    '\u0e18'   #  0xB8 -> THAI CHARACTER THO THONG
    '\u0e19'   #  0xB9 -> THAI CHARACTER NO NU
    '\u0e1a'   #  0xBA -> THAI CHARACTER BO BAIMAI
    '\u0e1b'   #  0xBB -> THAI CHARACTER PO PLA
    '\u0e1c'   #  0xBC -> THAI CHARACTER PHO PHUNG
    '\u0e1d'   #  0xBD -> THAI CHARACTER FO FA
    '\u0e1e'   #  0xBE -> THAI CHARACTER PHO PHAN
    '\u0e1f'   #  0xBF -> THAI CHARACTER FO FAN
    '\u0e20'   #  0xC0 -> THAI CHARACTER PHO SAMPHAO
    '\u0e21'   #  0xC1 -> THAI CHARACTER MO MA
    '\u0e22'   #  0xC2 -> THAI CHARACTER YO YAK
    '\u0e23'   #  0xC3 -> THAI CHARACTER RO RUA
    '\u0e24'   #  0xC4 -> THAI CHARACTER RU
    '\u0e25'   #  0xC5 -> THAI CHARACTER LO LING
    '\u0e26'   #  0xC6 -> THAI CHARACTER LU
    '\u0e27'   #  0xC7 -> THAI CHARACTER WO WAEN
    '\u0e28'   #  0xC8 -> THAI CHARACTER SO SALA
    '\u0e29'   #  0xC9 -> THAI CHARACTER SO RUSI
    '\u0e2a'   #  0xCA -> THAI CHARACTER SO SUA
    '\u0e2b'   #  0xCB -> THAI CHARACTER HO HIP
    '\u0e2c'   #  0xCC -> THAI CHARACTER LO CHULA
    '\u0e2d'   #  0xCD -> THAI CHARACTER O ANG
    '\u0e2e'   #  0xCE -> THAI CHARACTER HO NOKHUK
    '\u0e2f'   #  0xCF -> THAI CHARACTER PAIYANNOI
    '\u0e30'   #  0xD0 -> THAI CHARACTER SARA A
    '\u0e31'   #  0xD1 -> THAI CHARACTER MAI HAN-AKAT
    '\u0e32'   #  0xD2 -> THAI CHARACTER SARA AA
    '\u0e33'   #  0xD3 -> THAI CHARACTER SARA AM
    '\u0e34'   #  0xD4 -> THAI CHARACTER SARA I
    '\u0e35'   #  0xD5 -> THAI CHARACTER SARA II
    '\u0e36'   #  0xD6 -> THAI CHARACTER SARA UE
    '\u0e37'   #  0xD7 -> THAI CHARACTER SARA UEE
    '\u0e38'   #  0xD8 -> THAI CHARACTER SARA U
    '\u0e39'   #  0xD9 -> THAI CHARACTER SARA UU
    '\u0e3a'   #  0xDA -> THAI CHARACTER PHINTHU
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\u0e3f'   #  0xDF -> THAI CURRENCY SYMBOL BAHT
    '\u0e40'   #  0xE0 -> THAI CHARACTER SARA E
    '\u0e41'   #  0xE1 -> THAI CHARACTER SARA AE
    '\u0e42'   #  0xE2 -> THAI CHARACTER SARA O
    '\u0e43'   #  0xE3 -> THAI CHARACTER SARA AI MAIMUAN
    '\u0e44'   #  0xE4 -> THAI CHARACTER SARA AI MAIMALAI
    '\u0e45'   #  0xE5 -> THAI CHARACTER LAKKHANGYAO
    '\u0e46'   #  0xE6 -> THAI CHARACTER MAIYAMOK
    '\u0e47'   #  0xE7 -> THAI CHARACTER MAITAIKHU
    '\u0e48'   #  0xE8 -> THAI CHARACTER MAI EK
    '\u0e49'   #  0xE9 -> THAI CHARACTER MAI THO
    '\u0e4a'   #  0xEA -> THAI CHARACTER MAI TRI
    '\u0e4b'   #  0xEB -> THAI CHARACTER MAI CHATTAWA
    '\u0e4c'   #  0xEC -> THAI CHARACTER THANTHAKHAT
    '\u0e4d'   #  0xED -> THAI CHARACTER NIKHAHIT
    '\u0e4e'   #  0xEE -> THAI CHARACTER YAMAKKAN
    '\u0e4f'   #  0xEF -> THAI CHARACTER FONGMAN
    '\u0e50'   #  0xF0 -> THAI DIGIT ZERO
    '\u0e51'   #  0xF1 -> THAI DIGIT ONE
    '\u0e52'   #  0xF2 -> THAI DIGIT TWO
    '\u0e53'   #  0xF3 -> THAI DIGIT THREE
    '\u0e54'   #  0xF4 -> THAI DIGIT FOUR
    '\u0e55'   #  0xF5 -> THAI DIGIT FIVE
    '\u0e56'   #  0xF6 -> THAI DIGIT SIX
    '\u0e57'   #  0xF7 -> THAI DIGIT SEVEN
    '\u0e58'   #  0xF8 -> THAI DIGIT EIGHT
    '\u0e59'   #  0xF9 -> THAI DIGIT NINE
    '\u0e5a'   #  0xFA -> THAI CHARACTER ANGKHANKHU
    '\u0e5b'   #  0xFB -> THAI CHARACTER KHOMUT
    '\ufffe'
    '\ufffe'
    '\ufffe'
    '\ufffe'
)

### Encoding table
encoding_table=codecs.charmap_build(decoding_table)
lib\encodings\undefined.py
""" Python 'undefined' Codec

    This codec will always raise a ValueError exception when being
    used. It is intended for use by the site.py file to switch off
    automatic string to Unicode coercion.

Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

class Codec(codecs.Codec):

    def encode(self,input,errors='strict'):
        raise UnicodeError("undefined encoding")

    def decode(self,input,errors='strict'):
        raise UnicodeError("undefined encoding")

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        raise UnicodeError("undefined encoding")

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        raise UnicodeError("undefined encoding")

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='undefined',
        encode=Codec().encode,
        decode=Codec().decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )
lib\encodings\unicode_escape.py
""" Python 'unicode-escape' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

class Codec(codecs.Codec):

    # Note: Binding these as C functions will result in the class not
    # converting them to methods. This is intended.
    encode = codecs.unicode_escape_encode
    decode = codecs.unicode_escape_decode

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.unicode_escape_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.unicode_escape_decode(input, self.errors)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='unicode-escape',
        encode=Codec.encode,
        decode=Codec.decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )
lib\encodings\unicode_internal.py
""" Python 'unicode-internal' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

class Codec(codecs.Codec):

    # Note: Binding these as C functions will result in the class not
    # converting them to methods. This is intended.
    encode = codecs.unicode_internal_encode
    decode = codecs.unicode_internal_decode

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.unicode_internal_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return codecs.unicode_internal_decode(input, self.errors)[0]

class StreamWriter(Codec,codecs.StreamWriter):
    pass

class StreamReader(Codec,codecs.StreamReader):
    pass

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='unicode-internal',
        encode=Codec.encode,
        decode=Codec.decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamwriter=StreamWriter,
        streamreader=StreamReader,
    )
lib\encodings\utf_16.py
""" Python 'utf-16' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs, sys

### Codec APIs

encode = codecs.utf_16_encode

def decode(input, errors='strict'):
    return codecs.utf_16_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def __init__(self, errors='strict'):
        codecs.IncrementalEncoder.__init__(self, errors)
        self.encoder = None

    def encode(self, input, final=False):
        if self.encoder is None:
            result = codecs.utf_16_encode(input, self.errors)[0]
            if sys.byteorder == 'little':
                self.encoder = codecs.utf_16_le_encode
            else:
                self.encoder = codecs.utf_16_be_encode
            return result
        return self.encoder(input, self.errors)[0]

    def reset(self):
        codecs.IncrementalEncoder.reset(self)
        self.encoder = None

    def getstate(self):
        # state info we return to the caller:
        # 0: stream is in natural order for this platform
        # 2: endianness hasn't been determined yet
        # (we're never writing in unnatural order)
        return (2 if self.encoder is None else 0)

    def setstate(self, state):
        if state:
            self.encoder = None
        else:
            if sys.byteorder == 'little':
                self.encoder = codecs.utf_16_le_encode
            else:
                self.encoder = codecs.utf_16_be_encode

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    def __init__(self, errors='strict'):
        codecs.BufferedIncrementalDecoder.__init__(self, errors)
        self.decoder = None

    def _buffer_decode(self, input, errors, final):
        if self.decoder is None:
            (output, consumed, byteorder) = \
                codecs.utf_16_ex_decode(input, errors, 0, final)
            if byteorder == -1:
                self.decoder = codecs.utf_16_le_decode
            elif byteorder == 1:
                self.decoder = codecs.utf_16_be_decode
            elif consumed >= 2:
                raise UnicodeError("UTF-16 stream does not start with BOM")
            return (output, consumed)
        return self.decoder(input, self.errors, final)

    def reset(self):
        codecs.BufferedIncrementalDecoder.reset(self)
        self.decoder = None

    def getstate(self):
        # additonal state info from the base class must be None here,
        # as it isn't passed along to the caller
        state = codecs.BufferedIncrementalDecoder.getstate(self)[0]
        # additional state info we pass to the caller:
        # 0: stream is in natural order for this platform
        # 1: stream is in unnatural order
        # 2: endianness hasn't been determined yet
        if self.decoder is None:
            return (state, 2)
        addstate = int((sys.byteorder == "big") !=
                       (self.decoder is codecs.utf_16_be_decode))
        return (state, addstate)

    def setstate(self, state):
        # state[1] will be ignored by BufferedIncrementalDecoder.setstate()
        codecs.BufferedIncrementalDecoder.setstate(self, state)
        state = state[1]
        if state == 0:
            self.decoder = (codecs.utf_16_be_decode
                            if sys.byteorder == "big"
                            else codecs.utf_16_le_decode)
        elif state == 1:
            self.decoder = (codecs.utf_16_le_decode
                            if sys.byteorder == "big"
                            else codecs.utf_16_be_decode)
        else:
            self.decoder = None

class StreamWriter(codecs.StreamWriter):
    def __init__(self, stream, errors='strict'):
        codecs.StreamWriter.__init__(self, stream, errors)
        self.encoder = None

    def reset(self):
        codecs.StreamWriter.reset(self)
        self.encoder = None

    def encode(self, input, errors='strict'):
        if self.encoder is None:
            result = codecs.utf_16_encode(input, errors)
            if sys.byteorder == 'little':
                self.encoder = codecs.utf_16_le_encode
            else:
                self.encoder = codecs.utf_16_be_encode
            return result
        else:
            return self.encoder(input, errors)

class StreamReader(codecs.StreamReader):

    def reset(self):
        codecs.StreamReader.reset(self)
        try:
            del self.decode
        except AttributeError:
            pass

    def decode(self, input, errors='strict'):
        (object, consumed, byteorder) = \
            codecs.utf_16_ex_decode(input, errors, 0, False)
        if byteorder == -1:
            self.decode = codecs.utf_16_le_decode
        elif byteorder == 1:
            self.decode = codecs.utf_16_be_decode
        elif consumed>=2:
            raise UnicodeError("UTF-16 stream does not start with BOM")
        return (object, consumed)

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-16',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\utf_16_be.py
""" Python 'utf-16-be' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

encode = codecs.utf_16_be_encode

def decode(input, errors='strict'):
    return codecs.utf_16_be_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.utf_16_be_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    _buffer_decode = codecs.utf_16_be_decode

class StreamWriter(codecs.StreamWriter):
    encode = codecs.utf_16_be_encode

class StreamReader(codecs.StreamReader):
    decode = codecs.utf_16_be_decode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-16-be',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\utf_16_le.py
""" Python 'utf-16-le' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

encode = codecs.utf_16_le_encode

def decode(input, errors='strict'):
    return codecs.utf_16_le_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.utf_16_le_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    _buffer_decode = codecs.utf_16_le_decode

class StreamWriter(codecs.StreamWriter):
    encode = codecs.utf_16_le_encode

class StreamReader(codecs.StreamReader):
    decode = codecs.utf_16_le_decode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-16-le',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\utf_32.py
"""
Python 'utf-32' Codec
"""
import codecs, sys

### Codec APIs

encode = codecs.utf_32_encode

def decode(input, errors='strict'):
    return codecs.utf_32_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def __init__(self, errors='strict'):
        codecs.IncrementalEncoder.__init__(self, errors)
        self.encoder = None

    def encode(self, input, final=False):
        if self.encoder is None:
            result = codecs.utf_32_encode(input, self.errors)[0]
            if sys.byteorder == 'little':
                self.encoder = codecs.utf_32_le_encode
            else:
                self.encoder = codecs.utf_32_be_encode
            return result
        return self.encoder(input, self.errors)[0]

    def reset(self):
        codecs.IncrementalEncoder.reset(self)
        self.encoder = None

    def getstate(self):
        # state info we return to the caller:
        # 0: stream is in natural order for this platform
        # 2: endianness hasn't been determined yet
        # (we're never writing in unnatural order)
        return (2 if self.encoder is None else 0)

    def setstate(self, state):
        if state:
            self.encoder = None
        else:
            if sys.byteorder == 'little':
                self.encoder = codecs.utf_32_le_encode
            else:
                self.encoder = codecs.utf_32_be_encode

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    def __init__(self, errors='strict'):
        codecs.BufferedIncrementalDecoder.__init__(self, errors)
        self.decoder = None

    def _buffer_decode(self, input, errors, final):
        if self.decoder is None:
            (output, consumed, byteorder) = \
                codecs.utf_32_ex_decode(input, errors, 0, final)
            if byteorder == -1:
                self.decoder = codecs.utf_32_le_decode
            elif byteorder == 1:
                self.decoder = codecs.utf_32_be_decode
            elif consumed >= 4:
                raise UnicodeError("UTF-32 stream does not start with BOM")
            return (output, consumed)
        return self.decoder(input, self.errors, final)

    def reset(self):
        codecs.BufferedIncrementalDecoder.reset(self)
        self.decoder = None

    def getstate(self):
        # additonal state info from the base class must be None here,
        # as it isn't passed along to the caller
        state = codecs.BufferedIncrementalDecoder.getstate(self)[0]
        # additional state info we pass to the caller:
        # 0: stream is in natural order for this platform
        # 1: stream is in unnatural order
        # 2: endianness hasn't been determined yet
        if self.decoder is None:
            return (state, 2)
        addstate = int((sys.byteorder == "big") !=
                       (self.decoder is codecs.utf_32_be_decode))
        return (state, addstate)

    def setstate(self, state):
        # state[1] will be ignored by BufferedIncrementalDecoder.setstate()
        codecs.BufferedIncrementalDecoder.setstate(self, state)
        state = state[1]
        if state == 0:
            self.decoder = (codecs.utf_32_be_decode
                            if sys.byteorder == "big"
                            else codecs.utf_32_le_decode)
        elif state == 1:
            self.decoder = (codecs.utf_32_le_decode
                            if sys.byteorder == "big"
                            else codecs.utf_32_be_decode)
        else:
            self.decoder = None

class StreamWriter(codecs.StreamWriter):
    def __init__(self, stream, errors='strict'):
        self.encoder = None
        codecs.StreamWriter.__init__(self, stream, errors)

    def reset(self):
        codecs.StreamWriter.reset(self)
        self.encoder = None

    def encode(self, input, errors='strict'):
        if self.encoder is None:
            result = codecs.utf_32_encode(input, errors)
            if sys.byteorder == 'little':
                self.encoder = codecs.utf_32_le_encode
            else:
                self.encoder = codecs.utf_32_be_encode
            return result
        else:
            return self.encoder(input, errors)

class StreamReader(codecs.StreamReader):

    def reset(self):
        codecs.StreamReader.reset(self)
        try:
            del self.decode
        except AttributeError:
            pass

    def decode(self, input, errors='strict'):
        (object, consumed, byteorder) = \
            codecs.utf_32_ex_decode(input, errors, 0, False)
        if byteorder == -1:
            self.decode = codecs.utf_32_le_decode
        elif byteorder == 1:
            self.decode = codecs.utf_32_be_decode
        elif consumed>=4:
            raise UnicodeError("UTF-32 stream does not start with BOM")
        return (object, consumed)

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-32',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\utf_32_be.py
"""
Python 'utf-32-be' Codec
"""
import codecs

### Codec APIs

encode = codecs.utf_32_be_encode

def decode(input, errors='strict'):
    return codecs.utf_32_be_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.utf_32_be_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    _buffer_decode = codecs.utf_32_be_decode

class StreamWriter(codecs.StreamWriter):
    encode = codecs.utf_32_be_encode

class StreamReader(codecs.StreamReader):
    decode = codecs.utf_32_be_decode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-32-be',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\utf_32_le.py
"""
Python 'utf-32-le' Codec
"""
import codecs

### Codec APIs

encode = codecs.utf_32_le_encode

def decode(input, errors='strict'):
    return codecs.utf_32_le_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.utf_32_le_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    _buffer_decode = codecs.utf_32_le_decode

class StreamWriter(codecs.StreamWriter):
    encode = codecs.utf_32_le_encode

class StreamReader(codecs.StreamReader):
    decode = codecs.utf_32_le_decode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-32-le',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\utf_7.py
""" Python 'utf-7' Codec

Written by Brian Quinlan ([email protected]).
"""
import codecs

### Codec APIs

encode = codecs.utf_7_encode

def decode(input, errors='strict'):
    return codecs.utf_7_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.utf_7_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    _buffer_decode = codecs.utf_7_decode

class StreamWriter(codecs.StreamWriter):
    encode = codecs.utf_7_encode

class StreamReader(codecs.StreamReader):
    decode = codecs.utf_7_decode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-7',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\utf_8.py
""" Python 'utf-8' Codec


Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""
import codecs

### Codec APIs

encode = codecs.utf_8_encode

def decode(input, errors='strict'):
    return codecs.utf_8_decode(input, errors, True)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return codecs.utf_8_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    _buffer_decode = codecs.utf_8_decode

class StreamWriter(codecs.StreamWriter):
    encode = codecs.utf_8_encode

class StreamReader(codecs.StreamReader):
    decode = codecs.utf_8_decode

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-8',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\utf_8_sig.py
""" Python 'utf-8-sig' Codec
This work similar to UTF-8 with the following changes:

* On encoding/writing a UTF-8 encoded BOM will be prepended/written as the
  first three bytes.

* On decoding/reading if the first three bytes are a UTF-8 encoded BOM, these
  bytes will be skipped.
"""
import codecs

### Codec APIs

def encode(input, errors='strict'):
    return (codecs.BOM_UTF8 + codecs.utf_8_encode(input, errors)[0],
            len(input))

def decode(input, errors='strict'):
    prefix = 0
    if input[:3] == codecs.BOM_UTF8:
        input = input[3:]
        prefix = 3
    (output, consumed) = codecs.utf_8_decode(input, errors, True)
    return (output, consumed+prefix)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def __init__(self, errors='strict'):
        codecs.IncrementalEncoder.__init__(self, errors)
        self.first = 1

    def encode(self, input, final=False):
        if self.first:
            self.first = 0
            return codecs.BOM_UTF8 + \
                   codecs.utf_8_encode(input, self.errors)[0]
        else:
            return codecs.utf_8_encode(input, self.errors)[0]

    def reset(self):
        codecs.IncrementalEncoder.reset(self)
        self.first = 1

    def getstate(self):
        return self.first

    def setstate(self, state):
        self.first = state

class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
    def __init__(self, errors='strict'):
        codecs.BufferedIncrementalDecoder.__init__(self, errors)
        self.first = 1

    def _buffer_decode(self, input, errors, final):
        if self.first:
            if len(input) < 3:
                if codecs.BOM_UTF8.startswith(input):
                    # not enough data to decide if this really is a BOM
                    # => try again on the next call
                    return ("", 0)
                else:
                    self.first = 0
            else:
                self.first = 0
                if input[:3] == codecs.BOM_UTF8:
                    (output, consumed) = \
                       codecs.utf_8_decode(input[3:], errors, final)
                    return (output, consumed+3)
        return codecs.utf_8_decode(input, errors, final)

    def reset(self):
        codecs.BufferedIncrementalDecoder.reset(self)
        self.first = 1

    def getstate(self):
        state = codecs.BufferedIncrementalDecoder.getstate(self)
        # state[1] must be 0 here, as it isn't passed along to the caller
        return (state[0], self.first)

    def setstate(self, state):
        # state[1] will be ignored by BufferedIncrementalDecoder.setstate()
        codecs.BufferedIncrementalDecoder.setstate(self, state)
        self.first = state[1]

class StreamWriter(codecs.StreamWriter):
    def reset(self):
        codecs.StreamWriter.reset(self)
        try:
            del self.encode
        except AttributeError:
            pass

    def encode(self, input, errors='strict'):
        self.encode = codecs.utf_8_encode
        return encode(input, errors)

class StreamReader(codecs.StreamReader):
    def reset(self):
        codecs.StreamReader.reset(self)
        try:
            del self.decode
        except AttributeError:
            pass

    def decode(self, input, errors='strict'):
        if len(input) < 3:
            if codecs.BOM_UTF8.startswith(input):
                # not enough data to decide if this is a BOM
                # => try again on the next call
                return ("", 0)
        elif input[:3] == codecs.BOM_UTF8:
            self.decode = codecs.utf_8_decode
            (output, consumed) = codecs.utf_8_decode(input[3:],errors)
            return (output, consumed+3)
        # (else) no BOM present
        self.decode = codecs.utf_8_decode
        return codecs.utf_8_decode(input, errors)

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='utf-8-sig',
        encode=encode,
        decode=decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
    )
lib\encodings\uu_codec.py
"""Python 'uu_codec' Codec - UU content transfer encoding.

This codec de/encodes from bytes to bytes.

Written by Marc-Andre Lemburg ([email protected]). Some details were
adapted from uu.py which was written by Lance Ellinghouse and
modified by Jack Jansen and Fredrik Lundh.
"""

import codecs
import binascii
from io import BytesIO

### Codec APIs

def uu_encode(input, errors='strict', filename='<data>', mode=0o666):
    assert errors == 'strict'
    infile = BytesIO(input)
    outfile = BytesIO()
    read = infile.read
    write = outfile.write

    # Encode
    write(('begin %o %s\n' % (mode & 0o777, filename)).encode('ascii'))
    chunk = read(45)
    while chunk:
        write(binascii.b2a_uu(chunk))
        chunk = read(45)
    write(b' \nend\n')

    return (outfile.getvalue(), len(input))

def uu_decode(input, errors='strict'):
    assert errors == 'strict'
    infile = BytesIO(input)
    outfile = BytesIO()
    readline = infile.readline
    write = outfile.write

    # Find start of encoded data
    while 1:
        s = readline()
        if not s:
            raise ValueError('Missing "begin" line in input data')
        if s[:5] == b'begin':
            break

    # Decode
    while True:
        s = readline()
        if not s or s == b'end\n':
            break
        try:
            data = binascii.a2b_uu(s)
        except binascii.Error as v:
            # Workaround for broken uuencoders by /Fredrik Lundh
            nbytes = (((s[0]-32) & 63) * 4 + 5) // 3
            data = binascii.a2b_uu(s[:nbytes])
            #sys.stderr.write("Warning: %s\n" % str(v))
        write(data)
    if not s:
        raise ValueError('Truncated input data')

    return (outfile.getvalue(), len(input))

class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):
        return uu_encode(input, errors)

    def decode(self, input, errors='strict'):
        return uu_decode(input, errors)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def encode(self, input, final=False):
        return uu_encode(input, self.errors)[0]

class IncrementalDecoder(codecs.IncrementalDecoder):
    def decode(self, input, final=False):
        return uu_decode(input, self.errors)[0]

class StreamWriter(Codec, codecs.StreamWriter):
    charbuffertype = bytes

class StreamReader(Codec, codecs.StreamReader):
    charbuffertype = bytes

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='uu',
        encode=uu_encode,
        decode=uu_decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
        _is_text_encoding=False,
    )
lib\encodings\zlib_codec.py
"""Python 'zlib_codec' Codec - zlib compression encoding.

This codec de/encodes from bytes to bytes.

Written by Marc-Andre Lemburg ([email protected]).
"""

import codecs
import zlib # this codec needs the optional zlib module !

### Codec APIs

def zlib_encode(input, errors='strict'):
    assert errors == 'strict'
    return (zlib.compress(input), len(input))

def zlib_decode(input, errors='strict'):
    assert errors == 'strict'
    return (zlib.decompress(input), len(input))

class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):
        return zlib_encode(input, errors)
    def decode(self, input, errors='strict'):
        return zlib_decode(input, errors)

class IncrementalEncoder(codecs.IncrementalEncoder):
    def __init__(self, errors='strict'):
        assert errors == 'strict'
        self.errors = errors
        self.compressobj = zlib.compressobj()

    def encode(self, input, final=False):
        if final:
            c = self.compressobj.compress(input)
            return c + self.compressobj.flush()
        else:
            return self.compressobj.compress(input)

    def reset(self):
        self.compressobj = zlib.compressobj()

class IncrementalDecoder(codecs.IncrementalDecoder):
    def __init__(self, errors='strict'):
        assert errors == 'strict'
        self.errors = errors
        self.decompressobj = zlib.decompressobj()

    def decode(self, input, final=False):
        if final:
            c = self.decompressobj.decompress(input)
            return c + self.decompressobj.flush()
        else:
            return self.decompressobj.decompress(input)

    def reset(self):
        self.decompressobj = zlib.decompressobj()

class StreamWriter(Codec, codecs.StreamWriter):
    charbuffertype = bytes

class StreamReader(Codec, codecs.StreamReader):
    charbuffertype = bytes

### encodings module API

def getregentry():
    return codecs.CodecInfo(
        name='zlib',
        encode=zlib_encode,
        decode=zlib_decode,
        incrementalencoder=IncrementalEncoder,
        incrementaldecoder=IncrementalDecoder,
        streamreader=StreamReader,
        streamwriter=StreamWriter,
        _is_text_encoding=False,
    )
lib\encodings\__init__.py
""" Standard "encodings" Package

    Standard Python encoding modules are stored in this package
    directory.

    Codec modules must have names corresponding to normalized encoding
    names as defined in the normalize_encoding() function below, e.g.
    'utf-8' must be implemented by the module 'utf_8.py'.

    Each codec module must export the following interface:

    * getregentry() -> codecs.CodecInfo object
    The getregentry() API must return a CodecInfo object with encoder, decoder,
    incrementalencoder, incrementaldecoder, streamwriter and streamreader
    atttributes which adhere to the Python Codec Interface Standard.

    In addition, a module may optionally also define the following
    APIs which are then used by the package's codec search function:

    * getaliases() -> sequence of encoding name strings to use as aliases

    Alias names returned by getaliases() must be normalized encoding
    names as defined by normalize_encoding().

Written by Marc-Andre Lemburg ([email protected]).

(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.

"""#"

import codecs
from . import aliases

_cache = {}
_unknown = '--unknown--'
_import_tail = ['*']
_aliases = aliases.aliases

class CodecRegistryError(LookupError, SystemError):
    pass

def normalize_encoding(encoding):

    """ Normalize an encoding name.

        Normalization works as follows: all non-alphanumeric
        characters except the dot used for Python package names are
        collapsed and replaced with a single underscore, e.g. '  -;#'
        becomes '_'. Leading and trailing underscores are removed.

        Note that encoding names should be ASCII only; if they do use
        non-ASCII characters, these must be Latin-1 compatible.

    """
    if isinstance(encoding, bytes):
        encoding = str(encoding, "ascii")
    chars = []
    punct = False
    for c in encoding:
        if c.isalnum() or c == '.':
            if punct and chars:
                chars.append('_')
            chars.append(c)
            punct = False
        else:
            punct = True
    return ''.join(chars)

def search_function(encoding):

    # Cache lookup
    entry = _cache.get(encoding, _unknown)
    if entry is not _unknown:
        return entry

    # Import the module:
    #
    # First try to find an alias for the normalized encoding
    # name and lookup the module using the aliased name, then try to
    # lookup the module using the standard import scheme, i.e. first
    # try in the encodings package, then at top-level.
    #
    norm_encoding = normalize_encoding(encoding)
    aliased_encoding = _aliases.get(norm_encoding) or \
                       _aliases.get(norm_encoding.replace('.', '_'))
    if aliased_encoding is not None:
        modnames = [aliased_encoding,
                    norm_encoding]
    else:
        modnames = [norm_encoding]
    for modname in modnames:
        if not modname or '.' in modname:
            continue
        try:
            # Import is absolute to prevent the possibly malicious import of a
            # module with side-effects that is not in the 'encodings' package.
            mod = __import__('encodings.' + modname, fromlist=_import_tail,
                             level=0)
        except ImportError:
            pass
        else:
            break
    else:
        mod = None

    try:
        getregentry = mod.getregentry
    except AttributeError:
        # Not a codec module
        mod = None

    if mod is None:
        # Cache misses
        _cache[encoding] = None
        return None

    # Now ask the module for the registry entry
    entry = getregentry()
    if not isinstance(entry, codecs.CodecInfo):
        if not 4 <= len(entry) <= 7:
            raise CodecRegistryError('module "%s" (%s) failed to register'
                                     % (mod.__name__, mod.__file__))
        if not callable(entry[0]) or not callable(entry[1]) or \
           (entry[2] is not None and not callable(entry[2])) or \
           (entry[3] is not None and not callable(entry[3])) or \
           (len(entry) > 4 and entry[4] is not None and not callable(entry[4])) or \
           (len(entry) > 5 and entry[5] is not None and not callable(entry[5])):
            raise CodecRegistryError('incompatible codecs in module "%s" (%s)'
                                     % (mod.__name__, mod.__file__))
        if len(entry)<7 or entry[6] is None:
            entry += (None,)*(6-len(entry)) + (mod.__name__.split(".", 1)[1],)
        entry = codecs.CodecInfo(*entry)

    # Cache the codec registry entry
    _cache[encoding] = entry

    # Register its aliases (without overwriting previously registered
    # aliases)
    try:
        codecaliases = mod.getaliases()
    except AttributeError:
        pass
    else:
        for alias in codecaliases:
            if alias not in _aliases:
                _aliases[alias] = modname

    # Return the registry entry
    return entry

# Register the search_function in the Python codec registry
codecs.register(search_function)
lib\ensurepip\_uninstall.py
"""Basic pip uninstallation support, helper for the Windows uninstaller"""

import argparse
import ensurepip
import sys


def _main(argv=None):
    parser = argparse.ArgumentParser(prog="python -m ensurepip._uninstall")
    parser.add_argument(
        "--version",
        action="version",
        version="pip {}".format(ensurepip.version()),
        help="Show the version of pip this will attempt to uninstall.",
    )
    parser.add_argument(
        "-v", "--verbose",
        action="count",
        default=0,
        dest="verbosity",
        help=("Give more output. Option is additive, and can be used up to 3 "
              "times."),
    )

    args = parser.parse_args(argv)

    return ensurepip._uninstall_helper(verbosity=args.verbosity)


if __name__ == "__main__":
    sys.exit(_main())
lib\ensurepip\__init__.py
import os
import os.path
import pkgutil
import sys
import tempfile


__all__ = ["version", "bootstrap"]


_SETUPTOOLS_VERSION = "40.6.2"

_PIP_VERSION = "18.1"

_PROJECTS = [
    ("setuptools", _SETUPTOOLS_VERSION),
    ("pip", _PIP_VERSION),
]


def _run_pip(args, additional_paths=None):
    # Add our bundled software to the sys.path so we can import it
    if additional_paths is not None:
        sys.path = additional_paths + sys.path

    # Install the bundled software
    import pip._internal
    return pip._internal.main(args)


def version():
    """
    Returns a string specifying the bundled version of pip.
    """
    return _PIP_VERSION

def _disable_pip_configuration_settings():
    # We deliberately ignore all pip environment variables
    # when invoking pip
    # See http://bugs.python.org/issue19734 for details
    keys_to_remove = [k for k in os.environ if k.startswith("PIP_")]
    for k in keys_to_remove:
        del os.environ[k]
    # We also ignore the settings in the default pip configuration file
    # See http://bugs.python.org/issue20053 for details
    os.environ['PIP_CONFIG_FILE'] = os.devnull


def bootstrap(*, root=None, upgrade=False, user=False,
              altinstall=False, default_pip=False,
              verbosity=0):
    """
    Bootstrap pip into the current Python installation (or the given root
    directory).

    Note that calling this function will alter both sys.path and os.environ.
    """
    # Discard the return value
    _bootstrap(root=root, upgrade=upgrade, user=user,
               altinstall=altinstall, default_pip=default_pip,
               verbosity=verbosity)


def _bootstrap(*, root=None, upgrade=False, user=False,
              altinstall=False, default_pip=False,
              verbosity=0):
    """
    Bootstrap pip into the current Python installation (or the given root
    directory). Returns pip command status code.

    Note that calling this function will alter both sys.path and os.environ.
    """
    if altinstall and default_pip:
        raise ValueError("Cannot use altinstall and default_pip together")

    _disable_pip_configuration_settings()

    # By default, installing pip and setuptools installs all of the
    # following scripts (X.Y == running Python version):
    #
    #   pip, pipX, pipX.Y, easy_install, easy_install-X.Y
    #
    # pip 1.5+ allows ensurepip to request that some of those be left out
    if altinstall:
        # omit pip, pipX and easy_install
        os.environ["ENSUREPIP_OPTIONS"] = "altinstall"
    elif not default_pip:
        # omit pip and easy_install
        os.environ["ENSUREPIP_OPTIONS"] = "install"

    with tempfile.TemporaryDirectory() as tmpdir:
        # Put our bundled wheels into a temporary directory and construct the
        # additional paths that need added to sys.path
        additional_paths = []
        for project, version in _PROJECTS:
            wheel_name = "{}-{}-py2.py3-none-any.whl".format(project, version)
            whl = pkgutil.get_data(
                "ensurepip",
                "_bundled/{}".format(wheel_name),
            )
            with open(os.path.join(tmpdir, wheel_name), "wb") as fp:
                fp.write(whl)

            additional_paths.append(os.path.join(tmpdir, wheel_name))

        # Construct the arguments to be passed to the pip command
        args = ["install", "--no-index", "--find-links", tmpdir]
        if sys.implementation.name == "ironpython":
            args += ["--no-compile"]
        if root:
            args += ["--root", root]
        if upgrade:
            args += ["--upgrade"]
        if user:
            args += ["--user"]
        if verbosity:
            args += ["-" + "v" * verbosity]

        return _run_pip(args + [p[0] for p in _PROJECTS], additional_paths)

def _uninstall_helper(*, verbosity=0):
    """Helper to support a clean default uninstall process on Windows

    Note that calling this function may alter os.environ.
    """
    # Nothing to do if pip was never installed, or has been removed
    try:
        import pip
    except ImportError:
        return

    # If the pip version doesn't match the bundled one, leave it alone
    if pip.__version__ != _PIP_VERSION:
        msg = ("ensurepip will only uninstall a matching version "
               "({!r} installed, {!r} bundled)")
        print(msg.format(pip.__version__, _PIP_VERSION), file=sys.stderr)
        return

    _disable_pip_configuration_settings()

    # Construct the arguments to be passed to the pip command
    args = ["uninstall", "-y", "--disable-pip-version-check"]
    if verbosity:
        args += ["-" + "v" * verbosity]

    return _run_pip(args + [p[0] for p in reversed(_PROJECTS)])


def _main(argv=None):
    import argparse
    parser = argparse.ArgumentParser(prog="python -m ensurepip")
    parser.add_argument(
        "--version",
        action="version",
        version="pip {}".format(version()),
        help="Show the version of pip that is bundled with this Python.",
    )
    parser.add_argument(
        "-v", "--verbose",
        action="count",
        default=0,
        dest="verbosity",
        help=("Give more output. Option is additive, and can be used up to 3 "
              "times."),
    )
    parser.add_argument(
        "-U", "--upgrade",
        action="store_true",
        default=False,
        help="Upgrade pip and dependencies, even if already installed.",
    )
    parser.add_argument(
        "--user",
        action="store_true",
        default=False,
        help="Install using the user scheme.",
    )
    parser.add_argument(
        "--root",
        default=None,
        help="Install everything relative to this alternate root directory.",
    )
    parser.add_argument(
        "--altinstall",
        action="store_true",
        default=False,
        help=("Make an alternate install, installing only the X.Y versioned "
              "scripts (Default: pipX, pipX.Y, easy_install-X.Y)."),
    )
    parser.add_argument(
        "--default-pip",
        action="store_true",
        default=False,
        help=("Make a default pip install, installing the unqualified pip "
              "and easy_install in addition to the versioned scripts."),
    )

    args = parser.parse_args(argv)

    return _bootstrap(
        root=args.root,
        upgrade=args.upgrade,
        user=args.user,
        verbosity=args.verbosity,
        altinstall=args.altinstall,
        default_pip=args.default_pip,
    )
lib\ensurepip\__main__.py
import ensurepip
import sys

if __name__ == "__main__":
    sys.exit(ensurepip._main())
lib\ensurepip\_bundled\pip-18.1-py2.py3-none-any.whl
 
lib\ensurepip\_bundled\setuptools-40.6.2-py2.py3-none-any.whl
 
lib\html\entities.py
"""HTML character entity references."""

# maps the HTML entity name to the Unicode code point
name2codepoint = {
    'AElig':    0x00c6, # latin capital letter AE = latin capital ligature AE, U+00C6 ISOlat1
    'Aacute':   0x00c1, # latin capital letter A with acute, U+00C1 ISOlat1
    'Acirc':    0x00c2, # latin capital letter A with circumflex, U+00C2 ISOlat1
    'Agrave':   0x00c0, # latin capital letter A with grave = latin capital letter A grave, U+00C0 ISOlat1
    'Alpha':    0x0391, # greek capital letter alpha, U+0391
    'Aring':    0x00c5, # latin capital letter A with ring above = latin capital letter A ring, U+00C5 ISOlat1
    'Atilde':   0x00c3, # latin capital letter A with tilde, U+00C3 ISOlat1
    'Auml':     0x00c4, # latin capital letter A with diaeresis, U+00C4 ISOlat1
    'Beta':     0x0392, # greek capital letter beta, U+0392
    'Ccedil':   0x00c7, # latin capital letter C with cedilla, U+00C7 ISOlat1
    'Chi':      0x03a7, # greek capital letter chi, U+03A7
    'Dagger':   0x2021, # double dagger, U+2021 ISOpub
    'Delta':    0x0394, # greek capital letter delta, U+0394 ISOgrk3
    'ETH':      0x00d0, # latin capital letter ETH, U+00D0 ISOlat1
    'Eacute':   0x00c9, # latin capital letter E with acute, U+00C9 ISOlat1
    'Ecirc':    0x00ca, # latin capital letter E with circumflex, U+00CA ISOlat1
    'Egrave':   0x00c8, # latin capital letter E with grave, U+00C8 ISOlat1
    'Epsilon':  0x0395, # greek capital letter epsilon, U+0395
    'Eta':      0x0397, # greek capital letter eta, U+0397
    'Euml':     0x00cb, # latin capital letter E with diaeresis, U+00CB ISOlat1
    'Gamma':    0x0393, # greek capital letter gamma, U+0393 ISOgrk3
    'Iacute':   0x00cd, # latin capital letter I with acute, U+00CD ISOlat1
    'Icirc':    0x00ce, # latin capital letter I with circumflex, U+00CE ISOlat1
    'Igrave':   0x00cc, # latin capital letter I with grave, U+00CC ISOlat1
    'Iota':     0x0399, # greek capital letter iota, U+0399
    'Iuml':     0x00cf, # latin capital letter I with diaeresis, U+00CF ISOlat1
    'Kappa':    0x039a, # greek capital letter kappa, U+039A
    'Lambda':   0x039b, # greek capital letter lambda, U+039B ISOgrk3
    'Mu':       0x039c, # greek capital letter mu, U+039C
    'Ntilde':   0x00d1, # latin capital letter N with tilde, U+00D1 ISOlat1
    'Nu':       0x039d, # greek capital letter nu, U+039D
    'OElig':    0x0152, # latin capital ligature OE, U+0152 ISOlat2
    'Oacute':   0x00d3, # latin capital letter O with acute, U+00D3 ISOlat1
    'Ocirc':    0x00d4, # latin capital letter O with circumflex, U+00D4 ISOlat1
    'Ograve':   0x00d2, # latin capital letter O with grave, U+00D2 ISOlat1
    'Omega':    0x03a9, # greek capital letter omega, U+03A9 ISOgrk3
    'Omicron':  0x039f, # greek capital letter omicron, U+039F
    'Oslash':   0x00d8, # latin capital letter O with stroke = latin capital letter O slash, U+00D8 ISOlat1
    'Otilde':   0x00d5, # latin capital letter O with tilde, U+00D5 ISOlat1
    'Ouml':     0x00d6, # latin capital letter O with diaeresis, U+00D6 ISOlat1
    'Phi':      0x03a6, # greek capital letter phi, U+03A6 ISOgrk3
    'Pi':       0x03a0, # greek capital letter pi, U+03A0 ISOgrk3
    'Prime':    0x2033, # double prime = seconds = inches, U+2033 ISOtech
    'Psi':      0x03a8, # greek capital letter psi, U+03A8 ISOgrk3
    'Rho':      0x03a1, # greek capital letter rho, U+03A1
    'Scaron':   0x0160, # latin capital letter S with caron, U+0160 ISOlat2
    'Sigma':    0x03a3, # greek capital letter sigma, U+03A3 ISOgrk3
    'THORN':    0x00de, # latin capital letter THORN, U+00DE ISOlat1
    'Tau':      0x03a4, # greek capital letter tau, U+03A4
    'Theta':    0x0398, # greek capital letter theta, U+0398 ISOgrk3
    'Uacute':   0x00da, # latin capital letter U with acute, U+00DA ISOlat1
    'Ucirc':    0x00db, # latin capital letter U with circumflex, U+00DB ISOlat1
    'Ugrave':   0x00d9, # latin capital letter U with grave, U+00D9 ISOlat1
    'Upsilon':  0x03a5, # greek capital letter upsilon, U+03A5 ISOgrk3
    'Uuml':     0x00dc, # latin capital letter U with diaeresis, U+00DC ISOlat1
    'Xi':       0x039e, # greek capital letter xi, U+039E ISOgrk3
    'Yacute':   0x00dd, # latin capital letter Y with acute, U+00DD ISOlat1
    'Yuml':     0x0178, # latin capital letter Y with diaeresis, U+0178 ISOlat2
    'Zeta':     0x0396, # greek capital letter zeta, U+0396
    'aacute':   0x00e1, # latin small letter a with acute, U+00E1 ISOlat1
    'acirc':    0x00e2, # latin small letter a with circumflex, U+00E2 ISOlat1
    'acute':    0x00b4, # acute accent = spacing acute, U+00B4 ISOdia
    'aelig':    0x00e6, # latin small letter ae = latin small ligature ae, U+00E6 ISOlat1
    'agrave':   0x00e0, # latin small letter a with grave = latin small letter a grave, U+00E0 ISOlat1
    'alefsym':  0x2135, # alef symbol = first transfinite cardinal, U+2135 NEW
    'alpha':    0x03b1, # greek small letter alpha, U+03B1 ISOgrk3
    'amp':      0x0026, # ampersand, U+0026 ISOnum
    'and':      0x2227, # logical and = wedge, U+2227 ISOtech
    'ang':      0x2220, # angle, U+2220 ISOamso
    'aring':    0x00e5, # latin small letter a with ring above = latin small letter a ring, U+00E5 ISOlat1
    'asymp':    0x2248, # almost equal to = asymptotic to, U+2248 ISOamsr
    'atilde':   0x00e3, # latin small letter a with tilde, U+00E3 ISOlat1
    'auml':     0x00e4, # latin small letter a with diaeresis, U+00E4 ISOlat1
    'bdquo':    0x201e, # double low-9 quotation mark, U+201E NEW
    'beta':     0x03b2, # greek small letter beta, U+03B2 ISOgrk3
    'brvbar':   0x00a6, # broken bar = broken vertical bar, U+00A6 ISOnum
    'bull':     0x2022, # bullet = black small circle, U+2022 ISOpub
    'cap':      0x2229, # intersection = cap, U+2229 ISOtech
    'ccedil':   0x00e7, # latin small letter c with cedilla, U+00E7 ISOlat1
    'cedil':    0x00b8, # cedilla = spacing cedilla, U+00B8 ISOdia
    'cent':     0x00a2, # cent sign, U+00A2 ISOnum
    'chi':      0x03c7, # greek small letter chi, U+03C7 ISOgrk3
    'circ':     0x02c6, # modifier letter circumflex accent, U+02C6 ISOpub
    'clubs':    0x2663, # black club suit = shamrock, U+2663 ISOpub
    'cong':     0x2245, # approximately equal to, U+2245 ISOtech
    'copy':     0x00a9, # copyright sign, U+00A9 ISOnum
    'crarr':    0x21b5, # downwards arrow with corner leftwards = carriage return, U+21B5 NEW
    'cup':      0x222a, # union = cup, U+222A ISOtech
    'curren':   0x00a4, # currency sign, U+00A4 ISOnum
    'dArr':     0x21d3, # downwards double arrow, U+21D3 ISOamsa
    'dagger':   0x2020, # dagger, U+2020 ISOpub
    'darr':     0x2193, # downwards arrow, U+2193 ISOnum
    'deg':      0x00b0, # degree sign, U+00B0 ISOnum
    'delta':    0x03b4, # greek small letter delta, U+03B4 ISOgrk3
    'diams':    0x2666, # black diamond suit, U+2666 ISOpub
    'divide':   0x00f7, # division sign, U+00F7 ISOnum
    'eacute':   0x00e9, # latin small letter e with acute, U+00E9 ISOlat1
    'ecirc':    0x00ea, # latin small letter e with circumflex, U+00EA ISOlat1
    'egrave':   0x00e8, # latin small letter e with grave, U+00E8 ISOlat1
    'empty':    0x2205, # empty set = null set = diameter, U+2205 ISOamso
    'emsp':     0x2003, # em space, U+2003 ISOpub
    'ensp':     0x2002, # en space, U+2002 ISOpub
    'epsilon':  0x03b5, # greek small letter epsilon, U+03B5 ISOgrk3
    'equiv':    0x2261, # identical to, U+2261 ISOtech
    'eta':      0x03b7, # greek small letter eta, U+03B7 ISOgrk3
    'eth':      0x00f0, # latin small letter eth, U+00F0 ISOlat1
    'euml':     0x00eb, # latin small letter e with diaeresis, U+00EB ISOlat1
    'euro':     0x20ac, # euro sign, U+20AC NEW
    'exist':    0x2203, # there exists, U+2203 ISOtech
    'fnof':     0x0192, # latin small f with hook = function = florin, U+0192 ISOtech
    'forall':   0x2200, # for all, U+2200 ISOtech
    'frac12':   0x00bd, # vulgar fraction one half = fraction one half, U+00BD ISOnum
    'frac14':   0x00bc, # vulgar fraction one quarter = fraction one quarter, U+00BC ISOnum
    'frac34':   0x00be, # vulgar fraction three quarters = fraction three quarters, U+00BE ISOnum
    'frasl':    0x2044, # fraction slash, U+2044 NEW
    'gamma':    0x03b3, # greek small letter gamma, U+03B3 ISOgrk3
    'ge':       0x2265, # greater-than or equal to, U+2265 ISOtech
    'gt':       0x003e, # greater-than sign, U+003E ISOnum
    'hArr':     0x21d4, # left right double arrow, U+21D4 ISOamsa
    'harr':     0x2194, # left right arrow, U+2194 ISOamsa
    'hearts':   0x2665, # black heart suit = valentine, U+2665 ISOpub
    'hellip':   0x2026, # horizontal ellipsis = three dot leader, U+2026 ISOpub
    'iacute':   0x00ed, # latin small letter i with acute, U+00ED ISOlat1
    'icirc':    0x00ee, # latin small letter i with circumflex, U+00EE ISOlat1
    'iexcl':    0x00a1, # inverted exclamation mark, U+00A1 ISOnum
    'igrave':   0x00ec, # latin small letter i with grave, U+00EC ISOlat1
    'image':    0x2111, # blackletter capital I = imaginary part, U+2111 ISOamso
    'infin':    0x221e, # infinity, U+221E ISOtech
    'int':      0x222b, # integral, U+222B ISOtech
    'iota':     0x03b9, # greek small letter iota, U+03B9 ISOgrk3
    'iquest':   0x00bf, # inverted question mark = turned question mark, U+00BF ISOnum
    'isin':     0x2208, # element of, U+2208 ISOtech
    'iuml':     0x00ef, # latin small letter i with diaeresis, U+00EF ISOlat1
    'kappa':    0x03ba, # greek small letter kappa, U+03BA ISOgrk3
    'lArr':     0x21d0, # leftwards double arrow, U+21D0 ISOtech
    'lambda':   0x03bb, # greek small letter lambda, U+03BB ISOgrk3
    'lang':     0x2329, # left-pointing angle bracket = bra, U+2329 ISOtech
    'laquo':    0x00ab, # left-pointing double angle quotation mark = left pointing guillemet, U+00AB ISOnum
    'larr':     0x2190, # leftwards arrow, U+2190 ISOnum
    'lceil':    0x2308, # left ceiling = apl upstile, U+2308 ISOamsc
    'ldquo':    0x201c, # left double quotation mark, U+201C ISOnum
    'le':       0x2264, # less-than or equal to, U+2264 ISOtech
    'lfloor':   0x230a, # left floor = apl downstile, U+230A ISOamsc
    'lowast':   0x2217, # asterisk operator, U+2217 ISOtech
    'loz':      0x25ca, # lozenge, U+25CA ISOpub
    'lrm':      0x200e, # left-to-right mark, U+200E NEW RFC 2070
    'lsaquo':   0x2039, # single left-pointing angle quotation mark, U+2039 ISO proposed
    'lsquo':    0x2018, # left single quotation mark, U+2018 ISOnum
    'lt':       0x003c, # less-than sign, U+003C ISOnum
    'macr':     0x00af, # macron = spacing macron = overline = APL overbar, U+00AF ISOdia
    'mdash':    0x2014, # em dash, U+2014 ISOpub
    'micro':    0x00b5, # micro sign, U+00B5 ISOnum
    'middot':   0x00b7, # middle dot = Georgian comma = Greek middle dot, U+00B7 ISOnum
    'minus':    0x2212, # minus sign, U+2212 ISOtech
    'mu':       0x03bc, # greek small letter mu, U+03BC ISOgrk3
    'nabla':    0x2207, # nabla = backward difference, U+2207 ISOtech
    'nbsp':     0x00a0, # no-break space = non-breaking space, U+00A0 ISOnum
    'ndash':    0x2013, # en dash, U+2013 ISOpub
    'ne':       0x2260, # not equal to, U+2260 ISOtech
    'ni':       0x220b, # contains as member, U+220B ISOtech
    'not':      0x00ac, # not sign, U+00AC ISOnum
    'notin':    0x2209, # not an element of, U+2209 ISOtech
    'nsub':     0x2284, # not a subset of, U+2284 ISOamsn
    'ntilde':   0x00f1, # latin small letter n with tilde, U+00F1 ISOlat1
    'nu':       0x03bd, # greek small letter nu, U+03BD ISOgrk3
    'oacute':   0x00f3, # latin small letter o with acute, U+00F3 ISOlat1
    'ocirc':    0x00f4, # latin small letter o with circumflex, U+00F4 ISOlat1
    'oelig':    0x0153, # latin small ligature oe, U+0153 ISOlat2
    'ograve':   0x00f2, # latin small letter o with grave, U+00F2 ISOlat1
    'oline':    0x203e, # overline = spacing overscore, U+203E NEW
    'omega':    0x03c9, # greek small letter omega, U+03C9 ISOgrk3
    'omicron':  0x03bf, # greek small letter omicron, U+03BF NEW
    'oplus':    0x2295, # circled plus = direct sum, U+2295 ISOamsb
    'or':       0x2228, # logical or = vee, U+2228 ISOtech
    'ordf':     0x00aa, # feminine ordinal indicator, U+00AA ISOnum
    'ordm':     0x00ba, # masculine ordinal indicator, U+00BA ISOnum
    'oslash':   0x00f8, # latin small letter o with stroke, = latin small letter o slash, U+00F8 ISOlat1
    'otilde':   0x00f5, # latin small letter o with tilde, U+00F5 ISOlat1
    'otimes':   0x2297, # circled times = vector product, U+2297 ISOamsb
    'ouml':     0x00f6, # latin small letter o with diaeresis, U+00F6 ISOlat1
    'para':     0x00b6, # pilcrow sign = paragraph sign, U+00B6 ISOnum
    'part':     0x2202, # partial differential, U+2202 ISOtech
    'permil':   0x2030, # per mille sign, U+2030 ISOtech
    'perp':     0x22a5, # up tack = orthogonal to = perpendicular, U+22A5 ISOtech
    'phi':      0x03c6, # greek small letter phi, U+03C6 ISOgrk3
    'pi':       0x03c0, # greek small letter pi, U+03C0 ISOgrk3
    'piv':      0x03d6, # greek pi symbol, U+03D6 ISOgrk3
    'plusmn':   0x00b1, # plus-minus sign = plus-or-minus sign, U+00B1 ISOnum
    'pound':    0x00a3, # pound sign, U+00A3 ISOnum
    'prime':    0x2032, # prime = minutes = feet, U+2032 ISOtech
    'prod':     0x220f, # n-ary product = product sign, U+220F ISOamsb
    'prop':     0x221d, # proportional to, U+221D ISOtech
    'psi':      0x03c8, # greek small letter psi, U+03C8 ISOgrk3
    'quot':     0x0022, # quotation mark = APL quote, U+0022 ISOnum
    'rArr':     0x21d2, # rightwards double arrow, U+21D2 ISOtech
    'radic':    0x221a, # square root = radical sign, U+221A ISOtech
    'rang':     0x232a, # right-pointing angle bracket = ket, U+232A ISOtech
    'raquo':    0x00bb, # right-pointing double angle quotation mark = right pointing guillemet, U+00BB ISOnum
    'rarr':     0x2192, # rightwards arrow, U+2192 ISOnum
    'rceil':    0x2309, # right ceiling, U+2309 ISOamsc
    'rdquo':    0x201d, # right double quotation mark, U+201D ISOnum
    'real':     0x211c, # blackletter capital R = real part symbol, U+211C ISOamso
    'reg':      0x00ae, # registered sign = registered trade mark sign, U+00AE ISOnum
    'rfloor':   0x230b, # right floor, U+230B ISOamsc
    'rho':      0x03c1, # greek small letter rho, U+03C1 ISOgrk3
    'rlm':      0x200f, # right-to-left mark, U+200F NEW RFC 2070
    'rsaquo':   0x203a, # single right-pointing angle quotation mark, U+203A ISO proposed
    'rsquo':    0x2019, # right single quotation mark, U+2019 ISOnum
    'sbquo':    0x201a, # single low-9 quotation mark, U+201A NEW
    'scaron':   0x0161, # latin small letter s with caron, U+0161 ISOlat2
    'sdot':     0x22c5, # dot operator, U+22C5 ISOamsb
    'sect':     0x00a7, # section sign, U+00A7 ISOnum
    'shy':      0x00ad, # soft hyphen = discretionary hyphen, U+00AD ISOnum
    'sigma':    0x03c3, # greek small letter sigma, U+03C3 ISOgrk3
    'sigmaf':   0x03c2, # greek small letter final sigma, U+03C2 ISOgrk3
    'sim':      0x223c, # tilde operator = varies with = similar to, U+223C ISOtech
    'spades':   0x2660, # black spade suit, U+2660 ISOpub
    'sub':      0x2282, # subset of, U+2282 ISOtech
    'sube':     0x2286, # subset of or equal to, U+2286 ISOtech
    'sum':      0x2211, # n-ary summation, U+2211 ISOamsb
    'sup':      0x2283, # superset of, U+2283 ISOtech
    'sup1':     0x00b9, # superscript one = superscript digit one, U+00B9 ISOnum
    'sup2':     0x00b2, # superscript two = superscript digit two = squared, U+00B2 ISOnum
    'sup3':     0x00b3, # superscript three = superscript digit three = cubed, U+00B3 ISOnum
    'supe':     0x2287, # superset of or equal to, U+2287 ISOtech
    'szlig':    0x00df, # latin small letter sharp s = ess-zed, U+00DF ISOlat1
    'tau':      0x03c4, # greek small letter tau, U+03C4 ISOgrk3
    'there4':   0x2234, # therefore, U+2234 ISOtech
    'theta':    0x03b8, # greek small letter theta, U+03B8 ISOgrk3
    'thetasym': 0x03d1, # greek small letter theta symbol, U+03D1 NEW
    'thinsp':   0x2009, # thin space, U+2009 ISOpub
    'thorn':    0x00fe, # latin small letter thorn with, U+00FE ISOlat1
    'tilde':    0x02dc, # small tilde, U+02DC ISOdia
    'times':    0x00d7, # multiplication sign, U+00D7 ISOnum
    'trade':    0x2122, # trade mark sign, U+2122 ISOnum
    'uArr':     0x21d1, # upwards double arrow, U+21D1 ISOamsa
    'uacute':   0x00fa, # latin small letter u with acute, U+00FA ISOlat1
    'uarr':     0x2191, # upwards arrow, U+2191 ISOnum
    'ucirc':    0x00fb, # latin small letter u with circumflex, U+00FB ISOlat1
    'ugrave':   0x00f9, # latin small letter u with grave, U+00F9 ISOlat1
    'uml':      0x00a8, # diaeresis = spacing diaeresis, U+00A8 ISOdia
    'upsih':    0x03d2, # greek upsilon with hook symbol, U+03D2 NEW
    'upsilon':  0x03c5, # greek small letter upsilon, U+03C5 ISOgrk3
    'uuml':     0x00fc, # latin small letter u with diaeresis, U+00FC ISOlat1
    'weierp':   0x2118, # script capital P = power set = Weierstrass p, U+2118 ISOamso
    'xi':       0x03be, # greek small letter xi, U+03BE ISOgrk3
    'yacute':   0x00fd, # latin small letter y with acute, U+00FD ISOlat1
    'yen':      0x00a5, # yen sign = yuan sign, U+00A5 ISOnum
    'yuml':     0x00ff, # latin small letter y with diaeresis, U+00FF ISOlat1
    'zeta':     0x03b6, # greek small letter zeta, U+03B6 ISOgrk3
    'zwj':      0x200d, # zero width joiner, U+200D NEW RFC 2070
    'zwnj':     0x200c, # zero width non-joiner, U+200C NEW RFC 2070
}


# maps the HTML5 named character references to the equivalent Unicode character(s)
html5 = {
    'Aacute': '\xc1',
    'aacute': '\xe1',
    'Aacute;': '\xc1',
    'aacute;': '\xe1',
    'Abreve;': '\u0102',
    'abreve;': '\u0103',
    'ac;': '\u223e',
    'acd;': '\u223f',
    'acE;': '\u223e\u0333',
    'Acirc': '\xc2',
    'acirc': '\xe2',
    'Acirc;': '\xc2',
    'acirc;': '\xe2',
    'acute': '\xb4',
    'acute;': '\xb4',
    'Acy;': '\u0410',
    'acy;': '\u0430',
    'AElig': '\xc6',
    'aelig': '\xe6',
    'AElig;': '\xc6',
    'aelig;': '\xe6',
    'af;': '\u2061',
    'Afr;': '\U0001d504',
    'afr;': '\U0001d51e',
    'Agrave': '\xc0',
    'agrave': '\xe0',
    'Agrave;': '\xc0',
    'agrave;': '\xe0',
    'alefsym;': '\u2135',
    'aleph;': '\u2135',
    'Alpha;': '\u0391',
    'alpha;': '\u03b1',
    'Amacr;': '\u0100',
    'amacr;': '\u0101',
    'amalg;': '\u2a3f',
    'AMP': '&',
    'amp': '&',
    'AMP;': '&',
    'amp;': '&',
    'And;': '\u2a53',
    'and;': '\u2227',
    'andand;': '\u2a55',
    'andd;': '\u2a5c',
    'andslope;': '\u2a58',
    'andv;': '\u2a5a',
    'ang;': '\u2220',
    'ange;': '\u29a4',
    'angle;': '\u2220',
    'angmsd;': '\u2221',
    'angmsdaa;': '\u29a8',
    'angmsdab;': '\u29a9',
    'angmsdac;': '\u29aa',
    'angmsdad;': '\u29ab',
    'angmsdae;': '\u29ac',
    'angmsdaf;': '\u29ad',
    'angmsdag;': '\u29ae',
    'angmsdah;': '\u29af',
    'angrt;': '\u221f',
    'angrtvb;': '\u22be',
    'angrtvbd;': '\u299d',
    'angsph;': '\u2222',
    'angst;': '\xc5',
    'angzarr;': '\u237c',
    'Aogon;': '\u0104',
    'aogon;': '\u0105',
    'Aopf;': '\U0001d538',
    'aopf;': '\U0001d552',
    'ap;': '\u2248',
    'apacir;': '\u2a6f',
    'apE;': '\u2a70',
    'ape;': '\u224a',
    'apid;': '\u224b',
    'apos;': "'",
    'ApplyFunction;': '\u2061',
    'approx;': '\u2248',
    'approxeq;': '\u224a',
    'Aring': '\xc5',
    'aring': '\xe5',
    'Aring;': '\xc5',
    'aring;': '\xe5',
    'Ascr;': '\U0001d49c',
    'ascr;': '\U0001d4b6',
    'Assign;': '\u2254',
    'ast;': '*',
    'asymp;': '\u2248',
    'asympeq;': '\u224d',
    'Atilde': '\xc3',
    'atilde': '\xe3',
    'Atilde;': '\xc3',
    'atilde;': '\xe3',
    'Auml': '\xc4',
    'auml': '\xe4',
    'Auml;': '\xc4',
    'auml;': '\xe4',
    'awconint;': '\u2233',
    'awint;': '\u2a11',
    'backcong;': '\u224c',
    'backepsilon;': '\u03f6',
    'backprime;': '\u2035',
    'backsim;': '\u223d',
    'backsimeq;': '\u22cd',
    'Backslash;': '\u2216',
    'Barv;': '\u2ae7',
    'barvee;': '\u22bd',
    'Barwed;': '\u2306',
    'barwed;': '\u2305',
    'barwedge;': '\u2305',
    'bbrk;': '\u23b5',
    'bbrktbrk;': '\u23b6',
    'bcong;': '\u224c',
    'Bcy;': '\u0411',
    'bcy;': '\u0431',
    'bdquo;': '\u201e',
    'becaus;': '\u2235',
    'Because;': '\u2235',
    'because;': '\u2235',
    'bemptyv;': '\u29b0',
    'bepsi;': '\u03f6',
    'bernou;': '\u212c',
    'Bernoullis;': '\u212c',
    'Beta;': '\u0392',
    'beta;': '\u03b2',
    'beth;': '\u2136',
    'between;': '\u226c',
    'Bfr;': '\U0001d505',
    'bfr;': '\U0001d51f',
    'bigcap;': '\u22c2',
    'bigcirc;': '\u25ef',
    'bigcup;': '\u22c3',
    'bigodot;': '\u2a00',
    'bigoplus;': '\u2a01',
    'bigotimes;': '\u2a02',
    'bigsqcup;': '\u2a06',
    'bigstar;': '\u2605',
    'bigtriangledown;': '\u25bd',
    'bigtriangleup;': '\u25b3',
    'biguplus;': '\u2a04',
    'bigvee;': '\u22c1',
    'bigwedge;': '\u22c0',
    'bkarow;': '\u290d',
    'blacklozenge;': '\u29eb',
    'blacksquare;': '\u25aa',
    'blacktriangle;': '\u25b4',
    'blacktriangledown;': '\u25be',
    'blacktriangleleft;': '\u25c2',
    'blacktriangleright;': '\u25b8',
    'blank;': '\u2423',
    'blk12;': '\u2592',
    'blk14;': '\u2591',
    'blk34;': '\u2593',
    'block;': '\u2588',
    'bne;': '=\u20e5',
    'bnequiv;': '\u2261\u20e5',
    'bNot;': '\u2aed',
    'bnot;': '\u2310',
    'Bopf;': '\U0001d539',
    'bopf;': '\U0001d553',
    'bot;': '\u22a5',
    'bottom;': '\u22a5',
    'bowtie;': '\u22c8',
    'boxbox;': '\u29c9',
    'boxDL;': '\u2557',
    'boxDl;': '\u2556',
    'boxdL;': '\u2555',
    'boxdl;': '\u2510',
    'boxDR;': '\u2554',
    'boxDr;': '\u2553',
    'boxdR;': '\u2552',
    'boxdr;': '\u250c',
    'boxH;': '\u2550',
    'boxh;': '\u2500',
    'boxHD;': '\u2566',
    'boxHd;': '\u2564',
    'boxhD;': '\u2565',
    'boxhd;': '\u252c',
    'boxHU;': '\u2569',
    'boxHu;': '\u2567',
    'boxhU;': '\u2568',
    'boxhu;': '\u2534',
    'boxminus;': '\u229f',
    'boxplus;': '\u229e',
    'boxtimes;': '\u22a0',
    'boxUL;': '\u255d',
    'boxUl;': '\u255c',
    'boxuL;': '\u255b',
    'boxul;': '\u2518',
    'boxUR;': '\u255a',
    'boxUr;': '\u2559',
    'boxuR;': '\u2558',
    'boxur;': '\u2514',
    'boxV;': '\u2551',
    'boxv;': '\u2502',
    'boxVH;': '\u256c',
    'boxVh;': '\u256b',
    'boxvH;': '\u256a',
    'boxvh;': '\u253c',
    'boxVL;': '\u2563',
    'boxVl;': '\u2562',
    'boxvL;': '\u2561',
    'boxvl;': '\u2524',
    'boxVR;': '\u2560',
    'boxVr;': '\u255f',
    'boxvR;': '\u255e',
    'boxvr;': '\u251c',
    'bprime;': '\u2035',
    'Breve;': '\u02d8',
    'breve;': '\u02d8',
    'brvbar': '\xa6',
    'brvbar;': '\xa6',
    'Bscr;': '\u212c',
    'bscr;': '\U0001d4b7',
    'bsemi;': '\u204f',
    'bsim;': '\u223d',
    'bsime;': '\u22cd',
    'bsol;': '\\',
    'bsolb;': '\u29c5',
    'bsolhsub;': '\u27c8',
    'bull;': '\u2022',
    'bullet;': '\u2022',
    'bump;': '\u224e',
    'bumpE;': '\u2aae',
    'bumpe;': '\u224f',
    'Bumpeq;': '\u224e',
    'bumpeq;': '\u224f',
    'Cacute;': '\u0106',
    'cacute;': '\u0107',
    'Cap;': '\u22d2',
    'cap;': '\u2229',
    'capand;': '\u2a44',
    'capbrcup;': '\u2a49',
    'capcap;': '\u2a4b',
    'capcup;': '\u2a47',
    'capdot;': '\u2a40',
    'CapitalDifferentialD;': '\u2145',
    'caps;': '\u2229\ufe00',
    'caret;': '\u2041',
    'caron;': '\u02c7',
    'Cayleys;': '\u212d',
    'ccaps;': '\u2a4d',
    'Ccaron;': '\u010c',
    'ccaron;': '\u010d',
    'Ccedil': '\xc7',
    'ccedil': '\xe7',
    'Ccedil;': '\xc7',
    'ccedil;': '\xe7',
    'Ccirc;': '\u0108',
    'ccirc;': '\u0109',
    'Cconint;': '\u2230',
    'ccups;': '\u2a4c',
    'ccupssm;': '\u2a50',
    'Cdot;': '\u010a',
    'cdot;': '\u010b',
    'cedil': '\xb8',
    'cedil;': '\xb8',
    'Cedilla;': '\xb8',
    'cemptyv;': '\u29b2',
    'cent': '\xa2',
    'cent;': '\xa2',
    'CenterDot;': '\xb7',
    'centerdot;': '\xb7',
    'Cfr;': '\u212d',
    'cfr;': '\U0001d520',
    'CHcy;': '\u0427',
    'chcy;': '\u0447',
    'check;': '\u2713',
    'checkmark;': '\u2713',
    'Chi;': '\u03a7',
    'chi;': '\u03c7',
    'cir;': '\u25cb',
    'circ;': '\u02c6',
    'circeq;': '\u2257',
    'circlearrowleft;': '\u21ba',
    'circlearrowright;': '\u21bb',
    'circledast;': '\u229b',
    'circledcirc;': '\u229a',
    'circleddash;': '\u229d',
    'CircleDot;': '\u2299',
    'circledR;': '\xae',
    'circledS;': '\u24c8',
    'CircleMinus;': '\u2296',
    'CirclePlus;': '\u2295',
    'CircleTimes;': '\u2297',
    'cirE;': '\u29c3',
    'cire;': '\u2257',
    'cirfnint;': '\u2a10',
    'cirmid;': '\u2aef',
    'cirscir;': '\u29c2',
    'ClockwiseContourIntegral;': '\u2232',
    'CloseCurlyDoubleQuote;': '\u201d',
    'CloseCurlyQuote;': '\u2019',
    'clubs;': '\u2663',
    'clubsuit;': '\u2663',
    'Colon;': '\u2237',
    'colon;': ':',
    'Colone;': '\u2a74',
    'colone;': '\u2254',
    'coloneq;': '\u2254',
    'comma;': ',',
    'commat;': '@',
    'comp;': '\u2201',
    'compfn;': '\u2218',
    'complement;': '\u2201',
    'complexes;': '\u2102',
    'cong;': '\u2245',
    'congdot;': '\u2a6d',
    'Congruent;': '\u2261',
    'Conint;': '\u222f',
    'conint;': '\u222e',
    'ContourIntegral;': '\u222e',
    'Copf;': '\u2102',
    'copf;': '\U0001d554',
    'coprod;': '\u2210',
    'Coproduct;': '\u2210',
    'COPY': '\xa9',
    'copy': '\xa9',
    'COPY;': '\xa9',
    'copy;': '\xa9',
    'copysr;': '\u2117',
    'CounterClockwiseContourIntegral;': '\u2233',
    'crarr;': '\u21b5',
    'Cross;': '\u2a2f',
    'cross;': '\u2717',
    'Cscr;': '\U0001d49e',
    'cscr;': '\U0001d4b8',
    'csub;': '\u2acf',
    'csube;': '\u2ad1',
    'csup;': '\u2ad0',
    'csupe;': '\u2ad2',
    'ctdot;': '\u22ef',
    'cudarrl;': '\u2938',
    'cudarrr;': '\u2935',
    'cuepr;': '\u22de',
    'cuesc;': '\u22df',
    'cularr;': '\u21b6',
    'cularrp;': '\u293d',
    'Cup;': '\u22d3',
    'cup;': '\u222a',
    'cupbrcap;': '\u2a48',
    'CupCap;': '\u224d',
    'cupcap;': '\u2a46',
    'cupcup;': '\u2a4a',
    'cupdot;': '\u228d',
    'cupor;': '\u2a45',
    'cups;': '\u222a\ufe00',
    'curarr;': '\u21b7',
    'curarrm;': '\u293c',
    'curlyeqprec;': '\u22de',
    'curlyeqsucc;': '\u22df',
    'curlyvee;': '\u22ce',
    'curlywedge;': '\u22cf',
    'curren': '\xa4',
    'curren;': '\xa4',
    'curvearrowleft;': '\u21b6',
    'curvearrowright;': '\u21b7',
    'cuvee;': '\u22ce',
    'cuwed;': '\u22cf',
    'cwconint;': '\u2232',
    'cwint;': '\u2231',
    'cylcty;': '\u232d',
    'Dagger;': '\u2021',
    'dagger;': '\u2020',
    'daleth;': '\u2138',
    'Darr;': '\u21a1',
    'dArr;': '\u21d3',
    'darr;': '\u2193',
    'dash;': '\u2010',
    'Dashv;': '\u2ae4',
    'dashv;': '\u22a3',
    'dbkarow;': '\u290f',
    'dblac;': '\u02dd',
    'Dcaron;': '\u010e',
    'dcaron;': '\u010f',
    'Dcy;': '\u0414',
    'dcy;': '\u0434',
    'DD;': '\u2145',
    'dd;': '\u2146',
    'ddagger;': '\u2021',
    'ddarr;': '\u21ca',
    'DDotrahd;': '\u2911',
    'ddotseq;': '\u2a77',
    'deg': '\xb0',
    'deg;': '\xb0',
    'Del;': '\u2207',
    'Delta;': '\u0394',
    'delta;': '\u03b4',
    'demptyv;': '\u29b1',
    'dfisht;': '\u297f',
    'Dfr;': '\U0001d507',
    'dfr;': '\U0001d521',
    'dHar;': '\u2965',
    'dharl;': '\u21c3',
    'dharr;': '\u21c2',
    'DiacriticalAcute;': '\xb4',
    'DiacriticalDot;': '\u02d9',
    'DiacriticalDoubleAcute;': '\u02dd',
    'DiacriticalGrave;': '`',
    'DiacriticalTilde;': '\u02dc',
    'diam;': '\u22c4',
    'Diamond;': '\u22c4',
    'diamond;': '\u22c4',
    'diamondsuit;': '\u2666',
    'diams;': '\u2666',
    'die;': '\xa8',
    'DifferentialD;': '\u2146',
    'digamma;': '\u03dd',
    'disin;': '\u22f2',
    'div;': '\xf7',
    'divide': '\xf7',
    'divide;': '\xf7',
    'divideontimes;': '\u22c7',
    'divonx;': '\u22c7',
    'DJcy;': '\u0402',
    'djcy;': '\u0452',
    'dlcorn;': '\u231e',
    'dlcrop;': '\u230d',
    'dollar;': '$',
    'Dopf;': '\U0001d53b',
    'dopf;': '\U0001d555',
    'Dot;': '\xa8',
    'dot;': '\u02d9',
    'DotDot;': '\u20dc',
    'doteq;': '\u2250',
    'doteqdot;': '\u2251',
    'DotEqual;': '\u2250',
    'dotminus;': '\u2238',
    'dotplus;': '\u2214',
    'dotsquare;': '\u22a1',
    'doublebarwedge;': '\u2306',
    'DoubleContourIntegral;': '\u222f',
    'DoubleDot;': '\xa8',
    'DoubleDownArrow;': '\u21d3',
    'DoubleLeftArrow;': '\u21d0',
    'DoubleLeftRightArrow;': '\u21d4',
    'DoubleLeftTee;': '\u2ae4',
    'DoubleLongLeftArrow;': '\u27f8',
    'DoubleLongLeftRightArrow;': '\u27fa',
    'DoubleLongRightArrow;': '\u27f9',
    'DoubleRightArrow;': '\u21d2',
    'DoubleRightTee;': '\u22a8',
    'DoubleUpArrow;': '\u21d1',
    'DoubleUpDownArrow;': '\u21d5',
    'DoubleVerticalBar;': '\u2225',
    'DownArrow;': '\u2193',
    'Downarrow;': '\u21d3',
    'downarrow;': '\u2193',
    'DownArrowBar;': '\u2913',
    'DownArrowUpArrow;': '\u21f5',
    'DownBreve;': '\u0311',
    'downdownarrows;': '\u21ca',
    'downharpoonleft;': '\u21c3',
    'downharpoonright;': '\u21c2',
    'DownLeftRightVector;': '\u2950',
    'DownLeftTeeVector;': '\u295e',
    'DownLeftVector;': '\u21bd',
    'DownLeftVectorBar;': '\u2956',
    'DownRightTeeVector;': '\u295f',
    'DownRightVector;': '\u21c1',
    'DownRightVectorBar;': '\u2957',
    'DownTee;': '\u22a4',
    'DownTeeArrow;': '\u21a7',
    'drbkarow;': '\u2910',
    'drcorn;': '\u231f',
    'drcrop;': '\u230c',
    'Dscr;': '\U0001d49f',
    'dscr;': '\U0001d4b9',
    'DScy;': '\u0405',
    'dscy;': '\u0455',
    'dsol;': '\u29f6',
    'Dstrok;': '\u0110',
    'dstrok;': '\u0111',
    'dtdot;': '\u22f1',
    'dtri;': '\u25bf',
    'dtrif;': '\u25be',
    'duarr;': '\u21f5',
    'duhar;': '\u296f',
    'dwangle;': '\u29a6',
    'DZcy;': '\u040f',
    'dzcy;': '\u045f',
    'dzigrarr;': '\u27ff',
    'Eacute': '\xc9',
    'eacute': '\xe9',
    'Eacute;': '\xc9',
    'eacute;': '\xe9',
    'easter;': '\u2a6e',
    'Ecaron;': '\u011a',
    'ecaron;': '\u011b',
    'ecir;': '\u2256',
    'Ecirc': '\xca',
    'ecirc': '\xea',
    'Ecirc;': '\xca',
    'ecirc;': '\xea',
    'ecolon;': '\u2255',
    'Ecy;': '\u042d',
    'ecy;': '\u044d',
    'eDDot;': '\u2a77',
    'Edot;': '\u0116',
    'eDot;': '\u2251',
    'edot;': '\u0117',
    'ee;': '\u2147',
    'efDot;': '\u2252',
    'Efr;': '\U0001d508',
    'efr;': '\U0001d522',
    'eg;': '\u2a9a',
    'Egrave': '\xc8',
    'egrave': '\xe8',
    'Egrave;': '\xc8',
    'egrave;': '\xe8',
    'egs;': '\u2a96',
    'egsdot;': '\u2a98',
    'el;': '\u2a99',
    'Element;': '\u2208',
    'elinters;': '\u23e7',
    'ell;': '\u2113',
    'els;': '\u2a95',
    'elsdot;': '\u2a97',
    'Emacr;': '\u0112',
    'emacr;': '\u0113',
    'empty;': '\u2205',
    'emptyset;': '\u2205',
    'EmptySmallSquare;': '\u25fb',
    'emptyv;': '\u2205',
    'EmptyVerySmallSquare;': '\u25ab',
    'emsp13;': '\u2004',
    'emsp14;': '\u2005',
    'emsp;': '\u2003',
    'ENG;': '\u014a',
    'eng;': '\u014b',
    'ensp;': '\u2002',
    'Eogon;': '\u0118',
    'eogon;': '\u0119',
    'Eopf;': '\U0001d53c',
    'eopf;': '\U0001d556',
    'epar;': '\u22d5',
    'eparsl;': '\u29e3',
    'eplus;': '\u2a71',
    'epsi;': '\u03b5',
    'Epsilon;': '\u0395',
    'epsilon;': '\u03b5',
    'epsiv;': '\u03f5',
    'eqcirc;': '\u2256',
    'eqcolon;': '\u2255',
    'eqsim;': '\u2242',
    'eqslantgtr;': '\u2a96',
    'eqslantless;': '\u2a95',
    'Equal;': '\u2a75',
    'equals;': '=',
    'EqualTilde;': '\u2242',
    'equest;': '\u225f',
    'Equilibrium;': '\u21cc',
    'equiv;': '\u2261',
    'equivDD;': '\u2a78',
    'eqvparsl;': '\u29e5',
    'erarr;': '\u2971',
    'erDot;': '\u2253',
    'Escr;': '\u2130',
    'escr;': '\u212f',
    'esdot;': '\u2250',
    'Esim;': '\u2a73',
    'esim;': '\u2242',
    'Eta;': '\u0397',
    'eta;': '\u03b7',
    'ETH': '\xd0',
    'eth': '\xf0',
    'ETH;': '\xd0',
    'eth;': '\xf0',
    'Euml': '\xcb',
    'euml': '\xeb',
    'Euml;': '\xcb',
    'euml;': '\xeb',
    'euro;': '\u20ac',
    'excl;': '!',
    'exist;': '\u2203',
    'Exists;': '\u2203',
    'expectation;': '\u2130',
    'ExponentialE;': '\u2147',
    'exponentiale;': '\u2147',
    'fallingdotseq;': '\u2252',
    'Fcy;': '\u0424',
    'fcy;': '\u0444',
    'female;': '\u2640',
    'ffilig;': '\ufb03',
    'fflig;': '\ufb00',
    'ffllig;': '\ufb04',
    'Ffr;': '\U0001d509',
    'ffr;': '\U0001d523',
    'filig;': '\ufb01',
    'FilledSmallSquare;': '\u25fc',
    'FilledVerySmallSquare;': '\u25aa',
    'fjlig;': 'fj',
    'flat;': '\u266d',
    'fllig;': '\ufb02',
    'fltns;': '\u25b1',
    'fnof;': '\u0192',
    'Fopf;': '\U0001d53d',
    'fopf;': '\U0001d557',
    'ForAll;': '\u2200',
    'forall;': '\u2200',
    'fork;': '\u22d4',
    'forkv;': '\u2ad9',
    'Fouriertrf;': '\u2131',
    'fpartint;': '\u2a0d',
    'frac12': '\xbd',
    'frac12;': '\xbd',
    'frac13;': '\u2153',
    'frac14': '\xbc',
    'frac14;': '\xbc',
    'frac15;': '\u2155',
    'frac16;': '\u2159',
    'frac18;': '\u215b',
    'frac23;': '\u2154',
    'frac25;': '\u2156',
    'frac34': '\xbe',
    'frac34;': '\xbe',
    'frac35;': '\u2157',
    'frac38;': '\u215c',
    'frac45;': '\u2158',
    'frac56;': '\u215a',
    'frac58;': '\u215d',
    'frac78;': '\u215e',
    'frasl;': '\u2044',
    'frown;': '\u2322',
    'Fscr;': '\u2131',
    'fscr;': '\U0001d4bb',
    'gacute;': '\u01f5',
    'Gamma;': '\u0393',
    'gamma;': '\u03b3',
    'Gammad;': '\u03dc',
    'gammad;': '\u03dd',
    'gap;': '\u2a86',
    'Gbreve;': '\u011e',
    'gbreve;': '\u011f',
    'Gcedil;': '\u0122',
    'Gcirc;': '\u011c',
    'gcirc;': '\u011d',
    'Gcy;': '\u0413',
    'gcy;': '\u0433',
    'Gdot;': '\u0120',
    'gdot;': '\u0121',
    'gE;': '\u2267',
    'ge;': '\u2265',
    'gEl;': '\u2a8c',
    'gel;': '\u22db',
    'geq;': '\u2265',
    'geqq;': '\u2267',
    'geqslant;': '\u2a7e',
    'ges;': '\u2a7e',
    'gescc;': '\u2aa9',
    'gesdot;': '\u2a80',
    'gesdoto;': '\u2a82',
    'gesdotol;': '\u2a84',
    'gesl;': '\u22db\ufe00',
    'gesles;': '\u2a94',
    'Gfr;': '\U0001d50a',
    'gfr;': '\U0001d524',
    'Gg;': '\u22d9',
    'gg;': '\u226b',
    'ggg;': '\u22d9',
    'gimel;': '\u2137',
    'GJcy;': '\u0403',
    'gjcy;': '\u0453',
    'gl;': '\u2277',
    'gla;': '\u2aa5',
    'glE;': '\u2a92',
    'glj;': '\u2aa4',
    'gnap;': '\u2a8a',
    'gnapprox;': '\u2a8a',
    'gnE;': '\u2269',
    'gne;': '\u2a88',
    'gneq;': '\u2a88',
    'gneqq;': '\u2269',
    'gnsim;': '\u22e7',
    'Gopf;': '\U0001d53e',
    'gopf;': '\U0001d558',
    'grave;': '`',
    'GreaterEqual;': '\u2265',
    'GreaterEqualLess;': '\u22db',
    'GreaterFullEqual;': '\u2267',
    'GreaterGreater;': '\u2aa2',
    'GreaterLess;': '\u2277',
    'GreaterSlantEqual;': '\u2a7e',
    'GreaterTilde;': '\u2273',
    'Gscr;': '\U0001d4a2',
    'gscr;': '\u210a',
    'gsim;': '\u2273',
    'gsime;': '\u2a8e',
    'gsiml;': '\u2a90',
    'GT': '>',
    'gt': '>',
    'GT;': '>',
    'Gt;': '\u226b',
    'gt;': '>',
    'gtcc;': '\u2aa7',
    'gtcir;': '\u2a7a',
    'gtdot;': '\u22d7',
    'gtlPar;': '\u2995',
    'gtquest;': '\u2a7c',
    'gtrapprox;': '\u2a86',
    'gtrarr;': '\u2978',
    'gtrdot;': '\u22d7',
    'gtreqless;': '\u22db',
    'gtreqqless;': '\u2a8c',
    'gtrless;': '\u2277',
    'gtrsim;': '\u2273',
    'gvertneqq;': '\u2269\ufe00',
    'gvnE;': '\u2269\ufe00',
    'Hacek;': '\u02c7',
    'hairsp;': '\u200a',
    'half;': '\xbd',
    'hamilt;': '\u210b',
    'HARDcy;': '\u042a',
    'hardcy;': '\u044a',
    'hArr;': '\u21d4',
    'harr;': '\u2194',
    'harrcir;': '\u2948',
    'harrw;': '\u21ad',
    'Hat;': '^',
    'hbar;': '\u210f',
    'Hcirc;': '\u0124',
    'hcirc;': '\u0125',
    'hearts;': '\u2665',
    'heartsuit;': '\u2665',
    'hellip;': '\u2026',
    'hercon;': '\u22b9',
    'Hfr;': '\u210c',
    'hfr;': '\U0001d525',
    'HilbertSpace;': '\u210b',
    'hksearow;': '\u2925',
    'hkswarow;': '\u2926',
    'hoarr;': '\u21ff',
    'homtht;': '\u223b',
    'hookleftarrow;': '\u21a9',
    'hookrightarrow;': '\u21aa',
    'Hopf;': '\u210d',
    'hopf;': '\U0001d559',
    'horbar;': '\u2015',
    'HorizontalLine;': '\u2500',
    'Hscr;': '\u210b',
    'hscr;': '\U0001d4bd',
    'hslash;': '\u210f',
    'Hstrok;': '\u0126',
    'hstrok;': '\u0127',
    'HumpDownHump;': '\u224e',
    'HumpEqual;': '\u224f',
    'hybull;': '\u2043',
    'hyphen;': '\u2010',
    'Iacute': '\xcd',
    'iacute': '\xed',
    'Iacute;': '\xcd',
    'iacute;': '\xed',
    'ic;': '\u2063',
    'Icirc': '\xce',
    'icirc': '\xee',
    'Icirc;': '\xce',
    'icirc;': '\xee',
    'Icy;': '\u0418',
    'icy;': '\u0438',
    'Idot;': '\u0130',
    'IEcy;': '\u0415',
    'iecy;': '\u0435',
    'iexcl': '\xa1',
    'iexcl;': '\xa1',
    'iff;': '\u21d4',
    'Ifr;': '\u2111',
    'ifr;': '\U0001d526',
    'Igrave': '\xcc',
    'igrave': '\xec',
    'Igrave;': '\xcc',
    'igrave;': '\xec',
    'ii;': '\u2148',
    'iiiint;': '\u2a0c',
    'iiint;': '\u222d',
    'iinfin;': '\u29dc',
    'iiota;': '\u2129',
    'IJlig;': '\u0132',
    'ijlig;': '\u0133',
    'Im;': '\u2111',
    'Imacr;': '\u012a',
    'imacr;': '\u012b',
    'image;': '\u2111',
    'ImaginaryI;': '\u2148',
    'imagline;': '\u2110',
    'imagpart;': '\u2111',
    'imath;': '\u0131',
    'imof;': '\u22b7',
    'imped;': '\u01b5',
    'Implies;': '\u21d2',
    'in;': '\u2208',
    'incare;': '\u2105',
    'infin;': '\u221e',
    'infintie;': '\u29dd',
    'inodot;': '\u0131',
    'Int;': '\u222c',
    'int;': '\u222b',
    'intcal;': '\u22ba',
    'integers;': '\u2124',
    'Integral;': '\u222b',
    'intercal;': '\u22ba',
    'Intersection;': '\u22c2',
    'intlarhk;': '\u2a17',
    'intprod;': '\u2a3c',
    'InvisibleComma;': '\u2063',
    'InvisibleTimes;': '\u2062',
    'IOcy;': '\u0401',
    'iocy;': '\u0451',
    'Iogon;': '\u012e',
    'iogon;': '\u012f',
    'Iopf;': '\U0001d540',
    'iopf;': '\U0001d55a',
    'Iota;': '\u0399',
    'iota;': '\u03b9',
    'iprod;': '\u2a3c',
    'iquest': '\xbf',
    'iquest;': '\xbf',
    'Iscr;': '\u2110',
    'iscr;': '\U0001d4be',
    'isin;': '\u2208',
    'isindot;': '\u22f5',
    'isinE;': '\u22f9',
    'isins;': '\u22f4',
    'isinsv;': '\u22f3',
    'isinv;': '\u2208',
    'it;': '\u2062',
    'Itilde;': '\u0128',
    'itilde;': '\u0129',
    'Iukcy;': '\u0406',
    'iukcy;': '\u0456',
    'Iuml': '\xcf',
    'iuml': '\xef',
    'Iuml;': '\xcf',
    'iuml;': '\xef',
    'Jcirc;': '\u0134',
    'jcirc;': '\u0135',
    'Jcy;': '\u0419',
    'jcy;': '\u0439',
    'Jfr;': '\U0001d50d',
    'jfr;': '\U0001d527',
    'jmath;': '\u0237',
    'Jopf;': '\U0001d541',
    'jopf;': '\U0001d55b',
    'Jscr;': '\U0001d4a5',
    'jscr;': '\U0001d4bf',
    'Jsercy;': '\u0408',
    'jsercy;': '\u0458',
    'Jukcy;': '\u0404',
    'jukcy;': '\u0454',
    'Kappa;': '\u039a',
    'kappa;': '\u03ba',
    'kappav;': '\u03f0',
    'Kcedil;': '\u0136',
    'kcedil;': '\u0137',
    'Kcy;': '\u041a',
    'kcy;': '\u043a',
    'Kfr;': '\U0001d50e',
    'kfr;': '\U0001d528',
    'kgreen;': '\u0138',
    'KHcy;': '\u0425',
    'khcy;': '\u0445',
    'KJcy;': '\u040c',
    'kjcy;': '\u045c',
    'Kopf;': '\U0001d542',
    'kopf;': '\U0001d55c',
    'Kscr;': '\U0001d4a6',
    'kscr;': '\U0001d4c0',
    'lAarr;': '\u21da',
    'Lacute;': '\u0139',
    'lacute;': '\u013a',
    'laemptyv;': '\u29b4',
    'lagran;': '\u2112',
    'Lambda;': '\u039b',
    'lambda;': '\u03bb',
    'Lang;': '\u27ea',
    'lang;': '\u27e8',
    'langd;': '\u2991',
    'langle;': '\u27e8',
    'lap;': '\u2a85',
    'Laplacetrf;': '\u2112',
    'laquo': '\xab',
    'laquo;': '\xab',
    'Larr;': '\u219e',
    'lArr;': '\u21d0',
    'larr;': '\u2190',
    'larrb;': '\u21e4',
    'larrbfs;': '\u291f',
    'larrfs;': '\u291d',
    'larrhk;': '\u21a9',
    'larrlp;': '\u21ab',
    'larrpl;': '\u2939',
    'larrsim;': '\u2973',
    'larrtl;': '\u21a2',
    'lat;': '\u2aab',
    'lAtail;': '\u291b',
    'latail;': '\u2919',
    'late;': '\u2aad',
    'lates;': '\u2aad\ufe00',
    'lBarr;': '\u290e',
    'lbarr;': '\u290c',
    'lbbrk;': '\u2772',
    'lbrace;': '{',
    'lbrack;': '[',
    'lbrke;': '\u298b',
    'lbrksld;': '\u298f',
    'lbrkslu;': '\u298d',
    'Lcaron;': '\u013d',
    'lcaron;': '\u013e',
    'Lcedil;': '\u013b',
    'lcedil;': '\u013c',
    'lceil;': '\u2308',
    'lcub;': '{',
    'Lcy;': '\u041b',
    'lcy;': '\u043b',
    'ldca;': '\u2936',
    'ldquo;': '\u201c',
    'ldquor;': '\u201e',
    'ldrdhar;': '\u2967',
    'ldrushar;': '\u294b',
    'ldsh;': '\u21b2',
    'lE;': '\u2266',
    'le;': '\u2264',
    'LeftAngleBracket;': '\u27e8',
    'LeftArrow;': '\u2190',
    'Leftarrow;': '\u21d0',
    'leftarrow;': '\u2190',
    'LeftArrowBar;': '\u21e4',
    'LeftArrowRightArrow;': '\u21c6',
    'leftarrowtail;': '\u21a2',
    'LeftCeiling;': '\u2308',
    'LeftDoubleBracket;': '\u27e6',
    'LeftDownTeeVector;': '\u2961',
    'LeftDownVector;': '\u21c3',
    'LeftDownVectorBar;': '\u2959',
    'LeftFloor;': '\u230a',
    'leftharpoondown;': '\u21bd',
    'leftharpoonup;': '\u21bc',
    'leftleftarrows;': '\u21c7',
    'LeftRightArrow;': '\u2194',
    'Leftrightarrow;': '\u21d4',
    'leftrightarrow;': '\u2194',
    'leftrightarrows;': '\u21c6',
    'leftrightharpoons;': '\u21cb',
    'leftrightsquigarrow;': '\u21ad',
    'LeftRightVector;': '\u294e',
    'LeftTee;': '\u22a3',
    'LeftTeeArrow;': '\u21a4',
    'LeftTeeVector;': '\u295a',
    'leftthreetimes;': '\u22cb',
    'LeftTriangle;': '\u22b2',
    'LeftTriangleBar;': '\u29cf',
    'LeftTriangleEqual;': '\u22b4',
    'LeftUpDownVector;': '\u2951',
    'LeftUpTeeVector;': '\u2960',
    'LeftUpVector;': '\u21bf',
    'LeftUpVectorBar;': '\u2958',
    'LeftVector;': '\u21bc',
    'LeftVectorBar;': '\u2952',
    'lEg;': '\u2a8b',
    'leg;': '\u22da',
    'leq;': '\u2264',
    'leqq;': '\u2266',
    'leqslant;': '\u2a7d',
    'les;': '\u2a7d',
    'lescc;': '\u2aa8',
    'lesdot;': '\u2a7f',
    'lesdoto;': '\u2a81',
    'lesdotor;': '\u2a83',
    'lesg;': '\u22da\ufe00',
    'lesges;': '\u2a93',
    'lessapprox;': '\u2a85',
    'lessdot;': '\u22d6',
    'lesseqgtr;': '\u22da',
    'lesseqqgtr;': '\u2a8b',
    'LessEqualGreater;': '\u22da',
    'LessFullEqual;': '\u2266',
    'LessGreater;': '\u2276',
    'lessgtr;': '\u2276',
    'LessLess;': '\u2aa1',
    'lesssim;': '\u2272',
    'LessSlantEqual;': '\u2a7d',
    'LessTilde;': '\u2272',
    'lfisht;': '\u297c',
    'lfloor;': '\u230a',
    'Lfr;': '\U0001d50f',
    'lfr;': '\U0001d529',
    'lg;': '\u2276',
    'lgE;': '\u2a91',
    'lHar;': '\u2962',
    'lhard;': '\u21bd',
    'lharu;': '\u21bc',
    'lharul;': '\u296a',
    'lhblk;': '\u2584',
    'LJcy;': '\u0409',
    'ljcy;': '\u0459',
    'Ll;': '\u22d8',
    'll;': '\u226a',
    'llarr;': '\u21c7',
    'llcorner;': '\u231e',
    'Lleftarrow;': '\u21da',
    'llhard;': '\u296b',
    'lltri;': '\u25fa',
    'Lmidot;': '\u013f',
    'lmidot;': '\u0140',
    'lmoust;': '\u23b0',
    'lmoustache;': '\u23b0',
    'lnap;': '\u2a89',
    'lnapprox;': '\u2a89',
    'lnE;': '\u2268',
    'lne;': '\u2a87',
    'lneq;': '\u2a87',
    'lneqq;': '\u2268',
    'lnsim;': '\u22e6',
    'loang;': '\u27ec',
    'loarr;': '\u21fd',
    'lobrk;': '\u27e6',
    'LongLeftArrow;': '\u27f5',
    'Longleftarrow;': '\u27f8',
    'longleftarrow;': '\u27f5',
    'LongLeftRightArrow;': '\u27f7',
    'Longleftrightarrow;': '\u27fa',
    'longleftrightarrow;': '\u27f7',
    'longmapsto;': '\u27fc',
    'LongRightArrow;': '\u27f6',
    'Longrightarrow;': '\u27f9',
    'longrightarrow;': '\u27f6',
    'looparrowleft;': '\u21ab',
    'looparrowright;': '\u21ac',
    'lopar;': '\u2985',
    'Lopf;': '\U0001d543',
    'lopf;': '\U0001d55d',
    'loplus;': '\u2a2d',
    'lotimes;': '\u2a34',
    'lowast;': '\u2217',
    'lowbar;': '_',
    'LowerLeftArrow;': '\u2199',
    'LowerRightArrow;': '\u2198',
    'loz;': '\u25ca',
    'lozenge;': '\u25ca',
    'lozf;': '\u29eb',
    'lpar;': '(',
    'lparlt;': '\u2993',
    'lrarr;': '\u21c6',
    'lrcorner;': '\u231f',
    'lrhar;': '\u21cb',
    'lrhard;': '\u296d',
    'lrm;': '\u200e',
    'lrtri;': '\u22bf',
    'lsaquo;': '\u2039',
    'Lscr;': '\u2112',
    'lscr;': '\U0001d4c1',
    'Lsh;': '\u21b0',
    'lsh;': '\u21b0',
    'lsim;': '\u2272',
    'lsime;': '\u2a8d',
    'lsimg;': '\u2a8f',
    'lsqb;': '[',
    'lsquo;': '\u2018',
    'lsquor;': '\u201a',
    'Lstrok;': '\u0141',
    'lstrok;': '\u0142',
    'LT': '<',
    'lt': '<',
    'LT;': '<',
    'Lt;': '\u226a',
    'lt;': '<',
    'ltcc;': '\u2aa6',
    'ltcir;': '\u2a79',
    'ltdot;': '\u22d6',
    'lthree;': '\u22cb',
    'ltimes;': '\u22c9',
    'ltlarr;': '\u2976',
    'ltquest;': '\u2a7b',
    'ltri;': '\u25c3',
    'ltrie;': '\u22b4',
    'ltrif;': '\u25c2',
    'ltrPar;': '\u2996',
    'lurdshar;': '\u294a',
    'luruhar;': '\u2966',
    'lvertneqq;': '\u2268\ufe00',
    'lvnE;': '\u2268\ufe00',
    'macr': '\xaf',
    'macr;': '\xaf',
    'male;': '\u2642',
    'malt;': '\u2720',
    'maltese;': '\u2720',
    'Map;': '\u2905',
    'map;': '\u21a6',
    'mapsto;': '\u21a6',
    'mapstodown;': '\u21a7',
    'mapstoleft;': '\u21a4',
    'mapstoup;': '\u21a5',
    'marker;': '\u25ae',
    'mcomma;': '\u2a29',
    'Mcy;': '\u041c',
    'mcy;': '\u043c',
    'mdash;': '\u2014',
    'mDDot;': '\u223a',
    'measuredangle;': '\u2221',
    'MediumSpace;': '\u205f',
    'Mellintrf;': '\u2133',
    'Mfr;': '\U0001d510',
    'mfr;': '\U0001d52a',
    'mho;': '\u2127',
    'micro': '\xb5',
    'micro;': '\xb5',
    'mid;': '\u2223',
    'midast;': '*',
    'midcir;': '\u2af0',
    'middot': '\xb7',
    'middot;': '\xb7',
    'minus;': '\u2212',
    'minusb;': '\u229f',
    'minusd;': '\u2238',
    'minusdu;': '\u2a2a',
    'MinusPlus;': '\u2213',
    'mlcp;': '\u2adb',
    'mldr;': '\u2026',
    'mnplus;': '\u2213',
    'models;': '\u22a7',
    'Mopf;': '\U0001d544',
    'mopf;': '\U0001d55e',
    'mp;': '\u2213',
    'Mscr;': '\u2133',
    'mscr;': '\U0001d4c2',
    'mstpos;': '\u223e',
    'Mu;': '\u039c',
    'mu;': '\u03bc',
    'multimap;': '\u22b8',
    'mumap;': '\u22b8',
    'nabla;': '\u2207',
    'Nacute;': '\u0143',
    'nacute;': '\u0144',
    'nang;': '\u2220\u20d2',
    'nap;': '\u2249',
    'napE;': '\u2a70\u0338',
    'napid;': '\u224b\u0338',
    'napos;': '\u0149',
    'napprox;': '\u2249',
    'natur;': '\u266e',
    'natural;': '\u266e',
    'naturals;': '\u2115',
    'nbsp': '\xa0',
    'nbsp;': '\xa0',
    'nbump;': '\u224e\u0338',
    'nbumpe;': '\u224f\u0338',
    'ncap;': '\u2a43',
    'Ncaron;': '\u0147',
    'ncaron;': '\u0148',
    'Ncedil;': '\u0145',
    'ncedil;': '\u0146',
    'ncong;': '\u2247',
    'ncongdot;': '\u2a6d\u0338',
    'ncup;': '\u2a42',
    'Ncy;': '\u041d',
    'ncy;': '\u043d',
    'ndash;': '\u2013',
    'ne;': '\u2260',
    'nearhk;': '\u2924',
    'neArr;': '\u21d7',
    'nearr;': '\u2197',
    'nearrow;': '\u2197',
    'nedot;': '\u2250\u0338',
    'NegativeMediumSpace;': '\u200b',
    'NegativeThickSpace;': '\u200b',
    'NegativeThinSpace;': '\u200b',
    'NegativeVeryThinSpace;': '\u200b',
    'nequiv;': '\u2262',
    'nesear;': '\u2928',
    'nesim;': '\u2242\u0338',
    'NestedGreaterGreater;': '\u226b',
    'NestedLessLess;': '\u226a',
    'NewLine;': '\n',
    'nexist;': '\u2204',
    'nexists;': '\u2204',
    'Nfr;': '\U0001d511',
    'nfr;': '\U0001d52b',
    'ngE;': '\u2267\u0338',
    'nge;': '\u2271',
    'ngeq;': '\u2271',
    'ngeqq;': '\u2267\u0338',
    'ngeqslant;': '\u2a7e\u0338',
    'nges;': '\u2a7e\u0338',
    'nGg;': '\u22d9\u0338',
    'ngsim;': '\u2275',
    'nGt;': '\u226b\u20d2',
    'ngt;': '\u226f',
    'ngtr;': '\u226f',
    'nGtv;': '\u226b\u0338',
    'nhArr;': '\u21ce',
    'nharr;': '\u21ae',
    'nhpar;': '\u2af2',
    'ni;': '\u220b',
    'nis;': '\u22fc',
    'nisd;': '\u22fa',
    'niv;': '\u220b',
    'NJcy;': '\u040a',
    'njcy;': '\u045a',
    'nlArr;': '\u21cd',
    'nlarr;': '\u219a',
    'nldr;': '\u2025',
    'nlE;': '\u2266\u0338',
    'nle;': '\u2270',
    'nLeftarrow;': '\u21cd',
    'nleftarrow;': '\u219a',
    'nLeftrightarrow;': '\u21ce',
    'nleftrightarrow;': '\u21ae',
    'nleq;': '\u2270',
    'nleqq;': '\u2266\u0338',
    'nleqslant;': '\u2a7d\u0338',
    'nles;': '\u2a7d\u0338',
    'nless;': '\u226e',
    'nLl;': '\u22d8\u0338',
    'nlsim;': '\u2274',
    'nLt;': '\u226a\u20d2',
    'nlt;': '\u226e',
    'nltri;': '\u22ea',
    'nltrie;': '\u22ec',
    'nLtv;': '\u226a\u0338',
    'nmid;': '\u2224',
    'NoBreak;': '\u2060',
    'NonBreakingSpace;': '\xa0',
    'Nopf;': '\u2115',
    'nopf;': '\U0001d55f',
    'not': '\xac',
    'Not;': '\u2aec',
    'not;': '\xac',
    'NotCongruent;': '\u2262',
    'NotCupCap;': '\u226d',
    'NotDoubleVerticalBar;': '\u2226',
    'NotElement;': '\u2209',
    'NotEqual;': '\u2260',
    'NotEqualTilde;': '\u2242\u0338',
    'NotExists;': '\u2204',
    'NotGreater;': '\u226f',
    'NotGreaterEqual;': '\u2271',
    'NotGreaterFullEqual;': '\u2267\u0338',
    'NotGreaterGreater;': '\u226b\u0338',
    'NotGreaterLess;': '\u2279',
    'NotGreaterSlantEqual;': '\u2a7e\u0338',
    'NotGreaterTilde;': '\u2275',
    'NotHumpDownHump;': '\u224e\u0338',
    'NotHumpEqual;': '\u224f\u0338',
    'notin;': '\u2209',
    'notindot;': '\u22f5\u0338',
    'notinE;': '\u22f9\u0338',
    'notinva;': '\u2209',
    'notinvb;': '\u22f7',
    'notinvc;': '\u22f6',
    'NotLeftTriangle;': '\u22ea',
    'NotLeftTriangleBar;': '\u29cf\u0338',
    'NotLeftTriangleEqual;': '\u22ec',
    'NotLess;': '\u226e',
    'NotLessEqual;': '\u2270',
    'NotLessGreater;': '\u2278',
    'NotLessLess;': '\u226a\u0338',
    'NotLessSlantEqual;': '\u2a7d\u0338',
    'NotLessTilde;': '\u2274',
    'NotNestedGreaterGreater;': '\u2aa2\u0338',
    'NotNestedLessLess;': '\u2aa1\u0338',
    'notni;': '\u220c',
    'notniva;': '\u220c',
    'notnivb;': '\u22fe',
    'notnivc;': '\u22fd',
    'NotPrecedes;': '\u2280',
    'NotPrecedesEqual;': '\u2aaf\u0338',
    'NotPrecedesSlantEqual;': '\u22e0',
    'NotReverseElement;': '\u220c',
    'NotRightTriangle;': '\u22eb',
    'NotRightTriangleBar;': '\u29d0\u0338',
    'NotRightTriangleEqual;': '\u22ed',
    'NotSquareSubset;': '\u228f\u0338',
    'NotSquareSubsetEqual;': '\u22e2',
    'NotSquareSuperset;': '\u2290\u0338',
    'NotSquareSupersetEqual;': '\u22e3',
    'NotSubset;': '\u2282\u20d2',
    'NotSubsetEqual;': '\u2288',
    'NotSucceeds;': '\u2281',
    'NotSucceedsEqual;': '\u2ab0\u0338',
    'NotSucceedsSlantEqual;': '\u22e1',
    'NotSucceedsTilde;': '\u227f\u0338',
    'NotSuperset;': '\u2283\u20d2',
    'NotSupersetEqual;': '\u2289',
    'NotTilde;': '\u2241',
    'NotTildeEqual;': '\u2244',
    'NotTildeFullEqual;': '\u2247',
    'NotTildeTilde;': '\u2249',
    'NotVerticalBar;': '\u2224',
    'npar;': '\u2226',
    'nparallel;': '\u2226',
    'nparsl;': '\u2afd\u20e5',
    'npart;': '\u2202\u0338',
    'npolint;': '\u2a14',
    'npr;': '\u2280',
    'nprcue;': '\u22e0',
    'npre;': '\u2aaf\u0338',
    'nprec;': '\u2280',
    'npreceq;': '\u2aaf\u0338',
    'nrArr;': '\u21cf',
    'nrarr;': '\u219b',
    'nrarrc;': '\u2933\u0338',
    'nrarrw;': '\u219d\u0338',
    'nRightarrow;': '\u21cf',
    'nrightarrow;': '\u219b',
    'nrtri;': '\u22eb',
    'nrtrie;': '\u22ed',
    'nsc;': '\u2281',
    'nsccue;': '\u22e1',
    'nsce;': '\u2ab0\u0338',
    'Nscr;': '\U0001d4a9',
    'nscr;': '\U0001d4c3',
    'nshortmid;': '\u2224',
    'nshortparallel;': '\u2226',
    'nsim;': '\u2241',
    'nsime;': '\u2244',
    'nsimeq;': '\u2244',
    'nsmid;': '\u2224',
    'nspar;': '\u2226',
    'nsqsube;': '\u22e2',
    'nsqsupe;': '\u22e3',
    'nsub;': '\u2284',
    'nsubE;': '\u2ac5\u0338',
    'nsube;': '\u2288',
    'nsubset;': '\u2282\u20d2',
    'nsubseteq;': '\u2288',
    'nsubseteqq;': '\u2ac5\u0338',
    'nsucc;': '\u2281',
    'nsucceq;': '\u2ab0\u0338',
    'nsup;': '\u2285',
    'nsupE;': '\u2ac6\u0338',
    'nsupe;': '\u2289',
    'nsupset;': '\u2283\u20d2',
    'nsupseteq;': '\u2289',
    'nsupseteqq;': '\u2ac6\u0338',
    'ntgl;': '\u2279',
    'Ntilde': '\xd1',
    'ntilde': '\xf1',
    'Ntilde;': '\xd1',
    'ntilde;': '\xf1',
    'ntlg;': '\u2278',
    'ntriangleleft;': '\u22ea',
    'ntrianglelefteq;': '\u22ec',
    'ntriangleright;': '\u22eb',
    'ntrianglerighteq;': '\u22ed',
    'Nu;': '\u039d',
    'nu;': '\u03bd',
    'num;': '#',
    'numero;': '\u2116',
    'numsp;': '\u2007',
    'nvap;': '\u224d\u20d2',
    'nVDash;': '\u22af',
    'nVdash;': '\u22ae',
    'nvDash;': '\u22ad',
    'nvdash;': '\u22ac',
    'nvge;': '\u2265\u20d2',
    'nvgt;': '>\u20d2',
    'nvHarr;': '\u2904',
    'nvinfin;': '\u29de',
    'nvlArr;': '\u2902',
    'nvle;': '\u2264\u20d2',
    'nvlt;': '<\u20d2',
    'nvltrie;': '\u22b4\u20d2',
    'nvrArr;': '\u2903',
    'nvrtrie;': '\u22b5\u20d2',
    'nvsim;': '\u223c\u20d2',
    'nwarhk;': '\u2923',
    'nwArr;': '\u21d6',
    'nwarr;': '\u2196',
    'nwarrow;': '\u2196',
    'nwnear;': '\u2927',
    'Oacute': '\xd3',
    'oacute': '\xf3',
    'Oacute;': '\xd3',
    'oacute;': '\xf3',
    'oast;': '\u229b',
    'ocir;': '\u229a',
    'Ocirc': '\xd4',
    'ocirc': '\xf4',
    'Ocirc;': '\xd4',
    'ocirc;': '\xf4',
    'Ocy;': '\u041e',
    'ocy;': '\u043e',
    'odash;': '\u229d',
    'Odblac;': '\u0150',
    'odblac;': '\u0151',
    'odiv;': '\u2a38',
    'odot;': '\u2299',
    'odsold;': '\u29bc',
    'OElig;': '\u0152',
    'oelig;': '\u0153',
    'ofcir;': '\u29bf',
    'Ofr;': '\U0001d512',
    'ofr;': '\U0001d52c',
    'ogon;': '\u02db',
    'Ograve': '\xd2',
    'ograve': '\xf2',
    'Ograve;': '\xd2',
    'ograve;': '\xf2',
    'ogt;': '\u29c1',
    'ohbar;': '\u29b5',
    'ohm;': '\u03a9',
    'oint;': '\u222e',
    'olarr;': '\u21ba',
    'olcir;': '\u29be',
    'olcross;': '\u29bb',
    'oline;': '\u203e',
    'olt;': '\u29c0',
    'Omacr;': '\u014c',
    'omacr;': '\u014d',
    'Omega;': '\u03a9',
    'omega;': '\u03c9',
    'Omicron;': '\u039f',
    'omicron;': '\u03bf',
    'omid;': '\u29b6',
    'ominus;': '\u2296',
    'Oopf;': '\U0001d546',
    'oopf;': '\U0001d560',
    'opar;': '\u29b7',
    'OpenCurlyDoubleQuote;': '\u201c',
    'OpenCurlyQuote;': '\u2018',
    'operp;': '\u29b9',
    'oplus;': '\u2295',
    'Or;': '\u2a54',
    'or;': '\u2228',
    'orarr;': '\u21bb',
    'ord;': '\u2a5d',
    'order;': '\u2134',
    'orderof;': '\u2134',
    'ordf': '\xaa',
    'ordf;': '\xaa',
    'ordm': '\xba',
    'ordm;': '\xba',
    'origof;': '\u22b6',
    'oror;': '\u2a56',
    'orslope;': '\u2a57',
    'orv;': '\u2a5b',
    'oS;': '\u24c8',
    'Oscr;': '\U0001d4aa',
    'oscr;': '\u2134',
    'Oslash': '\xd8',
    'oslash': '\xf8',
    'Oslash;': '\xd8',
    'oslash;': '\xf8',
    'osol;': '\u2298',
    'Otilde': '\xd5',
    'otilde': '\xf5',
    'Otilde;': '\xd5',
    'otilde;': '\xf5',
    'Otimes;': '\u2a37',
    'otimes;': '\u2297',
    'otimesas;': '\u2a36',
    'Ouml': '\xd6',
    'ouml': '\xf6',
    'Ouml;': '\xd6',
    'ouml;': '\xf6',
    'ovbar;': '\u233d',
    'OverBar;': '\u203e',
    'OverBrace;': '\u23de',
    'OverBracket;': '\u23b4',
    'OverParenthesis;': '\u23dc',
    'par;': '\u2225',
    'para': '\xb6',
    'para;': '\xb6',
    'parallel;': '\u2225',
    'parsim;': '\u2af3',
    'parsl;': '\u2afd',
    'part;': '\u2202',
    'PartialD;': '\u2202',
    'Pcy;': '\u041f',
    'pcy;': '\u043f',
    'percnt;': '%',
    'period;': '.',
    'permil;': '\u2030',
    'perp;': '\u22a5',
    'pertenk;': '\u2031',
    'Pfr;': '\U0001d513',
    'pfr;': '\U0001d52d',
    'Phi;': '\u03a6',
    'phi;': '\u03c6',
    'phiv;': '\u03d5',
    'phmmat;': '\u2133',
    'phone;': '\u260e',
    'Pi;': '\u03a0',
    'pi;': '\u03c0',
    'pitchfork;': '\u22d4',
    'piv;': '\u03d6',
    'planck;': '\u210f',
    'planckh;': '\u210e',
    'plankv;': '\u210f',
    'plus;': '+',
    'plusacir;': '\u2a23',
    'plusb;': '\u229e',
    'pluscir;': '\u2a22',
    'plusdo;': '\u2214',
    'plusdu;': '\u2a25',
    'pluse;': '\u2a72',
    'PlusMinus;': '\xb1',
    'plusmn': '\xb1',
    'plusmn;': '\xb1',
    'plussim;': '\u2a26',
    'plustwo;': '\u2a27',
    'pm;': '\xb1',
    'Poincareplane;': '\u210c',
    'pointint;': '\u2a15',
    'Popf;': '\u2119',
    'popf;': '\U0001d561',
    'pound': '\xa3',
    'pound;': '\xa3',
    'Pr;': '\u2abb',
    'pr;': '\u227a',
    'prap;': '\u2ab7',
    'prcue;': '\u227c',
    'prE;': '\u2ab3',
    'pre;': '\u2aaf',
    'prec;': '\u227a',
    'precapprox;': '\u2ab7',
    'preccurlyeq;': '\u227c',
    'Precedes;': '\u227a',
    'PrecedesEqual;': '\u2aaf',
    'PrecedesSlantEqual;': '\u227c',
    'PrecedesTilde;': '\u227e',
    'preceq;': '\u2aaf',
    'precnapprox;': '\u2ab9',
    'precneqq;': '\u2ab5',
    'precnsim;': '\u22e8',
    'precsim;': '\u227e',
    'Prime;': '\u2033',
    'prime;': '\u2032',
    'primes;': '\u2119',
    'prnap;': '\u2ab9',
    'prnE;': '\u2ab5',
    'prnsim;': '\u22e8',
    'prod;': '\u220f',
    'Product;': '\u220f',
    'profalar;': '\u232e',
    'profline;': '\u2312',
    'profsurf;': '\u2313',
    'prop;': '\u221d',
    'Proportion;': '\u2237',
    'Proportional;': '\u221d',
    'propto;': '\u221d',
    'prsim;': '\u227e',
    'prurel;': '\u22b0',
    'Pscr;': '\U0001d4ab',
    'pscr;': '\U0001d4c5',
    'Psi;': '\u03a8',
    'psi;': '\u03c8',
    'puncsp;': '\u2008',
    'Qfr;': '\U0001d514',
    'qfr;': '\U0001d52e',
    'qint;': '\u2a0c',
    'Qopf;': '\u211a',
    'qopf;': '\U0001d562',
    'qprime;': '\u2057',
    'Qscr;': '\U0001d4ac',
    'qscr;': '\U0001d4c6',
    'quaternions;': '\u210d',
    'quatint;': '\u2a16',
    'quest;': '?',
    'questeq;': '\u225f',
    'QUOT': '"',
    'quot': '"',
    'QUOT;': '"',
    'quot;': '"',
    'rAarr;': '\u21db',
    'race;': '\u223d\u0331',
    'Racute;': '\u0154',
    'racute;': '\u0155',
    'radic;': '\u221a',
    'raemptyv;': '\u29b3',
    'Rang;': '\u27eb',
    'rang;': '\u27e9',
    'rangd;': '\u2992',
    'range;': '\u29a5',
    'rangle;': '\u27e9',
    'raquo': '\xbb',
    'raquo;': '\xbb',
    'Rarr;': '\u21a0',
    'rArr;': '\u21d2',
    'rarr;': '\u2192',
    'rarrap;': '\u2975',
    'rarrb;': '\u21e5',
    'rarrbfs;': '\u2920',
    'rarrc;': '\u2933',
    'rarrfs;': '\u291e',
    'rarrhk;': '\u21aa',
    'rarrlp;': '\u21ac',
    'rarrpl;': '\u2945',
    'rarrsim;': '\u2974',
    'Rarrtl;': '\u2916',
    'rarrtl;': '\u21a3',
    'rarrw;': '\u219d',
    'rAtail;': '\u291c',
    'ratail;': '\u291a',
    'ratio;': '\u2236',
    'rationals;': '\u211a',
    'RBarr;': '\u2910',
    'rBarr;': '\u290f',
    'rbarr;': '\u290d',
    'rbbrk;': '\u2773',
    'rbrace;': '}',
    'rbrack;': ']',
    'rbrke;': '\u298c',
    'rbrksld;': '\u298e',
    'rbrkslu;': '\u2990',
    'Rcaron;': '\u0158',
    'rcaron;': '\u0159',
    'Rcedil;': '\u0156',
    'rcedil;': '\u0157',
    'rceil;': '\u2309',
    'rcub;': '}',
    'Rcy;': '\u0420',
    'rcy;': '\u0440',
    'rdca;': '\u2937',
    'rdldhar;': '\u2969',
    'rdquo;': '\u201d',
    'rdquor;': '\u201d',
    'rdsh;': '\u21b3',
    'Re;': '\u211c',
    'real;': '\u211c',
    'realine;': '\u211b',
    'realpart;': '\u211c',
    'reals;': '\u211d',
    'rect;': '\u25ad',
    'REG': '\xae',
    'reg': '\xae',
    'REG;': '\xae',
    'reg;': '\xae',
    'ReverseElement;': '\u220b',
    'ReverseEquilibrium;': '\u21cb',
    'ReverseUpEquilibrium;': '\u296f',
    'rfisht;': '\u297d',
    'rfloor;': '\u230b',
    'Rfr;': '\u211c',
    'rfr;': '\U0001d52f',
    'rHar;': '\u2964',
    'rhard;': '\u21c1',
    'rharu;': '\u21c0',
    'rharul;': '\u296c',
    'Rho;': '\u03a1',
    'rho;': '\u03c1',
    'rhov;': '\u03f1',
    'RightAngleBracket;': '\u27e9',
    'RightArrow;': '\u2192',
    'Rightarrow;': '\u21d2',
    'rightarrow;': '\u2192',
    'RightArrowBar;': '\u21e5',
    'RightArrowLeftArrow;': '\u21c4',
    'rightarrowtail;': '\u21a3',
    'RightCeiling;': '\u2309',
    'RightDoubleBracket;': '\u27e7',
    'RightDownTeeVector;': '\u295d',
    'RightDownVector;': '\u21c2',
    'RightDownVectorBar;': '\u2955',
    'RightFloor;': '\u230b',
    'rightharpoondown;': '\u21c1',
    'rightharpoonup;': '\u21c0',
    'rightleftarrows;': '\u21c4',
    'rightleftharpoons;': '\u21cc',
    'rightrightarrows;': '\u21c9',
    'rightsquigarrow;': '\u219d',
    'RightTee;': '\u22a2',
    'RightTeeArrow;': '\u21a6',
    'RightTeeVector;': '\u295b',
    'rightthreetimes;': '\u22cc',
    'RightTriangle;': '\u22b3',
    'RightTriangleBar;': '\u29d0',
    'RightTriangleEqual;': '\u22b5',
    'RightUpDownVector;': '\u294f',
    'RightUpTeeVector;': '\u295c',
    'RightUpVector;': '\u21be',
    'RightUpVectorBar;': '\u2954',
    'RightVector;': '\u21c0',
    'RightVectorBar;': '\u2953',
    'ring;': '\u02da',
    'risingdotseq;': '\u2253',
    'rlarr;': '\u21c4',
    'rlhar;': '\u21cc',
    'rlm;': '\u200f',
    'rmoust;': '\u23b1',
    'rmoustache;': '\u23b1',
    'rnmid;': '\u2aee',
    'roang;': '\u27ed',
    'roarr;': '\u21fe',
    'robrk;': '\u27e7',
    'ropar;': '\u2986',
    'Ropf;': '\u211d',
    'ropf;': '\U0001d563',
    'roplus;': '\u2a2e',
    'rotimes;': '\u2a35',
    'RoundImplies;': '\u2970',
    'rpar;': ')',
    'rpargt;': '\u2994',
    'rppolint;': '\u2a12',
    'rrarr;': '\u21c9',
    'Rrightarrow;': '\u21db',
    'rsaquo;': '\u203a',
    'Rscr;': '\u211b',
    'rscr;': '\U0001d4c7',
    'Rsh;': '\u21b1',
    'rsh;': '\u21b1',
    'rsqb;': ']',
    'rsquo;': '\u2019',
    'rsquor;': '\u2019',
    'rthree;': '\u22cc',
    'rtimes;': '\u22ca',
    'rtri;': '\u25b9',
    'rtrie;': '\u22b5',
    'rtrif;': '\u25b8',
    'rtriltri;': '\u29ce',
    'RuleDelayed;': '\u29f4',
    'ruluhar;': '\u2968',
    'rx;': '\u211e',
    'Sacute;': '\u015a',
    'sacute;': '\u015b',
    'sbquo;': '\u201a',
    'Sc;': '\u2abc',
    'sc;': '\u227b',
    'scap;': '\u2ab8',
    'Scaron;': '\u0160',
    'scaron;': '\u0161',
    'sccue;': '\u227d',
    'scE;': '\u2ab4',
    'sce;': '\u2ab0',
    'Scedil;': '\u015e',
    'scedil;': '\u015f',
    'Scirc;': '\u015c',
    'scirc;': '\u015d',
    'scnap;': '\u2aba',
    'scnE;': '\u2ab6',
    'scnsim;': '\u22e9',
    'scpolint;': '\u2a13',
    'scsim;': '\u227f',
    'Scy;': '\u0421',
    'scy;': '\u0441',
    'sdot;': '\u22c5',
    'sdotb;': '\u22a1',
    'sdote;': '\u2a66',
    'searhk;': '\u2925',
    'seArr;': '\u21d8',
    'searr;': '\u2198',
    'searrow;': '\u2198',
    'sect': '\xa7',
    'sect;': '\xa7',
    'semi;': ';',
    'seswar;': '\u2929',
    'setminus;': '\u2216',
    'setmn;': '\u2216',
    'sext;': '\u2736',
    'Sfr;': '\U0001d516',
    'sfr;': '\U0001d530',
    'sfrown;': '\u2322',
    'sharp;': '\u266f',
    'SHCHcy;': '\u0429',
    'shchcy;': '\u0449',
    'SHcy;': '\u0428',
    'shcy;': '\u0448',
    'ShortDownArrow;': '\u2193',
    'ShortLeftArrow;': '\u2190',
    'shortmid;': '\u2223',
    'shortparallel;': '\u2225',
    'ShortRightArrow;': '\u2192',
    'ShortUpArrow;': '\u2191',
    'shy': '\xad',
    'shy;': '\xad',
    'Sigma;': '\u03a3',
    'sigma;': '\u03c3',
    'sigmaf;': '\u03c2',
    'sigmav;': '\u03c2',
    'sim;': '\u223c',
    'simdot;': '\u2a6a',
    'sime;': '\u2243',
    'simeq;': '\u2243',
    'simg;': '\u2a9e',
    'simgE;': '\u2aa0',
    'siml;': '\u2a9d',
    'simlE;': '\u2a9f',
    'simne;': '\u2246',
    'simplus;': '\u2a24',
    'simrarr;': '\u2972',
    'slarr;': '\u2190',
    'SmallCircle;': '\u2218',
    'smallsetminus;': '\u2216',
    'smashp;': '\u2a33',
    'smeparsl;': '\u29e4',
    'smid;': '\u2223',
    'smile;': '\u2323',
    'smt;': '\u2aaa',
    'smte;': '\u2aac',
    'smtes;': '\u2aac\ufe00',
    'SOFTcy;': '\u042c',
    'softcy;': '\u044c',
    'sol;': '/',
    'solb;': '\u29c4',
    'solbar;': '\u233f',
    'Sopf;': '\U0001d54a',
    'sopf;': '\U0001d564',
    'spades;': '\u2660',
    'spadesuit;': '\u2660',
    'spar;': '\u2225',
    'sqcap;': '\u2293',
    'sqcaps;': '\u2293\ufe00',
    'sqcup;': '\u2294',
    'sqcups;': '\u2294\ufe00',
    'Sqrt;': '\u221a',
    'sqsub;': '\u228f',
    'sqsube;': '\u2291',
    'sqsubset;': '\u228f',
    'sqsubseteq;': '\u2291',
    'sqsup;': '\u2290',
    'sqsupe;': '\u2292',
    'sqsupset;': '\u2290',
    'sqsupseteq;': '\u2292',
    'squ;': '\u25a1',
    'Square;': '\u25a1',
    'square;': '\u25a1',
    'SquareIntersection;': '\u2293',
    'SquareSubset;': '\u228f',
    'SquareSubsetEqual;': '\u2291',
    'SquareSuperset;': '\u2290',
    'SquareSupersetEqual;': '\u2292',
    'SquareUnion;': '\u2294',
    'squarf;': '\u25aa',
    'squf;': '\u25aa',
    'srarr;': '\u2192',
    'Sscr;': '\U0001d4ae',
    'sscr;': '\U0001d4c8',
    'ssetmn;': '\u2216',
    'ssmile;': '\u2323',
    'sstarf;': '\u22c6',
    'Star;': '\u22c6',
    'star;': '\u2606',
    'starf;': '\u2605',
    'straightepsilon;': '\u03f5',
    'straightphi;': '\u03d5',
    'strns;': '\xaf',
    'Sub;': '\u22d0',
    'sub;': '\u2282',
    'subdot;': '\u2abd',
    'subE;': '\u2ac5',
    'sube;': '\u2286',
    'subedot;': '\u2ac3',
    'submult;': '\u2ac1',
    'subnE;': '\u2acb',
    'subne;': '\u228a',
    'subplus;': '\u2abf',
    'subrarr;': '\u2979',
    'Subset;': '\u22d0',
    'subset;': '\u2282',
    'subseteq;': '\u2286',
    'subseteqq;': '\u2ac5',
    'SubsetEqual;': '\u2286',
    'subsetneq;': '\u228a',
    'subsetneqq;': '\u2acb',
    'subsim;': '\u2ac7',
    'subsub;': '\u2ad5',
    'subsup;': '\u2ad3',
    'succ;': '\u227b',
    'succapprox;': '\u2ab8',
    'succcurlyeq;': '\u227d',
    'Succeeds;': '\u227b',
    'SucceedsEqual;': '\u2ab0',
    'SucceedsSlantEqual;': '\u227d',
    'SucceedsTilde;': '\u227f',
    'succeq;': '\u2ab0',
    'succnapprox;': '\u2aba',
    'succneqq;': '\u2ab6',
    'succnsim;': '\u22e9',
    'succsim;': '\u227f',
    'SuchThat;': '\u220b',
    'Sum;': '\u2211',
    'sum;': '\u2211',
    'sung;': '\u266a',
    'sup1': '\xb9',
    'sup1;': '\xb9',
    'sup2': '\xb2',
    'sup2;': '\xb2',
    'sup3': '\xb3',
    'sup3;': '\xb3',
    'Sup;': '\u22d1',
    'sup;': '\u2283',
    'supdot;': '\u2abe',
    'supdsub;': '\u2ad8',
    'supE;': '\u2ac6',
    'supe;': '\u2287',
    'supedot;': '\u2ac4',
    'Superset;': '\u2283',
    'SupersetEqual;': '\u2287',
    'suphsol;': '\u27c9',
    'suphsub;': '\u2ad7',
    'suplarr;': '\u297b',
    'supmult;': '\u2ac2',
    'supnE;': '\u2acc',
    'supne;': '\u228b',
    'supplus;': '\u2ac0',
    'Supset;': '\u22d1',
    'supset;': '\u2283',
    'supseteq;': '\u2287',
    'supseteqq;': '\u2ac6',
    'supsetneq;': '\u228b',
    'supsetneqq;': '\u2acc',
    'supsim;': '\u2ac8',
    'supsub;': '\u2ad4',
    'supsup;': '\u2ad6',
    'swarhk;': '\u2926',
    'swArr;': '\u21d9',
    'swarr;': '\u2199',
    'swarrow;': '\u2199',
    'swnwar;': '\u292a',
    'szlig': '\xdf',
    'szlig;': '\xdf',
    'Tab;': '\t',
    'target;': '\u2316',
    'Tau;': '\u03a4',
    'tau;': '\u03c4',
    'tbrk;': '\u23b4',
    'Tcaron;': '\u0164',
    'tcaron;': '\u0165',
    'Tcedil;': '\u0162',
    'tcedil;': '\u0163',
    'Tcy;': '\u0422',
    'tcy;': '\u0442',
    'tdot;': '\u20db',
    'telrec;': '\u2315',
    'Tfr;': '\U0001d517',
    'tfr;': '\U0001d531',
    'there4;': '\u2234',
    'Therefore;': '\u2234',
    'therefore;': '\u2234',
    'Theta;': '\u0398',
    'theta;': '\u03b8',
    'thetasym;': '\u03d1',
    'thetav;': '\u03d1',
    'thickapprox;': '\u2248',
    'thicksim;': '\u223c',
    'ThickSpace;': '\u205f\u200a',
    'thinsp;': '\u2009',
    'ThinSpace;': '\u2009',
    'thkap;': '\u2248',
    'thksim;': '\u223c',
    'THORN': '\xde',
    'thorn': '\xfe',
    'THORN;': '\xde',
    'thorn;': '\xfe',
    'Tilde;': '\u223c',
    'tilde;': '\u02dc',
    'TildeEqual;': '\u2243',
    'TildeFullEqual;': '\u2245',
    'TildeTilde;': '\u2248',
    'times': '\xd7',
    'times;': '\xd7',
    'timesb;': '\u22a0',
    'timesbar;': '\u2a31',
    'timesd;': '\u2a30',
    'tint;': '\u222d',
    'toea;': '\u2928',
    'top;': '\u22a4',
    'topbot;': '\u2336',
    'topcir;': '\u2af1',
    'Topf;': '\U0001d54b',
    'topf;': '\U0001d565',
    'topfork;': '\u2ada',
    'tosa;': '\u2929',
    'tprime;': '\u2034',
    'TRADE;': '\u2122',
    'trade;': '\u2122',
    'triangle;': '\u25b5',
    'triangledown;': '\u25bf',
    'triangleleft;': '\u25c3',
    'trianglelefteq;': '\u22b4',
    'triangleq;': '\u225c',
    'triangleright;': '\u25b9',
    'trianglerighteq;': '\u22b5',
    'tridot;': '\u25ec',
    'trie;': '\u225c',
    'triminus;': '\u2a3a',
    'TripleDot;': '\u20db',
    'triplus;': '\u2a39',
    'trisb;': '\u29cd',
    'tritime;': '\u2a3b',
    'trpezium;': '\u23e2',
    'Tscr;': '\U0001d4af',
    'tscr;': '\U0001d4c9',
    'TScy;': '\u0426',
    'tscy;': '\u0446',
    'TSHcy;': '\u040b',
    'tshcy;': '\u045b',
    'Tstrok;': '\u0166',
    'tstrok;': '\u0167',
    'twixt;': '\u226c',
    'twoheadleftarrow;': '\u219e',
    'twoheadrightarrow;': '\u21a0',
    'Uacute': '\xda',
    'uacute': '\xfa',
    'Uacute;': '\xda',
    'uacute;': '\xfa',
    'Uarr;': '\u219f',
    'uArr;': '\u21d1',
    'uarr;': '\u2191',
    'Uarrocir;': '\u2949',
    'Ubrcy;': '\u040e',
    'ubrcy;': '\u045e',
    'Ubreve;': '\u016c',
    'ubreve;': '\u016d',
    'Ucirc': '\xdb',
    'ucirc': '\xfb',
    'Ucirc;': '\xdb',
    'ucirc;': '\xfb',
    'Ucy;': '\u0423',
    'ucy;': '\u0443',
    'udarr;': '\u21c5',
    'Udblac;': '\u0170',
    'udblac;': '\u0171',
    'udhar;': '\u296e',
    'ufisht;': '\u297e',
    'Ufr;': '\U0001d518',
    'ufr;': '\U0001d532',
    'Ugrave': '\xd9',
    'ugrave': '\xf9',
    'Ugrave;': '\xd9',
    'ugrave;': '\xf9',
    'uHar;': '\u2963',
    'uharl;': '\u21bf',
    'uharr;': '\u21be',
    'uhblk;': '\u2580',
    'ulcorn;': '\u231c',
    'ulcorner;': '\u231c',
    'ulcrop;': '\u230f',
    'ultri;': '\u25f8',
    'Umacr;': '\u016a',
    'umacr;': '\u016b',
    'uml': '\xa8',
    'uml;': '\xa8',
    'UnderBar;': '_',
    'UnderBrace;': '\u23df',
    'UnderBracket;': '\u23b5',
    'UnderParenthesis;': '\u23dd',
    'Union;': '\u22c3',
    'UnionPlus;': '\u228e',
    'Uogon;': '\u0172',
    'uogon;': '\u0173',
    'Uopf;': '\U0001d54c',
    'uopf;': '\U0001d566',
    'UpArrow;': '\u2191',
    'Uparrow;': '\u21d1',
    'uparrow;': '\u2191',
    'UpArrowBar;': '\u2912',
    'UpArrowDownArrow;': '\u21c5',
    'UpDownArrow;': '\u2195',
    'Updownarrow;': '\u21d5',
    'updownarrow;': '\u2195',
    'UpEquilibrium;': '\u296e',
    'upharpoonleft;': '\u21bf',
    'upharpoonright;': '\u21be',
    'uplus;': '\u228e',
    'UpperLeftArrow;': '\u2196',
    'UpperRightArrow;': '\u2197',
    'Upsi;': '\u03d2',
    'upsi;': '\u03c5',
    'upsih;': '\u03d2',
    'Upsilon;': '\u03a5',
    'upsilon;': '\u03c5',
    'UpTee;': '\u22a5',
    'UpTeeArrow;': '\u21a5',
    'upuparrows;': '\u21c8',
    'urcorn;': '\u231d',
    'urcorner;': '\u231d',
    'urcrop;': '\u230e',
    'Uring;': '\u016e',
    'uring;': '\u016f',
    'urtri;': '\u25f9',
    'Uscr;': '\U0001d4b0',
    'uscr;': '\U0001d4ca',
    'utdot;': '\u22f0',
    'Utilde;': '\u0168',
    'utilde;': '\u0169',
    'utri;': '\u25b5',
    'utrif;': '\u25b4',
    'uuarr;': '\u21c8',
    'Uuml': '\xdc',
    'uuml': '\xfc',
    'Uuml;': '\xdc',
    'uuml;': '\xfc',
    'uwangle;': '\u29a7',
    'vangrt;': '\u299c',
    'varepsilon;': '\u03f5',
    'varkappa;': '\u03f0',
    'varnothing;': '\u2205',
    'varphi;': '\u03d5',
    'varpi;': '\u03d6',
    'varpropto;': '\u221d',
    'vArr;': '\u21d5',
    'varr;': '\u2195',
    'varrho;': '\u03f1',
    'varsigma;': '\u03c2',
    'varsubsetneq;': '\u228a\ufe00',
    'varsubsetneqq;': '\u2acb\ufe00',
    'varsupsetneq;': '\u228b\ufe00',
    'varsupsetneqq;': '\u2acc\ufe00',
    'vartheta;': '\u03d1',
    'vartriangleleft;': '\u22b2',
    'vartriangleright;': '\u22b3',
    'Vbar;': '\u2aeb',
    'vBar;': '\u2ae8',
    'vBarv;': '\u2ae9',
    'Vcy;': '\u0412',
    'vcy;': '\u0432',
    'VDash;': '\u22ab',
    'Vdash;': '\u22a9',
    'vDash;': '\u22a8',
    'vdash;': '\u22a2',
    'Vdashl;': '\u2ae6',
    'Vee;': '\u22c1',
    'vee;': '\u2228',
    'veebar;': '\u22bb',
    'veeeq;': '\u225a',
    'vellip;': '\u22ee',
    'Verbar;': '\u2016',
    'verbar;': '|',
    'Vert;': '\u2016',
    'vert;': '|',
    'VerticalBar;': '\u2223',
    'VerticalLine;': '|',
    'VerticalSeparator;': '\u2758',
    'VerticalTilde;': '\u2240',
    'VeryThinSpace;': '\u200a',
    'Vfr;': '\U0001d519',
    'vfr;': '\U0001d533',
    'vltri;': '\u22b2',
    'vnsub;': '\u2282\u20d2',
    'vnsup;': '\u2283\u20d2',
    'Vopf;': '\U0001d54d',
    'vopf;': '\U0001d567',
    'vprop;': '\u221d',
    'vrtri;': '\u22b3',
    'Vscr;': '\U0001d4b1',
    'vscr;': '\U0001d4cb',
    'vsubnE;': '\u2acb\ufe00',
    'vsubne;': '\u228a\ufe00',
    'vsupnE;': '\u2acc\ufe00',
    'vsupne;': '\u228b\ufe00',
    'Vvdash;': '\u22aa',
    'vzigzag;': '\u299a',
    'Wcirc;': '\u0174',
    'wcirc;': '\u0175',
    'wedbar;': '\u2a5f',
    'Wedge;': '\u22c0',
    'wedge;': '\u2227',
    'wedgeq;': '\u2259',
    'weierp;': '\u2118',
    'Wfr;': '\U0001d51a',
    'wfr;': '\U0001d534',
    'Wopf;': '\U0001d54e',
    'wopf;': '\U0001d568',
    'wp;': '\u2118',
    'wr;': '\u2240',
    'wreath;': '\u2240',
    'Wscr;': '\U0001d4b2',
    'wscr;': '\U0001d4cc',
    'xcap;': '\u22c2',
    'xcirc;': '\u25ef',
    'xcup;': '\u22c3',
    'xdtri;': '\u25bd',
    'Xfr;': '\U0001d51b',
    'xfr;': '\U0001d535',
    'xhArr;': '\u27fa',
    'xharr;': '\u27f7',
    'Xi;': '\u039e',
    'xi;': '\u03be',
    'xlArr;': '\u27f8',
    'xlarr;': '\u27f5',
    'xmap;': '\u27fc',
    'xnis;': '\u22fb',
    'xodot;': '\u2a00',
    'Xopf;': '\U0001d54f',
    'xopf;': '\U0001d569',
    'xoplus;': '\u2a01',
    'xotime;': '\u2a02',
    'xrArr;': '\u27f9',
    'xrarr;': '\u27f6',
    'Xscr;': '\U0001d4b3',
    'xscr;': '\U0001d4cd',
    'xsqcup;': '\u2a06',
    'xuplus;': '\u2a04',
    'xutri;': '\u25b3',
    'xvee;': '\u22c1',
    'xwedge;': '\u22c0',
    'Yacute': '\xdd',
    'yacute': '\xfd',
    'Yacute;': '\xdd',
    'yacute;': '\xfd',
    'YAcy;': '\u042f',
    'yacy;': '\u044f',
    'Ycirc;': '\u0176',
    'ycirc;': '\u0177',
    'Ycy;': '\u042b',
    'ycy;': '\u044b',
    'yen': '\xa5',
    'yen;': '\xa5',
    'Yfr;': '\U0001d51c',
    'yfr;': '\U0001d536',
    'YIcy;': '\u0407',
    'yicy;': '\u0457',
    'Yopf;': '\U0001d550',
    'yopf;': '\U0001d56a',
    'Yscr;': '\U0001d4b4',
    'yscr;': '\U0001d4ce',
    'YUcy;': '\u042e',
    'yucy;': '\u044e',
    'yuml': '\xff',
    'Yuml;': '\u0178',
    'yuml;': '\xff',
    'Zacute;': '\u0179',
    'zacute;': '\u017a',
    'Zcaron;': '\u017d',
    'zcaron;': '\u017e',
    'Zcy;': '\u0417',
    'zcy;': '\u0437',
    'Zdot;': '\u017b',
    'zdot;': '\u017c',
    'zeetrf;': '\u2128',
    'ZeroWidthSpace;': '\u200b',
    'Zeta;': '\u0396',
    'zeta;': '\u03b6',
    'Zfr;': '\u2128',
    'zfr;': '\U0001d537',
    'ZHcy;': '\u0416',
    'zhcy;': '\u0436',
    'zigrarr;': '\u21dd',
    'Zopf;': '\u2124',
    'zopf;': '\U0001d56b',
    'Zscr;': '\U0001d4b5',
    'zscr;': '\U0001d4cf',
    'zwj;': '\u200d',
    'zwnj;': '\u200c',
}

# maps the Unicode code point to the HTML entity name
codepoint2name = {}

# maps the HTML entity name to the character
# (or a character reference if the character is outside the Latin-1 range)
entitydefs = {}

for (name, codepoint) in name2codepoint.items():
    codepoint2name[codepoint] = name
    entitydefs[name] = chr(codepoint)

del name, codepoint
lib\html\parser.py
"""A parser for HTML and XHTML."""

# This file is based on sgmllib.py, but the API is slightly different.

# XXX There should be a way to distinguish between PCDATA (parsed
# character data -- the normal case), RCDATA (replaceable character
# data -- only char and entity references and end tags are special)
# and CDATA (character data -- only end tags are special).


import re
import warnings
import _markupbase

from html import unescape


__all__ = ['HTMLParser']

# Regular expressions used for parsing

interesting_normal = re.compile('[&<]')
incomplete = re.compile('&[a-zA-Z#]')

entityref = re.compile('&([a-zA-Z][-.a-zA-Z0-9]*)[^a-zA-Z0-9]')
charref = re.compile('&#(?:[0-9]+|[xX][0-9a-fA-F]+)[^0-9a-fA-F]')

starttagopen = re.compile('<[a-zA-Z]')
piclose = re.compile('>')
commentclose = re.compile(r'--\s*>')
# Note:
#  1) the strict attrfind isn't really strict, but we can't make it
#     correctly strict without breaking backward compatibility;
#  2) if you change tagfind/attrfind remember to update locatestarttagend too;
#  3) if you change tagfind/attrfind and/or locatestarttagend the parser will
#     explode, so don't do it.
tagfind = re.compile('([a-zA-Z][-.a-zA-Z0-9:_]*)(?:\s|/(?!>))*')
# see http://www.w3.org/TR/html5/tokenization.html#tag-open-state
# and http://www.w3.org/TR/html5/tokenization.html#tag-name-state
tagfind_tolerant = re.compile('([a-zA-Z][^\t\n\r\f />\x00]*)(?:\s|/(?!>))*')
attrfind = re.compile(
    r'\s*([a-zA-Z_][-.:a-zA-Z_0-9]*)(\s*=\s*'
    r'(\'[^\']*\'|"[^"]*"|[^\s"\'=<>`]*))?')
attrfind_tolerant = re.compile(
    r'((?<=[\'"\s/])[^\s/>][^\s/=>]*)(\s*=+\s*'
    r'(\'[^\']*\'|"[^"]*"|(?![\'"])[^>\s]*))?(?:\s|/(?!>))*')
locatestarttagend = re.compile(r"""
  <[a-zA-Z][-.a-zA-Z0-9:_]*          # tag name
  (?:\s+                             # whitespace before attribute name
    (?:[a-zA-Z_][-.:a-zA-Z0-9_]*     # attribute name
      (?:\s*=\s*                     # value indicator
        (?:'[^']*'                   # LITA-enclosed value
          |\"[^\"]*\"                # LIT-enclosed value
          |[^'\">\s]+                # bare value
         )
       )?
     )
   )*
  \s*                                # trailing whitespace
""", re.VERBOSE)
locatestarttagend_tolerant = re.compile(r"""
  <[a-zA-Z][^\t\n\r\f />\x00]*       # tag name
  (?:[\s/]*                          # optional whitespace before attribute name
    (?:(?<=['"\s/])[^\s/>][^\s/=>]*  # attribute name
      (?:\s*=+\s*                    # value indicator
        (?:'[^']*'                   # LITA-enclosed value
          |"[^"]*"                   # LIT-enclosed value
          |(?!['"])[^>\s]*           # bare value
         )
         (?:\s*,)*                   # possibly followed by a comma
       )?(?:\s|/(?!>))*
     )*
   )?
  \s*                                # trailing whitespace
""", re.VERBOSE)
endendtag = re.compile('>')
# the HTML 5 spec, section 8.1.2.2, doesn't allow spaces between
# </ and the tag name, so maybe this should be fixed
endtagfind = re.compile('</\s*([a-zA-Z][-.a-zA-Z0-9:_]*)\s*>')


class HTMLParseError(Exception):
    """Exception raised for all parse errors."""

    def __init__(self, msg, position=(None, None)):
        assert msg
        self.msg = msg
        self.lineno = position[0]
        self.offset = position[1]

    def __str__(self):
        result = self.msg
        if self.lineno is not None:
            result = result + ", at line %d" % self.lineno
        if self.offset is not None:
            result = result + ", column %d" % (self.offset + 1)
        return result


_default_sentinel = object()

class HTMLParser(_markupbase.ParserBase):
    """Find tags and other markup and call handler functions.

    Usage:
        p = HTMLParser()
        p.feed(data)
        ...
        p.close()

    Start tags are handled by calling self.handle_starttag() or
    self.handle_startendtag(); end tags by self.handle_endtag().  The
    data between tags is passed from the parser to the derived class
    by calling self.handle_data() with the data as argument (the data
    may be split up in arbitrary chunks).  If convert_charrefs is
    True the character references are converted automatically to the
    corresponding Unicode character (and self.handle_data() is no
    longer split in chunks), otherwise they are passed by calling
    self.handle_entityref() or self.handle_charref() with the string
    containing respectively the named or numeric reference as the
    argument.
    """

    CDATA_CONTENT_ELEMENTS = ("script", "style")

    def __init__(self, strict=_default_sentinel, *,
                 convert_charrefs=_default_sentinel):
        """Initialize and reset this instance.

        If convert_charrefs is True (default: False), all character references
        are automatically converted to the corresponding Unicode characters.
        If strict is set to False (the default) the parser will parse invalid
        markup, otherwise it will raise an error.  Note that the strict mode
        and argument are deprecated.
        """
        if strict is not _default_sentinel:
            warnings.warn("The strict argument and mode are deprecated.",
                          DeprecationWarning, stacklevel=2)
        else:
            strict = False  # default
        self.strict = strict
        if convert_charrefs is _default_sentinel:
            convert_charrefs = False  # default
            warnings.warn("The value of convert_charrefs will become True in "
                          "3.5. You are encouraged to set the value explicitly.",
                          DeprecationWarning, stacklevel=2)
        self.convert_charrefs = convert_charrefs
        self.reset()

    def reset(self):
        """Reset this instance.  Loses all unprocessed data."""
        self.rawdata = ''
        self.lasttag = '???'
        self.interesting = interesting_normal
        self.cdata_elem = None
        _markupbase.ParserBase.reset(self)

    def feed(self, data):
        r"""Feed data to the parser.

        Call this as often as you want, with as little or as much text
        as you want (may include '\n').
        """
        self.rawdata = self.rawdata + data
        self.goahead(0)

    def close(self):
        """Handle any buffered data."""
        self.goahead(1)

    def error(self, message):
        warnings.warn("The 'error' method is deprecated.",
                      DeprecationWarning, stacklevel=2)
        raise HTMLParseError(message, self.getpos())

    __starttag_text = None

    def get_starttag_text(self):
        """Return full source of start tag: '<...>'."""
        return self.__starttag_text

    def set_cdata_mode(self, elem):
        self.cdata_elem = elem.lower()
        self.interesting = re.compile(r'</\s*%s\s*>' % self.cdata_elem, re.I)

    def clear_cdata_mode(self):
        self.interesting = interesting_normal
        self.cdata_elem = None

    # Internal -- handle data as far as reasonable.  May leave state
    # and data to be processed by a subsequent call.  If 'end' is
    # true, force handling all data as if followed by EOF marker.
    def goahead(self, end):
        rawdata = self.rawdata
        i = 0
        n = len(rawdata)
        while i < n:
            if self.convert_charrefs and not self.cdata_elem:
                j = rawdata.find('<', i)
                if j < 0:
                    # if we can't find the next <, either we are at the end
                    # or there's more text incoming.  If the latter is True,
                    # we can't pass the text to handle_data in case we have
                    # a charref cut in half at end.  Try to determine if
                    # this is the case before proceding by looking for an
                    # & near the end and see if it's followed by a space or ;.
                    amppos = rawdata.rfind('&', max(i, n-34))
                    if (amppos >= 0 and
                        not re.compile(r'[\s;]').search(rawdata, amppos)):
                        break  # wait till we get all the text
                    j = n
            else:
                match = self.interesting.search(rawdata, i)  # < or &
                if match:
                    j = match.start()
                else:
                    if self.cdata_elem:
                        break
                    j = n
            if i < j:
                if self.convert_charrefs and not self.cdata_elem:
                    self.handle_data(unescape(rawdata[i:j]))
                else:
                    self.handle_data(rawdata[i:j])
            i = self.updatepos(i, j)
            if i == n: break
            startswith = rawdata.startswith
            if startswith('<', i):
                if starttagopen.match(rawdata, i): # < + letter
                    k = self.parse_starttag(i)
                elif startswith("</", i):
                    k = self.parse_endtag(i)
                elif startswith("<!--", i):
                    k = self.parse_comment(i)
                elif startswith("<?", i):
                    k = self.parse_pi(i)
                elif startswith("<!", i):
                    if self.strict:
                        k = self.parse_declaration(i)
                    else:
                        k = self.parse_html_declaration(i)
                elif (i + 1) < n:
                    self.handle_data("<")
                    k = i + 1
                else:
                    break
                if k < 0:
                    if not end:
                        break
                    if self.strict:
                        self.error("EOF in middle of construct")
                    k = rawdata.find('>', i + 1)
                    if k < 0:
                        k = rawdata.find('<', i + 1)
                        if k < 0:
                            k = i + 1
                    else:
                        k += 1
                    if self.convert_charrefs and not self.cdata_elem:
                        self.handle_data(unescape(rawdata[i:k]))
                    else:
                        self.handle_data(rawdata[i:k])
                i = self.updatepos(i, k)
            elif startswith("&#", i):
                match = charref.match(rawdata, i)
                if match:
                    name = match.group()[2:-1]
                    self.handle_charref(name)
                    k = match.end()
                    if not startswith(';', k-1):
                        k = k - 1
                    i = self.updatepos(i, k)
                    continue
                else:
                    if ";" in rawdata[i:]:  # bail by consuming &#
                        self.handle_data(rawdata[i:i+2])
                        i = self.updatepos(i, i+2)
                    break
            elif startswith('&', i):
                match = entityref.match(rawdata, i)
                if match:
                    name = match.group(1)
                    self.handle_entityref(name)
                    k = match.end()
                    if not startswith(';', k-1):
                        k = k - 1
                    i = self.updatepos(i, k)
                    continue
                match = incomplete.match(rawdata, i)
                if match:
                    # match.group() will contain at least 2 chars
                    if end and match.group() == rawdata[i:]:
                        if self.strict:
                            self.error("EOF in middle of entity or char ref")
                        else:
                            k = match.end()
                            if k <= i:
                                k = n
                            i = self.updatepos(i, i + 1)
                    # incomplete
                    break
                elif (i + 1) < n:
                    # not the end of the buffer, and can't be confused
                    # with some other construct
                    self.handle_data("&")
                    i = self.updatepos(i, i + 1)
                else:
                    break
            else:
                assert 0, "interesting.search() lied"
        # end while
        if end and i < n and not self.cdata_elem:
            if self.convert_charrefs and not self.cdata_elem:
                self.handle_data(unescape(rawdata[i:n]))
            else:
                self.handle_data(rawdata[i:n])
            i = self.updatepos(i, n)
        self.rawdata = rawdata[i:]

    # Internal -- parse html declarations, return length or -1 if not terminated
    # See w3.org/TR/html5/tokenization.html#markup-declaration-open-state
    # See also parse_declaration in _markupbase
    def parse_html_declaration(self, i):
        rawdata = self.rawdata
        assert rawdata[i:i+2] == '<!', ('unexpected call to '
                                        'parse_html_declaration()')
        if rawdata[i:i+4] == '<!--':
            # this case is actually already handled in goahead()
            return self.parse_comment(i)
        elif rawdata[i:i+3] == '<![':
            return self.parse_marked_section(i)
        elif rawdata[i:i+9].lower() == '<!doctype':
            # find the closing >
            gtpos = rawdata.find('>', i+9)
            if gtpos == -1:
                return -1
            self.handle_decl(rawdata[i+2:gtpos])
            return gtpos+1
        else:
            return self.parse_bogus_comment(i)

    # Internal -- parse bogus comment, return length or -1 if not terminated
    # see http://www.w3.org/TR/html5/tokenization.html#bogus-comment-state
    def parse_bogus_comment(self, i, report=1):
        rawdata = self.rawdata
        assert rawdata[i:i+2] in ('<!', '</'), ('unexpected call to '
                                                'parse_comment()')
        pos = rawdata.find('>', i+2)
        if pos == -1:
            return -1
        if report:
            self.handle_comment(rawdata[i+2:pos])
        return pos + 1

    # Internal -- parse processing instr, return end or -1 if not terminated
    def parse_pi(self, i):
        rawdata = self.rawdata
        assert rawdata[i:i+2] == '<?', 'unexpected call to parse_pi()'
        match = piclose.search(rawdata, i+2) # >
        if not match:
            return -1
        j = match.start()
        self.handle_pi(rawdata[i+2: j])
        j = match.end()
        return j

    # Internal -- handle starttag, return end or -1 if not terminated
    def parse_starttag(self, i):
        self.__starttag_text = None
        endpos = self.check_for_whole_start_tag(i)
        if endpos < 0:
            return endpos
        rawdata = self.rawdata
        self.__starttag_text = rawdata[i:endpos]

        # Now parse the data between i+1 and j into a tag and attrs
        attrs = []
        if self.strict:
            match = tagfind.match(rawdata, i+1)
        else:
            match = tagfind_tolerant.match(rawdata, i+1)
        assert match, 'unexpected call to parse_starttag()'
        k = match.end()
        self.lasttag = tag = match.group(1).lower()
        while k < endpos:
            if self.strict:
                m = attrfind.match(rawdata, k)
            else:
                m = attrfind_tolerant.match(rawdata, k)
            if not m:
                break
            attrname, rest, attrvalue = m.group(1, 2, 3)
            if not rest:
                attrvalue = None
            elif attrvalue[:1] == '\'' == attrvalue[-1:] or \
                 attrvalue[:1] == '"' == attrvalue[-1:]:
                attrvalue = attrvalue[1:-1]
            if attrvalue:
                attrvalue = unescape(attrvalue)
            attrs.append((attrname.lower(), attrvalue))
            k = m.end()

        end = rawdata[k:endpos].strip()
        if end not in (">", "/>"):
            lineno, offset = self.getpos()
            if "\n" in self.__starttag_text:
                lineno = lineno + self.__starttag_text.count("\n")
                offset = len(self.__starttag_text) \
                         - self.__starttag_text.rfind("\n")
            else:
                offset = offset + len(self.__starttag_text)
            if self.strict:
                self.error("junk characters in start tag: %r"
                           % (rawdata[k:endpos][:20],))
            self.handle_data(rawdata[i:endpos])
            return endpos
        if end.endswith('/>'):
            # XHTML-style empty tag: <span attr="value" />
            self.handle_startendtag(tag, attrs)
        else:
            self.handle_starttag(tag, attrs)
            if tag in self.CDATA_CONTENT_ELEMENTS:
                self.set_cdata_mode(tag)
        return endpos

    # Internal -- check to see if we have a complete starttag; return end
    # or -1 if incomplete.
    def check_for_whole_start_tag(self, i):
        rawdata = self.rawdata
        if self.strict:
            m = locatestarttagend.match(rawdata, i)
        else:
            m = locatestarttagend_tolerant.match(rawdata, i)
        if m:
            j = m.end()
            next = rawdata[j:j+1]
            if next == ">":
                return j + 1
            if next == "/":
                if rawdata.startswith("/>", j):
                    return j + 2
                if rawdata.startswith("/", j):
                    # buffer boundary
                    return -1
                # else bogus input
                if self.strict:
                    self.updatepos(i, j + 1)
                    self.error("malformed empty start tag")
                if j > i:
                    return j
                else:
                    return i + 1
            if next == "":
                # end of input
                return -1
            if next in ("abcdefghijklmnopqrstuvwxyz=/"
                        "ABCDEFGHIJKLMNOPQRSTUVWXYZ"):
                # end of input in or before attribute value, or we have the
                # '/' from a '/>' ending
                return -1
            if self.strict:
                self.updatepos(i, j)
                self.error("malformed start tag")
            if j > i:
                return j
            else:
                return i + 1
        raise AssertionError("we should not get here!")

    # Internal -- parse endtag, return end or -1 if incomplete
    def parse_endtag(self, i):
        rawdata = self.rawdata
        assert rawdata[i:i+2] == "</", "unexpected call to parse_endtag"
        match = endendtag.search(rawdata, i+1) # >
        if not match:
            return -1
        gtpos = match.end()
        match = endtagfind.match(rawdata, i) # </ + tag + >
        if not match:
            if self.cdata_elem is not None:
                self.handle_data(rawdata[i:gtpos])
                return gtpos
            if self.strict:
                self.error("bad end tag: %r" % (rawdata[i:gtpos],))
            # find the name: w3.org/TR/html5/tokenization.html#tag-name-state
            namematch = tagfind_tolerant.match(rawdata, i+2)
            if not namematch:
                # w3.org/TR/html5/tokenization.html#end-tag-open-state
                if rawdata[i:i+3] == '</>':
                    return i+3
                else:
                    return self.parse_bogus_comment(i)
            tagname = namematch.group(1).lower()
            # consume and ignore other stuff between the name and the >
            # Note: this is not 100% correct, since we might have things like
            # </tag attr=">">, but looking for > after tha name should cover
            # most of the cases and is much simpler
            gtpos = rawdata.find('>', namematch.end())
            self.handle_endtag(tagname)
            return gtpos+1

        elem = match.group(1).lower() # script or style
        if self.cdata_elem is not None:
            if elem != self.cdata_elem:
                self.handle_data(rawdata[i:gtpos])
                return gtpos

        self.handle_endtag(elem.lower())
        self.clear_cdata_mode()
        return gtpos

    # Overridable -- finish processing of start+end tag: <tag.../>
    def handle_startendtag(self, tag, attrs):
        self.handle_starttag(tag, attrs)
        self.handle_endtag(tag)

    # Overridable -- handle start tag
    def handle_starttag(self, tag, attrs):
        pass

    # Overridable -- handle end tag
    def handle_endtag(self, tag):
        pass

    # Overridable -- handle character reference
    def handle_charref(self, name):
        pass

    # Overridable -- handle entity reference
    def handle_entityref(self, name):
        pass

    # Overridable -- handle data
    def handle_data(self, data):
        pass

    # Overridable -- handle comment
    def handle_comment(self, data):
        pass

    # Overridable -- handle declaration
    def handle_decl(self, decl):
        pass

    # Overridable -- handle processing instruction
    def handle_pi(self, data):
        pass

    def unknown_decl(self, data):
        if self.strict:
            self.error("unknown declaration: %r" % (data,))

    # Internal -- helper to remove special character quoting
    def unescape(self, s):
        warnings.warn('The unescape method is deprecated and will be removed '
                      'in 3.5, use html.unescape() instead.',
                      DeprecationWarning, stacklevel=2)
        return unescape(s)
lib\html\__init__.py
"""
General functions for HTML manipulation.
"""

import re as _re
from html.entities import html5 as _html5


__all__ = ['escape', 'unescape']


def escape(s, quote=True):
    """
    Replace special characters "&", "<" and ">" to HTML-safe sequences.
    If the optional flag quote is true (the default), the quotation mark
    characters, both double quote (") and single quote (') characters are also
    translated.
    """
    s = s.replace("&", "&amp;") # Must be done first!
    s = s.replace("<", "&lt;")
    s = s.replace(">", "&gt;")
    if quote:
        s = s.replace('"', "&quot;")
        s = s.replace('\'', "&#x27;")
    return s


# see http://www.w3.org/TR/html5/syntax.html#tokenizing-character-references

_invalid_charrefs = {
    0x00: '\ufffd',  # REPLACEMENT CHARACTER
    0x0d: '\r',      # CARRIAGE RETURN
    0x80: '\u20ac',  # EURO SIGN
    0x81: '\x81',    # <control>
    0x82: '\u201a',  # SINGLE LOW-9 QUOTATION MARK
    0x83: '\u0192',  # LATIN SMALL LETTER F WITH HOOK
    0x84: '\u201e',  # DOUBLE LOW-9 QUOTATION MARK
    0x85: '\u2026',  # HORIZONTAL ELLIPSIS
    0x86: '\u2020',  # DAGGER
    0x87: '\u2021',  # DOUBLE DAGGER
    0x88: '\u02c6',  # MODIFIER LETTER CIRCUMFLEX ACCENT
    0x89: '\u2030',  # PER MILLE SIGN
    0x8a: '\u0160',  # LATIN CAPITAL LETTER S WITH CARON
    0x8b: '\u2039',  # SINGLE LEFT-POINTING ANGLE QUOTATION MARK
    0x8c: '\u0152',  # LATIN CAPITAL LIGATURE OE
    0x8d: '\x8d',    # <control>
    0x8e: '\u017d',  # LATIN CAPITAL LETTER Z WITH CARON
    0x8f: '\x8f',    # <control>
    0x90: '\x90',    # <control>
    0x91: '\u2018',  # LEFT SINGLE QUOTATION MARK
    0x92: '\u2019',  # RIGHT SINGLE QUOTATION MARK
    0x93: '\u201c',  # LEFT DOUBLE QUOTATION MARK
    0x94: '\u201d',  # RIGHT DOUBLE QUOTATION MARK
    0x95: '\u2022',  # BULLET
    0x96: '\u2013',  # EN DASH
    0x97: '\u2014',  # EM DASH
    0x98: '\u02dc',  # SMALL TILDE
    0x99: '\u2122',  # TRADE MARK SIGN
    0x9a: '\u0161',  # LATIN SMALL LETTER S WITH CARON
    0x9b: '\u203a',  # SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
    0x9c: '\u0153',  # LATIN SMALL LIGATURE OE
    0x9d: '\x9d',    # <control>
    0x9e: '\u017e',  # LATIN SMALL LETTER Z WITH CARON
    0x9f: '\u0178',  # LATIN CAPITAL LETTER Y WITH DIAERESIS
}

_invalid_codepoints = {
    # 0x0001 to 0x0008
    0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8,
    # 0x000E to 0x001F
    0xe, 0xf, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19,
    0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
    # 0x007F to 0x009F
    0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a,
    0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96,
    0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
    # 0xFDD0 to 0xFDEF
    0xfdd0, 0xfdd1, 0xfdd2, 0xfdd3, 0xfdd4, 0xfdd5, 0xfdd6, 0xfdd7, 0xfdd8,
    0xfdd9, 0xfdda, 0xfddb, 0xfddc, 0xfddd, 0xfdde, 0xfddf, 0xfde0, 0xfde1,
    0xfde2, 0xfde3, 0xfde4, 0xfde5, 0xfde6, 0xfde7, 0xfde8, 0xfde9, 0xfdea,
    0xfdeb, 0xfdec, 0xfded, 0xfdee, 0xfdef,
    # others
    0xb, 0xfffe, 0xffff, 0x1fffe, 0x1ffff, 0x2fffe, 0x2ffff, 0x3fffe, 0x3ffff,
    0x4fffe, 0x4ffff, 0x5fffe, 0x5ffff, 0x6fffe, 0x6ffff, 0x7fffe, 0x7ffff,
    0x8fffe, 0x8ffff, 0x9fffe, 0x9ffff, 0xafffe, 0xaffff, 0xbfffe, 0xbffff,
    0xcfffe, 0xcffff, 0xdfffe, 0xdffff, 0xefffe, 0xeffff, 0xffffe, 0xfffff,
    0x10fffe, 0x10ffff
}


def _replace_charref(s):
    s = s.group(1)
    if s[0] == '#':
        # numeric charref
        if s[1] in 'xX':
            num = int(s[2:].rstrip(';'), 16)
        else:
            num = int(s[1:].rstrip(';'))
        if num in _invalid_charrefs:
            return _invalid_charrefs[num]
        if 0xD800 <= num <= 0xDFFF or num > 0x10FFFF:
            return '\uFFFD'
        if num in _invalid_codepoints:
            return ''
        return chr(num)
    else:
        # named charref
        if s in _html5:
            return _html5[s]
        # find the longest matching name (as defined by the standard)
        for x in range(len(s)-1, 1, -1):
            if s[:x] in _html5:
                return _html5[s[:x]] + s[x:]
        else:
            return '&' + s


_charref = _re.compile(r'&(#[0-9]+;?'
                       r'|#[xX][0-9a-fA-F]+;?'
                       r'|[^\t\n\f <&#;]{1,32};?)')

def unescape(s):
    """
    Convert all named and numeric character references (e.g. &gt;, &#62;,
    &x3e;) in the string s to the corresponding unicode characters.
    This function uses the rules defined by the HTML 5 standard
    for both valid and invalid character references, and the list of
    HTML 5 named character references defined in html.entities.html5.
    """
    if '&' not in s:
        return s
    return _charref.sub(_replace_charref, s)
lib\http\client.py
"""HTTP/1.1 client library

<intro stuff goes here>
<other stuff, too>

HTTPConnection goes through a number of "states", which define when a client
may legally make another request or fetch the response for a particular
request. This diagram details these state transitions:

    (null)
      |
      | HTTPConnection()
      v
    Idle
      |
      | putrequest()
      v
    Request-started
      |
      | ( putheader() )*  endheaders()
      v
    Request-sent
      |
      | response = getresponse()
      v
    Unread-response   [Response-headers-read]
      |\____________________
      |                     |
      | response.read()     | putrequest()
      v                     v
    Idle                  Req-started-unread-response
                     ______/|
                   /        |
   response.read() |        | ( putheader() )*  endheaders()
                   v        v
       Request-started    Req-sent-unread-response
                            |
                            | response.read()
                            v
                          Request-sent

This diagram presents the following rules:
  -- a second request may not be started until {response-headers-read}
  -- a response [object] cannot be retrieved until {request-sent}
  -- there is no differentiation between an unread response body and a
     partially read response body

Note: this enforcement is applied by the HTTPConnection class. The
      HTTPResponse class does not enforce this state machine, which
      implies sophisticated clients may accelerate the request/response
      pipeline. Caution should be taken, though: accelerating the states
      beyond the above pattern may imply knowledge of the server's
      connection-close behavior for certain requests. For example, it
      is impossible to tell whether the server will close the connection
      UNTIL the response headers have been read; this means that further
      requests cannot be placed into the pipeline until it is known that
      the server will NOT be closing the connection.

Logical State                  __state            __response
-------------                  -------            ----------
Idle                           _CS_IDLE           None
Request-started                _CS_REQ_STARTED    None
Request-sent                   _CS_REQ_SENT       None
Unread-response                _CS_IDLE           <response_class>
Req-started-unread-response    _CS_REQ_STARTED    <response_class>
Req-sent-unread-response       _CS_REQ_SENT       <response_class>
"""

import email.parser
import email.message
import io
import os
import re
import socket
import collections
from urllib.parse import urlsplit

# HTTPMessage, parse_headers(), and the HTTP status code constants are
# intentionally omitted for simplicity
__all__ = ["HTTPResponse", "HTTPConnection",
           "HTTPException", "NotConnected", "UnknownProtocol",
           "UnknownTransferEncoding", "UnimplementedFileMode",
           "IncompleteRead", "InvalidURL", "ImproperConnectionState",
           "CannotSendRequest", "CannotSendHeader", "ResponseNotReady",
           "BadStatusLine", "LineTooLong", "error", "responses"]

HTTP_PORT = 80
HTTPS_PORT = 443

_UNKNOWN = 'UNKNOWN'

# connection states
_CS_IDLE = 'Idle'
_CS_REQ_STARTED = 'Request-started'
_CS_REQ_SENT = 'Request-sent'

# status codes
# informational
CONTINUE = 100
SWITCHING_PROTOCOLS = 101
PROCESSING = 102

# successful
OK = 200
CREATED = 201
ACCEPTED = 202
NON_AUTHORITATIVE_INFORMATION = 203
NO_CONTENT = 204
RESET_CONTENT = 205
PARTIAL_CONTENT = 206
MULTI_STATUS = 207
IM_USED = 226

# redirection
MULTIPLE_CHOICES = 300
MOVED_PERMANENTLY = 301
FOUND = 302
SEE_OTHER = 303
NOT_MODIFIED = 304
USE_PROXY = 305
TEMPORARY_REDIRECT = 307

# client error
BAD_REQUEST = 400
UNAUTHORIZED = 401
PAYMENT_REQUIRED = 402
FORBIDDEN = 403
NOT_FOUND = 404
METHOD_NOT_ALLOWED = 405
NOT_ACCEPTABLE = 406
PROXY_AUTHENTICATION_REQUIRED = 407
REQUEST_TIMEOUT = 408
CONFLICT = 409
GONE = 410
LENGTH_REQUIRED = 411
PRECONDITION_FAILED = 412
REQUEST_ENTITY_TOO_LARGE = 413
REQUEST_URI_TOO_LONG = 414
UNSUPPORTED_MEDIA_TYPE = 415
REQUESTED_RANGE_NOT_SATISFIABLE = 416
EXPECTATION_FAILED = 417
UNPROCESSABLE_ENTITY = 422
LOCKED = 423
FAILED_DEPENDENCY = 424
UPGRADE_REQUIRED = 426
PRECONDITION_REQUIRED = 428
TOO_MANY_REQUESTS = 429
REQUEST_HEADER_FIELDS_TOO_LARGE = 431

# server error
INTERNAL_SERVER_ERROR = 500
NOT_IMPLEMENTED = 501
BAD_GATEWAY = 502
SERVICE_UNAVAILABLE = 503
GATEWAY_TIMEOUT = 504
HTTP_VERSION_NOT_SUPPORTED = 505
INSUFFICIENT_STORAGE = 507
NOT_EXTENDED = 510
NETWORK_AUTHENTICATION_REQUIRED = 511

# Mapping status codes to official W3C names
responses = {
    100: 'Continue',
    101: 'Switching Protocols',

    200: 'OK',
    201: 'Created',
    202: 'Accepted',
    203: 'Non-Authoritative Information',
    204: 'No Content',
    205: 'Reset Content',
    206: 'Partial Content',

    300: 'Multiple Choices',
    301: 'Moved Permanently',
    302: 'Found',
    303: 'See Other',
    304: 'Not Modified',
    305: 'Use Proxy',
    306: '(Unused)',
    307: 'Temporary Redirect',

    400: 'Bad Request',
    401: 'Unauthorized',
    402: 'Payment Required',
    403: 'Forbidden',
    404: 'Not Found',
    405: 'Method Not Allowed',
    406: 'Not Acceptable',
    407: 'Proxy Authentication Required',
    408: 'Request Timeout',
    409: 'Conflict',
    410: 'Gone',
    411: 'Length Required',
    412: 'Precondition Failed',
    413: 'Request Entity Too Large',
    414: 'Request-URI Too Long',
    415: 'Unsupported Media Type',
    416: 'Requested Range Not Satisfiable',
    417: 'Expectation Failed',
    428: 'Precondition Required',
    429: 'Too Many Requests',
    431: 'Request Header Fields Too Large',

    500: 'Internal Server Error',
    501: 'Not Implemented',
    502: 'Bad Gateway',
    503: 'Service Unavailable',
    504: 'Gateway Timeout',
    505: 'HTTP Version Not Supported',
    511: 'Network Authentication Required',
}

# maximal amount of data to read at one time in _safe_read
MAXAMOUNT = 1048576

# maximal line length when calling readline().
_MAXLINE = 65536
_MAXHEADERS = 100

# Header name/value ABNF (http://tools.ietf.org/html/rfc7230#section-3.2)
#
# VCHAR          = %x21-7E
# obs-text       = %x80-FF
# header-field   = field-name ":" OWS field-value OWS
# field-name     = token
# field-value    = *( field-content / obs-fold )
# field-content  = field-vchar [ 1*( SP / HTAB ) field-vchar ]
# field-vchar    = VCHAR / obs-text
#
# obs-fold       = CRLF 1*( SP / HTAB )
#                ; obsolete line folding
#                ; see Section 3.2.4

# token          = 1*tchar
#
# tchar          = "!" / "#" / "$" / "%" / "&" / "'" / "*"
#                / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
#                / DIGIT / ALPHA
#                ; any VCHAR, except delimiters
#
# VCHAR defined in http://tools.ietf.org/html/rfc5234#appendix-B.1

# the patterns for both name and value are more leniant than RFC
# definitions to allow for backwards compatibility
_is_legal_header_name = re.compile(rb'[^:\s][^:\r\n]*').fullmatch
_is_illegal_header_value = re.compile(rb'\n(?![ \t])|\r(?![ \t\n])').search

# We always set the Content-Length header for these methods because some
# servers will otherwise respond with a 411
_METHODS_EXPECTING_BODY = {'PATCH', 'POST', 'PUT'}


class HTTPMessage(email.message.Message):
    # XXX The only usage of this method is in
    # http.server.CGIHTTPRequestHandler.  Maybe move the code there so
    # that it doesn't need to be part of the public API.  The API has
    # never been defined so this could cause backwards compatibility
    # issues.

    def getallmatchingheaders(self, name):
        """Find all header lines matching a given header name.

        Look through the list of headers and find all lines matching a given
        header name (and their continuation lines).  A list of the lines is
        returned, without interpretation.  If the header does not occur, an
        empty list is returned.  If the header occurs multiple times, all
        occurrences are returned.  Case is not important in the header name.

        """
        name = name.lower() + ':'
        n = len(name)
        lst = []
        hit = 0
        for line in self.keys():
            if line[:n].lower() == name:
                hit = 1
            elif not line[:1].isspace():
                hit = 0
            if hit:
                lst.append(line)
        return lst

def parse_headers(fp, _class=HTTPMessage):
    """Parses only RFC2822 headers from a file pointer.

    email Parser wants to see strings rather than bytes.
    But a TextIOWrapper around self.rfile would buffer too many bytes
    from the stream, bytes which we later need to read as bytes.
    So we read the correct bytes here, as bytes, for email Parser
    to parse.

    """
    headers = []
    while True:
        line = fp.readline(_MAXLINE + 1)
        if len(line) > _MAXLINE:
            raise LineTooLong("header line")
        headers.append(line)
        if len(headers) > _MAXHEADERS:
            raise HTTPException("got more than %d headers" % _MAXHEADERS)
        if line in (b'\r\n', b'\n', b''):
            break
    hstring = b''.join(headers).decode('iso-8859-1')
    return email.parser.Parser(_class=_class).parsestr(hstring)


class HTTPResponse(io.RawIOBase):

    # See RFC 2616 sec 19.6 and RFC 1945 sec 6 for details.

    # The bytes from the socket object are iso-8859-1 strings.
    # See RFC 2616 sec 2.2 which notes an exception for MIME-encoded
    # text following RFC 2047.  The basic status line parsing only
    # accepts iso-8859-1.

    def __init__(self, sock, debuglevel=0, method=None, url=None):
        # If the response includes a content-length header, we need to
        # make sure that the client doesn't read more than the
        # specified number of bytes.  If it does, it will block until
        # the server times out and closes the connection.  This will
        # happen if a self.fp.read() is done (without a size) whether
        # self.fp is buffered or not.  So, no self.fp.read() by
        # clients unless they know what they are doing.
        self.fp = sock.makefile("rb")
        self.debuglevel = debuglevel
        self._method = method

        # The HTTPResponse object is returned via urllib.  The clients
        # of http and urllib expect different attributes for the
        # headers.  headers is used here and supports urllib.  msg is
        # provided as a backwards compatibility layer for http
        # clients.

        self.headers = self.msg = None

        # from the Status-Line of the response
        self.version = _UNKNOWN # HTTP-Version
        self.status = _UNKNOWN  # Status-Code
        self.reason = _UNKNOWN  # Reason-Phrase

        self.chunked = _UNKNOWN         # is "chunked" being used?
        self.chunk_left = _UNKNOWN      # bytes left to read in current chunk
        self.length = _UNKNOWN          # number of bytes left in response
        self.will_close = _UNKNOWN      # conn will close at end of response

    def _read_status(self):
        line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1")
        if len(line) > _MAXLINE:
            raise LineTooLong("status line")
        if self.debuglevel > 0:
            print("reply:", repr(line))
        if not line:
            # Presumably, the server closed the connection before
            # sending a valid response.
            raise BadStatusLine(line)
        try:
            version, status, reason = line.split(None, 2)
        except ValueError:
            try:
                version, status = line.split(None, 1)
                reason = ""
            except ValueError:
                # empty version will cause next test to fail.
                version = ""
        if not version.startswith("HTTP/"):
            self._close_conn()
            raise BadStatusLine(line)

        # The status code is a three-digit number
        try:
            status = int(status)
            if status < 100 or status > 999:
                raise BadStatusLine(line)
        except ValueError:
            raise BadStatusLine(line)
        return version, status, reason

    def begin(self):
        if self.headers is not None:
            # we've already started reading the response
            return

        # read until we get a non-100 response
        while True:
            version, status, reason = self._read_status()
            if status != CONTINUE:
                break
            # skip the header from the 100 response
            while True:
                skip = self.fp.readline(_MAXLINE + 1)
                if len(skip) > _MAXLINE:
                    raise LineTooLong("header line")
                skip = skip.strip()
                if not skip:
                    break
                if self.debuglevel > 0:
                    print("header:", skip)

        self.code = self.status = status
        self.reason = reason.strip()
        if version in ("HTTP/1.0", "HTTP/0.9"):
            # Some servers might still return "0.9", treat it as 1.0 anyway
            self.version = 10
        elif version.startswith("HTTP/1."):
            self.version = 11   # use HTTP/1.1 code for HTTP/1.x where x>=1
        else:
            raise UnknownProtocol(version)

        self.headers = self.msg = parse_headers(self.fp)

        if self.debuglevel > 0:
            for hdr in self.headers:
                print("header:", hdr, end=" ")

        # are we using the chunked-style of transfer encoding?
        tr_enc = self.headers.get("transfer-encoding")
        if tr_enc and tr_enc.lower() == "chunked":
            self.chunked = True
            self.chunk_left = None
        else:
            self.chunked = False

        # will the connection close at the end of the response?
        self.will_close = self._check_close()

        # do we have a Content-Length?
        # NOTE: RFC 2616, S4.4, #3 says we ignore this if tr_enc is "chunked"
        self.length = None
        length = self.headers.get("content-length")

         # are we using the chunked-style of transfer encoding?
        tr_enc = self.headers.get("transfer-encoding")
        if length and not self.chunked:
            try:
                self.length = int(length)
            except ValueError:
                self.length = None
            else:
                if self.length < 0:  # ignore nonsensical negative lengths
                    self.length = None
        else:
            self.length = None

        # does the body have a fixed length? (of zero)
        if (status == NO_CONTENT or status == NOT_MODIFIED or
            100 <= status < 200 or      # 1xx codes
            self._method == "HEAD"):
            self.length = 0

        # if the connection remains open, and we aren't using chunked, and
        # a content-length was not provided, then assume that the connection
        # WILL close.
        if (not self.will_close and
            not self.chunked and
            self.length is None):
            self.will_close = True

    def _check_close(self):
        conn = self.headers.get("connection")
        if self.version == 11:
            # An HTTP/1.1 proxy is assumed to stay open unless
            # explicitly closed.
            conn = self.headers.get("connection")
            if conn and "close" in conn.lower():
                return True
            return False

        # Some HTTP/1.0 implementations have support for persistent
        # connections, using rules different than HTTP/1.1.

        # For older HTTP, Keep-Alive indicates persistent connection.
        if self.headers.get("keep-alive"):
            return False

        # At least Akamai returns a "Connection: Keep-Alive" header,
        # which was supposed to be sent by the client.
        if conn and "keep-alive" in conn.lower():
            return False

        # Proxy-Connection is a netscape hack.
        pconn = self.headers.get("proxy-connection")
        if pconn and "keep-alive" in pconn.lower():
            return False

        # otherwise, assume it will close
        return True

    def _close_conn(self):
        fp = self.fp
        self.fp = None
        fp.close()

    def close(self):
        try:
            super().close() # set "closed" flag
        finally:
            if self.fp:
                self._close_conn()

    # These implementations are for the benefit of io.BufferedReader.

    # XXX This class should probably be revised to act more like
    # the "raw stream" that BufferedReader expects.

    def flush(self):
        super().flush()
        if self.fp:
            self.fp.flush()

    def readable(self):
        return True

    # End of "raw stream" methods

    def isclosed(self):
        """True if the connection is closed."""
        # NOTE: it is possible that we will not ever call self.close(). This
        #       case occurs when will_close is TRUE, length is None, and we
        #       read up to the last byte, but NOT past it.
        #
        # IMPLIES: if will_close is FALSE, then self.close() will ALWAYS be
        #          called, meaning self.isclosed() is meaningful.
        return self.fp is None

    def read(self, amt=None):
        if self.fp is None:
            return b""

        if self._method == "HEAD":
            self._close_conn()
            return b""

        if amt is not None:
            # Amount is given, so call base class version
            # (which is implemented in terms of self.readinto)
            return super(HTTPResponse, self).read(amt)
        else:
            # Amount is not given (unbounded read) so we must check self.length
            # and self.chunked

            if self.chunked:
                return self._readall_chunked()

            if self.length is None:
                s = self.fp.read()
            else:
                try:
                    s = self._safe_read(self.length)
                except IncompleteRead:
                    self._close_conn()
                    raise
                self.length = 0
            self._close_conn()        # we read everything
            return s

    def readinto(self, b):
        if self.fp is None:
            return 0

        if self._method == "HEAD":
            self._close_conn()
            return 0

        if self.chunked:
            return self._readinto_chunked(b)

        if self.length is not None:
            if len(b) > self.length:
                # clip the read to the "end of response"
                b = memoryview(b)[0:self.length]

        # we do not use _safe_read() here because this may be a .will_close
        # connection, and the user is reading more bytes than will be provided
        # (for example, reading in 1k chunks)
        n = self.fp.readinto(b)
        if not n and b:
            # Ideally, we would raise IncompleteRead if the content-length
            # wasn't satisfied, but it might break compatibility.
            self._close_conn()
        elif self.length is not None:
            self.length -= n
            if not self.length:
                self._close_conn()
        return n

    def _read_next_chunk_size(self):
        # Read the next chunk size from the file
        line = self.fp.readline(_MAXLINE + 1)
        if len(line) > _MAXLINE:
            raise LineTooLong("chunk size")
        i = line.find(b";")
        if i >= 0:
            line = line[:i] # strip chunk-extensions
        try:
            return int(line, 16)
        except ValueError:
            # close the connection as protocol synchronisation is
            # probably lost
            self._close_conn()
            raise

    def _read_and_discard_trailer(self):
        # read and discard trailer up to the CRLF terminator
        ### note: we shouldn't have any trailers!
        while True:
            line = self.fp.readline(_MAXLINE + 1)
            if len(line) > _MAXLINE:
                raise LineTooLong("trailer line")
            if not line:
                # a vanishingly small number of sites EOF without
                # sending the trailer
                break
            if line in (b'\r\n', b'\n', b''):
                break

    def _readall_chunked(self):
        assert self.chunked != _UNKNOWN
        chunk_left = self.chunk_left
        value = []
        while True:
            if chunk_left is None:
                try:
                    chunk_left = self._read_next_chunk_size()
                    if chunk_left == 0:
                        break
                except ValueError:
                    raise IncompleteRead(b''.join(value))
            value.append(self._safe_read(chunk_left))

            # we read the whole chunk, get another
            self._safe_read(2)      # toss the CRLF at the end of the chunk
            chunk_left = None

        self._read_and_discard_trailer()

        # we read everything; close the "file"
        self._close_conn()

        return b''.join(value)

    def _readinto_chunked(self, b):
        assert self.chunked != _UNKNOWN
        chunk_left = self.chunk_left

        total_bytes = 0
        mvb = memoryview(b)
        while True:
            if chunk_left is None:
                try:
                    chunk_left = self._read_next_chunk_size()
                    if chunk_left == 0:
                        break
                except ValueError:
                    raise IncompleteRead(bytes(b[0:total_bytes]))

            if len(mvb) < chunk_left:
                n = self._safe_readinto(mvb)
                self.chunk_left = chunk_left - n
                return total_bytes + n
            elif len(mvb) == chunk_left:
                n = self._safe_readinto(mvb)
                self._safe_read(2)  # toss the CRLF at the end of the chunk
                self.chunk_left = None
                return total_bytes + n
            else:
                temp_mvb = mvb[0:chunk_left]
                n = self._safe_readinto(temp_mvb)
                mvb = mvb[n:]
                total_bytes += n

            # we read the whole chunk, get another
            self._safe_read(2)      # toss the CRLF at the end of the chunk
            chunk_left = None

        self._read_and_discard_trailer()

        # we read everything; close the "file"
        self._close_conn()

        return total_bytes

    def _safe_read(self, amt):
        """Read the number of bytes requested, compensating for partial reads.

        Normally, we have a blocking socket, but a read() can be interrupted
        by a signal (resulting in a partial read).

        Note that we cannot distinguish between EOF and an interrupt when zero
        bytes have been read. IncompleteRead() will be raised in this
        situation.

        This function should be used when <amt> bytes "should" be present for
        reading. If the bytes are truly not available (due to EOF), then the
        IncompleteRead exception can be used to detect the problem.
        """
        s = []
        while amt > 0:
            chunk = self.fp.read(min(amt, MAXAMOUNT))
            if not chunk:
                raise IncompleteRead(b''.join(s), amt)
            s.append(chunk)
            amt -= len(chunk)
        return b"".join(s)

    def _safe_readinto(self, b):
        """Same as _safe_read, but for reading into a buffer."""
        total_bytes = 0
        mvb = memoryview(b)
        while total_bytes < len(b):
            if MAXAMOUNT < len(mvb):
                temp_mvb = mvb[0:MAXAMOUNT]
                n = self.fp.readinto(temp_mvb)
            else:
                n = self.fp.readinto(mvb)
            if not n:
                raise IncompleteRead(bytes(mvb[0:total_bytes]), len(b))
            mvb = mvb[n:]
            total_bytes += n
        return total_bytes

    def fileno(self):
        return self.fp.fileno()

    def getheader(self, name, default=None):
        if self.headers is None:
            raise ResponseNotReady()
        headers = self.headers.get_all(name) or default
        if isinstance(headers, str) or not hasattr(headers, '__iter__'):
            return headers
        else:
            return ', '.join(headers)

    def getheaders(self):
        """Return list of (header, value) tuples."""
        if self.headers is None:
            raise ResponseNotReady()
        return list(self.headers.items())

    # We override IOBase.__iter__ so that it doesn't check for closed-ness

    def __iter__(self):
        return self

    # For compatibility with old-style urllib responses.

    def info(self):
        return self.headers

    def geturl(self):
        return self.url

    def getcode(self):
        return self.status

class HTTPConnection:

    _http_vsn = 11
    _http_vsn_str = 'HTTP/1.1'

    response_class = HTTPResponse
    default_port = HTTP_PORT
    auto_open = 1
    debuglevel = 0
    # TCP Maximum Segment Size (MSS) is determined by the TCP stack on
    # a per-connection basis.  There is no simple and efficient
    # platform independent mechanism for determining the MSS, so
    # instead a reasonable estimate is chosen.  The getsockopt()
    # interface using the TCP_MAXSEG parameter may be a suitable
    # approach on some operating systems. A value of 16KiB is chosen
    # as a reasonable estimate of the maximum MSS.
    mss = 16384

    def __init__(self, host, port=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT,
                 source_address=None):
        self.timeout = timeout
        self.source_address = source_address
        self.sock = None
        self._buffer = []
        self.__response = None
        self.__state = _CS_IDLE
        self._method = None
        self._tunnel_host = None
        self._tunnel_port = None
        self._tunnel_headers = {}

        (self.host, self.port) = self._get_hostport(host, port)

        # This is stored as an instance variable to allow unit
        # tests to replace it with a suitable mockup
        self._create_connection = socket.create_connection

    def set_tunnel(self, host, port=None, headers=None):
        """Set up host and port for HTTP CONNECT tunnelling.

        In a connection that uses HTTP CONNECT tunneling, the host passed to the
        constructor is used as a proxy server that relays all communication to
        the endpoint passed to `set_tunnel`. This done by sending an HTTP
        CONNECT request to the proxy server when the connection is established.

        This method must be called before the HTML connection has been
        established.

        The headers argument should be a mapping of extra HTTP headers to send
        with the CONNECT request.
        """

        if self.sock:
            raise RuntimeError("Can't set up tunnel for established connection")

        self._tunnel_host, self._tunnel_port = self._get_hostport(host, port)
        if headers:
            self._tunnel_headers = headers
        else:
            self._tunnel_headers.clear()

    def _get_hostport(self, host, port):
        if port is None:
            i = host.rfind(':')
            j = host.rfind(']')         # ipv6 addresses have [...]
            if i > j:
                try:
                    port = int(host[i+1:])
                except ValueError:
                    if host[i+1:] == "": # http://foo.com:/ == http://foo.com/
                        port = self.default_port
                    else:
                        raise InvalidURL("nonnumeric port: '%s'" % host[i+1:])
                host = host[:i]
            else:
                port = self.default_port
            if host and host[0] == '[' and host[-1] == ']':
                host = host[1:-1]

        return (host, port)

    def set_debuglevel(self, level):
        self.debuglevel = level

    def _tunnel(self):
        connect_str = "CONNECT %s:%d HTTP/1.0\r\n" % (self._tunnel_host,
            self._tunnel_port)
        connect_bytes = connect_str.encode("ascii")
        self.send(connect_bytes)
        for header, value in self._tunnel_headers.items():
            header_str = "%s: %s\r\n" % (header, value)
            header_bytes = header_str.encode("latin-1")
            self.send(header_bytes)
        self.send(b'\r\n')

        response = self.response_class(self.sock, method=self._method)
        (version, code, message) = response._read_status()

        if code != 200:
            self.close()
            raise OSError("Tunnel connection failed: %d %s" % (code,
                                                               message.strip()))
        while True:
            line = response.fp.readline(_MAXLINE + 1)
            if len(line) > _MAXLINE:
                raise LineTooLong("header line")
            if not line:
                # for sites which EOF without sending a trailer
                break
            if line in (b'\r\n', b'\n', b''):
                break

    def connect(self):
        """Connect to the host and port specified in __init__."""
        self.sock = self._create_connection((self.host,self.port),
                                            self.timeout, self.source_address)

        if self._tunnel_host:
            self._tunnel()

    def close(self):
        """Close the connection to the HTTP server."""
        self.__state = _CS_IDLE
        try:
            sock = self.sock
            if sock:
                self.sock = None
                sock.close()   # close it manually... there may be other refs
        finally:
            response = self.__response
            if response:
                self.__response = None
                response.close()

    def send(self, data):
        """Send `data' to the server.
        ``data`` can be a string object, a bytes object, an array object, a
        file-like object that supports a .read() method, or an iterable object.
        """

        if self.sock is None:
            if self.auto_open:
                self.connect()
            else:
                raise NotConnected()

        if self.debuglevel > 0:
            print("send:", repr(data))
        blocksize = 8192
        if hasattr(data, "read") :
            if self.debuglevel > 0:
                print("sendIng a read()able")
            encode = False
            try:
                mode = data.mode
            except AttributeError:
                # io.BytesIO and other file-like objects don't have a `mode`
                # attribute.
                pass
            else:
                if "b" not in mode:
                    encode = True
                    if self.debuglevel > 0:
                        print("encoding file using iso-8859-1")
            while 1:
                datablock = data.read(blocksize)
                if not datablock:
                    break
                if encode:
                    datablock = datablock.encode("iso-8859-1")
                self.sock.sendall(datablock)
            return
        try:
            self.sock.sendall(data)
        except TypeError:
            if isinstance(data, collections.Iterable):
                for d in data:
                    self.sock.sendall(d)
            else:
                raise TypeError("data should be a bytes-like object "
                                "or an iterable, got %r" % type(data))

    def _output(self, s):
        """Add a line of output to the current request buffer.

        Assumes that the line does *not* end with \\r\\n.
        """
        self._buffer.append(s)

    def _send_output(self, message_body=None):
        """Send the currently buffered request and clear the buffer.

        Appends an extra \\r\\n to the buffer.
        A message_body may be specified, to be appended to the request.
        """
        self._buffer.extend((b"", b""))
        msg = b"\r\n".join(self._buffer)
        del self._buffer[:]
        # If msg and message_body are sent in a single send() call,
        # it will avoid performance problems caused by the interaction
        # between delayed ack and the Nagle algorithm. However,
        # there is no performance gain if the message is larger
        # than MSS (and there is a memory penalty for the message
        # copy).
        if isinstance(message_body, bytes) and len(message_body) < self.mss:
            msg += message_body
            message_body = None
        self.send(msg)
        if message_body is not None:
            # message_body was not a string (i.e. it is a file), and
            # we must run the risk of Nagle.
            self.send(message_body)

    def putrequest(self, method, url, skip_host=0, skip_accept_encoding=0):
        """Send a request to the server.

        `method' specifies an HTTP request method, e.g. 'GET'.
        `url' specifies the object being requested, e.g. '/index.html'.
        `skip_host' if True does not add automatically a 'Host:' header
        `skip_accept_encoding' if True does not add automatically an
           'Accept-Encoding:' header
        """

        # if a prior response has been completed, then forget about it.
        if self.__response and self.__response.isclosed():
            self.__response = None


        # in certain cases, we cannot issue another request on this connection.
        # this occurs when:
        #   1) we are in the process of sending a request.   (_CS_REQ_STARTED)
        #   2) a response to a previous request has signalled that it is going
        #      to close the connection upon completion.
        #   3) the headers for the previous response have not been read, thus
        #      we cannot determine whether point (2) is true.   (_CS_REQ_SENT)
        #
        # if there is no prior response, then we can request at will.
        #
        # if point (2) is true, then we will have passed the socket to the
        # response (effectively meaning, "there is no prior response"), and
        # will open a new one when a new request is made.
        #
        # Note: if a prior response exists, then we *can* start a new request.
        #       We are not allowed to begin fetching the response to this new
        #       request, however, until that prior response is complete.
        #
        if self.__state == _CS_IDLE:
            self.__state = _CS_REQ_STARTED
        else:
            raise CannotSendRequest(self.__state)

        # Save the method we use, we need it later in the response phase
        self._method = method
        if not url:
            url = '/'
        request = '%s %s %s' % (method, url, self._http_vsn_str)

        # Non-ASCII characters should have been eliminated earlier
        self._output(request.encode('ascii'))

        if self._http_vsn == 11:
            # Issue some standard headers for better HTTP/1.1 compliance

            if not skip_host:
                # this header is issued *only* for HTTP/1.1
                # connections. more specifically, this means it is
                # only issued when the client uses the new
                # HTTPConnection() class. backwards-compat clients
                # will be using HTTP/1.0 and those clients may be
                # issuing this header themselves. we should NOT issue
                # it twice; some web servers (such as Apache) barf
                # when they see two Host: headers

                # If we need a non-standard port,include it in the
                # header.  If the request is going through a proxy,
                # but the host of the actual URL, not the host of the
                # proxy.

                netloc = ''
                if url.startswith('http'):
                    nil, netloc, nil, nil, nil = urlsplit(url)

                if netloc:
                    try:
                        netloc_enc = netloc.encode("ascii")
                    except UnicodeEncodeError:
                        netloc_enc = netloc.encode("idna")
                    self.putheader('Host', netloc_enc)
                else:
                    if self._tunnel_host:
                        host = self._tunnel_host
                        port = self._tunnel_port
                    else:
                        host = self.host
                        port = self.port

                    try:
                        host_enc = host.encode("ascii")
                    except UnicodeEncodeError:
                        host_enc = host.encode("idna")

                    # As per RFC 273, IPv6 address should be wrapped with []
                    # when used as Host header

                    if host.find(':') >= 0:
                        host_enc = b'[' + host_enc + b']'

                    if port == self.default_port:
                        self.putheader('Host', host_enc)
                    else:
                        host_enc = host_enc.decode("ascii")
                        self.putheader('Host', "%s:%s" % (host_enc, port))

            # note: we are assuming that clients will not attempt to set these
            #       headers since *this* library must deal with the
            #       consequences. this also means that when the supporting
            #       libraries are updated to recognize other forms, then this
            #       code should be changed (removed or updated).

            # we only want a Content-Encoding of "identity" since we don't
            # support encodings such as x-gzip or x-deflate.
            if not skip_accept_encoding:
                self.putheader('Accept-Encoding', 'identity')

            # we can accept "chunked" Transfer-Encodings, but no others
            # NOTE: no TE header implies *only* "chunked"
            #self.putheader('TE', 'chunked')

            # if TE is supplied in the header, then it must appear in a
            # Connection header.
            #self.putheader('Connection', 'TE')

        else:
            # For HTTP/1.0, the server will assume "not chunked"
            pass

    def putheader(self, header, *values):
        """Send a request header line to the server.

        For example: h.putheader('Accept', 'text/html')
        """
        if self.__state != _CS_REQ_STARTED:
            raise CannotSendHeader()

        if hasattr(header, 'encode'):
            header = header.encode('ascii')

        if not _is_legal_header_name(header):
            raise ValueError('Invalid header name %r' % (header,))

        values = list(values)
        for i, one_value in enumerate(values):
            if hasattr(one_value, 'encode'):
                values[i] = one_value.encode('latin-1')
            elif isinstance(one_value, int):
                values[i] = str(one_value).encode('ascii')

            if _is_illegal_header_value(values[i]):
                raise ValueError('Invalid header value %r' % (values[i],))

        value = b'\r\n\t'.join(values)
        header = header + b': ' + value
        self._output(header)

    def endheaders(self, message_body=None):
        """Indicate that the last header line has been sent to the server.

        This method sends the request to the server.  The optional message_body
        argument can be used to pass a message body associated with the
        request.  The message body will be sent in the same packet as the
        message headers if it is a string, otherwise it is sent as a separate
        packet.
        """
        if self.__state == _CS_REQ_STARTED:
            self.__state = _CS_REQ_SENT
        else:
            raise CannotSendHeader()
        self._send_output(message_body)

    def request(self, method, url, body=None, headers={}):
        """Send a complete request to the server."""
        self._send_request(method, url, body, headers)

    def _set_content_length(self, body, method):
        # Set the content-length based on the body. If the body is "empty", we
        # set Content-Length: 0 for methods that expect a body (RFC 7230,
        # Section 3.3.2). If the body is set for other methods, we set the
        # header provided we can figure out what the length is.
        thelen = None
        method_expects_body = method.upper() in _METHODS_EXPECTING_BODY
        if body is None and method_expects_body:
            thelen = '0'
        elif body is not None:
            try:
                thelen = str(len(body))
            except TypeError:
                # If this is a file-like object, try to
                # fstat its file descriptor
                try:
                    thelen = str(os.fstat(body.fileno()).st_size)
                except (AttributeError, OSError):
                    # Don't send a length if this failed
                    if self.debuglevel > 0: print("Cannot stat!!")

        if thelen is not None:
            self.putheader('Content-Length', thelen)

    def _send_request(self, method, url, body, headers):
        # Honor explicitly requested Host: and Accept-Encoding: headers.
        header_names = dict.fromkeys([k.lower() for k in headers])
        skips = {}
        if 'host' in header_names:
            skips['skip_host'] = 1
        if 'accept-encoding' in header_names:
            skips['skip_accept_encoding'] = 1

        self.putrequest(method, url, **skips)

        if 'content-length' not in header_names:
            self._set_content_length(body, method)
        for hdr, value in headers.items():
            self.putheader(hdr, value)
        if isinstance(body, str):
            # RFC 2616 Section 3.7.1 says that text default has a
            # default charset of iso-8859-1.
            body = body.encode('iso-8859-1')
        self.endheaders(body)

    def getresponse(self):
        """Get the response from the server.

        If the HTTPConnection is in the correct state, returns an
        instance of HTTPResponse or of whatever object is returned by
        class the response_class variable.

        If a request has not been sent or if a previous response has
        not be handled, ResponseNotReady is raised.  If the HTTP
        response indicates that the connection should be closed, then
        it will be closed before the response is returned.  When the
        connection is closed, the underlying socket is closed.
        """

        # if a prior response has been completed, then forget about it.
        if self.__response and self.__response.isclosed():
            self.__response = None

        # if a prior response exists, then it must be completed (otherwise, we
        # cannot read this response's header to determine the connection-close
        # behavior)
        #
        # note: if a prior response existed, but was connection-close, then the
        # socket and response were made independent of this HTTPConnection
        # object since a new request requires that we open a whole new
        # connection
        #
        # this means the prior response had one of two states:
        #   1) will_close: this connection was reset and the prior socket and
        #                  response operate independently
        #   2) persistent: the response was retained and we await its
        #                  isclosed() status to become true.
        #
        if self.__state != _CS_REQ_SENT or self.__response:
            raise ResponseNotReady(self.__state)

        if self.debuglevel > 0:
            response = self.response_class(self.sock, self.debuglevel,
                                           method=self._method)
        else:
            response = self.response_class(self.sock, method=self._method)

        try:
            response.begin()
            assert response.will_close != _UNKNOWN
            self.__state = _CS_IDLE

            if response.will_close:
                # this effectively passes the connection to the response
                self.close()
            else:
                # remember this, so we can tell when it is complete
                self.__response = response

            return response
        except:
            response.close()
            raise

try:
    import ssl
except ImportError:
    pass
else:
    class HTTPSConnection(HTTPConnection):
        "This class allows communication via SSL."

        default_port = HTTPS_PORT

        # XXX Should key_file and cert_file be deprecated in favour of context?

        def __init__(self, host, port=None, key_file=None, cert_file=None,
                     timeout=socket._GLOBAL_DEFAULT_TIMEOUT,
                     source_address=None, *, context=None,
                     check_hostname=None):
            super(HTTPSConnection, self).__init__(host, port, timeout,
                                                  source_address)
            self.key_file = key_file
            self.cert_file = cert_file
            if context is None:
                context = ssl._create_default_https_context()
            will_verify = context.verify_mode != ssl.CERT_NONE
            if check_hostname is None:
                check_hostname = context.check_hostname
            if check_hostname and not will_verify:
                raise ValueError("check_hostname needs a SSL context with "
                                 "either CERT_OPTIONAL or CERT_REQUIRED")
            if key_file or cert_file:
                context.load_cert_chain(cert_file, key_file)
            self._context = context
            self._check_hostname = check_hostname

        def connect(self):
            "Connect to a host on a given (SSL) port."

            super().connect()

            if self._tunnel_host:
                server_hostname = self._tunnel_host
            else:
                server_hostname = self.host

            self.sock = self._context.wrap_socket(self.sock,
                                                  server_hostname=server_hostname)
            if not self._context.check_hostname and self._check_hostname:
                try:
                    ssl.match_hostname(self.sock.getpeercert(), server_hostname)
                except Exception:
                    self.sock.shutdown(socket.SHUT_RDWR)
                    self.sock.close()
                    raise

    __all__.append("HTTPSConnection")

class HTTPException(Exception):
    # Subclasses that define an __init__ must call Exception.__init__
    # or define self.args.  Otherwise, str() will fail.
    pass

class NotConnected(HTTPException):
    pass

class InvalidURL(HTTPException):
    pass

class UnknownProtocol(HTTPException):
    def __init__(self, version):
        self.args = version,
        self.version = version

class UnknownTransferEncoding(HTTPException):
    pass

class UnimplementedFileMode(HTTPException):
    pass

class IncompleteRead(HTTPException):
    def __init__(self, partial, expected=None):
        self.args = partial,
        self.partial = partial
        self.expected = expected
    def __repr__(self):
        if self.expected is not None:
            e = ', %i more expected' % self.expected
        else:
            e = ''
        return 'IncompleteRead(%i bytes read%s)' % (len(self.partial), e)
    def __str__(self):
        return repr(self)

class ImproperConnectionState(HTTPException):
    pass

class CannotSendRequest(ImproperConnectionState):
    pass

class CannotSendHeader(ImproperConnectionState):
    pass

class ResponseNotReady(ImproperConnectionState):
    pass

class BadStatusLine(HTTPException):
    def __init__(self, line):
        if not line:
            line = repr(line)
        self.args = line,
        self.line = line

class LineTooLong(HTTPException):
    def __init__(self, line_type):
        HTTPException.__init__(self, "got more than %d bytes when reading %s"
                                     % (_MAXLINE, line_type))

# for backwards compatibility
error = HTTPException
lib\http\cookiejar.py
r"""HTTP cookie handling for web clients.

This module has (now fairly distant) origins in Gisle Aas' Perl module
HTTP::Cookies, from the libwww-perl library.

Docstrings, comments and debug strings in this code refer to the
attributes of the HTTP cookie system as cookie-attributes, to distinguish
them clearly from Python attributes.

Class diagram (note that BSDDBCookieJar and the MSIE* classes are not
distributed with the Python standard library, but are available from
http://wwwsearch.sf.net/):

                        CookieJar____
                        /     \      \
            FileCookieJar      \      \
             /    |   \         \      \
 MozillaCookieJar | LWPCookieJar \      \
                  |               |      \
                  |   ---MSIEBase |       \
                  |  /      |     |        \
                  | /   MSIEDBCookieJar BSDDBCookieJar
                  |/
               MSIECookieJar

"""

__all__ = ['Cookie', 'CookieJar', 'CookiePolicy', 'DefaultCookiePolicy',
           'FileCookieJar', 'LWPCookieJar', 'LoadError', 'MozillaCookieJar']

import copy
import datetime
import re
import time
import urllib.parse, urllib.request
try:
    import threading as _threading
except ImportError:
    import dummy_threading as _threading
import http.client  # only for the default HTTP port
from calendar import timegm

debug = False   # set to True to enable debugging via the logging module
logger = None

def _debug(*args):
    if not debug:
        return
    global logger
    if not logger:
        import logging
        logger = logging.getLogger("http.cookiejar")
    return logger.debug(*args)


DEFAULT_HTTP_PORT = str(http.client.HTTP_PORT)
MISSING_FILENAME_TEXT = ("a filename was not supplied (nor was the CookieJar "
                         "instance initialised with one)")

def _warn_unhandled_exception():
    # There are a few catch-all except: statements in this module, for
    # catching input that's bad in unexpected ways.  Warn if any
    # exceptions are caught there.
    import io, warnings, traceback
    f = io.StringIO()
    traceback.print_exc(None, f)
    msg = f.getvalue()
    warnings.warn("http.cookiejar bug!\n%s" % msg, stacklevel=2)


# Date/time conversion
# -----------------------------------------------------------------------------

EPOCH_YEAR = 1970
def _timegm(tt):
    year, month, mday, hour, min, sec = tt[:6]
    if ((year >= EPOCH_YEAR) and (1 <= month <= 12) and (1 <= mday <= 31) and
        (0 <= hour <= 24) and (0 <= min <= 59) and (0 <= sec <= 61)):
        return timegm(tt)
    else:
        return None

DAYS = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
MONTHS = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
          "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
MONTHS_LOWER = []
for month in MONTHS: MONTHS_LOWER.append(month.lower())

def time2isoz(t=None):
    """Return a string representing time in seconds since epoch, t.

    If the function is called without an argument, it will use the current
    time.

    The format of the returned string is like "YYYY-MM-DD hh:mm:ssZ",
    representing Universal Time (UTC, aka GMT).  An example of this format is:

    1994-11-24 08:49:37Z

    """
    if t is None:
        dt = datetime.datetime.utcnow()
    else:
        dt = datetime.datetime.utcfromtimestamp(t)
    return "%04d-%02d-%02d %02d:%02d:%02dZ" % (
        dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second)

def time2netscape(t=None):
    """Return a string representing time in seconds since epoch, t.

    If the function is called without an argument, it will use the current
    time.

    The format of the returned string is like this:

    Wed, DD-Mon-YYYY HH:MM:SS GMT

    """
    if t is None:
        dt = datetime.datetime.utcnow()
    else:
        dt = datetime.datetime.utcfromtimestamp(t)
    return "%s %02d-%s-%04d %02d:%02d:%02d GMT" % (
        DAYS[dt.weekday()], dt.day, MONTHS[dt.month-1],
        dt.year, dt.hour, dt.minute, dt.second)


UTC_ZONES = {"GMT": None, "UTC": None, "UT": None, "Z": None}

TIMEZONE_RE = re.compile(r"^([-+])?(\d\d?):?(\d\d)?$", re.ASCII)
def offset_from_tz_string(tz):
    offset = None
    if tz in UTC_ZONES:
        offset = 0
    else:
        m = TIMEZONE_RE.search(tz)
        if m:
            offset = 3600 * int(m.group(2))
            if m.group(3):
                offset = offset + 60 * int(m.group(3))
            if m.group(1) == '-':
                offset = -offset
    return offset

def _str2time(day, mon, yr, hr, min, sec, tz):
    # translate month name to number
    # month numbers start with 1 (January)
    try:
        mon = MONTHS_LOWER.index(mon.lower())+1
    except ValueError:
        # maybe it's already a number
        try:
            imon = int(mon)
        except ValueError:
            return None
        if 1 <= imon <= 12:
            mon = imon
        else:
            return None

    # make sure clock elements are defined
    if hr is None: hr = 0
    if min is None: min = 0
    if sec is None: sec = 0

    yr = int(yr)
    day = int(day)
    hr = int(hr)
    min = int(min)
    sec = int(sec)

    if yr < 1000:
        # find "obvious" year
        cur_yr = time.localtime(time.time())[0]
        m = cur_yr % 100
        tmp = yr
        yr = yr + cur_yr - m
        m = m - tmp
        if abs(m) > 50:
            if m > 0: yr = yr + 100
            else: yr = yr - 100

    # convert UTC time tuple to seconds since epoch (not timezone-adjusted)
    t = _timegm((yr, mon, day, hr, min, sec, tz))

    if t is not None:
        # adjust time using timezone string, to get absolute time since epoch
        if tz is None:
            tz = "UTC"
        tz = tz.upper()
        offset = offset_from_tz_string(tz)
        if offset is None:
            return None
        t = t - offset

    return t

STRICT_DATE_RE = re.compile(
    r"^[SMTWF][a-z][a-z], (\d\d) ([JFMASOND][a-z][a-z]) "
    "(\d\d\d\d) (\d\d):(\d\d):(\d\d) GMT$", re.ASCII)
WEEKDAY_RE = re.compile(
    r"^(?:Sun|Mon|Tue|Wed|Thu|Fri|Sat)[a-z]*,?\s*", re.I | re.ASCII)
LOOSE_HTTP_DATE_RE = re.compile(
    r"""^
    (\d\d?)            # day
       (?:\s+|[-\/])
    (\w+)              # month
        (?:\s+|[-\/])
    (\d+)              # year
    (?:
          (?:\s+|:)    # separator before clock
       (\d\d?):(\d\d)  # hour:min
       (?::(\d\d))?    # optional seconds
    )?                 # optional clock
       \s*
    ([-+]?\d{2,4}|(?![APap][Mm]\b)[A-Za-z]+)? # timezone
       \s*
    (?:\(\w+\))?       # ASCII representation of timezone in parens.
       \s*$""", re.X | re.ASCII)
def http2time(text):
    """Returns time in seconds since epoch of time represented by a string.

    Return value is an integer.

    None is returned if the format of str is unrecognized, the time is outside
    the representable range, or the timezone string is not recognized.  If the
    string contains no timezone, UTC is assumed.

    The timezone in the string may be numerical (like "-0800" or "+0100") or a
    string timezone (like "UTC", "GMT", "BST" or "EST").  Currently, only the
    timezone strings equivalent to UTC (zero offset) are known to the function.

    The function loosely parses the following formats:

    Wed, 09 Feb 1994 22:23:32 GMT       -- HTTP format
    Tuesday, 08-Feb-94 14:15:29 GMT     -- old rfc850 HTTP format
    Tuesday, 08-Feb-1994 14:15:29 GMT   -- broken rfc850 HTTP format
    09 Feb 1994 22:23:32 GMT            -- HTTP format (no weekday)
    08-Feb-94 14:15:29 GMT              -- rfc850 format (no weekday)
    08-Feb-1994 14:15:29 GMT            -- broken rfc850 format (no weekday)

    The parser ignores leading and trailing whitespace.  The time may be
    absent.

    If the year is given with only 2 digits, the function will select the
    century that makes the year closest to the current date.

    """
    # fast exit for strictly conforming string
    m = STRICT_DATE_RE.search(text)
    if m:
        g = m.groups()
        mon = MONTHS_LOWER.index(g[1].lower()) + 1
        tt = (int(g[2]), mon, int(g[0]),
              int(g[3]), int(g[4]), float(g[5]))
        return _timegm(tt)

    # No, we need some messy parsing...

    # clean up
    text = text.lstrip()
    text = WEEKDAY_RE.sub("", text, 1)  # Useless weekday

    # tz is time zone specifier string
    day, mon, yr, hr, min, sec, tz = [None]*7

    # loose regexp parse
    m = LOOSE_HTTP_DATE_RE.search(text)
    if m is not None:
        day, mon, yr, hr, min, sec, tz = m.groups()
    else:
        return None  # bad format

    return _str2time(day, mon, yr, hr, min, sec, tz)

ISO_DATE_RE = re.compile(
    """^
    (\d{4})              # year
       [-\/]?
    (\d\d?)              # numerical month
       [-\/]?
    (\d\d?)              # day
   (?:
         (?:\s+|[-:Tt])  # separator before clock
      (\d\d?):?(\d\d)    # hour:min
      (?::?(\d\d(?:\.\d*)?))?  # optional seconds (and fractional)
   )?                    # optional clock
      \s*
   ([-+]?\d\d?:?(:?\d\d)?
    |Z|z)?               # timezone  (Z is "zero meridian", i.e. GMT)
      \s*$""", re.X | re. ASCII)
def iso2time(text):
    """
    As for http2time, but parses the ISO 8601 formats:

    1994-02-03 14:15:29 -0100    -- ISO 8601 format
    1994-02-03 14:15:29          -- zone is optional
    1994-02-03                   -- only date
    1994-02-03T14:15:29          -- Use T as separator
    19940203T141529Z             -- ISO 8601 compact format
    19940203                     -- only date

    """
    # clean up
    text = text.lstrip()

    # tz is time zone specifier string
    day, mon, yr, hr, min, sec, tz = [None]*7

    # loose regexp parse
    m = ISO_DATE_RE.search(text)
    if m is not None:
        # XXX there's an extra bit of the timezone I'm ignoring here: is
        #   this the right thing to do?
        yr, mon, day, hr, min, sec, tz, _ = m.groups()
    else:
        return None  # bad format

    return _str2time(day, mon, yr, hr, min, sec, tz)


# Header parsing
# -----------------------------------------------------------------------------

def unmatched(match):
    """Return unmatched part of re.Match object."""
    start, end = match.span(0)
    return match.string[:start]+match.string[end:]

HEADER_TOKEN_RE =        re.compile(r"^\s*([^=\s;,]+)")
HEADER_QUOTED_VALUE_RE = re.compile(r"^\s*=\s*\"([^\"\\]*(?:\\.[^\"\\]*)*)\"")
HEADER_VALUE_RE =        re.compile(r"^\s*=\s*([^\s;,]*)")
HEADER_ESCAPE_RE = re.compile(r"\\(.)")
def split_header_words(header_values):
    r"""Parse header values into a list of lists containing key,value pairs.

    The function knows how to deal with ",", ";" and "=" as well as quoted
    values after "=".  A list of space separated tokens are parsed as if they
    were separated by ";".

    If the header_values passed as argument contains multiple values, then they
    are treated as if they were a single value separated by comma ",".

    This means that this function is useful for parsing header fields that
    follow this syntax (BNF as from the HTTP/1.1 specification, but we relax
    the requirement for tokens).

      headers           = #header
      header            = (token | parameter) *( [";"] (token | parameter))

      token             = 1*<any CHAR except CTLs or separators>
      separators        = "(" | ")" | "<" | ">" | "@"
                        | "," | ";" | ":" | "\" | <">
                        | "/" | "[" | "]" | "?" | "="
                        | "{" | "}" | SP | HT

      quoted-string     = ( <"> *(qdtext | quoted-pair ) <"> )
      qdtext            = <any TEXT except <">>
      quoted-pair       = "\" CHAR

      parameter         = attribute "=" value
      attribute         = token
      value             = token | quoted-string

    Each header is represented by a list of key/value pairs.  The value for a
    simple token (not part of a parameter) is None.  Syntactically incorrect
    headers will not necessarily be parsed as you would want.

    This is easier to describe with some examples:

    >>> split_header_words(['foo="bar"; port="80,81"; discard, bar=baz'])
    [[('foo', 'bar'), ('port', '80,81'), ('discard', None)], [('bar', 'baz')]]
    >>> split_header_words(['text/html; charset="iso-8859-1"'])
    [[('text/html', None), ('charset', 'iso-8859-1')]]
    >>> split_header_words([r'Basic realm="\"foo\bar\""'])
    [[('Basic', None), ('realm', '"foobar"')]]

    """
    assert not isinstance(header_values, str)
    result = []
    for text in header_values:
        orig_text = text
        pairs = []
        while text:
            m = HEADER_TOKEN_RE.search(text)
            if m:
                text = unmatched(m)
                name = m.group(1)
                m = HEADER_QUOTED_VALUE_RE.search(text)
                if m:  # quoted value
                    text = unmatched(m)
                    value = m.group(1)
                    value = HEADER_ESCAPE_RE.sub(r"\1", value)
                else:
                    m = HEADER_VALUE_RE.search(text)
                    if m:  # unquoted value
                        text = unmatched(m)
                        value = m.group(1)
                        value = value.rstrip()
                    else:
                        # no value, a lone token
                        value = None
                pairs.append((name, value))
            elif text.lstrip().startswith(","):
                # concatenated headers, as per RFC 2616 section 4.2
                text = text.lstrip()[1:]
                if pairs: result.append(pairs)
                pairs = []
            else:
                # skip junk
                non_junk, nr_junk_chars = re.subn("^[=\s;]*", "", text)
                assert nr_junk_chars > 0, (
                    "split_header_words bug: '%s', '%s', %s" %
                    (orig_text, text, pairs))
                text = non_junk
        if pairs: result.append(pairs)
    return result

HEADER_JOIN_ESCAPE_RE = re.compile(r"([\"\\])")
def join_header_words(lists):
    """Do the inverse (almost) of the conversion done by split_header_words.

    Takes a list of lists of (key, value) pairs and produces a single header
    value.  Attribute values are quoted if needed.

    >>> join_header_words([[("text/plain", None), ("charset", "iso-8859-1")]])
    'text/plain; charset="iso-8859-1"'
    >>> join_header_words([[("text/plain", None)], [("charset", "iso-8859-1")]])
    'text/plain, charset="iso-8859-1"'

    """
    headers = []
    for pairs in lists:
        attr = []
        for k, v in pairs:
            if v is not None:
                if not re.search(r"^\w+$", v):
                    v = HEADER_JOIN_ESCAPE_RE.sub(r"\\\1", v)  # escape " and \
                    v = '"%s"' % v
                k = "%s=%s" % (k, v)
            attr.append(k)
        if attr: headers.append("; ".join(attr))
    return ", ".join(headers)

def strip_quotes(text):
    if text.startswith('"'):
        text = text[1:]
    if text.endswith('"'):
        text = text[:-1]
    return text

def parse_ns_headers(ns_headers):
    """Ad-hoc parser for Netscape protocol cookie-attributes.

    The old Netscape cookie format for Set-Cookie can for instance contain
    an unquoted "," in the expires field, so we have to use this ad-hoc
    parser instead of split_header_words.

    XXX This may not make the best possible effort to parse all the crap
    that Netscape Cookie headers contain.  Ronald Tschalar's HTTPClient
    parser is probably better, so could do worse than following that if
    this ever gives any trouble.

    Currently, this is also used for parsing RFC 2109 cookies.

    """
    known_attrs = ("expires", "domain", "path", "secure",
                   # RFC 2109 attrs (may turn up in Netscape cookies, too)
                   "version", "port", "max-age")

    result = []
    for ns_header in ns_headers:
        pairs = []
        version_set = False

        # XXX: The following does not strictly adhere to RFCs in that empty
        # names and values are legal (the former will only appear once and will
        # be overwritten if multiple occurrences are present). This is
        # mostly to deal with backwards compatibility.
        for ii, param in enumerate(ns_header.split(';')):
            param = param.strip()

            key, sep, val = param.partition('=')
            key = key.strip()

            if not key:
                if ii == 0:
                    break
                else:
                    continue

            # allow for a distinction between present and empty and missing
            # altogether
            val = val.strip() if sep else None

            if ii != 0:
                lc = key.lower()
                if lc in known_attrs:
                    key = lc

                if key == "version":
                    # This is an RFC 2109 cookie.
                    if val is not None:
                        val = strip_quotes(val)
                    version_set = True
                elif key == "expires":
                    # convert expires date to seconds since epoch
                    if val is not None:
                        val = http2time(strip_quotes(val))  # None if invalid
            pairs.append((key, val))

        if pairs:
            if not version_set:
                pairs.append(("version", "0"))
            result.append(pairs)

    return result


IPV4_RE = re.compile(r"\.\d+$", re.ASCII)
def is_HDN(text):
    """Return True if text is a host domain name."""
    # XXX
    # This may well be wrong.  Which RFC is HDN defined in, if any (for
    #  the purposes of RFC 2965)?
    # For the current implementation, what about IPv6?  Remember to look
    #  at other uses of IPV4_RE also, if change this.
    if IPV4_RE.search(text):
        return False
    if text == "":
        return False
    if text[0] == "." or text[-1] == ".":
        return False
    return True

def domain_match(A, B):
    """Return True if domain A domain-matches domain B, according to RFC 2965.

    A and B may be host domain names or IP addresses.

    RFC 2965, section 1:

    Host names can be specified either as an IP address or a HDN string.
    Sometimes we compare one host name with another.  (Such comparisons SHALL
    be case-insensitive.)  Host A's name domain-matches host B's if

         *  their host name strings string-compare equal; or

         * A is a HDN string and has the form NB, where N is a non-empty
            name string, B has the form .B', and B' is a HDN string.  (So,
            x.y.com domain-matches .Y.com but not Y.com.)

    Note that domain-match is not a commutative operation: a.b.c.com
    domain-matches .c.com, but not the reverse.

    """
    # Note that, if A or B are IP addresses, the only relevant part of the
    # definition of the domain-match algorithm is the direct string-compare.
    A = A.lower()
    B = B.lower()
    if A == B:
        return True
    if not is_HDN(A):
        return False
    i = A.rfind(B)
    if i == -1 or i == 0:
        # A does not have form NB, or N is the empty string
        return False
    if not B.startswith("."):
        return False
    if not is_HDN(B[1:]):
        return False
    return True

def liberal_is_HDN(text):
    """Return True if text is a sort-of-like a host domain name.

    For accepting/blocking domains.

    """
    if IPV4_RE.search(text):
        return False
    return True

def user_domain_match(A, B):
    """For blocking/accepting domains.

    A and B may be host domain names or IP addresses.

    """
    A = A.lower()
    B = B.lower()
    if not (liberal_is_HDN(A) and liberal_is_HDN(B)):
        if A == B:
            # equal IP addresses
            return True
        return False
    initial_dot = B.startswith(".")
    if initial_dot and A.endswith(B):
        return True
    if not initial_dot and A == B:
        return True
    return False

cut_port_re = re.compile(r":\d+$", re.ASCII)
def request_host(request):
    """Return request-host, as defined by RFC 2965.

    Variation from RFC: returned value is lowercased, for convenient
    comparison.

    """
    url = request.get_full_url()
    host = urllib.parse.urlparse(url)[1]
    if host == "":
        host = request.get_header("Host", "")

    # remove port, if present
    host = cut_port_re.sub("", host, 1)
    return host.lower()

def eff_request_host(request):
    """Return a tuple (request-host, effective request-host name).

    As defined by RFC 2965, except both are lowercased.

    """
    erhn = req_host = request_host(request)
    if req_host.find(".") == -1 and not IPV4_RE.search(req_host):
        erhn = req_host + ".local"
    return req_host, erhn

def request_path(request):
    """Path component of request-URI, as defined by RFC 2965."""
    url = request.get_full_url()
    parts = urllib.parse.urlsplit(url)
    path = escape_path(parts.path)
    if not path.startswith("/"):
        # fix bad RFC 2396 absoluteURI
        path = "/" + path
    return path

def request_port(request):
    host = request.host
    i = host.find(':')
    if i >= 0:
        port = host[i+1:]
        try:
            int(port)
        except ValueError:
            _debug("nonnumeric port: '%s'", port)
            return None
    else:
        port = DEFAULT_HTTP_PORT
    return port

# Characters in addition to A-Z, a-z, 0-9, '_', '.', and '-' that don't
# need to be escaped to form a valid HTTP URL (RFCs 2396 and 1738).
HTTP_PATH_SAFE = "%/;:@&=+$,!~*'()"
ESCAPED_CHAR_RE = re.compile(r"%([0-9a-fA-F][0-9a-fA-F])")
def uppercase_escaped_char(match):
    return "%%%s" % match.group(1).upper()
def escape_path(path):
    """Escape any invalid characters in HTTP URL, and uppercase all escapes."""
    # There's no knowing what character encoding was used to create URLs
    # containing %-escapes, but since we have to pick one to escape invalid
    # path characters, we pick UTF-8, as recommended in the HTML 4.0
    # specification:
    # http://www.w3.org/TR/REC-html40/appendix/notes.html#h-B.2.1
    # And here, kind of: draft-fielding-uri-rfc2396bis-03
    # (And in draft IRI specification: draft-duerst-iri-05)
    # (And here, for new URI schemes: RFC 2718)
    path = urllib.parse.quote(path, HTTP_PATH_SAFE)
    path = ESCAPED_CHAR_RE.sub(uppercase_escaped_char, path)
    return path

def reach(h):
    """Return reach of host h, as defined by RFC 2965, section 1.

    The reach R of a host name H is defined as follows:

       *  If

          -  H is the host domain name of a host; and,

          -  H has the form A.B; and

          -  A has no embedded (that is, interior) dots; and

          -  B has at least one embedded dot, or B is the string "local".
             then the reach of H is .B.

       *  Otherwise, the reach of H is H.

    >>> reach("www.acme.com")
    '.acme.com'
    >>> reach("acme.com")
    'acme.com'
    >>> reach("acme.local")
    '.local'

    """
    i = h.find(".")
    if i >= 0:
        #a = h[:i]  # this line is only here to show what a is
        b = h[i+1:]
        i = b.find(".")
        if is_HDN(h) and (i >= 0 or b == "local"):
            return "."+b
    return h

def is_third_party(request):
    """

    RFC 2965, section 3.3.6:

        An unverifiable transaction is to a third-party host if its request-
        host U does not domain-match the reach R of the request-host O in the
        origin transaction.

    """
    req_host = request_host(request)
    if not domain_match(req_host, reach(request.origin_req_host)):
        return True
    else:
        return False


class Cookie:
    """HTTP Cookie.

    This class represents both Netscape and RFC 2965 cookies.

    This is deliberately a very simple class.  It just holds attributes.  It's
    possible to construct Cookie instances that don't comply with the cookie
    standards.  CookieJar.make_cookies is the factory function for Cookie
    objects -- it deals with cookie parsing, supplying defaults, and
    normalising to the representation used in this class.  CookiePolicy is
    responsible for checking them to see whether they should be accepted from
    and returned to the server.

    Note that the port may be present in the headers, but unspecified ("Port"
    rather than"Port=80", for example); if this is the case, port is None.

    """

    def __init__(self, version, name, value,
                 port, port_specified,
                 domain, domain_specified, domain_initial_dot,
                 path, path_specified,
                 secure,
                 expires,
                 discard,
                 comment,
                 comment_url,
                 rest,
                 rfc2109=False,
                 ):

        if version is not None: version = int(version)
        if expires is not None: expires = int(float(expires))
        if port is None and port_specified is True:
            raise ValueError("if port is None, port_specified must be false")

        self.version = version
        self.name = name
        self.value = value
        self.port = port
        self.port_specified = port_specified
        # normalise case, as per RFC 2965 section 3.3.3
        self.domain = domain.lower()
        self.domain_specified = domain_specified
        # Sigh.  We need to know whether the domain given in the
        # cookie-attribute had an initial dot, in order to follow RFC 2965
        # (as clarified in draft errata).  Needed for the returned $Domain
        # value.
        self.domain_initial_dot = domain_initial_dot
        self.path = path
        self.path_specified = path_specified
        self.secure = secure
        self.expires = expires
        self.discard = discard
        self.comment = comment
        self.comment_url = comment_url
        self.rfc2109 = rfc2109

        self._rest = copy.copy(rest)

    def has_nonstandard_attr(self, name):
        return name in self._rest
    def get_nonstandard_attr(self, name, default=None):
        return self._rest.get(name, default)
    def set_nonstandard_attr(self, name, value):
        self._rest[name] = value

    def is_expired(self, now=None):
        if now is None: now = time.time()
        if (self.expires is not None) and (self.expires <= now):
            return True
        return False

    def __str__(self):
        if self.port is None: p = ""
        else: p = ":"+self.port
        limit = self.domain + p + self.path
        if self.value is not None:
            namevalue = "%s=%s" % (self.name, self.value)
        else:
            namevalue = self.name
        return "<Cookie %s for %s>" % (namevalue, limit)

    def __repr__(self):
        args = []
        for name in ("version", "name", "value",
                     "port", "port_specified",
                     "domain", "domain_specified", "domain_initial_dot",
                     "path", "path_specified",
                     "secure", "expires", "discard", "comment", "comment_url",
                     ):
            attr = getattr(self, name)
            args.append("%s=%s" % (name, repr(attr)))
        args.append("rest=%s" % repr(self._rest))
        args.append("rfc2109=%s" % repr(self.rfc2109))
        return "Cookie(%s)" % ", ".join(args)


class CookiePolicy:
    """Defines which cookies get accepted from and returned to server.

    May also modify cookies, though this is probably a bad idea.

    The subclass DefaultCookiePolicy defines the standard rules for Netscape
    and RFC 2965 cookies -- override that if you want a customised policy.

    """
    def set_ok(self, cookie, request):
        """Return true if (and only if) cookie should be accepted from server.

        Currently, pre-expired cookies never get this far -- the CookieJar
        class deletes such cookies itself.

        """
        raise NotImplementedError()

    def return_ok(self, cookie, request):
        """Return true if (and only if) cookie should be returned to server."""
        raise NotImplementedError()

    def domain_return_ok(self, domain, request):
        """Return false if cookies should not be returned, given cookie domain.
        """
        return True

    def path_return_ok(self, path, request):
        """Return false if cookies should not be returned, given cookie path.
        """
        return True


class DefaultCookiePolicy(CookiePolicy):
    """Implements the standard rules for accepting and returning cookies."""

    DomainStrictNoDots = 1
    DomainStrictNonDomain = 2
    DomainRFC2965Match = 4

    DomainLiberal = 0
    DomainStrict = DomainStrictNoDots|DomainStrictNonDomain

    def __init__(self,
                 blocked_domains=None, allowed_domains=None,
                 netscape=True, rfc2965=False,
                 rfc2109_as_netscape=None,
                 hide_cookie2=False,
                 strict_domain=False,
                 strict_rfc2965_unverifiable=True,
                 strict_ns_unverifiable=False,
                 strict_ns_domain=DomainLiberal,
                 strict_ns_set_initial_dollar=False,
                 strict_ns_set_path=False,
                 ):
        """Constructor arguments should be passed as keyword arguments only."""
        self.netscape = netscape
        self.rfc2965 = rfc2965
        self.rfc2109_as_netscape = rfc2109_as_netscape
        self.hide_cookie2 = hide_cookie2
        self.strict_domain = strict_domain
        self.strict_rfc2965_unverifiable = strict_rfc2965_unverifiable
        self.strict_ns_unverifiable = strict_ns_unverifiable
        self.strict_ns_domain = strict_ns_domain
        self.strict_ns_set_initial_dollar = strict_ns_set_initial_dollar
        self.strict_ns_set_path = strict_ns_set_path

        if blocked_domains is not None:
            self._blocked_domains = tuple(blocked_domains)
        else:
            self._blocked_domains = ()

        if allowed_domains is not None:
            allowed_domains = tuple(allowed_domains)
        self._allowed_domains = allowed_domains

    def blocked_domains(self):
        """Return the sequence of blocked domains (as a tuple)."""
        return self._blocked_domains
    def set_blocked_domains(self, blocked_domains):
        """Set the sequence of blocked domains."""
        self._blocked_domains = tuple(blocked_domains)

    def is_blocked(self, domain):
        for blocked_domain in self._blocked_domains:
            if user_domain_match(domain, blocked_domain):
                return True
        return False

    def allowed_domains(self):
        """Return None, or the sequence of allowed domains (as a tuple)."""
        return self._allowed_domains
    def set_allowed_domains(self, allowed_domains):
        """Set the sequence of allowed domains, or None."""
        if allowed_domains is not None:
            allowed_domains = tuple(allowed_domains)
        self._allowed_domains = allowed_domains

    def is_not_allowed(self, domain):
        if self._allowed_domains is None:
            return False
        for allowed_domain in self._allowed_domains:
            if user_domain_match(domain, allowed_domain):
                return False
        return True

    def set_ok(self, cookie, request):
        """
        If you override .set_ok(), be sure to call this method.  If it returns
        false, so should your subclass (assuming your subclass wants to be more
        strict about which cookies to accept).

        """
        _debug(" - checking cookie %s=%s", cookie.name, cookie.value)

        assert cookie.name is not None

        for n in "version", "verifiability", "name", "path", "domain", "port":
            fn_name = "set_ok_"+n
            fn = getattr(self, fn_name)
            if not fn(cookie, request):
                return False

        return True

    def set_ok_version(self, cookie, request):
        if cookie.version is None:
            # Version is always set to 0 by parse_ns_headers if it's a Netscape
            # cookie, so this must be an invalid RFC 2965 cookie.
            _debug("   Set-Cookie2 without version attribute (%s=%s)",
                   cookie.name, cookie.value)
            return False
        if cookie.version > 0 and not self.rfc2965:
            _debug("   RFC 2965 cookies are switched off")
            return False
        elif cookie.version == 0 and not self.netscape:
            _debug("   Netscape cookies are switched off")
            return False
        return True

    def set_ok_verifiability(self, cookie, request):
        if request.unverifiable and is_third_party(request):
            if cookie.version > 0 and self.strict_rfc2965_unverifiable:
                _debug("   third-party RFC 2965 cookie during "
                             "unverifiable transaction")
                return False
            elif cookie.version == 0 and self.strict_ns_unverifiable:
                _debug("   third-party Netscape cookie during "
                             "unverifiable transaction")
                return False
        return True

    def set_ok_name(self, cookie, request):
        # Try and stop servers setting V0 cookies designed to hack other
        # servers that know both V0 and V1 protocols.
        if (cookie.version == 0 and self.strict_ns_set_initial_dollar and
            cookie.name.startswith("$")):
            _debug("   illegal name (starts with '$'): '%s'", cookie.name)
            return False
        return True

    def set_ok_path(self, cookie, request):
        if cookie.path_specified:
            req_path = request_path(request)
            if ((cookie.version > 0 or
                 (cookie.version == 0 and self.strict_ns_set_path)) and
                not self.path_return_ok(cookie.path, request)):
                _debug("   path attribute %s is not a prefix of request "
                       "path %s", cookie.path, req_path)
                return False
        return True

    def set_ok_domain(self, cookie, request):
        if self.is_blocked(cookie.domain):
            _debug("   domain %s is in user block-list", cookie.domain)
            return False
        if self.is_not_allowed(cookie.domain):
            _debug("   domain %s is not in user allow-list", cookie.domain)
            return False
        if cookie.domain_specified:
            req_host, erhn = eff_request_host(request)
            domain = cookie.domain
            if self.strict_domain and (domain.count(".") >= 2):
                # XXX This should probably be compared with the Konqueror
                # (kcookiejar.cpp) and Mozilla implementations, but it's a
                # losing battle.
                i = domain.rfind(".")
                j = domain.rfind(".", 0, i)
                if j == 0:  # domain like .foo.bar
                    tld = domain[i+1:]
                    sld = domain[j+1:i]
                    if sld.lower() in ("co", "ac", "com", "edu", "org", "net",
                       "gov", "mil", "int", "aero", "biz", "cat", "coop",
                       "info", "jobs", "mobi", "museum", "name", "pro",
                       "travel", "eu") and len(tld) == 2:
                        # domain like .co.uk
                        _debug("   country-code second level domain %s", domain)
                        return False
            if domain.startswith("."):
                undotted_domain = domain[1:]
            else:
                undotted_domain = domain
            embedded_dots = (undotted_domain.find(".") >= 0)
            if not embedded_dots and domain != ".local":
                _debug("   non-local domain %s contains no embedded dot",
                       domain)
                return False
            if cookie.version == 0:
                if (not erhn.endswith(domain) and
                    (not erhn.startswith(".") and
                     not ("."+erhn).endswith(domain))):
                    _debug("   effective request-host %s (even with added "
                           "initial dot) does not end with %s",
                           erhn, domain)
                    return False
            if (cookie.version > 0 or
                (self.strict_ns_domain & self.DomainRFC2965Match)):
                if not domain_match(erhn, domain):
                    _debug("   effective request-host %s does not domain-match "
                           "%s", erhn, domain)
                    return False
            if (cookie.version > 0 or
                (self.strict_ns_domain & self.DomainStrictNoDots)):
                host_prefix = req_host[:-len(domain)]
                if (host_prefix.find(".") >= 0 and
                    not IPV4_RE.search(req_host)):
                    _debug("   host prefix %s for domain %s contains a dot",
                           host_prefix, domain)
                    return False
        return True

    def set_ok_port(self, cookie, request):
        if cookie.port_specified:
            req_port = request_port(request)
            if req_port is None:
                req_port = "80"
            else:
                req_port = str(req_port)
            for p in cookie.port.split(","):
                try:
                    int(p)
                except ValueError:
                    _debug("   bad port %s (not numeric)", p)
                    return False
                if p == req_port:
                    break
            else:
                _debug("   request port (%s) not found in %s",
                       req_port, cookie.port)
                return False
        return True

    def return_ok(self, cookie, request):
        """
        If you override .return_ok(), be sure to call this method.  If it
        returns false, so should your subclass (assuming your subclass wants to
        be more strict about which cookies to return).

        """
        # Path has already been checked by .path_return_ok(), and domain
        # blocking done by .domain_return_ok().
        _debug(" - checking cookie %s=%s", cookie.name, cookie.value)

        for n in "version", "verifiability", "secure", "expires", "port", "domain":
            fn_name = "return_ok_"+n
            fn = getattr(self, fn_name)
            if not fn(cookie, request):
                return False
        return True

    def return_ok_version(self, cookie, request):
        if cookie.version > 0 and not self.rfc2965:
            _debug("   RFC 2965 cookies are switched off")
            return False
        elif cookie.version == 0 and not self.netscape:
            _debug("   Netscape cookies are switched off")
            return False
        return True

    def return_ok_verifiability(self, cookie, request):
        if request.unverifiable and is_third_party(request):
            if cookie.version > 0 and self.strict_rfc2965_unverifiable:
                _debug("   third-party RFC 2965 cookie during unverifiable "
                       "transaction")
                return False
            elif cookie.version == 0 and self.strict_ns_unverifiable:
                _debug("   third-party Netscape cookie during unverifiable "
                       "transaction")
                return False
        return True

    def return_ok_secure(self, cookie, request):
        if cookie.secure and request.type != "https":
            _debug("   secure cookie with non-secure request")
            return False
        return True

    def return_ok_expires(self, cookie, request):
        if cookie.is_expired(self._now):
            _debug("   cookie expired")
            return False
        return True

    def return_ok_port(self, cookie, request):
        if cookie.port:
            req_port = request_port(request)
            if req_port is None:
                req_port = "80"
            for p in cookie.port.split(","):
                if p == req_port:
                    break
            else:
                _debug("   request port %s does not match cookie port %s",
                       req_port, cookie.port)
                return False
        return True

    def return_ok_domain(self, cookie, request):
        req_host, erhn = eff_request_host(request)
        domain = cookie.domain

        if domain and not domain.startswith("."):
            dotdomain = "." + domain
        else:
            dotdomain = domain

        # strict check of non-domain cookies: Mozilla does this, MSIE5 doesn't
        if (cookie.version == 0 and
            (self.strict_ns_domain & self.DomainStrictNonDomain) and
            not cookie.domain_specified and domain != erhn):
            _debug("   cookie with unspecified domain does not string-compare "
                   "equal to request domain")
            return False

        if cookie.version > 0 and not domain_match(erhn, domain):
            _debug("   effective request-host name %s does not domain-match "
                   "RFC 2965 cookie domain %s", erhn, domain)
            return False
        if cookie.version == 0 and not ("."+erhn).endswith(dotdomain):
            _debug("   request-host %s does not match Netscape cookie domain "
                   "%s", req_host, domain)
            return False
        return True

    def domain_return_ok(self, domain, request):
        # Liberal check of.  This is here as an optimization to avoid
        # having to load lots of MSIE cookie files unless necessary.
        req_host, erhn = eff_request_host(request)
        if not req_host.startswith("."):
            req_host = "."+req_host
        if not erhn.startswith("."):
            erhn = "."+erhn
        if domain and not domain.startswith("."):
            dotdomain = "." + domain
        else:
            dotdomain = domain
        if not (req_host.endswith(dotdomain) or erhn.endswith(dotdomain)):
            #_debug("   request domain %s does not match cookie domain %s",
            #       req_host, domain)
            return False

        if self.is_blocked(domain):
            _debug("   domain %s is in user block-list", domain)
            return False
        if self.is_not_allowed(domain):
            _debug("   domain %s is not in user allow-list", domain)
            return False

        return True

    def path_return_ok(self, path, request):
        _debug("- checking cookie path=%s", path)
        req_path = request_path(request)
        pathlen = len(path)
        if req_path == path:
            return True
        elif (req_path.startswith(path) and
              (path.endswith("/") or req_path[pathlen:pathlen+1] == "/")):
            return True

        _debug("  %s does not path-match %s", req_path, path)
        return False

def vals_sorted_by_key(adict):
    keys = sorted(adict.keys())
    return map(adict.get, keys)

def deepvalues(mapping):
    """Iterates over nested mapping, depth-first, in sorted order by key."""
    values = vals_sorted_by_key(mapping)
    for obj in values:
        mapping = False
        try:
            obj.items
        except AttributeError:
            pass
        else:
            mapping = True
            yield from deepvalues(obj)
        if not mapping:
            yield obj


# Used as second parameter to dict.get() method, to distinguish absent
# dict key from one with a None value.
class Absent: pass

class CookieJar:
    """Collection of HTTP cookies.

    You may not need to know about this class: try
    urllib.request.build_opener(HTTPCookieProcessor).open(url).
    """

    non_word_re = re.compile(r"\W")
    quote_re = re.compile(r"([\"\\])")
    strict_domain_re = re.compile(r"\.?[^.]*")
    domain_re = re.compile(r"[^.]*")
    dots_re = re.compile(r"^\.+")

    magic_re = re.compile(r"^\#LWP-Cookies-(\d+\.\d+)", re.ASCII)

    def __init__(self, policy=None):
        if policy is None:
            policy = DefaultCookiePolicy()
        self._policy = policy

        self._cookies_lock = _threading.RLock()
        self._cookies = {}

    def set_policy(self, policy):
        self._policy = policy

    def _cookies_for_domain(self, domain, request):
        cookies = []
        if not self._policy.domain_return_ok(domain, request):
            return []
        _debug("Checking %s for cookies to return", domain)
        cookies_by_path = self._cookies[domain]
        for path in cookies_by_path.keys():
            if not self._policy.path_return_ok(path, request):
                continue
            cookies_by_name = cookies_by_path[path]
            for cookie in cookies_by_name.values():
                if not self._policy.return_ok(cookie, request):
                    _debug("   not returning cookie")
                    continue
                _debug("   it's a match")
                cookies.append(cookie)
        return cookies

    def _cookies_for_request(self, request):
        """Return a list of cookies to be returned to server."""
        cookies = []
        for domain in self._cookies.keys():
            cookies.extend(self._cookies_for_domain(domain, request))
        return cookies

    def _cookie_attrs(self, cookies):
        """Return a list of cookie-attributes to be returned to server.

        like ['foo="bar"; $Path="/"', ...]

        The $Version attribute is also added when appropriate (currently only
        once per request).

        """
        # add cookies in order of most specific (ie. longest) path first
        cookies.sort(key=lambda a: len(a.path), reverse=True)

        version_set = False

        attrs = []
        for cookie in cookies:
            # set version of Cookie header
            # XXX
            # What should it be if multiple matching Set-Cookie headers have
            #  different versions themselves?
            # Answer: there is no answer; was supposed to be settled by
            #  RFC 2965 errata, but that may never appear...
            version = cookie.version
            if not version_set:
                version_set = True
                if version > 0:
                    attrs.append("$Version=%s" % version)

            # quote cookie value if necessary
            # (not for Netscape protocol, which already has any quotes
            #  intact, due to the poorly-specified Netscape Cookie: syntax)
            if ((cookie.value is not None) and
                self.non_word_re.search(cookie.value) and version > 0):
                value = self.quote_re.sub(r"\\\1", cookie.value)
            else:
                value = cookie.value

            # add cookie-attributes to be returned in Cookie header
            if cookie.value is None:
                attrs.append(cookie.name)
            else:
                attrs.append("%s=%s" % (cookie.name, value))
            if version > 0:
                if cookie.path_specified:
                    attrs.append('$Path="%s"' % cookie.path)
                if cookie.domain.startswith("."):
                    domain = cookie.domain
                    if (not cookie.domain_initial_dot and
                        domain.startswith(".")):
                        domain = domain[1:]
                    attrs.append('$Domain="%s"' % domain)
                if cookie.port is not None:
                    p = "$Port"
                    if cookie.port_specified:
                        p = p + ('="%s"' % cookie.port)
                    attrs.append(p)

        return attrs

    def add_cookie_header(self, request):
        """Add correct Cookie: header to request (urllib.request.Request object).

        The Cookie2 header is also added unless policy.hide_cookie2 is true.

        """
        _debug("add_cookie_header")
        self._cookies_lock.acquire()
        try:

            self._policy._now = self._now = int(time.time())

            cookies = self._cookies_for_request(request)

            attrs = self._cookie_attrs(cookies)
            if attrs:
                if not request.has_header("Cookie"):
                    request.add_unredirected_header(
                        "Cookie", "; ".join(attrs))

            # if necessary, advertise that we know RFC 2965
            if (self._policy.rfc2965 and not self._policy.hide_cookie2 and
                not request.has_header("Cookie2")):
                for cookie in cookies:
                    if cookie.version != 1:
                        request.add_unredirected_header("Cookie2", '$Version="1"')
                        break

        finally:
            self._cookies_lock.release()

        self.clear_expired_cookies()

    def _normalized_cookie_tuples(self, attrs_set):
        """Return list of tuples containing normalised cookie information.

        attrs_set is the list of lists of key,value pairs extracted from
        the Set-Cookie or Set-Cookie2 headers.

        Tuples are name, value, standard, rest, where name and value are the
        cookie name and value, standard is a dictionary containing the standard
        cookie-attributes (discard, secure, version, expires or max-age,
        domain, path and port) and rest is a dictionary containing the rest of
        the cookie-attributes.

        """
        cookie_tuples = []

        boolean_attrs = "discard", "secure"
        value_attrs = ("version",
                       "expires", "max-age",
                       "domain", "path", "port",
                       "comment", "commenturl")

        for cookie_attrs in attrs_set:
            name, value = cookie_attrs[0]

            # Build dictionary of standard cookie-attributes (standard) and
            # dictionary of other cookie-attributes (rest).

            # Note: expiry time is normalised to seconds since epoch.  V0
            # cookies should have the Expires cookie-attribute, and V1 cookies
            # should have Max-Age, but since V1 includes RFC 2109 cookies (and
            # since V0 cookies may be a mish-mash of Netscape and RFC 2109), we
            # accept either (but prefer Max-Age).
            max_age_set = False

            bad_cookie = False

            standard = {}
            rest = {}
            for k, v in cookie_attrs[1:]:
                lc = k.lower()
                # don't lose case distinction for unknown fields
                if lc in value_attrs or lc in boolean_attrs:
                    k = lc
                if k in boolean_attrs and v is None:
                    # boolean cookie-attribute is present, but has no value
                    # (like "discard", rather than "port=80")
                    v = True
                if k in standard:
                    # only first value is significant
                    continue
                if k == "domain":
                    if v is None:
                        _debug("   missing value for domain attribute")
                        bad_cookie = True
                        break
                    # RFC 2965 section 3.3.3
                    v = v.lower()
                if k == "expires":
                    if max_age_set:
                        # Prefer max-age to expires (like Mozilla)
                        continue
                    if v is None:
                        _debug("   missing or invalid value for expires "
                              "attribute: treating as session cookie")
                        continue
                if k == "max-age":
                    max_age_set = True
                    try:
                        v = int(v)
                    except ValueError:
                        _debug("   missing or invalid (non-numeric) value for "
                              "max-age attribute")
                        bad_cookie = True
                        break
                    # convert RFC 2965 Max-Age to seconds since epoch
                    # XXX Strictly you're supposed to follow RFC 2616
                    #   age-calculation rules.  Remember that zero Max-Age
                    #   is a request to discard (old and new) cookie, though.
                    k = "expires"
                    v = self._now + v
                if (k in value_attrs) or (k in boolean_attrs):
                    if (v is None and
                        k not in ("port", "comment", "commenturl")):
                        _debug("   missing value for %s attribute" % k)
                        bad_cookie = True
                        break
                    standard[k] = v
                else:
                    rest[k] = v

            if bad_cookie:
                continue

            cookie_tuples.append((name, value, standard, rest))

        return cookie_tuples

    def _cookie_from_cookie_tuple(self, tup, request):
        # standard is dict of standard cookie-attributes, rest is dict of the
        # rest of them
        name, value, standard, rest = tup

        domain = standard.get("domain", Absent)
        path = standard.get("path", Absent)
        port = standard.get("port", Absent)
        expires = standard.get("expires", Absent)

        # set the easy defaults
        version = standard.get("version", None)
        if version is not None:
            try:
                version = int(version)
            except ValueError:
                return None  # invalid version, ignore cookie
        secure = standard.get("secure", False)
        # (discard is also set if expires is Absent)
        discard = standard.get("discard", False)
        comment = standard.get("comment", None)
        comment_url = standard.get("commenturl", None)

        # set default path
        if path is not Absent and path != "":
            path_specified = True
            path = escape_path(path)
        else:
            path_specified = False
            path = request_path(request)
            i = path.rfind("/")
            if i != -1:
                if version == 0:
                    # Netscape spec parts company from reality here
                    path = path[:i]
                else:
                    path = path[:i+1]
            if len(path) == 0: path = "/"

        # set default domain
        domain_specified = domain is not Absent
        # but first we have to remember whether it starts with a dot
        domain_initial_dot = False
        if domain_specified:
            domain_initial_dot = bool(domain.startswith("."))
        if domain is Absent:
            req_host, erhn = eff_request_host(request)
            domain = erhn
        elif not domain.startswith("."):
            domain = "."+domain

        # set default port
        port_specified = False
        if port is not Absent:
            if port is None:
                # Port attr present, but has no value: default to request port.
                # Cookie should then only be sent back on that port.
                port = request_port(request)
            else:
                port_specified = True
                port = re.sub(r"\s+", "", port)
        else:
            # No port attr present.  Cookie can be sent back on any port.
            port = None

        # set default expires and discard
        if expires is Absent:
            expires = None
            discard = True
        elif expires <= self._now:
            # Expiry date in past is request to delete cookie.  This can't be
            # in DefaultCookiePolicy, because can't delete cookies there.
            try:
                self.clear(domain, path, name)
            except KeyError:
                pass
            _debug("Expiring cookie, domain='%s', path='%s', name='%s'",
                   domain, path, name)
            return None

        return Cookie(version,
                      name, value,
                      port, port_specified,
                      domain, domain_specified, domain_initial_dot,
                      path, path_specified,
                      secure,
                      expires,
                      discard,
                      comment,
                      comment_url,
                      rest)

    def _cookies_from_attrs_set(self, attrs_set, request):
        cookie_tuples = self._normalized_cookie_tuples(attrs_set)

        cookies = []
        for tup in cookie_tuples:
            cookie = self._cookie_from_cookie_tuple(tup, request)
            if cookie: cookies.append(cookie)
        return cookies

    def _process_rfc2109_cookies(self, cookies):
        rfc2109_as_ns = getattr(self._policy, 'rfc2109_as_netscape', None)
        if rfc2109_as_ns is None:
            rfc2109_as_ns = not self._policy.rfc2965
        for cookie in cookies:
            if cookie.version == 1:
                cookie.rfc2109 = True
                if rfc2109_as_ns:
                    # treat 2109 cookies as Netscape cookies rather than
                    # as RFC2965 cookies
                    cookie.version = 0

    def make_cookies(self, response, request):
        """Return sequence of Cookie objects extracted from response object."""
        # get cookie-attributes for RFC 2965 and Netscape protocols
        headers = response.info()
        rfc2965_hdrs = headers.get_all("Set-Cookie2", [])
        ns_hdrs = headers.get_all("Set-Cookie", [])

        rfc2965 = self._policy.rfc2965
        netscape = self._policy.netscape

        if ((not rfc2965_hdrs and not ns_hdrs) or
            (not ns_hdrs and not rfc2965) or
            (not rfc2965_hdrs and not netscape) or
            (not netscape and not rfc2965)):
            return []  # no relevant cookie headers: quick exit

        try:
            cookies = self._cookies_from_attrs_set(
                split_header_words(rfc2965_hdrs), request)
        except Exception:
            _warn_unhandled_exception()
            cookies = []

        if ns_hdrs and netscape:
            try:
                # RFC 2109 and Netscape cookies
                ns_cookies = self._cookies_from_attrs_set(
                    parse_ns_headers(ns_hdrs), request)
            except Exception:
                _warn_unhandled_exception()
                ns_cookies = []
            self._process_rfc2109_cookies(ns_cookies)

            # Look for Netscape cookies (from Set-Cookie headers) that match
            # corresponding RFC 2965 cookies (from Set-Cookie2 headers).
            # For each match, keep the RFC 2965 cookie and ignore the Netscape
            # cookie (RFC 2965 section 9.1).  Actually, RFC 2109 cookies are
            # bundled in with the Netscape cookies for this purpose, which is
            # reasonable behaviour.
            if rfc2965:
                lookup = {}
                for cookie in cookies:
                    lookup[(cookie.domain, cookie.path, cookie.name)] = None

                def no_matching_rfc2965(ns_cookie, lookup=lookup):
                    key = ns_cookie.domain, ns_cookie.path, ns_cookie.name
                    return key not in lookup
                ns_cookies = filter(no_matching_rfc2965, ns_cookies)

            if ns_cookies:
                cookies.extend(ns_cookies)

        return cookies

    def set_cookie_if_ok(self, cookie, request):
        """Set a cookie if policy says it's OK to do so."""
        self._cookies_lock.acquire()
        try:
            self._policy._now = self._now = int(time.time())

            if self._policy.set_ok(cookie, request):
                self.set_cookie(cookie)


        finally:
            self._cookies_lock.release()

    def set_cookie(self, cookie):
        """Set a cookie, without checking whether or not it should be set."""
        c = self._cookies
        self._cookies_lock.acquire()
        try:
            if cookie.domain not in c: c[cookie.domain] = {}
            c2 = c[cookie.domain]
            if cookie.path not in c2: c2[cookie.path] = {}
            c3 = c2[cookie.path]
            c3[cookie.name] = cookie
        finally:
            self._cookies_lock.release()

    def extract_cookies(self, response, request):
        """Extract cookies from response, where allowable given the request."""
        _debug("extract_cookies: %s", response.info())
        self._cookies_lock.acquire()
        try:
            self._policy._now = self._now = int(time.time())

            for cookie in self.make_cookies(response, request):
                if self._policy.set_ok(cookie, request):
                    _debug(" setting cookie: %s", cookie)
                    self.set_cookie(cookie)
        finally:
            self._cookies_lock.release()

    def clear(self, domain=None, path=None, name=None):
        """Clear some cookies.

        Invoking this method without arguments will clear all cookies.  If
        given a single argument, only cookies belonging to that domain will be
        removed.  If given two arguments, cookies belonging to the specified
        path within that domain are removed.  If given three arguments, then
        the cookie with the specified name, path and domain is removed.

        Raises KeyError if no matching cookie exists.

        """
        if name is not None:
            if (domain is None) or (path is None):
                raise ValueError(
                    "domain and path must be given to remove a cookie by name")
            del self._cookies[domain][path][name]
        elif path is not None:
            if domain is None:
                raise ValueError(
                    "domain must be given to remove cookies by path")
            del self._cookies[domain][path]
        elif domain is not None:
            del self._cookies[domain]
        else:
            self._cookies = {}

    def clear_session_cookies(self):
        """Discard all session cookies.

        Note that the .save() method won't save session cookies anyway, unless
        you ask otherwise by passing a true ignore_discard argument.

        """
        self._cookies_lock.acquire()
        try:
            for cookie in self:
                if cookie.discard:
                    self.clear(cookie.domain, cookie.path, cookie.name)
        finally:
            self._cookies_lock.release()

    def clear_expired_cookies(self):
        """Discard all expired cookies.

        You probably don't need to call this method: expired cookies are never
        sent back to the server (provided you're using DefaultCookiePolicy),
        this method is called by CookieJar itself every so often, and the
        .save() method won't save expired cookies anyway (unless you ask
        otherwise by passing a true ignore_expires argument).

        """
        self._cookies_lock.acquire()
        try:
            now = time.time()
            for cookie in self:
                if cookie.is_expired(now):
                    self.clear(cookie.domain, cookie.path, cookie.name)
        finally:
            self._cookies_lock.release()

    def __iter__(self):
        return deepvalues(self._cookies)

    def __len__(self):
        """Return number of contained cookies."""
        i = 0
        for cookie in self: i = i + 1
        return i

    def __repr__(self):
        r = []
        for cookie in self: r.append(repr(cookie))
        return "<%s[%s]>" % (self.__class__.__name__, ", ".join(r))

    def __str__(self):
        r = []
        for cookie in self: r.append(str(cookie))
        return "<%s[%s]>" % (self.__class__.__name__, ", ".join(r))


# derives from OSError for backwards-compatibility with Python 2.4.0
class LoadError(OSError): pass

class FileCookieJar(CookieJar):
    """CookieJar that can be loaded from and saved to a file."""

    def __init__(self, filename=None, delayload=False, policy=None):
        """
        Cookies are NOT loaded from the named file until either the .load() or
        .revert() method is called.

        """
        CookieJar.__init__(self, policy)
        if filename is not None:
            try:
                filename+""
            except:
                raise ValueError("filename must be string-like")
        self.filename = filename
        self.delayload = bool(delayload)

    def save(self, filename=None, ignore_discard=False, ignore_expires=False):
        """Save cookies to a file."""
        raise NotImplementedError()

    def load(self, filename=None, ignore_discard=False, ignore_expires=False):
        """Load cookies from a file."""
        if filename is None:
            if self.filename is not None: filename = self.filename
            else: raise ValueError(MISSING_FILENAME_TEXT)

        with open(filename) as f:
            self._really_load(f, filename, ignore_discard, ignore_expires)

    def revert(self, filename=None,
               ignore_discard=False, ignore_expires=False):
        """Clear all cookies and reload cookies from a saved file.

        Raises LoadError (or OSError) if reversion is not successful; the
        object's state will not be altered if this happens.

        """
        if filename is None:
            if self.filename is not None: filename = self.filename
            else: raise ValueError(MISSING_FILENAME_TEXT)

        self._cookies_lock.acquire()
        try:

            old_state = copy.deepcopy(self._cookies)
            self._cookies = {}
            try:
                self.load(filename, ignore_discard, ignore_expires)
            except OSError:
                self._cookies = old_state
                raise

        finally:
            self._cookies_lock.release()


def lwp_cookie_str(cookie):
    """Return string representation of Cookie in the LWP cookie file format.

    Actually, the format is extended a bit -- see module docstring.

    """
    h = [(cookie.name, cookie.value),
         ("path", cookie.path),
         ("domain", cookie.domain)]
    if cookie.port is not None: h.append(("port", cookie.port))
    if cookie.path_specified: h.append(("path_spec", None))
    if cookie.port_specified: h.append(("port_spec", None))
    if cookie.domain_initial_dot: h.append(("domain_dot", None))
    if cookie.secure: h.append(("secure", None))
    if cookie.expires: h.append(("expires",
                               time2isoz(float(cookie.expires))))
    if cookie.discard: h.append(("discard", None))
    if cookie.comment: h.append(("comment", cookie.comment))
    if cookie.comment_url: h.append(("commenturl", cookie.comment_url))

    keys = sorted(cookie._rest.keys())
    for k in keys:
        h.append((k, str(cookie._rest[k])))

    h.append(("version", str(cookie.version)))

    return join_header_words([h])

class LWPCookieJar(FileCookieJar):
    """
    The LWPCookieJar saves a sequence of "Set-Cookie3" lines.
    "Set-Cookie3" is the format used by the libwww-perl libary, not known
    to be compatible with any browser, but which is easy to read and
    doesn't lose information about RFC 2965 cookies.

    Additional methods

    as_lwp_str(ignore_discard=True, ignore_expired=True)

    """

    def as_lwp_str(self, ignore_discard=True, ignore_expires=True):
        """Return cookies as a string of "\\n"-separated "Set-Cookie3" headers.

        ignore_discard and ignore_expires: see docstring for FileCookieJar.save

        """
        now = time.time()
        r = []
        for cookie in self:
            if not ignore_discard and cookie.discard:
                continue
            if not ignore_expires and cookie.is_expired(now):
                continue
            r.append("Set-Cookie3: %s" % lwp_cookie_str(cookie))
        return "\n".join(r+[""])

    def save(self, filename=None, ignore_discard=False, ignore_expires=False):
        if filename is None:
            if self.filename is not None: filename = self.filename
            else: raise ValueError(MISSING_FILENAME_TEXT)

        with open(filename, "w") as f:
            # There really isn't an LWP Cookies 2.0 format, but this indicates
            # that there is extra information in here (domain_dot and
            # port_spec) while still being compatible with libwww-perl, I hope.
            f.write("#LWP-Cookies-2.0\n")
            f.write(self.as_lwp_str(ignore_discard, ignore_expires))

    def _really_load(self, f, filename, ignore_discard, ignore_expires):
        magic = f.readline()
        if not self.magic_re.search(magic):
            msg = ("%r does not look like a Set-Cookie3 (LWP) format "
                   "file" % filename)
            raise LoadError(msg)

        now = time.time()

        header = "Set-Cookie3:"
        boolean_attrs = ("port_spec", "path_spec", "domain_dot",
                         "secure", "discard")
        value_attrs = ("version",
                       "port", "path", "domain",
                       "expires",
                       "comment", "commenturl")

        try:
            while 1:
                line = f.readline()
                if line == "": break
                if not line.startswith(header):
                    continue
                line = line[len(header):].strip()

                for data in split_header_words([line]):
                    name, value = data[0]
                    standard = {}
                    rest = {}
                    for k in boolean_attrs:
                        standard[k] = False
                    for k, v in data[1:]:
                        if k is not None:
                            lc = k.lower()
                        else:
                            lc = None
                        # don't lose case distinction for unknown fields
                        if (lc in value_attrs) or (lc in boolean_attrs):
                            k = lc
                        if k in boolean_attrs:
                            if v is None: v = True
                            standard[k] = v
                        elif k in value_attrs:
                            standard[k] = v
                        else:
                            rest[k] = v

                    h = standard.get
                    expires = h("expires")
                    discard = h("discard")
                    if expires is not None:
                        expires = iso2time(expires)
                    if expires is None:
                        discard = True
                    domain = h("domain")
                    domain_specified = domain.startswith(".")
                    c = Cookie(h("version"), name, value,
                               h("port"), h("port_spec"),
                               domain, domain_specified, h("domain_dot"),
                               h("path"), h("path_spec"),
                               h("secure"),
                               expires,
                               discard,
                               h("comment"),
                               h("commenturl"),
                               rest)
                    if not ignore_discard and c.discard:
                        continue
                    if not ignore_expires and c.is_expired(now):
                        continue
                    self.set_cookie(c)
        except OSError:
            raise
        except Exception:
            _warn_unhandled_exception()
            raise LoadError("invalid Set-Cookie3 format file %r: %r" %
                            (filename, line))


class MozillaCookieJar(FileCookieJar):
    """

    WARNING: you may want to backup your browser's cookies file if you use
    this class to save cookies.  I *think* it works, but there have been
    bugs in the past!

    This class differs from CookieJar only in the format it uses to save and
    load cookies to and from a file.  This class uses the Mozilla/Netscape
    `cookies.txt' format.  lynx uses this file format, too.

    Don't expect cookies saved while the browser is running to be noticed by
    the browser (in fact, Mozilla on unix will overwrite your saved cookies if
    you change them on disk while it's running; on Windows, you probably can't
    save at all while the browser is running).

    Note that the Mozilla/Netscape format will downgrade RFC2965 cookies to
    Netscape cookies on saving.

    In particular, the cookie version and port number information is lost,
    together with information about whether or not Path, Port and Discard were
    specified by the Set-Cookie2 (or Set-Cookie) header, and whether or not the
    domain as set in the HTTP header started with a dot (yes, I'm aware some
    domains in Netscape files start with a dot and some don't -- trust me, you
    really don't want to know any more about this).

    Note that though Mozilla and Netscape use the same format, they use
    slightly different headers.  The class saves cookies using the Netscape
    header by default (Mozilla can cope with that).

    """
    magic_re = re.compile("#( Netscape)? HTTP Cookie File")
    header = """\
# Netscape HTTP Cookie File
# http://curl.haxx.se/rfc/cookie_spec.html
# This is a generated file!  Do not edit.

"""

    def _really_load(self, f, filename, ignore_discard, ignore_expires):
        now = time.time()

        magic = f.readline()
        if not self.magic_re.search(magic):
            f.close()
            raise LoadError(
                "%r does not look like a Netscape format cookies file" %
                filename)

        try:
            while 1:
                line = f.readline()
                if line == "": break

                # last field may be absent, so keep any trailing tab
                if line.endswith("\n"): line = line[:-1]

                # skip comments and blank lines XXX what is $ for?
                if (line.strip().startswith(("#", "$")) or
                    line.strip() == ""):
                    continue

                domain, domain_specified, path, secure, expires, name, value = \
                        line.split("\t")
                secure = (secure == "TRUE")
                domain_specified = (domain_specified == "TRUE")
                if name == "":
                    # cookies.txt regards 'Set-Cookie: foo' as a cookie
                    # with no name, whereas http.cookiejar regards it as a
                    # cookie with no value.
                    name = value
                    value = None

                initial_dot = domain.startswith(".")
                assert domain_specified == initial_dot

                discard = False
                if expires == "":
                    expires = None
                    discard = True

                # assume path_specified is false
                c = Cookie(0, name, value,
                           None, False,
                           domain, domain_specified, initial_dot,
                           path, False,
                           secure,
                           expires,
                           discard,
                           None,
                           None,
                           {})
                if not ignore_discard and c.discard:
                    continue
                if not ignore_expires and c.is_expired(now):
                    continue
                self.set_cookie(c)

        except OSError:
            raise
        except Exception:
            _warn_unhandled_exception()
            raise LoadError("invalid Netscape format cookies file %r: %r" %
                            (filename, line))

    def save(self, filename=None, ignore_discard=False, ignore_expires=False):
        if filename is None:
            if self.filename is not None: filename = self.filename
            else: raise ValueError(MISSING_FILENAME_TEXT)

        with open(filename, "w") as f:
            f.write(self.header)
            now = time.time()
            for cookie in self:
                if not ignore_discard and cookie.discard:
                    continue
                if not ignore_expires and cookie.is_expired(now):
                    continue
                if cookie.secure: secure = "TRUE"
                else: secure = "FALSE"
                if cookie.domain.startswith("."): initial_dot = "TRUE"
                else: initial_dot = "FALSE"
                if cookie.expires is not None:
                    expires = str(cookie.expires)
                else:
                    expires = ""
                if cookie.value is None:
                    # cookies.txt regards 'Set-Cookie: foo' as a cookie
                    # with no name, whereas http.cookiejar regards it as a
                    # cookie with no value.
                    name = ""
                    value = cookie.name
                else:
                    name = cookie.name
                    value = cookie.value
                f.write(
                    "\t".join([cookie.domain, initial_dot, cookie.path,
                               secure, expires, name, value])+
                    "\n")
lib\http\cookies.py
####
# Copyright 2000 by Timothy O'Malley <[email protected]>
#
#                All Rights Reserved
#
# Permission to use, copy, modify, and distribute this software
# and its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Timothy O'Malley  not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
# SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
# AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
# ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
# PERFORMANCE OF THIS SOFTWARE.
#
####
#
# Id: Cookie.py,v 2.29 2000/08/23 05:28:49 timo Exp
#   by Timothy O'Malley <[email protected]>
#
#  Cookie.py is a Python module for the handling of HTTP
#  cookies as a Python dictionary.  See RFC 2109 for more
#  information on cookies.
#
#  The original idea to treat Cookies as a dictionary came from
#  Dave Mitchell ([email protected]) in 1995, when he released the
#  first version of nscookie.py.
#
####

r"""
Here's a sample session to show how to use this module.
At the moment, this is the only documentation.

The Basics
----------

Importing is easy...

   >>> from http import cookies

Most of the time you start by creating a cookie.

   >>> C = cookies.SimpleCookie()

Once you've created your Cookie, you can add values just as if it were
a dictionary.

   >>> C = cookies.SimpleCookie()
   >>> C["fig"] = "newton"
   >>> C["sugar"] = "wafer"
   >>> C.output()
   'Set-Cookie: fig=newton\r\nSet-Cookie: sugar=wafer'

Notice that the printable representation of a Cookie is the
appropriate format for a Set-Cookie: header.  This is the
default behavior.  You can change the header and printed
attributes by using the .output() function

   >>> C = cookies.SimpleCookie()
   >>> C["rocky"] = "road"
   >>> C["rocky"]["path"] = "/cookie"
   >>> print(C.output(header="Cookie:"))
   Cookie: rocky=road; Path=/cookie
   >>> print(C.output(attrs=[], header="Cookie:"))
   Cookie: rocky=road

The load() method of a Cookie extracts cookies from a string.  In a
CGI script, you would use this method to extract the cookies from the
HTTP_COOKIE environment variable.

   >>> C = cookies.SimpleCookie()
   >>> C.load("chips=ahoy; vienna=finger")
   >>> C.output()
   'Set-Cookie: chips=ahoy\r\nSet-Cookie: vienna=finger'

The load() method is darn-tootin smart about identifying cookies
within a string.  Escaped quotation marks, nested semicolons, and other
such trickeries do not confuse it.

   >>> C = cookies.SimpleCookie()
   >>> C.load('keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";')
   >>> print(C)
   Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;"

Each element of the Cookie also supports all of the RFC 2109
Cookie attributes.  Here's an example which sets the Path
attribute.

   >>> C = cookies.SimpleCookie()
   >>> C["oreo"] = "doublestuff"
   >>> C["oreo"]["path"] = "/"
   >>> print(C)
   Set-Cookie: oreo=doublestuff; Path=/

Each dictionary element has a 'value' attribute, which gives you
back the value associated with the key.

   >>> C = cookies.SimpleCookie()
   >>> C["twix"] = "none for you"
   >>> C["twix"].value
   'none for you'

The SimpleCookie expects that all values should be standard strings.
Just to be sure, SimpleCookie invokes the str() builtin to convert
the value to a string, when the values are set dictionary-style.

   >>> C = cookies.SimpleCookie()
   >>> C["number"] = 7
   >>> C["string"] = "seven"
   >>> C["number"].value
   '7'
   >>> C["string"].value
   'seven'
   >>> C.output()
   'Set-Cookie: number=7\r\nSet-Cookie: string=seven'

Finis.
"""

#
# Import our required modules
#
import re
import string

__all__ = ["CookieError", "BaseCookie", "SimpleCookie"]

_nulljoin = ''.join
_semispacejoin = '; '.join
_spacejoin = ' '.join

#
# Define an exception visible to External modules
#
class CookieError(Exception):
    pass


# These quoting routines conform to the RFC2109 specification, which in
# turn references the character definitions from RFC2068.  They provide
# a two-way quoting algorithm.  Any non-text character is translated
# into a 4 character sequence: a forward-slash followed by the
# three-digit octal equivalent of the character.  Any '\' or '"' is
# quoted with a preceeding '\' slash.
#
# These are taken from RFC2068 and RFC2109.
#       _LegalChars       is the list of chars which don't require "'s
#       _Translator       hash-table for fast quoting
#
_LegalChars       = string.ascii_letters + string.digits + "!#$%&'*+-.^_`|~:"
_Translator       = {
    '\000' : '\\000',  '\001' : '\\001',  '\002' : '\\002',
    '\003' : '\\003',  '\004' : '\\004',  '\005' : '\\005',
    '\006' : '\\006',  '\007' : '\\007',  '\010' : '\\010',
    '\011' : '\\011',  '\012' : '\\012',  '\013' : '\\013',
    '\014' : '\\014',  '\015' : '\\015',  '\016' : '\\016',
    '\017' : '\\017',  '\020' : '\\020',  '\021' : '\\021',
    '\022' : '\\022',  '\023' : '\\023',  '\024' : '\\024',
    '\025' : '\\025',  '\026' : '\\026',  '\027' : '\\027',
    '\030' : '\\030',  '\031' : '\\031',  '\032' : '\\032',
    '\033' : '\\033',  '\034' : '\\034',  '\035' : '\\035',
    '\036' : '\\036',  '\037' : '\\037',

    # Because of the way browsers really handle cookies (as opposed
    # to what the RFC says) we also encode , and ;

    ',' : '\\054', ';' : '\\073',

    '"' : '\\"',       '\\' : '\\\\',

    '\177' : '\\177',  '\200' : '\\200',  '\201' : '\\201',
    '\202' : '\\202',  '\203' : '\\203',  '\204' : '\\204',
    '\205' : '\\205',  '\206' : '\\206',  '\207' : '\\207',
    '\210' : '\\210',  '\211' : '\\211',  '\212' : '\\212',
    '\213' : '\\213',  '\214' : '\\214',  '\215' : '\\215',
    '\216' : '\\216',  '\217' : '\\217',  '\220' : '\\220',
    '\221' : '\\221',  '\222' : '\\222',  '\223' : '\\223',
    '\224' : '\\224',  '\225' : '\\225',  '\226' : '\\226',
    '\227' : '\\227',  '\230' : '\\230',  '\231' : '\\231',
    '\232' : '\\232',  '\233' : '\\233',  '\234' : '\\234',
    '\235' : '\\235',  '\236' : '\\236',  '\237' : '\\237',
    '\240' : '\\240',  '\241' : '\\241',  '\242' : '\\242',
    '\243' : '\\243',  '\244' : '\\244',  '\245' : '\\245',
    '\246' : '\\246',  '\247' : '\\247',  '\250' : '\\250',
    '\251' : '\\251',  '\252' : '\\252',  '\253' : '\\253',
    '\254' : '\\254',  '\255' : '\\255',  '\256' : '\\256',
    '\257' : '\\257',  '\260' : '\\260',  '\261' : '\\261',
    '\262' : '\\262',  '\263' : '\\263',  '\264' : '\\264',
    '\265' : '\\265',  '\266' : '\\266',  '\267' : '\\267',
    '\270' : '\\270',  '\271' : '\\271',  '\272' : '\\272',
    '\273' : '\\273',  '\274' : '\\274',  '\275' : '\\275',
    '\276' : '\\276',  '\277' : '\\277',  '\300' : '\\300',
    '\301' : '\\301',  '\302' : '\\302',  '\303' : '\\303',
    '\304' : '\\304',  '\305' : '\\305',  '\306' : '\\306',
    '\307' : '\\307',  '\310' : '\\310',  '\311' : '\\311',
    '\312' : '\\312',  '\313' : '\\313',  '\314' : '\\314',
    '\315' : '\\315',  '\316' : '\\316',  '\317' : '\\317',
    '\320' : '\\320',  '\321' : '\\321',  '\322' : '\\322',
    '\323' : '\\323',  '\324' : '\\324',  '\325' : '\\325',
    '\326' : '\\326',  '\327' : '\\327',  '\330' : '\\330',
    '\331' : '\\331',  '\332' : '\\332',  '\333' : '\\333',
    '\334' : '\\334',  '\335' : '\\335',  '\336' : '\\336',
    '\337' : '\\337',  '\340' : '\\340',  '\341' : '\\341',
    '\342' : '\\342',  '\343' : '\\343',  '\344' : '\\344',
    '\345' : '\\345',  '\346' : '\\346',  '\347' : '\\347',
    '\350' : '\\350',  '\351' : '\\351',  '\352' : '\\352',
    '\353' : '\\353',  '\354' : '\\354',  '\355' : '\\355',
    '\356' : '\\356',  '\357' : '\\357',  '\360' : '\\360',
    '\361' : '\\361',  '\362' : '\\362',  '\363' : '\\363',
    '\364' : '\\364',  '\365' : '\\365',  '\366' : '\\366',
    '\367' : '\\367',  '\370' : '\\370',  '\371' : '\\371',
    '\372' : '\\372',  '\373' : '\\373',  '\374' : '\\374',
    '\375' : '\\375',  '\376' : '\\376',  '\377' : '\\377'
    }

def _quote(str, LegalChars=_LegalChars):
    r"""Quote a string for use in a cookie header.

    If the string does not need to be double-quoted, then just return the
    string.  Otherwise, surround the string in doublequotes and quote
    (with a \) special characters.
    """
    if all(c in LegalChars for c in str):
        return str
    else:
        return '"' + _nulljoin(_Translator.get(s, s) for s in str) + '"'


_OctalPatt = re.compile(r"\\[0-3][0-7][0-7]")
_QuotePatt = re.compile(r"[\\].")

def _unquote(str):
    # If there aren't any doublequotes,
    # then there can't be any special characters.  See RFC 2109.
    if len(str) < 2:
        return str
    if str[0] != '"' or str[-1] != '"':
        return str

    # We have to assume that we must decode this string.
    # Down to work.

    # Remove the "s
    str = str[1:-1]

    # Check for special sequences.  Examples:
    #    \012 --> \n
    #    \"   --> "
    #
    i = 0
    n = len(str)
    res = []
    while 0 <= i < n:
        o_match = _OctalPatt.search(str, i)
        q_match = _QuotePatt.search(str, i)
        if not o_match and not q_match:              # Neither matched
            res.append(str[i:])
            break
        # else:
        j = k = -1
        if o_match:
            j = o_match.start(0)
        if q_match:
            k = q_match.start(0)
        if q_match and (not o_match or k < j):     # QuotePatt matched
            res.append(str[i:k])
            res.append(str[k+1])
            i = k + 2
        else:                                      # OctalPatt matched
            res.append(str[i:j])
            res.append(chr(int(str[j+1:j+4], 8)))
            i = j + 4
    return _nulljoin(res)

# The _getdate() routine is used to set the expiration time in the cookie's HTTP
# header.  By default, _getdate() returns the current time in the appropriate
# "expires" format for a Set-Cookie header.  The one optional argument is an
# offset from now, in seconds.  For example, an offset of -3600 means "one hour
# ago".  The offset may be a floating point number.
#

_weekdayname = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

_monthname = [None,
              'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
              'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

def _getdate(future=0, weekdayname=_weekdayname, monthname=_monthname):
    from time import gmtime, time
    now = time()
    year, month, day, hh, mm, ss, wd, y, z = gmtime(now + future)
    return "%s, %02d %3s %4d %02d:%02d:%02d GMT" % \
           (weekdayname[wd], day, monthname[month], year, hh, mm, ss)


class Morsel(dict):
    """A class to hold ONE (key, value) pair.

    In a cookie, each such pair may have several attributes, so this class is
    used to keep the attributes associated with the appropriate key,value pair.
    This class also includes a coded_value attribute, which is used to hold
    the network representation of the value.  This is most useful when Python
    objects are pickled for network transit.
    """
    # RFC 2109 lists these attributes as reserved:
    #   path       comment         domain
    #   max-age    secure      version
    #
    # For historical reasons, these attributes are also reserved:
    #   expires
    #
    # This is an extension from Microsoft:
    #   httponly
    #
    # This dictionary provides a mapping from the lowercase
    # variant on the left to the appropriate traditional
    # formatting on the right.
    _reserved = {
        "expires"  : "expires",
        "path"     : "Path",
        "comment"  : "Comment",
        "domain"   : "Domain",
        "max-age"  : "Max-Age",
        "secure"   : "Secure",
        "httponly" : "HttpOnly",
        "version"  : "Version",
    }

    _flags = {'secure', 'httponly'}

    def __init__(self):
        # Set defaults
        self.key = self.value = self.coded_value = None

        # Set default attributes
        for key in self._reserved:
            dict.__setitem__(self, key, "")

    def __setitem__(self, K, V):
        K = K.lower()
        if not K in self._reserved:
            raise CookieError("Invalid Attribute %s" % K)
        dict.__setitem__(self, K, V)

    def isReservedKey(self, K):
        return K.lower() in self._reserved

    def set(self, key, val, coded_val, LegalChars=_LegalChars):
        # First we verify that the key isn't a reserved word
        # Second we make sure it only contains legal characters
        if key.lower() in self._reserved:
            raise CookieError("Attempt to set a reserved key: %s" % key)
        if any(c not in LegalChars for c in key):
            raise CookieError("Illegal key value: %s" % key)

        # It's a good key, so save it.
        self.key = key
        self.value = val
        self.coded_value = coded_val

    def output(self, attrs=None, header="Set-Cookie:"):
        return "%s %s" % (header, self.OutputString(attrs))

    __str__ = output

    def __repr__(self):
        return '<%s: %s=%s>' % (self.__class__.__name__,
                                self.key, repr(self.value))

    def js_output(self, attrs=None):
        # Print javascript
        return """
        <script type="text/javascript">
        <!-- begin hiding
        document.cookie = \"%s\";
        // end hiding -->
        </script>
        """ % (self.OutputString(attrs).replace('"', r'\"'))

    def OutputString(self, attrs=None):
        # Build up our result
        #
        result = []
        append = result.append

        # First, the key=value pair
        append("%s=%s" % (self.key, self.coded_value))

        # Now add any defined attributes
        if attrs is None:
            attrs = self._reserved
        items = sorted(self.items())
        for key, value in items:
            if value == "":
                continue
            if key not in attrs:
                continue
            if key == "expires" and isinstance(value, int):
                append("%s=%s" % (self._reserved[key], _getdate(value)))
            elif key == "max-age" and isinstance(value, int):
                append("%s=%d" % (self._reserved[key], value))
            elif key == "secure":
                append(str(self._reserved[key]))
            elif key == "httponly":
                append(str(self._reserved[key]))
            else:
                append("%s=%s" % (self._reserved[key], value))

        # Return the result
        return _semispacejoin(result)


#
# Pattern for finding cookie
#
# This used to be strict parsing based on the RFC2109 and RFC2068
# specifications.  I have since discovered that MSIE 3.0x doesn't
# follow the character rules outlined in those specs.  As a
# result, the parsing rules here are less strict.
#

_LegalKeyChars  = r"\w\d!#%&'~_`><@,:/\$\*\+\-\.\^\|\)\(\?\}\{\="
_LegalValueChars = _LegalKeyChars + '\[\]'
_CookiePattern = re.compile(r"""
    (?x)                           # This is a verbose pattern
    \s*                            # Optional whitespace at start of cookie
    (?P<key>                       # Start of group 'key'
    [""" + _LegalKeyChars + r"""]+?   # Any word of at least one letter
    )                              # End of group 'key'
    (                              # Optional group: there may not be a value.
    \s*=\s*                          # Equal Sign
    (?P<val>                         # Start of group 'val'
    "(?:[^\\"]|\\.)*"                  # Any doublequoted string
    |                                  # or
    \w{3},\s[\w\d\s-]{9,11}\s[\d:]{8}\sGMT  # Special case for "expires" attr
    |                                  # or
    [""" + _LegalValueChars + r"""]*      # Any word or empty string
    )                                # End of group 'val'
    )?                             # End of optional value group
    \s*                            # Any number of spaces.
    (\s+|;|$)                      # Ending either at space, semicolon, or EOS.
    """, re.ASCII)                 # May be removed if safe.


# At long last, here is the cookie class.  Using this class is almost just like
# using a dictionary.  See this module's docstring for example usage.
#
class BaseCookie(dict):
    """A container class for a set of Morsels."""

    def value_decode(self, val):
        """real_value, coded_value = value_decode(STRING)
        Called prior to setting a cookie's value from the network
        representation.  The VALUE is the value read from HTTP
        header.
        Override this function to modify the behavior of cookies.
        """
        return val, val

    def value_encode(self, val):
        """real_value, coded_value = value_encode(VALUE)
        Called prior to setting a cookie's value from the dictionary
        representation.  The VALUE is the value being assigned.
        Override this function to modify the behavior of cookies.
        """
        strval = str(val)
        return strval, strval

    def __init__(self, input=None):
        if input:
            self.load(input)

    def __set(self, key, real_value, coded_value):
        """Private method for setting a cookie's value"""
        M = self.get(key, Morsel())
        M.set(key, real_value, coded_value)
        dict.__setitem__(self, key, M)

    def __setitem__(self, key, value):
        """Dictionary style assignment."""
        if isinstance(value, Morsel):
            # allow assignment of constructed Morsels (e.g. for pickling)
            dict.__setitem__(self, key, value)
        else:
            rval, cval = self.value_encode(value)
            self.__set(key, rval, cval)

    def output(self, attrs=None, header="Set-Cookie:", sep="\015\012"):
        """Return a string suitable for HTTP."""
        result = []
        items = sorted(self.items())
        for key, value in items:
            result.append(value.output(attrs, header))
        return sep.join(result)

    __str__ = output

    def __repr__(self):
        l = []
        items = sorted(self.items())
        for key, value in items:
            l.append('%s=%s' % (key, repr(value.value)))
        return '<%s: %s>' % (self.__class__.__name__, _spacejoin(l))

    def js_output(self, attrs=None):
        """Return a string suitable for JavaScript."""
        result = []
        items = sorted(self.items())
        for key, value in items:
            result.append(value.js_output(attrs))
        return _nulljoin(result)

    def load(self, rawdata):
        """Load cookies from a string (presumably HTTP_COOKIE) or
        from a dictionary.  Loading cookies from a dictionary 'd'
        is equivalent to calling:
            map(Cookie.__setitem__, d.keys(), d.values())
        """
        if isinstance(rawdata, str):
            self.__parse_string(rawdata)
        else:
            # self.update() wouldn't call our custom __setitem__
            for key, value in rawdata.items():
                self[key] = value
        return

    def __parse_string(self, str, patt=_CookiePattern):
        i = 0            # Our starting point
        n = len(str)     # Length of string
        M = None         # current morsel

        while 0 <= i < n:
            # Start looking for a cookie
            match = patt.match(str, i)
            if not match:
                # No more cookies
                break

            key, value = match.group("key"), match.group("val")
            i = match.end(0)

            # Parse the key, value in case it's metainfo
            if key[0] == "$":
                # We ignore attributes which pertain to the cookie
                # mechanism as a whole.  See RFC 2109.
                # (Does anyone care?)
                if M:
                    M[key[1:]] = value
            elif key.lower() in Morsel._reserved:
                if M:
                    if value is None:
                        if key.lower() in Morsel._flags:
                            M[key] = True
                    else:
                        M[key] = _unquote(value)
            elif value is not None:
                rval, cval = self.value_decode(value)
                self.__set(key, rval, cval)
                M = self[key]


class SimpleCookie(BaseCookie):
    """
    SimpleCookie supports strings as cookie values.  When setting
    the value using the dictionary assignment notation, SimpleCookie
    calls the builtin str() to convert the value to a string.  Values
    received from HTTP are kept as strings.
    """
    def value_decode(self, val):
        return _unquote(val), val

    def value_encode(self, val):
        strval = str(val)
        return strval, _quote(strval)
lib\http\server.py
"""HTTP server classes.

Note: BaseHTTPRequestHandler doesn't implement any HTTP request; see
SimpleHTTPRequestHandler for simple implementations of GET, HEAD and POST,
and CGIHTTPRequestHandler for CGI scripts.

It does, however, optionally implement HTTP/1.1 persistent connections,
as of version 0.3.

Notes on CGIHTTPRequestHandler
------------------------------

This class implements GET and POST requests to cgi-bin scripts.

If the os.fork() function is not present (e.g. on Windows),
subprocess.Popen() is used as a fallback, with slightly altered semantics.

In all cases, the implementation is intentionally naive -- all
requests are executed synchronously.

SECURITY WARNING: DON'T USE THIS CODE UNLESS YOU ARE INSIDE A FIREWALL
-- it may execute arbitrary Python code or external programs.

Note that status code 200 is sent prior to execution of a CGI script, so
scripts cannot send other status codes such as 302 (redirect).

XXX To do:

- log requests even later (to capture byte count)
- log user-agent header and other interesting goodies
- send error log to separate file
"""


# See also:
#
# HTTP Working Group                                        T. Berners-Lee
# INTERNET-DRAFT                                            R. T. Fielding
# <draft-ietf-http-v10-spec-00.txt>                     H. Frystyk Nielsen
# Expires September 8, 1995                                  March 8, 1995
#
# URL: http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-v10-spec-00.txt
#
# and
#
# Network Working Group                                      R. Fielding
# Request for Comments: 2616                                       et al
# Obsoletes: 2068                                              June 1999
# Category: Standards Track
#
# URL: http://www.faqs.org/rfcs/rfc2616.html

# Log files
# ---------
#
# Here's a quote from the NCSA httpd docs about log file format.
#
# | The logfile format is as follows. Each line consists of:
# |
# | host rfc931 authuser [DD/Mon/YYYY:hh:mm:ss] "request" ddd bbbb
# |
# |        host: Either the DNS name or the IP number of the remote client
# |        rfc931: Any information returned by identd for this person,
# |                - otherwise.
# |        authuser: If user sent a userid for authentication, the user name,
# |                  - otherwise.
# |        DD: Day
# |        Mon: Month (calendar name)
# |        YYYY: Year
# |        hh: hour (24-hour format, the machine's timezone)
# |        mm: minutes
# |        ss: seconds
# |        request: The first line of the HTTP request as sent by the client.
# |        ddd: the status code returned by the server, - if not available.
# |        bbbb: the total number of bytes sent,
# |              *not including the HTTP/1.0 header*, - if not available
# |
# | You can determine the name of the file accessed through request.
#
# (Actually, the latter is only true if you know the server configuration
# at the time the request was made!)

__version__ = "0.6"

__all__ = [
    "HTTPServer", "BaseHTTPRequestHandler",
    "SimpleHTTPRequestHandler", "CGIHTTPRequestHandler",
]

import html
import http.client
import io
import mimetypes
import os
import posixpath
import select
import shutil
import socket # For gethostbyaddr()
import socketserver
import sys
import time
import urllib.parse
import copy
import argparse


# Default error message template
DEFAULT_ERROR_MESSAGE = """\
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
        "http://www.w3.org/TR/html4/strict.dtd">
<html>
    <head>
        <meta http-equiv="Content-Type" content="text/html;charset=utf-8">
        <title>Error response</title>
    </head>
    <body>
        <h1>Error response</h1>
        <p>Error code: %(code)d</p>
        <p>Message: %(message)s.</p>
        <p>Error code explanation: %(code)s - %(explain)s.</p>
    </body>
</html>
"""

DEFAULT_ERROR_CONTENT_TYPE = "text/html;charset=utf-8"

def _quote_html(html):
    return html.replace("&", "&amp;").replace("<", "&lt;").replace(">", "&gt;")

class HTTPServer(socketserver.TCPServer):

    allow_reuse_address = 1    # Seems to make sense in testing environment

    def server_bind(self):
        """Override server_bind to store the server name."""
        socketserver.TCPServer.server_bind(self)
        host, port = self.socket.getsockname()[:2]
        self.server_name = socket.getfqdn(host)
        self.server_port = port


class BaseHTTPRequestHandler(socketserver.StreamRequestHandler):

    """HTTP request handler base class.

    The following explanation of HTTP serves to guide you through the
    code as well as to expose any misunderstandings I may have about
    HTTP (so you don't need to read the code to figure out I'm wrong
    :-).

    HTTP (HyperText Transfer Protocol) is an extensible protocol on
    top of a reliable stream transport (e.g. TCP/IP).  The protocol
    recognizes three parts to a request:

    1. One line identifying the request type and path
    2. An optional set of RFC-822-style headers
    3. An optional data part

    The headers and data are separated by a blank line.

    The first line of the request has the form

    <command> <path> <version>

    where <command> is a (case-sensitive) keyword such as GET or POST,
    <path> is a string containing path information for the request,
    and <version> should be the string "HTTP/1.0" or "HTTP/1.1".
    <path> is encoded using the URL encoding scheme (using %xx to signify
    the ASCII character with hex code xx).

    The specification specifies that lines are separated by CRLF but
    for compatibility with the widest range of clients recommends
    servers also handle LF.  Similarly, whitespace in the request line
    is treated sensibly (allowing multiple spaces between components
    and allowing trailing whitespace).

    Similarly, for output, lines ought to be separated by CRLF pairs
    but most clients grok LF characters just fine.

    If the first line of the request has the form

    <command> <path>

    (i.e. <version> is left out) then this is assumed to be an HTTP
    0.9 request; this form has no optional headers and data part and
    the reply consists of just the data.

    The reply form of the HTTP 1.x protocol again has three parts:

    1. One line giving the response code
    2. An optional set of RFC-822-style headers
    3. The data

    Again, the headers and data are separated by a blank line.

    The response code line has the form

    <version> <responsecode> <responsestring>

    where <version> is the protocol version ("HTTP/1.0" or "HTTP/1.1"),
    <responsecode> is a 3-digit response code indicating success or
    failure of the request, and <responsestring> is an optional
    human-readable string explaining what the response code means.

    This server parses the request and the headers, and then calls a
    function specific to the request type (<command>).  Specifically,
    a request SPAM will be handled by a method do_SPAM().  If no
    such method exists the server sends an error response to the
    client.  If it exists, it is called with no arguments:

    do_SPAM()

    Note that the request name is case sensitive (i.e. SPAM and spam
    are different requests).

    The various request details are stored in instance variables:

    - client_address is the client IP address in the form (host,
    port);

    - command, path and version are the broken-down request line;

    - headers is an instance of email.message.Message (or a derived
    class) containing the header information;

    - rfile is a file object open for reading positioned at the
    start of the optional input data part;

    - wfile is a file object open for writing.

    IT IS IMPORTANT TO ADHERE TO THE PROTOCOL FOR WRITING!

    The first thing to be written must be the response line.  Then
    follow 0 or more header lines, then a blank line, and then the
    actual data (if any).  The meaning of the header lines depends on
    the command executed by the server; in most cases, when data is
    returned, there should be at least one header line of the form

    Content-type: <type>/<subtype>

    where <type> and <subtype> should be registered MIME types,
    e.g. "text/html" or "text/plain".

    """

    # The Python system version, truncated to its first component.
    sys_version = "Python/" + sys.version.split()[0]

    # The server software version.  You may want to override this.
    # The format is multiple whitespace-separated strings,
    # where each string is of the form name[/version].
    server_version = "BaseHTTP/" + __version__

    error_message_format = DEFAULT_ERROR_MESSAGE
    error_content_type = DEFAULT_ERROR_CONTENT_TYPE

    # The default request version.  This only affects responses up until
    # the point where the request line is parsed, so it mainly decides what
    # the client gets back when sending a malformed request line.
    # Most web servers default to HTTP 0.9, i.e. don't send a status line.
    default_request_version = "HTTP/0.9"

    def parse_request(self):
        """Parse a request (internal).

        The request should be stored in self.raw_requestline; the results
        are in self.command, self.path, self.request_version and
        self.headers.

        Return True for success, False for failure; on failure, an
        error is sent back.

        """
        self.command = None  # set in case of error on the first line
        self.request_version = version = self.default_request_version
        self.close_connection = True
        requestline = str(self.raw_requestline, 'iso-8859-1')
        requestline = requestline.rstrip('\r\n')
        self.requestline = requestline
        words = requestline.split()
        if len(words) == 3:
            command, path, version = words
            if version[:5] != 'HTTP/':
                self.send_error(400, "Bad request version (%r)" % version)
                return False
            try:
                base_version_number = version.split('/', 1)[1]
                version_number = base_version_number.split(".")
                # RFC 2145 section 3.1 says there can be only one "." and
                #   - major and minor numbers MUST be treated as
                #      separate integers;
                #   - HTTP/2.4 is a lower version than HTTP/2.13, which in
                #      turn is lower than HTTP/12.3;
                #   - Leading zeros MUST be ignored by recipients.
                if len(version_number) != 2:
                    raise ValueError
                version_number = int(version_number[0]), int(version_number[1])
            except (ValueError, IndexError):
                self.send_error(400, "Bad request version (%r)" % version)
                return False
            if version_number >= (1, 1) and self.protocol_version >= "HTTP/1.1":
                self.close_connection = False
            if version_number >= (2, 0):
                self.send_error(505,
                          "Invalid HTTP Version (%s)" % base_version_number)
                return False
        elif len(words) == 2:
            command, path = words
            self.close_connection = True
            if command != 'GET':
                self.send_error(400,
                                "Bad HTTP/0.9 request type (%r)" % command)
                return False
        elif not words:
            return False
        else:
            self.send_error(400, "Bad request syntax (%r)" % requestline)
            return False
        self.command, self.path, self.request_version = command, path, version

        # Examine the headers and look for a Connection directive.
        try:
            self.headers = http.client.parse_headers(self.rfile,
                                                     _class=self.MessageClass)
        except http.client.LineTooLong:
            self.send_error(400, "Line too long")
            return False

        conntype = self.headers.get('Connection', "")
        if conntype.lower() == 'close':
            self.close_connection = True
        elif (conntype.lower() == 'keep-alive' and
              self.protocol_version >= "HTTP/1.1"):
            self.close_connection = False
        # Examine the headers and look for an Expect directive
        expect = self.headers.get('Expect', "")
        if (expect.lower() == "100-continue" and
                self.protocol_version >= "HTTP/1.1" and
                self.request_version >= "HTTP/1.1"):
            if not self.handle_expect_100():
                return False
        return True

    def handle_expect_100(self):
        """Decide what to do with an "Expect: 100-continue" header.

        If the client is expecting a 100 Continue response, we must
        respond with either a 100 Continue or a final response before
        waiting for the request body. The default is to always respond
        with a 100 Continue. You can behave differently (for example,
        reject unauthorized requests) by overriding this method.

        This method should either return True (possibly after sending
        a 100 Continue response) or send an error response and return
        False.

        """
        self.send_response_only(100)
        self.end_headers()
        return True

    def handle_one_request(self):
        """Handle a single HTTP request.

        You normally don't need to override this method; see the class
        __doc__ string for information on how to handle specific HTTP
        commands such as GET and POST.

        """
        try:
            self.raw_requestline = self.rfile.readline(65537)
            if len(self.raw_requestline) > 65536:
                self.requestline = ''
                self.request_version = ''
                self.command = ''
                self.send_error(414)
                return
            if not self.raw_requestline:
                self.close_connection = True
                return
            if not self.parse_request():
                # An error code has been sent, just exit
                return
            mname = 'do_' + self.command
            if not hasattr(self, mname):
                self.send_error(501, "Unsupported method (%r)" % self.command)
                return
            method = getattr(self, mname)
            method()
            self.wfile.flush() #actually send the response if not already done.
        except socket.timeout as e:
            #a read or a write timed out.  Discard this connection
            self.log_error("Request timed out: %r", e)
            self.close_connection = True
            return

    def handle(self):
        """Handle multiple requests if necessary."""
        self.close_connection = True

        self.handle_one_request()
        while not self.close_connection:
            self.handle_one_request()

    def send_error(self, code, message=None, explain=None):
        """Send and log an error reply.

        Arguments are
        * code:    an HTTP error code
                   3 digits
        * message: a simple optional 1 line reason phrase.
                   *( HTAB / SP / VCHAR / %x80-FF )
                   defaults to short entry matching the response code
        * explain: a detailed message defaults to the long entry
                   matching the response code.

        This sends an error response (so it must be called before any
        output has been generated), logs the error, and finally sends
        a piece of HTML explaining the error to the user.

        """

        try:
            shortmsg, longmsg = self.responses[code]
        except KeyError:
            shortmsg, longmsg = '???', '???'
        if message is None:
            message = shortmsg
        if explain is None:
            explain = longmsg
        self.log_error("code %d, message %s", code, message)
        # using _quote_html to prevent Cross Site Scripting attacks (see bug #1100201)
        content = (self.error_message_format %
                   {'code': code, 'message': _quote_html(message), 'explain': _quote_html(explain)})
        body = content.encode('UTF-8', 'replace')
        self.send_response(code, message)
        self.send_header("Content-Type", self.error_content_type)
        self.send_header('Connection', 'close')
        self.send_header('Content-Length', int(len(body)))
        self.end_headers()
        if self.command != 'HEAD' and code >= 200 and code not in (204, 304):
            self.wfile.write(body)

    def send_response(self, code, message=None):
        """Add the response header to the headers buffer and log the
        response code.

        Also send two standard headers with the server software
        version and the current date.

        """
        self.log_request(code)
        self.send_response_only(code, message)
        self.send_header('Server', self.version_string())
        self.send_header('Date', self.date_time_string())

    def send_response_only(self, code, message=None):
        """Send the response header only."""
        if message is None:
            if code in self.responses:
                message = self.responses[code][0]
            else:
                message = ''
        if self.request_version != 'HTTP/0.9':
            if not hasattr(self, '_headers_buffer'):
                self._headers_buffer = []
            self._headers_buffer.append(("%s %d %s\r\n" %
                    (self.protocol_version, code, message)).encode(
                        'latin-1', 'strict'))

    def send_header(self, keyword, value):
        """Send a MIME header to the headers buffer."""
        if self.request_version != 'HTTP/0.9':
            if not hasattr(self, '_headers_buffer'):
                self._headers_buffer = []
            self._headers_buffer.append(
                ("%s: %s\r\n" % (keyword, value)).encode('latin-1', 'strict'))

        if keyword.lower() == 'connection':
            if value.lower() == 'close':
                self.close_connection = True
            elif value.lower() == 'keep-alive':
                self.close_connection = False

    def end_headers(self):
        """Send the blank line ending the MIME headers."""
        if self.request_version != 'HTTP/0.9':
            self._headers_buffer.append(b"\r\n")
            self.flush_headers()

    def flush_headers(self):
        if hasattr(self, '_headers_buffer'):
            self.wfile.write(b"".join(self._headers_buffer))
            self._headers_buffer = []

    def log_request(self, code='-', size='-'):
        """Log an accepted request.

        This is called by send_response().

        """

        self.log_message('"%s" %s %s',
                         self.requestline, str(code), str(size))

    def log_error(self, format, *args):
        """Log an error.

        This is called when a request cannot be fulfilled.  By
        default it passes the message on to log_message().

        Arguments are the same as for log_message().

        XXX This should go to the separate error log.

        """

        self.log_message(format, *args)

    def log_message(self, format, *args):
        """Log an arbitrary message.

        This is used by all other logging functions.  Override
        it if you have specific logging wishes.

        The first argument, FORMAT, is a format string for the
        message to be logged.  If the format string contains
        any % escapes requiring parameters, they should be
        specified as subsequent arguments (it's just like
        printf!).

        The client ip and current date/time are prefixed to
        every message.

        """

        sys.stderr.write("%s - - [%s] %s\n" %
                         (self.address_string(),
                          self.log_date_time_string(),
                          format%args))

    def version_string(self):
        """Return the server software version string."""
        return self.server_version + ' ' + self.sys_version

    def date_time_string(self, timestamp=None):
        """Return the current date and time formatted for a message header."""
        if timestamp is None:
            timestamp = time.time()
        year, month, day, hh, mm, ss, wd, y, z = time.gmtime(timestamp)
        s = "%s, %02d %3s %4d %02d:%02d:%02d GMT" % (
                self.weekdayname[wd],
                day, self.monthname[month], year,
                hh, mm, ss)
        return s

    def log_date_time_string(self):
        """Return the current time formatted for logging."""
        now = time.time()
        year, month, day, hh, mm, ss, x, y, z = time.localtime(now)
        s = "%02d/%3s/%04d %02d:%02d:%02d" % (
                day, self.monthname[month], year, hh, mm, ss)
        return s

    weekdayname = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

    monthname = [None,
                 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
                 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

    def address_string(self):
        """Return the client address."""

        return self.client_address[0]

    # Essentially static class variables

    # The version of the HTTP protocol we support.
    # Set this to HTTP/1.1 to enable automatic keepalive
    protocol_version = "HTTP/1.0"

    # MessageClass used to parse headers
    MessageClass = http.client.HTTPMessage

    # Table mapping response codes to messages; entries have the
    # form {code: (shortmessage, longmessage)}.
    # See RFC 2616 and 6585.
    responses = {
        100: ('Continue', 'Request received, please continue'),
        101: ('Switching Protocols',
              'Switching to new protocol; obey Upgrade header'),

        200: ('OK', 'Request fulfilled, document follows'),
        201: ('Created', 'Document created, URL follows'),
        202: ('Accepted',
              'Request accepted, processing continues off-line'),
        203: ('Non-Authoritative Information', 'Request fulfilled from cache'),
        204: ('No Content', 'Request fulfilled, nothing follows'),
        205: ('Reset Content', 'Clear input form for further input.'),
        206: ('Partial Content', 'Partial content follows.'),

        300: ('Multiple Choices',
              'Object has several resources -- see URI list'),
        301: ('Moved Permanently', 'Object moved permanently -- see URI list'),
        302: ('Found', 'Object moved temporarily -- see URI list'),
        303: ('See Other', 'Object moved -- see Method and URL list'),
        304: ('Not Modified',
              'Document has not changed since given time'),
        305: ('Use Proxy',
              'You must use proxy specified in Location to access this '
              'resource.'),
        307: ('Temporary Redirect',
              'Object moved temporarily -- see URI list'),

        400: ('Bad Request',
              'Bad request syntax or unsupported method'),
        401: ('Unauthorized',
              'No permission -- see authorization schemes'),
        402: ('Payment Required',
              'No payment -- see charging schemes'),
        403: ('Forbidden',
              'Request forbidden -- authorization will not help'),
        404: ('Not Found', 'Nothing matches the given URI'),
        405: ('Method Not Allowed',
              'Specified method is invalid for this resource.'),
        406: ('Not Acceptable', 'URI not available in preferred format.'),
        407: ('Proxy Authentication Required', 'You must authenticate with '
              'this proxy before proceeding.'),
        408: ('Request Timeout', 'Request timed out; try again later.'),
        409: ('Conflict', 'Request conflict.'),
        410: ('Gone',
              'URI no longer exists and has been permanently removed.'),
        411: ('Length Required', 'Client must specify Content-Length.'),
        412: ('Precondition Failed', 'Precondition in headers is false.'),
        413: ('Request Entity Too Large', 'Entity is too large.'),
        414: ('Request-URI Too Long', 'URI is too long.'),
        415: ('Unsupported Media Type', 'Entity body in unsupported format.'),
        416: ('Requested Range Not Satisfiable',
              'Cannot satisfy request range.'),
        417: ('Expectation Failed',
              'Expect condition could not be satisfied.'),
        428: ('Precondition Required',
              'The origin server requires the request to be conditional.'),
        429: ('Too Many Requests', 'The user has sent too many requests '
              'in a given amount of time ("rate limiting").'),
        431: ('Request Header Fields Too Large', 'The server is unwilling to '
              'process the request because its header fields are too large.'),

        500: ('Internal Server Error', 'Server got itself in trouble'),
        501: ('Not Implemented',
              'Server does not support this operation'),
        502: ('Bad Gateway', 'Invalid responses from another server/proxy.'),
        503: ('Service Unavailable',
              'The server cannot process the request due to a high load'),
        504: ('Gateway Timeout',
              'The gateway server did not receive a timely response'),
        505: ('HTTP Version Not Supported', 'Cannot fulfill request.'),
        511: ('Network Authentication Required',
              'The client needs to authenticate to gain network access.'),
        }


class SimpleHTTPRequestHandler(BaseHTTPRequestHandler):

    """Simple HTTP request handler with GET and HEAD commands.

    This serves files from the current directory and any of its
    subdirectories.  The MIME type for files is determined by
    calling the .guess_type() method.

    The GET and HEAD requests are identical except that the HEAD
    request omits the actual contents of the file.

    """

    server_version = "SimpleHTTP/" + __version__

    def do_GET(self):
        """Serve a GET request."""
        f = self.send_head()
        if f:
            try:
                self.copyfile(f, self.wfile)
            finally:
                f.close()

    def do_HEAD(self):
        """Serve a HEAD request."""
        f = self.send_head()
        if f:
            f.close()

    def send_head(self):
        """Common code for GET and HEAD commands.

        This sends the response code and MIME headers.

        Return value is either a file object (which has to be copied
        to the outputfile by the caller unless the command was HEAD,
        and must be closed by the caller under all circumstances), or
        None, in which case the caller has nothing further to do.

        """
        path = self.translate_path(self.path)
        f = None
        if os.path.isdir(path):
            parts = urllib.parse.urlsplit(self.path)
            if not parts.path.endswith('/'):
                # redirect browser - doing basically what apache does
                self.send_response(301)
                new_parts = (parts[0], parts[1], parts[2] + '/',
                             parts[3], parts[4])
                new_url = urllib.parse.urlunsplit(new_parts)
                self.send_header("Location", new_url)
                self.end_headers()
                return None
            for index in "index.html", "index.htm":
                index = os.path.join(path, index)
                if os.path.exists(index):
                    path = index
                    break
            else:
                return self.list_directory(path)
        ctype = self.guess_type(path)
        try:
            f = open(path, 'rb')
        except OSError:
            self.send_error(404, "File not found")
            return None
        try:
            self.send_response(200)
            self.send_header("Content-type", ctype)
            fs = os.fstat(f.fileno())
            self.send_header("Content-Length", str(fs[6]))
            self.send_header("Last-Modified", self.date_time_string(fs.st_mtime))
            self.end_headers()
            return f
        except:
            f.close()
            raise

    def list_directory(self, path):
        """Helper to produce a directory listing (absent index.html).

        Return value is either a file object, or None (indicating an
        error).  In either case, the headers are sent, making the
        interface the same as for send_head().

        """
        try:
            list = os.listdir(path)
        except OSError:
            self.send_error(404, "No permission to list directory")
            return None
        list.sort(key=lambda a: a.lower())
        r = []
        try:
            displaypath = urllib.parse.unquote(self.path,
                                               errors='surrogatepass')
        except UnicodeDecodeError:
            displaypath = urllib.parse.unquote(path)
        displaypath = html.escape(displaypath)
        enc = sys.getfilesystemencoding()
        title = 'Directory listing for %s' % displaypath
        r.append('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" '
                 '"http://www.w3.org/TR/html4/strict.dtd">')
        r.append('<html>\n<head>')
        r.append('<meta http-equiv="Content-Type" '
                 'content="text/html; charset=%s">' % enc)
        r.append('<title>%s</title>\n</head>' % title)
        r.append('<body>\n<h1>%s</h1>' % title)
        r.append('<hr>\n<ul>')
        for name in list:
            fullname = os.path.join(path, name)
            displayname = linkname = name
            # Append / for directories or @ for symbolic links
            if os.path.isdir(fullname):
                displayname = name + "/"
                linkname = name + "/"
            if os.path.islink(fullname):
                displayname = name + "@"
                # Note: a link to a directory displays with @ and links with /
            r.append('<li><a href="%s">%s</a></li>'
                    % (urllib.parse.quote(linkname,
                                          errors='surrogatepass'),
                       html.escape(displayname)))
        r.append('</ul>\n<hr>\n</body>\n</html>\n')
        encoded = '\n'.join(r).encode(enc, 'surrogateescape')
        f = io.BytesIO()
        f.write(encoded)
        f.seek(0)
        self.send_response(200)
        self.send_header("Content-type", "text/html; charset=%s" % enc)
        self.send_header("Content-Length", str(len(encoded)))
        self.end_headers()
        return f

    def translate_path(self, path):
        """Translate a /-separated PATH to the local filename syntax.

        Components that mean special things to the local file system
        (e.g. drive or directory names) are ignored.  (XXX They should
        probably be diagnosed.)

        """
        # abandon query parameters
        path = path.split('?',1)[0]
        path = path.split('#',1)[0]
        # Don't forget explicit trailing slash when normalizing. Issue17324
        trailing_slash = path.rstrip().endswith('/')
        try:
            path = urllib.parse.unquote(path, errors='surrogatepass')
        except UnicodeDecodeError:
            path = urllib.parse.unquote(path)
        path = posixpath.normpath(path)
        words = path.split('/')
        words = filter(None, words)
        path = os.getcwd()
        for word in words:
            if os.path.dirname(word) or word in (os.curdir, os.pardir):
                # Ignore components that are not a simple file/directory name
                continue
            path = os.path.join(path, word)
        if trailing_slash:
            path += '/'
        return path

    def copyfile(self, source, outputfile):
        """Copy all data between two file objects.

        The SOURCE argument is a file object open for reading
        (or anything with a read() method) and the DESTINATION
        argument is a file object open for writing (or
        anything with a write() method).

        The only reason for overriding this would be to change
        the block size or perhaps to replace newlines by CRLF
        -- note however that this the default server uses this
        to copy binary data as well.

        """
        shutil.copyfileobj(source, outputfile)

    def guess_type(self, path):
        """Guess the type of a file.

        Argument is a PATH (a filename).

        Return value is a string of the form type/subtype,
        usable for a MIME Content-type header.

        The default implementation looks the file's extension
        up in the table self.extensions_map, using application/octet-stream
        as a default; however it would be permissible (if
        slow) to look inside the data to make a better guess.

        """

        base, ext = posixpath.splitext(path)
        if ext in self.extensions_map:
            return self.extensions_map[ext]
        ext = ext.lower()
        if ext in self.extensions_map:
            return self.extensions_map[ext]
        else:
            return self.extensions_map['']

    if not mimetypes.inited:
        mimetypes.init() # try to read system mime.types
    extensions_map = mimetypes.types_map.copy()
    extensions_map.update({
        '': 'application/octet-stream', # Default
        '.py': 'text/plain',
        '.c': 'text/plain',
        '.h': 'text/plain',
        })


# Utilities for CGIHTTPRequestHandler

def _url_collapse_path(path):
    """
    Given a URL path, remove extra '/'s and '.' path elements and collapse
    any '..' references and returns a collapsed path.

    Implements something akin to RFC-2396 5.2 step 6 to parse relative paths.
    The utility of this function is limited to is_cgi method and helps
    preventing some security attacks.

    Returns: The reconstituted URL, which will always start with a '/'.

    Raises: IndexError if too many '..' occur within the path.

    """
    # Query component should not be involved.
    path, _, query = path.partition('?')
    path = urllib.parse.unquote(path)

    # Similar to os.path.split(os.path.normpath(path)) but specific to URL
    # path semantics rather than local operating system semantics.
    path_parts = path.split('/')
    head_parts = []
    for part in path_parts[:-1]:
        if part == '..':
            head_parts.pop() # IndexError if more '..' than prior parts
        elif part and part != '.':
            head_parts.append( part )
    if path_parts:
        tail_part = path_parts.pop()
        if tail_part:
            if tail_part == '..':
                head_parts.pop()
                tail_part = ''
            elif tail_part == '.':
                tail_part = ''
    else:
        tail_part = ''

    if query:
        tail_part = '?'.join((tail_part, query))

    splitpath = ('/' + '/'.join(head_parts), tail_part)
    collapsed_path = "/".join(splitpath)

    return collapsed_path



nobody = None

def nobody_uid():
    """Internal routine to get nobody's uid"""
    global nobody
    if nobody:
        return nobody
    try:
        import pwd
    except ImportError:
        return -1
    try:
        nobody = pwd.getpwnam('nobody')[2]
    except KeyError:
        nobody = 1 + max(x[2] for x in pwd.getpwall())
    return nobody


def executable(path):
    """Test for executable file."""
    return os.access(path, os.X_OK)


class CGIHTTPRequestHandler(SimpleHTTPRequestHandler):

    """Complete HTTP server with GET, HEAD and POST commands.

    GET and HEAD also support running CGI scripts.

    The POST command is *only* implemented for CGI scripts.

    """

    # Determine platform specifics
    have_fork = hasattr(os, 'fork')

    # Make rfile unbuffered -- we need to read one line and then pass
    # the rest to a subprocess, so we can't use buffered input.
    rbufsize = 0

    def do_POST(self):
        """Serve a POST request.

        This is only implemented for CGI scripts.

        """

        if self.is_cgi():
            self.run_cgi()
        else:
            self.send_error(501, "Can only POST to CGI scripts")

    def send_head(self):
        """Version of send_head that support CGI scripts"""
        if self.is_cgi():
            return self.run_cgi()
        else:
            return SimpleHTTPRequestHandler.send_head(self)

    def is_cgi(self):
        """Test whether self.path corresponds to a CGI script.

        Returns True and updates the cgi_info attribute to the tuple
        (dir, rest) if self.path requires running a CGI script.
        Returns False otherwise.

        If any exception is raised, the caller should assume that
        self.path was rejected as invalid and act accordingly.

        The default implementation tests whether the normalized url
        path begins with one of the strings in self.cgi_directories
        (and the next character is a '/' or the end of the string).

        """
        collapsed_path = _url_collapse_path(self.path)
        dir_sep = collapsed_path.find('/', 1)
        head, tail = collapsed_path[:dir_sep], collapsed_path[dir_sep+1:]
        if head in self.cgi_directories:
            self.cgi_info = head, tail
            return True
        return False


    cgi_directories = ['/cgi-bin', '/htbin']

    def is_executable(self, path):
        """Test whether argument path is an executable file."""
        return executable(path)

    def is_python(self, path):
        """Test whether argument path is a Python script."""
        head, tail = os.path.splitext(path)
        return tail.lower() in (".py", ".pyw")

    def run_cgi(self):
        """Execute a CGI script."""
        dir, rest = self.cgi_info
        path = dir + '/' + rest
        i = path.find('/', len(dir)+1)
        while i >= 0:
            nextdir = path[:i]
            nextrest = path[i+1:]

            scriptdir = self.translate_path(nextdir)
            if os.path.isdir(scriptdir):
                dir, rest = nextdir, nextrest
                i = path.find('/', len(dir)+1)
            else:
                break

        # find an explicit query string, if present.
        rest, _, query = rest.partition('?')

        # dissect the part after the directory name into a script name &
        # a possible additional path, to be stored in PATH_INFO.
        i = rest.find('/')
        if i >= 0:
            script, rest = rest[:i], rest[i:]
        else:
            script, rest = rest, ''

        scriptname = dir + '/' + script
        scriptfile = self.translate_path(scriptname)
        if not os.path.exists(scriptfile):
            self.send_error(404, "No such CGI script (%r)" % scriptname)
            return
        if not os.path.isfile(scriptfile):
            self.send_error(403, "CGI script is not a plain file (%r)" %
                            scriptname)
            return
        ispy = self.is_python(scriptname)
        if self.have_fork or not ispy:
            if not self.is_executable(scriptfile):
                self.send_error(403, "CGI script is not executable (%r)" %
                                scriptname)
                return

        # Reference: http://hoohoo.ncsa.uiuc.edu/cgi/env.html
        # XXX Much of the following could be prepared ahead of time!
        env = copy.deepcopy(os.environ)
        env['SERVER_SOFTWARE'] = self.version_string()
        env['SERVER_NAME'] = self.server.server_name
        env['GATEWAY_INTERFACE'] = 'CGI/1.1'
        env['SERVER_PROTOCOL'] = self.protocol_version
        env['SERVER_PORT'] = str(self.server.server_port)
        env['REQUEST_METHOD'] = self.command
        uqrest = urllib.parse.unquote(rest)
        env['PATH_INFO'] = uqrest
        env['PATH_TRANSLATED'] = self.translate_path(uqrest)
        env['SCRIPT_NAME'] = scriptname
        if query:
            env['QUERY_STRING'] = query
        env['REMOTE_ADDR'] = self.client_address[0]
        authorization = self.headers.get("authorization")
        if authorization:
            authorization = authorization.split()
            if len(authorization) == 2:
                import base64, binascii
                env['AUTH_TYPE'] = authorization[0]
                if authorization[0].lower() == "basic":
                    try:
                        authorization = authorization[1].encode('ascii')
                        authorization = base64.decodebytes(authorization).\
                                        decode('ascii')
                    except (binascii.Error, UnicodeError):
                        pass
                    else:
                        authorization = authorization.split(':')
                        if len(authorization) == 2:
                            env['REMOTE_USER'] = authorization[0]
        # XXX REMOTE_IDENT
        if self.headers.get('content-type') is None:
            env['CONTENT_TYPE'] = self.headers.get_content_type()
        else:
            env['CONTENT_TYPE'] = self.headers['content-type']
        length = self.headers.get('content-length')
        if length:
            env['CONTENT_LENGTH'] = length
        referer = self.headers.get('referer')
        if referer:
            env['HTTP_REFERER'] = referer
        accept = []
        for line in self.headers.getallmatchingheaders('accept'):
            if line[:1] in "\t\n\r ":
                accept.append(line.strip())
            else:
                accept = accept + line[7:].split(',')
        env['HTTP_ACCEPT'] = ','.join(accept)
        ua = self.headers.get('user-agent')
        if ua:
            env['HTTP_USER_AGENT'] = ua
        co = filter(None, self.headers.get_all('cookie', []))
        cookie_str = ', '.join(co)
        if cookie_str:
            env['HTTP_COOKIE'] = cookie_str
        # XXX Other HTTP_* headers
        # Since we're setting the env in the parent, provide empty
        # values to override previously set values
        for k in ('QUERY_STRING', 'REMOTE_HOST', 'CONTENT_LENGTH',
                  'HTTP_USER_AGENT', 'HTTP_COOKIE', 'HTTP_REFERER'):
            env.setdefault(k, "")

        self.send_response(200, "Script output follows")
        self.flush_headers()

        decoded_query = query.replace('+', ' ')

        if self.have_fork:
            # Unix -- fork as we should
            args = [script]
            if '=' not in decoded_query:
                args.append(decoded_query)
            nobody = nobody_uid()
            self.wfile.flush() # Always flush before forking
            pid = os.fork()
            if pid != 0:
                # Parent
                pid, sts = os.waitpid(pid, 0)
                # throw away additional data [see bug #427345]
                while select.select([self.rfile], [], [], 0)[0]:
                    if not self.rfile.read(1):
                        break
                if sts:
                    self.log_error("CGI script exit status %#x", sts)
                return
            # Child
            try:
                try:
                    os.setuid(nobody)
                except OSError:
                    pass
                os.dup2(self.rfile.fileno(), 0)
                os.dup2(self.wfile.fileno(), 1)
                os.execve(scriptfile, args, env)
            except:
                self.server.handle_error(self.request, self.client_address)
                os._exit(127)

        else:
            # Non-Unix -- use subprocess
            import subprocess
            cmdline = [scriptfile]
            if self.is_python(scriptfile):
                interp = sys.executable
                if interp.lower().endswith("w.exe"):
                    # On Windows, use python.exe, not pythonw.exe
                    interp = interp[:-5] + interp[-4:]
                cmdline = [interp, '-u'] + cmdline
            if '=' not in query:
                cmdline.append(query)
            self.log_message("command: %s", subprocess.list2cmdline(cmdline))
            try:
                nbytes = int(length)
            except (TypeError, ValueError):
                nbytes = 0
            p = subprocess.Popen(cmdline,
                                 stdin=subprocess.PIPE,
                                 stdout=subprocess.PIPE,
                                 stderr=subprocess.PIPE,
                                 env = env
                                 )
            if self.command.lower() == "post" and nbytes > 0:
                data = self.rfile.read(nbytes)
            else:
                data = None
            # throw away additional data [see bug #427345]
            while select.select([self.rfile._sock], [], [], 0)[0]:
                if not self.rfile._sock.recv(1):
                    break
            stdout, stderr = p.communicate(data)
            self.wfile.write(stdout)
            if stderr:
                self.log_error('%s', stderr)
            p.stderr.close()
            p.stdout.close()
            status = p.returncode
            if status:
                self.log_error("CGI script exit status %#x", status)
            else:
                self.log_message("CGI script exited OK")


def test(HandlerClass=BaseHTTPRequestHandler,
         ServerClass=HTTPServer, protocol="HTTP/1.0", port=8000, bind=""):
    """Test the HTTP request handler class.

    This runs an HTTP server on port 8000 (or the port argument).

    """
    server_address = (bind, port)

    HandlerClass.protocol_version = protocol
    httpd = ServerClass(server_address, HandlerClass)

    sa = httpd.socket.getsockname()
    print("Serving HTTP on", sa[0], "port", sa[1], "...")
    try:
        httpd.serve_forever()
    except KeyboardInterrupt:
        print("\nKeyboard interrupt received, exiting.")
        httpd.server_close()
        sys.exit(0)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cgi', action='store_true',
                       help='Run as CGI Server')
    parser.add_argument('--bind', '-b', default='', metavar='ADDRESS',
                        help='Specify alternate bind address '
                             '[default: all interfaces]')
    parser.add_argument('port', action='store',
                        default=8000, type=int,
                        nargs='?',
                        help='Specify alternate port [default: 8000]')
    args = parser.parse_args()
    if args.cgi:
        handler_class = CGIHTTPRequestHandler
    else:
        handler_class = SimpleHTTPRequestHandler
    test(HandlerClass=handler_class, port=args.port, bind=args.bind)
lib\http\__init__.py
# This directory is a Python package.
lib\importlib\abc.py
"""Abstract base classes related to import."""
from . import _bootstrap
from . import machinery
try:
    import _frozen_importlib
except ImportError as exc:
    if exc.name != '_frozen_importlib':
        raise
    _frozen_importlib = None
import abc


def _register(abstract_cls, *classes):
    for cls in classes:
        abstract_cls.register(cls)
        if _frozen_importlib is not None:
            frozen_cls = getattr(_frozen_importlib, cls.__name__)
            abstract_cls.register(frozen_cls)


class Finder(metaclass=abc.ABCMeta):

    """Legacy abstract base class for import finders.

    It may be subclassed for compatibility with legacy third party
    reimplementations of the import system.  Otherwise, finder
    implementations should derive from the more specific MetaPathFinder
    or PathEntryFinder ABCs.
    """

    @abc.abstractmethod
    def find_module(self, fullname, path=None):
        """An abstract method that should find a module.
        The fullname is a str and the optional path is a str or None.
        Returns a Loader object or None.
        """


class MetaPathFinder(Finder):

    """Abstract base class for import finders on sys.meta_path."""

    # We don't define find_spec() here since that would break
    # hasattr checks we do to support backward compatibility.

    def find_module(self, fullname, path):
        """Return a loader for the module.

        If no module is found, return None.  The fullname is a str and
        the path is a list of strings or None.

        This method is deprecated in favor of finder.find_spec(). If find_spec()
        exists then backwards-compatible functionality is provided for this
        method.

        """
        if not hasattr(self, 'find_spec'):
            return None
        found = self.find_spec(fullname, path)
        return found.loader if found is not None else None

    def invalidate_caches(self):
        """An optional method for clearing the finder's cache, if any.
        This method is used by importlib.invalidate_caches().
        """

_register(MetaPathFinder, machinery.BuiltinImporter, machinery.FrozenImporter,
          machinery.PathFinder, machinery.WindowsRegistryFinder)


class PathEntryFinder(Finder):

    """Abstract base class for path entry finders used by PathFinder."""

    # We don't define find_spec() here since that would break
    # hasattr checks we do to support backward compatibility.

    def find_loader(self, fullname):
        """Return (loader, namespace portion) for the path entry.

        The fullname is a str.  The namespace portion is a sequence of
        path entries contributing to part of a namespace package. The
        sequence may be empty.  If loader is not None, the portion will
        be ignored.

        The portion will be discarded if another path entry finder
        locates the module as a normal module or package.

        This method is deprecated in favor of finder.find_spec(). If find_spec()
        is provided than backwards-compatible functionality is provided.

        """
        if not hasattr(self, 'find_spec'):
            return None, []
        found = self.find_spec(fullname)
        if found is not None:
            if not found.submodule_search_locations:
                portions = []
            else:
                portions = found.submodule_search_locations
            return found.loader, portions
        else:
            return None, []

    find_module = _bootstrap._find_module_shim

    def invalidate_caches(self):
        """An optional method for clearing the finder's cache, if any.
        This method is used by PathFinder.invalidate_caches().
        """

_register(PathEntryFinder, machinery.FileFinder)


class Loader(metaclass=abc.ABCMeta):

    """Abstract base class for import loaders."""

    def create_module(self, spec):
        """Return a module to initialize and into which to load.

        This method should raise ImportError if anything prevents it
        from creating a new module.  It may return None to indicate
        that the spec should create the new module.

        create_module() is optional.

        """
        # By default, defer to _SpecMethods.create() for the new module.
        return None

    # We don't define exec_module() here since that would break
    # hasattr checks we do to support backward compatibility.

    def load_module(self, fullname):
        """Return the loaded module.

        The module must be added to sys.modules and have import-related
        attributes set properly.  The fullname is a str.

        ImportError is raised on failure.

        This method is deprecated in favor of loader.exec_module(). If
        exec_module() exists then it is used to provide a backwards-compatible
        functionality for this method.

        """
        if not hasattr(self, 'exec_module'):
            raise ImportError
        return _bootstrap._load_module_shim(self, fullname)

    def module_repr(self, module):
        """Return a module's repr.

        Used by the module type when the method does not raise
        NotImplementedError.

        This method is deprecated.

        """
        # The exception will cause ModuleType.__repr__ to ignore this method.
        raise NotImplementedError


class ResourceLoader(Loader):

    """Abstract base class for loaders which can return data from their
    back-end storage.

    This ABC represents one of the optional protocols specified by PEP 302.

    """

    @abc.abstractmethod
    def get_data(self, path):
        """Abstract method which when implemented should return the bytes for
        the specified path.  The path must be a str."""
        raise IOError


class InspectLoader(Loader):

    """Abstract base class for loaders which support inspection about the
    modules they can load.

    This ABC represents one of the optional protocols specified by PEP 302.

    """

    def is_package(self, fullname):
        """Optional method which when implemented should return whether the
        module is a package.  The fullname is a str.  Returns a bool.

        Raises ImportError if the module cannot be found.
        """
        raise ImportError

    def get_code(self, fullname):
        """Method which returns the code object for the module.

        The fullname is a str.  Returns a types.CodeType if possible, else
        returns None if a code object does not make sense
        (e.g. built-in module). Raises ImportError if the module cannot be
        found.
        """
        source = self.get_source(fullname)
        if source is None:
            return None
        return self.source_to_code(source)

    @abc.abstractmethod
    def get_source(self, fullname):
        """Abstract method which should return the source code for the
        module.  The fullname is a str.  Returns a str.

        Raises ImportError if the module cannot be found.
        """
        raise ImportError

    def source_to_code(self, data, path='<string>'):
        """Compile 'data' into a code object.

        The 'data' argument can be anything that compile() can handle. The'path'
        argument should be where the data was retrieved (when applicable)."""
        return compile(data, path, 'exec', dont_inherit=True)

    exec_module = _bootstrap._LoaderBasics.exec_module
    load_module = _bootstrap._LoaderBasics.load_module

_register(InspectLoader, machinery.BuiltinImporter, machinery.FrozenImporter)


class ExecutionLoader(InspectLoader):

    """Abstract base class for loaders that wish to support the execution of
    modules as scripts.

    This ABC represents one of the optional protocols specified in PEP 302.

    """

    @abc.abstractmethod
    def get_filename(self, fullname):
        """Abstract method which should return the value that __file__ is to be
        set to.

        Raises ImportError if the module cannot be found.
        """
        raise ImportError

    def get_code(self, fullname):
        """Method to return the code object for fullname.

        Should return None if not applicable (e.g. built-in module).
        Raise ImportError if the module cannot be found.
        """
        source = self.get_source(fullname)
        if source is None:
            return None
        try:
            path = self.get_filename(fullname)
        except ImportError:
            return self.source_to_code(source)
        else:
            return self.source_to_code(source, path)

_register(ExecutionLoader, machinery.ExtensionFileLoader)


class FileLoader(_bootstrap.FileLoader, ResourceLoader, ExecutionLoader):

    """Abstract base class partially implementing the ResourceLoader and
    ExecutionLoader ABCs."""

_register(FileLoader, machinery.SourceFileLoader,
            machinery.SourcelessFileLoader)


class SourceLoader(_bootstrap.SourceLoader, ResourceLoader, ExecutionLoader):

    """Abstract base class for loading source code (and optionally any
    corresponding bytecode).

    To support loading from source code, the abstractmethods inherited from
    ResourceLoader and ExecutionLoader need to be implemented. To also support
    loading from bytecode, the optional methods specified directly by this ABC
    is required.

    Inherited abstractmethods not implemented in this ABC:

        * ResourceLoader.get_data
        * ExecutionLoader.get_filename

    """

    def path_mtime(self, path):
        """Return the (int) modification time for the path (str)."""
        if self.path_stats.__func__ is SourceLoader.path_stats:
            raise IOError
        return int(self.path_stats(path)['mtime'])

    def path_stats(self, path):
        """Return a metadata dict for the source pointed to by the path (str).
        Possible keys:
        - 'mtime' (mandatory) is the numeric timestamp of last source
          code modification;
        - 'size' (optional) is the size in bytes of the source code.
        """
        if self.path_mtime.__func__ is SourceLoader.path_mtime:
            raise IOError
        return {'mtime': self.path_mtime(path)}

    def set_data(self, path, data):
        """Write the bytes to the path (if possible).

        Accepts a str path and data as bytes.

        Any needed intermediary directories are to be created. If for some
        reason the file cannot be written because of permissions, fail
        silently.
        """

_register(SourceLoader, machinery.SourceFileLoader)
lib\importlib\machinery.py
"""The machinery of importlib: finders, loaders, hooks, etc."""

import _imp

from ._bootstrap import (SOURCE_SUFFIXES, DEBUG_BYTECODE_SUFFIXES,
                         OPTIMIZED_BYTECODE_SUFFIXES, BYTECODE_SUFFIXES,
                         EXTENSION_SUFFIXES)
from ._bootstrap import ModuleSpec
from ._bootstrap import BuiltinImporter
from ._bootstrap import FrozenImporter
from ._bootstrap import WindowsRegistryFinder
from ._bootstrap import PathFinder
from ._bootstrap import FileFinder
from ._bootstrap import SourceFileLoader
from ._bootstrap import SourcelessFileLoader
from ._bootstrap import ExtensionFileLoader


def all_suffixes():
    """Returns a list of all recognized module suffixes for this process"""
    return SOURCE_SUFFIXES + BYTECODE_SUFFIXES + EXTENSION_SUFFIXES
lib\importlib\util.py
"""Utility code for constructing importers, etc."""

from ._bootstrap import MAGIC_NUMBER
from ._bootstrap import cache_from_source
from ._bootstrap import decode_source
from ._bootstrap import source_from_cache
from ._bootstrap import spec_from_loader
from ._bootstrap import spec_from_file_location
from ._bootstrap import _resolve_name
from ._bootstrap import _find_spec

from contextlib import contextmanager
import functools
import sys
import warnings


def resolve_name(name, package):
    """Resolve a relative module name to an absolute one."""
    if not name.startswith('.'):
        return name
    elif not package:
        raise ValueError('{!r} is not a relative name '
                         '(no leading dot)'.format(name))
    level = 0
    for character in name:
        if character != '.':
            break
        level += 1
    return _resolve_name(name[level:], package, level)


def _find_spec_from_path(name, path=None):
    """Return the spec for the specified module.

    First, sys.modules is checked to see if the module was already imported. If
    so, then sys.modules[name].__spec__ is returned. If that happens to be
    set to None, then ValueError is raised. If the module is not in
    sys.modules, then sys.meta_path is searched for a suitable spec with the
    value of 'path' given to the finders. None is returned if no spec could
    be found.

    Dotted names do not have their parent packages implicitly imported. You will
    most likely need to explicitly import all parent packages in the proper
    order for a submodule to get the correct spec.

    """
    if name not in sys.modules:
        return _find_spec(name, path)
    else:
        module = sys.modules[name]
        if module is None:
            return None
        try:
            spec = module.__spec__
        except AttributeError:
            raise ValueError('{}.__spec__ is not set'.format(name))
        else:
            if spec is None:
                raise ValueError('{}.__spec__ is None'.format(name))
            return spec


def find_spec(name, package=None):
    """Return the spec for the specified module.

    First, sys.modules is checked to see if the module was already imported. If
    so, then sys.modules[name].__spec__ is returned. If that happens to be
    set to None, then ValueError is raised. If the module is not in
    sys.modules, then sys.meta_path is searched for a suitable spec with the
    value of 'path' given to the finders. None is returned if no spec could
    be found.

    If the name is for submodule (contains a dot), the parent module is
    automatically imported.

    The name and package arguments work the same as importlib.import_module().
    In other words, relative module names (with leading dots) work.

    """
    fullname = resolve_name(name, package) if name.startswith('.') else name
    if fullname not in sys.modules:
        parent_name = fullname.rpartition('.')[0]
        if parent_name:
            # Use builtins.__import__() in case someone replaced it.
            parent = __import__(parent_name, fromlist=['__path__'])
            return _find_spec(fullname, parent.__path__)
        else:
            return _find_spec(fullname, None)
    else:
        module = sys.modules[fullname]
        if module is None:
            return None
        try:
            spec = module.__spec__
        except AttributeError:
            raise ValueError('{}.__spec__ is not set'.format(name))
        else:
            if spec is None:
                raise ValueError('{}.__spec__ is None'.format(name))
            return spec


@contextmanager
def _module_to_load(name):
    is_reload = name in sys.modules

    module = sys.modules.get(name)
    if not is_reload:
        # This must be done before open() is called as the 'io' module
        # implicitly imports 'locale' and would otherwise trigger an
        # infinite loop.
        module = type(sys)(name)
        # This must be done before putting the module in sys.modules
        # (otherwise an optimization shortcut in import.c becomes wrong)
        module.__initializing__ = True
        sys.modules[name] = module
    try:
        yield module
    except Exception:
        if not is_reload:
            try:
                del sys.modules[name]
            except KeyError:
                pass
    finally:
        module.__initializing__ = False


def set_package(fxn):
    """Set __package__ on the returned module.

    This function is deprecated.

    """
    @functools.wraps(fxn)
    def set_package_wrapper(*args, **kwargs):
        warnings.warn('The import system now takes care of this automatically.',
                      DeprecationWarning, stacklevel=2)
        module = fxn(*args, **kwargs)
        if getattr(module, '__package__', None) is None:
            module.__package__ = module.__name__
            if not hasattr(module, '__path__'):
                module.__package__ = module.__package__.rpartition('.')[0]
        return module
    return set_package_wrapper


def set_loader(fxn):
    """Set __loader__ on the returned module.

    This function is deprecated.

    """
    @functools.wraps(fxn)
    def set_loader_wrapper(self, *args, **kwargs):
        warnings.warn('The import system now takes care of this automatically.',
                      DeprecationWarning, stacklevel=2)
        module = fxn(self, *args, **kwargs)
        if getattr(module, '__loader__', None) is None:
            module.__loader__ = self
        return module
    return set_loader_wrapper


def module_for_loader(fxn):
    """Decorator to handle selecting the proper module for loaders.

    The decorated function is passed the module to use instead of the module
    name. The module passed in to the function is either from sys.modules if
    it already exists or is a new module. If the module is new, then __name__
    is set the first argument to the method, __loader__ is set to self, and
    __package__ is set accordingly (if self.is_package() is defined) will be set
    before it is passed to the decorated function (if self.is_package() does
    not work for the module it will be set post-load).

    If an exception is raised and the decorator created the module it is
    subsequently removed from sys.modules.

    The decorator assumes that the decorated function takes the module name as
    the second argument.

    """
    warnings.warn('The import system now takes care of this automatically.',
                  DeprecationWarning, stacklevel=2)
    @functools.wraps(fxn)
    def module_for_loader_wrapper(self, fullname, *args, **kwargs):
        with _module_to_load(fullname) as module:
            module.__loader__ = self
            try:
                is_package = self.is_package(fullname)
            except (ImportError, AttributeError):
                pass
            else:
                if is_package:
                    module.__package__ = fullname
                else:
                    module.__package__ = fullname.rpartition('.')[0]
            # If __package__ was not set above, __import__() will do it later.
            return fxn(self, module, *args, **kwargs)

    return module_for_loader_wrapper
lib\importlib\_bootstrap.py
"""Core implementation of import.

This module is NOT meant to be directly imported! It has been designed such
that it can be bootstrapped into Python as the implementation of import. As
such it requires the injection of specific modules and attributes in order to
work. One should use importlib as the public-facing version of this module.

"""
#
# IMPORTANT: Whenever making changes to this module, be sure to run
# a top-level make in order to get the frozen version of the module
# update. Not doing so will result in the Makefile to fail for
# all others who don't have a ./python around to freeze the module
# in the early stages of compilation.
#

# See importlib._setup() for what is injected into the global namespace.

# When editing this code be aware that code executed at import time CANNOT
# reference any injected objects! This includes not only global code but also
# anything specified at the class level.

# Bootstrap-related code ######################################################

_CASE_INSENSITIVE_PLATFORMS = 'win', 'cygwin', 'darwin'

_unspecified = object() # ironpython: default value for dict.get

def _make_relax_case():
    if sys.platform.startswith(_CASE_INSENSITIVE_PLATFORMS):
        def _relax_case():
            """True if filenames must be checked case-insensitively."""
            return b'PYTHONCASEOK' in _os.environ
    else:
        def _relax_case():
            """True if filenames must be checked case-insensitively."""
            return False
    return _relax_case


def _w_long(x):
    """Convert a 32-bit integer to little-endian."""
    return (int(x) & 0xFFFFFFFF).to_bytes(4, 'little')


def _r_long(int_bytes):
    """Convert 4 bytes in little-endian to an integer."""
    return int.from_bytes(int_bytes, 'little')


def _path_join(*path_parts):
    """Replacement for os.path.join()."""
    return path_sep.join([part.rstrip(path_separators)
                          for part in path_parts if part])


def _path_split(path):
    """Replacement for os.path.split()."""
    if len(path_separators) == 1:
        front, _, tail = path.rpartition(path_sep)
        return front, tail
    for x in reversed(path):
        if x in path_separators:
            front, tail = path.rsplit(x, maxsplit=1)
            return front, tail
    return '', path


def _path_stat(path):
    """Stat the path.

    Made a separate function to make it easier to override in experiments
    (e.g. cache stat results).

    """
    return _os.stat(path)


def _path_is_mode_type(path, mode):
    """Test whether the path is the specified mode type."""
    try:
        stat_info = _path_stat(path)
    except OSError:
        return False
    return (stat_info.st_mode & 0o170000) == mode


def _path_isfile(path):
    """Replacement for os.path.isfile."""
    return _path_is_mode_type(path, 0o100000)


def _path_isdir(path):
    """Replacement for os.path.isdir."""
    if not path:
        path = _os.getcwd()
    return _path_is_mode_type(path, 0o040000)


def _write_atomic(path, data, mode=0o666):
    """Best-effort function to write data to a path atomically.
    Be prepared to handle a FileExistsError if concurrent writing of the
    temporary file is attempted."""
    # id() is used to generate a pseudo-random filename.
    path_tmp = '{}.{}'.format(path, id(path))
    fd = _os.open(path_tmp,
                  _os.O_EXCL | _os.O_CREAT | _os.O_WRONLY, mode & 0o666)
    try:
        # We first write data to a temporary file, and then use os.replace() to
        # perform an atomic rename.
        with _io.FileIO(fd, 'wb') as file:
            file.write(data)
        _os.replace(path_tmp, path)
    except OSError:
        try:
            _os.unlink(path_tmp)
        except OSError:
            pass
        raise


def _wrap(new, old):
    """Simple substitute for functools.update_wrapper."""
    for replace in ['__module__', '__name__', '__qualname__', '__doc__']:
        if hasattr(old, replace):
            setattr(new, replace, getattr(old, replace))
    new.__dict__.update(old.__dict__)


def _new_module(name):
    return type(sys)(name)


_code_type = type(_wrap.__code__)



class _ManageReload:

    """Manages the possible clean-up of sys.modules for load_module()."""

    def __init__(self, name):
        self._name = name

    def __enter__(self):
        self._is_reload = self._name in sys.modules

    def __exit__(self, *args):
        if any(arg is not None for arg in args) and not self._is_reload:
            try:
                del sys.modules[self._name]
            except KeyError:
                pass

# Module-level locking ########################################################

# A dict mapping module names to weakrefs of _ModuleLock instances
_module_locks = {}
# A dict mapping thread ids to _ModuleLock instances
_blocking_on = {}


class _DeadlockError(RuntimeError):
    pass


class _ModuleLock:
    """A recursive lock implementation which is able to detect deadlocks
    (e.g. thread 1 trying to take locks A then B, and thread 2 trying to
    take locks B then A).
    """

    def __init__(self, name):
        self.lock = _thread.allocate_lock()
        self.wakeup = _thread.allocate_lock()
        self.name = name
        self.owner = None
        self.count = 0
        self.waiters = 0

    def has_deadlock(self):
        # Deadlock avoidance for concurrent circular imports.
        me = _thread.get_ident()
        tid = self.owner
        while True:
            lock = _blocking_on.get(tid)
            if lock is None:
                return False
            tid = lock.owner
            if tid == me:
                return True

    def acquire(self):
        """
        Acquire the module lock.  If a potential deadlock is detected,
        a _DeadlockError is raised.
        Otherwise, the lock is always acquired and True is returned.
        """
        tid = _thread.get_ident()
        _blocking_on[tid] = self
        try:
            while True:
                with self.lock:
                    if self.count == 0 or self.owner == tid:
                        self.owner = tid
                        self.count += 1
                        return True
                    if self.has_deadlock():
                        raise _DeadlockError('deadlock detected by %r' % self)
                    if self.wakeup.acquire(False):
                        self.waiters += 1
                # Wait for a release() call
                self.wakeup.acquire()
                self.wakeup.release()
        finally:
            del _blocking_on[tid]

    def release(self):
        tid = _thread.get_ident()
        with self.lock:
            if self.owner != tid:
                raise RuntimeError('cannot release un-acquired lock')
            assert self.count > 0
            self.count -= 1
            if self.count == 0:
                self.owner = None
                if self.waiters:
                    self.waiters -= 1
                    self.wakeup.release()

    def __repr__(self):
        return '_ModuleLock({!r}) at {}'.format(self.name, id(self))


class _DummyModuleLock:
    """A simple _ModuleLock equivalent for Python builds without
    multi-threading support."""

    def __init__(self, name):
        self.name = name
        self.count = 0

    def acquire(self):
        self.count += 1
        return True

    def release(self):
        if self.count == 0:
            raise RuntimeError('cannot release un-acquired lock')
        self.count -= 1

    def __repr__(self):
        return '_DummyModuleLock({!r}) at {}'.format(self.name, id(self))


class _ModuleLockManager:

    def __init__(self, name):
        self._name = name
        self._lock = None

    def __enter__(self):
        try:
            self._lock = _get_module_lock(self._name)
        finally:
            _imp.release_lock()
        self._lock.acquire()

    def __exit__(self, *args, **kwargs):
        self._lock.release()


# The following two functions are for consumption by Python/import.c.

def _get_module_lock(name):
    """Get or create the module lock for a given module name.

    Should only be called with the import lock taken."""
    lock = None
    # ironpython: optimization to avoid KeyError exception
    lock_fn = _module_locks.get(name, _unspecified)
    if lock_fn is not _unspecified:
        lock = lock_fn()
    if lock is None:
        if _thread is None:
            lock = _DummyModuleLock(name)
        else:
            lock = _ModuleLock(name)
        def cb(_):
            del _module_locks[name]
        _module_locks[name] = _weakref.ref(lock, cb)
    return lock

def _lock_unlock_module(name):
    """Release the global import lock, and acquires then release the
    module lock for a given module name.
    This is used to ensure a module is completely initialized, in the
    event it is being imported by another thread.

    Should only be called with the import lock taken."""
    lock = _get_module_lock(name)
    _imp.release_lock()
    try:
        lock.acquire()
    except _DeadlockError:
        # Concurrent circular import, we'll accept a partially initialized
        # module object.
        pass
    else:
        lock.release()

# Frame stripping magic ###############################################

def _call_with_frames_removed(f, *args, **kwds):
    """remove_importlib_frames in import.c will always remove sequences
    of importlib frames that end with a call to this function

    Use it instead of a normal call in places where including the importlib
    frames introduces unwanted noise into the traceback (e.g. when executing
    module code)
    """
    return f(*args, **kwds)


# Finder/loader utility code ###############################################

# Magic word to reject .pyc files generated by other Python versions.
# It should change for each incompatible change to the bytecode.
#
# The value of CR and LF is incorporated so if you ever read or write
# a .pyc file in text mode the magic number will be wrong; also, the
# Apple MPW compiler swaps their values, botching string constants.
#
# The magic numbers must be spaced apart at least 2 values, as the
# -U interpeter flag will cause MAGIC+1 being used. They have been
# odd numbers for some time now.
#
# There were a variety of old schemes for setting the magic number.
# The current working scheme is to increment the previous value by
# 10.
#
# Starting with the adoption of PEP 3147 in Python 3.2, every bump in magic
# number also includes a new "magic tag", i.e. a human readable string used
# to represent the magic number in __pycache__ directories.  When you change
# the magic number, you must also set a new unique magic tag.  Generally this
# can be named after the Python major version of the magic number bump, but
# it can really be anything, as long as it's different than anything else
# that's come before.  The tags are included in the following table, starting
# with Python 3.2a0.
#
# Known values:
#  Python 1.5:   20121
#  Python 1.5.1: 20121
#     Python 1.5.2: 20121
#     Python 1.6:   50428
#     Python 2.0:   50823
#     Python 2.0.1: 50823
#     Python 2.1:   60202
#     Python 2.1.1: 60202
#     Python 2.1.2: 60202
#     Python 2.2:   60717
#     Python 2.3a0: 62011
#     Python 2.3a0: 62021
#     Python 2.3a0: 62011 (!)
#     Python 2.4a0: 62041
#     Python 2.4a3: 62051
#     Python 2.4b1: 62061
#     Python 2.5a0: 62071
#     Python 2.5a0: 62081 (ast-branch)
#     Python 2.5a0: 62091 (with)
#     Python 2.5a0: 62092 (changed WITH_CLEANUP opcode)
#     Python 2.5b3: 62101 (fix wrong code: for x, in ...)
#     Python 2.5b3: 62111 (fix wrong code: x += yield)
#     Python 2.5c1: 62121 (fix wrong lnotab with for loops and
#                          storing constants that should have been removed)
#     Python 2.5c2: 62131 (fix wrong code: for x, in ... in listcomp/genexp)
#     Python 2.6a0: 62151 (peephole optimizations and STORE_MAP opcode)
#     Python 2.6a1: 62161 (WITH_CLEANUP optimization)
#     Python 2.7a0: 62171 (optimize list comprehensions/change LIST_APPEND)
#     Python 2.7a0: 62181 (optimize conditional branches:
#                          introduce POP_JUMP_IF_FALSE and POP_JUMP_IF_TRUE)
#     Python 2.7a0  62191 (introduce SETUP_WITH)
#     Python 2.7a0  62201 (introduce BUILD_SET)
#     Python 2.7a0  62211 (introduce MAP_ADD and SET_ADD)
#     Python 3000:   3000
#                    3010 (removed UNARY_CONVERT)
#                    3020 (added BUILD_SET)
#                    3030 (added keyword-only parameters)
#                    3040 (added signature annotations)
#                    3050 (print becomes a function)
#                    3060 (PEP 3115 metaclass syntax)
#                    3061 (string literals become unicode)
#                    3071 (PEP 3109 raise changes)
#                    3081 (PEP 3137 make __file__ and __name__ unicode)
#                    3091 (kill str8 interning)
#                    3101 (merge from 2.6a0, see 62151)
#                    3103 (__file__ points to source file)
#     Python 3.0a4: 3111 (WITH_CLEANUP optimization).
#     Python 3.0a5: 3131 (lexical exception stacking, including POP_EXCEPT)
#     Python 3.1a0: 3141 (optimize list, set and dict comprehensions:
#             change LIST_APPEND and SET_ADD, add MAP_ADD)
#     Python 3.1a0: 3151 (optimize conditional branches:
#             introduce POP_JUMP_IF_FALSE and POP_JUMP_IF_TRUE)
#     Python 3.2a0: 3160 (add SETUP_WITH)
#                   tag: cpython-32
#     Python 3.2a1: 3170 (add DUP_TOP_TWO, remove DUP_TOPX and ROT_FOUR)
#                   tag: cpython-32
#     Python 3.2a2  3180 (add DELETE_DEREF)
#     Python 3.3a0  3190 __class__ super closure changed
#     Python 3.3a0  3200 (__qualname__ added)
#                      3210 (added size modulo 2**32 to the pyc header)
#     Python 3.3a1  3220 (changed PEP 380 implementation)
#     Python 3.3a4  3230 (revert changes to implicit __class__ closure)
#     Python 3.4a1  3250 (evaluate positional default arguments before
#                        keyword-only defaults)
#     Python 3.4a1  3260 (add LOAD_CLASSDEREF; allow locals of class to override
#                        free vars)
#     Python 3.4a1  3270 (various tweaks to the __class__ closure)
#     Python 3.4a1  3280 (remove implicit class argument)
#     Python 3.4a4  3290 (changes to __qualname__ computation)
#     Python 3.4a4  3300 (more changes to __qualname__ computation)
#     Python 3.4rc2 3310 (alter __qualname__ computation)
#
# MAGIC must change whenever the bytecode emitted by the compiler may no
# longer be understood by older implementations of the eval loop (usually
# due to the addition of new opcodes).

MAGIC_NUMBER = (3310).to_bytes(2, 'little') + b'\r\n'
_RAW_MAGIC_NUMBER = int.from_bytes(MAGIC_NUMBER, 'little')  # For import.c

_PYCACHE = '__pycache__'

SOURCE_SUFFIXES = ['.py']  # _setup() adds .pyw as needed.

DEBUG_BYTECODE_SUFFIXES = ['.pyc']
OPTIMIZED_BYTECODE_SUFFIXES = ['.pyo']

def cache_from_source(path, debug_override=None):
    """Given the path to a .py file, return the path to its .pyc/.pyo file.

    The .py file does not need to exist; this simply returns the path to the
    .pyc/.pyo file calculated as if the .py file were imported.  The extension
    will be .pyc unless sys.flags.optimize is non-zero, then it will be .pyo.

    If debug_override is not None, then it must be a boolean and is used in
    place of sys.flags.optimize.

    If sys.implementation.cache_tag is None then NotImplementedError is raised.

    """
    debug = not sys.flags.optimize if debug_override is None else debug_override
    if debug:
        suffixes = DEBUG_BYTECODE_SUFFIXES
    else:
        suffixes = OPTIMIZED_BYTECODE_SUFFIXES
    head, tail = _path_split(path)
    base, sep, rest = tail.rpartition('.')
    tag = sys.implementation.cache_tag
    if tag is None:
        raise NotImplementedError('sys.implementation.cache_tag is None')
    filename = ''.join([(base if base else rest), sep, tag, suffixes[0]])
    return _path_join(head, _PYCACHE, filename)


def source_from_cache(path):
    """Given the path to a .pyc./.pyo file, return the path to its .py file.

    The .pyc/.pyo file does not need to exist; this simply returns the path to
    the .py file calculated to correspond to the .pyc/.pyo file.  If path does
    not conform to PEP 3147 format, ValueError will be raised. If
    sys.implementation.cache_tag is None then NotImplementedError is raised.

    """
    if sys.implementation.cache_tag is None:
        raise NotImplementedError('sys.implementation.cache_tag is None')
    head, pycache_filename = _path_split(path)
    head, pycache = _path_split(head)
    if pycache != _PYCACHE:
        raise ValueError('{} not bottom-level directory in '
                         '{!r}'.format(_PYCACHE, path))
    if pycache_filename.count('.') != 2:
        raise ValueError('expected only 2 dots in '
                         '{!r}'.format(pycache_filename))
    base_filename = pycache_filename.partition('.')[0]
    return _path_join(head, base_filename + SOURCE_SUFFIXES[0])


def _get_sourcefile(bytecode_path):
    """Convert a bytecode file path to a source path (if possible).

    This function exists purely for backwards-compatibility for
    PyImport_ExecCodeModuleWithFilenames() in the C API.

    """
    if len(bytecode_path) == 0:
        return None
    rest, _, extension = bytecode_path.rpartition('.')
    if not rest or extension.lower()[-3:-1] != 'py':
        return bytecode_path
    try:
        source_path = source_from_cache(bytecode_path)
    except (NotImplementedError, ValueError):
        source_path = bytecode_path[:-1]
    return source_path if _path_isfile(source_path) else bytecode_path


def _calc_mode(path):
    """Calculate the mode permissions for a bytecode file."""
    try:
        mode = _path_stat(path).st_mode
    except OSError:
        mode = 0o666
    # We always ensure write access so we can update cached files
    # later even when the source files are read-only on Windows (#6074)
    mode |= 0o200
    return mode


def _verbose_message(message, *args, verbosity=1):
    """Print the message to stderr if -v/PYTHONVERBOSE is turned on."""
    if sys.flags.verbose >= verbosity:
        if not message.startswith(('#', 'import ')):
            message = '# ' + message
        print(message.format(*args), file=sys.stderr)


def _check_name(method):
    """Decorator to verify that the module being requested matches the one the
    loader can handle.

    The first argument (self) must define _name which the second argument is
    compared against. If the comparison fails then ImportError is raised.

    """
    def _check_name_wrapper(self, name=None, *args, **kwargs):
        if name is None:
            name = self.name
        elif self.name != name:
            raise ImportError('loader cannot handle %s' % name, name=name)
        return method(self, name, *args, **kwargs)
    _wrap(_check_name_wrapper, method)
    return _check_name_wrapper


def _requires_builtin(fxn):
    """Decorator to verify the named module is built-in."""
    def _requires_builtin_wrapper(self, fullname):
        if fullname not in sys.builtin_module_names:
            raise ImportError('{!r} is not a built-in module'.format(fullname),
                              name=fullname)
        return fxn(self, fullname)
    _wrap(_requires_builtin_wrapper, fxn)
    return _requires_builtin_wrapper


def _requires_frozen(fxn):
    """Decorator to verify the named module is frozen."""
    def _requires_frozen_wrapper(self, fullname):
        if not _imp.is_frozen(fullname):
            raise ImportError('{!r} is not a frozen module'.format(fullname),
                              name=fullname)
        return fxn(self, fullname)
    _wrap(_requires_frozen_wrapper, fxn)
    return _requires_frozen_wrapper


def _find_module_shim(self, fullname):
    """Try to find a loader for the specified module by delegating to
    self.find_loader().

    This method is deprecated in favor of finder.find_spec().

    """
    # Call find_loader(). If it returns a string (indicating this
    # is a namespace package portion), generate a warning and
    # return None.
    loader, portions = self.find_loader(fullname)
    if loader is None and len(portions):
        msg = 'Not importing directory {}: missing __init__'
        _warnings.warn(msg.format(portions[0]), ImportWarning)
    return loader


def _load_module_shim(self, fullname):
    """Load the specified module into sys.modules and return it.

    This method is deprecated.  Use loader.exec_module instead.

    """
    spec = spec_from_loader(fullname, self)
    methods = _SpecMethods(spec)
    if fullname in sys.modules:
        module = sys.modules[fullname]
        methods.exec(module)
        return sys.modules[fullname]
    else:
        return methods.load()


def _validate_bytecode_header(data, source_stats=None, name=None, path=None):
    """Validate the header of the passed-in bytecode against source_stats (if
    given) and returning the bytecode that can be compiled by compile().

    All other arguments are used to enhance error reporting.

    ImportError is raised when the magic number is incorrect or the bytecode is
    found to be stale. EOFError is raised when the data is found to be
    truncated.

    """
    exc_details = {}
    if name is not None:
        exc_details['name'] = name
    else:
        # To prevent having to make all messages have a conditional name.
        name = '<bytecode>'
    if path is not None:
        exc_details['path'] = path
    magic = data[:4]
    raw_timestamp = data[4:8]
    raw_size = data[8:12]
    if magic != MAGIC_NUMBER:
        message = 'bad magic number in {!r}: {!r}'.format(name, magic)
        _verbose_message('{}', message)
        raise ImportError(message, **exc_details)
    elif len(raw_timestamp) != 4:
        message = 'reached EOF while reading timestamp in {!r}'.format(name)
        _verbose_message('{}', message)
        raise EOFError(message)
    elif len(raw_size) != 4:
        message = 'reached EOF while reading size of source in {!r}'.format(name)
        _verbose_message('{}', message)
        raise EOFError(message)
    if source_stats is not None:
        try:
            source_mtime = int(source_stats['mtime'])
        except KeyError:
            pass
        else:
            if _r_long(raw_timestamp) != source_mtime:
                message = 'bytecode is stale for {!r}'.format(name)
                _verbose_message('{}', message)
                raise ImportError(message, **exc_details)
        try:
            source_size = source_stats['size'] & 0xFFFFFFFF
        except KeyError:
            pass
        else:
            if _r_long(raw_size) != source_size:
                raise ImportError('bytecode is stale for {!r}'.format(name),
                                  **exc_details)
    return data[12:]


def _compile_bytecode(data, name=None, bytecode_path=None, source_path=None):
    """Compile bytecode as returned by _validate_bytecode_header()."""
    code = marshal.loads(data)
    if isinstance(code, _code_type):
        _verbose_message('code object from {!r}', bytecode_path)
        if source_path is not None:
            _imp._fix_co_filename(code, source_path)
        return code
    else:
        raise ImportError('Non-code object in {!r}'.format(bytecode_path),
                          name=name, path=bytecode_path)

def _code_to_bytecode(code, mtime=0, source_size=0):
    """Compile a code object into bytecode for writing out to a byte-compiled
    file."""
    data = bytearray(MAGIC_NUMBER)
    data.extend(_w_long(mtime))
    data.extend(_w_long(source_size))
    data.extend(marshal.dumps(code))
    return data


def decode_source(source_bytes):
    """Decode bytes representing source code and return the string.

    Universal newline support is used in the decoding.
    """
    import tokenize  # To avoid bootstrap issues.
    source_bytes_readline = _io.BytesIO(source_bytes).readline
    encoding = tokenize.detect_encoding(source_bytes_readline)
    newline_decoder = _io.IncrementalNewlineDecoder(None, True)
    return newline_decoder.decode(source_bytes.decode(encoding[0]))


# Module specifications #######################################################

def _module_repr(module):
    # The implementation of ModuleType__repr__().
    loader = getattr(module, '__loader__', None)
    if hasattr(loader, 'module_repr'):
        # As soon as BuiltinImporter, FrozenImporter, and NamespaceLoader
        # drop their implementations for module_repr. we can add a
        # deprecation warning here.
        try:
            return loader.module_repr(module)
        except Exception:
            pass
    try:
        spec = module.__spec__
    except AttributeError:
        pass
    else:
        if spec is not None:
            return _SpecMethods(spec).module_repr()

    # We could use module.__class__.__name__ instead of 'module' in the
    # various repr permutations.
    try:
        name = module.__name__
    except AttributeError:
        name = '?'
    try:
        filename = module.__file__
    except AttributeError:
        if loader is None:
            return '<module {!r}>'.format(name)
        else:
            return '<module {!r} ({!r})>'.format(name, loader)
    else:
        return '<module {!r} from {!r}>'.format(name, filename)


class _installed_safely:

    def __init__(self, module):
        self._module = module
        self._spec = module.__spec__

    def __enter__(self):
        # This must be done before putting the module in sys.modules
        # (otherwise an optimization shortcut in import.c becomes
        # wrong)
        self._spec._initializing = True
        sys.modules[self._spec.name] = self._module

    def __exit__(self, *args):
        try:
            spec = self._spec
            if any(arg is not None for arg in args):
                try:
                    del sys.modules[spec.name]
                except KeyError:
                    pass
            else:
                _verbose_message('import {!r} # {!r}', spec.name, spec.loader)
        finally:
            self._spec._initializing = False


class ModuleSpec:
    """The specification for a module, used for loading.

    A module's spec is the source for information about the module.  For
    data associated with the module, including source, use the spec's
    loader.

    `name` is the absolute name of the module.  `loader` is the loader
    to use when loading the module.  `parent` is the name of the
    package the module is in.  The parent is derived from the name.

    `is_package` determines if the module is considered a package or
    not.  On modules this is reflected by the `__path__` attribute.

    `origin` is the specific location used by the loader from which to
    load the module, if that information is available.  When filename is
    set, origin will match.

    `has_location` indicates that a spec's "origin" reflects a location.
    When this is True, `__file__` attribute of the module is set.

    `cached` is the location of the cached bytecode file, if any.  It
    corresponds to the `__cached__` attribute.

    `submodule_search_locations` is the sequence of path entries to
    search when importing submodules.  If set, is_package should be
    True--and False otherwise.

    Packages are simply modules that (may) have submodules.  If a spec
    has a non-None value in `submodule_search_locations`, the import
    system will consider modules loaded from the spec as packages.

    Only finders (see importlib.abc.MetaPathFinder and
    importlib.abc.PathEntryFinder) should modify ModuleSpec instances.

    """

    def __init__(self, name, loader, *, origin=None, loader_state=None,
                 is_package=None):
        self.name = name
        self.loader = loader
        self.origin = origin
        self.loader_state = loader_state
        self.submodule_search_locations = [] if is_package else None

        # file-location attributes
        self._set_fileattr = False
        self._cached = None

    def __repr__(self):
        args = ['name={!r}'.format(self.name),
                'loader={!r}'.format(self.loader)]
        if self.origin is not None:
            args.append('origin={!r}'.format(self.origin))
        if self.submodule_search_locations is not None:
            args.append('submodule_search_locations={}'
                        .format(self.submodule_search_locations))
        return '{}({})'.format(self.__class__.__name__, ', '.join(args))

    def __eq__(self, other):
        smsl = self.submodule_search_locations
        try:
            return (self.name == other.name and
                    self.loader == other.loader and
                    self.origin == other.origin and
                    smsl == other.submodule_search_locations and
                    self.cached == other.cached and
                    self.has_location == other.has_location)
        except AttributeError:
            return False

    @property
    def cached(self):
        return self._cached

    @cached.setter
    def cached(self, cached):
        self._cached = cached

    @property
    def parent(self):
        """The name of the module's parent."""
        if self.submodule_search_locations is None:
            return self.name.rpartition('.')[0]
        else:
            return self.name

    @property
    def has_location(self):
        return self._set_fileattr

    @has_location.setter
    def has_location(self, value):
        self._set_fileattr = bool(value)


def spec_from_loader(name, loader, *, origin=None, is_package=None):
    """Return a module spec based on various loader methods."""
    if hasattr(loader, 'get_filename'):
        if is_package is None:
            return spec_from_file_location(name, loader=loader)
        search = [] if is_package else None
        return spec_from_file_location(name, loader=loader,
                                       submodule_search_locations=search)

    if is_package is None:
        if hasattr(loader, 'is_package'):
            try:
                is_package = loader.is_package(name)
            except ImportError:
                is_package = None  # aka, undefined
        else:
            # the default
            is_package = False

    return ModuleSpec(name, loader, origin=origin, is_package=is_package)


_POPULATE = object()


def spec_from_file_location(name, location=None, *, loader=None,
                            submodule_search_locations=_POPULATE):
    """Return a module spec based on a file location.

    To indicate that the module is a package, set
    submodule_search_locations to a list of directory paths.  An
    empty list is sufficient, though its not otherwise useful to the
    import system.

    The loader must take a spec as its only __init__() arg.

    """
    if location is None:
        # The caller may simply want a partially populated location-
        # oriented spec.  So we set the location to a bogus value and
        # fill in as much as we can.
        location = '<unknown>'
        if hasattr(loader, 'get_filename'):
            # ExecutionLoader
            try:
                location = loader.get_filename(name)
            except ImportError:
                pass

    # If the location is on the filesystem, but doesn't actually exist,
    # we could return None here, indicating that the location is not
    # valid.  However, we don't have a good way of testing since an
    # indirect location (e.g. a zip file or URL) will look like a
    # non-existent file relative to the filesystem.

    spec = ModuleSpec(name, loader, origin=location)
    spec._set_fileattr = True

    # Pick a loader if one wasn't provided.
    if loader is None:
        for loader_class, suffixes in _get_supported_file_loaders():
            if location.endswith(tuple(suffixes)):
                loader = loader_class(name, location)
                spec.loader = loader
                break
        else:
            return None

    # Set submodule_search_paths appropriately.
    if submodule_search_locations is _POPULATE:
        # Check the loader.
        if hasattr(loader, 'is_package'):
            try:
                is_package = loader.is_package(name)
            except ImportError:
                pass
            else:
                if is_package:
                    spec.submodule_search_locations = []
    else:
        spec.submodule_search_locations = submodule_search_locations
    if spec.submodule_search_locations == []:
        if location:
            dirname = _path_split(location)[0]
            spec.submodule_search_locations.append(dirname)

    return spec


def _spec_from_module(module, loader=None, origin=None):
    # This function is meant for use in _setup().
    try:
        spec = module.__spec__
    except AttributeError:
        pass
    else:
        if spec is not None:
            return spec

    name = module.__name__
    if loader is None:
        try:
            loader = module.__loader__
        except AttributeError:
            # loader will stay None.
            pass
    try:
        location = module.__file__
    except AttributeError:
        location = None
    if origin is None:
        if location is None:
            origin = getattr(loader, '_ORIGIN', None) # ironpython: optimization to avoid KeyError exception
        else:
            origin = location
    try:
        cached = module.__cached__
    except AttributeError:
        cached = None
    try:
        submodule_search_locations = list(module.__path__)
    except AttributeError:
        submodule_search_locations = None

    spec = ModuleSpec(name, loader, origin=origin)
    spec._set_fileattr = False if location is None else True
    spec.cached = cached
    spec.submodule_search_locations = submodule_search_locations
    return spec


class _SpecMethods:

    """Convenience wrapper around spec objects to provide spec-specific
    methods."""

    # The various spec_from_* functions could be made factory methods here.

    def __init__(self, spec):
        self.spec = spec

    def module_repr(self):
        """Return the repr to use for the module."""
        # We mostly replicate _module_repr() using the spec attributes.
        spec = self.spec
        name = '?' if spec.name is None else spec.name
        if spec.origin is None:
            if spec.loader is None:
                return '<module {!r}>'.format(name)
            else:
                return '<module {!r} ({!r})>'.format(name, spec.loader)
        else:
            if spec.has_location:
                return '<module {!r} from {!r}>'.format(name, spec.origin)
            else:
                return '<module {!r} ({})>'.format(spec.name, spec.origin)

    def init_module_attrs(self, module, *, _override=False, _force_name=True):
        """Set the module's attributes.

        All missing import-related module attributes will be set.  Here
        is how the spec attributes map onto the module:

        spec.name -> module.__name__
        spec.loader -> module.__loader__
        spec.parent -> module.__package__
        spec -> module.__spec__

        Optional:
        spec.origin -> module.__file__ (if spec.set_fileattr is true)
        spec.cached -> module.__cached__ (if __file__ also set)
        spec.submodule_search_locations -> module.__path__ (if set)

        """
        spec = self.spec

        # The passed in module may be not support attribute assignment,
        # in which case we simply don't set the attributes.

        # __name__
        if (_override or _force_name or
            getattr(module, '__name__', None) is None):
            try:
                module.__name__ = spec.name
            except AttributeError:
                pass

        # __loader__
        if _override or getattr(module, '__loader__', None) is None:
            loader = spec.loader
            if loader is None:
                # A backward compatibility hack.
                if spec.submodule_search_locations is not None:
                    loader = _NamespaceLoader.__new__(_NamespaceLoader)
                    loader._path = spec.submodule_search_locations
            try:
                module.__loader__ = loader
            except AttributeError:
                pass

        # __package__
        if _override or getattr(module, '__package__', None) is None:
            try:
                module.__package__ = spec.parent
            except AttributeError:
                pass

        # __spec__
        try:
            module.__spec__ = spec
        except AttributeError:
            pass

        # __path__
        if _override or getattr(module, '__path__', None) is None:
            if spec.submodule_search_locations is not None:
                try:
                    module.__path__ = spec.submodule_search_locations
                except AttributeError:
                    pass

        if spec.has_location:
            # __file__
            if _override or getattr(module, '__file__', None) is None:
                try:
                    module.__file__ = spec.origin
                except AttributeError:
                    pass

            # __cached__
            if _override or getattr(module, '__cached__', None) is None:
                if spec.cached is not None:
                    try:
                        module.__cached__ = spec.cached
                    except AttributeError:
                        pass

    def create(self):
        """Return a new module to be loaded.

        The import-related module attributes are also set with the
        appropriate values from the spec.

        """
        spec = self.spec
        # Typically loaders will not implement create_module().
        if hasattr(spec.loader, 'create_module'):
            # If create_module() returns `None` it means the default
            # module creation should be used.
            module = spec.loader.create_module(spec)
        else:
            module = None
        if module is None:
            # This must be done before open() is ever called as the 'io'
            # module implicitly imports 'locale' and would otherwise
            # trigger an infinite loop.
            module = _new_module(spec.name)
        self.init_module_attrs(module)
        return module

    def _exec(self, module):
        """Do everything necessary to execute the module.

        The namespace of `module` is used as the target of execution.
        This method uses the loader's `exec_module()` method.

        """
        self.spec.loader.exec_module(module)

    # Used by importlib.reload() and _load_module_shim().
    def exec(self, module):
        """Execute the spec in an existing module's namespace."""
        name = self.spec.name
        _imp.acquire_lock()
        with _ModuleLockManager(name):
            if sys.modules.get(name) is not module:
                msg = 'module {!r} not in sys.modules'.format(name)
                raise ImportError(msg, name=name)
            if self.spec.loader is None:
                if self.spec.submodule_search_locations is None:
                    raise ImportError('missing loader', name=self.spec.name)
                # namespace package
                self.init_module_attrs(module, _override=True)
                return module
            self.init_module_attrs(module, _override=True)
            if not hasattr(self.spec.loader, 'exec_module'):
                # (issue19713) Once BuiltinImporter and ExtensionFileLoader
                # have exec_module() implemented, we can add a deprecation
                # warning here.
                self.spec.loader.load_module(name)
            else:
                self._exec(module)
        return sys.modules[name]

    def _load_backward_compatible(self):
        # (issue19713) Once BuiltinImporter and ExtensionFileLoader
        # have exec_module() implemented, we can add a deprecation
        # warning here.
        spec = self.spec
        spec.loader.load_module(spec.name)
        # The module must be in sys.modules at this point!
        module = sys.modules[spec.name]
        if getattr(module, '__loader__', None) is None:
            try:
                module.__loader__ = spec.loader
            except AttributeError:
                pass
        if getattr(module, '__package__', None) is None:
            try:
                # Since module.__path__ may not line up with
                # spec.submodule_search_paths, we can't necessarily rely
                # on spec.parent here.
                module.__package__ = module.__name__
                if not hasattr(module, '__path__'):
                    module.__package__ = spec.name.rpartition('.')[0]
            except AttributeError:
                pass
        if getattr(module, '__spec__', None) is None:
            try:
                module.__spec__ = spec
            except AttributeError:
                pass
        return module

    def _load_unlocked(self):
        # A helper for direct use by the import system.
        if self.spec.loader is not None:
            # not a namespace package
            if not hasattr(self.spec.loader, 'exec_module'):
                return self._load_backward_compatible()

        module = self.create()
        with _installed_safely(module):
            if self.spec.loader is None:
                if self.spec.submodule_search_locations is None:
                    raise ImportError('missing loader', name=self.spec.name)
                # A namespace package so do nothing.
            else:
                self._exec(module)

        # We don't ensure that the import-related module attributes get
        # set in the sys.modules replacement case.  Such modules are on
        # their own.
        return sys.modules[self.spec.name]

    # A method used during testing of _load_unlocked() and by
    # _load_module_shim().
    def load(self):
        """Return a new module object, loaded by the spec's loader.

        The module is not added to its parent.

        If a module is already in sys.modules, that existing module gets
        clobbered.

        """
        _imp.acquire_lock()
        with _ModuleLockManager(self.spec.name):
            return self._load_unlocked()


def _fix_up_module(ns, name, pathname, cpathname=None):
    # This function is used by PyImport_ExecCodeModuleObject().
    loader = ns.get('__loader__')
    spec = ns.get('__spec__')
    if not loader:
        if spec:
            loader = spec.loader
        elif pathname == cpathname:
            loader = SourcelessFileLoader(name, pathname)
        else:
            loader = SourceFileLoader(name, pathname)
    if not spec:
        spec = spec_from_file_location(name, pathname, loader=loader)
    try:
        ns['__spec__'] = spec
        ns['__loader__'] = loader
        ns['__file__'] = pathname
        ns['__cached__'] = cpathname
    except Exception:
        # Not important enough to report.
        pass


# Loaders #####################################################################

class BuiltinImporter:

    """Meta path import for built-in modules.

    All methods are either class or static methods to avoid the need to
    instantiate the class.

    """

    @staticmethod
    def module_repr(module):
        """Return repr for the module.

        The method is deprecated.  The import machinery does the job itself.

        """
        return '<module {!r} (built-in)>'.format(module.__name__)

    @classmethod
    def find_spec(cls, fullname, path=None, target=None):
        if path is not None:
            return None
        if _imp.is_builtin(fullname):
            return spec_from_loader(fullname, cls, origin='built-in')
        else:
            return None

    @classmethod
    def find_module(cls, fullname, path=None):
        """Find the built-in module.

        If 'path' is ever specified then the search is considered a failure.

        This method is deprecated.  Use find_spec() instead.

        """
        spec = cls.find_spec(fullname, path)
        return spec.loader if spec is not None else None

    @classmethod
    @_requires_builtin
    def load_module(cls, fullname):
        """Load a built-in module."""
        # Once an exec_module() implementation is added we can also
        # add a deprecation warning here.
        with _ManageReload(fullname):
            module = _call_with_frames_removed(_imp.init_builtin, fullname)
        module.__loader__ = cls
        module.__package__ = ''
        return module

    @classmethod
    @_requires_builtin
    def get_code(cls, fullname):
        """Return None as built-in modules do not have code objects."""
        return None

    @classmethod
    @_requires_builtin
    def get_source(cls, fullname):
        """Return None as built-in modules do not have source code."""
        return None

    @classmethod
    @_requires_builtin
    def is_package(cls, fullname):
        """Return False as built-in modules are never packages."""
        return False


class FrozenImporter:

    """Meta path import for frozen modules.

    All methods are either class or static methods to avoid the need to
    instantiate the class.

    """

    @staticmethod
    def module_repr(m):
        """Return repr for the module.

        The method is deprecated.  The import machinery does the job itself.

        """
        return '<module {!r} (frozen)>'.format(m.__name__)

    @classmethod
    def find_spec(cls, fullname, path=None, target=None):
        if _imp.is_frozen(fullname):
            return spec_from_loader(fullname, cls, origin='frozen')
        else:
            return None

    @classmethod
    def find_module(cls, fullname, path=None):
        """Find a frozen module.

        This method is deprecated.  Use find_spec() instead.

        """
        return cls if _imp.is_frozen(fullname) else None

    @staticmethod
    def exec_module(module):
        name = module.__spec__.name
        if not _imp.is_frozen(name):
            raise ImportError('{!r} is not a frozen module'.format(name),
                              name=name)
        code = _call_with_frames_removed(_imp.get_frozen_object, name)
        exec(code, module.__dict__)

    @classmethod
    def load_module(cls, fullname):
        """Load a frozen module.

        This method is deprecated.  Use exec_module() instead.

        """
        return _load_module_shim(cls, fullname)

    @classmethod
    @_requires_frozen
    def get_code(cls, fullname):
        """Return the code object for the frozen module."""
        return _imp.get_frozen_object(fullname)

    @classmethod
    @_requires_frozen
    def get_source(cls, fullname):
        """Return None as frozen modules do not have source code."""
        return None

    @classmethod
    @_requires_frozen
    def is_package(cls, fullname):
        """Return True if the frozen module is a package."""
        return _imp.is_frozen_package(fullname)


class WindowsRegistryFinder:

    """Meta path finder for modules declared in the Windows registry."""

    REGISTRY_KEY = (
        'Software\\Python\\PythonCore\\{sys_version}'
        '\\Modules\\{fullname}')
    REGISTRY_KEY_DEBUG = (
        'Software\\Python\\PythonCore\\{sys_version}'
        '\\Modules\\{fullname}\\Debug')
    DEBUG_BUILD = False  # Changed in _setup()

    @classmethod
    def _open_registry(cls, key):
        try:
            return _winreg.OpenKey(_winreg.HKEY_CURRENT_USER, key)
        except OSError:
            return _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE, key)

    @classmethod
    def _search_registry(cls, fullname):
        if cls.DEBUG_BUILD:
            registry_key = cls.REGISTRY_KEY_DEBUG
        else:
            registry_key = cls.REGISTRY_KEY
        key = registry_key.format(fullname=fullname,
                                  sys_version=sys.version[:3])
        try:
            with cls._open_registry(key) as hkey:
                filepath = _winreg.QueryValue(hkey, '')
        except OSError:
            return None
        return filepath

    @classmethod
    def find_spec(cls, fullname, path=None, target=None):
        filepath = cls._search_registry(fullname)
        if filepath is None:
            return None
        try:
            _path_stat(filepath)
        except OSError:
            return None
        for loader, suffixes in _get_supported_file_loaders():
            if filepath.endswith(tuple(suffixes)):
                spec = spec_from_loader(fullname, loader(fullname, filepath),
                                        origin=filepath)
                return spec

    @classmethod
    def find_module(cls, fullname, path=None):
        """Find module named in the registry.

        This method is deprecated.  Use exec_module() instead.

        """
        spec = cls.find_spec(fullname, path)
        if spec is not None:
            return spec.loader
        else:
            return None


class _LoaderBasics:

    """Base class of common code needed by both SourceLoader and
    SourcelessFileLoader."""

    def is_package(self, fullname):
        """Concrete implementation of InspectLoader.is_package by checking if
        the path returned by get_filename has a filename of '__init__.py'."""
        filename = _path_split(self.get_filename(fullname))[1]
        filename_base = filename.rsplit('.', 1)[0]
        tail_name = fullname.rpartition('.')[2]
        return filename_base == '__init__' and tail_name != '__init__'

    def exec_module(self, module):
        """Execute the module."""
        code = self.get_code(module.__name__)
        if code is None:
            raise ImportError('cannot load module {!r} when get_code() '
                              'returns None'.format(module.__name__))
        _call_with_frames_removed(exec, code, module.__dict__)

    load_module = _load_module_shim


class SourceLoader(_LoaderBasics):

    def path_mtime(self, path):
        """Optional method that returns the modification time (an int) for the
        specified path, where path is a str.

        Raises IOError when the path cannot be handled.
        """
        raise IOError

    def path_stats(self, path):
        """Optional method returning a metadata dict for the specified path
        to by the path (str).
        Possible keys:
        - 'mtime' (mandatory) is the numeric timestamp of last source
          code modification;
        - 'size' (optional) is the size in bytes of the source code.

        Implementing this method allows the loader to read bytecode files.
        Raises IOError when the path cannot be handled.
        """
        return {'mtime': self.path_mtime(path)}

    def _cache_bytecode(self, source_path, cache_path, data):
        """Optional method which writes data (bytes) to a file path (a str).

        Implementing this method allows for the writing of bytecode files.

        The source path is needed in order to correctly transfer permissions
        """
        # For backwards compatibility, we delegate to set_data()
        return self.set_data(cache_path, data)

    def set_data(self, path, data):
        """Optional method which writes data (bytes) to a file path (a str).

        Implementing this method allows for the writing of bytecode files.
        """


    def get_source(self, fullname):
        """Concrete implementation of InspectLoader.get_source."""
        path = self.get_filename(fullname)
        try:
            source_bytes = self.get_data(path)
        except OSError as exc:
            raise ImportError('source not available through get_data()',
                              name=fullname) from exc
        return decode_source(source_bytes)

    def source_to_code(self, data, path, *, _optimize=-1):
        """Return the code object compiled from source.

        The 'data' argument can be any object type that compile() supports.
        """
        return _call_with_frames_removed(compile, data, path, 'exec',
                                        dont_inherit=True, optimize=_optimize)

    def get_code(self, fullname):
        """Concrete implementation of InspectLoader.get_code.

        Reading of bytecode requires path_stats to be implemented. To write
        bytecode, set_data must also be implemented.

        """
        source_path = self.get_filename(fullname)
        source_mtime = None
        source_bytes = self.get_data(source_path)
        code_object = self.source_to_code(source_bytes, source_path)
        _verbose_message('code object from {}', source_path)
        return code_object


class FileLoader:

    """Base file loader class which implements the loader protocol methods that
    require file system usage."""

    def __init__(self, fullname, path):
        """Cache the module name and the path to the file found by the
        finder."""
        self.name = fullname
        self.path = path

    def __eq__(self, other):
        return (self.__class__ == other.__class__ and
                self.__dict__ == other.__dict__)

    def __hash__(self):
        return hash(self.name) ^ hash(self.path)

    @_check_name
    def load_module(self, fullname):
        """Load a module from a file.

        This method is deprecated.  Use exec_module() instead.

        """
        # The only reason for this method is for the name check.
        # Issue #14857: Avoid the zero-argument form of super so the implementation
        # of that form can be updated without breaking the frozen module
        return super(FileLoader, self).load_module(fullname)

    @_check_name
    def get_filename(self, fullname):
        """Return the path to the source file as found by the finder."""
        return self.path

    def get_data(self, path):
        """Return the data from path as raw bytes."""
        with _io.FileIO(path, 'r') as file:
            return file.read()


class SourceFileLoader(FileLoader, SourceLoader):

    """Concrete implementation of SourceLoader using the file system."""

    def path_stats(self, path):
        """Return the metadata for the path."""
        st = _path_stat(path)
        return {'mtime': st.st_mtime, 'size': st.st_size}

    def _cache_bytecode(self, source_path, bytecode_path, data):
        # Adapt between the two APIs
        mode = _calc_mode(source_path)
        return self.set_data(bytecode_path, data, _mode=mode)

    def set_data(self, path, data, *, _mode=0o666):
        """Write bytes data to a file."""
        parent, filename = _path_split(path)
        path_parts = []
        # Figure out what directories are missing.
        while parent and not _path_isdir(parent):
            parent, part = _path_split(parent)
            path_parts.append(part)
        # Create needed directories.
        for part in reversed(path_parts):
            parent = _path_join(parent, part)
            try:
                _os.mkdir(parent)
            except FileExistsError:
                # Probably another Python process already created the dir.
                continue
            except OSError as exc:
                # Could be a permission error, read-only filesystem: just forget
                # about writing the data.
                _verbose_message('could not create {!r}: {!r}', parent, exc)
                return
        try:
            _write_atomic(path, data, _mode)
            _verbose_message('created {!r}', path)
        except OSError as exc:
            # Same as above: just don't write the bytecode.
            _verbose_message('could not create {!r}: {!r}', path, exc)


class SourcelessFileLoader(FileLoader, _LoaderBasics):

    """Loader which handles sourceless file imports."""

    def get_code(self, fullname):
        path = self.get_filename(fullname)
        data = self.get_data(path)
        bytes_data = _validate_bytecode_header(data, name=fullname, path=path)
        return _compile_bytecode(bytes_data, name=fullname, bytecode_path=path)

    def get_source(self, fullname):
        """Return None as there is no source code."""
        return None


# Filled in by _setup().
EXTENSION_SUFFIXES = []


class ExtensionFileLoader:

    """Loader for extension modules.

    The constructor is designed to work with FileFinder.

    """

    def __init__(self, name, path):
        self.name = name
        self.path = path

    def __eq__(self, other):
        return (self.__class__ == other.__class__ and
                self.__dict__ == other.__dict__)

    def __hash__(self):
        return hash(self.name) ^ hash(self.path)

    @_check_name
    def load_module(self, fullname):
        """Load an extension module."""
        # Once an exec_module() implementation is added we can also
        # add a deprecation warning here.
        with _ManageReload(fullname):
            module = _call_with_frames_removed(_imp.load_dynamic,
                                               fullname, self.path)
        _verbose_message('extension module loaded from {!r}', self.path)
        is_package = self.is_package(fullname)
        if is_package and not hasattr(module, '__path__'):
            module.__path__ = [_path_split(self.path)[0]]
        module.__loader__ = self
        module.__package__ = module.__name__
        if not is_package:
            module.__package__ = module.__package__.rpartition('.')[0]
        return module

    def is_package(self, fullname):
        """Return True if the extension module is a package."""
        file_name = _path_split(self.path)[1]
        return any(file_name == '__init__' + suffix
                   for suffix in EXTENSION_SUFFIXES)

    def get_code(self, fullname):
        """Return None as an extension module cannot create a code object."""
        return None

    def get_source(self, fullname):
        """Return None as extension modules have no source code."""
        return None

    @_check_name
    def get_filename(self, fullname):
        """Return the path to the source file as found by the finder."""
        return self.path


class _NamespacePath:
    """Represents a namespace package's path.  It uses the module name
    to find its parent module, and from there it looks up the parent's
    __path__.  When this changes, the module's own path is recomputed,
    using path_finder.  For top-level modules, the parent module's path
    is sys.path."""

    def __init__(self, name, path, path_finder):
        self._name = name
        self._path = path
        self._last_parent_path = tuple(self._get_parent_path())
        self._path_finder = path_finder

    def _find_parent_path_names(self):
        """Returns a tuple of (parent-module-name, parent-path-attr-name)"""
        parent, dot, me = self._name.rpartition('.')
        if dot == '':
            # This is a top-level module. sys.path contains the parent path.
            return 'sys', 'path'
        # Not a top-level module. parent-module.__path__ contains the
        #  parent path.
        return parent, '__path__'

    def _get_parent_path(self):
        parent_module_name, path_attr_name = self._find_parent_path_names()
        return getattr(sys.modules[parent_module_name], path_attr_name)

    def _recalculate(self):
        # If the parent's path has changed, recalculate _path
        parent_path = tuple(self._get_parent_path()) # Make a copy
        if parent_path != self._last_parent_path:
            spec = self._path_finder(self._name, parent_path)
            # Note that no changes are made if a loader is returned, but we
            #  do remember the new parent path
            if spec is not None and spec.loader is None:
                if spec.submodule_search_locations:
                    self._path = spec.submodule_search_locations
            self._last_parent_path = parent_path     # Save the copy
        return self._path

    def __iter__(self):
        return iter(self._recalculate())

    def __len__(self):
        return len(self._recalculate())

    def __repr__(self):
        return '_NamespacePath({!r})'.format(self._path)

    def __contains__(self, item):
        return item in self._recalculate()

    def append(self, item):
        self._path.append(item)


# We use this exclusively in init_module_attrs() for backward-compatibility.
class _NamespaceLoader:
    def __init__(self, name, path, path_finder):
        self._path = _NamespacePath(name, path, path_finder)

    @classmethod
    def module_repr(cls, module):
        """Return repr for the module.

        The method is deprecated.  The import machinery does the job itself.

        """
        return '<module {!r} (namespace)>'.format(module.__name__)

    def is_package(self, fullname):
        return True

    def get_source(self, fullname):
        return ''

    def get_code(self, fullname):
        return compile('', '<string>', 'exec', dont_inherit=True)

    def exec_module(self, module):
        pass

    def load_module(self, fullname):
        """Load a namespace module.

        This method is deprecated.  Use exec_module() instead.

        """
        # The import system never calls this method.
        _verbose_message('namespace module loaded with path {!r}', self._path)
        return _load_module_shim(self, fullname)


# Finders #####################################################################

class PathFinder:

    """Meta path finder for sys.path and package __path__ attributes."""

    @classmethod
    def invalidate_caches(cls):
        """Call the invalidate_caches() method on all path entry finders
        stored in sys.path_importer_caches (where implemented)."""
        for finder in sys.path_importer_cache.values():
            if hasattr(finder, 'invalidate_caches'):
                finder.invalidate_caches()

    @classmethod
    def _path_hooks(cls, path):
        """Search sequence of hooks for a finder for 'path'.

        If 'hooks' is false then use sys.path_hooks.

        """
        if not sys.path_hooks:
            _warnings.warn('sys.path_hooks is empty', ImportWarning)
        for hook in sys.path_hooks:
            try:
                return hook(path)
            except ImportError:
                continue
        else:
            return None

    @classmethod
    def _path_importer_cache(cls, path):
        """Get the finder for the path entry from sys.path_importer_cache.

        If the path entry is not in the cache, find the appropriate finder
        and cache it. If no finder is available, store None.

        """
        if path == '':
            path = _os.getcwd()
        # ironpython: optimization to avoid KeyError exception
        finder = sys.path_importer_cache.get(path, _unspecified)
        if finder is _unspecified:
            finder = cls._path_hooks(path)
            sys.path_importer_cache[path] = finder
        return finder

    @classmethod
    def _legacy_get_spec(cls, fullname, finder):
        # This would be a good place for a DeprecationWarning if
        # we ended up going that route.
        if hasattr(finder, 'find_loader'):
            loader, portions = finder.find_loader(fullname)
        else:
            loader = finder.find_module(fullname)
            portions = []
        if loader is not None:
            return spec_from_loader(fullname, loader)
        spec = ModuleSpec(fullname, None)
        spec.submodule_search_locations = portions
        return spec

    @classmethod
    def _get_spec(cls, fullname, path, target=None):
        """Find the loader or namespace_path for this module/package name."""
        # If this ends up being a namespace package, namespace_path is
        #  the list of paths that will become its __path__
        namespace_path = []
        for entry in path:
            if not isinstance(entry, (str, bytes)):
                continue
            finder = cls._path_importer_cache(entry)
            if finder is not None:
                if hasattr(finder, 'find_spec'):
                    spec = finder.find_spec(fullname, target)
                else:
                    spec = cls._legacy_get_spec(fullname, finder)
                if spec is None:
                    continue
                if spec.loader is not None:
                    return spec
                portions = spec.submodule_search_locations
                if portions is None:
                    raise ImportError('spec missing loader')
                # This is possibly part of a namespace package.
                #  Remember these path entries (if any) for when we
                #  create a namespace package, and continue iterating
                #  on path.
                namespace_path.extend(portions)
        else:
            spec = ModuleSpec(fullname, None)
            spec.submodule_search_locations = namespace_path
            return spec

    @classmethod
    def find_spec(cls, fullname, path=None, target=None):
        """find the module on sys.path or 'path' based on sys.path_hooks and
        sys.path_importer_cache."""
        if path is None:
            path = sys.path
        spec = cls._get_spec(fullname, path, target)
        if spec is None:
            return None
        elif spec.loader is None:
            namespace_path = spec.submodule_search_locations
            if namespace_path:
                # We found at least one namespace path.  Return a
                #  spec which can create the namespace package.
                spec.origin = 'namespace'
                spec.submodule_search_locations = _NamespacePath(fullname, namespace_path, cls._get_spec)
                return spec
            else:
                return None
        else:
            return spec

    @classmethod
    def find_module(cls, fullname, path=None):
        """find the module on sys.path or 'path' based on sys.path_hooks and
        sys.path_importer_cache.

        This method is deprecated.  Use find_spec() instead.

        """
        spec = cls.find_spec(fullname, path)
        if spec is None:
            return None
        return spec.loader


class FileFinder:

    """File-based finder.

    Interactions with the file system are cached for performance, being
    refreshed when the directory the finder is handling has been modified.

    """

    def __init__(self, path, *loader_details):
        """Initialize with the path to search on and a variable number of
        2-tuples containing the loader and the file suffixes the loader
        recognizes."""
        loaders = []
        for loader, suffixes in loader_details:
            loaders.extend((suffix, loader) for suffix in suffixes)
        self._loaders = loaders
        # Base (directory) path
        self.path = path or '.'
        self._path_mtime = -1
        self._path_cache = set()
        self._relaxed_path_cache = set()

    def invalidate_caches(self):
        """Invalidate the directory mtime."""
        self._path_mtime = -1

    find_module = _find_module_shim

    def find_loader(self, fullname):
        """Try to find a loader for the specified module, or the namespace
        package portions. Returns (loader, list-of-portions).

        This method is deprecated.  Use find_spec() instead.

        """
        spec = self.find_spec(fullname)
        if spec is None:
            return None, []
        return spec.loader, spec.submodule_search_locations or []

    def _get_spec(self, loader_class, fullname, path, smsl, target):
        loader = loader_class(fullname, path)
        return spec_from_file_location(fullname, path, loader=loader,
                                       submodule_search_locations=smsl)

    def find_spec(self, fullname, target=None):
        """Try to find a loader for the specified module, or the namespace
        package portions. Returns (loader, list-of-portions)."""
        is_namespace = False
        tail_module = fullname.rpartition('.')[2]
        try:
            mtime = _path_stat(self.path or _os.getcwd()).st_mtime
        except OSError:
            mtime = -1
        if mtime != self._path_mtime:
            self._fill_cache()
            self._path_mtime = mtime
        # tail_module keeps the original casing, for __file__ and friends
        if _relax_case():
            cache = self._relaxed_path_cache
            cache_module = tail_module.lower()
        else:
            cache = self._path_cache
            cache_module = tail_module
        # Check if the module is the name of a directory (and thus a package).
        if cache_module in cache:
            base_path = _path_join(self.path, tail_module)
            for suffix, loader_class in self._loaders:
                init_filename = '__init__' + suffix
                full_path = _path_join(base_path, init_filename)
                if _path_isfile(full_path):
                    return self._get_spec(loader_class, fullname, full_path, [base_path], target)
            else:
                # If a namespace package, return the path if we don't
                #  find a module in the next section.
                is_namespace = _path_isdir(base_path)
        # Check for a file w/ a proper suffix exists.
        for suffix, loader_class in self._loaders:
            full_path = _path_join(self.path, tail_module + suffix)
            _verbose_message('trying {}'.format(full_path), verbosity=2)
            if cache_module + suffix in cache:
                if _path_isfile(full_path):
                    return self._get_spec(loader_class, fullname, full_path, None, target)
        if is_namespace:
            _verbose_message('possible namespace for {}'.format(base_path))
            spec = ModuleSpec(fullname, None)
            spec.submodule_search_locations = [base_path]
            return spec
        return None

    def _fill_cache(self):
        """Fill the cache of potential modules and packages for this directory."""
        path = self.path
        try:
            contents = _os.listdir(path or _os.getcwd())
        except (FileNotFoundError, PermissionError, NotADirectoryError):
            # Directory has either been removed, turned into a file, or made
            # unreadable.
            contents = []
        # We store two cached versions, to handle runtime changes of the
        # PYTHONCASEOK environment variable.
        if not sys.platform.startswith('win'):
            self._path_cache = set(contents)
        else:
            # Windows users can import modules with case-insensitive file
            # suffixes (for legacy reasons). Make the suffix lowercase here
            # so it's done once instead of for every import. This is safe as
            # the specified suffixes to check against are always specified in a
            # case-sensitive manner.
            lower_suffix_contents = set()
            for item in contents:
                name, dot, suffix = item.partition('.')
                if dot:
                    new_name = '{}.{}'.format(name, suffix.lower())
                else:
                    new_name = name
                lower_suffix_contents.add(new_name)
            self._path_cache = lower_suffix_contents
        if sys.platform.startswith(_CASE_INSENSITIVE_PLATFORMS):
            self._relaxed_path_cache = {fn.lower() for fn in contents}

    @classmethod
    def path_hook(cls, *loader_details):
        """A class method which returns a closure to use on sys.path_hook
        which will return an instance using the specified loaders and the path
        called on the closure.

        If the path called on the closure is not a directory, ImportError is
        raised.

        """
        def path_hook_for_FileFinder(path):
            """Path hook for importlib.machinery.FileFinder."""
            if not _path_isdir(path):
                raise ImportError('only directories are supported', path=path)
            return cls(path, *loader_details)

        return path_hook_for_FileFinder

    def __repr__(self):
        return 'FileFinder({!r})'.format(self.path)


# Import itself ###############################################################

class _ImportLockContext:

    """Context manager for the import lock."""

    def __enter__(self):
        """Acquire the import lock."""
        _imp.acquire_lock()

    def __exit__(self, exc_type, exc_value, exc_traceback):
        """Release the import lock regardless of any raised exceptions."""
        _imp.release_lock()


def _resolve_name(name, package, level):
    """Resolve a relative module name to an absolute one."""
    bits = package.rsplit('.', level - 1)
    if len(bits) < level:
        raise ValueError('attempted relative import beyond top-level package')
    base = bits[0]
    return '{}.{}'.format(base, name) if name else base


def _find_spec_legacy(finder, name, path):
    # This would be a good place for a DeprecationWarning if
    # we ended up going that route.
    loader = finder.find_module(name, path)
    if loader is None:
        return None
    return spec_from_loader(name, loader)


def _find_spec(name, path, target=None):
    """Find a module's loader."""
    if not sys.meta_path:
        _warnings.warn('sys.meta_path is empty', ImportWarning)
    # We check sys.modules here for the reload case.  While a passed-in
    # target will usually indicate a reload there is no guarantee, whereas
    # sys.modules provides one.
    is_reload = name in sys.modules
    for finder in sys.meta_path:
        with _ImportLockContext():
            try:
                find_spec = finder.find_spec
            except AttributeError:
                spec = _find_spec_legacy(finder, name, path)
                if spec is None:
                    continue
            else:
                spec = find_spec(name, path, target)
        if spec is not None:
            # The parent import may have already imported this module.
            if not is_reload and name in sys.modules:
                module = sys.modules[name]
                try:
                    __spec__ = module.__spec__
                except AttributeError:
                    # We use the found spec since that is the one that
                    # we would have used if the parent module hadn't
                    # beaten us to the punch.
                    return spec
                else:
                    if __spec__ is None:
                        return spec
                    else:
                        return __spec__
            else:
                return spec
    else:
        return None


def _sanity_check(name, package, level):
    """Verify arguments are "sane"."""
    if not isinstance(name, str):
        raise TypeError('module name must be str, not {}'.format(type(name)))
    if level < 0:
        raise ValueError('level must be >= 0')
    if package:
        if not isinstance(package, str):
            raise TypeError('__package__ not set to a string')
        elif package not in sys.modules:
            msg = ('Parent module {!r} not loaded, cannot perform relative '
                   'import')
            raise SystemError(msg.format(package))
    if not name and level == 0:
        raise ValueError('Empty module name')


_ERR_MSG_PREFIX = 'No module named '
_ERR_MSG = _ERR_MSG_PREFIX + '{!r}'

def _find_and_load_unlocked(name, import_):
    path = None
    parent = name.rpartition('.')[0]
    if parent:
        if parent not in sys.modules:
            _call_with_frames_removed(import_, parent)
        # Crazy side-effects!
        if name in sys.modules:
            return sys.modules[name]
        parent_module = sys.modules[parent]
        try:
            path = parent_module.__path__
        except AttributeError:
            msg = (_ERR_MSG + '; {!r} is not a package').format(name, parent)
            raise ImportError(msg, name=name)
    spec = _find_spec(name, path)
    if spec is None:
        raise ImportError(_ERR_MSG.format(name), name=name)
    else:
        module = _SpecMethods(spec)._load_unlocked()
    if parent:
        # Set the module as an attribute on its parent.
        parent_module = sys.modules[parent]
        setattr(parent_module, name.rpartition('.')[2], module)
    return module


def _find_and_load(name, import_):
    """Find and load the module, and release the import lock."""
    with _ModuleLockManager(name):
        return _find_and_load_unlocked(name, import_)


def _gcd_import(name, package=None, level=0):
    """Import and return the module based on its name, the package the call is
    being made from, and the level adjustment.

    This function represents the greatest common denominator of functionality
    between import_module and __import__. This includes setting __package__ if
    the loader did not.

    """
    _sanity_check(name, package, level)
    if level > 0:
        name = _resolve_name(name, package, level)
    _imp.acquire_lock()
    if name not in sys.modules:
        return _find_and_load(name, _gcd_import)
    module = sys.modules[name]
    if module is None:
        _imp.release_lock()
        message = ('import of {} halted; '
                   'None in sys.modules'.format(name))
        raise ImportError(message, name=name)
    _lock_unlock_module(name)
    return module

def _handle_fromlist(module, fromlist, import_):
    """Figure out what __import__ should return.

    The import_ parameter is a callable which takes the name of module to
    import. It is required to decouple the function from assuming importlib's
    import implementation is desired.

    """
    # The hell that is fromlist ...
    # If a package was imported, try to import stuff from fromlist.
    if hasattr(module, '__path__'):
        if '*' in fromlist:
            fromlist = list(fromlist)
            fromlist.remove('*')
            if hasattr(module, '__all__'):
                fromlist.extend(module.__all__)
        for x in fromlist:
            if not hasattr(module, x):
                from_name = '{}.{}'.format(module.__name__, x)
                try:
                    _call_with_frames_removed(import_, from_name)
                except ImportError as exc:
                    # Backwards-compatibility dictates we ignore failed
                    # imports triggered by fromlist for modules that don't
                    # exist.
                    if str(exc).startswith(_ERR_MSG_PREFIX):
                        if exc.name == from_name:
                            continue
                    raise
    return module


def _calc___package__(globals):
    """Calculate what __package__ should be.

    __package__ is not guaranteed to be defined or could be set to None
    to represent that its proper value is unknown.

    """
    package = globals.get('__package__')
    if package is None:
        package = globals['__name__']
        if '__path__' not in globals:
            package = package.rpartition('.')[0]
    return package


def _get_supported_file_loaders():
    """Returns a list of file-based module loaders.

    Each item is a tuple (loader, suffixes).
    """
    source = SourceFileLoader, SOURCE_SUFFIXES
    return [source]


def __import__(name, globals=None, locals=None, fromlist=(), level=0):
    """Import a module.

    The 'globals' argument is used to infer where the import is occuring from
    to handle relative imports. The 'locals' argument is ignored. The
    'fromlist' argument specifies what should exist as attributes on the module
    being imported (e.g. ``from module import <fromlist>``).  The 'level'
    argument represents the package location to import from in a relative
    import (e.g. ``from ..pkg import mod`` would have a 'level' of 2).

    """
    if level == 0:
        module = _gcd_import(name)
    else:
        globals_ = globals if globals is not None else {}
        package = _calc___package__(globals_)
        module = _gcd_import(name, package, level)
    if not fromlist:
        # Return up to the first dot in 'name'. This is complicated by the fact
        # that 'name' may be relative.
        if level == 0:
            return _gcd_import(name.partition('.')[0])
        elif not name:
            return module
        else:
            # Figure out where to slice the module's name up to the first dot
            # in 'name'.
            cut_off = len(name) - len(name.partition('.')[0])
            # Slice end needs to be positive to alleviate need to special-case
            # when ``'.' not in name``.
            return sys.modules[module.__name__[:len(module.__name__)-cut_off]]
    else:
        return _handle_fromlist(module, fromlist, _gcd_import)


def _builtin_from_name(name):
    spec = BuiltinImporter.find_spec(name)
    if spec is None:
        raise ImportError('no built-in module named ' + name)
    methods = _SpecMethods(spec)
    return methods._load_unlocked()


def _setup(sys_module, _imp_module):
    """Setup importlib by importing needed built-in modules and injecting them
    into the global namespace.

    As sys is needed for sys.modules access and _imp is needed to load built-in
    modules, those two modules must be explicitly passed in.

    """
    global _imp, sys, BYTECODE_SUFFIXES
    _imp = _imp_module
    sys = sys_module

    if sys.flags.optimize:
        BYTECODE_SUFFIXES = OPTIMIZED_BYTECODE_SUFFIXES
    else:
        BYTECODE_SUFFIXES = DEBUG_BYTECODE_SUFFIXES

    # Set up the spec for existing builtin/frozen modules.
    module_type = type(sys)
    for name, module in sys.modules.items():
        if isinstance(module, module_type):
            if name in sys.builtin_module_names:
                loader = BuiltinImporter
            elif _imp.is_frozen(name):
                loader = FrozenImporter
            else:
                continue
            spec = _spec_from_module(module, loader)
            methods = _SpecMethods(spec)
            methods.init_module_attrs(module)

    # Directly load built-in modules needed during bootstrap.
    self_module = sys.modules[__name__]
    for builtin_name in ('_io', '_warnings', 'builtins', 'marshal'):
        if builtin_name not in sys.modules:
            builtin_module = _builtin_from_name(builtin_name)
        else:
            builtin_module = sys.modules[builtin_name]
        setattr(self_module, builtin_name, builtin_module)

    # Directly load the os module (needed during bootstrap).
    os_details = ('posix', ['/']), ('nt', ['\\', '/'])
    if sys.platform == 'win32': os_details = reversed(os_details) # ironpython: optimization to avoid ImportError exception
    for builtin_os, path_separators in os_details:
        # Assumption made in _path_join()
        assert all(len(sep) == 1 for sep in path_separators)
        path_sep = path_separators[0]
        if builtin_os in sys.modules:
            os_module = sys.modules[builtin_os]
            break
        else:
            try:
                os_module = _builtin_from_name(builtin_os)
                break
            except ImportError:
                continue
    else:
        raise ImportError('importlib requires posix or nt')
    setattr(self_module, '_os', os_module)
    setattr(self_module, 'path_sep', path_sep)
    setattr(self_module, 'path_separators', ''.join(path_separators))

    # Directly load the _thread module (needed during bootstrap).
    try:
        thread_module = _builtin_from_name('_thread')
    except ImportError:
        # Python was built without threads
        thread_module = None
    setattr(self_module, '_thread', thread_module)

    # Directly load the _weakref module (needed during bootstrap).
    weakref_module = _builtin_from_name('_weakref')
    setattr(self_module, '_weakref', weakref_module)

    # Constants
    setattr(self_module, '_relax_case', _make_relax_case())
    EXTENSION_SUFFIXES.extend(_imp.extension_suffixes())


def _install(sys_module, _imp_module):
    """Install importlib as the implementation of import."""
    _setup(sys_module, _imp_module)
    supported_loaders = _get_supported_file_loaders()
    sys.path_hooks.extend([FileFinder.path_hook(*supported_loaders)])
    sys.meta_path.append(BuiltinImporter)
    sys.meta_path.append(FrozenImporter)
    sys.meta_path.append(PathFinder)
lib\importlib\__init__.py
"""A pure Python implementation of import."""
__all__ = ['__import__', 'import_module', 'invalidate_caches', 'reload']

# Bootstrap help #####################################################

# Until bootstrapping is complete, DO NOT import any modules that attempt
# to import importlib._bootstrap (directly or indirectly). Since this
# partially initialised package would be present in sys.modules, those
# modules would get an uninitialised copy of the source version, instead
# of a fully initialised version (either the frozen one or the one
# initialised below if the frozen one is not available).
import _imp  # Just the builtin component, NOT the full Python module
import sys

try:
    import _frozen_importlib as _bootstrap
except ImportError:
    from . import _bootstrap
    _bootstrap._setup(sys, _imp)
else:
    # importlib._bootstrap is the built-in import, ensure we don't create
    # a second copy of the module.
    _bootstrap.__name__ = 'importlib._bootstrap'
    _bootstrap.__package__ = 'importlib'
    try:
        _bootstrap.__file__ = __file__.replace('__init__.py', '_bootstrap.py')
    except NameError:
        # __file__ is not guaranteed to be defined, e.g. if this code gets
        # frozen by a tool like cx_Freeze.
        pass
    sys.modules['importlib._bootstrap'] = _bootstrap

# To simplify imports in test code
_w_long = _bootstrap._w_long
_r_long = _bootstrap._r_long

# Fully bootstrapped at this point, import whatever you like, circular
# dependencies and startup overhead minimisation permitting :)

import types
import warnings


# Public API #########################################################

from ._bootstrap import __import__


def invalidate_caches():
    """Call the invalidate_caches() method on all meta path finders stored in
    sys.meta_path (where implemented)."""
    for finder in sys.meta_path:
        if hasattr(finder, 'invalidate_caches'):
            finder.invalidate_caches()


def find_loader(name, path=None):
    """Return the loader for the specified module.

    This is a backward-compatible wrapper around find_spec().

    This function is deprecated in favor of importlib.util.find_spec().

    """
    warnings.warn('Use importlib.util.find_spec() instead.',
                  DeprecationWarning, stacklevel=2)
    try:
        loader = sys.modules[name].__loader__
        if loader is None:
            raise ValueError('{}.__loader__ is None'.format(name))
        else:
            return loader
    except KeyError:
        pass
    except AttributeError:
        raise ValueError('{}.__loader__ is not set'.format(name))

    spec = _bootstrap._find_spec(name, path)
    # We won't worry about malformed specs (missing attributes).
    if spec is None:
        return None
    if spec.loader is None:
        if spec.submodule_search_locations is None:
            raise ImportError('spec for {} missing loader'.format(name),
                              name=name)
        raise ImportError('namespace packages do not have loaders',
                          name=name)
    return spec.loader


def import_module(name, package=None):
    """Import a module.

    The 'package' argument is required when performing a relative import. It
    specifies the package to use as the anchor point from which to resolve the
    relative import to an absolute import.

    """
    level = 0
    if name.startswith('.'):
        if not package:
            msg = ("the 'package' argument is required to perform a relative "
                   "import for {!r}")
            raise TypeError(msg.format(name))
        for character in name:
            if character != '.':
                break
            level += 1
    return _bootstrap._gcd_import(name[level:], package, level)


_RELOADING = {}


def reload(module):
    """Reload the module and return it.

    The module must have been successfully imported before.

    """
    if not module or not isinstance(module, types.ModuleType):
        raise TypeError("reload() argument must be module")
    try:
        name = module.__spec__.name
    except AttributeError:
        name = module.__name__

    if sys.modules.get(name) is not module:
        msg = "module {} not in sys.modules"
        raise ImportError(msg.format(name), name=name)
    if name in _RELOADING:
        return _RELOADING[name]
    _RELOADING[name] = module
    try:
        parent_name = name.rpartition('.')[0]
        if parent_name:
            try:
                parent = sys.modules[parent_name]
            except KeyError:
                msg = "parent {!r} not in sys.modules"
                raise ImportError(msg.format(parent_name), name=parent_name)
            else:
                pkgpath = parent.__path__
        else:
            pkgpath = None
        target = module
        spec = module.__spec__ = _bootstrap._find_spec(name, pkgpath, target)
        methods = _bootstrap._SpecMethods(spec)
        methods.exec(module)
        # The module may have replaced itself in sys.modules!
        return sys.modules[name]
    finally:
        try:
            del _RELOADING[name]
        except KeyError:
            pass
lib\json\decoder.py
"""Implementation of JSONDecoder
"""
import re

from json import scanner
try:
    from _json import scanstring as c_scanstring
except ImportError:
    c_scanstring = None

__all__ = ['JSONDecoder']

FLAGS = re.VERBOSE | re.MULTILINE | re.DOTALL

NaN = float('nan')
PosInf = float('inf')
NegInf = float('-inf')


def linecol(doc, pos):
    if isinstance(doc, bytes):
        newline = b'\n'
    else:
        newline = '\n'
    lineno = doc.count(newline, 0, pos) + 1
    if lineno == 1:
        colno = pos + 1
    else:
        colno = pos - doc.rindex(newline, 0, pos)
    return lineno, colno


def errmsg(msg, doc, pos, end=None):
    # Note that this function is called from _json
    lineno, colno = linecol(doc, pos)
    if end is None:
        fmt = '{0}: line {1} column {2} (char {3})'
        return fmt.format(msg, lineno, colno, pos)
        #fmt = '%s: line %d column %d (char %d)'
        #return fmt % (msg, lineno, colno, pos)
    endlineno, endcolno = linecol(doc, end)
    fmt = '{0}: line {1} column {2} - line {3} column {4} (char {5} - {6})'
    return fmt.format(msg, lineno, colno, endlineno, endcolno, pos, end)
    #fmt = '%s: line %d column %d - line %d column %d (char %d - %d)'
    #return fmt % (msg, lineno, colno, endlineno, endcolno, pos, end)


_CONSTANTS = {
    '-Infinity': NegInf,
    'Infinity': PosInf,
    'NaN': NaN,
}


STRINGCHUNK = re.compile(r'(.*?)(["\\\x00-\x1f])', FLAGS)
BACKSLASH = {
    '"': '"', '\\': '\\', '/': '/',
    'b': '\b', 'f': '\f', 'n': '\n', 'r': '\r', 't': '\t',
}

def _decode_uXXXX(s, pos):
    esc = s[pos + 1:pos + 5]
    if len(esc) == 4 and esc[1] not in 'xX':
        try:
            return int(esc, 16)
        except ValueError:
            pass
    msg = "Invalid \\uXXXX escape"
    raise ValueError(errmsg(msg, s, pos))

def py_scanstring(s, end, strict=True,
        _b=BACKSLASH, _m=STRINGCHUNK.match):
    """Scan the string s for a JSON string. End is the index of the
    character in s after the quote that started the JSON string.
    Unescapes all valid JSON string escape sequences and raises ValueError
    on attempt to decode an invalid string. If strict is False then literal
    control characters are allowed in the string.

    Returns a tuple of the decoded string and the index of the character in s
    after the end quote."""
    chunks = []
    _append = chunks.append
    begin = end - 1
    while 1:
        chunk = _m(s, end)
        if chunk is None:
            raise ValueError(
                errmsg("Unterminated string starting at", s, begin))
        end = chunk.end()
        content, terminator = chunk.groups()
        # Content is contains zero or more unescaped string characters
        if content:
            _append(content)
        # Terminator is the end of string, a literal control character,
        # or a backslash denoting that an escape sequence follows
        if terminator == '"':
            break
        elif terminator != '\\':
            if strict:
                #msg = "Invalid control character %r at" % (terminator,)
                msg = "Invalid control character {0!r} at".format(terminator)
                raise ValueError(errmsg(msg, s, end))
            else:
                _append(terminator)
                continue
        try:
            esc = s[end]
        except IndexError:
            raise ValueError(
                errmsg("Unterminated string starting at", s, begin))
        # If not a unicode escape sequence, must be in the lookup table
        if esc != 'u':
            try:
                char = _b[esc]
            except KeyError:
                msg = "Invalid \\escape: {0!r}".format(esc)
                raise ValueError(errmsg(msg, s, end))
            end += 1
        else:
            uni = _decode_uXXXX(s, end)
            end += 5
            if 0xd800 <= uni <= 0xdbff and s[end:end + 2] == '\\u':
                uni2 = _decode_uXXXX(s, end + 1)
                if 0xdc00 <= uni2 <= 0xdfff:
                    uni = 0x10000 + (((uni - 0xd800) << 10) | (uni2 - 0xdc00))
                    end += 6
            char = chr(uni)
        _append(char)
    return ''.join(chunks), end


# Use speedup if available
scanstring = c_scanstring or py_scanstring

WHITESPACE = re.compile(r'[ \t\n\r]*', FLAGS)
WHITESPACE_STR = ' \t\n\r'


def JSONObject(s_and_end, strict, scan_once, object_hook, object_pairs_hook,
               memo=None, _w=WHITESPACE.match, _ws=WHITESPACE_STR):
    s, end = s_and_end
    pairs = []
    pairs_append = pairs.append
    # Backwards compatibility
    if memo is None:
        memo = {}
    memo_get = memo.setdefault
    # Use a slice to prevent IndexError from being raised, the following
    # check will raise a more specific ValueError if the string is empty
    nextchar = s[end:end + 1]
    # Normally we expect nextchar == '"'
    if nextchar != '"':
        if nextchar in _ws:
            end = _w(s, end).end()
            nextchar = s[end:end + 1]
        # Trivial empty object
        if nextchar == '}':
            if object_pairs_hook is not None:
                result = object_pairs_hook(pairs)
                return result, end + 1
            pairs = {}
            if object_hook is not None:
                pairs = object_hook(pairs)
            return pairs, end + 1
        elif nextchar != '"':
            raise ValueError(errmsg(
                "Expecting property name enclosed in double quotes", s, end))
    end += 1
    while True:
        key, end = scanstring(s, end, strict)
        key = memo_get(key, key)
        # To skip some function call overhead we optimize the fast paths where
        # the JSON key separator is ": " or just ":".
        if s[end:end + 1] != ':':
            end = _w(s, end).end()
            if s[end:end + 1] != ':':
                raise ValueError(errmsg("Expecting ':' delimiter", s, end))
        end += 1

        try:
            if s[end] in _ws:
                end += 1
                if s[end] in _ws:
                    end = _w(s, end + 1).end()
        except IndexError:
            pass

        try:
            value, end = scan_once(s, end)
        except StopIteration as err:
            raise ValueError(errmsg("Expecting value", s, err.value)) from None
        pairs_append((key, value))
        try:
            nextchar = s[end]
            if nextchar in _ws:
                end = _w(s, end + 1).end()
                nextchar = s[end]
        except IndexError:
            nextchar = ''
        end += 1

        if nextchar == '}':
            break
        elif nextchar != ',':
            raise ValueError(errmsg("Expecting ',' delimiter", s, end - 1))
        end = _w(s, end).end()
        nextchar = s[end:end + 1]
        end += 1
        if nextchar != '"':
            raise ValueError(errmsg(
                "Expecting property name enclosed in double quotes", s, end - 1))
    if object_pairs_hook is not None:
        result = object_pairs_hook(pairs)
        return result, end
    pairs = dict(pairs)
    if object_hook is not None:
        pairs = object_hook(pairs)
    return pairs, end

def JSONArray(s_and_end, scan_once, _w=WHITESPACE.match, _ws=WHITESPACE_STR):
    s, end = s_and_end
    values = []
    nextchar = s[end:end + 1]
    if nextchar in _ws:
        end = _w(s, end + 1).end()
        nextchar = s[end:end + 1]
    # Look-ahead for trivial empty array
    if nextchar == ']':
        return values, end + 1
    _append = values.append
    while True:
        try:
            value, end = scan_once(s, end)
        except StopIteration as err:
            raise ValueError(errmsg("Expecting value", s, err.value)) from None
        _append(value)
        nextchar = s[end:end + 1]
        if nextchar in _ws:
            end = _w(s, end + 1).end()
            nextchar = s[end:end + 1]
        end += 1
        if nextchar == ']':
            break
        elif nextchar != ',':
            raise ValueError(errmsg("Expecting ',' delimiter", s, end - 1))
        try:
            if s[end] in _ws:
                end += 1
                if s[end] in _ws:
                    end = _w(s, end + 1).end()
        except IndexError:
            pass

    return values, end


class JSONDecoder(object):
    """Simple JSON <http://json.org> decoder

    Performs the following translations in decoding by default:

    +---------------+-------------------+
    | JSON          | Python            |
    +===============+===================+
    | object        | dict              |
    +---------------+-------------------+
    | array         | list              |
    +---------------+-------------------+
    | string        | str               |
    +---------------+-------------------+
    | number (int)  | int               |
    +---------------+-------------------+
    | number (real) | float             |
    +---------------+-------------------+
    | true          | True              |
    +---------------+-------------------+
    | false         | False             |
    +---------------+-------------------+
    | null          | None              |
    +---------------+-------------------+

    It also understands ``NaN``, ``Infinity``, and ``-Infinity`` as
    their corresponding ``float`` values, which is outside the JSON spec.

    """

    def __init__(self, object_hook=None, parse_float=None,
            parse_int=None, parse_constant=None, strict=True,
            object_pairs_hook=None):
        """``object_hook``, if specified, will be called with the result
        of every JSON object decoded and its return value will be used in
        place of the given ``dict``.  This can be used to provide custom
        deserializations (e.g. to support JSON-RPC class hinting).

        ``object_pairs_hook``, if specified will be called with the result of
        every JSON object decoded with an ordered list of pairs.  The return
        value of ``object_pairs_hook`` will be used instead of the ``dict``.
        This feature can be used to implement custom decoders that rely on the
        order that the key and value pairs are decoded (for example,
        collections.OrderedDict will remember the order of insertion). If
        ``object_hook`` is also defined, the ``object_pairs_hook`` takes
        priority.

        ``parse_float``, if specified, will be called with the string
        of every JSON float to be decoded. By default this is equivalent to
        float(num_str). This can be used to use another datatype or parser
        for JSON floats (e.g. decimal.Decimal).

        ``parse_int``, if specified, will be called with the string
        of every JSON int to be decoded. By default this is equivalent to
        int(num_str). This can be used to use another datatype or parser
        for JSON integers (e.g. float).

        ``parse_constant``, if specified, will be called with one of the
        following strings: -Infinity, Infinity, NaN.
        This can be used to raise an exception if invalid JSON numbers
        are encountered.

        If ``strict`` is false (true is the default), then control
        characters will be allowed inside strings.  Control characters in
        this context are those with character codes in the 0-31 range,
        including ``'\\t'`` (tab), ``'\\n'``, ``'\\r'`` and ``'\\0'``.

        """
        self.object_hook = object_hook
        self.parse_float = parse_float or float
        self.parse_int = parse_int or int
        self.parse_constant = parse_constant or _CONSTANTS.__getitem__
        self.strict = strict
        self.object_pairs_hook = object_pairs_hook
        self.parse_object = JSONObject
        self.parse_array = JSONArray
        self.parse_string = scanstring
        self.memo = {}
        self.scan_once = scanner.make_scanner(self)


    def decode(self, s, _w=WHITESPACE.match):
        """Return the Python representation of ``s`` (a ``str`` instance
        containing a JSON document).

        """
        obj, end = self.raw_decode(s, idx=_w(s, 0).end())
        end = _w(s, end).end()
        if end != len(s):
            raise ValueError(errmsg("Extra data", s, end, len(s)))
        return obj

    def raw_decode(self, s, idx=0):
        """Decode a JSON document from ``s`` (a ``str`` beginning with
        a JSON document) and return a 2-tuple of the Python
        representation and the index in ``s`` where the document ended.

        This can be used to decode a JSON document from a string that may
        have extraneous data at the end.

        """
        try:
            obj, end = self.scan_once(s, idx)
        except StopIteration as err:
            raise ValueError(errmsg("Expecting value", s, err.value)) from None
        return obj, end
lib\json\encoder.py
"""Implementation of JSONEncoder
"""
import re

try:
    from _json import encode_basestring_ascii as c_encode_basestring_ascii
except ImportError:
    c_encode_basestring_ascii = None
try:
    from _json import make_encoder as c_make_encoder
except ImportError:
    c_make_encoder = None

ESCAPE = re.compile(r'[\x00-\x1f\\"\b\f\n\r\t]')
ESCAPE_ASCII = re.compile(r'([\\"]|[^\ -~])')
HAS_UTF8 = re.compile(b'[\x80-\xff]')
ESCAPE_DCT = {
    '\\': '\\\\',
    '"': '\\"',
    '\b': '\\b',
    '\f': '\\f',
    '\n': '\\n',
    '\r': '\\r',
    '\t': '\\t',
}
for i in range(0x20):
    ESCAPE_DCT.setdefault(chr(i), '\\u{0:04x}'.format(i))
    #ESCAPE_DCT.setdefault(chr(i), '\\u%04x' % (i,))

INFINITY = float('inf')
FLOAT_REPR = repr

def encode_basestring(s):
    """Return a JSON representation of a Python string

    """
    def replace(match):
        return ESCAPE_DCT[match.group(0)]
    return '"' + ESCAPE.sub(replace, s) + '"'


def py_encode_basestring_ascii(s):
    """Return an ASCII-only JSON representation of a Python string

    """
    def replace(match):
        s = match.group(0)
        try:
            return ESCAPE_DCT[s]
        except KeyError:
            n = ord(s)
            if n < 0x10000:
                return '\\u{0:04x}'.format(n)
                #return '\\u%04x' % (n,)
            else:
                # surrogate pair
                n -= 0x10000
                s1 = 0xd800 | ((n >> 10) & 0x3ff)
                s2 = 0xdc00 | (n & 0x3ff)
                return '\\u{0:04x}\\u{1:04x}'.format(s1, s2)
    return '"' + ESCAPE_ASCII.sub(replace, s) + '"'


encode_basestring_ascii = (
    c_encode_basestring_ascii or py_encode_basestring_ascii)

class JSONEncoder(object):
    """Extensible JSON <http://json.org> encoder for Python data structures.

    Supports the following objects and types by default:

    +-------------------+---------------+
    | Python            | JSON          |
    +===================+===============+
    | dict              | object        |
    +-------------------+---------------+
    | list, tuple       | array         |
    +-------------------+---------------+
    | str               | string        |
    +-------------------+---------------+
    | int, float        | number        |
    +-------------------+---------------+
    | True              | true          |
    +-------------------+---------------+
    | False             | false         |
    +-------------------+---------------+
    | None              | null          |
    +-------------------+---------------+

    To extend this to recognize other objects, subclass and implement a
    ``.default()`` method with another method that returns a serializable
    object for ``o`` if possible, otherwise it should call the superclass
    implementation (to raise ``TypeError``).

    """
    item_separator = ', '
    key_separator = ': '
    def __init__(self, skipkeys=False, ensure_ascii=True,
            check_circular=True, allow_nan=True, sort_keys=False,
            indent=None, separators=None, default=None):
        """Constructor for JSONEncoder, with sensible defaults.

        If skipkeys is false, then it is a TypeError to attempt
        encoding of keys that are not str, int, float or None.  If
        skipkeys is True, such items are simply skipped.

        If ensure_ascii is true, the output is guaranteed to be str
        objects with all incoming non-ASCII characters escaped.  If
        ensure_ascii is false, the output can contain non-ASCII characters.

        If check_circular is true, then lists, dicts, and custom encoded
        objects will be checked for circular references during encoding to
        prevent an infinite recursion (which would cause an OverflowError).
        Otherwise, no such check takes place.

        If allow_nan is true, then NaN, Infinity, and -Infinity will be
        encoded as such.  This behavior is not JSON specification compliant,
        but is consistent with most JavaScript based encoders and decoders.
        Otherwise, it will be a ValueError to encode such floats.

        If sort_keys is true, then the output of dictionaries will be
        sorted by key; this is useful for regression tests to ensure
        that JSON serializations can be compared on a day-to-day basis.

        If indent is a non-negative integer, then JSON array
        elements and object members will be pretty-printed with that
        indent level.  An indent level of 0 will only insert newlines.
        None is the most compact representation.

        If specified, separators should be an (item_separator, key_separator)
        tuple.  The default is (', ', ': ') if *indent* is ``None`` and
        (',', ': ') otherwise.  To get the most compact JSON representation,
        you should specify (',', ':') to eliminate whitespace.

        If specified, default is a function that gets called for objects
        that can't otherwise be serialized.  It should return a JSON encodable
        version of the object or raise a ``TypeError``.

        """

        self.skipkeys = skipkeys
        self.ensure_ascii = ensure_ascii
        self.check_circular = check_circular
        self.allow_nan = allow_nan
        self.sort_keys = sort_keys
        self.indent = indent
        if separators is not None:
            self.item_separator, self.key_separator = separators
        elif indent is not None:
            self.item_separator = ','
        if default is not None:
            self.default = default

    def default(self, o):
        """Implement this method in a subclass such that it returns
        a serializable object for ``o``, or calls the base implementation
        (to raise a ``TypeError``).

        For example, to support arbitrary iterators, you could
        implement default like this::

            def default(self, o):
                try:
                    iterable = iter(o)
                except TypeError:
                    pass
                else:
                    return list(iterable)
                # Let the base class default method raise the TypeError
                return JSONEncoder.default(self, o)

        """
        raise TypeError(repr(o) + " is not JSON serializable")

    def encode(self, o):
        """Return a JSON string representation of a Python data structure.

        >>> from json.encoder import JSONEncoder
        >>> JSONEncoder().encode({"foo": ["bar", "baz"]})
        '{"foo": ["bar", "baz"]}'

        """
        # This is for extremely simple cases and benchmarks.
        if isinstance(o, str):
            if self.ensure_ascii:
                return encode_basestring_ascii(o)
            else:
                return encode_basestring(o)
        # This doesn't pass the iterator directly to ''.join() because the
        # exceptions aren't as detailed.  The list call should be roughly
        # equivalent to the PySequence_Fast that ''.join() would do.
        chunks = self.iterencode(o, _one_shot=True)
        if not isinstance(chunks, (list, tuple)):
            chunks = list(chunks)
        return ''.join(chunks)

    def iterencode(self, o, _one_shot=False):
        """Encode the given object and yield each string
        representation as available.

        For example::

            for chunk in JSONEncoder().iterencode(bigobject):
                mysocket.write(chunk)

        """
        if self.check_circular:
            markers = {}
        else:
            markers = None
        if self.ensure_ascii:
            _encoder = encode_basestring_ascii
        else:
            _encoder = encode_basestring

        def floatstr(o, allow_nan=self.allow_nan,
                _repr=FLOAT_REPR, _inf=INFINITY, _neginf=-INFINITY):
            # Check for specials.  Note that this type of test is processor
            # and/or platform-specific, so do tests which don't depend on the
            # internals.

            if o != o:
                text = 'NaN'
            elif o == _inf:
                text = 'Infinity'
            elif o == _neginf:
                text = '-Infinity'
            else:
                return _repr(o)

            if not allow_nan:
                raise ValueError(
                    "Out of range float values are not JSON compliant: " +
                    repr(o))

            return text


        if (_one_shot and c_make_encoder is not None
                and self.indent is None):
            _iterencode = c_make_encoder(
                markers, self.default, _encoder, self.indent,
                self.key_separator, self.item_separator, self.sort_keys,
                self.skipkeys, self.allow_nan)
        else:
            _iterencode = _make_iterencode(
                markers, self.default, _encoder, self.indent, floatstr,
                self.key_separator, self.item_separator, self.sort_keys,
                self.skipkeys, _one_shot)
        return _iterencode(o, 0)

def _make_iterencode(markers, _default, _encoder, _indent, _floatstr,
        _key_separator, _item_separator, _sort_keys, _skipkeys, _one_shot,
        ## HACK: hand-optimized bytecode; turn globals into locals
        ValueError=ValueError,
        dict=dict,
        float=float,
        id=id,
        int=int,
        isinstance=isinstance,
        list=list,
        str=str,
        tuple=tuple,
    ):

    if _indent is not None and not isinstance(_indent, str):
        _indent = ' ' * _indent

    def _iterencode_list(lst, _current_indent_level):
        if not lst:
            yield '[]'
            return
        if markers is not None:
            markerid = id(lst)
            if markerid in markers:
                raise ValueError("Circular reference detected")
            markers[markerid] = lst
        buf = '['
        if _indent is not None:
            _current_indent_level += 1
            newline_indent = '\n' + _indent * _current_indent_level
            separator = _item_separator + newline_indent
            buf += newline_indent
        else:
            newline_indent = None
            separator = _item_separator
        first = True
        for value in lst:
            if first:
                first = False
            else:
                buf = separator
            if isinstance(value, str):
                yield buf + _encoder(value)
            elif value is None:
                yield buf + 'null'
            elif value is True:
                yield buf + 'true'
            elif value is False:
                yield buf + 'false'
            elif isinstance(value, int):
                # Subclasses of int/float may override __str__, but we still
                # want to encode them as integers/floats in JSON. One example
                # within the standard library is IntEnum.
                yield buf + str(int(value))
            elif isinstance(value, float):
                # see comment above for int
                yield buf + _floatstr(float(value))
            else:
                yield buf
                if isinstance(value, (list, tuple)):
                    chunks = _iterencode_list(value, _current_indent_level)
                elif isinstance(value, dict):
                    chunks = _iterencode_dict(value, _current_indent_level)
                else:
                    chunks = _iterencode(value, _current_indent_level)
                yield from chunks
        if newline_indent is not None:
            _current_indent_level -= 1
            yield '\n' + _indent * _current_indent_level
        yield ']'
        if markers is not None:
            del markers[markerid]

    def _iterencode_dict(dct, _current_indent_level):
        if not dct:
            yield '{}'
            return
        if markers is not None:
            markerid = id(dct)
            if markerid in markers:
                raise ValueError("Circular reference detected")
            markers[markerid] = dct
        yield '{'
        if _indent is not None:
            _current_indent_level += 1
            newline_indent = '\n' + _indent * _current_indent_level
            item_separator = _item_separator + newline_indent
            yield newline_indent
        else:
            newline_indent = None
            item_separator = _item_separator
        first = True
        if _sort_keys:
            items = sorted(dct.items(), key=lambda kv: kv[0])
        else:
            items = dct.items()
        for key, value in items:
            if isinstance(key, str):
                pass
            # JavaScript is weakly typed for these, so it makes sense to
            # also allow them.  Many encoders seem to do something like this.
            elif isinstance(key, float):
                # see comment for int/float in _make_iterencode
                key = _floatstr(float(key))
            elif key is True:
                key = 'true'
            elif key is False:
                key = 'false'
            elif key is None:
                key = 'null'
            elif isinstance(key, int):
                # see comment for int/float in _make_iterencode
                key = str(int(key))
            elif _skipkeys:
                continue
            else:
                raise TypeError("key " + repr(key) + " is not a string")
            if first:
                first = False
            else:
                yield item_separator
            yield _encoder(key)
            yield _key_separator
            if isinstance(value, str):
                yield _encoder(value)
            elif value is None:
                yield 'null'
            elif value is True:
                yield 'true'
            elif value is False:
                yield 'false'
            elif isinstance(value, int):
                # see comment for int/float in _make_iterencode
                yield str(int(value))
            elif isinstance(value, float):
                # see comment for int/float in _make_iterencode
                yield _floatstr(float(value))
            else:
                if isinstance(value, (list, tuple)):
                    chunks = _iterencode_list(value, _current_indent_level)
                elif isinstance(value, dict):
                    chunks = _iterencode_dict(value, _current_indent_level)
                else:
                    chunks = _iterencode(value, _current_indent_level)
                yield from chunks
        if newline_indent is not None:
            _current_indent_level -= 1
            yield '\n' + _indent * _current_indent_level
        yield '}'
        if markers is not None:
            del markers[markerid]

    def _iterencode(o, _current_indent_level):
        if isinstance(o, str):
            yield _encoder(o)
        elif o is None:
            yield 'null'
        elif o is True:
            yield 'true'
        elif o is False:
            yield 'false'
        elif isinstance(o, int):
            # see comment for int/float in _make_iterencode
            yield str(int(o))
        elif isinstance(o, float):
            # see comment for int/float in _make_iterencode
            yield _floatstr(float(o))
        elif isinstance(o, (list, tuple)):
            yield from _iterencode_list(o, _current_indent_level)
        elif isinstance(o, dict):
            yield from _iterencode_dict(o, _current_indent_level)
        else:
            if markers is not None:
                markerid = id(o)
                if markerid in markers:
                    raise ValueError("Circular reference detected")
                markers[markerid] = o
            o = _default(o)
            yield from _iterencode(o, _current_indent_level)
            if markers is not None:
                del markers[markerid]
    return _iterencode
lib\json\scanner.py
"""JSON token scanner
"""
import re
try:
    from _json import make_scanner as c_make_scanner
except ImportError:
    c_make_scanner = None

__all__ = ['make_scanner']

NUMBER_RE = re.compile(
    r'(-?(?:0|[1-9]\d*))(\.\d+)?([eE][-+]?\d+)?',
    (re.VERBOSE | re.MULTILINE | re.DOTALL))

def py_make_scanner(context):
    parse_object = context.parse_object
    parse_array = context.parse_array
    parse_string = context.parse_string
    match_number = NUMBER_RE.match
    strict = context.strict
    parse_float = context.parse_float
    parse_int = context.parse_int
    parse_constant = context.parse_constant
    object_hook = context.object_hook
    object_pairs_hook = context.object_pairs_hook
    memo = context.memo

    def _scan_once(string, idx):
        try:
            nextchar = string[idx]
        except IndexError:
            raise StopIteration(idx)

        if nextchar == '"':
            return parse_string(string, idx + 1, strict)
        elif nextchar == '{':
            return parse_object((string, idx + 1), strict,
                _scan_once, object_hook, object_pairs_hook, memo)
        elif nextchar == '[':
            return parse_array((string, idx + 1), _scan_once)
        elif nextchar == 'n' and string[idx:idx + 4] == 'null':
            return None, idx + 4
        elif nextchar == 't' and string[idx:idx + 4] == 'true':
            return True, idx + 4
        elif nextchar == 'f' and string[idx:idx + 5] == 'false':
            return False, idx + 5

        m = match_number(string, idx)
        if m is not None:
            integer, frac, exp = m.groups()
            if frac or exp:
                res = parse_float(integer + (frac or '') + (exp or ''))
            else:
                res = parse_int(integer)
            return res, m.end()
        elif nextchar == 'N' and string[idx:idx + 3] == 'NaN':
            return parse_constant('NaN'), idx + 3
        elif nextchar == 'I' and string[idx:idx + 8] == 'Infinity':
            return parse_constant('Infinity'), idx + 8
        elif nextchar == '-' and string[idx:idx + 9] == '-Infinity':
            return parse_constant('-Infinity'), idx + 9
        else:
            raise StopIteration(idx)

    def scan_once(string, idx):
        try:
            return _scan_once(string, idx)
        finally:
            memo.clear()

    return _scan_once

make_scanner = c_make_scanner or py_make_scanner
lib\json\tool.py
r"""Command-line tool to validate and pretty-print JSON

Usage::

    $ echo '{"json":"obj"}' | python -m json.tool
    {
        "json": "obj"
    }
    $ echo '{ 1.2:3.4}' | python -m json.tool
    Expecting property name enclosed in double quotes: line 1 column 3 (char 2)

"""
import sys
import json

def main():
    if len(sys.argv) == 1:
        infile = sys.stdin
        outfile = sys.stdout
    elif len(sys.argv) == 2:
        infile = open(sys.argv[1], 'r')
        outfile = sys.stdout
    elif len(sys.argv) == 3:
        infile = open(sys.argv[1], 'r')
        outfile = open(sys.argv[2], 'w')
    else:
        raise SystemExit(sys.argv[0] + " [infile [outfile]]")
    with infile:
        try:
            obj = json.load(infile)
        except ValueError as e:
            raise SystemExit(e)
    with outfile:
        json.dump(obj, outfile, sort_keys=True, indent=4)
        outfile.write('\n')


if __name__ == '__main__':
    main()
lib\json\__init__.py
r"""JSON (JavaScript Object Notation) <http://json.org> is a subset of
JavaScript syntax (ECMA-262 3rd edition) used as a lightweight data
interchange format.

:mod:`json` exposes an API familiar to users of the standard library
:mod:`marshal` and :mod:`pickle` modules.  It is derived from a
version of the externally maintained simplejson library.

Encoding basic Python object hierarchies::

    >>> import json
    >>> json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
    '["foo", {"bar": ["baz", null, 1.0, 2]}]'
    >>> print(json.dumps("\"foo\bar"))
    "\"foo\bar"
    >>> print(json.dumps('\u1234'))
    "\u1234"
    >>> print(json.dumps('\\'))
    "\\"
    >>> print(json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True))
    {"a": 0, "b": 0, "c": 0}
    >>> from io import StringIO
    >>> io = StringIO()
    >>> json.dump(['streaming API'], io)
    >>> io.getvalue()
    '["streaming API"]'

Compact encoding::

    >>> import json
    >>> from collections import OrderedDict
    >>> mydict = OrderedDict([('4', 5), ('6', 7)])
    >>> json.dumps([1,2,3,mydict], separators=(',', ':'))
    '[1,2,3,{"4":5,"6":7}]'

Pretty printing::

    >>> import json
    >>> print(json.dumps({'4': 5, '6': 7}, sort_keys=True, indent=4))
    {
        "4": 5,
        "6": 7
    }

Decoding JSON::

    >>> import json
    >>> obj = ['foo', {'bar': ['baz', None, 1.0, 2]}]
    >>> json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]') == obj
    True
    >>> json.loads('"\\"foo\\bar"') == '"foo\x08ar'
    True
    >>> from io import StringIO
    >>> io = StringIO('["streaming API"]')
    >>> json.load(io)[0] == 'streaming API'
    True

Specializing JSON object decoding::

    >>> import json
    >>> def as_complex(dct):
    ...     if '__complex__' in dct:
    ...         return complex(dct['real'], dct['imag'])
    ...     return dct
    ...
    >>> json.loads('{"__complex__": true, "real": 1, "imag": 2}',
    ...     object_hook=as_complex)
    (1+2j)
    >>> from decimal import Decimal
    >>> json.loads('1.1', parse_float=Decimal) == Decimal('1.1')
    True

Specializing JSON object encoding::

    >>> import json
    >>> def encode_complex(obj):
    ...     if isinstance(obj, complex):
    ...         return [obj.real, obj.imag]
    ...     raise TypeError(repr(o) + " is not JSON serializable")
    ...
    >>> json.dumps(2 + 1j, default=encode_complex)
    '[2.0, 1.0]'
    >>> json.JSONEncoder(default=encode_complex).encode(2 + 1j)
    '[2.0, 1.0]'
    >>> ''.join(json.JSONEncoder(default=encode_complex).iterencode(2 + 1j))
    '[2.0, 1.0]'


Using json.tool from the shell to validate and pretty-print::

    $ echo '{"json":"obj"}' | python -m json.tool
    {
        "json": "obj"
    }
    $ echo '{ 1.2:3.4}' | python -m json.tool
    Expecting property name enclosed in double quotes: line 1 column 3 (char 2)
"""
__version__ = '2.0.9'
__all__ = [
    'dump', 'dumps', 'load', 'loads',
    'JSONDecoder', 'JSONEncoder',
]

__author__ = 'Bob Ippolito <[email protected]>'

from .decoder import JSONDecoder
from .encoder import JSONEncoder

_default_encoder = JSONEncoder(
    skipkeys=False,
    ensure_ascii=True,
    check_circular=True,
    allow_nan=True,
    indent=None,
    separators=None,
    default=None,
)

def dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True,
        allow_nan=True, cls=None, indent=None, separators=None,
        default=None, sort_keys=False, **kw):
    """Serialize ``obj`` as a JSON formatted stream to ``fp`` (a
    ``.write()``-supporting file-like object).

    If ``skipkeys`` is true then ``dict`` keys that are not basic types
    (``str``, ``int``, ``float``, ``bool``, ``None``) will be skipped
    instead of raising a ``TypeError``.

    If ``ensure_ascii`` is false, then the strings written to ``fp`` can
    contain non-ASCII characters if they appear in strings contained in
    ``obj``. Otherwise, all such characters are escaped in JSON strings.

    If ``check_circular`` is false, then the circular reference check
    for container types will be skipped and a circular reference will
    result in an ``OverflowError`` (or worse).

    If ``allow_nan`` is false, then it will be a ``ValueError`` to
    serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``)
    in strict compliance of the JSON specification, instead of using the
    JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``).

    If ``indent`` is a non-negative integer, then JSON array elements and
    object members will be pretty-printed with that indent level. An indent
    level of 0 will only insert newlines. ``None`` is the most compact
    representation.

    If specified, ``separators`` should be an ``(item_separator, key_separator)``
    tuple.  The default is ``(', ', ': ')`` if *indent* is ``None`` and
    ``(',', ': ')`` otherwise.  To get the most compact JSON representation,
    you should specify ``(',', ':')`` to eliminate whitespace.

    ``default(obj)`` is a function that should return a serializable version
    of obj or raise TypeError. The default simply raises TypeError.

    If *sort_keys* is ``True`` (default: ``False``), then the output of
    dictionaries will be sorted by key.

    To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the
    ``.default()`` method to serialize additional types), specify it with
    the ``cls`` kwarg; otherwise ``JSONEncoder`` is used.

    """
    # cached encoder
    if (not skipkeys and ensure_ascii and
        check_circular and allow_nan and
        cls is None and indent is None and separators is None and
        default is None and not sort_keys and not kw):
        iterable = _default_encoder.iterencode(obj)
    else:
        if cls is None:
            cls = JSONEncoder
        iterable = cls(skipkeys=skipkeys, ensure_ascii=ensure_ascii,
            check_circular=check_circular, allow_nan=allow_nan, indent=indent,
            separators=separators,
            default=default, sort_keys=sort_keys, **kw).iterencode(obj)
    # could accelerate with writelines in some versions of Python, at
    # a debuggability cost
    for chunk in iterable:
        fp.write(chunk)


def dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True,
        allow_nan=True, cls=None, indent=None, separators=None,
        default=None, sort_keys=False, **kw):
    """Serialize ``obj`` to a JSON formatted ``str``.

    If ``skipkeys`` is true then ``dict`` keys that are not basic types
    (``str``, ``int``, ``float``, ``bool``, ``None``) will be skipped
    instead of raising a ``TypeError``.

    If ``ensure_ascii`` is false, then the return value can contain non-ASCII
    characters if they appear in strings contained in ``obj``. Otherwise, all
    such characters are escaped in JSON strings.

    If ``check_circular`` is false, then the circular reference check
    for container types will be skipped and a circular reference will
    result in an ``OverflowError`` (or worse).

    If ``allow_nan`` is false, then it will be a ``ValueError`` to
    serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``) in
    strict compliance of the JSON specification, instead of using the
    JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``).

    If ``indent`` is a non-negative integer, then JSON array elements and
    object members will be pretty-printed with that indent level. An indent
    level of 0 will only insert newlines. ``None`` is the most compact
    representation.

    If specified, ``separators`` should be an ``(item_separator, key_separator)``
    tuple.  The default is ``(', ', ': ')`` if *indent* is ``None`` and
    ``(',', ': ')`` otherwise.  To get the most compact JSON representation,
    you should specify ``(',', ':')`` to eliminate whitespace.

    ``default(obj)`` is a function that should return a serializable version
    of obj or raise TypeError. The default simply raises TypeError.

    If *sort_keys* is ``True`` (default: ``False``), then the output of
    dictionaries will be sorted by key.

    To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the
    ``.default()`` method to serialize additional types), specify it with
    the ``cls`` kwarg; otherwise ``JSONEncoder`` is used.

    """
    # cached encoder
    if (not skipkeys and ensure_ascii and
        check_circular and allow_nan and
        cls is None and indent is None and separators is None and
        default is None and not sort_keys and not kw):
        return _default_encoder.encode(obj)
    if cls is None:
        cls = JSONEncoder
    return cls(
        skipkeys=skipkeys, ensure_ascii=ensure_ascii,
        check_circular=check_circular, allow_nan=allow_nan, indent=indent,
        separators=separators, default=default, sort_keys=sort_keys,
        **kw).encode(obj)


_default_decoder = JSONDecoder(object_hook=None, object_pairs_hook=None)


def load(fp, cls=None, object_hook=None, parse_float=None,
        parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
    """Deserialize ``fp`` (a ``.read()``-supporting file-like object containing
    a JSON document) to a Python object.

    ``object_hook`` is an optional function that will be called with the
    result of any object literal decode (a ``dict``). The return value of
    ``object_hook`` will be used instead of the ``dict``. This feature
    can be used to implement custom decoders (e.g. JSON-RPC class hinting).

    ``object_pairs_hook`` is an optional function that will be called with the
    result of any object literal decoded with an ordered list of pairs.  The
    return value of ``object_pairs_hook`` will be used instead of the ``dict``.
    This feature can be used to implement custom decoders that rely on the
    order that the key and value pairs are decoded (for example,
    collections.OrderedDict will remember the order of insertion). If
    ``object_hook`` is also defined, the ``object_pairs_hook`` takes priority.

    To use a custom ``JSONDecoder`` subclass, specify it with the ``cls``
    kwarg; otherwise ``JSONDecoder`` is used.

    """
    return loads(fp.read(),
        cls=cls, object_hook=object_hook,
        parse_float=parse_float, parse_int=parse_int,
        parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw)


def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None,
        parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
    """Deserialize ``s`` (a ``str`` instance containing a JSON
    document) to a Python object.

    ``object_hook`` is an optional function that will be called with the
    result of any object literal decode (a ``dict``). The return value of
    ``object_hook`` will be used instead of the ``dict``. This feature
    can be used to implement custom decoders (e.g. JSON-RPC class hinting).

    ``object_pairs_hook`` is an optional function that will be called with the
    result of any object literal decoded with an ordered list of pairs.  The
    return value of ``object_pairs_hook`` will be used instead of the ``dict``.
    This feature can be used to implement custom decoders that rely on the
    order that the key and value pairs are decoded (for example,
    collections.OrderedDict will remember the order of insertion). If
    ``object_hook`` is also defined, the ``object_pairs_hook`` takes priority.

    ``parse_float``, if specified, will be called with the string
    of every JSON float to be decoded. By default this is equivalent to
    float(num_str). This can be used to use another datatype or parser
    for JSON floats (e.g. decimal.Decimal).

    ``parse_int``, if specified, will be called with the string
    of every JSON int to be decoded. By default this is equivalent to
    int(num_str). This can be used to use another datatype or parser
    for JSON integers (e.g. float).

    ``parse_constant``, if specified, will be called with one of the
    following strings: -Infinity, Infinity, NaN, null, true, false.
    This can be used to raise an exception if invalid JSON numbers
    are encountered.

    To use a custom ``JSONDecoder`` subclass, specify it with the ``cls``
    kwarg; otherwise ``JSONDecoder`` is used.

    The ``encoding`` argument is ignored and deprecated.

    """
    if not isinstance(s, str):
        raise TypeError('the JSON object must be str, not {!r}'.format(
                            s.__class__.__name__))
    if s.startswith(u'\ufeff'):
        raise ValueError("Unexpected UTF-8 BOM (decode using utf-8-sig)")
    if (cls is None and object_hook is None and
            parse_int is None and parse_float is None and
            parse_constant is None and object_pairs_hook is None and not kw):
        return _default_decoder.decode(s)
    if cls is None:
        cls = JSONDecoder
    if object_hook is not None:
        kw['object_hook'] = object_hook
    if object_pairs_hook is not None:
        kw['object_pairs_hook'] = object_pairs_hook
    if parse_float is not None:
        kw['parse_float'] = parse_float
    if parse_int is not None:
        kw['parse_int'] = parse_int
    if parse_constant is not None:
        kw['parse_constant'] = parse_constant
    return cls(**kw).decode(s)
lib\lib2to3\btm_matcher.py
"""A bottom-up tree matching algorithm implementation meant to speed
up 2to3's matching process. After the tree patterns are reduced to
their rarest linear path, a linear Aho-Corasick automaton is
created. The linear automaton traverses the linear paths from the
leaves to the root of the AST and returns a set of nodes for further
matching. This reduces significantly the number of candidate nodes."""

__author__ = "George Boutsioukis <[email protected]>"

import logging
import itertools
from collections import defaultdict

from . import pytree
from .btm_utils import reduce_tree

class BMNode(object):
    """Class for a node of the Aho-Corasick automaton used in matching"""
    count = itertools.count()
    def __init__(self):
        self.transition_table = {}
        self.fixers = []
        self.id = next(BMNode.count)
        self.content = ''

class BottomMatcher(object):
    """The main matcher class. After instantiating the patterns should
    be added using the add_fixer method"""

    def __init__(self):
        self.match = set()
        self.root = BMNode()
        self.nodes = [self.root]
        self.fixers = []
        self.logger = logging.getLogger("RefactoringTool")

    def add_fixer(self, fixer):
        """Reduces a fixer's pattern tree to a linear path and adds it
        to the matcher(a common Aho-Corasick automaton). The fixer is
        appended on the matching states and called when they are
        reached"""
        self.fixers.append(fixer)
        tree = reduce_tree(fixer.pattern_tree)
        linear = tree.get_linear_subpattern()
        match_nodes = self.add(linear, start=self.root)
        for match_node in match_nodes:
            match_node.fixers.append(fixer)

    def add(self, pattern, start):
        "Recursively adds a linear pattern to the AC automaton"
        #print("adding pattern", pattern, "to", start)
        if not pattern:
            #print("empty pattern")
            return [start]
        if isinstance(pattern[0], tuple):
            #alternatives
            #print("alternatives")
            match_nodes = []
            for alternative in pattern[0]:
                #add all alternatives, and add the rest of the pattern
                #to each end node
                end_nodes = self.add(alternative, start=start)
                for end in end_nodes:
                    match_nodes.extend(self.add(pattern[1:], end))
            return match_nodes
        else:
            #single token
            #not last
            if pattern[0] not in start.transition_table:
                #transition did not exist, create new
                next_node = BMNode()
                start.transition_table[pattern[0]] = next_node
            else:
                #transition exists already, follow
                next_node = start.transition_table[pattern[0]]

            if pattern[1:]:
                end_nodes = self.add(pattern[1:], start=next_node)
            else:
                end_nodes = [next_node]
            return end_nodes

    def run(self, leaves):
        """The main interface with the bottom matcher. The tree is
        traversed from the bottom using the constructed
        automaton. Nodes are only checked once as the tree is
        retraversed. When the automaton fails, we give it one more
        shot(in case the above tree matches as a whole with the
        rejected leaf), then we break for the next leaf. There is the
        special case of multiple arguments(see code comments) where we
        recheck the nodes

        Args:
           The leaves of the AST tree to be matched

        Returns:
           A dictionary of node matches with fixers as the keys
        """
        current_ac_node = self.root
        results = defaultdict(list)
        for leaf in leaves:
            current_ast_node = leaf
            while current_ast_node:
                current_ast_node.was_checked = True
                for child in current_ast_node.children:
                    # multiple statements, recheck
                    if isinstance(child, pytree.Leaf) and child.value == ";":
                        current_ast_node.was_checked = False
                        break
                if current_ast_node.type == 1:
                    #name
                    node_token = current_ast_node.value
                else:
                    node_token = current_ast_node.type

                if node_token in current_ac_node.transition_table:
                    #token matches
                    current_ac_node = current_ac_node.transition_table[node_token]
                    for fixer in current_ac_node.fixers:
                        if not fixer in results:
                            results[fixer] = []
                        results[fixer].append(current_ast_node)

                else:
                    #matching failed, reset automaton
                    current_ac_node = self.root
                    if (current_ast_node.parent is not None
                        and current_ast_node.parent.was_checked):
                        #the rest of the tree upwards has been checked, next leaf
                        break

                    #recheck the rejected node once from the root
                    if node_token in current_ac_node.transition_table:
                        #token matches
                        current_ac_node = current_ac_node.transition_table[node_token]
                        for fixer in current_ac_node.fixers:
                            if not fixer in results.keys():
                                results[fixer] = []
                            results[fixer].append(current_ast_node)

                current_ast_node = current_ast_node.parent
        return results

    def print_ac(self):
        "Prints a graphviz diagram of the BM automaton(for debugging)"
        print("digraph g{")
        def print_node(node):
            for subnode_key in node.transition_table.keys():
                subnode = node.transition_table[subnode_key]
                print("%d -> %d [label=%s] //%s" %
                      (node.id, subnode.id, type_repr(subnode_key), str(subnode.fixers)))
                if subnode_key == 1:
                    print(subnode.content)
                print_node(subnode)
        print_node(self.root)
        print("}")

# taken from pytree.py for debugging; only used by print_ac
_type_reprs = {}
def type_repr(type_num):
    global _type_reprs
    if not _type_reprs:
        from .pygram import python_symbols
        # printing tokens is possible but not as useful
        # from .pgen2 import token // token.__dict__.items():
        for name, val in python_symbols.__dict__.items():
            if type(val) == int: _type_reprs[val] = name
    return _type_reprs.setdefault(type_num, type_num)
lib\lib2to3\btm_utils.py
"Utility functions used by the btm_matcher module"

from . import pytree
from .pgen2 import grammar, token
from .pygram import pattern_symbols, python_symbols

syms = pattern_symbols
pysyms = python_symbols
tokens = grammar.opmap
token_labels = token

TYPE_ANY = -1
TYPE_ALTERNATIVES = -2
TYPE_GROUP = -3

class MinNode(object):
    """This class serves as an intermediate representation of the
    pattern tree during the conversion to sets of leaf-to-root
    subpatterns"""

    def __init__(self, type=None, name=None):
        self.type = type
        self.name = name
        self.children = []
        self.leaf = False
        self.parent = None
        self.alternatives = []
        self.group = []

    def __repr__(self):
        return str(self.type) + ' ' + str(self.name)

    def leaf_to_root(self):
        """Internal method. Returns a characteristic path of the
        pattern tree. This method must be run for all leaves until the
        linear subpatterns are merged into a single"""
        node = self
        subp = []
        while node:
            if node.type == TYPE_ALTERNATIVES:
                node.alternatives.append(subp)
                if len(node.alternatives) == len(node.children):
                    #last alternative
                    subp = [tuple(node.alternatives)]
                    node.alternatives = []
                    node = node.parent
                    continue
                else:
                    node = node.parent
                    subp = None
                    break

            if node.type == TYPE_GROUP:
                node.group.append(subp)
                #probably should check the number of leaves
                if len(node.group) == len(node.children):
                    subp = get_characteristic_subpattern(node.group)
                    node.group = []
                    node = node.parent
                    continue
                else:
                    node = node.parent
                    subp = None
                    break

            if node.type == token_labels.NAME and node.name:
                #in case of type=name, use the name instead
                subp.append(node.name)
            else:
                subp.append(node.type)

            node = node.parent
        return subp

    def get_linear_subpattern(self):
        """Drives the leaf_to_root method. The reason that
        leaf_to_root must be run multiple times is because we need to
        reject 'group' matches; for example the alternative form
        (a | b c) creates a group [b c] that needs to be matched. Since
        matching multiple linear patterns overcomes the automaton's
        capabilities, leaf_to_root merges each group into a single
        choice based on 'characteristic'ity,

        i.e. (a|b c) -> (a|b) if b more characteristic than c

        Returns: The most 'characteristic'(as defined by
          get_characteristic_subpattern) path for the compiled pattern
          tree.
        """

        for l in self.leaves():
            subp = l.leaf_to_root()
            if subp:
                return subp

    def leaves(self):
        "Generator that returns the leaves of the tree"
        for child in self.children:
            yield from child.leaves()
        if not self.children:
            yield self

def reduce_tree(node, parent=None):
    """
    Internal function. Reduces a compiled pattern tree to an
    intermediate representation suitable for feeding the
    automaton. This also trims off any optional pattern elements(like
    [a], a*).
    """

    new_node = None
    #switch on the node type
    if node.type == syms.Matcher:
        #skip
        node = node.children[0]

    if node.type == syms.Alternatives  :
        #2 cases
        if len(node.children) <= 2:
            #just a single 'Alternative', skip this node
            new_node = reduce_tree(node.children[0], parent)
        else:
            #real alternatives
            new_node = MinNode(type=TYPE_ALTERNATIVES)
            #skip odd children('|' tokens)
            for child in node.children:
                if node.children.index(child)%2:
                    continue
                reduced = reduce_tree(child, new_node)
                if reduced is not None:
                    new_node.children.append(reduced)
    elif node.type == syms.Alternative:
        if len(node.children) > 1:

            new_node = MinNode(type=TYPE_GROUP)
            for child in node.children:
                reduced = reduce_tree(child, new_node)
                if reduced:
                    new_node.children.append(reduced)
            if not new_node.children:
                # delete the group if all of the children were reduced to None
                new_node = None

        else:
            new_node = reduce_tree(node.children[0], parent)

    elif node.type == syms.Unit:
        if (isinstance(node.children[0], pytree.Leaf) and
            node.children[0].value == '('):
            #skip parentheses
            return reduce_tree(node.children[1], parent)
        if ((isinstance(node.children[0], pytree.Leaf) and
               node.children[0].value == '[')
               or
               (len(node.children)>1 and
               hasattr(node.children[1], "value") and
               node.children[1].value == '[')):
            #skip whole unit if its optional
            return None

        leaf = True
        details_node = None
        alternatives_node = None
        has_repeater = False
        repeater_node = None
        has_variable_name = False

        for child in node.children:
            if child.type == syms.Details:
                leaf = False
                details_node = child
            elif child.type == syms.Repeater:
                has_repeater = True
                repeater_node = child
            elif child.type == syms.Alternatives:
                alternatives_node = child
            if hasattr(child, 'value') and child.value == '=': # variable name
                has_variable_name = True

        #skip variable name
        if has_variable_name:
            #skip variable name, '='
            name_leaf = node.children[2]
            if hasattr(name_leaf, 'value') and name_leaf.value == '(':
                # skip parenthesis
                name_leaf = node.children[3]
        else:
            name_leaf = node.children[0]

        #set node type
        if name_leaf.type == token_labels.NAME:
            #(python) non-name or wildcard
            if name_leaf.value == 'any':
                new_node = MinNode(type=TYPE_ANY)
            else:
                if hasattr(token_labels, name_leaf.value):
                    new_node = MinNode(type=getattr(token_labels, name_leaf.value))
                else:
                    new_node = MinNode(type=getattr(pysyms, name_leaf.value))

        elif name_leaf.type == token_labels.STRING:
            #(python) name or character; remove the apostrophes from
            #the string value
            name = name_leaf.value.strip("'")
            if name in tokens:
                new_node = MinNode(type=tokens[name])
            else:
                new_node = MinNode(type=token_labels.NAME, name=name)
        elif name_leaf.type == syms.Alternatives:
            new_node = reduce_tree(alternatives_node, parent)

        #handle repeaters
        if has_repeater:
            if repeater_node.children[0].value == '*':
                #reduce to None
                new_node = None
            elif repeater_node.children[0].value == '+':
                #reduce to a single occurence i.e. do nothing
                pass
            else:
                #TODO: handle {min, max} repeaters
                raise NotImplementedError
                pass

        #add children
        if details_node and new_node is not None:
            for child in details_node.children[1:-1]:
                #skip '<', '>' markers
                reduced = reduce_tree(child, new_node)
                if reduced is not None:
                    new_node.children.append(reduced)
    if new_node:
        new_node.parent = parent
    return new_node


def get_characteristic_subpattern(subpatterns):
    """Picks the most characteristic from a list of linear patterns
    Current order used is:
    names > common_names > common_chars
    """
    if not isinstance(subpatterns, list):
        return subpatterns
    if len(subpatterns)==1:
        return subpatterns[0]

    # first pick out the ones containing variable names
    subpatterns_with_names = []
    subpatterns_with_common_names = []
    common_names = ['in', 'for', 'if' , 'not', 'None']
    subpatterns_with_common_chars = []
    common_chars = "[]().,:"
    for subpattern in subpatterns:
        if any(rec_test(subpattern, lambda x: type(x) is str)):
            if any(rec_test(subpattern,
                            lambda x: isinstance(x, str) and x in common_chars)):
                subpatterns_with_common_chars.append(subpattern)
            elif any(rec_test(subpattern,
                              lambda x: isinstance(x, str) and x in common_names)):
                subpatterns_with_common_names.append(subpattern)

            else:
                subpatterns_with_names.append(subpattern)

    if subpatterns_with_names:
        subpatterns = subpatterns_with_names
    elif subpatterns_with_common_names:
        subpatterns = subpatterns_with_common_names
    elif subpatterns_with_common_chars:
        subpatterns = subpatterns_with_common_chars
    # of the remaining subpatterns pick out the longest one
    return max(subpatterns, key=len)

def rec_test(sequence, test_func):
    """Tests test_func on all items of sequence and items of included
    sub-iterables"""
    for x in sequence:
        if isinstance(x, (list, tuple)):
            yield from rec_test(x, test_func)
        else:
            yield test_func(x)
lib\lib2to3\fixer_base.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Base class for fixers (optional, but recommended)."""

# Python imports
import logging
import itertools

# Local imports
from .patcomp import PatternCompiler
from . import pygram
from .fixer_util import does_tree_import

class BaseFix(object):

    """Optional base class for fixers.

    The subclass name must be FixFooBar where FooBar is the result of
    removing underscores and capitalizing the words of the fix name.
    For example, the class name for a fixer named 'has_key' should be
    FixHasKey.
    """

    PATTERN = None  # Most subclasses should override with a string literal
    pattern = None  # Compiled pattern, set by compile_pattern()
    pattern_tree = None # Tree representation of the pattern
    options = None  # Options object passed to initializer
    filename = None # The filename (set by set_filename)
    numbers = itertools.count(1) # For new_name()
    used_names = set() # A set of all used NAMEs
    order = "post" # Does the fixer prefer pre- or post-order traversal
    explicit = False # Is this ignored by refactor.py -f all?
    run_order = 5   # Fixers will be sorted by run order before execution
                    # Lower numbers will be run first.
    _accept_type = None # [Advanced and not public] This tells RefactoringTool
                        # which node type to accept when there's not a pattern.

    keep_line_order = False # For the bottom matcher: match with the
                            # original line order
    BM_compatible = False # Compatibility with the bottom matching
                          # module; every fixer should set this
                          # manually

    # Shortcut for access to Python grammar symbols
    syms = pygram.python_symbols

    def __init__(self, options, log):
        """Initializer.  Subclass may override.

        Args:
            options: an dict containing the options passed to RefactoringTool
            that could be used to customize the fixer through the command line.
            log: a list to append warnings and other messages to.
        """
        self.options = options
        self.log = log
        self.compile_pattern()

    def compile_pattern(self):
        """Compiles self.PATTERN into self.pattern.

        Subclass may override if it doesn't want to use
        self.{pattern,PATTERN} in .match().
        """
        if self.PATTERN is not None:
            PC = PatternCompiler()
            self.pattern, self.pattern_tree = PC.compile_pattern(self.PATTERN,
                                                                 with_tree=True)

    def set_filename(self, filename):
        """Set the filename.

        The main refactoring tool should call this.
        """
        self.filename = filename

    def match(self, node):
        """Returns match for a given parse tree node.

        Should return a true or false object (not necessarily a bool).
        It may return a non-empty dict of matching sub-nodes as
        returned by a matching pattern.

        Subclass may override.
        """
        results = {"node": node}
        return self.pattern.match(node, results) and results

    def transform(self, node, results):
        """Returns the transformation for a given parse tree node.

        Args:
          node: the root of the parse tree that matched the fixer.
          results: a dict mapping symbolic names to part of the match.

        Returns:
          None, or a node that is a modified copy of the
          argument node.  The node argument may also be modified in-place to
          effect the same change.

        Subclass *must* override.
        """
        raise NotImplementedError()

    def new_name(self, template="xxx_todo_changeme"):
        """Return a string suitable for use as an identifier

        The new name is guaranteed not to conflict with other identifiers.
        """
        name = template
        while name in self.used_names:
            name = template + str(next(self.numbers))
        self.used_names.add(name)
        return name

    def log_message(self, message):
        if self.first_log:
            self.first_log = False
            self.log.append("### In file %s ###" % self.filename)
        self.log.append(message)

    def cannot_convert(self, node, reason=None):
        """Warn the user that a given chunk of code is not valid Python 3,
        but that it cannot be converted automatically.

        First argument is the top-level node for the code in question.
        Optional second argument is why it can't be converted.
        """
        lineno = node.get_lineno()
        for_output = node.clone()
        for_output.prefix = ""
        msg = "Line %d: could not convert: %s"
        self.log_message(msg % (lineno, for_output))
        if reason:
            self.log_message(reason)

    def warning(self, node, reason):
        """Used for warning the user about possible uncertainty in the
        translation.

        First argument is the top-level node for the code in question.
        Optional second argument is why it can't be converted.
        """
        lineno = node.get_lineno()
        self.log_message("Line %d: %s" % (lineno, reason))

    def start_tree(self, tree, filename):
        """Some fixers need to maintain tree-wide state.
        This method is called once, at the start of tree fix-up.

        tree - the root node of the tree to be processed.
        filename - the name of the file the tree came from.
        """
        self.used_names = tree.used_names
        self.set_filename(filename)
        self.numbers = itertools.count(1)
        self.first_log = True

    def finish_tree(self, tree, filename):
        """Some fixers need to maintain tree-wide state.
        This method is called once, at the conclusion of tree fix-up.

        tree - the root node of the tree to be processed.
        filename - the name of the file the tree came from.
        """
        pass


class ConditionalFix(BaseFix):
    """ Base class for fixers which not execute if an import is found. """

    # This is the name of the import which, if found, will cause the test to be skipped
    skip_on = None

    def start_tree(self, *args):
        super(ConditionalFix, self).start_tree(*args)
        self._should_skip = None

    def should_skip(self, node):
        if self._should_skip is not None:
            return self._should_skip
        pkg = self.skip_on.split(".")
        name = pkg[-1]
        pkg = ".".join(pkg[:-1])
        self._should_skip = does_tree_import(pkg, name, node)
        return self._should_skip
lib\lib2to3\fixer_util.py
"""Utility functions, node construction macros, etc."""
# Author: Collin Winter

from itertools import islice

# Local imports
from .pgen2 import token
from .pytree import Leaf, Node
from .pygram import python_symbols as syms
from . import patcomp


###########################################################
### Common node-construction "macros"
###########################################################

def KeywordArg(keyword, value):
    return Node(syms.argument,
                [keyword, Leaf(token.EQUAL, "="), value])

def LParen():
    return Leaf(token.LPAR, "(")

def RParen():
    return Leaf(token.RPAR, ")")

def Assign(target, source):
    """Build an assignment statement"""
    if not isinstance(target, list):
        target = [target]
    if not isinstance(source, list):
        source.prefix = " "
        source = [source]

    return Node(syms.atom,
                target + [Leaf(token.EQUAL, "=", prefix=" ")] + source)

def Name(name, prefix=None):
    """Return a NAME leaf"""
    return Leaf(token.NAME, name, prefix=prefix)

def Attr(obj, attr):
    """A node tuple for obj.attr"""
    return [obj, Node(syms.trailer, [Dot(), attr])]

def Comma():
    """A comma leaf"""
    return Leaf(token.COMMA, ",")

def Dot():
    """A period (.) leaf"""
    return Leaf(token.DOT, ".")

def ArgList(args, lparen=LParen(), rparen=RParen()):
    """A parenthesised argument list, used by Call()"""
    node = Node(syms.trailer, [lparen.clone(), rparen.clone()])
    if args:
        node.insert_child(1, Node(syms.arglist, args))
    return node

def Call(func_name, args=None, prefix=None):
    """A function call"""
    node = Node(syms.power, [func_name, ArgList(args)])
    if prefix is not None:
        node.prefix = prefix
    return node

def Newline():
    """A newline literal"""
    return Leaf(token.NEWLINE, "\n")

def BlankLine():
    """A blank line"""
    return Leaf(token.NEWLINE, "")

def Number(n, prefix=None):
    return Leaf(token.NUMBER, n, prefix=prefix)

def Subscript(index_node):
    """A numeric or string subscript"""
    return Node(syms.trailer, [Leaf(token.LBRACE, "["),
                               index_node,
                               Leaf(token.RBRACE, "]")])

def String(string, prefix=None):
    """A string leaf"""
    return Leaf(token.STRING, string, prefix=prefix)

def ListComp(xp, fp, it, test=None):
    """A list comprehension of the form [xp for fp in it if test].

    If test is None, the "if test" part is omitted.
    """
    xp.prefix = ""
    fp.prefix = " "
    it.prefix = " "
    for_leaf = Leaf(token.NAME, "for")
    for_leaf.prefix = " "
    in_leaf = Leaf(token.NAME, "in")
    in_leaf.prefix = " "
    inner_args = [for_leaf, fp, in_leaf, it]
    if test:
        test.prefix = " "
        if_leaf = Leaf(token.NAME, "if")
        if_leaf.prefix = " "
        inner_args.append(Node(syms.comp_if, [if_leaf, test]))
    inner = Node(syms.listmaker, [xp, Node(syms.comp_for, inner_args)])
    return Node(syms.atom,
                       [Leaf(token.LBRACE, "["),
                        inner,
                        Leaf(token.RBRACE, "]")])

def FromImport(package_name, name_leafs):
    """ Return an import statement in the form:
        from package import name_leafs"""
    # XXX: May not handle dotted imports properly (eg, package_name='foo.bar')
    #assert package_name == '.' or '.' not in package_name, "FromImport has "\
    #       "not been tested with dotted package names -- use at your own "\
    #       "peril!"

    for leaf in name_leafs:
        # Pull the leaves out of their old tree
        leaf.remove()

    children = [Leaf(token.NAME, "from"),
                Leaf(token.NAME, package_name, prefix=" "),
                Leaf(token.NAME, "import", prefix=" "),
                Node(syms.import_as_names, name_leafs)]
    imp = Node(syms.import_from, children)
    return imp

def ImportAndCall(node, results, names):
    """Returns an import statement and calls a method
    of the module:

    import module
    module.name()"""
    obj = results["obj"].clone()
    if obj.type == syms.arglist:
        newarglist = obj.clone()
    else:
        newarglist = Node(syms.arglist, [obj.clone()])
    after = results["after"]
    if after:
        after = [n.clone() for n in after]
    new = Node(syms.power,
               Attr(Name(names[0]), Name(names[1])) +
               [Node(syms.trailer,
                     [results["lpar"].clone(),
                      newarglist,
                      results["rpar"].clone()])] + after)
    new.prefix = node.prefix
    return new


###########################################################
### Determine whether a node represents a given literal
###########################################################

def is_tuple(node):
    """Does the node represent a tuple literal?"""
    if isinstance(node, Node) and node.children == [LParen(), RParen()]:
        return True
    return (isinstance(node, Node)
            and len(node.children) == 3
            and isinstance(node.children[0], Leaf)
            and isinstance(node.children[1], Node)
            and isinstance(node.children[2], Leaf)
            and node.children[0].value == "("
            and node.children[2].value == ")")

def is_list(node):
    """Does the node represent a list literal?"""
    return (isinstance(node, Node)
            and len(node.children) > 1
            and isinstance(node.children[0], Leaf)
            and isinstance(node.children[-1], Leaf)
            and node.children[0].value == "["
            and node.children[-1].value == "]")


###########################################################
### Misc
###########################################################

def parenthesize(node):
    return Node(syms.atom, [LParen(), node, RParen()])


consuming_calls = {"sorted", "list", "set", "any", "all", "tuple", "sum",
                   "min", "max", "enumerate"}

def attr_chain(obj, attr):
    """Follow an attribute chain.

    If you have a chain of objects where a.foo -> b, b.foo-> c, etc,
    use this to iterate over all objects in the chain. Iteration is
    terminated by getattr(x, attr) is None.

    Args:
        obj: the starting object
        attr: the name of the chaining attribute

    Yields:
        Each successive object in the chain.
    """
    next = getattr(obj, attr)
    while next:
        yield next
        next = getattr(next, attr)

p0 = """for_stmt< 'for' any 'in' node=any ':' any* >
        | comp_for< 'for' any 'in' node=any any* >
     """
p1 = """
power<
    ( 'iter' | 'list' | 'tuple' | 'sorted' | 'set' | 'sum' |
      'any' | 'all' | 'enumerate' | (any* trailer< '.' 'join' >) )
    trailer< '(' node=any ')' >
    any*
>
"""
p2 = """
power<
    ( 'sorted' | 'enumerate' )
    trailer< '(' arglist<node=any any*> ')' >
    any*
>
"""
pats_built = False
def in_special_context(node):
    """ Returns true if node is in an environment where all that is required
        of it is being iterable (ie, it doesn't matter if it returns a list
        or an iterator).
        See test_map_nochange in test_fixers.py for some examples and tests.
        """
    global p0, p1, p2, pats_built
    if not pats_built:
        p0 = patcomp.compile_pattern(p0)
        p1 = patcomp.compile_pattern(p1)
        p2 = patcomp.compile_pattern(p2)
        pats_built = True
    patterns = [p0, p1, p2]
    for pattern, parent in zip(patterns, attr_chain(node, "parent")):
        results = {}
        if pattern.match(parent, results) and results["node"] is node:
            return True
    return False

def is_probably_builtin(node):
    """
    Check that something isn't an attribute or function name etc.
    """
    prev = node.prev_sibling
    if prev is not None and prev.type == token.DOT:
        # Attribute lookup.
        return False
    parent = node.parent
    if parent.type in (syms.funcdef, syms.classdef):
        return False
    if parent.type == syms.expr_stmt and parent.children[0] is node:
        # Assignment.
        return False
    if parent.type == syms.parameters or \
            (parent.type == syms.typedargslist and (
            (prev is not None and prev.type == token.COMMA) or
            parent.children[0] is node
            )):
        # The name of an argument.
        return False
    return True

def find_indentation(node):
    """Find the indentation of *node*."""
    while node is not None:
        if node.type == syms.suite and len(node.children) > 2:
            indent = node.children[1]
            if indent.type == token.INDENT:
                return indent.value
        node = node.parent
    return ""

###########################################################
### The following functions are to find bindings in a suite
###########################################################

def make_suite(node):
    if node.type == syms.suite:
        return node
    node = node.clone()
    parent, node.parent = node.parent, None
    suite = Node(syms.suite, [node])
    suite.parent = parent
    return suite

def find_root(node):
    """Find the top level namespace."""
    # Scamper up to the top level namespace
    while node.type != syms.file_input:
        node = node.parent
        if not node:
            raise ValueError("root found before file_input node was found.")
    return node

def does_tree_import(package, name, node):
    """ Returns true if name is imported from package at the
        top level of the tree which node belongs to.
        To cover the case of an import like 'import foo', use
        None for the package and 'foo' for the name. """
    binding = find_binding(name, find_root(node), package)
    return bool(binding)

def is_import(node):
    """Returns true if the node is an import statement."""
    return node.type in (syms.import_name, syms.import_from)

def touch_import(package, name, node):
    """ Works like `does_tree_import` but adds an import statement
        if it was not imported. """
    def is_import_stmt(node):
        return (node.type == syms.simple_stmt and node.children and
                is_import(node.children[0]))

    root = find_root(node)

    if does_tree_import(package, name, root):
        return

    # figure out where to insert the new import.  First try to find
    # the first import and then skip to the last one.
    insert_pos = offset = 0
    for idx, node in enumerate(root.children):
        if not is_import_stmt(node):
            continue
        for offset, node2 in enumerate(root.children[idx:]):
            if not is_import_stmt(node2):
                break
        insert_pos = idx + offset
        break

    # if there are no imports where we can insert, find the docstring.
    # if that also fails, we stick to the beginning of the file
    if insert_pos == 0:
        for idx, node in enumerate(root.children):
            if (node.type == syms.simple_stmt and node.children and
               node.children[0].type == token.STRING):
                insert_pos = idx + 1
                break

    if package is None:
        import_ = Node(syms.import_name, [
            Leaf(token.NAME, "import"),
            Leaf(token.NAME, name, prefix=" ")
        ])
    else:
        import_ = FromImport(package, [Leaf(token.NAME, name, prefix=" ")])

    children = [import_, Newline()]
    root.insert_child(insert_pos, Node(syms.simple_stmt, children))


_def_syms = {syms.classdef, syms.funcdef}
def find_binding(name, node, package=None):
    """ Returns the node which binds variable name, otherwise None.
        If optional argument package is supplied, only imports will
        be returned.
        See test cases for examples."""
    for child in node.children:
        ret = None
        if child.type == syms.for_stmt:
            if _find(name, child.children[1]):
                return child
            n = find_binding(name, make_suite(child.children[-1]), package)
            if n: ret = n
        elif child.type in (syms.if_stmt, syms.while_stmt):
            n = find_binding(name, make_suite(child.children[-1]), package)
            if n: ret = n
        elif child.type == syms.try_stmt:
            n = find_binding(name, make_suite(child.children[2]), package)
            if n:
                ret = n
            else:
                for i, kid in enumerate(child.children[3:]):
                    if kid.type == token.COLON and kid.value == ":":
                        # i+3 is the colon, i+4 is the suite
                        n = find_binding(name, make_suite(child.children[i+4]), package)
                        if n: ret = n
        elif child.type in _def_syms and child.children[1].value == name:
            ret = child
        elif _is_import_binding(child, name, package):
            ret = child
        elif child.type == syms.simple_stmt:
            ret = find_binding(name, child, package)
        elif child.type == syms.expr_stmt:
            if _find(name, child.children[0]):
                ret = child

        if ret:
            if not package:
                return ret
            if is_import(ret):
                return ret
    return None

_block_syms = {syms.funcdef, syms.classdef, syms.trailer}
def _find(name, node):
    nodes = [node]
    while nodes:
        node = nodes.pop()
        if node.type > 256 and node.type not in _block_syms:
            nodes.extend(node.children)
        elif node.type == token.NAME and node.value == name:
            return node
    return None

def _is_import_binding(node, name, package=None):
    """ Will reuturn node if node will import name, or node
        will import * from package.  None is returned otherwise.
        See test cases for examples. """

    if node.type == syms.import_name and not package:
        imp = node.children[1]
        if imp.type == syms.dotted_as_names:
            for child in imp.children:
                if child.type == syms.dotted_as_name:
                    if child.children[2].value == name:
                        return node
                elif child.type == token.NAME and child.value == name:
                    return node
        elif imp.type == syms.dotted_as_name:
            last = imp.children[-1]
            if last.type == token.NAME and last.value == name:
                return node
        elif imp.type == token.NAME and imp.value == name:
            return node
    elif node.type == syms.import_from:
        # str(...) is used to make life easier here, because
        # from a.b import parses to ['import', ['a', '.', 'b'], ...]
        if package and str(node.children[1]).strip() != package:
            return None
        n = node.children[3]
        if package and _find("as", n):
            # See test_from_import_as for explanation
            return None
        elif n.type == syms.import_as_names and _find(name, n):
            return node
        elif n.type == syms.import_as_name:
            child = n.children[2]
            if child.type == token.NAME and child.value == name:
                return node
        elif n.type == token.NAME and n.value == name:
            return node
        elif package and n.type == token.STAR:
            return node
    return None
lib\lib2to3\Grammar.txt
# Grammar for 2to3. This grammar supports Python 2.x and 3.x.

# Note:  Changing the grammar specified in this file will most likely
#        require corresponding changes in the parser module
#        (../Modules/parsermodule.c).  If you can't make the changes to
#        that module yourself, please co-ordinate the required changes
#        with someone who can; ask around on python-dev for help.  Fred
#        Drake <[email protected]> will probably be listening there.

# NOTE WELL: You should also follow all the steps listed in PEP 306,
# "How to Change Python's Grammar"

# Commands for Kees Blom's railroad program
#diagram:token NAME
#diagram:token NUMBER
#diagram:token STRING
#diagram:token NEWLINE
#diagram:token ENDMARKER
#diagram:token INDENT
#diagram:output\input python.bla
#diagram:token DEDENT
#diagram:output\textwidth 20.04cm\oddsidemargin  0.0cm\evensidemargin 0.0cm
#diagram:rules

# Start symbols for the grammar:
#	file_input is a module or sequence of commands read from an input file;
#	single_input is a single interactive statement;
#	eval_input is the input for the eval() and input() functions.
# NB: compound_stmt in single_input is followed by extra NEWLINE!
file_input: (NEWLINE | stmt)* ENDMARKER
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
eval_input: testlist NEWLINE* ENDMARKER

decorator: '@' dotted_name [ '(' [arglist] ')' ] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef)
funcdef: 'def' NAME parameters ['->' test] ':' suite
parameters: '(' [typedargslist] ')'
typedargslist: ((tfpdef ['=' test] ',')*
                ('*' [tname] (',' tname ['=' test])* [',' '**' tname] | '**' tname)
                | tfpdef ['=' test] (',' tfpdef ['=' test])* [','])
tname: NAME [':' test]
tfpdef: tname | '(' tfplist ')'
tfplist: tfpdef (',' tfpdef)* [',']
varargslist: ((vfpdef ['=' test] ',')*
              ('*' [vname] (',' vname ['=' test])*  [',' '**' vname] | '**' vname)
              | vfpdef ['=' test] (',' vfpdef ['=' test])* [','])
vname: NAME
vfpdef: vname | '(' vfplist ')'
vfplist: vfpdef (',' vfpdef)* [',']

stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
small_stmt: (expr_stmt | print_stmt  | del_stmt | pass_stmt | flow_stmt |
             import_stmt | global_stmt | exec_stmt | assert_stmt)
expr_stmt: testlist_star_expr (augassign (yield_expr|testlist) |
                     ('=' (yield_expr|testlist_star_expr))*)
testlist_star_expr: (test|star_expr) (',' (test|star_expr))* [',']
augassign: ('+=' | '-=' | '*=' | '@=' | '/=' | '%=' | '&=' | '|=' | '^=' |
            '<<=' | '>>=' | '**=' | '//=')
# For normal assignments, additional restrictions enforced by the interpreter
print_stmt: 'print' ( [ test (',' test)* [','] ] |
                      '>>' test [ (',' test)+ [','] ] )
del_stmt: 'del' exprlist
pass_stmt: 'pass'
flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: 'break'
continue_stmt: 'continue'
return_stmt: 'return' [testlist]
yield_stmt: yield_expr
raise_stmt: 'raise' [test ['from' test | ',' test [',' test]]]
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
import_from: ('from' ('.'* dotted_name | '.'+)
              'import' ('*' | '(' import_as_names ')' | import_as_names))
import_as_name: NAME ['as' NAME]
dotted_as_name: dotted_name ['as' NAME]
import_as_names: import_as_name (',' import_as_name)* [',']
dotted_as_names: dotted_as_name (',' dotted_as_name)*
dotted_name: NAME ('.' NAME)*
global_stmt: ('global' | 'nonlocal') NAME (',' NAME)*
exec_stmt: 'exec' expr ['in' test [',' test]]
assert_stmt: 'assert' test [',' test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef | classdef | decorated
if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
while_stmt: 'while' test ':' suite ['else' ':' suite]
for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]
try_stmt: ('try' ':' suite
           ((except_clause ':' suite)+
	    ['else' ':' suite]
	    ['finally' ':' suite] |
	   'finally' ':' suite))
with_stmt: 'with' with_item (',' with_item)*  ':' suite
with_item: test ['as' expr]
with_var: 'as' expr
# NB compile.c makes sure that the default except clause is last
except_clause: 'except' [test [(',' | 'as') test]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

# Backward compatibility cruft to support:
# [ x for x in lambda: True, lambda: False if x() ]
# even while also allowing:
# lambda x: 5 if x else 2
# (But not a mix of the two)
testlist_safe: old_test [(',' old_test)+ [',']]
old_test: or_test | old_lambdef
old_lambdef: 'lambda' [varargslist] ':' old_test

test: or_test ['if' or_test 'else' test] | lambdef
or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: expr (comp_op expr)*
comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
star_expr: '*' expr
expr: xor_expr ('|' xor_expr)*
xor_expr: and_expr ('^' and_expr)*
and_expr: shift_expr ('&' shift_expr)*
shift_expr: arith_expr (('<<'|'>>') arith_expr)*
arith_expr: term (('+'|'-') term)*
term: factor (('*'|'@'|'/'|'%'|'//') factor)*
factor: ('+'|'-'|'~') factor | power
power: atom trailer* ['**' factor]
atom: ('(' [yield_expr|testlist_gexp] ')' |
       '[' [listmaker] ']' |
       '{' [dictsetmaker] '}' |
       '`' testlist1 '`' |
       NAME | NUMBER | STRING+ | '.' '.' '.')
listmaker: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
testlist_gexp: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
lambdef: 'lambda' [varargslist] ':' test
trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
subscriptlist: subscript (',' subscript)* [',']
subscript: test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: (expr|star_expr) (',' (expr|star_expr))* [',']
testlist: test (',' test)* [',']
dictsetmaker: ( (test ':' test (comp_for | (',' test ':' test)* [','])) |
                (test (comp_for | (',' test)* [','])) )

classdef: 'class' NAME ['(' [arglist] ')'] ':' suite

arglist: (argument ',')* (argument [',']
                         |'*' test (',' argument)* [',' '**' test] 
                         |'**' test)
argument: test [comp_for] | test '=' test  # Really [keyword '='] test

comp_iter: comp_for | comp_if
comp_for: 'for' exprlist 'in' testlist_safe [comp_iter]
comp_if: 'if' old_test [comp_iter]

testlist1: test (',' test)*

# not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding_decl: NAME

yield_expr: 'yield' [yield_arg]
yield_arg: 'from' test | testlist
lib\lib2to3\main.py
"""
Main program for 2to3.
"""

from __future__ import with_statement, print_function

import sys
import os
import difflib
import logging
import shutil
import optparse

from . import refactor


def diff_texts(a, b, filename):
    """Return a unified diff of two strings."""
    a = a.splitlines()
    b = b.splitlines()
    return difflib.unified_diff(a, b, filename, filename,
                                "(original)", "(refactored)",
                                lineterm="")


class StdoutRefactoringTool(refactor.MultiprocessRefactoringTool):
    """
    A refactoring tool that can avoid overwriting its input files.
    Prints output to stdout.

    Output files can optionally be written to a different directory and or
    have an extra file suffix appended to their name for use in situations
    where you do not want to replace the input files.
    """

    def __init__(self, fixers, options, explicit, nobackups, show_diffs,
                 input_base_dir='', output_dir='', append_suffix=''):
        """
        Args:
            fixers: A list of fixers to import.
            options: A dict with RefactoringTool configuration.
            explicit: A list of fixers to run even if they are explicit.
            nobackups: If true no backup '.bak' files will be created for those
                files that are being refactored.
            show_diffs: Should diffs of the refactoring be printed to stdout?
            input_base_dir: The base directory for all input files.  This class
                will strip this path prefix off of filenames before substituting
                it with output_dir.  Only meaningful if output_dir is supplied.
                All files processed by refactor() must start with this path.
            output_dir: If supplied, all converted files will be written into
                this directory tree instead of input_base_dir.
            append_suffix: If supplied, all files output by this tool will have
                this appended to their filename.  Useful for changing .py to
                .py3 for example by passing append_suffix='3'.
        """
        self.nobackups = nobackups
        self.show_diffs = show_diffs
        if input_base_dir and not input_base_dir.endswith(os.sep):
            input_base_dir += os.sep
        self._input_base_dir = input_base_dir
        self._output_dir = output_dir
        self._append_suffix = append_suffix
        super(StdoutRefactoringTool, self).__init__(fixers, options, explicit)

    def log_error(self, msg, *args, **kwargs):
        self.errors.append((msg, args, kwargs))
        self.logger.error(msg, *args, **kwargs)

    def write_file(self, new_text, filename, old_text, encoding):
        orig_filename = filename
        if self._output_dir:
            if filename.startswith(self._input_base_dir):
                filename = os.path.join(self._output_dir,
                                        filename[len(self._input_base_dir):])
            else:
                raise ValueError('filename %s does not start with the '
                                 'input_base_dir %s' % (
                                         filename, self._input_base_dir))
        if self._append_suffix:
            filename += self._append_suffix
        if orig_filename != filename:
            output_dir = os.path.dirname(filename)
            if not os.path.isdir(output_dir):
                os.makedirs(output_dir)
            self.log_message('Writing converted %s to %s.', orig_filename,
                             filename)
        if not self.nobackups:
            # Make backup
            backup = filename + ".bak"
            if os.path.lexists(backup):
                try:
                    os.remove(backup)
                except OSError as err:
                    self.log_message("Can't remove backup %s", backup)
            try:
                os.rename(filename, backup)
            except OSError as err:
                self.log_message("Can't rename %s to %s", filename, backup)
        # Actually write the new file
        write = super(StdoutRefactoringTool, self).write_file
        write(new_text, filename, old_text, encoding)
        if not self.nobackups:
            shutil.copymode(backup, filename)
        if orig_filename != filename:
            # Preserve the file mode in the new output directory.
            shutil.copymode(orig_filename, filename)

    def print_output(self, old, new, filename, equal):
        if equal:
            self.log_message("No changes to %s", filename)
        else:
            self.log_message("Refactored %s", filename)
            if self.show_diffs:
                diff_lines = diff_texts(old, new, filename)
                try:
                    if self.output_lock is not None:
                        with self.output_lock:
                            for line in diff_lines:
                                print(line)
                            sys.stdout.flush()
                    else:
                        for line in diff_lines:
                            print(line)
                except UnicodeEncodeError:
                    warn("couldn't encode %s's diff for your terminal" %
                         (filename,))
                    return

def warn(msg):
    print("WARNING: %s" % (msg,), file=sys.stderr)


def main(fixer_pkg, args=None):
    """Main program.

    Args:
        fixer_pkg: the name of a package where the fixers are located.
        args: optional; a list of command line arguments. If omitted,
              sys.argv[1:] is used.

    Returns a suggested exit status (0, 1, 2).
    """
    # Set up option parser
    parser = optparse.OptionParser(usage="2to3 [options] file|dir ...")
    parser.add_option("-d", "--doctests_only", action="store_true",
                      help="Fix up doctests only")
    parser.add_option("-f", "--fix", action="append", default=[],
                      help="Each FIX specifies a transformation; default: all")
    parser.add_option("-j", "--processes", action="store", default=1,
                      type="int", help="Run 2to3 concurrently")
    parser.add_option("-x", "--nofix", action="append", default=[],
                      help="Prevent a transformation from being run")
    parser.add_option("-l", "--list-fixes", action="store_true",
                      help="List available transformations")
    parser.add_option("-p", "--print-function", action="store_true",
                      help="Modify the grammar so that print() is a function")
    parser.add_option("-v", "--verbose", action="store_true",
                      help="More verbose logging")
    parser.add_option("--no-diffs", action="store_true",
                      help="Don't show diffs of the refactoring")
    parser.add_option("-w", "--write", action="store_true",
                      help="Write back modified files")
    parser.add_option("-n", "--nobackups", action="store_true", default=False,
                      help="Don't write backups for modified files")
    parser.add_option("-o", "--output-dir", action="store", type="str",
                      default="", help="Put output files in this directory "
                      "instead of overwriting the input files.  Requires -n.")
    parser.add_option("-W", "--write-unchanged-files", action="store_true",
                      help="Also write files even if no changes were required"
                      " (useful with --output-dir); implies -w.")
    parser.add_option("--add-suffix", action="store", type="str", default="",
                      help="Append this string to all output filenames."
                      " Requires -n if non-empty.  "
                      "ex: --add-suffix='3' will generate .py3 files.")

    # Parse command line arguments
    refactor_stdin = False
    flags = {}
    options, args = parser.parse_args(args)
    if options.write_unchanged_files:
        flags["write_unchanged_files"] = True
        if not options.write:
            warn("--write-unchanged-files/-W implies -w.")
        options.write = True
    # If we allowed these, the original files would be renamed to backup names
    # but not replaced.
    if options.output_dir and not options.nobackups:
        parser.error("Can't use --output-dir/-o without -n.")
    if options.add_suffix and not options.nobackups:
        parser.error("Can't use --add-suffix without -n.")

    if not options.write and options.no_diffs:
        warn("not writing files and not printing diffs; that's not very useful")
    if not options.write and options.nobackups:
        parser.error("Can't use -n without -w")
    if options.list_fixes:
        print("Available transformations for the -f/--fix option:")
        for fixname in refactor.get_all_fix_names(fixer_pkg):
            print(fixname)
        if not args:
            return 0
    if not args:
        print("At least one file or directory argument required.", file=sys.stderr)
        print("Use --help to show usage.", file=sys.stderr)
        return 2
    if "-" in args:
        refactor_stdin = True
        if options.write:
            print("Can't write to stdin.", file=sys.stderr)
            return 2
    if options.print_function:
        flags["print_function"] = True

    # Set up logging handler
    level = logging.DEBUG if options.verbose else logging.INFO
    logging.basicConfig(format='%(name)s: %(message)s', level=level)
    logger = logging.getLogger('lib2to3.main')

    # Initialize the refactoring tool
    avail_fixes = set(refactor.get_fixers_from_package(fixer_pkg))
    unwanted_fixes = set(fixer_pkg + ".fix_" + fix for fix in options.nofix)
    explicit = set()
    if options.fix:
        all_present = False
        for fix in options.fix:
            if fix == "all":
                all_present = True
            else:
                explicit.add(fixer_pkg + ".fix_" + fix)
        requested = avail_fixes.union(explicit) if all_present else explicit
    else:
        requested = avail_fixes.union(explicit)
    fixer_names = requested.difference(unwanted_fixes)
    input_base_dir = os.path.commonprefix(args)
    if (input_base_dir and not input_base_dir.endswith(os.sep)
        and not os.path.isdir(input_base_dir)):
        # One or more similar names were passed, their directory is the base.
        # os.path.commonprefix() is ignorant of path elements, this corrects
        # for that weird API.
        input_base_dir = os.path.dirname(input_base_dir)
    if options.output_dir:
        input_base_dir = input_base_dir.rstrip(os.sep)
        logger.info('Output in %r will mirror the input directory %r layout.',
                    options.output_dir, input_base_dir)
    rt = StdoutRefactoringTool(
            sorted(fixer_names), flags, sorted(explicit),
            options.nobackups, not options.no_diffs,
            input_base_dir=input_base_dir,
            output_dir=options.output_dir,
            append_suffix=options.add_suffix)

    # Refactor all files and directories passed as arguments
    if not rt.errors:
        if refactor_stdin:
            rt.refactor_stdin()
        else:
            try:
                rt.refactor(args, options.write, options.doctests_only,
                            options.processes)
            except refactor.MultiprocessingUnsupported:
                assert options.processes > 1
                print("Sorry, -j isn't supported on this platform.",
                      file=sys.stderr)
                return 1
        rt.summarize()

    # Return error status (0 if rt.errors is zero)
    return int(bool(rt.errors))
lib\lib2to3\patcomp.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Pattern compiler.

The grammer is taken from PatternGrammar.txt.

The compiler compiles a pattern to a pytree.*Pattern instance.
"""

__author__ = "Guido van Rossum <[email protected]>"

# Python imports
import io
import os

# Fairly local imports
from .pgen2 import driver, literals, token, tokenize, parse, grammar

# Really local imports
from . import pytree
from . import pygram

# The pattern grammar file
_PATTERN_GRAMMAR_FILE = os.path.join(os.path.dirname(__file__),
                                     "PatternGrammar.txt")


class PatternSyntaxError(Exception):
    pass


def tokenize_wrapper(input):
    """Tokenizes a string suppressing significant whitespace."""
    skip = {token.NEWLINE, token.INDENT, token.DEDENT}
    tokens = tokenize.generate_tokens(io.StringIO(input).readline)
    for quintuple in tokens:
        type, value, start, end, line_text = quintuple
        if type not in skip:
            yield quintuple


class PatternCompiler(object):

    def __init__(self, grammar_file=_PATTERN_GRAMMAR_FILE):
        """Initializer.

        Takes an optional alternative filename for the pattern grammar.
        """
        self.grammar = driver.load_grammar(grammar_file)
        self.syms = pygram.Symbols(self.grammar)
        self.pygrammar = pygram.python_grammar
        self.pysyms = pygram.python_symbols
        self.driver = driver.Driver(self.grammar, convert=pattern_convert)

    def compile_pattern(self, input, debug=False, with_tree=False):
        """Compiles a pattern string to a nested pytree.*Pattern object."""
        tokens = tokenize_wrapper(input)
        try:
            root = self.driver.parse_tokens(tokens, debug=debug)
        except parse.ParseError as e:
            raise PatternSyntaxError(str(e))
        if with_tree:
            return self.compile_node(root), root
        else:
            return self.compile_node(root)

    def compile_node(self, node):
        """Compiles a node, recursively.

        This is one big switch on the node type.
        """
        # XXX Optimize certain Wildcard-containing-Wildcard patterns
        # that can be merged
        if node.type == self.syms.Matcher:
            node = node.children[0] # Avoid unneeded recursion

        if node.type == self.syms.Alternatives:
            # Skip the odd children since they are just '|' tokens
            alts = [self.compile_node(ch) for ch in node.children[::2]]
            if len(alts) == 1:
                return alts[0]
            p = pytree.WildcardPattern([[a] for a in alts], min=1, max=1)
            return p.optimize()

        if node.type == self.syms.Alternative:
            units = [self.compile_node(ch) for ch in node.children]
            if len(units) == 1:
                return units[0]
            p = pytree.WildcardPattern([units], min=1, max=1)
            return p.optimize()

        if node.type == self.syms.NegatedUnit:
            pattern = self.compile_basic(node.children[1:])
            p = pytree.NegatedPattern(pattern)
            return p.optimize()

        assert node.type == self.syms.Unit

        name = None
        nodes = node.children
        if len(nodes) >= 3 and nodes[1].type == token.EQUAL:
            name = nodes[0].value
            nodes = nodes[2:]
        repeat = None
        if len(nodes) >= 2 and nodes[-1].type == self.syms.Repeater:
            repeat = nodes[-1]
            nodes = nodes[:-1]

        # Now we've reduced it to: STRING | NAME [Details] | (...) | [...]
        pattern = self.compile_basic(nodes, repeat)

        if repeat is not None:
            assert repeat.type == self.syms.Repeater
            children = repeat.children
            child = children[0]
            if child.type == token.STAR:
                min = 0
                max = pytree.HUGE
            elif child.type == token.PLUS:
                min = 1
                max = pytree.HUGE
            elif child.type == token.LBRACE:
                assert children[-1].type == token.RBRACE
                assert  len(children) in (3, 5)
                min = max = self.get_int(children[1])
                if len(children) == 5:
                    max = self.get_int(children[3])
            else:
                assert False
            if min != 1 or max != 1:
                pattern = pattern.optimize()
                pattern = pytree.WildcardPattern([[pattern]], min=min, max=max)

        if name is not None:
            pattern.name = name
        return pattern.optimize()

    def compile_basic(self, nodes, repeat=None):
        # Compile STRING | NAME [Details] | (...) | [...]
        assert len(nodes) >= 1
        node = nodes[0]
        if node.type == token.STRING:
            value = str(literals.evalString(node.value))
            return pytree.LeafPattern(_type_of_literal(value), value)
        elif node.type == token.NAME:
            value = node.value
            if value.isupper():
                if value not in TOKEN_MAP:
                    raise PatternSyntaxError("Invalid token: %r" % value)
                if nodes[1:]:
                    raise PatternSyntaxError("Can't have details for token")
                return pytree.LeafPattern(TOKEN_MAP[value])
            else:
                if value == "any":
                    type = None
                elif not value.startswith("_"):
                    type = getattr(self.pysyms, value, None)
                    if type is None:
                        raise PatternSyntaxError("Invalid symbol: %r" % value)
                if nodes[1:]: # Details present
                    content = [self.compile_node(nodes[1].children[1])]
                else:
                    content = None
                return pytree.NodePattern(type, content)
        elif node.value == "(":
            return self.compile_node(nodes[1])
        elif node.value == "[":
            assert repeat is None
            subpattern = self.compile_node(nodes[1])
            return pytree.WildcardPattern([[subpattern]], min=0, max=1)
        assert False, node

    def get_int(self, node):
        assert node.type == token.NUMBER
        return int(node.value)


# Map named tokens to the type value for a LeafPattern
TOKEN_MAP = {"NAME": token.NAME,
             "STRING": token.STRING,
             "NUMBER": token.NUMBER,
             "TOKEN": None}


def _type_of_literal(value):
    if value[0].isalpha():
        return token.NAME
    elif value in grammar.opmap:
        return grammar.opmap[value]
    else:
        return None


def pattern_convert(grammar, raw_node_info):
    """Converts raw node information to a Node or Leaf instance."""
    type, value, context, children = raw_node_info
    if children or type in grammar.number2symbol:
        return pytree.Node(type, children, context=context)
    else:
        return pytree.Leaf(type, value, context=context)


def compile_pattern(pattern):
    return PatternCompiler().compile_pattern(pattern)
lib\lib2to3\PatternGrammar.txt
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

# A grammar to describe tree matching patterns.
# Not shown here:
# - 'TOKEN' stands for any token (leaf node)
# - 'any' stands for any node (leaf or interior)
# With 'any' we can still specify the sub-structure.

# The start symbol is 'Matcher'.

Matcher: Alternatives ENDMARKER

Alternatives: Alternative ('|' Alternative)*

Alternative: (Unit | NegatedUnit)+

Unit: [NAME '='] ( STRING [Repeater]
                 | NAME [Details] [Repeater]
                 | '(' Alternatives ')' [Repeater]
                 | '[' Alternatives ']'
		 )

NegatedUnit: 'not' (STRING | NAME [Details] | '(' Alternatives ')')

Repeater: '*' | '+' | '{' NUMBER [',' NUMBER] '}'

Details: '<' Alternatives '>'
lib\lib2to3\pygram.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Export the Python grammar and symbols."""

# Python imports
import os

# Local imports
from .pgen2 import token
from .pgen2 import driver
from . import pytree

# The grammar file
_GRAMMAR_FILE = os.path.join(os.path.dirname(__file__), "Grammar.txt")
_PATTERN_GRAMMAR_FILE = os.path.join(os.path.dirname(__file__),
                                     "PatternGrammar.txt")


class Symbols(object):

    def __init__(self, grammar):
        """Initializer.

        Creates an attribute for each grammar symbol (nonterminal),
        whose value is the symbol's type (an int >= 256).
        """
        for name, symbol in grammar.symbol2number.items():
            setattr(self, name, symbol)


python_grammar = driver.load_grammar(_GRAMMAR_FILE)

python_symbols = Symbols(python_grammar)

python_grammar_no_print_statement = python_grammar.copy()
del python_grammar_no_print_statement.keywords["print"]

pattern_grammar = driver.load_grammar(_PATTERN_GRAMMAR_FILE)
pattern_symbols = Symbols(pattern_grammar)
lib\lib2to3\pytree.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""
Python parse tree definitions.

This is a very concrete parse tree; we need to keep every token and
even the comments and whitespace between tokens.

There's also a pattern matching implementation here.
"""

__author__ = "Guido van Rossum <[email protected]>"

import sys
import warnings
from io import StringIO

HUGE = 0x7FFFFFFF  # maximum repeat count, default max

_type_reprs = {}
def type_repr(type_num):
    global _type_reprs
    if not _type_reprs:
        from .pygram import python_symbols
        # printing tokens is possible but not as useful
        # from .pgen2 import token // token.__dict__.items():
        for name, val in python_symbols.__dict__.items():
            if type(val) == int: _type_reprs[val] = name
    return _type_reprs.setdefault(type_num, type_num)

class Base(object):

    """
    Abstract base class for Node and Leaf.

    This provides some default functionality and boilerplate using the
    template pattern.

    A node may be a subnode of at most one parent.
    """

    # Default values for instance variables
    type = None    # int: token number (< 256) or symbol number (>= 256)
    parent = None  # Parent node pointer, or None
    children = ()  # Tuple of subnodes
    was_changed = False
    was_checked = False

    def __new__(cls, *args, **kwds):
        """Constructor that prevents Base from being instantiated."""
        assert cls is not Base, "Cannot instantiate Base"
        return object.__new__(cls)

    def __eq__(self, other):
        """
        Compare two nodes for equality.

        This calls the method _eq().
        """
        if self.__class__ is not other.__class__:
            return NotImplemented
        return self._eq(other)

    __hash__ = None # For Py3 compatibility.

    def _eq(self, other):
        """
        Compare two nodes for equality.

        This is called by __eq__ and __ne__.  It is only called if the two nodes
        have the same type.  This must be implemented by the concrete subclass.
        Nodes should be considered equal if they have the same structure,
        ignoring the prefix string and other context information.
        """
        raise NotImplementedError

    def clone(self):
        """
        Return a cloned (deep) copy of self.

        This must be implemented by the concrete subclass.
        """
        raise NotImplementedError

    def post_order(self):
        """
        Return a post-order iterator for the tree.

        This must be implemented by the concrete subclass.
        """
        raise NotImplementedError

    def pre_order(self):
        """
        Return a pre-order iterator for the tree.

        This must be implemented by the concrete subclass.
        """
        raise NotImplementedError

    def replace(self, new):
        """Replace this node with a new one in the parent."""
        assert self.parent is not None, str(self)
        assert new is not None
        if not isinstance(new, list):
            new = [new]
        l_children = []
        found = False
        for ch in self.parent.children:
            if ch is self:
                assert not found, (self.parent.children, self, new)
                if new is not None:
                    l_children.extend(new)
                found = True
            else:
                l_children.append(ch)
        assert found, (self.children, self, new)
        self.parent.changed()
        self.parent.children = l_children
        for x in new:
            x.parent = self.parent
        self.parent = None

    def get_lineno(self):
        """Return the line number which generated the invocant node."""
        node = self
        while not isinstance(node, Leaf):
            if not node.children:
                return
            node = node.children[0]
        return node.lineno

    def changed(self):
        if self.parent:
            self.parent.changed()
        self.was_changed = True

    def remove(self):
        """
        Remove the node from the tree. Returns the position of the node in its
        parent's children before it was removed.
        """
        if self.parent:
            for i, node in enumerate(self.parent.children):
                if node is self:
                    self.parent.changed()
                    del self.parent.children[i]
                    self.parent = None
                    return i

    @property
    def next_sibling(self):
        """
        The node immediately following the invocant in their parent's children
        list. If the invocant does not have a next sibling, it is None
        """
        if self.parent is None:
            return None

        # Can't use index(); we need to test by identity
        for i, child in enumerate(self.parent.children):
            if child is self:
                try:
                    return self.parent.children[i+1]
                except IndexError:
                    return None

    @property
    def prev_sibling(self):
        """
        The node immediately preceding the invocant in their parent's children
        list. If the invocant does not have a previous sibling, it is None.
        """
        if self.parent is None:
            return None

        # Can't use index(); we need to test by identity
        for i, child in enumerate(self.parent.children):
            if child is self:
                if i == 0:
                    return None
                return self.parent.children[i-1]

    def leaves(self):
        for child in self.children:
            yield from child.leaves()

    def depth(self):
        if self.parent is None:
            return 0
        return 1 + self.parent.depth()

    def get_suffix(self):
        """
        Return the string immediately following the invocant node. This is
        effectively equivalent to node.next_sibling.prefix
        """
        next_sib = self.next_sibling
        if next_sib is None:
            return ""
        return next_sib.prefix

    if sys.version_info < (3, 0):
        def __str__(self):
            return str(self).encode("ascii")

class Node(Base):

    """Concrete implementation for interior nodes."""

    def __init__(self,type, children,
                 context=None,
                 prefix=None,
                 fixers_applied=None):
        """
        Initializer.

        Takes a type constant (a symbol number >= 256), a sequence of
        child nodes, and an optional context keyword argument.

        As a side effect, the parent pointers of the children are updated.
        """
        assert type >= 256, type
        self.type = type
        self.children = list(children)
        for ch in self.children:
            assert ch.parent is None, repr(ch)
            ch.parent = self
        if prefix is not None:
            self.prefix = prefix
        if fixers_applied:
            self.fixers_applied = fixers_applied[:]
        else:
            self.fixers_applied = None

    def __repr__(self):
        """Return a canonical string representation."""
        return "%s(%s, %r)" % (self.__class__.__name__,
                               type_repr(self.type),
                               self.children)

    def __unicode__(self):
        """
        Return a pretty string representation.

        This reproduces the input source exactly.
        """
        return "".join(map(str, self.children))

    if sys.version_info > (3, 0):
        __str__ = __unicode__

    def _eq(self, other):
        """Compare two nodes for equality."""
        return (self.type, self.children) == (other.type, other.children)

    def clone(self):
        """Return a cloned (deep) copy of self."""
        return Node(self.type, [ch.clone() for ch in self.children],
                    fixers_applied=self.fixers_applied)

    def post_order(self):
        """Return a post-order iterator for the tree."""
        for child in self.children:
            yield from child.post_order()
        yield self

    def pre_order(self):
        """Return a pre-order iterator for the tree."""
        yield self
        for child in self.children:
            yield from child.pre_order()

    def _prefix_getter(self):
        """
        The whitespace and comments preceding this node in the input.
        """
        if not self.children:
            return ""
        return self.children[0].prefix

    def _prefix_setter(self, prefix):
        if self.children:
            self.children[0].prefix = prefix

    prefix = property(_prefix_getter, _prefix_setter)

    def set_child(self, i, child):
        """
        Equivalent to 'node.children[i] = child'. This method also sets the
        child's parent attribute appropriately.
        """
        child.parent = self
        self.children[i].parent = None
        self.children[i] = child
        self.changed()

    def insert_child(self, i, child):
        """
        Equivalent to 'node.children.insert(i, child)'. This method also sets
        the child's parent attribute appropriately.
        """
        child.parent = self
        self.children.insert(i, child)
        self.changed()

    def append_child(self, child):
        """
        Equivalent to 'node.children.append(child)'. This method also sets the
        child's parent attribute appropriately.
        """
        child.parent = self
        self.children.append(child)
        self.changed()


class Leaf(Base):

    """Concrete implementation for leaf nodes."""

    # Default values for instance variables
    _prefix = ""  # Whitespace and comments preceding this token in the input
    lineno = 0    # Line where this token starts in the input
    column = 0    # Column where this token tarts in the input

    def __init__(self, type, value,
                 context=None,
                 prefix=None,
                 fixers_applied=[]):
        """
        Initializer.

        Takes a type constant (a token number < 256), a string value, and an
        optional context keyword argument.
        """
        assert 0 <= type < 256, type
        if context is not None:
            self._prefix, (self.lineno, self.column) = context
        self.type = type
        self.value = value
        if prefix is not None:
            self._prefix = prefix
        self.fixers_applied = fixers_applied[:]

    def __repr__(self):
        """Return a canonical string representation."""
        return "%s(%r, %r)" % (self.__class__.__name__,
                               self.type,
                               self.value)

    def __unicode__(self):
        """
        Return a pretty string representation.

        This reproduces the input source exactly.
        """
        return self.prefix + str(self.value)

    if sys.version_info > (3, 0):
        __str__ = __unicode__

    def _eq(self, other):
        """Compare two nodes for equality."""
        return (self.type, self.value) == (other.type, other.value)

    def clone(self):
        """Return a cloned (deep) copy of self."""
        return Leaf(self.type, self.value,
                    (self.prefix, (self.lineno, self.column)),
                    fixers_applied=self.fixers_applied)

    def leaves(self):
        yield self

    def post_order(self):
        """Return a post-order iterator for the tree."""
        yield self

    def pre_order(self):
        """Return a pre-order iterator for the tree."""
        yield self

    def _prefix_getter(self):
        """
        The whitespace and comments preceding this token in the input.
        """
        return self._prefix

    def _prefix_setter(self, prefix):
        self.changed()
        self._prefix = prefix

    prefix = property(_prefix_getter, _prefix_setter)

def convert(gr, raw_node):
    """
    Convert raw node information to a Node or Leaf instance.

    This is passed to the parser driver which calls it whenever a reduction of a
    grammar rule produces a new complete node, so that the tree is build
    strictly bottom-up.
    """
    type, value, context, children = raw_node
    if children or type in gr.number2symbol:
        # If there's exactly one child, return that child instead of
        # creating a new node.
        if len(children) == 1:
            return children[0]
        return Node(type, children, context=context)
    else:
        return Leaf(type, value, context=context)


class BasePattern(object):

    """
    A pattern is a tree matching pattern.

    It looks for a specific node type (token or symbol), and
    optionally for a specific content.

    This is an abstract base class.  There are three concrete
    subclasses:

    - LeafPattern matches a single leaf node;
    - NodePattern matches a single node (usually non-leaf);
    - WildcardPattern matches a sequence of nodes of variable length.
    """

    # Defaults for instance variables
    type = None     # Node type (token if < 256, symbol if >= 256)
    content = None  # Optional content matching pattern
    name = None     # Optional name used to store match in results dict

    def __new__(cls, *args, **kwds):
        """Constructor that prevents BasePattern from being instantiated."""
        assert cls is not BasePattern, "Cannot instantiate BasePattern"
        return object.__new__(cls)

    def __repr__(self):
        args = [type_repr(self.type), self.content, self.name]
        while args and args[-1] is None:
            del args[-1]
        return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, args)))

    def optimize(self):
        """
        A subclass can define this as a hook for optimizations.

        Returns either self or another node with the same effect.
        """
        return self

    def match(self, node, results=None):
        """
        Does this pattern exactly match a node?

        Returns True if it matches, False if not.

        If results is not None, it must be a dict which will be
        updated with the nodes matching named subpatterns.

        Default implementation for non-wildcard patterns.
        """
        if self.type is not None and node.type != self.type:
            return False
        if self.content is not None:
            r = None
            if results is not None:
                r = {}
            if not self._submatch(node, r):
                return False
            if r:
                results.update(r)
        if results is not None and self.name:
            results[self.name] = node
        return True

    def match_seq(self, nodes, results=None):
        """
        Does this pattern exactly match a sequence of nodes?

        Default implementation for non-wildcard patterns.
        """
        if len(nodes) != 1:
            return False
        return self.match(nodes[0], results)

    def generate_matches(self, nodes):
        """
        Generator yielding all matches for this pattern.

        Default implementation for non-wildcard patterns.
        """
        r = {}
        if nodes and self.match(nodes[0], r):
            yield 1, r


class LeafPattern(BasePattern):

    def __init__(self, type=None, content=None, name=None):
        """
        Initializer.  Takes optional type, content, and name.

        The type, if given must be a token type (< 256).  If not given,
        this matches any *leaf* node; the content may still be required.

        The content, if given, must be a string.

        If a name is given, the matching node is stored in the results
        dict under that key.
        """
        if type is not None:
            assert 0 <= type < 256, type
        if content is not None:
            assert isinstance(content, str), repr(content)
        self.type = type
        self.content = content
        self.name = name

    def match(self, node, results=None):
        """Override match() to insist on a leaf node."""
        if not isinstance(node, Leaf):
            return False
        return BasePattern.match(self, node, results)

    def _submatch(self, node, results=None):
        """
        Match the pattern's content to the node's children.

        This assumes the node type matches and self.content is not None.

        Returns True if it matches, False if not.

        If results is not None, it must be a dict which will be
        updated with the nodes matching named subpatterns.

        When returning False, the results dict may still be updated.
        """
        return self.content == node.value


class NodePattern(BasePattern):

    wildcards = False

    def __init__(self, type=None, content=None, name=None):
        """
        Initializer.  Takes optional type, content, and name.

        The type, if given, must be a symbol type (>= 256).  If the
        type is None this matches *any* single node (leaf or not),
        except if content is not None, in which it only matches
        non-leaf nodes that also match the content pattern.

        The content, if not None, must be a sequence of Patterns that
        must match the node's children exactly.  If the content is
        given, the type must not be None.

        If a name is given, the matching node is stored in the results
        dict under that key.
        """
        if type is not None:
            assert type >= 256, type
        if content is not None:
            assert not isinstance(content, str), repr(content)
            content = list(content)
            for i, item in enumerate(content):
                assert isinstance(item, BasePattern), (i, item)
                if isinstance(item, WildcardPattern):
                    self.wildcards = True
        self.type = type
        self.content = content
        self.name = name

    def _submatch(self, node, results=None):
        """
        Match the pattern's content to the node's children.

        This assumes the node type matches and self.content is not None.

        Returns True if it matches, False if not.

        If results is not None, it must be a dict which will be
        updated with the nodes matching named subpatterns.

        When returning False, the results dict may still be updated.
        """
        if self.wildcards:
            for c, r in generate_matches(self.content, node.children):
                if c == len(node.children):
                    if results is not None:
                        results.update(r)
                    return True
            return False
        if len(self.content) != len(node.children):
            return False
        for subpattern, child in zip(self.content, node.children):
            if not subpattern.match(child, results):
                return False
        return True


class WildcardPattern(BasePattern):

    """
    A wildcard pattern can match zero or more nodes.

    This has all the flexibility needed to implement patterns like:

    .*      .+      .?      .{m,n}
    (a b c | d e | f)
    (...)*  (...)+  (...)?  (...){m,n}

    except it always uses non-greedy matching.
    """

    def __init__(self, content=None, min=0, max=HUGE, name=None):
        """
        Initializer.

        Args:
            content: optional sequence of subsequences of patterns;
                     if absent, matches one node;
                     if present, each subsequence is an alternative [*]
            min: optional minimum number of times to match, default 0
            max: optional maximum number of times to match, default HUGE
            name: optional name assigned to this match

        [*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is
            equivalent to (a b c | d e | f g h); if content is None,
            this is equivalent to '.' in regular expression terms.
            The min and max parameters work as follows:
                min=0, max=maxint: .*
                min=1, max=maxint: .+
                min=0, max=1: .?
                min=1, max=1: .
            If content is not None, replace the dot with the parenthesized
            list of alternatives, e.g. (a b c | d e | f g h)*
        """
        assert 0 <= min <= max <= HUGE, (min, max)
        if content is not None:
            content = tuple(map(tuple, content))  # Protect against alterations
            # Check sanity of alternatives
            assert len(content), repr(content)  # Can't have zero alternatives
            for alt in content:
                assert len(alt), repr(alt) # Can have empty alternatives
        self.content = content
        self.min = min
        self.max = max
        self.name = name

    def optimize(self):
        """Optimize certain stacked wildcard patterns."""
        subpattern = None
        if (self.content is not None and
            len(self.content) == 1 and len(self.content[0]) == 1):
            subpattern = self.content[0][0]
        if self.min == 1 and self.max == 1:
            if self.content is None:
                return NodePattern(name=self.name)
            if subpattern is not None and  self.name == subpattern.name:
                return subpattern.optimize()
        if (self.min <= 1 and isinstance(subpattern, WildcardPattern) and
            subpattern.min <= 1 and self.name == subpattern.name):
            return WildcardPattern(subpattern.content,
                                   self.min*subpattern.min,
                                   self.max*subpattern.max,
                                   subpattern.name)
        return self

    def match(self, node, results=None):
        """Does this pattern exactly match a node?"""
        return self.match_seq([node], results)

    def match_seq(self, nodes, results=None):
        """Does this pattern exactly match a sequence of nodes?"""
        for c, r in self.generate_matches(nodes):
            if c == len(nodes):
                if results is not None:
                    results.update(r)
                    if self.name:
                        results[self.name] = list(nodes)
                return True
        return False

    def generate_matches(self, nodes):
        """
        Generator yielding matches for a sequence of nodes.

        Args:
            nodes: sequence of nodes

        Yields:
            (count, results) tuples where:
            count: the match comprises nodes[:count];
            results: dict containing named submatches.
        """
        if self.content is None:
            # Shortcut for special case (see __init__.__doc__)
            for count in range(self.min, 1 + min(len(nodes), self.max)):
                r = {}
                if self.name:
                    r[self.name] = nodes[:count]
                yield count, r
        elif self.name == "bare_name":
            yield self._bare_name_matches(nodes)
        else:
            # The reason for this is that hitting the recursion limit usually
            # results in some ugly messages about how RuntimeErrors are being
            # ignored. We only have to do this on CPython, though, because other
            # implementations don't have this nasty bug in the first place.
            if hasattr(sys, "getrefcount"):
                save_stderr = sys.stderr
                sys.stderr = StringIO()
            try:
                for count, r in self._recursive_matches(nodes, 0):
                    if self.name:
                        r[self.name] = nodes[:count]
                    yield count, r
            except RuntimeError:
                # We fall back to the iterative pattern matching scheme if the recursive
                # scheme hits the recursion limit.
                for count, r in self._iterative_matches(nodes):
                    if self.name:
                        r[self.name] = nodes[:count]
                    yield count, r
            finally:
                if hasattr(sys, "getrefcount"):
                    sys.stderr = save_stderr

    def _iterative_matches(self, nodes):
        """Helper to iteratively yield the matches."""
        nodelen = len(nodes)
        if 0 >= self.min:
            yield 0, {}

        results = []
        # generate matches that use just one alt from self.content
        for alt in self.content:
            for c, r in generate_matches(alt, nodes):
                yield c, r
                results.append((c, r))

        # for each match, iterate down the nodes
        while results:
            new_results = []
            for c0, r0 in results:
                # stop if the entire set of nodes has been matched
                if c0 < nodelen and c0 <= self.max:
                    for alt in self.content:
                        for c1, r1 in generate_matches(alt, nodes[c0:]):
                            if c1 > 0:
                                r = {}
                                r.update(r0)
                                r.update(r1)
                                yield c0 + c1, r
                                new_results.append((c0 + c1, r))
            results = new_results

    def _bare_name_matches(self, nodes):
        """Special optimized matcher for bare_name."""
        count = 0
        r = {}
        done = False
        max = len(nodes)
        while not done and count < max:
            done = True
            for leaf in self.content:
                if leaf[0].match(nodes[count], r):
                    count += 1
                    done = False
                    break
        r[self.name] = nodes[:count]
        return count, r

    def _recursive_matches(self, nodes, count):
        """Helper to recursively yield the matches."""
        assert self.content is not None
        if count >= self.min:
            yield 0, {}
        if count < self.max:
            for alt in self.content:
                for c0, r0 in generate_matches(alt, nodes):
                    for c1, r1 in self._recursive_matches(nodes[c0:], count+1):
                        r = {}
                        r.update(r0)
                        r.update(r1)
                        yield c0 + c1, r


class NegatedPattern(BasePattern):

    def __init__(self, content=None):
        """
        Initializer.

        The argument is either a pattern or None.  If it is None, this
        only matches an empty sequence (effectively '$' in regex
        lingo).  If it is not None, this matches whenever the argument
        pattern doesn't have any matches.
        """
        if content is not None:
            assert isinstance(content, BasePattern), repr(content)
        self.content = content

    def match(self, node):
        # We never match a node in its entirety
        return False

    def match_seq(self, nodes):
        # We only match an empty sequence of nodes in its entirety
        return len(nodes) == 0

    def generate_matches(self, nodes):
        if self.content is None:
            # Return a match if there is an empty sequence
            if len(nodes) == 0:
                yield 0, {}
        else:
            # Return a match if the argument pattern has no matches
            for c, r in self.content.generate_matches(nodes):
                return
            yield 0, {}


def generate_matches(patterns, nodes):
    """
    Generator yielding matches for a sequence of patterns and nodes.

    Args:
        patterns: a sequence of patterns
        nodes: a sequence of nodes

    Yields:
        (count, results) tuples where:
        count: the entire sequence of patterns matches nodes[:count];
        results: dict containing named submatches.
        """
    if not patterns:
        yield 0, {}
    else:
        p, rest = patterns[0], patterns[1:]
        for c0, r0 in p.generate_matches(nodes):
            if not rest:
                yield c0, r0
            else:
                for c1, r1 in generate_matches(rest, nodes[c0:]):
                    r = {}
                    r.update(r0)
                    r.update(r1)
                    yield c0 + c1, r
lib\lib2to3\refactor.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Refactoring framework.

Used as a main program, this can refactor any number of files and/or
recursively descend down directories.  Imported as a module, this
provides infrastructure to write your own refactoring tool.
"""

from __future__ import with_statement

__author__ = "Guido van Rossum <[email protected]>"


# Python imports
import os
import sys
import logging
import operator
import collections
import io
from itertools import chain

# Local imports
from .pgen2 import driver, tokenize, token
from .fixer_util import find_root
from . import pytree, pygram
from . import btm_utils as bu
from . import btm_matcher as bm


def get_all_fix_names(fixer_pkg, remove_prefix=True):
    """Return a sorted list of all available fix names in the given package."""
    pkg = __import__(fixer_pkg, [], [], ["*"])
    fixer_dir = os.path.dirname(pkg.__file__)
    fix_names = []
    for name in sorted(os.listdir(fixer_dir)):
        if name.startswith("fix_") and name.endswith(".py"):
            if remove_prefix:
                name = name[4:]
            fix_names.append(name[:-3])
    return fix_names


class _EveryNode(Exception):
    pass


def _get_head_types(pat):
    """ Accepts a pytree Pattern Node and returns a set
        of the pattern types which will match first. """

    if isinstance(pat, (pytree.NodePattern, pytree.LeafPattern)):
        # NodePatters must either have no type and no content
        #   or a type and content -- so they don't get any farther
        # Always return leafs
        if pat.type is None:
            raise _EveryNode
        return {pat.type}

    if isinstance(pat, pytree.NegatedPattern):
        if pat.content:
            return _get_head_types(pat.content)
        raise _EveryNode # Negated Patterns don't have a type

    if isinstance(pat, pytree.WildcardPattern):
        # Recurse on each node in content
        r = set()
        for p in pat.content:
            for x in p:
                r.update(_get_head_types(x))
        return r

    raise Exception("Oh no! I don't understand pattern %s" %(pat))


def _get_headnode_dict(fixer_list):
    """ Accepts a list of fixers and returns a dictionary
        of head node type --> fixer list.  """
    head_nodes = collections.defaultdict(list)
    every = []
    for fixer in fixer_list:
        if fixer.pattern:
            try:
                heads = _get_head_types(fixer.pattern)
            except _EveryNode:
                every.append(fixer)
            else:
                for node_type in heads:
                    head_nodes[node_type].append(fixer)
        else:
            if fixer._accept_type is not None:
                head_nodes[fixer._accept_type].append(fixer)
            else:
                every.append(fixer)
    for node_type in chain(pygram.python_grammar.symbol2number.values(),
                           pygram.python_grammar.tokens):
        head_nodes[node_type].extend(every)
    return dict(head_nodes)


def get_fixers_from_package(pkg_name):
    """
    Return the fully qualified names for fixers in the package pkg_name.
    """
    return [pkg_name + "." + fix_name
            for fix_name in get_all_fix_names(pkg_name, False)]

def _identity(obj):
    return obj

if sys.version_info < (3, 0):
    import codecs
    _open_with_encoding = codecs.open
    # codecs.open doesn't translate newlines sadly.
    def _from_system_newlines(input):
        return input.replace("\r\n", "\n")
    def _to_system_newlines(input):
        if os.linesep != "\n":
            return input.replace("\n", os.linesep)
        else:
            return input
else:
    _open_with_encoding = open
    _from_system_newlines = _identity
    _to_system_newlines = _identity


def _detect_future_features(source):
    have_docstring = False
    gen = tokenize.generate_tokens(io.StringIO(source).readline)
    def advance():
        tok = next(gen)
        return tok[0], tok[1]
    ignore = frozenset({token.NEWLINE, tokenize.NL, token.COMMENT})
    features = set()
    try:
        while True:
            tp, value = advance()
            if tp in ignore:
                continue
            elif tp == token.STRING:
                if have_docstring:
                    break
                have_docstring = True
            elif tp == token.NAME and value == "from":
                tp, value = advance()
                if tp != token.NAME or value != "__future__":
                    break
                tp, value = advance()
                if tp != token.NAME or value != "import":
                    break
                tp, value = advance()
                if tp == token.OP and value == "(":
                    tp, value = advance()
                while tp == token.NAME:
                    features.add(value)
                    tp, value = advance()
                    if tp != token.OP or value != ",":
                        break
                    tp, value = advance()
            else:
                break
    except StopIteration:
        pass
    return frozenset(features)


class FixerError(Exception):
    """A fixer could not be loaded."""


class RefactoringTool(object):

    _default_options = {"print_function" : False,
                        "write_unchanged_files" : False}

    CLASS_PREFIX = "Fix" # The prefix for fixer classes
    FILE_PREFIX = "fix_" # The prefix for modules with a fixer within

    def __init__(self, fixer_names, options=None, explicit=None):
        """Initializer.

        Args:
            fixer_names: a list of fixers to import
            options: an dict with configuration.
            explicit: a list of fixers to run even if they are explicit.
        """
        self.fixers = fixer_names
        self.explicit = explicit or []
        self.options = self._default_options.copy()
        if options is not None:
            self.options.update(options)
        if self.options["print_function"]:
            self.grammar = pygram.python_grammar_no_print_statement
        else:
            self.grammar = pygram.python_grammar
        # When this is True, the refactor*() methods will call write_file() for
        # files processed even if they were not changed during refactoring. If
        # and only if the refactor method's write parameter was True.
        self.write_unchanged_files = self.options.get("write_unchanged_files")
        self.errors = []
        self.logger = logging.getLogger("RefactoringTool")
        self.fixer_log = []
        self.wrote = False
        self.driver = driver.Driver(self.grammar,
                                    convert=pytree.convert,
                                    logger=self.logger)
        self.pre_order, self.post_order = self.get_fixers()


        self.files = []  # List of files that were or should be modified

        self.BM = bm.BottomMatcher()
        self.bmi_pre_order = [] # Bottom Matcher incompatible fixers
        self.bmi_post_order = []

        for fixer in chain(self.post_order, self.pre_order):
            if fixer.BM_compatible:
                self.BM.add_fixer(fixer)
                # remove fixers that will be handled by the bottom-up
                # matcher
            elif fixer in self.pre_order:
                self.bmi_pre_order.append(fixer)
            elif fixer in self.post_order:
                self.bmi_post_order.append(fixer)

        self.bmi_pre_order_heads = _get_headnode_dict(self.bmi_pre_order)
        self.bmi_post_order_heads = _get_headnode_dict(self.bmi_post_order)



    def get_fixers(self):
        """Inspects the options to load the requested patterns and handlers.

        Returns:
          (pre_order, post_order), where pre_order is the list of fixers that
          want a pre-order AST traversal, and post_order is the list that want
          post-order traversal.
        """
        pre_order_fixers = []
        post_order_fixers = []
        for fix_mod_path in self.fixers:
            mod = __import__(fix_mod_path, {}, {}, ["*"])
            fix_name = fix_mod_path.rsplit(".", 1)[-1]
            if fix_name.startswith(self.FILE_PREFIX):
                fix_name = fix_name[len(self.FILE_PREFIX):]
            parts = fix_name.split("_")
            class_name = self.CLASS_PREFIX + "".join([p.title() for p in parts])
            try:
                fix_class = getattr(mod, class_name)
            except AttributeError:
                raise FixerError("Can't find %s.%s" % (fix_name, class_name))
            fixer = fix_class(self.options, self.fixer_log)
            if fixer.explicit and self.explicit is not True and \
                    fix_mod_path not in self.explicit:
                self.log_message("Skipping optional fixer: %s", fix_name)
                continue

            self.log_debug("Adding transformation: %s", fix_name)
            if fixer.order == "pre":
                pre_order_fixers.append(fixer)
            elif fixer.order == "post":
                post_order_fixers.append(fixer)
            else:
                raise FixerError("Illegal fixer order: %r" % fixer.order)

        key_func = operator.attrgetter("run_order")
        pre_order_fixers.sort(key=key_func)
        post_order_fixers.sort(key=key_func)
        return (pre_order_fixers, post_order_fixers)

    def log_error(self, msg, *args, **kwds):
        """Called when an error occurs."""
        raise

    def log_message(self, msg, *args):
        """Hook to log a message."""
        if args:
            msg = msg % args
        self.logger.info(msg)

    def log_debug(self, msg, *args):
        if args:
            msg = msg % args
        self.logger.debug(msg)

    def print_output(self, old_text, new_text, filename, equal):
        """Called with the old version, new version, and filename of a
        refactored file."""
        pass

    def refactor(self, items, write=False, doctests_only=False):
        """Refactor a list of files and directories."""

        for dir_or_file in items:
            if os.path.isdir(dir_or_file):
                self.refactor_dir(dir_or_file, write, doctests_only)
            else:
                self.refactor_file(dir_or_file, write, doctests_only)

    def refactor_dir(self, dir_name, write=False, doctests_only=False):
        """Descends down a directory and refactor every Python file found.

        Python files are assumed to have a .py extension.

        Files and subdirectories starting with '.' are skipped.
        """
        py_ext = os.extsep + "py"
        for dirpath, dirnames, filenames in os.walk(dir_name):
            self.log_debug("Descending into %s", dirpath)
            dirnames.sort()
            filenames.sort()
            for name in filenames:
                if (not name.startswith(".") and
                    os.path.splitext(name)[1] == py_ext):
                    fullname = os.path.join(dirpath, name)
                    self.refactor_file(fullname, write, doctests_only)
            # Modify dirnames in-place to remove subdirs with leading dots
            dirnames[:] = [dn for dn in dirnames if not dn.startswith(".")]

    def _read_python_source(self, filename):
        """
        Do our best to decode a Python source file correctly.
        """
        try:
            f = open(filename, "rb")
        except OSError as err:
            self.log_error("Can't open %s: %s", filename, err)
            return None, None
        try:
            encoding = tokenize.detect_encoding(f.readline)[0]
        finally:
            f.close()
        with _open_with_encoding(filename, "r", encoding=encoding) as f:
            return _from_system_newlines(f.read()), encoding

    def refactor_file(self, filename, write=False, doctests_only=False):
        """Refactors a file."""
        input, encoding = self._read_python_source(filename)
        if input is None:
            # Reading the file failed.
            return
        input += "\n" # Silence certain parse errors
        if doctests_only:
            self.log_debug("Refactoring doctests in %s", filename)
            output = self.refactor_docstring(input, filename)
            if self.write_unchanged_files or output != input:
                self.processed_file(output, filename, input, write, encoding)
            else:
                self.log_debug("No doctest changes in %s", filename)
        else:
            tree = self.refactor_string(input, filename)
            if self.write_unchanged_files or (tree and tree.was_changed):
                # The [:-1] is to take off the \n we added earlier
                self.processed_file(str(tree)[:-1], filename,
                                    write=write, encoding=encoding)
            else:
                self.log_debug("No changes in %s", filename)

    def refactor_string(self, data, name):
        """Refactor a given input string.

        Args:
            data: a string holding the code to be refactored.
            name: a human-readable name for use in error/log messages.

        Returns:
            An AST corresponding to the refactored input stream; None if
            there were errors during the parse.
        """
        features = _detect_future_features(data)
        if "print_function" in features:
            self.driver.grammar = pygram.python_grammar_no_print_statement
        try:
            tree = self.driver.parse_string(data)
        except Exception as err:
            self.log_error("Can't parse %s: %s: %s",
                           name, err.__class__.__name__, err)
            return
        finally:
            self.driver.grammar = self.grammar
        tree.future_features = features
        self.log_debug("Refactoring %s", name)
        self.refactor_tree(tree, name)
        return tree

    def refactor_stdin(self, doctests_only=False):
        input = sys.stdin.read()
        if doctests_only:
            self.log_debug("Refactoring doctests in stdin")
            output = self.refactor_docstring(input, "<stdin>")
            if self.write_unchanged_files or output != input:
                self.processed_file(output, "<stdin>", input)
            else:
                self.log_debug("No doctest changes in stdin")
        else:
            tree = self.refactor_string(input, "<stdin>")
            if self.write_unchanged_files or (tree and tree.was_changed):
                self.processed_file(str(tree), "<stdin>", input)
            else:
                self.log_debug("No changes in stdin")

    def refactor_tree(self, tree, name):
        """Refactors a parse tree (modifying the tree in place).

        For compatible patterns the bottom matcher module is
        used. Otherwise the tree is traversed node-to-node for
        matches.

        Args:
            tree: a pytree.Node instance representing the root of the tree
                  to be refactored.
            name: a human-readable name for this tree.

        Returns:
            True if the tree was modified, False otherwise.
        """

        for fixer in chain(self.pre_order, self.post_order):
            fixer.start_tree(tree, name)

        #use traditional matching for the incompatible fixers
        self.traverse_by(self.bmi_pre_order_heads, tree.pre_order())
        self.traverse_by(self.bmi_post_order_heads, tree.post_order())

        # obtain a set of candidate nodes
        match_set = self.BM.run(tree.leaves())

        while any(match_set.values()):
            for fixer in self.BM.fixers:
                if fixer in match_set and match_set[fixer]:
                    #sort by depth; apply fixers from bottom(of the AST) to top
                    match_set[fixer].sort(key=pytree.Base.depth, reverse=True)

                    if fixer.keep_line_order:
                        #some fixers(eg fix_imports) must be applied
                        #with the original file's line order
                        match_set[fixer].sort(key=pytree.Base.get_lineno)

                    for node in list(match_set[fixer]):
                        if node in match_set[fixer]:
                            match_set[fixer].remove(node)

                        try:
                            find_root(node)
                        except ValueError:
                            # this node has been cut off from a
                            # previous transformation ; skip
                            continue

                        if node.fixers_applied and fixer in node.fixers_applied:
                            # do not apply the same fixer again
                            continue

                        results = fixer.match(node)

                        if results:
                            new = fixer.transform(node, results)
                            if new is not None:
                                node.replace(new)
                                #new.fixers_applied.append(fixer)
                                for node in new.post_order():
                                    # do not apply the fixer again to
                                    # this or any subnode
                                    if not node.fixers_applied:
                                        node.fixers_applied = []
                                    node.fixers_applied.append(fixer)

                                # update the original match set for
                                # the added code
                                new_matches = self.BM.run(new.leaves())
                                for fxr in new_matches:
                                    if not fxr in match_set:
                                        match_set[fxr]=[]

                                    match_set[fxr].extend(new_matches[fxr])

        for fixer in chain(self.pre_order, self.post_order):
            fixer.finish_tree(tree, name)
        return tree.was_changed

    def traverse_by(self, fixers, traversal):
        """Traverse an AST, applying a set of fixers to each node.

        This is a helper method for refactor_tree().

        Args:
            fixers: a list of fixer instances.
            traversal: a generator that yields AST nodes.

        Returns:
            None
        """
        if not fixers:
            return
        for node in traversal:
            for fixer in fixers[node.type]:
                results = fixer.match(node)
                if results:
                    new = fixer.transform(node, results)
                    if new is not None:
                        node.replace(new)
                        node = new

    def processed_file(self, new_text, filename, old_text=None, write=False,
                       encoding=None):
        """
        Called when a file has been refactored and there may be changes.
        """
        self.files.append(filename)
        if old_text is None:
            old_text = self._read_python_source(filename)[0]
            if old_text is None:
                return
        equal = old_text == new_text
        self.print_output(old_text, new_text, filename, equal)
        if equal:
            self.log_debug("No changes to %s", filename)
            if not self.write_unchanged_files:
                return
        if write:
            self.write_file(new_text, filename, old_text, encoding)
        else:
            self.log_debug("Not writing changes to %s", filename)

    def write_file(self, new_text, filename, old_text, encoding=None):
        """Writes a string to a file.

        It first shows a unified diff between the old text and the new text, and
        then rewrites the file; the latter is only done if the write option is
        set.
        """
        try:
            f = _open_with_encoding(filename, "w", encoding=encoding)
        except OSError as err:
            self.log_error("Can't create %s: %s", filename, err)
            return
        try:
            f.write(_to_system_newlines(new_text))
        except OSError as err:
            self.log_error("Can't write %s: %s", filename, err)
        finally:
            f.close()
        self.log_debug("Wrote changes to %s", filename)
        self.wrote = True

    PS1 = ">>> "
    PS2 = "... "

    def refactor_docstring(self, input, filename):
        """Refactors a docstring, looking for doctests.

        This returns a modified version of the input string.  It looks
        for doctests, which start with a ">>>" prompt, and may be
        continued with "..." prompts, as long as the "..." is indented
        the same as the ">>>".

        (Unfortunately we can't use the doctest module's parser,
        since, like most parsers, it is not geared towards preserving
        the original source.)
        """
        result = []
        block = None
        block_lineno = None
        indent = None
        lineno = 0
        for line in input.splitlines(keepends=True):
            lineno += 1
            if line.lstrip().startswith(self.PS1):
                if block is not None:
                    result.extend(self.refactor_doctest(block, block_lineno,
                                                        indent, filename))
                block_lineno = lineno
                block = [line]
                i = line.find(self.PS1)
                indent = line[:i]
            elif (indent is not None and
                  (line.startswith(indent + self.PS2) or
                   line == indent + self.PS2.rstrip() + "\n")):
                block.append(line)
            else:
                if block is not None:
                    result.extend(self.refactor_doctest(block, block_lineno,
                                                        indent, filename))
                block = None
                indent = None
                result.append(line)
        if block is not None:
            result.extend(self.refactor_doctest(block, block_lineno,
                                                indent, filename))
        return "".join(result)

    def refactor_doctest(self, block, lineno, indent, filename):
        """Refactors one doctest.

        A doctest is given as a block of lines, the first of which starts
        with ">>>" (possibly indented), while the remaining lines start
        with "..." (identically indented).

        """
        try:
            tree = self.parse_block(block, lineno, indent)
        except Exception as err:
            if self.logger.isEnabledFor(logging.DEBUG):
                for line in block:
                    self.log_debug("Source: %s", line.rstrip("\n"))
            self.log_error("Can't parse docstring in %s line %s: %s: %s",
                           filename, lineno, err.__class__.__name__, err)
            return block
        if self.refactor_tree(tree, filename):
            new = str(tree).splitlines(keepends=True)
            # Undo the adjustment of the line numbers in wrap_toks() below.
            clipped, new = new[:lineno-1], new[lineno-1:]
            assert clipped == ["\n"] * (lineno-1), clipped
            if not new[-1].endswith("\n"):
                new[-1] += "\n"
            block = [indent + self.PS1 + new.pop(0)]
            if new:
                block += [indent + self.PS2 + line for line in new]
        return block

    def summarize(self):
        if self.wrote:
            were = "were"
        else:
            were = "need to be"
        if not self.files:
            self.log_message("No files %s modified.", were)
        else:
            self.log_message("Files that %s modified:", were)
            for file in self.files:
                self.log_message(file)
        if self.fixer_log:
            self.log_message("Warnings/messages while refactoring:")
            for message in self.fixer_log:
                self.log_message(message)
        if self.errors:
            if len(self.errors) == 1:
                self.log_message("There was 1 error:")
            else:
                self.log_message("There were %d errors:", len(self.errors))
            for msg, args, kwds in self.errors:
                self.log_message(msg, *args, **kwds)

    def parse_block(self, block, lineno, indent):
        """Parses a block into a tree.

        This is necessary to get correct line number / offset information
        in the parser diagnostics and embedded into the parse tree.
        """
        tree = self.driver.parse_tokens(self.wrap_toks(block, lineno, indent))
        tree.future_features = frozenset()
        return tree

    def wrap_toks(self, block, lineno, indent):
        """Wraps a tokenize stream to systematically modify start/end."""
        tokens = tokenize.generate_tokens(self.gen_lines(block, indent).__next__)
        for type, value, (line0, col0), (line1, col1), line_text in tokens:
            line0 += lineno - 1
            line1 += lineno - 1
            # Don't bother updating the columns; this is too complicated
            # since line_text would also have to be updated and it would
            # still break for tokens spanning lines.  Let the user guess
            # that the column numbers for doctests are relative to the
            # end of the prompt string (PS1 or PS2).
            yield type, value, (line0, col0), (line1, col1), line_text


    def gen_lines(self, block, indent):
        """Generates lines as expected by tokenize from a list of lines.

        This strips the first len(indent + self.PS1) characters off each line.
        """
        prefix1 = indent + self.PS1
        prefix2 = indent + self.PS2
        prefix = prefix1
        for line in block:
            if line.startswith(prefix):
                yield line[len(prefix):]
            elif line == prefix.rstrip() + "\n":
                yield "\n"
            else:
                raise AssertionError("line=%r, prefix=%r" % (line, prefix))
            prefix = prefix2
        while True:
            yield ""


class MultiprocessingUnsupported(Exception):
    pass


class MultiprocessRefactoringTool(RefactoringTool):

    def __init__(self, *args, **kwargs):
        super(MultiprocessRefactoringTool, self).__init__(*args, **kwargs)
        self.queue = None
        self.output_lock = None

    def refactor(self, items, write=False, doctests_only=False,
                 num_processes=1):
        if num_processes == 1:
            return super(MultiprocessRefactoringTool, self).refactor(
                items, write, doctests_only)
        try:
            import multiprocessing
        except ImportError:
            raise MultiprocessingUnsupported
        if self.queue is not None:
            raise RuntimeError("already doing multiple processes")
        self.queue = multiprocessing.JoinableQueue()
        self.output_lock = multiprocessing.Lock()
        processes = [multiprocessing.Process(target=self._child)
                     for i in range(num_processes)]
        try:
            for p in processes:
                p.start()
            super(MultiprocessRefactoringTool, self).refactor(items, write,
                                                              doctests_only)
        finally:
            self.queue.join()
            for i in range(num_processes):
                self.queue.put(None)
            for p in processes:
                if p.is_alive():
                    p.join()
            self.queue = None

    def _child(self):
        task = self.queue.get()
        while task is not None:
            args, kwargs = task
            try:
                super(MultiprocessRefactoringTool, self).refactor_file(
                    *args, **kwargs)
            finally:
                self.queue.task_done()
            task = self.queue.get()

    def refactor_file(self, *args, **kwargs):
        if self.queue is not None:
            self.queue.put((args, kwargs))
        else:
            return super(MultiprocessRefactoringTool, self).refactor_file(
                *args, **kwargs)
lib\lib2to3\__init__.py
#empty
lib\lib2to3\__main__.py
import sys
from .main import main

sys.exit(main("lib2to3.fixes"))
lib\lib2to3\fixes\fix_apply.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for apply().

This converts apply(func, v, k) into (func)(*v, **k)."""

# Local imports
from .. import pytree
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Call, Comma, parenthesize

class FixApply(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    power< 'apply'
        trailer<
            '('
            arglist<
                (not argument<NAME '=' any>) func=any ','
                (not argument<NAME '=' any>) args=any [','
                (not argument<NAME '=' any>) kwds=any] [',']
            >
            ')'
        >
    >
    """

    def transform(self, node, results):
        syms = self.syms
        assert results
        func = results["func"]
        args = results["args"]
        kwds = results.get("kwds")
        prefix = node.prefix
        func = func.clone()
        if (func.type not in (token.NAME, syms.atom) and
            (func.type != syms.power or
             func.children[-2].type == token.DOUBLESTAR)):
            # Need to parenthesize
            func = parenthesize(func)
        func.prefix = ""
        args = args.clone()
        args.prefix = ""
        if kwds is not None:
            kwds = kwds.clone()
            kwds.prefix = ""
        l_newargs = [pytree.Leaf(token.STAR, "*"), args]
        if kwds is not None:
            l_newargs.extend([Comma(),
                              pytree.Leaf(token.DOUBLESTAR, "**"),
                              kwds])
            l_newargs[-2].prefix = " " # that's the ** token
        # XXX Sometimes we could be cleverer, e.g. apply(f, (x, y) + t)
        # can be translated into f(x, y, *t) instead of f(*(x, y) + t)
        #new = pytree.Node(syms.power, (func, ArgList(l_newargs)))
        return Call(func, l_newargs, prefix=prefix)
lib\lib2to3\fixes\fix_asserts.py
"""Fixer that replaces deprecated unittest method names."""

# Author: Ezio Melotti

from ..fixer_base import BaseFix
from ..fixer_util import Name

NAMES = dict(
    assert_="assertTrue",
    assertEquals="assertEqual",
    assertNotEquals="assertNotEqual",
    assertAlmostEquals="assertAlmostEqual",
    assertNotAlmostEquals="assertNotAlmostEqual",
    assertRegexpMatches="assertRegex",
    assertRaisesRegexp="assertRaisesRegex",
    failUnlessEqual="assertEqual",
    failIfEqual="assertNotEqual",
    failUnlessAlmostEqual="assertAlmostEqual",
    failIfAlmostEqual="assertNotAlmostEqual",
    failUnless="assertTrue",
    failUnlessRaises="assertRaises",
    failIf="assertFalse",
)


class FixAsserts(BaseFix):

    PATTERN = """
              power< any+ trailer< '.' meth=(%s)> any* >
              """ % '|'.join(map(repr, NAMES))

    def transform(self, node, results):
        name = results["meth"][0]
        name.replace(Name(NAMES[str(name)], prefix=name.prefix))
lib\lib2to3\fixes\fix_basestring.py
"""Fixer for basestring -> str."""
# Author: Christian Heimes

# Local imports
from .. import fixer_base
from ..fixer_util import Name

class FixBasestring(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = "'basestring'"

    def transform(self, node, results):
        return Name("str", prefix=node.prefix)
lib\lib2to3\fixes\fix_buffer.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer that changes buffer(...) into memoryview(...)."""

# Local imports
from .. import fixer_base
from ..fixer_util import Name


class FixBuffer(fixer_base.BaseFix):
    BM_compatible = True

    explicit = True # The user must ask for this fixer

    PATTERN = """
              power< name='buffer' trailer< '(' [any] ')' > any* >
              """

    def transform(self, node, results):
        name = results["name"]
        name.replace(Name("memoryview", prefix=name.prefix))
lib\lib2to3\fixes\fix_callable.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for callable().

This converts callable(obj) into isinstance(obj, collections.Callable), adding a
collections import if needed."""

# Local imports
from lib2to3 import fixer_base
from lib2to3.fixer_util import Call, Name, String, Attr, touch_import

class FixCallable(fixer_base.BaseFix):
    BM_compatible = True

    order = "pre"

    # Ignore callable(*args) or use of keywords.
    # Either could be a hint that the builtin callable() is not being used.
    PATTERN = """
    power< 'callable'
           trailer< lpar='('
                    ( not(arglist | argument<any '=' any>) func=any
                      | func=arglist<(not argument<any '=' any>) any ','> )
                    rpar=')' >
           after=any*
    >
    """

    def transform(self, node, results):
        func = results['func']

        touch_import(None, 'collections', node=node)

        args = [func.clone(), String(', ')]
        args.extend(Attr(Name('collections'), Name('Callable')))
        return Call(Name('isinstance'), args, prefix=node.prefix)
lib\lib2to3\fixes\fix_dict.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for dict methods.

d.keys() -> list(d.keys())
d.items() -> list(d.items())
d.values() -> list(d.values())

d.iterkeys() -> iter(d.keys())
d.iteritems() -> iter(d.items())
d.itervalues() -> iter(d.values())

d.viewkeys() -> d.keys()
d.viewitems() -> d.items()
d.viewvalues() -> d.values()

Except in certain very specific contexts: the iter() can be dropped
when the context is list(), sorted(), iter() or for...in; the list()
can be dropped when the context is list() or sorted() (but not iter()
or for...in!). Special contexts that apply to both: list(), sorted(), tuple()
set(), any(), all(), sum().

Note: iter(d.keys()) could be written as iter(d) but since the
original d.iterkeys() was also redundant we don't fix this.  And there
are (rare) contexts where it makes a difference (e.g. when passing it
as an argument to a function that introspects the argument).
"""

# Local imports
from .. import pytree
from .. import patcomp
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Name, Call, LParen, RParen, ArgList, Dot
from .. import fixer_util


iter_exempt = fixer_util.consuming_calls | {"iter"}


class FixDict(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    power< head=any+
         trailer< '.' method=('keys'|'items'|'values'|
                              'iterkeys'|'iteritems'|'itervalues'|
                              'viewkeys'|'viewitems'|'viewvalues') >
         parens=trailer< '(' ')' >
         tail=any*
    >
    """

    def transform(self, node, results):
        head = results["head"]
        method = results["method"][0] # Extract node for method name
        tail = results["tail"]
        syms = self.syms
        method_name = method.value
        isiter = method_name.startswith("iter")
        isview = method_name.startswith("view")
        if isiter or isview:
            method_name = method_name[4:]
        assert method_name in ("keys", "items", "values"), repr(method)
        head = [n.clone() for n in head]
        tail = [n.clone() for n in tail]
        special = not tail and self.in_special_context(node, isiter)
        args = head + [pytree.Node(syms.trailer,
                                   [Dot(),
                                    Name(method_name,
                                         prefix=method.prefix)]),
                       results["parens"].clone()]
        new = pytree.Node(syms.power, args)
        if not (special or isview):
            new.prefix = ""
            new = Call(Name("iter" if isiter else "list"), [new])
        if tail:
            new = pytree.Node(syms.power, [new] + tail)
        new.prefix = node.prefix
        return new

    P1 = "power< func=NAME trailer< '(' node=any ')' > any* >"
    p1 = patcomp.compile_pattern(P1)

    P2 = """for_stmt< 'for' any 'in' node=any ':' any* >
            | comp_for< 'for' any 'in' node=any any* >
         """
    p2 = patcomp.compile_pattern(P2)

    def in_special_context(self, node, isiter):
        if node.parent is None:
            return False
        results = {}
        if (node.parent.parent is not None and
               self.p1.match(node.parent.parent, results) and
               results["node"] is node):
            if isiter:
                # iter(d.iterkeys()) -> iter(d.keys()), etc.
                return results["func"].value in iter_exempt
            else:
                # list(d.keys()) -> list(d.keys()), etc.
                return results["func"].value in fixer_util.consuming_calls
        if not isiter:
            return False
        # for ... in d.iterkeys() -> for ... in d.keys(), etc.
        return self.p2.match(node.parent, results) and results["node"] is node
lib\lib2to3\fixes\fix_except.py
"""Fixer for except statements with named exceptions.

The following cases will be converted:

- "except E, T:" where T is a name:

    except E as T:

- "except E, T:" where T is not a name, tuple or list:

        except E as t:
            T = t

    This is done because the target of an "except" clause must be a
    name.

- "except E, T:" where T is a tuple or list literal:

        except E as t:
            T = t.args
"""
# Author: Collin Winter

# Local imports
from .. import pytree
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Assign, Attr, Name, is_tuple, is_list, syms

def find_excepts(nodes):
    for i, n in enumerate(nodes):
        if n.type == syms.except_clause:
            if n.children[0].value == 'except':
                yield (n, nodes[i+2])

class FixExcept(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    try_stmt< 'try' ':' (simple_stmt | suite)
                  cleanup=(except_clause ':' (simple_stmt | suite))+
                  tail=(['except' ':' (simple_stmt | suite)]
                        ['else' ':' (simple_stmt | suite)]
                        ['finally' ':' (simple_stmt | suite)]) >
    """

    def transform(self, node, results):
        syms = self.syms

        tail = [n.clone() for n in results["tail"]]

        try_cleanup = [ch.clone() for ch in results["cleanup"]]
        for except_clause, e_suite in find_excepts(try_cleanup):
            if len(except_clause.children) == 4:
                (E, comma, N) = except_clause.children[1:4]
                comma.replace(Name("as", prefix=" "))

                if N.type != token.NAME:
                    # Generate a new N for the except clause
                    new_N = Name(self.new_name(), prefix=" ")
                    target = N.clone()
                    target.prefix = ""
                    N.replace(new_N)
                    new_N = new_N.clone()

                    # Insert "old_N = new_N" as the first statement in
                    #  the except body. This loop skips leading whitespace
                    #  and indents
                    #TODO(cwinter) suite-cleanup
                    suite_stmts = e_suite.children
                    for i, stmt in enumerate(suite_stmts):
                        if isinstance(stmt, pytree.Node):
                            break

                    # The assignment is different if old_N is a tuple or list
                    # In that case, the assignment is old_N = new_N.args
                    if is_tuple(N) or is_list(N):
                        assign = Assign(target, Attr(new_N, Name('args')))
                    else:
                        assign = Assign(target, new_N)

                    #TODO(cwinter) stopgap until children becomes a smart list
                    for child in reversed(suite_stmts[:i]):
                        e_suite.insert_child(0, child)
                    e_suite.insert_child(i, assign)
                elif N.prefix == "":
                    # No space after a comma is legal; no space after "as",
                    # not so much.
                    N.prefix = " "

        #TODO(cwinter) fix this when children becomes a smart list
        children = [c.clone() for c in node.children[:3]] + try_cleanup + tail
        return pytree.Node(node.type, children)
lib\lib2to3\fixes\fix_exec.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for exec.

This converts usages of the exec statement into calls to a built-in
exec() function.

exec code in ns1, ns2 -> exec(code, ns1, ns2)
"""

# Local imports
from .. import pytree
from .. import fixer_base
from ..fixer_util import Comma, Name, Call


class FixExec(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    exec_stmt< 'exec' a=any 'in' b=any [',' c=any] >
    |
    exec_stmt< 'exec' (not atom<'(' [any] ')'>) a=any >
    """

    def transform(self, node, results):
        assert results
        syms = self.syms
        a = results["a"]
        b = results.get("b")
        c = results.get("c")
        args = [a.clone()]
        args[0].prefix = ""
        if b is not None:
            args.extend([Comma(), b.clone()])
        if c is not None:
            args.extend([Comma(), c.clone()])

        return Call(Name("exec"), args, prefix=node.prefix)
lib\lib2to3\fixes\fix_execfile.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for execfile.

This converts usages of the execfile function into calls to the built-in
exec() function.
"""

from .. import fixer_base
from ..fixer_util import (Comma, Name, Call, LParen, RParen, Dot, Node,
                          ArgList, String, syms)


class FixExecfile(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    power< 'execfile' trailer< '(' arglist< filename=any [',' globals=any [',' locals=any ] ] > ')' > >
    |
    power< 'execfile' trailer< '(' filename=any ')' > >
    """

    def transform(self, node, results):
        assert results
        filename = results["filename"]
        globals = results.get("globals")
        locals = results.get("locals")

        # Copy over the prefix from the right parentheses end of the execfile
        # call.
        execfile_paren = node.children[-1].children[-1].clone()
        # Construct open().read().
        open_args = ArgList([filename.clone()], rparen=execfile_paren)
        open_call = Node(syms.power, [Name("open"), open_args])
        read = [Node(syms.trailer, [Dot(), Name('read')]),
                Node(syms.trailer, [LParen(), RParen()])]
        open_expr = [open_call] + read
        # Wrap the open call in a compile call. This is so the filename will be
        # preserved in the execed code.
        filename_arg = filename.clone()
        filename_arg.prefix = " "
        exec_str = String("'exec'", " ")
        compile_args = open_expr + [Comma(), filename_arg, Comma(), exec_str]
        compile_call = Call(Name("compile"), compile_args, "")
        # Finally, replace the execfile call with an exec call.
        args = [compile_call]
        if globals is not None:
            args.extend([Comma(), globals.clone()])
        if locals is not None:
            args.extend([Comma(), locals.clone()])
        return Call(Name("exec"), args, prefix=node.prefix)
lib\lib2to3\fixes\fix_exitfunc.py
"""
Convert use of sys.exitfunc to use the atexit module.
"""

# Author: Benjamin Peterson

from lib2to3 import pytree, fixer_base
from lib2to3.fixer_util import Name, Attr, Call, Comma, Newline, syms


class FixExitfunc(fixer_base.BaseFix):
    keep_line_order = True
    BM_compatible = True

    PATTERN = """
              (
                  sys_import=import_name<'import'
                      ('sys'
                      |
                      dotted_as_names< (any ',')* 'sys' (',' any)* >
                      )
                  >
              |
                  expr_stmt<
                      power< 'sys' trailer< '.' 'exitfunc' > >
                  '=' func=any >
              )
              """

    def __init__(self, *args):
        super(FixExitfunc, self).__init__(*args)

    def start_tree(self, tree, filename):
        super(FixExitfunc, self).start_tree(tree, filename)
        self.sys_import = None

    def transform(self, node, results):
        # First, find the sys import. We'll just hope it's global scope.
        if "sys_import" in results:
            if self.sys_import is None:
                self.sys_import = results["sys_import"]
            return

        func = results["func"].clone()
        func.prefix = ""
        register = pytree.Node(syms.power,
                               Attr(Name("atexit"), Name("register"))
                               )
        call = Call(register, [func], node.prefix)
        node.replace(call)

        if self.sys_import is None:
            # That's interesting.
            self.warning(node, "Can't find sys import; Please add an atexit "
                             "import at the top of your file.")
            return

        # Now add an atexit import after the sys import.
        names = self.sys_import.children[1]
        if names.type == syms.dotted_as_names:
            names.append_child(Comma())
            names.append_child(Name("atexit", " "))
        else:
            containing_stmt = self.sys_import.parent
            position = containing_stmt.children.index(self.sys_import)
            stmt_container = containing_stmt.parent
            new_import = pytree.Node(syms.import_name,
                              [Name("import"), Name("atexit", " ")]
                              )
            new = pytree.Node(syms.simple_stmt, [new_import])
            containing_stmt.insert_child(position + 1, Newline())
            containing_stmt.insert_child(position + 2, new)
lib\lib2to3\fixes\fix_filter.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer that changes filter(F, X) into list(filter(F, X)).

We avoid the transformation if the filter() call is directly contained
in iter(<>), list(<>), tuple(<>), sorted(<>), ...join(<>), or
for V in <>:.

NOTE: This is still not correct if the original code was depending on
filter(F, X) to return a string if X is a string and a tuple if X is a
tuple.  That would require type inference, which we don't do.  Let
Python 2.6 figure it out.
"""

# Local imports
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Name, Call, ListComp, in_special_context

class FixFilter(fixer_base.ConditionalFix):
    BM_compatible = True

    PATTERN = """
    filter_lambda=power<
        'filter'
        trailer<
            '('
            arglist<
                lambdef< 'lambda'
                         (fp=NAME | vfpdef< '(' fp=NAME ')'> ) ':' xp=any
                >
                ','
                it=any
            >
            ')'
        >
    >
    |
    power<
        'filter'
        trailer< '(' arglist< none='None' ',' seq=any > ')' >
    >
    |
    power<
        'filter'
        args=trailer< '(' [any] ')' >
    >
    """

    skip_on = "future_builtins.filter"

    def transform(self, node, results):
        if self.should_skip(node):
            return

        if "filter_lambda" in results:
            new = ListComp(results.get("fp").clone(),
                           results.get("fp").clone(),
                           results.get("it").clone(),
                           results.get("xp").clone())

        elif "none" in results:
            new = ListComp(Name("_f"),
                           Name("_f"),
                           results["seq"].clone(),
                           Name("_f"))

        else:
            if in_special_context(node):
                return None
            new = node.clone()
            new.prefix = ""
            new = Call(Name("list"), [new])
        new.prefix = node.prefix
        return new
lib\lib2to3\fixes\fix_funcattrs.py
"""Fix function attribute names (f.func_x -> f.__x__)."""
# Author: Collin Winter

# Local imports
from .. import fixer_base
from ..fixer_util import Name


class FixFuncattrs(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    power< any+ trailer< '.' attr=('func_closure' | 'func_doc' | 'func_globals'
                                  | 'func_name' | 'func_defaults' | 'func_code'
                                  | 'func_dict') > any* >
    """

    def transform(self, node, results):
        attr = results["attr"][0]
        attr.replace(Name(("__%s__" % attr.value[5:]),
                          prefix=attr.prefix))
lib\lib2to3\fixes\fix_future.py
"""Remove __future__ imports

from __future__ import foo is replaced with an empty line.
"""
# Author: Christian Heimes

# Local imports
from .. import fixer_base
from ..fixer_util import BlankLine

class FixFuture(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """import_from< 'from' module_name="__future__" 'import' any >"""

    # This should be run last -- some things check for the import
    run_order = 10

    def transform(self, node, results):
        new = BlankLine()
        new.prefix = node.prefix
        return new
lib\lib2to3\fixes\fix_getcwdu.py
"""
Fixer that changes os.getcwdu() to os.getcwd().
"""
# Author: Victor Stinner

# Local imports
from .. import fixer_base
from ..fixer_util import Name

class FixGetcwdu(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
              power< 'os' trailer< dot='.' name='getcwdu' > any* >
              """

    def transform(self, node, results):
        name = results["name"]
        name.replace(Name("getcwd", prefix=name.prefix))
lib\lib2to3\fixes\fix_has_key.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for has_key().

Calls to .has_key() methods are expressed in terms of the 'in'
operator:

    d.has_key(k) -> k in d

CAVEATS:
1) While the primary target of this fixer is dict.has_key(), the
   fixer will change any has_key() method call, regardless of its
   class.

2) Cases like this will not be converted:

    m = d.has_key
    if m(k):
        ...

   Only *calls* to has_key() are converted. While it is possible to
   convert the above to something like

    m = d.__contains__
    if m(k):
        ...

   this is currently not done.
"""

# Local imports
from .. import pytree
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Name, parenthesize


class FixHasKey(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    anchor=power<
        before=any+
        trailer< '.' 'has_key' >
        trailer<
            '('
            ( not(arglist | argument<any '=' any>) arg=any
            | arglist<(not argument<any '=' any>) arg=any ','>
            )
            ')'
        >
        after=any*
    >
    |
    negation=not_test<
        'not'
        anchor=power<
            before=any+
            trailer< '.' 'has_key' >
            trailer<
                '('
                ( not(arglist | argument<any '=' any>) arg=any
                | arglist<(not argument<any '=' any>) arg=any ','>
                )
                ')'
            >
        >
    >
    """

    def transform(self, node, results):
        assert results
        syms = self.syms
        if (node.parent.type == syms.not_test and
            self.pattern.match(node.parent)):
            # Don't transform a node matching the first alternative of the
            # pattern when its parent matches the second alternative
            return None
        negation = results.get("negation")
        anchor = results["anchor"]
        prefix = node.prefix
        before = [n.clone() for n in results["before"]]
        arg = results["arg"].clone()
        after = results.get("after")
        if after:
            after = [n.clone() for n in after]
        if arg.type in (syms.comparison, syms.not_test, syms.and_test,
                        syms.or_test, syms.test, syms.lambdef, syms.argument):
            arg = parenthesize(arg)
        if len(before) == 1:
            before = before[0]
        else:
            before = pytree.Node(syms.power, before)
        before.prefix = " "
        n_op = Name("in", prefix=" ")
        if negation:
            n_not = Name("not", prefix=" ")
            n_op = pytree.Node(syms.comp_op, (n_not, n_op))
        new = pytree.Node(syms.comparison, (arg, n_op, before))
        if after:
            new = parenthesize(new)
            new = pytree.Node(syms.power, (new,) + tuple(after))
        if node.parent.type in (syms.comparison, syms.expr, syms.xor_expr,
                                syms.and_expr, syms.shift_expr,
                                syms.arith_expr, syms.term,
                                syms.factor, syms.power):
            new = parenthesize(new)
        new.prefix = prefix
        return new
lib\lib2to3\fixes\fix_idioms.py
"""Adjust some old Python 2 idioms to their modern counterparts.

* Change some type comparisons to isinstance() calls:
    type(x) == T -> isinstance(x, T)
    type(x) is T -> isinstance(x, T)
    type(x) != T -> not isinstance(x, T)
    type(x) is not T -> not isinstance(x, T)

* Change "while 1:" into "while True:".

* Change both

    v = list(EXPR)
    v.sort()
    foo(v)

and the more general

    v = EXPR
    v.sort()
    foo(v)

into

    v = sorted(EXPR)
    foo(v)
"""
# Author: Jacques Frechet, Collin Winter

# Local imports
from .. import fixer_base
from ..fixer_util import Call, Comma, Name, Node, BlankLine, syms

CMP = "(n='!=' | '==' | 'is' | n=comp_op< 'is' 'not' >)"
TYPE = "power< 'type' trailer< '(' x=any ')' > >"

class FixIdioms(fixer_base.BaseFix):
    explicit = True # The user must ask for this fixer

    PATTERN = r"""
        isinstance=comparison< %s %s T=any >
        |
        isinstance=comparison< T=any %s %s >
        |
        while_stmt< 'while' while='1' ':' any+ >
        |
        sorted=any<
            any*
            simple_stmt<
              expr_stmt< id1=any '='
                         power< list='list' trailer< '(' (not arglist<any+>) any ')' > >
              >
              '\n'
            >
            sort=
            simple_stmt<
              power< id2=any
                     trailer< '.' 'sort' > trailer< '(' ')' >
              >
              '\n'
            >
            next=any*
        >
        |
        sorted=any<
            any*
            simple_stmt< expr_stmt< id1=any '=' expr=any > '\n' >
            sort=
            simple_stmt<
              power< id2=any
                     trailer< '.' 'sort' > trailer< '(' ')' >
              >
              '\n'
            >
            next=any*
        >
    """ % (TYPE, CMP, CMP, TYPE)

    def match(self, node):
        r = super(FixIdioms, self).match(node)
        # If we've matched one of the sort/sorted subpatterns above, we
        # want to reject matches where the initial assignment and the
        # subsequent .sort() call involve different identifiers.
        if r and "sorted" in r:
            if r["id1"] == r["id2"]:
                return r
            return None
        return r

    def transform(self, node, results):
        if "isinstance" in results:
            return self.transform_isinstance(node, results)
        elif "while" in results:
            return self.transform_while(node, results)
        elif "sorted" in results:
            return self.transform_sort(node, results)
        else:
            raise RuntimeError("Invalid match")

    def transform_isinstance(self, node, results):
        x = results["x"].clone() # The thing inside of type()
        T = results["T"].clone() # The type being compared against
        x.prefix = ""
        T.prefix = " "
        test = Call(Name("isinstance"), [x, Comma(), T])
        if "n" in results:
            test.prefix = " "
            test = Node(syms.not_test, [Name("not"), test])
        test.prefix = node.prefix
        return test

    def transform_while(self, node, results):
        one = results["while"]
        one.replace(Name("True", prefix=one.prefix))

    def transform_sort(self, node, results):
        sort_stmt = results["sort"]
        next_stmt = results["next"]
        list_call = results.get("list")
        simple_expr = results.get("expr")

        if list_call:
            list_call.replace(Name("sorted", prefix=list_call.prefix))
        elif simple_expr:
            new = simple_expr.clone()
            new.prefix = ""
            simple_expr.replace(Call(Name("sorted"), [new],
                                     prefix=simple_expr.prefix))
        else:
            raise RuntimeError("should not have reached here")
        sort_stmt.remove()

        btwn = sort_stmt.prefix
        # Keep any prefix lines between the sort_stmt and the list_call and
        # shove them right after the sorted() call.
        if "\n" in btwn:
            if next_stmt:
                # The new prefix should be everything from the sort_stmt's
                # prefix up to the last newline, then the old prefix after a new
                # line.
                prefix_lines = (btwn.rpartition("\n")[0], next_stmt[0].prefix)
                next_stmt[0].prefix = "\n".join(prefix_lines)
            else:
                assert list_call.parent
                assert list_call.next_sibling is None
                # Put a blank line after list_call and set its prefix.
                end_line = BlankLine()
                list_call.parent.append_child(end_line)
                assert list_call.next_sibling is end_line
                # The new prefix should be everything up to the first new line
                # of sort_stmt's prefix.
                end_line.prefix = btwn.rpartition("\n")[0]
lib\lib2to3\fixes\fix_import.py
"""Fixer for import statements.
If spam is being imported from the local directory, this import:
    from spam import eggs
Becomes:
    from .spam import eggs

And this import:
    import spam
Becomes:
    from . import spam
"""

# Local imports
from .. import fixer_base
from os.path import dirname, join, exists, sep
from ..fixer_util import FromImport, syms, token


def traverse_imports(names):
    """
    Walks over all the names imported in a dotted_as_names node.
    """
    pending = [names]
    while pending:
        node = pending.pop()
        if node.type == token.NAME:
            yield node.value
        elif node.type == syms.dotted_name:
            yield "".join([ch.value for ch in node.children])
        elif node.type == syms.dotted_as_name:
            pending.append(node.children[0])
        elif node.type == syms.dotted_as_names:
            pending.extend(node.children[::-2])
        else:
            raise AssertionError("unknown node type")


class FixImport(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    import_from< 'from' imp=any 'import' ['('] any [')'] >
    |
    import_name< 'import' imp=any >
    """

    def start_tree(self, tree, name):
        super(FixImport, self).start_tree(tree, name)
        self.skip = "absolute_import" in tree.future_features

    def transform(self, node, results):
        if self.skip:
            return
        imp = results['imp']

        if node.type == syms.import_from:
            # Some imps are top-level (eg: 'import ham')
            # some are first level (eg: 'import ham.eggs')
            # some are third level (eg: 'import ham.eggs as spam')
            # Hence, the loop
            while not hasattr(imp, 'value'):
                imp = imp.children[0]
            if self.probably_a_local_import(imp.value):
                imp.value = "." + imp.value
                imp.changed()
        else:
            have_local = False
            have_absolute = False
            for mod_name in traverse_imports(imp):
                if self.probably_a_local_import(mod_name):
                    have_local = True
                else:
                    have_absolute = True
            if have_absolute:
                if have_local:
                    # We won't handle both sibling and absolute imports in the
                    # same statement at the moment.
                    self.warning(node, "absolute and local imports together")
                return

            new = FromImport(".", [imp])
            new.prefix = node.prefix
            return new

    def probably_a_local_import(self, imp_name):
        if imp_name.startswith("."):
            # Relative imports are certainly not local imports.
            return False
        imp_name = imp_name.split(".", 1)[0]
        base_path = dirname(self.filename)
        base_path = join(base_path, imp_name)
        # If there is no __init__.py next to the file its not in a package
        # so can't be a relative import.
        if not exists(join(dirname(base_path), "__init__.py")):
            return False
        for ext in [".py", sep, ".pyc", ".so", ".sl", ".pyd"]:
            if exists(base_path + ext):
                return True
        return False
lib\lib2to3\fixes\fix_imports.py
"""Fix incompatible imports and module references."""
# Authors: Collin Winter, Nick Edds

# Local imports
from .. import fixer_base
from ..fixer_util import Name, attr_chain

MAPPING = {'StringIO':  'io',
           'cStringIO': 'io',
           'cPickle': 'pickle',
           '__builtin__' : 'builtins',
           'copy_reg': 'copyreg',
           'Queue': 'queue',
           'SocketServer': 'socketserver',
           'ConfigParser': 'configparser',
           'repr': 'reprlib',
           'FileDialog': 'tkinter.filedialog',
           'tkFileDialog': 'tkinter.filedialog',
           'SimpleDialog': 'tkinter.simpledialog',
           'tkSimpleDialog': 'tkinter.simpledialog',
           'tkColorChooser': 'tkinter.colorchooser',
           'tkCommonDialog': 'tkinter.commondialog',
           'Dialog': 'tkinter.dialog',
           'Tkdnd': 'tkinter.dnd',
           'tkFont': 'tkinter.font',
           'tkMessageBox': 'tkinter.messagebox',
           'ScrolledText': 'tkinter.scrolledtext',
           'Tkconstants': 'tkinter.constants',
           'Tix': 'tkinter.tix',
           'ttk': 'tkinter.ttk',
           'Tkinter': 'tkinter',
           'markupbase': '_markupbase',
           '_winreg': 'winreg',
           'thread': '_thread',
           'dummy_thread': '_dummy_thread',
           # anydbm and whichdb are handled by fix_imports2
           'dbhash': 'dbm.bsd',
           'dumbdbm': 'dbm.dumb',
           'dbm': 'dbm.ndbm',
           'gdbm': 'dbm.gnu',
           'xmlrpclib': 'xmlrpc.client',
           'DocXMLRPCServer': 'xmlrpc.server',
           'SimpleXMLRPCServer': 'xmlrpc.server',
           'httplib': 'http.client',
           'htmlentitydefs' : 'html.entities',
           'HTMLParser' : 'html.parser',
           'Cookie': 'http.cookies',
           'cookielib': 'http.cookiejar',
           'BaseHTTPServer': 'http.server',
           'SimpleHTTPServer': 'http.server',
           'CGIHTTPServer': 'http.server',
           #'test.test_support': 'test.support',
           'commands': 'subprocess',
           'UserString' : 'collections',
           'UserList' : 'collections',
           'urlparse' : 'urllib.parse',
           'robotparser' : 'urllib.robotparser',
}


def alternates(members):
    return "(" + "|".join(map(repr, members)) + ")"


def build_pattern(mapping=MAPPING):
    mod_list = ' | '.join(["module_name='%s'" % key for key in mapping])
    bare_names = alternates(mapping.keys())

    yield """name_import=import_name< 'import' ((%s) |
               multiple_imports=dotted_as_names< any* (%s) any* >) >
          """ % (mod_list, mod_list)
    yield """import_from< 'from' (%s) 'import' ['(']
              ( any | import_as_name< any 'as' any > |
                import_as_names< any* >)  [')'] >
          """ % mod_list
    yield """import_name< 'import' (dotted_as_name< (%s) 'as' any > |
               multiple_imports=dotted_as_names<
                 any* dotted_as_name< (%s) 'as' any > any* >) >
          """ % (mod_list, mod_list)

    # Find usages of module members in code e.g. thread.foo(bar)
    yield "power< bare_with_attr=(%s) trailer<'.' any > any* >" % bare_names


class FixImports(fixer_base.BaseFix):

    BM_compatible = True
    keep_line_order = True
    # This is overridden in fix_imports2.
    mapping = MAPPING

    # We want to run this fixer late, so fix_import doesn't try to make stdlib
    # renames into relative imports.
    run_order = 6

    def build_pattern(self):
        return "|".join(build_pattern(self.mapping))

    def compile_pattern(self):
        # We override this, so MAPPING can be pragmatically altered and the
        # changes will be reflected in PATTERN.
        self.PATTERN = self.build_pattern()
        super(FixImports, self).compile_pattern()

    # Don't match the node if it's within another match.
    def match(self, node):
        match = super(FixImports, self).match
        results = match(node)
        if results:
            # Module usage could be in the trailer of an attribute lookup, so we
            # might have nested matches when "bare_with_attr" is present.
            if "bare_with_attr" not in results and \
                    any(match(obj) for obj in attr_chain(node, "parent")):
                return False
            return results
        return False

    def start_tree(self, tree, filename):
        super(FixImports, self).start_tree(tree, filename)
        self.replace = {}

    def transform(self, node, results):
        import_mod = results.get("module_name")
        if import_mod:
            mod_name = import_mod.value
            new_name = self.mapping[mod_name]
            import_mod.replace(Name(new_name, prefix=import_mod.prefix))
            if "name_import" in results:
                # If it's not a "from x import x, y" or "import x as y" import,
                # marked its usage to be replaced.
                self.replace[mod_name] = new_name
            if "multiple_imports" in results:
                # This is a nasty hack to fix multiple imports on a line (e.g.,
                # "import StringIO, urlparse"). The problem is that I can't
                # figure out an easy way to make a pattern recognize the keys of
                # MAPPING randomly sprinkled in an import statement.
                results = self.match(node)
                if results:
                    self.transform(node, results)
        else:
            # Replace usage of the module.
            bare_name = results["bare_with_attr"][0]
            new_name = self.replace.get(bare_name.value)
            if new_name:
                bare_name.replace(Name(new_name, prefix=bare_name.prefix))
lib\lib2to3\fixes\fix_imports2.py
"""Fix incompatible imports and module references that must be fixed after
fix_imports."""
from . import fix_imports


MAPPING = {
            'whichdb': 'dbm',
            'anydbm': 'dbm',
          }


class FixImports2(fix_imports.FixImports):

    run_order = 7

    mapping = MAPPING
lib\lib2to3\fixes\fix_input.py
"""Fixer that changes input(...) into eval(input(...))."""
# Author: Andre Roberge

# Local imports
from .. import fixer_base
from ..fixer_util import Call, Name
from .. import patcomp


context = patcomp.compile_pattern("power< 'eval' trailer< '(' any ')' > >")


class FixInput(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
              power< 'input' args=trailer< '(' [any] ')' > >
              """

    def transform(self, node, results):
        # If we're already wrapped in an eval() call, we're done.
        if context.match(node.parent.parent):
            return

        new = node.clone()
        new.prefix = ""
        return Call(Name("eval"), [new], prefix=node.prefix)
lib\lib2to3\fixes\fix_intern.py
# Copyright 2006 Georg Brandl.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for intern().

intern(s) -> sys.intern(s)"""

# Local imports
from .. import fixer_base
from ..fixer_util import ImportAndCall, touch_import


class FixIntern(fixer_base.BaseFix):
    BM_compatible = True
    order = "pre"

    PATTERN = """
    power< 'intern'
           trailer< lpar='('
                    ( not(arglist | argument<any '=' any>) obj=any
                      | obj=arglist<(not argument<any '=' any>) any ','> )
                    rpar=')' >
           after=any*
    >
    """

    def transform(self, node, results):
        names = ('sys', 'intern')
        new = ImportAndCall(node, results, names)
        touch_import(None, 'sys', node)
        return new
lib\lib2to3\fixes\fix_isinstance.py
# Copyright 2008 Armin Ronacher.
# Licensed to PSF under a Contributor Agreement.

"""Fixer that cleans up a tuple argument to isinstance after the tokens
in it were fixed.  This is mainly used to remove double occurrences of
tokens as a leftover of the long -> int / unicode -> str conversion.

eg.  isinstance(x, (int, long)) -> isinstance(x, (int, int))
       -> isinstance(x, int)
"""

from .. import fixer_base
from ..fixer_util import token


class FixIsinstance(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
    power<
        'isinstance'
        trailer< '(' arglist< any ',' atom< '('
            args=testlist_gexp< any+ >
        ')' > > ')' >
    >
    """

    run_order = 6

    def transform(self, node, results):
        names_inserted = set()
        testlist = results["args"]
        args = testlist.children
        new_args = []
        iterator = enumerate(args)
        for idx, arg in iterator:
            if arg.type == token.NAME and arg.value in names_inserted:
                if idx < len(args) - 1 and args[idx + 1].type == token.COMMA:
                    next(iterator)
                    continue
            else:
                new_args.append(arg)
                if arg.type == token.NAME:
                    names_inserted.add(arg.value)
        if new_args and new_args[-1].type == token.COMMA:
            del new_args[-1]
        if len(new_args) == 1:
            atom = testlist.parent
            new_args[0].prefix = atom.prefix
            atom.replace(new_args[0])
        else:
            args[:] = new_args
            node.changed()
lib\lib2to3\fixes\fix_itertools.py
""" Fixer for itertools.(imap|ifilter|izip) --> (map|filter|zip) and
    itertools.ifilterfalse --> itertools.filterfalse (bugs 2360-2363)

    imports from itertools are fixed in fix_itertools_import.py

    If itertools is imported as something else (ie: import itertools as it;
    it.izip(spam, eggs)) method calls will not get fixed.
    """

# Local imports
from .. import fixer_base
from ..fixer_util import Name

class FixItertools(fixer_base.BaseFix):
    BM_compatible = True
    it_funcs = "('imap'|'ifilter'|'izip'|'izip_longest'|'ifilterfalse')"
    PATTERN = """
              power< it='itertools'
                  trailer<
                     dot='.' func=%(it_funcs)s > trailer< '(' [any] ')' > >
              |
              power< func=%(it_funcs)s trailer< '(' [any] ')' > >
              """ %(locals())

    # Needs to be run after fix_(map|zip|filter)
    run_order = 6

    def transform(self, node, results):
        prefix = None
        func = results['func'][0]
        if ('it' in results and
            func.value not in ('ifilterfalse', 'izip_longest')):
            dot, it = (results['dot'], results['it'])
            # Remove the 'itertools'
            prefix = it.prefix
            it.remove()
            # Replace the node which contains ('.', 'function') with the
            # function (to be consistent with the second part of the pattern)
            dot.remove()
            func.parent.replace(func)

        prefix = prefix or func.prefix
        func.replace(Name(func.value[1:], prefix=prefix))
lib\lib2to3\fixes\fix_itertools_imports.py
""" Fixer for imports of itertools.(imap|ifilter|izip|ifilterfalse) """

# Local imports
from lib2to3 import fixer_base
from lib2to3.fixer_util import BlankLine, syms, token


class FixItertoolsImports(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
              import_from< 'from' 'itertools' 'import' imports=any >
              """ %(locals())

    def transform(self, node, results):
        imports = results['imports']
        if imports.type == syms.import_as_name or not imports.children:
            children = [imports]
        else:
            children = imports.children
        for child in children[::2]:
            if child.type == token.NAME:
                member = child.value
                name_node = child
            elif child.type == token.STAR:
                # Just leave the import as is.
                return
            else:
                assert child.type == syms.import_as_name
                name_node = child.children[0]
            member_name = name_node.value
            if member_name in ('imap', 'izip', 'ifilter'):
                child.value = None
                child.remove()
            elif member_name in ('ifilterfalse', 'izip_longest'):
                node.changed()
                name_node.value = ('filterfalse' if member_name[1] == 'f'
                                   else 'zip_longest')

        # Make sure the import statement is still sane
        children = imports.children[:] or [imports]
        remove_comma = True
        for child in children:
            if remove_comma and child.type == token.COMMA:
                child.remove()
            else:
                remove_comma ^= True

        while children and children[-1].type == token.COMMA:
            children.pop().remove()

        # If there are no imports left, just get rid of the entire statement
        if (not (imports.children or getattr(imports, 'value', None)) or
            imports.parent is None):
            p = node.prefix
            node = BlankLine()
            node.prefix = p
            return node
lib\lib2to3\fixes\fix_long.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer that turns 'long' into 'int' everywhere.
"""

# Local imports
from lib2to3 import fixer_base
from lib2to3.fixer_util import is_probably_builtin


class FixLong(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = "'long'"

    def transform(self, node, results):
        if is_probably_builtin(node):
            node.value = "int"
            node.changed()
lib\lib2to3\fixes\fix_map.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer that changes map(F, ...) into list(map(F, ...)) unless there
exists a 'from future_builtins import map' statement in the top-level
namespace.

As a special case, map(None, X) is changed into list(X).  (This is
necessary because the semantics are changed in this case -- the new
map(None, X) is equivalent to [(x,) for x in X].)

We avoid the transformation (except for the special case mentioned
above) if the map() call is directly contained in iter(<>), list(<>),
tuple(<>), sorted(<>), ...join(<>), or for V in <>:.

NOTE: This is still not correct if the original code was depending on
map(F, X, Y, ...) to go on until the longest argument is exhausted,
substituting None for missing values -- like zip(), it now stops as
soon as the shortest argument is exhausted.
"""

# Local imports
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Name, Call, ListComp, in_special_context
from ..pygram import python_symbols as syms

class FixMap(fixer_base.ConditionalFix):
    BM_compatible = True

    PATTERN = """
    map_none=power<
        'map'
        trailer< '(' arglist< 'None' ',' arg=any [','] > ')' >
    >
    |
    map_lambda=power<
        'map'
        trailer<
            '('
            arglist<
                lambdef< 'lambda'
                         (fp=NAME | vfpdef< '(' fp=NAME ')'> ) ':' xp=any
                >
                ','
                it=any
            >
            ')'
        >
    >
    |
    power<
        'map' trailer< '(' [arglist=any] ')' >
    >
    """

    skip_on = 'future_builtins.map'

    def transform(self, node, results):
        if self.should_skip(node):
            return

        if node.parent.type == syms.simple_stmt:
            self.warning(node, "You should use a for loop here")
            new = node.clone()
            new.prefix = ""
            new = Call(Name("list"), [new])
        elif "map_lambda" in results:
            new = ListComp(results["xp"].clone(),
                           results["fp"].clone(),
                           results["it"].clone())
        else:
            if "map_none" in results:
                new = results["arg"].clone()
            else:
                if "arglist" in results:
                    args = results["arglist"]
                    if args.type == syms.arglist and \
                       args.children[0].type == token.NAME and \
                       args.children[0].value == "None":
                        self.warning(node, "cannot convert map(None, ...) "
                                     "with multiple arguments because map() "
                                     "now truncates to the shortest sequence")
                        return
                if in_special_context(node):
                    return None
                new = node.clone()
            new.prefix = ""
            new = Call(Name("list"), [new])
        new.prefix = node.prefix
        return new
lib\lib2to3\fixes\fix_metaclass.py
"""Fixer for __metaclass__ = X -> (metaclass=X) methods.

   The various forms of classef (inherits nothing, inherits once, inherints
   many) don't parse the same in the CST so we look at ALL classes for
   a __metaclass__ and if we find one normalize the inherits to all be
   an arglist.

   For one-liner classes ('class X: pass') there is no indent/dedent so
   we normalize those into having a suite.

   Moving the __metaclass__ into the classdef can also cause the class
   body to be empty so there is some special casing for that as well.

   This fixer also tries very hard to keep original indenting and spacing
   in all those corner cases.

"""
# Author: Jack Diederich

# Local imports
from .. import fixer_base
from ..pygram import token
from ..fixer_util import Name, syms, Node, Leaf


def has_metaclass(parent):
    """ we have to check the cls_node without changing it.
        There are two possiblities:
          1)  clsdef => suite => simple_stmt => expr_stmt => Leaf('__meta')
          2)  clsdef => simple_stmt => expr_stmt => Leaf('__meta')
    """
    for node in parent.children:
        if node.type == syms.suite:
            return has_metaclass(node)
        elif node.type == syms.simple_stmt and node.children:
            expr_node = node.children[0]
            if expr_node.type == syms.expr_stmt and expr_node.children:
                left_side = expr_node.children[0]
                if isinstance(left_side, Leaf) and \
                        left_side.value == '__metaclass__':
                    return True
    return False


def fixup_parse_tree(cls_node):
    """ one-line classes don't get a suite in the parse tree so we add
        one to normalize the tree
    """
    for node in cls_node.children:
        if node.type == syms.suite:
            # already in the preferred format, do nothing
            return

    # !%@#! oneliners have no suite node, we have to fake one up
    for i, node in enumerate(cls_node.children):
        if node.type == token.COLON:
            break
    else:
        raise ValueError("No class suite and no ':'!")

    # move everything into a suite node
    suite = Node(syms.suite, [])
    while cls_node.children[i+1:]:
        move_node = cls_node.children[i+1]
        suite.append_child(move_node.clone())
        move_node.remove()
    cls_node.append_child(suite)
    node = suite


def fixup_simple_stmt(parent, i, stmt_node):
    """ if there is a semi-colon all the parts count as part of the same
        simple_stmt.  We just want the __metaclass__ part so we move
        everything after the semi-colon into its own simple_stmt node
    """
    for semi_ind, node in enumerate(stmt_node.children):
        if node.type == token.SEMI: # *sigh*
            break
    else:
        return

    node.remove() # kill the semicolon
    new_expr = Node(syms.expr_stmt, [])
    new_stmt = Node(syms.simple_stmt, [new_expr])
    while stmt_node.children[semi_ind:]:
        move_node = stmt_node.children[semi_ind]
        new_expr.append_child(move_node.clone())
        move_node.remove()
    parent.insert_child(i, new_stmt)
    new_leaf1 = new_stmt.children[0].children[0]
    old_leaf1 = stmt_node.children[0].children[0]
    new_leaf1.prefix = old_leaf1.prefix


def remove_trailing_newline(node):
    if node.children and node.children[-1].type == token.NEWLINE:
        node.children[-1].remove()


def find_metas(cls_node):
    # find the suite node (Mmm, sweet nodes)
    for node in cls_node.children:
        if node.type == syms.suite:
            break
    else:
        raise ValueError("No class suite!")

    # look for simple_stmt[ expr_stmt[ Leaf('__metaclass__') ] ]
    for i, simple_node in list(enumerate(node.children)):
        if simple_node.type == syms.simple_stmt and simple_node.children:
            expr_node = simple_node.children[0]
            if expr_node.type == syms.expr_stmt and expr_node.children:
                # Check if the expr_node is a simple assignment.
                left_node = expr_node.children[0]
                if isinstance(left_node, Leaf) and \
                        left_node.value == '__metaclass__':
                    # We found an assignment to __metaclass__.
                    fixup_simple_stmt(node, i, simple_node)
                    remove_trailing_newline(simple_node)
                    yield (node, i, simple_node)


def fixup_indent(suite):
    """ If an INDENT is followed by a thing with a prefix then nuke the prefix
        Otherwise we get in trouble when removing __metaclass__ at suite start
    """
    kids = suite.children[::-1]
    # find the first indent
    while kids:
        node = kids.pop()
        if node.type == token.INDENT:
            break

    # find the first Leaf
    while kids:
        node = kids.pop()
        if isinstance(node, Leaf) and node.type != token.DEDENT:
            if node.prefix:
                node.prefix = ''
            return
        else:
            kids.extend(node.children[::-1])


class FixMetaclass(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
    classdef<any*>
    """

    def transform(self, node, results):
        if not has_metaclass(node):
            return

        fixup_parse_tree(node)

        # find metaclasses, keep the last one
        last_metaclass = None
        for suite, i, stmt in find_metas(node):
            last_metaclass = stmt
            stmt.remove()

        text_type = node.children[0].type # always Leaf(nnn, 'class')

        # figure out what kind of classdef we have
        if len(node.children) == 7:
            # Node(classdef, ['class', 'name', '(', arglist, ')', ':', suite])
            #                 0        1       2    3        4    5    6
            if node.children[3].type == syms.arglist:
                arglist = node.children[3]
            # Node(classdef, ['class', 'name', '(', 'Parent', ')', ':', suite])
            else:
                parent = node.children[3].clone()
                arglist = Node(syms.arglist, [parent])
                node.set_child(3, arglist)
        elif len(node.children) == 6:
            # Node(classdef, ['class', 'name', '(',  ')', ':', suite])
            #                 0        1       2     3    4    5
            arglist = Node(syms.arglist, [])
            node.insert_child(3, arglist)
        elif len(node.children) == 4:
            # Node(classdef, ['class', 'name', ':', suite])
            #                 0        1       2    3
            arglist = Node(syms.arglist, [])
            node.insert_child(2, Leaf(token.RPAR, ')'))
            node.insert_child(2, arglist)
            node.insert_child(2, Leaf(token.LPAR, '('))
        else:
            raise ValueError("Unexpected class definition")

        # now stick the metaclass in the arglist
        meta_txt = last_metaclass.children[0].children[0]
        meta_txt.value = 'metaclass'
        orig_meta_prefix = meta_txt.prefix

        if arglist.children:
            arglist.append_child(Leaf(token.COMMA, ','))
            meta_txt.prefix = ' '
        else:
            meta_txt.prefix = ''

        # compact the expression "metaclass = Meta" -> "metaclass=Meta"
        expr_stmt = last_metaclass.children[0]
        assert expr_stmt.type == syms.expr_stmt
        expr_stmt.children[1].prefix = ''
        expr_stmt.children[2].prefix = ''

        arglist.append_child(last_metaclass)

        fixup_indent(suite)

        # check for empty suite
        if not suite.children:
            # one-liner that was just __metaclass_
            suite.remove()
            pass_leaf = Leaf(text_type, 'pass')
            pass_leaf.prefix = orig_meta_prefix
            node.append_child(pass_leaf)
            node.append_child(Leaf(token.NEWLINE, '\n'))

        elif len(suite.children) > 1 and \
                 (suite.children[-2].type == token.INDENT and
                  suite.children[-1].type == token.DEDENT):
            # there was only one line in the class body and it was __metaclass__
            pass_leaf = Leaf(text_type, 'pass')
            suite.insert_child(-1, pass_leaf)
            suite.insert_child(-1, Leaf(token.NEWLINE, '\n'))
lib\lib2to3\fixes\fix_methodattrs.py
"""Fix bound method attributes (method.im_? -> method.__?__).
"""
# Author: Christian Heimes

# Local imports
from .. import fixer_base
from ..fixer_util import Name

MAP = {
    "im_func" : "__func__",
    "im_self" : "__self__",
    "im_class" : "__self__.__class__"
    }

class FixMethodattrs(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
    power< any+ trailer< '.' attr=('im_func' | 'im_self' | 'im_class') > any* >
    """

    def transform(self, node, results):
        attr = results["attr"][0]
        new = MAP[attr.value]
        attr.replace(Name(new, prefix=attr.prefix))
lib\lib2to3\fixes\fix_ne.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer that turns <> into !=."""

# Local imports
from .. import pytree
from ..pgen2 import token
from .. import fixer_base


class FixNe(fixer_base.BaseFix):
    # This is so simple that we don't need the pattern compiler.

    _accept_type = token.NOTEQUAL

    def match(self, node):
        # Override
        return node.value == "<>"

    def transform(self, node, results):
        new = pytree.Leaf(token.NOTEQUAL, "!=", prefix=node.prefix)
        return new
lib\lib2to3\fixes\fix_next.py
"""Fixer for it.next() -> next(it), per PEP 3114."""
# Author: Collin Winter

# Things that currently aren't covered:
#   - listcomp "next" names aren't warned
#   - "with" statement targets aren't checked

# Local imports
from ..pgen2 import token
from ..pygram import python_symbols as syms
from .. import fixer_base
from ..fixer_util import Name, Call, find_binding

bind_warning = "Calls to builtin next() possibly shadowed by global binding"


class FixNext(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
    power< base=any+ trailer< '.' attr='next' > trailer< '(' ')' > >
    |
    power< head=any+ trailer< '.' attr='next' > not trailer< '(' ')' > >
    |
    classdef< 'class' any+ ':'
              suite< any*
                     funcdef< 'def'
                              name='next'
                              parameters< '(' NAME ')' > any+ >
                     any* > >
    |
    global=global_stmt< 'global' any* 'next' any* >
    """

    order = "pre" # Pre-order tree traversal

    def start_tree(self, tree, filename):
        super(FixNext, self).start_tree(tree, filename)

        n = find_binding('next', tree)
        if n:
            self.warning(n, bind_warning)
            self.shadowed_next = True
        else:
            self.shadowed_next = False

    def transform(self, node, results):
        assert results

        base = results.get("base")
        attr = results.get("attr")
        name = results.get("name")

        if base:
            if self.shadowed_next:
                attr.replace(Name("__next__", prefix=attr.prefix))
            else:
                base = [n.clone() for n in base]
                base[0].prefix = ""
                node.replace(Call(Name("next", prefix=node.prefix), base))
        elif name:
            n = Name("__next__", prefix=name.prefix)
            name.replace(n)
        elif attr:
            # We don't do this transformation if we're assigning to "x.next".
            # Unfortunately, it doesn't seem possible to do this in PATTERN,
            #  so it's being done here.
            if is_assign_target(node):
                head = results["head"]
                if "".join([str(n) for n in head]).strip() == '__builtin__':
                    self.warning(node, bind_warning)
                return
            attr.replace(Name("__next__"))
        elif "global" in results:
            self.warning(node, bind_warning)
            self.shadowed_next = True


### The following functions help test if node is part of an assignment
###  target.

def is_assign_target(node):
    assign = find_assign(node)
    if assign is None:
        return False

    for child in assign.children:
        if child.type == token.EQUAL:
            return False
        elif is_subtree(child, node):
            return True
    return False

def find_assign(node):
    if node.type == syms.expr_stmt:
        return node
    if node.type == syms.simple_stmt or node.parent is None:
        return None
    return find_assign(node.parent)

def is_subtree(root, node):
    if root == node:
        return True
    return any(is_subtree(c, node) for c in root.children)
lib\lib2to3\fixes\fix_nonzero.py
"""Fixer for __nonzero__ -> __bool__ methods."""
# Author: Collin Winter

# Local imports
from .. import fixer_base
from ..fixer_util import Name, syms

class FixNonzero(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
    classdef< 'class' any+ ':'
              suite< any*
                     funcdef< 'def' name='__nonzero__'
                              parameters< '(' NAME ')' > any+ >
                     any* > >
    """

    def transform(self, node, results):
        name = results["name"]
        new = Name("__bool__", prefix=name.prefix)
        name.replace(new)
lib\lib2to3\fixes\fix_numliterals.py
"""Fixer that turns 1L into 1, 0755 into 0o755.
"""
# Copyright 2007 Georg Brandl.
# Licensed to PSF under a Contributor Agreement.

# Local imports
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Number


class FixNumliterals(fixer_base.BaseFix):
    # This is so simple that we don't need the pattern compiler.

    _accept_type = token.NUMBER

    def match(self, node):
        # Override
        return (node.value.startswith("0") or node.value[-1] in "Ll")

    def transform(self, node, results):
        val = node.value
        if val[-1] in 'Ll':
            val = val[:-1]
        elif val.startswith('0') and val.isdigit() and len(set(val)) > 1:
            val = "0o" + val[1:]

        return Number(val, prefix=node.prefix)
lib\lib2to3\fixes\fix_operator.py
"""Fixer for operator functions.

operator.isCallable(obj)       -> hasattr(obj, '__call__')
operator.sequenceIncludes(obj) -> operator.contains(obj)
operator.isSequenceType(obj)   -> isinstance(obj, collections.Sequence)
operator.isMappingType(obj)    -> isinstance(obj, collections.Mapping)
operator.isNumberType(obj)     -> isinstance(obj, numbers.Number)
operator.repeat(obj, n)        -> operator.mul(obj, n)
operator.irepeat(obj, n)       -> operator.imul(obj, n)
"""

import collections

# Local imports
from lib2to3 import fixer_base
from lib2to3.fixer_util import Call, Name, String, touch_import


def invocation(s):
    def dec(f):
        f.invocation = s
        return f
    return dec


class FixOperator(fixer_base.BaseFix):
    BM_compatible = True
    order = "pre"

    methods = """
              method=('isCallable'|'sequenceIncludes'
                     |'isSequenceType'|'isMappingType'|'isNumberType'
                     |'repeat'|'irepeat')
              """
    obj = "'(' obj=any ')'"
    PATTERN = """
              power< module='operator'
                trailer< '.' %(methods)s > trailer< %(obj)s > >
              |
              power< %(methods)s trailer< %(obj)s > >
              """ % dict(methods=methods, obj=obj)

    def transform(self, node, results):
        method = self._check_method(node, results)
        if method is not None:
            return method(node, results)

    @invocation("operator.contains(%s)")
    def _sequenceIncludes(self, node, results):
        return self._handle_rename(node, results, "contains")

    @invocation("hasattr(%s, '__call__')")
    def _isCallable(self, node, results):
        obj = results["obj"]
        args = [obj.clone(), String(", "), String("'__call__'")]
        return Call(Name("hasattr"), args, prefix=node.prefix)

    @invocation("operator.mul(%s)")
    def _repeat(self, node, results):
        return self._handle_rename(node, results, "mul")

    @invocation("operator.imul(%s)")
    def _irepeat(self, node, results):
        return self._handle_rename(node, results, "imul")

    @invocation("isinstance(%s, collections.Sequence)")
    def _isSequenceType(self, node, results):
        return self._handle_type2abc(node, results, "collections", "Sequence")

    @invocation("isinstance(%s, collections.Mapping)")
    def _isMappingType(self, node, results):
        return self._handle_type2abc(node, results, "collections", "Mapping")

    @invocation("isinstance(%s, numbers.Number)")
    def _isNumberType(self, node, results):
        return self._handle_type2abc(node, results, "numbers", "Number")

    def _handle_rename(self, node, results, name):
        method = results["method"][0]
        method.value = name
        method.changed()

    def _handle_type2abc(self, node, results, module, abc):
        touch_import(None, module, node)
        obj = results["obj"]
        args = [obj.clone(), String(", " + ".".join([module, abc]))]
        return Call(Name("isinstance"), args, prefix=node.prefix)

    def _check_method(self, node, results):
        method = getattr(self, "_" + results["method"][0].value)
        if isinstance(method, collections.Callable):
            if "module" in results:
                return method
            else:
                sub = (str(results["obj"]),)
                invocation_str = method.invocation % sub
                self.warning(node, "You should use '%s' here." % invocation_str)
        return None
lib\lib2to3\fixes\fix_paren.py
"""Fixer that addes parentheses where they are required

This converts ``[x for x in 1, 2]`` to ``[x for x in (1, 2)]``."""

# By Taek Joo Kim and Benjamin Peterson

# Local imports
from .. import fixer_base
from ..fixer_util import LParen, RParen

# XXX This doesn't support nested for loops like [x for x in 1, 2 for x in 1, 2]
class FixParen(fixer_base.BaseFix):
    BM_compatible = True

    PATTERN = """
        atom< ('[' | '(')
            (listmaker< any
                comp_for<
                    'for' NAME 'in'
                    target=testlist_safe< any (',' any)+ [',']
                     >
                    [any]
                >
            >
            |
            testlist_gexp< any
                comp_for<
                    'for' NAME 'in'
                    target=testlist_safe< any (',' any)+ [',']
                     >
                    [any]
                >
            >)
        (']' | ')') >
    """

    def transform(self, node, results):
        target = results["target"]

        lparen = LParen()
        lparen.prefix = target.prefix
        target.prefix = "" # Make it hug the parentheses
        target.insert_child(0, lparen)
        target.append_child(RParen())
lib\lib2to3\fixes\fix_print.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for print.

Change:
    'print'          into 'print()'
    'print ...'      into 'print(...)'
    'print ... ,'    into 'print(..., end=" ")'
    'print >>x, ...' into 'print(..., file=x)'

No changes are applied if print_function is imported from __future__

"""

# Local imports
from .. import patcomp
from .. import pytree
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Name, Call, Comma, String, is_tuple


parend_expr = patcomp.compile_pattern(
              """atom< '(' [atom|STRING|NAME] ')' >"""
              )


class FixPrint(fixer_base.BaseFix):

    BM_compatible = True

    PATTERN = """
              simple_stmt< any* bare='print' any* > | print_stmt
              """

    def transform(self, node, results):
        assert results

        bare_print = results.get("bare")

        if bare_print:
            # Special-case print all by itself
            bare_print.replace(Call(Name("print"), [],
                               prefix=bare_print.prefix))
            return
        assert node.children[0] == Name("print")
        args = node.children[1:]
        if len(args) == 1 and parend_expr.match(args[0]):
            # We don't want to keep sticking parens around an
            # already-parenthesised expression.
            return

        sep = end = file = None
        if args and args[-1] == Comma():
            args = args[:-1]
            end = " "
        if args and args[0] == pytree.Leaf(token.RIGHTSHIFT, ">>"):
            assert len(args) >= 2
            file = args[1].clone()
            args = args[3:] # Strip a possible comma after the file expression
        # Now synthesize a print(args, sep=..., end=..., file=...) node.
        l_args = [arg.clone() for arg in args]
        if l_args:
            l_args[0].prefix = ""
        if sep is not None or end is not None or file is not None:
            if sep is not None:
                self.add_kwarg(l_args, "sep", String(repr(sep)))
            if end is not None:
                self.add_kwarg(l_args, "end", String(repr(end)))
            if file is not None:
                self.add_kwarg(l_args, "file", file)
        n_stmt = Call(Name("print"), l_args)
        n_stmt.prefix = node.prefix
        return n_stmt

    def add_kwarg(self, l_nodes, s_kwd, n_expr):
        # XXX All this prefix-setting may lose comments (though rarely)
        n_expr.prefix = ""
        n_argument = pytree.Node(self.syms.argument,
                                 (Name(s_kwd),
                                  pytree.Leaf(token.EQUAL, "="),
                                  n_expr))
        if l_nodes:
            l_nodes.append(Comma())
            n_argument.prefix = " "
        l_nodes.append(n_argument)
lib\lib2to3\fixes\fix_raise.py
"""Fixer for 'raise E, V, T'

raise         -> raise
raise E       -> raise E
raise E, V    -> raise E(V)
raise E, V, T -> raise E(V).with_traceback(T)
raise E, None, T -> raise E.with_traceback(T)

raise (((E, E'), E''), E'''), V -> raise E(V)
raise "foo", V, T               -> warns about string exceptions


CAVEATS:
1) "raise E, V" will be incorrectly translated if V is an exception
   instance. The correct Python 3 idiom is

        raise E from V

   but since we can't detect instance-hood by syntax alone and since
   any client code would have to be changed as well, we don't automate
   this.
"""
# Author: Collin Winter

# Local imports
from .. import pytree
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Name, Call, Attr, ArgList, is_tuple

class FixRaise(fixer_base.BaseFix):

    BM_compatible = True
    PATTERN = """
    raise_stmt< 'raise' exc=any [',' val=any [',' tb=any]] >
    """

    def transform(self, node, results):
        syms = self.syms

        exc = results["exc"].clone()
        if exc.type == token.STRING:
            msg = "Python 3 does not support string exceptions"
            self.cannot_convert(node, msg)
            return

        # Python 2 supports
        #  raise ((((E1, E2), E3), E4), E5), V
        # as a synonym for
        #  raise E1, V
        # Since Python 3 will not support this, we recurse down any tuple
        # literals, always taking the first element.
        if is_tuple(exc):
            while is_tuple(exc):
                # exc.children[1:-1] is the unparenthesized tuple
                # exc.children[1].children[0] is the first element of the tuple
                exc = exc.children[1].children[0].clone()
            exc.prefix = " "

        if "val" not in results:
            # One-argument raise
            new = pytree.Node(syms.raise_stmt, [Name("raise"), exc])
            new.prefix = node.prefix
            return new

        val = results["val"].clone()
        if is_tuple(val):
            args = [c.clone() for c in val.children[1:-1]]
        else:
            val.prefix = ""
            args = [val]

        if "tb" in results:
            tb = results["tb"].clone()
            tb.prefix = ""

            e = exc
            # If there's a traceback and None is passed as the value, then don't
            # add a call, since the user probably just wants to add a
            # traceback. See issue #9661.
            if val.type != token.NAME or val.value != "None":
                e = Call(exc, args)
            with_tb = Attr(e, Name('with_traceback')) + [ArgList([tb])]
            new = pytree.Node(syms.simple_stmt, [Name("raise")] + with_tb)
            new.prefix = node.prefix
            return new
        else:
            return pytree.Node(syms.raise_stmt,
                               [Name("raise"), Call(exc, args)],
                               prefix=node.prefix)
lib\lib2to3\fixes\fix_raw_input.py
"""Fixer that changes raw_input(...) into input(...)."""
# Author: Andre Roberge

# Local imports
from .. import fixer_base
from ..fixer_util import Name

class FixRawInput(fixer_base.BaseFix):

    BM_compatible = True
    PATTERN = """
              power< name='raw_input' trailer< '(' [any] ')' > any* >
              """

    def transform(self, node, results):
        name = results["name"]
        name.replace(Name("input", prefix=name.prefix))
lib\lib2to3\fixes\fix_reduce.py
# Copyright 2008 Armin Ronacher.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for reduce().

Makes sure reduce() is imported from the functools module if reduce is
used in that module.
"""

from lib2to3 import fixer_base
from lib2to3.fixer_util import touch_import



class FixReduce(fixer_base.BaseFix):

    BM_compatible = True
    order = "pre"

    PATTERN = """
    power< 'reduce'
        trailer< '('
            arglist< (
                (not(argument<any '=' any>) any ','
                 not(argument<any '=' any>) any) |
                (not(argument<any '=' any>) any ','
                 not(argument<any '=' any>) any ','
                 not(argument<any '=' any>) any)
            ) >
        ')' >
    >
    """

    def transform(self, node, results):
        touch_import('functools', 'reduce', node)
lib\lib2to3\fixes\fix_reload.py
"""Fixer for reload().

reload(s) -> imp.reload(s)"""

# Local imports
from .. import fixer_base
from ..fixer_util import ImportAndCall, touch_import


class FixReload(fixer_base.BaseFix):
    BM_compatible = True
    order = "pre"

    PATTERN = """
    power< 'reload'
           trailer< lpar='('
                    ( not(arglist | argument<any '=' any>) obj=any
                      | obj=arglist<(not argument<any '=' any>) any ','> )
                    rpar=')' >
           after=any*
    >
    """

    def transform(self, node, results):
        names = ('imp', 'reload')
        new = ImportAndCall(node, results, names)
        touch_import(None, 'imp', node)
        return new
lib\lib2to3\fixes\fix_renames.py
"""Fix incompatible renames

Fixes:
  * sys.maxint -> sys.maxsize
"""
# Author: Christian Heimes
# based on Collin Winter's fix_import

# Local imports
from .. import fixer_base
from ..fixer_util import Name, attr_chain

MAPPING = {"sys":  {"maxint" : "maxsize"},
          }
LOOKUP = {}

def alternates(members):
    return "(" + "|".join(map(repr, members)) + ")"


def build_pattern():
    #bare = set()
    for module, replace in list(MAPPING.items()):
        for old_attr, new_attr in list(replace.items()):
            LOOKUP[(module, old_attr)] = new_attr
            #bare.add(module)
            #bare.add(old_attr)
            #yield """
            #      import_name< 'import' (module=%r
            #          | dotted_as_names< any* module=%r any* >) >
            #      """ % (module, module)
            yield """
                  import_from< 'from' module_name=%r 'import'
                      ( attr_name=%r | import_as_name< attr_name=%r 'as' any >) >
                  """ % (module, old_attr, old_attr)
            yield """
                  power< module_name=%r trailer< '.' attr_name=%r > any* >
                  """ % (module, old_attr)
    #yield """bare_name=%s""" % alternates(bare)


class FixRenames(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = "|".join(build_pattern())

    order = "pre" # Pre-order tree traversal

    # Don't match the node if it's within another match
    def match(self, node):
        match = super(FixRenames, self).match
        results = match(node)
        if results:
            if any(match(obj) for obj in attr_chain(node, "parent")):
                return False
            return results
        return False

    #def start_tree(self, tree, filename):
    #    super(FixRenames, self).start_tree(tree, filename)
    #    self.replace = {}

    def transform(self, node, results):
        mod_name = results.get("module_name")
        attr_name = results.get("attr_name")
        #bare_name = results.get("bare_name")
        #import_mod = results.get("module")

        if mod_name and attr_name:
            new_attr = LOOKUP[(mod_name.value, attr_name.value)]
            attr_name.replace(Name(new_attr, prefix=attr_name.prefix))
lib\lib2to3\fixes\fix_repr.py
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer that transforms `xyzzy` into repr(xyzzy)."""

# Local imports
from .. import fixer_base
from ..fixer_util import Call, Name, parenthesize


class FixRepr(fixer_base.BaseFix):

    BM_compatible = True
    PATTERN = """
              atom < '`' expr=any '`' >
              """

    def transform(self, node, results):
        expr = results["expr"].clone()

        if expr.type == self.syms.testlist1:
            expr = parenthesize(expr)
        return Call(Name("repr"), [expr], prefix=node.prefix)
lib\lib2to3\fixes\fix_set_literal.py
"""
Optional fixer to transform set() calls to set literals.
"""

# Author: Benjamin Peterson

from lib2to3 import fixer_base, pytree
from lib2to3.fixer_util import token, syms



class FixSetLiteral(fixer_base.BaseFix):

    BM_compatible = True
    explicit = True

    PATTERN = """power< 'set' trailer< '('
                     (atom=atom< '[' (items=listmaker< any ((',' any)* [',']) >
                                |
                                single=any) ']' >
                     |
                     atom< '(' items=testlist_gexp< any ((',' any)* [',']) > ')' >
                     )
                     ')' > >
              """

    def transform(self, node, results):
        single = results.get("single")
        if single:
            # Make a fake listmaker
            fake = pytree.Node(syms.listmaker, [single.clone()])
            single.replace(fake)
            items = fake
        else:
            items = results["items"]

        # Build the contents of the literal
        literal = [pytree.Leaf(token.LBRACE, "{")]
        literal.extend(n.clone() for n in items.children)
        literal.append(pytree.Leaf(token.RBRACE, "}"))
        # Set the prefix of the right brace to that of the ')' or ']'
        literal[-1].prefix = items.next_sibling.prefix
        maker = pytree.Node(syms.dictsetmaker, literal)
        maker.prefix = node.prefix

        # If the original was a one tuple, we need to remove the extra comma.
        if len(maker.children) == 4:
            n = maker.children[2]
            n.remove()
            maker.children[-1].prefix = n.prefix

        # Finally, replace the set call with our shiny new literal.
        return maker
lib\lib2to3\fixes\fix_standarderror.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for StandardError -> Exception."""

# Local imports
from .. import fixer_base
from ..fixer_util import Name


class FixStandarderror(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
              'StandardError'
              """

    def transform(self, node, results):
        return Name("Exception", prefix=node.prefix)
lib\lib2to3\fixes\fix_sys_exc.py
"""Fixer for sys.exc_{type, value, traceback}

sys.exc_type -> sys.exc_info()[0]
sys.exc_value -> sys.exc_info()[1]
sys.exc_traceback -> sys.exc_info()[2]
"""

# By Jeff Balogh and Benjamin Peterson

# Local imports
from .. import fixer_base
from ..fixer_util import Attr, Call, Name, Number, Subscript, Node, syms

class FixSysExc(fixer_base.BaseFix):
    # This order matches the ordering of sys.exc_info().
    exc_info = ["exc_type", "exc_value", "exc_traceback"]
    BM_compatible = True
    PATTERN = """
              power< 'sys' trailer< dot='.' attribute=(%s) > >
              """ % '|'.join("'%s'" % e for e in exc_info)

    def transform(self, node, results):
        sys_attr = results["attribute"][0]
        index = Number(self.exc_info.index(sys_attr.value))

        call = Call(Name("exc_info"), prefix=sys_attr.prefix)
        attr = Attr(Name("sys"), call)
        attr[1].children[0].prefix = results["dot"].prefix
        attr.append(Subscript(index))
        return Node(syms.power, attr, prefix=node.prefix)
lib\lib2to3\fixes\fix_throw.py
"""Fixer for generator.throw(E, V, T).

g.throw(E)       -> g.throw(E)
g.throw(E, V)    -> g.throw(E(V))
g.throw(E, V, T) -> g.throw(E(V).with_traceback(T))

g.throw("foo"[, V[, T]]) will warn about string exceptions."""
# Author: Collin Winter

# Local imports
from .. import pytree
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Name, Call, ArgList, Attr, is_tuple

class FixThrow(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
    power< any trailer< '.' 'throw' >
           trailer< '(' args=arglist< exc=any ',' val=any [',' tb=any] > ')' >
    >
    |
    power< any trailer< '.' 'throw' > trailer< '(' exc=any ')' > >
    """

    def transform(self, node, results):
        syms = self.syms

        exc = results["exc"].clone()
        if exc.type is token.STRING:
            self.cannot_convert(node, "Python 3 does not support string exceptions")
            return

        # Leave "g.throw(E)" alone
        val = results.get("val")
        if val is None:
            return

        val = val.clone()
        if is_tuple(val):
            args = [c.clone() for c in val.children[1:-1]]
        else:
            val.prefix = ""
            args = [val]

        throw_args = results["args"]

        if "tb" in results:
            tb = results["tb"].clone()
            tb.prefix = ""

            e = Call(exc, args)
            with_tb = Attr(e, Name('with_traceback')) + [ArgList([tb])]
            throw_args.replace(pytree.Node(syms.power, with_tb))
        else:
            throw_args.replace(Call(exc, args))
lib\lib2to3\fixes\fix_tuple_params.py
"""Fixer for function definitions with tuple parameters.

def func(((a, b), c), d):
    ...

    ->

def func(x, d):
    ((a, b), c) = x
    ...

It will also support lambdas:

    lambda (x, y): x + y -> lambda t: t[0] + t[1]

    # The parens are a syntax error in Python 3
    lambda (x): x + y -> lambda x: x + y
"""
# Author: Collin Winter

# Local imports
from .. import pytree
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Assign, Name, Newline, Number, Subscript, syms

def is_docstring(stmt):
    return isinstance(stmt, pytree.Node) and \
           stmt.children[0].type == token.STRING

class FixTupleParams(fixer_base.BaseFix):
    run_order = 4 #use a lower order since lambda is part of other
                  #patterns
    BM_compatible = True

    PATTERN = """
              funcdef< 'def' any parameters< '(' args=any ')' >
                       ['->' any] ':' suite=any+ >
              |
              lambda=
              lambdef< 'lambda' args=vfpdef< '(' inner=any ')' >
                       ':' body=any
              >
              """

    def transform(self, node, results):
        if "lambda" in results:
            return self.transform_lambda(node, results)

        new_lines = []
        suite = results["suite"]
        args = results["args"]
        # This crap is so "def foo(...): x = 5; y = 7" is handled correctly.
        # TODO(cwinter): suite-cleanup
        if suite[0].children[1].type == token.INDENT:
            start = 2
            indent = suite[0].children[1].value
            end = Newline()
        else:
            start = 0
            indent = "; "
            end = pytree.Leaf(token.INDENT, "")

        # We need access to self for new_name(), and making this a method
        #  doesn't feel right. Closing over self and new_lines makes the
        #  code below cleaner.
        def handle_tuple(tuple_arg, add_prefix=False):
            n = Name(self.new_name())
            arg = tuple_arg.clone()
            arg.prefix = ""
            stmt = Assign(arg, n.clone())
            if add_prefix:
                n.prefix = " "
            tuple_arg.replace(n)
            new_lines.append(pytree.Node(syms.simple_stmt,
                                         [stmt, end.clone()]))

        if args.type == syms.tfpdef:
            handle_tuple(args)
        elif args.type == syms.typedargslist:
            for i, arg in enumerate(args.children):
                if arg.type == syms.tfpdef:
                    # Without add_prefix, the emitted code is correct,
                    #  just ugly.
                    handle_tuple(arg, add_prefix=(i > 0))

        if not new_lines:
            return

        # This isn't strictly necessary, but it plays nicely with other fixers.
        # TODO(cwinter) get rid of this when children becomes a smart list
        for line in new_lines:
            line.parent = suite[0]

        # TODO(cwinter) suite-cleanup
        after = start
        if start == 0:
            new_lines[0].prefix = " "
        elif is_docstring(suite[0].children[start]):
            new_lines[0].prefix = indent
            after = start + 1

        for line in new_lines:
            line.parent = suite[0]
        suite[0].children[after:after] = new_lines
        for i in range(after+1, after+len(new_lines)+1):
            suite[0].children[i].prefix = indent
        suite[0].changed()

    def transform_lambda(self, node, results):
        args = results["args"]
        body = results["body"]
        inner = simplify_args(results["inner"])

        # Replace lambda ((((x)))): x  with lambda x: x
        if inner.type == token.NAME:
            inner = inner.clone()
            inner.prefix = " "
            args.replace(inner)
            return

        params = find_params(args)
        to_index = map_to_index(params)
        tup_name = self.new_name(tuple_name(params))

        new_param = Name(tup_name, prefix=" ")
        args.replace(new_param.clone())
        for n in body.post_order():
            if n.type == token.NAME and n.value in to_index:
                subscripts = [c.clone() for c in to_index[n.value]]
                new = pytree.Node(syms.power,
                                  [new_param.clone()] + subscripts)
                new.prefix = n.prefix
                n.replace(new)


### Helper functions for transform_lambda()

def simplify_args(node):
    if node.type in (syms.vfplist, token.NAME):
        return node
    elif node.type == syms.vfpdef:
        # These look like vfpdef< '(' x ')' > where x is NAME
        # or another vfpdef instance (leading to recursion).
        while node.type == syms.vfpdef:
            node = node.children[1]
        return node
    raise RuntimeError("Received unexpected node %s" % node)

def find_params(node):
    if node.type == syms.vfpdef:
        return find_params(node.children[1])
    elif node.type == token.NAME:
        return node.value
    return [find_params(c) for c in node.children if c.type != token.COMMA]

def map_to_index(param_list, prefix=[], d=None):
    if d is None:
        d = {}
    for i, obj in enumerate(param_list):
        trailer = [Subscript(Number(str(i)))]
        if isinstance(obj, list):
            map_to_index(obj, trailer, d=d)
        else:
            d[obj] = prefix + trailer
    return d

def tuple_name(param_list):
    l = []
    for obj in param_list:
        if isinstance(obj, list):
            l.append(tuple_name(obj))
        else:
            l.append(obj)
    return "_".join(l)
lib\lib2to3\fixes\fix_types.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer for removing uses of the types module.

These work for only the known names in the types module.  The forms above
can include types. or not.  ie, It is assumed the module is imported either as:

    import types
    from types import ... # either * or specific types

The import statements are not modified.

There should be another fixer that handles at least the following constants:

   type([]) -> list
   type(()) -> tuple
   type('') -> str

"""

# Local imports
from ..pgen2 import token
from .. import fixer_base
from ..fixer_util import Name

_TYPE_MAPPING = {
        'BooleanType' : 'bool',
        'BufferType' : 'memoryview',
        'ClassType' : 'type',
        'ComplexType' : 'complex',
        'DictType': 'dict',
        'DictionaryType' : 'dict',
        'EllipsisType' : 'type(Ellipsis)',
        #'FileType' : 'io.IOBase',
        'FloatType': 'float',
        'IntType': 'int',
        'ListType': 'list',
        'LongType': 'int',
        'ObjectType' : 'object',
        'NoneType': 'type(None)',
        'NotImplementedType' : 'type(NotImplemented)',
        'SliceType' : 'slice',
        'StringType': 'bytes', # XXX ?
        'StringTypes' : 'str', # XXX ?
        'TupleType': 'tuple',
        'TypeType' : 'type',
        'UnicodeType': 'str',
        'XRangeType' : 'range',
    }

_pats = ["power< 'types' trailer< '.' name='%s' > >" % t for t in _TYPE_MAPPING]

class FixTypes(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = '|'.join(_pats)

    def transform(self, node, results):
        new_value = _TYPE_MAPPING.get(results["name"].value)
        if new_value:
            return Name(new_value, prefix=node.prefix)
        return None
lib\lib2to3\fixes\fix_unicode.py
r"""Fixer for unicode.

* Changes unicode to str and unichr to chr.

* If "...\u..." is not unicode literal change it into "...\\u...".

* Change u"..." into "...".

"""

from ..pgen2 import token
from .. import fixer_base

_mapping = {"unichr" : "chr", "unicode" : "str"}

class FixUnicode(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = "STRING | 'unicode' | 'unichr'"

    def start_tree(self, tree, filename):
        super(FixUnicode, self).start_tree(tree, filename)
        self.unicode_literals = 'unicode_literals' in tree.future_features

    def transform(self, node, results):
        if node.type == token.NAME:
            new = node.clone()
            new.value = _mapping[node.value]
            return new
        elif node.type == token.STRING:
            val = node.value
            if not self.unicode_literals and val[0] in '\'"' and '\\' in val:
                val = r'\\'.join([
                    v.replace('\\u', r'\\u').replace('\\U', r'\\U')
                    for v in val.split(r'\\')
                ])
            if val[0] in 'uU':
                val = val[1:]
            if val == node.value:
                return node
            new = node.clone()
            new.value = val
            return new
lib\lib2to3\fixes\fix_urllib.py
"""Fix changes imports of urllib which are now incompatible.
   This is rather similar to fix_imports, but because of the more
   complex nature of the fixing for urllib, it has its own fixer.
"""
# Author: Nick Edds

# Local imports
from lib2to3.fixes.fix_imports import alternates, FixImports
from lib2to3 import fixer_base
from lib2to3.fixer_util import (Name, Comma, FromImport, Newline,
                                find_indentation, Node, syms)

MAPPING = {"urllib":  [
                ("urllib.request",
                    ["URLopener", "FancyURLopener", "urlretrieve",
                     "_urlopener", "urlopen", "urlcleanup",
                     "pathname2url", "url2pathname"]),
                ("urllib.parse",
                    ["quote", "quote_plus", "unquote", "unquote_plus",
                     "urlencode", "splitattr", "splithost", "splitnport",
                     "splitpasswd", "splitport", "splitquery", "splittag",
                     "splittype", "splituser", "splitvalue", ]),
                ("urllib.error",
                    ["ContentTooShortError"])],
           "urllib2" : [
                ("urllib.request",
                    ["urlopen", "install_opener", "build_opener",
                     "Request", "OpenerDirector", "BaseHandler",
                     "HTTPDefaultErrorHandler", "HTTPRedirectHandler",
                     "HTTPCookieProcessor", "ProxyHandler",
                     "HTTPPasswordMgr",
                     "HTTPPasswordMgrWithDefaultRealm",
                     "AbstractBasicAuthHandler",
                     "HTTPBasicAuthHandler", "ProxyBasicAuthHandler",
                     "AbstractDigestAuthHandler",
                     "HTTPDigestAuthHandler", "ProxyDigestAuthHandler",
                     "HTTPHandler", "HTTPSHandler", "FileHandler",
                     "FTPHandler", "CacheFTPHandler",
                     "UnknownHandler"]),
                ("urllib.error",
                    ["URLError", "HTTPError"]),
           ]
}

# Duplicate the url parsing functions for urllib2.
MAPPING["urllib2"].append(MAPPING["urllib"][1])


def build_pattern():
    bare = set()
    for old_module, changes in MAPPING.items():
        for change in changes:
            new_module, members = change
            members = alternates(members)
            yield """import_name< 'import' (module=%r
                                  | dotted_as_names< any* module=%r any* >) >
                  """ % (old_module, old_module)
            yield """import_from< 'from' mod_member=%r 'import'
                       ( member=%s | import_as_name< member=%s 'as' any > |
                         import_as_names< members=any*  >) >
                  """ % (old_module, members, members)
            yield """import_from< 'from' module_star=%r 'import' star='*' >
                  """ % old_module
            yield """import_name< 'import'
                                  dotted_as_name< module_as=%r 'as' any > >
                  """ % old_module
            # bare_with_attr has a special significance for FixImports.match().
            yield """power< bare_with_attr=%r trailer< '.' member=%s > any* >
                  """ % (old_module, members)


class FixUrllib(FixImports):

    def build_pattern(self):
        return "|".join(build_pattern())

    def transform_import(self, node, results):
        """Transform for the basic import case. Replaces the old
           import name with a comma separated list of its
           replacements.
        """
        import_mod = results.get("module")
        pref = import_mod.prefix

        names = []

        # create a Node list of the replacement modules
        for name in MAPPING[import_mod.value][:-1]:
            names.extend([Name(name[0], prefix=pref), Comma()])
        names.append(Name(MAPPING[import_mod.value][-1][0], prefix=pref))
        import_mod.replace(names)

    def transform_member(self, node, results):
        """Transform for imports of specific module elements. Replaces
           the module to be imported from with the appropriate new
           module.
        """
        mod_member = results.get("mod_member")
        pref = mod_member.prefix
        member = results.get("member")

        # Simple case with only a single member being imported
        if member:
            # this may be a list of length one, or just a node
            if isinstance(member, list):
                member = member[0]
            new_name = None
            for change in MAPPING[mod_member.value]:
                if member.value in change[1]:
                    new_name = change[0]
                    break
            if new_name:
                mod_member.replace(Name(new_name, prefix=pref))
            else:
                self.cannot_convert(node, "This is an invalid module element")

        # Multiple members being imported
        else:
            # a dictionary for replacements, order matters
            modules = []
            mod_dict = {}
            members = results["members"]
            for member in members:
                # we only care about the actual members
                if member.type == syms.import_as_name:
                    as_name = member.children[2].value
                    member_name = member.children[0].value
                else:
                    member_name = member.value
                    as_name = None
                if member_name != ",":
                    for change in MAPPING[mod_member.value]:
                        if member_name in change[1]:
                            if change[0] not in mod_dict:
                                modules.append(change[0])
                            mod_dict.setdefault(change[0], []).append(member)

            new_nodes = []
            indentation = find_indentation(node)
            first = True
            def handle_name(name, prefix):
                if name.type == syms.import_as_name:
                    kids = [Name(name.children[0].value, prefix=prefix),
                            name.children[1].clone(),
                            name.children[2].clone()]
                    return [Node(syms.import_as_name, kids)]
                return [Name(name.value, prefix=prefix)]
            for module in modules:
                elts = mod_dict[module]
                names = []
                for elt in elts[:-1]:
                    names.extend(handle_name(elt, pref))
                    names.append(Comma())
                names.extend(handle_name(elts[-1], pref))
                new = FromImport(module, names)
                if not first or node.parent.prefix.endswith(indentation):
                    new.prefix = indentation
                new_nodes.append(new)
                first = False
            if new_nodes:
                nodes = []
                for new_node in new_nodes[:-1]:
                    nodes.extend([new_node, Newline()])
                nodes.append(new_nodes[-1])
                node.replace(nodes)
            else:
                self.cannot_convert(node, "All module elements are invalid")

    def transform_dot(self, node, results):
        """Transform for calls to module members in code."""
        module_dot = results.get("bare_with_attr")
        member = results.get("member")
        new_name = None
        if isinstance(member, list):
            member = member[0]
        for change in MAPPING[module_dot.value]:
            if member.value in change[1]:
                new_name = change[0]
                break
        if new_name:
            module_dot.replace(Name(new_name,
                                    prefix=module_dot.prefix))
        else:
            self.cannot_convert(node, "This is an invalid module element")

    def transform(self, node, results):
        if results.get("module"):
            self.transform_import(node, results)
        elif results.get("mod_member"):
            self.transform_member(node, results)
        elif results.get("bare_with_attr"):
            self.transform_dot(node, results)
        # Renaming and star imports are not supported for these modules.
        elif results.get("module_star"):
            self.cannot_convert(node, "Cannot handle star imports.")
        elif results.get("module_as"):
            self.cannot_convert(node, "This module is now multiple modules")
lib\lib2to3\fixes\fix_ws_comma.py
"""Fixer that changes 'a ,b' into 'a, b'.

This also changes '{a :b}' into '{a: b}', but does not touch other
uses of colons.  It does not touch other uses of whitespace.

"""

from .. import pytree
from ..pgen2 import token
from .. import fixer_base

class FixWsComma(fixer_base.BaseFix):

    explicit = True # The user must ask for this fixers

    PATTERN = """
    any<(not(',') any)+ ',' ((not(',') any)+ ',')* [not(',') any]>
    """

    COMMA = pytree.Leaf(token.COMMA, ",")
    COLON = pytree.Leaf(token.COLON, ":")
    SEPS = (COMMA, COLON)

    def transform(self, node, results):
        new = node.clone()
        comma = False
        for child in new.children:
            if child in self.SEPS:
                prefix = child.prefix
                if prefix.isspace() and "\n" not in prefix:
                    child.prefix = ""
                comma = True
            else:
                if comma:
                    prefix = child.prefix
                    if not prefix:
                        child.prefix = " "
                comma = False
        return new
lib\lib2to3\fixes\fix_xrange.py
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Fixer that changes xrange(...) into range(...)."""

# Local imports
from .. import fixer_base
from ..fixer_util import Name, Call, consuming_calls
from .. import patcomp


class FixXrange(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
              power<
                 (name='range'|name='xrange') trailer< '(' args=any ')' >
              rest=any* >
              """

    def start_tree(self, tree, filename):
        super(FixXrange, self).start_tree(tree, filename)
        self.transformed_xranges = set()

    def finish_tree(self, tree, filename):
        self.transformed_xranges = None

    def transform(self, node, results):
        name = results["name"]
        if name.value == "xrange":
            return self.transform_xrange(node, results)
        elif name.value == "range":
            return self.transform_range(node, results)
        else:
            raise ValueError(repr(name))

    def transform_xrange(self, node, results):
        name = results["name"]
        name.replace(Name("range", prefix=name.prefix))
        # This prevents the new range call from being wrapped in a list later.
        self.transformed_xranges.add(id(node))

    def transform_range(self, node, results):
        if (id(node) not in self.transformed_xranges and
            not self.in_special_context(node)):
            range_call = Call(Name("range"), [results["args"].clone()])
            # Encase the range call in list().
            list_call = Call(Name("list"), [range_call],
                             prefix=node.prefix)
            # Put things that were after the range() call after the list call.
            for n in results["rest"]:
                list_call.append_child(n)
            return list_call

    P1 = "power< func=NAME trailer< '(' node=any ')' > any* >"
    p1 = patcomp.compile_pattern(P1)

    P2 = """for_stmt< 'for' any 'in' node=any ':' any* >
            | comp_for< 'for' any 'in' node=any any* >
            | comparison< any 'in' node=any any*>
         """
    p2 = patcomp.compile_pattern(P2)

    def in_special_context(self, node):
        if node.parent is None:
            return False
        results = {}
        if (node.parent.parent is not None and
               self.p1.match(node.parent.parent, results) and
               results["node"] is node):
            # list(d.keys()) -> list(d.keys()), etc.
            return results["func"].value in consuming_calls
        # for ... in d.iterkeys() -> for ... in d.keys(), etc.
        return self.p2.match(node.parent, results) and results["node"] is node
lib\lib2to3\fixes\fix_xreadlines.py
"""Fix "for x in f.xreadlines()" -> "for x in f".

This fixer will also convert g(f.xreadlines) into g(f.__iter__)."""
# Author: Collin Winter

# Local imports
from .. import fixer_base
from ..fixer_util import Name


class FixXreadlines(fixer_base.BaseFix):
    BM_compatible = True
    PATTERN = """
    power< call=any+ trailer< '.' 'xreadlines' > trailer< '(' ')' > >
    |
    power< any+ trailer< '.' no_call='xreadlines' > >
    """

    def transform(self, node, results):
        no_call = results.get("no_call")

        if no_call:
            no_call.replace(Name("__iter__", prefix=no_call.prefix))
        else:
            node.replace([x.clone() for x in results["call"]])
lib\lib2to3\fixes\fix_zip.py
"""
Fixer that changes zip(seq0, seq1, ...) into list(zip(seq0, seq1, ...)
unless there exists a 'from future_builtins import zip' statement in the
top-level namespace.

We avoid the transformation if the zip() call is directly contained in
iter(<>), list(<>), tuple(<>), sorted(<>), ...join(<>), or for V in <>:.
"""

# Local imports
from .. import fixer_base
from ..fixer_util import Name, Call, in_special_context

class FixZip(fixer_base.ConditionalFix):

    BM_compatible = True
    PATTERN = """
    power< 'zip' args=trailer< '(' [any] ')' >
    >
    """

    skip_on = "future_builtins.zip"

    def transform(self, node, results):
        if self.should_skip(node):
            return

        if in_special_context(node):
            return None

        new = node.clone()
        new.prefix = ""
        new = Call(Name("list"), [new])
        new.prefix = node.prefix
        return new
lib\lib2to3\fixes\__init__.py
# Dummy file to make this directory a package.
lib\lib2to3\pgen2\conv.py
# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Convert graminit.[ch] spit out by pgen to Python code.

Pgen is the Python parser generator.  It is useful to quickly create a
parser from a grammar file in Python's grammar notation.  But I don't
want my parsers to be written in C (yet), so I'm translating the
parsing tables to Python data structures and writing a Python parse
engine.

Note that the token numbers are constants determined by the standard
Python tokenizer.  The standard token module defines these numbers and
their names (the names are not used much).  The token numbers are
hardcoded into the Python tokenizer and into pgen.  A Python
implementation of the Python tokenizer is also available, in the
standard tokenize module.

On the other hand, symbol numbers (representing the grammar's
non-terminals) are assigned by pgen based on the actual grammar
input.

Note: this module is pretty much obsolete; the pgen module generates
equivalent grammar tables directly from the Grammar.txt input file
without having to invoke the Python pgen C program.

"""

# Python imports
import re

# Local imports
from pgen2 import grammar, token


class Converter(grammar.Grammar):
    """Grammar subclass that reads classic pgen output files.

    The run() method reads the tables as produced by the pgen parser
    generator, typically contained in two C files, graminit.h and
    graminit.c.  The other methods are for internal use only.

    See the base class for more documentation.

    """

    def run(self, graminit_h, graminit_c):
        """Load the grammar tables from the text files written by pgen."""
        self.parse_graminit_h(graminit_h)
        self.parse_graminit_c(graminit_c)
        self.finish_off()

    def parse_graminit_h(self, filename):
        """Parse the .h file written by pgen.  (Internal)

        This file is a sequence of #define statements defining the
        nonterminals of the grammar as numbers.  We build two tables
        mapping the numbers to names and back.

        """
        try:
            f = open(filename)
        except OSError as err:
            print("Can't open %s: %s" % (filename, err))
            return False
        self.symbol2number = {}
        self.number2symbol = {}
        lineno = 0
        for line in f:
            lineno += 1
            mo = re.match(r"^#define\s+(\w+)\s+(\d+)$", line)
            if not mo and line.strip():
                print("%s(%s): can't parse %s" % (filename, lineno,
                                                  line.strip()))
            else:
                symbol, number = mo.groups()
                number = int(number)
                assert symbol not in self.symbol2number
                assert number not in self.number2symbol
                self.symbol2number[symbol] = number
                self.number2symbol[number] = symbol
        return True

    def parse_graminit_c(self, filename):
        """Parse the .c file written by pgen.  (Internal)

        The file looks as follows.  The first two lines are always this:

        #include "pgenheaders.h"
        #include "grammar.h"

        After that come four blocks:

        1) one or more state definitions
        2) a table defining dfas
        3) a table defining labels
        4) a struct defining the grammar

        A state definition has the following form:
        - one or more arc arrays, each of the form:
          static arc arcs_<n>_<m>[<k>] = {
                  {<i>, <j>},
                  ...
          };
        - followed by a state array, of the form:
          static state states_<s>[<t>] = {
                  {<k>, arcs_<n>_<m>},
                  ...
          };

        """
        try:
            f = open(filename)
        except OSError as err:
            print("Can't open %s: %s" % (filename, err))
            return False
        # The code below essentially uses f's iterator-ness!
        lineno = 0

        # Expect the two #include lines
        lineno, line = lineno+1, next(f)
        assert line == '#include "pgenheaders.h"\n', (lineno, line)
        lineno, line = lineno+1, next(f)
        assert line == '#include "grammar.h"\n', (lineno, line)

        # Parse the state definitions
        lineno, line = lineno+1, next(f)
        allarcs = {}
        states = []
        while line.startswith("static arc "):
            while line.startswith("static arc "):
                mo = re.match(r"static arc arcs_(\d+)_(\d+)\[(\d+)\] = {$",
                              line)
                assert mo, (lineno, line)
                n, m, k = list(map(int, mo.groups()))
                arcs = []
                for _ in range(k):
                    lineno, line = lineno+1, next(f)
                    mo = re.match(r"\s+{(\d+), (\d+)},$", line)
                    assert mo, (lineno, line)
                    i, j = list(map(int, mo.groups()))
                    arcs.append((i, j))
                lineno, line = lineno+1, next(f)
                assert line == "};\n", (lineno, line)
                allarcs[(n, m)] = arcs
                lineno, line = lineno+1, next(f)
            mo = re.match(r"static state states_(\d+)\[(\d+)\] = {$", line)
            assert mo, (lineno, line)
            s, t = list(map(int, mo.groups()))
            assert s == len(states), (lineno, line)
            state = []
            for _ in range(t):
                lineno, line = lineno+1, next(f)
                mo = re.match(r"\s+{(\d+), arcs_(\d+)_(\d+)},$", line)
                assert mo, (lineno, line)
                k, n, m = list(map(int, mo.groups()))
                arcs = allarcs[n, m]
                assert k == len(arcs), (lineno, line)
                state.append(arcs)
            states.append(state)
            lineno, line = lineno+1, next(f)
            assert line == "};\n", (lineno, line)
            lineno, line = lineno+1, next(f)
        self.states = states

        # Parse the dfas
        dfas = {}
        mo = re.match(r"static dfa dfas\[(\d+)\] = {$", line)
        assert mo, (lineno, line)
        ndfas = int(mo.group(1))
        for i in range(ndfas):
            lineno, line = lineno+1, next(f)
            mo = re.match(r'\s+{(\d+), "(\w+)", (\d+), (\d+), states_(\d+),$',
                          line)
            assert mo, (lineno, line)
            symbol = mo.group(2)
            number, x, y, z = list(map(int, mo.group(1, 3, 4, 5)))
            assert self.symbol2number[symbol] == number, (lineno, line)
            assert self.number2symbol[number] == symbol, (lineno, line)
            assert x == 0, (lineno, line)
            state = states[z]
            assert y == len(state), (lineno, line)
            lineno, line = lineno+1, next(f)
            mo = re.match(r'\s+("(?:\\\d\d\d)*")},$', line)
            assert mo, (lineno, line)
            first = {}
            rawbitset = eval(mo.group(1))
            for i, c in enumerate(rawbitset):
                byte = ord(c)
                for j in range(8):
                    if byte & (1<<j):
                        first[i*8 + j] = 1
            dfas[number] = (state, first)
        lineno, line = lineno+1, next(f)
        assert line == "};\n", (lineno, line)
        self.dfas = dfas

        # Parse the labels
        labels = []
        lineno, line = lineno+1, next(f)
        mo = re.match(r"static label labels\[(\d+)\] = {$", line)
        assert mo, (lineno, line)
        nlabels = int(mo.group(1))
        for i in range(nlabels):
            lineno, line = lineno+1, next(f)
            mo = re.match(r'\s+{(\d+), (0|"\w+")},$', line)
            assert mo, (lineno, line)
            x, y = mo.groups()
            x = int(x)
            if y == "0":
                y = None
            else:
                y = eval(y)
            labels.append((x, y))
        lineno, line = lineno+1, next(f)
        assert line == "};\n", (lineno, line)
        self.labels = labels

        # Parse the grammar struct
        lineno, line = lineno+1, next(f)
        assert line == "grammar _PyParser_Grammar = {\n", (lineno, line)
        lineno, line = lineno+1, next(f)
        mo = re.match(r"\s+(\d+),$", line)
        assert mo, (lineno, line)
        ndfas = int(mo.group(1))
        assert ndfas == len(self.dfas)
        lineno, line = lineno+1, next(f)
        assert line == "\tdfas,\n", (lineno, line)
        lineno, line = lineno+1, next(f)
        mo = re.match(r"\s+{(\d+), labels},$", line)
        assert mo, (lineno, line)
        nlabels = int(mo.group(1))
        assert nlabels == len(self.labels), (lineno, line)
        lineno, line = lineno+1, next(f)
        mo = re.match(r"\s+(\d+)$", line)
        assert mo, (lineno, line)
        start = int(mo.group(1))
        assert start in self.number2symbol, (lineno, line)
        self.start = start
        lineno, line = lineno+1, next(f)
        assert line == "};\n", (lineno, line)
        try:
            lineno, line = lineno+1, next(f)
        except StopIteration:
            pass
        else:
            assert 0, (lineno, line)

    def finish_off(self):
        """Create additional useful structures.  (Internal)."""
        self.keywords = {} # map from keyword strings to arc labels
        self.tokens = {}   # map from numeric token values to arc labels
        for ilabel, (type, value) in enumerate(self.labels):
            if type == token.NAME and value is not None:
                self.keywords[value] = ilabel
            elif value is None:
                self.tokens[type] = ilabel
lib\lib2to3\pgen2\driver.py
# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

# Modifications:
# Copyright 2006 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Parser driver.

This provides a high-level interface to parse a file into a syntax tree.

"""

__author__ = "Guido van Rossum <[email protected]>"

__all__ = ["Driver", "load_grammar"]

# Python imports
import codecs
import io
import os
import logging
import sys

# Pgen imports
from . import grammar, parse, token, tokenize, pgen


class Driver(object):

    def __init__(self, grammar, convert=None, logger=None):
        self.grammar = grammar
        if logger is None:
            logger = logging.getLogger()
        self.logger = logger
        self.convert = convert

    def parse_tokens(self, tokens, debug=False):
        """Parse a series of tokens and return the syntax tree."""
        # XXX Move the prefix computation into a wrapper around tokenize.
        p = parse.Parser(self.grammar, self.convert)
        p.setup()
        lineno = 1
        column = 0
        type = value = start = end = line_text = None
        prefix = ""
        for quintuple in tokens:
            type, value, start, end, line_text = quintuple
            if start != (lineno, column):
                assert (lineno, column) <= start, ((lineno, column), start)
                s_lineno, s_column = start
                if lineno < s_lineno:
                    prefix += "\n" * (s_lineno - lineno)
                    lineno = s_lineno
                    column = 0
                if column < s_column:
                    prefix += line_text[column:s_column]
                    column = s_column
            if type in (tokenize.COMMENT, tokenize.NL):
                prefix += value
                lineno, column = end
                if value.endswith("\n"):
                    lineno += 1
                    column = 0
                continue
            if type == token.OP:
                type = grammar.opmap[value]
            if debug:
                self.logger.debug("%s %r (prefix=%r)",
                                  token.tok_name[type], value, prefix)
            if p.addtoken(type, value, (prefix, start)):
                if debug:
                    self.logger.debug("Stop.")
                break
            prefix = ""
            lineno, column = end
            if value.endswith("\n"):
                lineno += 1
                column = 0
        else:
            # We never broke out -- EOF is too soon (how can this happen???)
            raise parse.ParseError("incomplete input",
                                   type, value, (prefix, start))
        return p.rootnode

    def parse_stream_raw(self, stream, debug=False):
        """Parse a stream and return the syntax tree."""
        tokens = tokenize.generate_tokens(stream.readline)
        return self.parse_tokens(tokens, debug)

    def parse_stream(self, stream, debug=False):
        """Parse a stream and return the syntax tree."""
        return self.parse_stream_raw(stream, debug)

    def parse_file(self, filename, encoding=None, debug=False):
        """Parse a file and return the syntax tree."""
        stream = codecs.open(filename, "r", encoding)
        try:
            return self.parse_stream(stream, debug)
        finally:
            stream.close()

    def parse_string(self, text, debug=False):
        """Parse a string and return the syntax tree."""
        tokens = tokenize.generate_tokens(io.StringIO(text).readline)
        return self.parse_tokens(tokens, debug)


def load_grammar(gt="Grammar.txt", gp=None,
                 save=True, force=False, logger=None):
    """Load the grammar (maybe from a pickle)."""
    if logger is None:
        logger = logging.getLogger()
    if gp is None:
        head, tail = os.path.splitext(gt)
        if tail == ".txt":
            tail = ""
        gp = head + tail + ".".join(map(str, sys.version_info)) + ".pickle"
    if force or not _newer(gp, gt):
        logger.info("Generating grammar tables from %s", gt)
        g = pgen.generate_grammar(gt)
        if save:
            logger.info("Writing grammar tables to %s", gp)
            try:
                g.dump(gp)
            except OSError as e:
                logger.info("Writing failed:"+str(e))
    else:
        g = grammar.Grammar()
        g.load(gp)
    return g


def _newer(a, b):
    """Inquire whether file a was written since file b."""
    if not os.path.exists(a):
        return False
    if not os.path.exists(b):
        return True
    return os.path.getmtime(a) >= os.path.getmtime(b)


def main(*args):
    """Main program, when run as a script: produce grammar pickle files.

    Calls load_grammar for each argument, a path to a grammar text file.
    """
    if not args:
        args = sys.argv[1:]
    logging.basicConfig(level=logging.INFO, stream=sys.stdout,
                        format='%(message)s')
    for gt in args:
        load_grammar(gt, save=True, force=True)
    return True

if __name__ == "__main__":
    sys.exit(int(not main()))
lib\lib2to3\pgen2\grammar.py
# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""This module defines the data structures used to represent a grammar.

These are a bit arcane because they are derived from the data
structures used by Python's 'pgen' parser generator.

There's also a table here mapping operators to their names in the
token module; the Python tokenize module reports all operators as the
fallback token code OP, but the parser needs the actual token code.

"""

# Python imports
import pickle

# Local imports
from . import token, tokenize


class Grammar(object):
    """Pgen parsing tables conversion class.

    Once initialized, this class supplies the grammar tables for the
    parsing engine implemented by parse.py.  The parsing engine
    accesses the instance variables directly.  The class here does not
    provide initialization of the tables; several subclasses exist to
    do this (see the conv and pgen modules).

    The load() method reads the tables from a pickle file, which is
    much faster than the other ways offered by subclasses.  The pickle
    file is written by calling dump() (after loading the grammar
    tables using a subclass).  The report() method prints a readable
    representation of the tables to stdout, for debugging.

    The instance variables are as follows:

    symbol2number -- a dict mapping symbol names to numbers.  Symbol
                     numbers are always 256 or higher, to distinguish
                     them from token numbers, which are between 0 and
                     255 (inclusive).

    number2symbol -- a dict mapping numbers to symbol names;
                     these two are each other's inverse.

    states        -- a list of DFAs, where each DFA is a list of
                     states, each state is a list of arcs, and each
                     arc is a (i, j) pair where i is a label and j is
                     a state number.  The DFA number is the index into
                     this list.  (This name is slightly confusing.)
                     Final states are represented by a special arc of
                     the form (0, j) where j is its own state number.

    dfas          -- a dict mapping symbol numbers to (DFA, first)
                     pairs, where DFA is an item from the states list
                     above, and first is a set of tokens that can
                     begin this grammar rule (represented by a dict
                     whose values are always 1).

    labels        -- a list of (x, y) pairs where x is either a token
                     number or a symbol number, and y is either None
                     or a string; the strings are keywords.  The label
                     number is the index in this list; label numbers
                     are used to mark state transitions (arcs) in the
                     DFAs.

    start         -- the number of the grammar's start symbol.

    keywords      -- a dict mapping keyword strings to arc labels.

    tokens        -- a dict mapping token numbers to arc labels.

    """

    def __init__(self):
        self.symbol2number = {}
        self.number2symbol = {}
        self.states = []
        self.dfas = {}
        self.labels = [(0, "EMPTY")]
        self.keywords = {}
        self.tokens = {}
        self.symbol2label = {}
        self.start = 256

    def dump(self, filename):
        """Dump the grammar tables to a pickle file."""
        with open(filename, "wb") as f:
            pickle.dump(self.__dict__, f, 2)

    def load(self, filename):
        """Load the grammar tables from a pickle file."""
        with open(filename, "rb") as f:
            d = pickle.load(f)
        self.__dict__.update(d)

    def copy(self):
        """
        Copy the grammar.
        """
        new = self.__class__()
        for dict_attr in ("symbol2number", "number2symbol", "dfas", "keywords",
                          "tokens", "symbol2label"):
            setattr(new, dict_attr, getattr(self, dict_attr).copy())
        new.labels = self.labels[:]
        new.states = self.states[:]
        new.start = self.start
        return new

    def report(self):
        """Dump the grammar tables to standard output, for debugging."""
        from pprint import pprint
        print("s2n")
        pprint(self.symbol2number)
        print("n2s")
        pprint(self.number2symbol)
        print("states")
        pprint(self.states)
        print("dfas")
        pprint(self.dfas)
        print("labels")
        pprint(self.labels)
        print("start", self.start)


# Map from operator to number (since tokenize doesn't do this)

opmap_raw = """
( LPAR
) RPAR
[ LSQB
] RSQB
: COLON
, COMMA
; SEMI
+ PLUS
- MINUS
* STAR
/ SLASH
| VBAR
& AMPER
< LESS
> GREATER
= EQUAL
. DOT
% PERCENT
` BACKQUOTE
{ LBRACE
} RBRACE
@ AT
@= ATEQUAL
== EQEQUAL
!= NOTEQUAL
<> NOTEQUAL
<= LESSEQUAL
>= GREATEREQUAL
~ TILDE
^ CIRCUMFLEX
<< LEFTSHIFT
>> RIGHTSHIFT
** DOUBLESTAR
+= PLUSEQUAL
-= MINEQUAL
*= STAREQUAL
/= SLASHEQUAL
%= PERCENTEQUAL
&= AMPEREQUAL
|= VBAREQUAL
^= CIRCUMFLEXEQUAL
<<= LEFTSHIFTEQUAL
>>= RIGHTSHIFTEQUAL
**= DOUBLESTAREQUAL
// DOUBLESLASH
//= DOUBLESLASHEQUAL
-> RARROW
"""

opmap = {}
for line in opmap_raw.splitlines():
    if line:
        op, name = line.split()
        opmap[op] = getattr(token, name)
lib\lib2to3\pgen2\literals.py
# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Safely evaluate Python string literals without using eval()."""

import re

simple_escapes = {"a": "\a",
                  "b": "\b",
                  "f": "\f",
                  "n": "\n",
                  "r": "\r",
                  "t": "\t",
                  "v": "\v",
                  "'": "'",
                  '"': '"',
                  "\\": "\\"}

def escape(m):
    all, tail = m.group(0, 1)
    assert all.startswith("\\")
    esc = simple_escapes.get(tail)
    if esc is not None:
        return esc
    if tail.startswith("x"):
        hexes = tail[1:]
        if len(hexes) < 2:
            raise ValueError("invalid hex string escape ('\\%s')" % tail)
        try:
            i = int(hexes, 16)
        except ValueError:
            raise ValueError("invalid hex string escape ('\\%s')" % tail)
    else:
        try:
            i = int(tail, 8)
        except ValueError:
            raise ValueError("invalid octal string escape ('\\%s')" % tail)
    return chr(i)

def evalString(s):
    assert s.startswith("'") or s.startswith('"'), repr(s[:1])
    q = s[0]
    if s[:3] == q*3:
        q = q*3
    assert s.endswith(q), repr(s[-len(q):])
    assert len(s) >= 2*len(q)
    s = s[len(q):-len(q)]
    return re.sub(r"\\(\'|\"|\\|[abfnrtv]|x.{0,2}|[0-7]{1,3})", escape, s)

def test():
    for i in range(256):
        c = chr(i)
        s = repr(c)
        e = evalString(s)
        if e != c:
            print(i, c, s, e)


if __name__ == "__main__":
    test()
lib\lib2to3\pgen2\parse.py
# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Parser engine for the grammar tables generated by pgen.

The grammar table must be loaded first.

See Parser/parser.c in the Python distribution for additional info on
how this parsing engine works.

"""

# Local imports
from . import token

class ParseError(Exception):
    """Exception to signal the parser is stuck."""

    def __init__(self, msg, type, value, context):
        Exception.__init__(self, "%s: type=%r, value=%r, context=%r" %
                           (msg, type, value, context))
        self.msg = msg
        self.type = type
        self.value = value
        self.context = context

class Parser(object):
    """Parser engine.

    The proper usage sequence is:

    p = Parser(grammar, [converter])  # create instance
    p.setup([start])                  # prepare for parsing
    <for each input token>:
        if p.addtoken(...):           # parse a token; may raise ParseError
            break
    root = p.rootnode                 # root of abstract syntax tree

    A Parser instance may be reused by calling setup() repeatedly.

    A Parser instance contains state pertaining to the current token
    sequence, and should not be used concurrently by different threads
    to parse separate token sequences.

    See driver.py for how to get input tokens by tokenizing a file or
    string.

    Parsing is complete when addtoken() returns True; the root of the
    abstract syntax tree can then be retrieved from the rootnode
    instance variable.  When a syntax error occurs, addtoken() raises
    the ParseError exception.  There is no error recovery; the parser
    cannot be used after a syntax error was reported (but it can be
    reinitialized by calling setup()).

    """

    def __init__(self, grammar, convert=None):
        """Constructor.

        The grammar argument is a grammar.Grammar instance; see the
        grammar module for more information.

        The parser is not ready yet for parsing; you must call the
        setup() method to get it started.

        The optional convert argument is a function mapping concrete
        syntax tree nodes to abstract syntax tree nodes.  If not
        given, no conversion is done and the syntax tree produced is
        the concrete syntax tree.  If given, it must be a function of
        two arguments, the first being the grammar (a grammar.Grammar
        instance), and the second being the concrete syntax tree node
        to be converted.  The syntax tree is converted from the bottom
        up.

        A concrete syntax tree node is a (type, value, context, nodes)
        tuple, where type is the node type (a token or symbol number),
        value is None for symbols and a string for tokens, context is
        None or an opaque value used for error reporting (typically a
        (lineno, offset) pair), and nodes is a list of children for
        symbols, and None for tokens.

        An abstract syntax tree node may be anything; this is entirely
        up to the converter function.

        """
        self.grammar = grammar
        self.convert = convert or (lambda grammar, node: node)

    def setup(self, start=None):
        """Prepare for parsing.

        This *must* be called before starting to parse.

        The optional argument is an alternative start symbol; it
        defaults to the grammar's start symbol.

        You can use a Parser instance to parse any number of programs;
        each time you call setup() the parser is reset to an initial
        state determined by the (implicit or explicit) start symbol.

        """
        if start is None:
            start = self.grammar.start
        # Each stack entry is a tuple: (dfa, state, node).
        # A node is a tuple: (type, value, context, children),
        # where children is a list of nodes or None, and context may be None.
        newnode = (start, None, None, [])
        stackentry = (self.grammar.dfas[start], 0, newnode)
        self.stack = [stackentry]
        self.rootnode = None
        self.used_names = set() # Aliased to self.rootnode.used_names in pop()

    def addtoken(self, type, value, context):
        """Add a token; return True iff this is the end of the program."""
        # Map from token to label
        ilabel = self.classify(type, value, context)
        # Loop until the token is shifted; may raise exceptions
        while True:
            dfa, state, node = self.stack[-1]
            states, first = dfa
            arcs = states[state]
            # Look for a state with this label
            for i, newstate in arcs:
                t, v = self.grammar.labels[i]
                if ilabel == i:
                    # Look it up in the list of labels
                    assert t < 256
                    # Shift a token; we're done with it
                    self.shift(type, value, newstate, context)
                    # Pop while we are in an accept-only state
                    state = newstate
                    while states[state] == [(0, state)]:
                        self.pop()
                        if not self.stack:
                            # Done parsing!
                            return True
                        dfa, state, node = self.stack[-1]
                        states, first = dfa
                    # Done with this token
                    return False
                elif t >= 256:
                    # See if it's a symbol and if we're in its first set
                    itsdfa = self.grammar.dfas[t]
                    itsstates, itsfirst = itsdfa
                    if ilabel in itsfirst:
                        # Push a symbol
                        self.push(t, self.grammar.dfas[t], newstate, context)
                        break # To continue the outer while loop
            else:
                if (0, state) in arcs:
                    # An accepting state, pop it and try something else
                    self.pop()
                    if not self.stack:
                        # Done parsing, but another token is input
                        raise ParseError("too much input",
                                         type, value, context)
                else:
                    # No success finding a transition
                    raise ParseError("bad input", type, value, context)

    def classify(self, type, value, context):
        """Turn a token into a label.  (Internal)"""
        if type == token.NAME:
            # Keep a listing of all used names
            self.used_names.add(value)
            # Check for reserved words
            ilabel = self.grammar.keywords.get(value)
            if ilabel is not None:
                return ilabel
        ilabel = self.grammar.tokens.get(type)
        if ilabel is None:
            raise ParseError("bad token", type, value, context)
        return ilabel

    def shift(self, type, value, newstate, context):
        """Shift a token.  (Internal)"""
        dfa, state, node = self.stack[-1]
        newnode = (type, value, context, None)
        newnode = self.convert(self.grammar, newnode)
        if newnode is not None:
            node[-1].append(newnode)
        self.stack[-1] = (dfa, newstate, node)

    def push(self, type, newdfa, newstate, context):
        """Push a nonterminal.  (Internal)"""
        dfa, state, node = self.stack[-1]
        newnode = (type, None, context, [])
        self.stack[-1] = (dfa, newstate, node)
        self.stack.append((newdfa, 0, newnode))

    def pop(self):
        """Pop a nonterminal.  (Internal)"""
        popdfa, popstate, popnode = self.stack.pop()
        newnode = self.convert(self.grammar, popnode)
        if newnode is not None:
            if self.stack:
                dfa, state, node = self.stack[-1]
                node[-1].append(newnode)
            else:
                self.rootnode = newnode
                self.rootnode.used_names = self.used_names
lib\lib2to3\pgen2\pgen.py
# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

# Pgen imports
from . import grammar, token, tokenize

class PgenGrammar(grammar.Grammar):
    pass

class ParserGenerator(object):

    def __init__(self, filename, stream=None):
        close_stream = None
        if stream is None:
            stream = open(filename)
            close_stream = stream.close
        self.filename = filename
        self.stream = stream
        self.generator = tokenize.generate_tokens(stream.readline)
        self.gettoken() # Initialize lookahead
        self.dfas, self.startsymbol = self.parse()
        if close_stream is not None:
            close_stream()
        self.first = {} # map from symbol name to set of tokens
        self.addfirstsets()

    def make_grammar(self):
        c = PgenGrammar()
        names = list(self.dfas.keys())
        names.sort()
        names.remove(self.startsymbol)
        names.insert(0, self.startsymbol)
        for name in names:
            i = 256 + len(c.symbol2number)
            c.symbol2number[name] = i
            c.number2symbol[i] = name
        for name in names:
            dfa = self.dfas[name]
            states = []
            for state in dfa:
                arcs = []
                for label, next in state.arcs.items():
                    arcs.append((self.make_label(c, label), dfa.index(next)))
                if state.isfinal:
                    arcs.append((0, dfa.index(state)))
                states.append(arcs)
            c.states.append(states)
            c.dfas[c.symbol2number[name]] = (states, self.make_first(c, name))
        c.start = c.symbol2number[self.startsymbol]
        return c

    def make_first(self, c, name):
        rawfirst = self.first[name]
        first = {}
        for label in rawfirst:
            ilabel = self.make_label(c, label)
            ##assert ilabel not in first # XXX failed on <> ... !=
            first[ilabel] = 1
        return first

    def make_label(self, c, label):
        # XXX Maybe this should be a method on a subclass of converter?
        ilabel = len(c.labels)
        if label[0].isalpha():
            # Either a symbol name or a named token
            if label in c.symbol2number:
                # A symbol name (a non-terminal)
                if label in c.symbol2label:
                    return c.symbol2label[label]
                else:
                    c.labels.append((c.symbol2number[label], None))
                    c.symbol2label[label] = ilabel
                    return ilabel
            else:
                # A named token (NAME, NUMBER, STRING)
                itoken = getattr(token, label, None)
                assert isinstance(itoken, int), label
                assert itoken in token.tok_name, label
                if itoken in c.tokens:
                    return c.tokens[itoken]
                else:
                    c.labels.append((itoken, None))
                    c.tokens[itoken] = ilabel
                    return ilabel
        else:
            # Either a keyword or an operator
            assert label[0] in ('"', "'"), label
            value = eval(label)
            if value[0].isalpha():
                # A keyword
                if value in c.keywords:
                    return c.keywords[value]
                else:
                    c.labels.append((token.NAME, value))
                    c.keywords[value] = ilabel
                    return ilabel
            else:
                # An operator (any non-numeric token)
                itoken = grammar.opmap[value] # Fails if unknown token
                if itoken in c.tokens:
                    return c.tokens[itoken]
                else:
                    c.labels.append((itoken, None))
                    c.tokens[itoken] = ilabel
                    return ilabel

    def addfirstsets(self):
        names = list(self.dfas.keys())
        names.sort()
        for name in names:
            if name not in self.first:
                self.calcfirst(name)
            #print name, self.first[name].keys()

    def calcfirst(self, name):
        dfa = self.dfas[name]
        self.first[name] = None # dummy to detect left recursion
        state = dfa[0]
        totalset = {}
        overlapcheck = {}
        for label, next in state.arcs.items():
            if label in self.dfas:
                if label in self.first:
                    fset = self.first[label]
                    if fset is None:
                        raise ValueError("recursion for rule %r" % name)
                else:
                    self.calcfirst(label)
                    fset = self.first[label]
                totalset.update(fset)
                overlapcheck[label] = fset
            else:
                totalset[label] = 1
                overlapcheck[label] = {label: 1}
        inverse = {}
        for label, itsfirst in overlapcheck.items():
            for symbol in itsfirst:
                if symbol in inverse:
                    raise ValueError("rule %s is ambiguous; %s is in the"
                                     " first sets of %s as well as %s" %
                                     (name, symbol, label, inverse[symbol]))
                inverse[symbol] = label
        self.first[name] = totalset

    def parse(self):
        dfas = {}
        startsymbol = None
        # MSTART: (NEWLINE | RULE)* ENDMARKER
        while self.type != token.ENDMARKER:
            while self.type == token.NEWLINE:
                self.gettoken()
            # RULE: NAME ':' RHS NEWLINE
            name = self.expect(token.NAME)
            self.expect(token.OP, ":")
            a, z = self.parse_rhs()
            self.expect(token.NEWLINE)
            #self.dump_nfa(name, a, z)
            dfa = self.make_dfa(a, z)
            #self.dump_dfa(name, dfa)
            oldlen = len(dfa)
            self.simplify_dfa(dfa)
            newlen = len(dfa)
            dfas[name] = dfa
            #print name, oldlen, newlen
            if startsymbol is None:
                startsymbol = name
        return dfas, startsymbol

    def make_dfa(self, start, finish):
        # To turn an NFA into a DFA, we define the states of the DFA
        # to correspond to *sets* of states of the NFA.  Then do some
        # state reduction.  Let's represent sets as dicts with 1 for
        # values.
        assert isinstance(start, NFAState)
        assert isinstance(finish, NFAState)
        def closure(state):
            base = {}
            addclosure(state, base)
            return base
        def addclosure(state, base):
            assert isinstance(state, NFAState)
            if state in base:
                return
            base[state] = 1
            for label, next in state.arcs:
                if label is None:
                    addclosure(next, base)
        states = [DFAState(closure(start), finish)]
        for state in states: # NB states grows while we're iterating
            arcs = {}
            for nfastate in state.nfaset:
                for label, next in nfastate.arcs:
                    if label is not None:
                        addclosure(next, arcs.setdefault(label, {}))
            for label, nfaset in arcs.items():
                for st in states:
                    if st.nfaset == nfaset:
                        break
                else:
                    st = DFAState(nfaset, finish)
                    states.append(st)
                state.addarc(st, label)
        return states # List of DFAState instances; first one is start

    def dump_nfa(self, name, start, finish):
        print("Dump of NFA for", name)
        todo = [start]
        for i, state in enumerate(todo):
            print("  State", i, state is finish and "(final)" or "")
            for label, next in state.arcs:
                if next in todo:
                    j = todo.index(next)
                else:
                    j = len(todo)
                    todo.append(next)
                if label is None:
                    print("    -> %d" % j)
                else:
                    print("    %s -> %d" % (label, j))

    def dump_dfa(self, name, dfa):
        print("Dump of DFA for", name)
        for i, state in enumerate(dfa):
            print("  State", i, state.isfinal and "(final)" or "")
            for label, next in state.arcs.items():
                print("    %s -> %d" % (label, dfa.index(next)))

    def simplify_dfa(self, dfa):
        # This is not theoretically optimal, but works well enough.
        # Algorithm: repeatedly look for two states that have the same
        # set of arcs (same labels pointing to the same nodes) and
        # unify them, until things stop changing.

        # dfa is a list of DFAState instances
        changes = True
        while changes:
            changes = False
            for i, state_i in enumerate(dfa):
                for j in range(i+1, len(dfa)):
                    state_j = dfa[j]
                    if state_i == state_j:
                        #print "  unify", i, j
                        del dfa[j]
                        for state in dfa:
                            state.unifystate(state_j, state_i)
                        changes = True
                        break

    def parse_rhs(self):
        # RHS: ALT ('|' ALT)*
        a, z = self.parse_alt()
        if self.value != "|":
            return a, z
        else:
            aa = NFAState()
            zz = NFAState()
            aa.addarc(a)
            z.addarc(zz)
            while self.value == "|":
                self.gettoken()
                a, z = self.parse_alt()
                aa.addarc(a)
                z.addarc(zz)
            return aa, zz

    def parse_alt(self):
        # ALT: ITEM+
        a, b = self.parse_item()
        while (self.value in ("(", "[") or
               self.type in (token.NAME, token.STRING)):
            c, d = self.parse_item()
            b.addarc(c)
            b = d
        return a, b

    def parse_item(self):
        # ITEM: '[' RHS ']' | ATOM ['+' | '*']
        if self.value == "[":
            self.gettoken()
            a, z = self.parse_rhs()
            self.expect(token.OP, "]")
            a.addarc(z)
            return a, z
        else:
            a, z = self.parse_atom()
            value = self.value
            if value not in ("+", "*"):
                return a, z
            self.gettoken()
            z.addarc(a)
            if value == "+":
                return a, z
            else:
                return a, a

    def parse_atom(self):
        # ATOM: '(' RHS ')' | NAME | STRING
        if self.value == "(":
            self.gettoken()
            a, z = self.parse_rhs()
            self.expect(token.OP, ")")
            return a, z
        elif self.type in (token.NAME, token.STRING):
            a = NFAState()
            z = NFAState()
            a.addarc(z, self.value)
            self.gettoken()
            return a, z
        else:
            self.raise_error("expected (...) or NAME or STRING, got %s/%s",
                             self.type, self.value)

    def expect(self, type, value=None):
        if self.type != type or (value is not None and self.value != value):
            self.raise_error("expected %s/%s, got %s/%s",
                             type, value, self.type, self.value)
        value = self.value
        self.gettoken()
        return value

    def gettoken(self):
        tup = next(self.generator)
        while tup[0] in (tokenize.COMMENT, tokenize.NL):
            tup = next(self.generator)
        self.type, self.value, self.begin, self.end, self.line = tup
        #print token.tok_name[self.type], repr(self.value)

    def raise_error(self, msg, *args):
        if args:
            try:
                msg = msg % args
            except:
                msg = " ".join([msg] + list(map(str, args)))
        raise SyntaxError(msg, (self.filename, self.end[0],
                                self.end[1], self.line))

class NFAState(object):

    def __init__(self):
        self.arcs = [] # list of (label, NFAState) pairs

    def addarc(self, next, label=None):
        assert label is None or isinstance(label, str)
        assert isinstance(next, NFAState)
        self.arcs.append((label, next))

class DFAState(object):

    def __init__(self, nfaset, final):
        assert isinstance(nfaset, dict)
        assert isinstance(next(iter(nfaset)), NFAState)
        assert isinstance(final, NFAState)
        self.nfaset = nfaset
        self.isfinal = final in nfaset
        self.arcs = {} # map from label to DFAState

    def addarc(self, next, label):
        assert isinstance(label, str)
        assert label not in self.arcs
        assert isinstance(next, DFAState)
        self.arcs[label] = next

    def unifystate(self, old, new):
        for label, next in self.arcs.items():
            if next is old:
                self.arcs[label] = new

    def __eq__(self, other):
        # Equality test -- ignore the nfaset instance variable
        assert isinstance(other, DFAState)
        if self.isfinal != other.isfinal:
            return False
        # Can't just return self.arcs == other.arcs, because that
        # would invoke this method recursively, with cycles...
        if len(self.arcs) != len(other.arcs):
            return False
        for label, next in self.arcs.items():
            if next is not other.arcs.get(label):
                return False
        return True

    __hash__ = None # For Py3 compatibility.

def generate_grammar(filename="Grammar.txt"):
    p = ParserGenerator(filename)
    return p.make_grammar()
lib\lib2to3\pgen2\token.py
#! /usr/bin/env python3

"""Token constants (from "token.h")."""

#  Taken from Python (r53757) and modified to include some tokens
#   originally monkeypatched in by pgen2.tokenize

#--start constants--
ENDMARKER = 0
NAME = 1
NUMBER = 2
STRING = 3
NEWLINE = 4
INDENT = 5
DEDENT = 6
LPAR = 7
RPAR = 8
LSQB = 9
RSQB = 10
COLON = 11
COMMA = 12
SEMI = 13
PLUS = 14
MINUS = 15
STAR = 16
SLASH = 17
VBAR = 18
AMPER = 19
LESS = 20
GREATER = 21
EQUAL = 22
DOT = 23
PERCENT = 24
BACKQUOTE = 25
LBRACE = 26
RBRACE = 27
EQEQUAL = 28
NOTEQUAL = 29
LESSEQUAL = 30
GREATEREQUAL = 31
TILDE = 32
CIRCUMFLEX = 33
LEFTSHIFT = 34
RIGHTSHIFT = 35
DOUBLESTAR = 36
PLUSEQUAL = 37
MINEQUAL = 38
STAREQUAL = 39
SLASHEQUAL = 40
PERCENTEQUAL = 41
AMPEREQUAL = 42
VBAREQUAL = 43
CIRCUMFLEXEQUAL = 44
LEFTSHIFTEQUAL = 45
RIGHTSHIFTEQUAL = 46
DOUBLESTAREQUAL = 47
DOUBLESLASH = 48
DOUBLESLASHEQUAL = 49
AT = 50
ATEQUAL = 51
OP = 52
COMMENT = 53
NL = 54
RARROW = 55
ERRORTOKEN = 56
N_TOKENS = 57
NT_OFFSET = 256
#--end constants--

tok_name = {}
for _name, _value in list(globals().items()):
    if type(_value) is type(0):
        tok_name[_value] = _name


def ISTERMINAL(x):
    return x < NT_OFFSET

def ISNONTERMINAL(x):
    return x >= NT_OFFSET

def ISEOF(x):
    return x == ENDMARKER
lib\lib2to3\pgen2\tokenize.py
# Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Python Software Foundation.
# All rights reserved.

"""Tokenization help for Python programs.

generate_tokens(readline) is a generator that breaks a stream of
text into Python tokens.  It accepts a readline-like method which is called
repeatedly to get the next line of input (or "" for EOF).  It generates
5-tuples with these members:

    the token type (see token.py)
    the token (a string)
    the starting (row, column) indices of the token (a 2-tuple of ints)
    the ending (row, column) indices of the token (a 2-tuple of ints)
    the original line (string)

It is designed to match the working of the Python tokenizer exactly, except
that it produces COMMENT tokens for comments and gives type OP for all
operators

Older entry points
    tokenize_loop(readline, tokeneater)
    tokenize(readline, tokeneater=printtoken)
are the same, except instead of generating tokens, tokeneater is a callback
function to which the 5 fields described above are passed as 5 arguments,
each time a new token is found."""

__author__ = 'Ka-Ping Yee <[email protected]>'
__credits__ = \
    'GvR, ESR, Tim Peters, Thomas Wouters, Fred Drake, Skip Montanaro'

import string, re
from codecs import BOM_UTF8, lookup
from lib2to3.pgen2.token import *

from . import token
__all__ = [x for x in dir(token) if x[0] != '_'] + ["tokenize",
           "generate_tokens", "untokenize"]
del token

try:
    bytes
except NameError:
    # Support bytes type in Python <= 2.5, so 2to3 turns itself into
    # valid Python 3 code.
    bytes = str

def group(*choices): return '(' + '|'.join(choices) + ')'
def any(*choices): return group(*choices) + '*'
def maybe(*choices): return group(*choices) + '?'

Whitespace = r'[ \f\t]*'
Comment = r'#[^\r\n]*'
Ignore = Whitespace + any(r'\\\r?\n' + Whitespace) + maybe(Comment)
Name = r'[a-zA-Z_]\w*'

Binnumber = r'0[bB][01]*'
Hexnumber = r'0[xX][\da-fA-F]*[lL]?'
Octnumber = r'0[oO]?[0-7]*[lL]?'
Decnumber = r'[1-9]\d*[lL]?'
Intnumber = group(Binnumber, Hexnumber, Octnumber, Decnumber)
Exponent = r'[eE][-+]?\d+'
Pointfloat = group(r'\d+\.\d*', r'\.\d+') + maybe(Exponent)
Expfloat = r'\d+' + Exponent
Floatnumber = group(Pointfloat, Expfloat)
Imagnumber = group(r'\d+[jJ]', Floatnumber + r'[jJ]')
Number = group(Imagnumber, Floatnumber, Intnumber)

# Tail end of ' string.
Single = r"[^'\\]*(?:\\.[^'\\]*)*'"
# Tail end of " string.
Double = r'[^"\\]*(?:\\.[^"\\]*)*"'
# Tail end of ''' string.
Single3 = r"[^'\\]*(?:(?:\\.|'(?!''))[^'\\]*)*'''"
# Tail end of """ string.
Double3 = r'[^"\\]*(?:(?:\\.|"(?!""))[^"\\]*)*"""'
Triple = group("[ubUB]?[rR]?'''", '[ubUB]?[rR]?"""')
# Single-line ' or " string.
String = group(r"[uU]?[rR]?'[^\n'\\]*(?:\\.[^\n'\\]*)*'",
               r'[uU]?[rR]?"[^\n"\\]*(?:\\.[^\n"\\]*)*"')

# Because of leftmost-then-longest match semantics, be sure to put the
# longest operators first (e.g., if = came before ==, == would get
# recognized as two instances of =).
Operator = group(r"\*\*=?", r">>=?", r"<<=?", r"<>", r"!=",
                 r"//=?", r"->",
                 r"[+\-*/%&@|^=<>]=?",
                 r"~")

Bracket = '[][(){}]'
Special = group(r'\r?\n', r'[:;.,`@]')
Funny = group(Operator, Bracket, Special)

PlainToken = group(Number, Funny, String, Name)
Token = Ignore + PlainToken

# First (or only) line of ' or " string.
ContStr = group(r"[uUbB]?[rR]?'[^\n'\\]*(?:\\.[^\n'\\]*)*" +
                group("'", r'\\\r?\n'),
                r'[uUbB]?[rR]?"[^\n"\\]*(?:\\.[^\n"\\]*)*' +
                group('"', r'\\\r?\n'))
PseudoExtras = group(r'\\\r?\n', Comment, Triple)
PseudoToken = Whitespace + group(PseudoExtras, Number, Funny, ContStr, Name)

tokenprog, pseudoprog, single3prog, double3prog = list(map(
    re.compile, (Token, PseudoToken, Single3, Double3)))
endprogs = {"'": re.compile(Single), '"': re.compile(Double),
            "'''": single3prog, '"""': double3prog,
            "r'''": single3prog, 'r"""': double3prog,
            "u'''": single3prog, 'u"""': double3prog,
            "b'''": single3prog, 'b"""': double3prog,
            "ur'''": single3prog, 'ur"""': double3prog,
            "br'''": single3prog, 'br"""': double3prog,
            "R'''": single3prog, 'R"""': double3prog,
            "U'''": single3prog, 'U"""': double3prog,
            "B'''": single3prog, 'B"""': double3prog,
            "uR'''": single3prog, 'uR"""': double3prog,
            "Ur'''": single3prog, 'Ur"""': double3prog,
            "UR'''": single3prog, 'UR"""': double3prog,
            "bR'''": single3prog, 'bR"""': double3prog,
            "Br'''": single3prog, 'Br"""': double3prog,
            "BR'''": single3prog, 'BR"""': double3prog,
            'r': None, 'R': None,
            'u': None, 'U': None,
            'b': None, 'B': None}

triple_quoted = {}
for t in ("'''", '"""',
          "r'''", 'r"""', "R'''", 'R"""',
          "u'''", 'u"""', "U'''", 'U"""',
          "b'''", 'b"""', "B'''", 'B"""',
          "ur'''", 'ur"""', "Ur'''", 'Ur"""',
          "uR'''", 'uR"""', "UR'''", 'UR"""',
          "br'''", 'br"""', "Br'''", 'Br"""',
          "bR'''", 'bR"""', "BR'''", 'BR"""',):
    triple_quoted[t] = t
single_quoted = {}
for t in ("'", '"',
          "r'", 'r"', "R'", 'R"',
          "u'", 'u"', "U'", 'U"',
          "b'", 'b"', "B'", 'B"',
          "ur'", 'ur"', "Ur'", 'Ur"',
          "uR'", 'uR"', "UR'", 'UR"',
          "br'", 'br"', "Br'", 'Br"',
          "bR'", 'bR"', "BR'", 'BR"', ):
    single_quoted[t] = t

tabsize = 8

class TokenError(Exception): pass

class StopTokenizing(Exception): pass

def printtoken(type, token, xxx_todo_changeme, xxx_todo_changeme1, line): # for testing
    (srow, scol) = xxx_todo_changeme
    (erow, ecol) = xxx_todo_changeme1
    print("%d,%d-%d,%d:\t%s\t%s" % \
        (srow, scol, erow, ecol, tok_name[type], repr(token)))

def tokenize(readline, tokeneater=printtoken):
    """
    The tokenize() function accepts two parameters: one representing the
    input stream, and one providing an output mechanism for tokenize().

    The first parameter, readline, must be a callable object which provides
    the same interface as the readline() method of built-in file objects.
    Each call to the function should return one line of input as a string.

    The second parameter, tokeneater, must also be a callable object. It is
    called once for each token, with five arguments, corresponding to the
    tuples generated by generate_tokens().
    """
    try:
        tokenize_loop(readline, tokeneater)
    except StopTokenizing:
        pass

# backwards compatible interface
def tokenize_loop(readline, tokeneater):
    for token_info in generate_tokens(readline):
        tokeneater(*token_info)

class Untokenizer:

    def __init__(self):
        self.tokens = []
        self.prev_row = 1
        self.prev_col = 0

    def add_whitespace(self, start):
        row, col = start
        assert row <= self.prev_row
        col_offset = col - self.prev_col
        if col_offset:
            self.tokens.append(" " * col_offset)

    def untokenize(self, iterable):
        for t in iterable:
            if len(t) == 2:
                self.compat(t, iterable)
                break
            tok_type, token, start, end, line = t
            self.add_whitespace(start)
            self.tokens.append(token)
            self.prev_row, self.prev_col = end
            if tok_type in (NEWLINE, NL):
                self.prev_row += 1
                self.prev_col = 0
        return "".join(self.tokens)

    def compat(self, token, iterable):
        startline = False
        indents = []
        toks_append = self.tokens.append
        toknum, tokval = token
        if toknum in (NAME, NUMBER):
            tokval += ' '
        if toknum in (NEWLINE, NL):
            startline = True
        for tok in iterable:
            toknum, tokval = tok[:2]

            if toknum in (NAME, NUMBER):
                tokval += ' '

            if toknum == INDENT:
                indents.append(tokval)
                continue
            elif toknum == DEDENT:
                indents.pop()
                continue
            elif toknum in (NEWLINE, NL):
                startline = True
            elif startline and indents:
                toks_append(indents[-1])
                startline = False
            toks_append(tokval)

cookie_re = re.compile(r'^[ \t\f]*#.*coding[:=][ \t]*([-\w.]+)', re.ASCII)
blank_re = re.compile(br'^[ \t\f]*(?:[#\r\n]|$)', re.ASCII)

def _get_normal_name(orig_enc):
    """Imitates get_normal_name in tokenizer.c."""
    # Only care about the first 12 characters.
    enc = orig_enc[:12].lower().replace("_", "-")
    if enc == "utf-8" or enc.startswith("utf-8-"):
        return "utf-8"
    if enc in ("latin-1", "iso-8859-1", "iso-latin-1") or \
       enc.startswith(("latin-1-", "iso-8859-1-", "iso-latin-1-")):
        return "iso-8859-1"
    return orig_enc

def detect_encoding(readline):
    """
    The detect_encoding() function is used to detect the encoding that should
    be used to decode a Python source file. It requires one argument, readline,
    in the same way as the tokenize() generator.

    It will call readline a maximum of twice, and return the encoding used
    (as a string) and a list of any lines (left as bytes) it has read
    in.

    It detects the encoding from the presence of a utf-8 bom or an encoding
    cookie as specified in pep-0263. If both a bom and a cookie are present, but
    disagree, a SyntaxError will be raised. If the encoding cookie is an invalid
    charset, raise a SyntaxError.  Note that if a utf-8 bom is found,
    'utf-8-sig' is returned.

    If no encoding is specified, then the default of 'utf-8' will be returned.
    """
    bom_found = False
    encoding = None
    default = 'utf-8'
    def read_or_stop():
        try:
            return readline()
        except StopIteration:
            return bytes()

    def find_cookie(line):
        try:
            line_string = line.decode('ascii')
        except UnicodeDecodeError:
            return None
        match = cookie_re.match(line_string)
        if not match:
            return None
        encoding = _get_normal_name(match.group(1))
        try:
            codec = lookup(encoding)
        except LookupError:
            # This behaviour mimics the Python interpreter
            raise SyntaxError("unknown encoding: " + encoding)

        if bom_found:
            if codec.name != 'utf-8':
                # This behaviour mimics the Python interpreter
                raise SyntaxError('encoding problem: utf-8')
            encoding += '-sig'
        return encoding

    first = read_or_stop()
    if first.startswith(BOM_UTF8):
        bom_found = True
        first = first[3:]
        default = 'utf-8-sig'
    if not first:
        return default, []

    encoding = find_cookie(first)
    if encoding:
        return encoding, [first]
    if not blank_re.match(first):
        return default, [first]

    second = read_or_stop()
    if not second:
        return default, [first]

    encoding = find_cookie(second)
    if encoding:
        return encoding, [first, second]

    return default, [first, second]

def untokenize(iterable):
    """Transform tokens back into Python source code.

    Each element returned by the iterable must be a token sequence
    with at least two elements, a token number and token value.  If
    only two tokens are passed, the resulting output is poor.

    Round-trip invariant for full input:
        Untokenized source will match input source exactly

    Round-trip invariant for limited intput:
        # Output text will tokenize the back to the input
        t1 = [tok[:2] for tok in generate_tokens(f.readline)]
        newcode = untokenize(t1)
        readline = iter(newcode.splitlines(1)).next
        t2 = [tok[:2] for tokin generate_tokens(readline)]
        assert t1 == t2
    """
    ut = Untokenizer()
    return ut.untokenize(iterable)

def generate_tokens(readline):
    """
    The generate_tokens() generator requires one argument, readline, which
    must be a callable object which provides the same interface as the
    readline() method of built-in file objects. Each call to the function
    should return one line of input as a string.  Alternately, readline
    can be a callable function terminating with StopIteration:
        readline = open(myfile).next    # Example of alternate readline

    The generator produces 5-tuples with these members: the token type; the
    token string; a 2-tuple (srow, scol) of ints specifying the row and
    column where the token begins in the source; a 2-tuple (erow, ecol) of
    ints specifying the row and column where the token ends in the source;
    and the line on which the token was found. The line passed is the
    logical line; continuation lines are included.
    """
    lnum = parenlev = continued = 0
    namechars, numchars = string.ascii_letters + '_', '0123456789'
    contstr, needcont = '', 0
    contline = None
    indents = [0]

    while 1:                                   # loop over lines in stream
        try:
            line = readline()
        except StopIteration:
            line = ''
        lnum = lnum + 1
        pos, max = 0, len(line)

        if contstr:                            # continued string
            if not line:
                raise TokenError("EOF in multi-line string", strstart)
            endmatch = endprog.match(line)
            if endmatch:
                pos = end = endmatch.end(0)
                yield (STRING, contstr + line[:end],
                       strstart, (lnum, end), contline + line)
                contstr, needcont = '', 0
                contline = None
            elif needcont and line[-2:] != '\\\n' and line[-3:] != '\\\r\n':
                yield (ERRORTOKEN, contstr + line,
                           strstart, (lnum, len(line)), contline)
                contstr = ''
                contline = None
                continue
            else:
                contstr = contstr + line
                contline = contline + line
                continue

        elif parenlev == 0 and not continued:  # new statement
            if not line: break
            column = 0
            while pos < max:                   # measure leading whitespace
                if line[pos] == ' ': column = column + 1
                elif line[pos] == '\t': column = (column//tabsize + 1)*tabsize
                elif line[pos] == '\f': column = 0
                else: break
                pos = pos + 1
            if pos == max: break

            if line[pos] in '#\r\n':           # skip comments or blank lines
                if line[pos] == '#':
                    comment_token = line[pos:].rstrip('\r\n')
                    nl_pos = pos + len(comment_token)
                    yield (COMMENT, comment_token,
                           (lnum, pos), (lnum, pos + len(comment_token)), line)
                    yield (NL, line[nl_pos:],
                           (lnum, nl_pos), (lnum, len(line)), line)
                else:
                    yield ((NL, COMMENT)[line[pos] == '#'], line[pos:],
                           (lnum, pos), (lnum, len(line)), line)
                continue

            if column > indents[-1]:           # count indents or dedents
                indents.append(column)
                yield (INDENT, line[:pos], (lnum, 0), (lnum, pos), line)
            while column < indents[-1]:
                if column not in indents:
                    raise IndentationError(
                        "unindent does not match any outer indentation level",
                        ("<tokenize>", lnum, pos, line))
                indents = indents[:-1]
                yield (DEDENT, '', (lnum, pos), (lnum, pos), line)

        else:                                  # continued statement
            if not line:
                raise TokenError("EOF in multi-line statement", (lnum, 0))
            continued = 0

        while pos < max:
            pseudomatch = pseudoprog.match(line, pos)
            if pseudomatch:                                # scan for tokens
                start, end = pseudomatch.span(1)
                spos, epos, pos = (lnum, start), (lnum, end), end
                token, initial = line[start:end], line[start]

                if initial in numchars or \
                   (initial == '.' and token != '.'):      # ordinary number
                    yield (NUMBER, token, spos, epos, line)
                elif initial in '\r\n':
                    newline = NEWLINE
                    if parenlev > 0:
                        newline = NL
                    yield (newline, token, spos, epos, line)
                elif initial == '#':
                    assert not token.endswith("\n")
                    yield (COMMENT, token, spos, epos, line)
                elif token in triple_quoted:
                    endprog = endprogs[token]
                    endmatch = endprog.match(line, pos)
                    if endmatch:                           # all on one line
                        pos = endmatch.end(0)
                        token = line[start:pos]
                        yield (STRING, token, spos, (lnum, pos), line)
                    else:
                        strstart = (lnum, start)           # multiple lines
                        contstr = line[start:]
                        contline = line
                        break
                elif initial in single_quoted or \
                    token[:2] in single_quoted or \
                    token[:3] in single_quoted:
                    if token[-1] == '\n':                  # continued string
                        strstart = (lnum, start)
                        endprog = (endprogs[initial] or endprogs[token[1]] or
                                   endprogs[token[2]])
                        contstr, needcont = line[start:], 1
                        contline = line
                        break
                    else:                                  # ordinary string
                        yield (STRING, token, spos, epos, line)
                elif initial in namechars:                 # ordinary name
                    yield (NAME, token, spos, epos, line)
                elif initial == '\\':                      # continued stmt
                    # This yield is new; needed for better idempotency:
                    yield (NL, token, spos, (lnum, pos), line)
                    continued = 1
                else:
                    if initial in '([{': parenlev = parenlev + 1
                    elif initial in ')]}': parenlev = parenlev - 1
                    yield (OP, token, spos, epos, line)
            else:
                yield (ERRORTOKEN, line[pos],
                           (lnum, pos), (lnum, pos+1), line)
                pos = pos + 1

    for indent in indents[1:]:                 # pop remaining indent levels
        yield (DEDENT, '', (lnum, 0), (lnum, 0), '')
    yield (ENDMARKER, '', (lnum, 0), (lnum, 0), '')

if __name__ == '__main__':                     # testing
    import sys
    if len(sys.argv) > 1: tokenize(open(sys.argv[1]).readline)
    else: tokenize(sys.stdin.readline)
lib\lib2to3\pgen2\__init__.py
# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""The pgen2 package."""
lib\logging\config.py
# Copyright 2001-2014 by Vinay Sajip. All Rights Reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of Vinay Sajip
# not be used in advertising or publicity pertaining to distribution
# of the software without specific, written prior permission.
# VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
# ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
# VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
# ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
# IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""
Configuration functions for the logging package for Python. The core package
is based on PEP 282 and comments thereto in comp.lang.python, and influenced
by Apache's log4j system.

Copyright (C) 2001-2014 Vinay Sajip. All Rights Reserved.

To use, simply 'import logging' and log away!
"""

import errno
import io
import logging
import logging.handlers
import re
import struct
import sys
import traceback

try:
    import _thread as thread
    import threading
except ImportError: #pragma: no cover
    thread = None

from socketserver import ThreadingTCPServer, StreamRequestHandler


DEFAULT_LOGGING_CONFIG_PORT = 9030

RESET_ERROR = errno.ECONNRESET

#
#   The following code implements a socket listener for on-the-fly
#   reconfiguration of logging.
#
#   _listener holds the server object doing the listening
_listener = None

def fileConfig(fname, defaults=None, disable_existing_loggers=True):
    """
    Read the logging configuration from a ConfigParser-format file.

    This can be called several times from an application, allowing an end user
    the ability to select from various pre-canned configurations (if the
    developer provides a mechanism to present the choices and load the chosen
    configuration).
    """
    import configparser

    if isinstance(fname, configparser.RawConfigParser):
        cp = fname
    else:
        cp = configparser.ConfigParser(defaults)
        if hasattr(fname, 'readline'):
            cp.read_file(fname)
        else:
            cp.read(fname)

    formatters = _create_formatters(cp)

    # critical section
    logging._acquireLock()
    try:
        logging._handlers.clear()
        del logging._handlerList[:]
        # Handlers add themselves to logging._handlers
        handlers = _install_handlers(cp, formatters)
        _install_loggers(cp, handlers, disable_existing_loggers)
    finally:
        logging._releaseLock()


def _resolve(name):
    """Resolve a dotted name to a global object."""
    name = name.split('.')
    used = name.pop(0)
    found = __import__(used)
    for n in name:
        used = used + '.' + n
        try:
            found = getattr(found, n)
        except AttributeError:
            __import__(used)
            found = getattr(found, n)
    return found

def _strip_spaces(alist):
    return map(lambda x: x.strip(), alist)

def _create_formatters(cp):
    """Create and return formatters"""
    flist = cp["formatters"]["keys"]
    if not len(flist):
        return {}
    flist = flist.split(",")
    flist = _strip_spaces(flist)
    formatters = {}
    for form in flist:
        sectname = "formatter_%s" % form
        fs = cp.get(sectname, "format", raw=True, fallback=None)
        dfs = cp.get(sectname, "datefmt", raw=True, fallback=None)
        c = logging.Formatter
        class_name = cp[sectname].get("class")
        if class_name:
            c = _resolve(class_name)
        f = c(fs, dfs)
        formatters[form] = f
    return formatters


def _install_handlers(cp, formatters):
    """Install and return handlers"""
    hlist = cp["handlers"]["keys"]
    if not len(hlist):
        return {}
    hlist = hlist.split(",")
    hlist = _strip_spaces(hlist)
    handlers = {}
    fixups = [] #for inter-handler references
    for hand in hlist:
        section = cp["handler_%s" % hand]
        klass = section["class"]
        fmt = section.get("formatter", "")
        try:
            klass = eval(klass, vars(logging))
        except (AttributeError, NameError):
            klass = _resolve(klass)
        args = section["args"]
        args = eval(args, vars(logging))
        h = klass(*args)
        if "level" in section:
            level = section["level"]
            h.setLevel(level)
        if len(fmt):
            h.setFormatter(formatters[fmt])
        if issubclass(klass, logging.handlers.MemoryHandler):
            target = section.get("target", "")
            if len(target): #the target handler may not be loaded yet, so keep for later...
                fixups.append((h, target))
        handlers[hand] = h
    #now all handlers are loaded, fixup inter-handler references...
    for h, t in fixups:
        h.setTarget(handlers[t])
    return handlers

def _handle_existing_loggers(existing, child_loggers, disable_existing):
    """
    When (re)configuring logging, handle loggers which were in the previous
    configuration but are not in the new configuration. There's no point
    deleting them as other threads may continue to hold references to them;
    and by disabling them, you stop them doing any logging.

    However, don't disable children of named loggers, as that's probably not
    what was intended by the user. Also, allow existing loggers to NOT be
    disabled if disable_existing is false.
    """
    root = logging.root
    for log in existing:
        logger = root.manager.loggerDict[log]
        if log in child_loggers:
            logger.level = logging.NOTSET
            logger.handlers = []
            logger.propagate = True
        else:
            logger.disabled = disable_existing

def _install_loggers(cp, handlers, disable_existing):
    """Create and install loggers"""

    # configure the root first
    llist = cp["loggers"]["keys"]
    llist = llist.split(",")
    llist = list(map(lambda x: x.strip(), llist))
    llist.remove("root")
    section = cp["logger_root"]
    root = logging.root
    log = root
    if "level" in section:
        level = section["level"]
        log.setLevel(level)
    for h in root.handlers[:]:
        root.removeHandler(h)
    hlist = section["handlers"]
    if len(hlist):
        hlist = hlist.split(",")
        hlist = _strip_spaces(hlist)
        for hand in hlist:
            log.addHandler(handlers[hand])

    #and now the others...
    #we don't want to lose the existing loggers,
    #since other threads may have pointers to them.
    #existing is set to contain all existing loggers,
    #and as we go through the new configuration we
    #remove any which are configured. At the end,
    #what's left in existing is the set of loggers
    #which were in the previous configuration but
    #which are not in the new configuration.
    existing = list(root.manager.loggerDict.keys())
    #The list needs to be sorted so that we can
    #avoid disabling child loggers of explicitly
    #named loggers. With a sorted list it is easier
    #to find the child loggers.
    existing.sort()
    #We'll keep the list of existing loggers
    #which are children of named loggers here...
    child_loggers = []
    #now set up the new ones...
    for log in llist:
        section = cp["logger_%s" % log]
        qn = section["qualname"]
        propagate = section.getint("propagate", fallback=1)
        logger = logging.getLogger(qn)
        if qn in existing:
            i = existing.index(qn) + 1 # start with the entry after qn
            prefixed = qn + "."
            pflen = len(prefixed)
            num_existing = len(existing)
            while i < num_existing:
                if existing[i][:pflen] == prefixed:
                    child_loggers.append(existing[i])
                i += 1
            existing.remove(qn)
        if "level" in section:
            level = section["level"]
            logger.setLevel(level)
        for h in logger.handlers[:]:
            logger.removeHandler(h)
        logger.propagate = propagate
        logger.disabled = 0
        hlist = section["handlers"]
        if len(hlist):
            hlist = hlist.split(",")
            hlist = _strip_spaces(hlist)
            for hand in hlist:
                logger.addHandler(handlers[hand])

    #Disable any old loggers. There's no point deleting
    #them as other threads may continue to hold references
    #and by disabling them, you stop them doing any logging.
    #However, don't disable children of named loggers, as that's
    #probably not what was intended by the user.
    #for log in existing:
    #    logger = root.manager.loggerDict[log]
    #    if log in child_loggers:
    #        logger.level = logging.NOTSET
    #        logger.handlers = []
    #        logger.propagate = 1
    #    elif disable_existing_loggers:
    #        logger.disabled = 1
    _handle_existing_loggers(existing, child_loggers, disable_existing)

IDENTIFIER = re.compile('^[a-z_][a-z0-9_]*$', re.I)


def valid_ident(s):
    m = IDENTIFIER.match(s)
    if not m:
        raise ValueError('Not a valid Python identifier: %r' % s)
    return True


class ConvertingMixin(object):
    """For ConvertingXXX's, this mixin class provides common functions"""

    def convert_with_key(self, key, value, replace=True):
        result = self.configurator.convert(value)
        #If the converted value is different, save for next time
        if value is not result:
            if replace:
                self[key] = result
            if type(result) in (ConvertingDict, ConvertingList,
                               ConvertingTuple):
                result.parent = self
                result.key = key
        return result

    def convert(self, value):
        result = self.configurator.convert(value)
        if value is not result:
            if type(result) in (ConvertingDict, ConvertingList,
                               ConvertingTuple):
                result.parent = self
        return result


# The ConvertingXXX classes are wrappers around standard Python containers,
# and they serve to convert any suitable values in the container. The
# conversion converts base dicts, lists and tuples to their wrapped
# equivalents, whereas strings which match a conversion format are converted
# appropriately.
#
# Each wrapper should have a configurator attribute holding the actual
# configurator to use for conversion.

class ConvertingDict(dict, ConvertingMixin):
    """A converting dictionary wrapper."""

    def __getitem__(self, key):
        value = dict.__getitem__(self, key)
        return self.convert_with_key(key, value)

    def get(self, key, default=None):
        value = dict.get(self, key, default)
        return self.convert_with_key(key, value)

    def pop(self, key, default=None):
        value = dict.pop(self, key, default)
        return self.convert_with_key(key, value, replace=False)

class ConvertingList(list, ConvertingMixin):
    """A converting list wrapper."""
    def __getitem__(self, key):
        value = list.__getitem__(self, key)
        return self.convert_with_key(key, value)

    def pop(self, idx=-1):
        value = list.pop(self, idx)
        return self.convert(value)

class ConvertingTuple(tuple, ConvertingMixin):
    """A converting tuple wrapper."""
    def __getitem__(self, key):
        value = tuple.__getitem__(self, key)
        # Can't replace a tuple entry.
        return self.convert_with_key(key, value, replace=False)

class BaseConfigurator(object):
    """
    The configurator base class which defines some useful defaults.
    """

    CONVERT_PATTERN = re.compile(r'^(?P<prefix>[a-z]+)://(?P<suffix>.*)$')

    WORD_PATTERN = re.compile(r'^\s*(\w+)\s*')
    DOT_PATTERN = re.compile(r'^\.\s*(\w+)\s*')
    INDEX_PATTERN = re.compile(r'^\[\s*(\w+)\s*\]\s*')
    DIGIT_PATTERN = re.compile(r'^\d+$')

    value_converters = {
        'ext' : 'ext_convert',
        'cfg' : 'cfg_convert',
    }

    # We might want to use a different one, e.g. importlib
    importer = staticmethod(__import__)

    def __init__(self, config):
        self.config = ConvertingDict(config)
        self.config.configurator = self

    def resolve(self, s):
        """
        Resolve strings to objects using standard import and attribute
        syntax.
        """
        name = s.split('.')
        used = name.pop(0)
        try:
            found = self.importer(used)
            for frag in name:
                used += '.' + frag
                try:
                    found = getattr(found, frag)
                except AttributeError:
                    self.importer(used)
                    found = getattr(found, frag)
            return found
        except ImportError:
            e, tb = sys.exc_info()[1:]
            v = ValueError('Cannot resolve %r: %s' % (s, e))
            v.__cause__, v.__traceback__ = e, tb
            raise v

    def ext_convert(self, value):
        """Default converter for the ext:// protocol."""
        return self.resolve(value)

    def cfg_convert(self, value):
        """Default converter for the cfg:// protocol."""
        rest = value
        m = self.WORD_PATTERN.match(rest)
        if m is None:
            raise ValueError("Unable to convert %r" % value)
        else:
            rest = rest[m.end():]
            d = self.config[m.groups()[0]]
            #print d, rest
            while rest:
                m = self.DOT_PATTERN.match(rest)
                if m:
                    d = d[m.groups()[0]]
                else:
                    m = self.INDEX_PATTERN.match(rest)
                    if m:
                        idx = m.groups()[0]
                        if not self.DIGIT_PATTERN.match(idx):
                            d = d[idx]
                        else:
                            try:
                                n = int(idx) # try as number first (most likely)
                                d = d[n]
                            except TypeError:
                                d = d[idx]
                if m:
                    rest = rest[m.end():]
                else:
                    raise ValueError('Unable to convert '
                                     '%r at %r' % (value, rest))
        #rest should be empty
        return d

    def convert(self, value):
        """
        Convert values to an appropriate type. dicts, lists and tuples are
        replaced by their converting alternatives. Strings are checked to
        see if they have a conversion format and are converted if they do.
        """
        if not isinstance(value, ConvertingDict) and isinstance(value, dict):
            value = ConvertingDict(value)
            value.configurator = self
        elif not isinstance(value, ConvertingList) and isinstance(value, list):
            value = ConvertingList(value)
            value.configurator = self
        elif not isinstance(value, ConvertingTuple) and\
                 isinstance(value, tuple):
            value = ConvertingTuple(value)
            value.configurator = self
        elif isinstance(value, str): # str for py3k
            m = self.CONVERT_PATTERN.match(value)
            if m:
                d = m.groupdict()
                prefix = d['prefix']
                converter = self.value_converters.get(prefix, None)
                if converter:
                    suffix = d['suffix']
                    converter = getattr(self, converter)
                    value = converter(suffix)
        return value

    def configure_custom(self, config):
        """Configure an object with a user-supplied factory."""
        c = config.pop('()')
        if not callable(c):
            c = self.resolve(c)
        props = config.pop('.', None)
        # Check for valid identifiers
        kwargs = dict([(k, config[k]) for k in config if valid_ident(k)])
        result = c(**kwargs)
        if props:
            for name, value in props.items():
                setattr(result, name, value)
        return result

    def as_tuple(self, value):
        """Utility function which converts lists to tuples."""
        if isinstance(value, list):
            value = tuple(value)
        return value

class DictConfigurator(BaseConfigurator):
    """
    Configure logging using a dictionary-like object to describe the
    configuration.
    """

    def configure(self):
        """Do the configuration."""

        config = self.config
        if 'version' not in config:
            raise ValueError("dictionary doesn't specify a version")
        if config['version'] != 1:
            raise ValueError("Unsupported version: %s" % config['version'])
        incremental = config.pop('incremental', False)
        EMPTY_DICT = {}
        logging._acquireLock()
        try:
            if incremental:
                handlers = config.get('handlers', EMPTY_DICT)
                for name in handlers:
                    if name not in logging._handlers:
                        raise ValueError('No handler found with '
                                         'name %r'  % name)
                    else:
                        try:
                            handler = logging._handlers[name]
                            handler_config = handlers[name]
                            level = handler_config.get('level', None)
                            if level:
                                handler.setLevel(logging._checkLevel(level))
                        except Exception as e:
                            raise ValueError('Unable to configure handler '
                                             '%r: %s' % (name, e))
                loggers = config.get('loggers', EMPTY_DICT)
                for name in loggers:
                    try:
                        self.configure_logger(name, loggers[name], True)
                    except Exception as e:
                        raise ValueError('Unable to configure logger '
                                         '%r: %s' % (name, e))
                root = config.get('root', None)
                if root:
                    try:
                        self.configure_root(root, True)
                    except Exception as e:
                        raise ValueError('Unable to configure root '
                                         'logger: %s' % e)
            else:
                disable_existing = config.pop('disable_existing_loggers', True)

                logging._handlers.clear()
                del logging._handlerList[:]

                # Do formatters first - they don't refer to anything else
                formatters = config.get('formatters', EMPTY_DICT)
                for name in formatters:
                    try:
                        formatters[name] = self.configure_formatter(
                                                            formatters[name])
                    except Exception as e:
                        raise ValueError('Unable to configure '
                                         'formatter %r: %s' % (name, e))
                # Next, do filters - they don't refer to anything else, either
                filters = config.get('filters', EMPTY_DICT)
                for name in filters:
                    try:
                        filters[name] = self.configure_filter(filters[name])
                    except Exception as e:
                        raise ValueError('Unable to configure '
                                         'filter %r: %s' % (name, e))

                # Next, do handlers - they refer to formatters and filters
                # As handlers can refer to other handlers, sort the keys
                # to allow a deterministic order of configuration
                handlers = config.get('handlers', EMPTY_DICT)
                deferred = []
                for name in sorted(handlers):
                    try:
                        handler = self.configure_handler(handlers[name])
                        handler.name = name
                        handlers[name] = handler
                    except Exception as e:
                        if 'target not configured yet' in str(e):
                            deferred.append(name)
                        else:
                            raise ValueError('Unable to configure handler '
                                             '%r: %s' % (name, e))

                # Now do any that were deferred
                for name in deferred:
                    try:
                        handler = self.configure_handler(handlers[name])
                        handler.name = name
                        handlers[name] = handler
                    except Exception as e:
                        raise ValueError('Unable to configure handler '
                                         '%r: %s' % (name, e))

                # Next, do loggers - they refer to handlers and filters

                #we don't want to lose the existing loggers,
                #since other threads may have pointers to them.
                #existing is set to contain all existing loggers,
                #and as we go through the new configuration we
                #remove any which are configured. At the end,
                #what's left in existing is the set of loggers
                #which were in the previous configuration but
                #which are not in the new configuration.
                root = logging.root
                existing = list(root.manager.loggerDict.keys())
                #The list needs to be sorted so that we can
                #avoid disabling child loggers of explicitly
                #named loggers. With a sorted list it is easier
                #to find the child loggers.
                existing.sort()
                #We'll keep the list of existing loggers
                #which are children of named loggers here...
                child_loggers = []
                #now set up the new ones...
                loggers = config.get('loggers', EMPTY_DICT)
                for name in loggers:
                    if name in existing:
                        i = existing.index(name) + 1 # look after name
                        prefixed = name + "."
                        pflen = len(prefixed)
                        num_existing = len(existing)
                        while i < num_existing:
                            if existing[i][:pflen] == prefixed:
                                child_loggers.append(existing[i])
                            i += 1
                        existing.remove(name)
                    try:
                        self.configure_logger(name, loggers[name])
                    except Exception as e:
                        raise ValueError('Unable to configure logger '
                                         '%r: %s' % (name, e))

                #Disable any old loggers. There's no point deleting
                #them as other threads may continue to hold references
                #and by disabling them, you stop them doing any logging.
                #However, don't disable children of named loggers, as that's
                #probably not what was intended by the user.
                #for log in existing:
                #    logger = root.manager.loggerDict[log]
                #    if log in child_loggers:
                #        logger.level = logging.NOTSET
                #        logger.handlers = []
                #        logger.propagate = True
                #    elif disable_existing:
                #        logger.disabled = True
                _handle_existing_loggers(existing, child_loggers,
                                         disable_existing)

                # And finally, do the root logger
                root = config.get('root', None)
                if root:
                    try:
                        self.configure_root(root)
                    except Exception as e:
                        raise ValueError('Unable to configure root '
                                         'logger: %s' % e)
        finally:
            logging._releaseLock()

    def configure_formatter(self, config):
        """Configure a formatter from a dictionary."""
        if '()' in config:
            factory = config['()'] # for use in exception handler
            try:
                result = self.configure_custom(config)
            except TypeError as te:
                if "'format'" not in str(te):
                    raise
                #Name of parameter changed from fmt to format.
                #Retry with old name.
                #This is so that code can be used with older Python versions
                #(e.g. by Django)
                config['fmt'] = config.pop('format')
                config['()'] = factory
                result = self.configure_custom(config)
        else:
            fmt = config.get('format', None)
            dfmt = config.get('datefmt', None)
            style = config.get('style', '%')
            result = logging.Formatter(fmt, dfmt, style)
        return result

    def configure_filter(self, config):
        """Configure a filter from a dictionary."""
        if '()' in config:
            result = self.configure_custom(config)
        else:
            name = config.get('name', '')
            result = logging.Filter(name)
        return result

    def add_filters(self, filterer, filters):
        """Add filters to a filterer from a list of names."""
        for f in filters:
            try:
                filterer.addFilter(self.config['filters'][f])
            except Exception as e:
                raise ValueError('Unable to add filter %r: %s' % (f, e))

    def configure_handler(self, config):
        """Configure a handler from a dictionary."""
        config_copy = dict(config)  # for restoring in case of error
        formatter = config.pop('formatter', None)
        if formatter:
            try:
                formatter = self.config['formatters'][formatter]
            except Exception as e:
                raise ValueError('Unable to set formatter '
                                 '%r: %s' % (formatter, e))
        level = config.pop('level', None)
        filters = config.pop('filters', None)
        if '()' in config:
            c = config.pop('()')
            if not callable(c):
                c = self.resolve(c)
            factory = c
        else:
            cname = config.pop('class')
            klass = self.resolve(cname)
            #Special case for handler which refers to another handler
            if issubclass(klass, logging.handlers.MemoryHandler) and\
                'target' in config:
                try:
                    th = self.config['handlers'][config['target']]
                    if not isinstance(th, logging.Handler):
                        config.update(config_copy)  # restore for deferred cfg
                        raise TypeError('target not configured yet')
                    config['target'] = th
                except Exception as e:
                    raise ValueError('Unable to set target handler '
                                     '%r: %s' % (config['target'], e))
            elif issubclass(klass, logging.handlers.SMTPHandler) and\
                'mailhost' in config:
                config['mailhost'] = self.as_tuple(config['mailhost'])
            elif issubclass(klass, logging.handlers.SysLogHandler) and\
                'address' in config:
                config['address'] = self.as_tuple(config['address'])
            factory = klass
        props = config.pop('.', None)
        kwargs = dict([(k, config[k]) for k in config if valid_ident(k)])
        try:
            result = factory(**kwargs)
        except TypeError as te:
            if "'stream'" not in str(te):
                raise
            #The argument name changed from strm to stream
            #Retry with old name.
            #This is so that code can be used with older Python versions
            #(e.g. by Django)
            kwargs['strm'] = kwargs.pop('stream')
            result = factory(**kwargs)
        if formatter:
            result.setFormatter(formatter)
        if level is not None:
            result.setLevel(logging._checkLevel(level))
        if filters:
            self.add_filters(result, filters)
        if props:
            for name, value in props.items():
                setattr(result, name, value)
        return result

    def add_handlers(self, logger, handlers):
        """Add handlers to a logger from a list of names."""
        for h in handlers:
            try:
                logger.addHandler(self.config['handlers'][h])
            except Exception as e:
                raise ValueError('Unable to add handler %r: %s' % (h, e))

    def common_logger_config(self, logger, config, incremental=False):
        """
        Perform configuration which is common to root and non-root loggers.
        """
        level = config.get('level', None)
        if level is not None:
            logger.setLevel(logging._checkLevel(level))
        if not incremental:
            #Remove any existing handlers
            for h in logger.handlers[:]:
                logger.removeHandler(h)
            handlers = config.get('handlers', None)
            if handlers:
                self.add_handlers(logger, handlers)
            filters = config.get('filters', None)
            if filters:
                self.add_filters(logger, filters)

    def configure_logger(self, name, config, incremental=False):
        """Configure a non-root logger from a dictionary."""
        logger = logging.getLogger(name)
        self.common_logger_config(logger, config, incremental)
        propagate = config.get('propagate', None)
        if propagate is not None:
            logger.propagate = propagate

    def configure_root(self, config, incremental=False):
        """Configure a root logger from a dictionary."""
        root = logging.getLogger()
        self.common_logger_config(root, config, incremental)

dictConfigClass = DictConfigurator

def dictConfig(config):
    """Configure logging using a dictionary."""
    dictConfigClass(config).configure()


def listen(port=DEFAULT_LOGGING_CONFIG_PORT, verify=None):
    """
    Start up a socket server on the specified port, and listen for new
    configurations.

    These will be sent as a file suitable for processing by fileConfig().
    Returns a Thread object on which you can call start() to start the server,
    and which you can join() when appropriate. To stop the server, call
    stopListening().

    Use the ``verify`` argument to verify any bytes received across the wire
    from a client. If specified, it should be a callable which receives a
    single argument - the bytes of configuration data received across the
    network - and it should return either ``None``, to indicate that the
    passed in bytes could not be verified and should be discarded, or a
    byte string which is then passed to the configuration machinery as
    normal. Note that you can return transformed bytes, e.g. by decrypting
    the bytes passed in.
    """
    if not thread: #pragma: no cover
        raise NotImplementedError("listen() needs threading to work")

    class ConfigStreamHandler(StreamRequestHandler):
        """
        Handler for a logging configuration request.

        It expects a completely new logging configuration and uses fileConfig
        to install it.
        """
        def handle(self):
            """
            Handle a request.

            Each request is expected to be a 4-byte length, packed using
            struct.pack(">L", n), followed by the config file.
            Uses fileConfig() to do the grunt work.
            """
            try:
                conn = self.connection
                chunk = conn.recv(4)
                if len(chunk) == 4:
                    slen = struct.unpack(">L", chunk)[0]
                    chunk = self.connection.recv(slen)
                    while len(chunk) < slen:
                        chunk = chunk + conn.recv(slen - len(chunk))
                    if self.server.verify is not None:
                        chunk = self.server.verify(chunk)
                    if chunk is not None:   # verified, can process
                        chunk = chunk.decode("utf-8")
                        try:
                            import json
                            d =json.loads(chunk)
                            assert isinstance(d, dict)
                            dictConfig(d)
                        except Exception:
                            #Apply new configuration.

                            file = io.StringIO(chunk)
                            try:
                                fileConfig(file)
                            except Exception:
                                traceback.print_exc()
                    if self.server.ready:
                        self.server.ready.set()
            except OSError as e:
                if e.errno != RESET_ERROR:
                    raise

    class ConfigSocketReceiver(ThreadingTCPServer):
        """
        A simple TCP socket-based logging config receiver.
        """

        allow_reuse_address = 1

        def __init__(self, host='localhost', port=DEFAULT_LOGGING_CONFIG_PORT,
                     handler=None, ready=None, verify=None):
            ThreadingTCPServer.__init__(self, (host, port), handler)
            logging._acquireLock()
            self.abort = 0
            logging._releaseLock()
            self.timeout = 1
            self.ready = ready
            self.verify = verify

        def serve_until_stopped(self):
            import select
            abort = 0
            while not abort:
                rd, wr, ex = select.select([self.socket.fileno()],
                                           [], [],
                                           self.timeout)
                if rd:
                    self.handle_request()
                logging._acquireLock()
                abort = self.abort
                logging._releaseLock()
            self.socket.close()

    class Server(threading.Thread):

        def __init__(self, rcvr, hdlr, port, verify):
            super(Server, self).__init__()
            self.rcvr = rcvr
            self.hdlr = hdlr
            self.port = port
            self.verify = verify
            self.ready = threading.Event()

        def run(self):
            server = self.rcvr(port=self.port, handler=self.hdlr,
                               ready=self.ready,
                               verify=self.verify)
            if self.port == 0:
                self.port = server.server_address[1]
            self.ready.set()
            global _listener
            logging._acquireLock()
            _listener = server
            logging._releaseLock()
            server.serve_until_stopped()

    return Server(ConfigSocketReceiver, ConfigStreamHandler, port, verify)

def stopListening():
    """
    Stop the listening server which was created with a call to listen().
    """
    global _listener
    logging._acquireLock()
    try:
        if _listener:
            _listener.abort = 1
            _listener = None
    finally:
        logging._releaseLock()
lib\logging\handlers.py
# Copyright 2001-2015 by Vinay Sajip. All Rights Reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of Vinay Sajip
# not be used in advertising or publicity pertaining to distribution
# of the software without specific, written prior permission.
# VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
# ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
# VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
# ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
# IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""
Additional handlers for the logging package for Python. The core package is
based on PEP 282 and comments thereto in comp.lang.python.

Copyright (C) 2001-2015 Vinay Sajip. All Rights Reserved.

To use, simply 'import logging.handlers' and log away!
"""

import logging, socket, os, pickle, struct, time, re
from stat import ST_DEV, ST_INO, ST_MTIME
import queue
try:
    import threading
except ImportError: #pragma: no cover
    threading = None

#
# Some constants...
#

DEFAULT_TCP_LOGGING_PORT    = 9020
DEFAULT_UDP_LOGGING_PORT    = 9021
DEFAULT_HTTP_LOGGING_PORT   = 9022
DEFAULT_SOAP_LOGGING_PORT   = 9023
SYSLOG_UDP_PORT             = 514
SYSLOG_TCP_PORT             = 514

_MIDNIGHT = 24 * 60 * 60  # number of seconds in a day

class BaseRotatingHandler(logging.FileHandler):
    """
    Base class for handlers that rotate log files at a certain point.
    Not meant to be instantiated directly.  Instead, use RotatingFileHandler
    or TimedRotatingFileHandler.
    """
    def __init__(self, filename, mode, encoding=None, delay=False):
        """
        Use the specified filename for streamed logging
        """
        logging.FileHandler.__init__(self, filename, mode, encoding, delay)
        self.mode = mode
        self.encoding = encoding
        self.namer = None
        self.rotator = None

    def emit(self, record):
        """
        Emit a record.

        Output the record to the file, catering for rollover as described
        in doRollover().
        """
        try:
            if self.shouldRollover(record):
                self.doRollover()
            logging.FileHandler.emit(self, record)
        except Exception:
            self.handleError(record)

    def rotation_filename(self, default_name):
        """
        Modify the filename of a log file when rotating.

        This is provided so that a custom filename can be provided.

        The default implementation calls the 'namer' attribute of the
        handler, if it's callable, passing the default name to
        it. If the attribute isn't callable (the default is None), the name
        is returned unchanged.

        :param default_name: The default name for the log file.
        """
        if not callable(self.namer):
            result = default_name
        else:
            result = self.namer(default_name)
        return result

    def rotate(self, source, dest):
        """
        When rotating, rotate the current log.

        The default implementation calls the 'rotator' attribute of the
        handler, if it's callable, passing the source and dest arguments to
        it. If the attribute isn't callable (the default is None), the source
        is simply renamed to the destination.

        :param source: The source filename. This is normally the base
                       filename, e.g. 'test.log'
        :param dest:   The destination filename. This is normally
                       what the source is rotated to, e.g. 'test.log.1'.
        """
        if not callable(self.rotator):
            # Issue 18940: A file may not have been created if delay is True.
            if os.path.exists(source):
                os.rename(source, dest)
        else:
            self.rotator(source, dest)

class RotatingFileHandler(BaseRotatingHandler):
    """
    Handler for logging to a set of files, which switches from one file
    to the next when the current file reaches a certain size.
    """
    def __init__(self, filename, mode='a', maxBytes=0, backupCount=0, encoding=None, delay=False):
        """
        Open the specified file and use it as the stream for logging.

        By default, the file grows indefinitely. You can specify particular
        values of maxBytes and backupCount to allow the file to rollover at
        a predetermined size.

        Rollover occurs whenever the current log file is nearly maxBytes in
        length. If backupCount is >= 1, the system will successively create
        new files with the same pathname as the base file, but with extensions
        ".1", ".2" etc. appended to it. For example, with a backupCount of 5
        and a base file name of "app.log", you would get "app.log",
        "app.log.1", "app.log.2", ... through to "app.log.5". The file being
        written to is always "app.log" - when it gets filled up, it is closed
        and renamed to "app.log.1", and if files "app.log.1", "app.log.2" etc.
        exist, then they are renamed to "app.log.2", "app.log.3" etc.
        respectively.

        If maxBytes is zero, rollover never occurs.
        """
        # If rotation/rollover is wanted, it doesn't make sense to use another
        # mode. If for example 'w' were specified, then if there were multiple
        # runs of the calling application, the logs from previous runs would be
        # lost if the 'w' is respected, because the log file would be truncated
        # on each run.
        if maxBytes > 0:
            mode = 'a'
        BaseRotatingHandler.__init__(self, filename, mode, encoding, delay)
        self.maxBytes = maxBytes
        self.backupCount = backupCount

    def doRollover(self):
        """
        Do a rollover, as described in __init__().
        """
        if self.stream:
            self.stream.close()
            self.stream = None
        if self.backupCount > 0:
            for i in range(self.backupCount - 1, 0, -1):
                sfn = self.rotation_filename("%s.%d" % (self.baseFilename, i))
                dfn = self.rotation_filename("%s.%d" % (self.baseFilename,
                                                        i + 1))
                if os.path.exists(sfn):
                    if os.path.exists(dfn):
                        os.remove(dfn)
                    os.rename(sfn, dfn)
            dfn = self.rotation_filename(self.baseFilename + ".1")
            if os.path.exists(dfn):
                os.remove(dfn)
            self.rotate(self.baseFilename, dfn)
        if not self.delay:
            self.stream = self._open()

    def shouldRollover(self, record):
        """
        Determine if rollover should occur.

        Basically, see if the supplied record would cause the file to exceed
        the size limit we have.
        """
        if self.stream is None:                 # delay was set...
            self.stream = self._open()
        if self.maxBytes > 0:                   # are we rolling over?
            msg = "%s\n" % self.format(record)
            self.stream.seek(0, 2)  #due to non-posix-compliant Windows feature
            if self.stream.tell() + len(msg) >= self.maxBytes:
                return 1
        return 0

class TimedRotatingFileHandler(BaseRotatingHandler):
    """
    Handler for logging to a file, rotating the log file at certain timed
    intervals.

    If backupCount is > 0, when rollover is done, no more than backupCount
    files are kept - the oldest ones are deleted.
    """
    def __init__(self, filename, when='h', interval=1, backupCount=0, encoding=None, delay=False, utc=False, atTime=None):
        BaseRotatingHandler.__init__(self, filename, 'a', encoding, delay)
        self.when = when.upper()
        self.backupCount = backupCount
        self.utc = utc
        self.atTime = atTime
        # Calculate the real rollover interval, which is just the number of
        # seconds between rollovers.  Also set the filename suffix used when
        # a rollover occurs.  Current 'when' events supported:
        # S - Seconds
        # M - Minutes
        # H - Hours
        # D - Days
        # midnight - roll over at midnight
        # W{0-6} - roll over on a certain day; 0 - Monday
        #
        # Case of the 'when' specifier is not important; lower or upper case
        # will work.
        if self.when == 'S':
            self.interval = 1 # one second
            self.suffix = "%Y-%m-%d_%H-%M-%S"
            self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}(\.\w+)?$"
        elif self.when == 'M':
            self.interval = 60 # one minute
            self.suffix = "%Y-%m-%d_%H-%M"
            self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}(\.\w+)?$"
        elif self.when == 'H':
            self.interval = 60 * 60 # one hour
            self.suffix = "%Y-%m-%d_%H"
            self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}(\.\w+)?$"
        elif self.when == 'D' or self.when == 'MIDNIGHT':
            self.interval = 60 * 60 * 24 # one day
            self.suffix = "%Y-%m-%d"
            self.extMatch = r"^\d{4}-\d{2}-\d{2}(\.\w+)?$"
        elif self.when.startswith('W'):
            self.interval = 60 * 60 * 24 * 7 # one week
            if len(self.when) != 2:
                raise ValueError("You must specify a day for weekly rollover from 0 to 6 (0 is Monday): %s" % self.when)
            if self.when[1] < '0' or self.when[1] > '6':
                raise ValueError("Invalid day specified for weekly rollover: %s" % self.when)
            self.dayOfWeek = int(self.when[1])
            self.suffix = "%Y-%m-%d"
            self.extMatch = r"^\d{4}-\d{2}-\d{2}(\.\w+)?$"
        else:
            raise ValueError("Invalid rollover interval specified: %s" % self.when)

        self.extMatch = re.compile(self.extMatch, re.ASCII)
        self.interval = self.interval * interval # multiply by units requested
        if os.path.exists(filename):
            t = os.stat(filename)[ST_MTIME]
        else:
            t = int(time.time())
        self.rolloverAt = self.computeRollover(t)

    def computeRollover(self, currentTime):
        """
        Work out the rollover time based on the specified time.
        """
        result = currentTime + self.interval
        # If we are rolling over at midnight or weekly, then the interval is already known.
        # What we need to figure out is WHEN the next interval is.  In other words,
        # if you are rolling over at midnight, then your base interval is 1 day,
        # but you want to start that one day clock at midnight, not now.  So, we
        # have to fudge the rolloverAt value in order to trigger the first rollover
        # at the right time.  After that, the regular interval will take care of
        # the rest.  Note that this code doesn't care about leap seconds. :)
        if self.when == 'MIDNIGHT' or self.when.startswith('W'):
            # This could be done with less code, but I wanted it to be clear
            if self.utc:
                t = time.gmtime(currentTime)
            else:
                t = time.localtime(currentTime)
            currentHour = t[3]
            currentMinute = t[4]
            currentSecond = t[5]
            currentDay = t[6]
            # r is the number of seconds left between now and the next rotation
            if self.atTime is None:
                rotate_ts = _MIDNIGHT
            else:
                rotate_ts = ((self.atTime.hour * 60 + self.atTime.minute)*60 +
                    self.atTime.second)

            r = rotate_ts - ((currentHour * 60 + currentMinute) * 60 +
                currentSecond)
            if r < 0:
                # Rotate time is before the current time (for example when
                # self.rotateAt is 13:45 and it now 14:15), rotation is
                # tomorrow.
                r += _MIDNIGHT
                currentDay = (currentDay + 1) % 7
            result = currentTime + r
            # If we are rolling over on a certain day, add in the number of days until
            # the next rollover, but offset by 1 since we just calculated the time
            # until the next day starts.  There are three cases:
            # Case 1) The day to rollover is today; in this case, do nothing
            # Case 2) The day to rollover is further in the interval (i.e., today is
            #         day 2 (Wednesday) and rollover is on day 6 (Sunday).  Days to
            #         next rollover is simply 6 - 2 - 1, or 3.
            # Case 3) The day to rollover is behind us in the interval (i.e., today
            #         is day 5 (Saturday) and rollover is on day 3 (Thursday).
            #         Days to rollover is 6 - 5 + 3, or 4.  In this case, it's the
            #         number of days left in the current week (1) plus the number
            #         of days in the next week until the rollover day (3).
            # The calculations described in 2) and 3) above need to have a day added.
            # This is because the above time calculation takes us to midnight on this
            # day, i.e. the start of the next day.
            if self.when.startswith('W'):
                day = currentDay # 0 is Monday
                if day != self.dayOfWeek:
                    if day < self.dayOfWeek:
                        daysToWait = self.dayOfWeek - day
                    else:
                        daysToWait = 6 - day + self.dayOfWeek + 1
                    newRolloverAt = result + (daysToWait * (60 * 60 * 24))
                    if not self.utc:
                        dstNow = t[-1]
                        dstAtRollover = time.localtime(newRolloverAt)[-1]
                        if dstNow != dstAtRollover:
                            if not dstNow:  # DST kicks in before next rollover, so we need to deduct an hour
                                addend = -3600
                            else:           # DST bows out before next rollover, so we need to add an hour
                                addend = 3600
                            newRolloverAt += addend
                    result = newRolloverAt
        return result

    def shouldRollover(self, record):
        """
        Determine if rollover should occur.

        record is not used, as we are just comparing times, but it is needed so
        the method signatures are the same
        """
        t = int(time.time())
        if t >= self.rolloverAt:
            return 1
        return 0

    def getFilesToDelete(self):
        """
        Determine the files to delete when rolling over.

        More specific than the earlier method, which just used glob.glob().
        """
        dirName, baseName = os.path.split(self.baseFilename)
        fileNames = os.listdir(dirName)
        result = []
        prefix = baseName + "."
        plen = len(prefix)
        for fileName in fileNames:
            if fileName[:plen] == prefix:
                suffix = fileName[plen:]
                if self.extMatch.match(suffix):
                    result.append(os.path.join(dirName, fileName))
        result.sort()
        if len(result) < self.backupCount:
            result = []
        else:
            result = result[:len(result) - self.backupCount]
        return result

    def doRollover(self):
        """
        do a rollover; in this case, a date/time stamp is appended to the filename
        when the rollover happens.  However, you want the file to be named for the
        start of the interval, not the current time.  If there is a backup count,
        then we have to get a list of matching filenames, sort them and remove
        the one with the oldest suffix.
        """
        if self.stream:
            self.stream.close()
            self.stream = None
        # get the time that this sequence started at and make it a TimeTuple
        currentTime = int(time.time())
        dstNow = time.localtime(currentTime)[-1]
        t = self.rolloverAt - self.interval
        if self.utc:
            timeTuple = time.gmtime(t)
        else:
            timeTuple = time.localtime(t)
            dstThen = timeTuple[-1]
            if dstNow != dstThen:
                if dstNow:
                    addend = 3600
                else:
                    addend = -3600
                timeTuple = time.localtime(t + addend)
        dfn = self.rotation_filename(self.baseFilename + "." +
                                     time.strftime(self.suffix, timeTuple))
        if os.path.exists(dfn):
            os.remove(dfn)
        self.rotate(self.baseFilename, dfn)
        if self.backupCount > 0:
            for s in self.getFilesToDelete():
                os.remove(s)
        if not self.delay:
            self.stream = self._open()
        newRolloverAt = self.computeRollover(currentTime)
        while newRolloverAt <= currentTime:
            newRolloverAt = newRolloverAt + self.interval
        #If DST changes and midnight or weekly rollover, adjust for this.
        if (self.when == 'MIDNIGHT' or self.when.startswith('W')) and not self.utc:
            dstAtRollover = time.localtime(newRolloverAt)[-1]
            if dstNow != dstAtRollover:
                if not dstNow:  # DST kicks in before next rollover, so we need to deduct an hour
                    addend = -3600
                else:           # DST bows out before next rollover, so we need to add an hour
                    addend = 3600
                newRolloverAt += addend
        self.rolloverAt = newRolloverAt

class WatchedFileHandler(logging.FileHandler):
    """
    A handler for logging to a file, which watches the file
    to see if it has changed while in use. This can happen because of
    usage of programs such as newsyslog and logrotate which perform
    log file rotation. This handler, intended for use under Unix,
    watches the file to see if it has changed since the last emit.
    (A file has changed if its device or inode have changed.)
    If it has changed, the old file stream is closed, and the file
    opened to get a new stream.

    This handler is not appropriate for use under Windows, because
    under Windows open files cannot be moved or renamed - logging
    opens the files with exclusive locks - and so there is no need
    for such a handler. Furthermore, ST_INO is not supported under
    Windows; stat always returns zero for this value.

    This handler is based on a suggestion and patch by Chad J.
    Schroeder.
    """
    def __init__(self, filename, mode='a', encoding=None, delay=False):
        logging.FileHandler.__init__(self, filename, mode, encoding, delay)
        self.dev, self.ino = -1, -1
        self._statstream()

    def _statstream(self):
        if self.stream:
            sres = os.fstat(self.stream.fileno())
            self.dev, self.ino = sres[ST_DEV], sres[ST_INO]

    def emit(self, record):
        """
        Emit a record.

        First check if the underlying file has changed, and if it
        has, close the old stream and reopen the file to get the
        current stream.
        """
        # Reduce the chance of race conditions by stat'ing by path only
        # once and then fstat'ing our new fd if we opened a new log stream.
        # See issue #14632: Thanks to John Mulligan for the problem report
        # and patch.
        try:
            # stat the file by path, checking for existence
            sres = os.stat(self.baseFilename)
        except FileNotFoundError:
            sres = None
        # compare file system stat with that of our stream file handle
        if not sres or sres[ST_DEV] != self.dev or sres[ST_INO] != self.ino:
            if self.stream is not None:
                # we have an open file handle, clean it up
                self.stream.flush()
                self.stream.close()
                self.stream = None  # See Issue #21742: _open () might fail.
                # open a new file handle and get new stat info from that fd
                self.stream = self._open()
                self._statstream()
        logging.FileHandler.emit(self, record)


class SocketHandler(logging.Handler):
    """
    A handler class which writes logging records, in pickle format, to
    a streaming socket. The socket is kept open across logging calls.
    If the peer resets it, an attempt is made to reconnect on the next call.
    The pickle which is sent is that of the LogRecord's attribute dictionary
    (__dict__), so that the receiver does not need to have the logging module
    installed in order to process the logging event.

    To unpickle the record at the receiving end into a LogRecord, use the
    makeLogRecord function.
    """

    def __init__(self, host, port):
        """
        Initializes the handler with a specific host address and port.

        When the attribute *closeOnError* is set to True - if a socket error
        occurs, the socket is silently closed and then reopened on the next
        logging call.
        """
        logging.Handler.__init__(self)
        self.host = host
        self.port = port
        if port is None:
            self.address = host
        else:
            self.address = (host, port)
        self.sock = None
        self.closeOnError = False
        self.retryTime = None
        #
        # Exponential backoff parameters.
        #
        self.retryStart = 1.0
        self.retryMax = 30.0
        self.retryFactor = 2.0

    def makeSocket(self, timeout=1):
        """
        A factory method which allows subclasses to define the precise
        type of socket they want.
        """
        if self.port is not None:
            result = socket.create_connection(self.address, timeout=timeout)
        else:
            result = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
            result.settimeout(timeout)
            try:
                result.connect(self.address)
            except OSError:
                result.close()  # Issue 19182
                raise
        return result

    def createSocket(self):
        """
        Try to create a socket, using an exponential backoff with
        a max retry time. Thanks to Robert Olson for the original patch
        (SF #815911) which has been slightly refactored.
        """
        now = time.time()
        # Either retryTime is None, in which case this
        # is the first time back after a disconnect, or
        # we've waited long enough.
        if self.retryTime is None:
            attempt = True
        else:
            attempt = (now >= self.retryTime)
        if attempt:
            try:
                self.sock = self.makeSocket()
                self.retryTime = None # next time, no delay before trying
            except OSError:
                #Creation failed, so set the retry time and return.
                if self.retryTime is None:
                    self.retryPeriod = self.retryStart
                else:
                    self.retryPeriod = self.retryPeriod * self.retryFactor
                    if self.retryPeriod > self.retryMax:
                        self.retryPeriod = self.retryMax
                self.retryTime = now + self.retryPeriod

    def send(self, s):
        """
        Send a pickled string to the socket.

        This function allows for partial sends which can happen when the
        network is busy.
        """
        if self.sock is None:
            self.createSocket()
        #self.sock can be None either because we haven't reached the retry
        #time yet, or because we have reached the retry time and retried,
        #but are still unable to connect.
        if self.sock:
            try:
                self.sock.sendall(s)
            except OSError: #pragma: no cover
                self.sock.close()
                self.sock = None  # so we can call createSocket next time

    def makePickle(self, record):
        """
        Pickles the record in binary format with a length prefix, and
        returns it ready for transmission across the socket.
        """
        ei = record.exc_info
        if ei:
            # just to get traceback text into record.exc_text ...
            dummy = self.format(record)
        # See issue #14436: If msg or args are objects, they may not be
        # available on the receiving end. So we convert the msg % args
        # to a string, save it as msg and zap the args.
        d = dict(record.__dict__)
        d['msg'] = record.getMessage()
        d['args'] = None
        d['exc_info'] = None
        s = pickle.dumps(d, 1)
        slen = struct.pack(">L", len(s))
        return slen + s

    def handleError(self, record):
        """
        Handle an error during logging.

        An error has occurred during logging. Most likely cause -
        connection lost. Close the socket so that we can retry on the
        next event.
        """
        if self.closeOnError and self.sock:
            self.sock.close()
            self.sock = None        #try to reconnect next time
        else:
            logging.Handler.handleError(self, record)

    def emit(self, record):
        """
        Emit a record.

        Pickles the record and writes it to the socket in binary format.
        If there is an error with the socket, silently drop the packet.
        If there was a problem with the socket, re-establishes the
        socket.
        """
        try:
            s = self.makePickle(record)
            self.send(s)
        except Exception:
            self.handleError(record)

    def close(self):
        """
        Closes the socket.
        """
        self.acquire()
        try:
            sock = self.sock
            if sock:
                self.sock = None
                sock.close()
            logging.Handler.close(self)
        finally:
            self.release()

class DatagramHandler(SocketHandler):
    """
    A handler class which writes logging records, in pickle format, to
    a datagram socket.  The pickle which is sent is that of the LogRecord's
    attribute dictionary (__dict__), so that the receiver does not need to
    have the logging module installed in order to process the logging event.

    To unpickle the record at the receiving end into a LogRecord, use the
    makeLogRecord function.

    """
    def __init__(self, host, port):
        """
        Initializes the handler with a specific host address and port.
        """
        SocketHandler.__init__(self, host, port)
        self.closeOnError = False

    def makeSocket(self):
        """
        The factory method of SocketHandler is here overridden to create
        a UDP socket (SOCK_DGRAM).
        """
        if self.port is None:
            family = socket.AF_UNIX
        else:
            family = socket.AF_INET
        s = socket.socket(family, socket.SOCK_DGRAM)
        return s

    def send(self, s):
        """
        Send a pickled string to a socket.

        This function no longer allows for partial sends which can happen
        when the network is busy - UDP does not guarantee delivery and
        can deliver packets out of sequence.
        """
        if self.sock is None:
            self.createSocket()
        self.sock.sendto(s, self.address)

class SysLogHandler(logging.Handler):
    """
    A handler class which sends formatted logging records to a syslog
    server. Based on Sam Rushing's syslog module:
    http://www.nightmare.com/squirl/python-ext/misc/syslog.py
    Contributed by Nicolas Untz (after which minor refactoring changes
    have been made).
    """

    # from <linux/sys/syslog.h>:
    # ======================================================================
    # priorities/facilities are encoded into a single 32-bit quantity, where
    # the bottom 3 bits are the priority (0-7) and the top 28 bits are the
    # facility (0-big number). Both the priorities and the facilities map
    # roughly one-to-one to strings in the syslogd(8) source code.  This
    # mapping is included in this file.
    #
    # priorities (these are ordered)

    LOG_EMERG     = 0       #  system is unusable
    LOG_ALERT     = 1       #  action must be taken immediately
    LOG_CRIT      = 2       #  critical conditions
    LOG_ERR       = 3       #  error conditions
    LOG_WARNING   = 4       #  warning conditions
    LOG_NOTICE    = 5       #  normal but significant condition
    LOG_INFO      = 6       #  informational
    LOG_DEBUG     = 7       #  debug-level messages

    #  facility codes
    LOG_KERN      = 0       #  kernel messages
    LOG_USER      = 1       #  random user-level messages
    LOG_MAIL      = 2       #  mail system
    LOG_DAEMON    = 3       #  system daemons
    LOG_AUTH      = 4       #  security/authorization messages
    LOG_SYSLOG    = 5       #  messages generated internally by syslogd
    LOG_LPR       = 6       #  line printer subsystem
    LOG_NEWS      = 7       #  network news subsystem
    LOG_UUCP      = 8       #  UUCP subsystem
    LOG_CRON      = 9       #  clock daemon
    LOG_AUTHPRIV  = 10      #  security/authorization messages (private)
    LOG_FTP       = 11      #  FTP daemon

    #  other codes through 15 reserved for system use
    LOG_LOCAL0    = 16      #  reserved for local use
    LOG_LOCAL1    = 17      #  reserved for local use
    LOG_LOCAL2    = 18      #  reserved for local use
    LOG_LOCAL3    = 19      #  reserved for local use
    LOG_LOCAL4    = 20      #  reserved for local use
    LOG_LOCAL5    = 21      #  reserved for local use
    LOG_LOCAL6    = 22      #  reserved for local use
    LOG_LOCAL7    = 23      #  reserved for local use

    priority_names = {
        "alert":    LOG_ALERT,
        "crit":     LOG_CRIT,
        "critical": LOG_CRIT,
        "debug":    LOG_DEBUG,
        "emerg":    LOG_EMERG,
        "err":      LOG_ERR,
        "error":    LOG_ERR,        #  DEPRECATED
        "info":     LOG_INFO,
        "notice":   LOG_NOTICE,
        "panic":    LOG_EMERG,      #  DEPRECATED
        "warn":     LOG_WARNING,    #  DEPRECATED
        "warning":  LOG_WARNING,
        }

    facility_names = {
        "auth":     LOG_AUTH,
        "authpriv": LOG_AUTHPRIV,
        "cron":     LOG_CRON,
        "daemon":   LOG_DAEMON,
        "ftp":      LOG_FTP,
        "kern":     LOG_KERN,
        "lpr":      LOG_LPR,
        "mail":     LOG_MAIL,
        "news":     LOG_NEWS,
        "security": LOG_AUTH,       #  DEPRECATED
        "syslog":   LOG_SYSLOG,
        "user":     LOG_USER,
        "uucp":     LOG_UUCP,
        "local0":   LOG_LOCAL0,
        "local1":   LOG_LOCAL1,
        "local2":   LOG_LOCAL2,
        "local3":   LOG_LOCAL3,
        "local4":   LOG_LOCAL4,
        "local5":   LOG_LOCAL5,
        "local6":   LOG_LOCAL6,
        "local7":   LOG_LOCAL7,
        }

    #The map below appears to be trivially lowercasing the key. However,
    #there's more to it than meets the eye - in some locales, lowercasing
    #gives unexpected results. See SF #1524081: in the Turkish locale,
    #"INFO".lower() != "info"
    priority_map = {
        "DEBUG" : "debug",
        "INFO" : "info",
        "WARNING" : "warning",
        "ERROR" : "error",
        "CRITICAL" : "critical"
    }

    def __init__(self, address=('localhost', SYSLOG_UDP_PORT),
                 facility=LOG_USER, socktype=None):
        """
        Initialize a handler.

        If address is specified as a string, a UNIX socket is used. To log to a
        local syslogd, "SysLogHandler(address="/dev/log")" can be used.
        If facility is not specified, LOG_USER is used. If socktype is
        specified as socket.SOCK_DGRAM or socket.SOCK_STREAM, that specific
        socket type will be used. For Unix sockets, you can also specify a
        socktype of None, in which case socket.SOCK_DGRAM will be used, falling
        back to socket.SOCK_STREAM.
        """
        logging.Handler.__init__(self)

        self.address = address
        self.facility = facility
        self.socktype = socktype

        if isinstance(address, str):
            self.unixsocket = True
            self._connect_unixsocket(address)
        else:
            self.unixsocket = False
            if socktype is None:
                socktype = socket.SOCK_DGRAM
            self.socket = socket.socket(socket.AF_INET, socktype)
            if socktype == socket.SOCK_STREAM:
                self.socket.connect(address)
            self.socktype = socktype
        self.formatter = None

    def _connect_unixsocket(self, address):
        use_socktype = self.socktype
        if use_socktype is None:
            use_socktype = socket.SOCK_DGRAM
        self.socket = socket.socket(socket.AF_UNIX, use_socktype)
        try:
            self.socket.connect(address)
            # it worked, so set self.socktype to the used type
            self.socktype = use_socktype
        except OSError:
            self.socket.close()
            if self.socktype is not None:
                # user didn't specify falling back, so fail
                raise
            use_socktype = socket.SOCK_STREAM
            self.socket = socket.socket(socket.AF_UNIX, use_socktype)
            try:
                self.socket.connect(address)
                # it worked, so set self.socktype to the used type
                self.socktype = use_socktype
            except OSError:
                self.socket.close()
                raise

    def encodePriority(self, facility, priority):
        """
        Encode the facility and priority. You can pass in strings or
        integers - if strings are passed, the facility_names and
        priority_names mapping dictionaries are used to convert them to
        integers.
        """
        if isinstance(facility, str):
            facility = self.facility_names[facility]
        if isinstance(priority, str):
            priority = self.priority_names[priority]
        return (facility << 3) | priority

    def close (self):
        """
        Closes the socket.
        """
        self.acquire()
        try:
            self.socket.close()
            logging.Handler.close(self)
        finally:
            self.release()

    def mapPriority(self, levelName):
        """
        Map a logging level name to a key in the priority_names map.
        This is useful in two scenarios: when custom levels are being
        used, and in the case where you can't do a straightforward
        mapping by lowercasing the logging level name because of locale-
        specific issues (see SF #1524081).
        """
        return self.priority_map.get(levelName, "warning")

    ident = ''          # prepended to all messages
    append_nul = True   # some old syslog daemons expect a NUL terminator

    def emit(self, record):
        """
        Emit a record.

        The record is formatted, and then sent to the syslog server. If
        exception information is present, it is NOT sent to the server.
        """
        try:
            msg = self.format(record)
            if self.ident:
                msg = self.ident + msg
            if self.append_nul:
                msg += '\000'

            # We need to convert record level to lowercase, maybe this will
            # change in the future.
            prio = '<%d>' % self.encodePriority(self.facility,
                                                self.mapPriority(record.levelname))
            prio = prio.encode('utf-8')
            # Message is a string. Convert to bytes as required by RFC 5424
            msg = msg.encode('utf-8')
            msg = prio + msg
            if self.unixsocket:
                try:
                    self.socket.send(msg)
                except OSError:
                    self.socket.close()
                    self._connect_unixsocket(self.address)
                    self.socket.send(msg)
            elif self.socktype == socket.SOCK_DGRAM:
                self.socket.sendto(msg, self.address)
            else:
                self.socket.sendall(msg)
        except Exception:
            self.handleError(record)

class SMTPHandler(logging.Handler):
    """
    A handler class which sends an SMTP email for each logging event.
    """
    def __init__(self, mailhost, fromaddr, toaddrs, subject,
                 credentials=None, secure=None, timeout=5.0):
        """
        Initialize the handler.

        Initialize the instance with the from and to addresses and subject
        line of the email. To specify a non-standard SMTP port, use the
        (host, port) tuple format for the mailhost argument. To specify
        authentication credentials, supply a (username, password) tuple
        for the credentials argument. To specify the use of a secure
        protocol (TLS), pass in a tuple for the secure argument. This will
        only be used when authentication credentials are supplied. The tuple
        will be either an empty tuple, or a single-value tuple with the name
        of a keyfile, or a 2-value tuple with the names of the keyfile and
        certificate file. (This tuple is passed to the `starttls` method).
        A timeout in seconds can be specified for the SMTP connection (the
        default is one second).
        """
        logging.Handler.__init__(self)
        if isinstance(mailhost, (list, tuple)):
            self.mailhost, self.mailport = mailhost
        else:
            self.mailhost, self.mailport = mailhost, None
        if isinstance(credentials, (list, tuple)):
            self.username, self.password = credentials
        else:
            self.username = None
        self.fromaddr = fromaddr
        if isinstance(toaddrs, str):
            toaddrs = [toaddrs]
        self.toaddrs = toaddrs
        self.subject = subject
        self.secure = secure
        self.timeout = timeout

    def getSubject(self, record):
        """
        Determine the subject for the email.

        If you want to specify a subject line which is record-dependent,
        override this method.
        """
        return self.subject

    def emit(self, record):
        """
        Emit a record.

        Format the record and send it to the specified addressees.
        """
        try:
            import smtplib
            from email.message import EmailMessage
            import email.utils

            port = self.mailport
            if not port:
                port = smtplib.SMTP_PORT
            smtp = smtplib.SMTP(self.mailhost, port, timeout=self.timeout)
            msg = EmailMessage()
            msg['From'] = self.fromaddr
            msg['To'] = ','.join(self.toaddrs)
            msg['Subject'] = self.getSubject(record)
            msg['Date'] = email.utils.localtime()
            msg.set_content(self.format(record))
            if self.username:
                if self.secure is not None:
                    smtp.ehlo()
                    smtp.starttls(*self.secure)
                    smtp.ehlo()
                smtp.login(self.username, self.password)
            smtp.send_message(msg)
            smtp.quit()
        except Exception:
            self.handleError(record)

class NTEventLogHandler(logging.Handler):
    """
    A handler class which sends events to the NT Event Log. Adds a
    registry entry for the specified application name. If no dllname is
    provided, win32service.pyd (which contains some basic message
    placeholders) is used. Note that use of these placeholders will make
    your event logs big, as the entire message source is held in the log.
    If you want slimmer logs, you have to pass in the name of your own DLL
    which contains the message definitions you want to use in the event log.
    """
    def __init__(self, appname, dllname=None, logtype="Application"):
        logging.Handler.__init__(self)
        try:
            import win32evtlogutil, win32evtlog
            self.appname = appname
            self._welu = win32evtlogutil
            if not dllname:
                dllname = os.path.split(self._welu.__file__)
                dllname = os.path.split(dllname[0])
                dllname = os.path.join(dllname[0], r'win32service.pyd')
            self.dllname = dllname
            self.logtype = logtype
            self._welu.AddSourceToRegistry(appname, dllname, logtype)
            self.deftype = win32evtlog.EVENTLOG_ERROR_TYPE
            self.typemap = {
                logging.DEBUG   : win32evtlog.EVENTLOG_INFORMATION_TYPE,
                logging.INFO    : win32evtlog.EVENTLOG_INFORMATION_TYPE,
                logging.WARNING : win32evtlog.EVENTLOG_WARNING_TYPE,
                logging.ERROR   : win32evtlog.EVENTLOG_ERROR_TYPE,
                logging.CRITICAL: win32evtlog.EVENTLOG_ERROR_TYPE,
         }
        except ImportError:
            print("The Python Win32 extensions for NT (service, event "\
                        "logging) appear not to be available.")
            self._welu = None

    def getMessageID(self, record):
        """
        Return the message ID for the event record. If you are using your
        own messages, you could do this by having the msg passed to the
        logger being an ID rather than a formatting string. Then, in here,
        you could use a dictionary lookup to get the message ID. This
        version returns 1, which is the base message ID in win32service.pyd.
        """
        return 1

    def getEventCategory(self, record):
        """
        Return the event category for the record.

        Override this if you want to specify your own categories. This version
        returns 0.
        """
        return 0

    def getEventType(self, record):
        """
        Return the event type for the record.

        Override this if you want to specify your own types. This version does
        a mapping using the handler's typemap attribute, which is set up in
        __init__() to a dictionary which contains mappings for DEBUG, INFO,
        WARNING, ERROR and CRITICAL. If you are using your own levels you will
        either need to override this method or place a suitable dictionary in
        the handler's typemap attribute.
        """
        return self.typemap.get(record.levelno, self.deftype)

    def emit(self, record):
        """
        Emit a record.

        Determine the message ID, event category and event type. Then
        log the message in the NT event log.
        """
        if self._welu:
            try:
                id = self.getMessageID(record)
                cat = self.getEventCategory(record)
                type = self.getEventType(record)
                msg = self.format(record)
                self._welu.ReportEvent(self.appname, id, cat, type, [msg])
            except Exception:
                self.handleError(record)

    def close(self):
        """
        Clean up this handler.

        You can remove the application name from the registry as a
        source of event log entries. However, if you do this, you will
        not be able to see the events as you intended in the Event Log
        Viewer - it needs to be able to access the registry to get the
        DLL name.
        """
        #self._welu.RemoveSourceFromRegistry(self.appname, self.logtype)
        logging.Handler.close(self)

class HTTPHandler(logging.Handler):
    """
    A class which sends records to a Web server, using either GET or
    POST semantics.
    """
    def __init__(self, host, url, method="GET", secure=False, credentials=None,
                 context=None):
        """
        Initialize the instance with the host, the request URL, and the method
        ("GET" or "POST")
        """
        logging.Handler.__init__(self)
        method = method.upper()
        if method not in ["GET", "POST"]:
            raise ValueError("method must be GET or POST")
        if not secure and context is not None:
            raise ValueError("context parameter only makes sense "
                             "with secure=True")
        self.host = host
        self.url = url
        self.method = method
        self.secure = secure
        self.credentials = credentials
        self.context = context

    def mapLogRecord(self, record):
        """
        Default implementation of mapping the log record into a dict
        that is sent as the CGI data. Overwrite in your class.
        Contributed by Franz Glasner.
        """
        return record.__dict__

    def emit(self, record):
        """
        Emit a record.

        Send the record to the Web server as a percent-encoded dictionary
        """
        try:
            import http.client, urllib.parse
            host = self.host
            if self.secure:
                h = http.client.HTTPSConnection(host, context=self.context)
            else:
                h = http.client.HTTPConnection(host)
            url = self.url
            data = urllib.parse.urlencode(self.mapLogRecord(record))
            if self.method == "GET":
                if (url.find('?') >= 0):
                    sep = '&'
                else:
                    sep = '?'
                url = url + "%c%s" % (sep, data)
            h.putrequest(self.method, url)
            # support multiple hosts on one IP address...
            # need to strip optional :port from host, if present
            i = host.find(":")
            if i >= 0:
                host = host[:i]
            h.putheader("Host", host)
            if self.method == "POST":
                h.putheader("Content-type",
                            "application/x-www-form-urlencoded")
                h.putheader("Content-length", str(len(data)))
            if self.credentials:
                import base64
                s = ('u%s:%s' % self.credentials).encode('utf-8')
                s = 'Basic ' + base64.b64encode(s).strip()
                h.putheader('Authorization', s)
            h.endheaders()
            if self.method == "POST":
                h.send(data.encode('utf-8'))
            h.getresponse()    #can't do anything with the result
        except Exception:
            self.handleError(record)

class BufferingHandler(logging.Handler):
    """
  A handler class which buffers logging records in memory. Whenever each
  record is added to the buffer, a check is made to see if the buffer should
  be flushed. If it should, then flush() is expected to do what's needed.
    """
    def __init__(self, capacity):
        """
        Initialize the handler with the buffer size.
        """
        logging.Handler.__init__(self)
        self.capacity = capacity
        self.buffer = []

    def shouldFlush(self, record):
        """
        Should the handler flush its buffer?

        Returns true if the buffer is up to capacity. This method can be
        overridden to implement custom flushing strategies.
        """
        return (len(self.buffer) >= self.capacity)

    def emit(self, record):
        """
        Emit a record.

        Append the record. If shouldFlush() tells us to, call flush() to process
        the buffer.
        """
        self.buffer.append(record)
        if self.shouldFlush(record):
            self.flush()

    def flush(self):
        """
        Override to implement custom flushing behaviour.

        This version just zaps the buffer to empty.
        """
        self.acquire()
        try:
            self.buffer = []
        finally:
            self.release()

    def close(self):
        """
        Close the handler.

        This version just flushes and chains to the parent class' close().
        """
        try:
            self.flush()
        finally:
            logging.Handler.close(self)

class MemoryHandler(BufferingHandler):
    """
    A handler class which buffers logging records in memory, periodically
    flushing them to a target handler. Flushing occurs whenever the buffer
    is full, or when an event of a certain severity or greater is seen.
    """
    def __init__(self, capacity, flushLevel=logging.ERROR, target=None):
        """
        Initialize the handler with the buffer size, the level at which
        flushing should occur and an optional target.

        Note that without a target being set either here or via setTarget(),
        a MemoryHandler is no use to anyone!
        """
        BufferingHandler.__init__(self, capacity)
        self.flushLevel = flushLevel
        self.target = target

    def shouldFlush(self, record):
        """
        Check for buffer full or a record at the flushLevel or higher.
        """
        return (len(self.buffer) >= self.capacity) or \
                (record.levelno >= self.flushLevel)

    def setTarget(self, target):
        """
        Set the target handler for this handler.
        """
        self.target = target

    def flush(self):
        """
        For a MemoryHandler, flushing means just sending the buffered
        records to the target, if there is one. Override if you want
        different behaviour.

        The record buffer is also cleared by this operation.
        """
        self.acquire()
        try:
            if self.target:
                for record in self.buffer:
                    self.target.handle(record)
                self.buffer = []
        finally:
            self.release()

    def close(self):
        """
        Flush, set the target to None and lose the buffer.
        """
        try:
            self.flush()
        finally:
            self.acquire()
            try:
                self.target = None
                BufferingHandler.close(self)
            finally:
                self.release()


class QueueHandler(logging.Handler):
    """
    This handler sends events to a queue. Typically, it would be used together
    with a multiprocessing Queue to centralise logging to file in one process
    (in a multi-process application), so as to avoid file write contention
    between processes.

    This code is new in Python 3.2, but this class can be copy pasted into
    user code for use with earlier Python versions.
    """

    def __init__(self, queue):
        """
        Initialise an instance, using the passed queue.
        """
        logging.Handler.__init__(self)
        self.queue = queue

    def enqueue(self, record):
        """
        Enqueue a record.

        The base implementation uses put_nowait. You may want to override
        this method if you want to use blocking, timeouts or custom queue
        implementations.
        """
        self.queue.put_nowait(record)

    def prepare(self, record):
        """
        Prepares a record for queuing. The object returned by this method is
        enqueued.

        The base implementation formats the record to merge the message
        and arguments, and removes unpickleable items from the record
        in-place.

        You might want to override this method if you want to convert
        the record to a dict or JSON string, or send a modified copy
        of the record while leaving the original intact.
        """
        # The format operation gets traceback text into record.exc_text
        # (if there's exception data), and also puts the message into
        # record.message. We can then use this to replace the original
        # msg + args, as these might be unpickleable. We also zap the
        # exc_info attribute, as it's no longer needed and, if not None,
        # will typically not be pickleable.
        self.format(record)
        record.msg = record.message
        record.args = None
        record.exc_info = None
        return record

    def emit(self, record):
        """
        Emit a record.

        Writes the LogRecord to the queue, preparing it for pickling first.
        """
        try:
            self.enqueue(self.prepare(record))
        except Exception:
            self.handleError(record)

if threading:
    class QueueListener(object):
        """
        This class implements an internal threaded listener which watches for
        LogRecords being added to a queue, removes them and passes them to a
        list of handlers for processing.
        """
        _sentinel = None

        def __init__(self, queue, *handlers):
            """
            Initialise an instance with the specified queue and
            handlers.
            """
            self.queue = queue
            self.handlers = handlers
            self._stop = threading.Event()
            self._thread = None

        def dequeue(self, block):
            """
            Dequeue a record and return it, optionally blocking.

            The base implementation uses get. You may want to override this method
            if you want to use timeouts or work with custom queue implementations.
            """
            return self.queue.get(block)

        def start(self):
            """
            Start the listener.

            This starts up a background thread to monitor the queue for
            LogRecords to process.
            """
            self._thread = t = threading.Thread(target=self._monitor)
            t.setDaemon(True)
            t.start()

        def prepare(self , record):
            """
            Prepare a record for handling.

            This method just returns the passed-in record. You may want to
            override this method if you need to do any custom marshalling or
            manipulation of the record before passing it to the handlers.
            """
            return record

        def handle(self, record):
            """
            Handle a record.

            This just loops through the handlers offering them the record
            to handle.
            """
            record = self.prepare(record)
            for handler in self.handlers:
                handler.handle(record)

        def _monitor(self):
            """
            Monitor the queue for records, and ask the handler
            to deal with them.

            This method runs on a separate, internal thread.
            The thread will terminate if it sees a sentinel object in the queue.
            """
            q = self.queue
            has_task_done = hasattr(q, 'task_done')
            while not self._stop.isSet():
                try:
                    record = self.dequeue(True)
                    if record is self._sentinel:
                        break
                    self.handle(record)
                    if has_task_done:
                        q.task_done()
                except queue.Empty:
                    pass
            # There might still be records in the queue.
            while True:
                try:
                    record = self.dequeue(False)
                    if record is self._sentinel:
                        break
                    self.handle(record)
                    if has_task_done:
                        q.task_done()
                except queue.Empty:
                    break

        def enqueue_sentinel(self):
            """
            This is used to enqueue the sentinel record.

            The base implementation uses put_nowait. You may want to override this
            method if you want to use timeouts or work with custom queue
            implementations.
            """
            self.queue.put_nowait(self._sentinel)

        def stop(self):
            """
            Stop the listener.

            This asks the thread to terminate, and then waits for it to do so.
            Note that if you don't call this before your application exits, there
            may be some records still left on the queue, which won't be processed.
            """
            self._stop.set()
            self.enqueue_sentinel()
            self._thread.join()
            self._thread = None
lib\logging\__init__.py
# Copyright 2001-2014 by Vinay Sajip. All Rights Reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of Vinay Sajip
# not be used in advertising or publicity pertaining to distribution
# of the software without specific, written prior permission.
# VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
# ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
# VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
# ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
# IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""
Logging package for Python. Based on PEP 282 and comments thereto in
comp.lang.python.

Copyright (C) 2001-2014 Vinay Sajip. All Rights Reserved.

To use, simply 'import logging' and log away!
"""

import sys, os, time, io, traceback, warnings, weakref, collections

from string import Template

__all__ = ['BASIC_FORMAT', 'BufferingFormatter', 'CRITICAL', 'DEBUG', 'ERROR',
           'FATAL', 'FileHandler', 'Filter', 'Formatter', 'Handler', 'INFO',
           'LogRecord', 'Logger', 'LoggerAdapter', 'NOTSET', 'NullHandler',
           'StreamHandler', 'WARN', 'WARNING', 'addLevelName', 'basicConfig',
           'captureWarnings', 'critical', 'debug', 'disable', 'error',
           'exception', 'fatal', 'getLevelName', 'getLogger', 'getLoggerClass',
           'info', 'log', 'makeLogRecord', 'setLoggerClass', 'warn', 'warning',
           'getLogRecordFactory', 'setLogRecordFactory', 'lastResort']

try:
    import threading
except ImportError: #pragma: no cover
    threading = None

__author__  = "Vinay Sajip <[email protected]>"
__status__  = "production"
# The following module attributes are no longer updated.
__version__ = "0.5.1.2"
__date__    = "07 February 2010"

#---------------------------------------------------------------------------
#   Miscellaneous module data
#---------------------------------------------------------------------------

#
#_startTime is used as the base when calculating the relative time of events
#
_startTime = time.time()

#
#raiseExceptions is used to see if exceptions during handling should be
#propagated
#
raiseExceptions = True

#
# If you don't want threading information in the log, set this to zero
#
logThreads = True

#
# If you don't want multiprocessing information in the log, set this to zero
#
logMultiprocessing = True

#
# If you don't want process information in the log, set this to zero
#
logProcesses = True

#---------------------------------------------------------------------------
#   Level related stuff
#---------------------------------------------------------------------------
#
# Default levels and level names, these can be replaced with any positive set
# of values having corresponding names. There is a pseudo-level, NOTSET, which
# is only really there as a lower limit for user-defined levels. Handlers and
# loggers are initialized with NOTSET so that they will log all messages, even
# at user-defined levels.
#

CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0

_levelToName = {
    CRITICAL: 'CRITICAL',
    ERROR: 'ERROR',
    WARNING: 'WARNING',
    INFO: 'INFO',
    DEBUG: 'DEBUG',
    NOTSET: 'NOTSET',
}
_nameToLevel = {
    'CRITICAL': CRITICAL,
    'ERROR': ERROR,
    'WARN': WARNING,
    'WARNING': WARNING,
    'INFO': INFO,
    'DEBUG': DEBUG,
    'NOTSET': NOTSET,
}

def getLevelName(level):
    """
    Return the textual representation of logging level 'level'.

    If the level is one of the predefined levels (CRITICAL, ERROR, WARNING,
    INFO, DEBUG) then you get the corresponding string. If you have
    associated levels with names using addLevelName then the name you have
    associated with 'level' is returned.

    If a numeric value corresponding to one of the defined levels is passed
    in, the corresponding string representation is returned.

    Otherwise, the string "Level %s" % level is returned.
    """
    # See Issue #22386 for the reason for this convoluted expression
    return _levelToName.get(level, _nameToLevel.get(level, ("Level %s" % level)))

def addLevelName(level, levelName):
    """
    Associate 'levelName' with 'level'.

    This is used when converting levels to text during message formatting.
    """
    _acquireLock()
    try:    #unlikely to cause an exception, but you never know...
        _levelToName[level] = levelName
        _nameToLevel[levelName] = level
    finally:
        _releaseLock()

if hasattr(sys, '_getframe'):
    currentframe = lambda: sys._getframe(3)
else: #pragma: no cover
    def currentframe():
        """Return the frame object for the caller's stack frame."""
        try:
            raise Exception
        except Exception:
            return sys.exc_info()[2].tb_frame.f_back

#
# _srcfile is used when walking the stack to check when we've got the first
# caller stack frame, by skipping frames whose filename is that of this
# module's source. It therefore should contain the filename of this module's
# source file.
#
# Ordinarily we would use __file__ for this, but frozen modules don't always
# have __file__ set, for some reason (see Issue #21736). Thus, we get the
# filename from a handy code object from a function defined in this module.
# (There's no particular reason for picking addLevelName.)
#

_srcfile = os.path.normcase(addLevelName.__code__.co_filename)

# _srcfile is only used in conjunction with sys._getframe().
# To provide compatibility with older versions of Python, set _srcfile
# to None if _getframe() is not available; this value will prevent
# findCaller() from being called. You can also do this if you want to avoid
# the overhead of fetching caller information, even when _getframe() is
# available.
#if not hasattr(sys, '_getframe'):
#    _srcfile = None


def _checkLevel(level):
    if isinstance(level, int):
        rv = level
    elif str(level) == level:
        if level not in _nameToLevel:
            raise ValueError("Unknown level: %r" % level)
        rv = _nameToLevel[level]
    else:
        raise TypeError("Level not an integer or a valid string: %r" % level)
    return rv

#---------------------------------------------------------------------------
#   Thread-related stuff
#---------------------------------------------------------------------------

#
#_lock is used to serialize access to shared data structures in this module.
#This needs to be an RLock because fileConfig() creates and configures
#Handlers, and so might arbitrary user threads. Since Handler code updates the
#shared dictionary _handlers, it needs to acquire the lock. But if configuring,
#the lock would already have been acquired - so we need an RLock.
#The same argument applies to Loggers and Manager.loggerDict.
#
if threading:
    _lock = threading.RLock()
else: #pragma: no cover
    _lock = None


def _acquireLock():
    """
    Acquire the module-level lock for serializing access to shared data.

    This should be released with _releaseLock().
    """
    if _lock:
        _lock.acquire()

def _releaseLock():
    """
    Release the module-level lock acquired by calling _acquireLock().
    """
    if _lock:
        _lock.release()

#---------------------------------------------------------------------------
#   The logging record
#---------------------------------------------------------------------------

class LogRecord(object):
    """
    A LogRecord instance represents an event being logged.

    LogRecord instances are created every time something is logged. They
    contain all the information pertinent to the event being logged. The
    main information passed in is in msg and args, which are combined
    using str(msg) % args to create the message field of the record. The
    record also includes information such as when the record was created,
    the source line where the logging call was made, and any exception
    information to be logged.
    """
    def __init__(self, name, level, pathname, lineno,
                 msg, args, exc_info, func=None, sinfo=None, **kwargs):
        """
        Initialize a logging record with interesting information.
        """
        ct = time.time()
        self.name = name
        self.msg = msg
        #
        # The following statement allows passing of a dictionary as a sole
        # argument, so that you can do something like
        #  logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2})
        # Suggested by Stefan Behnel.
        # Note that without the test for args[0], we get a problem because
        # during formatting, we test to see if the arg is present using
        # 'if self.args:'. If the event being logged is e.g. 'Value is %d'
        # and if the passed arg fails 'if self.args:' then no formatting
        # is done. For example, logger.warning('Value is %d', 0) would log
        # 'Value is %d' instead of 'Value is 0'.
        # For the use case of passing a dictionary, this should not be a
        # problem.
        # Issue #21172: a request was made to relax the isinstance check
        # to hasattr(args[0], '__getitem__'). However, the docs on string
        # formatting still seem to suggest a mapping object is required.
        # Thus, while not removing the isinstance check, it does now look
        # for collections.Mapping rather than, as before, dict.
        if (args and len(args) == 1 and isinstance(args[0], collections.Mapping)
            and args[0]):
            args = args[0]
        self.args = args
        self.levelname = getLevelName(level)
        self.levelno = level
        self.pathname = pathname
        try:
            self.filename = os.path.basename(pathname)
            self.module = os.path.splitext(self.filename)[0]
        except (TypeError, ValueError, AttributeError):
            self.filename = pathname
            self.module = "Unknown module"
        self.exc_info = exc_info
        self.exc_text = None      # used to cache the traceback text
        self.stack_info = sinfo
        self.lineno = lineno
        self.funcName = func
        self.created = ct
        self.msecs = (ct - int(ct)) * 1000
        self.relativeCreated = (self.created - _startTime) * 1000
        if logThreads and threading:
            self.thread = threading.get_ident()
            self.threadName = threading.current_thread().name
        else: # pragma: no cover
            self.thread = None
            self.threadName = None
        if not logMultiprocessing: # pragma: no cover
            self.processName = None
        else:
            self.processName = 'MainProcess'
            mp = sys.modules.get('multiprocessing')
            if mp is not None:
                # Errors may occur if multiprocessing has not finished loading
                # yet - e.g. if a custom import hook causes third-party code
                # to run when multiprocessing calls import. See issue 8200
                # for an example
                try:
                    self.processName = mp.current_process().name
                except Exception: #pragma: no cover
                    pass
        if logProcesses and hasattr(os, 'getpid'):
            self.process = os.getpid()
        else:
            self.process = None

    def __str__(self):
        return '<LogRecord: %s, %s, %s, %s, "%s">'%(self.name, self.levelno,
            self.pathname, self.lineno, self.msg)

    def getMessage(self):
        """
        Return the message for this LogRecord.

        Return the message for this LogRecord after merging any user-supplied
        arguments with the message.
        """
        msg = str(self.msg)
        if self.args:
            msg = msg % self.args
        return msg

#
#   Determine which class to use when instantiating log records.
#
_logRecordFactory = LogRecord

def setLogRecordFactory(factory):
    """
    Set the factory to be used when instantiating a log record.

    :param factory: A callable which will be called to instantiate
    a log record.
    """
    global _logRecordFactory
    _logRecordFactory = factory

def getLogRecordFactory():
    """
    Return the factory to be used when instantiating a log record.
    """

    return _logRecordFactory

def makeLogRecord(dict):
    """
    Make a LogRecord whose attributes are defined by the specified dictionary,
    This function is useful for converting a logging event received over
    a socket connection (which is sent as a dictionary) into a LogRecord
    instance.
    """
    rv = _logRecordFactory(None, None, "", 0, "", (), None, None)
    rv.__dict__.update(dict)
    return rv

#---------------------------------------------------------------------------
#   Formatter classes and functions
#---------------------------------------------------------------------------

class PercentStyle(object):

    default_format = '%(message)s'
    asctime_format = '%(asctime)s'
    asctime_search = '%(asctime)'

    def __init__(self, fmt):
        self._fmt = fmt or self.default_format

    def usesTime(self):
        return self._fmt.find(self.asctime_search) >= 0

    def format(self, record):
        return self._fmt % record.__dict__

class StrFormatStyle(PercentStyle):
    default_format = '{message}'
    asctime_format = '{asctime}'
    asctime_search = '{asctime'

    def format(self, record):
        return self._fmt.format(**record.__dict__)


class StringTemplateStyle(PercentStyle):
    default_format = '${message}'
    asctime_format = '${asctime}'
    asctime_search = '${asctime}'

    def __init__(self, fmt):
        self._fmt = fmt or self.default_format
        self._tpl = Template(self._fmt)

    def usesTime(self):
        fmt = self._fmt
        return fmt.find('$asctime') >= 0 or fmt.find(self.asctime_format) >= 0

    def format(self, record):
        return self._tpl.substitute(**record.__dict__)

BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s"

_STYLES = {
    '%': (PercentStyle, BASIC_FORMAT),
    '{': (StrFormatStyle, '{levelname}:{name}:{message}'),
    '$': (StringTemplateStyle, '${levelname}:${name}:${message}'),
}

class Formatter(object):
    """
    Formatter instances are used to convert a LogRecord to text.

    Formatters need to know how a LogRecord is constructed. They are
    responsible for converting a LogRecord to (usually) a string which can
    be interpreted by either a human or an external system. The base Formatter
    allows a formatting string to be specified. If none is supplied, the
    default value of "%s(message)" is used.

    The Formatter can be initialized with a format string which makes use of
    knowledge of the LogRecord attributes - e.g. the default value mentioned
    above makes use of the fact that the user's message and arguments are pre-
    formatted into a LogRecord's message attribute. Currently, the useful
    attributes in a LogRecord are described by:

    %(name)s            Name of the logger (logging channel)
    %(levelno)s         Numeric logging level for the message (DEBUG, INFO,
                        WARNING, ERROR, CRITICAL)
    %(levelname)s       Text logging level for the message ("DEBUG", "INFO",
                        "WARNING", "ERROR", "CRITICAL")
    %(pathname)s        Full pathname of the source file where the logging
                        call was issued (if available)
    %(filename)s        Filename portion of pathname
    %(module)s          Module (name portion of filename)
    %(lineno)d          Source line number where the logging call was issued
                        (if available)
    %(funcName)s        Function name
    %(created)f         Time when the LogRecord was created (time.time()
                        return value)
    %(asctime)s         Textual time when the LogRecord was created
    %(msecs)d           Millisecond portion of the creation time
    %(relativeCreated)d Time in milliseconds when the LogRecord was created,
                        relative to the time the logging module was loaded
                        (typically at application startup time)
    %(thread)d          Thread ID (if available)
    %(threadName)s      Thread name (if available)
    %(process)d         Process ID (if available)
    %(message)s         The result of record.getMessage(), computed just as
                        the record is emitted
    """

    converter = time.localtime

    def __init__(self, fmt=None, datefmt=None, style='%'):
        """
        Initialize the formatter with specified format strings.

        Initialize the formatter either with the specified format string, or a
        default as described above. Allow for specialized date formatting with
        the optional datefmt argument (if omitted, you get the ISO8601 format).

        Use a style parameter of '%', '{' or '$' to specify that you want to
        use one of %-formatting, :meth:`str.format` (``{}``) formatting or
        :class:`string.Template` formatting in your format string.

        .. versionchanged: 3.2
           Added the ``style`` parameter.
        """
        if style not in _STYLES:
            raise ValueError('Style must be one of: %s' % ','.join(
                             _STYLES.keys()))
        self._style = _STYLES[style][0](fmt)
        self._fmt = self._style._fmt
        self.datefmt = datefmt

    default_time_format = '%Y-%m-%d %H:%M:%S'
    default_msec_format = '%s,%03d'

    def formatTime(self, record, datefmt=None):
        """
        Return the creation time of the specified LogRecord as formatted text.

        This method should be called from format() by a formatter which
        wants to make use of a formatted time. This method can be overridden
        in formatters to provide for any specific requirement, but the
        basic behaviour is as follows: if datefmt (a string) is specified,
        it is used with time.strftime() to format the creation time of the
        record. Otherwise, the ISO8601 format is used. The resulting
        string is returned. This function uses a user-configurable function
        to convert the creation time to a tuple. By default, time.localtime()
        is used; to change this for a particular formatter instance, set the
        'converter' attribute to a function with the same signature as
        time.localtime() or time.gmtime(). To change it for all formatters,
        for example if you want all logging times to be shown in GMT,
        set the 'converter' attribute in the Formatter class.
        """
        ct = self.converter(record.created)
        if datefmt:
            s = time.strftime(datefmt, ct)
        else:
            t = time.strftime(self.default_time_format, ct)
            s = self.default_msec_format % (t, record.msecs)
        return s

    def formatException(self, ei):
        """
        Format and return the specified exception information as a string.

        This default implementation just uses
        traceback.print_exception()
        """
        sio = io.StringIO()
        tb = ei[2]
        # See issues #9427, #1553375. Commented out for now.
        #if getattr(self, 'fullstack', False):
        #    traceback.print_stack(tb.tb_frame.f_back, file=sio)
        traceback.print_exception(ei[0], ei[1], tb, None, sio)
        s = sio.getvalue()
        sio.close()
        if s[-1:] == "\n":
            s = s[:-1]
        return s

    def usesTime(self):
        """
        Check if the format uses the creation time of the record.
        """
        return self._style.usesTime()

    def formatMessage(self, record):
        return self._style.format(record)

    def formatStack(self, stack_info):
        """
        This method is provided as an extension point for specialized
        formatting of stack information.

        The input data is a string as returned from a call to
        :func:`traceback.print_stack`, but with the last trailing newline
        removed.

        The base implementation just returns the value passed in.
        """
        return stack_info

    def format(self, record):
        """
        Format the specified record as text.

        The record's attribute dictionary is used as the operand to a
        string formatting operation which yields the returned string.
        Before formatting the dictionary, a couple of preparatory steps
        are carried out. The message attribute of the record is computed
        using LogRecord.getMessage(). If the formatting string uses the
        time (as determined by a call to usesTime(), formatTime() is
        called to format the event time. If there is exception information,
        it is formatted using formatException() and appended to the message.
        """
        record.message = record.getMessage()
        if self.usesTime():
            record.asctime = self.formatTime(record, self.datefmt)
        s = self.formatMessage(record)
        if record.exc_info:
            # Cache the traceback text to avoid converting it multiple times
            # (it's constant anyway)
            if not record.exc_text:
                record.exc_text = self.formatException(record.exc_info)
        if record.exc_text:
            if s[-1:] != "\n":
                s = s + "\n"
            s = s + record.exc_text
        if record.stack_info:
            if s[-1:] != "\n":
                s = s + "\n"
            s = s + self.formatStack(record.stack_info)
        return s

#
#   The default formatter to use when no other is specified
#
_defaultFormatter = Formatter()

class BufferingFormatter(object):
    """
    A formatter suitable for formatting a number of records.
    """
    def __init__(self, linefmt=None):
        """
        Optionally specify a formatter which will be used to format each
        individual record.
        """
        if linefmt:
            self.linefmt = linefmt
        else:
            self.linefmt = _defaultFormatter

    def formatHeader(self, records):
        """
        Return the header string for the specified records.
        """
        return ""

    def formatFooter(self, records):
        """
        Return the footer string for the specified records.
        """
        return ""

    def format(self, records):
        """
        Format the specified records and return the result as a string.
        """
        rv = ""
        if len(records) > 0:
            rv = rv + self.formatHeader(records)
            for record in records:
                rv = rv + self.linefmt.format(record)
            rv = rv + self.formatFooter(records)
        return rv

#---------------------------------------------------------------------------
#   Filter classes and functions
#---------------------------------------------------------------------------

class Filter(object):
    """
    Filter instances are used to perform arbitrary filtering of LogRecords.

    Loggers and Handlers can optionally use Filter instances to filter
    records as desired. The base filter class only allows events which are
    below a certain point in the logger hierarchy. For example, a filter
    initialized with "A.B" will allow events logged by loggers "A.B",
    "A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
    initialized with the empty string, all events are passed.
    """
    def __init__(self, name=''):
        """
        Initialize a filter.

        Initialize with the name of the logger which, together with its
        children, will have its events allowed through the filter. If no
        name is specified, allow every event.
        """
        self.name = name
        self.nlen = len(name)

    def filter(self, record):
        """
        Determine if the specified record is to be logged.

        Is the specified record to be logged? Returns 0 for no, nonzero for
        yes. If deemed appropriate, the record may be modified in-place.
        """
        if self.nlen == 0:
            return True
        elif self.name == record.name:
            return True
        elif record.name.find(self.name, 0, self.nlen) != 0:
            return False
        return (record.name[self.nlen] == ".")

class Filterer(object):
    """
    A base class for loggers and handlers which allows them to share
    common code.
    """
    def __init__(self):
        """
        Initialize the list of filters to be an empty list.
        """
        self.filters = []

    def addFilter(self, filter):
        """
        Add the specified filter to this handler.
        """
        if not (filter in self.filters):
            self.filters.append(filter)

    def removeFilter(self, filter):
        """
        Remove the specified filter from this handler.
        """
        if filter in self.filters:
            self.filters.remove(filter)

    def filter(self, record):
        """
        Determine if a record is loggable by consulting all the filters.

        The default is to allow the record to be logged; any filter can veto
        this and the record is then dropped. Returns a zero value if a record
        is to be dropped, else non-zero.

        .. versionchanged: 3.2

           Allow filters to be just callables.
        """
        rv = True
        for f in self.filters:
            if hasattr(f, 'filter'):
                result = f.filter(record)
            else:
                result = f(record) # assume callable - will raise if not
            if not result:
                rv = False
                break
        return rv

#---------------------------------------------------------------------------
#   Handler classes and functions
#---------------------------------------------------------------------------

_handlers = weakref.WeakValueDictionary()  #map of handler names to handlers
_handlerList = [] # added to allow handlers to be removed in reverse of order initialized

def _removeHandlerRef(wr):
    """
    Remove a handler reference from the internal cleanup list.
    """
    # This function can be called during module teardown, when globals are
    # set to None. It can also be called from another thread. So we need to
    # pre-emptively grab the necessary globals and check if they're None,
    # to prevent race conditions and failures during interpreter shutdown.
    acquire, release, handlers = _acquireLock, _releaseLock, _handlerList
    if acquire and release and handlers:
        acquire()
        try:
            if wr in handlers:
                handlers.remove(wr)
        finally:
            release()

def _addHandlerRef(handler):
    """
    Add a handler to the internal cleanup list using a weak reference.
    """
    _acquireLock()
    try:
        _handlerList.append(weakref.ref(handler, _removeHandlerRef))
    finally:
        _releaseLock()

class Handler(Filterer):
    """
    Handler instances dispatch logging events to specific destinations.

    The base handler class. Acts as a placeholder which defines the Handler
    interface. Handlers can optionally use Formatter instances to format
    records as desired. By default, no formatter is specified; in this case,
    the 'raw' message as determined by record.message is logged.
    """
    def __init__(self, level=NOTSET):
        """
        Initializes the instance - basically setting the formatter to None
        and the filter list to empty.
        """
        Filterer.__init__(self)
        self._name = None
        self.level = _checkLevel(level)
        self.formatter = None
        # Add the handler to the global _handlerList (for cleanup on shutdown)
        _addHandlerRef(self)
        self.createLock()

    def get_name(self):
        return self._name

    def set_name(self, name):
        _acquireLock()
        try:
            if self._name in _handlers:
                del _handlers[self._name]
            self._name = name
            if name:
                _handlers[name] = self
        finally:
            _releaseLock()

    name = property(get_name, set_name)

    def createLock(self):
        """
        Acquire a thread lock for serializing access to the underlying I/O.
        """
        if threading:
            self.lock = threading.RLock()
        else: #pragma: no cover
            self.lock = None

    def acquire(self):
        """
        Acquire the I/O thread lock.
        """
        if self.lock:
            self.lock.acquire()

    def release(self):
        """
        Release the I/O thread lock.
        """
        if self.lock:
            self.lock.release()

    def setLevel(self, level):
        """
        Set the logging level of this handler.  level must be an int or a str.
        """
        self.level = _checkLevel(level)

    def format(self, record):
        """
        Format the specified record.

        If a formatter is set, use it. Otherwise, use the default formatter
        for the module.
        """
        if self.formatter:
            fmt = self.formatter
        else:
            fmt = _defaultFormatter
        return fmt.format(record)

    def emit(self, record):
        """
        Do whatever it takes to actually log the specified logging record.

        This version is intended to be implemented by subclasses and so
        raises a NotImplementedError.
        """
        raise NotImplementedError('emit must be implemented '
                                  'by Handler subclasses')

    def handle(self, record):
        """
        Conditionally emit the specified logging record.

        Emission depends on filters which may have been added to the handler.
        Wrap the actual emission of the record with acquisition/release of
        the I/O thread lock. Returns whether the filter passed the record for
        emission.
        """
        rv = self.filter(record)
        if rv:
            self.acquire()
            try:
                self.emit(record)
            finally:
                self.release()
        return rv

    def setFormatter(self, fmt):
        """
        Set the formatter for this handler.
        """
        self.formatter = fmt

    def flush(self):
        """
        Ensure all logging output has been flushed.

        This version does nothing and is intended to be implemented by
        subclasses.
        """
        pass

    def close(self):
        """
        Tidy up any resources used by the handler.

        This version removes the handler from an internal map of handlers,
        _handlers, which is used for handler lookup by name. Subclasses
        should ensure that this gets called from overridden close()
        methods.
        """
        #get the module data lock, as we're updating a shared structure.
        _acquireLock()
        try:    #unlikely to raise an exception, but you never know...
            if self._name and self._name in _handlers:
                del _handlers[self._name]
        finally:
            _releaseLock()

    def handleError(self, record):
        """
        Handle errors which occur during an emit() call.

        This method should be called from handlers when an exception is
        encountered during an emit() call. If raiseExceptions is false,
        exceptions get silently ignored. This is what is mostly wanted
        for a logging system - most users will not care about errors in
        the logging system, they are more interested in application errors.
        You could, however, replace this with a custom handler if you wish.
        The record which was being processed is passed in to this method.
        """
        if raiseExceptions and sys.stderr:  # see issue 13807
            t, v, tb = sys.exc_info()
            try:
                sys.stderr.write('--- Logging error ---\n')
                traceback.print_exception(t, v, tb, None, sys.stderr)
                sys.stderr.write('Call stack:\n')
                # Walk the stack frame up until we're out of logging,
                # so as to print the calling context.
                frame = tb.tb_frame
                while (frame and os.path.dirname(frame.f_code.co_filename) ==
                       __path__[0]):
                    frame = frame.f_back
                if frame:
                    traceback.print_stack(frame, file=sys.stderr)
                else:
                    # couldn't find the right stack frame, for some reason
                    sys.stderr.write('Logged from file %s, line %s\n' % (
                                     record.filename, record.lineno))
                # Issue 18671: output logging message and arguments
                try:
                    sys.stderr.write('Message: %r\n'
                                     'Arguments: %s\n' % (record.msg,
                                                          record.args))
                except Exception:
                    sys.stderr.write('Unable to print the message and arguments'
                                     ' - possible formatting error.\nUse the'
                                     ' traceback above to help find the error.\n'
                                    )
            except OSError: #pragma: no cover
                pass    # see issue 5971
            finally:
                del t, v, tb

class StreamHandler(Handler):
    """
    A handler class which writes logging records, appropriately formatted,
    to a stream. Note that this class does not close the stream, as
    sys.stdout or sys.stderr may be used.
    """

    terminator = '\n'

    def __init__(self, stream=None):
        """
        Initialize the handler.

        If stream is not specified, sys.stderr is used.
        """
        Handler.__init__(self)
        if stream is None:
            stream = sys.stderr
        self.stream = stream

    def flush(self):
        """
        Flushes the stream.
        """
        self.acquire()
        try:
            if self.stream and hasattr(self.stream, "flush"):
                self.stream.flush()
        finally:
            self.release()

    def emit(self, record):
        """
        Emit a record.

        If a formatter is specified, it is used to format the record.
        The record is then written to the stream with a trailing newline.  If
        exception information is present, it is formatted using
        traceback.print_exception and appended to the stream.  If the stream
        has an 'encoding' attribute, it is used to determine how to do the
        output to the stream.
        """
        try:
            msg = self.format(record)
            stream = self.stream
            stream.write(msg)
            stream.write(self.terminator)
            self.flush()
        except Exception:
            self.handleError(record)

class FileHandler(StreamHandler):
    """
    A handler class which writes formatted logging records to disk files.
    """
    def __init__(self, filename, mode='a', encoding=None, delay=False):
        """
        Open the specified file and use it as the stream for logging.
        """
        #keep the absolute path, otherwise derived classes which use this
        #may come a cropper when the current directory changes
        self.baseFilename = os.path.abspath(filename)
        self.mode = mode
        self.encoding = encoding
        self.delay = delay
        if delay:
            #We don't open the stream, but we still need to call the
            #Handler constructor to set level, formatter, lock etc.
            Handler.__init__(self)
            self.stream = None
        else:
            StreamHandler.__init__(self, self._open())

    def close(self):
        """
        Closes the stream.
        """
        self.acquire()
        try:
            try:
                if self.stream:
                    try:
                        self.flush()
                    finally:
                        stream = self.stream
                        self.stream = None
                        if hasattr(stream, "close"):
                            stream.close()
            finally:
                # Issue #19523: call unconditionally to
                # prevent a handler leak when delay is set
                StreamHandler.close(self)
        finally:
            self.release()

    def _open(self):
        """
        Open the current base file with the (original) mode and encoding.
        Return the resulting stream.
        """
        return open(self.baseFilename, self.mode, encoding=self.encoding)

    def emit(self, record):
        """
        Emit a record.

        If the stream was not opened because 'delay' was specified in the
        constructor, open it before calling the superclass's emit.
        """
        if self.stream is None:
            self.stream = self._open()
        StreamHandler.emit(self, record)

class _StderrHandler(StreamHandler):
    """
    This class is like a StreamHandler using sys.stderr, but always uses
    whatever sys.stderr is currently set to rather than the value of
    sys.stderr at handler construction time.
    """
    def __init__(self, level=NOTSET):
        """
        Initialize the handler.
        """
        Handler.__init__(self, level)

    @property
    def stream(self):
        return sys.stderr


_defaultLastResort = _StderrHandler(WARNING)
lastResort = _defaultLastResort

#---------------------------------------------------------------------------
#   Manager classes and functions
#---------------------------------------------------------------------------

class PlaceHolder(object):
    """
    PlaceHolder instances are used in the Manager logger hierarchy to take
    the place of nodes for which no loggers have been defined. This class is
    intended for internal use only and not as part of the public API.
    """
    def __init__(self, alogger):
        """
        Initialize with the specified logger being a child of this placeholder.
        """
        self.loggerMap = { alogger : None }

    def append(self, alogger):
        """
        Add the specified logger as a child of this placeholder.
        """
        if alogger not in self.loggerMap:
            self.loggerMap[alogger] = None

#
#   Determine which class to use when instantiating loggers.
#
_loggerClass = None

def setLoggerClass(klass):
    """
    Set the class to be used when instantiating a logger. The class should
    define __init__() such that only a name argument is required, and the
    __init__() should call Logger.__init__()
    """
    if klass != Logger:
        if not issubclass(klass, Logger):
            raise TypeError("logger not derived from logging.Logger: "
                            + klass.__name__)
    global _loggerClass
    _loggerClass = klass

def getLoggerClass():
    """
    Return the class to be used when instantiating a logger.
    """

    return _loggerClass

class Manager(object):
    """
    There is [under normal circumstances] just one Manager instance, which
    holds the hierarchy of loggers.
    """
    def __init__(self, rootnode):
        """
        Initialize the manager with the root node of the logger hierarchy.
        """
        self.root = rootnode
        self.disable = 0
        self.emittedNoHandlerWarning = False
        self.loggerDict = {}
        self.loggerClass = None
        self.logRecordFactory = None

    def getLogger(self, name):
        """
        Get a logger with the specified name (channel name), creating it
        if it doesn't yet exist. This name is a dot-separated hierarchical
        name, such as "a", "a.b", "a.b.c" or similar.

        If a PlaceHolder existed for the specified name [i.e. the logger
        didn't exist but a child of it did], replace it with the created
        logger and fix up the parent/child references which pointed to the
        placeholder to now point to the logger.
        """
        rv = None
        if not isinstance(name, str):
            raise TypeError('A logger name must be a string')
        _acquireLock()
        try:
            if name in self.loggerDict:
                rv = self.loggerDict[name]
                if isinstance(rv, PlaceHolder):
                    ph = rv
                    rv = (self.loggerClass or _loggerClass)(name)
                    rv.manager = self
                    self.loggerDict[name] = rv
                    self._fixupChildren(ph, rv)
                    self._fixupParents(rv)
            else:
                rv = (self.loggerClass or _loggerClass)(name)
                rv.manager = self
                self.loggerDict[name] = rv
                self._fixupParents(rv)
        finally:
            _releaseLock()
        return rv

    def setLoggerClass(self, klass):
        """
        Set the class to be used when instantiating a logger with this Manager.
        """
        if klass != Logger:
            if not issubclass(klass, Logger):
                raise TypeError("logger not derived from logging.Logger: "
                                + klass.__name__)
        self.loggerClass = klass

    def setLogRecordFactory(self, factory):
        """
        Set the factory to be used when instantiating a log record with this
        Manager.
        """
        self.logRecordFactory = factory

    def _fixupParents(self, alogger):
        """
        Ensure that there are either loggers or placeholders all the way
        from the specified logger to the root of the logger hierarchy.
        """
        name = alogger.name
        i = name.rfind(".")
        rv = None
        while (i > 0) and not rv:
            substr = name[:i]
            if substr not in self.loggerDict:
                self.loggerDict[substr] = PlaceHolder(alogger)
            else:
                obj = self.loggerDict[substr]
                if isinstance(obj, Logger):
                    rv = obj
                else:
                    assert isinstance(obj, PlaceHolder)
                    obj.append(alogger)
            i = name.rfind(".", 0, i - 1)
        if not rv:
            rv = self.root
        alogger.parent = rv

    def _fixupChildren(self, ph, alogger):
        """
        Ensure that children of the placeholder ph are connected to the
        specified logger.
        """
        name = alogger.name
        namelen = len(name)
        for c in ph.loggerMap.keys():
            #The if means ... if not c.parent.name.startswith(nm)
            if c.parent.name[:namelen] != name:
                alogger.parent = c.parent
                c.parent = alogger

#---------------------------------------------------------------------------
#   Logger classes and functions
#---------------------------------------------------------------------------

class Logger(Filterer):
    """
    Instances of the Logger class represent a single logging channel. A
    "logging channel" indicates an area of an application. Exactly how an
    "area" is defined is up to the application developer. Since an
    application can have any number of areas, logging channels are identified
    by a unique string. Application areas can be nested (e.g. an area
    of "input processing" might include sub-areas "read CSV files", "read
    XLS files" and "read Gnumeric files"). To cater for this natural nesting,
    channel names are organized into a namespace hierarchy where levels are
    separated by periods, much like the Java or Python package namespace. So
    in the instance given above, channel names might be "input" for the upper
    level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
    There is no arbitrary limit to the depth of nesting.
    """
    def __init__(self, name, level=NOTSET):
        """
        Initialize the logger with a name and an optional level.
        """
        Filterer.__init__(self)
        self.name = name
        self.level = _checkLevel(level)
        self.parent = None
        self.propagate = True
        self.handlers = []
        self.disabled = False

    def setLevel(self, level):
        """
        Set the logging level of this logger.  level must be an int or a str.
        """
        self.level = _checkLevel(level)

    def debug(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'DEBUG'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)
        """
        if self.isEnabledFor(DEBUG):
            self._log(DEBUG, msg, args, **kwargs)

    def info(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'INFO'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.info("Houston, we have a %s", "interesting problem", exc_info=1)
        """
        if self.isEnabledFor(INFO):
            self._log(INFO, msg, args, **kwargs)

    def warning(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'WARNING'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)
        """
        if self.isEnabledFor(WARNING):
            self._log(WARNING, msg, args, **kwargs)

    def warn(self, msg, *args, **kwargs):
        warnings.warn("The 'warn' method is deprecated, "
            "use 'warning' instead", DeprecationWarning, 2)
        self.warning(msg, *args, **kwargs)

    def error(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'ERROR'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.error("Houston, we have a %s", "major problem", exc_info=1)
        """
        if self.isEnabledFor(ERROR):
            self._log(ERROR, msg, args, **kwargs)

    def exception(self, msg, *args, **kwargs):
        """
        Convenience method for logging an ERROR with exception information.
        """
        kwargs['exc_info'] = True
        self.error(msg, *args, **kwargs)

    def critical(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'CRITICAL'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.critical("Houston, we have a %s", "major disaster", exc_info=1)
        """
        if self.isEnabledFor(CRITICAL):
            self._log(CRITICAL, msg, args, **kwargs)

    fatal = critical

    def log(self, level, msg, *args, **kwargs):
        """
        Log 'msg % args' with the integer severity 'level'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
        """
        if not isinstance(level, int):
            if raiseExceptions:
                raise TypeError("level must be an integer")
            else:
                return
        if self.isEnabledFor(level):
            self._log(level, msg, args, **kwargs)

    def findCaller(self, stack_info=False):
        """
        Find the stack frame of the caller so that we can note the source
        file name, line number and function name.
        """
        f = currentframe()
        #On some versions of IronPython, currentframe() returns None if
        #IronPython isn't run with -X:Frames.
        if f is not None:
            f = f.f_back
        rv = "(unknown file)", 0, "(unknown function)", None
        while hasattr(f, "f_code"):
            co = f.f_code
            filename = os.path.normcase(co.co_filename)
            if filename == _srcfile:
                f = f.f_back
                continue
            sinfo = None
            if stack_info:
                sio = io.StringIO()
                sio.write('Stack (most recent call last):\n')
                traceback.print_stack(f, file=sio)
                sinfo = sio.getvalue()
                if sinfo[-1] == '\n':
                    sinfo = sinfo[:-1]
                sio.close()
            rv = (co.co_filename, f.f_lineno, co.co_name, sinfo)
            break
        return rv

    def makeRecord(self, name, level, fn, lno, msg, args, exc_info,
                   func=None, extra=None, sinfo=None):
        """
        A factory method which can be overridden in subclasses to create
        specialized LogRecords.
        """
        rv = _logRecordFactory(name, level, fn, lno, msg, args, exc_info, func,
                             sinfo)
        if extra is not None:
            for key in extra:
                if (key in ["message", "asctime"]) or (key in rv.__dict__):
                    raise KeyError("Attempt to overwrite %r in LogRecord" % key)
                rv.__dict__[key] = extra[key]
        return rv

    def _log(self, level, msg, args, exc_info=None, extra=None, stack_info=False):
        """
        Low-level logging routine which creates a LogRecord and then calls
        all the handlers of this logger to handle the record.
        """
        sinfo = None
        if _srcfile:
            #IronPython doesn't track Python frames, so findCaller raises an
            #exception on some versions of IronPython. We trap it here so that
            #IronPython can use logging.
            try:
                fn, lno, func, sinfo = self.findCaller(stack_info)
            except ValueError: # pragma: no cover
                fn, lno, func = "(unknown file)", 0, "(unknown function)"
        else: # pragma: no cover
            fn, lno, func = "(unknown file)", 0, "(unknown function)"
        if exc_info:
            if not isinstance(exc_info, tuple):
                exc_info = sys.exc_info()
        record = self.makeRecord(self.name, level, fn, lno, msg, args,
                                 exc_info, func, extra, sinfo)
        self.handle(record)

    def handle(self, record):
        """
        Call the handlers for the specified record.

        This method is used for unpickled records received from a socket, as
        well as those created locally. Logger-level filtering is applied.
        """
        if (not self.disabled) and self.filter(record):
            self.callHandlers(record)

    def addHandler(self, hdlr):
        """
        Add the specified handler to this logger.
        """
        _acquireLock()
        try:
            if not (hdlr in self.handlers):
                self.handlers.append(hdlr)
        finally:
            _releaseLock()

    def removeHandler(self, hdlr):
        """
        Remove the specified handler from this logger.
        """
        _acquireLock()
        try:
            if hdlr in self.handlers:
                self.handlers.remove(hdlr)
        finally:
            _releaseLock()

    def hasHandlers(self):
        """
        See if this logger has any handlers configured.

        Loop through all handlers for this logger and its parents in the
        logger hierarchy. Return True if a handler was found, else False.
        Stop searching up the hierarchy whenever a logger with the "propagate"
        attribute set to zero is found - that will be the last logger which
        is checked for the existence of handlers.
        """
        c = self
        rv = False
        while c:
            if c.handlers:
                rv = True
                break
            if not c.propagate:
                break
            else:
                c = c.parent
        return rv

    def callHandlers(self, record):
        """
        Pass a record to all relevant handlers.

        Loop through all handlers for this logger and its parents in the
        logger hierarchy. If no handler was found, output a one-off error
        message to sys.stderr. Stop searching up the hierarchy whenever a
        logger with the "propagate" attribute set to zero is found - that
        will be the last logger whose handlers are called.
        """
        c = self
        found = 0
        while c:
            for hdlr in c.handlers:
                found = found + 1
                if record.levelno >= hdlr.level:
                    hdlr.handle(record)
            if not c.propagate:
                c = None    #break out
            else:
                c = c.parent
        if (found == 0):
            if lastResort:
                if record.levelno >= lastResort.level:
                    lastResort.handle(record)
            elif raiseExceptions and not self.manager.emittedNoHandlerWarning:
                sys.stderr.write("No handlers could be found for logger"
                                 " \"%s\"\n" % self.name)
                self.manager.emittedNoHandlerWarning = True

    def getEffectiveLevel(self):
        """
        Get the effective level for this logger.

        Loop through this logger and its parents in the logger hierarchy,
        looking for a non-zero logging level. Return the first one found.
        """
        logger = self
        while logger:
            if logger.level:
                return logger.level
            logger = logger.parent
        return NOTSET

    def isEnabledFor(self, level):
        """
        Is this logger enabled for level 'level'?
        """
        if self.manager.disable >= level:
            return False
        return level >= self.getEffectiveLevel()

    def getChild(self, suffix):
        """
        Get a logger which is a descendant to this one.

        This is a convenience method, such that

        logging.getLogger('abc').getChild('def.ghi')

        is the same as

        logging.getLogger('abc.def.ghi')

        It's useful, for example, when the parent logger is named using
        __name__ rather than a literal string.
        """
        if self.root is not self:
            suffix = '.'.join((self.name, suffix))
        return self.manager.getLogger(suffix)

class RootLogger(Logger):
    """
    A root logger is not that different to any other logger, except that
    it must have a logging level and there is only one instance of it in
    the hierarchy.
    """
    def __init__(self, level):
        """
        Initialize the logger with the name "root".
        """
        Logger.__init__(self, "root", level)

_loggerClass = Logger

class LoggerAdapter(object):
    """
    An adapter for loggers which makes it easier to specify contextual
    information in logging output.
    """

    def __init__(self, logger, extra):
        """
        Initialize the adapter with a logger and a dict-like object which
        provides contextual information. This constructor signature allows
        easy stacking of LoggerAdapters, if so desired.

        You can effectively pass keyword arguments as shown in the
        following example:

        adapter = LoggerAdapter(someLogger, dict(p1=v1, p2="v2"))
        """
        self.logger = logger
        self.extra = extra

    def process(self, msg, kwargs):
        """
        Process the logging message and keyword arguments passed in to
        a logging call to insert contextual information. You can either
        manipulate the message itself, the keyword args or both. Return
        the message and kwargs modified (or not) to suit your needs.

        Normally, you'll only need to override this one method in a
        LoggerAdapter subclass for your specific needs.
        """
        kwargs["extra"] = self.extra
        return msg, kwargs

    #
    # Boilerplate convenience methods
    #
    def debug(self, msg, *args, **kwargs):
        """
        Delegate a debug call to the underlying logger.
        """
        self.log(DEBUG, msg, *args, **kwargs)

    def info(self, msg, *args, **kwargs):
        """
        Delegate an info call to the underlying logger.
        """
        self.log(INFO, msg, *args, **kwargs)

    def warning(self, msg, *args, **kwargs):
        """
        Delegate a warning call to the underlying logger.
        """
        self.log(WARNING, msg, *args, **kwargs)

    def warn(self, msg, *args, **kwargs):
        warnings.warn("The 'warn' method is deprecated, "
            "use 'warning' instead", DeprecationWarning, 2)
        self.warning(msg, *args, **kwargs)

    def error(self, msg, *args, **kwargs):
        """
        Delegate an error call to the underlying logger.
        """
        self.log(ERROR, msg, *args, **kwargs)

    def exception(self, msg, *args, **kwargs):
        """
        Delegate an exception call to the underlying logger.
        """
        kwargs["exc_info"] = True
        self.log(ERROR, msg, *args, **kwargs)

    def critical(self, msg, *args, **kwargs):
        """
        Delegate a critical call to the underlying logger.
        """
        self.log(CRITICAL, msg, *args, **kwargs)

    def log(self, level, msg, *args, **kwargs):
        """
        Delegate a log call to the underlying logger, after adding
        contextual information from this adapter instance.
        """
        if self.isEnabledFor(level):
            msg, kwargs = self.process(msg, kwargs)
            self.logger._log(level, msg, args, **kwargs)

    def isEnabledFor(self, level):
        """
        Is this logger enabled for level 'level'?
        """
        if self.logger.manager.disable >= level:
            return False
        return level >= self.getEffectiveLevel()

    def setLevel(self, level):
        """
        Set the specified level on the underlying logger.
        """
        self.logger.setLevel(level)

    def getEffectiveLevel(self):
        """
        Get the effective level for the underlying logger.
        """
        return self.logger.getEffectiveLevel()

    def hasHandlers(self):
        """
        See if the underlying logger has any handlers.
        """
        return self.logger.hasHandlers()

root = RootLogger(WARNING)
Logger.root = root
Logger.manager = Manager(Logger.root)

#---------------------------------------------------------------------------
# Configuration classes and functions
#---------------------------------------------------------------------------

def basicConfig(**kwargs):
    """
    Do basic configuration for the logging system.

    This function does nothing if the root logger already has handlers
    configured. It is a convenience method intended for use by simple scripts
    to do one-shot configuration of the logging package.

    The default behaviour is to create a StreamHandler which writes to
    sys.stderr, set a formatter using the BASIC_FORMAT format string, and
    add the handler to the root logger.

    A number of optional keyword arguments may be specified, which can alter
    the default behaviour.

    filename  Specifies that a FileHandler be created, using the specified
              filename, rather than a StreamHandler.
    filemode  Specifies the mode to open the file, if filename is specified
              (if filemode is unspecified, it defaults to 'a').
    format    Use the specified format string for the handler.
    datefmt   Use the specified date/time format.
    style     If a format string is specified, use this to specify the
              type of format string (possible values '%', '{', '$', for
              %-formatting, :meth:`str.format` and :class:`string.Template`
              - defaults to '%').
    level     Set the root logger level to the specified level.
    stream    Use the specified stream to initialize the StreamHandler. Note
              that this argument is incompatible with 'filename' - if both
              are present, 'stream' is ignored.
    handlers  If specified, this should be an iterable of already created
              handlers, which will be added to the root handler. Any handler
              in the list which does not have a formatter assigned will be
              assigned the formatter created in this function.

    Note that you could specify a stream created using open(filename, mode)
    rather than passing the filename and mode in. However, it should be
    remembered that StreamHandler does not close its stream (since it may be
    using sys.stdout or sys.stderr), whereas FileHandler closes its stream
    when the handler is closed.

    .. versionchanged:: 3.2
       Added the ``style`` parameter.

    .. versionchanged:: 3.3
       Added the ``handlers`` parameter. A ``ValueError`` is now thrown for
       incompatible arguments (e.g. ``handlers`` specified together with
       ``filename``/``filemode``, or ``filename``/``filemode`` specified
       together with ``stream``, or ``handlers`` specified together with
       ``stream``.
    """
    # Add thread safety in case someone mistakenly calls
    # basicConfig() from multiple threads
    _acquireLock()
    try:
        if len(root.handlers) == 0:
            handlers = kwargs.pop("handlers", None)
            if handlers is None:
                if "stream" in kwargs and "filename" in kwargs:
                    raise ValueError("'stream' and 'filename' should not be "
                                     "specified together")
            else:
                if "stream" in kwargs or "filename" in kwargs:
                    raise ValueError("'stream' or 'filename' should not be "
                                     "specified together with 'handlers'")
            if handlers is None:
                filename = kwargs.pop("filename", None)
                mode = kwargs.pop("filemode", 'a')
                if filename:
                    h = FileHandler(filename, mode)
                else:
                    stream = kwargs.pop("stream", None)
                    h = StreamHandler(stream)
                handlers = [h]
            dfs = kwargs.pop("datefmt", None)
            style = kwargs.pop("style", '%')
            if style not in _STYLES:
                raise ValueError('Style must be one of: %s' % ','.join(
                                 _STYLES.keys()))
            fs = kwargs.pop("format", _STYLES[style][1])
            fmt = Formatter(fs, dfs, style)
            for h in handlers:
                if h.formatter is None:
                    h.setFormatter(fmt)
                root.addHandler(h)
            level = kwargs.pop("level", None)
            if level is not None:
                root.setLevel(level)
            if kwargs:
                keys = ', '.join(kwargs.keys())
                raise ValueError('Unrecognised argument(s): %s' % keys)
    finally:
        _releaseLock()

#---------------------------------------------------------------------------
# Utility functions at module level.
# Basically delegate everything to the root logger.
#---------------------------------------------------------------------------

def getLogger(name=None):
    """
    Return a logger with the specified name, creating it if necessary.

    If no name is specified, return the root logger.
    """
    if name:
        return Logger.manager.getLogger(name)
    else:
        return root

def critical(msg, *args, **kwargs):
    """
    Log a message with severity 'CRITICAL' on the root logger. If the logger
    has no handlers, call basicConfig() to add a console handler with a
    pre-defined format.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.critical(msg, *args, **kwargs)

fatal = critical

def error(msg, *args, **kwargs):
    """
    Log a message with severity 'ERROR' on the root logger. If the logger has
    no handlers, call basicConfig() to add a console handler with a pre-defined
    format.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.error(msg, *args, **kwargs)

def exception(msg, *args, **kwargs):
    """
    Log a message with severity 'ERROR' on the root logger, with exception
    information. If the logger has no handlers, basicConfig() is called to add
    a console handler with a pre-defined format.
    """
    kwargs['exc_info'] = True
    error(msg, *args, **kwargs)

def warning(msg, *args, **kwargs):
    """
    Log a message with severity 'WARNING' on the root logger. If the logger has
    no handlers, call basicConfig() to add a console handler with a pre-defined
    format.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.warning(msg, *args, **kwargs)

def warn(msg, *args, **kwargs):
    warnings.warn("The 'warn' function is deprecated, "
        "use 'warning' instead", DeprecationWarning, 2)
    warning(msg, *args, **kwargs)

def info(msg, *args, **kwargs):
    """
    Log a message with severity 'INFO' on the root logger. If the logger has
    no handlers, call basicConfig() to add a console handler with a pre-defined
    format.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.info(msg, *args, **kwargs)

def debug(msg, *args, **kwargs):
    """
    Log a message with severity 'DEBUG' on the root logger. If the logger has
    no handlers, call basicConfig() to add a console handler with a pre-defined
    format.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.debug(msg, *args, **kwargs)

def log(level, msg, *args, **kwargs):
    """
    Log 'msg % args' with the integer severity 'level' on the root logger. If
    the logger has no handlers, call basicConfig() to add a console handler
    with a pre-defined format.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.log(level, msg, *args, **kwargs)

def disable(level):
    """
    Disable all logging calls of severity 'level' and below.
    """
    root.manager.disable = level

def shutdown(handlerList=_handlerList):
    """
    Perform any cleanup actions in the logging system (e.g. flushing
    buffers).

    Should be called at application exit.
    """
    for wr in reversed(handlerList[:]):
        #errors might occur, for example, if files are locked
        #we just ignore them if raiseExceptions is not set
        try:
            h = wr()
            if h:
                try:
                    h.acquire()
                    h.flush()
                    h.close()
                except (OSError, ValueError):
                    # Ignore errors which might be caused
                    # because handlers have been closed but
                    # references to them are still around at
                    # application exit.
                    pass
                finally:
                    h.release()
        except: # ignore everything, as we're shutting down
            if raiseExceptions:
                raise
            #else, swallow

#Let's try and shutdown automatically on application exit...
import atexit
atexit.register(shutdown)

# Null handler

class NullHandler(Handler):
    """
    This handler does nothing. It's intended to be used to avoid the
    "No handlers could be found for logger XXX" one-off warning. This is
    important for library code, which may contain code to log events. If a user
    of the library does not configure logging, the one-off warning might be
    produced; to avoid this, the library developer simply needs to instantiate
    a NullHandler and add it to the top-level logger of the library module or
    package.
    """
    def handle(self, record):
        """Stub."""

    def emit(self, record):
        """Stub."""

    def createLock(self):
        self.lock = None

# Warnings integration

_warnings_showwarning = None

def _showwarning(message, category, filename, lineno, file=None, line=None):
    """
    Implementation of showwarnings which redirects to logging, which will first
    check to see if the file parameter is None. If a file is specified, it will
    delegate to the original warnings implementation of showwarning. Otherwise,
    it will call warnings.formatwarning and will log the resulting string to a
    warnings logger named "py.warnings" with level logging.WARNING.
    """
    if file is not None:
        if _warnings_showwarning is not None:
            _warnings_showwarning(message, category, filename, lineno, file, line)
    else:
        s = warnings.formatwarning(message, category, filename, lineno, line)
        logger = getLogger("py.warnings")
        if not logger.handlers:
            logger.addHandler(NullHandler())
        logger.warning("%s", s)

def captureWarnings(capture):
    """
    If capture is true, redirect all warnings to the logging package.
    If capture is False, ensure that warnings are not redirected to logging
    but to their original destinations.
    """
    global _warnings_showwarning
    if capture:
        if _warnings_showwarning is None:
            _warnings_showwarning = warnings.showwarning
            warnings.showwarning = _showwarning
    else:
        if _warnings_showwarning is not None:
            warnings.showwarning = _warnings_showwarning
            _warnings_showwarning = None
lib\msilib\schema.py
from . import Table

_Validation = Table('_Validation')
_Validation.add_field(1,'Table',11552)
_Validation.add_field(2,'Column',11552)
_Validation.add_field(3,'Nullable',3332)
_Validation.add_field(4,'MinValue',4356)
_Validation.add_field(5,'MaxValue',4356)
_Validation.add_field(6,'KeyTable',7679)
_Validation.add_field(7,'KeyColumn',5378)
_Validation.add_field(8,'Category',7456)
_Validation.add_field(9,'Set',7679)
_Validation.add_field(10,'Description',7679)

ActionText = Table('ActionText')
ActionText.add_field(1,'Action',11592)
ActionText.add_field(2,'Description',7936)
ActionText.add_field(3,'Template',7936)

AdminExecuteSequence = Table('AdminExecuteSequence')
AdminExecuteSequence.add_field(1,'Action',11592)
AdminExecuteSequence.add_field(2,'Condition',7679)
AdminExecuteSequence.add_field(3,'Sequence',5378)

Condition = Table('Condition')
Condition.add_field(1,'Feature_',11558)
Condition.add_field(2,'Level',9474)
Condition.add_field(3,'Condition',7679)

AdminUISequence = Table('AdminUISequence')
AdminUISequence.add_field(1,'Action',11592)
AdminUISequence.add_field(2,'Condition',7679)
AdminUISequence.add_field(3,'Sequence',5378)

AdvtExecuteSequence = Table('AdvtExecuteSequence')
AdvtExecuteSequence.add_field(1,'Action',11592)
AdvtExecuteSequence.add_field(2,'Condition',7679)
AdvtExecuteSequence.add_field(3,'Sequence',5378)

AdvtUISequence = Table('AdvtUISequence')
AdvtUISequence.add_field(1,'Action',11592)
AdvtUISequence.add_field(2,'Condition',7679)
AdvtUISequence.add_field(3,'Sequence',5378)

AppId = Table('AppId')
AppId.add_field(1,'AppId',11558)
AppId.add_field(2,'RemoteServerName',7679)
AppId.add_field(3,'LocalService',7679)
AppId.add_field(4,'ServiceParameters',7679)
AppId.add_field(5,'DllSurrogate',7679)
AppId.add_field(6,'ActivateAtStorage',5378)
AppId.add_field(7,'RunAsInteractiveUser',5378)

AppSearch = Table('AppSearch')
AppSearch.add_field(1,'Property',11592)
AppSearch.add_field(2,'Signature_',11592)

Property = Table('Property')
Property.add_field(1,'Property',11592)
Property.add_field(2,'Value',3840)

BBControl = Table('BBControl')
BBControl.add_field(1,'Billboard_',11570)
BBControl.add_field(2,'BBControl',11570)
BBControl.add_field(3,'Type',3378)
BBControl.add_field(4,'X',1282)
BBControl.add_field(5,'Y',1282)
BBControl.add_field(6,'Width',1282)
BBControl.add_field(7,'Height',1282)
BBControl.add_field(8,'Attributes',4356)
BBControl.add_field(9,'Text',7986)

Billboard = Table('Billboard')
Billboard.add_field(1,'Billboard',11570)
Billboard.add_field(2,'Feature_',3366)
Billboard.add_field(3,'Action',7474)
Billboard.add_field(4,'Ordering',5378)

Feature = Table('Feature')
Feature.add_field(1,'Feature',11558)
Feature.add_field(2,'Feature_Parent',7462)
Feature.add_field(3,'Title',8000)
Feature.add_field(4,'Description',8191)
Feature.add_field(5,'Display',5378)
Feature.add_field(6,'Level',1282)
Feature.add_field(7,'Directory_',7496)
Feature.add_field(8,'Attributes',1282)

Binary = Table('Binary')
Binary.add_field(1,'Name',11592)
Binary.add_field(2,'Data',2304)

BindImage = Table('BindImage')
BindImage.add_field(1,'File_',11592)
BindImage.add_field(2,'Path',7679)

File = Table('File')
File.add_field(1,'File',11592)
File.add_field(2,'Component_',3400)
File.add_field(3,'FileName',4095)
File.add_field(4,'FileSize',260)
File.add_field(5,'Version',7496)
File.add_field(6,'Language',7444)
File.add_field(7,'Attributes',5378)
File.add_field(8,'Sequence',1282)

CCPSearch = Table('CCPSearch')
CCPSearch.add_field(1,'Signature_',11592)

CheckBox = Table('CheckBox')
CheckBox.add_field(1,'Property',11592)
CheckBox.add_field(2,'Value',7488)

Class = Table('Class')
Class.add_field(1,'CLSID',11558)
Class.add_field(2,'Context',11552)
Class.add_field(3,'Component_',11592)
Class.add_field(4,'ProgId_Default',7679)
Class.add_field(5,'Description',8191)
Class.add_field(6,'AppId_',7462)
Class.add_field(7,'FileTypeMask',7679)
Class.add_field(8,'Icon_',7496)
Class.add_field(9,'IconIndex',5378)
Class.add_field(10,'DefInprocHandler',7456)
Class.add_field(11,'Argument',7679)
Class.add_field(12,'Feature_',3366)
Class.add_field(13,'Attributes',5378)

Component = Table('Component')
Component.add_field(1,'Component',11592)
Component.add_field(2,'ComponentId',7462)
Component.add_field(3,'Directory_',3400)
Component.add_field(4,'Attributes',1282)
Component.add_field(5,'Condition',7679)
Component.add_field(6,'KeyPath',7496)

Icon = Table('Icon')
Icon.add_field(1,'Name',11592)
Icon.add_field(2,'Data',2304)

ProgId = Table('ProgId')
ProgId.add_field(1,'ProgId',11775)
ProgId.add_field(2,'ProgId_Parent',7679)
ProgId.add_field(3,'Class_',7462)
ProgId.add_field(4,'Description',8191)
ProgId.add_field(5,'Icon_',7496)
ProgId.add_field(6,'IconIndex',5378)

ComboBox = Table('ComboBox')
ComboBox.add_field(1,'Property',11592)
ComboBox.add_field(2,'Order',9474)
ComboBox.add_field(3,'Value',3392)
ComboBox.add_field(4,'Text',8000)

CompLocator = Table('CompLocator')
CompLocator.add_field(1,'Signature_',11592)
CompLocator.add_field(2,'ComponentId',3366)
CompLocator.add_field(3,'Type',5378)

Complus = Table('Complus')
Complus.add_field(1,'Component_',11592)
Complus.add_field(2,'ExpType',13570)

Directory = Table('Directory')
Directory.add_field(1,'Directory',11592)
Directory.add_field(2,'Directory_Parent',7496)
Directory.add_field(3,'DefaultDir',4095)

Control = Table('Control')
Control.add_field(1,'Dialog_',11592)
Control.add_field(2,'Control',11570)
Control.add_field(3,'Type',3348)
Control.add_field(4,'X',1282)
Control.add_field(5,'Y',1282)
Control.add_field(6,'Width',1282)
Control.add_field(7,'Height',1282)
Control.add_field(8,'Attributes',4356)
Control.add_field(9,'Property',7474)
Control.add_field(10,'Text',7936)
Control.add_field(11,'Control_Next',7474)
Control.add_field(12,'Help',7986)

Dialog = Table('Dialog')
Dialog.add_field(1,'Dialog',11592)
Dialog.add_field(2,'HCentering',1282)
Dialog.add_field(3,'VCentering',1282)
Dialog.add_field(4,'Width',1282)
Dialog.add_field(5,'Height',1282)
Dialog.add_field(6,'Attributes',4356)
Dialog.add_field(7,'Title',8064)
Dialog.add_field(8,'Control_First',3378)
Dialog.add_field(9,'Control_Default',7474)
Dialog.add_field(10,'Control_Cancel',7474)

ControlCondition = Table('ControlCondition')
ControlCondition.add_field(1,'Dialog_',11592)
ControlCondition.add_field(2,'Control_',11570)
ControlCondition.add_field(3,'Action',11570)
ControlCondition.add_field(4,'Condition',11775)

ControlEvent = Table('ControlEvent')
ControlEvent.add_field(1,'Dialog_',11592)
ControlEvent.add_field(2,'Control_',11570)
ControlEvent.add_field(3,'Event',11570)
ControlEvent.add_field(4,'Argument',11775)
ControlEvent.add_field(5,'Condition',15871)
ControlEvent.add_field(6,'Ordering',5378)

CreateFolder = Table('CreateFolder')
CreateFolder.add_field(1,'Directory_',11592)
CreateFolder.add_field(2,'Component_',11592)

CustomAction = Table('CustomAction')
CustomAction.add_field(1,'Action',11592)
CustomAction.add_field(2,'Type',1282)
CustomAction.add_field(3,'Source',7496)
CustomAction.add_field(4,'Target',7679)

DrLocator = Table('DrLocator')
DrLocator.add_field(1,'Signature_',11592)
DrLocator.add_field(2,'Parent',15688)
DrLocator.add_field(3,'Path',15871)
DrLocator.add_field(4,'Depth',5378)

DuplicateFile = Table('DuplicateFile')
DuplicateFile.add_field(1,'FileKey',11592)
DuplicateFile.add_field(2,'Component_',3400)
DuplicateFile.add_field(3,'File_',3400)
DuplicateFile.add_field(4,'DestName',8191)
DuplicateFile.add_field(5,'DestFolder',7496)

Environment = Table('Environment')
Environment.add_field(1,'Environment',11592)
Environment.add_field(2,'Name',4095)
Environment.add_field(3,'Value',8191)
Environment.add_field(4,'Component_',3400)

Error = Table('Error')
Error.add_field(1,'Error',9474)
Error.add_field(2,'Message',7936)

EventMapping = Table('EventMapping')
EventMapping.add_field(1,'Dialog_',11592)
EventMapping.add_field(2,'Control_',11570)
EventMapping.add_field(3,'Event',11570)
EventMapping.add_field(4,'Attribute',3378)

Extension = Table('Extension')
Extension.add_field(1,'Extension',11775)
Extension.add_field(2,'Component_',11592)
Extension.add_field(3,'ProgId_',7679)
Extension.add_field(4,'MIME_',7488)
Extension.add_field(5,'Feature_',3366)

MIME = Table('MIME')
MIME.add_field(1,'ContentType',11584)
MIME.add_field(2,'Extension_',3583)
MIME.add_field(3,'CLSID',7462)

FeatureComponents = Table('FeatureComponents')
FeatureComponents.add_field(1,'Feature_',11558)
FeatureComponents.add_field(2,'Component_',11592)

FileSFPCatalog = Table('FileSFPCatalog')
FileSFPCatalog.add_field(1,'File_',11592)
FileSFPCatalog.add_field(2,'SFPCatalog_',11775)

SFPCatalog = Table('SFPCatalog')
SFPCatalog.add_field(1,'SFPCatalog',11775)
SFPCatalog.add_field(2,'Catalog',2304)
SFPCatalog.add_field(3,'Dependency',7424)

Font = Table('Font')
Font.add_field(1,'File_',11592)
Font.add_field(2,'FontTitle',7552)

IniFile = Table('IniFile')
IniFile.add_field(1,'IniFile',11592)
IniFile.add_field(2,'FileName',4095)
IniFile.add_field(3,'DirProperty',7496)
IniFile.add_field(4,'Section',3936)
IniFile.add_field(5,'Key',3968)
IniFile.add_field(6,'Value',4095)
IniFile.add_field(7,'Action',1282)
IniFile.add_field(8,'Component_',3400)

IniLocator = Table('IniLocator')
IniLocator.add_field(1,'Signature_',11592)
IniLocator.add_field(2,'FileName',3583)
IniLocator.add_field(3,'Section',3424)
IniLocator.add_field(4,'Key',3456)
IniLocator.add_field(5,'Field',5378)
IniLocator.add_field(6,'Type',5378)

InstallExecuteSequence = Table('InstallExecuteSequence')
InstallExecuteSequence.add_field(1,'Action',11592)
InstallExecuteSequence.add_field(2,'Condition',7679)
InstallExecuteSequence.add_field(3,'Sequence',5378)

InstallUISequence = Table('InstallUISequence')
InstallUISequence.add_field(1,'Action',11592)
InstallUISequence.add_field(2,'Condition',7679)
InstallUISequence.add_field(3,'Sequence',5378)

IsolatedComponent = Table('IsolatedComponent')
IsolatedComponent.add_field(1,'Component_Shared',11592)
IsolatedComponent.add_field(2,'Component_Application',11592)

LaunchCondition = Table('LaunchCondition')
LaunchCondition.add_field(1,'Condition',11775)
LaunchCondition.add_field(2,'Description',4095)

ListBox = Table('ListBox')
ListBox.add_field(1,'Property',11592)
ListBox.add_field(2,'Order',9474)
ListBox.add_field(3,'Value',3392)
ListBox.add_field(4,'Text',8000)

ListView = Table('ListView')
ListView.add_field(1,'Property',11592)
ListView.add_field(2,'Order',9474)
ListView.add_field(3,'Value',3392)
ListView.add_field(4,'Text',8000)
ListView.add_field(5,'Binary_',7496)

LockPermissions = Table('LockPermissions')
LockPermissions.add_field(1,'LockObject',11592)
LockPermissions.add_field(2,'Table',11552)
LockPermissions.add_field(3,'Domain',15871)
LockPermissions.add_field(4,'User',11775)
LockPermissions.add_field(5,'Permission',4356)

Media = Table('Media')
Media.add_field(1,'DiskId',9474)
Media.add_field(2,'LastSequence',1282)
Media.add_field(3,'DiskPrompt',8000)
Media.add_field(4,'Cabinet',7679)
Media.add_field(5,'VolumeLabel',7456)
Media.add_field(6,'Source',7496)

MoveFile = Table('MoveFile')
MoveFile.add_field(1,'FileKey',11592)
MoveFile.add_field(2,'Component_',3400)
MoveFile.add_field(3,'SourceName',8191)
MoveFile.add_field(4,'DestName',8191)
MoveFile.add_field(5,'SourceFolder',7496)
MoveFile.add_field(6,'DestFolder',3400)
MoveFile.add_field(7,'Options',1282)

MsiAssembly = Table('MsiAssembly')
MsiAssembly.add_field(1,'Component_',11592)
MsiAssembly.add_field(2,'Feature_',3366)
MsiAssembly.add_field(3,'File_Manifest',7496)
MsiAssembly.add_field(4,'File_Application',7496)
MsiAssembly.add_field(5,'Attributes',5378)

MsiAssemblyName = Table('MsiAssemblyName')
MsiAssemblyName.add_field(1,'Component_',11592)
MsiAssemblyName.add_field(2,'Name',11775)
MsiAssemblyName.add_field(3,'Value',3583)

MsiDigitalCertificate = Table('MsiDigitalCertificate')
MsiDigitalCertificate.add_field(1,'DigitalCertificate',11592)
MsiDigitalCertificate.add_field(2,'CertData',2304)

MsiDigitalSignature = Table('MsiDigitalSignature')
MsiDigitalSignature.add_field(1,'Table',11552)
MsiDigitalSignature.add_field(2,'SignObject',11592)
MsiDigitalSignature.add_field(3,'DigitalCertificate_',3400)
MsiDigitalSignature.add_field(4,'Hash',6400)

MsiFileHash = Table('MsiFileHash')
MsiFileHash.add_field(1,'File_',11592)
MsiFileHash.add_field(2,'Options',1282)
MsiFileHash.add_field(3,'HashPart1',260)
MsiFileHash.add_field(4,'HashPart2',260)
MsiFileHash.add_field(5,'HashPart3',260)
MsiFileHash.add_field(6,'HashPart4',260)

MsiPatchHeaders = Table('MsiPatchHeaders')
MsiPatchHeaders.add_field(1,'StreamRef',11558)
MsiPatchHeaders.add_field(2,'Header',2304)

ODBCAttribute = Table('ODBCAttribute')
ODBCAttribute.add_field(1,'Driver_',11592)
ODBCAttribute.add_field(2,'Attribute',11560)
ODBCAttribute.add_field(3,'Value',8191)

ODBCDriver = Table('ODBCDriver')
ODBCDriver.add_field(1,'Driver',11592)
ODBCDriver.add_field(2,'Component_',3400)
ODBCDriver.add_field(3,'Description',3583)
ODBCDriver.add_field(4,'File_',3400)
ODBCDriver.add_field(5,'File_Setup',7496)

ODBCDataSource = Table('ODBCDataSource')
ODBCDataSource.add_field(1,'DataSource',11592)
ODBCDataSource.add_field(2,'Component_',3400)
ODBCDataSource.add_field(3,'Description',3583)
ODBCDataSource.add_field(4,'DriverDescription',3583)
ODBCDataSource.add_field(5,'Registration',1282)

ODBCSourceAttribute = Table('ODBCSourceAttribute')
ODBCSourceAttribute.add_field(1,'DataSource_',11592)
ODBCSourceAttribute.add_field(2,'Attribute',11552)
ODBCSourceAttribute.add_field(3,'Value',8191)

ODBCTranslator = Table('ODBCTranslator')
ODBCTranslator.add_field(1,'Translator',11592)
ODBCTranslator.add_field(2,'Component_',3400)
ODBCTranslator.add_field(3,'Description',3583)
ODBCTranslator.add_field(4,'File_',3400)
ODBCTranslator.add_field(5,'File_Setup',7496)

Patch = Table('Patch')
Patch.add_field(1,'File_',11592)
Patch.add_field(2,'Sequence',9474)
Patch.add_field(3,'PatchSize',260)
Patch.add_field(4,'Attributes',1282)
Patch.add_field(5,'Header',6400)
Patch.add_field(6,'StreamRef_',7462)

PatchPackage = Table('PatchPackage')
PatchPackage.add_field(1,'PatchId',11558)
PatchPackage.add_field(2,'Media_',1282)

PublishComponent = Table('PublishComponent')
PublishComponent.add_field(1,'ComponentId',11558)
PublishComponent.add_field(2,'Qualifier',11775)
PublishComponent.add_field(3,'Component_',11592)
PublishComponent.add_field(4,'AppData',8191)
PublishComponent.add_field(5,'Feature_',3366)

RadioButton = Table('RadioButton')
RadioButton.add_field(1,'Property',11592)
RadioButton.add_field(2,'Order',9474)
RadioButton.add_field(3,'Value',3392)
RadioButton.add_field(4,'X',1282)
RadioButton.add_field(5,'Y',1282)
RadioButton.add_field(6,'Width',1282)
RadioButton.add_field(7,'Height',1282)
RadioButton.add_field(8,'Text',8000)
RadioButton.add_field(9,'Help',7986)

Registry = Table('Registry')
Registry.add_field(1,'Registry',11592)
Registry.add_field(2,'Root',1282)
Registry.add_field(3,'Key',4095)
Registry.add_field(4,'Name',8191)
Registry.add_field(5,'Value',7936)
Registry.add_field(6,'Component_',3400)

RegLocator = Table('RegLocator')
RegLocator.add_field(1,'Signature_',11592)
RegLocator.add_field(2,'Root',1282)
RegLocator.add_field(3,'Key',3583)
RegLocator.add_field(4,'Name',7679)
RegLocator.add_field(5,'Type',5378)

RemoveFile = Table('RemoveFile')
RemoveFile.add_field(1,'FileKey',11592)
RemoveFile.add_field(2,'Component_',3400)
RemoveFile.add_field(3,'FileName',8191)
RemoveFile.add_field(4,'DirProperty',3400)
RemoveFile.add_field(5,'InstallMode',1282)

RemoveIniFile = Table('RemoveIniFile')
RemoveIniFile.add_field(1,'RemoveIniFile',11592)
RemoveIniFile.add_field(2,'FileName',4095)
RemoveIniFile.add_field(3,'DirProperty',7496)
RemoveIniFile.add_field(4,'Section',3936)
RemoveIniFile.add_field(5,'Key',3968)
RemoveIniFile.add_field(6,'Value',8191)
RemoveIniFile.add_field(7,'Action',1282)
RemoveIniFile.add_field(8,'Component_',3400)

RemoveRegistry = Table('RemoveRegistry')
RemoveRegistry.add_field(1,'RemoveRegistry',11592)
RemoveRegistry.add_field(2,'Root',1282)
RemoveRegistry.add_field(3,'Key',4095)
RemoveRegistry.add_field(4,'Name',8191)
RemoveRegistry.add_field(5,'Component_',3400)

ReserveCost = Table('ReserveCost')
ReserveCost.add_field(1,'ReserveKey',11592)
ReserveCost.add_field(2,'Component_',3400)
ReserveCost.add_field(3,'ReserveFolder',7496)
ReserveCost.add_field(4,'ReserveLocal',260)
ReserveCost.add_field(5,'ReserveSource',260)

SelfReg = Table('SelfReg')
SelfReg.add_field(1,'File_',11592)
SelfReg.add_field(2,'Cost',5378)

ServiceControl = Table('ServiceControl')
ServiceControl.add_field(1,'ServiceControl',11592)
ServiceControl.add_field(2,'Name',4095)
ServiceControl.add_field(3,'Event',1282)
ServiceControl.add_field(4,'Arguments',8191)
ServiceControl.add_field(5,'Wait',5378)
ServiceControl.add_field(6,'Component_',3400)

ServiceInstall = Table('ServiceInstall')
ServiceInstall.add_field(1,'ServiceInstall',11592)
ServiceInstall.add_field(2,'Name',3583)
ServiceInstall.add_field(3,'DisplayName',8191)
ServiceInstall.add_field(4,'ServiceType',260)
ServiceInstall.add_field(5,'StartType',260)
ServiceInstall.add_field(6,'ErrorControl',260)
ServiceInstall.add_field(7,'LoadOrderGroup',7679)
ServiceInstall.add_field(8,'Dependencies',7679)
ServiceInstall.add_field(9,'StartName',7679)
ServiceInstall.add_field(10,'Password',7679)
ServiceInstall.add_field(11,'Arguments',7679)
ServiceInstall.add_field(12,'Component_',3400)
ServiceInstall.add_field(13,'Description',8191)

Shortcut = Table('Shortcut')
Shortcut.add_field(1,'Shortcut',11592)
Shortcut.add_field(2,'Directory_',3400)
Shortcut.add_field(3,'Name',3968)
Shortcut.add_field(4,'Component_',3400)
Shortcut.add_field(5,'Target',3400)
Shortcut.add_field(6,'Arguments',7679)
Shortcut.add_field(7,'Description',8191)
Shortcut.add_field(8,'Hotkey',5378)
Shortcut.add_field(9,'Icon_',7496)
Shortcut.add_field(10,'IconIndex',5378)
Shortcut.add_field(11,'ShowCmd',5378)
Shortcut.add_field(12,'WkDir',7496)

Signature = Table('Signature')
Signature.add_field(1,'Signature',11592)
Signature.add_field(2,'FileName',3583)
Signature.add_field(3,'MinVersion',7444)
Signature.add_field(4,'MaxVersion',7444)
Signature.add_field(5,'MinSize',4356)
Signature.add_field(6,'MaxSize',4356)
Signature.add_field(7,'MinDate',4356)
Signature.add_field(8,'MaxDate',4356)
Signature.add_field(9,'Languages',7679)

TextStyle = Table('TextStyle')
TextStyle.add_field(1,'TextStyle',11592)
TextStyle.add_field(2,'FaceName',3360)
TextStyle.add_field(3,'Size',1282)
TextStyle.add_field(4,'Color',4356)
TextStyle.add_field(5,'StyleBits',5378)

TypeLib = Table('TypeLib')
TypeLib.add_field(1,'LibID',11558)
TypeLib.add_field(2,'Language',9474)
TypeLib.add_field(3,'Component_',11592)
TypeLib.add_field(4,'Version',4356)
TypeLib.add_field(5,'Description',8064)
TypeLib.add_field(6,'Directory_',7496)
TypeLib.add_field(7,'Feature_',3366)
TypeLib.add_field(8,'Cost',4356)

UIText = Table('UIText')
UIText.add_field(1,'Key',11592)
UIText.add_field(2,'Text',8191)

Upgrade = Table('Upgrade')
Upgrade.add_field(1,'UpgradeCode',11558)
Upgrade.add_field(2,'VersionMin',15636)
Upgrade.add_field(3,'VersionMax',15636)
Upgrade.add_field(4,'Language',15871)
Upgrade.add_field(5,'Attributes',8452)
Upgrade.add_field(6,'Remove',7679)
Upgrade.add_field(7,'ActionProperty',3400)

Verb = Table('Verb')
Verb.add_field(1,'Extension_',11775)
Verb.add_field(2,'Verb',11552)
Verb.add_field(3,'Sequence',5378)
Verb.add_field(4,'Command',8191)
Verb.add_field(5,'Argument',8191)

tables=[_Validation, ActionText, AdminExecuteSequence, Condition, AdminUISequence, AdvtExecuteSequence, AdvtUISequence, AppId, AppSearch, Property, BBControl, Billboard, Feature, Binary, BindImage, File, CCPSearch, CheckBox, Class, Component, Icon, ProgId, ComboBox, CompLocator, Complus, Directory, Control, Dialog, ControlCondition, ControlEvent, CreateFolder, CustomAction, DrLocator, DuplicateFile, Environment, Error, EventMapping, Extension, MIME, FeatureComponents, FileSFPCatalog, SFPCatalog, Font, IniFile, IniLocator, InstallExecuteSequence, InstallUISequence, IsolatedComponent, LaunchCondition, ListBox, ListView, LockPermissions, Media, MoveFile, MsiAssembly, MsiAssemblyName, MsiDigitalCertificate, MsiDigitalSignature, MsiFileHash, MsiPatchHeaders, ODBCAttribute, ODBCDriver, ODBCDataSource, ODBCSourceAttribute, ODBCTranslator, Patch, PatchPackage, PublishComponent, RadioButton, Registry, RegLocator, RemoveFile, RemoveIniFile, RemoveRegistry, ReserveCost, SelfReg, ServiceControl, ServiceInstall, Shortcut, Signature, TextStyle, TypeLib, UIText, Upgrade, Verb]

_Validation_records = [
('_Validation','Table','N',None, None, None, None, 'Identifier',None, 'Name of table',),
('_Validation','Column','N',None, None, None, None, 'Identifier',None, 'Name of column',),
('_Validation','Description','Y',None, None, None, None, 'Text',None, 'Description of column',),
('_Validation','Set','Y',None, None, None, None, 'Text',None, 'Set of values that are permitted',),
('_Validation','Category','Y',None, None, None, None, None, 'Text;Formatted;Template;Condition;Guid;Path;Version;Language;Identifier;Binary;UpperCase;LowerCase;Filename;Paths;AnyPath;WildCardFilename;RegPath;KeyFormatted;CustomSource;Property;Cabinet;Shortcut;URL','String category',),
('_Validation','KeyColumn','Y',1,32,None, None, None, None, 'Column to which foreign key connects',),
('_Validation','KeyTable','Y',None, None, None, None, 'Identifier',None, 'For foreign key, Name of table to which data must link',),
('_Validation','MaxValue','Y',-2147483647,2147483647,None, None, None, None, 'Maximum value allowed',),
('_Validation','MinValue','Y',-2147483647,2147483647,None, None, None, None, 'Minimum value allowed',),
('_Validation','Nullable','N',None, None, None, None, None, 'Y;N;@','Whether the column is nullable',),
('ActionText','Description','Y',None, None, None, None, 'Text',None, 'Localized description displayed in progress dialog and log when action is executing.',),
('ActionText','Action','N',None, None, None, None, 'Identifier',None, 'Name of action to be described.',),
('ActionText','Template','Y',None, None, None, None, 'Template',None, 'Optional localized format template used to format action data records for display during action execution.',),
('AdminExecuteSequence','Action','N',None, None, None, None, 'Identifier',None, 'Name of action to invoke, either in the engine or the handler DLL.',),
('AdminExecuteSequence','Condition','Y',None, None, None, None, 'Condition',None, 'Optional expression which skips the action if evaluates to expFalse.If the expression syntax is invalid, the engine will terminate, returning iesBadActionData.',),
('AdminExecuteSequence','Sequence','Y',-4,32767,None, None, None, None, 'Number that determines the sort order in which the actions are to be executed.  Leave blank to suppress action.',),
('Condition','Condition','Y',None, None, None, None, 'Condition',None, 'Expression evaluated to determine if Level in the Feature table is to change.',),
('Condition','Feature_','N',None, None, 'Feature',1,'Identifier',None, 'Reference to a Feature entry in Feature table.',),
('Condition','Level','N',0,32767,None, None, None, None, 'New selection Level to set in Feature table if Condition evaluates to TRUE.',),
('AdminUISequence','Action','N',None, None, None, None, 'Identifier',None, 'Name of action to invoke, either in the engine or the handler DLL.',),
('AdminUISequence','Condition','Y',None, None, None, None, 'Condition',None, 'Optional expression which skips the action if evaluates to expFalse.If the expression syntax is invalid, the engine will terminate, returning iesBadActionData.',),
('AdminUISequence','Sequence','Y',-4,32767,None, None, None, None, 'Number that determines the sort order in which the actions are to be executed.  Leave blank to suppress action.',),
('AdvtExecuteSequence','Action','N',None, None, None, None, 'Identifier',None, 'Name of action to invoke, either in the engine or the handler DLL.',),
('AdvtExecuteSequence','Condition','Y',None, None, None, None, 'Condition',None, 'Optional expression which skips the action if evaluates to expFalse.If the expression syntax is invalid, the engine will terminate, returning iesBadActionData.',),
('AdvtExecuteSequence','Sequence','Y',-4,32767,None, None, None, None, 'Number that determines the sort order in which the actions are to be executed.  Leave blank to suppress action.',),
('AdvtUISequence','Action','N',None, None, None, None, 'Identifier',None, 'Name of action to invoke, either in the engine or the handler DLL.',),
('AdvtUISequence','Condition','Y',None, None, None, None, 'Condition',None, 'Optional expression which skips the action if evaluates to expFalse.If the expression syntax is invalid, the engine will terminate, returning iesBadActionData.',),
('AdvtUISequence','Sequence','Y',-4,32767,None, None, None, None, 'Number that determines the sort order in which the actions are to be executed.  Leave blank to suppress action.',),
('AppId','AppId','N',None, None, None, None, 'Guid',None, None, ),
('AppId','ActivateAtStorage','Y',0,1,None, None, None, None, None, ),
('AppId','DllSurrogate','Y',None, None, None, None, 'Text',None, None, ),
('AppId','LocalService','Y',None, None, None, None, 'Text',None, None, ),
('AppId','RemoteServerName','Y',None, None, None, None, 'Formatted',None, None, ),
('AppId','RunAsInteractiveUser','Y',0,1,None, None, None, None, None, ),
('AppId','ServiceParameters','Y',None, None, None, None, 'Text',None, None, ),
('AppSearch','Property','N',None, None, None, None, 'Identifier',None, 'The property associated with a Signature',),
('AppSearch','Signature_','N',None, None, 'Signature;RegLocator;IniLocator;DrLocator;CompLocator',1,'Identifier',None, 'The Signature_ represents a unique file signature and is also the foreign key in the Signature,  RegLocator, IniLocator, CompLocator and the DrLocator tables.',),
('Property','Property','N',None, None, None, None, 'Identifier',None, 'Name of property, uppercase if settable by launcher or loader.',),
('Property','Value','N',None, None, None, None, 'Text',None, 'String value for property.  Never null or empty.',),
('BBControl','Type','N',None, None, None, None, 'Identifier',None, 'The type of the control.',),
('BBControl','Y','N',0,32767,None, None, None, None, 'Vertical coordinate of the upper left corner of the bounding rectangle of the control.',),
('BBControl','Text','Y',None, None, None, None, 'Text',None, 'A string used to set the initial text contained within a control (if appropriate).',),
('BBControl','BBControl','N',None, None, None, None, 'Identifier',None, 'Name of the control. This name must be unique within a billboard, but can repeat on different billboard.',),
('BBControl','Attributes','Y',0,2147483647,None, None, None, None, 'A 32-bit word that specifies the attribute flags to be applied to this control.',),
('BBControl','Billboard_','N',None, None, 'Billboard',1,'Identifier',None, 'External key to the Billboard table, name of the billboard.',),
('BBControl','Height','N',0,32767,None, None, None, None, 'Height of the bounding rectangle of the control.',),
('BBControl','Width','N',0,32767,None, None, None, None, 'Width of the bounding rectangle of the control.',),
('BBControl','X','N',0,32767,None, None, None, None, 'Horizontal coordinate of the upper left corner of the bounding rectangle of the control.',),
('Billboard','Action','Y',None, None, None, None, 'Identifier',None, 'The name of an action. The billboard is displayed during the progress messages received from this action.',),
('Billboard','Billboard','N',None, None, None, None, 'Identifier',None, 'Name of the billboard.',),
('Billboard','Feature_','N',None, None, 'Feature',1,'Identifier',None, 'An external key to the Feature Table. The billboard is shown only if this feature is being installed.',),
('Billboard','Ordering','Y',0,32767,None, None, None, None, 'A positive integer. If there is more than one billboard corresponding to an action they will be shown in the order defined by this column.',),
('Feature','Description','Y',None, None, None, None, 'Text',None, 'Longer descriptive text describing a visible feature item.',),
('Feature','Attributes','N',None, None, None, None, None, '0;1;2;4;5;6;8;9;10;16;17;18;20;21;22;24;25;26;32;33;34;36;37;38;48;49;50;52;53;54','Feature attributes',),
('Feature','Feature','N',None, None, None, None, 'Identifier',None, 'Primary key used to identify a particular feature record.',),
('Feature','Directory_','Y',None, None, 'Directory',1,'UpperCase',None, 'The name of the Directory that can be configured by the UI. A non-null value will enable the browse button.',),
('Feature','Level','N',0,32767,None, None, None, None, 'The install level at which record will be initially selected. An install level of 0 will disable an item and prevent its display.',),
('Feature','Title','Y',None, None, None, None, 'Text',None, 'Short text identifying a visible feature item.',),
('Feature','Display','Y',0,32767,None, None, None, None, 'Numeric sort order, used to force a specific display ordering.',),
('Feature','Feature_Parent','Y',None, None, 'Feature',1,'Identifier',None, 'Optional key of a parent record in the same table. If the parent is not selected, then the record will not be installed. Null indicates a root item.',),
('Binary','Name','N',None, None, None, None, 'Identifier',None, 'Unique key identifying the binary data.',),
('Binary','Data','N',None, None, None, None, 'Binary',None, 'The unformatted binary data.',),
('BindImage','File_','N',None, None, 'File',1,'Identifier',None, 'The index into the File table. This must be an executable file.',),
('BindImage','Path','Y',None, None, None, None, 'Paths',None, 'A list of ;  delimited paths that represent the paths to be searched for the import DLLS. The list is usually a list of properties each enclosed within square brackets [] .',),
('File','Sequence','N',1,32767,None, None, None, None, 'Sequence with respect to the media images; order must track cabinet order.',),
('File','Attributes','Y',0,32767,None, None, None, None, 'Integer containing bit flags representing file attributes (with the decimal value of each bit position in parentheses)',),
('File','File','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token, must match identifier in cabinet.  For uncompressed files, this field is ignored.',),
('File','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key referencing Component that controls the file.',),
('File','FileName','N',None, None, None, None, 'Filename',None, 'File name used for installation, may be localized.  This may contain a "short name|long name" pair.',),
('File','FileSize','N',0,2147483647,None, None, None, None, 'Size of file in bytes (integer).',),
('File','Language','Y',None, None, None, None, 'Language',None, 'List of decimal language Ids, comma-separated if more than one.',),
('File','Version','Y',None, None, 'File',1,'Version',None, 'Version string for versioned files;  Blank for unversioned files.',),
('CCPSearch','Signature_','N',None, None, 'Signature;RegLocator;IniLocator;DrLocator;CompLocator',1,'Identifier',None, 'The Signature_ represents a unique file signature and is also the foreign key in the Signature,  RegLocator, IniLocator, CompLocator and the DrLocator tables.',),
('CheckBox','Property','N',None, None, None, None, 'Identifier',None, 'A named property to be tied to the item.',),
('CheckBox','Value','Y',None, None, None, None, 'Formatted',None, 'The value string associated with the item.',),
('Class','Description','Y',None, None, None, None, 'Text',None, 'Localized description for the Class.',),
('Class','Attributes','Y',None, 32767,None, None, None, None, 'Class registration attributes.',),
('Class','Feature_','N',None, None, 'Feature',1,'Identifier',None, 'Required foreign key into the Feature Table, specifying the feature to validate or install in order for the CLSID factory to be operational.',),
('Class','AppId_','Y',None, None, 'AppId',1,'Guid',None, 'Optional AppID containing DCOM information for associated application (string GUID).',),
('Class','Argument','Y',None, None, None, None, 'Formatted',None, 'optional argument for LocalServers.',),
('Class','CLSID','N',None, None, None, None, 'Guid',None, 'The CLSID of an OLE factory.',),
('Class','Component_','N',None, None, 'Component',1,'Identifier',None, 'Required foreign key into the Component Table, specifying the component for which to return a path when called through LocateComponent.',),
('Class','Context','N',None, None, None, None, 'Identifier',None, 'The numeric server context for this server. CLSCTX_xxxx',),
('Class','DefInprocHandler','Y',None, None, None, None, 'Filename','1;2;3','Optional default inproc handler.  Only optionally provided if Context=CLSCTX_LOCAL_SERVER.  Typically "ole32.dll" or "mapi32.dll"',),
('Class','FileTypeMask','Y',None, None, None, None, 'Text',None, 'Optional string containing information for the HKCRthis CLSID) key. If multiple patterns exist, they must be delimited by a semicolon, and numeric subkeys will be generated: 0,1,2...',),
('Class','Icon_','Y',None, None, 'Icon',1,'Identifier',None, 'Optional foreign key into the Icon Table, specifying the icon file associated with this CLSID. Will be written under the DefaultIcon key.',),
('Class','IconIndex','Y',-32767,32767,None, None, None, None, 'Optional icon index.',),
('Class','ProgId_Default','Y',None, None, 'ProgId',1,'Text',None, 'Optional ProgId associated with this CLSID.',),
('Component','Condition','Y',None, None, None, None, 'Condition',None, "A conditional statement that will disable this component if the specified condition evaluates to the 'True' state. If a component is disabled, it will not be installed, regardless of the 'Action' state associated with the component.",),
('Component','Attributes','N',None, None, None, None, None, None, 'Remote execution option, one of irsEnum',),
('Component','Component','N',None, None, None, None, 'Identifier',None, 'Primary key used to identify a particular component record.',),
('Component','ComponentId','Y',None, None, None, None, 'Guid',None, 'A string GUID unique to this component, version, and language.',),
('Component','Directory_','N',None, None, 'Directory',1,'Identifier',None, 'Required key of a Directory table record. This is actually a property name whose value contains the actual path, set either by the AppSearch action or with the default setting obtained from the Directory table.',),
('Component','KeyPath','Y',None, None, 'File;Registry;ODBCDataSource',1,'Identifier',None, 'Either the primary key into the File table, Registry table, or ODBCDataSource table. This extract path is stored when the component is installed, and is used to detect the presence of the component and to return the path to it.',),
('Icon','Name','N',None, None, None, None, 'Identifier',None, 'Primary key. Name of the icon file.',),
('Icon','Data','N',None, None, None, None, 'Binary',None, 'Binary stream. The binary icon data in PE (.DLL or .EXE) or icon (.ICO) format.',),
('ProgId','Description','Y',None, None, None, None, 'Text',None, 'Localized description for the Program identifier.',),
('ProgId','Icon_','Y',None, None, 'Icon',1,'Identifier',None, 'Optional foreign key into the Icon Table, specifying the icon file associated with this ProgId. Will be written under the DefaultIcon key.',),
('ProgId','IconIndex','Y',-32767,32767,None, None, None, None, 'Optional icon index.',),
('ProgId','ProgId','N',None, None, None, None, 'Text',None, 'The Program Identifier. Primary key.',),
('ProgId','Class_','Y',None, None, 'Class',1,'Guid',None, 'The CLSID of an OLE factory corresponding to the ProgId.',),
('ProgId','ProgId_Parent','Y',None, None, 'ProgId',1,'Text',None, 'The Parent Program Identifier. If specified, the ProgId column becomes a version independent prog id.',),
('ComboBox','Text','Y',None, None, None, None, 'Formatted',None, 'The visible text to be assigned to the item. Optional. If this entry or the entire column is missing, the text is the same as the value.',),
('ComboBox','Property','N',None, None, None, None, 'Identifier',None, 'A named property to be tied to this item. All the items tied to the same property become part of the same combobox.',),
('ComboBox','Value','N',None, None, None, None, 'Formatted',None, 'The value string associated with this item. Selecting the line will set the associated property to this value.',),
('ComboBox','Order','N',1,32767,None, None, None, None, 'A positive integer used to determine the ordering of the items within one list.\tThe integers do not have to be consecutive.',),
('CompLocator','Type','Y',0,1,None, None, None, None, 'A boolean value that determines if the registry value is a filename or a directory location.',),
('CompLocator','Signature_','N',None, None, None, None, 'Identifier',None, 'The table key. The Signature_ represents a unique file signature and is also the foreign key in the Signature table.',),
('CompLocator','ComponentId','N',None, None, None, None, 'Guid',None, 'A string GUID unique to this component, version, and language.',),
('Complus','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key referencing Component that controls the ComPlus component.',),
('Complus','ExpType','Y',0,32767,None, None, None, None, 'ComPlus component attributes.',),
('Directory','Directory','N',None, None, None, None, 'Identifier',None, 'Unique identifier for directory entry, primary key. If a property by this name is defined, it contains the full path to the directory.',),
('Directory','DefaultDir','N',None, None, None, None, 'DefaultDir',None, "The default sub-path under parent's path.",),
('Directory','Directory_Parent','Y',None, None, 'Directory',1,'Identifier',None, 'Reference to the entry in this table specifying the default parent directory. A record parented to itself or with a Null parent represents a root of the install tree.',),
('Control','Type','N',None, None, None, None, 'Identifier',None, 'The type of the control.',),
('Control','Y','N',0,32767,None, None, None, None, 'Vertical coordinate of the upper left corner of the bounding rectangle of the control.',),
('Control','Text','Y',None, None, None, None, 'Formatted',None, 'A string used to set the initial text contained within a control (if appropriate).',),
('Control','Property','Y',None, None, None, None, 'Identifier',None, 'The name of a defined property to be linked to this control. ',),
('Control','Attributes','Y',0,2147483647,None, None, None, None, 'A 32-bit word that specifies the attribute flags to be applied to this control.',),
('Control','Height','N',0,32767,None, None, None, None, 'Height of the bounding rectangle of the control.',),
('Control','Width','N',0,32767,None, None, None, None, 'Width of the bounding rectangle of the control.',),
('Control','X','N',0,32767,None, None, None, None, 'Horizontal coordinate of the upper left corner of the bounding rectangle of the control.',),
('Control','Control','N',None, None, None, None, 'Identifier',None, 'Name of the control. This name must be unique within a dialog, but can repeat on different dialogs. ',),
('Control','Control_Next','Y',None, None, 'Control',2,'Identifier',None, 'The name of an other control on the same dialog. This link defines the tab order of the controls. The links have to form one or more cycles!',),
('Control','Dialog_','N',None, None, 'Dialog',1,'Identifier',None, 'External key to the Dialog table, name of the dialog.',),
('Control','Help','Y',None, None, None, None, 'Text',None, 'The help strings used with the button. The text is optional. ',),
('Dialog','Attributes','Y',0,2147483647,None, None, None, None, 'A 32-bit word that specifies the attribute flags to be applied to this dialog.',),
('Dialog','Height','N',0,32767,None, None, None, None, 'Height of the bounding rectangle of the dialog.',),
('Dialog','Width','N',0,32767,None, None, None, None, 'Width of the bounding rectangle of the dialog.',),
('Dialog','Dialog','N',None, None, None, None, 'Identifier',None, 'Name of the dialog.',),
('Dialog','Control_Cancel','Y',None, None, 'Control',2,'Identifier',None, 'Defines the cancel control. Hitting escape or clicking on the close icon on the dialog is equivalent to pushing this button.',),
('Dialog','Control_Default','Y',None, None, 'Control',2,'Identifier',None, 'Defines the default control. Hitting return is equivalent to pushing this button.',),
('Dialog','Control_First','N',None, None, 'Control',2,'Identifier',None, 'Defines the control that has the focus when the dialog is created.',),
('Dialog','HCentering','N',0,100,None, None, None, None, 'Horizontal position of the dialog on a 0-100 scale. 0 means left end, 100 means right end of the screen, 50 center.',),
('Dialog','Title','Y',None, None, None, None, 'Formatted',None, "A text string specifying the title to be displayed in the title bar of the dialog's window.",),
('Dialog','VCentering','N',0,100,None, None, None, None, 'Vertical position of the dialog on a 0-100 scale. 0 means top end, 100 means bottom end of the screen, 50 center.',),
('ControlCondition','Action','N',None, None, None, None, None, 'Default;Disable;Enable;Hide;Show','The desired action to be taken on the specified control.',),
('ControlCondition','Condition','N',None, None, None, None, 'Condition',None, 'A standard conditional statement that specifies under which conditions the action should be triggered.',),
('ControlCondition','Dialog_','N',None, None, 'Dialog',1,'Identifier',None, 'A foreign key to the Dialog table, name of the dialog.',),
('ControlCondition','Control_','N',None, None, 'Control',2,'Identifier',None, 'A foreign key to the Control table, name of the control.',),
('ControlEvent','Condition','Y',None, None, None, None, 'Condition',None, 'A standard conditional statement that specifies under which conditions an event should be triggered.',),
('ControlEvent','Ordering','Y',0,2147483647,None, None, None, None, 'An integer used to order several events tied to the same control. Can be left blank.',),
('ControlEvent','Argument','N',None, None, None, None, 'Formatted',None, 'A value to be used as a modifier when triggering a particular event.',),
('ControlEvent','Dialog_','N',None, None, 'Dialog',1,'Identifier',None, 'A foreign key to the Dialog table, name of the dialog.',),
('ControlEvent','Control_','N',None, None, 'Control',2,'Identifier',None, 'A foreign key to the Control table, name of the control',),
('ControlEvent','Event','N',None, None, None, None, 'Formatted',None, 'An identifier that specifies the type of the event that should take place when the user interacts with control specified by the first two entries.',),
('CreateFolder','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into the Component table.',),
('CreateFolder','Directory_','N',None, None, 'Directory',1,'Identifier',None, 'Primary key, could be foreign key into the Directory table.',),
('CustomAction','Type','N',1,16383,None, None, None, None, 'The numeric custom action type, consisting of source location, code type, entry, option flags.',),
('CustomAction','Action','N',None, None, None, None, 'Identifier',None, 'Primary key, name of action, normally appears in sequence table unless private use.',),
('CustomAction','Source','Y',None, None, None, None, 'CustomSource',None, 'The table reference of the source of the code.',),
('CustomAction','Target','Y',None, None, None, None, 'Formatted',None, 'Excecution parameter, depends on the type of custom action',),
('DrLocator','Signature_','N',None, None, None, None, 'Identifier',None, 'The Signature_ represents a unique file signature and is also the foreign key in the Signature table.',),
('DrLocator','Path','Y',None, None, None, None, 'AnyPath',None, 'The path on the user system. This is either a subpath below the value of the Parent or a full path. The path may contain properties enclosed within [ ] that will be expanded.',),
('DrLocator','Depth','Y',0,32767,None, None, None, None, 'The depth below the path to which the Signature_ is recursively searched. If absent, the depth is assumed to be 0.',),
('DrLocator','Parent','Y',None, None, None, None, 'Identifier',None, 'The parent file signature. It is also a foreign key in the Signature table. If null and the Path column does not expand to a full path, then all the fixed drives of the user system are searched using the Path.',),
('DuplicateFile','File_','N',None, None, 'File',1,'Identifier',None, 'Foreign key referencing the source file to be duplicated.',),
('DuplicateFile','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key referencing Component that controls the duplicate file.',),
('DuplicateFile','DestFolder','Y',None, None, None, None, 'Identifier',None, 'Name of a property whose value is assumed to resolve to the full pathname to a destination folder.',),
('DuplicateFile','DestName','Y',None, None, None, None, 'Filename',None, 'Filename to be given to the duplicate file.',),
('DuplicateFile','FileKey','N',None, None, None, None, 'Identifier',None, 'Primary key used to identify a particular file entry',),
('Environment','Name','N',None, None, None, None, 'Text',None, 'The name of the environmental value.',),
('Environment','Value','Y',None, None, None, None, 'Formatted',None, 'The value to set in the environmental settings.',),
('Environment','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into the Component table referencing component that controls the installing of the environmental value.',),
('Environment','Environment','N',None, None, None, None, 'Identifier',None, 'Unique identifier for the environmental variable setting',),
('Error','Error','N',0,32767,None, None, None, None, 'Integer error number, obtained from header file IError(...) macros.',),
('Error','Message','Y',None, None, None, None, 'Template',None, 'Error formatting template, obtained from user ed. or localizers.',),
('EventMapping','Dialog_','N',None, None, 'Dialog',1,'Identifier',None, 'A foreign key to the Dialog table, name of the Dialog.',),
('EventMapping','Control_','N',None, None, 'Control',2,'Identifier',None, 'A foreign key to the Control table, name of the control.',),
('EventMapping','Event','N',None, None, None, None, 'Identifier',None, 'An identifier that specifies the type of the event that the control subscribes to.',),
('EventMapping','Attribute','N',None, None, None, None, 'Identifier',None, 'The name of the control attribute, that is set when this event is received.',),
('Extension','Feature_','N',None, None, 'Feature',1,'Identifier',None, 'Required foreign key into the Feature Table, specifying the feature to validate or install in order for the CLSID factory to be operational.',),
('Extension','Component_','N',None, None, 'Component',1,'Identifier',None, 'Required foreign key into the Component Table, specifying the component for which to return a path when called through LocateComponent.',),
('Extension','Extension','N',None, None, None, None, 'Text',None, 'The extension associated with the table row.',),
('Extension','MIME_','Y',None, None, 'MIME',1,'Text',None, 'Optional Context identifier, typically "type/format" associated with the extension',),
('Extension','ProgId_','Y',None, None, 'ProgId',1,'Text',None, 'Optional ProgId associated with this extension.',),
('MIME','CLSID','Y',None, None, None, None, 'Guid',None, 'Optional associated CLSID.',),
('MIME','ContentType','N',None, None, None, None, 'Text',None, 'Primary key. Context identifier, typically "type/format".',),
('MIME','Extension_','N',None, None, 'Extension',1,'Text',None, 'Optional associated extension (without dot)',),
('FeatureComponents','Feature_','N',None, None, 'Feature',1,'Identifier',None, 'Foreign key into Feature table.',),
('FeatureComponents','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into Component table.',),
('FileSFPCatalog','File_','N',None, None, 'File',1,'Identifier',None, 'File associated with the catalog',),
('FileSFPCatalog','SFPCatalog_','N',None, None, 'SFPCatalog',1,'Filename',None, 'Catalog associated with the file',),
('SFPCatalog','SFPCatalog','N',None, None, None, None, 'Filename',None, 'File name for the catalog.',),
('SFPCatalog','Catalog','N',None, None, None, None, 'Binary',None, 'SFP Catalog',),
('SFPCatalog','Dependency','Y',None, None, None, None, 'Formatted',None, 'Parent catalog - only used by SFP',),
('Font','File_','N',None, None, 'File',1,'Identifier',None, 'Primary key, foreign key into File table referencing font file.',),
('Font','FontTitle','Y',None, None, None, None, 'Text',None, 'Font name.',),
('IniFile','Action','N',None, None, None, None, None, '0;1;3','The type of modification to be made, one of iifEnum',),
('IniFile','Value','N',None, None, None, None, 'Formatted',None, 'The value to be written.',),
('IniFile','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into the Component table referencing component that controls the installing of the .INI value.',),
('IniFile','FileName','N',None, None, None, None, 'Filename',None, 'The .INI file name in which to write the information',),
('IniFile','IniFile','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token.',),
('IniFile','DirProperty','Y',None, None, None, None, 'Identifier',None, 'Foreign key into the Directory table denoting the directory where the .INI file is.',),
('IniFile','Key','N',None, None, None, None, 'Formatted',None, 'The .INI file key below Section.',),
('IniFile','Section','N',None, None, None, None, 'Formatted',None, 'The .INI file Section.',),
('IniLocator','Type','Y',0,2,None, None, None, None, 'An integer value that determines if the .INI value read is a filename or a directory location or to be used as is w/o interpretation.',),
('IniLocator','Signature_','N',None, None, None, None, 'Identifier',None, 'The table key. The Signature_ represents a unique file signature and is also the foreign key in the Signature table.',),
('IniLocator','FileName','N',None, None, None, None, 'Filename',None, 'The .INI file name.',),
('IniLocator','Key','N',None, None, None, None, 'Text',None, 'Key value (followed by an equals sign in INI file).',),
('IniLocator','Section','N',None, None, None, None, 'Text',None, 'Section name within in file (within square brackets in INI file).',),
('IniLocator','Field','Y',0,32767,None, None, None, None, 'The field in the .INI line. If Field is null or 0 the entire line is read.',),
('InstallExecuteSequence','Action','N',None, None, None, None, 'Identifier',None, 'Name of action to invoke, either in the engine or the handler DLL.',),
('InstallExecuteSequence','Condition','Y',None, None, None, None, 'Condition',None, 'Optional expression which skips the action if evaluates to expFalse.If the expression syntax is invalid, the engine will terminate, returning iesBadActionData.',),
('InstallExecuteSequence','Sequence','Y',-4,32767,None, None, None, None, 'Number that determines the sort order in which the actions are to be executed.  Leave blank to suppress action.',),
('InstallUISequence','Action','N',None, None, None, None, 'Identifier',None, 'Name of action to invoke, either in the engine or the handler DLL.',),
('InstallUISequence','Condition','Y',None, None, None, None, 'Condition',None, 'Optional expression which skips the action if evaluates to expFalse.If the expression syntax is invalid, the engine will terminate, returning iesBadActionData.',),
('InstallUISequence','Sequence','Y',-4,32767,None, None, None, None, 'Number that determines the sort order in which the actions are to be executed.  Leave blank to suppress action.',),
('IsolatedComponent','Component_Application','N',None, None, 'Component',1,'Identifier',None, 'Key to Component table item for application',),
('IsolatedComponent','Component_Shared','N',None, None, 'Component',1,'Identifier',None, 'Key to Component table item to be isolated',),
('LaunchCondition','Description','N',None, None, None, None, 'Formatted',None, 'Localizable text to display when condition fails and install must abort.',),
('LaunchCondition','Condition','N',None, None, None, None, 'Condition',None, 'Expression which must evaluate to TRUE in order for install to commence.',),
('ListBox','Text','Y',None, None, None, None, 'Text',None, 'The visible text to be assigned to the item. Optional. If this entry or the entire column is missing, the text is the same as the value.',),
('ListBox','Property','N',None, None, None, None, 'Identifier',None, 'A named property to be tied to this item. All the items tied to the same property become part of the same listbox.',),
('ListBox','Value','N',None, None, None, None, 'Formatted',None, 'The value string associated with this item. Selecting the line will set the associated property to this value.',),
('ListBox','Order','N',1,32767,None, None, None, None, 'A positive integer used to determine the ordering of the items within one list..The integers do not have to be consecutive.',),
('ListView','Text','Y',None, None, None, None, 'Text',None, 'The visible text to be assigned to the item. Optional. If this entry or the entire column is missing, the text is the same as the value.',),
('ListView','Property','N',None, None, None, None, 'Identifier',None, 'A named property to be tied to this item. All the items tied to the same property become part of the same listview.',),
('ListView','Value','N',None, None, None, None, 'Identifier',None, 'The value string associated with this item. Selecting the line will set the associated property to this value.',),
('ListView','Order','N',1,32767,None, None, None, None, 'A positive integer used to determine the ordering of the items within one list..The integers do not have to be consecutive.',),
('ListView','Binary_','Y',None, None, 'Binary',1,'Identifier',None, 'The name of the icon to be displayed with the icon. The binary information is looked up from the Binary Table.',),
('LockPermissions','Table','N',None, None, None, None, 'Identifier','Directory;File;Registry','Reference to another table name',),
('LockPermissions','Domain','Y',None, None, None, None, 'Formatted',None, 'Domain name for user whose permissions are being set. (usually a property)',),
('LockPermissions','LockObject','N',None, None, None, None, 'Identifier',None, 'Foreign key into Registry or File table',),
('LockPermissions','Permission','Y',-2147483647,2147483647,None, None, None, None, 'Permission Access mask.  Full Control = 268435456 (GENERIC_ALL = 0x10000000)',),
('LockPermissions','User','N',None, None, None, None, 'Formatted',None, 'User for permissions to be set.  (usually a property)',),
('Media','Source','Y',None, None, None, None, 'Property',None, 'The property defining the location of the cabinet file.',),
('Media','Cabinet','Y',None, None, None, None, 'Cabinet',None, 'If some or all of the files stored on the media are compressed in a cabinet, the name of that cabinet.',),
('Media','DiskId','N',1,32767,None, None, None, None, 'Primary key, integer to determine sort order for table.',),
('Media','DiskPrompt','Y',None, None, None, None, 'Text',None, 'Disk name: the visible text actually printed on the disk.  This will be used to prompt the user when this disk needs to be inserted.',),
('Media','LastSequence','N',0,32767,None, None, None, None, 'File sequence number for the last file for this media.',),
('Media','VolumeLabel','Y',None, None, None, None, 'Text',None, 'The label attributed to the volume.',),
('ModuleComponents','Component','N',None, None, 'Component',1,'Identifier',None, 'Component contained in the module.',),
('ModuleComponents','Language','N',None, None, 'ModuleSignature',2,None, None, 'Default language ID for module (may be changed by transform).',),
('ModuleComponents','ModuleID','N',None, None, 'ModuleSignature',1,'Identifier',None, 'Module containing the component.',),
('ModuleSignature','Language','N',None, None, None, None, None, None, 'Default decimal language of module.',),
('ModuleSignature','Version','N',None, None, None, None, 'Version',None, 'Version of the module.',),
('ModuleSignature','ModuleID','N',None, None, None, None, 'Identifier',None, 'Module identifier (String.GUID).',),
('ModuleDependency','ModuleID','N',None, None, 'ModuleSignature',1,'Identifier',None, 'Module requiring the dependency.',),
('ModuleDependency','ModuleLanguage','N',None, None, 'ModuleSignature',2,None, None, 'Language of module requiring the dependency.',),
('ModuleDependency','RequiredID','N',None, None, None, None, None, None, 'String.GUID of required module.',),
('ModuleDependency','RequiredLanguage','N',None, None, None, None, None, None, 'LanguageID of the required module.',),
('ModuleDependency','RequiredVersion','Y',None, None, None, None, 'Version',None, 'Version of the required version.',),
('ModuleExclusion','ModuleID','N',None, None, 'ModuleSignature',1,'Identifier',None, 'String.GUID of module with exclusion requirement.',),
('ModuleExclusion','ModuleLanguage','N',None, None, 'ModuleSignature',2,None, None, 'LanguageID of module with exclusion requirement.',),
('ModuleExclusion','ExcludedID','N',None, None, None, None, None, None, 'String.GUID of excluded module.',),
('ModuleExclusion','ExcludedLanguage','N',None, None, None, None, None, None, 'Language of excluded module.',),
('ModuleExclusion','ExcludedMaxVersion','Y',None, None, None, None, 'Version',None, 'Maximum version of excluded module.',),
('ModuleExclusion','ExcludedMinVersion','Y',None, None, None, None, 'Version',None, 'Minimum version of excluded module.',),
('MoveFile','Component_','N',None, None, 'Component',1,'Identifier',None, 'If this component is not "selected" for installation or removal, no action will be taken on the associated MoveFile entry',),
('MoveFile','DestFolder','N',None, None, None, None, 'Identifier',None, 'Name of a property whose value is assumed to resolve to the full path to the destination directory',),
('MoveFile','DestName','Y',None, None, None, None, 'Filename',None, 'Name to be given to the original file after it is moved or copied.  If blank, the destination file will be given the same name as the source file',),
('MoveFile','FileKey','N',None, None, None, None, 'Identifier',None, 'Primary key that uniquely identifies a particular MoveFile record',),
('MoveFile','Options','N',0,1,None, None, None, None, 'Integer value specifying the MoveFile operating mode, one of imfoEnum',),
('MoveFile','SourceFolder','Y',None, None, None, None, 'Identifier',None, 'Name of a property whose value is assumed to resolve to the full path to the source directory',),
('MoveFile','SourceName','Y',None, None, None, None, 'Text',None, "Name of the source file(s) to be moved or copied.  Can contain the '*' or '?' wildcards.",),
('MsiAssembly','Attributes','Y',None, None, None, None, None, None, 'Assembly attributes',),
('MsiAssembly','Feature_','N',None, None, 'Feature',1,'Identifier',None, 'Foreign key into Feature table.',),
('MsiAssembly','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into Component table.',),
('MsiAssembly','File_Application','Y',None, None, 'File',1,'Identifier',None, 'Foreign key into File table, denoting the application context for private assemblies. Null for global assemblies.',),
('MsiAssembly','File_Manifest','Y',None, None, 'File',1,'Identifier',None, 'Foreign key into the File table denoting the manifest file for the assembly.',),
('MsiAssemblyName','Name','N',None, None, None, None, 'Text',None, 'The name part of the name-value pairs for the assembly name.',),
('MsiAssemblyName','Value','N',None, None, None, None, 'Text',None, 'The value part of the name-value pairs for the assembly name.',),
('MsiAssemblyName','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into Component table.',),
('MsiDigitalCertificate','CertData','N',None, None, None, None, 'Binary',None, 'A certificate context blob for a signer certificate',),
('MsiDigitalCertificate','DigitalCertificate','N',None, None, None, None, 'Identifier',None, 'A unique identifier for the row',),
('MsiDigitalSignature','Table','N',None, None, None, None, None, 'Media','Reference to another table name (only Media table is supported)',),
('MsiDigitalSignature','DigitalCertificate_','N',None, None, 'MsiDigitalCertificate',1,'Identifier',None, 'Foreign key to MsiDigitalCertificate table identifying the signer certificate',),
('MsiDigitalSignature','Hash','Y',None, None, None, None, 'Binary',None, 'The encoded hash blob from the digital signature',),
('MsiDigitalSignature','SignObject','N',None, None, None, None, 'Text',None, 'Foreign key to Media table',),
('MsiFileHash','File_','N',None, None, 'File',1,'Identifier',None, 'Primary key, foreign key into File table referencing file with this hash',),
('MsiFileHash','Options','N',0,32767,None, None, None, None, 'Various options and attributes for this hash.',),
('MsiFileHash','HashPart1','N',None, None, None, None, None, None, 'Size of file in bytes (integer).',),
('MsiFileHash','HashPart2','N',None, None, None, None, None, None, 'Size of file in bytes (integer).',),
('MsiFileHash','HashPart3','N',None, None, None, None, None, None, 'Size of file in bytes (integer).',),
('MsiFileHash','HashPart4','N',None, None, None, None, None, None, 'Size of file in bytes (integer).',),
('MsiPatchHeaders','StreamRef','N',None, None, None, None, 'Identifier',None, 'Primary key. A unique identifier for the row.',),
('MsiPatchHeaders','Header','N',None, None, None, None, 'Binary',None, 'Binary stream. The patch header, used for patch validation.',),
('ODBCAttribute','Value','Y',None, None, None, None, 'Text',None, 'Value for ODBC driver attribute',),
('ODBCAttribute','Attribute','N',None, None, None, None, 'Text',None, 'Name of ODBC driver attribute',),
('ODBCAttribute','Driver_','N',None, None, 'ODBCDriver',1,'Identifier',None, 'Reference to ODBC driver in ODBCDriver table',),
('ODBCDriver','Description','N',None, None, None, None, 'Text',None, 'Text used as registered name for driver, non-localized',),
('ODBCDriver','File_','N',None, None, 'File',1,'Identifier',None, 'Reference to key driver file',),
('ODBCDriver','Component_','N',None, None, 'Component',1,'Identifier',None, 'Reference to associated component',),
('ODBCDriver','Driver','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized.internal token for driver',),
('ODBCDriver','File_Setup','Y',None, None, 'File',1,'Identifier',None, 'Optional reference to key driver setup DLL',),
('ODBCDataSource','Description','N',None, None, None, None, 'Text',None, 'Text used as registered name for data source',),
('ODBCDataSource','Component_','N',None, None, 'Component',1,'Identifier',None, 'Reference to associated component',),
('ODBCDataSource','DataSource','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized.internal token for data source',),
('ODBCDataSource','DriverDescription','N',None, None, None, None, 'Text',None, 'Reference to driver description, may be existing driver',),
('ODBCDataSource','Registration','N',0,1,None, None, None, None, 'Registration option: 0=machine, 1=user, others t.b.d.',),
('ODBCSourceAttribute','Value','Y',None, None, None, None, 'Text',None, 'Value for ODBC data source attribute',),
('ODBCSourceAttribute','Attribute','N',None, None, None, None, 'Text',None, 'Name of ODBC data source attribute',),
('ODBCSourceAttribute','DataSource_','N',None, None, 'ODBCDataSource',1,'Identifier',None, 'Reference to ODBC data source in ODBCDataSource table',),
('ODBCTranslator','Description','N',None, None, None, None, 'Text',None, 'Text used as registered name for translator',),
('ODBCTranslator','File_','N',None, None, 'File',1,'Identifier',None, 'Reference to key translator file',),
('ODBCTranslator','Component_','N',None, None, 'Component',1,'Identifier',None, 'Reference to associated component',),
('ODBCTranslator','File_Setup','Y',None, None, 'File',1,'Identifier',None, 'Optional reference to key translator setup DLL',),
('ODBCTranslator','Translator','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized.internal token for translator',),
('Patch','Sequence','N',0,32767,None, None, None, None, 'Primary key, sequence with respect to the media images; order must track cabinet order.',),
('Patch','Attributes','N',0,32767,None, None, None, None, 'Integer containing bit flags representing patch attributes',),
('Patch','File_','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token, foreign key to File table, must match identifier in cabinet.',),
('Patch','Header','Y',None, None, None, None, 'Binary',None, 'Binary stream. The patch header, used for patch validation.',),
('Patch','PatchSize','N',0,2147483647,None, None, None, None, 'Size of patch in bytes (integer).',),
('Patch','StreamRef_','Y',None, None, None, None, 'Identifier',None, 'Identifier. Foreign key to the StreamRef column of the MsiPatchHeaders table.',),
('PatchPackage','Media_','N',0,32767,None, None, None, None, 'Foreign key to DiskId column of Media table. Indicates the disk containing the patch package.',),
('PatchPackage','PatchId','N',None, None, None, None, 'Guid',None, 'A unique string GUID representing this patch.',),
('PublishComponent','Feature_','N',None, None, 'Feature',1,'Identifier',None, 'Foreign key into the Feature table.',),
('PublishComponent','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into the Component table.',),
('PublishComponent','ComponentId','N',None, None, None, None, 'Guid',None, 'A string GUID that represents the component id that will be requested by the alien product.',),
('PublishComponent','AppData','Y',None, None, None, None, 'Text',None, 'This is localisable Application specific data that can be associated with a Qualified Component.',),
('PublishComponent','Qualifier','N',None, None, None, None, 'Text',None, 'This is defined only when the ComponentId column is an Qualified Component Id. This is the Qualifier for ProvideComponentIndirect.',),
('RadioButton','Y','N',0,32767,None, None, None, None, 'The vertical coordinate of the upper left corner of the bounding rectangle of the radio button.',),
('RadioButton','Text','Y',None, None, None, None, 'Text',None, 'The visible title to be assigned to the radio button.',),
('RadioButton','Property','N',None, None, None, None, 'Identifier',None, 'A named property to be tied to this radio button. All the buttons tied to the same property become part of the same group.',),
('RadioButton','Height','N',0,32767,None, None, None, None, 'The height of the button.',),
('RadioButton','Width','N',0,32767,None, None, None, None, 'The width of the button.',),
('RadioButton','X','N',0,32767,None, None, None, None, 'The horizontal coordinate of the upper left corner of the bounding rectangle of the radio button.',),
('RadioButton','Value','N',None, None, None, None, 'Formatted',None, 'The value string associated with this button. Selecting the button will set the associated property to this value.',),
('RadioButton','Order','N',1,32767,None, None, None, None, 'A positive integer used to determine the ordering of the items within one list..The integers do not have to be consecutive.',),
('RadioButton','Help','Y',None, None, None, None, 'Text',None, 'The help strings used with the button. The text is optional.',),
('Registry','Name','Y',None, None, None, None, 'Formatted',None, 'The registry value name.',),
('Registry','Value','Y',None, None, None, None, 'Formatted',None, 'The registry value.',),
('Registry','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into the Component table referencing component that controls the installing of the registry value.',),
('Registry','Key','N',None, None, None, None, 'RegPath',None, 'The key for the registry value.',),
('Registry','Registry','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token.',),
('Registry','Root','N',-1,3,None, None, None, None, 'The predefined root key for the registry value, one of rrkEnum.',),
('RegLocator','Name','Y',None, None, None, None, 'Formatted',None, 'The registry value name.',),
('RegLocator','Type','Y',0,18,None, None, None, None, 'An integer value that determines if the registry value is a filename or a directory location or to be used as is w/o interpretation.',),
('RegLocator','Signature_','N',None, None, None, None, 'Identifier',None, 'The table key. The Signature_ represents a unique file signature and is also the foreign key in the Signature table. If the type is 0, the registry values refers a directory, and _Signature is not a foreign key.',),
('RegLocator','Key','N',None, None, None, None, 'RegPath',None, 'The key for the registry value.',),
('RegLocator','Root','N',0,3,None, None, None, None, 'The predefined root key for the registry value, one of rrkEnum.',),
('RemoveFile','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key referencing Component that controls the file to be removed.',),
('RemoveFile','FileKey','N',None, None, None, None, 'Identifier',None, 'Primary key used to identify a particular file entry',),
('RemoveFile','FileName','Y',None, None, None, None, 'WildCardFilename',None, 'Name of the file to be removed.',),
('RemoveFile','DirProperty','N',None, None, None, None, 'Identifier',None, 'Name of a property whose value is assumed to resolve to the full pathname to the folder of the file to be removed.',),
('RemoveFile','InstallMode','N',None, None, None, None, None, '1;2;3','Installation option, one of iimEnum.',),
('RemoveIniFile','Action','N',None, None, None, None, None, '2;4','The type of modification to be made, one of iifEnum.',),
('RemoveIniFile','Value','Y',None, None, None, None, 'Formatted',None, 'The value to be deleted. The value is required when Action is iifIniRemoveTag',),
('RemoveIniFile','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into the Component table referencing component that controls the deletion of the .INI value.',),
('RemoveIniFile','FileName','N',None, None, None, None, 'Filename',None, 'The .INI file name in which to delete the information',),
('RemoveIniFile','DirProperty','Y',None, None, None, None, 'Identifier',None, 'Foreign key into the Directory table denoting the directory where the .INI file is.',),
('RemoveIniFile','Key','N',None, None, None, None, 'Formatted',None, 'The .INI file key below Section.',),
('RemoveIniFile','Section','N',None, None, None, None, 'Formatted',None, 'The .INI file Section.',),
('RemoveIniFile','RemoveIniFile','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token.',),
('RemoveRegistry','Name','Y',None, None, None, None, 'Formatted',None, 'The registry value name.',),
('RemoveRegistry','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into the Component table referencing component that controls the deletion of the registry value.',),
('RemoveRegistry','Key','N',None, None, None, None, 'RegPath',None, 'The key for the registry value.',),
('RemoveRegistry','Root','N',-1,3,None, None, None, None, 'The predefined root key for the registry value, one of rrkEnum',),
('RemoveRegistry','RemoveRegistry','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token.',),
('ReserveCost','Component_','N',None, None, 'Component',1,'Identifier',None, 'Reserve a specified amount of space if this component is to be installed.',),
('ReserveCost','ReserveFolder','Y',None, None, None, None, 'Identifier',None, 'Name of a property whose value is assumed to resolve to the full path to the destination directory',),
('ReserveCost','ReserveKey','N',None, None, None, None, 'Identifier',None, 'Primary key that uniquely identifies a particular ReserveCost record',),
('ReserveCost','ReserveLocal','N',0,2147483647,None, None, None, None, 'Disk space to reserve if linked component is installed locally.',),
('ReserveCost','ReserveSource','N',0,2147483647,None, None, None, None, 'Disk space to reserve if linked component is installed to run from the source location.',),
('SelfReg','File_','N',None, None, 'File',1,'Identifier',None, 'Foreign key into the File table denoting the module that needs to be registered.',),
('SelfReg','Cost','Y',0,32767,None, None, None, None, 'The cost of registering the module.',),
('ServiceControl','Name','N',None, None, None, None, 'Formatted',None, 'Name of a service. /, \\, comma and space are invalid',),
('ServiceControl','Component_','N',None, None, 'Component',1,'Identifier',None, 'Required foreign key into the Component Table that controls the startup of the service',),
('ServiceControl','Event','N',0,187,None, None, None, None, 'Bit field:  Install:  0x1 = Start, 0x2 = Stop, 0x8 = Delete, Uninstall: 0x10 = Start, 0x20 = Stop, 0x80 = Delete',),
('ServiceControl','ServiceControl','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token.',),
('ServiceControl','Arguments','Y',None, None, None, None, 'Formatted',None, 'Arguments for the service.  Separate by [~].',),
('ServiceControl','Wait','Y',0,1,None, None, None, None, 'Boolean for whether to wait for the service to fully start',),
('ServiceInstall','Name','N',None, None, None, None, 'Formatted',None, 'Internal Name of the Service',),
('ServiceInstall','Description','Y',None, None, None, None, 'Text',None, 'Description of service.',),
('ServiceInstall','Component_','N',None, None, 'Component',1,'Identifier',None, 'Required foreign key into the Component Table that controls the startup of the service',),
('ServiceInstall','Arguments','Y',None, None, None, None, 'Formatted',None, 'Arguments to include in every start of the service, passed to WinMain',),
('ServiceInstall','ServiceInstall','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token.',),
('ServiceInstall','Dependencies','Y',None, None, None, None, 'Formatted',None, 'Other services this depends on to start.  Separate by [~], and end with [~][~]',),
('ServiceInstall','DisplayName','Y',None, None, None, None, 'Formatted',None, 'External Name of the Service',),
('ServiceInstall','ErrorControl','N',-2147483647,2147483647,None, None, None, None, 'Severity of error if service fails to start',),
('ServiceInstall','LoadOrderGroup','Y',None, None, None, None, 'Formatted',None, 'LoadOrderGroup',),
('ServiceInstall','Password','Y',None, None, None, None, 'Formatted',None, 'password to run service with.  (with StartName)',),
('ServiceInstall','ServiceType','N',-2147483647,2147483647,None, None, None, None, 'Type of the service',),
('ServiceInstall','StartName','Y',None, None, None, None, 'Formatted',None, 'User or object name to run service as',),
('ServiceInstall','StartType','N',0,4,None, None, None, None, 'Type of the service',),
('Shortcut','Name','N',None, None, None, None, 'Filename',None, 'The name of the shortcut to be created.',),
('Shortcut','Description','Y',None, None, None, None, 'Text',None, 'The description for the shortcut.',),
('Shortcut','Component_','N',None, None, 'Component',1,'Identifier',None, 'Foreign key into the Component table denoting the component whose selection gates the shortcut creation/deletion.',),
('Shortcut','Icon_','Y',None, None, 'Icon',1,'Identifier',None, 'Foreign key into the File table denoting the external icon file for the shortcut.',),
('Shortcut','IconIndex','Y',-32767,32767,None, None, None, None, 'The icon index for the shortcut.',),
('Shortcut','Directory_','N',None, None, 'Directory',1,'Identifier',None, 'Foreign key into the Directory table denoting the directory where the shortcut file is created.',),
('Shortcut','Target','N',None, None, None, None, 'Shortcut',None, 'The shortcut target. This is usually a property that is expanded to a file or a folder that the shortcut points to.',),
('Shortcut','Arguments','Y',None, None, None, None, 'Formatted',None, 'The command-line arguments for the shortcut.',),
('Shortcut','Shortcut','N',None, None, None, None, 'Identifier',None, 'Primary key, non-localized token.',),
('Shortcut','Hotkey','Y',0,32767,None, None, None, None, 'The hotkey for the shortcut. It has the virtual-key code for the key in the low-order byte, and the modifier flags in the high-order byte. ',),
('Shortcut','ShowCmd','Y',None, None, None, None, None, '1;3;7','The show command for the application window.The following values may be used.',),
('Shortcut','WkDir','Y',None, None, None, None, 'Identifier',None, 'Name of property defining location of working directory.',),
('Signature','FileName','N',None, None, None, None, 'Filename',None, 'The name of the file. This may contain a "short name|long name" pair.',),
('Signature','Signature','N',None, None, None, None, 'Identifier',None, 'The table key. The Signature represents a unique file signature.',),
('Signature','Languages','Y',None, None, None, None, 'Language',None, 'The languages supported by the file.',),
('Signature','MaxDate','Y',0,2147483647,None, None, None, None, 'The maximum creation date of the file.',),
('Signature','MaxSize','Y',0,2147483647,None, None, None, None, 'The maximum size of the file. ',),
('Signature','MaxVersion','Y',None, None, None, None, 'Text',None, 'The maximum version of the file.',),
('Signature','MinDate','Y',0,2147483647,None, None, None, None, 'The minimum creation date of the file.',),
('Signature','MinSize','Y',0,2147483647,None, None, None, None, 'The minimum size of the file.',),
('Signature','MinVersion','Y',None, None, None, None, 'Text',None, 'The minimum version of the file.',),
('TextStyle','TextStyle','N',None, None, None, None, 'Identifier',None, 'Name of the style. The primary key of this table. This name is embedded in the texts to indicate a style change.',),
('TextStyle','Color','Y',0,16777215,None, None, None, None, 'An integer indicating the color of the string in the RGB format (Red, Green, Blue each 0-255, RGB = R + 256*G + 256^2*B).',),
('TextStyle','FaceName','N',None, None, None, None, 'Text',None, 'A string indicating the name of the font used. Required. The string must be at most 31 characters long.',),
('TextStyle','Size','N',0,32767,None, None, None, None, 'The size of the font used. This size is given in our units (1/12 of the system font height). Assuming that the system font is set to 12 point size, this is equivalent to the point size.',),
('TextStyle','StyleBits','Y',0,15,None, None, None, None, 'A combination of style bits.',),
('TypeLib','Description','Y',None, None, None, None, 'Text',None, None, ),
('TypeLib','Feature_','N',None, None, 'Feature',1,'Identifier',None, 'Required foreign key into the Feature Table, specifying the feature to validate or install in order for the type library to be operational.',),
('TypeLib','Component_','N',None, None, 'Component',1,'Identifier',None, 'Required foreign key into the Component Table, specifying the component for which to return a path when called through LocateComponent.',),
('TypeLib','Directory_','Y',None, None, 'Directory',1,'Identifier',None, 'Optional. The foreign key into the Directory table denoting the path to the help file for the type library.',),
('TypeLib','Language','N',0,32767,None, None, None, None, 'The language of the library.',),
('TypeLib','Version','Y',0,16777215,None, None, None, None, 'The version of the library. The minor version is in the lower 8 bits of the integer. The major version is in the next 16 bits. ',),
('TypeLib','Cost','Y',0,2147483647,None, None, None, None, 'The cost associated with the registration of the typelib. This column is currently optional.',),
('TypeLib','LibID','N',None, None, None, None, 'Guid',None, 'The GUID that represents the library.',),
('UIText','Text','Y',None, None, None, None, 'Text',None, 'The localized version of the string.',),
('UIText','Key','N',None, None, None, None, 'Identifier',None, 'A unique key that identifies the particular string.',),
('Upgrade','Attributes','N',0,2147483647,None, None, None, None, 'The attributes of this product set.',),
('Upgrade','Language','Y',None, None, None, None, 'Language',None, 'A comma-separated list of languages for either products in this set or products not in this set.',),
('Upgrade','ActionProperty','N',None, None, None, None, 'UpperCase',None, 'The property to set when a product in this set is found.',),
('Upgrade','Remove','Y',None, None, None, None, 'Formatted',None, 'The list of features to remove when uninstalling a product from this set.  The default is "ALL".',),
('Upgrade','UpgradeCode','N',None, None, None, None, 'Guid',None, 'The UpgradeCode GUID belonging to the products in this set.',),
('Upgrade','VersionMax','Y',None, None, None, None, 'Text',None, 'The maximum ProductVersion of the products in this set.  The set may or may not include products with this particular version.',),
('Upgrade','VersionMin','Y',None, None, None, None, 'Text',None, 'The minimum ProductVersion of the products in this set.  The set may or may not include products with this particular version.',),
('Verb','Sequence','Y',0,32767,None, None, None, None, 'Order within the verbs for a particular extension. Also used simply to specify the default verb.',),
('Verb','Argument','Y',None, None, None, None, 'Formatted',None, 'Optional value for the command arguments.',),
('Verb','Extension_','N',None, None, 'Extension',1,'Text',None, 'The extension associated with the table row.',),
('Verb','Verb','N',None, None, None, None, 'Text',None, 'The verb for the command.',),
('Verb','Command','Y',None, None, None, None, 'Formatted',None, 'The command text.',),
]
lib\msilib\sequence.py
AdminExecuteSequence = [
('InstallInitialize', None, 1500),
('InstallFinalize', None, 6600),
('InstallFiles', None, 4000),
('InstallAdminPackage', None, 3900),
('FileCost', None, 900),
('CostInitialize', None, 800),
('CostFinalize', None, 1000),
('InstallValidate', None, 1400),
]

AdminUISequence = [
('FileCost', None, 900),
('CostInitialize', None, 800),
('CostFinalize', None, 1000),
('ExecuteAction', None, 1300),
('ExitDialog', None, -1),
('FatalError', None, -3),
('UserExit', None, -2),
]

AdvtExecuteSequence = [
('InstallInitialize', None, 1500),
('InstallFinalize', None, 6600),
('CostInitialize', None, 800),
('CostFinalize', None, 1000),
('InstallValidate', None, 1400),
('CreateShortcuts', None, 4500),
('MsiPublishAssemblies', None, 6250),
('PublishComponents', None, 6200),
('PublishFeatures', None, 6300),
('PublishProduct', None, 6400),
('RegisterClassInfo', None, 4600),
('RegisterExtensionInfo', None, 4700),
('RegisterMIMEInfo', None, 4900),
('RegisterProgIdInfo', None, 4800),
]

InstallExecuteSequence = [
('InstallInitialize', None, 1500),
('InstallFinalize', None, 6600),
('InstallFiles', None, 4000),
('FileCost', None, 900),
('CostInitialize', None, 800),
('CostFinalize', None, 1000),
('InstallValidate', None, 1400),
('CreateShortcuts', None, 4500),
('MsiPublishAssemblies', None, 6250),
('PublishComponents', None, 6200),
('PublishFeatures', None, 6300),
('PublishProduct', None, 6400),
('RegisterClassInfo', None, 4600),
('RegisterExtensionInfo', None, 4700),
('RegisterMIMEInfo', None, 4900),
('RegisterProgIdInfo', None, 4800),
('AllocateRegistrySpace', 'NOT Installed', 1550),
('AppSearch', None, 400),
('BindImage', None, 4300),
('CCPSearch', 'NOT Installed', 500),
('CreateFolders', None, 3700),
('DeleteServices', 'VersionNT', 2000),
('DuplicateFiles', None, 4210),
('FindRelatedProducts', None, 200),
('InstallODBC', None, 5400),
('InstallServices', 'VersionNT', 5800),
('IsolateComponents', None, 950),
('LaunchConditions', None, 100),
('MigrateFeatureStates', None, 1200),
('MoveFiles', None, 3800),
('PatchFiles', None, 4090),
('ProcessComponents', None, 1600),
('RegisterComPlus', None, 5700),
('RegisterFonts', None, 5300),
('RegisterProduct', None, 6100),
('RegisterTypeLibraries', None, 5500),
('RegisterUser', None, 6000),
('RemoveDuplicateFiles', None, 3400),
('RemoveEnvironmentStrings', None, 3300),
('RemoveExistingProducts', None, 6700),
('RemoveFiles', None, 3500),
('RemoveFolders', None, 3600),
('RemoveIniValues', None, 3100),
('RemoveODBC', None, 2400),
('RemoveRegistryValues', None, 2600),
('RemoveShortcuts', None, 3200),
('RMCCPSearch', 'NOT Installed', 600),
('SelfRegModules', None, 5600),
('SelfUnregModules', None, 2200),
('SetODBCFolders', None, 1100),
('StartServices', 'VersionNT', 5900),
('StopServices', 'VersionNT', 1900),
('MsiUnpublishAssemblies', None, 1750),
('UnpublishComponents', None, 1700),
('UnpublishFeatures', None, 1800),
('UnregisterClassInfo', None, 2700),
('UnregisterComPlus', None, 2100),
('UnregisterExtensionInfo', None, 2800),
('UnregisterFonts', None, 2500),
('UnregisterMIMEInfo', None, 3000),
('UnregisterProgIdInfo', None, 2900),
('UnregisterTypeLibraries', None, 2300),
('ValidateProductID', None, 700),
('WriteEnvironmentStrings', None, 5200),
('WriteIniValues', None, 5100),
('WriteRegistryValues', None, 5000),
]

InstallUISequence = [
('FileCost', None, 900),
('CostInitialize', None, 800),
('CostFinalize', None, 1000),
('ExecuteAction', None, 1300),
('ExitDialog', None, -1),
('FatalError', None, -3),
('UserExit', None, -2),
('AppSearch', None, 400),
('CCPSearch', 'NOT Installed', 500),
('FindRelatedProducts', None, 200),
('IsolateComponents', None, 950),
('LaunchConditions', None, 100),
('MigrateFeatureStates', None, 1200),
('RMCCPSearch', 'NOT Installed', 600),
('ValidateProductID', None, 700),
]

tables=['AdminExecuteSequence', 'AdminUISequence', 'AdvtExecuteSequence', 'InstallExecuteSequence', 'InstallUISequence']
lib\msilib\text.py
import msilib,os;dirname=os.path.dirname(__file__)

ActionText = [
('InstallValidate', 'Validating install', None),
('InstallFiles', 'Copying new files', 'File: [1],  Directory: [9],  Size: [6]'),
('InstallAdminPackage', 'Copying network install files', 'File: [1], Directory: [9], Size: [6]'),
('FileCost', 'Computing space requirements', None),
('CostInitialize', 'Computing space requirements', None),
('CostFinalize', 'Computing space requirements', None),
('CreateShortcuts', 'Creating shortcuts', 'Shortcut: [1]'),
('PublishComponents', 'Publishing Qualified Components', 'Component ID: [1], Qualifier: [2]'),
('PublishFeatures', 'Publishing Product Features', 'Feature: [1]'),
('PublishProduct', 'Publishing product information', None),
('RegisterClassInfo', 'Registering Class servers', 'Class Id: [1]'),
('RegisterExtensionInfo', 'Registering extension servers', 'Extension: [1]'),
('RegisterMIMEInfo', 'Registering MIME info', 'MIME Content Type: [1], Extension: [2]'),
('RegisterProgIdInfo', 'Registering program identifiers', 'ProgId: [1]'),
('AllocateRegistrySpace', 'Allocating registry space', 'Free space: [1]'),
('AppSearch', 'Searching for installed applications', 'Property: [1], Signature: [2]'),
('BindImage', 'Binding executables', 'File: [1]'),
('CCPSearch', 'Searching for qualifying products', None),
('CreateFolders', 'Creating folders', 'Folder: [1]'),
('DeleteServices', 'Deleting services', 'Service: [1]'),
('DuplicateFiles', 'Creating duplicate files', 'File: [1],  Directory: [9],  Size: [6]'),
('FindRelatedProducts', 'Searching for related applications', 'Found application: [1]'),
('InstallODBC', 'Installing ODBC components', None),
('InstallServices', 'Installing new services', 'Service: [2]'),
('LaunchConditions', 'Evaluating launch conditions', None),
('MigrateFeatureStates', 'Migrating feature states from related applications', 'Application: [1]'),
('MoveFiles', 'Moving files', 'File: [1],  Directory: [9],  Size: [6]'),
('PatchFiles', 'Patching files', 'File: [1],  Directory: [2],  Size: [3]'),
('ProcessComponents', 'Updating component registration', None),
('RegisterComPlus', 'Registering COM+ Applications and Components', 'AppId: [1]{{, AppType: [2], Users: [3], RSN: [4]}}'),
('RegisterFonts', 'Registering fonts', 'Font: [1]'),
('RegisterProduct', 'Registering product', '[1]'),
('RegisterTypeLibraries', 'Registering type libraries', 'LibID: [1]'),
('RegisterUser', 'Registering user', '[1]'),
('RemoveDuplicateFiles', 'Removing duplicated files', 'File: [1], Directory: [9]'),
('RemoveEnvironmentStrings', 'Updating environment strings', 'Name: [1], Value: [2], Action [3]'),
('RemoveExistingProducts', 'Removing applications', 'Application: [1], Command line: [2]'),
('RemoveFiles', 'Removing files', 'File: [1], Directory: [9]'),
('RemoveFolders', 'Removing folders', 'Folder: [1]'),
('RemoveIniValues', 'Removing INI files entries', 'File: [1],  Section: [2],  Key: [3], Value: [4]'),
('RemoveODBC', 'Removing ODBC components', None),
('RemoveRegistryValues', 'Removing system registry values', 'Key: [1], Name: [2]'),
('RemoveShortcuts', 'Removing shortcuts', 'Shortcut: [1]'),
('RMCCPSearch', 'Searching for qualifying products', None),
('SelfRegModules', 'Registering modules', 'File: [1], Folder: [2]'),
('SelfUnregModules', 'Unregistering modules', 'File: [1], Folder: [2]'),
('SetODBCFolders', 'Initializing ODBC directories', None),
('StartServices', 'Starting services', 'Service: [1]'),
('StopServices', 'Stopping services', 'Service: [1]'),
('UnpublishComponents', 'Unpublishing Qualified Components', 'Component ID: [1], Qualifier: [2]'),
('UnpublishFeatures', 'Unpublishing Product Features', 'Feature: [1]'),
('UnregisterClassInfo', 'Unregister Class servers', 'Class Id: [1]'),
('UnregisterComPlus', 'Unregistering COM+ Applications and Components', 'AppId: [1]{{, AppType: [2]}}'),
('UnregisterExtensionInfo', 'Unregistering extension servers', 'Extension: [1]'),
('UnregisterFonts', 'Unregistering fonts', 'Font: [1]'),
('UnregisterMIMEInfo', 'Unregistering MIME info', 'MIME Content Type: [1], Extension: [2]'),
('UnregisterProgIdInfo', 'Unregistering program identifiers', 'ProgId: [1]'),
('UnregisterTypeLibraries', 'Unregistering type libraries', 'LibID: [1]'),
('WriteEnvironmentStrings', 'Updating environment strings', 'Name: [1], Value: [2], Action [3]'),
('WriteIniValues', 'Writing INI files values', 'File: [1],  Section: [2],  Key: [3], Value: [4]'),
('WriteRegistryValues', 'Writing system registry values', 'Key: [1], Name: [2], Value: [3]'),
('Advertise', 'Advertising application', None),
('GenerateScript', 'Generating script operations for action:', '[1]'),
('InstallSFPCatalogFile', 'Installing system catalog', 'File: [1],  Dependencies: [2]'),
('MsiPublishAssemblies', 'Publishing assembly information', 'Application Context:[1], Assembly Name:[2]'),
('MsiUnpublishAssemblies', 'Unpublishing assembly information', 'Application Context:[1], Assembly Name:[2]'),
('Rollback', 'Rolling back action:', '[1]'),
('RollbackCleanup', 'Removing backup files', 'File: [1]'),
('UnmoveFiles', 'Removing moved files', 'File: [1], Directory: [9]'),
('UnpublishProduct', 'Unpublishing product information', None),
]

UIText = [
('AbsentPath', None),
('bytes', 'bytes'),
('GB', 'GB'),
('KB', 'KB'),
('MB', 'MB'),
('MenuAbsent', 'Entire feature will be unavailable'),
('MenuAdvertise', 'Feature will be installed when required'),
('MenuAllCD', 'Entire feature will be installed to run from CD'),
('MenuAllLocal', 'Entire feature will be installed on local hard drive'),
('MenuAllNetwork', 'Entire feature will be installed to run from network'),
('MenuCD', 'Will be installed to run from CD'),
('MenuLocal', 'Will be installed on local hard drive'),
('MenuNetwork', 'Will be installed to run from network'),
('ScriptInProgress', 'Gathering required information...'),
('SelAbsentAbsent', 'This feature will remain uninstalled'),
('SelAbsentAdvertise', 'This feature will be set to be installed when required'),
('SelAbsentCD', 'This feature will be installed to run from CD'),
('SelAbsentLocal', 'This feature will be installed on the local hard drive'),
('SelAbsentNetwork', 'This feature will be installed to run from the network'),
('SelAdvertiseAbsent', 'This feature will become unavailable'),
('SelAdvertiseAdvertise', 'Will be installed when required'),
('SelAdvertiseCD', 'This feature will be available to run from CD'),
('SelAdvertiseLocal', 'This feature will be installed on your local hard drive'),
('SelAdvertiseNetwork', 'This feature will be available to run from the network'),
('SelCDAbsent', "This feature will be uninstalled completely, you won't be able to run it from CD"),
('SelCDAdvertise', 'This feature will change from run from CD state to set to be installed when required'),
('SelCDCD', 'This feature will remain to be run from CD'),
('SelCDLocal', 'This feature will change from run from CD state to be installed on the local hard drive'),
('SelChildCostNeg', 'This feature frees up [1] on your hard drive.'),
('SelChildCostPos', 'This feature requires [1] on your hard drive.'),
('SelCostPending', 'Compiling cost for this feature...'),
('SelLocalAbsent', 'This feature will be completely removed'),
('SelLocalAdvertise', 'This feature will be removed from your local hard drive, but will be set to be installed when required'),
('SelLocalCD', 'This feature will be removed from your local hard drive, but will be still available to run from CD'),
('SelLocalLocal', 'This feature will remain on you local hard drive'),
('SelLocalNetwork', 'This feature will be removed from your local hard drive, but will be still available to run from the network'),
('SelNetworkAbsent', "This feature will be uninstalled completely, you won't be able to run it from the network"),
('SelNetworkAdvertise', 'This feature will change from run from network state to set to be installed when required'),
('SelNetworkLocal', 'This feature will change from run from network state to be installed on the local hard drive'),
('SelNetworkNetwork', 'This feature will remain to be run from the network'),
('SelParentCostNegNeg', 'This feature frees up [1] on your hard drive. It has [2] of [3] subfeatures selected. The subfeatures free up [4] on your hard drive.'),
('SelParentCostNegPos', 'This feature frees up [1] on your hard drive. It has [2] of [3] subfeatures selected. The subfeatures require [4] on your hard drive.'),
('SelParentCostPosNeg', 'This feature requires [1] on your hard drive. It has [2] of [3] subfeatures selected. The subfeatures free up [4] on your hard drive.'),
('SelParentCostPosPos', 'This feature requires [1] on your hard drive. It has [2] of [3] subfeatures selected. The subfeatures require [4] on your hard drive.'),
('TimeRemaining', 'Time remaining: {[1] minutes }{[2] seconds}'),
('VolumeCostAvailable', 'Available'),
('VolumeCostDifference', 'Difference'),
('VolumeCostRequired', 'Required'),
('VolumeCostSize', 'Disk Size'),
('VolumeCostVolume', 'Volume'),
]

tables=['ActionText', 'UIText']
lib\msilib\__init__.py
# Copyright (C) 2005 Martin v. Löwis
# Licensed to PSF under a Contributor Agreement.
from _msi import *
import os, string, re, sys

AMD64 = "AMD64" in sys.version
Itanium = "Itanium" in sys.version
Win64 = AMD64 or Itanium

# Partially taken from Wine
datasizemask=      0x00ff
type_valid=        0x0100
type_localizable=  0x0200

typemask=          0x0c00
type_long=         0x0000
type_short=        0x0400
type_string=       0x0c00
type_binary=       0x0800

type_nullable=     0x1000
type_key=          0x2000
# XXX temporary, localizable?
knownbits = datasizemask | type_valid | type_localizable | \
            typemask | type_nullable | type_key

class Table:
    def __init__(self, name):
        self.name = name
        self.fields = []

    def add_field(self, index, name, type):
        self.fields.append((index,name,type))

    def sql(self):
        fields = []
        keys = []
        self.fields.sort()
        fields = [None]*len(self.fields)
        for index, name, type in self.fields:
            index -= 1
            unk = type & ~knownbits
            if unk:
                print("%s.%s unknown bits %x" % (self.name, name, unk))
            size = type & datasizemask
            dtype = type & typemask
            if dtype == type_string:
                if size:
                    tname="CHAR(%d)" % size
                else:
                    tname="CHAR"
            elif dtype == type_short:
                assert size==2
                tname = "SHORT"
            elif dtype == type_long:
                assert size==4
                tname="LONG"
            elif dtype == type_binary:
                assert size==0
                tname="OBJECT"
            else:
                tname="unknown"
                print("%s.%sunknown integer type %d" % (self.name, name, size))
            if type & type_nullable:
                flags = ""
            else:
                flags = " NOT NULL"
            if type & type_localizable:
                flags += " LOCALIZABLE"
            fields[index] = "`%s` %s%s" % (name, tname, flags)
            if type & type_key:
                keys.append("`%s`" % name)
        fields = ", ".join(fields)
        keys = ", ".join(keys)
        return "CREATE TABLE %s (%s PRIMARY KEY %s)" % (self.name, fields, keys)

    def create(self, db):
        v = db.OpenView(self.sql())
        v.Execute(None)
        v.Close()

class _Unspecified:pass
def change_sequence(seq, action, seqno=_Unspecified, cond = _Unspecified):
    "Change the sequence number of an action in a sequence list"
    for i in range(len(seq)):
        if seq[i][0] == action:
            if cond is _Unspecified:
                cond = seq[i][1]
            if seqno is _Unspecified:
                seqno = seq[i][2]
            seq[i] = (action, cond, seqno)
            return
    raise ValueError("Action not found in sequence")

def add_data(db, table, values):
    v = db.OpenView("SELECT * FROM `%s`" % table)
    count = v.GetColumnInfo(MSICOLINFO_NAMES).GetFieldCount()
    r = CreateRecord(count)
    for value in values:
        assert len(value) == count, value
        for i in range(count):
            field = value[i]
            if isinstance(field, int):
                r.SetInteger(i+1,field)
            elif isinstance(field, str):
                r.SetString(i+1,field)
            elif field is None:
                pass
            elif isinstance(field, Binary):
                r.SetStream(i+1, field.name)
            else:
                raise TypeError("Unsupported type %s" % field.__class__.__name__)
        try:
            v.Modify(MSIMODIFY_INSERT, r)
        except Exception as e:
            raise MSIError("Could not insert "+repr(values)+" into "+table)

        r.ClearData()
    v.Close()


def add_stream(db, name, path):
    v = db.OpenView("INSERT INTO _Streams (Name, Data) VALUES ('%s', ?)" % name)
    r = CreateRecord(1)
    r.SetStream(1, path)
    v.Execute(r)
    v.Close()

def init_database(name, schema,
                  ProductName, ProductCode, ProductVersion,
                  Manufacturer):
    try:
        os.unlink(name)
    except OSError:
        pass
    ProductCode = ProductCode.upper()
    # Create the database
    db = OpenDatabase(name, MSIDBOPEN_CREATE)
    # Create the tables
    for t in schema.tables:
        t.create(db)
    # Fill the validation table
    add_data(db, "_Validation", schema._Validation_records)
    # Initialize the summary information, allowing atmost 20 properties
    si = db.GetSummaryInformation(20)
    si.SetProperty(PID_TITLE, "Installation Database")
    si.SetProperty(PID_SUBJECT, ProductName)
    si.SetProperty(PID_AUTHOR, Manufacturer)
    if Itanium:
        si.SetProperty(PID_TEMPLATE, "Intel64;1033")
    elif AMD64:
        si.SetProperty(PID_TEMPLATE, "x64;1033")
    else:
        si.SetProperty(PID_TEMPLATE, "Intel;1033")
    si.SetProperty(PID_REVNUMBER, gen_uuid())
    si.SetProperty(PID_WORDCOUNT, 2) # long file names, compressed, original media
    si.SetProperty(PID_PAGECOUNT, 200)
    si.SetProperty(PID_APPNAME, "Python MSI Library")
    # XXX more properties
    si.Persist()
    add_data(db, "Property", [
        ("ProductName", ProductName),
        ("ProductCode", ProductCode),
        ("ProductVersion", ProductVersion),
        ("Manufacturer", Manufacturer),
        ("ProductLanguage", "1033")])
    db.Commit()
    return db

def add_tables(db, module):
    for table in module.tables:
        add_data(db, table, getattr(module, table))

def make_id(str):
    identifier_chars = string.ascii_letters + string.digits + "._"
    str = "".join([c if c in identifier_chars else "_" for c in str])
    if str[0] in (string.digits + "."):
        str = "_" + str
    assert re.match("^[A-Za-z_][A-Za-z0-9_.]*$", str), "FILE"+str
    return str

def gen_uuid():
    return "{"+UuidCreate().upper()+"}"

class CAB:
    def __init__(self, name):
        self.name = name
        self.files = []
        self.filenames = set()
        self.index = 0

    def gen_id(self, file):
        logical = _logical = make_id(file)
        pos = 1
        while logical in self.filenames:
            logical = "%s.%d" % (_logical, pos)
            pos += 1
        self.filenames.add(logical)
        return logical

    def append(self, full, file, logical):
        if os.path.isdir(full):
            return
        if not logical:
            logical = self.gen_id(file)
        self.index += 1
        self.files.append((full, logical))
        return self.index, logical

    def commit(self, db):
        from tempfile import mktemp
        filename = mktemp()
        FCICreate(filename, self.files)
        add_data(db, "Media",
                [(1, self.index, None, "#"+self.name, None, None)])
        add_stream(db, self.name, filename)
        os.unlink(filename)
        db.Commit()

_directories = set()
class Directory:
    def __init__(self, db, cab, basedir, physical, _logical, default, componentflags=None):
        """Create a new directory in the Directory table. There is a current component
        at each point in time for the directory, which is either explicitly created
        through start_component, or implicitly when files are added for the first
        time. Files are added into the current component, and into the cab file.
        To create a directory, a base directory object needs to be specified (can be
        None), the path to the physical directory, and a logical directory name.
        Default specifies the DefaultDir slot in the directory table. componentflags
        specifies the default flags that new components get."""
        index = 1
        _logical = make_id(_logical)
        logical = _logical
        while logical in _directories:
            logical = "%s%d" % (_logical, index)
            index += 1
        _directories.add(logical)
        self.db = db
        self.cab = cab
        self.basedir = basedir
        self.physical = physical
        self.logical = logical
        self.component = None
        self.short_names = set()
        self.ids = set()
        self.keyfiles = {}
        self.componentflags = componentflags
        if basedir:
            self.absolute = os.path.join(basedir.absolute, physical)
            blogical = basedir.logical
        else:
            self.absolute = physical
            blogical = None
        add_data(db, "Directory", [(logical, blogical, default)])

    def start_component(self, component = None, feature = None, flags = None, keyfile = None, uuid=None):
        """Add an entry to the Component table, and make this component the current for this
        directory. If no component name is given, the directory name is used. If no feature
        is given, the current feature is used. If no flags are given, the directory's default
        flags are used. If no keyfile is given, the KeyPath is left null in the Component
        table."""
        if flags is None:
            flags = self.componentflags
        if uuid is None:
            uuid = gen_uuid()
        else:
            uuid = uuid.upper()
        if component is None:
            component = self.logical
        self.component = component
        if Win64:
            flags |= 256
        if keyfile:
            keyid = self.cab.gen_id(self.absolute, keyfile)
            self.keyfiles[keyfile] = keyid
        else:
            keyid = None
        add_data(self.db, "Component",
                        [(component, uuid, self.logical, flags, None, keyid)])
        if feature is None:
            feature = current_feature
        add_data(self.db, "FeatureComponents",
                        [(feature.id, component)])

    def make_short(self, file):
        oldfile = file
        file = file.replace('+', '_')
        file = ''.join(c for c in file if not c in ' "/\[]:;=,')
        parts = file.split(".")
        if len(parts) > 1:
            prefix = "".join(parts[:-1]).upper()
            suffix = parts[-1].upper()
            if not prefix:
                prefix = suffix
                suffix = None
        else:
            prefix = file.upper()
            suffix = None
        if len(parts) < 3 and len(prefix) <= 8 and file == oldfile and (
                                                not suffix or len(suffix) <= 3):
            if suffix:
                file = prefix+"."+suffix
            else:
                file = prefix
        else:
            file = None
        if file is None or file in self.short_names:
            prefix = prefix[:6]
            if suffix:
                suffix = suffix[:3]
            pos = 1
            while 1:
                if suffix:
                    file = "%s~%d.%s" % (prefix, pos, suffix)
                else:
                    file = "%s~%d" % (prefix, pos)
                if file not in self.short_names: break
                pos += 1
                assert pos < 10000
                if pos in (10, 100, 1000):
                    prefix = prefix[:-1]
        self.short_names.add(file)
        assert not re.search(r'[\?|><:/*"+,;=\[\]]', file) # restrictions on short names
        return file

    def add_file(self, file, src=None, version=None, language=None):
        """Add a file to the current component of the directory, starting a new one
        if there is no current component. By default, the file name in the source
        and the file table will be identical. If the src file is specified, it is
        interpreted relative to the current directory. Optionally, a version and a
        language can be specified for the entry in the File table."""
        if not self.component:
            self.start_component(self.logical, current_feature, 0)
        if not src:
            # Allow relative paths for file if src is not specified
            src = file
            file = os.path.basename(file)
        absolute = os.path.join(self.absolute, src)
        assert not re.search(r'[\?|><:/*]"', file) # restrictions on long names
        if file in self.keyfiles:
            logical = self.keyfiles[file]
        else:
            logical = None
        sequence, logical = self.cab.append(absolute, file, logical)
        assert logical not in self.ids
        self.ids.add(logical)
        short = self.make_short(file)
        full = "%s|%s" % (short, file)
        filesize = os.stat(absolute).st_size
        # constants.msidbFileAttributesVital
        # Compressed omitted, since it is the database default
        # could add r/o, system, hidden
        attributes = 512
        add_data(self.db, "File",
                        [(logical, self.component, full, filesize, version,
                         language, attributes, sequence)])
        #if not version:
        #    # Add hash if the file is not versioned
        #    filehash = FileHash(absolute, 0)
        #    add_data(self.db, "MsiFileHash",
        #             [(logical, 0, filehash.IntegerData(1),
        #               filehash.IntegerData(2), filehash.IntegerData(3),
        #               filehash.IntegerData(4))])
        # Automatically remove .pyc/.pyo files on uninstall (2)
        # XXX: adding so many RemoveFile entries makes installer unbelievably
        # slow. So instead, we have to use wildcard remove entries
        if file.endswith(".py"):
            add_data(self.db, "RemoveFile",
                      [(logical+"c", self.component, "%sC|%sc" % (short, file),
                        self.logical, 2),
                       (logical+"o", self.component, "%sO|%so" % (short, file),
                        self.logical, 2)])
        return logical

    def glob(self, pattern, exclude = None):
        """Add a list of files to the current component as specified in the
        glob pattern. Individual files can be excluded in the exclude list."""
        files = glob.glob1(self.absolute, pattern)
        for f in files:
            if exclude and f in exclude: continue
            self.add_file(f)
        return files

    def remove_pyc(self):
        "Remove .pyc/.pyo files on uninstall"
        add_data(self.db, "RemoveFile",
                 [(self.component+"c", self.component, "*.pyc", self.logical, 2),
                  (self.component+"o", self.component, "*.pyo", self.logical, 2)])

class Binary:
    def __init__(self, fname):
        self.name = fname
    def __repr__(self):
        return 'msilib.Binary(os.path.join(dirname,"%s"))' % self.name

class Feature:
    def __init__(self, db, id, title, desc, display, level = 1,
                 parent=None, directory = None, attributes=0):
        self.id = id
        if parent:
            parent = parent.id
        add_data(db, "Feature",
                        [(id, parent, title, desc, display,
                          level, directory, attributes)])
    def set_current(self):
        global current_feature
        current_feature = self

class Control:
    def __init__(self, dlg, name):
        self.dlg = dlg
        self.name = name

    def event(self, event, argument, condition = "1", ordering = None):
        add_data(self.dlg.db, "ControlEvent",
                 [(self.dlg.name, self.name, event, argument,
                   condition, ordering)])

    def mapping(self, event, attribute):
        add_data(self.dlg.db, "EventMapping",
                 [(self.dlg.name, self.name, event, attribute)])

    def condition(self, action, condition):
        add_data(self.dlg.db, "ControlCondition",
                 [(self.dlg.name, self.name, action, condition)])

class RadioButtonGroup(Control):
    def __init__(self, dlg, name, property):
        self.dlg = dlg
        self.name = name
        self.property = property
        self.index = 1

    def add(self, name, x, y, w, h, text, value = None):
        if value is None:
            value = name
        add_data(self.dlg.db, "RadioButton",
                 [(self.property, self.index, value,
                   x, y, w, h, text, None)])
        self.index += 1

class Dialog:
    def __init__(self, db, name, x, y, w, h, attr, title, first, default, cancel):
        self.db = db
        self.name = name
        self.x, self.y, self.w, self.h = x,y,w,h
        add_data(db, "Dialog", [(name, x,y,w,h,attr,title,first,default,cancel)])

    def control(self, name, type, x, y, w, h, attr, prop, text, next, help):
        add_data(self.db, "Control",
                 [(self.name, name, type, x, y, w, h, attr, prop, text, next, help)])
        return Control(self, name)

    def text(self, name, x, y, w, h, attr, text):
        return self.control(name, "Text", x, y, w, h, attr, None,
                     text, None, None)

    def bitmap(self, name, x, y, w, h, text):
        return self.control(name, "Bitmap", x, y, w, h, 1, None, text, None, None)

    def line(self, name, x, y, w, h):
        return self.control(name, "Line", x, y, w, h, 1, None, None, None, None)

    def pushbutton(self, name, x, y, w, h, attr, text, next):
        return self.control(name, "PushButton", x, y, w, h, attr, None, text, next, None)

    def radiogroup(self, name, x, y, w, h, attr, prop, text, next):
        add_data(self.db, "Control",
                 [(self.name, name, "RadioButtonGroup",
                   x, y, w, h, attr, prop, text, next, None)])
        return RadioButtonGroup(self, name, prop)

    def checkbox(self, name, x, y, w, h, attr, prop, text, next):
        return self.control(name, "CheckBox", x, y, w, h, attr, prop, text, next, None)
lib\multiprocessing\connection.py
#
# A higher level module for using sockets (or Windows named pipes)
#
# multiprocessing/connection.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = [ 'Client', 'Listener', 'Pipe', 'wait' ]

import io
import os
import sys
import socket
import struct
import time
import tempfile
import itertools

import _multiprocessing

from . import reduction
from . import util

from . import AuthenticationError, BufferTooShort
from .reduction import ForkingPickler

try:
    import _winapi
    from _winapi import WAIT_OBJECT_0, WAIT_ABANDONED_0, WAIT_TIMEOUT, INFINITE
except ImportError:
    if sys.platform == 'win32':
        raise
    _winapi = None

#
#
#

BUFSIZE = 8192
# A very generous timeout when it comes to local connections...
CONNECTION_TIMEOUT = 20.

_mmap_counter = itertools.count()

default_family = 'AF_INET'
families = ['AF_INET']

if hasattr(socket, 'AF_UNIX'):
    default_family = 'AF_UNIX'
    families += ['AF_UNIX']

if sys.platform == 'win32':
    default_family = 'AF_PIPE'
    families += ['AF_PIPE']


def _init_timeout(timeout=CONNECTION_TIMEOUT):
    return time.time() + timeout

def _check_timeout(t):
    return time.time() > t

#
#
#

def arbitrary_address(family):
    '''
    Return an arbitrary free address for the given family
    '''
    if family == 'AF_INET':
        return ('localhost', 0)
    elif family == 'AF_UNIX':
        return tempfile.mktemp(prefix='listener-', dir=util.get_temp_dir())
    elif family == 'AF_PIPE':
        return tempfile.mktemp(prefix=r'\\.\pipe\pyc-%d-%d-' %
                               (os.getpid(), next(_mmap_counter)), dir="")
    else:
        raise ValueError('unrecognized family')

def _validate_family(family):
    '''
    Checks if the family is valid for the current environment.
    '''
    if sys.platform != 'win32' and family == 'AF_PIPE':
        raise ValueError('Family %s is not recognized.' % family)

    if sys.platform == 'win32' and family == 'AF_UNIX':
        # double check
        if not hasattr(socket, family):
            raise ValueError('Family %s is not recognized.' % family)

def address_type(address):
    '''
    Return the types of the address

    This can be 'AF_INET', 'AF_UNIX', or 'AF_PIPE'
    '''
    if type(address) == tuple:
        return 'AF_INET'
    elif type(address) is str and address.startswith('\\\\'):
        return 'AF_PIPE'
    elif type(address) is str:
        return 'AF_UNIX'
    else:
        raise ValueError('address type of %r unrecognized' % address)

#
# Connection classes
#

class _ConnectionBase:
    _handle = None

    def __init__(self, handle, readable=True, writable=True):
        handle = handle.__index__()
        if handle < 0:
            raise ValueError("invalid handle")
        if not readable and not writable:
            raise ValueError(
                "at least one of `readable` and `writable` must be True")
        self._handle = handle
        self._readable = readable
        self._writable = writable

    # XXX should we use util.Finalize instead of a __del__?

    def __del__(self):
        if self._handle is not None:
            self._close()

    def _check_closed(self):
        if self._handle is None:
            raise OSError("handle is closed")

    def _check_readable(self):
        if not self._readable:
            raise OSError("connection is write-only")

    def _check_writable(self):
        if not self._writable:
            raise OSError("connection is read-only")

    def _bad_message_length(self):
        if self._writable:
            self._readable = False
        else:
            self.close()
        raise OSError("bad message length")

    @property
    def closed(self):
        """True if the connection is closed"""
        return self._handle is None

    @property
    def readable(self):
        """True if the connection is readable"""
        return self._readable

    @property
    def writable(self):
        """True if the connection is writable"""
        return self._writable

    def fileno(self):
        """File descriptor or handle of the connection"""
        self._check_closed()
        return self._handle

    def close(self):
        """Close the connection"""
        if self._handle is not None:
            try:
                self._close()
            finally:
                self._handle = None

    def send_bytes(self, buf, offset=0, size=None):
        """Send the bytes data from a bytes-like object"""
        self._check_closed()
        self._check_writable()
        m = memoryview(buf)
        # HACK for byte-indexing of non-bytewise buffers (e.g. array.array)
        if m.itemsize > 1:
            m = memoryview(bytes(m))
        n = len(m)
        if offset < 0:
            raise ValueError("offset is negative")
        if n < offset:
            raise ValueError("buffer length < offset")
        if size is None:
            size = n - offset
        elif size < 0:
            raise ValueError("size is negative")
        elif offset + size > n:
            raise ValueError("buffer length < offset + size")
        self._send_bytes(m[offset:offset + size])

    def send(self, obj):
        """Send a (picklable) object"""
        self._check_closed()
        self._check_writable()
        self._send_bytes(ForkingPickler.dumps(obj))

    def recv_bytes(self, maxlength=None):
        """
        Receive bytes data as a bytes object.
        """
        self._check_closed()
        self._check_readable()
        if maxlength is not None and maxlength < 0:
            raise ValueError("negative maxlength")
        buf = self._recv_bytes(maxlength)
        if buf is None:
            self._bad_message_length()
        return buf.getvalue()

    def recv_bytes_into(self, buf, offset=0):
        """
        Receive bytes data into a writeable bytes-like object.
        Return the number of bytes read.
        """
        self._check_closed()
        self._check_readable()
        with memoryview(buf) as m:
            # Get bytesize of arbitrary buffer
            itemsize = m.itemsize
            bytesize = itemsize * len(m)
            if offset < 0:
                raise ValueError("negative offset")
            elif offset > bytesize:
                raise ValueError("offset too large")
            result = self._recv_bytes()
            size = result.tell()
            if bytesize < offset + size:
                raise BufferTooShort(result.getvalue())
            # Message can fit in dest
            result.seek(0)
            result.readinto(m[offset // itemsize :
                              (offset + size) // itemsize])
            return size

    def recv(self):
        """Receive a (picklable) object"""
        self._check_closed()
        self._check_readable()
        buf = self._recv_bytes()
        return ForkingPickler.loads(buf.getbuffer())

    def poll(self, timeout=0.0):
        """Whether there is any input available to be read"""
        self._check_closed()
        self._check_readable()
        return self._poll(timeout)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, exc_tb):
        self.close()


if _winapi:

    class PipeConnection(_ConnectionBase):
        """
        Connection class based on a Windows named pipe.
        Overlapped I/O is used, so the handles must have been created
        with FILE_FLAG_OVERLAPPED.
        """
        _got_empty_message = False

        def _close(self, _CloseHandle=_winapi.CloseHandle):
            _CloseHandle(self._handle)

        def _send_bytes(self, buf):
            ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True)
            try:
                if err == _winapi.ERROR_IO_PENDING:
                    waitres = _winapi.WaitForMultipleObjects(
                        [ov.event], False, INFINITE)
                    assert waitres == WAIT_OBJECT_0
            except:
                ov.cancel()
                raise
            finally:
                nwritten, err = ov.GetOverlappedResult(True)
            assert err == 0
            assert nwritten == len(buf)

        def _recv_bytes(self, maxsize=None):
            if self._got_empty_message:
                self._got_empty_message = False
                return io.BytesIO()
            else:
                bsize = 128 if maxsize is None else min(maxsize, 128)
                try:
                    ov, err = _winapi.ReadFile(self._handle, bsize,
                                                overlapped=True)
                    try:
                        if err == _winapi.ERROR_IO_PENDING:
                            waitres = _winapi.WaitForMultipleObjects(
                                [ov.event], False, INFINITE)
                            assert waitres == WAIT_OBJECT_0
                    except:
                        ov.cancel()
                        raise
                    finally:
                        nread, err = ov.GetOverlappedResult(True)
                        if err == 0:
                            f = io.BytesIO()
                            f.write(ov.getbuffer())
                            return f
                        elif err == _winapi.ERROR_MORE_DATA:
                            return self._get_more_data(ov, maxsize)
                except OSError as e:
                    if e.winerror == _winapi.ERROR_BROKEN_PIPE:
                        raise EOFError
                    else:
                        raise
            raise RuntimeError("shouldn't get here; expected KeyboardInterrupt")

        def _poll(self, timeout):
            if (self._got_empty_message or
                        _winapi.PeekNamedPipe(self._handle)[0] != 0):
                return True
            return bool(wait([self], timeout))

        def _get_more_data(self, ov, maxsize):
            buf = ov.getbuffer()
            f = io.BytesIO()
            f.write(buf)
            left = _winapi.PeekNamedPipe(self._handle)[1]
            assert left > 0
            if maxsize is not None and len(buf) + left > maxsize:
                self._bad_message_length()
            ov, err = _winapi.ReadFile(self._handle, left, overlapped=True)
            rbytes, err = ov.GetOverlappedResult(True)
            assert err == 0
            assert rbytes == left
            f.write(ov.getbuffer())
            return f


class Connection(_ConnectionBase):
    """
    Connection class based on an arbitrary file descriptor (Unix only), or
    a socket handle (Windows).
    """

    if _winapi:
        def _close(self, _close=_multiprocessing.closesocket):
            _close(self._handle)
        _write = _multiprocessing.send
        _read = _multiprocessing.recv
    else:
        def _close(self, _close=os.close):
            _close(self._handle)
        _write = os.write
        _read = os.read

    def _send(self, buf, write=_write):
        remaining = len(buf)
        while True:
            try:
                n = write(self._handle, buf)
            except InterruptedError:
                continue
            remaining -= n
            if remaining == 0:
                break
            buf = buf[n:]

    def _recv(self, size, read=_read):
        buf = io.BytesIO()
        handle = self._handle
        remaining = size
        while remaining > 0:
            try:
                chunk = read(handle, remaining)
            except InterruptedError:
                continue
            n = len(chunk)
            if n == 0:
                if remaining == size:
                    raise EOFError
                else:
                    raise OSError("got end of file during message")
            buf.write(chunk)
            remaining -= n
        return buf

    def _send_bytes(self, buf):
        n = len(buf)
        # For wire compatibility with 3.2 and lower
        header = struct.pack("!i", n)
        if n > 16384:
            # The payload is large so Nagle's algorithm won't be triggered
            # and we'd better avoid the cost of concatenation.
            chunks = [header, buf]
        elif n > 0:
            # Issue # 20540: concatenate before sending, to avoid delays due
            # to Nagle's algorithm on a TCP socket.
            chunks = [header + buf]
        else:
            # This code path is necessary to avoid "broken pipe" errors
            # when sending a 0-length buffer if the other end closed the pipe.
            chunks = [header]
        for chunk in chunks:
            self._send(chunk)

    def _recv_bytes(self, maxsize=None):
        buf = self._recv(4)
        size, = struct.unpack("!i", buf.getvalue())
        if maxsize is not None and size > maxsize:
            return None
        return self._recv(size)

    def _poll(self, timeout):
        r = wait([self], timeout)
        return bool(r)


#
# Public functions
#

class Listener(object):
    '''
    Returns a listener object.

    This is a wrapper for a bound socket which is 'listening' for
    connections, or for a Windows named pipe.
    '''
    def __init__(self, address=None, family=None, backlog=1, authkey=None):
        family = family or (address and address_type(address)) \
                 or default_family
        address = address or arbitrary_address(family)

        _validate_family(family)
        if family == 'AF_PIPE':
            self._listener = PipeListener(address, backlog)
        else:
            self._listener = SocketListener(address, family, backlog)

        if authkey is not None and not isinstance(authkey, bytes):
            raise TypeError('authkey should be a byte string')

        self._authkey = authkey

    def accept(self):
        '''
        Accept a connection on the bound socket or named pipe of `self`.

        Returns a `Connection` object.
        '''
        if self._listener is None:
            raise OSError('listener is closed')
        c = self._listener.accept()
        if self._authkey:
            deliver_challenge(c, self._authkey)
            answer_challenge(c, self._authkey)
        return c

    def close(self):
        '''
        Close the bound socket or named pipe of `self`.
        '''
        listener = self._listener
        if listener is not None:
            self._listener = None
            listener.close()

    address = property(lambda self: self._listener._address)
    last_accepted = property(lambda self: self._listener._last_accepted)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, exc_tb):
        self.close()


def Client(address, family=None, authkey=None):
    '''
    Returns a connection to the address of a `Listener`
    '''
    family = family or address_type(address)
    _validate_family(family)
    if family == 'AF_PIPE':
        c = PipeClient(address)
    else:
        c = SocketClient(address)

    if authkey is not None and not isinstance(authkey, bytes):
        raise TypeError('authkey should be a byte string')

    if authkey is not None:
        answer_challenge(c, authkey)
        deliver_challenge(c, authkey)

    return c


if sys.platform != 'win32':

    def Pipe(duplex=True):
        '''
        Returns pair of connection objects at either end of a pipe
        '''
        if duplex:
            s1, s2 = socket.socketpair()
            s1.setblocking(True)
            s2.setblocking(True)
            c1 = Connection(s1.detach())
            c2 = Connection(s2.detach())
        else:
            fd1, fd2 = os.pipe()
            c1 = Connection(fd1, writable=False)
            c2 = Connection(fd2, readable=False)

        return c1, c2

else:

    def Pipe(duplex=True):
        '''
        Returns pair of connection objects at either end of a pipe
        '''
        address = arbitrary_address('AF_PIPE')
        if duplex:
            openmode = _winapi.PIPE_ACCESS_DUPLEX
            access = _winapi.GENERIC_READ | _winapi.GENERIC_WRITE
            obsize, ibsize = BUFSIZE, BUFSIZE
        else:
            openmode = _winapi.PIPE_ACCESS_INBOUND
            access = _winapi.GENERIC_WRITE
            obsize, ibsize = 0, BUFSIZE

        h1 = _winapi.CreateNamedPipe(
            address, openmode | _winapi.FILE_FLAG_OVERLAPPED |
            _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE,
            _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE |
            _winapi.PIPE_WAIT,
            1, obsize, ibsize, _winapi.NMPWAIT_WAIT_FOREVER,
            # default security descriptor: the handle cannot be inherited
            _winapi.NULL
            )
        h2 = _winapi.CreateFile(
            address, access, 0, _winapi.NULL, _winapi.OPEN_EXISTING,
            _winapi.FILE_FLAG_OVERLAPPED, _winapi.NULL
            )
        _winapi.SetNamedPipeHandleState(
            h2, _winapi.PIPE_READMODE_MESSAGE, None, None
            )

        overlapped = _winapi.ConnectNamedPipe(h1, overlapped=True)
        _, err = overlapped.GetOverlappedResult(True)
        assert err == 0

        c1 = PipeConnection(h1, writable=duplex)
        c2 = PipeConnection(h2, readable=duplex)

        return c1, c2

#
# Definitions for connections based on sockets
#

class SocketListener(object):
    '''
    Representation of a socket which is bound to an address and listening
    '''
    def __init__(self, address, family, backlog=1):
        self._socket = socket.socket(getattr(socket, family))
        try:
            # SO_REUSEADDR has different semantics on Windows (issue #2550).
            if os.name == 'posix':
                self._socket.setsockopt(socket.SOL_SOCKET,
                                        socket.SO_REUSEADDR, 1)
            self._socket.setblocking(True)
            self._socket.bind(address)
            self._socket.listen(backlog)
            self._address = self._socket.getsockname()
        except OSError:
            self._socket.close()
            raise
        self._family = family
        self._last_accepted = None

        if family == 'AF_UNIX':
            self._unlink = util.Finalize(
                self, os.unlink, args=(address,), exitpriority=0
                )
        else:
            self._unlink = None

    def accept(self):
        while True:
            try:
                s, self._last_accepted = self._socket.accept()
            except InterruptedError:
                pass
            else:
                break
        s.setblocking(True)
        return Connection(s.detach())

    def close(self):
        try:
            self._socket.close()
        finally:
            unlink = self._unlink
            if unlink is not None:
                self._unlink = None
                unlink()


def SocketClient(address):
    '''
    Return a connection object connected to the socket given by `address`
    '''
    family = address_type(address)
    with socket.socket( getattr(socket, family) ) as s:
        s.setblocking(True)
        s.connect(address)
        return Connection(s.detach())

#
# Definitions for connections based on named pipes
#

if sys.platform == 'win32':

    class PipeListener(object):
        '''
        Representation of a named pipe
        '''
        def __init__(self, address, backlog=None):
            self._address = address
            self._handle_queue = [self._new_handle(first=True)]

            self._last_accepted = None
            util.sub_debug('listener created with address=%r', self._address)
            self.close = util.Finalize(
                self, PipeListener._finalize_pipe_listener,
                args=(self._handle_queue, self._address), exitpriority=0
                )

        def _new_handle(self, first=False):
            flags = _winapi.PIPE_ACCESS_DUPLEX | _winapi.FILE_FLAG_OVERLAPPED
            if first:
                flags |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE
            return _winapi.CreateNamedPipe(
                self._address, flags,
                _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE |
                _winapi.PIPE_WAIT,
                _winapi.PIPE_UNLIMITED_INSTANCES, BUFSIZE, BUFSIZE,
                _winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL
                )

        def accept(self):
            self._handle_queue.append(self._new_handle())
            handle = self._handle_queue.pop(0)
            try:
                ov = _winapi.ConnectNamedPipe(handle, overlapped=True)
            except OSError as e:
                if e.winerror != _winapi.ERROR_NO_DATA:
                    raise
                # ERROR_NO_DATA can occur if a client has already connected,
                # written data and then disconnected -- see Issue 14725.
            else:
                try:
                    res = _winapi.WaitForMultipleObjects(
                        [ov.event], False, INFINITE)
                except:
                    ov.cancel()
                    _winapi.CloseHandle(handle)
                    raise
                finally:
                    _, err = ov.GetOverlappedResult(True)
                    assert err == 0
            return PipeConnection(handle)

        @staticmethod
        def _finalize_pipe_listener(queue, address):
            util.sub_debug('closing listener with address=%r', address)
            for handle in queue:
                _winapi.CloseHandle(handle)

    def PipeClient(address):
        '''
        Return a connection object connected to the pipe given by `address`
        '''
        t = _init_timeout()
        while 1:
            try:
                _winapi.WaitNamedPipe(address, 1000)
                h = _winapi.CreateFile(
                    address, _winapi.GENERIC_READ | _winapi.GENERIC_WRITE,
                    0, _winapi.NULL, _winapi.OPEN_EXISTING,
                    _winapi.FILE_FLAG_OVERLAPPED, _winapi.NULL
                    )
            except OSError as e:
                if e.winerror not in (_winapi.ERROR_SEM_TIMEOUT,
                                      _winapi.ERROR_PIPE_BUSY) or _check_timeout(t):
                    raise
            else:
                break
        else:
            raise

        _winapi.SetNamedPipeHandleState(
            h, _winapi.PIPE_READMODE_MESSAGE, None, None
            )
        return PipeConnection(h)

#
# Authentication stuff
#

MESSAGE_LENGTH = 20

CHALLENGE = b'#CHALLENGE#'
WELCOME = b'#WELCOME#'
FAILURE = b'#FAILURE#'

def deliver_challenge(connection, authkey):
    import hmac
    assert isinstance(authkey, bytes)
    message = os.urandom(MESSAGE_LENGTH)
    connection.send_bytes(CHALLENGE + message)
    digest = hmac.new(authkey, message, 'md5').digest()
    response = connection.recv_bytes(256)        # reject large message
    if response == digest:
        connection.send_bytes(WELCOME)
    else:
        connection.send_bytes(FAILURE)
        raise AuthenticationError('digest received was wrong')

def answer_challenge(connection, authkey):
    import hmac
    assert isinstance(authkey, bytes)
    message = connection.recv_bytes(256)         # reject large message
    assert message[:len(CHALLENGE)] == CHALLENGE, 'message = %r' % message
    message = message[len(CHALLENGE):]
    digest = hmac.new(authkey, message, 'md5').digest()
    connection.send_bytes(digest)
    response = connection.recv_bytes(256)        # reject large message
    if response != WELCOME:
        raise AuthenticationError('digest sent was rejected')

#
# Support for using xmlrpclib for serialization
#

class ConnectionWrapper(object):
    def __init__(self, conn, dumps, loads):
        self._conn = conn
        self._dumps = dumps
        self._loads = loads
        for attr in ('fileno', 'close', 'poll', 'recv_bytes', 'send_bytes'):
            obj = getattr(conn, attr)
            setattr(self, attr, obj)
    def send(self, obj):
        s = self._dumps(obj)
        self._conn.send_bytes(s)
    def recv(self):
        s = self._conn.recv_bytes()
        return self._loads(s)

def _xml_dumps(obj):
    return xmlrpclib.dumps((obj,), None, None, None, 1).encode('utf-8')

def _xml_loads(s):
    (obj,), method = xmlrpclib.loads(s.decode('utf-8'))
    return obj

class XmlListener(Listener):
    def accept(self):
        global xmlrpclib
        import xmlrpc.client as xmlrpclib
        obj = Listener.accept(self)
        return ConnectionWrapper(obj, _xml_dumps, _xml_loads)

def XmlClient(*args, **kwds):
    global xmlrpclib
    import xmlrpc.client as xmlrpclib
    return ConnectionWrapper(Client(*args, **kwds), _xml_dumps, _xml_loads)

#
# Wait
#

if sys.platform == 'win32':

    def _exhaustive_wait(handles, timeout):
        # Return ALL handles which are currently signalled.  (Only
        # returning the first signalled might create starvation issues.)
        L = list(handles)
        ready = []
        while L:
            res = _winapi.WaitForMultipleObjects(L, False, timeout)
            if res == WAIT_TIMEOUT:
                break
            elif WAIT_OBJECT_0 <= res < WAIT_OBJECT_0 + len(L):
                res -= WAIT_OBJECT_0
            elif WAIT_ABANDONED_0 <= res < WAIT_ABANDONED_0 + len(L):
                res -= WAIT_ABANDONED_0
            else:
                raise RuntimeError('Should not get here')
            ready.append(L[res])
            L = L[res+1:]
            timeout = 0
        return ready

    _ready_errors = {_winapi.ERROR_BROKEN_PIPE, _winapi.ERROR_NETNAME_DELETED}

    def wait(object_list, timeout=None):
        '''
        Wait till an object in object_list is ready/readable.

        Returns list of those objects in object_list which are ready/readable.
        '''
        if timeout is None:
            timeout = INFINITE
        elif timeout < 0:
            timeout = 0
        else:
            timeout = int(timeout * 1000 + 0.5)

        object_list = list(object_list)
        waithandle_to_obj = {}
        ov_list = []
        ready_objects = set()
        ready_handles = set()

        try:
            for o in object_list:
                try:
                    fileno = getattr(o, 'fileno')
                except AttributeError:
                    waithandle_to_obj[o.__index__()] = o
                else:
                    # start an overlapped read of length zero
                    try:
                        ov, err = _winapi.ReadFile(fileno(), 0, True)
                    except OSError as e:
                        ov, err = None, e.winerror
                        if err not in _ready_errors:
                            raise
                    if err == _winapi.ERROR_IO_PENDING:
                        ov_list.append(ov)
                        waithandle_to_obj[ov.event] = o
                    else:
                        # If o.fileno() is an overlapped pipe handle and
                        # err == 0 then there is a zero length message
                        # in the pipe, but it HAS NOT been consumed...
                        if ov and sys.getwindowsversion()[:2] >= (6, 2):
                            # ... except on Windows 8 and later, where
                            # the message HAS been consumed.
                            try:
                                _, err = ov.GetOverlappedResult(False)
                            except OSError as e:
                                err = e.winerror
                            if not err and hasattr(o, '_got_empty_message'):
                                o._got_empty_message = True
                        ready_objects.add(o)
                        timeout = 0

            ready_handles = _exhaustive_wait(waithandle_to_obj.keys(), timeout)
        finally:
            # request that overlapped reads stop
            for ov in ov_list:
                ov.cancel()

            # wait for all overlapped reads to stop
            for ov in ov_list:
                try:
                    _, err = ov.GetOverlappedResult(True)
                except OSError as e:
                    err = e.winerror
                    if err not in _ready_errors:
                        raise
                if err != _winapi.ERROR_OPERATION_ABORTED:
                    o = waithandle_to_obj[ov.event]
                    ready_objects.add(o)
                    if err == 0:
                        # If o.fileno() is an overlapped pipe handle then
                        # a zero length message HAS been consumed.
                        if hasattr(o, '_got_empty_message'):
                            o._got_empty_message = True

        ready_objects.update(waithandle_to_obj[h] for h in ready_handles)
        return [o for o in object_list if o in ready_objects]

else:

    import selectors

    # poll/select have the advantage of not requiring any extra file
    # descriptor, contrarily to epoll/kqueue (also, they require a single
    # syscall).
    if hasattr(selectors, 'PollSelector'):
        _WaitSelector = selectors.PollSelector
    else:
        _WaitSelector = selectors.SelectSelector

    def wait(object_list, timeout=None):
        '''
        Wait till an object in object_list is ready/readable.

        Returns list of those objects in object_list which are ready/readable.
        '''
        with _WaitSelector() as selector:
            for obj in object_list:
                selector.register(obj, selectors.EVENT_READ)

            if timeout is not None:
                deadline = time.time() + timeout

            while True:
                ready = selector.select(timeout)
                if ready:
                    return [key.fileobj for (key, events) in ready]
                else:
                    if timeout is not None:
                        timeout = deadline - time.time()
                        if timeout < 0:
                            return ready

#
# Make connection and socket objects sharable if possible
#

if sys.platform == 'win32':
    def reduce_connection(conn):
        handle = conn.fileno()
        with socket.fromfd(handle, socket.AF_INET, socket.SOCK_STREAM) as s:
            from . import resource_sharer
            ds = resource_sharer.DupSocket(s)
            return rebuild_connection, (ds, conn.readable, conn.writable)
    def rebuild_connection(ds, readable, writable):
        sock = ds.detach()
        return Connection(sock.detach(), readable, writable)
    reduction.register(Connection, reduce_connection)

    def reduce_pipe_connection(conn):
        access = ((_winapi.FILE_GENERIC_READ if conn.readable else 0) |
                  (_winapi.FILE_GENERIC_WRITE if conn.writable else 0))
        dh = reduction.DupHandle(conn.fileno(), access)
        return rebuild_pipe_connection, (dh, conn.readable, conn.writable)
    def rebuild_pipe_connection(dh, readable, writable):
        handle = dh.detach()
        return PipeConnection(handle, readable, writable)
    reduction.register(PipeConnection, reduce_pipe_connection)

else:
    def reduce_connection(conn):
        df = reduction.DupFd(conn.fileno())
        return rebuild_connection, (df, conn.readable, conn.writable)
    def rebuild_connection(df, readable, writable):
        fd = df.detach()
        return Connection(fd, readable, writable)
    reduction.register(Connection, reduce_connection)
lib\multiprocessing\context.py
import os
import sys
import threading

from . import process

__all__ = []            # things are copied from here to __init__.py

#
# Exceptions
#

class ProcessError(Exception):
    pass

class BufferTooShort(ProcessError):
    pass

class TimeoutError(ProcessError):
    pass

class AuthenticationError(ProcessError):
    pass

#
# Base type for contexts
#

class BaseContext(object):

    ProcessError = ProcessError
    BufferTooShort = BufferTooShort
    TimeoutError = TimeoutError
    AuthenticationError = AuthenticationError

    current_process = staticmethod(process.current_process)
    active_children = staticmethod(process.active_children)

    def cpu_count(self):
        '''Returns the number of CPUs in the system'''
        num = os.cpu_count()
        if num is None:
            raise NotImplementedError('cannot determine number of cpus')
        else:
            return num

    def Manager(self):
        '''Returns a manager associated with a running server process

        The managers methods such as `Lock()`, `Condition()` and `Queue()`
        can be used to create shared objects.
        '''
        from .managers import SyncManager
        m = SyncManager(ctx=self.get_context())
        m.start()
        return m

    def Pipe(self, duplex=True):
        '''Returns two connection object connected by a pipe'''
        from .connection import Pipe
        return Pipe(duplex)

    def Lock(self):
        '''Returns a non-recursive lock object'''
        from .synchronize import Lock
        return Lock(ctx=self.get_context())

    def RLock(self):
        '''Returns a recursive lock object'''
        from .synchronize import RLock
        return RLock(ctx=self.get_context())

    def Condition(self, lock=None):
        '''Returns a condition object'''
        from .synchronize import Condition
        return Condition(lock, ctx=self.get_context())

    def Semaphore(self, value=1):
        '''Returns a semaphore object'''
        from .synchronize import Semaphore
        return Semaphore(value, ctx=self.get_context())

    def BoundedSemaphore(self, value=1):
        '''Returns a bounded semaphore object'''
        from .synchronize import BoundedSemaphore
        return BoundedSemaphore(value, ctx=self.get_context())

    def Event(self):
        '''Returns an event object'''
        from .synchronize import Event
        return Event(ctx=self.get_context())

    def Barrier(self, parties, action=None, timeout=None):
        '''Returns a barrier object'''
        from .synchronize import Barrier
        return Barrier(parties, action, timeout, ctx=self.get_context())

    def Queue(self, maxsize=0):
        '''Returns a queue object'''
        from .queues import Queue
        return Queue(maxsize, ctx=self.get_context())

    def JoinableQueue(self, maxsize=0):
        '''Returns a queue object'''
        from .queues import JoinableQueue
        return JoinableQueue(maxsize, ctx=self.get_context())

    def SimpleQueue(self):
        '''Returns a queue object'''
        from .queues import SimpleQueue
        return SimpleQueue(ctx=self.get_context())

    def Pool(self, processes=None, initializer=None, initargs=(),
             maxtasksperchild=None):
        '''Returns a process pool object'''
        from .pool import Pool
        return Pool(processes, initializer, initargs, maxtasksperchild,
                    context=self.get_context())

    def RawValue(self, typecode_or_type, *args):
        '''Returns a shared object'''
        from .sharedctypes import RawValue
        return RawValue(typecode_or_type, *args)

    def RawArray(self, typecode_or_type, size_or_initializer):
        '''Returns a shared array'''
        from .sharedctypes import RawArray
        return RawArray(typecode_or_type, size_or_initializer)

    def Value(self, typecode_or_type, *args, lock=True):
        '''Returns a synchronized shared object'''
        from .sharedctypes import Value
        return Value(typecode_or_type, *args, lock=lock,
                     ctx=self.get_context())

    def Array(self, typecode_or_type, size_or_initializer, *, lock=True):
        '''Returns a synchronized shared array'''
        from .sharedctypes import Array
        return Array(typecode_or_type, size_or_initializer, lock=lock,
                     ctx=self.get_context())

    def freeze_support(self):
        '''Check whether this is a fake forked process in a frozen executable.
        If so then run code specified by commandline and exit.
        '''
        if sys.platform == 'win32' and getattr(sys, 'frozen', False):
            from .spawn import freeze_support
            freeze_support()

    def get_logger(self):
        '''Return package logger -- if it does not already exist then
        it is created.
        '''
        from .util import get_logger
        return get_logger()

    def log_to_stderr(self, level=None):
        '''Turn on logging and add a handler which prints to stderr'''
        from .util import log_to_stderr
        return log_to_stderr(level)

    def allow_connection_pickling(self):
        '''Install support for sending connections and sockets
        between processes
        '''
        # This is undocumented.  In previous versions of multiprocessing
        # its only effect was to make socket objects inheritable on Windows.
        from . import connection

    def set_executable(self, executable):
        '''Sets the path to a python.exe or pythonw.exe binary used to run
        child processes instead of sys.executable when using the 'spawn'
        start method.  Useful for people embedding Python.
        '''
        from .spawn import set_executable
        set_executable(executable)

    def set_forkserver_preload(self, module_names):
        '''Set list of module names to try to load in forkserver process.
        This is really just a hint.
        '''
        from .forkserver import set_forkserver_preload
        set_forkserver_preload(module_names)

    def get_context(self, method=None):
        if method is None:
            return self
        try:
            ctx = _concrete_contexts[method]
        except KeyError:
            raise ValueError('cannot find context for %r' % method)
        ctx._check_available()
        return ctx

    def get_start_method(self, allow_none=False):
        return self._name

    def set_start_method(self, method=None):
        raise ValueError('cannot set start method of concrete context')

    def _check_available(self):
        pass

#
# Type of default context -- underlying context can be set at most once
#

class Process(process.BaseProcess):
    _start_method = None
    @staticmethod
    def _Popen(process_obj):
        return _default_context.get_context().Process._Popen(process_obj)

class DefaultContext(BaseContext):
    Process = Process

    def __init__(self, context):
        self._default_context = context
        self._actual_context = None

    def get_context(self, method=None):
        if method is None:
            if self._actual_context is None:
                self._actual_context = self._default_context
            return self._actual_context
        else:
            return super().get_context(method)

    def set_start_method(self, method, force=False):
        if self._actual_context is not None and not force:
            raise RuntimeError('context has already been set')
        if method is None and force:
            self._actual_context = None
            return
        self._actual_context = self.get_context(method)

    def get_start_method(self, allow_none=False):
        if self._actual_context is None:
            if allow_none:
                return None
            self._actual_context = self._default_context
        return self._actual_context._name

    def get_all_start_methods(self):
        if sys.platform == 'win32':
            return ['spawn']
        else:
            from . import reduction
            if reduction.HAVE_SEND_HANDLE:
                return ['fork', 'spawn', 'forkserver']
            else:
                return ['fork', 'spawn']

DefaultContext.__all__ = list(x for x in dir(DefaultContext) if x[0] != '_')

#
# Context types for fixed start method
#

if sys.platform != 'win32':

    class ForkProcess(process.BaseProcess):
        _start_method = 'fork'
        @staticmethod
        def _Popen(process_obj):
            from .popen_fork import Popen
            return Popen(process_obj)

    class SpawnProcess(process.BaseProcess):
        _start_method = 'spawn'
        @staticmethod
        def _Popen(process_obj):
            from .popen_spawn_posix import Popen
            return Popen(process_obj)

    class ForkServerProcess(process.BaseProcess):
        _start_method = 'forkserver'
        @staticmethod
        def _Popen(process_obj):
            from .popen_forkserver import Popen
            return Popen(process_obj)

    class ForkContext(BaseContext):
        _name = 'fork'
        Process = ForkProcess

    class SpawnContext(BaseContext):
        _name = 'spawn'
        Process = SpawnProcess

    class ForkServerContext(BaseContext):
        _name = 'forkserver'
        Process = ForkServerProcess
        def _check_available(self):
            from . import reduction
            if not reduction.HAVE_SEND_HANDLE:
                raise ValueError('forkserver start method not available')

    _concrete_contexts = {
        'fork': ForkContext(),
        'spawn': SpawnContext(),
        'forkserver': ForkServerContext(),
    }
    _default_context = DefaultContext(_concrete_contexts['fork'])

else:

    class SpawnProcess(process.BaseProcess):
        _start_method = 'spawn'
        @staticmethod
        def _Popen(process_obj):
            from .popen_spawn_win32 import Popen
            return Popen(process_obj)

    class SpawnContext(BaseContext):
        _name = 'spawn'
        Process = SpawnProcess

    _concrete_contexts = {
        'spawn': SpawnContext(),
    }
    _default_context = DefaultContext(_concrete_contexts['spawn'])

#
# Force the start method
#

def _force_start_method(method):
    _default_context._actual_context = _concrete_contexts[method]

#
# Check that the current thread is spawning a child process
#

_tls = threading.local()

def get_spawning_popen():
    return getattr(_tls, 'spawning_popen', None)

def set_spawning_popen(popen):
    _tls.spawning_popen = popen

def assert_spawning(obj):
    if get_spawning_popen() is None:
        raise RuntimeError(
            '%s objects should only be shared between processes'
            ' through inheritance' % type(obj).__name__
            )
lib\multiprocessing\forkserver.py
import errno
import os
import selectors
import signal
import socket
import struct
import sys
import threading

from . import connection
from . import process
from . import reduction
from . import semaphore_tracker
from . import spawn
from . import util

__all__ = ['ensure_running', 'get_inherited_fds', 'connect_to_new_process',
           'set_forkserver_preload']

#
#
#

MAXFDS_TO_SEND = 256
UNSIGNED_STRUCT = struct.Struct('Q')     # large enough for pid_t

#
# Forkserver class
#

class ForkServer(object):

    def __init__(self):
        self._forkserver_address = None
        self._forkserver_alive_fd = None
        self._inherited_fds = None
        self._lock = threading.Lock()
        self._preload_modules = ['__main__']

    def set_forkserver_preload(self, modules_names):
        '''Set list of module names to try to load in forkserver process.'''
        if not all(type(mod) is str for mod in self._preload_modules):
            raise TypeError('module_names must be a list of strings')
        self._preload_modules = modules_names

    def get_inherited_fds(self):
        '''Return list of fds inherited from parent process.

        This returns None if the current process was not started by fork
        server.
        '''
        return self._inherited_fds

    def connect_to_new_process(self, fds):
        '''Request forkserver to create a child process.

        Returns a pair of fds (status_r, data_w).  The calling process can read
        the child process's pid and (eventually) its returncode from status_r.
        The calling process should write to data_w the pickled preparation and
        process data.
        '''
        self.ensure_running()
        if len(fds) + 4 >= MAXFDS_TO_SEND:
            raise ValueError('too many fds')
        with socket.socket(socket.AF_UNIX) as client:
            client.connect(self._forkserver_address)
            parent_r, child_w = os.pipe()
            child_r, parent_w = os.pipe()
            allfds = [child_r, child_w, self._forkserver_alive_fd,
                      semaphore_tracker.getfd()]
            allfds += fds
            try:
                reduction.sendfds(client, allfds)
                return parent_r, parent_w
            except:
                os.close(parent_r)
                os.close(parent_w)
                raise
            finally:
                os.close(child_r)
                os.close(child_w)

    def ensure_running(self):
        '''Make sure that a fork server is running.

        This can be called from any process.  Note that usually a child
        process will just reuse the forkserver started by its parent, so
        ensure_running() will do nothing.
        '''
        with self._lock:
            semaphore_tracker.ensure_running()
            if self._forkserver_alive_fd is not None:
                return

            cmd = ('from multiprocessing.forkserver import main; ' +
                   'main(%d, %d, %r, **%r)')

            if self._preload_modules:
                desired_keys = {'main_path', 'sys_path'}
                data = spawn.get_preparation_data('ignore')
                data = dict((x,y) for (x,y) in data.items()
                            if x in desired_keys)
            else:
                data = {}

            with socket.socket(socket.AF_UNIX) as listener:
                address = connection.arbitrary_address('AF_UNIX')
                listener.bind(address)
                os.chmod(address, 0o600)
                listener.listen(100)

                # all client processes own the write end of the "alive" pipe;
                # when they all terminate the read end becomes ready.
                alive_r, alive_w = os.pipe()
                try:
                    fds_to_pass = [listener.fileno(), alive_r]
                    cmd %= (listener.fileno(), alive_r, self._preload_modules,
                            data)
                    exe = spawn.get_executable()
                    args = [exe] + util._args_from_interpreter_flags()
                    args += ['-c', cmd]
                    pid = util.spawnv_passfds(exe, args, fds_to_pass)
                except:
                    os.close(alive_w)
                    raise
                finally:
                    os.close(alive_r)
                self._forkserver_address = address
                self._forkserver_alive_fd = alive_w

#
#
#

def main(listener_fd, alive_r, preload, main_path=None, sys_path=None):
    '''Run forkserver.'''
    if preload:
        if '__main__' in preload and main_path is not None:
            process.current_process()._inheriting = True
            try:
                spawn.import_main_path(main_path)
            finally:
                del process.current_process()._inheriting
        for modname in preload:
            try:
                __import__(modname)
            except ImportError:
                pass

    # close sys.stdin
    if sys.stdin is not None:
        try:
            sys.stdin.close()
            sys.stdin = open(os.devnull)
        except (OSError, ValueError):
            pass

    # ignoring SIGCHLD means no need to reap zombie processes
    handler = signal.signal(signal.SIGCHLD, signal.SIG_IGN)
    with socket.socket(socket.AF_UNIX, fileno=listener_fd) as listener, \
         selectors.DefaultSelector() as selector:
        _forkserver._forkserver_address = listener.getsockname()

        selector.register(listener, selectors.EVENT_READ)
        selector.register(alive_r, selectors.EVENT_READ)

        while True:
            try:
                while True:
                    rfds = [key.fileobj for (key, events) in selector.select()]
                    if rfds:
                        break

                if alive_r in rfds:
                    # EOF because no more client processes left
                    assert os.read(alive_r, 1) == b''
                    raise SystemExit

                assert listener in rfds
                with listener.accept()[0] as s:
                    code = 1
                    if os.fork() == 0:
                        try:
                            _serve_one(s, listener, alive_r, handler)
                        except Exception:
                            sys.excepthook(*sys.exc_info())
                            sys.stderr.flush()
                        finally:
                            os._exit(code)

            except InterruptedError:
                pass
            except OSError as e:
                if e.errno != errno.ECONNABORTED:
                    raise

def _serve_one(s, listener, alive_r, handler):
    # close unnecessary stuff and reset SIGCHLD handler
    listener.close()
    os.close(alive_r)
    signal.signal(signal.SIGCHLD, handler)

    # receive fds from parent process
    fds = reduction.recvfds(s, MAXFDS_TO_SEND + 1)
    s.close()
    assert len(fds) <= MAXFDS_TO_SEND
    (child_r, child_w, _forkserver._forkserver_alive_fd,
     stfd, *_forkserver._inherited_fds) = fds
    semaphore_tracker._semaphore_tracker._fd = stfd

    # send pid to client processes
    write_unsigned(child_w, os.getpid())

    # reseed random number generator
    if 'random' in sys.modules:
        import random
        random.seed()

    # run process object received over pipe
    code = spawn._main(child_r)

    # write the exit code to the pipe
    write_unsigned(child_w, code)

#
# Read and write unsigned numbers
#

def read_unsigned(fd):
    data = b''
    length = UNSIGNED_STRUCT.size
    while len(data) < length:
        while True:
            try:
                s = os.read(fd, length - len(data))
            except InterruptedError:
                pass
            else:
                break
        if not s:
            raise EOFError('unexpected EOF')
        data += s
    return UNSIGNED_STRUCT.unpack(data)[0]

def write_unsigned(fd, n):
    msg = UNSIGNED_STRUCT.pack(n)
    while msg:
        while True:
            try:
                nbytes = os.write(fd, msg)
            except InterruptedError:
                pass
            else:
                break
        if nbytes == 0:
            raise RuntimeError('should not get here')
        msg = msg[nbytes:]

#
#
#

_forkserver = ForkServer()
ensure_running = _forkserver.ensure_running
get_inherited_fds = _forkserver.get_inherited_fds
connect_to_new_process = _forkserver.connect_to_new_process
set_forkserver_preload = _forkserver.set_forkserver_preload
lib\multiprocessing\heap.py
#
# Module which supports allocation of memory from an mmap
#
# multiprocessing/heap.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

import bisect
import mmap
import os
import sys
import tempfile
import threading

from . import context
from . import reduction
from . import util

__all__ = ['BufferWrapper']

#
# Inheritable class which wraps an mmap, and from which blocks can be allocated
#

if sys.platform == 'win32':

    import _winapi

    class Arena(object):

        _rand = tempfile._RandomNameSequence()

        def __init__(self, size):
            self.size = size
            for i in range(100):
                name = 'pym-%d-%s' % (os.getpid(), next(self._rand))
                buf = mmap.mmap(-1, size, tagname=name)
                if _winapi.GetLastError() == 0:
                    break
                # We have reopened a preexisting mmap.
                buf.close()
            else:
                raise FileExistsError('Cannot find name for new mmap')
            self.name = name
            self.buffer = buf
            self._state = (self.size, self.name)

        def __getstate__(self):
            context.assert_spawning(self)
            return self._state

        def __setstate__(self, state):
            self.size, self.name = self._state = state
            self.buffer = mmap.mmap(-1, self.size, tagname=self.name)
            assert _winapi.GetLastError() == _winapi.ERROR_ALREADY_EXISTS

else:

    class Arena(object):

        def __init__(self, size, fd=-1):
            self.size = size
            self.fd = fd
            if fd == -1:
                self.fd, name = tempfile.mkstemp(
                     prefix='pym-%d-'%os.getpid(), dir=util.get_temp_dir())
                os.unlink(name)
                util.Finalize(self, os.close, (self.fd,))
                with open(self.fd, 'wb', closefd=False) as f:
                    f.write(b'\0'*size)
            self.buffer = mmap.mmap(self.fd, self.size)

    def reduce_arena(a):
        if a.fd == -1:
            raise ValueError('Arena is unpicklable because '
                             'forking was enabled when it was created')
        return rebuild_arena, (a.size, reduction.DupFd(a.fd))

    def rebuild_arena(size, dupfd):
        return Arena(size, dupfd.detach())

    reduction.register(Arena, reduce_arena)

#
# Class allowing allocation of chunks of memory from arenas
#

class Heap(object):

    _alignment = 8

    def __init__(self, size=mmap.PAGESIZE):
        self._lastpid = os.getpid()
        self._lock = threading.Lock()
        self._size = size
        self._lengths = []
        self._len_to_seq = {}
        self._start_to_block = {}
        self._stop_to_block = {}
        self._allocated_blocks = set()
        self._arenas = []
        # list of pending blocks to free - see free() comment below
        self._pending_free_blocks = []

    @staticmethod
    def _roundup(n, alignment):
        # alignment must be a power of 2
        mask = alignment - 1
        return (n + mask) & ~mask

    def _malloc(self, size):
        # returns a large enough block -- it might be much larger
        i = bisect.bisect_left(self._lengths, size)
        if i == len(self._lengths):
            length = self._roundup(max(self._size, size), mmap.PAGESIZE)
            self._size *= 2
            util.info('allocating a new mmap of length %d', length)
            arena = Arena(length)
            self._arenas.append(arena)
            return (arena, 0, length)
        else:
            length = self._lengths[i]
            seq = self._len_to_seq[length]
            block = seq.pop()
            if not seq:
                del self._len_to_seq[length], self._lengths[i]

        (arena, start, stop) = block
        del self._start_to_block[(arena, start)]
        del self._stop_to_block[(arena, stop)]
        return block

    def _free(self, block):
        # free location and try to merge with neighbours
        (arena, start, stop) = block

        try:
            prev_block = self._stop_to_block[(arena, start)]
        except KeyError:
            pass
        else:
            start, _ = self._absorb(prev_block)

        try:
            next_block = self._start_to_block[(arena, stop)]
        except KeyError:
            pass
        else:
            _, stop = self._absorb(next_block)

        block = (arena, start, stop)
        length = stop - start

        try:
            self._len_to_seq[length].append(block)
        except KeyError:
            self._len_to_seq[length] = [block]
            bisect.insort(self._lengths, length)

        self._start_to_block[(arena, start)] = block
        self._stop_to_block[(arena, stop)] = block

    def _absorb(self, block):
        # deregister this block so it can be merged with a neighbour
        (arena, start, stop) = block
        del self._start_to_block[(arena, start)]
        del self._stop_to_block[(arena, stop)]

        length = stop - start
        seq = self._len_to_seq[length]
        seq.remove(block)
        if not seq:
            del self._len_to_seq[length]
            self._lengths.remove(length)

        return start, stop

    def _free_pending_blocks(self):
        # Free all the blocks in the pending list - called with the lock held.
        while True:
            try:
                block = self._pending_free_blocks.pop()
            except IndexError:
                break
            self._allocated_blocks.remove(block)
            self._free(block)

    def free(self, block):
        # free a block returned by malloc()
        # Since free() can be called asynchronously by the GC, it could happen
        # that it's called while self._lock is held: in that case,
        # self._lock.acquire() would deadlock (issue #12352). To avoid that, a
        # trylock is used instead, and if the lock can't be acquired
        # immediately, the block is added to a list of blocks to be freed
        # synchronously sometimes later from malloc() or free(), by calling
        # _free_pending_blocks() (appending and retrieving from a list is not
        # strictly thread-safe but under cPython it's atomic thanks to the GIL).
        assert os.getpid() == self._lastpid
        if not self._lock.acquire(False):
            # can't acquire the lock right now, add the block to the list of
            # pending blocks to free
            self._pending_free_blocks.append(block)
        else:
            # we hold the lock
            try:
                self._free_pending_blocks()
                self._allocated_blocks.remove(block)
                self._free(block)
            finally:
                self._lock.release()

    def malloc(self, size):
        # return a block of right size (possibly rounded up)
        assert 0 <= size < sys.maxsize
        if os.getpid() != self._lastpid:
            self.__init__()                     # reinitialize after fork
        self._lock.acquire()
        self._free_pending_blocks()
        try:
            size = self._roundup(max(size,1), self._alignment)
            (arena, start, stop) = self._malloc(size)
            new_stop = start + size
            if new_stop < stop:
                self._free((arena, new_stop, stop))
            block = (arena, start, new_stop)
            self._allocated_blocks.add(block)
            return block
        finally:
            self._lock.release()

#
# Class representing a chunk of an mmap -- can be inherited by child process
#

class BufferWrapper(object):

    _heap = Heap()

    def __init__(self, size):
        assert 0 <= size < sys.maxsize
        block = BufferWrapper._heap.malloc(size)
        self._state = (block, size)
        util.Finalize(self, BufferWrapper._heap.free, args=(block,))

    def create_memoryview(self):
        (arena, start, stop), size = self._state
        return memoryview(arena.buffer)[start:start+size]
lib\multiprocessing\managers.py
#
# Module providing the `SyncManager` class for dealing
# with shared objects
#
# multiprocessing/managers.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = [ 'BaseManager', 'SyncManager', 'BaseProxy', 'Token' ]

#
# Imports
#

import sys
import threading
import array
import queue

from time import time as _time
from traceback import format_exc

from . import connection
from . import context
from . import pool
from . import process
from . import reduction
from . import util
from . import get_context

#
# Register some things for pickling
#

def reduce_array(a):
    return array.array, (a.typecode, a.tobytes())
reduction.register(array.array, reduce_array)

view_types = [type(getattr({}, name)()) for name in ('items','keys','values')]
if view_types[0] is not list:       # only needed in Py3.0
    def rebuild_as_list(obj):
        return list, (list(obj),)
    for view_type in view_types:
        reduction.register(view_type, rebuild_as_list)

#
# Type for identifying shared objects
#

class Token(object):
    '''
    Type to uniquely identify a shared object
    '''
    __slots__ = ('typeid', 'address', 'id')

    def __init__(self, typeid, address, id):
        (self.typeid, self.address, self.id) = (typeid, address, id)

    def __getstate__(self):
        return (self.typeid, self.address, self.id)

    def __setstate__(self, state):
        (self.typeid, self.address, self.id) = state

    def __repr__(self):
        return 'Token(typeid=%r, address=%r, id=%r)' % \
               (self.typeid, self.address, self.id)

#
# Function for communication with a manager's server process
#

def dispatch(c, id, methodname, args=(), kwds={}):
    '''
    Send a message to manager using connection `c` and return response
    '''
    c.send((id, methodname, args, kwds))
    kind, result = c.recv()
    if kind == '#RETURN':
        return result
    raise convert_to_error(kind, result)

def convert_to_error(kind, result):
    if kind == '#ERROR':
        return result
    elif kind == '#TRACEBACK':
        assert type(result) is str
        return  RemoteError(result)
    elif kind == '#UNSERIALIZABLE':
        assert type(result) is str
        return RemoteError('Unserializable message: %s\n' % result)
    else:
        return ValueError('Unrecognized message type')

class RemoteError(Exception):
    def __str__(self):
        return ('\n' + '-'*75 + '\n' + str(self.args[0]) + '-'*75)

#
# Functions for finding the method names of an object
#

def all_methods(obj):
    '''
    Return a list of names of methods of `obj`
    '''
    temp = []
    for name in dir(obj):
        func = getattr(obj, name)
        if callable(func):
            temp.append(name)
    return temp

def public_methods(obj):
    '''
    Return a list of names of methods of `obj` which do not start with '_'
    '''
    return [name for name in all_methods(obj) if name[0] != '_']

#
# Server which is run in a process controlled by a manager
#

class Server(object):
    '''
    Server class which runs in a process controlled by a manager object
    '''
    public = ['shutdown', 'create', 'accept_connection', 'get_methods',
              'debug_info', 'number_of_objects', 'dummy', 'incref', 'decref']

    def __init__(self, registry, address, authkey, serializer):
        assert isinstance(authkey, bytes)
        self.registry = registry
        self.authkey = process.AuthenticationString(authkey)
        Listener, Client = listener_client[serializer]

        # do authentication later
        self.listener = Listener(address=address, backlog=16)
        self.address = self.listener.address

        self.id_to_obj = {'0': (None, ())}
        self.id_to_refcount = {}
        self.mutex = threading.RLock()

    def serve_forever(self):
        '''
        Run the server forever
        '''
        self.stop_event = threading.Event()
        process.current_process()._manager_server = self
        try:
            accepter = threading.Thread(target=self.accepter)
            accepter.daemon = True
            accepter.start()
            try:
                while not self.stop_event.is_set():
                    self.stop_event.wait(1)
            except (KeyboardInterrupt, SystemExit):
                pass
        finally:
            if sys.stdout != sys.__stdout__:
                util.debug('resetting stdout, stderr')
                sys.stdout = sys.__stdout__
                sys.stderr = sys.__stderr__
            sys.exit(0)

    def accepter(self):
        while True:
            try:
                c = self.listener.accept()
            except OSError:
                continue
            t = threading.Thread(target=self.handle_request, args=(c,))
            t.daemon = True
            t.start()

    def handle_request(self, c):
        '''
        Handle a new connection
        '''
        funcname = result = request = None
        try:
            connection.deliver_challenge(c, self.authkey)
            connection.answer_challenge(c, self.authkey)
            request = c.recv()
            ignore, funcname, args, kwds = request
            assert funcname in self.public, '%r unrecognized' % funcname
            func = getattr(self, funcname)
        except Exception:
            msg = ('#TRACEBACK', format_exc())
        else:
            try:
                result = func(c, *args, **kwds)
            except Exception:
                msg = ('#TRACEBACK', format_exc())
            else:
                msg = ('#RETURN', result)
        try:
            c.send(msg)
        except Exception as e:
            try:
                c.send(('#TRACEBACK', format_exc()))
            except Exception:
                pass
            util.info('Failure to send message: %r', msg)
            util.info(' ... request was %r', request)
            util.info(' ... exception was %r', e)

        c.close()

    def serve_client(self, conn):
        '''
        Handle requests from the proxies in a particular process/thread
        '''
        util.debug('starting server thread to service %r',
                   threading.current_thread().name)

        recv = conn.recv
        send = conn.send
        id_to_obj = self.id_to_obj

        while not self.stop_event.is_set():

            try:
                methodname = obj = None
                request = recv()
                ident, methodname, args, kwds = request
                obj, exposed, gettypeid = id_to_obj[ident]

                if methodname not in exposed:
                    raise AttributeError(
                        'method %r of %r object is not in exposed=%r' %
                        (methodname, type(obj), exposed)
                        )

                function = getattr(obj, methodname)

                try:
                    res = function(*args, **kwds)
                except Exception as e:
                    msg = ('#ERROR', e)
                else:
                    typeid = gettypeid and gettypeid.get(methodname, None)
                    if typeid:
                        rident, rexposed = self.create(conn, typeid, res)
                        token = Token(typeid, self.address, rident)
                        msg = ('#PROXY', (rexposed, token))
                    else:
                        msg = ('#RETURN', res)

            except AttributeError:
                if methodname is None:
                    msg = ('#TRACEBACK', format_exc())
                else:
                    try:
                        fallback_func = self.fallback_mapping[methodname]
                        result = fallback_func(
                            self, conn, ident, obj, *args, **kwds
                            )
                        msg = ('#RETURN', result)
                    except Exception:
                        msg = ('#TRACEBACK', format_exc())

            except EOFError:
                util.debug('got EOF -- exiting thread serving %r',
                           threading.current_thread().name)
                sys.exit(0)

            except Exception:
                msg = ('#TRACEBACK', format_exc())

            try:
                try:
                    send(msg)
                except Exception as e:
                    send(('#UNSERIALIZABLE', repr(msg)))
            except Exception as e:
                util.info('exception in thread serving %r',
                        threading.current_thread().name)
                util.info(' ... message was %r', msg)
                util.info(' ... exception was %r', e)
                conn.close()
                sys.exit(1)

    def fallback_getvalue(self, conn, ident, obj):
        return obj

    def fallback_str(self, conn, ident, obj):
        return str(obj)

    def fallback_repr(self, conn, ident, obj):
        return repr(obj)

    fallback_mapping = {
        '__str__':fallback_str,
        '__repr__':fallback_repr,
        '#GETVALUE':fallback_getvalue
        }

    def dummy(self, c):
        pass

    def debug_info(self, c):
        '''
        Return some info --- useful to spot problems with refcounting
        '''
        self.mutex.acquire()
        try:
            result = []
            keys = list(self.id_to_obj.keys())
            keys.sort()
            for ident in keys:
                if ident != '0':
                    result.append('  %s:       refcount=%s\n    %s' %
                                  (ident, self.id_to_refcount[ident],
                                   str(self.id_to_obj[ident][0])[:75]))
            return '\n'.join(result)
        finally:
            self.mutex.release()

    def number_of_objects(self, c):
        '''
        Number of shared objects
        '''
        return len(self.id_to_obj) - 1      # don't count ident='0'

    def shutdown(self, c):
        '''
        Shutdown this process
        '''
        try:
            util.debug('manager received shutdown message')
            c.send(('#RETURN', None))
        except:
            import traceback
            traceback.print_exc()
        finally:
            self.stop_event.set()

    def create(self, c, typeid, *args, **kwds):
        '''
        Create a new shared object and return its id
        '''
        self.mutex.acquire()
        try:
            callable, exposed, method_to_typeid, proxytype = \
                      self.registry[typeid]

            if callable is None:
                assert len(args) == 1 and not kwds
                obj = args[0]
            else:
                obj = callable(*args, **kwds)

            if exposed is None:
                exposed = public_methods(obj)
            if method_to_typeid is not None:
                assert type(method_to_typeid) is dict
                exposed = list(exposed) + list(method_to_typeid)

            ident = '%x' % id(obj)  # convert to string because xmlrpclib
                                    # only has 32 bit signed integers
            util.debug('%r callable returned object with id %r', typeid, ident)

            self.id_to_obj[ident] = (obj, set(exposed), method_to_typeid)
            if ident not in self.id_to_refcount:
                self.id_to_refcount[ident] = 0
            # increment the reference count immediately, to avoid
            # this object being garbage collected before a Proxy
            # object for it can be created.  The caller of create()
            # is responsible for doing a decref once the Proxy object
            # has been created.
            self.incref(c, ident)
            return ident, tuple(exposed)
        finally:
            self.mutex.release()

    def get_methods(self, c, token):
        '''
        Return the methods of the shared object indicated by token
        '''
        return tuple(self.id_to_obj[token.id][1])

    def accept_connection(self, c, name):
        '''
        Spawn a new thread to serve this connection
        '''
        threading.current_thread().name = name
        c.send(('#RETURN', None))
        self.serve_client(c)

    def incref(self, c, ident):
        self.mutex.acquire()
        try:
            self.id_to_refcount[ident] += 1
        finally:
            self.mutex.release()

    def decref(self, c, ident):
        self.mutex.acquire()
        try:
            assert self.id_to_refcount[ident] >= 1
            self.id_to_refcount[ident] -= 1
            if self.id_to_refcount[ident] == 0:
                del self.id_to_obj[ident], self.id_to_refcount[ident]
                util.debug('disposing of obj with id %r', ident)
        finally:
            self.mutex.release()

#
# Class to represent state of a manager
#

class State(object):
    __slots__ = ['value']
    INITIAL = 0
    STARTED = 1
    SHUTDOWN = 2

#
# Mapping from serializer name to Listener and Client types
#

listener_client = {
    'pickle' : (connection.Listener, connection.Client),
    'xmlrpclib' : (connection.XmlListener, connection.XmlClient)
    }

#
# Definition of BaseManager
#

class BaseManager(object):
    '''
    Base class for managers
    '''
    _registry = {}
    _Server = Server

    def __init__(self, address=None, authkey=None, serializer='pickle',
                 ctx=None):
        if authkey is None:
            authkey = process.current_process().authkey
        self._address = address     # XXX not final address if eg ('', 0)
        self._authkey = process.AuthenticationString(authkey)
        self._state = State()
        self._state.value = State.INITIAL
        self._serializer = serializer
        self._Listener, self._Client = listener_client[serializer]
        self._ctx = ctx or get_context()

    def get_server(self):
        '''
        Return server object with serve_forever() method and address attribute
        '''
        assert self._state.value == State.INITIAL
        return Server(self._registry, self._address,
                      self._authkey, self._serializer)

    def connect(self):
        '''
        Connect manager object to the server process
        '''
        Listener, Client = listener_client[self._serializer]
        conn = Client(self._address, authkey=self._authkey)
        dispatch(conn, None, 'dummy')
        self._state.value = State.STARTED

    def start(self, initializer=None, initargs=()):
        '''
        Spawn a server process for this manager object
        '''
        assert self._state.value == State.INITIAL

        if initializer is not None and not callable(initializer):
            raise TypeError('initializer must be a callable')

        # pipe over which we will retrieve address of server
        reader, writer = connection.Pipe(duplex=False)

        # spawn process which runs a server
        self._process = self._ctx.Process(
            target=type(self)._run_server,
            args=(self._registry, self._address, self._authkey,
                  self._serializer, writer, initializer, initargs),
            )
        ident = ':'.join(str(i) for i in self._process._identity)
        self._process.name = type(self).__name__  + '-' + ident
        self._process.start()

        # get address of server
        writer.close()
        self._address = reader.recv()
        reader.close()

        # register a finalizer
        self._state.value = State.STARTED
        self.shutdown = util.Finalize(
            self, type(self)._finalize_manager,
            args=(self._process, self._address, self._authkey,
                  self._state, self._Client),
            exitpriority=0
            )

    @classmethod
    def _run_server(cls, registry, address, authkey, serializer, writer,
                    initializer=None, initargs=()):
        '''
        Create a server, report its address and run it
        '''
        if initializer is not None:
            initializer(*initargs)

        # create server
        server = cls._Server(registry, address, authkey, serializer)

        # inform parent process of the server's address
        writer.send(server.address)
        writer.close()

        # run the manager
        util.info('manager serving at %r', server.address)
        server.serve_forever()

    def _create(self, typeid, *args, **kwds):
        '''
        Create a new shared object; return the token and exposed tuple
        '''
        assert self._state.value == State.STARTED, 'server not yet started'
        conn = self._Client(self._address, authkey=self._authkey)
        try:
            id, exposed = dispatch(conn, None, 'create', (typeid,)+args, kwds)
        finally:
            conn.close()
        return Token(typeid, self._address, id), exposed

    def join(self, timeout=None):
        '''
        Join the manager process (if it has been spawned)
        '''
        if self._process is not None:
            self._process.join(timeout)
            if not self._process.is_alive():
                self._process = None

    def _debug_info(self):
        '''
        Return some info about the servers shared objects and connections
        '''
        conn = self._Client(self._address, authkey=self._authkey)
        try:
            return dispatch(conn, None, 'debug_info')
        finally:
            conn.close()

    def _number_of_objects(self):
        '''
        Return the number of shared objects
        '''
        conn = self._Client(self._address, authkey=self._authkey)
        try:
            return dispatch(conn, None, 'number_of_objects')
        finally:
            conn.close()

    def __enter__(self):
        if self._state.value == State.INITIAL:
            self.start()
        assert self._state.value == State.STARTED
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.shutdown()

    @staticmethod
    def _finalize_manager(process, address, authkey, state, _Client):
        '''
        Shutdown the manager process; will be registered as a finalizer
        '''
        if process.is_alive():
            util.info('sending shutdown message to manager')
            try:
                conn = _Client(address, authkey=authkey)
                try:
                    dispatch(conn, None, 'shutdown')
                finally:
                    conn.close()
            except Exception:
                pass

            process.join(timeout=1.0)
            if process.is_alive():
                util.info('manager still alive')
                if hasattr(process, 'terminate'):
                    util.info('trying to `terminate()` manager process')
                    process.terminate()
                    process.join(timeout=0.1)
                    if process.is_alive():
                        util.info('manager still alive after terminate')

        state.value = State.SHUTDOWN
        try:
            del BaseProxy._address_to_local[address]
        except KeyError:
            pass

    address = property(lambda self: self._address)

    @classmethod
    def register(cls, typeid, callable=None, proxytype=None, exposed=None,
                 method_to_typeid=None, create_method=True):
        '''
        Register a typeid with the manager type
        '''
        if '_registry' not in cls.__dict__:
            cls._registry = cls._registry.copy()

        if proxytype is None:
            proxytype = AutoProxy

        exposed = exposed or getattr(proxytype, '_exposed_', None)

        method_to_typeid = method_to_typeid or \
                           getattr(proxytype, '_method_to_typeid_', None)

        if method_to_typeid:
            for key, value in list(method_to_typeid.items()):
                assert type(key) is str, '%r is not a string' % key
                assert type(value) is str, '%r is not a string' % value

        cls._registry[typeid] = (
            callable, exposed, method_to_typeid, proxytype
            )

        if create_method:
            def temp(self, *args, **kwds):
                util.debug('requesting creation of a shared %r object', typeid)
                token, exp = self._create(typeid, *args, **kwds)
                proxy = proxytype(
                    token, self._serializer, manager=self,
                    authkey=self._authkey, exposed=exp
                    )
                conn = self._Client(token.address, authkey=self._authkey)
                dispatch(conn, None, 'decref', (token.id,))
                return proxy
            temp.__name__ = typeid
            setattr(cls, typeid, temp)

#
# Subclass of set which get cleared after a fork
#

class ProcessLocalSet(set):
    def __init__(self):
        util.register_after_fork(self, lambda obj: obj.clear())
    def __reduce__(self):
        return type(self), ()

#
# Definition of BaseProxy
#

class BaseProxy(object):
    '''
    A base for proxies of shared objects
    '''
    _address_to_local = {}
    _mutex = util.ForkAwareThreadLock()

    def __init__(self, token, serializer, manager=None,
                 authkey=None, exposed=None, incref=True):
        BaseProxy._mutex.acquire()
        try:
            tls_idset = BaseProxy._address_to_local.get(token.address, None)
            if tls_idset is None:
                tls_idset = util.ForkAwareLocal(), ProcessLocalSet()
                BaseProxy._address_to_local[token.address] = tls_idset
        finally:
            BaseProxy._mutex.release()

        # self._tls is used to record the connection used by this
        # thread to communicate with the manager at token.address
        self._tls = tls_idset[0]

        # self._idset is used to record the identities of all shared
        # objects for which the current process owns references and
        # which are in the manager at token.address
        self._idset = tls_idset[1]

        self._token = token
        self._id = self._token.id
        self._manager = manager
        self._serializer = serializer
        self._Client = listener_client[serializer][1]

        if authkey is not None:
            self._authkey = process.AuthenticationString(authkey)
        elif self._manager is not None:
            self._authkey = self._manager._authkey
        else:
            self._authkey = process.current_process().authkey

        if incref:
            self._incref()

        util.register_after_fork(self, BaseProxy._after_fork)

    def _connect(self):
        util.debug('making connection to manager')
        name = process.current_process().name
        if threading.current_thread().name != 'MainThread':
            name += '|' + threading.current_thread().name
        conn = self._Client(self._token.address, authkey=self._authkey)
        dispatch(conn, None, 'accept_connection', (name,))
        self._tls.connection = conn

    def _callmethod(self, methodname, args=(), kwds={}):
        '''
        Try to call a method of the referrent and return a copy of the result
        '''
        try:
            conn = self._tls.connection
        except AttributeError:
            util.debug('thread %r does not own a connection',
                       threading.current_thread().name)
            self._connect()
            conn = self._tls.connection

        conn.send((self._id, methodname, args, kwds))
        kind, result = conn.recv()

        if kind == '#RETURN':
            return result
        elif kind == '#PROXY':
            exposed, token = result
            proxytype = self._manager._registry[token.typeid][-1]
            token.address = self._token.address
            proxy = proxytype(
                token, self._serializer, manager=self._manager,
                authkey=self._authkey, exposed=exposed
                )
            conn = self._Client(token.address, authkey=self._authkey)
            dispatch(conn, None, 'decref', (token.id,))
            return proxy
        raise convert_to_error(kind, result)

    def _getvalue(self):
        '''
        Get a copy of the value of the referent
        '''
        return self._callmethod('#GETVALUE')

    def _incref(self):
        conn = self._Client(self._token.address, authkey=self._authkey)
        dispatch(conn, None, 'incref', (self._id,))
        util.debug('INCREF %r', self._token.id)

        self._idset.add(self._id)

        state = self._manager and self._manager._state

        self._close = util.Finalize(
            self, BaseProxy._decref,
            args=(self._token, self._authkey, state,
                  self._tls, self._idset, self._Client),
            exitpriority=10
            )

    @staticmethod
    def _decref(token, authkey, state, tls, idset, _Client):
        idset.discard(token.id)

        # check whether manager is still alive
        if state is None or state.value == State.STARTED:
            # tell manager this process no longer cares about referent
            try:
                util.debug('DECREF %r', token.id)
                conn = _Client(token.address, authkey=authkey)
                dispatch(conn, None, 'decref', (token.id,))
            except Exception as e:
                util.debug('... decref failed %s', e)

        else:
            util.debug('DECREF %r -- manager already shutdown', token.id)

        # check whether we can close this thread's connection because
        # the process owns no more references to objects for this manager
        if not idset and hasattr(tls, 'connection'):
            util.debug('thread %r has no more proxies so closing conn',
                       threading.current_thread().name)
            tls.connection.close()
            del tls.connection

    def _after_fork(self):
        self._manager = None
        try:
            self._incref()
        except Exception as e:
            # the proxy may just be for a manager which has shutdown
            util.info('incref failed: %s' % e)

    def __reduce__(self):
        kwds = {}
        if context.get_spawning_popen() is not None:
            kwds['authkey'] = self._authkey

        if getattr(self, '_isauto', False):
            kwds['exposed'] = self._exposed_
            return (RebuildProxy,
                    (AutoProxy, self._token, self._serializer, kwds))
        else:
            return (RebuildProxy,
                    (type(self), self._token, self._serializer, kwds))

    def __deepcopy__(self, memo):
        return self._getvalue()

    def __repr__(self):
        return '<%s object, typeid %r at %s>' % \
               (type(self).__name__, self._token.typeid, '0x%x' % id(self))

    def __str__(self):
        '''
        Return representation of the referent (or a fall-back if that fails)
        '''
        try:
            return self._callmethod('__repr__')
        except Exception:
            return repr(self)[:-1] + "; '__str__()' failed>"

#
# Function used for unpickling
#

def RebuildProxy(func, token, serializer, kwds):
    '''
    Function used for unpickling proxy objects.

    If possible the shared object is returned, or otherwise a proxy for it.
    '''
    server = getattr(process.current_process(), '_manager_server', None)

    if server and server.address == token.address:
        return server.id_to_obj[token.id][0]
    else:
        incref = (
            kwds.pop('incref', True) and
            not getattr(process.current_process(), '_inheriting', False)
            )
        return func(token, serializer, incref=incref, **kwds)

#
# Functions to create proxies and proxy types
#

def MakeProxyType(name, exposed, _cache={}):
    '''
    Return an proxy type whose methods are given by `exposed`
    '''
    exposed = tuple(exposed)
    try:
        return _cache[(name, exposed)]
    except KeyError:
        pass

    dic = {}

    for meth in exposed:
        exec('''def %s(self, *args, **kwds):
        return self._callmethod(%r, args, kwds)''' % (meth, meth), dic)

    ProxyType = type(name, (BaseProxy,), dic)
    ProxyType._exposed_ = exposed
    _cache[(name, exposed)] = ProxyType
    return ProxyType


def AutoProxy(token, serializer, manager=None, authkey=None,
              exposed=None, incref=True):
    '''
    Return an auto-proxy for `token`
    '''
    _Client = listener_client[serializer][1]

    if exposed is None:
        conn = _Client(token.address, authkey=authkey)
        try:
            exposed = dispatch(conn, None, 'get_methods', (token,))
        finally:
            conn.close()

    if authkey is None and manager is not None:
        authkey = manager._authkey
    if authkey is None:
        authkey = process.current_process().authkey

    ProxyType = MakeProxyType('AutoProxy[%s]' % token.typeid, exposed)
    proxy = ProxyType(token, serializer, manager=manager, authkey=authkey,
                      incref=incref)
    proxy._isauto = True
    return proxy

#
# Types/callables which we will register with SyncManager
#

class Namespace(object):
    def __init__(self, **kwds):
        self.__dict__.update(kwds)
    def __repr__(self):
        items = list(self.__dict__.items())
        temp = []
        for name, value in items:
            if not name.startswith('_'):
                temp.append('%s=%r' % (name, value))
        temp.sort()
        return 'Namespace(%s)' % str.join(', ', temp)

class Value(object):
    def __init__(self, typecode, value, lock=True):
        self._typecode = typecode
        self._value = value
    def get(self):
        return self._value
    def set(self, value):
        self._value = value
    def __repr__(self):
        return '%s(%r, %r)'%(type(self).__name__, self._typecode, self._value)
    value = property(get, set)

def Array(typecode, sequence, lock=True):
    return array.array(typecode, sequence)

#
# Proxy types used by SyncManager
#

class IteratorProxy(BaseProxy):
    _exposed_ = ('__next__', 'send', 'throw', 'close')
    def __iter__(self):
        return self
    def __next__(self, *args):
        return self._callmethod('__next__', args)
    def send(self, *args):
        return self._callmethod('send', args)
    def throw(self, *args):
        return self._callmethod('throw', args)
    def close(self, *args):
        return self._callmethod('close', args)


class AcquirerProxy(BaseProxy):
    _exposed_ = ('acquire', 'release')
    def acquire(self, blocking=True, timeout=None):
        args = (blocking,) if timeout is None else (blocking, timeout)
        return self._callmethod('acquire', args)
    def release(self):
        return self._callmethod('release')
    def __enter__(self):
        return self._callmethod('acquire')
    def __exit__(self, exc_type, exc_val, exc_tb):
        return self._callmethod('release')


class ConditionProxy(AcquirerProxy):
    _exposed_ = ('acquire', 'release', 'wait', 'notify', 'notify_all')
    def wait(self, timeout=None):
        return self._callmethod('wait', (timeout,))
    def notify(self):
        return self._callmethod('notify')
    def notify_all(self):
        return self._callmethod('notify_all')
    def wait_for(self, predicate, timeout=None):
        result = predicate()
        if result:
            return result
        if timeout is not None:
            endtime = _time() + timeout
        else:
            endtime = None
            waittime = None
        while not result:
            if endtime is not None:
                waittime = endtime - _time()
                if waittime <= 0:
                    break
            self.wait(waittime)
            result = predicate()
        return result


class EventProxy(BaseProxy):
    _exposed_ = ('is_set', 'set', 'clear', 'wait')
    def is_set(self):
        return self._callmethod('is_set')
    def set(self):
        return self._callmethod('set')
    def clear(self):
        return self._callmethod('clear')
    def wait(self, timeout=None):
        return self._callmethod('wait', (timeout,))


class BarrierProxy(BaseProxy):
    _exposed_ = ('__getattribute__', 'wait', 'abort', 'reset')
    def wait(self, timeout=None):
        return self._callmethod('wait', (timeout,))
    def abort(self):
        return self._callmethod('abort')
    def reset(self):
        return self._callmethod('reset')
    @property
    def parties(self):
        return self._callmethod('__getattribute__', ('parties',))
    @property
    def n_waiting(self):
        return self._callmethod('__getattribute__', ('n_waiting',))
    @property
    def broken(self):
        return self._callmethod('__getattribute__', ('broken',))


class NamespaceProxy(BaseProxy):
    _exposed_ = ('__getattribute__', '__setattr__', '__delattr__')
    def __getattr__(self, key):
        if key[0] == '_':
            return object.__getattribute__(self, key)
        callmethod = object.__getattribute__(self, '_callmethod')
        return callmethod('__getattribute__', (key,))
    def __setattr__(self, key, value):
        if key[0] == '_':
            return object.__setattr__(self, key, value)
        callmethod = object.__getattribute__(self, '_callmethod')
        return callmethod('__setattr__', (key, value))
    def __delattr__(self, key):
        if key[0] == '_':
            return object.__delattr__(self, key)
        callmethod = object.__getattribute__(self, '_callmethod')
        return callmethod('__delattr__', (key,))


class ValueProxy(BaseProxy):
    _exposed_ = ('get', 'set')
    def get(self):
        return self._callmethod('get')
    def set(self, value):
        return self._callmethod('set', (value,))
    value = property(get, set)


BaseListProxy = MakeProxyType('BaseListProxy', (
    '__add__', '__contains__', '__delitem__', '__getitem__', '__len__',
    '__mul__', '__reversed__', '__rmul__', '__setitem__',
    'append', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
    'reverse', 'sort', '__imul__'
    ))
class ListProxy(BaseListProxy):
    def __iadd__(self, value):
        self._callmethod('extend', (value,))
        return self
    def __imul__(self, value):
        self._callmethod('__imul__', (value,))
        return self


DictProxy = MakeProxyType('DictProxy', (
    '__contains__', '__delitem__', '__getitem__', '__len__',
    '__setitem__', 'clear', 'copy', 'get', 'has_key', 'items',
    'keys', 'pop', 'popitem', 'setdefault', 'update', 'values'
    ))


ArrayProxy = MakeProxyType('ArrayProxy', (
    '__len__', '__getitem__', '__setitem__'
    ))


BasePoolProxy = MakeProxyType('PoolProxy', (
    'apply', 'apply_async', 'close', 'imap', 'imap_unordered', 'join',
    'map', 'map_async', 'starmap', 'starmap_async', 'terminate',
    ))
BasePoolProxy._method_to_typeid_ = {
    'apply_async': 'AsyncResult',
    'map_async': 'AsyncResult',
    'starmap_async': 'AsyncResult',
    'imap': 'Iterator',
    'imap_unordered': 'Iterator'
    }
class PoolProxy(BasePoolProxy):
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_val, exc_tb):
        self.terminate()

#
# Definition of SyncManager
#

class SyncManager(BaseManager):
    '''
    Subclass of `BaseManager` which supports a number of shared object types.

    The types registered are those intended for the synchronization
    of threads, plus `dict`, `list` and `Namespace`.

    The `multiprocessing.Manager()` function creates started instances of
    this class.
    '''

SyncManager.register('Queue', queue.Queue)
SyncManager.register('JoinableQueue', queue.Queue)
SyncManager.register('Event', threading.Event, EventProxy)
SyncManager.register('Lock', threading.Lock, AcquirerProxy)
SyncManager.register('RLock', threading.RLock, AcquirerProxy)
SyncManager.register('Semaphore', threading.Semaphore, AcquirerProxy)
SyncManager.register('BoundedSemaphore', threading.BoundedSemaphore,
                     AcquirerProxy)
SyncManager.register('Condition', threading.Condition, ConditionProxy)
SyncManager.register('Barrier', threading.Barrier, BarrierProxy)
SyncManager.register('Pool', pool.Pool, PoolProxy)
SyncManager.register('list', list, ListProxy)
SyncManager.register('dict', dict, DictProxy)
SyncManager.register('Value', Value, ValueProxy)
SyncManager.register('Array', Array, ArrayProxy)
SyncManager.register('Namespace', Namespace, NamespaceProxy)

# types returned by methods of PoolProxy
SyncManager.register('Iterator', proxytype=IteratorProxy, create_method=False)
SyncManager.register('AsyncResult', create_method=False)
lib\multiprocessing\pool.py
#
# Module providing the `Pool` class for managing a process pool
#
# multiprocessing/pool.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = ['Pool', 'ThreadPool']

#
# Imports
#

import threading
import queue
import itertools
import collections
import os
import time
import traceback

# If threading is available then ThreadPool should be provided.  Therefore
# we avoid top-level imports which are liable to fail on some systems.
from . import util
from . import get_context, TimeoutError

#
# Constants representing the state of a pool
#

RUN = 0
CLOSE = 1
TERMINATE = 2

#
# Miscellaneous
#

job_counter = itertools.count()

def mapstar(args):
    return list(map(*args))

def starmapstar(args):
    return list(itertools.starmap(args[0], args[1]))

#
# Hack to embed stringification of remote traceback in local traceback
#

class RemoteTraceback(Exception):
    def __init__(self, tb):
        self.tb = tb
    def __str__(self):
        return self.tb

class ExceptionWithTraceback:
    def __init__(self, exc, tb):
        tb = traceback.format_exception(type(exc), exc, tb)
        tb = ''.join(tb)
        self.exc = exc
        self.tb = '\n"""\n%s"""' % tb
    def __reduce__(self):
        return rebuild_exc, (self.exc, self.tb)

def rebuild_exc(exc, tb):
    exc.__cause__ = RemoteTraceback(tb)
    return exc

#
# Code run by worker processes
#

class MaybeEncodingError(Exception):
    """Wraps possible unpickleable errors, so they can be
    safely sent through the socket."""

    def __init__(self, exc, value):
        self.exc = repr(exc)
        self.value = repr(value)
        super(MaybeEncodingError, self).__init__(self.exc, self.value)

    def __str__(self):
        return "Error sending result: '%s'. Reason: '%s'" % (self.value,
                                                             self.exc)

    def __repr__(self):
        return "<MaybeEncodingError: %s>" % str(self)


def worker(inqueue, outqueue, initializer=None, initargs=(), maxtasks=None,
           wrap_exception=False):
    assert maxtasks is None or (type(maxtasks) == int and maxtasks > 0)
    put = outqueue.put
    get = inqueue.get
    if hasattr(inqueue, '_writer'):
        inqueue._writer.close()
        outqueue._reader.close()

    if initializer is not None:
        initializer(*initargs)

    completed = 0
    while maxtasks is None or (maxtasks and completed < maxtasks):
        try:
            task = get()
        except (EOFError, OSError):
            util.debug('worker got EOFError or OSError -- exiting')
            break

        if task is None:
            util.debug('worker got sentinel -- exiting')
            break

        job, i, func, args, kwds = task
        try:
            result = (True, func(*args, **kwds))
        except Exception as e:
            if wrap_exception:
                e = ExceptionWithTraceback(e, e.__traceback__)
            result = (False, e)
        try:
            put((job, i, result))
        except Exception as e:
            wrapped = MaybeEncodingError(e, result[1])
            util.debug("Possible encoding error while sending result: %s" % (
                wrapped))
            put((job, i, (False, wrapped)))
        completed += 1
    util.debug('worker exiting after %d tasks' % completed)

#
# Class representing a process pool
#

class Pool(object):
    '''
    Class which supports an async version of applying functions to arguments.
    '''
    _wrap_exception = True

    def Process(self, *args, **kwds):
        return self._ctx.Process(*args, **kwds)

    def __init__(self, processes=None, initializer=None, initargs=(),
                 maxtasksperchild=None, context=None):
        self._ctx = context or get_context()
        self._setup_queues()
        self._taskqueue = queue.Queue()
        self._cache = {}
        self._state = RUN
        self._maxtasksperchild = maxtasksperchild
        self._initializer = initializer
        self._initargs = initargs

        if processes is None:
            processes = os.cpu_count() or 1
        if processes < 1:
            raise ValueError("Number of processes must be at least 1")

        if initializer is not None and not callable(initializer):
            raise TypeError('initializer must be a callable')

        self._processes = processes
        self._pool = []
        self._repopulate_pool()

        self._worker_handler = threading.Thread(
            target=Pool._handle_workers,
            args=(self, )
            )
        self._worker_handler.daemon = True
        self._worker_handler._state = RUN
        self._worker_handler.start()


        self._task_handler = threading.Thread(
            target=Pool._handle_tasks,
            args=(self._taskqueue, self._quick_put, self._outqueue,
                  self._pool, self._cache)
            )
        self._task_handler.daemon = True
        self._task_handler._state = RUN
        self._task_handler.start()

        self._result_handler = threading.Thread(
            target=Pool._handle_results,
            args=(self._outqueue, self._quick_get, self._cache)
            )
        self._result_handler.daemon = True
        self._result_handler._state = RUN
        self._result_handler.start()

        self._terminate = util.Finalize(
            self, self._terminate_pool,
            args=(self._taskqueue, self._inqueue, self._outqueue, self._pool,
                  self._worker_handler, self._task_handler,
                  self._result_handler, self._cache),
            exitpriority=15
            )

    def _join_exited_workers(self):
        """Cleanup after any worker processes which have exited due to reaching
        their specified lifetime.  Returns True if any workers were cleaned up.
        """
        cleaned = False
        for i in reversed(range(len(self._pool))):
            worker = self._pool[i]
            if worker.exitcode is not None:
                # worker exited
                util.debug('cleaning up worker %d' % i)
                worker.join()
                cleaned = True
                del self._pool[i]
        return cleaned

    def _repopulate_pool(self):
        """Bring the number of pool processes up to the specified number,
        for use after reaping workers which have exited.
        """
        for i in range(self._processes - len(self._pool)):
            w = self.Process(target=worker,
                             args=(self._inqueue, self._outqueue,
                                   self._initializer,
                                   self._initargs, self._maxtasksperchild,
                                   self._wrap_exception)
                            )
            self._pool.append(w)
            w.name = w.name.replace('Process', 'PoolWorker')
            w.daemon = True
            w.start()
            util.debug('added worker')

    def _maintain_pool(self):
        """Clean up any exited workers and start replacements for them.
        """
        if self._join_exited_workers():
            self._repopulate_pool()

    def _setup_queues(self):
        self._inqueue = self._ctx.SimpleQueue()
        self._outqueue = self._ctx.SimpleQueue()
        self._quick_put = self._inqueue._writer.send
        self._quick_get = self._outqueue._reader.recv

    def apply(self, func, args=(), kwds={}):
        '''
        Equivalent of `func(*args, **kwds)`.
        '''
        assert self._state == RUN
        return self.apply_async(func, args, kwds).get()

    def map(self, func, iterable, chunksize=None):
        '''
        Apply `func` to each element in `iterable`, collecting the results
        in a list that is returned.
        '''
        return self._map_async(func, iterable, mapstar, chunksize).get()

    def starmap(self, func, iterable, chunksize=None):
        '''
        Like `map()` method but the elements of the `iterable` are expected to
        be iterables as well and will be unpacked as arguments. Hence
        `func` and (a, b) becomes func(a, b).
        '''
        return self._map_async(func, iterable, starmapstar, chunksize).get()

    def starmap_async(self, func, iterable, chunksize=None, callback=None,
            error_callback=None):
        '''
        Asynchronous version of `starmap()` method.
        '''
        return self._map_async(func, iterable, starmapstar, chunksize,
                               callback, error_callback)

    def imap(self, func, iterable, chunksize=1):
        '''
        Equivalent of `map()` -- can be MUCH slower than `Pool.map()`.
        '''
        if self._state != RUN:
            raise ValueError("Pool not running")
        if chunksize == 1:
            result = IMapIterator(self._cache)
            self._taskqueue.put((((result._job, i, func, (x,), {})
                         for i, x in enumerate(iterable)), result._set_length))
            return result
        else:
            assert chunksize > 1
            task_batches = Pool._get_tasks(func, iterable, chunksize)
            result = IMapIterator(self._cache)
            self._taskqueue.put((((result._job, i, mapstar, (x,), {})
                     for i, x in enumerate(task_batches)), result._set_length))
            return (item for chunk in result for item in chunk)

    def imap_unordered(self, func, iterable, chunksize=1):
        '''
        Like `imap()` method but ordering of results is arbitrary.
        '''
        if self._state != RUN:
            raise ValueError("Pool not running")
        if chunksize == 1:
            result = IMapUnorderedIterator(self._cache)
            self._taskqueue.put((((result._job, i, func, (x,), {})
                         for i, x in enumerate(iterable)), result._set_length))
            return result
        else:
            assert chunksize > 1
            task_batches = Pool._get_tasks(func, iterable, chunksize)
            result = IMapUnorderedIterator(self._cache)
            self._taskqueue.put((((result._job, i, mapstar, (x,), {})
                     for i, x in enumerate(task_batches)), result._set_length))
            return (item for chunk in result for item in chunk)

    def apply_async(self, func, args=(), kwds={}, callback=None,
            error_callback=None):
        '''
        Asynchronous version of `apply()` method.
        '''
        if self._state != RUN:
            raise ValueError("Pool not running")
        result = ApplyResult(self._cache, callback, error_callback)
        self._taskqueue.put(([(result._job, None, func, args, kwds)], None))
        return result

    def map_async(self, func, iterable, chunksize=None, callback=None,
            error_callback=None):
        '''
        Asynchronous version of `map()` method.
        '''
        return self._map_async(func, iterable, mapstar, chunksize, callback,
            error_callback)

    def _map_async(self, func, iterable, mapper, chunksize=None, callback=None,
            error_callback=None):
        '''
        Helper function to implement map, starmap and their async counterparts.
        '''
        if self._state != RUN:
            raise ValueError("Pool not running")
        if not hasattr(iterable, '__len__'):
            iterable = list(iterable)

        if chunksize is None:
            chunksize, extra = divmod(len(iterable), len(self._pool) * 4)
            if extra:
                chunksize += 1
        if len(iterable) == 0:
            chunksize = 0

        task_batches = Pool._get_tasks(func, iterable, chunksize)
        result = MapResult(self._cache, chunksize, len(iterable), callback,
                           error_callback=error_callback)
        self._taskqueue.put((((result._job, i, mapper, (x,), {})
                              for i, x in enumerate(task_batches)), None))
        return result

    @staticmethod
    def _handle_workers(pool):
        thread = threading.current_thread()

        # Keep maintaining workers until the cache gets drained, unless the pool
        # is terminated.
        while thread._state == RUN or (pool._cache and thread._state != TERMINATE):
            pool._maintain_pool()
            time.sleep(0.1)
        # send sentinel to stop workers
        pool._taskqueue.put(None)
        util.debug('worker handler exiting')

    @staticmethod
    def _handle_tasks(taskqueue, put, outqueue, pool, cache):
        thread = threading.current_thread()

        for taskseq, set_length in iter(taskqueue.get, None):
            task = None
            i = -1
            try:
                for i, task in enumerate(taskseq):
                    if thread._state:
                        util.debug('task handler found thread._state != RUN')
                        break
                    try:
                        put(task)
                    except Exception as e:
                        job, ind = task[:2]
                        try:
                            cache[job]._set(ind, (False, e))
                        except KeyError:
                            pass
                else:
                    if set_length:
                        util.debug('doing set_length()')
                        set_length(i+1)
                    continue
                break
            except Exception as ex:
                job, ind = task[:2] if task else (0, 0)
                if job in cache:
                    cache[job]._set(ind + 1, (False, ex))
                if set_length:
                    util.debug('doing set_length()')
                    set_length(i+1)
        else:
            util.debug('task handler got sentinel')


        try:
            # tell result handler to finish when cache is empty
            util.debug('task handler sending sentinel to result handler')
            outqueue.put(None)

            # tell workers there is no more work
            util.debug('task handler sending sentinel to workers')
            for p in pool:
                put(None)
        except OSError:
            util.debug('task handler got OSError when sending sentinels')

        util.debug('task handler exiting')

    @staticmethod
    def _handle_results(outqueue, get, cache):
        thread = threading.current_thread()

        while 1:
            try:
                task = get()
            except (OSError, EOFError):
                util.debug('result handler got EOFError/OSError -- exiting')
                return

            if thread._state:
                assert thread._state == TERMINATE
                util.debug('result handler found thread._state=TERMINATE')
                break

            if task is None:
                util.debug('result handler got sentinel')
                break

            job, i, obj = task
            try:
                cache[job]._set(i, obj)
            except KeyError:
                pass

        while cache and thread._state != TERMINATE:
            try:
                task = get()
            except (OSError, EOFError):
                util.debug('result handler got EOFError/OSError -- exiting')
                return

            if task is None:
                util.debug('result handler ignoring extra sentinel')
                continue
            job, i, obj = task
            try:
                cache[job]._set(i, obj)
            except KeyError:
                pass

        if hasattr(outqueue, '_reader'):
            util.debug('ensuring that outqueue is not full')
            # If we don't make room available in outqueue then
            # attempts to add the sentinel (None) to outqueue may
            # block.  There is guaranteed to be no more than 2 sentinels.
            try:
                for i in range(10):
                    if not outqueue._reader.poll():
                        break
                    get()
            except (OSError, EOFError):
                pass

        util.debug('result handler exiting: len(cache)=%s, thread._state=%s',
              len(cache), thread._state)

    @staticmethod
    def _get_tasks(func, it, size):
        it = iter(it)
        while 1:
            x = tuple(itertools.islice(it, size))
            if not x:
                return
            yield (func, x)

    def __reduce__(self):
        raise NotImplementedError(
              'pool objects cannot be passed between processes or pickled'
              )

    def close(self):
        util.debug('closing pool')
        if self._state == RUN:
            self._state = CLOSE
            self._worker_handler._state = CLOSE

    def terminate(self):
        util.debug('terminating pool')
        self._state = TERMINATE
        self._worker_handler._state = TERMINATE
        self._terminate()

    def join(self):
        util.debug('joining pool')
        assert self._state in (CLOSE, TERMINATE)
        self._worker_handler.join()
        self._task_handler.join()
        self._result_handler.join()
        for p in self._pool:
            p.join()

    @staticmethod
    def _help_stuff_finish(inqueue, task_handler, size):
        # task_handler may be blocked trying to put items on inqueue
        util.debug('removing tasks from inqueue until task handler finished')
        inqueue._rlock.acquire()
        while task_handler.is_alive() and inqueue._reader.poll():
            inqueue._reader.recv()
            time.sleep(0)

    @classmethod
    def _terminate_pool(cls, taskqueue, inqueue, outqueue, pool,
                        worker_handler, task_handler, result_handler, cache):
        # this is guaranteed to only be called once
        util.debug('finalizing pool')

        worker_handler._state = TERMINATE
        task_handler._state = TERMINATE

        util.debug('helping task handler/workers to finish')
        cls._help_stuff_finish(inqueue, task_handler, len(pool))

        assert result_handler.is_alive() or len(cache) == 0

        result_handler._state = TERMINATE
        outqueue.put(None)                  # sentinel

        # We must wait for the worker handler to exit before terminating
        # workers because we don't want workers to be restarted behind our back.
        util.debug('joining worker handler')
        if threading.current_thread() is not worker_handler:
            worker_handler.join()

        # Terminate workers which haven't already finished.
        if pool and hasattr(pool[0], 'terminate'):
            util.debug('terminating workers')
            for p in pool:
                if p.exitcode is None:
                    p.terminate()

        util.debug('joining task handler')
        if threading.current_thread() is not task_handler:
            task_handler.join()

        util.debug('joining result handler')
        if threading.current_thread() is not result_handler:
            result_handler.join()

        if pool and hasattr(pool[0], 'terminate'):
            util.debug('joining pool workers')
            for p in pool:
                if p.is_alive():
                    # worker has not yet exited
                    util.debug('cleaning up worker %d' % p.pid)
                    p.join()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.terminate()

#
# Class whose instances are returned by `Pool.apply_async()`
#

class ApplyResult(object):

    def __init__(self, cache, callback, error_callback):
        self._event = threading.Event()
        self._job = next(job_counter)
        self._cache = cache
        self._callback = callback
        self._error_callback = error_callback
        cache[self._job] = self

    def ready(self):
        return self._event.is_set()

    def successful(self):
        assert self.ready()
        return self._success

    def wait(self, timeout=None):
        self._event.wait(timeout)

    def get(self, timeout=None):
        self.wait(timeout)
        if not self.ready():
            raise TimeoutError
        if self._success:
            return self._value
        else:
            raise self._value

    def _set(self, i, obj):
        self._success, self._value = obj
        if self._callback and self._success:
            self._callback(self._value)
        if self._error_callback and not self._success:
            self._error_callback(self._value)
        self._event.set()
        del self._cache[self._job]

AsyncResult = ApplyResult       # create alias -- see #17805

#
# Class whose instances are returned by `Pool.map_async()`
#

class MapResult(ApplyResult):

    def __init__(self, cache, chunksize, length, callback, error_callback):
        ApplyResult.__init__(self, cache, callback,
                             error_callback=error_callback)
        self._success = True
        self._value = [None] * length
        self._chunksize = chunksize
        if chunksize <= 0:
            self._number_left = 0
            self._event.set()
            del cache[self._job]
        else:
            self._number_left = length//chunksize + bool(length % chunksize)

    def _set(self, i, success_result):
        success, result = success_result
        if success:
            self._value[i*self._chunksize:(i+1)*self._chunksize] = result
            self._number_left -= 1
            if self._number_left == 0:
                if self._callback:
                    self._callback(self._value)
                del self._cache[self._job]
                self._event.set()
        else:
            self._success = False
            self._value = result
            if self._error_callback:
                self._error_callback(self._value)
            del self._cache[self._job]
            self._event.set()

#
# Class whose instances are returned by `Pool.imap()`
#

class IMapIterator(object):

    def __init__(self, cache):
        self._cond = threading.Condition(threading.Lock())
        self._job = next(job_counter)
        self._cache = cache
        self._items = collections.deque()
        self._index = 0
        self._length = None
        self._unsorted = {}
        cache[self._job] = self

    def __iter__(self):
        return self

    def next(self, timeout=None):
        self._cond.acquire()
        try:
            try:
                item = self._items.popleft()
            except IndexError:
                if self._index == self._length:
                    raise StopIteration
                self._cond.wait(timeout)
                try:
                    item = self._items.popleft()
                except IndexError:
                    if self._index == self._length:
                        raise StopIteration
                    raise TimeoutError
        finally:
            self._cond.release()

        success, value = item
        if success:
            return value
        raise value

    __next__ = next                    # XXX

    def _set(self, i, obj):
        self._cond.acquire()
        try:
            if self._index == i:
                self._items.append(obj)
                self._index += 1
                while self._index in self._unsorted:
                    obj = self._unsorted.pop(self._index)
                    self._items.append(obj)
                    self._index += 1
                self._cond.notify()
            else:
                self._unsorted[i] = obj

            if self._index == self._length:
                del self._cache[self._job]
        finally:
            self._cond.release()

    def _set_length(self, length):
        self._cond.acquire()
        try:
            self._length = length
            if self._index == self._length:
                self._cond.notify()
                del self._cache[self._job]
        finally:
            self._cond.release()

#
# Class whose instances are returned by `Pool.imap_unordered()`
#

class IMapUnorderedIterator(IMapIterator):

    def _set(self, i, obj):
        self._cond.acquire()
        try:
            self._items.append(obj)
            self._index += 1
            self._cond.notify()
            if self._index == self._length:
                del self._cache[self._job]
        finally:
            self._cond.release()

#
#
#

class ThreadPool(Pool):
    _wrap_exception = False

    @staticmethod
    def Process(*args, **kwds):
        from .dummy import Process
        return Process(*args, **kwds)

    def __init__(self, processes=None, initializer=None, initargs=()):
        Pool.__init__(self, processes, initializer, initargs)

    def _setup_queues(self):
        self._inqueue = queue.Queue()
        self._outqueue = queue.Queue()
        self._quick_put = self._inqueue.put
        self._quick_get = self._outqueue.get

    @staticmethod
    def _help_stuff_finish(inqueue, task_handler, size):
        # put sentinels at head of inqueue to make workers finish
        inqueue.not_empty.acquire()
        try:
            inqueue.queue.clear()
            inqueue.queue.extend([None] * size)
            inqueue.not_empty.notify_all()
        finally:
            inqueue.not_empty.release()
lib\multiprocessing\popen_fork.py
import os
import sys
import signal
import errno

from . import util

__all__ = ['Popen']

#
# Start child process using fork
#

class Popen(object):
    method = 'fork'

    def __init__(self, process_obj):
        sys.stdout.flush()
        sys.stderr.flush()
        self.returncode = None
        self._launch(process_obj)

    def duplicate_for_child(self, fd):
        return fd

    def poll(self, flag=os.WNOHANG):
        if self.returncode is None:
            while True:
                try:
                    pid, sts = os.waitpid(self.pid, flag)
                except OSError as e:
                    if e.errno == errno.EINTR:
                        continue
                    # Child process not yet created. See #1731717
                    # e.errno == errno.ECHILD == 10
                    return None
                else:
                    break
            if pid == self.pid:
                if os.WIFSIGNALED(sts):
                    self.returncode = -os.WTERMSIG(sts)
                else:
                    assert os.WIFEXITED(sts)
                    self.returncode = os.WEXITSTATUS(sts)
        return self.returncode

    def wait(self, timeout=None):
        if self.returncode is None:
            if timeout is not None:
                from multiprocessing.connection import wait
                if not wait([self.sentinel], timeout):
                    return None
            # This shouldn't block if wait() returned successfully.
            return self.poll(os.WNOHANG if timeout == 0.0 else 0)
        return self.returncode

    def terminate(self):
        if self.returncode is None:
            try:
                os.kill(self.pid, signal.SIGTERM)
            except ProcessLookupError:
                pass
            except OSError:
                if self.wait(timeout=0.1) is None:
                    raise

    def _launch(self, process_obj):
        code = 1
        parent_r, child_w = os.pipe()
        self.pid = os.fork()
        if self.pid == 0:
            try:
                os.close(parent_r)
                if 'random' in sys.modules:
                    import random
                    random.seed()
                code = process_obj._bootstrap()
            finally:
                os._exit(code)
        else:
            os.close(child_w)
            util.Finalize(self, os.close, (parent_r,))
            self.sentinel = parent_r
lib\multiprocessing\popen_forkserver.py
import io
import os

from . import reduction
if not reduction.HAVE_SEND_HANDLE:
    raise ImportError('No support for sending fds between processes')
from . import context
from . import forkserver
from . import popen_fork
from . import spawn
from . import util


__all__ = ['Popen']

#
# Wrapper for an fd used while launching a process
#

class _DupFd(object):
    def __init__(self, ind):
        self.ind = ind
    def detach(self):
        return forkserver.get_inherited_fds()[self.ind]

#
# Start child process using a server process
#

class Popen(popen_fork.Popen):
    method = 'forkserver'
    DupFd = _DupFd

    def __init__(self, process_obj):
        self._fds = []
        super().__init__(process_obj)

    def duplicate_for_child(self, fd):
        self._fds.append(fd)
        return len(self._fds) - 1

    def _launch(self, process_obj):
        prep_data = spawn.get_preparation_data(process_obj._name)
        buf = io.BytesIO()
        context.set_spawning_popen(self)
        try:
            reduction.dump(prep_data, buf)
            reduction.dump(process_obj, buf)
        finally:
            context.set_spawning_popen(None)

        self.sentinel, w = forkserver.connect_to_new_process(self._fds)
        util.Finalize(self, os.close, (self.sentinel,))
        with open(w, 'wb', closefd=True) as f:
            f.write(buf.getbuffer())
        self.pid = forkserver.read_unsigned(self.sentinel)

    def poll(self, flag=os.WNOHANG):
        if self.returncode is None:
            from multiprocessing.connection import wait
            timeout = 0 if flag == os.WNOHANG else None
            if not wait([self.sentinel], timeout):
                return None
            try:
                self.returncode = forkserver.read_unsigned(self.sentinel)
            except (OSError, EOFError):
                # The process ended abnormally perhaps because of a signal
                self.returncode = 255
        return self.returncode
lib\multiprocessing\popen_spawn_posix.py
import io
import os

from . import context
from . import popen_fork
from . import reduction
from . import spawn
from . import util

__all__ = ['Popen']


#
# Wrapper for an fd used while launching a process
#

class _DupFd(object):
    def __init__(self, fd):
        self.fd = fd
    def detach(self):
        return self.fd

#
# Start child process using a fresh interpreter
#

class Popen(popen_fork.Popen):
    method = 'spawn'
    DupFd = _DupFd

    def __init__(self, process_obj):
        self._fds = []
        super().__init__(process_obj)

    def duplicate_for_child(self, fd):
        self._fds.append(fd)
        return fd

    def _launch(self, process_obj):
        from . import semaphore_tracker
        tracker_fd = semaphore_tracker.getfd()
        self._fds.append(tracker_fd)
        prep_data = spawn.get_preparation_data(process_obj._name)
        fp = io.BytesIO()
        context.set_spawning_popen(self)
        try:
            reduction.dump(prep_data, fp)
            reduction.dump(process_obj, fp)
        finally:
            context.set_spawning_popen(None)

        parent_r = child_w = child_r = parent_w = None
        try:
            parent_r, child_w = os.pipe()
            child_r, parent_w = os.pipe()
            cmd = spawn.get_command_line(tracker_fd=tracker_fd,
                                         pipe_handle=child_r)
            self._fds.extend([child_r, child_w])
            self.pid = util.spawnv_passfds(spawn.get_executable(),
                                           cmd, self._fds)
            self.sentinel = parent_r
            with open(parent_w, 'wb', closefd=False) as f:
                f.write(fp.getbuffer())
        finally:
            if parent_r is not None:
                util.Finalize(self, os.close, (parent_r,))
            for fd in (child_r, child_w, parent_w):
                if fd is not None:
                    os.close(fd)
lib\multiprocessing\popen_spawn_win32.py
import os
import msvcrt
import signal
import sys
import _winapi

from . import context
from . import spawn
from . import reduction
from . import util

__all__ = ['Popen']

#
#
#

TERMINATE = 0x10000
WINEXE = (sys.platform == 'win32' and getattr(sys, 'frozen', False))
WINSERVICE = sys.executable.lower().endswith("pythonservice.exe")

#
# We define a Popen class similar to the one from subprocess, but
# whose constructor takes a process object as its argument.
#

class Popen(object):
    '''
    Start a subprocess to run the code of a process object
    '''
    method = 'spawn'

    def __init__(self, process_obj):
        prep_data = spawn.get_preparation_data(process_obj._name)

        # read end of pipe will be "stolen" by the child process
        # -- see spawn_main() in spawn.py.
        rhandle, whandle = _winapi.CreatePipe(None, 0)
        wfd = msvcrt.open_osfhandle(whandle, 0)
        cmd = spawn.get_command_line(parent_pid=os.getpid(),
                                     pipe_handle=rhandle)
        cmd = ' '.join('"%s"' % x for x in cmd)

        with open(wfd, 'wb', closefd=True) as to_child:
            # start process
            try:
                hp, ht, pid, tid = _winapi.CreateProcess(
                    spawn.get_executable(), cmd,
                    None, None, False, 0, None, None, None)
                _winapi.CloseHandle(ht)
            except:
                _winapi.CloseHandle(rhandle)
                raise

            # set attributes of self
            self.pid = pid
            self.returncode = None
            self._handle = hp
            self.sentinel = int(hp)
            util.Finalize(self, _winapi.CloseHandle, (self.sentinel,))

            # send information to child
            context.set_spawning_popen(self)
            try:
                reduction.dump(prep_data, to_child)
                reduction.dump(process_obj, to_child)
            finally:
                context.set_spawning_popen(None)

    def duplicate_for_child(self, handle):
        assert self is context.get_spawning_popen()
        return reduction.duplicate(handle, self.sentinel)

    def wait(self, timeout=None):
        if self.returncode is None:
            if timeout is None:
                msecs = _winapi.INFINITE
            else:
                msecs = max(0, int(timeout * 1000 + 0.5))

            res = _winapi.WaitForSingleObject(int(self._handle), msecs)
            if res == _winapi.WAIT_OBJECT_0:
                code = _winapi.GetExitCodeProcess(self._handle)
                if code == TERMINATE:
                    code = -signal.SIGTERM
                self.returncode = code

        return self.returncode

    def poll(self):
        return self.wait(timeout=0)

    def terminate(self):
        if self.returncode is None:
            try:
                _winapi.TerminateProcess(int(self._handle), TERMINATE)
            except OSError:
                if self.wait(timeout=1.0) is None:
                    raise
lib\multiprocessing\process.py
#
# Module providing the `Process` class which emulates `threading.Thread`
#
# multiprocessing/process.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = ['BaseProcess', 'current_process', 'active_children']

#
# Imports
#

import os
import sys
import signal
import itertools
from _weakrefset import WeakSet

#
#
#

try:
    ORIGINAL_DIR = os.path.abspath(os.getcwd())
except OSError:
    ORIGINAL_DIR = None

#
# Public functions
#

def current_process():
    '''
    Return process object representing the current process
    '''
    return _current_process

def active_children():
    '''
    Return list of process objects corresponding to live child processes
    '''
    _cleanup()
    return list(_children)

#
#
#

def _cleanup():
    # check for processes which have finished
    for p in list(_children):
        if p._popen.poll() is not None:
            _children.discard(p)

#
# The `Process` class
#

class BaseProcess(object):
    '''
    Process objects represent activity that is run in a separate process

    The class is analogous to `threading.Thread`
    '''
    def _Popen(self):
        raise NotImplementedError

    def __init__(self, group=None, target=None, name=None, args=(), kwargs={},
                 *, daemon=None):
        assert group is None, 'group argument must be None for now'
        count = next(_process_counter)
        self._identity = _current_process._identity + (count,)
        self._config = _current_process._config.copy()
        self._parent_pid = os.getpid()
        self._popen = None
        self._target = target
        self._args = tuple(args)
        self._kwargs = dict(kwargs)
        self._name = name or type(self).__name__ + '-' + \
                     ':'.join(str(i) for i in self._identity)
        if daemon is not None:
            self.daemon = daemon
        _dangling.add(self)

    def run(self):
        '''
        Method to be run in sub-process; can be overridden in sub-class
        '''
        if self._target:
            self._target(*self._args, **self._kwargs)

    def start(self):
        '''
        Start child process
        '''
        assert self._popen is None, 'cannot start a process twice'
        assert self._parent_pid == os.getpid(), \
               'can only start a process object created by current process'
        assert not _current_process._config.get('daemon'), \
               'daemonic processes are not allowed to have children'
        _cleanup()
        self._popen = self._Popen(self)
        self._sentinel = self._popen.sentinel
        _children.add(self)

    def terminate(self):
        '''
        Terminate process; sends SIGTERM signal or uses TerminateProcess()
        '''
        self._popen.terminate()

    def join(self, timeout=None):
        '''
        Wait until child process terminates
        '''
        assert self._parent_pid == os.getpid(), 'can only join a child process'
        assert self._popen is not None, 'can only join a started process'
        res = self._popen.wait(timeout)
        if res is not None:
            _children.discard(self)

    def is_alive(self):
        '''
        Return whether process is alive
        '''
        if self is _current_process:
            return True
        assert self._parent_pid == os.getpid(), 'can only test a child process'
        if self._popen is None:
            return False
        self._popen.poll()
        return self._popen.returncode is None

    @property
    def name(self):
        return self._name

    @name.setter
    def name(self, name):
        assert isinstance(name, str), 'name must be a string'
        self._name = name

    @property
    def daemon(self):
        '''
        Return whether process is a daemon
        '''
        return self._config.get('daemon', False)

    @daemon.setter
    def daemon(self, daemonic):
        '''
        Set whether process is a daemon
        '''
        assert self._popen is None, 'process has already started'
        self._config['daemon'] = daemonic

    @property
    def authkey(self):
        return self._config['authkey']

    @authkey.setter
    def authkey(self, authkey):
        '''
        Set authorization key of process
        '''
        self._config['authkey'] = AuthenticationString(authkey)

    @property
    def exitcode(self):
        '''
        Return exit code of process or `None` if it has yet to stop
        '''
        if self._popen is None:
            return self._popen
        return self._popen.poll()

    @property
    def ident(self):
        '''
        Return identifier (PID) of process or `None` if it has yet to start
        '''
        if self is _current_process:
            return os.getpid()
        else:
            return self._popen and self._popen.pid

    pid = ident

    @property
    def sentinel(self):
        '''
        Return a file descriptor (Unix) or handle (Windows) suitable for
        waiting for process termination.
        '''
        try:
            return self._sentinel
        except AttributeError:
            raise ValueError("process not started")

    def __repr__(self):
        if self is _current_process:
            status = 'started'
        elif self._parent_pid != os.getpid():
            status = 'unknown'
        elif self._popen is None:
            status = 'initial'
        else:
            if self._popen.poll() is not None:
                status = self.exitcode
            else:
                status = 'started'

        if type(status) is int:
            if status == 0:
                status = 'stopped'
            else:
                status = 'stopped[%s]' % _exitcode_to_name.get(status, status)

        return '<%s(%s, %s%s)>' % (type(self).__name__, self._name,
                                   status, self.daemon and ' daemon' or '')

    ##

    def _bootstrap(self):
        from . import util, context
        global _current_process, _process_counter, _children

        try:
            if self._start_method is not None:
                context._force_start_method(self._start_method)
            _process_counter = itertools.count(1)
            _children = set()
            if sys.stdin is not None:
                try:
                    sys.stdin.close()
                    sys.stdin = open(os.devnull)
                except (OSError, ValueError):
                    pass
            old_process = _current_process
            _current_process = self
            try:
                util._finalizer_registry.clear()
                util._run_after_forkers()
            finally:
                # delay finalization of the old process object until after
                # _run_after_forkers() is executed
                del old_process
            util.info('child process calling self.run()')
            try:
                self.run()
                exitcode = 0
            finally:
                util._exit_function()
        except SystemExit as e:
            if not e.args:
                exitcode = 1
            elif isinstance(e.args[0], int):
                exitcode = e.args[0]
            else:
                sys.stderr.write(str(e.args[0]) + '\n')
                exitcode = 1
        except:
            exitcode = 1
            import traceback
            sys.stderr.write('Process %s:\n' % self.name)
            traceback.print_exc()
        finally:
            util.info('process exiting with exitcode %d' % exitcode)
            sys.stdout.flush()
            sys.stderr.flush()

        return exitcode

#
# We subclass bytes to avoid accidental transmission of auth keys over network
#

class AuthenticationString(bytes):
    def __reduce__(self):
        from .context import get_spawning_popen
        if get_spawning_popen() is None:
            raise TypeError(
                'Pickling an AuthenticationString object is '
                'disallowed for security reasons'
                )
        return AuthenticationString, (bytes(self),)

#
# Create object representing the main process
#

class _MainProcess(BaseProcess):

    def __init__(self):
        self._identity = ()
        self._name = 'MainProcess'
        self._parent_pid = None
        self._popen = None
        self._config = {'authkey': AuthenticationString(os.urandom(32)),
                        'semprefix': '/mp'}
        # Note that some versions of FreeBSD only allow named
        # semaphores to have names of up to 14 characters.  Therefore
        # we choose a short prefix.
        #
        # On MacOSX in a sandbox it may be necessary to use a
        # different prefix -- see #19478.
        #
        # Everything in self._config will be inherited by descendant
        # processes.


_current_process = _MainProcess()
_process_counter = itertools.count(1)
_children = set()
del _MainProcess

#
# Give names to some return codes
#

_exitcode_to_name = {}

for name, signum in list(signal.__dict__.items()):
    if name[:3]=='SIG' and '_' not in name:
        _exitcode_to_name[-signum] = name

# For debug and leak testing
_dangling = WeakSet()
lib\multiprocessing\queues.py
#
# Module implementing queues
#
# multiprocessing/queues.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = ['Queue', 'SimpleQueue', 'JoinableQueue']

import sys
import os
import threading
import collections
import time
import weakref
import errno

from queue import Empty, Full

import _multiprocessing

from . import connection
from . import context

from .util import debug, info, Finalize, register_after_fork, is_exiting
from .reduction import ForkingPickler

#
# Queue type using a pipe, buffer and thread
#

class Queue(object):

    def __init__(self, maxsize=0, *, ctx):
        if maxsize <= 0:
            # Can raise ImportError (see issues #3770 and #23400)
            from .synchronize import SEM_VALUE_MAX as maxsize
        self._maxsize = maxsize
        self._reader, self._writer = connection.Pipe(duplex=False)
        self._rlock = ctx.Lock()
        self._opid = os.getpid()
        if sys.platform == 'win32':
            self._wlock = None
        else:
            self._wlock = ctx.Lock()
        self._sem = ctx.BoundedSemaphore(maxsize)
        # For use by concurrent.futures
        self._ignore_epipe = False

        self._after_fork()

        if sys.platform != 'win32':
            register_after_fork(self, Queue._after_fork)

    def __getstate__(self):
        context.assert_spawning(self)
        return (self._ignore_epipe, self._maxsize, self._reader, self._writer,
                self._rlock, self._wlock, self._sem, self._opid)

    def __setstate__(self, state):
        (self._ignore_epipe, self._maxsize, self._reader, self._writer,
         self._rlock, self._wlock, self._sem, self._opid) = state
        self._after_fork()

    def _after_fork(self):
        debug('Queue._after_fork()')
        self._notempty = threading.Condition(threading.Lock())
        self._buffer = collections.deque()
        self._thread = None
        self._jointhread = None
        self._joincancelled = False
        self._closed = False
        self._close = None
        self._send_bytes = self._writer.send_bytes
        self._recv_bytes = self._reader.recv_bytes
        self._poll = self._reader.poll

    def put(self, obj, block=True, timeout=None):
        assert not self._closed
        if not self._sem.acquire(block, timeout):
            raise Full

        self._notempty.acquire()
        try:
            if self._thread is None:
                self._start_thread()
            self._buffer.append(obj)
            self._notempty.notify()
        finally:
            self._notempty.release()

    def get(self, block=True, timeout=None):
        if block and timeout is None:
            with self._rlock:
                res = self._recv_bytes()
            self._sem.release()
        else:
            if block:
                deadline = time.time() + timeout
            if not self._rlock.acquire(block, timeout):
                raise Empty
            try:
                if block:
                    timeout = deadline - time.time()
                    if timeout < 0 or not self._poll(timeout):
                        raise Empty
                elif not self._poll():
                    raise Empty
                res = self._recv_bytes()
                self._sem.release()
            finally:
                self._rlock.release()
        # unserialize the data after having released the lock
        return ForkingPickler.loads(res)

    def qsize(self):
        # Raises NotImplementedError on Mac OSX because of broken sem_getvalue()
        return self._maxsize - self._sem._semlock._get_value()

    def empty(self):
        return not self._poll()

    def full(self):
        return self._sem._semlock._is_zero()

    def get_nowait(self):
        return self.get(False)

    def put_nowait(self, obj):
        return self.put(obj, False)

    def close(self):
        self._closed = True
        try:
            self._reader.close()
        finally:
            close = self._close
            if close:
                self._close = None
                close()

    def join_thread(self):
        debug('Queue.join_thread()')
        assert self._closed
        if self._jointhread:
            self._jointhread()

    def cancel_join_thread(self):
        debug('Queue.cancel_join_thread()')
        self._joincancelled = True
        try:
            self._jointhread.cancel()
        except AttributeError:
            pass

    def _start_thread(self):
        debug('Queue._start_thread()')

        # Start thread which transfers data from buffer to pipe
        self._buffer.clear()
        self._thread = threading.Thread(
            target=Queue._feed,
            args=(self._buffer, self._notempty, self._send_bytes,
                  self._wlock, self._writer.close, self._ignore_epipe),
            name='QueueFeederThread'
            )
        self._thread.daemon = True

        debug('doing self._thread.start()')
        self._thread.start()
        debug('... done self._thread.start()')

        # On process exit we will wait for data to be flushed to pipe.
        #
        # However, if this process created the queue then all
        # processes which use the queue will be descendants of this
        # process.  Therefore waiting for the queue to be flushed
        # is pointless once all the child processes have been joined.
        created_by_this_process = (self._opid == os.getpid())
        if not self._joincancelled and not created_by_this_process:
            self._jointhread = Finalize(
                self._thread, Queue._finalize_join,
                [weakref.ref(self._thread)],
                exitpriority=-5
                )

        # Send sentinel to the thread queue object when garbage collected
        self._close = Finalize(
            self, Queue._finalize_close,
            [self._buffer, self._notempty],
            exitpriority=10
            )

    @staticmethod
    def _finalize_join(twr):
        debug('joining queue thread')
        thread = twr()
        if thread is not None:
            thread.join()
            debug('... queue thread joined')
        else:
            debug('... queue thread already dead')

    @staticmethod
    def _finalize_close(buffer, notempty):
        debug('telling queue thread to quit')
        notempty.acquire()
        try:
            buffer.append(_sentinel)
            notempty.notify()
        finally:
            notempty.release()

    @staticmethod
    def _feed(buffer, notempty, send_bytes, writelock, close, ignore_epipe):
        debug('starting thread to feed data to pipe')
        nacquire = notempty.acquire
        nrelease = notempty.release
        nwait = notempty.wait
        bpopleft = buffer.popleft
        sentinel = _sentinel
        if sys.platform != 'win32':
            wacquire = writelock.acquire
            wrelease = writelock.release
        else:
            wacquire = None

        try:
            while 1:
                nacquire()
                try:
                    if not buffer:
                        nwait()
                finally:
                    nrelease()
                try:
                    while 1:
                        obj = bpopleft()
                        if obj is sentinel:
                            debug('feeder thread got sentinel -- exiting')
                            close()
                            return

                        # serialize the data before acquiring the lock
                        obj = ForkingPickler.dumps(obj)
                        if wacquire is None:
                            send_bytes(obj)
                        else:
                            wacquire()
                            try:
                                send_bytes(obj)
                            finally:
                                wrelease()
                except IndexError:
                    pass
        except Exception as e:
            if ignore_epipe and getattr(e, 'errno', 0) == errno.EPIPE:
                return
            # Since this runs in a daemon thread the resources it uses
            # may be become unusable while the process is cleaning up.
            # We ignore errors which happen after the process has
            # started to cleanup.
            try:
                if is_exiting():
                    info('error in queue thread: %s', e)
                else:
                    import traceback
                    traceback.print_exc()
            except Exception:
                pass

_sentinel = object()

#
# A queue type which also supports join() and task_done() methods
#
# Note that if you do not call task_done() for each finished task then
# eventually the counter's semaphore may overflow causing Bad Things
# to happen.
#

class JoinableQueue(Queue):

    def __init__(self, maxsize=0, *, ctx):
        Queue.__init__(self, maxsize, ctx=ctx)
        self._unfinished_tasks = ctx.Semaphore(0)
        self._cond = ctx.Condition()

    def __getstate__(self):
        return Queue.__getstate__(self) + (self._cond, self._unfinished_tasks)

    def __setstate__(self, state):
        Queue.__setstate__(self, state[:-2])
        self._cond, self._unfinished_tasks = state[-2:]

    def put(self, obj, block=True, timeout=None):
        assert not self._closed
        if not self._sem.acquire(block, timeout):
            raise Full

        self._notempty.acquire()
        self._cond.acquire()
        try:
            if self._thread is None:
                self._start_thread()
            self._buffer.append(obj)
            self._unfinished_tasks.release()
            self._notempty.notify()
        finally:
            self._cond.release()
            self._notempty.release()

    def task_done(self):
        self._cond.acquire()
        try:
            if not self._unfinished_tasks.acquire(False):
                raise ValueError('task_done() called too many times')
            if self._unfinished_tasks._semlock._is_zero():
                self._cond.notify_all()
        finally:
            self._cond.release()

    def join(self):
        self._cond.acquire()
        try:
            if not self._unfinished_tasks._semlock._is_zero():
                self._cond.wait()
        finally:
            self._cond.release()

#
# Simplified Queue type -- really just a locked pipe
#

class SimpleQueue(object):

    def __init__(self, *, ctx):
        self._reader, self._writer = connection.Pipe(duplex=False)
        self._rlock = ctx.Lock()
        self._poll = self._reader.poll
        if sys.platform == 'win32':
            self._wlock = None
        else:
            self._wlock = ctx.Lock()

    def empty(self):
        return not self._poll()

    def __getstate__(self):
        context.assert_spawning(self)
        return (self._reader, self._writer, self._rlock, self._wlock)

    def __setstate__(self, state):
        (self._reader, self._writer, self._rlock, self._wlock) = state

    def get(self):
        with self._rlock:
            res = self._reader.recv_bytes()
        # unserialize the data after having released the lock
        return ForkingPickler.loads(res)

    def put(self, obj):
        # serialize the data before acquiring the lock
        obj = ForkingPickler.dumps(obj)
        if self._wlock is None:
            # writes to a message oriented win32 pipe are atomic
            self._writer.send_bytes(obj)
        else:
            with self._wlock:
                self._writer.send_bytes(obj)
lib\multiprocessing\reduction.py
#
# Module which deals with pickling of objects.
#
# multiprocessing/reduction.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

import copyreg
import functools
import io
import os
import pickle
import socket
import sys

from . import context

__all__ = ['send_handle', 'recv_handle', 'ForkingPickler', 'register', 'dump']


HAVE_SEND_HANDLE = (sys.platform == 'win32' or
                    (hasattr(socket, 'CMSG_LEN') and
                     hasattr(socket, 'SCM_RIGHTS') and
                     hasattr(socket.socket, 'sendmsg')))

#
# Pickler subclass
#

class ForkingPickler(pickle.Pickler):
    '''Pickler subclass used by multiprocessing.'''
    _extra_reducers = {}
    _copyreg_dispatch_table = copyreg.dispatch_table

    def __init__(self, *args):
        super().__init__(*args)
        self.dispatch_table = self._copyreg_dispatch_table.copy()
        self.dispatch_table.update(self._extra_reducers)

    @classmethod
    def register(cls, type, reduce):
        '''Register a reduce function for a type.'''
        cls._extra_reducers[type] = reduce

    @classmethod
    def dumps(cls, obj, protocol=None):
        buf = io.BytesIO()
        cls(buf, protocol).dump(obj)
        return buf.getbuffer()

    loads = pickle.loads

register = ForkingPickler.register

def dump(obj, file, protocol=None):
    '''Replacement for pickle.dump() using ForkingPickler.'''
    ForkingPickler(file, protocol).dump(obj)

#
# Platform specific definitions
#

if sys.platform == 'win32':
    # Windows
    __all__ += ['DupHandle', 'duplicate', 'steal_handle']
    import _winapi

    def duplicate(handle, target_process=None, inheritable=False):
        '''Duplicate a handle.  (target_process is a handle not a pid!)'''
        if target_process is None:
            target_process = _winapi.GetCurrentProcess()
        return _winapi.DuplicateHandle(
            _winapi.GetCurrentProcess(), handle, target_process,
            0, inheritable, _winapi.DUPLICATE_SAME_ACCESS)

    def steal_handle(source_pid, handle):
        '''Steal a handle from process identified by source_pid.'''
        source_process_handle = _winapi.OpenProcess(
            _winapi.PROCESS_DUP_HANDLE, False, source_pid)
        try:
            return _winapi.DuplicateHandle(
                source_process_handle, handle,
                _winapi.GetCurrentProcess(), 0, False,
                _winapi.DUPLICATE_SAME_ACCESS | _winapi.DUPLICATE_CLOSE_SOURCE)
        finally:
            _winapi.CloseHandle(source_process_handle)

    def send_handle(conn, handle, destination_pid):
        '''Send a handle over a local connection.'''
        dh = DupHandle(handle, _winapi.DUPLICATE_SAME_ACCESS, destination_pid)
        conn.send(dh)

    def recv_handle(conn):
        '''Receive a handle over a local connection.'''
        return conn.recv().detach()

    class DupHandle(object):
        '''Picklable wrapper for a handle.'''
        def __init__(self, handle, access, pid=None):
            if pid is None:
                # We just duplicate the handle in the current process and
                # let the receiving process steal the handle.
                pid = os.getpid()
            proc = _winapi.OpenProcess(_winapi.PROCESS_DUP_HANDLE, False, pid)
            try:
                self._handle = _winapi.DuplicateHandle(
                    _winapi.GetCurrentProcess(),
                    handle, proc, access, False, 0)
            finally:
                _winapi.CloseHandle(proc)
            self._access = access
            self._pid = pid

        def detach(self):
            '''Get the handle.  This should only be called once.'''
            # retrieve handle from process which currently owns it
            if self._pid == os.getpid():
                # The handle has already been duplicated for this process.
                return self._handle
            # We must steal the handle from the process whose pid is self._pid.
            proc = _winapi.OpenProcess(_winapi.PROCESS_DUP_HANDLE, False,
                                       self._pid)
            try:
                return _winapi.DuplicateHandle(
                    proc, self._handle, _winapi.GetCurrentProcess(),
                    self._access, False, _winapi.DUPLICATE_CLOSE_SOURCE)
            finally:
                _winapi.CloseHandle(proc)

else:
    # Unix
    __all__ += ['DupFd', 'sendfds', 'recvfds']
    import array

    # On MacOSX we should acknowledge receipt of fds -- see Issue14669
    ACKNOWLEDGE = sys.platform == 'darwin'

    def sendfds(sock, fds):
        '''Send an array of fds over an AF_UNIX socket.'''
        fds = array.array('i', fds)
        msg = bytes([len(fds) % 256])
        sock.sendmsg([msg], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, fds)])
        if ACKNOWLEDGE and sock.recv(1) != b'A':
            raise RuntimeError('did not receive acknowledgement of fd')

    def recvfds(sock, size):
        '''Receive an array of fds over an AF_UNIX socket.'''
        a = array.array('i')
        bytes_size = a.itemsize * size
        msg, ancdata, flags, addr = sock.recvmsg(1, socket.CMSG_LEN(bytes_size))
        if not msg and not ancdata:
            raise EOFError
        try:
            if ACKNOWLEDGE:
                sock.send(b'A')
            if len(ancdata) != 1:
                raise RuntimeError('received %d items of ancdata' %
                                   len(ancdata))
            cmsg_level, cmsg_type, cmsg_data = ancdata[0]
            if (cmsg_level == socket.SOL_SOCKET and
                cmsg_type == socket.SCM_RIGHTS):
                if len(cmsg_data) % a.itemsize != 0:
                    raise ValueError
                a.frombytes(cmsg_data)
                assert len(a) % 256 == msg[0]
                return list(a)
        except (ValueError, IndexError):
            pass
        raise RuntimeError('Invalid data received')

    def send_handle(conn, handle, destination_pid):
        '''Send a handle over a local connection.'''
        with socket.fromfd(conn.fileno(), socket.AF_UNIX, socket.SOCK_STREAM) as s:
            sendfds(s, [handle])

    def recv_handle(conn):
        '''Receive a handle over a local connection.'''
        with socket.fromfd(conn.fileno(), socket.AF_UNIX, socket.SOCK_STREAM) as s:
            return recvfds(s, 1)[0]

    def DupFd(fd):
        '''Return a wrapper for an fd.'''
        popen_obj = context.get_spawning_popen()
        if popen_obj is not None:
            return popen_obj.DupFd(popen_obj.duplicate_for_child(fd))
        elif HAVE_SEND_HANDLE:
            from . import resource_sharer
            return resource_sharer.DupFd(fd)
        else:
            raise ValueError('SCM_RIGHTS appears not to be available')

#
# Try making some callable types picklable
#

def _reduce_method(m):
    if m.__self__ is None:
        return getattr, (m.__class__, m.__func__.__name__)
    else:
        return getattr, (m.__self__, m.__func__.__name__)
class _C:
    def f(self):
        pass
register(type(_C().f), _reduce_method)


def _reduce_method_descriptor(m):
    return getattr, (m.__objclass__, m.__name__)
register(type(list.append), _reduce_method_descriptor)
register(type(int.__add__), _reduce_method_descriptor)


def _reduce_partial(p):
    return _rebuild_partial, (p.func, p.args, p.keywords or {})
def _rebuild_partial(func, args, keywords):
    return functools.partial(func, *args, **keywords)
register(functools.partial, _reduce_partial)

#
# Make sockets picklable
#

if sys.platform == 'win32':
    def _reduce_socket(s):
        from .resource_sharer import DupSocket
        return _rebuild_socket, (DupSocket(s),)
    def _rebuild_socket(ds):
        return ds.detach()
    register(socket.socket, _reduce_socket)

else:
    def _reduce_socket(s):
        df = DupFd(s.fileno())
        return _rebuild_socket, (df, s.family, s.type, s.proto)
    def _rebuild_socket(df, family, type, proto):
        fd = df.detach()
        return socket.socket(family, type, proto, fileno=fd)
    register(socket.socket, _reduce_socket)
lib\multiprocessing\resource_sharer.py
#
# We use a background thread for sharing fds on Unix, and for sharing sockets on
# Windows.
#
# A client which wants to pickle a resource registers it with the resource
# sharer and gets an identifier in return.  The unpickling process will connect
# to the resource sharer, sends the identifier and its pid, and then receives
# the resource.
#

import os
import signal
import socket
import sys
import threading

from . import process
from . import reduction
from . import util

__all__ = ['stop']


if sys.platform == 'win32':
    __all__ += ['DupSocket']

    class DupSocket(object):
        '''Picklable wrapper for a socket.'''
        def __init__(self, sock):
            new_sock = sock.dup()
            def send(conn, pid):
                share = new_sock.share(pid)
                conn.send_bytes(share)
            self._id = _resource_sharer.register(send, new_sock.close)

        def detach(self):
            '''Get the socket.  This should only be called once.'''
            with _resource_sharer.get_connection(self._id) as conn:
                share = conn.recv_bytes()
                return socket.fromshare(share)

else:
    __all__ += ['DupFd']

    class DupFd(object):
        '''Wrapper for fd which can be used at any time.'''
        def __init__(self, fd):
            new_fd = os.dup(fd)
            def send(conn, pid):
                reduction.send_handle(conn, new_fd, pid)
            def close():
                os.close(new_fd)
            self._id = _resource_sharer.register(send, close)

        def detach(self):
            '''Get the fd.  This should only be called once.'''
            with _resource_sharer.get_connection(self._id) as conn:
                return reduction.recv_handle(conn)


class _ResourceSharer(object):
    '''Manager for resouces using background thread.'''
    def __init__(self):
        self._key = 0
        self._cache = {}
        self._old_locks = []
        self._lock = threading.Lock()
        self._listener = None
        self._address = None
        self._thread = None
        util.register_after_fork(self, _ResourceSharer._afterfork)

    def register(self, send, close):
        '''Register resource, returning an identifier.'''
        with self._lock:
            if self._address is None:
                self._start()
            self._key += 1
            self._cache[self._key] = (send, close)
            return (self._address, self._key)

    @staticmethod
    def get_connection(ident):
        '''Return connection from which to receive identified resource.'''
        from .connection import Client
        address, key = ident
        c = Client(address, authkey=process.current_process().authkey)
        c.send((key, os.getpid()))
        return c

    def stop(self, timeout=None):
        '''Stop the background thread and clear registered resources.'''
        from .connection import Client
        with self._lock:
            if self._address is not None:
                c = Client(self._address,
                           authkey=process.current_process().authkey)
                c.send(None)
                c.close()
                self._thread.join(timeout)
                if self._thread.is_alive():
                    util.sub_warning('_ResourceSharer thread did '
                                     'not stop when asked')
                self._listener.close()
                self._thread = None
                self._address = None
                self._listener = None
                for key, (send, close) in self._cache.items():
                    close()
                self._cache.clear()

    def _afterfork(self):
        for key, (send, close) in self._cache.items():
            close()
        self._cache.clear()
        # If self._lock was locked at the time of the fork, it may be broken
        # -- see issue 6721.  Replace it without letting it be gc'ed.
        self._old_locks.append(self._lock)
        self._lock = threading.Lock()
        if self._listener is not None:
            self._listener.close()
        self._listener = None
        self._address = None
        self._thread = None

    def _start(self):
        from .connection import Listener
        assert self._listener is None
        util.debug('starting listener and thread for sending handles')
        self._listener = Listener(authkey=process.current_process().authkey)
        self._address = self._listener.address
        t = threading.Thread(target=self._serve)
        t.daemon = True
        t.start()
        self._thread = t

    def _serve(self):
        if hasattr(signal, 'pthread_sigmask'):
            signal.pthread_sigmask(signal.SIG_BLOCK, range(1, signal.NSIG))
        while 1:
            try:
                with self._listener.accept() as conn:
                    msg = conn.recv()
                    if msg is None:
                        break
                    key, destination_pid = msg
                    send, close = self._cache.pop(key)
                    try:
                        send(conn, destination_pid)
                    finally:
                        close()
            except:
                if not util.is_exiting():
                    sys.excepthook(*sys.exc_info())


_resource_sharer = _ResourceSharer()
stop = _resource_sharer.stop
lib\multiprocessing\semaphore_tracker.py
#
# On Unix we run a server process which keeps track of unlinked
# semaphores. The server ignores SIGINT and SIGTERM and reads from a
# pipe.  Every other process of the program has a copy of the writable
# end of the pipe, so we get EOF when all other processes have exited.
# Then the server process unlinks any remaining semaphore names.
#
# This is important because the system only supports a limited number
# of named semaphores, and they will not be automatically removed till
# the next reboot.  Without this semaphore tracker process, "killall
# python" would probably leave unlinked semaphores.
#

import os
import signal
import sys
import threading
import warnings
import _multiprocessing

from . import spawn
from . import util

__all__ = ['ensure_running', 'register', 'unregister']


class SemaphoreTracker(object):

    def __init__(self):
        self._lock = threading.Lock()
        self._fd = None

    def getfd(self):
        self.ensure_running()
        return self._fd

    def ensure_running(self):
        '''Make sure that semaphore tracker process is running.

        This can be run from any process.  Usually a child process will use
        the semaphore created by its parent.'''
        with self._lock:
            if self._fd is not None:
                return
            fds_to_pass = []
            try:
                fds_to_pass.append(sys.stderr.fileno())
            except Exception:
                pass
            cmd = 'from multiprocessing.semaphore_tracker import main;main(%d)'
            r, w = os.pipe()
            try:
                fds_to_pass.append(r)
                # process will out live us, so no need to wait on pid
                exe = spawn.get_executable()
                args = [exe] + util._args_from_interpreter_flags()
                args += ['-c', cmd % r]
                util.spawnv_passfds(exe, args, fds_to_pass)
            except:
                os.close(w)
                raise
            else:
                self._fd = w
            finally:
                os.close(r)

    def register(self, name):
        '''Register name of semaphore with semaphore tracker.'''
        self._send('REGISTER', name)

    def unregister(self, name):
        '''Unregister name of semaphore with semaphore tracker.'''
        self._send('UNREGISTER', name)

    def _send(self, cmd, name):
        self.ensure_running()
        msg = '{0}:{1}\n'.format(cmd, name).encode('ascii')
        if len(name) > 512:
            # posix guarantees that writes to a pipe of less than PIPE_BUF
            # bytes are atomic, and that PIPE_BUF >= 512
            raise ValueError('name too long')
        nbytes = os.write(self._fd, msg)
        assert nbytes == len(msg)


_semaphore_tracker = SemaphoreTracker()
ensure_running = _semaphore_tracker.ensure_running
register = _semaphore_tracker.register
unregister = _semaphore_tracker.unregister
getfd = _semaphore_tracker.getfd


def main(fd):
    '''Run semaphore tracker.'''
    # protect the process from ^C and "killall python" etc
    signal.signal(signal.SIGINT, signal.SIG_IGN)
    signal.signal(signal.SIGTERM, signal.SIG_IGN)

    for f in (sys.stdin, sys.stdout):
        try:
            f.close()
        except Exception:
            pass

    cache = set()
    try:
        # keep track of registered/unregistered semaphores
        with open(fd, 'rb') as f:
            for line in f:
                try:
                    cmd, name = line.strip().split(b':')
                    if cmd == b'REGISTER':
                        cache.add(name)
                    elif cmd == b'UNREGISTER':
                        cache.remove(name)
                    else:
                        raise RuntimeError('unrecognized command %r' % cmd)
                except Exception:
                    try:
                        sys.excepthook(*sys.exc_info())
                    except:
                        pass
    finally:
        # all processes have terminated; cleanup any remaining semaphores
        if cache:
            try:
                warnings.warn('semaphore_tracker: There appear to be %d '
                              'leaked semaphores to clean up at shutdown' %
                              len(cache))
            except Exception:
                pass
        for name in cache:
            # For some reason the process which created and registered this
            # semaphore has failed to unregister it. Presumably it has died.
            # We therefore unlink it.
            try:
                name = name.decode('ascii')
                try:
                    _multiprocessing.sem_unlink(name)
                except Exception as e:
                    warnings.warn('semaphore_tracker: %r: %s' % (name, e))
            finally:
                pass
lib\multiprocessing\sharedctypes.py
#
# Module which supports allocation of ctypes objects from shared memory
#
# multiprocessing/sharedctypes.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

import ctypes
import weakref

from . import heap
from . import get_context

from .context import assert_spawning
from .reduction import ForkingPickler

__all__ = ['RawValue', 'RawArray', 'Value', 'Array', 'copy', 'synchronized']

#
#
#

typecode_to_type = {
    'c': ctypes.c_char,  'u': ctypes.c_wchar,
    'b': ctypes.c_byte,  'B': ctypes.c_ubyte,
    'h': ctypes.c_short, 'H': ctypes.c_ushort,
    'i': ctypes.c_int,   'I': ctypes.c_uint,
    'l': ctypes.c_long,  'L': ctypes.c_ulong,
    'f': ctypes.c_float, 'd': ctypes.c_double
    }

#
#
#

def _new_value(type_):
    size = ctypes.sizeof(type_)
    wrapper = heap.BufferWrapper(size)
    return rebuild_ctype(type_, wrapper, None)

def RawValue(typecode_or_type, *args):
    '''
    Returns a ctypes object allocated from shared memory
    '''
    type_ = typecode_to_type.get(typecode_or_type, typecode_or_type)
    obj = _new_value(type_)
    ctypes.memset(ctypes.addressof(obj), 0, ctypes.sizeof(obj))
    obj.__init__(*args)
    return obj

def RawArray(typecode_or_type, size_or_initializer):
    '''
    Returns a ctypes array allocated from shared memory
    '''
    type_ = typecode_to_type.get(typecode_or_type, typecode_or_type)
    if isinstance(size_or_initializer, int):
        type_ = type_ * size_or_initializer
        obj = _new_value(type_)
        ctypes.memset(ctypes.addressof(obj), 0, ctypes.sizeof(obj))
        return obj
    else:
        type_ = type_ * len(size_or_initializer)
        result = _new_value(type_)
        result.__init__(*size_or_initializer)
        return result

def Value(typecode_or_type, *args, lock=True, ctx=None):
    '''
    Return a synchronization wrapper for a Value
    '''
    obj = RawValue(typecode_or_type, *args)
    if lock is False:
        return obj
    if lock in (True, None):
        ctx = ctx or get_context()
        lock = ctx.RLock()
    if not hasattr(lock, 'acquire'):
        raise AttributeError("'%r' has no method 'acquire'" % lock)
    return synchronized(obj, lock, ctx=ctx)

def Array(typecode_or_type, size_or_initializer, *, lock=True, ctx=None):
    '''
    Return a synchronization wrapper for a RawArray
    '''
    obj = RawArray(typecode_or_type, size_or_initializer)
    if lock is False:
        return obj
    if lock in (True, None):
        ctx = ctx or get_context()
        lock = ctx.RLock()
    if not hasattr(lock, 'acquire'):
        raise AttributeError("'%r' has no method 'acquire'" % lock)
    return synchronized(obj, lock, ctx=ctx)

def copy(obj):
    new_obj = _new_value(type(obj))
    ctypes.pointer(new_obj)[0] = obj
    return new_obj

def synchronized(obj, lock=None, ctx=None):
    assert not isinstance(obj, SynchronizedBase), 'object already synchronized'
    ctx = ctx or get_context()

    if isinstance(obj, ctypes._SimpleCData):
        return Synchronized(obj, lock, ctx)
    elif isinstance(obj, ctypes.Array):
        if obj._type_ is ctypes.c_char:
            return SynchronizedString(obj, lock, ctx)
        return SynchronizedArray(obj, lock, ctx)
    else:
        cls = type(obj)
        try:
            scls = class_cache[cls]
        except KeyError:
            names = [field[0] for field in cls._fields_]
            d = dict((name, make_property(name)) for name in names)
            classname = 'Synchronized' + cls.__name__
            scls = class_cache[cls] = type(classname, (SynchronizedBase,), d)
        return scls(obj, lock, ctx)

#
# Functions for pickling/unpickling
#

def reduce_ctype(obj):
    assert_spawning(obj)
    if isinstance(obj, ctypes.Array):
        return rebuild_ctype, (obj._type_, obj._wrapper, obj._length_)
    else:
        return rebuild_ctype, (type(obj), obj._wrapper, None)

def rebuild_ctype(type_, wrapper, length):
    if length is not None:
        type_ = type_ * length
    ForkingPickler.register(type_, reduce_ctype)
    buf = wrapper.create_memoryview()
    obj = type_.from_buffer(buf)
    obj._wrapper = wrapper
    return obj

#
# Function to create properties
#

def make_property(name):
    try:
        return prop_cache[name]
    except KeyError:
        d = {}
        exec(template % ((name,)*7), d)
        prop_cache[name] = d[name]
        return d[name]

template = '''
def get%s(self):
    self.acquire()
    try:
        return self._obj.%s
    finally:
        self.release()
def set%s(self, value):
    self.acquire()
    try:
        self._obj.%s = value
    finally:
        self.release()
%s = property(get%s, set%s)
'''

prop_cache = {}
class_cache = weakref.WeakKeyDictionary()

#
# Synchronized wrappers
#

class SynchronizedBase(object):

    def __init__(self, obj, lock=None, ctx=None):
        self._obj = obj
        if lock:
            self._lock = lock
        else:
            ctx = ctx or get_context(force=True)
            self._lock = ctx.RLock()
        self.acquire = self._lock.acquire
        self.release = self._lock.release

    def __reduce__(self):
        assert_spawning(self)
        return synchronized, (self._obj, self._lock)

    def get_obj(self):
        return self._obj

    def get_lock(self):
        return self._lock

    def __repr__(self):
        return '<%s wrapper for %s>' % (type(self).__name__, self._obj)


class Synchronized(SynchronizedBase):
    value = make_property('value')


class SynchronizedArray(SynchronizedBase):

    def __len__(self):
        return len(self._obj)

    def __getitem__(self, i):
        self.acquire()
        try:
            return self._obj[i]
        finally:
            self.release()

    def __setitem__(self, i, value):
        self.acquire()
        try:
            self._obj[i] = value
        finally:
            self.release()

    def __getslice__(self, start, stop):
        self.acquire()
        try:
            return self._obj[start:stop]
        finally:
            self.release()

    def __setslice__(self, start, stop, values):
        self.acquire()
        try:
            self._obj[start:stop] = values
        finally:
            self.release()


class SynchronizedString(SynchronizedArray):
    value = make_property('value')
    raw = make_property('raw')
lib\multiprocessing\spawn.py
#
# Code used to start processes when using the spawn or forkserver
# start methods.
#
# multiprocessing/spawn.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

import os
import pickle
import sys
import runpy
import types

from . import get_start_method, set_start_method
from . import process
from . import util

__all__ = ['_main', 'freeze_support', 'set_executable', 'get_executable',
           'get_preparation_data', 'get_command_line', 'import_main_path']

#
# _python_exe is the assumed path to the python executable.
# People embedding Python want to modify it.
#

if sys.platform != 'win32':
    WINEXE = False
    WINSERVICE = False
else:
    WINEXE = (sys.platform == 'win32' and getattr(sys, 'frozen', False))
    WINSERVICE = sys.executable.lower().endswith("pythonservice.exe")

if WINSERVICE:
    _python_exe = os.path.join(sys.exec_prefix, 'python.exe')
else:
    _python_exe = sys.executable

def set_executable(exe):
    global _python_exe
    _python_exe = exe

def get_executable():
    return _python_exe

#
#
#

def is_forking(argv):
    '''
    Return whether commandline indicates we are forking
    '''
    if len(argv) >= 2 and argv[1] == '--multiprocessing-fork':
        return True
    else:
        return False


def freeze_support():
    '''
    Run code for process object if this in not the main process
    '''
    if is_forking(sys.argv):
        kwds = {}
        for arg in sys.argv[2:]:
            name, value = arg.split('=')
            if value == 'None':
                kwds[name] = None
            else:
                kwds[name] = int(value)
        spawn_main(**kwds)
        sys.exit()


def get_command_line(**kwds):
    '''
    Returns prefix of command line used for spawning a child process
    '''
    if getattr(sys, 'frozen', False):
        return ([sys.executable, '--multiprocessing-fork'] +
                ['%s=%r' % item for item in kwds.items()])
    else:
        prog = 'from multiprocessing.spawn import spawn_main; spawn_main(%s)'
        prog %= ', '.join('%s=%r' % item for item in kwds.items())
        opts = util._args_from_interpreter_flags()
        return [_python_exe] + opts + ['-c', prog, '--multiprocessing-fork']


def spawn_main(pipe_handle, parent_pid=None, tracker_fd=None):
    '''
    Run code specifed by data received over pipe
    '''
    assert is_forking(sys.argv)
    if sys.platform == 'win32':
        import msvcrt
        from .reduction import steal_handle
        new_handle = steal_handle(parent_pid, pipe_handle)
        fd = msvcrt.open_osfhandle(new_handle, os.O_RDONLY)
    else:
        from . import semaphore_tracker
        semaphore_tracker._semaphore_tracker._fd = tracker_fd
        fd = pipe_handle
    exitcode = _main(fd)
    sys.exit(exitcode)


def _main(fd):
    with os.fdopen(fd, 'rb', closefd=True) as from_parent:
        process.current_process()._inheriting = True
        try:
            preparation_data = pickle.load(from_parent)
            prepare(preparation_data)
            self = pickle.load(from_parent)
        finally:
            del process.current_process()._inheriting
    return self._bootstrap()


def _check_not_importing_main():
    if getattr(process.current_process(), '_inheriting', False):
        raise RuntimeError('''
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.''')


def get_preparation_data(name):
    '''
    Return info about parent needed by child to unpickle process object
    '''
    _check_not_importing_main()
    d = dict(
        log_to_stderr=util._log_to_stderr,
        authkey=process.current_process().authkey,
        )

    if util._logger is not None:
        d['log_level'] = util._logger.getEffectiveLevel()

    sys_path=sys.path.copy()
    try:
        i = sys_path.index('')
    except ValueError:
        pass
    else:
        sys_path[i] = process.ORIGINAL_DIR

    d.update(
        name=name,
        sys_path=sys_path,
        sys_argv=sys.argv,
        orig_dir=process.ORIGINAL_DIR,
        dir=os.getcwd(),
        start_method=get_start_method(),
        )

    # Figure out whether to initialise main in the subprocess as a module
    # or through direct execution (or to leave it alone entirely)
    main_module = sys.modules['__main__']
    main_mod_name = getattr(main_module.__spec__, "name", None)
    if main_mod_name is not None:
        d['init_main_from_name'] = main_mod_name
    elif sys.platform != 'win32' or (not WINEXE and not WINSERVICE):
        main_path = getattr(main_module, '__file__', None)
        if main_path is not None:
            if (not os.path.isabs(main_path) and
                        process.ORIGINAL_DIR is not None):
                main_path = os.path.join(process.ORIGINAL_DIR, main_path)
            d['init_main_from_path'] = os.path.normpath(main_path)

    return d

#
# Prepare current process
#

old_main_modules = []

def prepare(data):
    '''
    Try to get current process ready to unpickle process object
    '''
    if 'name' in data:
        process.current_process().name = data['name']

    if 'authkey' in data:
        process.current_process().authkey = data['authkey']

    if 'log_to_stderr' in data and data['log_to_stderr']:
        util.log_to_stderr()

    if 'log_level' in data:
        util.get_logger().setLevel(data['log_level'])

    if 'sys_path' in data:
        sys.path = data['sys_path']

    if 'sys_argv' in data:
        sys.argv = data['sys_argv']

    if 'dir' in data:
        os.chdir(data['dir'])

    if 'orig_dir' in data:
        process.ORIGINAL_DIR = data['orig_dir']

    if 'start_method' in data:
        set_start_method(data['start_method'])

    if 'init_main_from_name' in data:
        _fixup_main_from_name(data['init_main_from_name'])
    elif 'init_main_from_path' in data:
        _fixup_main_from_path(data['init_main_from_path'])

# Multiprocessing module helpers to fix up the main module in
# spawned subprocesses
def _fixup_main_from_name(mod_name):
    # __main__.py files for packages, directories, zip archives, etc, run
    # their "main only" code unconditionally, so we don't even try to
    # populate anything in __main__, nor do we make any changes to
    # __main__ attributes
    current_main = sys.modules['__main__']
    if mod_name == "__main__" or mod_name.endswith(".__main__"):
        return

    # If this process was forked, __main__ may already be populated
    if getattr(current_main.__spec__, "name", None) == mod_name:
        return

    # Otherwise, __main__ may contain some non-main code where we need to
    # support unpickling it properly. We rerun it as __mp_main__ and make
    # the normal __main__ an alias to that
    old_main_modules.append(current_main)
    main_module = types.ModuleType("__mp_main__")
    main_content = runpy.run_module(mod_name,
                                    run_name="__mp_main__",
                                    alter_sys=True)
    main_module.__dict__.update(main_content)
    sys.modules['__main__'] = sys.modules['__mp_main__'] = main_module


def _fixup_main_from_path(main_path):
    # If this process was forked, __main__ may already be populated
    current_main = sys.modules['__main__']

    # Unfortunately, the main ipython launch script historically had no
    # "if __name__ == '__main__'" guard, so we work around that
    # by treating it like a __main__.py file
    # See https://github.com/ipython/ipython/issues/4698
    main_name = os.path.splitext(os.path.basename(main_path))[0]
    if main_name == 'ipython':
        return

    # Otherwise, if __file__ already has the setting we expect,
    # there's nothing more to do
    if getattr(current_main, '__file__', None) == main_path:
        return

    # If the parent process has sent a path through rather than a module
    # name we assume it is an executable script that may contain
    # non-main code that needs to be executed
    old_main_modules.append(current_main)
    main_module = types.ModuleType("__mp_main__")
    main_content = runpy.run_path(main_path,
                                  run_name="__mp_main__")
    main_module.__dict__.update(main_content)
    sys.modules['__main__'] = sys.modules['__mp_main__'] = main_module


def import_main_path(main_path):
    '''
    Set sys.modules['__main__'] to module at main_path
    '''
    _fixup_main_from_path(main_path)
lib\multiprocessing\synchronize.py
#
# Module implementing synchronization primitives
#
# multiprocessing/synchronize.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = [
    'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Condition', 'Event'
    ]

import threading
import sys
import tempfile
import _multiprocessing

from time import time as _time

from . import context
from . import process
from . import util

# Try to import the mp.synchronize module cleanly, if it fails
# raise ImportError for platforms lacking a working sem_open implementation.
# See issue 3770
try:
    from _multiprocessing import SemLock, sem_unlink
except (ImportError):
    raise ImportError("This platform lacks a functioning sem_open" +
                      " implementation, therefore, the required" +
                      " synchronization primitives needed will not" +
                      " function, see issue 3770.")

#
# Constants
#

RECURSIVE_MUTEX, SEMAPHORE = list(range(2))
SEM_VALUE_MAX = _multiprocessing.SemLock.SEM_VALUE_MAX

#
# Base class for semaphores and mutexes; wraps `_multiprocessing.SemLock`
#

class SemLock(object):

    _rand = tempfile._RandomNameSequence()

    def __init__(self, kind, value, maxvalue, *, ctx):
        if ctx is None:
            ctx = context._default_context.get_context()
        name = ctx.get_start_method()
        unlink_now = sys.platform == 'win32' or name == 'fork'
        for i in range(100):
            try:
                sl = self._semlock = _multiprocessing.SemLock(
                    kind, value, maxvalue, self._make_name(),
                    unlink_now)
            except FileExistsError:
                pass
            else:
                break
        else:
            raise FileExistsError('cannot find name for semaphore')

        util.debug('created semlock with handle %s' % sl.handle)
        self._make_methods()

        if sys.platform != 'win32':
            def _after_fork(obj):
                obj._semlock._after_fork()
            util.register_after_fork(self, _after_fork)

        if self._semlock.name is not None:
            # We only get here if we are on Unix with forking
            # disabled.  When the object is garbage collected or the
            # process shuts down we unlink the semaphore name
            from .semaphore_tracker import register
            register(self._semlock.name)
            util.Finalize(self, SemLock._cleanup, (self._semlock.name,),
                          exitpriority=0)

    @staticmethod
    def _cleanup(name):
        from .semaphore_tracker import unregister
        sem_unlink(name)
        unregister(name)

    def _make_methods(self):
        self.acquire = self._semlock.acquire
        self.release = self._semlock.release

    def __enter__(self):
        return self._semlock.__enter__()

    def __exit__(self, *args):
        return self._semlock.__exit__(*args)

    def __getstate__(self):
        context.assert_spawning(self)
        sl = self._semlock
        if sys.platform == 'win32':
            h = context.get_spawning_popen().duplicate_for_child(sl.handle)
        else:
            h = sl.handle
        return (h, sl.kind, sl.maxvalue, sl.name)

    def __setstate__(self, state):
        self._semlock = _multiprocessing.SemLock._rebuild(*state)
        util.debug('recreated blocker with handle %r' % state[0])
        self._make_methods()

    @staticmethod
    def _make_name():
        return '%s-%s' % (process.current_process()._config['semprefix'],
                          next(SemLock._rand))

#
# Semaphore
#

class Semaphore(SemLock):

    def __init__(self, value=1, *, ctx):
        SemLock.__init__(self, SEMAPHORE, value, SEM_VALUE_MAX, ctx=ctx)

    def get_value(self):
        return self._semlock._get_value()

    def __repr__(self):
        try:
            value = self._semlock._get_value()
        except Exception:
            value = 'unknown'
        return '<Semaphore(value=%s)>' % value

#
# Bounded semaphore
#

class BoundedSemaphore(Semaphore):

    def __init__(self, value=1, *, ctx):
        SemLock.__init__(self, SEMAPHORE, value, value, ctx=ctx)

    def __repr__(self):
        try:
            value = self._semlock._get_value()
        except Exception:
            value = 'unknown'
        return '<BoundedSemaphore(value=%s, maxvalue=%s)>' % \
               (value, self._semlock.maxvalue)

#
# Non-recursive lock
#

class Lock(SemLock):

    def __init__(self, *, ctx):
        SemLock.__init__(self, SEMAPHORE, 1, 1, ctx=ctx)

    def __repr__(self):
        try:
            if self._semlock._is_mine():
                name = process.current_process().name
                if threading.current_thread().name != 'MainThread':
                    name += '|' + threading.current_thread().name
            elif self._semlock._get_value() == 1:
                name = 'None'
            elif self._semlock._count() > 0:
                name = 'SomeOtherThread'
            else:
                name = 'SomeOtherProcess'
        except Exception:
            name = 'unknown'
        return '<Lock(owner=%s)>' % name

#
# Recursive lock
#

class RLock(SemLock):

    def __init__(self, *, ctx):
        SemLock.__init__(self, RECURSIVE_MUTEX, 1, 1, ctx=ctx)

    def __repr__(self):
        try:
            if self._semlock._is_mine():
                name = process.current_process().name
                if threading.current_thread().name != 'MainThread':
                    name += '|' + threading.current_thread().name
                count = self._semlock._count()
            elif self._semlock._get_value() == 1:
                name, count = 'None', 0
            elif self._semlock._count() > 0:
                name, count = 'SomeOtherThread', 'nonzero'
            else:
                name, count = 'SomeOtherProcess', 'nonzero'
        except Exception:
            name, count = 'unknown', 'unknown'
        return '<RLock(%s, %s)>' % (name, count)

#
# Condition variable
#

class Condition(object):

    def __init__(self, lock=None, *, ctx):
        self._lock = lock or ctx.RLock()
        self._sleeping_count = ctx.Semaphore(0)
        self._woken_count = ctx.Semaphore(0)
        self._wait_semaphore = ctx.Semaphore(0)
        self._make_methods()

    def __getstate__(self):
        context.assert_spawning(self)
        return (self._lock, self._sleeping_count,
                self._woken_count, self._wait_semaphore)

    def __setstate__(self, state):
        (self._lock, self._sleeping_count,
         self._woken_count, self._wait_semaphore) = state
        self._make_methods()

    def __enter__(self):
        return self._lock.__enter__()

    def __exit__(self, *args):
        return self._lock.__exit__(*args)

    def _make_methods(self):
        self.acquire = self._lock.acquire
        self.release = self._lock.release

    def __repr__(self):
        try:
            num_waiters = (self._sleeping_count._semlock._get_value() -
                           self._woken_count._semlock._get_value())
        except Exception:
            num_waiters = 'unknown'
        return '<Condition(%s, %s)>' % (self._lock, num_waiters)

    def wait(self, timeout=None):
        assert self._lock._semlock._is_mine(), \
               'must acquire() condition before using wait()'

        # indicate that this thread is going to sleep
        self._sleeping_count.release()

        # release lock
        count = self._lock._semlock._count()
        for i in range(count):
            self._lock.release()

        try:
            # wait for notification or timeout
            return self._wait_semaphore.acquire(True, timeout)
        finally:
            # indicate that this thread has woken
            self._woken_count.release()

            # reacquire lock
            for i in range(count):
                self._lock.acquire()

    def notify(self):
        assert self._lock._semlock._is_mine(), 'lock is not owned'
        assert not self._wait_semaphore.acquire(False)

        # to take account of timeouts since last notify() we subtract
        # woken_count from sleeping_count and rezero woken_count
        while self._woken_count.acquire(False):
            res = self._sleeping_count.acquire(False)
            assert res

        if self._sleeping_count.acquire(False): # try grabbing a sleeper
            self._wait_semaphore.release()      # wake up one sleeper
            self._woken_count.acquire()         # wait for the sleeper to wake

            # rezero _wait_semaphore in case a timeout just happened
            self._wait_semaphore.acquire(False)

    def notify_all(self):
        assert self._lock._semlock._is_mine(), 'lock is not owned'
        assert not self._wait_semaphore.acquire(False)

        # to take account of timeouts since last notify*() we subtract
        # woken_count from sleeping_count and rezero woken_count
        while self._woken_count.acquire(False):
            res = self._sleeping_count.acquire(False)
            assert res

        sleepers = 0
        while self._sleeping_count.acquire(False):
            self._wait_semaphore.release()        # wake up one sleeper
            sleepers += 1

        if sleepers:
            for i in range(sleepers):
                self._woken_count.acquire()       # wait for a sleeper to wake

            # rezero wait_semaphore in case some timeouts just happened
            while self._wait_semaphore.acquire(False):
                pass

    def wait_for(self, predicate, timeout=None):
        result = predicate()
        if result:
            return result
        if timeout is not None:
            endtime = _time() + timeout
        else:
            endtime = None
            waittime = None
        while not result:
            if endtime is not None:
                waittime = endtime - _time()
                if waittime <= 0:
                    break
            self.wait(waittime)
            result = predicate()
        return result

#
# Event
#

class Event(object):

    def __init__(self, *, ctx):
        self._cond = ctx.Condition(ctx.Lock())
        self._flag = ctx.Semaphore(0)

    def is_set(self):
        self._cond.acquire()
        try:
            if self._flag.acquire(False):
                self._flag.release()
                return True
            return False
        finally:
            self._cond.release()

    def set(self):
        self._cond.acquire()
        try:
            self._flag.acquire(False)
            self._flag.release()
            self._cond.notify_all()
        finally:
            self._cond.release()

    def clear(self):
        self._cond.acquire()
        try:
            self._flag.acquire(False)
        finally:
            self._cond.release()

    def wait(self, timeout=None):
        self._cond.acquire()
        try:
            if self._flag.acquire(False):
                self._flag.release()
            else:
                self._cond.wait(timeout)

            if self._flag.acquire(False):
                self._flag.release()
                return True
            return False
        finally:
            self._cond.release()

#
# Barrier
#

class Barrier(threading.Barrier):

    def __init__(self, parties, action=None, timeout=None, *, ctx):
        import struct
        from .heap import BufferWrapper
        wrapper = BufferWrapper(struct.calcsize('i') * 2)
        cond = ctx.Condition()
        self.__setstate__((parties, action, timeout, cond, wrapper))
        self._state = 0
        self._count = 0

    def __setstate__(self, state):
        (self._parties, self._action, self._timeout,
         self._cond, self._wrapper) = state
        self._array = self._wrapper.create_memoryview().cast('i')

    def __getstate__(self):
        return (self._parties, self._action, self._timeout,
                self._cond, self._wrapper)

    @property
    def _state(self):
        return self._array[0]

    @_state.setter
    def _state(self, value):
        self._array[0] = value

    @property
    def _count(self):
        return self._array[1]

    @_count.setter
    def _count(self, value):
        self._array[1] = value
lib\multiprocessing\util.py
#
# Module providing various facilities to other parts of the package
#
# multiprocessing/util.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

import os
import itertools
import weakref
import atexit
import threading        # we want threading to install it's
                        # cleanup function before multiprocessing does
from subprocess import _args_from_interpreter_flags

from . import process

__all__ = [
    'sub_debug', 'debug', 'info', 'sub_warning', 'get_logger',
    'log_to_stderr', 'get_temp_dir', 'register_after_fork',
    'is_exiting', 'Finalize', 'ForkAwareThreadLock', 'ForkAwareLocal',
    'close_all_fds_except', 'SUBDEBUG', 'SUBWARNING',
    ]

#
# Logging
#

NOTSET = 0
SUBDEBUG = 5
DEBUG = 10
INFO = 20
SUBWARNING = 25

LOGGER_NAME = 'multiprocessing'
DEFAULT_LOGGING_FORMAT = '[%(levelname)s/%(processName)s] %(message)s'

_logger = None
_log_to_stderr = False

def sub_debug(msg, *args):
    if _logger:
        _logger.log(SUBDEBUG, msg, *args)

def debug(msg, *args):
    if _logger:
        _logger.log(DEBUG, msg, *args)

def info(msg, *args):
    if _logger:
        _logger.log(INFO, msg, *args)

def sub_warning(msg, *args):
    if _logger:
        _logger.log(SUBWARNING, msg, *args)

def get_logger():
    '''
    Returns logger used by multiprocessing
    '''
    global _logger
    import logging

    logging._acquireLock()
    try:
        if not _logger:

            _logger = logging.getLogger(LOGGER_NAME)
            _logger.propagate = 0

            # XXX multiprocessing should cleanup before logging
            if hasattr(atexit, 'unregister'):
                atexit.unregister(_exit_function)
                atexit.register(_exit_function)
            else:
                atexit._exithandlers.remove((_exit_function, (), {}))
                atexit._exithandlers.append((_exit_function, (), {}))

    finally:
        logging._releaseLock()

    return _logger

def log_to_stderr(level=None):
    '''
    Turn on logging and add a handler which prints to stderr
    '''
    global _log_to_stderr
    import logging

    logger = get_logger()
    formatter = logging.Formatter(DEFAULT_LOGGING_FORMAT)
    handler = logging.StreamHandler()
    handler.setFormatter(formatter)
    logger.addHandler(handler)

    if level:
        logger.setLevel(level)
    _log_to_stderr = True
    return _logger

#
# Function returning a temp directory which will be removed on exit
#

def get_temp_dir():
    # get name of a temp directory which will be automatically cleaned up
    tempdir = process.current_process()._config.get('tempdir')
    if tempdir is None:
        import shutil, tempfile
        tempdir = tempfile.mkdtemp(prefix='pymp-')
        info('created temp directory %s', tempdir)
        Finalize(None, shutil.rmtree, args=[tempdir], exitpriority=-100)
        process.current_process()._config['tempdir'] = tempdir
    return tempdir

#
# Support for reinitialization of objects when bootstrapping a child process
#

_afterfork_registry = weakref.WeakValueDictionary()
_afterfork_counter = itertools.count()

def _run_after_forkers():
    items = list(_afterfork_registry.items())
    items.sort()
    for (index, ident, func), obj in items:
        try:
            func(obj)
        except Exception as e:
            info('after forker raised exception %s', e)

def register_after_fork(obj, func):
    _afterfork_registry[(next(_afterfork_counter), id(obj), func)] = obj

#
# Finalization using weakrefs
#

_finalizer_registry = {}
_finalizer_counter = itertools.count()


class Finalize(object):
    '''
    Class which supports object finalization using weakrefs
    '''
    def __init__(self, obj, callback, args=(), kwargs=None, exitpriority=None):
        assert exitpriority is None or type(exitpriority) is int

        if obj is not None:
            self._weakref = weakref.ref(obj, self)
        else:
            assert exitpriority is not None

        self._callback = callback
        self._args = args
        self._kwargs = kwargs or {}
        self._key = (exitpriority, next(_finalizer_counter))
        self._pid = os.getpid()

        _finalizer_registry[self._key] = self

    def __call__(self, wr=None,
                 # Need to bind these locally because the globals can have
                 # been cleared at shutdown
                 _finalizer_registry=_finalizer_registry,
                 sub_debug=sub_debug, getpid=os.getpid):
        '''
        Run the callback unless it has already been called or cancelled
        '''
        try:
            del _finalizer_registry[self._key]
        except KeyError:
            sub_debug('finalizer no longer registered')
        else:
            if self._pid != getpid():
                sub_debug('finalizer ignored because different process')
                res = None
            else:
                sub_debug('finalizer calling %s with args %s and kwargs %s',
                          self._callback, self._args, self._kwargs)
                res = self._callback(*self._args, **self._kwargs)
            self._weakref = self._callback = self._args = \
                            self._kwargs = self._key = None
            return res

    def cancel(self):
        '''
        Cancel finalization of the object
        '''
        try:
            del _finalizer_registry[self._key]
        except KeyError:
            pass
        else:
            self._weakref = self._callback = self._args = \
                            self._kwargs = self._key = None

    def still_active(self):
        '''
        Return whether this finalizer is still waiting to invoke callback
        '''
        return self._key in _finalizer_registry

    def __repr__(self):
        try:
            obj = self._weakref()
        except (AttributeError, TypeError):
            obj = None

        if obj is None:
            return '<Finalize object, dead>'

        x = '<Finalize object, callback=%s' % \
            getattr(self._callback, '__name__', self._callback)
        if self._args:
            x += ', args=' + str(self._args)
        if self._kwargs:
            x += ', kwargs=' + str(self._kwargs)
        if self._key[0] is not None:
            x += ', exitprority=' + str(self._key[0])
        return x + '>'


def _run_finalizers(minpriority=None):
    '''
    Run all finalizers whose exit priority is not None and at least minpriority

    Finalizers with highest priority are called first; finalizers with
    the same priority will be called in reverse order of creation.
    '''
    if _finalizer_registry is None:
        # This function may be called after this module's globals are
        # destroyed.  See the _exit_function function in this module for more
        # notes.
        return

    if minpriority is None:
        f = lambda p : p[0][0] is not None
    else:
        f = lambda p : p[0][0] is not None and p[0][0] >= minpriority

    items = [x for x in list(_finalizer_registry.items()) if f(x)]
    items.sort(reverse=True)

    for key, finalizer in items:
        sub_debug('calling %s', finalizer)
        try:
            finalizer()
        except Exception:
            import traceback
            traceback.print_exc()

    if minpriority is None:
        _finalizer_registry.clear()

#
# Clean up on exit
#

def is_exiting():
    '''
    Returns true if the process is shutting down
    '''
    return _exiting or _exiting is None

_exiting = False

def _exit_function(info=info, debug=debug, _run_finalizers=_run_finalizers,
                   active_children=process.active_children,
                   current_process=process.current_process):
    # We hold on to references to functions in the arglist due to the
    # situation described below, where this function is called after this
    # module's globals are destroyed.

    global _exiting

    if not _exiting:
        _exiting = True

        info('process shutting down')
        debug('running all "atexit" finalizers with priority >= 0')
        _run_finalizers(0)

        if current_process() is not None:
            # We check if the current process is None here because if
            # it's None, any call to ``active_children()`` will raise
            # an AttributeError (active_children winds up trying to
            # get attributes from util._current_process).  One
            # situation where this can happen is if someone has
            # manipulated sys.modules, causing this module to be
            # garbage collected.  The destructor for the module type
            # then replaces all values in the module dict with None.
            # For instance, after setuptools runs a test it replaces
            # sys.modules with a copy created earlier.  See issues
            # #9775 and #15881.  Also related: #4106, #9205, and
            # #9207.

            for p in active_children():
                if p.daemon:
                    info('calling terminate() for daemon %s', p.name)
                    p._popen.terminate()

            for p in active_children():
                info('calling join() for process %s', p.name)
                p.join()

        debug('running the remaining "atexit" finalizers')
        _run_finalizers()

atexit.register(_exit_function)

#
# Some fork aware types
#

class ForkAwareThreadLock(object):
    def __init__(self):
        self._reset()
        register_after_fork(self, ForkAwareThreadLock._reset)

    def _reset(self):
        self._lock = threading.Lock()
        self.acquire = self._lock.acquire
        self.release = self._lock.release

class ForkAwareLocal(threading.local):
    def __init__(self):
        register_after_fork(self, lambda obj : obj.__dict__.clear())
    def __reduce__(self):
        return type(self), ()

#
# Close fds except those specified
#

try:
    MAXFD = os.sysconf("SC_OPEN_MAX")
except Exception:
    MAXFD = 256

def close_all_fds_except(fds):
    fds = list(fds) + [-1, MAXFD]
    fds.sort()
    assert fds[-1] == MAXFD, 'fd too large'
    for i in range(len(fds) - 1):
        os.closerange(fds[i]+1, fds[i+1])

#
# Start a program with only specified fds kept open
#

def spawnv_passfds(path, args, passfds):
    import _posixsubprocess
    passfds = sorted(passfds)
    errpipe_read, errpipe_write = os.pipe()
    try:
        return _posixsubprocess.fork_exec(
            args, [os.fsencode(path)], True, passfds, None, None,
            -1, -1, -1, -1, -1, -1, errpipe_read, errpipe_write,
            False, False, None)
    finally:
        os.close(errpipe_read)
        os.close(errpipe_write)
lib\multiprocessing\__init__.py
#
# Package analogous to 'threading.py' but using processes
#
# multiprocessing/__init__.py
#
# This package is intended to duplicate the functionality (and much of
# the API) of threading.py but uses processes instead of threads.  A
# subpackage 'multiprocessing.dummy' has the same API but is a simple
# wrapper for 'threading'.
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

import sys
from . import context

#
# Copy stuff from default context
#

globals().update((name, getattr(context._default_context, name))
                 for name in context._default_context.__all__)
__all__ = context._default_context.__all__

#
# XXX These should not really be documented or public.
#

SUBDEBUG = 5
SUBWARNING = 25

#
# Alias for main module -- will be reset by bootstrapping child processes
#

if '__main__' in sys.modules:
    sys.modules['__mp_main__'] = sys.modules['__main__']
lib\multiprocessing\dummy\connection.py
#
# Analogue of `multiprocessing.connection` which uses queues instead of sockets
#
# multiprocessing/dummy/connection.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = [ 'Client', 'Listener', 'Pipe' ]

from queue import Queue


families = [None]


class Listener(object):

    def __init__(self, address=None, family=None, backlog=1):
        self._backlog_queue = Queue(backlog)

    def accept(self):
        return Connection(*self._backlog_queue.get())

    def close(self):
        self._backlog_queue = None

    address = property(lambda self: self._backlog_queue)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, exc_tb):
        self.close()


def Client(address):
    _in, _out = Queue(), Queue()
    address.put((_out, _in))
    return Connection(_in, _out)


def Pipe(duplex=True):
    a, b = Queue(), Queue()
    return Connection(a, b), Connection(b, a)


class Connection(object):

    def __init__(self, _in, _out):
        self._out = _out
        self._in = _in
        self.send = self.send_bytes = _out.put
        self.recv = self.recv_bytes = _in.get

    def poll(self, timeout=0.0):
        if self._in.qsize() > 0:
            return True
        if timeout <= 0.0:
            return False
        self._in.not_empty.acquire()
        self._in.not_empty.wait(timeout)
        self._in.not_empty.release()
        return self._in.qsize() > 0

    def close(self):
        pass

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, exc_tb):
        self.close()
lib\multiprocessing\dummy\__init__.py
#
# Support for the API of the multiprocessing package using threads
#
# multiprocessing/dummy/__init__.py
#
# Copyright (c) 2006-2008, R Oudkerk
# Licensed to PSF under a Contributor Agreement.
#

__all__ = [
    'Process', 'current_process', 'active_children', 'freeze_support',
    'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Condition',
    'Event', 'Barrier', 'Queue', 'Manager', 'Pipe', 'Pool', 'JoinableQueue'
    ]

#
# Imports
#

import threading
import sys
import weakref
import array

from .connection import Pipe
from threading import Lock, RLock, Semaphore, BoundedSemaphore
from threading import Event, Condition, Barrier
from queue import Queue

#
#
#

class DummyProcess(threading.Thread):

    def __init__(self, group=None, target=None, name=None, args=(), kwargs={}):
        threading.Thread.__init__(self, group, target, name, args, kwargs)
        self._pid = None
        self._children = weakref.WeakKeyDictionary()
        self._start_called = False
        self._parent = current_process()

    def start(self):
        assert self._parent is current_process()
        self._start_called = True
        if hasattr(self._parent, '_children'):
            self._parent._children[self] = None
        threading.Thread.start(self)

    @property
    def exitcode(self):
        if self._start_called and not self.is_alive():
            return 0
        else:
            return None

#
#
#

Process = DummyProcess
current_process = threading.current_thread
current_process()._children = weakref.WeakKeyDictionary()

def active_children():
    children = current_process()._children
    for p in list(children):
        if not p.is_alive():
            children.pop(p, None)
    return list(children)

def freeze_support():
    pass

#
#
#

class Namespace(object):
    def __init__(self, **kwds):
        self.__dict__.update(kwds)
    def __repr__(self):
        items = list(self.__dict__.items())
        temp = []
        for name, value in items:
            if not name.startswith('_'):
                temp.append('%s=%r' % (name, value))
        temp.sort()
        return 'Namespace(%s)' % str.join(', ', temp)

dict = dict
list = list

def Array(typecode, sequence, lock=True):
    return array.array(typecode, sequence)

class Value(object):
    def __init__(self, typecode, value, lock=True):
        self._typecode = typecode
        self._value = value
    def _get(self):
        return self._value
    def _set(self, value):
        self._value = value
    value = property(_get, _set)
    def __repr__(self):
        return '<%s(%r, %r)>'%(type(self).__name__,self._typecode,self._value)

def Manager():
    return sys.modules[__name__]

def shutdown():
    pass

def Pool(processes=None, initializer=None, initargs=()):
    from ..pool import ThreadPool
    return ThreadPool(processes, initializer, initargs)

JoinableQueue = Queue
lib\pydoc_data\topics.py
# -*- coding: utf-8 -*-
# Autogenerated by Sphinx on Mon Mar 18 09:21:03 2019
topics = {'assert': '\n'
           'The "assert" statement\n'
           '**********************\n'
           '\n'
           'Assert statements are a convenient way to insert debugging '
           'assertions\n'
           'into a program:\n'
           '\n'
           '   assert_stmt ::= "assert" expression ["," expression]\n'
           '\n'
           'The simple form, "assert expression", is equivalent to\n'
           '\n'
           '   if __debug__:\n'
           '      if not expression: raise AssertionError\n'
           '\n'
           'The extended form, "assert expression1, expression2", is '
           'equivalent to\n'
           '\n'
           '   if __debug__:\n'
           '      if not expression1: raise AssertionError(expression2)\n'
           '\n'
           'These equivalences assume that "__debug__" and "AssertionError" '
           'refer\n'
           'to the built-in variables with those names.  In the current\n'
           'implementation, the built-in variable "__debug__" is "True" under\n'
           'normal circumstances, "False" when optimization is requested '
           '(command\n'
           'line option -O).  The current code generator emits no code for an\n'
           'assert statement when optimization is requested at compile time.  '
           'Note\n'
           'that it is unnecessary to include the source code for the '
           'expression\n'
           'that failed in the error message; it will be displayed as part of '
           'the\n'
           'stack trace.\n'
           '\n'
           'Assignments to "__debug__" are illegal.  The value for the '
           'built-in\n'
           'variable is determined when the interpreter starts.\n',
 'assignment': '\n'
               'Assignment statements\n'
               '*********************\n'
               '\n'
               'Assignment statements are used to (re)bind names to values and '
               'to\n'
               'modify attributes or items of mutable objects:\n'
               '\n'
               '   assignment_stmt ::= (target_list "=")+ (expression_list | '
               'yield_expression)\n'
               '   target_list     ::= target ("," target)* [","]\n'
               '   target          ::= identifier\n'
               '              | "(" target_list ")"\n'
               '              | "[" target_list "]"\n'
               '              | attributeref\n'
               '              | subscription\n'
               '              | slicing\n'
               '              | "*" target\n'
               '\n'
               '(See section *Primaries* for the syntax definitions for\n'
               '*attributeref*, *subscription*, and *slicing*.)\n'
               '\n'
               'An assignment statement evaluates the expression list '
               '(remember that\n'
               'this can be a single expression or a comma-separated list, the '
               'latter\n'
               'yielding a tuple) and assigns the single resulting object to '
               'each of\n'
               'the target lists, from left to right.\n'
               '\n'
               'Assignment is defined recursively depending on the form of the '
               'target\n'
               '(list). When a target is part of a mutable object (an '
               'attribute\n'
               'reference, subscription or slicing), the mutable object must\n'
               'ultimately perform the assignment and decide about its '
               'validity, and\n'
               'may raise an exception if the assignment is unacceptable.  The '
               'rules\n'
               'observed by various types and the exceptions raised are given '
               'with the\n'
               'definition of the object types (see section *The standard '
               'type\n'
               'hierarchy*).\n'
               '\n'
               'Assignment of an object to a target list, optionally enclosed '
               'in\n'
               'parentheses or square brackets, is recursively defined as '
               'follows.\n'
               '\n'
               '* If the target list is a single target: The object is '
               'assigned to\n'
               '  that target.\n'
               '\n'
               '* If the target list is a comma-separated list of targets: '
               'The\n'
               '  object must be an iterable with the same number of items as '
               'there\n'
               '  are targets in the target list, and the items are assigned, '
               'from\n'
               '  left to right, to the corresponding targets.\n'
               '\n'
               '  * If the target list contains one target prefixed with an\n'
               '    asterisk, called a "starred" target: The object must be a '
               'sequence\n'
               '    with at least as many items as there are targets in the '
               'target\n'
               '    list, minus one.  The first items of the sequence are '
               'assigned,\n'
               '    from left to right, to the targets before the starred '
               'target.  The\n'
               '    final items of the sequence are assigned to the targets '
               'after the\n'
               '    starred target.  A list of the remaining items in the '
               'sequence is\n'
               '    then assigned to the starred target (the list can be '
               'empty).\n'
               '\n'
               '  * Else: The object must be a sequence with the same number '
               'of\n'
               '    items as there are targets in the target list, and the '
               'items are\n'
               '    assigned, from left to right, to the corresponding '
               'targets.\n'
               '\n'
               'Assignment of an object to a single target is recursively '
               'defined as\n'
               'follows.\n'
               '\n'
               '* If the target is an identifier (name):\n'
               '\n'
               '  * If the name does not occur in a "global" or "nonlocal" '
               'statement\n'
               '    in the current code block: the name is bound to the object '
               'in the\n'
               '    current local namespace.\n'
               '\n'
               '  * Otherwise: the name is bound to the object in the global\n'
               '    namespace or the outer namespace determined by '
               '"nonlocal",\n'
               '    respectively.\n'
               '\n'
               '  The name is rebound if it was already bound.  This may cause '
               'the\n'
               '  reference count for the object previously bound to the name '
               'to reach\n'
               '  zero, causing the object to be deallocated and its '
               'destructor (if it\n'
               '  has one) to be called.\n'
               '\n'
               '* If the target is a target list enclosed in parentheses or '
               'in\n'
               '  square brackets: The object must be an iterable with the '
               'same number\n'
               '  of items as there are targets in the target list, and its '
               'items are\n'
               '  assigned, from left to right, to the corresponding targets.\n'
               '\n'
               '* If the target is an attribute reference: The primary '
               'expression in\n'
               '  the reference is evaluated.  It should yield an object with\n'
               '  assignable attributes; if this is not the case, "TypeError" '
               'is\n'
               '  raised.  That object is then asked to assign the assigned '
               'object to\n'
               '  the given attribute; if it cannot perform the assignment, it '
               'raises\n'
               '  an exception (usually but not necessarily '
               '"AttributeError").\n'
               '\n'
               '  Note: If the object is a class instance and the attribute '
               'reference\n'
               '  occurs on both sides of the assignment operator, the RHS '
               'expression,\n'
               '  "a.x" can access either an instance attribute or (if no '
               'instance\n'
               '  attribute exists) a class attribute.  The LHS target "a.x" '
               'is always\n'
               '  set as an instance attribute, creating it if necessary.  '
               'Thus, the\n'
               '  two occurrences of "a.x" do not necessarily refer to the '
               'same\n'
               '  attribute: if the RHS expression refers to a class '
               'attribute, the\n'
               '  LHS creates a new instance attribute as the target of the\n'
               '  assignment:\n'
               '\n'
               '     class Cls:\n'
               '         x = 3             # class variable\n'
               '     inst = Cls()\n'
               '     inst.x = inst.x + 1   # writes inst.x as 4 leaving Cls.x '
               'as 3\n'
               '\n'
               '  This description does not necessarily apply to descriptor\n'
               '  attributes, such as properties created with "property()".\n'
               '\n'
               '* If the target is a subscription: The primary expression in '
               'the\n'
               '  reference is evaluated.  It should yield either a mutable '
               'sequence\n'
               '  object (such as a list) or a mapping object (such as a '
               'dictionary).\n'
               '  Next, the subscript expression is evaluated.\n'
               '\n'
               '  If the primary is a mutable sequence object (such as a '
               'list), the\n'
               '  subscript must yield an integer.  If it is negative, the '
               "sequence's\n"
               '  length is added to it.  The resulting value must be a '
               'nonnegative\n'
               "  integer less than the sequence's length, and the sequence is "
               'asked\n'
               '  to assign the assigned object to its item with that index.  '
               'If the\n'
               '  index is out of range, "IndexError" is raised (assignment to '
               'a\n'
               '  subscripted sequence cannot add new items to a list).\n'
               '\n'
               '  If the primary is a mapping object (such as a dictionary), '
               'the\n'
               "  subscript must have a type compatible with the mapping's key "
               'type,\n'
               '  and the mapping is then asked to create a key/datum pair '
               'which maps\n'
               '  the subscript to the assigned object.  This can either '
               'replace an\n'
               '  existing key/value pair with the same key value, or insert a '
               'new\n'
               '  key/value pair (if no key with the same value existed).\n'
               '\n'
               '  For user-defined objects, the "__setitem__()" method is '
               'called with\n'
               '  appropriate arguments.\n'
               '\n'
               '* If the target is a slicing: The primary expression in the\n'
               '  reference is evaluated.  It should yield a mutable sequence '
               'object\n'
               '  (such as a list).  The assigned object should be a sequence '
               'object\n'
               '  of the same type.  Next, the lower and upper bound '
               'expressions are\n'
               '  evaluated, insofar they are present; defaults are zero and '
               'the\n'
               "  sequence's length.  The bounds should evaluate to integers. "
               'If\n'
               "  either bound is negative, the sequence's length is added to "
               'it.  The\n'
               '  resulting bounds are clipped to lie between zero and the '
               "sequence's\n"
               '  length, inclusive.  Finally, the sequence object is asked to '
               'replace\n'
               '  the slice with the items of the assigned sequence.  The '
               'length of\n'
               '  the slice may be different from the length of the assigned '
               'sequence,\n'
               '  thus changing the length of the target sequence, if the '
               'target\n'
               '  sequence allows it.\n'
               '\n'
               '**CPython implementation detail:** In the current '
               'implementation, the\n'
               'syntax for targets is taken to be the same as for expressions, '
               'and\n'
               'invalid syntax is rejected during the code generation phase, '
               'causing\n'
               'less detailed error messages.\n'
               '\n'
               'Although the definition of assignment implies that overlaps '
               'between\n'
               "the left-hand side and the right-hand side are 'simultanenous' "
               '(for\n'
               'example "a, b = b, a" swaps two variables), overlaps *within* '
               'the\n'
               'collection of assigned-to variables occur left-to-right, '
               'sometimes\n'
               'resulting in confusion.  For instance, the following program '
               'prints\n'
               '"[0, 2]":\n'
               '\n'
               '   x = [0, 1]\n'
               '   i = 0\n'
               '   i, x[i] = 1, 2         # i is updated, then x[i] is '
               'updated\n'
               '   print(x)\n'
               '\n'
               'See also: **PEP 3132** - Extended Iterable Unpacking\n'
               '\n'
               '     The specification for the "*target" feature.\n'
               '\n'
               '\n'
               'Augmented assignment statements\n'
               '===============================\n'
               '\n'
               'Augmented assignment is the combination, in a single '
               'statement, of a\n'
               'binary operation and an assignment statement:\n'
               '\n'
               '   augmented_assignment_stmt ::= augtarget augop '
               '(expression_list | yield_expression)\n'
               '   augtarget                 ::= identifier | attributeref | '
               'subscription | slicing\n'
               '   augop                     ::= "+=" | "-=" | "*=" | "/=" | '
               '"//=" | "%=" | "**="\n'
               '             | ">>=" | "<<=" | "&=" | "^=" | "|="\n'
               '\n'
               '(See section *Primaries* for the syntax definitions of the '
               'last three\n'
               'symbols.)\n'
               '\n'
               'An augmented assignment evaluates the target (which, unlike '
               'normal\n'
               'assignment statements, cannot be an unpacking) and the '
               'expression\n'
               'list, performs the binary operation specific to the type of '
               'assignment\n'
               'on the two operands, and assigns the result to the original '
               'target.\n'
               'The target is only evaluated once.\n'
               '\n'
               'An augmented assignment expression like "x += 1" can be '
               'rewritten as\n'
               '"x = x + 1" to achieve a similar, but not exactly equal '
               'effect. In the\n'
               'augmented version, "x" is only evaluated once. Also, when '
               'possible,\n'
               'the actual operation is performed *in-place*, meaning that '
               'rather than\n'
               'creating a new object and assigning that to the target, the '
               'old object\n'
               'is modified instead.\n'
               '\n'
               'Unlike normal assignments, augmented assignments evaluate the '
               'left-\n'
               'hand side *before* evaluating the right-hand side.  For '
               'example, "a[i]\n'
               '+= f(x)" first looks-up "a[i]", then it evaluates "f(x)" and '
               'performs\n'
               'the addition, and lastly, it writes the result back to '
               '"a[i]".\n'
               '\n'
               'With the exception of assigning to tuples and multiple targets '
               'in a\n'
               'single statement, the assignment done by augmented assignment\n'
               'statements is handled the same way as normal assignments. '
               'Similarly,\n'
               'with the exception of the possible *in-place* behavior, the '
               'binary\n'
               'operation performed by augmented assignment is the same as the '
               'normal\n'
               'binary operations.\n'
               '\n'
               'For targets which are attribute references, the same *caveat '
               'about\n'
               'class and instance attributes* applies as for regular '
               'assignments.\n',
 'atom-identifiers': '\n'
                     'Identifiers (Names)\n'
                     '*******************\n'
                     '\n'
                     'An identifier occurring as an atom is a name.  See '
                     'section\n'
                     '*Identifiers and keywords* for lexical definition and '
                     'section *Naming\n'
                     'and binding* for documentation of naming and binding.\n'
                     '\n'
                     'When the name is bound to an object, evaluation of the '
                     'atom yields\n'
                     'that object. When a name is not bound, an attempt to '
                     'evaluate it\n'
                     'raises a "NameError" exception.\n'
                     '\n'
                     '**Private name mangling:** When an identifier that '
                     'textually occurs in\n'
                     'a class definition begins with two or more underscore '
                     'characters and\n'
                     'does not end in two or more underscores, it is '
                     'considered a *private\n'
                     'name* of that class. Private names are transformed to a '
                     'longer form\n'
                     'before code is generated for them.  The transformation '
                     'inserts the\n'
                     'class name, with leading underscores removed and a '
                     'single underscore\n'
                     'inserted, in front of the name.  For example, the '
                     'identifier "__spam"\n'
                     'occurring in a class named "Ham" will be transformed to '
                     '"_Ham__spam".\n'
                     'This transformation is independent of the syntactical '
                     'context in which\n'
                     'the identifier is used.  If the transformed name is '
                     'extremely long\n'
                     '(longer than 255 characters), implementation defined '
                     'truncation may\n'
                     'happen. If the class name consists only of underscores, '
                     'no\n'
                     'transformation is done.\n',
 'atom-literals': '\n'
                  'Literals\n'
                  '********\n'
                  '\n'
                  'Python supports string and bytes literals and various '
                  'numeric\n'
                  'literals:\n'
                  '\n'
                  '   literal ::= stringliteral | bytesliteral\n'
                  '               | integer | floatnumber | imagnumber\n'
                  '\n'
                  'Evaluation of a literal yields an object of the given type '
                  '(string,\n'
                  'bytes, integer, floating point number, complex number) with '
                  'the given\n'
                  'value.  The value may be approximated in the case of '
                  'floating point\n'
                  'and imaginary (complex) literals.  See section *Literals* '
                  'for details.\n'
                  '\n'
                  'All literals correspond to immutable data types, and hence '
                  'the\n'
                  "object's identity is less important than its value.  "
                  'Multiple\n'
                  'evaluations of literals with the same value (either the '
                  'same\n'
                  'occurrence in the program text or a different occurrence) '
                  'may obtain\n'
                  'the same object or a different object with the same '
                  'value.\n',
 'attribute-access': '\n'
                     'Customizing attribute access\n'
                     '****************************\n'
                     '\n'
                     'The following methods can be defined to customize the '
                     'meaning of\n'
                     'attribute access (use of, assignment to, or deletion of '
                     '"x.name") for\n'
                     'class instances.\n'
                     '\n'
                     'object.__getattr__(self, name)\n'
                     '\n'
                     '   Called when an attribute lookup has not found the '
                     'attribute in the\n'
                     '   usual places (i.e. it is not an instance attribute '
                     'nor is it found\n'
                     '   in the class tree for "self").  "name" is the '
                     'attribute name. This\n'
                     '   method should return the (computed) attribute value '
                     'or raise an\n'
                     '   "AttributeError" exception.\n'
                     '\n'
                     '   Note that if the attribute is found through the '
                     'normal mechanism,\n'
                     '   "__getattr__()" is not called.  (This is an '
                     'intentional asymmetry\n'
                     '   between "__getattr__()" and "__setattr__()".) This is '
                     'done both for\n'
                     '   efficiency reasons and because otherwise '
                     '"__getattr__()" would have\n'
                     '   no way to access other attributes of the instance.  '
                     'Note that at\n'
                     '   least for instance variables, you can fake total '
                     'control by not\n'
                     '   inserting any values in the instance attribute '
                     'dictionary (but\n'
                     '   instead inserting them in another object).  See the\n'
                     '   "__getattribute__()" method below for a way to '
                     'actually get total\n'
                     '   control over attribute access.\n'
                     '\n'
                     'object.__getattribute__(self, name)\n'
                     '\n'
                     '   Called unconditionally to implement attribute '
                     'accesses for\n'
                     '   instances of the class. If the class also defines '
                     '"__getattr__()",\n'
                     '   the latter will not be called unless '
                     '"__getattribute__()" either\n'
                     '   calls it explicitly or raises an "AttributeError". '
                     'This method\n'
                     '   should return the (computed) attribute value or raise '
                     'an\n'
                     '   "AttributeError" exception. In order to avoid '
                     'infinite recursion in\n'
                     '   this method, its implementation should always call '
                     'the base class\n'
                     '   method with the same name to access any attributes it '
                     'needs, for\n'
                     '   example, "object.__getattribute__(self, name)".\n'
                     '\n'
                     '   Note: This method may still be bypassed when looking '
                     'up special\n'
                     '     methods as the result of implicit invocation via '
                     'language syntax\n'
                     '     or built-in functions. See *Special method '
                     'lookup*.\n'
                     '\n'
                     'object.__setattr__(self, name, value)\n'
                     '\n'
                     '   Called when an attribute assignment is attempted.  '
                     'This is called\n'
                     '   instead of the normal mechanism (i.e. store the value '
                     'in the\n'
                     '   instance dictionary). *name* is the attribute name, '
                     '*value* is the\n'
                     '   value to be assigned to it.\n'
                     '\n'
                     '   If "__setattr__()" wants to assign to an instance '
                     'attribute, it\n'
                     '   should call the base class method with the same name, '
                     'for example,\n'
                     '   "object.__setattr__(self, name, value)".\n'
                     '\n'
                     'object.__delattr__(self, name)\n'
                     '\n'
                     '   Like "__setattr__()" but for attribute deletion '
                     'instead of\n'
                     '   assignment.  This should only be implemented if "del '
                     'obj.name" is\n'
                     '   meaningful for the object.\n'
                     '\n'
                     'object.__dir__(self)\n'
                     '\n'
                     '   Called when "dir()" is called on the object. A '
                     'sequence must be\n'
                     '   returned. "dir()" converts the returned sequence to a '
                     'list and\n'
                     '   sorts it.\n'
                     '\n'
                     '\n'
                     'Implementing Descriptors\n'
                     '========================\n'
                     '\n'
                     'The following methods only apply when an instance of the '
                     'class\n'
                     'containing the method (a so-called *descriptor* class) '
                     'appears in an\n'
                     '*owner* class (the descriptor must be in either the '
                     "owner's class\n"
                     'dictionary or in the class dictionary for one of its '
                     'parents).  In the\n'
                     'examples below, "the attribute" refers to the attribute '
                     'whose name is\n'
                     "the key of the property in the owner class' "
                     '"__dict__".\n'
                     '\n'
                     'object.__get__(self, instance, owner)\n'
                     '\n'
                     '   Called to get the attribute of the owner class (class '
                     'attribute\n'
                     '   access) or of an instance of that class (instance '
                     'attribute\n'
                     '   access). *owner* is always the owner class, while '
                     '*instance* is the\n'
                     '   instance that the attribute was accessed through, or '
                     '"None" when\n'
                     '   the attribute is accessed through the *owner*.  This '
                     'method should\n'
                     '   return the (computed) attribute value or raise an '
                     '"AttributeError"\n'
                     '   exception.\n'
                     '\n'
                     'object.__set__(self, instance, value)\n'
                     '\n'
                     '   Called to set the attribute on an instance *instance* '
                     'of the owner\n'
                     '   class to a new value, *value*.\n'
                     '\n'
                     'object.__delete__(self, instance)\n'
                     '\n'
                     '   Called to delete the attribute on an instance '
                     '*instance* of the\n'
                     '   owner class.\n'
                     '\n'
                     'The attribute "__objclass__" is interpreted by the '
                     '"inspect" module as\n'
                     'specifying the class where this object was defined '
                     '(setting this\n'
                     'appropriately can assist in runtime introspection of '
                     'dynamic class\n'
                     'attributes). For callables, it may indicate that an '
                     'instance of the\n'
                     'given type (or a subclass) is expected or required as '
                     'the first\n'
                     'positional argument (for example, CPython sets this '
                     'attribute for\n'
                     'unbound methods that are implemented in C).\n'
                     '\n'
                     '\n'
                     'Invoking Descriptors\n'
                     '====================\n'
                     '\n'
                     'In general, a descriptor is an object attribute with '
                     '"binding\n'
                     'behavior", one whose attribute access has been '
                     'overridden by methods\n'
                     'in the descriptor protocol:  "__get__()", "__set__()", '
                     'and\n'
                     '"__delete__()". If any of those methods are defined for '
                     'an object, it\n'
                     'is said to be a descriptor.\n'
                     '\n'
                     'The default behavior for attribute access is to get, '
                     'set, or delete\n'
                     "the attribute from an object's dictionary. For instance, "
                     '"a.x" has a\n'
                     'lookup chain starting with "a.__dict__[\'x\']", then\n'
                     '"type(a).__dict__[\'x\']", and continuing through the '
                     'base classes of\n'
                     '"type(a)" excluding metaclasses.\n'
                     '\n'
                     'However, if the looked-up value is an object defining '
                     'one of the\n'
                     'descriptor methods, then Python may override the default '
                     'behavior and\n'
                     'invoke the descriptor method instead.  Where this occurs '
                     'in the\n'
                     'precedence chain depends on which descriptor methods '
                     'were defined and\n'
                     'how they were called.\n'
                     '\n'
                     'The starting point for descriptor invocation is a '
                     'binding, "a.x". How\n'
                     'the arguments are assembled depends on "a":\n'
                     '\n'
                     'Direct Call\n'
                     '   The simplest and least common call is when user code '
                     'directly\n'
                     '   invokes a descriptor method:    "x.__get__(a)".\n'
                     '\n'
                     'Instance Binding\n'
                     '   If binding to an object instance, "a.x" is '
                     'transformed into the\n'
                     '   call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n'
                     '\n'
                     'Class Binding\n'
                     '   If binding to a class, "A.x" is transformed into the '
                     'call:\n'
                     '   "A.__dict__[\'x\'].__get__(None, A)".\n'
                     '\n'
                     'Super Binding\n'
                     '   If "a" is an instance of "super", then the binding '
                     '"super(B,\n'
                     '   obj).m()" searches "obj.__class__.__mro__" for the '
                     'base class "A"\n'
                     '   immediately preceding "B" and then invokes the '
                     'descriptor with the\n'
                     '   call: "A.__dict__[\'m\'].__get__(obj, '
                     'obj.__class__)".\n'
                     '\n'
                     'For instance bindings, the precedence of descriptor '
                     'invocation depends\n'
                     'on the which descriptor methods are defined.  A '
                     'descriptor can define\n'
                     'any combination of "__get__()", "__set__()" and '
                     '"__delete__()".  If it\n'
                     'does not define "__get__()", then accessing the '
                     'attribute will return\n'
                     'the descriptor object itself unless there is a value in '
                     "the object's\n"
                     'instance dictionary.  If the descriptor defines '
                     '"__set__()" and/or\n'
                     '"__delete__()", it is a data descriptor; if it defines '
                     'neither, it is\n'
                     'a non-data descriptor.  Normally, data descriptors '
                     'define both\n'
                     '"__get__()" and "__set__()", while non-data descriptors '
                     'have just the\n'
                     '"__get__()" method.  Data descriptors with "__set__()" '
                     'and "__get__()"\n'
                     'defined always override a redefinition in an instance '
                     'dictionary.  In\n'
                     'contrast, non-data descriptors can be overridden by '
                     'instances.\n'
                     '\n'
                     'Python methods (including "staticmethod()" and '
                     '"classmethod()") are\n'
                     'implemented as non-data descriptors.  Accordingly, '
                     'instances can\n'
                     'redefine and override methods.  This allows individual '
                     'instances to\n'
                     'acquire behaviors that differ from other instances of '
                     'the same class.\n'
                     '\n'
                     'The "property()" function is implemented as a data '
                     'descriptor.\n'
                     'Accordingly, instances cannot override the behavior of a '
                     'property.\n'
                     '\n'
                     '\n'
                     '__slots__\n'
                     '=========\n'
                     '\n'
                     'By default, instances of classes have a dictionary for '
                     'attribute\n'
                     'storage.  This wastes space for objects having very few '
                     'instance\n'
                     'variables.  The space consumption can become acute when '
                     'creating large\n'
                     'numbers of instances.\n'
                     '\n'
                     'The default can be overridden by defining *__slots__* in '
                     'a class\n'
                     'definition. The *__slots__* declaration takes a sequence '
                     'of instance\n'
                     'variables and reserves just enough space in each '
                     'instance to hold a\n'
                     'value for each variable.  Space is saved because '
                     '*__dict__* is not\n'
                     'created for each instance.\n'
                     '\n'
                     'object.__slots__\n'
                     '\n'
                     '   This class variable can be assigned a string, '
                     'iterable, or sequence\n'
                     '   of strings with variable names used by instances.  '
                     '*__slots__*\n'
                     '   reserves space for the declared variables and '
                     'prevents the\n'
                     '   automatic creation of *__dict__* and *__weakref__* '
                     'for each\n'
                     '   instance.\n'
                     '\n'
                     '\n'
                     'Notes on using *__slots__*\n'
                     '--------------------------\n'
                     '\n'
                     '* When inheriting from a class without *__slots__*, the '
                     '*__dict__*\n'
                     '  attribute of that class will always be accessible, so '
                     'a *__slots__*\n'
                     '  definition in the subclass is meaningless.\n'
                     '\n'
                     '* Without a *__dict__* variable, instances cannot be '
                     'assigned new\n'
                     '  variables not listed in the *__slots__* definition.  '
                     'Attempts to\n'
                     '  assign to an unlisted variable name raises '
                     '"AttributeError". If\n'
                     '  dynamic assignment of new variables is desired, then '
                     'add\n'
                     '  "\'__dict__\'" to the sequence of strings in the '
                     '*__slots__*\n'
                     '  declaration.\n'
                     '\n'
                     '* Without a *__weakref__* variable for each instance, '
                     'classes\n'
                     '  defining *__slots__* do not support weak references to '
                     'its\n'
                     '  instances. If weak reference support is needed, then '
                     'add\n'
                     '  "\'__weakref__\'" to the sequence of strings in the '
                     '*__slots__*\n'
                     '  declaration.\n'
                     '\n'
                     '* *__slots__* are implemented at the class level by '
                     'creating\n'
                     '  descriptors (*Implementing Descriptors*) for each '
                     'variable name.  As\n'
                     '  a result, class attributes cannot be used to set '
                     'default values for\n'
                     '  instance variables defined by *__slots__*; otherwise, '
                     'the class\n'
                     '  attribute would overwrite the descriptor assignment.\n'
                     '\n'
                     '* The action of a *__slots__* declaration is limited to '
                     'the class\n'
                     '  where it is defined.  As a result, subclasses will '
                     'have a *__dict__*\n'
                     '  unless they also define *__slots__* (which must only '
                     'contain names\n'
                     '  of any *additional* slots).\n'
                     '\n'
                     '* If a class defines a slot also defined in a base '
                     'class, the\n'
                     '  instance variable defined by the base class slot is '
                     'inaccessible\n'
                     '  (except by retrieving its descriptor directly from the '
                     'base class).\n'
                     '  This renders the meaning of the program undefined.  In '
                     'the future, a\n'
                     '  check may be added to prevent this.\n'
                     '\n'
                     '* Nonempty *__slots__* does not work for classes derived '
                     'from\n'
                     '  "variable-length" built-in types such as "int", '
                     '"bytes" and "tuple".\n'
                     '\n'
                     '* Any non-string iterable may be assigned to '
                     '*__slots__*. Mappings\n'
                     '  may also be used; however, in the future, special '
                     'meaning may be\n'
                     '  assigned to the values corresponding to each key.\n'
                     '\n'
                     '* *__class__* assignment works only if both classes have '
                     'the same\n'
                     '  *__slots__*.\n',
 'attribute-references': '\n'
                         'Attribute references\n'
                         '********************\n'
                         '\n'
                         'An attribute reference is a primary followed by a '
                         'period and a name:\n'
                         '\n'
                         '   attributeref ::= primary "." identifier\n'
                         '\n'
                         'The primary must evaluate to an object of a type '
                         'that supports\n'
                         'attribute references, which most objects do.  This '
                         'object is then\n'
                         'asked to produce the attribute whose name is the '
                         'identifier.  This\n'
                         'production can be customized by overriding the '
                         '"__getattr__()" method.\n'
                         'If this attribute is not available, the exception '
                         '"AttributeError" is\n'
                         'raised.  Otherwise, the type and value of the object '
                         'produced is\n'
                         'determined by the object.  Multiple evaluations of '
                         'the same attribute\n'
                         'reference may yield different objects.\n',
 'augassign': '\n'
              'Augmented assignment statements\n'
              '*******************************\n'
              '\n'
              'Augmented assignment is the combination, in a single statement, '
              'of a\n'
              'binary operation and an assignment statement:\n'
              '\n'
              '   augmented_assignment_stmt ::= augtarget augop '
              '(expression_list | yield_expression)\n'
              '   augtarget                 ::= identifier | attributeref | '
              'subscription | slicing\n'
              '   augop                     ::= "+=" | "-=" | "*=" | "/=" | '
              '"//=" | "%=" | "**="\n'
              '             | ">>=" | "<<=" | "&=" | "^=" | "|="\n'
              '\n'
              '(See section *Primaries* for the syntax definitions of the last '
              'three\n'
              'symbols.)\n'
              '\n'
              'An augmented assignment evaluates the target (which, unlike '
              'normal\n'
              'assignment statements, cannot be an unpacking) and the '
              'expression\n'
              'list, performs the binary operation specific to the type of '
              'assignment\n'
              'on the two operands, and assigns the result to the original '
              'target.\n'
              'The target is only evaluated once.\n'
              '\n'
              'An augmented assignment expression like "x += 1" can be '
              'rewritten as\n'
              '"x = x + 1" to achieve a similar, but not exactly equal effect. '
              'In the\n'
              'augmented version, "x" is only evaluated once. Also, when '
              'possible,\n'
              'the actual operation is performed *in-place*, meaning that '
              'rather than\n'
              'creating a new object and assigning that to the target, the old '
              'object\n'
              'is modified instead.\n'
              '\n'
              'Unlike normal assignments, augmented assignments evaluate the '
              'left-\n'
              'hand side *before* evaluating the right-hand side.  For '
              'example, "a[i]\n'
              '+= f(x)" first looks-up "a[i]", then it evaluates "f(x)" and '
              'performs\n'
              'the addition, and lastly, it writes the result back to "a[i]".\n'
              '\n'
              'With the exception of assigning to tuples and multiple targets '
              'in a\n'
              'single statement, the assignment done by augmented assignment\n'
              'statements is handled the same way as normal assignments. '
              'Similarly,\n'
              'with the exception of the possible *in-place* behavior, the '
              'binary\n'
              'operation performed by augmented assignment is the same as the '
              'normal\n'
              'binary operations.\n'
              '\n'
              'For targets which are attribute references, the same *caveat '
              'about\n'
              'class and instance attributes* applies as for regular '
              'assignments.\n',
 'binary': '\n'
           'Binary arithmetic operations\n'
           '****************************\n'
           '\n'
           'The binary arithmetic operations have the conventional priority\n'
           'levels.  Note that some of these operations also apply to certain '
           'non-\n'
           'numeric types.  Apart from the power operator, there are only two\n'
           'levels, one for multiplicative operators and one for additive\n'
           'operators:\n'
           '\n'
           '   m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | '
           'm_expr "/" u_expr\n'
           '              | m_expr "%" u_expr\n'
           '   a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n'
           '\n'
           'The "*" (multiplication) operator yields the product of its '
           'arguments.\n'
           'The arguments must either both be numbers, or one argument must be '
           'an\n'
           'integer and the other must be a sequence. In the former case, the\n'
           'numbers are converted to a common type and then multiplied '
           'together.\n'
           'In the latter case, sequence repetition is performed; a negative\n'
           'repetition factor yields an empty sequence.\n'
           '\n'
           'The "/" (division) and "//" (floor division) operators yield the\n'
           'quotient of their arguments.  The numeric arguments are first\n'
           'converted to a common type. Division of integers yields a float, '
           'while\n'
           'floor division of integers results in an integer; the result is '
           'that\n'
           "of mathematical division with the 'floor' function applied to the\n"
           'result.  Division by zero raises the "ZeroDivisionError" '
           'exception.\n'
           '\n'
           'The "%" (modulo) operator yields the remainder from the division '
           'of\n'
           'the first argument by the second.  The numeric arguments are '
           'first\n'
           'converted to a common type.  A zero right argument raises the\n'
           '"ZeroDivisionError" exception.  The arguments may be floating '
           'point\n'
           'numbers, e.g., "3.14%0.7" equals "0.34" (since "3.14" equals '
           '"4*0.7 +\n'
           '0.34".)  The modulo operator always yields a result with the same '
           'sign\n'
           'as its second operand (or zero); the absolute value of the result '
           'is\n'
           'strictly smaller than the absolute value of the second operand '
           '[1].\n'
           '\n'
           'The floor division and modulo operators are connected by the '
           'following\n'
           'identity: "x == (x//y)*y + (x%y)".  Floor division and modulo are '
           'also\n'
           'connected with the built-in function "divmod()": "divmod(x, y) ==\n'
           '(x//y, x%y)". [2].\n'
           '\n'
           'In addition to performing the modulo operation on numbers, the '
           '"%"\n'
           'operator is also overloaded by string objects to perform '
           'old-style\n'
           'string formatting (also known as interpolation).  The syntax for\n'
           'string formatting is described in the Python Library Reference,\n'
           'section *printf-style String Formatting*.\n'
           '\n'
           'The floor division operator, the modulo operator, and the '
           '"divmod()"\n'
           'function are not defined for complex numbers.  Instead, convert to '
           'a\n'
           'floating point number using the "abs()" function if appropriate.\n'
           '\n'
           'The "+" (addition) operator yields the sum of its arguments.  The\n'
           'arguments must either both be numbers or both be sequences of the '
           'same\n'
           'type.  In the former case, the numbers are converted to a common '
           'type\n'
           'and then added together. In the latter case, the sequences are\n'
           'concatenated.\n'
           '\n'
           'The "-" (subtraction) operator yields the difference of its '
           'arguments.\n'
           'The numeric arguments are first converted to a common type.\n',
 'bitwise': '\n'
            'Binary bitwise operations\n'
            '*************************\n'
            '\n'
            'Each of the three bitwise operations has a different priority '
            'level:\n'
            '\n'
            '   and_expr ::= shift_expr | and_expr "&" shift_expr\n'
            '   xor_expr ::= and_expr | xor_expr "^" and_expr\n'
            '   or_expr  ::= xor_expr | or_expr "|" xor_expr\n'
            '\n'
            'The "&" operator yields the bitwise AND of its arguments, which '
            'must\n'
            'be integers.\n'
            '\n'
            'The "^" operator yields the bitwise XOR (exclusive OR) of its\n'
            'arguments, which must be integers.\n'
            '\n'
            'The "|" operator yields the bitwise (inclusive) OR of its '
            'arguments,\n'
            'which must be integers.\n',
 'bltin-code-objects': '\n'
                       'Code Objects\n'
                       '************\n'
                       '\n'
                       'Code objects are used by the implementation to '
                       'represent "pseudo-\n'
                       'compiled" executable Python code such as a function '
                       'body. They differ\n'
                       "from function objects because they don't contain a "
                       'reference to their\n'
                       'global execution environment.  Code objects are '
                       'returned by the built-\n'
                       'in "compile()" function and can be extracted from '
                       'function objects\n'
                       'through their "__code__" attribute. See also the '
                       '"code" module.\n'
                       '\n'
                       'A code object can be executed or evaluated by passing '
                       'it (instead of a\n'
                       'source string) to the "exec()" or "eval()"  built-in '
                       'functions.\n'
                       '\n'
                       'See *The standard type hierarchy* for more '
                       'information.\n',
 'bltin-ellipsis-object': '\n'
                          'The Ellipsis Object\n'
                          '*******************\n'
                          '\n'
                          'This object is commonly used by slicing (see '
                          '*Slicings*).  It supports\n'
                          'no special operations.  There is exactly one '
                          'ellipsis object, named\n'
                          '"Ellipsis" (a built-in name).  "type(Ellipsis)()" '
                          'produces the\n'
                          '"Ellipsis" singleton.\n'
                          '\n'
                          'It is written as "Ellipsis" or "...".\n',
 'bltin-null-object': '\n'
                      'The Null Object\n'
                      '***************\n'
                      '\n'
                      "This object is returned by functions that don't "
                      'explicitly return a\n'
                      'value.  It supports no special operations.  There is '
                      'exactly one null\n'
                      'object, named "None" (a built-in name).  "type(None)()" '
                      'produces the\n'
                      'same singleton.\n'
                      '\n'
                      'It is written as "None".\n',
 'bltin-type-objects': '\n'
                       'Type Objects\n'
                       '************\n'
                       '\n'
                       'Type objects represent the various object types.  An '
                       "object's type is\n"
                       'accessed by the built-in function "type()".  There are '
                       'no special\n'
                       'operations on types.  The standard module "types" '
                       'defines names for\n'
                       'all standard built-in types.\n'
                       '\n'
                       'Types are written like this: "<class \'int\'>".\n',
 'booleans': '\n'
             'Boolean operations\n'
             '******************\n'
             '\n'
             '   or_test  ::= and_test | or_test "or" and_test\n'
             '   and_test ::= not_test | and_test "and" not_test\n'
             '   not_test ::= comparison | "not" not_test\n'
             '\n'
             'In the context of Boolean operations, and also when expressions '
             'are\n'
             'used by control flow statements, the following values are '
             'interpreted\n'
             'as false: "False", "None", numeric zero of all types, and empty\n'
             'strings and containers (including strings, tuples, lists,\n'
             'dictionaries, sets and frozensets).  All other values are '
             'interpreted\n'
             'as true.  User-defined objects can customize their truth value '
             'by\n'
             'providing a "__bool__()" method.\n'
             '\n'
             'The operator "not" yields "True" if its argument is false, '
             '"False"\n'
             'otherwise.\n'
             '\n'
             'The expression "x and y" first evaluates *x*; if *x* is false, '
             'its\n'
             'value is returned; otherwise, *y* is evaluated and the resulting '
             'value\n'
             'is returned.\n'
             '\n'
             'The expression "x or y" first evaluates *x*; if *x* is true, its '
             'value\n'
             'is returned; otherwise, *y* is evaluated and the resulting value '
             'is\n'
             'returned.\n'
             '\n'
             '(Note that neither "and" nor "or" restrict the value and type '
             'they\n'
             'return to "False" and "True", but rather return the last '
             'evaluated\n'
             'argument.  This is sometimes useful, e.g., if "s" is a string '
             'that\n'
             'should be replaced by a default value if it is empty, the '
             'expression\n'
             '"s or \'foo\'" yields the desired value.  Because "not" has to '
             'create a\n'
             'new value, it returns a boolean value regardless of the type of '
             'its\n'
             'argument (for example, "not \'foo\'" produces "False" rather '
             'than "\'\'".)\n',
 'break': '\n'
          'The "break" statement\n'
          '*********************\n'
          '\n'
          '   break_stmt ::= "break"\n'
          '\n'
          '"break" may only occur syntactically nested in a "for" or "while"\n'
          'loop, but not nested in a function or class definition within that\n'
          'loop.\n'
          '\n'
          'It terminates the nearest enclosing loop, skipping the optional '
          '"else"\n'
          'clause if the loop has one.\n'
          '\n'
          'If a "for" loop is terminated by "break", the loop control target\n'
          'keeps its current value.\n'
          '\n'
          'When "break" passes control out of a "try" statement with a '
          '"finally"\n'
          'clause, that "finally" clause is executed before really leaving '
          'the\n'
          'loop.\n',
 'callable-types': '\n'
                   'Emulating callable objects\n'
                   '**************************\n'
                   '\n'
                   'object.__call__(self[, args...])\n'
                   '\n'
                   '   Called when the instance is "called" as a function; if '
                   'this method\n'
                   '   is defined, "x(arg1, arg2, ...)" is a shorthand for\n'
                   '   "x.__call__(arg1, arg2, ...)".\n',
 'calls': '\n'
          'Calls\n'
          '*****\n'
          '\n'
          'A call calls a callable object (e.g., a *function*) with a '
          'possibly\n'
          'empty series of *arguments*:\n'
          '\n'
          '   call                 ::= primary "(" [argument_list [","] | '
          'comprehension] ")"\n'
          '   argument_list        ::= positional_arguments ["," '
          'keyword_arguments]\n'
          '                       ["," "*" expression] ["," '
          'keyword_arguments]\n'
          '                       ["," "**" expression]\n'
          '                     | keyword_arguments ["," "*" expression]\n'
          '                       ["," keyword_arguments] ["," "**" '
          'expression]\n'
          '                     | "*" expression ["," keyword_arguments] ["," '
          '"**" expression]\n'
          '                     | "**" expression\n'
          '   positional_arguments ::= expression ("," expression)*\n'
          '   keyword_arguments    ::= keyword_item ("," keyword_item)*\n'
          '   keyword_item         ::= identifier "=" expression\n'
          '\n'
          'An optional trailing comma may be present after the positional and\n'
          'keyword arguments but does not affect the semantics.\n'
          '\n'
          'The primary must evaluate to a callable object (user-defined\n'
          'functions, built-in functions, methods of built-in objects, class\n'
          'objects, methods of class instances, and all objects having a\n'
          '"__call__()" method are callable).  All argument expressions are\n'
          'evaluated before the call is attempted.  Please refer to section\n'
          '*Function definitions* for the syntax of formal *parameter* lists.\n'
          '\n'
          'If keyword arguments are present, they are first converted to\n'
          'positional arguments, as follows.  First, a list of unfilled slots '
          'is\n'
          'created for the formal parameters.  If there are N positional\n'
          'arguments, they are placed in the first N slots.  Next, for each\n'
          'keyword argument, the identifier is used to determine the\n'
          'corresponding slot (if the identifier is the same as the first '
          'formal\n'
          'parameter name, the first slot is used, and so on).  If the slot '
          'is\n'
          'already filled, a "TypeError" exception is raised. Otherwise, the\n'
          'value of the argument is placed in the slot, filling it (even if '
          'the\n'
          'expression is "None", it fills the slot).  When all arguments have\n'
          'been processed, the slots that are still unfilled are filled with '
          'the\n'
          'corresponding default value from the function definition.  '
          '(Default\n'
          'values are calculated, once, when the function is defined; thus, a\n'
          'mutable object such as a list or dictionary used as default value '
          'will\n'
          "be shared by all calls that don't specify an argument value for "
          'the\n'
          'corresponding slot; this should usually be avoided.)  If there are '
          'any\n'
          'unfilled slots for which no default value is specified, a '
          '"TypeError"\n'
          'exception is raised.  Otherwise, the list of filled slots is used '
          'as\n'
          'the argument list for the call.\n'
          '\n'
          '**CPython implementation detail:** An implementation may provide\n'
          'built-in functions whose positional parameters do not have names, '
          'even\n'
          "if they are 'named' for the purpose of documentation, and which\n"
          'therefore cannot be supplied by keyword.  In CPython, this is the '
          'case\n'
          'for functions implemented in C that use "PyArg_ParseTuple()" to '
          'parse\n'
          'their arguments.\n'
          '\n'
          'If there are more positional arguments than there are formal '
          'parameter\n'
          'slots, a "TypeError" exception is raised, unless a formal '
          'parameter\n'
          'using the syntax "*identifier" is present; in this case, that '
          'formal\n'
          'parameter receives a tuple containing the excess positional '
          'arguments\n'
          '(or an empty tuple if there were no excess positional arguments).\n'
          '\n'
          'If any keyword argument does not correspond to a formal parameter\n'
          'name, a "TypeError" exception is raised, unless a formal parameter\n'
          'using the syntax "**identifier" is present; in this case, that '
          'formal\n'
          'parameter receives a dictionary containing the excess keyword\n'
          'arguments (using the keywords as keys and the argument values as\n'
          'corresponding values), or a (new) empty dictionary if there were '
          'no\n'
          'excess keyword arguments.\n'
          '\n'
          'If the syntax "*expression" appears in the function call, '
          '"expression"\n'
          'must evaluate to an iterable.  Elements from this iterable are '
          'treated\n'
          'as if they were additional positional arguments; if there are\n'
          'positional arguments *x1*, ..., *xN*, and "expression" evaluates to '
          'a\n'
          'sequence *y1*, ..., *yM*, this is equivalent to a call with M+N\n'
          'positional arguments *x1*, ..., *xN*, *y1*, ..., *yM*.\n'
          '\n'
          'A consequence of this is that although the "*expression" syntax '
          'may\n'
          'appear *after* some keyword arguments, it is processed *before* '
          'the\n'
          'keyword arguments (and the "**expression" argument, if any -- see\n'
          'below).  So:\n'
          '\n'
          '   >>> def f(a, b):\n'
          '   ...  print(a, b)\n'
          '   ...\n'
          '   >>> f(b=1, *(2,))\n'
          '   2 1\n'
          '   >>> f(a=1, *(2,))\n'
          '   Traceback (most recent call last):\n'
          '     File "<stdin>", line 1, in ?\n'
          "   TypeError: f() got multiple values for keyword argument 'a'\n"
          '   >>> f(1, *(2,))\n'
          '   1 2\n'
          '\n'
          'It is unusual for both keyword arguments and the "*expression" '
          'syntax\n'
          'to be used in the same call, so in practice this confusion does '
          'not\n'
          'arise.\n'
          '\n'
          'If the syntax "**expression" appears in the function call,\n'
          '"expression" must evaluate to a mapping, the contents of which are\n'
          'treated as additional keyword arguments.  In the case of a keyword\n'
          'appearing in both "expression" and as an explicit keyword argument, '
          'a\n'
          '"TypeError" exception is raised.\n'
          '\n'
          'Formal parameters using the syntax "*identifier" or "**identifier"\n'
          'cannot be used as positional argument slots or as keyword argument\n'
          'names.\n'
          '\n'
          'A call always returns some value, possibly "None", unless it raises '
          'an\n'
          'exception.  How this value is computed depends on the type of the\n'
          'callable object.\n'
          '\n'
          'If it is---\n'
          '\n'
          'a user-defined function:\n'
          '   The code block for the function is executed, passing it the\n'
          '   argument list.  The first thing the code block will do is bind '
          'the\n'
          '   formal parameters to the arguments; this is described in '
          'section\n'
          '   *Function definitions*.  When the code block executes a '
          '"return"\n'
          '   statement, this specifies the return value of the function '
          'call.\n'
          '\n'
          'a built-in function or method:\n'
          '   The result is up to the interpreter; see *Built-in Functions* '
          'for\n'
          '   the descriptions of built-in functions and methods.\n'
          '\n'
          'a class object:\n'
          '   A new instance of that class is returned.\n'
          '\n'
          'a class instance method:\n'
          '   The corresponding user-defined function is called, with an '
          'argument\n'
          '   list that is one longer than the argument list of the call: the\n'
          '   instance becomes the first argument.\n'
          '\n'
          'a class instance:\n'
          '   The class must define a "__call__()" method; the effect is then '
          'the\n'
          '   same as if that method was called.\n',
 'class': '\n'
          'Class definitions\n'
          '*****************\n'
          '\n'
          'A class definition defines a class object (see section *The '
          'standard\n'
          'type hierarchy*):\n'
          '\n'
          '   classdef    ::= [decorators] "class" classname [inheritance] ":" '
          'suite\n'
          '   inheritance ::= "(" [parameter_list] ")"\n'
          '   classname   ::= identifier\n'
          '\n'
          'A class definition is an executable statement.  The inheritance '
          'list\n'
          'usually gives a list of base classes (see *Customizing class '
          'creation*\n'
          'for more advanced uses), so each item in the list should evaluate '
          'to a\n'
          'class object which allows subclassing.  Classes without an '
          'inheritance\n'
          'list inherit, by default, from the base class "object"; hence,\n'
          '\n'
          '   class Foo:\n'
          '       pass\n'
          '\n'
          'is equivalent to\n'
          '\n'
          '   class Foo(object):\n'
          '       pass\n'
          '\n'
          "The class's suite is then executed in a new execution frame (see\n"
          '*Naming and binding*), using a newly created local namespace and '
          'the\n'
          'original global namespace. (Usually, the suite contains mostly\n'
          "function definitions.)  When the class's suite finishes execution, "
          'its\n'
          'execution frame is discarded but its local namespace is saved. [4] '
          'A\n'
          'class object is then created using the inheritance list for the '
          'base\n'
          'classes and the saved local namespace for the attribute '
          'dictionary.\n'
          'The class name is bound to this class object in the original local\n'
          'namespace.\n'
          '\n'
          'Class creation can be customized heavily using *metaclasses*.\n'
          '\n'
          'Classes can also be decorated: just like when decorating '
          'functions,\n'
          '\n'
          '   @f1(arg)\n'
          '   @f2\n'
          '   class Foo: pass\n'
          '\n'
          'is equivalent to\n'
          '\n'
          '   class Foo: pass\n'
          '   Foo = f1(arg)(f2(Foo))\n'
          '\n'
          'The evaluation rules for the decorator expressions are the same as '
          'for\n'
          'function decorators.  The result must be a class object, which is '
          'then\n'
          'bound to the class name.\n'
          '\n'
          "**Programmer's note:** Variables defined in the class definition "
          'are\n'
          'class attributes; they are shared by instances.  Instance '
          'attributes\n'
          'can be set in a method with "self.name = value".  Both class and\n'
          'instance attributes are accessible through the notation '
          '""self.name"",\n'
          'and an instance attribute hides a class attribute with the same '
          'name\n'
          'when accessed in this way.  Class attributes can be used as '
          'defaults\n'
          'for instance attributes, but using mutable values there can lead '
          'to\n'
          'unexpected results.  *Descriptors* can be used to create instance\n'
          'variables with different implementation details.\n'
          '\n'
          'See also: **PEP 3115** - Metaclasses in Python 3 **PEP 3129** -\n'
          '  Class Decorators\n'
          '\n'
          '-[ Footnotes ]-\n'
          '\n'
          '[1] The exception is propagated to the invocation stack unless\n'
          '    there is a "finally" clause which happens to raise another\n'
          '    exception. That new exception causes the old one to be lost.\n'
          '\n'
          '[2] Currently, control "flows off the end" except in the case of\n'
          '    an exception or the execution of a "return", "continue", or\n'
          '    "break" statement.\n'
          '\n'
          '[3] A string literal appearing as the first statement in the\n'
          '    function body is transformed into the function\'s "__doc__"\n'
          "    attribute and therefore the function's *docstring*.\n"
          '\n'
          '[4] A string literal appearing as the first statement in the class\n'
          '    body is transformed into the namespace\'s "__doc__" item and\n'
          "    therefore the class's *docstring*.\n",
 'comparisons': '\n'
                'Comparisons\n'
                '***********\n'
                '\n'
                'Unlike C, all comparison operations in Python have the same '
                'priority,\n'
                'which is lower than that of any arithmetic, shifting or '
                'bitwise\n'
                'operation.  Also unlike C, expressions like "a < b < c" have '
                'the\n'
                'interpretation that is conventional in mathematics:\n'
                '\n'
                '   comparison    ::= or_expr ( comp_operator or_expr )*\n'
                '   comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "!="\n'
                '                     | "is" ["not"] | ["not"] "in"\n'
                '\n'
                'Comparisons yield boolean values: "True" or "False".\n'
                '\n'
                'Comparisons can be chained arbitrarily, e.g., "x < y <= z" '
                'is\n'
                'equivalent to "x < y and y <= z", except that "y" is '
                'evaluated only\n'
                'once (but in both cases "z" is not evaluated at all when "x < '
                'y" is\n'
                'found to be false).\n'
                '\n'
                'Formally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and '
                '*op1*,\n'
                '*op2*, ..., *opN* are comparison operators, then "a op1 b op2 '
                'c ... y\n'
                'opN z" is equivalent to "a op1 b and b op2 c and ... y opN '
                'z", except\n'
                'that each expression is evaluated at most once.\n'
                '\n'
                'Note that "a op1 b op2 c" doesn\'t imply any kind of '
                'comparison between\n'
                '*a* and *c*, so that, e.g., "x < y > z" is perfectly legal '
                '(though\n'
                'perhaps not pretty).\n'
                '\n'
                '\n'
                'Value comparisons\n'
                '=================\n'
                '\n'
                'The operators "<", ">", "==", ">=", "<=", and "!=" compare '
                'the values\n'
                'of two objects.  The objects do not need to have the same '
                'type.\n'
                '\n'
                'Chapter *Objects, values and types* states that objects have '
                'a value\n'
                '(in addition to type and identity).  The value of an object '
                'is a\n'
                'rather abstract notion in Python: For example, there is no '
                'canonical\n'
                "access method for an object's value.  Also, there is no "
                'requirement\n'
                'that the value of an object should be constructed in a '
                'particular way,\n'
                'e.g. comprised of all its data attributes. Comparison '
                'operators\n'
                'implement a particular notion of what the value of an object '
                'is.  One\n'
                'can think of them as defining the value of an object '
                'indirectly, by\n'
                'means of their comparison implementation.\n'
                '\n'
                'Because all types are (direct or indirect) subtypes of '
                '"object", they\n'
                'inherit the default comparison behavior from "object".  Types '
                'can\n'
                'customize their comparison behavior by implementing *rich '
                'comparison\n'
                'methods* like "__lt__()", described in *Basic '
                'customization*.\n'
                '\n'
                'The default behavior for equality comparison ("==" and "!=") '
                'is based\n'
                'on the identity of the objects.  Hence, equality comparison '
                'of\n'
                'instances with the same identity results in equality, and '
                'equality\n'
                'comparison of instances with different identities results in\n'
                'inequality.  A motivation for this default behavior is the '
                'desire that\n'
                'all objects should be reflexive (i.e. "x is y" implies "x == '
                'y").\n'
                '\n'
                'A default order comparison ("<", ">", "<=", and ">=") is not '
                'provided;\n'
                'an attempt raises "TypeError".  A motivation for this default '
                'behavior\n'
                'is the lack of a similar invariant as for equality.\n'
                '\n'
                'The behavior of the default equality comparison, that '
                'instances with\n'
                'different identities are always unequal, may be in contrast '
                'to what\n'
                'types will need that have a sensible definition of object '
                'value and\n'
                'value-based equality.  Such types will need to customize '
                'their\n'
                'comparison behavior, and in fact, a number of built-in types '
                'have done\n'
                'that.\n'
                '\n'
                'The following list describes the comparison behavior of the '
                'most\n'
                'important built-in types.\n'
                '\n'
                '* Numbers of built-in numeric types (*Numeric Types --- int, '
                'float,\n'
                '  complex*) and of the standard library types '
                '"fractions.Fraction" and\n'
                '  "decimal.Decimal" can be compared within and across their '
                'types,\n'
                '  with the restriction that complex numbers do not support '
                'order\n'
                '  comparison.  Within the limits of the types involved, they '
                'compare\n'
                '  mathematically (algorithmically) correct without loss of '
                'precision.\n'
                '\n'
                '  The not-a-number values "float(\'NaN\')" and '
                '"Decimal(\'NaN\')" are\n'
                '  special.  They are identical to themselves ("x is x" is '
                'true) but\n'
                '  are not equal to themselves ("x == x" is false).  '
                'Additionally,\n'
                '  comparing any number to a not-a-number value will return '
                '"False".\n'
                '  For example, both "3 < float(\'NaN\')" and "float(\'NaN\') '
                '< 3" will\n'
                '  return "False".\n'
                '\n'
                '* Binary sequences (instances of "bytes" or "bytearray") can '
                'be\n'
                '  compared within and across their types.  They compare\n'
                '  lexicographically using the numeric values of their '
                'elements.\n'
                '\n'
                '* Strings (instances of "str") compare lexicographically '
                'using the\n'
                '  numerical Unicode code points (the result of the built-in '
                'function\n'
                '  "ord()") of their characters. [3]\n'
                '\n'
                '  Strings and binary sequences cannot be directly compared.\n'
                '\n'
                '* Sequences (instances of "tuple", "list", or "range") can '
                'be\n'
                '  compared only within each of their types, with the '
                'restriction that\n'
                '  ranges do not support order comparison.  Equality '
                'comparison across\n'
                '  these types results in unequality, and ordering comparison '
                'across\n'
                '  these types raises "TypeError".\n'
                '\n'
                '  Sequences compare lexicographically using comparison of\n'
                '  corresponding elements, whereby reflexivity of the elements '
                'is\n'
                '  enforced.\n'
                '\n'
                '  In enforcing reflexivity of elements, the comparison of '
                'collections\n'
                '  assumes that for a collection element "x", "x == x" is '
                'always true.\n'
                '  Based on that assumption, element identity is compared '
                'first, and\n'
                '  element comparison is performed only for distinct '
                'elements.  This\n'
                '  approach yields the same result as a strict element '
                'comparison\n'
                '  would, if the compared elements are reflexive.  For '
                'non-reflexive\n'
                '  elements, the result is different than for strict element\n'
                '  comparison, and may be surprising:  The non-reflexive '
                'not-a-number\n'
                '  values for example result in the following comparison '
                'behavior when\n'
                '  used in a list:\n'
                '\n'
                "     >>> nan = float('NaN')\n"
                '     >>> nan is nan\n'
                '     True\n'
                '     >>> nan == nan\n'
                '     False                 <-- the defined non-reflexive '
                'behavior of NaN\n'
                '     >>> [nan] == [nan]\n'
                '     True                  <-- list enforces reflexivity and '
                'tests identity first\n'
                '\n'
                '  Lexicographical comparison between built-in collections '
                'works as\n'
                '  follows:\n'
                '\n'
                '  * For two collections to compare equal, they must be of the '
                'same\n'
                '    type, have the same length, and each pair of '
                'corresponding\n'
                '    elements must compare equal (for example, "[1,2] == '
                '(1,2)" is\n'
                '    false because the type is not the same).\n'
                '\n'
                '  * Collections that support order comparison are ordered the '
                'same\n'
                '    as their first unequal elements (for example, "[1,2,x] <= '
                '[1,2,y]"\n'
                '    has the same value as "x <= y").  If a corresponding '
                'element does\n'
                '    not exist, the shorter collection is ordered first (for '
                'example,\n'
                '    "[1,2] < [1,2,3]" is true).\n'
                '\n'
                '* Mappings (instances of "dict") compare equal if and only if '
                'they\n'
                '  have equal *(key, value)* pairs. Equality comparison of the '
                'keys and\n'
                '  elements enforces reflexivity.\n'
                '\n'
                '  Order comparisons ("<", ">", "<=", and ">=") raise '
                '"TypeError".\n'
                '\n'
                '* Sets (instances of "set" or "frozenset") can be compared '
                'within\n'
                '  and across their types.\n'
                '\n'
                '  They define order comparison operators to mean subset and '
                'superset\n'
                '  tests.  Those relations do not define total orderings (for '
                'example,\n'
                '  the two sets "{1,2}" and "{2,3}" are not equal, nor subsets '
                'of one\n'
                '  another, nor supersets of one another).  Accordingly, sets '
                'are not\n'
                '  appropriate arguments for functions which depend on total '
                'ordering\n'
                '  (for example, "min()", "max()", and "sorted()" produce '
                'undefined\n'
                '  results given a list of sets as inputs).\n'
                '\n'
                '  Comparison of sets enforces reflexivity of its elements.\n'
                '\n'
                '* Most other built-in types have no comparison methods '
                'implemented,\n'
                '  so they inherit the default comparison behavior.\n'
                '\n'
                'User-defined classes that customize their comparison behavior '
                'should\n'
                'follow some consistency rules, if possible:\n'
                '\n'
                '* Equality comparison should be reflexive. In other words, '
                'identical\n'
                '  objects should compare equal:\n'
                '\n'
                '     "x is y" implies "x == y"\n'
                '\n'
                '* Comparison should be symmetric. In other words, the '
                'following\n'
                '  expressions should have the same result:\n'
                '\n'
                '     "x == y" and "y == x"\n'
                '\n'
                '     "x != y" and "y != x"\n'
                '\n'
                '     "x < y" and "y > x"\n'
                '\n'
                '     "x <= y" and "y >= x"\n'
                '\n'
                '* Comparison should be transitive. The following '
                '(non-exhaustive)\n'
                '  examples illustrate that:\n'
                '\n'
                '     "x > y and y > z" implies "x > z"\n'
                '\n'
                '     "x < y and y <= z" implies "x < z"\n'
                '\n'
                '* Inverse comparison should result in the boolean negation. '
                'In other\n'
                '  words, the following expressions should have the same '
                'result:\n'
                '\n'
                '     "x == y" and "not x != y"\n'
                '\n'
                '     "x < y" and "not x >= y" (for total ordering)\n'
                '\n'
                '     "x > y" and "not x <= y" (for total ordering)\n'
                '\n'
                '  The last two expressions apply to totally ordered '
                'collections (e.g.\n'
                '  to sequences, but not to sets or mappings). See also the\n'
                '  "total_ordering()" decorator.\n'
                '\n'
                'Python does not enforce these consistency rules. In fact, '
                'the\n'
                'not-a-number values are an example for not following these '
                'rules.\n'
                '\n'
                '\n'
                'Membership test operations\n'
                '==========================\n'
                '\n'
                'The operators "in" and "not in" test for membership.  "x in '
                's"\n'
                'evaluates to true if *x* is a member of *s*, and false '
                'otherwise.  "x\n'
                'not in s" returns the negation of "x in s".  All built-in '
                'sequences\n'
                'and set types support this as well as dictionary, for which '
                '"in" tests\n'
                'whether the dictionary has a given key. For container types '
                'such as\n'
                'list, tuple, set, frozenset, dict, or collections.deque, the\n'
                'expression "x in y" is equivalent to "any(x is e or x == e '
                'for e in\n'
                'y)".\n'
                '\n'
                'For the string and bytes types, "x in y" is true if and only '
                'if *x* is\n'
                'a substring of *y*.  An equivalent test is "y.find(x) != '
                '-1".  Empty\n'
                'strings are always considered to be a substring of any other '
                'string,\n'
                'so """ in "abc"" will return "True".\n'
                '\n'
                'For user-defined classes which define the "__contains__()" '
                'method, "x\n'
                'in y" is true if and only if "y.__contains__(x)" is true.\n'
                '\n'
                'For user-defined classes which do not define "__contains__()" '
                'but do\n'
                'define "__iter__()", "x in y" is true if some value "z" with '
                '"x == z"\n'
                'is produced while iterating over "y".  If an exception is '
                'raised\n'
                'during the iteration, it is as if "in" raised that '
                'exception.\n'
                '\n'
                'Lastly, the old-style iteration protocol is tried: if a class '
                'defines\n'
                '"__getitem__()", "x in y" is true if and only if there is a '
                'non-\n'
                'negative integer index *i* such that "x == y[i]", and all '
                'lower\n'
                'integer indices do not raise "IndexError" exception.  (If any '
                'other\n'
                'exception is raised, it is as if "in" raised that '
                'exception).\n'
                '\n'
                'The operator "not in" is defined to have the inverse true '
                'value of\n'
                '"in".\n'
                '\n'
                '\n'
                'Identity comparisons\n'
                '====================\n'
                '\n'
                'The operators "is" and "is not" test for object identity: "x '
                'is y" is\n'
                'true if and only if *x* and *y* are the same object.  "x is '
                'not y"\n'
                'yields the inverse truth value. [4]\n',
 'compound': '\n'
             'Compound statements\n'
             '*******************\n'
             '\n'
             'Compound statements contain (groups of) other statements; they '
             'affect\n'
             'or control the execution of those other statements in some way.  '
             'In\n'
             'general, compound statements span multiple lines, although in '
             'simple\n'
             'incarnations a whole compound statement may be contained in one '
             'line.\n'
             '\n'
             'The "if", "while" and "for" statements implement traditional '
             'control\n'
             'flow constructs.  "try" specifies exception handlers and/or '
             'cleanup\n'
             'code for a group of statements, while the "with" statement '
             'allows the\n'
             'execution of initialization and finalization code around a block '
             'of\n'
             'code.  Function and class definitions are also syntactically '
             'compound\n'
             'statements.\n'
             '\n'
             "A compound statement consists of one or more 'clauses.'  A "
             'clause\n'
             "consists of a header and a 'suite.'  The clause headers of a\n"
             'particular compound statement are all at the same indentation '
             'level.\n'
             'Each clause header begins with a uniquely identifying keyword '
             'and ends\n'
             'with a colon.  A suite is a group of statements controlled by a\n'
             'clause.  A suite can be one or more semicolon-separated simple\n'
             'statements on the same line as the header, following the '
             "header's\n"
             'colon, or it can be one or more indented statements on '
             'subsequent\n'
             'lines.  Only the latter form of a suite can contain nested '
             'compound\n'
             "statements; the following is illegal, mostly because it wouldn't "
             'be\n'
             'clear to which "if" clause a following "else" clause would '
             'belong:\n'
             '\n'
             '   if test1: if test2: print(x)\n'
             '\n'
             'Also note that the semicolon binds tighter than the colon in '
             'this\n'
             'context, so that in the following example, either all or none of '
             'the\n'
             '"print()" calls are executed:\n'
             '\n'
             '   if x < y < z: print(x); print(y); print(z)\n'
             '\n'
             'Summarizing:\n'
             '\n'
             '   compound_stmt ::= if_stmt\n'
             '                     | while_stmt\n'
             '                     | for_stmt\n'
             '                     | try_stmt\n'
             '                     | with_stmt\n'
             '                     | funcdef\n'
             '                     | classdef\n'
             '   suite         ::= stmt_list NEWLINE | NEWLINE INDENT '
             'statement+ DEDENT\n'
             '   statement     ::= stmt_list NEWLINE | compound_stmt\n'
             '   stmt_list     ::= simple_stmt (";" simple_stmt)* [";"]\n'
             '\n'
             'Note that statements always end in a "NEWLINE" possibly followed '
             'by a\n'
             '"DEDENT".  Also note that optional continuation clauses always '
             'begin\n'
             'with a keyword that cannot start a statement, thus there are no\n'
             'ambiguities (the \'dangling "else"\' problem is solved in Python '
             'by\n'
             'requiring nested "if" statements to be indented).\n'
             '\n'
             'The formatting of the grammar rules in the following sections '
             'places\n'
             'each clause on a separate line for clarity.\n'
             '\n'
             '\n'
             'The "if" statement\n'
             '==================\n'
             '\n'
             'The "if" statement is used for conditional execution:\n'
             '\n'
             '   if_stmt ::= "if" expression ":" suite\n'
             '               ( "elif" expression ":" suite )*\n'
             '               ["else" ":" suite]\n'
             '\n'
             'It selects exactly one of the suites by evaluating the '
             'expressions one\n'
             'by one until one is found to be true (see section *Boolean '
             'operations*\n'
             'for the definition of true and false); then that suite is '
             'executed\n'
             '(and no other part of the "if" statement is executed or '
             'evaluated).\n'
             'If all expressions are false, the suite of the "else" clause, '
             'if\n'
             'present, is executed.\n'
             '\n'
             '\n'
             'The "while" statement\n'
             '=====================\n'
             '\n'
             'The "while" statement is used for repeated execution as long as '
             'an\n'
             'expression is true:\n'
             '\n'
             '   while_stmt ::= "while" expression ":" suite\n'
             '                  ["else" ":" suite]\n'
             '\n'
             'This repeatedly tests the expression and, if it is true, '
             'executes the\n'
             'first suite; if the expression is false (which may be the first '
             'time\n'
             'it is tested) the suite of the "else" clause, if present, is '
             'executed\n'
             'and the loop terminates.\n'
             '\n'
             'A "break" statement executed in the first suite terminates the '
             'loop\n'
             'without executing the "else" clause\'s suite.  A "continue" '
             'statement\n'
             'executed in the first suite skips the rest of the suite and goes '
             'back\n'
             'to testing the expression.\n'
             '\n'
             '\n'
             'The "for" statement\n'
             '===================\n'
             '\n'
             'The "for" statement is used to iterate over the elements of a '
             'sequence\n'
             '(such as a string, tuple or list) or other iterable object:\n'
             '\n'
             '   for_stmt ::= "for" target_list "in" expression_list ":" '
             'suite\n'
             '                ["else" ":" suite]\n'
             '\n'
             'The expression list is evaluated once; it should yield an '
             'iterable\n'
             'object.  An iterator is created for the result of the\n'
             '"expression_list".  The suite is then executed once for each '
             'item\n'
             'provided by the iterator, in the order returned by the '
             'iterator.  Each\n'
             'item in turn is assigned to the target list using the standard '
             'rules\n'
             'for assignments (see *Assignment statements*), and then the '
             'suite is\n'
             'executed.  When the items are exhausted (which is immediately '
             'when the\n'
             'sequence is empty or an iterator raises a "StopIteration" '
             'exception),\n'
             'the suite in the "else" clause, if present, is executed, and the '
             'loop\n'
             'terminates.\n'
             '\n'
             'A "break" statement executed in the first suite terminates the '
             'loop\n'
             'without executing the "else" clause\'s suite.  A "continue" '
             'statement\n'
             'executed in the first suite skips the rest of the suite and '
             'continues\n'
             'with the next item, or with the "else" clause if there is no '
             'next\n'
             'item.\n'
             '\n'
             'The for-loop makes assignments to the variables(s) in the target '
             'list.\n'
             'This overwrites all previous assignments to those variables '
             'including\n'
             'those made in the suite of the for-loop:\n'
             '\n'
             '   for i in range(10):\n'
             '       print(i)\n'
             '       i = 5             # this will not affect the for-loop\n'
             '                         # because i will be overwritten with '
             'the next\n'
             '                         # index in the range\n'
             '\n'
             'Names in the target list are not deleted when the loop is '
             'finished,\n'
             'but if the sequence is empty, they will not have been assigned '
             'to at\n'
             'all by the loop.  Hint: the built-in function "range()" returns '
             'an\n'
             "iterator of integers suitable to emulate the effect of Pascal's "
             '"for i\n'
             ':= a to b do"; e.g., "list(range(3))" returns the list "[0, 1, '
             '2]".\n'
             '\n'
             'Note: There is a subtlety when the sequence is being modified by '
             'the\n'
             '  loop (this can only occur for mutable sequences, i.e. lists).  '
             'An\n'
             '  internal counter is used to keep track of which item is used '
             'next,\n'
             '  and this is incremented on each iteration.  When this counter '
             'has\n'
             '  reached the length of the sequence the loop terminates.  This '
             'means\n'
             '  that if the suite deletes the current (or a previous) item '
             'from the\n'
             '  sequence, the next item will be skipped (since it gets the '
             'index of\n'
             '  the current item which has already been treated).  Likewise, '
             'if the\n'
             '  suite inserts an item in the sequence before the current item, '
             'the\n'
             '  current item will be treated again the next time through the '
             'loop.\n'
             '  This can lead to nasty bugs that can be avoided by making a\n'
             '  temporary copy using a slice of the whole sequence, e.g.,\n'
             '\n'
             '     for x in a[:]:\n'
             '         if x < 0: a.remove(x)\n'
             '\n'
             '\n'
             'The "try" statement\n'
             '===================\n'
             '\n'
             'The "try" statement specifies exception handlers and/or cleanup '
             'code\n'
             'for a group of statements:\n'
             '\n'
             '   try_stmt  ::= try1_stmt | try2_stmt\n'
             '   try1_stmt ::= "try" ":" suite\n'
             '                 ("except" [expression ["as" identifier]] ":" '
             'suite)+\n'
             '                 ["else" ":" suite]\n'
             '                 ["finally" ":" suite]\n'
             '   try2_stmt ::= "try" ":" suite\n'
             '                 "finally" ":" suite\n'
             '\n'
             'The "except" clause(s) specify one or more exception handlers. '
             'When no\n'
             'exception occurs in the "try" clause, no exception handler is\n'
             'executed. When an exception occurs in the "try" suite, a search '
             'for an\n'
             'exception handler is started.  This search inspects the except '
             'clauses\n'
             'in turn until one is found that matches the exception.  An '
             'expression-\n'
             'less except clause, if present, must be last; it matches any\n'
             'exception.  For an except clause with an expression, that '
             'expression\n'
             'is evaluated, and the clause matches the exception if the '
             'resulting\n'
             'object is "compatible" with the exception.  An object is '
             'compatible\n'
             'with an exception if it is the class or a base class of the '
             'exception\n'
             'object or a tuple containing an item compatible with the '
             'exception.\n'
             '\n'
             'If no except clause matches the exception, the search for an '
             'exception\n'
             'handler continues in the surrounding code and on the invocation '
             'stack.\n'
             '[1]\n'
             '\n'
             'If the evaluation of an expression in the header of an except '
             'clause\n'
             'raises an exception, the original search for a handler is '
             'canceled and\n'
             'a search starts for the new exception in the surrounding code '
             'and on\n'
             'the call stack (it is treated as if the entire "try" statement '
             'raised\n'
             'the exception).\n'
             '\n'
             'When a matching except clause is found, the exception is '
             'assigned to\n'
             'the target specified after the "as" keyword in that except '
             'clause, if\n'
             "present, and the except clause's suite is executed.  All except\n"
             'clauses must have an executable block.  When the end of this '
             'block is\n'
             'reached, execution continues normally after the entire try '
             'statement.\n'
             '(This means that if two nested handlers exist for the same '
             'exception,\n'
             'and the exception occurs in the try clause of the inner handler, '
             'the\n'
             'outer handler will not handle the exception.)\n'
             '\n'
             'When an exception has been assigned using "as target", it is '
             'cleared\n'
             'at the end of the except clause.  This is as if\n'
             '\n'
             '   except E as N:\n'
             '       foo\n'
             '\n'
             'was translated to\n'
             '\n'
             '   except E as N:\n'
             '       try:\n'
             '           foo\n'
             '       finally:\n'
             '           del N\n'
             '\n'
             'This means the exception must be assigned to a different name to '
             'be\n'
             'able to refer to it after the except clause.  Exceptions are '
             'cleared\n'
             'because with the traceback attached to them, they form a '
             'reference\n'
             'cycle with the stack frame, keeping all locals in that frame '
             'alive\n'
             'until the next garbage collection occurs.\n'
             '\n'
             "Before an except clause's suite is executed, details about the\n"
             'exception are stored in the "sys" module and can be accessed '
             'via\n'
             '"sys.exc_info()". "sys.exc_info()" returns a 3-tuple consisting '
             'of the\n'
             'exception class, the exception instance and a traceback object '
             '(see\n'
             'section *The standard type hierarchy*) identifying the point in '
             'the\n'
             'program where the exception occurred.  "sys.exc_info()" values '
             'are\n'
             'restored to their previous values (before the call) when '
             'returning\n'
             'from a function that handled an exception.\n'
             '\n'
             'The optional "else" clause is executed if and when control flows '
             'off\n'
             'the end of the "try" clause. [2] Exceptions in the "else" clause '
             'are\n'
             'not handled by the preceding "except" clauses.\n'
             '\n'
             'If "finally" is present, it specifies a \'cleanup\' handler.  '
             'The "try"\n'
             'clause is executed, including any "except" and "else" clauses.  '
             'If an\n'
             'exception occurs in any of the clauses and is not handled, the\n'
             'exception is temporarily saved. The "finally" clause is '
             'executed.  If\n'
             'there is a saved exception it is re-raised at the end of the '
             '"finally"\n'
             'clause.  If the "finally" clause raises another exception, the '
             'saved\n'
             'exception is set as the context of the new exception. If the '
             '"finally"\n'
             'clause executes a "return" or "break" statement, the saved '
             'exception\n'
             'is discarded:\n'
             '\n'
             '   >>> def f():\n'
             '   ...     try:\n'
             '   ...         1/0\n'
             '   ...     finally:\n'
             '   ...         return 42\n'
             '   ...\n'
             '   >>> f()\n'
             '   42\n'
             '\n'
             'The exception information is not available to the program '
             'during\n'
             'execution of the "finally" clause.\n'
             '\n'
             'When a "return", "break" or "continue" statement is executed in '
             'the\n'
             '"try" suite of a "try"..."finally" statement, the "finally" '
             'clause is\n'
             'also executed \'on the way out.\' A "continue" statement is '
             'illegal in\n'
             'the "finally" clause. (The reason is a problem with the current\n'
             'implementation --- this restriction may be lifted in the '
             'future).\n'
             '\n'
             'The return value of a function is determined by the last '
             '"return"\n'
             'statement executed.  Since the "finally" clause always executes, '
             'a\n'
             '"return" statement executed in the "finally" clause will always '
             'be the\n'
             'last one executed:\n'
             '\n'
             '   >>> def foo():\n'
             '   ...     try:\n'
             "   ...         return 'try'\n"
             '   ...     finally:\n'
             "   ...         return 'finally'\n"
             '   ...\n'
             '   >>> foo()\n'
             "   'finally'\n"
             '\n'
             'Additional information on exceptions can be found in section\n'
             '*Exceptions*, and information on using the "raise" statement to\n'
             'generate exceptions may be found in section *The raise '
             'statement*.\n'
             '\n'
             '\n'
             'The "with" statement\n'
             '====================\n'
             '\n'
             'The "with" statement is used to wrap the execution of a block '
             'with\n'
             'methods defined by a context manager (see section *With '
             'Statement\n'
             'Context Managers*). This allows common '
             '"try"..."except"..."finally"\n'
             'usage patterns to be encapsulated for convenient reuse.\n'
             '\n'
             '   with_stmt ::= "with" with_item ("," with_item)* ":" suite\n'
             '   with_item ::= expression ["as" target]\n'
             '\n'
             'The execution of the "with" statement with one "item" proceeds '
             'as\n'
             'follows:\n'
             '\n'
             '1. The context expression (the expression given in the '
             '"with_item")\n'
             '   is evaluated to obtain a context manager.\n'
             '\n'
             '2. The context manager\'s "__exit__()" is loaded for later use.\n'
             '\n'
             '3. The context manager\'s "__enter__()" method is invoked.\n'
             '\n'
             '4. If a target was included in the "with" statement, the return\n'
             '   value from "__enter__()" is assigned to it.\n'
             '\n'
             '   Note: The "with" statement guarantees that if the '
             '"__enter__()"\n'
             '     method returns without an error, then "__exit__()" will '
             'always be\n'
             '     called. Thus, if an error occurs during the assignment to '
             'the\n'
             '     target list, it will be treated the same as an error '
             'occurring\n'
             '     within the suite would be. See step 6 below.\n'
             '\n'
             '5. The suite is executed.\n'
             '\n'
             '6. The context manager\'s "__exit__()" method is invoked.  If '
             'an\n'
             '   exception caused the suite to be exited, its type, value, '
             'and\n'
             '   traceback are passed as arguments to "__exit__()". Otherwise, '
             'three\n'
             '   "None" arguments are supplied.\n'
             '\n'
             '   If the suite was exited due to an exception, and the return '
             'value\n'
             '   from the "__exit__()" method was false, the exception is '
             'reraised.\n'
             '   If the return value was true, the exception is suppressed, '
             'and\n'
             '   execution continues with the statement following the "with"\n'
             '   statement.\n'
             '\n'
             '   If the suite was exited for any reason other than an '
             'exception, the\n'
             '   return value from "__exit__()" is ignored, and execution '
             'proceeds\n'
             '   at the normal location for the kind of exit that was taken.\n'
             '\n'
             'With more than one item, the context managers are processed as '
             'if\n'
             'multiple "with" statements were nested:\n'
             '\n'
             '   with A() as a, B() as b:\n'
             '       suite\n'
             '\n'
             'is equivalent to\n'
             '\n'
             '   with A() as a:\n'
             '       with B() as b:\n'
             '           suite\n'
             '\n'
             'Changed in version 3.1: Support for multiple context '
             'expressions.\n'
             '\n'
             'See also: **PEP 0343** - The "with" statement\n'
             '\n'
             '     The specification, background, and examples for the Python '
             '"with"\n'
             '     statement.\n'
             '\n'
             '\n'
             'Function definitions\n'
             '====================\n'
             '\n'
             'A function definition defines a user-defined function object '
             '(see\n'
             'section *The standard type hierarchy*):\n'
             '\n'
             '   funcdef        ::= [decorators] "def" funcname "(" '
             '[parameter_list] ")" ["->" expression] ":" suite\n'
             '   decorators     ::= decorator+\n'
             '   decorator      ::= "@" dotted_name ["(" [parameter_list '
             '[","]] ")"] NEWLINE\n'
             '   dotted_name    ::= identifier ("." identifier)*\n'
             '   parameter_list ::= (defparameter ",")*\n'
             '                      | "*" [parameter] ("," defparameter)* ["," '
             '"**" parameter]\n'
             '                      | "**" parameter\n'
             '                      | defparameter [","] )\n'
             '   parameter      ::= identifier [":" expression]\n'
             '   defparameter   ::= parameter ["=" expression]\n'
             '   funcname       ::= identifier\n'
             '\n'
             'A function definition is an executable statement.  Its execution '
             'binds\n'
             'the function name in the current local namespace to a function '
             'object\n'
             '(a wrapper around the executable code for the function).  This\n'
             'function object contains a reference to the current global '
             'namespace\n'
             'as the global namespace to be used when the function is called.\n'
             '\n'
             'The function definition does not execute the function body; this '
             'gets\n'
             'executed only when the function is called. [3]\n'
             '\n'
             'A function definition may be wrapped by one or more *decorator*\n'
             'expressions. Decorator expressions are evaluated when the '
             'function is\n'
             'defined, in the scope that contains the function definition.  '
             'The\n'
             'result must be a callable, which is invoked with the function '
             'object\n'
             'as the only argument. The returned value is bound to the '
             'function name\n'
             'instead of the function object.  Multiple decorators are applied '
             'in\n'
             'nested fashion. For example, the following code\n'
             '\n'
             '   @f1(arg)\n'
             '   @f2\n'
             '   def func(): pass\n'
             '\n'
             'is equivalent to\n'
             '\n'
             '   def func(): pass\n'
             '   func = f1(arg)(f2(func))\n'
             '\n'
             'When one or more *parameters* have the form *parameter* "="\n'
             '*expression*, the function is said to have "default parameter '
             'values."\n'
             'For a parameter with a default value, the corresponding '
             '*argument* may\n'
             "be omitted from a call, in which case the parameter's default "
             'value is\n'
             'substituted.  If a parameter has a default value, all following\n'
             'parameters up until the ""*"" must also have a default value --- '
             'this\n'
             'is a syntactic restriction that is not expressed by the '
             'grammar.\n'
             '\n'
             '**Default parameter values are evaluated from left to right when '
             'the\n'
             'function definition is executed.** This means that the '
             'expression is\n'
             'evaluated once, when the function is defined, and that the same '
             '"pre-\n'
             'computed" value is used for each call.  This is especially '
             'important\n'
             'to understand when a default parameter is a mutable object, such '
             'as a\n'
             'list or a dictionary: if the function modifies the object (e.g. '
             'by\n'
             'appending an item to a list), the default value is in effect '
             'modified.\n'
             'This is generally not what was intended.  A way around this is '
             'to use\n'
             '"None" as the default, and explicitly test for it in the body of '
             'the\n'
             'function, e.g.:\n'
             '\n'
             '   def whats_on_the_telly(penguin=None):\n'
             '       if penguin is None:\n'
             '           penguin = []\n'
             '       penguin.append("property of the zoo")\n'
             '       return penguin\n'
             '\n'
             'Function call semantics are described in more detail in section\n'
             '*Calls*. A function call always assigns values to all '
             'parameters\n'
             'mentioned in the parameter list, either from position arguments, '
             'from\n'
             'keyword arguments, or from default values.  If the form\n'
             '""*identifier"" is present, it is initialized to a tuple '
             'receiving any\n'
             'excess positional parameters, defaulting to the empty tuple.  If '
             'the\n'
             'form ""**identifier"" is present, it is initialized to a new\n'
             'dictionary receiving any excess keyword arguments, defaulting to '
             'a new\n'
             'empty dictionary. Parameters after ""*"" or ""*identifier"" are\n'
             'keyword-only parameters and may only be passed used keyword '
             'arguments.\n'
             '\n'
             'Parameters may have annotations of the form "": expression"" '
             'following\n'
             'the parameter name.  Any parameter may have an annotation even '
             'those\n'
             'of the form "*identifier" or "**identifier".  Functions may '
             'have\n'
             '"return" annotation of the form ""-> expression"" after the '
             'parameter\n'
             'list.  These annotations can be any valid Python expression and '
             'are\n'
             'evaluated when the function definition is executed.  Annotations '
             'may\n'
             'be evaluated in a different order than they appear in the source '
             'code.\n'
             'The presence of annotations does not change the semantics of a\n'
             'function.  The annotation values are available as values of a\n'
             "dictionary keyed by the parameters' names in the "
             '"__annotations__"\n'
             'attribute of the function object.\n'
             '\n'
             'It is also possible to create anonymous functions (functions not '
             'bound\n'
             'to a name), for immediate use in expressions.  This uses lambda\n'
             'expressions, described in section *Lambdas*.  Note that the '
             'lambda\n'
             'expression is merely a shorthand for a simplified function '
             'definition;\n'
             'a function defined in a ""def"" statement can be passed around '
             'or\n'
             'assigned to another name just like a function defined by a '
             'lambda\n'
             'expression.  The ""def"" form is actually more powerful since '
             'it\n'
             'allows the execution of multiple statements and annotations.\n'
             '\n'
             "**Programmer's note:** Functions are first-class objects.  A "
             '""def""\n'
             'statement executed inside a function definition defines a local\n'
             'function that can be returned or passed around.  Free variables '
             'used\n'
             'in the nested function can access the local variables of the '
             'function\n'
             'containing the def.  See section *Naming and binding* for '
             'details.\n'
             '\n'
             'See also: **PEP 3107** - Function Annotations\n'
             '\n'
             '     The original specification for function annotations.\n'
             '\n'
             '\n'
             'Class definitions\n'
             '=================\n'
             '\n'
             'A class definition defines a class object (see section *The '
             'standard\n'
             'type hierarchy*):\n'
             '\n'
             '   classdef    ::= [decorators] "class" classname [inheritance] '
             '":" suite\n'
             '   inheritance ::= "(" [parameter_list] ")"\n'
             '   classname   ::= identifier\n'
             '\n'
             'A class definition is an executable statement.  The inheritance '
             'list\n'
             'usually gives a list of base classes (see *Customizing class '
             'creation*\n'
             'for more advanced uses), so each item in the list should '
             'evaluate to a\n'
             'class object which allows subclassing.  Classes without an '
             'inheritance\n'
             'list inherit, by default, from the base class "object"; hence,\n'
             '\n'
             '   class Foo:\n'
             '       pass\n'
             '\n'
             'is equivalent to\n'
             '\n'
             '   class Foo(object):\n'
             '       pass\n'
             '\n'
             "The class's suite is then executed in a new execution frame "
             '(see\n'
             '*Naming and binding*), using a newly created local namespace and '
             'the\n'
             'original global namespace. (Usually, the suite contains mostly\n'
             "function definitions.)  When the class's suite finishes "
             'execution, its\n'
             'execution frame is discarded but its local namespace is saved. '
             '[4] A\n'
             'class object is then created using the inheritance list for the '
             'base\n'
             'classes and the saved local namespace for the attribute '
             'dictionary.\n'
             'The class name is bound to this class object in the original '
             'local\n'
             'namespace.\n'
             '\n'
             'Class creation can be customized heavily using *metaclasses*.\n'
             '\n'
             'Classes can also be decorated: just like when decorating '
             'functions,\n'
             '\n'
             '   @f1(arg)\n'
             '   @f2\n'
             '   class Foo: pass\n'
             '\n'
             'is equivalent to\n'
             '\n'
             '   class Foo: pass\n'
             '   Foo = f1(arg)(f2(Foo))\n'
             '\n'
             'The evaluation rules for the decorator expressions are the same '
             'as for\n'
             'function decorators.  The result must be a class object, which '
             'is then\n'
             'bound to the class name.\n'
             '\n'
             "**Programmer's note:** Variables defined in the class definition "
             'are\n'
             'class attributes; they are shared by instances.  Instance '
             'attributes\n'
             'can be set in a method with "self.name = value".  Both class '
             'and\n'
             'instance attributes are accessible through the notation '
             '""self.name"",\n'
             'and an instance attribute hides a class attribute with the same '
             'name\n'
             'when accessed in this way.  Class attributes can be used as '
             'defaults\n'
             'for instance attributes, but using mutable values there can lead '
             'to\n'
             'unexpected results.  *Descriptors* can be used to create '
             'instance\n'
             'variables with different implementation details.\n'
             '\n'
             'See also: **PEP 3115** - Metaclasses in Python 3 **PEP 3129** -\n'
             '  Class Decorators\n'
             '\n'
             '-[ Footnotes ]-\n'
             '\n'
             '[1] The exception is propagated to the invocation stack unless\n'
             '    there is a "finally" clause which happens to raise another\n'
             '    exception. That new exception causes the old one to be '
             'lost.\n'
             '\n'
             '[2] Currently, control "flows off the end" except in the case '
             'of\n'
             '    an exception or the execution of a "return", "continue", or\n'
             '    "break" statement.\n'
             '\n'
             '[3] A string literal appearing as the first statement in the\n'
             '    function body is transformed into the function\'s "__doc__"\n'
             "    attribute and therefore the function's *docstring*.\n"
             '\n'
             '[4] A string literal appearing as the first statement in the '
             'class\n'
             '    body is transformed into the namespace\'s "__doc__" item '
             'and\n'
             "    therefore the class's *docstring*.\n",
 'context-managers': '\n'
                     'With Statement Context Managers\n'
                     '*******************************\n'
                     '\n'
                     'A *context manager* is an object that defines the '
                     'runtime context to\n'
                     'be established when executing a "with" statement. The '
                     'context manager\n'
                     'handles the entry into, and the exit from, the desired '
                     'runtime context\n'
                     'for the execution of the block of code.  Context '
                     'managers are normally\n'
                     'invoked using the "with" statement (described in section '
                     '*The with\n'
                     'statement*), but can also be used by directly invoking '
                     'their methods.\n'
                     '\n'
                     'Typical uses of context managers include saving and '
                     'restoring various\n'
                     'kinds of global state, locking and unlocking resources, '
                     'closing opened\n'
                     'files, etc.\n'
                     '\n'
                     'For more information on context managers, see *Context '
                     'Manager Types*.\n'
                     '\n'
                     'object.__enter__(self)\n'
                     '\n'
                     '   Enter the runtime context related to this object. The '
                     '"with"\n'
                     "   statement will bind this method's return value to the "
                     'target(s)\n'
                     '   specified in the "as" clause of the statement, if '
                     'any.\n'
                     '\n'
                     'object.__exit__(self, exc_type, exc_value, traceback)\n'
                     '\n'
                     '   Exit the runtime context related to this object. The '
                     'parameters\n'
                     '   describe the exception that caused the context to be '
                     'exited. If the\n'
                     '   context was exited without an exception, all three '
                     'arguments will\n'
                     '   be "None".\n'
                     '\n'
                     '   If an exception is supplied, and the method wishes to '
                     'suppress the\n'
                     '   exception (i.e., prevent it from being propagated), '
                     'it should\n'
                     '   return a true value. Otherwise, the exception will be '
                     'processed\n'
                     '   normally upon exit from this method.\n'
                     '\n'
                     '   Note that "__exit__()" methods should not reraise the '
                     'passed-in\n'
                     "   exception; this is the caller's responsibility.\n"
                     '\n'
                     'See also: **PEP 0343** - The "with" statement\n'
                     '\n'
                     '     The specification, background, and examples for the '
                     'Python "with"\n'
                     '     statement.\n',
 'continue': '\n'
             'The "continue" statement\n'
             '************************\n'
             '\n'
             '   continue_stmt ::= "continue"\n'
             '\n'
             '"continue" may only occur syntactically nested in a "for" or '
             '"while"\n'
             'loop, but not nested in a function or class definition or '
             '"finally"\n'
             'clause within that loop.  It continues with the next cycle of '
             'the\n'
             'nearest enclosing loop.\n'
             '\n'
             'When "continue" passes control out of a "try" statement with a\n'
             '"finally" clause, that "finally" clause is executed before '
             'really\n'
             'starting the next loop cycle.\n',
 'conversions': '\n'
                'Arithmetic conversions\n'
                '**********************\n'
                '\n'
                'When a description of an arithmetic operator below uses the '
                'phrase\n'
                '"the numeric arguments are converted to a common type," this '
                'means\n'
                'that the operator implementation for built-in types works as '
                'follows:\n'
                '\n'
                '* If either argument is a complex number, the other is '
                'converted to\n'
                '  complex;\n'
                '\n'
                '* otherwise, if either argument is a floating point number, '
                'the\n'
                '  other is converted to floating point;\n'
                '\n'
                '* otherwise, both must be integers and no conversion is '
                'necessary.\n'
                '\n'
                'Some additional rules apply for certain operators (e.g., a '
                'string as a\n'
                "left argument to the '%' operator).  Extensions must define "
                'their own\n'
                'conversion behavior.\n',
 'customization': '\n'
                  'Basic customization\n'
                  '*******************\n'
                  '\n'
                  'object.__new__(cls[, ...])\n'
                  '\n'
                  '   Called to create a new instance of class *cls*.  '
                  '"__new__()" is a\n'
                  '   static method (special-cased so you need not declare it '
                  'as such)\n'
                  '   that takes the class of which an instance was requested '
                  'as its\n'
                  '   first argument.  The remaining arguments are those '
                  'passed to the\n'
                  '   object constructor expression (the call to the class).  '
                  'The return\n'
                  '   value of "__new__()" should be the new object instance '
                  '(usually an\n'
                  '   instance of *cls*).\n'
                  '\n'
                  '   Typical implementations create a new instance of the '
                  'class by\n'
                  '   invoking the superclass\'s "__new__()" method using\n'
                  '   "super(currentclass, cls).__new__(cls[, ...])" with '
                  'appropriate\n'
                  '   arguments and then modifying the newly-created instance '
                  'as\n'
                  '   necessary before returning it.\n'
                  '\n'
                  '   If "__new__()" returns an instance of *cls*, then the '
                  'new\n'
                  '   instance\'s "__init__()" method will be invoked like\n'
                  '   "__init__(self[, ...])", where *self* is the new '
                  'instance and the\n'
                  '   remaining arguments are the same as were passed to '
                  '"__new__()".\n'
                  '\n'
                  '   If "__new__()" does not return an instance of *cls*, '
                  'then the new\n'
                  '   instance\'s "__init__()" method will not be invoked.\n'
                  '\n'
                  '   "__new__()" is intended mainly to allow subclasses of '
                  'immutable\n'
                  '   types (like int, str, or tuple) to customize instance '
                  'creation.  It\n'
                  '   is also commonly overridden in custom metaclasses in '
                  'order to\n'
                  '   customize class creation.\n'
                  '\n'
                  'object.__init__(self[, ...])\n'
                  '\n'
                  '   Called after the instance has been created (by '
                  '"__new__()"), but\n'
                  '   before it is returned to the caller.  The arguments are '
                  'those\n'
                  '   passed to the class constructor expression.  If a base '
                  'class has an\n'
                  '   "__init__()" method, the derived class\'s "__init__()" '
                  'method, if\n'
                  '   any, must explicitly call it to ensure proper '
                  'initialization of the\n'
                  '   base class part of the instance; for example:\n'
                  '   "BaseClass.__init__(self, [args...])".\n'
                  '\n'
                  '   Because "__new__()" and "__init__()" work together in '
                  'constructing\n'
                  '   objects ("__new__()" to create it, and "__init__()" to '
                  'customise\n'
                  '   it), no non-"None" value may be returned by '
                  '"__init__()"; doing so\n'
                  '   will cause a "TypeError" to be raised at runtime.\n'
                  '\n'
                  'object.__del__(self)\n'
                  '\n'
                  '   Called when the instance is about to be destroyed.  This '
                  'is also\n'
                  '   called a destructor.  If a base class has a "__del__()" '
                  'method, the\n'
                  '   derived class\'s "__del__()" method, if any, must '
                  'explicitly call it\n'
                  '   to ensure proper deletion of the base class part of the '
                  'instance.\n'
                  '   Note that it is possible (though not recommended!) for '
                  'the\n'
                  '   "__del__()" method to postpone destruction of the '
                  'instance by\n'
                  '   creating a new reference to it.  It may then be called '
                  'at a later\n'
                  '   time when this new reference is deleted.  It is not '
                  'guaranteed that\n'
                  '   "__del__()" methods are called for objects that still '
                  'exist when\n'
                  '   the interpreter exits.\n'
                  '\n'
                  '   Note: "del x" doesn\'t directly call "x.__del__()" --- '
                  'the former\n'
                  '     decrements the reference count for "x" by one, and the '
                  'latter is\n'
                  '     only called when "x"\'s reference count reaches zero.  '
                  'Some common\n'
                  '     situations that may prevent the reference count of an '
                  'object from\n'
                  '     going to zero include: circular references between '
                  'objects (e.g.,\n'
                  '     a doubly-linked list or a tree data structure with '
                  'parent and\n'
                  '     child pointers); a reference to the object on the '
                  'stack frame of\n'
                  '     a function that caught an exception (the traceback '
                  'stored in\n'
                  '     "sys.exc_info()[2]" keeps the stack frame alive); or a '
                  'reference\n'
                  '     to the object on the stack frame that raised an '
                  'unhandled\n'
                  '     exception in interactive mode (the traceback stored '
                  'in\n'
                  '     "sys.last_traceback" keeps the stack frame alive).  '
                  'The first\n'
                  '     situation can only be remedied by explicitly breaking '
                  'the cycles;\n'
                  '     the second can be resolved by freeing the reference to '
                  'the\n'
                  '     traceback object when it is no longer useful, and the '
                  'third can\n'
                  '     be resolved by storing "None" in "sys.last_traceback". '
                  'Circular\n'
                  '     references which are garbage are detected and cleaned '
                  'up when the\n'
                  "     cyclic garbage collector is enabled (it's on by "
                  'default). Refer\n'
                  '     to the documentation for the "gc" module for more '
                  'information\n'
                  '     about this topic.\n'
                  '\n'
                  '   Warning: Due to the precarious circumstances under '
                  'which\n'
                  '     "__del__()" methods are invoked, exceptions that occur '
                  'during\n'
                  '     their execution are ignored, and a warning is printed '
                  'to\n'
                  '     "sys.stderr" instead. Also, when "__del__()" is '
                  'invoked in\n'
                  '     response to a module being deleted (e.g., when '
                  'execution of the\n'
                  '     program is done), other globals referenced by the '
                  '"__del__()"\n'
                  '     method may already have been deleted or in the process '
                  'of being\n'
                  '     torn down (e.g. the import machinery shutting down).  '
                  'For this\n'
                  '     reason, "__del__()" methods should do the absolute '
                  'minimum needed\n'
                  '     to maintain external invariants.  Starting with '
                  'version 1.5,\n'
                  '     Python guarantees that globals whose name begins with '
                  'a single\n'
                  '     underscore are deleted from their module before other '
                  'globals are\n'
                  '     deleted; if no other references to such globals exist, '
                  'this may\n'
                  '     help in assuring that imported modules are still '
                  'available at the\n'
                  '     time when the "__del__()" method is called.\n'
                  '\n'
                  'object.__repr__(self)\n'
                  '\n'
                  '   Called by the "repr()" built-in function to compute the '
                  '"official"\n'
                  '   string representation of an object.  If at all possible, '
                  'this\n'
                  '   should look like a valid Python expression that could be '
                  'used to\n'
                  '   recreate an object with the same value (given an '
                  'appropriate\n'
                  '   environment).  If this is not possible, a string of the '
                  'form\n'
                  '   "<...some useful description...>" should be returned. '
                  'The return\n'
                  '   value must be a string object. If a class defines '
                  '"__repr__()" but\n'
                  '   not "__str__()", then "__repr__()" is also used when an '
                  '"informal"\n'
                  '   string representation of instances of that class is '
                  'required.\n'
                  '\n'
                  '   This is typically used for debugging, so it is important '
                  'that the\n'
                  '   representation is information-rich and unambiguous.\n'
                  '\n'
                  'object.__str__(self)\n'
                  '\n'
                  '   Called by "str(object)" and the built-in functions '
                  '"format()" and\n'
                  '   "print()" to compute the "informal" or nicely printable '
                  'string\n'
                  '   representation of an object.  The return value must be a '
                  '*string*\n'
                  '   object.\n'
                  '\n'
                  '   This method differs from "object.__repr__()" in that '
                  'there is no\n'
                  '   expectation that "__str__()" return a valid Python '
                  'expression: a\n'
                  '   more convenient or concise representation can be used.\n'
                  '\n'
                  '   The default implementation defined by the built-in type '
                  '"object"\n'
                  '   calls "object.__repr__()".\n'
                  '\n'
                  'object.__bytes__(self)\n'
                  '\n'
                  '   Called by "bytes()" to compute a byte-string '
                  'representation of an\n'
                  '   object. This should return a "bytes" object.\n'
                  '\n'
                  'object.__format__(self, format_spec)\n'
                  '\n'
                  '   Called by the "format()" built-in function (and by '
                  'extension, the\n'
                  '   "str.format()" method of class "str") to produce a '
                  '"formatted"\n'
                  '   string representation of an object. The "format_spec" '
                  'argument is a\n'
                  '   string that contains a description of the formatting '
                  'options\n'
                  '   desired. The interpretation of the "format_spec" '
                  'argument is up to\n'
                  '   the type implementing "__format__()", however most '
                  'classes will\n'
                  '   either delegate formatting to one of the built-in types, '
                  'or use a\n'
                  '   similar formatting option syntax.\n'
                  '\n'
                  '   See *Format Specification Mini-Language* for a '
                  'description of the\n'
                  '   standard formatting syntax.\n'
                  '\n'
                  '   The return value must be a string object.\n'
                  '\n'
                  '   Changed in version 3.4: The __format__ method of '
                  '"object" itself\n'
                  '   raises a "TypeError" if passed any non-empty string.\n'
                  '\n'
                  'object.__lt__(self, other)\n'
                  'object.__le__(self, other)\n'
                  'object.__eq__(self, other)\n'
                  'object.__ne__(self, other)\n'
                  'object.__gt__(self, other)\n'
                  'object.__ge__(self, other)\n'
                  '\n'
                  '   These are the so-called "rich comparison" methods. The\n'
                  '   correspondence between operator symbols and method names '
                  'is as\n'
                  '   follows: "x<y" calls "x.__lt__(y)", "x<=y" calls '
                  '"x.__le__(y)",\n'
                  '   "x==y" calls "x.__eq__(y)", "x!=y" calls "x.__ne__(y)", '
                  '"x>y" calls\n'
                  '   "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n'
                  '\n'
                  '   A rich comparison method may return the singleton '
                  '"NotImplemented"\n'
                  '   if it does not implement the operation for a given pair '
                  'of\n'
                  '   arguments. By convention, "False" and "True" are '
                  'returned for a\n'
                  '   successful comparison. However, these methods can return '
                  'any value,\n'
                  '   so if the comparison operator is used in a Boolean '
                  'context (e.g.,\n'
                  '   in the condition of an "if" statement), Python will call '
                  '"bool()"\n'
                  '   on the value to determine if the result is true or '
                  'false.\n'
                  '\n'
                  '   By default, "__ne__()" delegates to "__eq__()" and '
                  'inverts the\n'
                  '   result unless it is "NotImplemented".  There are no '
                  'other implied\n'
                  '   relationships among the comparison operators, for '
                  'example, the\n'
                  '   truth of "(x<y or x==y)" does not imply "x<=y". To '
                  'automatically\n'
                  '   generate ordering operations from a single root '
                  'operation, see\n'
                  '   "functools.total_ordering()".\n'
                  '\n'
                  '   See the paragraph on "__hash__()" for some important '
                  'notes on\n'
                  '   creating *hashable* objects which support custom '
                  'comparison\n'
                  '   operations and are usable as dictionary keys.\n'
                  '\n'
                  '   There are no swapped-argument versions of these methods '
                  '(to be used\n'
                  '   when the left argument does not support the operation '
                  'but the right\n'
                  '   argument does); rather, "__lt__()" and "__gt__()" are '
                  "each other's\n"
                  '   reflection, "__le__()" and "__ge__()" are each other\'s '
                  'reflection,\n'
                  '   and "__eq__()" and "__ne__()" are their own reflection. '
                  'If the\n'
                  "   operands are of different types, and right operand's "
                  'type is a\n'
                  "   direct or indirect subclass of the left operand's type, "
                  'the\n'
                  '   reflected method of the right operand has priority, '
                  'otherwise the\n'
                  "   left operand's method has priority.  Virtual subclassing "
                  'is not\n'
                  '   considered.\n'
                  '\n'
                  'object.__hash__(self)\n'
                  '\n'
                  '   Called by built-in function "hash()" and for operations '
                  'on members\n'
                  '   of hashed collections including "set", "frozenset", and '
                  '"dict".\n'
                  '   "__hash__()" should return an integer.  The only '
                  'required property\n'
                  '   is that objects which compare equal have the same hash '
                  'value; it is\n'
                  '   advised to somehow mix together (e.g. using exclusive '
                  'or) the hash\n'
                  '   values for the components of the object that also play a '
                  'part in\n'
                  '   comparison of objects.\n'
                  '\n'
                  '   Note: "hash()" truncates the value returned from an '
                  "object's\n"
                  '     custom "__hash__()" method to the size of a '
                  '"Py_ssize_t".  This\n'
                  '     is typically 8 bytes on 64-bit builds and 4 bytes on '
                  '32-bit\n'
                  '     builds. If an object\'s   "__hash__()" must '
                  'interoperate on builds\n'
                  '     of different bit sizes, be sure to check the width on '
                  'all\n'
                  '     supported builds.  An easy way to do this is with '
                  '"python -c\n'
                  '     "import sys; print(sys.hash_info.width)"".\n'
                  '\n'
                  '   If a class does not define an "__eq__()" method it '
                  'should not\n'
                  '   define a "__hash__()" operation either; if it defines '
                  '"__eq__()"\n'
                  '   but not "__hash__()", its instances will not be usable '
                  'as items in\n'
                  '   hashable collections.  If a class defines mutable '
                  'objects and\n'
                  '   implements an "__eq__()" method, it should not '
                  'implement\n'
                  '   "__hash__()", since the implementation of hashable '
                  'collections\n'
                  "   requires that a key's hash value is immutable (if the "
                  "object's hash\n"
                  '   value changes, it will be in the wrong hash bucket).\n'
                  '\n'
                  '   User-defined classes have "__eq__()" and "__hash__()" '
                  'methods by\n'
                  '   default; with them, all objects compare unequal (except '
                  'with\n'
                  '   themselves) and "x.__hash__()" returns an appropriate '
                  'value such\n'
                  '   that "x == y" implies both that "x is y" and "hash(x) == '
                  'hash(y)".\n'
                  '\n'
                  '   A class that overrides "__eq__()" and does not define '
                  '"__hash__()"\n'
                  '   will have its "__hash__()" implicitly set to "None".  '
                  'When the\n'
                  '   "__hash__()" method of a class is "None", instances of '
                  'the class\n'
                  '   will raise an appropriate "TypeError" when a program '
                  'attempts to\n'
                  '   retrieve their hash value, and will also be correctly '
                  'identified as\n'
                  '   unhashable when checking "isinstance(obj, '
                  'collections.Hashable)".\n'
                  '\n'
                  '   If a class that overrides "__eq__()" needs to retain '
                  'the\n'
                  '   implementation of "__hash__()" from a parent class, the '
                  'interpreter\n'
                  '   must be told this explicitly by setting "__hash__ =\n'
                  '   <ParentClass>.__hash__".\n'
                  '\n'
                  '   If a class that does not override "__eq__()" wishes to '
                  'suppress\n'
                  '   hash support, it should include "__hash__ = None" in the '
                  'class\n'
                  '   definition. A class which defines its own "__hash__()" '
                  'that\n'
                  '   explicitly raises a "TypeError" would be incorrectly '
                  'identified as\n'
                  '   hashable by an "isinstance(obj, collections.Hashable)" '
                  'call.\n'
                  '\n'
                  '   Note: By default, the "__hash__()" values of str, bytes '
                  'and\n'
                  '     datetime objects are "salted" with an unpredictable '
                  'random value.\n'
                  '     Although they remain constant within an individual '
                  'Python\n'
                  '     process, they are not predictable between repeated '
                  'invocations of\n'
                  '     Python.This is intended to provide protection against '
                  'a denial-\n'
                  '     of-service caused by carefully-chosen inputs that '
                  'exploit the\n'
                  '     worst case performance of a dict insertion, O(n^2) '
                  'complexity.\n'
                  '     See '
                  'http://www.ocert.org/advisories/ocert-2011-003.html for\n'
                  '     details.Changing hash values affects the iteration '
                  'order of\n'
                  '     dicts, sets and other mappings.  Python has never made '
                  'guarantees\n'
                  '     about this ordering (and it typically varies between '
                  '32-bit and\n'
                  '     64-bit builds).See also "PYTHONHASHSEED".\n'
                  '\n'
                  '   Changed in version 3.3: Hash randomization is enabled by '
                  'default.\n'
                  '\n'
                  'object.__bool__(self)\n'
                  '\n'
                  '   Called to implement truth value testing and the built-in '
                  'operation\n'
                  '   "bool()"; should return "False" or "True".  When this '
                  'method is not\n'
                  '   defined, "__len__()" is called, if it is defined, and '
                  'the object is\n'
                  '   considered true if its result is nonzero.  If a class '
                  'defines\n'
                  '   neither "__len__()" nor "__bool__()", all its instances '
                  'are\n'
                  '   considered true.\n',
 'debugger': '\n'
             '"pdb" --- The Python Debugger\n'
             '*****************************\n'
             '\n'
             '**Source code:** Lib/pdb.py\n'
             '\n'
             '======================================================================\n'
             '\n'
             'The module "pdb" defines an interactive source code debugger '
             'for\n'
             'Python programs.  It supports setting (conditional) breakpoints '
             'and\n'
             'single stepping at the source line level, inspection of stack '
             'frames,\n'
             'source code listing, and evaluation of arbitrary Python code in '
             'the\n'
             'context of any stack frame.  It also supports post-mortem '
             'debugging\n'
             'and can be called under program control.\n'
             '\n'
             'The debugger is extensible -- it is actually defined as the '
             'class\n'
             '"Pdb". This is currently undocumented but easily understood by '
             'reading\n'
             'the source.  The extension interface uses the modules "bdb" and '
             '"cmd".\n'
             '\n'
             'The debugger\'s prompt is "(Pdb)". Typical usage to run a '
             'program under\n'
             'control of the debugger is:\n'
             '\n'
             '   >>> import pdb\n'
             '   >>> import mymodule\n'
             "   >>> pdb.run('mymodule.test()')\n"
             '   > <string>(0)?()\n'
             '   (Pdb) continue\n'
             '   > <string>(1)?()\n'
             '   (Pdb) continue\n'
             "   NameError: 'spam'\n"
             '   > <string>(1)?()\n'
             '   (Pdb)\n'
             '\n'
             'Changed in version 3.3: Tab-completion via the "readline" module '
             'is\n'
             'available for commands and command arguments, e.g. the current '
             'global\n'
             'and local names are offered as arguments of the "p" command.\n'
             '\n'
             '"pdb.py" can also be invoked as a script to debug other '
             'scripts.  For\n'
             'example:\n'
             '\n'
             '   python3 -m pdb myscript.py\n'
             '\n'
             'When invoked as a script, pdb will automatically enter '
             'post-mortem\n'
             'debugging if the program being debugged exits abnormally.  After '
             'post-\n'
             'mortem debugging (or after normal exit of the program), pdb '
             'will\n'
             "restart the program.  Automatic restarting preserves pdb's state "
             '(such\n'
             'as breakpoints) and in most cases is more useful than quitting '
             'the\n'
             "debugger upon program's exit.\n"
             '\n'
             'New in version 3.2: "pdb.py" now accepts a "-c" option that '
             'executes\n'
             'commands as if given in a ".pdbrc" file, see *Debugger '
             'Commands*.\n'
             '\n'
             'The typical usage to break into the debugger from a running '
             'program is\n'
             'to insert\n'
             '\n'
             '   import pdb; pdb.set_trace()\n'
             '\n'
             'at the location you want to break into the debugger.  You can '
             'then\n'
             'step through the code following this statement, and continue '
             'running\n'
             'without the debugger using the "continue" command.\n'
             '\n'
             'The typical usage to inspect a crashed program is:\n'
             '\n'
             '   >>> import pdb\n'
             '   >>> import mymodule\n'
             '   >>> mymodule.test()\n'
             '   Traceback (most recent call last):\n'
             '     File "<stdin>", line 1, in ?\n'
             '     File "./mymodule.py", line 4, in test\n'
             '       test2()\n'
             '     File "./mymodule.py", line 3, in test2\n'
             '       print(spam)\n'
             '   NameError: spam\n'
             '   >>> pdb.pm()\n'
             '   > ./mymodule.py(3)test2()\n'
             '   -> print(spam)\n'
             '   (Pdb)\n'
             '\n'
             'The module defines the following functions; each enters the '
             'debugger\n'
             'in a slightly different way:\n'
             '\n'
             'pdb.run(statement, globals=None, locals=None)\n'
             '\n'
             '   Execute the *statement* (given as a string or a code object) '
             'under\n'
             '   debugger control.  The debugger prompt appears before any '
             'code is\n'
             '   executed; you can set breakpoints and type "continue", or you '
             'can\n'
             '   step through the statement using "step" or "next" (all these\n'
             '   commands are explained below).  The optional *globals* and '
             '*locals*\n'
             '   arguments specify the environment in which the code is '
             'executed; by\n'
             '   default the dictionary of the module "__main__" is used.  '
             '(See the\n'
             '   explanation of the built-in "exec()" or "eval()" functions.)\n'
             '\n'
             'pdb.runeval(expression, globals=None, locals=None)\n'
             '\n'
             '   Evaluate the *expression* (given as a string or a code '
             'object)\n'
             '   under debugger control.  When "runeval()" returns, it returns '
             'the\n'
             '   value of the expression.  Otherwise this function is similar '
             'to\n'
             '   "run()".\n'
             '\n'
             'pdb.runcall(function, *args, **kwds)\n'
             '\n'
             '   Call the *function* (a function or method object, not a '
             'string)\n'
             '   with the given arguments.  When "runcall()" returns, it '
             'returns\n'
             '   whatever the function call returned.  The debugger prompt '
             'appears\n'
             '   as soon as the function is entered.\n'
             '\n'
             'pdb.set_trace()\n'
             '\n'
             '   Enter the debugger at the calling stack frame.  This is '
             'useful to\n'
             '   hard-code a breakpoint at a given point in a program, even if '
             'the\n'
             '   code is not otherwise being debugged (e.g. when an assertion\n'
             '   fails).\n'
             '\n'
             'pdb.post_mortem(traceback=None)\n'
             '\n'
             '   Enter post-mortem debugging of the given *traceback* object.  '
             'If no\n'
             '   *traceback* is given, it uses the one of the exception that '
             'is\n'
             '   currently being handled (an exception must be being handled '
             'if the\n'
             '   default is to be used).\n'
             '\n'
             'pdb.pm()\n'
             '\n'
             '   Enter post-mortem debugging of the traceback found in\n'
             '   "sys.last_traceback".\n'
             '\n'
             'The "run*" functions and "set_trace()" are aliases for '
             'instantiating\n'
             'the "Pdb" class and calling the method of the same name.  If you '
             'want\n'
             'to access further features, you have to do this yourself:\n'
             '\n'
             "class class pdb.Pdb(completekey='tab', stdin=None, stdout=None, "
             'skip=None, nosigint=False)\n'
             '\n'
             '   "Pdb" is the debugger class.\n'
             '\n'
             '   The *completekey*, *stdin* and *stdout* arguments are passed '
             'to the\n'
             '   underlying "cmd.Cmd" class; see the description there.\n'
             '\n'
             '   The *skip* argument, if given, must be an iterable of '
             'glob-style\n'
             '   module name patterns.  The debugger will not step into frames '
             'that\n'
             '   originate in a module that matches one of these patterns. '
             '[1]\n'
             '\n'
             '   By default, Pdb sets a handler for the SIGINT signal (which '
             'is sent\n'
             '   when the user presses "Ctrl-C" on the console) when you give '
             'a\n'
             '   "continue" command. This allows you to break into the '
             'debugger\n'
             '   again by pressing "Ctrl-C".  If you want Pdb not to touch '
             'the\n'
             '   SIGINT handler, set *nosigint* tot true.\n'
             '\n'
             '   Example call to enable tracing with *skip*:\n'
             '\n'
             "      import pdb; pdb.Pdb(skip=['django.*']).set_trace()\n"
             '\n'
             '   New in version 3.1: The *skip* argument.\n'
             '\n'
             '   New in version 3.2: The *nosigint* argument.  Previously, a '
             'SIGINT\n'
             '   handler was never set by Pdb.\n'
             '\n'
             '   run(statement, globals=None, locals=None)\n'
             '   runeval(expression, globals=None, locals=None)\n'
             '   runcall(function, *args, **kwds)\n'
             '   set_trace()\n'
             '\n'
             '      See the documentation for the functions explained above.\n'
             '\n'
             '\n'
             'Debugger Commands\n'
             '=================\n'
             '\n'
             'The commands recognized by the debugger are listed below.  Most\n'
             'commands can be abbreviated to one or two letters as indicated; '
             'e.g.\n'
             '"h(elp)" means that either "h" or "help" can be used to enter '
             'the help\n'
             'command (but not "he" or "hel", nor "H" or "Help" or "HELP").\n'
             'Arguments to commands must be separated by whitespace (spaces '
             'or\n'
             'tabs).  Optional arguments are enclosed in square brackets '
             '("[]") in\n'
             'the command syntax; the square brackets must not be typed.\n'
             'Alternatives in the command syntax are separated by a vertical '
             'bar\n'
             '("|").\n'
             '\n'
             'Entering a blank line repeats the last command entered.  '
             'Exception: if\n'
             'the last command was a "list" command, the next 11 lines are '
             'listed.\n'
             '\n'
             "Commands that the debugger doesn't recognize are assumed to be "
             'Python\n'
             'statements and are executed in the context of the program being\n'
             'debugged.  Python statements can also be prefixed with an '
             'exclamation\n'
             'point ("!").  This is a powerful way to inspect the program '
             'being\n'
             'debugged; it is even possible to change a variable or call a '
             'function.\n'
             'When an exception occurs in such a statement, the exception name '
             'is\n'
             "printed but the debugger's state is not changed.\n"
             '\n'
             'The debugger supports *aliases*.  Aliases can have parameters '
             'which\n'
             'allows one a certain level of adaptability to the context under\n'
             'examination.\n'
             '\n'
             'Multiple commands may be entered on a single line, separated by '
             '";;".\n'
             '(A single ";" is not used as it is the separator for multiple '
             'commands\n'
             'in a line that is passed to the Python parser.)  No intelligence '
             'is\n'
             'applied to separating the commands; the input is split at the '
             'first\n'
             '";;" pair, even if it is in the middle of a quoted string.\n'
             '\n'
             'If a file ".pdbrc" exists in the user\'s home directory or in '
             'the\n'
             'current directory, it is read in and executed as if it had been '
             'typed\n'
             'at the debugger prompt.  This is particularly useful for '
             'aliases.  If\n'
             'both files exist, the one in the home directory is read first '
             'and\n'
             'aliases defined there can be overridden by the local file.\n'
             '\n'
             'Changed in version 3.2: ".pdbrc" can now contain commands that\n'
             'continue debugging, such as "continue" or "next".  Previously, '
             'these\n'
             'commands had no effect.\n'
             '\n'
             'h(elp) [command]\n'
             '\n'
             '   Without argument, print the list of available commands.  With '
             'a\n'
             '   *command* as argument, print help about that command.  "help '
             'pdb"\n'
             '   displays the full documentation (the docstring of the "pdb"\n'
             '   module).  Since the *command* argument must be an identifier, '
             '"help\n'
             '   exec" must be entered to get help on the "!" command.\n'
             '\n'
             'w(here)\n'
             '\n'
             '   Print a stack trace, with the most recent frame at the '
             'bottom.  An\n'
             '   arrow indicates the current frame, which determines the '
             'context of\n'
             '   most commands.\n'
             '\n'
             'd(own) [count]\n'
             '\n'
             '   Move the current frame *count* (default one) levels down in '
             'the\n'
             '   stack trace (to a newer frame).\n'
             '\n'
             'u(p) [count]\n'
             '\n'
             '   Move the current frame *count* (default one) levels up in the '
             'stack\n'
             '   trace (to an older frame).\n'
             '\n'
             'b(reak) [([filename:]lineno | function) [, condition]]\n'
             '\n'
             '   With a *lineno* argument, set a break there in the current '
             'file.\n'
             '   With a *function* argument, set a break at the first '
             'executable\n'
             '   statement within that function.  The line number may be '
             'prefixed\n'
             '   with a filename and a colon, to specify a breakpoint in '
             'another\n'
             "   file (probably one that hasn't been loaded yet).  The file "
             'is\n'
             '   searched on "sys.path".  Note that each breakpoint is '
             'assigned a\n'
             '   number to which all the other breakpoint commands refer.\n'
             '\n'
             '   If a second argument is present, it is an expression which '
             'must\n'
             '   evaluate to true before the breakpoint is honored.\n'
             '\n'
             '   Without argument, list all breaks, including for each '
             'breakpoint,\n'
             '   the number of times that breakpoint has been hit, the '
             'current\n'
             '   ignore count, and the associated condition if any.\n'
             '\n'
             'tbreak [([filename:]lineno | function) [, condition]]\n'
             '\n'
             '   Temporary breakpoint, which is removed automatically when it '
             'is\n'
             '   first hit. The arguments are the same as for "break".\n'
             '\n'
             'cl(ear) [filename:lineno | bpnumber [bpnumber ...]]\n'
             '\n'
             '   With a *filename:lineno* argument, clear all the breakpoints '
             'at\n'
             '   this line. With a space separated list of breakpoint numbers, '
             'clear\n'
             '   those breakpoints. Without argument, clear all breaks (but '
             'first\n'
             '   ask confirmation).\n'
             '\n'
             'disable [bpnumber [bpnumber ...]]\n'
             '\n'
             '   Disable the breakpoints given as a space separated list of\n'
             '   breakpoint numbers.  Disabling a breakpoint means it cannot '
             'cause\n'
             '   the program to stop execution, but unlike clearing a '
             'breakpoint, it\n'
             '   remains in the list of breakpoints and can be (re-)enabled.\n'
             '\n'
             'enable [bpnumber [bpnumber ...]]\n'
             '\n'
             '   Enable the breakpoints specified.\n'
             '\n'
             'ignore bpnumber [count]\n'
             '\n'
             '   Set the ignore count for the given breakpoint number.  If '
             'count is\n'
             '   omitted, the ignore count is set to 0.  A breakpoint becomes '
             'active\n'
             '   when the ignore count is zero.  When non-zero, the count is\n'
             '   decremented each time the breakpoint is reached and the '
             'breakpoint\n'
             '   is not disabled and any associated condition evaluates to '
             'true.\n'
             '\n'
             'condition bpnumber [condition]\n'
             '\n'
             '   Set a new *condition* for the breakpoint, an expression which '
             'must\n'
             '   evaluate to true before the breakpoint is honored.  If '
             '*condition*\n'
             '   is absent, any existing condition is removed; i.e., the '
             'breakpoint\n'
             '   is made unconditional.\n'
             '\n'
             'commands [bpnumber]\n'
             '\n'
             '   Specify a list of commands for breakpoint number *bpnumber*.  '
             'The\n'
             '   commands themselves appear on the following lines.  Type a '
             'line\n'
             '   containing just "end" to terminate the commands. An example:\n'
             '\n'
             '      (Pdb) commands 1\n'
             '      (com) p some_variable\n'
             '      (com) end\n'
             '      (Pdb)\n'
             '\n'
             '   To remove all commands from a breakpoint, type commands and '
             'follow\n'
             '   it immediately with "end"; that is, give no commands.\n'
             '\n'
             '   With no *bpnumber* argument, commands refers to the last '
             'breakpoint\n'
             '   set.\n'
             '\n'
             '   You can use breakpoint commands to start your program up '
             'again.\n'
             '   Simply use the continue command, or step, or any other '
             'command that\n'
             '   resumes execution.\n'
             '\n'
             '   Specifying any command resuming execution (currently '
             'continue,\n'
             '   step, next, return, jump, quit and their abbreviations) '
             'terminates\n'
             '   the command list (as if that command was immediately followed '
             'by\n'
             '   end). This is because any time you resume execution (even '
             'with a\n'
             '   simple next or step), you may encounter another '
             'breakpoint--which\n'
             '   could have its own command list, leading to ambiguities about '
             'which\n'
             '   list to execute.\n'
             '\n'
             "   If you use the 'silent' command in the command list, the "
             'usual\n'
             '   message about stopping at a breakpoint is not printed.  This '
             'may be\n'
             '   desirable for breakpoints that are to print a specific '
             'message and\n'
             '   then continue.  If none of the other commands print anything, '
             'you\n'
             '   see no sign that the breakpoint was reached.\n'
             '\n'
             's(tep)\n'
             '\n'
             '   Execute the current line, stop at the first possible '
             'occasion\n'
             '   (either in a function that is called or on the next line in '
             'the\n'
             '   current function).\n'
             '\n'
             'n(ext)\n'
             '\n'
             '   Continue execution until the next line in the current '
             'function is\n'
             '   reached or it returns.  (The difference between "next" and '
             '"step"\n'
             '   is that "step" stops inside a called function, while "next"\n'
             '   executes called functions at (nearly) full speed, only '
             'stopping at\n'
             '   the next line in the current function.)\n'
             '\n'
             'unt(il) [lineno]\n'
             '\n'
             '   Without argument, continue execution until the line with a '
             'number\n'
             '   greater than the current one is reached.\n'
             '\n'
             '   With a line number, continue execution until a line with a '
             'number\n'
             '   greater or equal to that is reached.  In both cases, also '
             'stop when\n'
             '   the current frame returns.\n'
             '\n'
             '   Changed in version 3.2: Allow giving an explicit line '
             'number.\n'
             '\n'
             'r(eturn)\n'
             '\n'
             '   Continue execution until the current function returns.\n'
             '\n'
             'c(ont(inue))\n'
             '\n'
             '   Continue execution, only stop when a breakpoint is '
             'encountered.\n'
             '\n'
             'j(ump) lineno\n'
             '\n'
             '   Set the next line that will be executed.  Only available in '
             'the\n'
             '   bottom-most frame.  This lets you jump back and execute code '
             'again,\n'
             "   or jump forward to skip code that you don't want to run.\n"
             '\n'
             '   It should be noted that not all jumps are allowed -- for '
             'instance\n'
             '   it is not possible to jump into the middle of a "for" loop or '
             'out\n'
             '   of a "finally" clause.\n'
             '\n'
             'l(ist) [first[, last]]\n'
             '\n'
             '   List source code for the current file.  Without arguments, '
             'list 11\n'
             '   lines around the current line or continue the previous '
             'listing.\n'
             '   With "." as argument, list 11 lines around the current line.  '
             'With\n'
             '   one argument, list 11 lines around at that line.  With two\n'
             '   arguments, list the given range; if the second argument is '
             'less\n'
             '   than the first, it is interpreted as a count.\n'
             '\n'
             '   The current line in the current frame is indicated by "->".  '
             'If an\n'
             '   exception is being debugged, the line where the exception '
             'was\n'
             '   originally raised or propagated is indicated by ">>", if it '
             'differs\n'
             '   from the current line.\n'
             '\n'
             '   New in version 3.2: The ">>" marker.\n'
             '\n'
             'll | longlist\n'
             '\n'
             '   List all source code for the current function or frame.\n'
             '   Interesting lines are marked as for "list".\n'
             '\n'
             '   New in version 3.2.\n'
             '\n'
             'a(rgs)\n'
             '\n'
             '   Print the argument list of the current function.\n'
             '\n'
             'p expression\n'
             '\n'
             '   Evaluate the *expression* in the current context and print '
             'its\n'
             '   value.\n'
             '\n'
             '   Note: "print()" can also be used, but is not a debugger '
             'command\n'
             '     --- this executes the Python "print()" function.\n'
             '\n'
             'pp expression\n'
             '\n'
             '   Like the "p" command, except the value of the expression is '
             'pretty-\n'
             '   printed using the "pprint" module.\n'
             '\n'
             'whatis expression\n'
             '\n'
             '   Print the type of the *expression*.\n'
             '\n'
             'source expression\n'
             '\n'
             '   Try to get source code for the given object and display it.\n'
             '\n'
             '   New in version 3.2.\n'
             '\n'
             'display [expression]\n'
             '\n'
             '   Display the value of the expression if it changed, each time\n'
             '   execution stops in the current frame.\n'
             '\n'
             '   Without expression, list all display expressions for the '
             'current\n'
             '   frame.\n'
             '\n'
             '   New in version 3.2.\n'
             '\n'
             'undisplay [expression]\n'
             '\n'
             '   Do not display the expression any more in the current frame.\n'
             '   Without expression, clear all display expressions for the '
             'current\n'
             '   frame.\n'
             '\n'
             '   New in version 3.2.\n'
             '\n'
             'interact\n'
             '\n'
             '   Start an interative interpreter (using the "code" module) '
             'whose\n'
             '   global namespace contains all the (global and local) names '
             'found in\n'
             '   the current scope.\n'
             '\n'
             '   New in version 3.2.\n'
             '\n'
             'alias [name [command]]\n'
             '\n'
             '   Create an alias called *name* that executes *command*.  The '
             'command\n'
             '   must *not* be enclosed in quotes.  Replaceable parameters can '
             'be\n'
             '   indicated by "%1", "%2", and so on, while "%*" is replaced by '
             'all\n'
             '   the parameters. If no command is given, the current alias '
             'for\n'
             '   *name* is shown. If no arguments are given, all aliases are '
             'listed.\n'
             '\n'
             '   Aliases may be nested and can contain anything that can be '
             'legally\n'
             '   typed at the pdb prompt.  Note that internal pdb commands '
             '*can* be\n'
             '   overridden by aliases.  Such a command is then hidden until '
             'the\n'
             '   alias is removed.  Aliasing is recursively applied to the '
             'first\n'
             '   word of the command line; all other words in the line are '
             'left\n'
             '   alone.\n'
             '\n'
             '   As an example, here are two useful aliases (especially when '
             'placed\n'
             '   in the ".pdbrc" file):\n'
             '\n'
             '      # Print instance variables (usage "pi classInst")\n'
             '      alias pi for k in %1.__dict__.keys(): '
             'print("%1.",k,"=",%1.__dict__[k])\n'
             '      # Print instance variables in self\n'
             '      alias ps pi self\n'
             '\n'
             'unalias name\n'
             '\n'
             '   Delete the specified alias.\n'
             '\n'
             '! statement\n'
             '\n'
             '   Execute the (one-line) *statement* in the context of the '
             'current\n'
             '   stack frame. The exclamation point can be omitted unless the '
             'first\n'
             '   word of the statement resembles a debugger command.  To set '
             'a\n'
             '   global variable, you can prefix the assignment command with '
             'a\n'
             '   "global" statement on the same line, e.g.:\n'
             '\n'
             "      (Pdb) global list_options; list_options = ['-l']\n"
             '      (Pdb)\n'
             '\n'
             'run [args ...]\n'
             'restart [args ...]\n'
             '\n'
             '   Restart the debugged Python program.  If an argument is '
             'supplied,\n'
             '   it is split with "shlex" and the result is used as the new\n'
             '   "sys.argv". History, breakpoints, actions and debugger '
             'options are\n'
             '   preserved. "restart" is an alias for "run".\n'
             '\n'
             'q(uit)\n'
             '\n'
             '   Quit from the debugger.  The program being executed is '
             'aborted.\n'
             '\n'
             '-[ Footnotes ]-\n'
             '\n'
             '[1] Whether a frame is considered to originate in a certain '
             'module\n'
             '    is determined by the "__name__" in the frame globals.\n',
 'del': '\n'
        'The "del" statement\n'
        '*******************\n'
        '\n'
        '   del_stmt ::= "del" target_list\n'
        '\n'
        'Deletion is recursively defined very similar to the way assignment '
        'is\n'
        'defined. Rather than spelling it out in full details, here are some\n'
        'hints.\n'
        '\n'
        'Deletion of a target list recursively deletes each target, from left\n'
        'to right.\n'
        '\n'
        'Deletion of a name removes the binding of that name from the local '
        'or\n'
        'global namespace, depending on whether the name occurs in a "global"\n'
        'statement in the same code block.  If the name is unbound, a\n'
        '"NameError" exception will be raised.\n'
        '\n'
        'Deletion of attribute references, subscriptions and slicings is '
        'passed\n'
        'to the primary object involved; deletion of a slicing is in general\n'
        'equivalent to assignment of an empty slice of the right type (but '
        'even\n'
        'this is determined by the sliced object).\n'
        '\n'
        'Changed in version 3.2: Previously it was illegal to delete a name\n'
        'from the local namespace if it occurs as a free variable in a nested\n'
        'block.\n',
 'dict': '\n'
         'Dictionary displays\n'
         '*******************\n'
         '\n'
         'A dictionary display is a possibly empty series of key/datum pairs\n'
         'enclosed in curly braces:\n'
         '\n'
         '   dict_display       ::= "{" [key_datum_list | dict_comprehension] '
         '"}"\n'
         '   key_datum_list     ::= key_datum ("," key_datum)* [","]\n'
         '   key_datum          ::= expression ":" expression\n'
         '   dict_comprehension ::= expression ":" expression comp_for\n'
         '\n'
         'A dictionary display yields a new dictionary object.\n'
         '\n'
         'If a comma-separated sequence of key/datum pairs is given, they are\n'
         'evaluated from left to right to define the entries of the '
         'dictionary:\n'
         'each key object is used as a key into the dictionary to store the\n'
         'corresponding datum.  This means that you can specify the same key\n'
         "multiple times in the key/datum list, and the final dictionary's "
         'value\n'
         'for that key will be the last one given.\n'
         '\n'
         'A dict comprehension, in contrast to list and set comprehensions,\n'
         'needs two expressions separated with a colon followed by the usual\n'
         '"for" and "if" clauses. When the comprehension is run, the '
         'resulting\n'
         'key and value elements are inserted in the new dictionary in the '
         'order\n'
         'they are produced.\n'
         '\n'
         'Restrictions on the types of the key values are listed earlier in\n'
         'section *The standard type hierarchy*.  (To summarize, the key type\n'
         'should be *hashable*, which excludes all mutable objects.)  Clashes\n'
         'between duplicate keys are not detected; the last datum (textually\n'
         'rightmost in the display) stored for a given key value prevails.\n',
 'dynamic-features': '\n'
                     'Interaction with dynamic features\n'
                     '*********************************\n'
                     '\n'
                     'Name resolution of free variables occurs at runtime, not '
                     'at compile\n'
                     'time. This means that the following code will print 42:\n'
                     '\n'
                     '   i = 10\n'
                     '   def f():\n'
                     '       print(i)\n'
                     '   i = 42\n'
                     '   f()\n'
                     '\n'
                     'There are several cases where Python statements are '
                     'illegal when used\n'
                     'in conjunction with nested scopes that contain free '
                     'variables.\n'
                     '\n'
                     'If a variable is referenced in an enclosing scope, it is '
                     'illegal to\n'
                     'delete the name.  An error will be reported at compile '
                     'time.\n'
                     '\n'
                     'The "eval()" and "exec()" functions do not have access '
                     'to the full\n'
                     'environment for resolving names.  Names may be resolved '
                     'in the local\n'
                     'and global namespaces of the caller.  Free variables are '
                     'not resolved\n'
                     'in the nearest enclosing namespace, but in the global '
                     'namespace.  [1]\n'
                     'The "exec()" and "eval()" functions have optional '
                     'arguments to\n'
                     'override the global and local namespace.  If only one '
                     'namespace is\n'
                     'specified, it is used for both.\n',
 'else': '\n'
         'The "if" statement\n'
         '******************\n'
         '\n'
         'The "if" statement is used for conditional execution:\n'
         '\n'
         '   if_stmt ::= "if" expression ":" suite\n'
         '               ( "elif" expression ":" suite )*\n'
         '               ["else" ":" suite]\n'
         '\n'
         'It selects exactly one of the suites by evaluating the expressions '
         'one\n'
         'by one until one is found to be true (see section *Boolean '
         'operations*\n'
         'for the definition of true and false); then that suite is executed\n'
         '(and no other part of the "if" statement is executed or evaluated).\n'
         'If all expressions are false, the suite of the "else" clause, if\n'
         'present, is executed.\n',
 'exceptions': '\n'
               'Exceptions\n'
               '**********\n'
               '\n'
               'Exceptions are a means of breaking out of the normal flow of '
               'control\n'
               'of a code block in order to handle errors or other '
               'exceptional\n'
               'conditions.  An exception is *raised* at the point where the '
               'error is\n'
               'detected; it may be *handled* by the surrounding code block or '
               'by any\n'
               'code block that directly or indirectly invoked the code block '
               'where\n'
               'the error occurred.\n'
               '\n'
               'The Python interpreter raises an exception when it detects a '
               'run-time\n'
               'error (such as division by zero).  A Python program can also\n'
               'explicitly raise an exception with the "raise" statement. '
               'Exception\n'
               'handlers are specified with the "try" ... "except" statement.  '
               'The\n'
               '"finally" clause of such a statement can be used to specify '
               'cleanup\n'
               'code which does not handle the exception, but is executed '
               'whether an\n'
               'exception occurred or not in the preceding code.\n'
               '\n'
               'Python uses the "termination" model of error handling: an '
               'exception\n'
               'handler can find out what happened and continue execution at '
               'an outer\n'
               'level, but it cannot repair the cause of the error and retry '
               'the\n'
               'failing operation (except by re-entering the offending piece '
               'of code\n'
               'from the top).\n'
               '\n'
               'When an exception is not handled at all, the interpreter '
               'terminates\n'
               'execution of the program, or returns to its interactive main '
               'loop.  In\n'
               'either case, it prints a stack backtrace, except when the '
               'exception is\n'
               '"SystemExit".\n'
               '\n'
               'Exceptions are identified by class instances.  The "except" '
               'clause is\n'
               'selected depending on the class of the instance: it must '
               'reference the\n'
               'class of the instance or a base class thereof.  The instance '
               'can be\n'
               'received by the handler and can carry additional information '
               'about the\n'
               'exceptional condition.\n'
               '\n'
               'Note: Exception messages are not part of the Python API.  '
               'Their\n'
               '  contents may change from one version of Python to the next '
               'without\n'
               '  warning and should not be relied on by code which will run '
               'under\n'
               '  multiple versions of the interpreter.\n'
               '\n'
               'See also the description of the "try" statement in section '
               '*The try\n'
               'statement* and "raise" statement in section *The raise '
               'statement*.\n'
               '\n'
               '-[ Footnotes ]-\n'
               '\n'
               '[1] This limitation occurs because the code that is executed '
               'by\n'
               '    these operations is not available at the time the module '
               'is\n'
               '    compiled.\n',
 'execmodel': '\n'
              'Execution model\n'
              '***************\n'
              '\n'
              '\n'
              'Structure of a program\n'
              '======================\n'
              '\n'
              'A Python program is constructed from code blocks. A *block* is '
              'a piece\n'
              'of Python program text that is executed as a unit. The '
              'following are\n'
              'blocks: a module, a function body, and a class definition. '
              'Each\n'
              'command typed interactively is a block.  A script file (a file '
              'given\n'
              'as standard input to the interpreter or specified as a command '
              'line\n'
              'argument to the interpreter) is a code block.  A script command '
              '(a\n'
              'command specified on the interpreter command line with the '
              "'**-c**'\n"
              'option) is a code block.  The string argument passed to the '
              'built-in\n'
              'functions "eval()" and "exec()" is a code block.\n'
              '\n'
              'A code block is executed in an *execution frame*.  A frame '
              'contains\n'
              'some administrative information (used for debugging) and '
              'determines\n'
              "where and how execution continues after the code block's "
              'execution has\n'
              'completed.\n'
              '\n'
              '\n'
              'Naming and binding\n'
              '==================\n'
              '\n'
              '\n'
              'Binding of names\n'
              '----------------\n'
              '\n'
              '*Names* refer to objects.  Names are introduced by name '
              'binding\n'
              'operations.\n'
              '\n'
              'The following constructs bind names: formal parameters to '
              'functions,\n'
              '"import" statements, class and function definitions (these bind '
              'the\n'
              'class or function name in the defining block), and targets that '
              'are\n'
              'identifiers if occurring in an assignment, "for" loop header, '
              'or after\n'
              '"as" in a "with" statement or "except" clause. The "import" '
              'statement\n'
              'of the form "from ... import *" binds all names defined in the\n'
              'imported module, except those beginning with an underscore.  '
              'This form\n'
              'may only be used at the module level.\n'
              '\n'
              'A target occurring in a "del" statement is also considered '
              'bound for\n'
              'this purpose (though the actual semantics are to unbind the '
              'name).\n'
              '\n'
              'Each assignment or import statement occurs within a block '
              'defined by a\n'
              'class or function definition or at the module level (the '
              'top-level\n'
              'code block).\n'
              '\n'
              'If a name is bound in a block, it is a local variable of that '
              'block,\n'
              'unless declared as "nonlocal" or "global".  If a name is bound '
              'at the\n'
              'module level, it is a global variable.  (The variables of the '
              'module\n'
              'code block are local and global.)  If a variable is used in a '
              'code\n'
              'block but not defined there, it is a *free variable*.\n'
              '\n'
              'Each occurrence of a name in the program text refers to the '
              '*binding*\n'
              'of that name established by the following name resolution '
              'rules.\n'
              '\n'
              '\n'
              'Resolution of names\n'
              '-------------------\n'
              '\n'
              'A *scope* defines the visibility of a name within a block.  If '
              'a local\n'
              'variable is defined in a block, its scope includes that block.  '
              'If the\n'
              'definition occurs in a function block, the scope extends to any '
              'blocks\n'
              'contained within the defining one, unless a contained block '
              'introduces\n'
              'a different binding for the name.\n'
              '\n'
              'When a name is used in a code block, it is resolved using the '
              'nearest\n'
              'enclosing scope.  The set of all such scopes visible to a code '
              'block\n'
              "is called the block's *environment*.\n"
              '\n'
              'When a name is not found at all, a "NameError" exception is '
              'raised. If\n'
              'the current scope is a function scope, and the name refers to a '
              'local\n'
              'variable that has not yet been bound to a value at the point '
              'where the\n'
              'name is used, an "UnboundLocalError" exception is raised.\n'
              '"UnboundLocalError" is a subclass of "NameError".\n'
              '\n'
              'If a name binding operation occurs anywhere within a code '
              'block, all\n'
              'uses of the name within the block are treated as references to '
              'the\n'
              'current block.  This can lead to errors when a name is used '
              'within a\n'
              'block before it is bound.  This rule is subtle.  Python lacks\n'
              'declarations and allows name binding operations to occur '
              'anywhere\n'
              'within a code block.  The local variables of a code block can '
              'be\n'
              'determined by scanning the entire text of the block for name '
              'binding\n'
              'operations.\n'
              '\n'
              'If the "global" statement occurs within a block, all uses of '
              'the name\n'
              'specified in the statement refer to the binding of that name in '
              'the\n'
              'top-level namespace.  Names are resolved in the top-level '
              'namespace by\n'
              'searching the global namespace, i.e. the namespace of the '
              'module\n'
              'containing the code block, and the builtins namespace, the '
              'namespace\n'
              'of the module "builtins".  The global namespace is searched '
              'first.  If\n'
              'the name is not found there, the builtins namespace is '
              'searched.  The\n'
              '"global" statement must precede all uses of the name.\n'
              '\n'
              'The "global" statement has the same scope as a name binding '
              'operation\n'
              'in the same block.  If the nearest enclosing scope for a free '
              'variable\n'
              'contains a global statement, the free variable is treated as a '
              'global.\n'
              '\n'
              'The "nonlocal" statement causes corresponding names to refer '
              'to\n'
              'previously bound variables in the nearest enclosing function '
              'scope.\n'
              '"SyntaxError" is raised at compile time if the given name does '
              'not\n'
              'exist in any enclosing function scope.\n'
              '\n'
              'The namespace for a module is automatically created the first '
              'time a\n'
              'module is imported.  The main module for a script is always '
              'called\n'
              '"__main__".\n'
              '\n'
              'Class definition blocks and arguments to "exec()" and "eval()" '
              'are\n'
              'special in the context of name resolution. A class definition '
              'is an\n'
              'executable statement that may use and define names. These '
              'references\n'
              'follow the normal rules for name resolution with an exception '
              'that\n'
              'unbound local variables are looked up in the global namespace. '
              'The\n'
              'namespace of the class definition becomes the attribute '
              'dictionary of\n'
              'the class. The scope of names defined in a class block is '
              'limited to\n'
              'the class block; it does not extend to the code blocks of '
              'methods --\n'
              'this includes comprehensions and generator expressions since '
              'they are\n'
              'implemented using a function scope.  This means that the '
              'following\n'
              'will fail:\n'
              '\n'
              '   class A:\n'
              '       a = 42\n'
              '       b = list(a + i for i in range(10))\n'
              '\n'
              '\n'
              'Builtins and restricted execution\n'
              '---------------------------------\n'
              '\n'
              'The builtins namespace associated with the execution of a code '
              'block\n'
              'is actually found by looking up the name "__builtins__" in its '
              'global\n'
              'namespace; this should be a dictionary or a module (in the '
              'latter case\n'
              "the module's dictionary is used).  By default, when in the "
              '"__main__"\n'
              'module, "__builtins__" is the built-in module "builtins"; when '
              'in any\n'
              'other module, "__builtins__" is an alias for the dictionary of '
              'the\n'
              '"builtins" module itself.  "__builtins__" can be set to a '
              'user-created\n'
              'dictionary to create a weak form of restricted execution.\n'
              '\n'
              '**CPython implementation detail:** Users should not touch\n'
              '"__builtins__"; it is strictly an implementation detail.  '
              'Users\n'
              'wanting to override values in the builtins namespace should '
              '"import"\n'
              'the "builtins" module and modify its attributes appropriately.\n'
              '\n'
              '\n'
              'Interaction with dynamic features\n'
              '---------------------------------\n'
              '\n'
              'Name resolution of free variables occurs at runtime, not at '
              'compile\n'
              'time. This means that the following code will print 42:\n'
              '\n'
              '   i = 10\n'
              '   def f():\n'
              '       print(i)\n'
              '   i = 42\n'
              '   f()\n'
              '\n'
              'There are several cases where Python statements are illegal '
              'when used\n'
              'in conjunction with nested scopes that contain free variables.\n'
              '\n'
              'If a variable is referenced in an enclosing scope, it is '
              'illegal to\n'
              'delete the name.  An error will be reported at compile time.\n'
              '\n'
              'The "eval()" and "exec()" functions do not have access to the '
              'full\n'
              'environment for resolving names.  Names may be resolved in the '
              'local\n'
              'and global namespaces of the caller.  Free variables are not '
              'resolved\n'
              'in the nearest enclosing namespace, but in the global '
              'namespace.  [1]\n'
              'The "exec()" and "eval()" functions have optional arguments to\n'
              'override the global and local namespace.  If only one namespace '
              'is\n'
              'specified, it is used for both.\n'
              '\n'
              '\n'
              'Exceptions\n'
              '==========\n'
              '\n'
              'Exceptions are a means of breaking out of the normal flow of '
              'control\n'
              'of a code block in order to handle errors or other exceptional\n'
              'conditions.  An exception is *raised* at the point where the '
              'error is\n'
              'detected; it may be *handled* by the surrounding code block or '
              'by any\n'
              'code block that directly or indirectly invoked the code block '
              'where\n'
              'the error occurred.\n'
              '\n'
              'The Python interpreter raises an exception when it detects a '
              'run-time\n'
              'error (such as division by zero).  A Python program can also\n'
              'explicitly raise an exception with the "raise" statement. '
              'Exception\n'
              'handlers are specified with the "try" ... "except" statement.  '
              'The\n'
              '"finally" clause of such a statement can be used to specify '
              'cleanup\n'
              'code which does not handle the exception, but is executed '
              'whether an\n'
              'exception occurred or not in the preceding code.\n'
              '\n'
              'Python uses the "termination" model of error handling: an '
              'exception\n'
              'handler can find out what happened and continue execution at an '
              'outer\n'
              'level, but it cannot repair the cause of the error and retry '
              'the\n'
              'failing operation (except by re-entering the offending piece of '
              'code\n'
              'from the top).\n'
              '\n'
              'When an exception is not handled at all, the interpreter '
              'terminates\n'
              'execution of the program, or returns to its interactive main '
              'loop.  In\n'
              'either case, it prints a stack backtrace, except when the '
              'exception is\n'
              '"SystemExit".\n'
              '\n'
              'Exceptions are identified by class instances.  The "except" '
              'clause is\n'
              'selected depending on the class of the instance: it must '
              'reference the\n'
              'class of the instance or a base class thereof.  The instance '
              'can be\n'
              'received by the handler and can carry additional information '
              'about the\n'
              'exceptional condition.\n'
              '\n'
              'Note: Exception messages are not part of the Python API.  '
              'Their\n'
              '  contents may change from one version of Python to the next '
              'without\n'
              '  warning and should not be relied on by code which will run '
              'under\n'
              '  multiple versions of the interpreter.\n'
              '\n'
              'See also the description of the "try" statement in section *The '
              'try\n'
              'statement* and "raise" statement in section *The raise '
              'statement*.\n'
              '\n'
              '-[ Footnotes ]-\n'
              '\n'
              '[1] This limitation occurs because the code that is executed '
              'by\n'
              '    these operations is not available at the time the module '
              'is\n'
              '    compiled.\n',
 'exprlists': '\n'
              'Expression lists\n'
              '****************\n'
              '\n'
              '   expression_list ::= expression ( "," expression )* [","]\n'
              '\n'
              'An expression list containing at least one comma yields a '
              'tuple.  The\n'
              'length of the tuple is the number of expressions in the list.  '
              'The\n'
              'expressions are evaluated from left to right.\n'
              '\n'
              'The trailing comma is required only to create a single tuple '
              '(a.k.a. a\n'
              '*singleton*); it is optional in all other cases.  A single '
              'expression\n'
              "without a trailing comma doesn't create a tuple, but rather "
              'yields the\n'
              'value of that expression. (To create an empty tuple, use an '
              'empty pair\n'
              'of parentheses: "()".)\n',
 'floating': '\n'
             'Floating point literals\n'
             '***********************\n'
             '\n'
             'Floating point literals are described by the following lexical\n'
             'definitions:\n'
             '\n'
             '   floatnumber   ::= pointfloat | exponentfloat\n'
             '   pointfloat    ::= [intpart] fraction | intpart "."\n'
             '   exponentfloat ::= (intpart | pointfloat) exponent\n'
             '   intpart       ::= digit+\n'
             '   fraction      ::= "." digit+\n'
             '   exponent      ::= ("e" | "E") ["+" | "-"] digit+\n'
             '\n'
             'Note that the integer and exponent parts are always interpreted '
             'using\n'
             'radix 10. For example, "077e010" is legal, and denotes the same '
             'number\n'
             'as "77e10". The allowed range of floating point literals is\n'
             'implementation-dependent. Some examples of floating point '
             'literals:\n'
             '\n'
             '   3.14    10.    .001    1e100    3.14e-10    0e0\n'
             '\n'
             'Note that numeric literals do not include a sign; a phrase like '
             '"-1"\n'
             'is actually an expression composed of the unary operator "-" and '
             'the\n'
             'literal "1".\n',
 'for': '\n'
        'The "for" statement\n'
        '*******************\n'
        '\n'
        'The "for" statement is used to iterate over the elements of a '
        'sequence\n'
        '(such as a string, tuple or list) or other iterable object:\n'
        '\n'
        '   for_stmt ::= "for" target_list "in" expression_list ":" suite\n'
        '                ["else" ":" suite]\n'
        '\n'
        'The expression list is evaluated once; it should yield an iterable\n'
        'object.  An iterator is created for the result of the\n'
        '"expression_list".  The suite is then executed once for each item\n'
        'provided by the iterator, in the order returned by the iterator.  '
        'Each\n'
        'item in turn is assigned to the target list using the standard rules\n'
        'for assignments (see *Assignment statements*), and then the suite is\n'
        'executed.  When the items are exhausted (which is immediately when '
        'the\n'
        'sequence is empty or an iterator raises a "StopIteration" '
        'exception),\n'
        'the suite in the "else" clause, if present, is executed, and the '
        'loop\n'
        'terminates.\n'
        '\n'
        'A "break" statement executed in the first suite terminates the loop\n'
        'without executing the "else" clause\'s suite.  A "continue" '
        'statement\n'
        'executed in the first suite skips the rest of the suite and '
        'continues\n'
        'with the next item, or with the "else" clause if there is no next\n'
        'item.\n'
        '\n'
        'The for-loop makes assignments to the variables(s) in the target '
        'list.\n'
        'This overwrites all previous assignments to those variables '
        'including\n'
        'those made in the suite of the for-loop:\n'
        '\n'
        '   for i in range(10):\n'
        '       print(i)\n'
        '       i = 5             # this will not affect the for-loop\n'
        '                         # because i will be overwritten with the '
        'next\n'
        '                         # index in the range\n'
        '\n'
        'Names in the target list are not deleted when the loop is finished,\n'
        'but if the sequence is empty, they will not have been assigned to at\n'
        'all by the loop.  Hint: the built-in function "range()" returns an\n'
        'iterator of integers suitable to emulate the effect of Pascal\'s "for '
        'i\n'
        ':= a to b do"; e.g., "list(range(3))" returns the list "[0, 1, 2]".\n'
        '\n'
        'Note: There is a subtlety when the sequence is being modified by the\n'
        '  loop (this can only occur for mutable sequences, i.e. lists).  An\n'
        '  internal counter is used to keep track of which item is used next,\n'
        '  and this is incremented on each iteration.  When this counter has\n'
        '  reached the length of the sequence the loop terminates.  This '
        'means\n'
        '  that if the suite deletes the current (or a previous) item from '
        'the\n'
        '  sequence, the next item will be skipped (since it gets the index '
        'of\n'
        '  the current item which has already been treated).  Likewise, if '
        'the\n'
        '  suite inserts an item in the sequence before the current item, the\n'
        '  current item will be treated again the next time through the loop.\n'
        '  This can lead to nasty bugs that can be avoided by making a\n'
        '  temporary copy using a slice of the whole sequence, e.g.,\n'
        '\n'
        '     for x in a[:]:\n'
        '         if x < 0: a.remove(x)\n',
 'formatstrings': '\n'
                  'Format String Syntax\n'
                  '********************\n'
                  '\n'
                  'The "str.format()" method and the "Formatter" class share '
                  'the same\n'
                  'syntax for format strings (although in the case of '
                  '"Formatter",\n'
                  'subclasses can define their own format string syntax).\n'
                  '\n'
                  'Format strings contain "replacement fields" surrounded by '
                  'curly braces\n'
                  '"{}". Anything that is not contained in braces is '
                  'considered literal\n'
                  'text, which is copied unchanged to the output.  If you need '
                  'to include\n'
                  'a brace character in the literal text, it can be escaped by '
                  'doubling:\n'
                  '"{{" and "}}".\n'
                  '\n'
                  'The grammar for a replacement field is as follows:\n'
                  '\n'
                  '      replacement_field ::= "{" [field_name] ["!" '
                  'conversion] [":" format_spec] "}"\n'
                  '      field_name        ::= arg_name ("." attribute_name | '
                  '"[" element_index "]")*\n'
                  '      arg_name          ::= [identifier | integer]\n'
                  '      attribute_name    ::= identifier\n'
                  '      element_index     ::= integer | index_string\n'
                  '      index_string      ::= <any source character except '
                  '"]"> +\n'
                  '      conversion        ::= "r" | "s" | "a"\n'
                  '      format_spec       ::= <described in the next '
                  'section>\n'
                  '\n'
                  'In less formal terms, the replacement field can start with '
                  'a\n'
                  '*field_name* that specifies the object whose value is to be '
                  'formatted\n'
                  'and inserted into the output instead of the replacement '
                  'field. The\n'
                  '*field_name* is optionally followed by a  *conversion* '
                  'field, which is\n'
                  'preceded by an exclamation point "\'!\'", and a '
                  '*format_spec*, which is\n'
                  'preceded by a colon "\':\'".  These specify a non-default '
                  'format for the\n'
                  'replacement value.\n'
                  '\n'
                  'See also the *Format Specification Mini-Language* section.\n'
                  '\n'
                  'The *field_name* itself begins with an *arg_name* that is '
                  'either a\n'
                  "number or a keyword.  If it's a number, it refers to a "
                  'positional\n'
                  "argument, and if it's a keyword, it refers to a named "
                  'keyword\n'
                  'argument.  If the numerical arg_names in a format string '
                  'are 0, 1, 2,\n'
                  '... in sequence, they can all be omitted (not just some) '
                  'and the\n'
                  'numbers 0, 1, 2, ... will be automatically inserted in that '
                  'order.\n'
                  'Because *arg_name* is not quote-delimited, it is not '
                  'possible to\n'
                  'specify arbitrary dictionary keys (e.g., the strings '
                  '"\'10\'" or\n'
                  '"\':-]\'") within a format string. The *arg_name* can be '
                  'followed by any\n'
                  'number of index or attribute expressions. An expression of '
                  'the form\n'
                  '"\'.name\'" selects the named attribute using "getattr()", '
                  'while an\n'
                  'expression of the form "\'[index]\'" does an index lookup '
                  'using\n'
                  '"__getitem__()".\n'
                  '\n'
                  'Changed in version 3.1: The positional argument specifiers '
                  'can be\n'
                  'omitted, so "\'{} {}\'" is equivalent to "\'{0} {1}\'".\n'
                  '\n'
                  'Some simple format string examples:\n'
                  '\n'
                  '   "First, thou shalt count to {0}" # References first '
                  'positional argument\n'
                  '   "Bring me a {}"                  # Implicitly references '
                  'the first positional argument\n'
                  '   "From {} to {}"                  # Same as "From {0} to '
                  '{1}"\n'
                  '   "My quest is {name}"             # References keyword '
                  "argument 'name'\n"
                  '   "Weight in tons {0.weight}"      # \'weight\' attribute '
                  'of first positional arg\n'
                  '   "Units destroyed: {players[0]}"  # First element of '
                  "keyword argument 'players'.\n"
                  '\n'
                  'The *conversion* field causes a type coercion before '
                  'formatting.\n'
                  'Normally, the job of formatting a value is done by the '
                  '"__format__()"\n'
                  'method of the value itself.  However, in some cases it is '
                  'desirable to\n'
                  'force a type to be formatted as a string, overriding its '
                  'own\n'
                  'definition of formatting.  By converting the value to a '
                  'string before\n'
                  'calling "__format__()", the normal formatting logic is '
                  'bypassed.\n'
                  '\n'
                  'Three conversion flags are currently supported: "\'!s\'" '
                  'which calls\n'
                  '"str()" on the value, "\'!r\'" which calls "repr()" and '
                  '"\'!a\'" which\n'
                  'calls "ascii()".\n'
                  '\n'
                  'Some examples:\n'
                  '\n'
                  '   "Harold\'s a clever {0!s}"        # Calls str() on the '
                  'argument first\n'
                  '   "Bring out the holy {name!r}"    # Calls repr() on the '
                  'argument first\n'
                  '   "More {!a}"                      # Calls ascii() on the '
                  'argument first\n'
                  '\n'
                  'The *format_spec* field contains a specification of how the '
                  'value\n'
                  'should be presented, including such details as field width, '
                  'alignment,\n'
                  'padding, decimal precision and so on.  Each value type can '
                  'define its\n'
                  'own "formatting mini-language" or interpretation of the '
                  '*format_spec*.\n'
                  '\n'
                  'Most built-in types support a common formatting '
                  'mini-language, which\n'
                  'is described in the next section.\n'
                  '\n'
                  'A *format_spec* field can also include nested replacement '
                  'fields\n'
                  'within it. These nested replacement fields can contain only '
                  'a field\n'
                  'name; conversion flags and format specifications are not '
                  'allowed.  The\n'
                  'replacement fields within the format_spec are substituted '
                  'before the\n'
                  '*format_spec* string is interpreted. This allows the '
                  'formatting of a\n'
                  'value to be dynamically specified.\n'
                  '\n'
                  'See the *Format examples* section for some examples.\n'
                  '\n'
                  '\n'
                  'Format Specification Mini-Language\n'
                  '==================================\n'
                  '\n'
                  '"Format specifications" are used within replacement fields '
                  'contained\n'
                  'within a format string to define how individual values are '
                  'presented\n'
                  '(see *Format String Syntax*).  They can also be passed '
                  'directly to the\n'
                  'built-in "format()" function.  Each formattable type may '
                  'define how\n'
                  'the format specification is to be interpreted.\n'
                  '\n'
                  'Most built-in types implement the following options for '
                  'format\n'
                  'specifications, although some of the formatting options are '
                  'only\n'
                  'supported by the numeric types.\n'
                  '\n'
                  'A general convention is that an empty format string ("""") '
                  'produces\n'
                  'the same result as if you had called "str()" on the value. '
                  'A non-empty\n'
                  'format string typically modifies the result.\n'
                  '\n'
                  'The general form of a *standard format specifier* is:\n'
                  '\n'
                  '   format_spec ::= '
                  '[[fill]align][sign][#][0][width][,][.precision][type]\n'
                  '   fill        ::= <any character>\n'
                  '   align       ::= "<" | ">" | "=" | "^"\n'
                  '   sign        ::= "+" | "-" | " "\n'
                  '   width       ::= integer\n'
                  '   precision   ::= integer\n'
                  '   type        ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" '
                  '| "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n'
                  '\n'
                  'If a valid *align* value is specified, it can be preceded '
                  'by a *fill*\n'
                  'character that can be any character and defaults to a space '
                  'if\n'
                  'omitted. Note that it is not possible to use "{" and "}" as '
                  '*fill*\n'
                  'char while using the "str.format()" method; this limitation '
                  'however\n'
                  'doesn\'t affect the "format()" function.\n'
                  '\n'
                  'The meaning of the various alignment options is as '
                  'follows:\n'
                  '\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | Option    | '
                  'Meaning                                                    '
                  '|\n'
                  '   '
                  '+===========+============================================================+\n'
                  '   | "\'<\'"     | Forces the field to be left-aligned '
                  'within the available   |\n'
                  '   |           | space (this is the default for most '
                  'objects).              |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'>\'"     | Forces the field to be right-aligned '
                  'within the available  |\n'
                  '   |           | space (this is the default for '
                  'numbers).                   |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'=\'"     | Forces the padding to be placed after '
                  'the sign (if any)    |\n'
                  '   |           | but before the digits.  This is used for '
                  'printing fields   |\n'
                  "   |           | in the form '+000000120'. This alignment "
                  'option is only    |\n'
                  '   |           | valid for numeric '
                  'types.                                   |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'^\'"     | Forces the field to be centered within '
                  'the available       |\n'
                  '   |           | '
                  'space.                                                     '
                  '|\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '\n'
                  'Note that unless a minimum field width is defined, the '
                  'field width\n'
                  'will always be the same size as the data to fill it, so '
                  'that the\n'
                  'alignment option has no meaning in this case.\n'
                  '\n'
                  'The *sign* option is only valid for number types, and can '
                  'be one of\n'
                  'the following:\n'
                  '\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | Option    | '
                  'Meaning                                                    '
                  '|\n'
                  '   '
                  '+===========+============================================================+\n'
                  '   | "\'+\'"     | indicates that a sign should be used for '
                  'both positive as  |\n'
                  '   |           | well as negative '
                  'numbers.                                  |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'-\'"     | indicates that a sign should be used '
                  'only for negative     |\n'
                  '   |           | numbers (this is the default '
                  'behavior).                    |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | space     | indicates that a leading space should be '
                  'used on positive  |\n'
                  '   |           | numbers, and a minus sign on negative '
                  'numbers.             |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '\n'
                  'The "\'#\'" option causes the "alternate form" to be used '
                  'for the\n'
                  'conversion.  The alternate form is defined differently for '
                  'different\n'
                  'types.  This option is only valid for integer, float, '
                  'complex and\n'
                  'Decimal types. For integers, when binary, octal, or '
                  'hexadecimal output\n'
                  'is used, this option adds the prefix respective "\'0b\'", '
                  '"\'0o\'", or\n'
                  '"\'0x\'" to the output value. For floats, complex and '
                  'Decimal the\n'
                  'alternate form causes the result of the conversion to '
                  'always contain a\n'
                  'decimal-point character, even if no digits follow it. '
                  'Normally, a\n'
                  'decimal-point character appears in the result of these '
                  'conversions\n'
                  'only if a digit follows it. In addition, for "\'g\'" and '
                  '"\'G\'"\n'
                  'conversions, trailing zeros are not removed from the '
                  'result.\n'
                  '\n'
                  'The "\',\'" option signals the use of a comma for a '
                  'thousands separator.\n'
                  'For a locale aware separator, use the "\'n\'" integer '
                  'presentation type\n'
                  'instead.\n'
                  '\n'
                  'Changed in version 3.1: Added the "\',\'" option (see also '
                  '**PEP 378**).\n'
                  '\n'
                  '*width* is a decimal integer defining the minimum field '
                  'width.  If not\n'
                  'specified, then the field width will be determined by the '
                  'content.\n'
                  '\n'
                  'Preceding the *width* field by a zero ("\'0\'") character '
                  'enables sign-\n'
                  'aware zero-padding for numeric types.  This is equivalent '
                  'to a *fill*\n'
                  'character of "\'0\'" with an *alignment* type of "\'=\'".\n'
                  '\n'
                  'The *precision* is a decimal number indicating how many '
                  'digits should\n'
                  'be displayed after the decimal point for a floating point '
                  'value\n'
                  'formatted with "\'f\'" and "\'F\'", or before and after the '
                  'decimal point\n'
                  'for a floating point value formatted with "\'g\'" or '
                  '"\'G\'".  For non-\n'
                  'number types the field indicates the maximum field size - '
                  'in other\n'
                  'words, how many characters will be used from the field '
                  'content. The\n'
                  '*precision* is not allowed for integer values.\n'
                  '\n'
                  'Finally, the *type* determines how the data should be '
                  'presented.\n'
                  '\n'
                  'The available string presentation types are:\n'
                  '\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | Type      | '
                  'Meaning                                                    '
                  '|\n'
                  '   '
                  '+===========+============================================================+\n'
                  '   | "\'s\'"     | String format. This is the default type '
                  'for strings and    |\n'
                  '   |           | may be '
                  'omitted.                                            |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | None      | The same as '
                  '"\'s\'".                                         |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '\n'
                  'The available integer presentation types are:\n'
                  '\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | Type      | '
                  'Meaning                                                    '
                  '|\n'
                  '   '
                  '+===========+============================================================+\n'
                  '   | "\'b\'"     | Binary format. Outputs the number in '
                  'base 2.               |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'c\'"     | Character. Converts the integer to the '
                  'corresponding       |\n'
                  '   |           | unicode character before '
                  'printing.                         |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'d\'"     | Decimal Integer. Outputs the number in '
                  'base 10.            |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'o\'"     | Octal format. Outputs the number in base '
                  '8.                |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'x\'"     | Hex format. Outputs the number in base '
                  '16, using lower-    |\n'
                  '   |           | case letters for the digits above '
                  '9.                       |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'X\'"     | Hex format. Outputs the number in base '
                  '16, using upper-    |\n'
                  '   |           | case letters for the digits above '
                  '9.                       |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'n\'"     | Number. This is the same as "\'d\'", '
                  'except that it uses the |\n'
                  '   |           | current locale setting to insert the '
                  'appropriate number    |\n'
                  '   |           | separator '
                  'characters.                                      |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | None      | The same as '
                  '"\'d\'".                                         |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '\n'
                  'In addition to the above presentation types, integers can '
                  'be formatted\n'
                  'with the floating point presentation types listed below '
                  '(except "\'n\'"\n'
                  'and None). When doing so, "float()" is used to convert the '
                  'integer to\n'
                  'a floating point number before formatting.\n'
                  '\n'
                  'The available presentation types for floating point and '
                  'decimal values\n'
                  'are:\n'
                  '\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | Type      | '
                  'Meaning                                                    '
                  '|\n'
                  '   '
                  '+===========+============================================================+\n'
                  '   | "\'e\'"     | Exponent notation. Prints the number in '
                  'scientific         |\n'
                  "   |           | notation using the letter 'e' to indicate "
                  'the exponent.    |\n'
                  '   |           | The default precision is '
                  '"6".                              |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'E\'"     | Exponent notation. Same as "\'e\'" '
                  'except it uses an upper   |\n'
                  "   |           | case 'E' as the separator "
                  'character.                       |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'f\'"     | Fixed point. Displays the number as a '
                  'fixed-point number.  |\n'
                  '   |           | The default precision is '
                  '"6".                              |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'F\'"     | Fixed point. Same as "\'f\'", but '
                  'converts "nan" to "NAN"    |\n'
                  '   |           | and "inf" to '
                  '"INF".                                        |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'g\'"     | General format.  For a given precision '
                  '"p >= 1", this      |\n'
                  '   |           | rounds the number to "p" significant '
                  'digits and then       |\n'
                  '   |           | formats the result in either fixed-point '
                  'format or in      |\n'
                  '   |           | scientific notation, depending on its '
                  'magnitude.  The      |\n'
                  '   |           | precise rules are as follows: suppose that '
                  'the result      |\n'
                  '   |           | formatted with presentation type "\'e\'" '
                  'and precision "p-1" |\n'
                  '   |           | would have exponent "exp".  Then if "-4 <= '
                  'exp < p", the   |\n'
                  '   |           | number is formatted with presentation type '
                  '"\'f\'" and       |\n'
                  '   |           | precision "p-1-exp".  Otherwise, the '
                  'number is formatted   |\n'
                  '   |           | with presentation type "\'e\'" and '
                  'precision "p-1". In both  |\n'
                  '   |           | cases insignificant trailing zeros are '
                  'removed from the    |\n'
                  '   |           | significand, and the decimal point is also '
                  'removed if      |\n'
                  '   |           | there are no remaining digits following '
                  'it.  Positive and  |\n'
                  '   |           | negative infinity, positive and negative '
                  'zero, and nans,   |\n'
                  '   |           | are formatted as "inf", "-inf", "0", "-0" '
                  'and "nan"        |\n'
                  '   |           | respectively, regardless of the '
                  'precision.  A precision of |\n'
                  '   |           | "0" is treated as equivalent to a '
                  'precision of "1". The    |\n'
                  '   |           | default precision is '
                  '"6".                                  |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'G\'"     | General format. Same as "\'g\'" except '
                  'switches to "\'E\'" if  |\n'
                  '   |           | the number gets too large. The '
                  'representations of infinity |\n'
                  '   |           | and NaN are uppercased, '
                  'too.                               |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'n\'"     | Number. This is the same as "\'g\'", '
                  'except that it uses the |\n'
                  '   |           | current locale setting to insert the '
                  'appropriate number    |\n'
                  '   |           | separator '
                  'characters.                                      |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | "\'%\'"     | Percentage. Multiplies the number by 100 '
                  'and displays in   |\n'
                  '   |           | fixed ("\'f\'") format, followed by a '
                  'percent sign.          |\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '   | None      | Similar to "\'g\'", except that '
                  'fixed-point notation, when   |\n'
                  '   |           | used, has at least one digit past the '
                  'decimal point. The   |\n'
                  '   |           | default precision is as high as needed to '
                  'represent the    |\n'
                  '   |           | particular value. The overall effect is to '
                  'match the       |\n'
                  '   |           | output of "str()" as altered by the other '
                  'format           |\n'
                  '   |           | '
                  'modifiers.                                                 '
                  '|\n'
                  '   '
                  '+-----------+------------------------------------------------------------+\n'
                  '\n'
                  '\n'
                  'Format examples\n'
                  '===============\n'
                  '\n'
                  'This section contains examples of the new format syntax and '
                  'comparison\n'
                  'with the old "%"-formatting.\n'
                  '\n'
                  'In most of the cases the syntax is similar to the old '
                  '"%"-formatting,\n'
                  'with the addition of the "{}" and with ":" used instead of '
                  '"%". For\n'
                  'example, "\'%03.2f\'" can be translated to "\'{:03.2f}\'".\n'
                  '\n'
                  'The new format syntax also supports new and different '
                  'options, shown\n'
                  'in the follow examples.\n'
                  '\n'
                  'Accessing arguments by position:\n'
                  '\n'
                  "   >>> '{0}, {1}, {2}'.format('a', 'b', 'c')\n"
                  "   'a, b, c'\n"
                  "   >>> '{}, {}, {}'.format('a', 'b', 'c')  # 3.1+ only\n"
                  "   'a, b, c'\n"
                  "   >>> '{2}, {1}, {0}'.format('a', 'b', 'c')\n"
                  "   'c, b, a'\n"
                  "   >>> '{2}, {1}, {0}'.format(*'abc')      # unpacking "
                  'argument sequence\n'
                  "   'c, b, a'\n"
                  "   >>> '{0}{1}{0}'.format('abra', 'cad')   # arguments' "
                  'indices can be repeated\n'
                  "   'abracadabra'\n"
                  '\n'
                  'Accessing arguments by name:\n'
                  '\n'
                  "   >>> 'Coordinates: {latitude}, "
                  "{longitude}'.format(latitude='37.24N', "
                  "longitude='-115.81W')\n"
                  "   'Coordinates: 37.24N, -115.81W'\n"
                  "   >>> coord = {'latitude': '37.24N', 'longitude': "
                  "'-115.81W'}\n"
                  "   >>> 'Coordinates: {latitude}, "
                  "{longitude}'.format(**coord)\n"
                  "   'Coordinates: 37.24N, -115.81W'\n"
                  '\n'
                  "Accessing arguments' attributes:\n"
                  '\n'
                  '   >>> c = 3-5j\n'
                  "   >>> ('The complex number {0} is formed from the real "
                  "part {0.real} '\n"
                  "   ...  'and the imaginary part {0.imag}.').format(c)\n"
                  "   'The complex number (3-5j) is formed from the real part "
                  "3.0 and the imaginary part -5.0.'\n"
                  '   >>> class Point:\n'
                  '   ...     def __init__(self, x, y):\n'
                  '   ...         self.x, self.y = x, y\n'
                  '   ...     def __str__(self):\n'
                  "   ...         return 'Point({self.x}, "
                  "{self.y})'.format(self=self)\n"
                  '   ...\n'
                  '   >>> str(Point(4, 2))\n'
                  "   'Point(4, 2)'\n"
                  '\n'
                  "Accessing arguments' items:\n"
                  '\n'
                  '   >>> coord = (3, 5)\n'
                  "   >>> 'X: {0[0]};  Y: {0[1]}'.format(coord)\n"
                  "   'X: 3;  Y: 5'\n"
                  '\n'
                  'Replacing "%s" and "%r":\n'
                  '\n'
                  '   >>> "repr() shows quotes: {!r}; str() doesn\'t: '
                  '{!s}".format(\'test1\', \'test2\')\n'
                  '   "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n'
                  '\n'
                  'Aligning the text and specifying a width:\n'
                  '\n'
                  "   >>> '{:<30}'.format('left aligned')\n"
                  "   'left aligned                  '\n"
                  "   >>> '{:>30}'.format('right aligned')\n"
                  "   '                 right aligned'\n"
                  "   >>> '{:^30}'.format('centered')\n"
                  "   '           centered           '\n"
                  "   >>> '{:*^30}'.format('centered')  # use '*' as a fill "
                  'char\n'
                  "   '***********centered***********'\n"
                  '\n'
                  'Replacing "%+f", "%-f", and "% f" and specifying a sign:\n'
                  '\n'
                  "   >>> '{:+f}; {:+f}'.format(3.14, -3.14)  # show it "
                  'always\n'
                  "   '+3.140000; -3.140000'\n"
                  "   >>> '{: f}; {: f}'.format(3.14, -3.14)  # show a space "
                  'for positive numbers\n'
                  "   ' 3.140000; -3.140000'\n"
                  "   >>> '{:-f}; {:-f}'.format(3.14, -3.14)  # show only the "
                  "minus -- same as '{:f}; {:f}'\n"
                  "   '3.140000; -3.140000'\n"
                  '\n'
                  'Replacing "%x" and "%o" and converting the value to '
                  'different bases:\n'
                  '\n'
                  '   >>> # format also supports binary numbers\n'
                  '   >>> "int: {0:d};  hex: {0:x};  oct: {0:o};  bin: '
                  '{0:b}".format(42)\n'
                  "   'int: 42;  hex: 2a;  oct: 52;  bin: 101010'\n"
                  '   >>> # with 0x, 0o, or 0b as prefix:\n'
                  '   >>> "int: {0:d};  hex: {0:#x};  oct: {0:#o};  bin: '
                  '{0:#b}".format(42)\n'
                  "   'int: 42;  hex: 0x2a;  oct: 0o52;  bin: 0b101010'\n"
                  '\n'
                  'Using the comma as a thousands separator:\n'
                  '\n'
                  "   >>> '{:,}'.format(1234567890)\n"
                  "   '1,234,567,890'\n"
                  '\n'
                  'Expressing a percentage:\n'
                  '\n'
                  '   >>> points = 19\n'
                  '   >>> total = 22\n'
                  "   >>> 'Correct answers: {:.2%}'.format(points/total)\n"
                  "   'Correct answers: 86.36%'\n"
                  '\n'
                  'Using type-specific formatting:\n'
                  '\n'
                  '   >>> import datetime\n'
                  '   >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n'
                  "   >>> '{:%Y-%m-%d %H:%M:%S}'.format(d)\n"
                  "   '2010-07-04 12:15:58'\n"
                  '\n'
                  'Nesting arguments and more complex examples:\n'
                  '\n'
                  "   >>> for align, text in zip('<^>', ['left', 'center', "
                  "'right']):\n"
                  "   ...     '{0:{fill}{align}16}'.format(text, fill=align, "
                  'align=align)\n'
                  '   ...\n'
                  "   'left<<<<<<<<<<<<'\n"
                  "   '^^^^^center^^^^^'\n"
                  "   '>>>>>>>>>>>right'\n"
                  '   >>>\n'
                  '   >>> octets = [192, 168, 0, 1]\n'
                  "   >>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)\n"
                  "   'C0A80001'\n"
                  '   >>> int(_, 16)\n'
                  '   3232235521\n'
                  '   >>>\n'
                  '   >>> width = 5\n'
                  '   >>> for num in range(5,12): #doctest: '
                  '+NORMALIZE_WHITESPACE\n'
                  "   ...     for base in 'dXob':\n"
                  "   ...         print('{0:{width}{base}}'.format(num, "
                  "base=base, width=width), end=' ')\n"
                  '   ...     print()\n'
                  '   ...\n'
                  '       5     5     5   101\n'
                  '       6     6     6   110\n'
                  '       7     7     7   111\n'
                  '       8     8    10  1000\n'
                  '       9     9    11  1001\n'
                  '      10     A    12  1010\n'
                  '      11     B    13  1011\n',
 'function': '\n'
             'Function definitions\n'
             '********************\n'
             '\n'
             'A function definition defines a user-defined function object '
             '(see\n'
             'section *The standard type hierarchy*):\n'
             '\n'
             '   funcdef        ::= [decorators] "def" funcname "(" '
             '[parameter_list] ")" ["->" expression] ":" suite\n'
             '   decorators     ::= decorator+\n'
             '   decorator      ::= "@" dotted_name ["(" [parameter_list '
             '[","]] ")"] NEWLINE\n'
             '   dotted_name    ::= identifier ("." identifier)*\n'
             '   parameter_list ::= (defparameter ",")*\n'
             '                      | "*" [parameter] ("," defparameter)* ["," '
             '"**" parameter]\n'
             '                      | "**" parameter\n'
             '                      | defparameter [","] )\n'
             '   parameter      ::= identifier [":" expression]\n'
             '   defparameter   ::= parameter ["=" expression]\n'
             '   funcname       ::= identifier\n'
             '\n'
             'A function definition is an executable statement.  Its execution '
             'binds\n'
             'the function name in the current local namespace to a function '
             'object\n'
             '(a wrapper around the executable code for the function).  This\n'
             'function object contains a reference to the current global '
             'namespace\n'
             'as the global namespace to be used when the function is called.\n'
             '\n'
             'The function definition does not execute the function body; this '
             'gets\n'
             'executed only when the function is called. [3]\n'
             '\n'
             'A function definition may be wrapped by one or more *decorator*\n'
             'expressions. Decorator expressions are evaluated when the '
             'function is\n'
             'defined, in the scope that contains the function definition.  '
             'The\n'
             'result must be a callable, which is invoked with the function '
             'object\n'
             'as the only argument. The returned value is bound to the '
             'function name\n'
             'instead of the function object.  Multiple decorators are applied '
             'in\n'
             'nested fashion. For example, the following code\n'
             '\n'
             '   @f1(arg)\n'
             '   @f2\n'
             '   def func(): pass\n'
             '\n'
             'is equivalent to\n'
             '\n'
             '   def func(): pass\n'
             '   func = f1(arg)(f2(func))\n'
             '\n'
             'When one or more *parameters* have the form *parameter* "="\n'
             '*expression*, the function is said to have "default parameter '
             'values."\n'
             'For a parameter with a default value, the corresponding '
             '*argument* may\n'
             "be omitted from a call, in which case the parameter's default "
             'value is\n'
             'substituted.  If a parameter has a default value, all following\n'
             'parameters up until the ""*"" must also have a default value --- '
             'this\n'
             'is a syntactic restriction that is not expressed by the '
             'grammar.\n'
             '\n'
             '**Default parameter values are evaluated from left to right when '
             'the\n'
             'function definition is executed.** This means that the '
             'expression is\n'
             'evaluated once, when the function is defined, and that the same '
             '"pre-\n'
             'computed" value is used for each call.  This is especially '
             'important\n'
             'to understand when a default parameter is a mutable object, such '
             'as a\n'
             'list or a dictionary: if the function modifies the object (e.g. '
             'by\n'
             'appending an item to a list), the default value is in effect '
             'modified.\n'
             'This is generally not what was intended.  A way around this is '
             'to use\n'
             '"None" as the default, and explicitly test for it in the body of '
             'the\n'
             'function, e.g.:\n'
             '\n'
             '   def whats_on_the_telly(penguin=None):\n'
             '       if penguin is None:\n'
             '           penguin = []\n'
             '       penguin.append("property of the zoo")\n'
             '       return penguin\n'
             '\n'
             'Function call semantics are described in more detail in section\n'
             '*Calls*. A function call always assigns values to all '
             'parameters\n'
             'mentioned in the parameter list, either from position arguments, '
             'from\n'
             'keyword arguments, or from default values.  If the form\n'
             '""*identifier"" is present, it is initialized to a tuple '
             'receiving any\n'
             'excess positional parameters, defaulting to the empty tuple.  If '
             'the\n'
             'form ""**identifier"" is present, it is initialized to a new\n'
             'dictionary receiving any excess keyword arguments, defaulting to '
             'a new\n'
             'empty dictionary. Parameters after ""*"" or ""*identifier"" are\n'
             'keyword-only parameters and may only be passed used keyword '
             'arguments.\n'
             '\n'
             'Parameters may have annotations of the form "": expression"" '
             'following\n'
             'the parameter name.  Any parameter may have an annotation even '
             'those\n'
             'of the form "*identifier" or "**identifier".  Functions may '
             'have\n'
             '"return" annotation of the form ""-> expression"" after the '
             'parameter\n'
             'list.  These annotations can be any valid Python expression and '
             'are\n'
             'evaluated when the function definition is executed.  Annotations '
             'may\n'
             'be evaluated in a different order than they appear in the source '
             'code.\n'
             'The presence of annotations does not change the semantics of a\n'
             'function.  The annotation values are available as values of a\n'
             "dictionary keyed by the parameters' names in the "
             '"__annotations__"\n'
             'attribute of the function object.\n'
             '\n'
             'It is also possible to create anonymous functions (functions not '
             'bound\n'
             'to a name), for immediate use in expressions.  This uses lambda\n'
             'expressions, described in section *Lambdas*.  Note that the '
             'lambda\n'
             'expression is merely a shorthand for a simplified function '
             'definition;\n'
             'a function defined in a ""def"" statement can be passed around '
             'or\n'
             'assigned to another name just like a function defined by a '
             'lambda\n'
             'expression.  The ""def"" form is actually more powerful since '
             'it\n'
             'allows the execution of multiple statements and annotations.\n'
             '\n'
             "**Programmer's note:** Functions are first-class objects.  A "
             '""def""\n'
             'statement executed inside a function definition defines a local\n'
             'function that can be returned or passed around.  Free variables '
             'used\n'
             'in the nested function can access the local variables of the '
             'function\n'
             'containing the def.  See section *Naming and binding* for '
             'details.\n'
             '\n'
             'See also: **PEP 3107** - Function Annotations\n'
             '\n'
             '     The original specification for function annotations.\n',
 'global': '\n'
           'The "global" statement\n'
           '**********************\n'
           '\n'
           '   global_stmt ::= "global" identifier ("," identifier)*\n'
           '\n'
           'The "global" statement is a declaration which holds for the '
           'entire\n'
           'current code block.  It means that the listed identifiers are to '
           'be\n'
           'interpreted as globals.  It would be impossible to assign to a '
           'global\n'
           'variable without "global", although free variables may refer to\n'
           'globals without being declared global.\n'
           '\n'
           'Names listed in a "global" statement must not be used in the same '
           'code\n'
           'block textually preceding that "global" statement.\n'
           '\n'
           'Names listed in a "global" statement must not be defined as '
           'formal\n'
           'parameters or in a "for" loop control target, "class" definition,\n'
           'function definition, or "import" statement.\n'
           '\n'
           '**CPython implementation detail:** The current implementation does '
           'not\n'
           'enforce the two restrictions, but programs should not abuse this\n'
           'freedom, as future implementations may enforce them or silently '
           'change\n'
           'the meaning of the program.\n'
           '\n'
           '**Programmer\'s note:** the "global" is a directive to the '
           'parser.  It\n'
           'applies only to code parsed at the same time as the "global"\n'
           'statement. In particular, a "global" statement contained in a '
           'string\n'
           'or code object supplied to the built-in "exec()" function does '
           'not\n'
           'affect the code block *containing* the function call, and code\n'
           'contained in such a string is unaffected by "global" statements in '
           'the\n'
           'code containing the function call.  The same applies to the '
           '"eval()"\n'
           'and "compile()" functions.\n',
 'id-classes': '\n'
               'Reserved classes of identifiers\n'
               '*******************************\n'
               '\n'
               'Certain classes of identifiers (besides keywords) have '
               'special\n'
               'meanings.  These classes are identified by the patterns of '
               'leading and\n'
               'trailing underscore characters:\n'
               '\n'
               '"_*"\n'
               '   Not imported by "from module import *".  The special '
               'identifier "_"\n'
               '   is used in the interactive interpreter to store the result '
               'of the\n'
               '   last evaluation; it is stored in the "builtins" module.  '
               'When not\n'
               '   in interactive mode, "_" has no special meaning and is not '
               'defined.\n'
               '   See section *The import statement*.\n'
               '\n'
               '   Note: The name "_" is often used in conjunction with\n'
               '     internationalization; refer to the documentation for the\n'
               '     "gettext" module for more information on this '
               'convention.\n'
               '\n'
               '"__*__"\n'
               '   System-defined names. These names are defined by the '
               'interpreter\n'
               '   and its implementation (including the standard library).  '
               'Current\n'
               '   system names are discussed in the *Special method names* '
               'section\n'
               '   and elsewhere.  More will likely be defined in future '
               'versions of\n'
               '   Python.  *Any* use of "__*__" names, in any context, that '
               'does not\n'
               '   follow explicitly documented use, is subject to breakage '
               'without\n'
               '   warning.\n'
               '\n'
               '"__*"\n'
               '   Class-private names.  Names in this category, when used '
               'within the\n'
               '   context of a class definition, are re-written to use a '
               'mangled form\n'
               '   to help avoid name clashes between "private" attributes of '
               'base and\n'
               '   derived classes. See section *Identifiers (Names)*.\n',
 'identifiers': '\n'
                'Identifiers and keywords\n'
                '************************\n'
                '\n'
                'Identifiers (also referred to as *names*) are described by '
                'the\n'
                'following lexical definitions.\n'
                '\n'
                'The syntax of identifiers in Python is based on the Unicode '
                'standard\n'
                'annex UAX-31, with elaboration and changes as defined below; '
                'see also\n'
                '**PEP 3131** for further details.\n'
                '\n'
                'Within the ASCII range (U+0001..U+007F), the valid characters '
                'for\n'
                'identifiers are the same as in Python 2.x: the uppercase and '
                'lowercase\n'
                'letters "A" through "Z", the underscore "_" and, except for '
                'the first\n'
                'character, the digits "0" through "9".\n'
                '\n'
                'Python 3.0 introduces additional characters from outside the '
                'ASCII\n'
                'range (see **PEP 3131**).  For these characters, the '
                'classification\n'
                'uses the version of the Unicode Character Database as '
                'included in the\n'
                '"unicodedata" module.\n'
                '\n'
                'Identifiers are unlimited in length.  Case is significant.\n'
                '\n'
                '   identifier   ::= xid_start xid_continue*\n'
                '   id_start     ::= <all characters in general categories Lu, '
                'Ll, Lt, Lm, Lo, Nl, the underscore, and characters with the '
                'Other_ID_Start property>\n'
                '   id_continue  ::= <all characters in id_start, plus '
                'characters in the categories Mn, Mc, Nd, Pc and others with '
                'the Other_ID_Continue property>\n'
                '   xid_start    ::= <all characters in id_start whose NFKC '
                'normalization is in "id_start xid_continue*">\n'
                '   xid_continue ::= <all characters in id_continue whose NFKC '
                'normalization is in "id_continue*">\n'
                '\n'
                'The Unicode category codes mentioned above stand for:\n'
                '\n'
                '* *Lu* - uppercase letters\n'
                '\n'
                '* *Ll* - lowercase letters\n'
                '\n'
                '* *Lt* - titlecase letters\n'
                '\n'
                '* *Lm* - modifier letters\n'
                '\n'
                '* *Lo* - other letters\n'
                '\n'
                '* *Nl* - letter numbers\n'
                '\n'
                '* *Mn* - nonspacing marks\n'
                '\n'
                '* *Mc* - spacing combining marks\n'
                '\n'
                '* *Nd* - decimal numbers\n'
                '\n'
                '* *Pc* - connector punctuations\n'
                '\n'
                '* *Other_ID_Start* - explicit list of characters in '
                'PropList.txt to\n'
                '  support backwards compatibility\n'
                '\n'
                '* *Other_ID_Continue* - likewise\n'
                '\n'
                'All identifiers are converted into the normal form NFKC while '
                'parsing;\n'
                'comparison of identifiers is based on NFKC.\n'
                '\n'
                'A non-normative HTML file listing all valid identifier '
                'characters for\n'
                'Unicode 4.1 can be found at http://www.dcl.hpi.uni-\n'
                'potsdam.de/home/loewis/table-3131.html.\n'
                '\n'
                '\n'
                'Keywords\n'
                '========\n'
                '\n'
                'The following identifiers are used as reserved words, or '
                '*keywords* of\n'
                'the language, and cannot be used as ordinary identifiers.  '
                'They must\n'
                'be spelled exactly as written here:\n'
                '\n'
                '   False      class      finally    is         return\n'
                '   None       continue   for        lambda     try\n'
                '   True       def        from       nonlocal   while\n'
                '   and        del        global     not        with\n'
                '   as         elif       if         or         yield\n'
                '   assert     else       import     pass\n'
                '   break      except     in         raise\n'
                '\n'
                '\n'
                'Reserved classes of identifiers\n'
                '===============================\n'
                '\n'
                'Certain classes of identifiers (besides keywords) have '
                'special\n'
                'meanings.  These classes are identified by the patterns of '
                'leading and\n'
                'trailing underscore characters:\n'
                '\n'
                '"_*"\n'
                '   Not imported by "from module import *".  The special '
                'identifier "_"\n'
                '   is used in the interactive interpreter to store the result '
                'of the\n'
                '   last evaluation; it is stored in the "builtins" module.  '
                'When not\n'
                '   in interactive mode, "_" has no special meaning and is not '
                'defined.\n'
                '   See section *The import statement*.\n'
                '\n'
                '   Note: The name "_" is often used in conjunction with\n'
                '     internationalization; refer to the documentation for '
                'the\n'
                '     "gettext" module for more information on this '
                'convention.\n'
                '\n'
                '"__*__"\n'
                '   System-defined names. These names are defined by the '
                'interpreter\n'
                '   and its implementation (including the standard library).  '
                'Current\n'
                '   system names are discussed in the *Special method names* '
                'section\n'
                '   and elsewhere.  More will likely be defined in future '
                'versions of\n'
                '   Python.  *Any* use of "__*__" names, in any context, that '
                'does not\n'
                '   follow explicitly documented use, is subject to breakage '
                'without\n'
                '   warning.\n'
                '\n'
                '"__*"\n'
                '   Class-private names.  Names in this category, when used '
                'within the\n'
                '   context of a class definition, are re-written to use a '
                'mangled form\n'
                '   to help avoid name clashes between "private" attributes of '
                'base and\n'
                '   derived classes. See section *Identifiers (Names)*.\n',
 'if': '\n'
       'The "if" statement\n'
       '******************\n'
       '\n'
       'The "if" statement is used for conditional execution:\n'
       '\n'
       '   if_stmt ::= "if" expression ":" suite\n'
       '               ( "elif" expression ":" suite )*\n'
       '               ["else" ":" suite]\n'
       '\n'
       'It selects exactly one of the suites by evaluating the expressions '
       'one\n'
       'by one until one is found to be true (see section *Boolean '
       'operations*\n'
       'for the definition of true and false); then that suite is executed\n'
       '(and no other part of the "if" statement is executed or evaluated).\n'
       'If all expressions are false, the suite of the "else" clause, if\n'
       'present, is executed.\n',
 'imaginary': '\n'
              'Imaginary literals\n'
              '******************\n'
              '\n'
              'Imaginary literals are described by the following lexical '
              'definitions:\n'
              '\n'
              '   imagnumber ::= (floatnumber | intpart) ("j" | "J")\n'
              '\n'
              'An imaginary literal yields a complex number with a real part '
              'of 0.0.\n'
              'Complex numbers are represented as a pair of floating point '
              'numbers\n'
              'and have the same restrictions on their range.  To create a '
              'complex\n'
              'number with a nonzero real part, add a floating point number to '
              'it,\n'
              'e.g., "(3+4j)".  Some examples of imaginary literals:\n'
              '\n'
              '   3.14j   10.j    10j     .001j   1e100j  3.14e-10j\n',
 'import': '\n'
           'The "import" statement\n'
           '**********************\n'
           '\n'
           '   import_stmt     ::= "import" module ["as" name] ( "," module '
           '["as" name] )*\n'
           '                   | "from" relative_module "import" identifier '
           '["as" name]\n'
           '                   ( "," identifier ["as" name] )*\n'
           '                   | "from" relative_module "import" "(" '
           'identifier ["as" name]\n'
           '                   ( "," identifier ["as" name] )* [","] ")"\n'
           '                   | "from" module "import" "*"\n'
           '   module          ::= (identifier ".")* identifier\n'
           '   relative_module ::= "."* module | "."+\n'
           '   name            ::= identifier\n'
           '\n'
           'The basic import statement (no "from" clause) is executed in two\n'
           'steps:\n'
           '\n'
           '1. find a module, loading and initializing it if necessary\n'
           '\n'
           '2. define a name or names in the local namespace for the scope\n'
           '   where the "import" statement occurs.\n'
           '\n'
           'When the statement contains multiple clauses (separated by commas) '
           'the\n'
           'two steps are carried out separately for each clause, just as '
           'though\n'
           'the clauses had been separated out into individiual import '
           'statements.\n'
           '\n'
           'The details of the first step, finding and loading modules are\n'
           'described in greater detail in the section on the *import '
           'system*,\n'
           'which also describes the various types of packages and modules '
           'that\n'
           'can be imported, as well as all the hooks that can be used to\n'
           'customize the import system. Note that failures in this step may\n'
           'indicate either that the module could not be located, *or* that '
           'an\n'
           'error occurred while initializing the module, which includes '
           'execution\n'
           "of the module's code.\n"
           '\n'
           'If the requested module is retrieved successfully, it will be '
           'made\n'
           'available in the local namespace in one of three ways:\n'
           '\n'
           '* If the module name is followed by "as", then the name following\n'
           '  "as" is bound directly to the imported module.\n'
           '\n'
           '* If no other name is specified, and the module being imported is '
           'a\n'
           "  top level module, the module's name is bound in the local "
           'namespace\n'
           '  as a reference to the imported module\n'
           '\n'
           '* If the module being imported is *not* a top level module, then '
           'the\n'
           '  name of the top level package that contains the module is bound '
           'in\n'
           '  the local namespace as a reference to the top level package. '
           'The\n'
           '  imported module must be accessed using its full qualified name\n'
           '  rather than directly\n'
           '\n'
           'The "from" form uses a slightly more complex process:\n'
           '\n'
           '1. find the module specified in the "from" clause, loading and\n'
           '   initializing it if necessary;\n'
           '\n'
           '2. for each of the identifiers specified in the "import" clauses:\n'
           '\n'
           '   1. check if the imported module has an attribute by that name\n'
           '\n'
           '   2. if not, attempt to import a submodule with that name and '
           'then\n'
           '      check the imported module again for that attribute\n'
           '\n'
           '   3. if the attribute is not found, "ImportError" is raised.\n'
           '\n'
           '   4. otherwise, a reference to that value is stored in the local\n'
           '      namespace, using the name in the "as" clause if it is '
           'present,\n'
           '      otherwise using the attribute name\n'
           '\n'
           'Examples:\n'
           '\n'
           '   import foo                 # foo imported and bound locally\n'
           '   import foo.bar.baz         # foo.bar.baz imported, foo bound '
           'locally\n'
           '   import foo.bar.baz as fbb  # foo.bar.baz imported and bound as '
           'fbb\n'
           '   from foo.bar import baz    # foo.bar.baz imported and bound as '
           'baz\n'
           '   from foo import attr       # foo imported and foo.attr bound as '
           'attr\n'
           '\n'
           'If the list of identifiers is replaced by a star ("\'*\'"), all '
           'public\n'
           'names defined in the module are bound in the local namespace for '
           'the\n'
           'scope where the "import" statement occurs.\n'
           '\n'
           'The *public names* defined by a module are determined by checking '
           'the\n'
           'module\'s namespace for a variable named "__all__"; if defined, it '
           'must\n'
           'be a sequence of strings which are names defined or imported by '
           'that\n'
           'module.  The names given in "__all__" are all considered public '
           'and\n'
           'are required to exist.  If "__all__" is not defined, the set of '
           'public\n'
           "names includes all names found in the module's namespace which do "
           'not\n'
           'begin with an underscore character ("\'_\'").  "__all__" should '
           'contain\n'
           'the entire public API. It is intended to avoid accidentally '
           'exporting\n'
           'items that are not part of the API (such as library modules which '
           'were\n'
           'imported and used within the module).\n'
           '\n'
           'The wild card form of import --- "from module import *" --- is '
           'only\n'
           'allowed at the module level.  Attempting to use it in class or\n'
           'function definitions will raise a "SyntaxError".\n'
           '\n'
           'When specifying what module to import you do not have to specify '
           'the\n'
           'absolute name of the module. When a module or package is '
           'contained\n'
           'within another package it is possible to make a relative import '
           'within\n'
           'the same top package without having to mention the package name. '
           'By\n'
           'using leading dots in the specified module or package after "from" '
           'you\n'
           'can specify how high to traverse up the current package hierarchy\n'
           'without specifying exact names. One leading dot means the current\n'
           'package where the module making the import exists. Two dots means '
           'up\n'
           'one package level. Three dots is up two levels, etc. So if you '
           'execute\n'
           '"from . import mod" from a module in the "pkg" package then you '
           'will\n'
           'end up importing "pkg.mod". If you execute "from ..subpkg2 import '
           'mod"\n'
           'from within "pkg.subpkg1" you will import "pkg.subpkg2.mod". The\n'
           'specification for relative imports is contained within **PEP '
           '328**.\n'
           '\n'
           '"importlib.import_module()" is provided to support applications '
           'that\n'
           'determine dynamically the modules to be loaded.\n'
           '\n'
           '\n'
           'Future statements\n'
           '=================\n'
           '\n'
           'A *future statement* is a directive to the compiler that a '
           'particular\n'
           'module should be compiled using syntax or semantics that will be\n'
           'available in a specified future release of Python where the '
           'feature\n'
           'becomes standard.\n'
           '\n'
           'The future statement is intended to ease migration to future '
           'versions\n'
           'of Python that introduce incompatible changes to the language.  '
           'It\n'
           'allows use of the new features on a per-module basis before the\n'
           'release in which the feature becomes standard.\n'
           '\n'
           '   future_statement ::= "from" "__future__" "import" feature ["as" '
           'name]\n'
           '                        ("," feature ["as" name])*\n'
           '                        | "from" "__future__" "import" "(" feature '
           '["as" name]\n'
           '                        ("," feature ["as" name])* [","] ")"\n'
           '   feature          ::= identifier\n'
           '   name             ::= identifier\n'
           '\n'
           'A future statement must appear near the top of the module.  The '
           'only\n'
           'lines that can appear before a future statement are:\n'
           '\n'
           '* the module docstring (if any),\n'
           '\n'
           '* comments,\n'
           '\n'
           '* blank lines, and\n'
           '\n'
           '* other future statements.\n'
           '\n'
           'The features recognized by Python 3.0 are "absolute_import",\n'
           '"division", "generators", "unicode_literals", "print_function",\n'
           '"nested_scopes" and "with_statement".  They are all redundant '
           'because\n'
           'they are always enabled, and only kept for backwards '
           'compatibility.\n'
           '\n'
           'A future statement is recognized and treated specially at compile\n'
           'time: Changes to the semantics of core constructs are often\n'
           'implemented by generating different code.  It may even be the '
           'case\n'
           'that a new feature introduces new incompatible syntax (such as a '
           'new\n'
           'reserved word), in which case the compiler may need to parse the\n'
           'module differently.  Such decisions cannot be pushed off until\n'
           'runtime.\n'
           '\n'
           'For any given release, the compiler knows which feature names '
           'have\n'
           'been defined, and raises a compile-time error if a future '
           'statement\n'
           'contains a feature not known to it.\n'
           '\n'
           'The direct runtime semantics are the same as for any import '
           'statement:\n'
           'there is a standard module "__future__", described later, and it '
           'will\n'
           'be imported in the usual way at the time the future statement is\n'
           'executed.\n'
           '\n'
           'The interesting runtime semantics depend on the specific feature\n'
           'enabled by the future statement.\n'
           '\n'
           'Note that there is nothing special about the statement:\n'
           '\n'
           '   import __future__ [as name]\n'
           '\n'
           "That is not a future statement; it's an ordinary import statement "
           'with\n'
           'no special semantics or syntax restrictions.\n'
           '\n'
           'Code compiled by calls to the built-in functions "exec()" and\n'
           '"compile()" that occur in a module "M" containing a future '
           'statement\n'
           'will, by default, use the new syntax or semantics associated with '
           'the\n'
           'future statement.  This can be controlled by optional arguments '
           'to\n'
           '"compile()" --- see the documentation of that function for '
           'details.\n'
           '\n'
           'A future statement typed at an interactive interpreter prompt '
           'will\n'
           'take effect for the rest of the interpreter session.  If an\n'
           'interpreter is started with the *-i* option, is passed a script '
           'name\n'
           'to execute, and the script includes a future statement, it will be '
           'in\n'
           'effect in the interactive session started after the script is\n'
           'executed.\n'
           '\n'
           'See also: **PEP 236** - Back to the __future__\n'
           '\n'
           '     The original proposal for the __future__ mechanism.\n',
 'in': '\n'
       'Membership test operations\n'
       '**************************\n'
       '\n'
       'The operators "in" and "not in" test for membership.  "x in s"\n'
       'evaluates to true if *x* is a member of *s*, and false otherwise.  "x\n'
       'not in s" returns the negation of "x in s".  All built-in sequences\n'
       'and set types support this as well as dictionary, for which "in" '
       'tests\n'
       'whether the dictionary has a given key. For container types such as\n'
       'list, tuple, set, frozenset, dict, or collections.deque, the\n'
       'expression "x in y" is equivalent to "any(x is e or x == e for e in\n'
       'y)".\n'
       '\n'
       'For the string and bytes types, "x in y" is true if and only if *x* '
       'is\n'
       'a substring of *y*.  An equivalent test is "y.find(x) != -1".  Empty\n'
       'strings are always considered to be a substring of any other string,\n'
       'so """ in "abc"" will return "True".\n'
       '\n'
       'For user-defined classes which define the "__contains__()" method, "x\n'
       'in y" is true if and only if "y.__contains__(x)" is true.\n'
       '\n'
       'For user-defined classes which do not define "__contains__()" but do\n'
       'define "__iter__()", "x in y" is true if some value "z" with "x == z"\n'
       'is produced while iterating over "y".  If an exception is raised\n'
       'during the iteration, it is as if "in" raised that exception.\n'
       '\n'
       'Lastly, the old-style iteration protocol is tried: if a class defines\n'
       '"__getitem__()", "x in y" is true if and only if there is a non-\n'
       'negative integer index *i* such that "x == y[i]", and all lower\n'
       'integer indices do not raise "IndexError" exception.  (If any other\n'
       'exception is raised, it is as if "in" raised that exception).\n'
       '\n'
       'The operator "not in" is defined to have the inverse true value of\n'
       '"in".\n',
 'integers': '\n'
             'Integer literals\n'
             '****************\n'
             '\n'
             'Integer literals are described by the following lexical '
             'definitions:\n'
             '\n'
             '   integer        ::= decimalinteger | octinteger | hexinteger | '
             'bininteger\n'
             '   decimalinteger ::= nonzerodigit digit* | "0"+\n'
             '   nonzerodigit   ::= "1"..."9"\n'
             '   digit          ::= "0"..."9"\n'
             '   octinteger     ::= "0" ("o" | "O") octdigit+\n'
             '   hexinteger     ::= "0" ("x" | "X") hexdigit+\n'
             '   bininteger     ::= "0" ("b" | "B") bindigit+\n'
             '   octdigit       ::= "0"..."7"\n'
             '   hexdigit       ::= digit | "a"..."f" | "A"..."F"\n'
             '   bindigit       ::= "0" | "1"\n'
             '\n'
             'There is no limit for the length of integer literals apart from '
             'what\n'
             'can be stored in available memory.\n'
             '\n'
             'Note that leading zeros in a non-zero decimal number are not '
             'allowed.\n'
             'This is for disambiguation with C-style octal literals, which '
             'Python\n'
             'used before version 3.0.\n'
             '\n'
             'Some examples of integer literals:\n'
             '\n'
             '   7     2147483647                        0o177    0b100110111\n'
             '   3     79228162514264337593543950336     0o377    0xdeadbeef\n',
 'lambda': '\n'
           'Lambdas\n'
           '*******\n'
           '\n'
           '   lambda_expr        ::= "lambda" [parameter_list]: expression\n'
           '   lambda_expr_nocond ::= "lambda" [parameter_list]: '
           'expression_nocond\n'
           '\n'
           'Lambda expressions (sometimes called lambda forms) are used to '
           'create\n'
           'anonymous functions. The expression "lambda arguments: '
           'expression"\n'
           'yields a function object.  The unnamed object behaves like a '
           'function\n'
           'object defined with\n'
           '\n'
           '   def <lambda>(arguments):\n'
           '       return expression\n'
           '\n'
           'See section *Function definitions* for the syntax of parameter '
           'lists.\n'
           'Note that functions created with lambda expressions cannot '
           'contain\n'
           'statements or annotations.\n',
 'lists': '\n'
          'List displays\n'
          '*************\n'
          '\n'
          'A list display is a possibly empty series of expressions enclosed '
          'in\n'
          'square brackets:\n'
          '\n'
          '   list_display ::= "[" [expression_list | comprehension] "]"\n'
          '\n'
          'A list display yields a new list object, the contents being '
          'specified\n'
          'by either a list of expressions or a comprehension.  When a comma-\n'
          'separated list of expressions is supplied, its elements are '
          'evaluated\n'
          'from left to right and placed into the list object in that order.\n'
          'When a comprehension is supplied, the list is constructed from the\n'
          'elements resulting from the comprehension.\n',
 'naming': '\n'
           'Naming and binding\n'
           '******************\n'
           '\n'
           '\n'
           'Binding of names\n'
           '================\n'
           '\n'
           '*Names* refer to objects.  Names are introduced by name binding\n'
           'operations.\n'
           '\n'
           'The following constructs bind names: formal parameters to '
           'functions,\n'
           '"import" statements, class and function definitions (these bind '
           'the\n'
           'class or function name in the defining block), and targets that '
           'are\n'
           'identifiers if occurring in an assignment, "for" loop header, or '
           'after\n'
           '"as" in a "with" statement or "except" clause. The "import" '
           'statement\n'
           'of the form "from ... import *" binds all names defined in the\n'
           'imported module, except those beginning with an underscore.  This '
           'form\n'
           'may only be used at the module level.\n'
           '\n'
           'A target occurring in a "del" statement is also considered bound '
           'for\n'
           'this purpose (though the actual semantics are to unbind the '
           'name).\n'
           '\n'
           'Each assignment or import statement occurs within a block defined '
           'by a\n'
           'class or function definition or at the module level (the '
           'top-level\n'
           'code block).\n'
           '\n'
           'If a name is bound in a block, it is a local variable of that '
           'block,\n'
           'unless declared as "nonlocal" or "global".  If a name is bound at '
           'the\n'
           'module level, it is a global variable.  (The variables of the '
           'module\n'
           'code block are local and global.)  If a variable is used in a '
           'code\n'
           'block but not defined there, it is a *free variable*.\n'
           '\n'
           'Each occurrence of a name in the program text refers to the '
           '*binding*\n'
           'of that name established by the following name resolution rules.\n'
           '\n'
           '\n'
           'Resolution of names\n'
           '===================\n'
           '\n'
           'A *scope* defines the visibility of a name within a block.  If a '
           'local\n'
           'variable is defined in a block, its scope includes that block.  If '
           'the\n'
           'definition occurs in a function block, the scope extends to any '
           'blocks\n'
           'contained within the defining one, unless a contained block '
           'introduces\n'
           'a different binding for the name.\n'
           '\n'
           'When a name is used in a code block, it is resolved using the '
           'nearest\n'
           'enclosing scope.  The set of all such scopes visible to a code '
           'block\n'
           "is called the block's *environment*.\n"
           '\n'
           'When a name is not found at all, a "NameError" exception is '
           'raised. If\n'
           'the current scope is a function scope, and the name refers to a '
           'local\n'
           'variable that has not yet been bound to a value at the point where '
           'the\n'
           'name is used, an "UnboundLocalError" exception is raised.\n'
           '"UnboundLocalError" is a subclass of "NameError".\n'
           '\n'
           'If a name binding operation occurs anywhere within a code block, '
           'all\n'
           'uses of the name within the block are treated as references to '
           'the\n'
           'current block.  This can lead to errors when a name is used within '
           'a\n'
           'block before it is bound.  This rule is subtle.  Python lacks\n'
           'declarations and allows name binding operations to occur anywhere\n'
           'within a code block.  The local variables of a code block can be\n'
           'determined by scanning the entire text of the block for name '
           'binding\n'
           'operations.\n'
           '\n'
           'If the "global" statement occurs within a block, all uses of the '
           'name\n'
           'specified in the statement refer to the binding of that name in '
           'the\n'
           'top-level namespace.  Names are resolved in the top-level '
           'namespace by\n'
           'searching the global namespace, i.e. the namespace of the module\n'
           'containing the code block, and the builtins namespace, the '
           'namespace\n'
           'of the module "builtins".  The global namespace is searched '
           'first.  If\n'
           'the name is not found there, the builtins namespace is searched.  '
           'The\n'
           '"global" statement must precede all uses of the name.\n'
           '\n'
           'The "global" statement has the same scope as a name binding '
           'operation\n'
           'in the same block.  If the nearest enclosing scope for a free '
           'variable\n'
           'contains a global statement, the free variable is treated as a '
           'global.\n'
           '\n'
           'The "nonlocal" statement causes corresponding names to refer to\n'
           'previously bound variables in the nearest enclosing function '
           'scope.\n'
           '"SyntaxError" is raised at compile time if the given name does '
           'not\n'
           'exist in any enclosing function scope.\n'
           '\n'
           'The namespace for a module is automatically created the first time '
           'a\n'
           'module is imported.  The main module for a script is always '
           'called\n'
           '"__main__".\n'
           '\n'
           'Class definition blocks and arguments to "exec()" and "eval()" '
           'are\n'
           'special in the context of name resolution. A class definition is '
           'an\n'
           'executable statement that may use and define names. These '
           'references\n'
           'follow the normal rules for name resolution with an exception '
           'that\n'
           'unbound local variables are looked up in the global namespace. '
           'The\n'
           'namespace of the class definition becomes the attribute dictionary '
           'of\n'
           'the class. The scope of names defined in a class block is limited '
           'to\n'
           'the class block; it does not extend to the code blocks of methods '
           '--\n'
           'this includes comprehensions and generator expressions since they '
           'are\n'
           'implemented using a function scope.  This means that the '
           'following\n'
           'will fail:\n'
           '\n'
           '   class A:\n'
           '       a = 42\n'
           '       b = list(a + i for i in range(10))\n'
           '\n'
           '\n'
           'Builtins and restricted execution\n'
           '=================================\n'
           '\n'
           'The builtins namespace associated with the execution of a code '
           'block\n'
           'is actually found by looking up the name "__builtins__" in its '
           'global\n'
           'namespace; this should be a dictionary or a module (in the latter '
           'case\n'
           "the module's dictionary is used).  By default, when in the "
           '"__main__"\n'
           'module, "__builtins__" is the built-in module "builtins"; when in '
           'any\n'
           'other module, "__builtins__" is an alias for the dictionary of '
           'the\n'
           '"builtins" module itself.  "__builtins__" can be set to a '
           'user-created\n'
           'dictionary to create a weak form of restricted execution.\n'
           '\n'
           '**CPython implementation detail:** Users should not touch\n'
           '"__builtins__"; it is strictly an implementation detail.  Users\n'
           'wanting to override values in the builtins namespace should '
           '"import"\n'
           'the "builtins" module and modify its attributes appropriately.\n'
           '\n'
           '\n'
           'Interaction with dynamic features\n'
           '=================================\n'
           '\n'
           'Name resolution of free variables occurs at runtime, not at '
           'compile\n'
           'time. This means that the following code will print 42:\n'
           '\n'
           '   i = 10\n'
           '   def f():\n'
           '       print(i)\n'
           '   i = 42\n'
           '   f()\n'
           '\n'
           'There are several cases where Python statements are illegal when '
           'used\n'
           'in conjunction with nested scopes that contain free variables.\n'
           '\n'
           'If a variable is referenced in an enclosing scope, it is illegal '
           'to\n'
           'delete the name.  An error will be reported at compile time.\n'
           '\n'
           'The "eval()" and "exec()" functions do not have access to the '
           'full\n'
           'environment for resolving names.  Names may be resolved in the '
           'local\n'
           'and global namespaces of the caller.  Free variables are not '
           'resolved\n'
           'in the nearest enclosing namespace, but in the global namespace.  '
           '[1]\n'
           'The "exec()" and "eval()" functions have optional arguments to\n'
           'override the global and local namespace.  If only one namespace '
           'is\n'
           'specified, it is used for both.\n',
 'nonlocal': '\n'
             'The "nonlocal" statement\n'
             '************************\n'
             '\n'
             '   nonlocal_stmt ::= "nonlocal" identifier ("," identifier)*\n'
             '\n'
             'The "nonlocal" statement causes the listed identifiers to refer '
             'to\n'
             'previously bound variables in the nearest enclosing scope '
             'excluding\n'
             'globals. This is important because the default behavior for '
             'binding is\n'
             'to search the local namespace first.  The statement allows\n'
             'encapsulated code to rebind variables outside of the local '
             'scope\n'
             'besides the global (module) scope.\n'
             '\n'
             'Names listed in a "nonlocal" statement, unlike those listed in '
             'a\n'
             '"global" statement, must refer to pre-existing bindings in an\n'
             'enclosing scope (the scope in which a new binding should be '
             'created\n'
             'cannot be determined unambiguously).\n'
             '\n'
             'Names listed in a "nonlocal" statement must not collide with '
             'pre-\n'
             'existing bindings in the local scope.\n'
             '\n'
             'See also: **PEP 3104** - Access to Names in Outer Scopes\n'
             '\n'
             '     The specification for the "nonlocal" statement.\n',
 'numbers': '\n'
            'Numeric literals\n'
            '****************\n'
            '\n'
            'There are three types of numeric literals: integers, floating '
            'point\n'
            'numbers, and imaginary numbers.  There are no complex literals\n'
            '(complex numbers can be formed by adding a real number and an\n'
            'imaginary number).\n'
            '\n'
            'Note that numeric literals do not include a sign; a phrase like '
            '"-1"\n'
            'is actually an expression composed of the unary operator \'"-"\' '
            'and the\n'
            'literal "1".\n',
 'numeric-types': '\n'
                  'Emulating numeric types\n'
                  '***********************\n'
                  '\n'
                  'The following methods can be defined to emulate numeric '
                  'objects.\n'
                  'Methods corresponding to operations that are not supported '
                  'by the\n'
                  'particular kind of number implemented (e.g., bitwise '
                  'operations for\n'
                  'non-integral numbers) should be left undefined.\n'
                  '\n'
                  'object.__add__(self, other)\n'
                  'object.__sub__(self, other)\n'
                  'object.__mul__(self, other)\n'
                  'object.__truediv__(self, other)\n'
                  'object.__floordiv__(self, other)\n'
                  'object.__mod__(self, other)\n'
                  'object.__divmod__(self, other)\n'
                  'object.__pow__(self, other[, modulo])\n'
                  'object.__lshift__(self, other)\n'
                  'object.__rshift__(self, other)\n'
                  'object.__and__(self, other)\n'
                  'object.__xor__(self, other)\n'
                  'object.__or__(self, other)\n'
                  '\n'
                  '   These methods are called to implement the binary '
                  'arithmetic\n'
                  '   operations ("+", "-", "*", "/", "//", "%", "divmod()", '
                  '"pow()",\n'
                  '   "**", "<<", ">>", "&", "^", "|").  For instance, to '
                  'evaluate the\n'
                  '   expression "x + y", where *x* is an instance of a class '
                  'that has an\n'
                  '   "__add__()" method, "x.__add__(y)" is called.  The '
                  '"__divmod__()"\n'
                  '   method should be the equivalent to using '
                  '"__floordiv__()" and\n'
                  '   "__mod__()"; it should not be related to '
                  '"__truediv__()".  Note\n'
                  '   that "__pow__()" should be defined to accept an optional '
                  'third\n'
                  '   argument if the ternary version of the built-in "pow()" '
                  'function is\n'
                  '   to be supported.\n'
                  '\n'
                  '   If one of those methods does not support the operation '
                  'with the\n'
                  '   supplied arguments, it should return "NotImplemented".\n'
                  '\n'
                  'object.__radd__(self, other)\n'
                  'object.__rsub__(self, other)\n'
                  'object.__rmul__(self, other)\n'
                  'object.__rtruediv__(self, other)\n'
                  'object.__rfloordiv__(self, other)\n'
                  'object.__rmod__(self, other)\n'
                  'object.__rdivmod__(self, other)\n'
                  'object.__rpow__(self, other)\n'
                  'object.__rlshift__(self, other)\n'
                  'object.__rrshift__(self, other)\n'
                  'object.__rand__(self, other)\n'
                  'object.__rxor__(self, other)\n'
                  'object.__ror__(self, other)\n'
                  '\n'
                  '   These methods are called to implement the binary '
                  'arithmetic\n'
                  '   operations ("+", "-", "*", "/", "//", "%", "divmod()", '
                  '"pow()",\n'
                  '   "**", "<<", ">>", "&", "^", "|") with reflected '
                  '(swapped) operands.\n'
                  '   These functions are only called if the left operand does '
                  'not\n'
                  '   support the corresponding operation and the operands are '
                  'of\n'
                  '   different types. [2]  For instance, to evaluate the '
                  'expression "x -\n'
                  '   y", where *y* is an instance of a class that has an '
                  '"__rsub__()"\n'
                  '   method, "y.__rsub__(x)" is called if "x.__sub__(y)" '
                  'returns\n'
                  '   *NotImplemented*.\n'
                  '\n'
                  '   Note that ternary "pow()" will not try calling '
                  '"__rpow__()" (the\n'
                  '   coercion rules would become too complicated).\n'
                  '\n'
                  "   Note: If the right operand's type is a subclass of the "
                  'left\n'
                  "     operand's type and that subclass provides the "
                  'reflected method\n'
                  '     for the operation, this method will be called before '
                  'the left\n'
                  "     operand's non-reflected method.  This behavior allows "
                  'subclasses\n'
                  "     to override their ancestors' operations.\n"
                  '\n'
                  'object.__iadd__(self, other)\n'
                  'object.__isub__(self, other)\n'
                  'object.__imul__(self, other)\n'
                  'object.__itruediv__(self, other)\n'
                  'object.__ifloordiv__(self, other)\n'
                  'object.__imod__(self, other)\n'
                  'object.__ipow__(self, other[, modulo])\n'
                  'object.__ilshift__(self, other)\n'
                  'object.__irshift__(self, other)\n'
                  'object.__iand__(self, other)\n'
                  'object.__ixor__(self, other)\n'
                  'object.__ior__(self, other)\n'
                  '\n'
                  '   These methods are called to implement the augmented '
                  'arithmetic\n'
                  '   assignments ("+=", "-=", "*=", "/=", "//=", "%=", "**=", '
                  '"<<=",\n'
                  '   ">>=", "&=", "^=", "|=").  These methods should attempt '
                  'to do the\n'
                  '   operation in-place (modifying *self*) and return the '
                  'result (which\n'
                  '   could be, but does not have to be, *self*).  If a '
                  'specific method\n'
                  '   is not defined, the augmented assignment falls back to '
                  'the normal\n'
                  '   methods.  For instance, if *x* is an instance of a class '
                  'with an\n'
                  '   "__iadd__()" method, "x += y" is equivalent to "x = '
                  'x.__iadd__(y)"\n'
                  '   . Otherwise, "x.__add__(y)" and "y.__radd__(x)" are '
                  'considered, as\n'
                  '   with the evaluation of "x + y". In certain situations, '
                  'augmented\n'
                  '   assignment can result in unexpected errors (see *Why '
                  'does\n'
                  "   a_tuple[i] += ['item'] raise an exception when the "
                  'addition\n'
                  '   works?*), but this behavior is in fact part of the data '
                  'model.\n'
                  '\n'
                  'object.__neg__(self)\n'
                  'object.__pos__(self)\n'
                  'object.__abs__(self)\n'
                  'object.__invert__(self)\n'
                  '\n'
                  '   Called to implement the unary arithmetic operations '
                  '("-", "+",\n'
                  '   "abs()" and "~").\n'
                  '\n'
                  'object.__complex__(self)\n'
                  'object.__int__(self)\n'
                  'object.__float__(self)\n'
                  'object.__round__(self[, n])\n'
                  '\n'
                  '   Called to implement the built-in functions "complex()", '
                  '"int()",\n'
                  '   "float()" and "round()".  Should return a value of the '
                  'appropriate\n'
                  '   type.\n'
                  '\n'
                  'object.__index__(self)\n'
                  '\n'
                  '   Called to implement "operator.index()", and whenever '
                  'Python needs\n'
                  '   to losslessly convert the numeric object to an integer '
                  'object (such\n'
                  '   as in slicing, or in the built-in "bin()", "hex()" and '
                  '"oct()"\n'
                  '   functions). Presence of this method indicates that the '
                  'numeric\n'
                  '   object is an integer type.  Must return an integer.\n'
                  '\n'
                  '   Note: In order to have a coherent integer type class, '
                  'when\n'
                  '     "__index__()" is defined "__int__()" should also be '
                  'defined, and\n'
                  '     both should return the same value.\n',
 'objects': '\n'
            'Objects, values and types\n'
            '*************************\n'
            '\n'
            "*Objects* are Python's abstraction for data.  All data in a "
            'Python\n'
            'program is represented by objects or by relations between '
            'objects. (In\n'
            'a sense, and in conformance to Von Neumann\'s model of a "stored\n'
            'program computer," code is also represented by objects.)\n'
            '\n'
            "Every object has an identity, a type and a value.  An object's\n"
            '*identity* never changes once it has been created; you may think '
            'of it\n'
            'as the object\'s address in memory.  The \'"is"\' operator '
            'compares the\n'
            'identity of two objects; the "id()" function returns an integer\n'
            'representing its identity.\n'
            '\n'
            '**CPython implementation detail:** For CPython, "id(x)" is the '
            'memory\n'
            'address where "x" is stored.\n'
            '\n'
            "An object's type determines the operations that the object "
            'supports\n'
            '(e.g., "does it have a length?") and also defines the possible '
            'values\n'
            'for objects of that type.  The "type()" function returns an '
            "object's\n"
            'type (which is an object itself).  Like its identity, an '
            "object's\n"
            '*type* is also unchangeable. [1]\n'
            '\n'
            'The *value* of some objects can change.  Objects whose value can\n'
            'change are said to be *mutable*; objects whose value is '
            'unchangeable\n'
            'once they are created are called *immutable*. (The value of an\n'
            'immutable container object that contains a reference to a '
            'mutable\n'
            "object can change when the latter's value is changed; however "
            'the\n'
            'container is still considered immutable, because the collection '
            'of\n'
            'objects it contains cannot be changed.  So, immutability is not\n'
            'strictly the same as having an unchangeable value, it is more '
            'subtle.)\n'
            "An object's mutability is determined by its type; for instance,\n"
            'numbers, strings and tuples are immutable, while dictionaries '
            'and\n'
            'lists are mutable.\n'
            '\n'
            'Objects are never explicitly destroyed; however, when they '
            'become\n'
            'unreachable they may be garbage-collected.  An implementation is\n'
            'allowed to postpone garbage collection or omit it altogether --- '
            'it is\n'
            'a matter of implementation quality how garbage collection is\n'
            'implemented, as long as no objects are collected that are still\n'
            'reachable.\n'
            '\n'
            '**CPython implementation detail:** CPython currently uses a '
            'reference-\n'
            'counting scheme with (optional) delayed detection of cyclically '
            'linked\n'
            'garbage, which collects most objects as soon as they become\n'
            'unreachable, but is not guaranteed to collect garbage containing\n'
            'circular references.  See the documentation of the "gc" module '
            'for\n'
            'information on controlling the collection of cyclic garbage. '
            'Other\n'
            'implementations act differently and CPython may change. Do not '
            'depend\n'
            'on immediate finalization of objects when they become unreachable '
            '(so\n'
            'you should always close files explicitly).\n'
            '\n'
            "Note that the use of the implementation's tracing or debugging\n"
            'facilities may keep objects alive that would normally be '
            'collectable.\n'
            'Also note that catching an exception with a \'"try"..."except"\'\n'
            'statement may keep objects alive.\n'
            '\n'
            'Some objects contain references to "external" resources such as '
            'open\n'
            'files or windows.  It is understood that these resources are '
            'freed\n'
            'when the object is garbage-collected, but since garbage '
            'collection is\n'
            'not guaranteed to happen, such objects also provide an explicit '
            'way to\n'
            'release the external resource, usually a "close()" method. '
            'Programs\n'
            'are strongly recommended to explicitly close such objects.  The\n'
            '\'"try"..."finally"\' statement and the \'"with"\' statement '
            'provide\n'
            'convenient ways to do this.\n'
            '\n'
            'Some objects contain references to other objects; these are '
            'called\n'
            '*containers*. Examples of containers are tuples, lists and\n'
            "dictionaries.  The references are part of a container's value.  "
            'In\n'
            'most cases, when we talk about the value of a container, we imply '
            'the\n'
            'values, not the identities of the contained objects; however, '
            'when we\n'
            'talk about the mutability of a container, only the identities of '
            'the\n'
            'immediately contained objects are implied.  So, if an immutable\n'
            'container (like a tuple) contains a reference to a mutable '
            'object, its\n'
            'value changes if that mutable object is changed.\n'
            '\n'
            'Types affect almost all aspects of object behavior.  Even the\n'
            'importance of object identity is affected in some sense: for '
            'immutable\n'
            'types, operations that compute new values may actually return a\n'
            'reference to any existing object with the same type and value, '
            'while\n'
            'for mutable objects this is not allowed.  E.g., after "a = 1; b = '
            '1",\n'
            '"a" and "b" may or may not refer to the same object with the '
            'value\n'
            'one, depending on the implementation, but after "c = []; d = []", '
            '"c"\n'
            'and "d" are guaranteed to refer to two different, unique, newly\n'
            'created empty lists. (Note that "c = d = []" assigns the same '
            'object\n'
            'to both "c" and "d".)\n',
 'operator-summary': '\n'
                     'Operator precedence\n'
                     '*******************\n'
                     '\n'
                     'The following table summarizes the operator precedence '
                     'in Python, from\n'
                     'lowest precedence (least binding) to highest precedence '
                     '(most\n'
                     'binding).  Operators in the same box have the same '
                     'precedence.  Unless\n'
                     'the syntax is explicitly given, operators are binary.  '
                     'Operators in\n'
                     'the same box group left to right (except for '
                     'exponentiation, which\n'
                     'groups from right to left).\n'
                     '\n'
                     'Note that comparisons, membership tests, and identity '
                     'tests, all have\n'
                     'the same precedence and have a left-to-right chaining '
                     'feature as\n'
                     'described in the *Comparisons* section.\n'
                     '\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| Operator                                        | '
                     'Description                           |\n'
                     '+=================================================+=======================================+\n'
                     '| "lambda"                                        | '
                     'Lambda expression                     |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "if" -- "else"                                  | '
                     'Conditional expression                |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "or"                                            | '
                     'Boolean OR                            |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "and"                                           | '
                     'Boolean AND                           |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "not" "x"                                       | '
                     'Boolean NOT                           |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "in", "not in", "is", "is not", "<", "<=", ">", | '
                     'Comparisons, including membership     |\n'
                     '| ">=", "!=", "=="                                | '
                     'tests and identity tests              |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "|"                                             | '
                     'Bitwise OR                            |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "^"                                             | '
                     'Bitwise XOR                           |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "&"                                             | '
                     'Bitwise AND                           |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "<<", ">>"                                      | '
                     'Shifts                                |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "+", "-"                                        | '
                     'Addition and subtraction              |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "*", "/", "//", "%"                             | '
                     'Multiplication, division, remainder   |\n'
                     '|                                                 | '
                     '[5]                                   |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "+x", "-x", "~x"                                | '
                     'Positive, negative, bitwise NOT       |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "**"                                            | '
                     'Exponentiation [6]                    |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "x[index]", "x[index:index]",                   | '
                     'Subscription, slicing, call,          |\n'
                     '| "x(arguments...)", "x.attribute"                | '
                     'attribute reference                   |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '| "(expressions...)", "[expressions...]", "{key:  | '
                     'Binding or tuple display, list        |\n'
                     '| value...}", "{expressions...}"                  | '
                     'display, dictionary display, set      |\n'
                     '|                                                 | '
                     'display                               |\n'
                     '+-------------------------------------------------+---------------------------------------+\n'
                     '\n'
                     '-[ Footnotes ]-\n'
                     '\n'
                     '[1] While "abs(x%y) < abs(y)" is true mathematically, '
                     'for floats\n'
                     '    it may not be true numerically due to roundoff.  For '
                     'example, and\n'
                     '    assuming a platform on which a Python float is an '
                     'IEEE 754 double-\n'
                     '    precision number, in order that "-1e-100 % 1e100" '
                     'have the same\n'
                     '    sign as "1e100", the computed result is "-1e-100 + '
                     '1e100", which\n'
                     '    is numerically exactly equal to "1e100".  The '
                     'function\n'
                     '    "math.fmod()" returns a result whose sign matches '
                     'the sign of the\n'
                     '    first argument instead, and so returns "-1e-100" in '
                     'this case.\n'
                     '    Which approach is more appropriate depends on the '
                     'application.\n'
                     '\n'
                     '[2] If x is very close to an exact integer multiple of '
                     "y, it's\n"
                     '    possible for "x//y" to be one larger than '
                     '"(x-x%y)//y" due to\n'
                     '    rounding.  In such cases, Python returns the latter '
                     'result, in\n'
                     '    order to preserve that "divmod(x,y)[0] * y + x % y" '
                     'be very close\n'
                     '    to "x".\n'
                     '\n'
                     '[3] The Unicode standard distinguishes between *code '
                     'points* (e.g.\n'
                     '    U+0041) and *abstract characters* (e.g. "LATIN '
                     'CAPITAL LETTER A").\n'
                     '    While most abstract characters in Unicode are only '
                     'represented\n'
                     '    using one code point, there is a number of abstract '
                     'characters\n'
                     '    that can in addition be represented using a sequence '
                     'of more than\n'
                     '    one code point.  For example, the abstract character '
                     '"LATIN\n'
                     '    CAPITAL LETTER C WITH CEDILLA" can be represented as '
                     'a single\n'
                     '    *precomposed character* at code position U+00C7, or '
                     'as a sequence\n'
                     '    of a *base character* at code position U+0043 (LATIN '
                     'CAPITAL\n'
                     '    LETTER C), followed by a *combining character* at '
                     'code position\n'
                     '    U+0327 (COMBINING CEDILLA).\n'
                     '\n'
                     '    The comparison operators on strings compare at the '
                     'level of\n'
                     '    Unicode code points. This may be counter-intuitive '
                     'to humans.  For\n'
                     '    example, ""\\u00C7" == "\\u0043\\u0327"" is "False", '
                     'even though both\n'
                     '    strings represent the same abstract character "LATIN '
                     'CAPITAL\n'
                     '    LETTER C WITH CEDILLA".\n'
                     '\n'
                     '    To compare strings at the level of abstract '
                     'characters (that is,\n'
                     '    in a way intuitive to humans), use '
                     '"unicodedata.normalize()".\n'
                     '\n'
                     '[4] Due to automatic garbage-collection, free lists, and '
                     'the\n'
                     '    dynamic nature of descriptors, you may notice '
                     'seemingly unusual\n'
                     '    behaviour in certain uses of the "is" operator, like '
                     'those\n'
                     '    involving comparisons between instance methods, or '
                     'constants.\n'
                     '    Check their documentation for more info.\n'
                     '\n'
                     '[5] The "%" operator is also used for string formatting; '
                     'the same\n'
                     '    precedence applies.\n'
                     '\n'
                     '[6] The power operator "**" binds less tightly than an '
                     'arithmetic\n'
                     '    or bitwise unary operator on its right, that is, '
                     '"2**-1" is "0.5".\n',
 'pass': '\n'
         'The "pass" statement\n'
         '********************\n'
         '\n'
         '   pass_stmt ::= "pass"\n'
         '\n'
         '"pass" is a null operation --- when it is executed, nothing '
         'happens.\n'
         'It is useful as a placeholder when a statement is required\n'
         'syntactically, but no code needs to be executed, for example:\n'
         '\n'
         '   def f(arg): pass    # a function that does nothing (yet)\n'
         '\n'
         '   class C: pass       # a class with no methods (yet)\n',
 'power': '\n'
          'The power operator\n'
          '******************\n'
          '\n'
          'The power operator binds more tightly than unary operators on its\n'
          'left; it binds less tightly than unary operators on its right.  '
          'The\n'
          'syntax is:\n'
          '\n'
          '   power ::= primary ["**" u_expr]\n'
          '\n'
          'Thus, in an unparenthesized sequence of power and unary operators, '
          'the\n'
          'operators are evaluated from right to left (this does not '
          'constrain\n'
          'the evaluation order for the operands): "-1**2" results in "-1".\n'
          '\n'
          'The power operator has the same semantics as the built-in "pow()"\n'
          'function, when called with two arguments: it yields its left '
          'argument\n'
          'raised to the power of its right argument.  The numeric arguments '
          'are\n'
          'first converted to a common type, and the result is of that type.\n'
          '\n'
          'For int operands, the result has the same type as the operands '
          'unless\n'
          'the second argument is negative; in that case, all arguments are\n'
          'converted to float and a float result is delivered. For example,\n'
          '"10**2" returns "100", but "10**-2" returns "0.01".\n'
          '\n'
          'Raising "0.0" to a negative power results in a '
          '"ZeroDivisionError".\n'
          'Raising a negative number to a fractional power results in a '
          '"complex"\n'
          'number. (In earlier versions it raised a "ValueError".)\n',
 'raise': '\n'
          'The "raise" statement\n'
          '*********************\n'
          '\n'
          '   raise_stmt ::= "raise" [expression ["from" expression]]\n'
          '\n'
          'If no expressions are present, "raise" re-raises the last '
          'exception\n'
          'that was active in the current scope.  If no exception is active '
          'in\n'
          'the current scope, a "RuntimeError" exception is raised indicating\n'
          'that this is an error.\n'
          '\n'
          'Otherwise, "raise" evaluates the first expression as the exception\n'
          'object.  It must be either a subclass or an instance of\n'
          '"BaseException". If it is a class, the exception instance will be\n'
          'obtained when needed by instantiating the class with no arguments.\n'
          '\n'
          "The *type* of the exception is the exception instance's class, the\n"
          '*value* is the instance itself.\n'
          '\n'
          'A traceback object is normally created automatically when an '
          'exception\n'
          'is raised and attached to it as the "__traceback__" attribute, '
          'which\n'
          'is writable. You can create an exception and set your own traceback '
          'in\n'
          'one step using the "with_traceback()" exception method (which '
          'returns\n'
          'the same exception instance, with its traceback set to its '
          'argument),\n'
          'like so:\n'
          '\n'
          '   raise Exception("foo occurred").with_traceback(tracebackobj)\n'
          '\n'
          'The "from" clause is used for exception chaining: if given, the '
          'second\n'
          '*expression* must be another exception class or instance, which '
          'will\n'
          'then be attached to the raised exception as the "__cause__" '
          'attribute\n'
          '(which is writable).  If the raised exception is not handled, both\n'
          'exceptions will be printed:\n'
          '\n'
          '   >>> try:\n'
          '   ...     print(1 / 0)\n'
          '   ... except Exception as exc:\n'
          '   ...     raise RuntimeError("Something bad happened") from exc\n'
          '   ...\n'
          '   Traceback (most recent call last):\n'
          '     File "<stdin>", line 2, in <module>\n'
          '   ZeroDivisionError: int division or modulo by zero\n'
          '\n'
          '   The above exception was the direct cause of the following '
          'exception:\n'
          '\n'
          '   Traceback (most recent call last):\n'
          '     File "<stdin>", line 4, in <module>\n'
          '   RuntimeError: Something bad happened\n'
          '\n'
          'A similar mechanism works implicitly if an exception is raised '
          'inside\n'
          'an exception handler or a "finally" clause: the previous exception '
          'is\n'
          'then attached as the new exception\'s "__context__" attribute:\n'
          '\n'
          '   >>> try:\n'
          '   ...     print(1 / 0)\n'
          '   ... except:\n'
          '   ...     raise RuntimeError("Something bad happened")\n'
          '   ...\n'
          '   Traceback (most recent call last):\n'
          '     File "<stdin>", line 2, in <module>\n'
          '   ZeroDivisionError: int division or modulo by zero\n'
          '\n'
          '   During handling of the above exception, another exception '
          'occurred:\n'
          '\n'
          '   Traceback (most recent call last):\n'
          '     File "<stdin>", line 4, in <module>\n'
          '   RuntimeError: Something bad happened\n'
          '\n'
          'Additional information on exceptions can be found in section\n'
          '*Exceptions*, and information about handling exceptions is in '
          'section\n'
          '*The try statement*.\n',
 'return': '\n'
           'The "return" statement\n'
           '**********************\n'
           '\n'
           '   return_stmt ::= "return" [expression_list]\n'
           '\n'
           '"return" may only occur syntactically nested in a function '
           'definition,\n'
           'not within a nested class definition.\n'
           '\n'
           'If an expression list is present, it is evaluated, else "None" is\n'
           'substituted.\n'
           '\n'
           '"return" leaves the current function call with the expression list '
           '(or\n'
           '"None") as return value.\n'
           '\n'
           'When "return" passes control out of a "try" statement with a '
           '"finally"\n'
           'clause, that "finally" clause is executed before really leaving '
           'the\n'
           'function.\n'
           '\n'
           'In a generator function, the "return" statement indicates that '
           'the\n'
           'generator is done and will cause "StopIteration" to be raised. '
           'The\n'
           'returned value (if any) is used as an argument to construct\n'
           '"StopIteration" and becomes the "StopIteration.value" attribute.\n',
 'sequence-types': '\n'
                   'Emulating container types\n'
                   '*************************\n'
                   '\n'
                   'The following methods can be defined to implement '
                   'container objects.\n'
                   'Containers usually are sequences (such as lists or tuples) '
                   'or mappings\n'
                   '(like dictionaries), but can represent other containers as '
                   'well.  The\n'
                   'first set of methods is used either to emulate a sequence '
                   'or to\n'
                   'emulate a mapping; the difference is that for a sequence, '
                   'the\n'
                   'allowable keys should be the integers *k* for which "0 <= '
                   'k < N" where\n'
                   '*N* is the length of the sequence, or slice objects, which '
                   'define a\n'
                   'range of items.  It is also recommended that mappings '
                   'provide the\n'
                   'methods "keys()", "values()", "items()", "get()", '
                   '"clear()",\n'
                   '"setdefault()", "pop()", "popitem()", "copy()", and '
                   '"update()"\n'
                   "behaving similar to those for Python's standard dictionary "
                   'objects.\n'
                   'The "collections" module provides a "MutableMapping" '
                   'abstract base\n'
                   'class to help create those methods from a base set of '
                   '"__getitem__()",\n'
                   '"__setitem__()", "__delitem__()", and "keys()". Mutable '
                   'sequences\n'
                   'should provide methods "append()", "count()", "index()", '
                   '"extend()",\n'
                   '"insert()", "pop()", "remove()", "reverse()" and "sort()", '
                   'like Python\n'
                   'standard list objects.  Finally, sequence types should '
                   'implement\n'
                   'addition (meaning concatenation) and multiplication '
                   '(meaning\n'
                   'repetition) by defining the methods "__add__()", '
                   '"__radd__()",\n'
                   '"__iadd__()", "__mul__()", "__rmul__()" and "__imul__()" '
                   'described\n'
                   'below; they should not define other numerical operators.  '
                   'It is\n'
                   'recommended that both mappings and sequences implement '
                   'the\n'
                   '"__contains__()" method to allow efficient use of the "in" '
                   'operator;\n'
                   'for mappings, "in" should search the mapping\'s keys; for '
                   'sequences, it\n'
                   'should search through the values.  It is further '
                   'recommended that both\n'
                   'mappings and sequences implement the "__iter__()" method '
                   'to allow\n'
                   'efficient iteration through the container; for mappings, '
                   '"__iter__()"\n'
                   'should be the same as "keys()"; for sequences, it should '
                   'iterate\n'
                   'through the values.\n'
                   '\n'
                   'object.__len__(self)\n'
                   '\n'
                   '   Called to implement the built-in function "len()".  '
                   'Should return\n'
                   '   the length of the object, an integer ">=" 0.  Also, an '
                   'object that\n'
                   '   doesn\'t define a "__bool__()" method and whose '
                   '"__len__()" method\n'
                   '   returns zero is considered to be false in a Boolean '
                   'context.\n'
                   '\n'
                   'object.__length_hint__(self)\n'
                   '\n'
                   '   Called to implement "operator.length_hint()". Should '
                   'return an\n'
                   '   estimated length for the object (which may be greater '
                   'or less than\n'
                   '   the actual length). The length must be an integer ">=" '
                   '0. This\n'
                   '   method is purely an optimization and is never required '
                   'for\n'
                   '   correctness.\n'
                   '\n'
                   '   New in version 3.4.\n'
                   '\n'
                   'Note: Slicing is done exclusively with the following three '
                   'methods.\n'
                   '  A call like\n'
                   '\n'
                   '     a[1:2] = b\n'
                   '\n'
                   '  is translated to\n'
                   '\n'
                   '     a[slice(1, 2, None)] = b\n'
                   '\n'
                   '  and so forth.  Missing slice items are always filled in '
                   'with "None".\n'
                   '\n'
                   'object.__getitem__(self, key)\n'
                   '\n'
                   '   Called to implement evaluation of "self[key]". For '
                   'sequence types,\n'
                   '   the accepted keys should be integers and slice '
                   'objects.  Note that\n'
                   '   the special interpretation of negative indexes (if the '
                   'class wishes\n'
                   '   to emulate a sequence type) is up to the '
                   '"__getitem__()" method. If\n'
                   '   *key* is of an inappropriate type, "TypeError" may be '
                   'raised; if of\n'
                   '   a value outside the set of indexes for the sequence '
                   '(after any\n'
                   '   special interpretation of negative values), '
                   '"IndexError" should be\n'
                   '   raised. For mapping types, if *key* is missing (not in '
                   'the\n'
                   '   container), "KeyError" should be raised.\n'
                   '\n'
                   '   Note: "for" loops expect that an "IndexError" will be '
                   'raised for\n'
                   '     illegal indexes to allow proper detection of the end '
                   'of the\n'
                   '     sequence.\n'
                   '\n'
                   'object.__missing__(self, key)\n'
                   '\n'
                   '   Called by "dict"."__getitem__()" to implement '
                   '"self[key]" for dict\n'
                   '   subclasses when key is not in the dictionary.\n'
                   '\n'
                   'object.__setitem__(self, key, value)\n'
                   '\n'
                   '   Called to implement assignment to "self[key]".  Same '
                   'note as for\n'
                   '   "__getitem__()".  This should only be implemented for '
                   'mappings if\n'
                   '   the objects support changes to the values for keys, or '
                   'if new keys\n'
                   '   can be added, or for sequences if elements can be '
                   'replaced.  The\n'
                   '   same exceptions should be raised for improper *key* '
                   'values as for\n'
                   '   the "__getitem__()" method.\n'
                   '\n'
                   'object.__delitem__(self, key)\n'
                   '\n'
                   '   Called to implement deletion of "self[key]".  Same note '
                   'as for\n'
                   '   "__getitem__()".  This should only be implemented for '
                   'mappings if\n'
                   '   the objects support removal of keys, or for sequences '
                   'if elements\n'
                   '   can be removed from the sequence.  The same exceptions '
                   'should be\n'
                   '   raised for improper *key* values as for the '
                   '"__getitem__()" method.\n'
                   '\n'
                   'object.__iter__(self)\n'
                   '\n'
                   '   This method is called when an iterator is required for '
                   'a container.\n'
                   '   This method should return a new iterator object that '
                   'can iterate\n'
                   '   over all the objects in the container.  For mappings, '
                   'it should\n'
                   '   iterate over the keys of the container.\n'
                   '\n'
                   '   Iterator objects also need to implement this method; '
                   'they are\n'
                   '   required to return themselves.  For more information on '
                   'iterator\n'
                   '   objects, see *Iterator Types*.\n'
                   '\n'
                   'object.__reversed__(self)\n'
                   '\n'
                   '   Called (if present) by the "reversed()" built-in to '
                   'implement\n'
                   '   reverse iteration.  It should return a new iterator '
                   'object that\n'
                   '   iterates over all the objects in the container in '
                   'reverse order.\n'
                   '\n'
                   '   If the "__reversed__()" method is not provided, the '
                   '"reversed()"\n'
                   '   built-in will fall back to using the sequence protocol '
                   '("__len__()"\n'
                   '   and "__getitem__()").  Objects that support the '
                   'sequence protocol\n'
                   '   should only provide "__reversed__()" if they can '
                   'provide an\n'
                   '   implementation that is more efficient than the one '
                   'provided by\n'
                   '   "reversed()".\n'
                   '\n'
                   'The membership test operators ("in" and "not in") are '
                   'normally\n'
                   'implemented as an iteration through a sequence.  However, '
                   'container\n'
                   'objects can supply the following special method with a '
                   'more efficient\n'
                   'implementation, which also does not require the object be '
                   'a sequence.\n'
                   '\n'
                   'object.__contains__(self, item)\n'
                   '\n'
                   '   Called to implement membership test operators.  Should '
                   'return true\n'
                   '   if *item* is in *self*, false otherwise.  For mapping '
                   'objects, this\n'
                   '   should consider the keys of the mapping rather than the '
                   'values or\n'
                   '   the key-item pairs.\n'
                   '\n'
                   '   For objects that don\'t define "__contains__()", the '
                   'membership test\n'
                   '   first tries iteration via "__iter__()", then the old '
                   'sequence\n'
                   '   iteration protocol via "__getitem__()", see *this '
                   'section in the\n'
                   '   language reference*.\n',
 'shifting': '\n'
             'Shifting operations\n'
             '*******************\n'
             '\n'
             'The shifting operations have lower priority than the arithmetic\n'
             'operations:\n'
             '\n'
             '   shift_expr ::= a_expr | shift_expr ( "<<" | ">>" ) a_expr\n'
             '\n'
             'These operators accept integers as arguments.  They shift the '
             'first\n'
             'argument to the left or right by the number of bits given by '
             'the\n'
             'second argument.\n'
             '\n'
             'A right shift by *n* bits is defined as floor division by '
             '"pow(2,n)".\n'
             'A left shift by *n* bits is defined as multiplication with '
             '"pow(2,n)".\n'
             '\n'
             'Note: In the current implementation, the right-hand operand is\n'
             '  required to be at most "sys.maxsize".  If the right-hand '
             'operand is\n'
             '  larger than "sys.maxsize" an "OverflowError" exception is '
             'raised.\n',
 'slicings': '\n'
             'Slicings\n'
             '********\n'
             '\n'
             'A slicing selects a range of items in a sequence object (e.g., '
             'a\n'
             'string, tuple or list).  Slicings may be used as expressions or '
             'as\n'
             'targets in assignment or "del" statements.  The syntax for a '
             'slicing:\n'
             '\n'
             '   slicing      ::= primary "[" slice_list "]"\n'
             '   slice_list   ::= slice_item ("," slice_item)* [","]\n'
             '   slice_item   ::= expression | proper_slice\n'
             '   proper_slice ::= [lower_bound] ":" [upper_bound] [ ":" '
             '[stride] ]\n'
             '   lower_bound  ::= expression\n'
             '   upper_bound  ::= expression\n'
             '   stride       ::= expression\n'
             '\n'
             'There is ambiguity in the formal syntax here: anything that '
             'looks like\n'
             'an expression list also looks like a slice list, so any '
             'subscription\n'
             'can be interpreted as a slicing.  Rather than further '
             'complicating the\n'
             'syntax, this is disambiguated by defining that in this case the\n'
             'interpretation as a subscription takes priority over the\n'
             'interpretation as a slicing (this is the case if the slice list\n'
             'contains no proper slice).\n'
             '\n'
             'The semantics for a slicing are as follows.  The primary is '
             'indexed\n'
             '(using the same "__getitem__()" method as normal subscription) '
             'with a\n'
             'key that is constructed from the slice list, as follows.  If the '
             'slice\n'
             'list contains at least one comma, the key is a tuple containing '
             'the\n'
             'conversion of the slice items; otherwise, the conversion of the '
             'lone\n'
             'slice item is the key.  The conversion of a slice item that is '
             'an\n'
             'expression is that expression.  The conversion of a proper slice '
             'is a\n'
             'slice object (see section *The standard type hierarchy*) whose\n'
             '"start", "stop" and "step" attributes are the values of the\n'
             'expressions given as lower bound, upper bound and stride,\n'
             'respectively, substituting "None" for missing expressions.\n',
 'specialattrs': '\n'
                 'Special Attributes\n'
                 '******************\n'
                 '\n'
                 'The implementation adds a few special read-only attributes '
                 'to several\n'
                 'object types, where they are relevant.  Some of these are '
                 'not reported\n'
                 'by the "dir()" built-in function.\n'
                 '\n'
                 'object.__dict__\n'
                 '\n'
                 '   A dictionary or other mapping object used to store an '
                 "object's\n"
                 '   (writable) attributes.\n'
                 '\n'
                 'instance.__class__\n'
                 '\n'
                 '   The class to which a class instance belongs.\n'
                 '\n'
                 'class.__bases__\n'
                 '\n'
                 '   The tuple of base classes of a class object.\n'
                 '\n'
                 'class.__name__\n'
                 '\n'
                 '   The name of the class or type.\n'
                 '\n'
                 'class.__qualname__\n'
                 '\n'
                 '   The *qualified name* of the class or type.\n'
                 '\n'
                 '   New in version 3.3.\n'
                 '\n'
                 'class.__mro__\n'
                 '\n'
                 '   This attribute is a tuple of classes that are considered '
                 'when\n'
                 '   looking for base classes during method resolution.\n'
                 '\n'
                 'class.mro()\n'
                 '\n'
                 '   This method can be overridden by a metaclass to customize '
                 'the\n'
                 '   method resolution order for its instances.  It is called '
                 'at class\n'
                 '   instantiation, and its result is stored in "__mro__".\n'
                 '\n'
                 'class.__subclasses__()\n'
                 '\n'
                 '   Each class keeps a list of weak references to its '
                 'immediate\n'
                 '   subclasses.  This method returns a list of all those '
                 'references\n'
                 '   still alive. Example:\n'
                 '\n'
                 '      >>> int.__subclasses__()\n'
                 "      [<class 'bool'>]\n"
                 '\n'
                 '-[ Footnotes ]-\n'
                 '\n'
                 '[1] Additional information on these special methods may be '
                 'found\n'
                 '    in the Python Reference Manual (*Basic customization*).\n'
                 '\n'
                 '[2] As a consequence, the list "[1, 2]" is considered equal '
                 'to\n'
                 '    "[1.0, 2.0]", and similarly for tuples.\n'
                 '\n'
                 "[3] They must have since the parser can't tell the type of "
                 'the\n'
                 '    operands.\n'
                 '\n'
                 '[4] Cased characters are those with general category '
                 'property\n'
                 '    being one of "Lu" (Letter, uppercase), "Ll" (Letter, '
                 'lowercase),\n'
                 '    or "Lt" (Letter, titlecase).\n'
                 '\n'
                 '[5] To format only a tuple you should therefore provide a\n'
                 '    singleton tuple whose only element is the tuple to be '
                 'formatted.\n',
 'specialnames': '\n'
                 'Special method names\n'
                 '********************\n'
                 '\n'
                 'A class can implement certain operations that are invoked by '
                 'special\n'
                 'syntax (such as arithmetic operations or subscripting and '
                 'slicing) by\n'
                 "defining methods with special names. This is Python's "
                 'approach to\n'
                 '*operator overloading*, allowing classes to define their own '
                 'behavior\n'
                 'with respect to language operators.  For instance, if a '
                 'class defines\n'
                 'a method named "__getitem__()", and "x" is an instance of '
                 'this class,\n'
                 'then "x[i]" is roughly equivalent to "type(x).__getitem__(x, '
                 'i)".\n'
                 'Except where mentioned, attempts to execute an operation '
                 'raise an\n'
                 'exception when no appropriate method is defined (typically\n'
                 '"AttributeError" or "TypeError").\n'
                 '\n'
                 'When implementing a class that emulates any built-in type, '
                 'it is\n'
                 'important that the emulation only be implemented to the '
                 'degree that it\n'
                 'makes sense for the object being modelled.  For example, '
                 'some\n'
                 'sequences may work well with retrieval of individual '
                 'elements, but\n'
                 'extracting a slice may not make sense.  (One example of this '
                 'is the\n'
                 '"NodeList" interface in the W3C\'s Document Object Model.)\n'
                 '\n'
                 '\n'
                 'Basic customization\n'
                 '===================\n'
                 '\n'
                 'object.__new__(cls[, ...])\n'
                 '\n'
                 '   Called to create a new instance of class *cls*.  '
                 '"__new__()" is a\n'
                 '   static method (special-cased so you need not declare it '
                 'as such)\n'
                 '   that takes the class of which an instance was requested '
                 'as its\n'
                 '   first argument.  The remaining arguments are those passed '
                 'to the\n'
                 '   object constructor expression (the call to the class).  '
                 'The return\n'
                 '   value of "__new__()" should be the new object instance '
                 '(usually an\n'
                 '   instance of *cls*).\n'
                 '\n'
                 '   Typical implementations create a new instance of the '
                 'class by\n'
                 '   invoking the superclass\'s "__new__()" method using\n'
                 '   "super(currentclass, cls).__new__(cls[, ...])" with '
                 'appropriate\n'
                 '   arguments and then modifying the newly-created instance '
                 'as\n'
                 '   necessary before returning it.\n'
                 '\n'
                 '   If "__new__()" returns an instance of *cls*, then the '
                 'new\n'
                 '   instance\'s "__init__()" method will be invoked like\n'
                 '   "__init__(self[, ...])", where *self* is the new instance '
                 'and the\n'
                 '   remaining arguments are the same as were passed to '
                 '"__new__()".\n'
                 '\n'
                 '   If "__new__()" does not return an instance of *cls*, then '
                 'the new\n'
                 '   instance\'s "__init__()" method will not be invoked.\n'
                 '\n'
                 '   "__new__()" is intended mainly to allow subclasses of '
                 'immutable\n'
                 '   types (like int, str, or tuple) to customize instance '
                 'creation.  It\n'
                 '   is also commonly overridden in custom metaclasses in '
                 'order to\n'
                 '   customize class creation.\n'
                 '\n'
                 'object.__init__(self[, ...])\n'
                 '\n'
                 '   Called after the instance has been created (by '
                 '"__new__()"), but\n'
                 '   before it is returned to the caller.  The arguments are '
                 'those\n'
                 '   passed to the class constructor expression.  If a base '
                 'class has an\n'
                 '   "__init__()" method, the derived class\'s "__init__()" '
                 'method, if\n'
                 '   any, must explicitly call it to ensure proper '
                 'initialization of the\n'
                 '   base class part of the instance; for example:\n'
                 '   "BaseClass.__init__(self, [args...])".\n'
                 '\n'
                 '   Because "__new__()" and "__init__()" work together in '
                 'constructing\n'
                 '   objects ("__new__()" to create it, and "__init__()" to '
                 'customise\n'
                 '   it), no non-"None" value may be returned by "__init__()"; '
                 'doing so\n'
                 '   will cause a "TypeError" to be raised at runtime.\n'
                 '\n'
                 'object.__del__(self)\n'
                 '\n'
                 '   Called when the instance is about to be destroyed.  This '
                 'is also\n'
                 '   called a destructor.  If a base class has a "__del__()" '
                 'method, the\n'
                 '   derived class\'s "__del__()" method, if any, must '
                 'explicitly call it\n'
                 '   to ensure proper deletion of the base class part of the '
                 'instance.\n'
                 '   Note that it is possible (though not recommended!) for '
                 'the\n'
                 '   "__del__()" method to postpone destruction of the '
                 'instance by\n'
                 '   creating a new reference to it.  It may then be called at '
                 'a later\n'
                 '   time when this new reference is deleted.  It is not '
                 'guaranteed that\n'
                 '   "__del__()" methods are called for objects that still '
                 'exist when\n'
                 '   the interpreter exits.\n'
                 '\n'
                 '   Note: "del x" doesn\'t directly call "x.__del__()" --- '
                 'the former\n'
                 '     decrements the reference count for "x" by one, and the '
                 'latter is\n'
                 '     only called when "x"\'s reference count reaches zero.  '
                 'Some common\n'
                 '     situations that may prevent the reference count of an '
                 'object from\n'
                 '     going to zero include: circular references between '
                 'objects (e.g.,\n'
                 '     a doubly-linked list or a tree data structure with '
                 'parent and\n'
                 '     child pointers); a reference to the object on the stack '
                 'frame of\n'
                 '     a function that caught an exception (the traceback '
                 'stored in\n'
                 '     "sys.exc_info()[2]" keeps the stack frame alive); or a '
                 'reference\n'
                 '     to the object on the stack frame that raised an '
                 'unhandled\n'
                 '     exception in interactive mode (the traceback stored in\n'
                 '     "sys.last_traceback" keeps the stack frame alive).  The '
                 'first\n'
                 '     situation can only be remedied by explicitly breaking '
                 'the cycles;\n'
                 '     the second can be resolved by freeing the reference to '
                 'the\n'
                 '     traceback object when it is no longer useful, and the '
                 'third can\n'
                 '     be resolved by storing "None" in "sys.last_traceback". '
                 'Circular\n'
                 '     references which are garbage are detected and cleaned '
                 'up when the\n'
                 "     cyclic garbage collector is enabled (it's on by "
                 'default). Refer\n'
                 '     to the documentation for the "gc" module for more '
                 'information\n'
                 '     about this topic.\n'
                 '\n'
                 '   Warning: Due to the precarious circumstances under which\n'
                 '     "__del__()" methods are invoked, exceptions that occur '
                 'during\n'
                 '     their execution are ignored, and a warning is printed '
                 'to\n'
                 '     "sys.stderr" instead. Also, when "__del__()" is invoked '
                 'in\n'
                 '     response to a module being deleted (e.g., when '
                 'execution of the\n'
                 '     program is done), other globals referenced by the '
                 '"__del__()"\n'
                 '     method may already have been deleted or in the process '
                 'of being\n'
                 '     torn down (e.g. the import machinery shutting down).  '
                 'For this\n'
                 '     reason, "__del__()" methods should do the absolute '
                 'minimum needed\n'
                 '     to maintain external invariants.  Starting with version '
                 '1.5,\n'
                 '     Python guarantees that globals whose name begins with a '
                 'single\n'
                 '     underscore are deleted from their module before other '
                 'globals are\n'
                 '     deleted; if no other references to such globals exist, '
                 'this may\n'
                 '     help in assuring that imported modules are still '
                 'available at the\n'
                 '     time when the "__del__()" method is called.\n'
                 '\n'
                 'object.__repr__(self)\n'
                 '\n'
                 '   Called by the "repr()" built-in function to compute the '
                 '"official"\n'
                 '   string representation of an object.  If at all possible, '
                 'this\n'
                 '   should look like a valid Python expression that could be '
                 'used to\n'
                 '   recreate an object with the same value (given an '
                 'appropriate\n'
                 '   environment).  If this is not possible, a string of the '
                 'form\n'
                 '   "<...some useful description...>" should be returned. The '
                 'return\n'
                 '   value must be a string object. If a class defines '
                 '"__repr__()" but\n'
                 '   not "__str__()", then "__repr__()" is also used when an '
                 '"informal"\n'
                 '   string representation of instances of that class is '
                 'required.\n'
                 '\n'
                 '   This is typically used for debugging, so it is important '
                 'that the\n'
                 '   representation is information-rich and unambiguous.\n'
                 '\n'
                 'object.__str__(self)\n'
                 '\n'
                 '   Called by "str(object)" and the built-in functions '
                 '"format()" and\n'
                 '   "print()" to compute the "informal" or nicely printable '
                 'string\n'
                 '   representation of an object.  The return value must be a '
                 '*string*\n'
                 '   object.\n'
                 '\n'
                 '   This method differs from "object.__repr__()" in that '
                 'there is no\n'
                 '   expectation that "__str__()" return a valid Python '
                 'expression: a\n'
                 '   more convenient or concise representation can be used.\n'
                 '\n'
                 '   The default implementation defined by the built-in type '
                 '"object"\n'
                 '   calls "object.__repr__()".\n'
                 '\n'
                 'object.__bytes__(self)\n'
                 '\n'
                 '   Called by "bytes()" to compute a byte-string '
                 'representation of an\n'
                 '   object. This should return a "bytes" object.\n'
                 '\n'
                 'object.__format__(self, format_spec)\n'
                 '\n'
                 '   Called by the "format()" built-in function (and by '
                 'extension, the\n'
                 '   "str.format()" method of class "str") to produce a '
                 '"formatted"\n'
                 '   string representation of an object. The "format_spec" '
                 'argument is a\n'
                 '   string that contains a description of the formatting '
                 'options\n'
                 '   desired. The interpretation of the "format_spec" argument '
                 'is up to\n'
                 '   the type implementing "__format__()", however most '
                 'classes will\n'
                 '   either delegate formatting to one of the built-in types, '
                 'or use a\n'
                 '   similar formatting option syntax.\n'
                 '\n'
                 '   See *Format Specification Mini-Language* for a '
                 'description of the\n'
                 '   standard formatting syntax.\n'
                 '\n'
                 '   The return value must be a string object.\n'
                 '\n'
                 '   Changed in version 3.4: The __format__ method of "object" '
                 'itself\n'
                 '   raises a "TypeError" if passed any non-empty string.\n'
                 '\n'
                 'object.__lt__(self, other)\n'
                 'object.__le__(self, other)\n'
                 'object.__eq__(self, other)\n'
                 'object.__ne__(self, other)\n'
                 'object.__gt__(self, other)\n'
                 'object.__ge__(self, other)\n'
                 '\n'
                 '   These are the so-called "rich comparison" methods. The\n'
                 '   correspondence between operator symbols and method names '
                 'is as\n'
                 '   follows: "x<y" calls "x.__lt__(y)", "x<=y" calls '
                 '"x.__le__(y)",\n'
                 '   "x==y" calls "x.__eq__(y)", "x!=y" calls "x.__ne__(y)", '
                 '"x>y" calls\n'
                 '   "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n'
                 '\n'
                 '   A rich comparison method may return the singleton '
                 '"NotImplemented"\n'
                 '   if it does not implement the operation for a given pair '
                 'of\n'
                 '   arguments. By convention, "False" and "True" are returned '
                 'for a\n'
                 '   successful comparison. However, these methods can return '
                 'any value,\n'
                 '   so if the comparison operator is used in a Boolean '
                 'context (e.g.,\n'
                 '   in the condition of an "if" statement), Python will call '
                 '"bool()"\n'
                 '   on the value to determine if the result is true or '
                 'false.\n'
                 '\n'
                 '   By default, "__ne__()" delegates to "__eq__()" and '
                 'inverts the\n'
                 '   result unless it is "NotImplemented".  There are no other '
                 'implied\n'
                 '   relationships among the comparison operators, for '
                 'example, the\n'
                 '   truth of "(x<y or x==y)" does not imply "x<=y". To '
                 'automatically\n'
                 '   generate ordering operations from a single root '
                 'operation, see\n'
                 '   "functools.total_ordering()".\n'
                 '\n'
                 '   See the paragraph on "__hash__()" for some important '
                 'notes on\n'
                 '   creating *hashable* objects which support custom '
                 'comparison\n'
                 '   operations and are usable as dictionary keys.\n'
                 '\n'
                 '   There are no swapped-argument versions of these methods '
                 '(to be used\n'
                 '   when the left argument does not support the operation but '
                 'the right\n'
                 '   argument does); rather, "__lt__()" and "__gt__()" are '
                 "each other's\n"
                 '   reflection, "__le__()" and "__ge__()" are each other\'s '
                 'reflection,\n'
                 '   and "__eq__()" and "__ne__()" are their own reflection. '
                 'If the\n'
                 "   operands are of different types, and right operand's type "
                 'is a\n'
                 "   direct or indirect subclass of the left operand's type, "
                 'the\n'
                 '   reflected method of the right operand has priority, '
                 'otherwise the\n'
                 "   left operand's method has priority.  Virtual subclassing "
                 'is not\n'
                 '   considered.\n'
                 '\n'
                 'object.__hash__(self)\n'
                 '\n'
                 '   Called by built-in function "hash()" and for operations '
                 'on members\n'
                 '   of hashed collections including "set", "frozenset", and '
                 '"dict".\n'
                 '   "__hash__()" should return an integer.  The only required '
                 'property\n'
                 '   is that objects which compare equal have the same hash '
                 'value; it is\n'
                 '   advised to somehow mix together (e.g. using exclusive or) '
                 'the hash\n'
                 '   values for the components of the object that also play a '
                 'part in\n'
                 '   comparison of objects.\n'
                 '\n'
                 '   Note: "hash()" truncates the value returned from an '
                 "object's\n"
                 '     custom "__hash__()" method to the size of a '
                 '"Py_ssize_t".  This\n'
                 '     is typically 8 bytes on 64-bit builds and 4 bytes on '
                 '32-bit\n'
                 '     builds. If an object\'s   "__hash__()" must '
                 'interoperate on builds\n'
                 '     of different bit sizes, be sure to check the width on '
                 'all\n'
                 '     supported builds.  An easy way to do this is with '
                 '"python -c\n'
                 '     "import sys; print(sys.hash_info.width)"".\n'
                 '\n'
                 '   If a class does not define an "__eq__()" method it should '
                 'not\n'
                 '   define a "__hash__()" operation either; if it defines '
                 '"__eq__()"\n'
                 '   but not "__hash__()", its instances will not be usable as '
                 'items in\n'
                 '   hashable collections.  If a class defines mutable objects '
                 'and\n'
                 '   implements an "__eq__()" method, it should not implement\n'
                 '   "__hash__()", since the implementation of hashable '
                 'collections\n'
                 "   requires that a key's hash value is immutable (if the "
                 "object's hash\n"
                 '   value changes, it will be in the wrong hash bucket).\n'
                 '\n'
                 '   User-defined classes have "__eq__()" and "__hash__()" '
                 'methods by\n'
                 '   default; with them, all objects compare unequal (except '
                 'with\n'
                 '   themselves) and "x.__hash__()" returns an appropriate '
                 'value such\n'
                 '   that "x == y" implies both that "x is y" and "hash(x) == '
                 'hash(y)".\n'
                 '\n'
                 '   A class that overrides "__eq__()" and does not define '
                 '"__hash__()"\n'
                 '   will have its "__hash__()" implicitly set to "None".  '
                 'When the\n'
                 '   "__hash__()" method of a class is "None", instances of '
                 'the class\n'
                 '   will raise an appropriate "TypeError" when a program '
                 'attempts to\n'
                 '   retrieve their hash value, and will also be correctly '
                 'identified as\n'
                 '   unhashable when checking "isinstance(obj, '
                 'collections.Hashable)".\n'
                 '\n'
                 '   If a class that overrides "__eq__()" needs to retain the\n'
                 '   implementation of "__hash__()" from a parent class, the '
                 'interpreter\n'
                 '   must be told this explicitly by setting "__hash__ =\n'
                 '   <ParentClass>.__hash__".\n'
                 '\n'
                 '   If a class that does not override "__eq__()" wishes to '
                 'suppress\n'
                 '   hash support, it should include "__hash__ = None" in the '
                 'class\n'
                 '   definition. A class which defines its own "__hash__()" '
                 'that\n'
                 '   explicitly raises a "TypeError" would be incorrectly '
                 'identified as\n'
                 '   hashable by an "isinstance(obj, collections.Hashable)" '
                 'call.\n'
                 '\n'
                 '   Note: By default, the "__hash__()" values of str, bytes '
                 'and\n'
                 '     datetime objects are "salted" with an unpredictable '
                 'random value.\n'
                 '     Although they remain constant within an individual '
                 'Python\n'
                 '     process, they are not predictable between repeated '
                 'invocations of\n'
                 '     Python.This is intended to provide protection against a '
                 'denial-\n'
                 '     of-service caused by carefully-chosen inputs that '
                 'exploit the\n'
                 '     worst case performance of a dict insertion, O(n^2) '
                 'complexity.\n'
                 '     See http://www.ocert.org/advisories/ocert-2011-003.html '
                 'for\n'
                 '     details.Changing hash values affects the iteration '
                 'order of\n'
                 '     dicts, sets and other mappings.  Python has never made '
                 'guarantees\n'
                 '     about this ordering (and it typically varies between '
                 '32-bit and\n'
                 '     64-bit builds).See also "PYTHONHASHSEED".\n'
                 '\n'
                 '   Changed in version 3.3: Hash randomization is enabled by '
                 'default.\n'
                 '\n'
                 'object.__bool__(self)\n'
                 '\n'
                 '   Called to implement truth value testing and the built-in '
                 'operation\n'
                 '   "bool()"; should return "False" or "True".  When this '
                 'method is not\n'
                 '   defined, "__len__()" is called, if it is defined, and the '
                 'object is\n'
                 '   considered true if its result is nonzero.  If a class '
                 'defines\n'
                 '   neither "__len__()" nor "__bool__()", all its instances '
                 'are\n'
                 '   considered true.\n'
                 '\n'
                 '\n'
                 'Customizing attribute access\n'
                 '============================\n'
                 '\n'
                 'The following methods can be defined to customize the '
                 'meaning of\n'
                 'attribute access (use of, assignment to, or deletion of '
                 '"x.name") for\n'
                 'class instances.\n'
                 '\n'
                 'object.__getattr__(self, name)\n'
                 '\n'
                 '   Called when an attribute lookup has not found the '
                 'attribute in the\n'
                 '   usual places (i.e. it is not an instance attribute nor is '
                 'it found\n'
                 '   in the class tree for "self").  "name" is the attribute '
                 'name. This\n'
                 '   method should return the (computed) attribute value or '
                 'raise an\n'
                 '   "AttributeError" exception.\n'
                 '\n'
                 '   Note that if the attribute is found through the normal '
                 'mechanism,\n'
                 '   "__getattr__()" is not called.  (This is an intentional '
                 'asymmetry\n'
                 '   between "__getattr__()" and "__setattr__()".) This is '
                 'done both for\n'
                 '   efficiency reasons and because otherwise "__getattr__()" '
                 'would have\n'
                 '   no way to access other attributes of the instance.  Note '
                 'that at\n'
                 '   least for instance variables, you can fake total control '
                 'by not\n'
                 '   inserting any values in the instance attribute dictionary '
                 '(but\n'
                 '   instead inserting them in another object).  See the\n'
                 '   "__getattribute__()" method below for a way to actually '
                 'get total\n'
                 '   control over attribute access.\n'
                 '\n'
                 'object.__getattribute__(self, name)\n'
                 '\n'
                 '   Called unconditionally to implement attribute accesses '
                 'for\n'
                 '   instances of the class. If the class also defines '
                 '"__getattr__()",\n'
                 '   the latter will not be called unless "__getattribute__()" '
                 'either\n'
                 '   calls it explicitly or raises an "AttributeError". This '
                 'method\n'
                 '   should return the (computed) attribute value or raise an\n'
                 '   "AttributeError" exception. In order to avoid infinite '
                 'recursion in\n'
                 '   this method, its implementation should always call the '
                 'base class\n'
                 '   method with the same name to access any attributes it '
                 'needs, for\n'
                 '   example, "object.__getattribute__(self, name)".\n'
                 '\n'
                 '   Note: This method may still be bypassed when looking up '
                 'special\n'
                 '     methods as the result of implicit invocation via '
                 'language syntax\n'
                 '     or built-in functions. See *Special method lookup*.\n'
                 '\n'
                 'object.__setattr__(self, name, value)\n'
                 '\n'
                 '   Called when an attribute assignment is attempted.  This '
                 'is called\n'
                 '   instead of the normal mechanism (i.e. store the value in '
                 'the\n'
                 '   instance dictionary). *name* is the attribute name, '
                 '*value* is the\n'
                 '   value to be assigned to it.\n'
                 '\n'
                 '   If "__setattr__()" wants to assign to an instance '
                 'attribute, it\n'
                 '   should call the base class method with the same name, for '
                 'example,\n'
                 '   "object.__setattr__(self, name, value)".\n'
                 '\n'
                 'object.__delattr__(self, name)\n'
                 '\n'
                 '   Like "__setattr__()" but for attribute deletion instead '
                 'of\n'
                 '   assignment.  This should only be implemented if "del '
                 'obj.name" is\n'
                 '   meaningful for the object.\n'
                 '\n'
                 'object.__dir__(self)\n'
                 '\n'
                 '   Called when "dir()" is called on the object. A sequence '
                 'must be\n'
                 '   returned. "dir()" converts the returned sequence to a '
                 'list and\n'
                 '   sorts it.\n'
                 '\n'
                 '\n'
                 'Implementing Descriptors\n'
                 '------------------------\n'
                 '\n'
                 'The following methods only apply when an instance of the '
                 'class\n'
                 'containing the method (a so-called *descriptor* class) '
                 'appears in an\n'
                 "*owner* class (the descriptor must be in either the owner's "
                 'class\n'
                 'dictionary or in the class dictionary for one of its '
                 'parents).  In the\n'
                 'examples below, "the attribute" refers to the attribute '
                 'whose name is\n'
                 'the key of the property in the owner class\' "__dict__".\n'
                 '\n'
                 'object.__get__(self, instance, owner)\n'
                 '\n'
                 '   Called to get the attribute of the owner class (class '
                 'attribute\n'
                 '   access) or of an instance of that class (instance '
                 'attribute\n'
                 '   access). *owner* is always the owner class, while '
                 '*instance* is the\n'
                 '   instance that the attribute was accessed through, or '
                 '"None" when\n'
                 '   the attribute is accessed through the *owner*.  This '
                 'method should\n'
                 '   return the (computed) attribute value or raise an '
                 '"AttributeError"\n'
                 '   exception.\n'
                 '\n'
                 'object.__set__(self, instance, value)\n'
                 '\n'
                 '   Called to set the attribute on an instance *instance* of '
                 'the owner\n'
                 '   class to a new value, *value*.\n'
                 '\n'
                 'object.__delete__(self, instance)\n'
                 '\n'
                 '   Called to delete the attribute on an instance *instance* '
                 'of the\n'
                 '   owner class.\n'
                 '\n'
                 'The attribute "__objclass__" is interpreted by the "inspect" '
                 'module as\n'
                 'specifying the class where this object was defined (setting '
                 'this\n'
                 'appropriately can assist in runtime introspection of dynamic '
                 'class\n'
                 'attributes). For callables, it may indicate that an instance '
                 'of the\n'
                 'given type (or a subclass) is expected or required as the '
                 'first\n'
                 'positional argument (for example, CPython sets this '
                 'attribute for\n'
                 'unbound methods that are implemented in C).\n'
                 '\n'
                 '\n'
                 'Invoking Descriptors\n'
                 '--------------------\n'
                 '\n'
                 'In general, a descriptor is an object attribute with '
                 '"binding\n'
                 'behavior", one whose attribute access has been overridden by '
                 'methods\n'
                 'in the descriptor protocol:  "__get__()", "__set__()", and\n'
                 '"__delete__()". If any of those methods are defined for an '
                 'object, it\n'
                 'is said to be a descriptor.\n'
                 '\n'
                 'The default behavior for attribute access is to get, set, or '
                 'delete\n'
                 "the attribute from an object's dictionary. For instance, "
                 '"a.x" has a\n'
                 'lookup chain starting with "a.__dict__[\'x\']", then\n'
                 '"type(a).__dict__[\'x\']", and continuing through the base '
                 'classes of\n'
                 '"type(a)" excluding metaclasses.\n'
                 '\n'
                 'However, if the looked-up value is an object defining one of '
                 'the\n'
                 'descriptor methods, then Python may override the default '
                 'behavior and\n'
                 'invoke the descriptor method instead.  Where this occurs in '
                 'the\n'
                 'precedence chain depends on which descriptor methods were '
                 'defined and\n'
                 'how they were called.\n'
                 '\n'
                 'The starting point for descriptor invocation is a binding, '
                 '"a.x". How\n'
                 'the arguments are assembled depends on "a":\n'
                 '\n'
                 'Direct Call\n'
                 '   The simplest and least common call is when user code '
                 'directly\n'
                 '   invokes a descriptor method:    "x.__get__(a)".\n'
                 '\n'
                 'Instance Binding\n'
                 '   If binding to an object instance, "a.x" is transformed '
                 'into the\n'
                 '   call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n'
                 '\n'
                 'Class Binding\n'
                 '   If binding to a class, "A.x" is transformed into the '
                 'call:\n'
                 '   "A.__dict__[\'x\'].__get__(None, A)".\n'
                 '\n'
                 'Super Binding\n'
                 '   If "a" is an instance of "super", then the binding '
                 '"super(B,\n'
                 '   obj).m()" searches "obj.__class__.__mro__" for the base '
                 'class "A"\n'
                 '   immediately preceding "B" and then invokes the descriptor '
                 'with the\n'
                 '   call: "A.__dict__[\'m\'].__get__(obj, obj.__class__)".\n'
                 '\n'
                 'For instance bindings, the precedence of descriptor '
                 'invocation depends\n'
                 'on the which descriptor methods are defined.  A descriptor '
                 'can define\n'
                 'any combination of "__get__()", "__set__()" and '
                 '"__delete__()".  If it\n'
                 'does not define "__get__()", then accessing the attribute '
                 'will return\n'
                 'the descriptor object itself unless there is a value in the '
                 "object's\n"
                 'instance dictionary.  If the descriptor defines "__set__()" '
                 'and/or\n'
                 '"__delete__()", it is a data descriptor; if it defines '
                 'neither, it is\n'
                 'a non-data descriptor.  Normally, data descriptors define '
                 'both\n'
                 '"__get__()" and "__set__()", while non-data descriptors have '
                 'just the\n'
                 '"__get__()" method.  Data descriptors with "__set__()" and '
                 '"__get__()"\n'
                 'defined always override a redefinition in an instance '
                 'dictionary.  In\n'
                 'contrast, non-data descriptors can be overridden by '
                 'instances.\n'
                 '\n'
                 'Python methods (including "staticmethod()" and '
                 '"classmethod()") are\n'
                 'implemented as non-data descriptors.  Accordingly, instances '
                 'can\n'
                 'redefine and override methods.  This allows individual '
                 'instances to\n'
                 'acquire behaviors that differ from other instances of the '
                 'same class.\n'
                 '\n'
                 'The "property()" function is implemented as a data '
                 'descriptor.\n'
                 'Accordingly, instances cannot override the behavior of a '
                 'property.\n'
                 '\n'
                 '\n'
                 '__slots__\n'
                 '---------\n'
                 '\n'
                 'By default, instances of classes have a dictionary for '
                 'attribute\n'
                 'storage.  This wastes space for objects having very few '
                 'instance\n'
                 'variables.  The space consumption can become acute when '
                 'creating large\n'
                 'numbers of instances.\n'
                 '\n'
                 'The default can be overridden by defining *__slots__* in a '
                 'class\n'
                 'definition. The *__slots__* declaration takes a sequence of '
                 'instance\n'
                 'variables and reserves just enough space in each instance to '
                 'hold a\n'
                 'value for each variable.  Space is saved because *__dict__* '
                 'is not\n'
                 'created for each instance.\n'
                 '\n'
                 'object.__slots__\n'
                 '\n'
                 '   This class variable can be assigned a string, iterable, '
                 'or sequence\n'
                 '   of strings with variable names used by instances.  '
                 '*__slots__*\n'
                 '   reserves space for the declared variables and prevents '
                 'the\n'
                 '   automatic creation of *__dict__* and *__weakref__* for '
                 'each\n'
                 '   instance.\n'
                 '\n'
                 '\n'
                 'Notes on using *__slots__*\n'
                 '~~~~~~~~~~~~~~~~~~~~~~~~~~\n'
                 '\n'
                 '* When inheriting from a class without *__slots__*, the '
                 '*__dict__*\n'
                 '  attribute of that class will always be accessible, so a '
                 '*__slots__*\n'
                 '  definition in the subclass is meaningless.\n'
                 '\n'
                 '* Without a *__dict__* variable, instances cannot be '
                 'assigned new\n'
                 '  variables not listed in the *__slots__* definition.  '
                 'Attempts to\n'
                 '  assign to an unlisted variable name raises '
                 '"AttributeError". If\n'
                 '  dynamic assignment of new variables is desired, then add\n'
                 '  "\'__dict__\'" to the sequence of strings in the '
                 '*__slots__*\n'
                 '  declaration.\n'
                 '\n'
                 '* Without a *__weakref__* variable for each instance, '
                 'classes\n'
                 '  defining *__slots__* do not support weak references to '
                 'its\n'
                 '  instances. If weak reference support is needed, then add\n'
                 '  "\'__weakref__\'" to the sequence of strings in the '
                 '*__slots__*\n'
                 '  declaration.\n'
                 '\n'
                 '* *__slots__* are implemented at the class level by '
                 'creating\n'
                 '  descriptors (*Implementing Descriptors*) for each variable '
                 'name.  As\n'
                 '  a result, class attributes cannot be used to set default '
                 'values for\n'
                 '  instance variables defined by *__slots__*; otherwise, the '
                 'class\n'
                 '  attribute would overwrite the descriptor assignment.\n'
                 '\n'
                 '* The action of a *__slots__* declaration is limited to the '
                 'class\n'
                 '  where it is defined.  As a result, subclasses will have a '
                 '*__dict__*\n'
                 '  unless they also define *__slots__* (which must only '
                 'contain names\n'
                 '  of any *additional* slots).\n'
                 '\n'
                 '* If a class defines a slot also defined in a base class, '
                 'the\n'
                 '  instance variable defined by the base class slot is '
                 'inaccessible\n'
                 '  (except by retrieving its descriptor directly from the '
                 'base class).\n'
                 '  This renders the meaning of the program undefined.  In the '
                 'future, a\n'
                 '  check may be added to prevent this.\n'
                 '\n'
                 '* Nonempty *__slots__* does not work for classes derived '
                 'from\n'
                 '  "variable-length" built-in types such as "int", "bytes" '
                 'and "tuple".\n'
                 '\n'
                 '* Any non-string iterable may be assigned to *__slots__*. '
                 'Mappings\n'
                 '  may also be used; however, in the future, special meaning '
                 'may be\n'
                 '  assigned to the values corresponding to each key.\n'
                 '\n'
                 '* *__class__* assignment works only if both classes have the '
                 'same\n'
                 '  *__slots__*.\n'
                 '\n'
                 '\n'
                 'Customizing class creation\n'
                 '==========================\n'
                 '\n'
                 'By default, classes are constructed using "type()". The '
                 'class body is\n'
                 'executed in a new namespace and the class name is bound '
                 'locally to the\n'
                 'result of "type(name, bases, namespace)".\n'
                 '\n'
                 'The class creation process can be customised by passing the\n'
                 '"metaclass" keyword argument in the class definition line, '
                 'or by\n'
                 'inheriting from an existing class that included such an '
                 'argument. In\n'
                 'the following example, both "MyClass" and "MySubclass" are '
                 'instances\n'
                 'of "Meta":\n'
                 '\n'
                 '   class Meta(type):\n'
                 '       pass\n'
                 '\n'
                 '   class MyClass(metaclass=Meta):\n'
                 '       pass\n'
                 '\n'
                 '   class MySubclass(MyClass):\n'
                 '       pass\n'
                 '\n'
                 'Any other keyword arguments that are specified in the class '
                 'definition\n'
                 'are passed through to all metaclass operations described '
                 'below.\n'
                 '\n'
                 'When a class definition is executed, the following steps '
                 'occur:\n'
                 '\n'
                 '* the appropriate metaclass is determined\n'
                 '\n'
                 '* the class namespace is prepared\n'
                 '\n'
                 '* the class body is executed\n'
                 '\n'
                 '* the class object is created\n'
                 '\n'
                 '\n'
                 'Determining the appropriate metaclass\n'
                 '-------------------------------------\n'
                 '\n'
                 'The appropriate metaclass for a class definition is '
                 'determined as\n'
                 'follows:\n'
                 '\n'
                 '* if no bases and no explicit metaclass are given, then '
                 '"type()" is\n'
                 '  used\n'
                 '\n'
                 '* if an explicit metaclass is given and it is *not* an '
                 'instance of\n'
                 '  "type()", then it is used directly as the metaclass\n'
                 '\n'
                 '* if an instance of "type()" is given as the explicit '
                 'metaclass, or\n'
                 '  bases are defined, then the most derived metaclass is '
                 'used\n'
                 '\n'
                 'The most derived metaclass is selected from the explicitly '
                 'specified\n'
                 'metaclass (if any) and the metaclasses (i.e. "type(cls)") of '
                 'all\n'
                 'specified base classes. The most derived metaclass is one '
                 'which is a\n'
                 'subtype of *all* of these candidate metaclasses. If none of '
                 'the\n'
                 'candidate metaclasses meets that criterion, then the class '
                 'definition\n'
                 'will fail with "TypeError".\n'
                 '\n'
                 '\n'
                 'Preparing the class namespace\n'
                 '-----------------------------\n'
                 '\n'
                 'Once the appropriate metaclass has been identified, then the '
                 'class\n'
                 'namespace is prepared. If the metaclass has a "__prepare__" '
                 'attribute,\n'
                 'it is called as "namespace = metaclass.__prepare__(name, '
                 'bases,\n'
                 '**kwds)" (where the additional keyword arguments, if any, '
                 'come from\n'
                 'the class definition).\n'
                 '\n'
                 'If the metaclass has no "__prepare__" attribute, then the '
                 'class\n'
                 'namespace is initialised as an empty "dict()" instance.\n'
                 '\n'
                 'See also: **PEP 3115** - Metaclasses in Python 3000\n'
                 '\n'
                 '     Introduced the "__prepare__" namespace hook\n'
                 '\n'
                 '\n'
                 'Executing the class body\n'
                 '------------------------\n'
                 '\n'
                 'The class body is executed (approximately) as "exec(body, '
                 'globals(),\n'
                 'namespace)". The key difference from a normal call to '
                 '"exec()" is that\n'
                 'lexical scoping allows the class body (including any '
                 'methods) to\n'
                 'reference names from the current and outer scopes when the '
                 'class\n'
                 'definition occurs inside a function.\n'
                 '\n'
                 'However, even when the class definition occurs inside the '
                 'function,\n'
                 'methods defined inside the class still cannot see names '
                 'defined at the\n'
                 'class scope. Class variables must be accessed through the '
                 'first\n'
                 'parameter of instance or class methods, and cannot be '
                 'accessed at all\n'
                 'from static methods.\n'
                 '\n'
                 '\n'
                 'Creating the class object\n'
                 '-------------------------\n'
                 '\n'
                 'Once the class namespace has been populated by executing the '
                 'class\n'
                 'body, the class object is created by calling '
                 '"metaclass(name, bases,\n'
                 'namespace, **kwds)" (the additional keywords passed here are '
                 'the same\n'
                 'as those passed to "__prepare__").\n'
                 '\n'
                 'This class object is the one that will be referenced by the '
                 'zero-\n'
                 'argument form of "super()". "__class__" is an implicit '
                 'closure\n'
                 'reference created by the compiler if any methods in a class '
                 'body refer\n'
                 'to either "__class__" or "super". This allows the zero '
                 'argument form\n'
                 'of "super()" to correctly identify the class being defined '
                 'based on\n'
                 'lexical scoping, while the class or instance that was used '
                 'to make the\n'
                 'current call is identified based on the first argument '
                 'passed to the\n'
                 'method.\n'
                 '\n'
                 'After the class object is created, it is passed to the '
                 'class\n'
                 'decorators included in the class definition (if any) and the '
                 'resulting\n'
                 'object is bound in the local namespace as the defined '
                 'class.\n'
                 '\n'
                 'See also: **PEP 3135** - New super\n'
                 '\n'
                 '     Describes the implicit "__class__" closure reference\n'
                 '\n'
                 '\n'
                 'Metaclass example\n'
                 '-----------------\n'
                 '\n'
                 'The potential uses for metaclasses are boundless. Some ideas '
                 'that have\n'
                 'been explored include logging, interface checking, '
                 'automatic\n'
                 'delegation, automatic property creation, proxies, '
                 'frameworks, and\n'
                 'automatic resource locking/synchronization.\n'
                 '\n'
                 'Here is an example of a metaclass that uses an\n'
                 '"collections.OrderedDict" to remember the order that class '
                 'variables\n'
                 'are defined:\n'
                 '\n'
                 '   class OrderedClass(type):\n'
                 '\n'
                 '        @classmethod\n'
                 '        def __prepare__(metacls, name, bases, **kwds):\n'
                 '           return collections.OrderedDict()\n'
                 '\n'
                 '        def __new__(cls, name, bases, namespace, **kwds):\n'
                 '           result = type.__new__(cls, name, bases, '
                 'dict(namespace))\n'
                 '           result.members = tuple(namespace)\n'
                 '           return result\n'
                 '\n'
                 '   class A(metaclass=OrderedClass):\n'
                 '       def one(self): pass\n'
                 '       def two(self): pass\n'
                 '       def three(self): pass\n'
                 '       def four(self): pass\n'
                 '\n'
                 '   >>> A.members\n'
                 "   ('__module__', 'one', 'two', 'three', 'four')\n"
                 '\n'
                 'When the class definition for *A* gets executed, the process '
                 'begins\n'
                 'with calling the metaclass\'s "__prepare__()" method which '
                 'returns an\n'
                 'empty "collections.OrderedDict".  That mapping records the '
                 'methods and\n'
                 'attributes of *A* as they are defined within the body of the '
                 'class\n'
                 'statement. Once those definitions are executed, the ordered '
                 'dictionary\n'
                 'is fully populated and the metaclass\'s "__new__()" method '
                 'gets\n'
                 'invoked.  That method builds the new type and it saves the '
                 'ordered\n'
                 'dictionary keys in an attribute called "members".\n'
                 '\n'
                 '\n'
                 'Customizing instance and subclass checks\n'
                 '========================================\n'
                 '\n'
                 'The following methods are used to override the default '
                 'behavior of the\n'
                 '"isinstance()" and "issubclass()" built-in functions.\n'
                 '\n'
                 'In particular, the metaclass "abc.ABCMeta" implements these '
                 'methods in\n'
                 'order to allow the addition of Abstract Base Classes (ABCs) '
                 'as\n'
                 '"virtual base classes" to any class or type (including '
                 'built-in\n'
                 'types), including other ABCs.\n'
                 '\n'
                 'class.__instancecheck__(self, instance)\n'
                 '\n'
                 '   Return true if *instance* should be considered a (direct '
                 'or\n'
                 '   indirect) instance of *class*. If defined, called to '
                 'implement\n'
                 '   "isinstance(instance, class)".\n'
                 '\n'
                 'class.__subclasscheck__(self, subclass)\n'
                 '\n'
                 '   Return true if *subclass* should be considered a (direct '
                 'or\n'
                 '   indirect) subclass of *class*.  If defined, called to '
                 'implement\n'
                 '   "issubclass(subclass, class)".\n'
                 '\n'
                 'Note that these methods are looked up on the type '
                 '(metaclass) of a\n'
                 'class.  They cannot be defined as class methods in the '
                 'actual class.\n'
                 'This is consistent with the lookup of special methods that '
                 'are called\n'
                 'on instances, only in this case the instance is itself a '
                 'class.\n'
                 '\n'
                 'See also: **PEP 3119** - Introducing Abstract Base Classes\n'
                 '\n'
                 '     Includes the specification for customizing '
                 '"isinstance()" and\n'
                 '     "issubclass()" behavior through "__instancecheck__()" '
                 'and\n'
                 '     "__subclasscheck__()", with motivation for this '
                 'functionality in\n'
                 '     the context of adding Abstract Base Classes (see the '
                 '"abc"\n'
                 '     module) to the language.\n'
                 '\n'
                 '\n'
                 'Emulating callable objects\n'
                 '==========================\n'
                 '\n'
                 'object.__call__(self[, args...])\n'
                 '\n'
                 '   Called when the instance is "called" as a function; if '
                 'this method\n'
                 '   is defined, "x(arg1, arg2, ...)" is a shorthand for\n'
                 '   "x.__call__(arg1, arg2, ...)".\n'
                 '\n'
                 '\n'
                 'Emulating container types\n'
                 '=========================\n'
                 '\n'
                 'The following methods can be defined to implement container '
                 'objects.\n'
                 'Containers usually are sequences (such as lists or tuples) '
                 'or mappings\n'
                 '(like dictionaries), but can represent other containers as '
                 'well.  The\n'
                 'first set of methods is used either to emulate a sequence or '
                 'to\n'
                 'emulate a mapping; the difference is that for a sequence, '
                 'the\n'
                 'allowable keys should be the integers *k* for which "0 <= k '
                 '< N" where\n'
                 '*N* is the length of the sequence, or slice objects, which '
                 'define a\n'
                 'range of items.  It is also recommended that mappings '
                 'provide the\n'
                 'methods "keys()", "values()", "items()", "get()", '
                 '"clear()",\n'
                 '"setdefault()", "pop()", "popitem()", "copy()", and '
                 '"update()"\n'
                 "behaving similar to those for Python's standard dictionary "
                 'objects.\n'
                 'The "collections" module provides a "MutableMapping" '
                 'abstract base\n'
                 'class to help create those methods from a base set of '
                 '"__getitem__()",\n'
                 '"__setitem__()", "__delitem__()", and "keys()". Mutable '
                 'sequences\n'
                 'should provide methods "append()", "count()", "index()", '
                 '"extend()",\n'
                 '"insert()", "pop()", "remove()", "reverse()" and "sort()", '
                 'like Python\n'
                 'standard list objects.  Finally, sequence types should '
                 'implement\n'
                 'addition (meaning concatenation) and multiplication '
                 '(meaning\n'
                 'repetition) by defining the methods "__add__()", '
                 '"__radd__()",\n'
                 '"__iadd__()", "__mul__()", "__rmul__()" and "__imul__()" '
                 'described\n'
                 'below; they should not define other numerical operators.  It '
                 'is\n'
                 'recommended that both mappings and sequences implement the\n'
                 '"__contains__()" method to allow efficient use of the "in" '
                 'operator;\n'
                 'for mappings, "in" should search the mapping\'s keys; for '
                 'sequences, it\n'
                 'should search through the values.  It is further recommended '
                 'that both\n'
                 'mappings and sequences implement the "__iter__()" method to '
                 'allow\n'
                 'efficient iteration through the container; for mappings, '
                 '"__iter__()"\n'
                 'should be the same as "keys()"; for sequences, it should '
                 'iterate\n'
                 'through the values.\n'
                 '\n'
                 'object.__len__(self)\n'
                 '\n'
                 '   Called to implement the built-in function "len()".  '
                 'Should return\n'
                 '   the length of the object, an integer ">=" 0.  Also, an '
                 'object that\n'
                 '   doesn\'t define a "__bool__()" method and whose '
                 '"__len__()" method\n'
                 '   returns zero is considered to be false in a Boolean '
                 'context.\n'
                 '\n'
                 'object.__length_hint__(self)\n'
                 '\n'
                 '   Called to implement "operator.length_hint()". Should '
                 'return an\n'
                 '   estimated length for the object (which may be greater or '
                 'less than\n'
                 '   the actual length). The length must be an integer ">=" 0. '
                 'This\n'
                 '   method is purely an optimization and is never required '
                 'for\n'
                 '   correctness.\n'
                 '\n'
                 '   New in version 3.4.\n'
                 '\n'
                 'Note: Slicing is done exclusively with the following three '
                 'methods.\n'
                 '  A call like\n'
                 '\n'
                 '     a[1:2] = b\n'
                 '\n'
                 '  is translated to\n'
                 '\n'
                 '     a[slice(1, 2, None)] = b\n'
                 '\n'
                 '  and so forth.  Missing slice items are always filled in '
                 'with "None".\n'
                 '\n'
                 'object.__getitem__(self, key)\n'
                 '\n'
                 '   Called to implement evaluation of "self[key]". For '
                 'sequence types,\n'
                 '   the accepted keys should be integers and slice objects.  '
                 'Note that\n'
                 '   the special interpretation of negative indexes (if the '
                 'class wishes\n'
                 '   to emulate a sequence type) is up to the "__getitem__()" '
                 'method. If\n'
                 '   *key* is of an inappropriate type, "TypeError" may be '
                 'raised; if of\n'
                 '   a value outside the set of indexes for the sequence '
                 '(after any\n'
                 '   special interpretation of negative values), "IndexError" '
                 'should be\n'
                 '   raised. For mapping types, if *key* is missing (not in '
                 'the\n'
                 '   container), "KeyError" should be raised.\n'
                 '\n'
                 '   Note: "for" loops expect that an "IndexError" will be '
                 'raised for\n'
                 '     illegal indexes to allow proper detection of the end of '
                 'the\n'
                 '     sequence.\n'
                 '\n'
                 'object.__missing__(self, key)\n'
                 '\n'
                 '   Called by "dict"."__getitem__()" to implement "self[key]" '
                 'for dict\n'
                 '   subclasses when key is not in the dictionary.\n'
                 '\n'
                 'object.__setitem__(self, key, value)\n'
                 '\n'
                 '   Called to implement assignment to "self[key]".  Same note '
                 'as for\n'
                 '   "__getitem__()".  This should only be implemented for '
                 'mappings if\n'
                 '   the objects support changes to the values for keys, or if '
                 'new keys\n'
                 '   can be added, or for sequences if elements can be '
                 'replaced.  The\n'
                 '   same exceptions should be raised for improper *key* '
                 'values as for\n'
                 '   the "__getitem__()" method.\n'
                 '\n'
                 'object.__delitem__(self, key)\n'
                 '\n'
                 '   Called to implement deletion of "self[key]".  Same note '
                 'as for\n'
                 '   "__getitem__()".  This should only be implemented for '
                 'mappings if\n'
                 '   the objects support removal of keys, or for sequences if '
                 'elements\n'
                 '   can be removed from the sequence.  The same exceptions '
                 'should be\n'
                 '   raised for improper *key* values as for the '
                 '"__getitem__()" method.\n'
                 '\n'
                 'object.__iter__(self)\n'
                 '\n'
                 '   This method is called when an iterator is required for a '
                 'container.\n'
                 '   This method should return a new iterator object that can '
                 'iterate\n'
                 '   over all the objects in the container.  For mappings, it '
                 'should\n'
                 '   iterate over the keys of the container.\n'
                 '\n'
                 '   Iterator objects also need to implement this method; they '
                 'are\n'
                 '   required to return themselves.  For more information on '
                 'iterator\n'
                 '   objects, see *Iterator Types*.\n'
                 '\n'
                 'object.__reversed__(self)\n'
                 '\n'
                 '   Called (if present) by the "reversed()" built-in to '
                 'implement\n'
                 '   reverse iteration.  It should return a new iterator '
                 'object that\n'
                 '   iterates over all the objects in the container in reverse '
                 'order.\n'
                 '\n'
                 '   If the "__reversed__()" method is not provided, the '
                 '"reversed()"\n'
                 '   built-in will fall back to using the sequence protocol '
                 '("__len__()"\n'
                 '   and "__getitem__()").  Objects that support the sequence '
                 'protocol\n'
                 '   should only provide "__reversed__()" if they can provide '
                 'an\n'
                 '   implementation that is more efficient than the one '
                 'provided by\n'
                 '   "reversed()".\n'
                 '\n'
                 'The membership test operators ("in" and "not in") are '
                 'normally\n'
                 'implemented as an iteration through a sequence.  However, '
                 'container\n'
                 'objects can supply the following special method with a more '
                 'efficient\n'
                 'implementation, which also does not require the object be a '
                 'sequence.\n'
                 '\n'
                 'object.__contains__(self, item)\n'
                 '\n'
                 '   Called to implement membership test operators.  Should '
                 'return true\n'
                 '   if *item* is in *self*, false otherwise.  For mapping '
                 'objects, this\n'
                 '   should consider the keys of the mapping rather than the '
                 'values or\n'
                 '   the key-item pairs.\n'
                 '\n'
                 '   For objects that don\'t define "__contains__()", the '
                 'membership test\n'
                 '   first tries iteration via "__iter__()", then the old '
                 'sequence\n'
                 '   iteration protocol via "__getitem__()", see *this section '
                 'in the\n'
                 '   language reference*.\n'
                 '\n'
                 '\n'
                 'Emulating numeric types\n'
                 '=======================\n'
                 '\n'
                 'The following methods can be defined to emulate numeric '
                 'objects.\n'
                 'Methods corresponding to operations that are not supported '
                 'by the\n'
                 'particular kind of number implemented (e.g., bitwise '
                 'operations for\n'
                 'non-integral numbers) should be left undefined.\n'
                 '\n'
                 'object.__add__(self, other)\n'
                 'object.__sub__(self, other)\n'
                 'object.__mul__(self, other)\n'
                 'object.__truediv__(self, other)\n'
                 'object.__floordiv__(self, other)\n'
                 'object.__mod__(self, other)\n'
                 'object.__divmod__(self, other)\n'
                 'object.__pow__(self, other[, modulo])\n'
                 'object.__lshift__(self, other)\n'
                 'object.__rshift__(self, other)\n'
                 'object.__and__(self, other)\n'
                 'object.__xor__(self, other)\n'
                 'object.__or__(self, other)\n'
                 '\n'
                 '   These methods are called to implement the binary '
                 'arithmetic\n'
                 '   operations ("+", "-", "*", "/", "//", "%", "divmod()", '
                 '"pow()",\n'
                 '   "**", "<<", ">>", "&", "^", "|").  For instance, to '
                 'evaluate the\n'
                 '   expression "x + y", where *x* is an instance of a class '
                 'that has an\n'
                 '   "__add__()" method, "x.__add__(y)" is called.  The '
                 '"__divmod__()"\n'
                 '   method should be the equivalent to using "__floordiv__()" '
                 'and\n'
                 '   "__mod__()"; it should not be related to '
                 '"__truediv__()".  Note\n'
                 '   that "__pow__()" should be defined to accept an optional '
                 'third\n'
                 '   argument if the ternary version of the built-in "pow()" '
                 'function is\n'
                 '   to be supported.\n'
                 '\n'
                 '   If one of those methods does not support the operation '
                 'with the\n'
                 '   supplied arguments, it should return "NotImplemented".\n'
                 '\n'
                 'object.__radd__(self, other)\n'
                 'object.__rsub__(self, other)\n'
                 'object.__rmul__(self, other)\n'
                 'object.__rtruediv__(self, other)\n'
                 'object.__rfloordiv__(self, other)\n'
                 'object.__rmod__(self, other)\n'
                 'object.__rdivmod__(self, other)\n'
                 'object.__rpow__(self, other)\n'
                 'object.__rlshift__(self, other)\n'
                 'object.__rrshift__(self, other)\n'
                 'object.__rand__(self, other)\n'
                 'object.__rxor__(self, other)\n'
                 'object.__ror__(self, other)\n'
                 '\n'
                 '   These methods are called to implement the binary '
                 'arithmetic\n'
                 '   operations ("+", "-", "*", "/", "//", "%", "divmod()", '
                 '"pow()",\n'
                 '   "**", "<<", ">>", "&", "^", "|") with reflected (swapped) '
                 'operands.\n'
                 '   These functions are only called if the left operand does '
                 'not\n'
                 '   support the corresponding operation and the operands are '
                 'of\n'
                 '   different types. [2]  For instance, to evaluate the '
                 'expression "x -\n'
                 '   y", where *y* is an instance of a class that has an '
                 '"__rsub__()"\n'
                 '   method, "y.__rsub__(x)" is called if "x.__sub__(y)" '
                 'returns\n'
                 '   *NotImplemented*.\n'
                 '\n'
                 '   Note that ternary "pow()" will not try calling '
                 '"__rpow__()" (the\n'
                 '   coercion rules would become too complicated).\n'
                 '\n'
                 "   Note: If the right operand's type is a subclass of the "
                 'left\n'
                 "     operand's type and that subclass provides the reflected "
                 'method\n'
                 '     for the operation, this method will be called before '
                 'the left\n'
                 "     operand's non-reflected method.  This behavior allows "
                 'subclasses\n'
                 "     to override their ancestors' operations.\n"
                 '\n'
                 'object.__iadd__(self, other)\n'
                 'object.__isub__(self, other)\n'
                 'object.__imul__(self, other)\n'
                 'object.__itruediv__(self, other)\n'
                 'object.__ifloordiv__(self, other)\n'
                 'object.__imod__(self, other)\n'
                 'object.__ipow__(self, other[, modulo])\n'
                 'object.__ilshift__(self, other)\n'
                 'object.__irshift__(self, other)\n'
                 'object.__iand__(self, other)\n'
                 'object.__ixor__(self, other)\n'
                 'object.__ior__(self, other)\n'
                 '\n'
                 '   These methods are called to implement the augmented '
                 'arithmetic\n'
                 '   assignments ("+=", "-=", "*=", "/=", "//=", "%=", "**=", '
                 '"<<=",\n'
                 '   ">>=", "&=", "^=", "|=").  These methods should attempt '
                 'to do the\n'
                 '   operation in-place (modifying *self*) and return the '
                 'result (which\n'
                 '   could be, but does not have to be, *self*).  If a '
                 'specific method\n'
                 '   is not defined, the augmented assignment falls back to '
                 'the normal\n'
                 '   methods.  For instance, if *x* is an instance of a class '
                 'with an\n'
                 '   "__iadd__()" method, "x += y" is equivalent to "x = '
                 'x.__iadd__(y)"\n'
                 '   . Otherwise, "x.__add__(y)" and "y.__radd__(x)" are '
                 'considered, as\n'
                 '   with the evaluation of "x + y". In certain situations, '
                 'augmented\n'
                 '   assignment can result in unexpected errors (see *Why '
                 'does\n'
                 "   a_tuple[i] += ['item'] raise an exception when the "
                 'addition\n'
                 '   works?*), but this behavior is in fact part of the data '
                 'model.\n'
                 '\n'
                 'object.__neg__(self)\n'
                 'object.__pos__(self)\n'
                 'object.__abs__(self)\n'
                 'object.__invert__(self)\n'
                 '\n'
                 '   Called to implement the unary arithmetic operations ("-", '
                 '"+",\n'
                 '   "abs()" and "~").\n'
                 '\n'
                 'object.__complex__(self)\n'
                 'object.__int__(self)\n'
                 'object.__float__(self)\n'
                 'object.__round__(self[, n])\n'
                 '\n'
                 '   Called to implement the built-in functions "complex()", '
                 '"int()",\n'
                 '   "float()" and "round()".  Should return a value of the '
                 'appropriate\n'
                 '   type.\n'
                 '\n'
                 'object.__index__(self)\n'
                 '\n'
                 '   Called to implement "operator.index()", and whenever '
                 'Python needs\n'
                 '   to losslessly convert the numeric object to an integer '
                 'object (such\n'
                 '   as in slicing, or in the built-in "bin()", "hex()" and '
                 '"oct()"\n'
                 '   functions). Presence of this method indicates that the '
                 'numeric\n'
                 '   object is an integer type.  Must return an integer.\n'
                 '\n'
                 '   Note: In order to have a coherent integer type class, '
                 'when\n'
                 '     "__index__()" is defined "__int__()" should also be '
                 'defined, and\n'
                 '     both should return the same value.\n'
                 '\n'
                 '\n'
                 'With Statement Context Managers\n'
                 '===============================\n'
                 '\n'
                 'A *context manager* is an object that defines the runtime '
                 'context to\n'
                 'be established when executing a "with" statement. The '
                 'context manager\n'
                 'handles the entry into, and the exit from, the desired '
                 'runtime context\n'
                 'for the execution of the block of code.  Context managers '
                 'are normally\n'
                 'invoked using the "with" statement (described in section '
                 '*The with\n'
                 'statement*), but can also be used by directly invoking their '
                 'methods.\n'
                 '\n'
                 'Typical uses of context managers include saving and '
                 'restoring various\n'
                 'kinds of global state, locking and unlocking resources, '
                 'closing opened\n'
                 'files, etc.\n'
                 '\n'
                 'For more information on context managers, see *Context '
                 'Manager Types*.\n'
                 '\n'
                 'object.__enter__(self)\n'
                 '\n'
                 '   Enter the runtime context related to this object. The '
                 '"with"\n'
                 "   statement will bind this method's return value to the "
                 'target(s)\n'
                 '   specified in the "as" clause of the statement, if any.\n'
                 '\n'
                 'object.__exit__(self, exc_type, exc_value, traceback)\n'
                 '\n'
                 '   Exit the runtime context related to this object. The '
                 'parameters\n'
                 '   describe the exception that caused the context to be '
                 'exited. If the\n'
                 '   context was exited without an exception, all three '
                 'arguments will\n'
                 '   be "None".\n'
                 '\n'
                 '   If an exception is supplied, and the method wishes to '
                 'suppress the\n'
                 '   exception (i.e., prevent it from being propagated), it '
                 'should\n'
                 '   return a true value. Otherwise, the exception will be '
                 'processed\n'
                 '   normally upon exit from this method.\n'
                 '\n'
                 '   Note that "__exit__()" methods should not reraise the '
                 'passed-in\n'
                 "   exception; this is the caller's responsibility.\n"
                 '\n'
                 'See also: **PEP 0343** - The "with" statement\n'
                 '\n'
                 '     The specification, background, and examples for the '
                 'Python "with"\n'
                 '     statement.\n'
                 '\n'
                 '\n'
                 'Special method lookup\n'
                 '=====================\n'
                 '\n'
                 'For custom classes, implicit invocations of special methods '
                 'are only\n'
                 "guaranteed to work correctly if defined on an object's type, "
                 'not in\n'
                 "the object's instance dictionary.  That behaviour is the "
                 'reason why\n'
                 'the following code raises an exception:\n'
                 '\n'
                 '   >>> class C:\n'
                 '   ...     pass\n'
                 '   ...\n'
                 '   >>> c = C()\n'
                 '   >>> c.__len__ = lambda: 5\n'
                 '   >>> len(c)\n'
                 '   Traceback (most recent call last):\n'
                 '     File "<stdin>", line 1, in <module>\n'
                 "   TypeError: object of type 'C' has no len()\n"
                 '\n'
                 'The rationale behind this behaviour lies with a number of '
                 'special\n'
                 'methods such as "__hash__()" and "__repr__()" that are '
                 'implemented by\n'
                 'all objects, including type objects. If the implicit lookup '
                 'of these\n'
                 'methods used the conventional lookup process, they would '
                 'fail when\n'
                 'invoked on the type object itself:\n'
                 '\n'
                 '   >>> 1 .__hash__() == hash(1)\n'
                 '   True\n'
                 '   >>> int.__hash__() == hash(int)\n'
                 '   Traceback (most recent call last):\n'
                 '     File "<stdin>", line 1, in <module>\n'
                 "   TypeError: descriptor '__hash__' of 'int' object needs an "
                 'argument\n'
                 '\n'
                 'Incorrectly attempting to invoke an unbound method of a '
                 'class in this\n'
                 "way is sometimes referred to as 'metaclass confusion', and "
                 'is avoided\n'
                 'by bypassing the instance when looking up special methods:\n'
                 '\n'
                 '   >>> type(1).__hash__(1) == hash(1)\n'
                 '   True\n'
                 '   >>> type(int).__hash__(int) == hash(int)\n'
                 '   True\n'
                 '\n'
                 'In addition to bypassing any instance attributes in the '
                 'interest of\n'
                 'correctness, implicit special method lookup generally also '
                 'bypasses\n'
                 'the "__getattribute__()" method even of the object\'s '
                 'metaclass:\n'
                 '\n'
                 '   >>> class Meta(type):\n'
                 '   ...     def __getattribute__(*args):\n'
                 '   ...         print("Metaclass getattribute invoked")\n'
                 '   ...         return type.__getattribute__(*args)\n'
                 '   ...\n'
                 '   >>> class C(object, metaclass=Meta):\n'
                 '   ...     def __len__(self):\n'
                 '   ...         return 10\n'
                 '   ...     def __getattribute__(*args):\n'
                 '   ...         print("Class getattribute invoked")\n'
                 '   ...         return object.__getattribute__(*args)\n'
                 '   ...\n'
                 '   >>> c = C()\n'
                 '   >>> c.__len__()                 # Explicit lookup via '
                 'instance\n'
                 '   Class getattribute invoked\n'
                 '   10\n'
                 '   >>> type(c).__len__(c)          # Explicit lookup via '
                 'type\n'
                 '   Metaclass getattribute invoked\n'
                 '   10\n'
                 '   >>> len(c)                      # Implicit lookup\n'
                 '   10\n'
                 '\n'
                 'Bypassing the "__getattribute__()" machinery in this fashion '
                 'provides\n'
                 'significant scope for speed optimisations within the '
                 'interpreter, at\n'
                 'the cost of some flexibility in the handling of special '
                 'methods (the\n'
                 'special method *must* be set on the class object itself in '
                 'order to be\n'
                 'consistently invoked by the interpreter).\n'
                 '\n'
                 '-[ Footnotes ]-\n'
                 '\n'
                 "[1] It *is* possible in some cases to change an object's "
                 'type,\n'
                 "    under certain controlled conditions. It generally isn't "
                 'a good\n'
                 '    idea though, since it can lead to some very strange '
                 'behaviour if\n'
                 '    it is handled incorrectly.\n'
                 '\n'
                 '[2] For operands of the same type, it is assumed that if the '
                 'non-\n'
                 '    reflected method (such as "__add__()") fails the '
                 'operation is not\n'
                 '    supported, which is why the reflected method is not '
                 'called.\n',
 'string-methods': '\n'
                   'String Methods\n'
                   '**************\n'
                   '\n'
                   'Strings implement all of the *common* sequence operations, '
                   'along with\n'
                   'the additional methods described below.\n'
                   '\n'
                   'Strings also support two styles of string formatting, one '
                   'providing a\n'
                   'large degree of flexibility and customization (see '
                   '"str.format()",\n'
                   '*Format String Syntax* and *String Formatting*) and the '
                   'other based on\n'
                   'C "printf" style formatting that handles a narrower range '
                   'of types and\n'
                   'is slightly harder to use correctly, but is often faster '
                   'for the cases\n'
                   'it can handle (*printf-style String Formatting*).\n'
                   '\n'
                   'The *Text Processing Services* section of the standard '
                   'library covers\n'
                   'a number of other modules that provide various text '
                   'related utilities\n'
                   '(including regular expression support in the "re" '
                   'module).\n'
                   '\n'
                   'str.capitalize()\n'
                   '\n'
                   '   Return a copy of the string with its first character '
                   'capitalized\n'
                   '   and the rest lowercased.\n'
                   '\n'
                   'str.casefold()\n'
                   '\n'
                   '   Return a casefolded copy of the string. Casefolded '
                   'strings may be\n'
                   '   used for caseless matching.\n'
                   '\n'
                   '   Casefolding is similar to lowercasing but more '
                   'aggressive because\n'
                   '   it is intended to remove all case distinctions in a '
                   'string. For\n'
                   '   example, the German lowercase letter "\'ß\'" is '
                   'equivalent to ""ss"".\n'
                   '   Since it is already lowercase, "lower()" would do '
                   'nothing to "\'ß\'";\n'
                   '   "casefold()" converts it to ""ss"".\n'
                   '\n'
                   '   The casefolding algorithm is described in section 3.13 '
                   'of the\n'
                   '   Unicode Standard.\n'
                   '\n'
                   '   New in version 3.3.\n'
                   '\n'
                   'str.center(width[, fillchar])\n'
                   '\n'
                   '   Return centered in a string of length *width*. Padding '
                   'is done\n'
                   '   using the specified *fillchar* (default is an ASCII '
                   'space). The\n'
                   '   original string is returned if *width* is less than or '
                   'equal to\n'
                   '   "len(s)".\n'
                   '\n'
                   'str.count(sub[, start[, end]])\n'
                   '\n'
                   '   Return the number of non-overlapping occurrences of '
                   'substring *sub*\n'
                   '   in the range [*start*, *end*].  Optional arguments '
                   '*start* and\n'
                   '   *end* are interpreted as in slice notation.\n'
                   '\n'
                   'str.encode(encoding="utf-8", errors="strict")\n'
                   '\n'
                   '   Return an encoded version of the string as a bytes '
                   'object. Default\n'
                   '   encoding is "\'utf-8\'". *errors* may be given to set a '
                   'different\n'
                   '   error handling scheme. The default for *errors* is '
                   '"\'strict\'",\n'
                   '   meaning that encoding errors raise a "UnicodeError". '
                   'Other possible\n'
                   '   values are "\'ignore\'", "\'replace\'", '
                   '"\'xmlcharrefreplace\'",\n'
                   '   "\'backslashreplace\'" and any other name registered '
                   'via\n'
                   '   "codecs.register_error()", see section *Error '
                   'Handlers*. For a list\n'
                   '   of possible encodings, see section *Standard '
                   'Encodings*.\n'
                   '\n'
                   '   Changed in version 3.1: Support for keyword arguments '
                   'added.\n'
                   '\n'
                   'str.endswith(suffix[, start[, end]])\n'
                   '\n'
                   '   Return "True" if the string ends with the specified '
                   '*suffix*,\n'
                   '   otherwise return "False".  *suffix* can also be a tuple '
                   'of suffixes\n'
                   '   to look for.  With optional *start*, test beginning at '
                   'that\n'
                   '   position.  With optional *end*, stop comparing at that '
                   'position.\n'
                   '\n'
                   'str.expandtabs(tabsize=8)\n'
                   '\n'
                   '   Return a copy of the string where all tab characters '
                   'are replaced\n'
                   '   by one or more spaces, depending on the current column '
                   'and the\n'
                   '   given tab size.  Tab positions occur every *tabsize* '
                   'characters\n'
                   '   (default is 8, giving tab positions at columns 0, 8, 16 '
                   'and so on).\n'
                   '   To expand the string, the current column is set to zero '
                   'and the\n'
                   '   string is examined character by character.  If the '
                   'character is a\n'
                   '   tab ("\\t"), one or more space characters are inserted '
                   'in the result\n'
                   '   until the current column is equal to the next tab '
                   'position. (The\n'
                   '   tab character itself is not copied.)  If the character '
                   'is a newline\n'
                   '   ("\\n") or return ("\\r"), it is copied and the current '
                   'column is\n'
                   '   reset to zero.  Any other character is copied unchanged '
                   'and the\n'
                   '   current column is incremented by one regardless of how '
                   'the\n'
                   '   character is represented when printed.\n'
                   '\n'
                   "   >>> '01\\t012\\t0123\\t01234'.expandtabs()\n"
                   "   '01      012     0123    01234'\n"
                   "   >>> '01\\t012\\t0123\\t01234'.expandtabs(4)\n"
                   "   '01  012 0123    01234'\n"
                   '\n'
                   'str.find(sub[, start[, end]])\n'
                   '\n'
                   '   Return the lowest index in the string where substring '
                   '*sub* is\n'
                   '   found within the slice "s[start:end]".  Optional '
                   'arguments *start*\n'
                   '   and *end* are interpreted as in slice notation.  Return '
                   '"-1" if\n'
                   '   *sub* is not found.\n'
                   '\n'
                   '   Note: The "find()" method should be used only if you '
                   'need to know\n'
                   '     the position of *sub*.  To check if *sub* is a '
                   'substring or not,\n'
                   '     use the "in" operator:\n'
                   '\n'
                   "        >>> 'Py' in 'Python'\n"
                   '        True\n'
                   '\n'
                   'str.format(*args, **kwargs)\n'
                   '\n'
                   '   Perform a string formatting operation.  The string on '
                   'which this\n'
                   '   method is called can contain literal text or '
                   'replacement fields\n'
                   '   delimited by braces "{}".  Each replacement field '
                   'contains either\n'
                   '   the numeric index of a positional argument, or the name '
                   'of a\n'
                   '   keyword argument.  Returns a copy of the string where '
                   'each\n'
                   '   replacement field is replaced with the string value of '
                   'the\n'
                   '   corresponding argument.\n'
                   '\n'
                   '   >>> "The sum of 1 + 2 is {0}".format(1+2)\n'
                   "   'The sum of 1 + 2 is 3'\n"
                   '\n'
                   '   See *Format String Syntax* for a description of the '
                   'various\n'
                   '   formatting options that can be specified in format '
                   'strings.\n'
                   '\n'
                   'str.format_map(mapping)\n'
                   '\n'
                   '   Similar to "str.format(**mapping)", except that '
                   '"mapping" is used\n'
                   '   directly and not copied to a "dict".  This is useful if '
                   'for example\n'
                   '   "mapping" is a dict subclass:\n'
                   '\n'
                   '   >>> class Default(dict):\n'
                   '   ...     def __missing__(self, key):\n'
                   '   ...         return key\n'
                   '   ...\n'
                   "   >>> '{name} was born in "
                   "{country}'.format_map(Default(name='Guido'))\n"
                   "   'Guido was born in country'\n"
                   '\n'
                   '   New in version 3.2.\n'
                   '\n'
                   'str.index(sub[, start[, end]])\n'
                   '\n'
                   '   Like "find()", but raise "ValueError" when the '
                   'substring is not\n'
                   '   found.\n'
                   '\n'
                   'str.isalnum()\n'
                   '\n'
                   '   Return true if all characters in the string are '
                   'alphanumeric and\n'
                   '   there is at least one character, false otherwise.  A '
                   'character "c"\n'
                   '   is alphanumeric if one of the following returns '
                   '"True":\n'
                   '   "c.isalpha()", "c.isdecimal()", "c.isdigit()", or '
                   '"c.isnumeric()".\n'
                   '\n'
                   'str.isalpha()\n'
                   '\n'
                   '   Return true if all characters in the string are '
                   'alphabetic and\n'
                   '   there is at least one character, false otherwise.  '
                   'Alphabetic\n'
                   '   characters are those characters defined in the Unicode '
                   'character\n'
                   '   database as "Letter", i.e., those with general category '
                   'property\n'
                   '   being one of "Lm", "Lt", "Lu", "Ll", or "Lo".  Note '
                   'that this is\n'
                   '   different from the "Alphabetic" property defined in the '
                   'Unicode\n'
                   '   Standard.\n'
                   '\n'
                   'str.isdecimal()\n'
                   '\n'
                   '   Return true if all characters in the string are decimal '
                   'characters\n'
                   '   and there is at least one character, false otherwise. '
                   'Decimal\n'
                   '   characters are those from general category "Nd". This '
                   'category\n'
                   '   includes digit characters, and all characters that can '
                   'be used to\n'
                   '   form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC '
                   'DIGIT ZERO.\n'
                   '\n'
                   'str.isdigit()\n'
                   '\n'
                   '   Return true if all characters in the string are digits '
                   'and there is\n'
                   '   at least one character, false otherwise.  Digits '
                   'include decimal\n'
                   '   characters and digits that need special handling, such '
                   'as the\n'
                   '   compatibility superscript digits.  Formally, a digit is '
                   'a character\n'
                   '   that has the property value Numeric_Type=Digit or\n'
                   '   Numeric_Type=Decimal.\n'
                   '\n'
                   'str.isidentifier()\n'
                   '\n'
                   '   Return true if the string is a valid identifier '
                   'according to the\n'
                   '   language definition, section *Identifiers and '
                   'keywords*.\n'
                   '\n'
                   '   Use "keyword.iskeyword()" to test for reserved '
                   'identifiers such as\n'
                   '   "def" and "class".\n'
                   '\n'
                   'str.islower()\n'
                   '\n'
                   '   Return true if all cased characters [4] in the string '
                   'are lowercase\n'
                   '   and there is at least one cased character, false '
                   'otherwise.\n'
                   '\n'
                   'str.isnumeric()\n'
                   '\n'
                   '   Return true if all characters in the string are numeric '
                   'characters,\n'
                   '   and there is at least one character, false otherwise. '
                   'Numeric\n'
                   '   characters include digit characters, and all characters '
                   'that have\n'
                   '   the Unicode numeric value property, e.g. U+2155, VULGAR '
                   'FRACTION\n'
                   '   ONE FIFTH.  Formally, numeric characters are those with '
                   'the\n'
                   '   property value Numeric_Type=Digit, Numeric_Type=Decimal '
                   'or\n'
                   '   Numeric_Type=Numeric.\n'
                   '\n'
                   'str.isprintable()\n'
                   '\n'
                   '   Return true if all characters in the string are '
                   'printable or the\n'
                   '   string is empty, false otherwise.  Nonprintable '
                   'characters are\n'
                   '   those characters defined in the Unicode character '
                   'database as\n'
                   '   "Other" or "Separator", excepting the ASCII space '
                   '(0x20) which is\n'
                   '   considered printable.  (Note that printable characters '
                   'in this\n'
                   '   context are those which should not be escaped when '
                   '"repr()" is\n'
                   '   invoked on a string.  It has no bearing on the handling '
                   'of strings\n'
                   '   written to "sys.stdout" or "sys.stderr".)\n'
                   '\n'
                   'str.isspace()\n'
                   '\n'
                   '   Return true if there are only whitespace characters in '
                   'the string\n'
                   '   and there is at least one character, false otherwise.  '
                   'Whitespace\n'
                   '   characters  are those characters defined in the Unicode '
                   'character\n'
                   '   database as "Other" or "Separator" and those with '
                   'bidirectional\n'
                   '   property being one of "WS", "B", or "S".\n'
                   '\n'
                   'str.istitle()\n'
                   '\n'
                   '   Return true if the string is a titlecased string and '
                   'there is at\n'
                   '   least one character, for example uppercase characters '
                   'may only\n'
                   '   follow uncased characters and lowercase characters only '
                   'cased ones.\n'
                   '   Return false otherwise.\n'
                   '\n'
                   'str.isupper()\n'
                   '\n'
                   '   Return true if all cased characters [4] in the string '
                   'are uppercase\n'
                   '   and there is at least one cased character, false '
                   'otherwise.\n'
                   '\n'
                   'str.join(iterable)\n'
                   '\n'
                   '   Return a string which is the concatenation of the '
                   'strings in the\n'
                   '   *iterable* *iterable*.  A "TypeError" will be raised if '
                   'there are\n'
                   '   any non-string values in *iterable*, including "bytes" '
                   'objects.\n'
                   '   The separator between elements is the string providing '
                   'this method.\n'
                   '\n'
                   'str.ljust(width[, fillchar])\n'
                   '\n'
                   '   Return the string left justified in a string of length '
                   '*width*.\n'
                   '   Padding is done using the specified *fillchar* (default '
                   'is an ASCII\n'
                   '   space). The original string is returned if *width* is '
                   'less than or\n'
                   '   equal to "len(s)".\n'
                   '\n'
                   'str.lower()\n'
                   '\n'
                   '   Return a copy of the string with all the cased '
                   'characters [4]\n'
                   '   converted to lowercase.\n'
                   '\n'
                   '   The lowercasing algorithm used is described in section '
                   '3.13 of the\n'
                   '   Unicode Standard.\n'
                   '\n'
                   'str.lstrip([chars])\n'
                   '\n'
                   '   Return a copy of the string with leading characters '
                   'removed.  The\n'
                   '   *chars* argument is a string specifying the set of '
                   'characters to be\n'
                   '   removed.  If omitted or "None", the *chars* argument '
                   'defaults to\n'
                   '   removing whitespace.  The *chars* argument is not a '
                   'prefix; rather,\n'
                   '   all combinations of its values are stripped:\n'
                   '\n'
                   "      >>> '   spacious   '.lstrip()\n"
                   "      'spacious   '\n"
                   "      >>> 'www.example.com'.lstrip('cmowz.')\n"
                   "      'example.com'\n"
                   '\n'
                   'static str.maketrans(x[, y[, z]])\n'
                   '\n'
                   '   This static method returns a translation table usable '
                   'for\n'
                   '   "str.translate()".\n'
                   '\n'
                   '   If there is only one argument, it must be a dictionary '
                   'mapping\n'
                   '   Unicode ordinals (integers) or characters (strings of '
                   'length 1) to\n'
                   '   Unicode ordinals, strings (of arbitrary lengths) or '
                   'None.\n'
                   '   Character keys will then be converted to ordinals.\n'
                   '\n'
                   '   If there are two arguments, they must be strings of '
                   'equal length,\n'
                   '   and in the resulting dictionary, each character in x '
                   'will be mapped\n'
                   '   to the character at the same position in y.  If there '
                   'is a third\n'
                   '   argument, it must be a string, whose characters will be '
                   'mapped to\n'
                   '   None in the result.\n'
                   '\n'
                   'str.partition(sep)\n'
                   '\n'
                   '   Split the string at the first occurrence of *sep*, and '
                   'return a\n'
                   '   3-tuple containing the part before the separator, the '
                   'separator\n'
                   '   itself, and the part after the separator.  If the '
                   'separator is not\n'
                   '   found, return a 3-tuple containing the string itself, '
                   'followed by\n'
                   '   two empty strings.\n'
                   '\n'
                   'str.replace(old, new[, count])\n'
                   '\n'
                   '   Return a copy of the string with all occurrences of '
                   'substring *old*\n'
                   '   replaced by *new*.  If the optional argument *count* is '
                   'given, only\n'
                   '   the first *count* occurrences are replaced.\n'
                   '\n'
                   'str.rfind(sub[, start[, end]])\n'
                   '\n'
                   '   Return the highest index in the string where substring '
                   '*sub* is\n'
                   '   found, such that *sub* is contained within '
                   '"s[start:end]".\n'
                   '   Optional arguments *start* and *end* are interpreted as '
                   'in slice\n'
                   '   notation.  Return "-1" on failure.\n'
                   '\n'
                   'str.rindex(sub[, start[, end]])\n'
                   '\n'
                   '   Like "rfind()" but raises "ValueError" when the '
                   'substring *sub* is\n'
                   '   not found.\n'
                   '\n'
                   'str.rjust(width[, fillchar])\n'
                   '\n'
                   '   Return the string right justified in a string of length '
                   '*width*.\n'
                   '   Padding is done using the specified *fillchar* (default '
                   'is an ASCII\n'
                   '   space). The original string is returned if *width* is '
                   'less than or\n'
                   '   equal to "len(s)".\n'
                   '\n'
                   'str.rpartition(sep)\n'
                   '\n'
                   '   Split the string at the last occurrence of *sep*, and '
                   'return a\n'
                   '   3-tuple containing the part before the separator, the '
                   'separator\n'
                   '   itself, and the part after the separator.  If the '
                   'separator is not\n'
                   '   found, return a 3-tuple containing two empty strings, '
                   'followed by\n'
                   '   the string itself.\n'
                   '\n'
                   'str.rsplit(sep=None, maxsplit=-1)\n'
                   '\n'
                   '   Return a list of the words in the string, using *sep* '
                   'as the\n'
                   '   delimiter string. If *maxsplit* is given, at most '
                   '*maxsplit* splits\n'
                   '   are done, the *rightmost* ones.  If *sep* is not '
                   'specified or\n'
                   '   "None", any whitespace string is a separator.  Except '
                   'for splitting\n'
                   '   from the right, "rsplit()" behaves like "split()" which '
                   'is\n'
                   '   described in detail below.\n'
                   '\n'
                   'str.rstrip([chars])\n'
                   '\n'
                   '   Return a copy of the string with trailing characters '
                   'removed.  The\n'
                   '   *chars* argument is a string specifying the set of '
                   'characters to be\n'
                   '   removed.  If omitted or "None", the *chars* argument '
                   'defaults to\n'
                   '   removing whitespace.  The *chars* argument is not a '
                   'suffix; rather,\n'
                   '   all combinations of its values are stripped:\n'
                   '\n'
                   "      >>> '   spacious   '.rstrip()\n"
                   "      '   spacious'\n"
                   "      >>> 'mississippi'.rstrip('ipz')\n"
                   "      'mississ'\n"
                   '\n'
                   'str.split(sep=None, maxsplit=-1)\n'
                   '\n'
                   '   Return a list of the words in the string, using *sep* '
                   'as the\n'
                   '   delimiter string.  If *maxsplit* is given, at most '
                   '*maxsplit*\n'
                   '   splits are done (thus, the list will have at most '
                   '"maxsplit+1"\n'
                   '   elements).  If *maxsplit* is not specified or "-1", '
                   'then there is\n'
                   '   no limit on the number of splits (all possible splits '
                   'are made).\n'
                   '\n'
                   '   If *sep* is given, consecutive delimiters are not '
                   'grouped together\n'
                   '   and are deemed to delimit empty strings (for example,\n'
                   '   "\'1,,2\'.split(\',\')" returns "[\'1\', \'\', '
                   '\'2\']").  The *sep* argument\n'
                   '   may consist of multiple characters (for example,\n'
                   '   "\'1<>2<>3\'.split(\'<>\')" returns "[\'1\', \'2\', '
                   '\'3\']"). Splitting an\n'
                   '   empty string with a specified separator returns '
                   '"[\'\']".\n'
                   '\n'
                   '   For example:\n'
                   '\n'
                   "      >>> '1,2,3'.split(',')\n"
                   "      ['1', '2', '3']\n"
                   "      >>> '1,2,3'.split(',', maxsplit=1)\n"
                   "      ['1', '2,3']\n"
                   "      >>> '1,2,,3,'.split(',')\n"
                   "      ['1', '2', '', '3', '']\n"
                   '\n'
                   '   If *sep* is not specified or is "None", a different '
                   'splitting\n'
                   '   algorithm is applied: runs of consecutive whitespace '
                   'are regarded\n'
                   '   as a single separator, and the result will contain no '
                   'empty strings\n'
                   '   at the start or end if the string has leading or '
                   'trailing\n'
                   '   whitespace.  Consequently, splitting an empty string or '
                   'a string\n'
                   '   consisting of just whitespace with a "None" separator '
                   'returns "[]".\n'
                   '\n'
                   '   For example:\n'
                   '\n'
                   "      >>> '1 2 3'.split()\n"
                   "      ['1', '2', '3']\n"
                   "      >>> '1 2 3'.split(maxsplit=1)\n"
                   "      ['1', '2 3']\n"
                   "      >>> '   1   2   3   '.split()\n"
                   "      ['1', '2', '3']\n"
                   '\n'
                   'str.splitlines([keepends])\n'
                   '\n'
                   '   Return a list of the lines in the string, breaking at '
                   'line\n'
                   '   boundaries.  Line breaks are not included in the '
                   'resulting list\n'
                   '   unless *keepends* is given and true.\n'
                   '\n'
                   '   This method splits on the following line boundaries.  '
                   'In\n'
                   '   particular, the boundaries are a superset of *universal '
                   'newlines*.\n'
                   '\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | Representation          | '
                   'Description                   |\n'
                   '   '
                   '+=========================+===============================+\n'
                   '   | "\\n"                    | Line '
                   'Feed                     |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\r"                    | Carriage '
                   'Return               |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\r\\n"                  | Carriage Return + Line '
                   'Feed   |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\v" or "\\x0b"          | Line '
                   'Tabulation               |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\f" or "\\x0c"          | Form '
                   'Feed                     |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\x1c"                  | File '
                   'Separator                |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\x1d"                  | Group '
                   'Separator               |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\x1e"                  | Record '
                   'Separator              |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\x85"                  | Next Line (C1 Control '
                   'Code)   |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\u2028"                | Line '
                   'Separator                |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '   | "\\u2029"                | Paragraph '
                   'Separator           |\n'
                   '   '
                   '+-------------------------+-------------------------------+\n'
                   '\n'
                   '   Changed in version 3.2: "\\v" and "\\f" added to list '
                   'of line\n'
                   '   boundaries.\n'
                   '\n'
                   '   For example:\n'
                   '\n'
                   "      >>> 'ab c\\n\\nde fg\\rkl\\r\\n'.splitlines()\n"
                   "      ['ab c', '', 'de fg', 'kl']\n"
                   "      >>> 'ab c\\n\\nde "
                   "fg\\rkl\\r\\n'.splitlines(keepends=True)\n"
                   "      ['ab c\\n', '\\n', 'de fg\\r', 'kl\\r\\n']\n"
                   '\n'
                   '   Unlike "split()" when a delimiter string *sep* is '
                   'given, this\n'
                   '   method returns an empty list for the empty string, and '
                   'a terminal\n'
                   '   line break does not result in an extra line:\n'
                   '\n'
                   '      >>> "".splitlines()\n'
                   '      []\n'
                   '      >>> "One line\\n".splitlines()\n'
                   "      ['One line']\n"
                   '\n'
                   '   For comparison, "split(\'\\n\')" gives:\n'
                   '\n'
                   "      >>> ''.split('\\n')\n"
                   "      ['']\n"
                   "      >>> 'Two lines\\n'.split('\\n')\n"
                   "      ['Two lines', '']\n"
                   '\n'
                   'str.startswith(prefix[, start[, end]])\n'
                   '\n'
                   '   Return "True" if string starts with the *prefix*, '
                   'otherwise return\n'
                   '   "False". *prefix* can also be a tuple of prefixes to '
                   'look for.\n'
                   '   With optional *start*, test string beginning at that '
                   'position.\n'
                   '   With optional *end*, stop comparing string at that '
                   'position.\n'
                   '\n'
                   'str.strip([chars])\n'
                   '\n'
                   '   Return a copy of the string with the leading and '
                   'trailing\n'
                   '   characters removed. The *chars* argument is a string '
                   'specifying the\n'
                   '   set of characters to be removed. If omitted or "None", '
                   'the *chars*\n'
                   '   argument defaults to removing whitespace. The *chars* '
                   'argument is\n'
                   '   not a prefix or suffix; rather, all combinations of its '
                   'values are\n'
                   '   stripped:\n'
                   '\n'
                   "      >>> '   spacious   '.strip()\n"
                   "      'spacious'\n"
                   "      >>> 'www.example.com'.strip('cmowz.')\n"
                   "      'example'\n"
                   '\n'
                   'str.swapcase()\n'
                   '\n'
                   '   Return a copy of the string with uppercase characters '
                   'converted to\n'
                   '   lowercase and vice versa. Note that it is not '
                   'necessarily true that\n'
                   '   "s.swapcase().swapcase() == s".\n'
                   '\n'
                   'str.title()\n'
                   '\n'
                   '   Return a titlecased version of the string where words '
                   'start with an\n'
                   '   uppercase character and the remaining characters are '
                   'lowercase.\n'
                   '\n'
                   '   For example:\n'
                   '\n'
                   "      >>> 'Hello world'.title()\n"
                   "      'Hello World'\n"
                   '\n'
                   '   The algorithm uses a simple language-independent '
                   'definition of a\n'
                   '   word as groups of consecutive letters.  The definition '
                   'works in\n'
                   '   many contexts but it means that apostrophes in '
                   'contractions and\n'
                   '   possessives form word boundaries, which may not be the '
                   'desired\n'
                   '   result:\n'
                   '\n'
                   '      >>> "they\'re bill\'s friends from the UK".title()\n'
                   '      "They\'Re Bill\'S Friends From The Uk"\n'
                   '\n'
                   '   A workaround for apostrophes can be constructed using '
                   'regular\n'
                   '   expressions:\n'
                   '\n'
                   '      >>> import re\n'
                   '      >>> def titlecase(s):\n'
                   '      ...     return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n'
                   '      ...                   lambda mo: '
                   'mo.group(0)[0].upper() +\n'
                   '      ...                              '
                   'mo.group(0)[1:].lower(),\n'
                   '      ...                   s)\n'
                   '      ...\n'
                   '      >>> titlecase("they\'re bill\'s friends.")\n'
                   '      "They\'re Bill\'s Friends."\n'
                   '\n'
                   'str.translate(table)\n'
                   '\n'
                   '   Return a copy of the string in which each character has '
                   'been mapped\n'
                   '   through the given translation table.  The table must be '
                   'an object\n'
                   '   that implements indexing via "__getitem__()", typically '
                   'a *mapping*\n'
                   '   or *sequence*.  When indexed by a Unicode ordinal (an '
                   'integer), the\n'
                   '   table object can do any of the following: return a '
                   'Unicode ordinal\n'
                   '   or a string, to map the character to one or more other '
                   'characters;\n'
                   '   return "None", to delete the character from the return '
                   'string; or\n'
                   '   raise a "LookupError" exception, to map the character '
                   'to itself.\n'
                   '\n'
                   '   You can use "str.maketrans()" to create a translation '
                   'map from\n'
                   '   character-to-character mappings in different formats.\n'
                   '\n'
                   '   See also the "codecs" module for a more flexible '
                   'approach to custom\n'
                   '   character mappings.\n'
                   '\n'
                   'str.upper()\n'
                   '\n'
                   '   Return a copy of the string with all the cased '
                   'characters [4]\n'
                   '   converted to uppercase.  Note that '
                   '"str.upper().isupper()" might be\n'
                   '   "False" if "s" contains uncased characters or if the '
                   'Unicode\n'
                   '   category of the resulting character(s) is not "Lu" '
                   '(Letter,\n'
                   '   uppercase), but e.g. "Lt" (Letter, titlecase).\n'
                   '\n'
                   '   The uppercasing algorithm used is described in section '
                   '3.13 of the\n'
                   '   Unicode Standard.\n'
                   '\n'
                   'str.zfill(width)\n'
                   '\n'
                   '   Return a copy of the string left filled with ASCII '
                   '"\'0\'" digits to\n'
                   '   make a string of length *width*. A leading sign prefix\n'
                   '   ("\'+\'"/"\'-\'") is handled by inserting the padding '
                   '*after* the sign\n'
                   '   character rather than before. The original string is '
                   'returned if\n'
                   '   *width* is less than or equal to "len(s)".\n'
                   '\n'
                   '   For example:\n'
                   '\n'
                   '      >>> "42".zfill(5)\n'
                   "      '00042'\n"
                   '      >>> "-42".zfill(5)\n'
                   "      '-0042'\n",
 'strings': '\n'
            'String and Bytes literals\n'
            '*************************\n'
            '\n'
            'String literals are described by the following lexical '
            'definitions:\n'
            '\n'
            '   stringliteral   ::= [stringprefix](shortstring | longstring)\n'
            '   stringprefix    ::= "r" | "u" | "R" | "U"\n'
            '   shortstring     ::= "\'" shortstringitem* "\'" | \'"\' '
            'shortstringitem* \'"\'\n'
            '   longstring      ::= "\'\'\'" longstringitem* "\'\'\'" | '
            '\'"""\' longstringitem* \'"""\'\n'
            '   shortstringitem ::= shortstringchar | stringescapeseq\n'
            '   longstringitem  ::= longstringchar | stringescapeseq\n'
            '   shortstringchar ::= <any source character except "\\" or '
            'newline or the quote>\n'
            '   longstringchar  ::= <any source character except "\\">\n'
            '   stringescapeseq ::= "\\" <any source character>\n'
            '\n'
            '   bytesliteral   ::= bytesprefix(shortbytes | longbytes)\n'
            '   bytesprefix    ::= "b" | "B" | "br" | "Br" | "bR" | "BR" | '
            '"rb" | "rB" | "Rb" | "RB"\n'
            '   shortbytes     ::= "\'" shortbytesitem* "\'" | \'"\' '
            'shortbytesitem* \'"\'\n'
            '   longbytes      ::= "\'\'\'" longbytesitem* "\'\'\'" | \'"""\' '
            'longbytesitem* \'"""\'\n'
            '   shortbytesitem ::= shortbyteschar | bytesescapeseq\n'
            '   longbytesitem  ::= longbyteschar | bytesescapeseq\n'
            '   shortbyteschar ::= <any ASCII character except "\\" or newline '
            'or the quote>\n'
            '   longbyteschar  ::= <any ASCII character except "\\">\n'
            '   bytesescapeseq ::= "\\" <any ASCII character>\n'
            '\n'
            'One syntactic restriction not indicated by these productions is '
            'that\n'
            'whitespace is not allowed between the "stringprefix" or '
            '"bytesprefix"\n'
            'and the rest of the literal. The source character set is defined '
            'by\n'
            'the encoding declaration; it is UTF-8 if no encoding declaration '
            'is\n'
            'given in the source file; see section *Encoding declarations*.\n'
            '\n'
            'In plain English: Both types of literals can be enclosed in '
            'matching\n'
            'single quotes ("\'") or double quotes (""").  They can also be '
            'enclosed\n'
            'in matching groups of three single or double quotes (these are\n'
            'generally referred to as *triple-quoted strings*).  The '
            'backslash\n'
            '("\\") character is used to escape characters that otherwise have '
            'a\n'
            'special meaning, such as newline, backslash itself, or the quote\n'
            'character.\n'
            '\n'
            'Bytes literals are always prefixed with "\'b\'" or "\'B\'"; they '
            'produce\n'
            'an instance of the "bytes" type instead of the "str" type.  They '
            'may\n'
            'only contain ASCII characters; bytes with a numeric value of 128 '
            'or\n'
            'greater must be expressed with escapes.\n'
            '\n'
            'As of Python 3.3 it is possible again to prefix string literals '
            'with a\n'
            '"u" prefix to simplify maintenance of dual 2.x and 3.x '
            'codebases.\n'
            '\n'
            'Both string and bytes literals may optionally be prefixed with a\n'
            'letter "\'r\'" or "\'R\'"; such strings are called *raw strings* '
            'and treat\n'
            'backslashes as literal characters.  As a result, in string '
            'literals,\n'
            '"\'\\U\'" and "\'\\u\'" escapes in raw strings are not treated '
            'specially.\n'
            "Given that Python 2.x's raw unicode literals behave differently "
            'than\n'
            'Python 3.x\'s the "\'ur\'" syntax is not supported.\n'
            '\n'
            'New in version 3.3: The "\'rb\'" prefix of raw bytes literals has '
            'been\n'
            'added as a synonym of "\'br\'".\n'
            '\n'
            'New in version 3.3: Support for the unicode legacy literal\n'
            '("u\'value\'") was reintroduced to simplify the maintenance of '
            'dual\n'
            'Python 2.x and 3.x codebases. See **PEP 414** for more '
            'information.\n'
            '\n'
            'In triple-quoted literals, unescaped newlines and quotes are '
            'allowed\n'
            '(and are retained), except that three unescaped quotes in a row\n'
            'terminate the literal.  (A "quote" is the character used to open '
            'the\n'
            'literal, i.e. either "\'" or """.)\n'
            '\n'
            'Unless an "\'r\'" or "\'R\'" prefix is present, escape sequences '
            'in string\n'
            'and bytes literals are interpreted according to rules similar to '
            'those\n'
            'used by Standard C.  The recognized escape sequences are:\n'
            '\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| Escape Sequence   | Meaning                           | Notes   '
            '|\n'
            '+===================+===================================+=========+\n'
            '| "\\newline"        | Backslash and newline ignored     '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\\\"              | Backslash ("\\")                   '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\\'"              | Single quote ("\'")                '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\""              | Double quote (""")                '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\a"              | ASCII Bell (BEL)                  '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\b"              | ASCII Backspace (BS)              '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\f"              | ASCII Formfeed (FF)               '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\n"              | ASCII Linefeed (LF)               '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\r"              | ASCII Carriage Return (CR)        '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\t"              | ASCII Horizontal Tab (TAB)        '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\v"              | ASCII Vertical Tab (VT)           '
            '|         |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\ooo"            | Character with octal value *ooo*  | '
            '(1,3)   |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\xhh"            | Character with hex value *hh*     | '
            '(2,3)   |\n'
            '+-------------------+-----------------------------------+---------+\n'
            '\n'
            'Escape sequences only recognized in string literals are:\n'
            '\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| Escape Sequence   | Meaning                           | Notes   '
            '|\n'
            '+===================+===================================+=========+\n'
            '| "\\N{name}"        | Character named *name* in the     | '
            '(4)     |\n'
            '|                   | Unicode database                  |         '
            '|\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\uxxxx"          | Character with 16-bit hex value   | '
            '(5)     |\n'
            '|                   | *xxxx*                            |         '
            '|\n'
            '+-------------------+-----------------------------------+---------+\n'
            '| "\\Uxxxxxxxx"      | Character with 32-bit hex value   | '
            '(6)     |\n'
            '|                   | *xxxxxxxx*                        |         '
            '|\n'
            '+-------------------+-----------------------------------+---------+\n'
            '\n'
            'Notes:\n'
            '\n'
            '1. As in Standard C, up to three octal digits are accepted.\n'
            '\n'
            '2. Unlike in Standard C, exactly two hex digits are required.\n'
            '\n'
            '3. In a bytes literal, hexadecimal and octal escapes denote the\n'
            '   byte with the given value. In a string literal, these escapes\n'
            '   denote a Unicode character with the given value.\n'
            '\n'
            '4. Changed in version 3.3: Support for name aliases [1] has been\n'
            '   added.\n'
            '\n'
            '5. Individual code units which form parts of a surrogate pair '
            'can\n'
            '   be encoded using this escape sequence.  Exactly four hex '
            'digits are\n'
            '   required.\n'
            '\n'
            '6. Any Unicode character can be encoded this way.  Exactly eight\n'
            '   hex digits are required.\n'
            '\n'
            'Unlike Standard C, all unrecognized escape sequences are left in '
            'the\n'
            'string unchanged, i.e., *the backslash is left in the result*.  '
            '(This\n'
            'behavior is useful when debugging: if an escape sequence is '
            'mistyped,\n'
            'the resulting output is more easily recognized as broken.)  It is '
            'also\n'
            'important to note that the escape sequences only recognized in '
            'string\n'
            'literals fall into the category of unrecognized escapes for '
            'bytes\n'
            'literals.\n'
            '\n'
            'Even in a raw literal, quotes can be escaped with a backslash, '
            'but the\n'
            'backslash remains in the result; for example, "r"\\""" is a '
            'valid\n'
            'string literal consisting of two characters: a backslash and a '
            'double\n'
            'quote; "r"\\"" is not a valid string literal (even a raw string '
            'cannot\n'
            'end in an odd number of backslashes).  Specifically, *a raw '
            'literal\n'
            'cannot end in a single backslash* (since the backslash would '
            'escape\n'
            'the following quote character).  Note also that a single '
            'backslash\n'
            'followed by a newline is interpreted as those two characters as '
            'part\n'
            'of the literal, *not* as a line continuation.\n',
 'subscriptions': '\n'
                  'Subscriptions\n'
                  '*************\n'
                  '\n'
                  'A subscription selects an item of a sequence (string, tuple '
                  'or list)\n'
                  'or mapping (dictionary) object:\n'
                  '\n'
                  '   subscription ::= primary "[" expression_list "]"\n'
                  '\n'
                  'The primary must evaluate to an object that supports '
                  'subscription\n'
                  '(lists or dictionaries for example).  User-defined objects '
                  'can support\n'
                  'subscription by defining a "__getitem__()" method.\n'
                  '\n'
                  'For built-in objects, there are two types of objects that '
                  'support\n'
                  'subscription:\n'
                  '\n'
                  'If the primary is a mapping, the expression list must '
                  'evaluate to an\n'
                  'object whose value is one of the keys of the mapping, and '
                  'the\n'
                  'subscription selects the value in the mapping that '
                  'corresponds to that\n'
                  'key.  (The expression list is a tuple except if it has '
                  'exactly one\n'
                  'item.)\n'
                  '\n'
                  'If the primary is a sequence, the expression (list) must '
                  'evaluate to\n'
                  'an integer or a slice (as discussed in the following '
                  'section).\n'
                  '\n'
                  'The formal syntax makes no special provision for negative '
                  'indices in\n'
                  'sequences; however, built-in sequences all provide a '
                  '"__getitem__()"\n'
                  'method that interprets negative indices by adding the '
                  'length of the\n'
                  'sequence to the index (so that "x[-1]" selects the last '
                  'item of "x").\n'
                  'The resulting value must be a nonnegative integer less than '
                  'the number\n'
                  'of items in the sequence, and the subscription selects the '
                  'item whose\n'
                  'index is that value (counting from zero). Since the support '
                  'for\n'
                  "negative indices and slicing occurs in the object's "
                  '"__getitem__()"\n'
                  'method, subclasses overriding this method will need to '
                  'explicitly add\n'
                  'that support.\n'
                  '\n'
                  "A string's items are characters.  A character is not a "
                  'separate data\n'
                  'type but a string of exactly one character.\n',
 'truth': '\n'
          'Truth Value Testing\n'
          '*******************\n'
          '\n'
          'Any object can be tested for truth value, for use in an "if" or\n'
          '"while" condition or as operand of the Boolean operations below. '
          'The\n'
          'following values are considered false:\n'
          '\n'
          '* "None"\n'
          '\n'
          '* "False"\n'
          '\n'
          '* zero of any numeric type, for example, "0", "0.0", "0j".\n'
          '\n'
          '* any empty sequence, for example, "\'\'", "()", "[]".\n'
          '\n'
          '* any empty mapping, for example, "{}".\n'
          '\n'
          '* instances of user-defined classes, if the class defines a\n'
          '  "__bool__()" or "__len__()" method, when that method returns the\n'
          '  integer zero or "bool" value "False". [1]\n'
          '\n'
          'All other values are considered true --- so objects of many types '
          'are\n'
          'always true.\n'
          '\n'
          'Operations and built-in functions that have a Boolean result '
          'always\n'
          'return "0" or "False" for false and "1" or "True" for true, unless\n'
          'otherwise stated. (Important exception: the Boolean operations '
          '"or"\n'
          'and "and" always return one of their operands.)\n',
 'try': '\n'
        'The "try" statement\n'
        '*******************\n'
        '\n'
        'The "try" statement specifies exception handlers and/or cleanup code\n'
        'for a group of statements:\n'
        '\n'
        '   try_stmt  ::= try1_stmt | try2_stmt\n'
        '   try1_stmt ::= "try" ":" suite\n'
        '                 ("except" [expression ["as" identifier]] ":" '
        'suite)+\n'
        '                 ["else" ":" suite]\n'
        '                 ["finally" ":" suite]\n'
        '   try2_stmt ::= "try" ":" suite\n'
        '                 "finally" ":" suite\n'
        '\n'
        'The "except" clause(s) specify one or more exception handlers. When '
        'no\n'
        'exception occurs in the "try" clause, no exception handler is\n'
        'executed. When an exception occurs in the "try" suite, a search for '
        'an\n'
        'exception handler is started.  This search inspects the except '
        'clauses\n'
        'in turn until one is found that matches the exception.  An '
        'expression-\n'
        'less except clause, if present, must be last; it matches any\n'
        'exception.  For an except clause with an expression, that expression\n'
        'is evaluated, and the clause matches the exception if the resulting\n'
        'object is "compatible" with the exception.  An object is compatible\n'
        'with an exception if it is the class or a base class of the '
        'exception\n'
        'object or a tuple containing an item compatible with the exception.\n'
        '\n'
        'If no except clause matches the exception, the search for an '
        'exception\n'
        'handler continues in the surrounding code and on the invocation '
        'stack.\n'
        '[1]\n'
        '\n'
        'If the evaluation of an expression in the header of an except clause\n'
        'raises an exception, the original search for a handler is canceled '
        'and\n'
        'a search starts for the new exception in the surrounding code and on\n'
        'the call stack (it is treated as if the entire "try" statement '
        'raised\n'
        'the exception).\n'
        '\n'
        'When a matching except clause is found, the exception is assigned to\n'
        'the target specified after the "as" keyword in that except clause, '
        'if\n'
        "present, and the except clause's suite is executed.  All except\n"
        'clauses must have an executable block.  When the end of this block '
        'is\n'
        'reached, execution continues normally after the entire try '
        'statement.\n'
        '(This means that if two nested handlers exist for the same '
        'exception,\n'
        'and the exception occurs in the try clause of the inner handler, the\n'
        'outer handler will not handle the exception.)\n'
        '\n'
        'When an exception has been assigned using "as target", it is cleared\n'
        'at the end of the except clause.  This is as if\n'
        '\n'
        '   except E as N:\n'
        '       foo\n'
        '\n'
        'was translated to\n'
        '\n'
        '   except E as N:\n'
        '       try:\n'
        '           foo\n'
        '       finally:\n'
        '           del N\n'
        '\n'
        'This means the exception must be assigned to a different name to be\n'
        'able to refer to it after the except clause.  Exceptions are cleared\n'
        'because with the traceback attached to them, they form a reference\n'
        'cycle with the stack frame, keeping all locals in that frame alive\n'
        'until the next garbage collection occurs.\n'
        '\n'
        "Before an except clause's suite is executed, details about the\n"
        'exception are stored in the "sys" module and can be accessed via\n'
        '"sys.exc_info()". "sys.exc_info()" returns a 3-tuple consisting of '
        'the\n'
        'exception class, the exception instance and a traceback object (see\n'
        'section *The standard type hierarchy*) identifying the point in the\n'
        'program where the exception occurred.  "sys.exc_info()" values are\n'
        'restored to their previous values (before the call) when returning\n'
        'from a function that handled an exception.\n'
        '\n'
        'The optional "else" clause is executed if and when control flows off\n'
        'the end of the "try" clause. [2] Exceptions in the "else" clause are\n'
        'not handled by the preceding "except" clauses.\n'
        '\n'
        'If "finally" is present, it specifies a \'cleanup\' handler.  The '
        '"try"\n'
        'clause is executed, including any "except" and "else" clauses.  If '
        'an\n'
        'exception occurs in any of the clauses and is not handled, the\n'
        'exception is temporarily saved. The "finally" clause is executed.  '
        'If\n'
        'there is a saved exception it is re-raised at the end of the '
        '"finally"\n'
        'clause.  If the "finally" clause raises another exception, the saved\n'
        'exception is set as the context of the new exception. If the '
        '"finally"\n'
        'clause executes a "return" or "break" statement, the saved exception\n'
        'is discarded:\n'
        '\n'
        '   >>> def f():\n'
        '   ...     try:\n'
        '   ...         1/0\n'
        '   ...     finally:\n'
        '   ...         return 42\n'
        '   ...\n'
        '   >>> f()\n'
        '   42\n'
        '\n'
        'The exception information is not available to the program during\n'
        'execution of the "finally" clause.\n'
        '\n'
        'When a "return", "break" or "continue" statement is executed in the\n'
        '"try" suite of a "try"..."finally" statement, the "finally" clause '
        'is\n'
        'also executed \'on the way out.\' A "continue" statement is illegal '
        'in\n'
        'the "finally" clause. (The reason is a problem with the current\n'
        'implementation --- this restriction may be lifted in the future).\n'
        '\n'
        'The return value of a function is determined by the last "return"\n'
        'statement executed.  Since the "finally" clause always executes, a\n'
        '"return" statement executed in the "finally" clause will always be '
        'the\n'
        'last one executed:\n'
        '\n'
        '   >>> def foo():\n'
        '   ...     try:\n'
        "   ...         return 'try'\n"
        '   ...     finally:\n'
        "   ...         return 'finally'\n"
        '   ...\n'
        '   >>> foo()\n'
        "   'finally'\n"
        '\n'
        'Additional information on exceptions can be found in section\n'
        '*Exceptions*, and information on using the "raise" statement to\n'
        'generate exceptions may be found in section *The raise statement*.\n',
 'types': '\n'
          'The standard type hierarchy\n'
          '***************************\n'
          '\n'
          'Below is a list of the types that are built into Python.  '
          'Extension\n'
          'modules (written in C, Java, or other languages, depending on the\n'
          'implementation) can define additional types.  Future versions of\n'
          'Python may add types to the type hierarchy (e.g., rational '
          'numbers,\n'
          'efficiently stored arrays of integers, etc.), although such '
          'additions\n'
          'will often be provided via the standard library instead.\n'
          '\n'
          'Some of the type descriptions below contain a paragraph listing\n'
          "'special attributes.'  These are attributes that provide access to "
          'the\n'
          'implementation and are not intended for general use.  Their '
          'definition\n'
          'may change in the future.\n'
          '\n'
          'None\n'
          '   This type has a single value.  There is a single object with '
          'this\n'
          '   value. This object is accessed through the built-in name "None". '
          'It\n'
          '   is used to signify the absence of a value in many situations, '
          'e.g.,\n'
          "   it is returned from functions that don't explicitly return\n"
          '   anything. Its truth value is false.\n'
          '\n'
          'NotImplemented\n'
          '   This type has a single value.  There is a single object with '
          'this\n'
          '   value. This object is accessed through the built-in name\n'
          '   "NotImplemented". Numeric methods and rich comparison methods\n'
          '   should return this value if they do not implement the operation '
          'for\n'
          '   the operands provided.  (The interpreter will then try the\n'
          '   reflected operation, or some other fallback, depending on the\n'
          '   operator.)  Its truth value is true.\n'
          '\n'
          '   See *Implementing the arithmetic operations* for more details.\n'
          '\n'
          'Ellipsis\n'
          '   This type has a single value.  There is a single object with '
          'this\n'
          '   value. This object is accessed through the literal "..." or the\n'
          '   built-in name "Ellipsis".  Its truth value is true.\n'
          '\n'
          '"numbers.Number"\n'
          '   These are created by numeric literals and returned as results '
          'by\n'
          '   arithmetic operators and arithmetic built-in functions.  '
          'Numeric\n'
          '   objects are immutable; once created their value never changes.\n'
          '   Python numbers are of course strongly related to mathematical\n'
          '   numbers, but subject to the limitations of numerical '
          'representation\n'
          '   in computers.\n'
          '\n'
          '   Python distinguishes between integers, floating point numbers, '
          'and\n'
          '   complex numbers:\n'
          '\n'
          '   "numbers.Integral"\n'
          '      These represent elements from the mathematical set of '
          'integers\n'
          '      (positive and negative).\n'
          '\n'
          '      There are two types of integers:\n'
          '\n'
          '      Integers ("int")\n'
          '\n'
          '         These represent numbers in an unlimited range, subject to\n'
          '         available (virtual) memory only.  For the purpose of '
          'shift\n'
          '         and mask operations, a binary representation is assumed, '
          'and\n'
          "         negative numbers are represented in a variant of 2's\n"
          '         complement which gives the illusion of an infinite string '
          'of\n'
          '         sign bits extending to the left.\n'
          '\n'
          '      Booleans ("bool")\n'
          '         These represent the truth values False and True.  The two\n'
          '         objects representing the values "False" and "True" are '
          'the\n'
          '         only Boolean objects. The Boolean type is a subtype of '
          'the\n'
          '         integer type, and Boolean values behave like the values 0 '
          'and\n'
          '         1, respectively, in almost all contexts, the exception '
          'being\n'
          '         that when converted to a string, the strings ""False"" or\n'
          '         ""True"" are returned, respectively.\n'
          '\n'
          '      The rules for integer representation are intended to give '
          'the\n'
          '      most meaningful interpretation of shift and mask operations\n'
          '      involving negative integers.\n'
          '\n'
          '   "numbers.Real" ("float")\n'
          '      These represent machine-level double precision floating '
          'point\n'
          '      numbers. You are at the mercy of the underlying machine\n'
          '      architecture (and C or Java implementation) for the accepted\n'
          '      range and handling of overflow. Python does not support '
          'single-\n'
          '      precision floating point numbers; the savings in processor '
          'and\n'
          '      memory usage that are usually the reason for using these are\n'
          '      dwarfed by the overhead of using objects in Python, so there '
          'is\n'
          '      no reason to complicate the language with two kinds of '
          'floating\n'
          '      point numbers.\n'
          '\n'
          '   "numbers.Complex" ("complex")\n'
          '      These represent complex numbers as a pair of machine-level\n'
          '      double precision floating point numbers.  The same caveats '
          'apply\n'
          '      as for floating point numbers. The real and imaginary parts '
          'of a\n'
          '      complex number "z" can be retrieved through the read-only\n'
          '      attributes "z.real" and "z.imag".\n'
          '\n'
          'Sequences\n'
          '   These represent finite ordered sets indexed by non-negative\n'
          '   numbers. The built-in function "len()" returns the number of '
          'items\n'
          '   of a sequence. When the length of a sequence is *n*, the index '
          'set\n'
          '   contains the numbers 0, 1, ..., *n*-1.  Item *i* of sequence *a* '
          'is\n'
          '   selected by "a[i]".\n'
          '\n'
          '   Sequences also support slicing: "a[i:j]" selects all items with\n'
          '   index *k* such that *i* "<=" *k* "<" *j*.  When used as an\n'
          '   expression, a slice is a sequence of the same type.  This '
          'implies\n'
          '   that the index set is renumbered so that it starts at 0.\n'
          '\n'
          '   Some sequences also support "extended slicing" with a third '
          '"step"\n'
          '   parameter: "a[i:j:k]" selects all items of *a* with index *x* '
          'where\n'
          '   "x = i + n*k", *n* ">=" "0" and *i* "<=" *x* "<" *j*.\n'
          '\n'
          '   Sequences are distinguished according to their mutability:\n'
          '\n'
          '   Immutable sequences\n'
          '      An object of an immutable sequence type cannot change once it '
          'is\n'
          '      created.  (If the object contains references to other '
          'objects,\n'
          '      these other objects may be mutable and may be changed; '
          'however,\n'
          '      the collection of objects directly referenced by an '
          'immutable\n'
          '      object cannot change.)\n'
          '\n'
          '      The following types are immutable sequences:\n'
          '\n'
          '      Strings\n'
          '         A string is a sequence of values that represent Unicode '
          'code\n'
          '         points. All the code points in the range "U+0000 - '
          'U+10FFFF"\n'
          "         can be represented in a string.  Python doesn't have a "
          '"char"\n'
          '         type; instead, every code point in the string is '
          'represented\n'
          '         as a string object with length "1".  The built-in '
          'function\n'
          '         "ord()" converts a code point from its string form to an\n'
          '         integer in the range "0 - 10FFFF"; "chr()" converts an\n'
          '         integer in the range "0 - 10FFFF" to the corresponding '
          'length\n'
          '         "1" string object. "str.encode()" can be used to convert '
          'a\n'
          '         "str" to "bytes" using the given text encoding, and\n'
          '         "bytes.decode()" can be used to achieve the opposite.\n'
          '\n'
          '      Tuples\n'
          '         The items of a tuple are arbitrary Python objects. Tuples '
          'of\n'
          '         two or more items are formed by comma-separated lists of\n'
          "         expressions.  A tuple of one item (a 'singleton') can be\n"
          '         formed by affixing a comma to an expression (an expression '
          'by\n'
          '         itself does not create a tuple, since parentheses must be\n'
          '         usable for grouping of expressions).  An empty tuple can '
          'be\n'
          '         formed by an empty pair of parentheses.\n'
          '\n'
          '      Bytes\n'
          '         A bytes object is an immutable array.  The items are '
          '8-bit\n'
          '         bytes, represented by integers in the range 0 <= x < 256.\n'
          '         Bytes literals (like "b\'abc\'") and the built-in '
          'function\n'
          '         "bytes()" can be used to construct bytes objects.  Also,\n'
          '         bytes objects can be decoded to strings via the '
          '"decode()"\n'
          '         method.\n'
          '\n'
          '   Mutable sequences\n'
          '      Mutable sequences can be changed after they are created.  '
          'The\n'
          '      subscription and slicing notations can be used as the target '
          'of\n'
          '      assignment and "del" (delete) statements.\n'
          '\n'
          '      There are currently two intrinsic mutable sequence types:\n'
          '\n'
          '      Lists\n'
          '         The items of a list are arbitrary Python objects.  Lists '
          'are\n'
          '         formed by placing a comma-separated list of expressions '
          'in\n'
          '         square brackets. (Note that there are no special cases '
          'needed\n'
          '         to form lists of length 0 or 1.)\n'
          '\n'
          '      Byte Arrays\n'
          '         A bytearray object is a mutable array. They are created '
          'by\n'
          '         the built-in "bytearray()" constructor.  Aside from being\n'
          '         mutable (and hence unhashable), byte arrays otherwise '
          'provide\n'
          '         the same interface and functionality as immutable bytes\n'
          '         objects.\n'
          '\n'
          '      The extension module "array" provides an additional example '
          'of a\n'
          '      mutable sequence type, as does the "collections" module.\n'
          '\n'
          'Set types\n'
          '   These represent unordered, finite sets of unique, immutable\n'
          '   objects. As such, they cannot be indexed by any subscript. '
          'However,\n'
          '   they can be iterated over, and the built-in function "len()"\n'
          '   returns the number of items in a set. Common uses for sets are '
          'fast\n'
          '   membership testing, removing duplicates from a sequence, and\n'
          '   computing mathematical operations such as intersection, union,\n'
          '   difference, and symmetric difference.\n'
          '\n'
          '   For set elements, the same immutability rules apply as for\n'
          '   dictionary keys. Note that numeric types obey the normal rules '
          'for\n'
          '   numeric comparison: if two numbers compare equal (e.g., "1" and\n'
          '   "1.0"), only one of them can be contained in a set.\n'
          '\n'
          '   There are currently two intrinsic set types:\n'
          '\n'
          '   Sets\n'
          '      These represent a mutable set. They are created by the '
          'built-in\n'
          '      "set()" constructor and can be modified afterwards by '
          'several\n'
          '      methods, such as "add()".\n'
          '\n'
          '   Frozen sets\n'
          '      These represent an immutable set.  They are created by the\n'
          '      built-in "frozenset()" constructor.  As a frozenset is '
          'immutable\n'
          '      and *hashable*, it can be used again as an element of '
          'another\n'
          '      set, or as a dictionary key.\n'
          '\n'
          'Mappings\n'
          '   These represent finite sets of objects indexed by arbitrary '
          'index\n'
          '   sets. The subscript notation "a[k]" selects the item indexed by '
          '"k"\n'
          '   from the mapping "a"; this can be used in expressions and as '
          'the\n'
          '   target of assignments or "del" statements. The built-in '
          'function\n'
          '   "len()" returns the number of items in a mapping.\n'
          '\n'
          '   There is currently a single intrinsic mapping type:\n'
          '\n'
          '   Dictionaries\n'
          '      These represent finite sets of objects indexed by nearly\n'
          '      arbitrary values.  The only types of values not acceptable '
          'as\n'
          '      keys are values containing lists or dictionaries or other\n'
          '      mutable types that are compared by value rather than by '
          'object\n'
          '      identity, the reason being that the efficient implementation '
          'of\n'
          "      dictionaries requires a key's hash value to remain constant.\n"
          '      Numeric types used for keys obey the normal rules for '
          'numeric\n'
          '      comparison: if two numbers compare equal (e.g., "1" and '
          '"1.0")\n'
          '      then they can be used interchangeably to index the same\n'
          '      dictionary entry.\n'
          '\n'
          '      Dictionaries are mutable; they can be created by the "{...}"\n'
          '      notation (see section *Dictionary displays*).\n'
          '\n'
          '      The extension modules "dbm.ndbm" and "dbm.gnu" provide\n'
          '      additional examples of mapping types, as does the '
          '"collections"\n'
          '      module.\n'
          '\n'
          'Callable types\n'
          '   These are the types to which the function call operation (see\n'
          '   section *Calls*) can be applied:\n'
          '\n'
          '   User-defined functions\n'
          '      A user-defined function object is created by a function\n'
          '      definition (see section *Function definitions*).  It should '
          'be\n'
          '      called with an argument list containing the same number of '
          'items\n'
          "      as the function's formal parameter list.\n"
          '\n'
          '      Special attributes:\n'
          '\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | Attribute                 | Meaning                         '
          '|             |\n'
          '      '
          '+===========================+=================================+=============+\n'
          '      | "__doc__"                 | The function\'s '
          'documentation    | Writable    |\n'
          '      |                           | string, or "None" if            '
          '|             |\n'
          '      |                           | unavailable; not inherited by   '
          '|             |\n'
          '      |                           | subclasses                      '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__name__"                | The function\'s '
          'name             | Writable    |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__qualname__"            | The function\'s *qualified '
          'name* | Writable    |\n'
          '      |                           | New in version 3.3.             '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__module__"              | The name of the module the      '
          '| Writable    |\n'
          '      |                           | function was defined in, or     '
          '|             |\n'
          '      |                           | "None" if unavailable.          '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__defaults__"            | A tuple containing default      '
          '| Writable    |\n'
          '      |                           | argument values for those       '
          '|             |\n'
          '      |                           | arguments that have defaults,   '
          '|             |\n'
          '      |                           | or "None" if no arguments have  '
          '|             |\n'
          '      |                           | a default value                 '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__code__"                | The code object representing    '
          '| Writable    |\n'
          '      |                           | the compiled function body.     '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__globals__"             | A reference to the dictionary   '
          '| Read-only   |\n'
          "      |                           | that holds the function's       "
          '|             |\n'
          '      |                           | global variables --- the global '
          '|             |\n'
          '      |                           | namespace of the module in      '
          '|             |\n'
          '      |                           | which the function was defined. '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__dict__"                | The namespace supporting        '
          '| Writable    |\n'
          '      |                           | arbitrary function attributes.  '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__closure__"             | "None" or a tuple of cells that '
          '| Read-only   |\n'
          '      |                           | contain bindings for the        '
          '|             |\n'
          "      |                           | function's free variables.      "
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__annotations__"         | A dict containing annotations   '
          '| Writable    |\n'
          '      |                           | of parameters.  The keys of the '
          '|             |\n'
          '      |                           | dict are the parameter names,   '
          '|             |\n'
          '      |                           | and "\'return\'" for the '
          'return   |             |\n'
          '      |                           | annotation, if provided.        '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '      | "__kwdefaults__"          | A dict containing defaults for  '
          '| Writable    |\n'
          '      |                           | keyword-only parameters.        '
          '|             |\n'
          '      '
          '+---------------------------+---------------------------------+-------------+\n'
          '\n'
          '      Most of the attributes labelled "Writable" check the type of '
          'the\n'
          '      assigned value.\n'
          '\n'
          '      Function objects also support getting and setting arbitrary\n'
          '      attributes, which can be used, for example, to attach '
          'metadata\n'
          '      to functions.  Regular attribute dot-notation is used to get '
          'and\n'
          '      set such attributes. *Note that the current implementation '
          'only\n'
          '      supports function attributes on user-defined functions. '
          'Function\n'
          '      attributes on built-in functions may be supported in the\n'
          '      future.*\n'
          '\n'
          "      Additional information about a function's definition can be\n"
          '      retrieved from its code object; see the description of '
          'internal\n'
          '      types below.\n'
          '\n'
          '   Instance methods\n'
          '      An instance method object combines a class, a class instance '
          'and\n'
          '      any callable object (normally a user-defined function).\n'
          '\n'
          '      Special read-only attributes: "__self__" is the class '
          'instance\n'
          '      object, "__func__" is the function object; "__doc__" is the\n'
          '      method\'s documentation (same as "__func__.__doc__"); '
          '"__name__"\n'
          '      is the method name (same as "__func__.__name__"); '
          '"__module__"\n'
          '      is the name of the module the method was defined in, or '
          '"None"\n'
          '      if unavailable.\n'
          '\n'
          '      Methods also support accessing (but not setting) the '
          'arbitrary\n'
          '      function attributes on the underlying function object.\n'
          '\n'
          '      User-defined method objects may be created when getting an\n'
          '      attribute of a class (perhaps via an instance of that class), '
          'if\n'
          '      that attribute is a user-defined function object or a class\n'
          '      method object.\n'
          '\n'
          '      When an instance method object is created by retrieving a '
          'user-\n'
          '      defined function object from a class via one of its '
          'instances,\n'
          '      its "__self__" attribute is the instance, and the method '
          'object\n'
          '      is said to be bound.  The new method\'s "__func__" attribute '
          'is\n'
          '      the original function object.\n'
          '\n'
          '      When a user-defined method object is created by retrieving\n'
          '      another method object from a class or instance, the behaviour '
          'is\n'
          '      the same as for a function object, except that the '
          '"__func__"\n'
          '      attribute of the new instance is not the original method '
          'object\n'
          '      but its "__func__" attribute.\n'
          '\n'
          '      When an instance method object is created by retrieving a '
          'class\n'
          '      method object from a class or instance, its "__self__" '
          'attribute\n'
          '      is the class itself, and its "__func__" attribute is the\n'
          '      function object underlying the class method.\n'
          '\n'
          '      When an instance method object is called, the underlying\n'
          '      function ("__func__") is called, inserting the class '
          'instance\n'
          '      ("__self__") in front of the argument list.  For instance, '
          'when\n'
          '      "C" is a class which contains a definition for a function '
          '"f()",\n'
          '      and "x" is an instance of "C", calling "x.f(1)" is equivalent '
          'to\n'
          '      calling "C.f(x, 1)".\n'
          '\n'
          '      When an instance method object is derived from a class '
          'method\n'
          '      object, the "class instance" stored in "__self__" will '
          'actually\n'
          '      be the class itself, so that calling either "x.f(1)" or '
          '"C.f(1)"\n'
          '      is equivalent to calling "f(C,1)" where "f" is the '
          'underlying\n'
          '      function.\n'
          '\n'
          '      Note that the transformation from function object to '
          'instance\n'
          '      method object happens each time the attribute is retrieved '
          'from\n'
          '      the instance.  In some cases, a fruitful optimization is to\n'
          '      assign the attribute to a local variable and call that local\n'
          '      variable. Also notice that this transformation only happens '
          'for\n'
          '      user-defined functions; other callable objects (and all non-\n'
          '      callable objects) are retrieved without transformation.  It '
          'is\n'
          '      also important to note that user-defined functions which are\n'
          '      attributes of a class instance are not converted to bound\n'
          '      methods; this *only* happens when the function is an '
          'attribute\n'
          '      of the class.\n'
          '\n'
          '   Generator functions\n'
          '      A function or method which uses the "yield" statement (see\n'
          '      section *The yield statement*) is called a *generator '
          'function*.\n'
          '      Such a function, when called, always returns an iterator '
          'object\n'
          '      which can be used to execute the body of the function:  '
          'calling\n'
          '      the iterator\'s "iterator.__next__()" method will cause the\n'
          '      function to execute until it provides a value using the '
          '"yield"\n'
          '      statement.  When the function executes a "return" statement '
          'or\n'
          '      falls off the end, a "StopIteration" exception is raised and '
          'the\n'
          '      iterator will have reached the end of the set of values to '
          'be\n'
          '      returned.\n'
          '\n'
          '   Built-in functions\n'
          '      A built-in function object is a wrapper around a C function.\n'
          '      Examples of built-in functions are "len()" and "math.sin()"\n'
          '      ("math" is a standard built-in module). The number and type '
          'of\n'
          '      the arguments are determined by the C function. Special '
          'read-\n'
          '      only attributes: "__doc__" is the function\'s documentation\n'
          '      string, or "None" if unavailable; "__name__" is the '
          "function's\n"
          '      name; "__self__" is set to "None" (but see the next item);\n'
          '      "__module__" is the name of the module the function was '
          'defined\n'
          '      in or "None" if unavailable.\n'
          '\n'
          '   Built-in methods\n'
          '      This is really a different disguise of a built-in function, '
          'this\n'
          '      time containing an object passed to the C function as an\n'
          '      implicit extra argument.  An example of a built-in method is\n'
          '      "alist.append()", assuming *alist* is a list object. In this\n'
          '      case, the special read-only attribute "__self__" is set to '
          'the\n'
          '      object denoted by *alist*.\n'
          '\n'
          '   Classes\n'
          '      Classes are callable.  These objects normally act as '
          'factories\n'
          '      for new instances of themselves, but variations are possible '
          'for\n'
          '      class types that override "__new__()".  The arguments of the\n'
          '      call are passed to "__new__()" and, in the typical case, to\n'
          '      "__init__()" to initialize the new instance.\n'
          '\n'
          '   Class Instances\n'
          '      Instances of arbitrary classes can be made callable by '
          'defining\n'
          '      a "__call__()" method in their class.\n'
          '\n'
          'Modules\n'
          '   Modules are a basic organizational unit of Python code, and are\n'
          '   created by the *import system* as invoked either by the '
          '"import"\n'
          '   statement (see "import"), or by calling functions such as\n'
          '   "importlib.import_module()" and built-in "__import__()".  A '
          'module\n'
          '   object has a namespace implemented by a dictionary object (this '
          'is\n'
          '   the dictionary referenced by the "__globals__" attribute of\n'
          '   functions defined in the module).  Attribute references are\n'
          '   translated to lookups in this dictionary, e.g., "m.x" is '
          'equivalent\n'
          '   to "m.__dict__["x"]". A module object does not contain the code\n'
          "   object used to initialize the module (since it isn't needed "
          'once\n'
          '   the initialization is done).\n'
          '\n'
          "   Attribute assignment updates the module's namespace dictionary,\n"
          '   e.g., "m.x = 1" is equivalent to "m.__dict__["x"] = 1".\n'
          '\n'
          '   Special read-only attribute: "__dict__" is the module\'s '
          'namespace\n'
          '   as a dictionary object.\n'
          '\n'
          '   **CPython implementation detail:** Because of the way CPython\n'
          '   clears module dictionaries, the module dictionary will be '
          'cleared\n'
          '   when the module falls out of scope even if the dictionary still '
          'has\n'
          '   live references.  To avoid this, copy the dictionary or keep '
          'the\n'
          '   module around while using its dictionary directly.\n'
          '\n'
          '   Predefined (writable) attributes: "__name__" is the module\'s '
          'name;\n'
          '   "__doc__" is the module\'s documentation string, or "None" if\n'
          '   unavailable; "__file__" is the pathname of the file from which '
          'the\n'
          '   module was loaded, if it was loaded from a file. The "__file__"\n'
          '   attribute may be missing for certain types of modules, such as '
          'C\n'
          '   modules that are statically linked into the interpreter; for\n'
          '   extension modules loaded dynamically from a shared library, it '
          'is\n'
          '   the pathname of the shared library file.\n'
          '\n'
          'Custom classes\n'
          '   Custom class types are typically created by class definitions '
          '(see\n'
          '   section *Class definitions*).  A class has a namespace '
          'implemented\n'
          '   by a dictionary object. Class attribute references are '
          'translated\n'
          '   to lookups in this dictionary, e.g., "C.x" is translated to\n'
          '   "C.__dict__["x"]" (although there are a number of hooks which '
          'allow\n'
          '   for other means of locating attributes). When the attribute name '
          'is\n'
          '   not found there, the attribute search continues in the base\n'
          '   classes. This search of the base classes uses the C3 method\n'
          '   resolution order which behaves correctly even in the presence '
          'of\n'
          "   'diamond' inheritance structures where there are multiple\n"
          '   inheritance paths leading back to a common ancestor. Additional\n'
          '   details on the C3 MRO used by Python can be found in the\n'
          '   documentation accompanying the 2.3 release at\n'
          '   https://www.python.org/download/releases/2.3/mro/.\n'
          '\n'
          '   When a class attribute reference (for class "C", say) would '
          'yield a\n'
          '   class method object, it is transformed into an instance method\n'
          '   object whose "__self__" attributes is "C".  When it would yield '
          'a\n'
          '   static method object, it is transformed into the object wrapped '
          'by\n'
          '   the static method object. See section *Implementing '
          'Descriptors*\n'
          '   for another way in which attributes retrieved from a class may\n'
          '   differ from those actually contained in its "__dict__".\n'
          '\n'
          "   Class attribute assignments update the class's dictionary, "
          'never\n'
          '   the dictionary of a base class.\n'
          '\n'
          '   A class object can be called (see above) to yield a class '
          'instance\n'
          '   (see below).\n'
          '\n'
          '   Special attributes: "__name__" is the class name; "__module__" '
          'is\n'
          '   the module name in which the class was defined; "__dict__" is '
          'the\n'
          '   dictionary containing the class\'s namespace; "__bases__" is a '
          'tuple\n'
          '   (possibly empty or a singleton) containing the base classes, in '
          'the\n'
          '   order of their occurrence in the base class list; "__doc__" is '
          'the\n'
          "   class's documentation string, or None if undefined.\n"
          '\n'
          'Class instances\n'
          '   A class instance is created by calling a class object (see '
          'above).\n'
          '   A class instance has a namespace implemented as a dictionary '
          'which\n'
          '   is the first place in which attribute references are searched.\n'
          "   When an attribute is not found there, and the instance's class "
          'has\n'
          '   an attribute by that name, the search continues with the class\n'
          '   attributes.  If a class attribute is found that is a '
          'user-defined\n'
          '   function object, it is transformed into an instance method '
          'object\n'
          '   whose "__self__" attribute is the instance.  Static method and\n'
          '   class method objects are also transformed; see above under\n'
          '   "Classes".  See section *Implementing Descriptors* for another '
          'way\n'
          '   in which attributes of a class retrieved via its instances may\n'
          "   differ from the objects actually stored in the class's "
          '"__dict__".\n'
          "   If no class attribute is found, and the object's class has a\n"
          '   "__getattr__()" method, that is called to satisfy the lookup.\n'
          '\n'
          "   Attribute assignments and deletions update the instance's\n"
          "   dictionary, never a class's dictionary.  If the class has a\n"
          '   "__setattr__()" or "__delattr__()" method, this is called '
          'instead\n'
          '   of updating the instance dictionary directly.\n'
          '\n'
          '   Class instances can pretend to be numbers, sequences, or '
          'mappings\n'
          '   if they have methods with certain special names.  See section\n'
          '   *Special method names*.\n'
          '\n'
          '   Special attributes: "__dict__" is the attribute dictionary;\n'
          '   "__class__" is the instance\'s class.\n'
          '\n'
          'I/O objects (also known as file objects)\n'
          '   A *file object* represents an open file.  Various shortcuts are\n'
          '   available to create file objects: the "open()" built-in '
          'function,\n'
          '   and also "os.popen()", "os.fdopen()", and the "makefile()" '
          'method\n'
          '   of socket objects (and perhaps by other functions or methods\n'
          '   provided by extension modules).\n'
          '\n'
          '   The objects "sys.stdin", "sys.stdout" and "sys.stderr" are\n'
          "   initialized to file objects corresponding to the interpreter's\n"
          '   standard input, output and error streams; they are all open in '
          'text\n'
          '   mode and therefore follow the interface defined by the\n'
          '   "io.TextIOBase" abstract class.\n'
          '\n'
          'Internal types\n'
          '   A few types used internally by the interpreter are exposed to '
          'the\n'
          '   user. Their definitions may change with future versions of the\n'
          '   interpreter, but they are mentioned here for completeness.\n'
          '\n'
          '   Code objects\n'
          '      Code objects represent *byte-compiled* executable Python '
          'code,\n'
          '      or *bytecode*. The difference between a code object and a\n'
          '      function object is that the function object contains an '
          'explicit\n'
          "      reference to the function's globals (the module in which it "
          'was\n'
          '      defined), while a code object contains no context; also the\n'
          '      default argument values are stored in the function object, '
          'not\n'
          '      in the code object (because they represent values calculated '
          'at\n'
          '      run-time).  Unlike function objects, code objects are '
          'immutable\n'
          '      and contain no references (directly or indirectly) to '
          'mutable\n'
          '      objects.\n'
          '\n'
          '      Special read-only attributes: "co_name" gives the function '
          'name;\n'
          '      "co_argcount" is the number of positional arguments '
          '(including\n'
          '      arguments with default values); "co_nlocals" is the number '
          'of\n'
          '      local variables used by the function (including arguments);\n'
          '      "co_varnames" is a tuple containing the names of the local\n'
          '      variables (starting with the argument names); "co_cellvars" '
          'is a\n'
          '      tuple containing the names of local variables that are\n'
          '      referenced by nested functions; "co_freevars" is a tuple\n'
          '      containing the names of free variables; "co_code" is a '
          'string\n'
          '      representing the sequence of bytecode instructions; '
          '"co_consts"\n'
          '      is a tuple containing the literals used by the bytecode;\n'
          '      "co_names" is a tuple containing the names used by the '
          'bytecode;\n'
          '      "co_filename" is the filename from which the code was '
          'compiled;\n'
          '      "co_firstlineno" is the first line number of the function;\n'
          '      "co_lnotab" is a string encoding the mapping from bytecode\n'
          '      offsets to line numbers (for details see the source code of '
          'the\n'
          '      interpreter); "co_stacksize" is the required stack size\n'
          '      (including local variables); "co_flags" is an integer '
          'encoding a\n'
          '      number of flags for the interpreter.\n'
          '\n'
          '      The following flag bits are defined for "co_flags": bit '
          '"0x04"\n'
          '      is set if the function uses the "*arguments" syntax to accept '
          'an\n'
          '      arbitrary number of positional arguments; bit "0x08" is set '
          'if\n'
          '      the function uses the "**keywords" syntax to accept '
          'arbitrary\n'
          '      keyword arguments; bit "0x20" is set if the function is a\n'
          '      generator.\n'
          '\n'
          '      Future feature declarations ("from __future__ import '
          'division")\n'
          '      also use bits in "co_flags" to indicate whether a code '
          'object\n'
          '      was compiled with a particular feature enabled: bit "0x2000" '
          'is\n'
          '      set if the function was compiled with future division '
          'enabled;\n'
          '      bits "0x10" and "0x1000" were used in earlier versions of\n'
          '      Python.\n'
          '\n'
          '      Other bits in "co_flags" are reserved for internal use.\n'
          '\n'
          '      If a code object represents a function, the first item in\n'
          '      "co_consts" is the documentation string of the function, or\n'
          '      "None" if undefined.\n'
          '\n'
          '   Frame objects\n'
          '      Frame objects represent execution frames.  They may occur in\n'
          '      traceback objects (see below).\n'
          '\n'
          '      Special read-only attributes: "f_back" is to the previous '
          'stack\n'
          '      frame (towards the caller), or "None" if this is the bottom\n'
          '      stack frame; "f_code" is the code object being executed in '
          'this\n'
          '      frame; "f_locals" is the dictionary used to look up local\n'
          '      variables; "f_globals" is used for global variables;\n'
          '      "f_builtins" is used for built-in (intrinsic) names; '
          '"f_lasti"\n'
          '      gives the precise instruction (this is an index into the\n'
          '      bytecode string of the code object).\n'
          '\n'
          '      Special writable attributes: "f_trace", if not "None", is a\n'
          '      function called at the start of each source code line (this '
          'is\n'
          '      used by the debugger); "f_lineno" is the current line number '
          'of\n'
          '      the frame --- writing to this from within a trace function '
          'jumps\n'
          '      to the given line (only for the bottom-most frame).  A '
          'debugger\n'
          '      can implement a Jump command (aka Set Next Statement) by '
          'writing\n'
          '      to f_lineno.\n'
          '\n'
          '      Frame objects support one method:\n'
          '\n'
          '      frame.clear()\n'
          '\n'
          '         This method clears all references to local variables held '
          'by\n'
          '         the frame.  Also, if the frame belonged to a generator, '
          'the\n'
          '         generator is finalized.  This helps break reference '
          'cycles\n'
          '         involving frame objects (for example when catching an\n'
          '         exception and storing its traceback for later use).\n'
          '\n'
          '         "RuntimeError" is raised if the frame is currently '
          'executing.\n'
          '\n'
          '         New in version 3.4.\n'
          '\n'
          '   Traceback objects\n'
          '      Traceback objects represent a stack trace of an exception.  '
          'A\n'
          '      traceback object is created when an exception occurs.  When '
          'the\n'
          '      search for an exception handler unwinds the execution stack, '
          'at\n'
          '      each unwound level a traceback object is inserted in front '
          'of\n'
          '      the current traceback.  When an exception handler is '
          'entered,\n'
          '      the stack trace is made available to the program. (See '
          'section\n'
          '      *The try statement*.) It is accessible as the third item of '
          'the\n'
          '      tuple returned by "sys.exc_info()". When the program contains '
          'no\n'
          '      suitable handler, the stack trace is written (nicely '
          'formatted)\n'
          '      to the standard error stream; if the interpreter is '
          'interactive,\n'
          '      it is also made available to the user as '
          '"sys.last_traceback".\n'
          '\n'
          '      Special read-only attributes: "tb_next" is the next level in '
          'the\n'
          '      stack trace (towards the frame where the exception occurred), '
          'or\n'
          '      "None" if there is no next level; "tb_frame" points to the\n'
          '      execution frame of the current level; "tb_lineno" gives the '
          'line\n'
          '      number where the exception occurred; "tb_lasti" indicates '
          'the\n'
          '      precise instruction.  The line number and last instruction '
          'in\n'
          '      the traceback may differ from the line number of its frame\n'
          '      object if the exception occurred in a "try" statement with '
          'no\n'
          '      matching except clause or with a finally clause.\n'
          '\n'
          '   Slice objects\n'
          '      Slice objects are used to represent slices for '
          '"__getitem__()"\n'
          '      methods.  They are also created by the built-in "slice()"\n'
          '      function.\n'
          '\n'
          '      Special read-only attributes: "start" is the lower bound; '
          '"stop"\n'
          '      is the upper bound; "step" is the step value; each is "None" '
          'if\n'
          '      omitted.  These attributes can have any type.\n'
          '\n'
          '      Slice objects support one method:\n'
          '\n'
          '      slice.indices(self, length)\n'
          '\n'
          '         This method takes a single integer argument *length* and\n'
          '         computes information about the slice that the slice '
          'object\n'
          '         would describe if applied to a sequence of *length* '
          'items.\n'
          '         It returns a tuple of three integers; respectively these '
          'are\n'
          '         the *start* and *stop* indices and the *step* or stride\n'
          '         length of the slice. Missing or out-of-bounds indices are\n'
          '         handled in a manner consistent with regular slices.\n'
          '\n'
          '   Static method objects\n'
          '      Static method objects provide a way of defeating the\n'
          '      transformation of function objects to method objects '
          'described\n'
          '      above. A static method object is a wrapper around any other\n'
          '      object, usually a user-defined method object. When a static\n'
          '      method object is retrieved from a class or a class instance, '
          'the\n'
          '      object actually returned is the wrapped object, which is not\n'
          '      subject to any further transformation. Static method objects '
          'are\n'
          '      not themselves callable, although the objects they wrap '
          'usually\n'
          '      are. Static method objects are created by the built-in\n'
          '      "staticmethod()" constructor.\n'
          '\n'
          '   Class method objects\n'
          '      A class method object, like a static method object, is a '
          'wrapper\n'
          '      around another object that alters the way in which that '
          'object\n'
          '      is retrieved from classes and class instances. The behaviour '
          'of\n'
          '      class method objects upon such retrieval is described above,\n'
          '      under "User-defined methods". Class method objects are '
          'created\n'
          '      by the built-in "classmethod()" constructor.\n',
 'typesfunctions': '\n'
                   'Functions\n'
                   '*********\n'
                   '\n'
                   'Function objects are created by function definitions.  The '
                   'only\n'
                   'operation on a function object is to call it: '
                   '"func(argument-list)".\n'
                   '\n'
                   'There are really two flavors of function objects: built-in '
                   'functions\n'
                   'and user-defined functions.  Both support the same '
                   'operation (to call\n'
                   'the function), but the implementation is different, hence '
                   'the\n'
                   'different object types.\n'
                   '\n'
                   'See *Function definitions* for more information.\n',
 'typesmapping': '\n'
                 'Mapping Types --- "dict"\n'
                 '************************\n'
                 '\n'
                 'A *mapping* object maps *hashable* values to arbitrary '
                 'objects.\n'
                 'Mappings are mutable objects.  There is currently only one '
                 'standard\n'
                 'mapping type, the *dictionary*.  (For other containers see '
                 'the built-\n'
                 'in "list", "set", and "tuple" classes, and the "collections" '
                 'module.)\n'
                 '\n'
                 "A dictionary's keys are *almost* arbitrary values.  Values "
                 'that are\n'
                 'not *hashable*, that is, values containing lists, '
                 'dictionaries or\n'
                 'other mutable types (that are compared by value rather than '
                 'by object\n'
                 'identity) may not be used as keys.  Numeric types used for '
                 'keys obey\n'
                 'the normal rules for numeric comparison: if two numbers '
                 'compare equal\n'
                 '(such as "1" and "1.0") then they can be used '
                 'interchangeably to index\n'
                 'the same dictionary entry.  (Note however, that since '
                 'computers store\n'
                 'floating-point numbers as approximations it is usually '
                 'unwise to use\n'
                 'them as dictionary keys.)\n'
                 '\n'
                 'Dictionaries can be created by placing a comma-separated '
                 'list of "key:\n'
                 'value" pairs within braces, for example: "{\'jack\': 4098, '
                 "'sjoerd':\n"
                 '4127}" or "{4098: \'jack\', 4127: \'sjoerd\'}", or by the '
                 '"dict"\n'
                 'constructor.\n'
                 '\n'
                 'class class dict(**kwarg)\n'
                 'class class dict(mapping, **kwarg)\n'
                 'class class dict(iterable, **kwarg)\n'
                 '\n'
                 '   Return a new dictionary initialized from an optional '
                 'positional\n'
                 '   argument and a possibly empty set of keyword arguments.\n'
                 '\n'
                 '   If no positional argument is given, an empty dictionary '
                 'is created.\n'
                 '   If a positional argument is given and it is a mapping '
                 'object, a\n'
                 '   dictionary is created with the same key-value pairs as '
                 'the mapping\n'
                 '   object.  Otherwise, the positional argument must be an '
                 '*iterable*\n'
                 '   object.  Each item in the iterable must itself be an '
                 'iterable with\n'
                 '   exactly two objects.  The first object of each item '
                 'becomes a key\n'
                 '   in the new dictionary, and the second object the '
                 'corresponding\n'
                 '   value.  If a key occurs more than once, the last value '
                 'for that key\n'
                 '   becomes the corresponding value in the new dictionary.\n'
                 '\n'
                 '   If keyword arguments are given, the keyword arguments and '
                 'their\n'
                 '   values are added to the dictionary created from the '
                 'positional\n'
                 '   argument.  If a key being added is already present, the '
                 'value from\n'
                 '   the keyword argument replaces the value from the '
                 'positional\n'
                 '   argument.\n'
                 '\n'
                 '   To illustrate, the following examples all return a '
                 'dictionary equal\n'
                 '   to "{"one": 1, "two": 2, "three": 3}":\n'
                 '\n'
                 '      >>> a = dict(one=1, two=2, three=3)\n'
                 "      >>> b = {'one': 1, 'two': 2, 'three': 3}\n"
                 "      >>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))\n"
                 "      >>> d = dict([('two', 2), ('one', 1), ('three', 3)])\n"
                 "      >>> e = dict({'three': 3, 'one': 1, 'two': 2})\n"
                 '      >>> a == b == c == d == e\n'
                 '      True\n'
                 '\n'
                 '   Providing keyword arguments as in the first example only '
                 'works for\n'
                 '   keys that are valid Python identifiers.  Otherwise, any '
                 'valid keys\n'
                 '   can be used.\n'
                 '\n'
                 '   These are the operations that dictionaries support (and '
                 'therefore,\n'
                 '   custom mapping types should support too):\n'
                 '\n'
                 '   len(d)\n'
                 '\n'
                 '      Return the number of items in the dictionary *d*.\n'
                 '\n'
                 '   d[key]\n'
                 '\n'
                 '      Return the item of *d* with key *key*.  Raises a '
                 '"KeyError" if\n'
                 '      *key* is not in the map.\n'
                 '\n'
                 '      If a subclass of dict defines a method "__missing__()" '
                 'and *key*\n'
                 '      is not present, the "d[key]" operation calls that '
                 'method with\n'
                 '      the key *key* as argument.  The "d[key]" operation '
                 'then returns\n'
                 '      or raises whatever is returned or raised by the\n'
                 '      "__missing__(key)" call. No other operations or '
                 'methods invoke\n'
                 '      "__missing__()". If "__missing__()" is not defined, '
                 '"KeyError"\n'
                 '      is raised. "__missing__()" must be a method; it cannot '
                 'be an\n'
                 '      instance variable:\n'
                 '\n'
                 '         >>> class Counter(dict):\n'
                 '         ...     def __missing__(self, key):\n'
                 '         ...         return 0\n'
                 '         >>> c = Counter()\n'
                 "         >>> c['red']\n"
                 '         0\n'
                 "         >>> c['red'] += 1\n"
                 "         >>> c['red']\n"
                 '         1\n'
                 '\n'
                 '      The example above shows part of the implementation of\n'
                 '      "collections.Counter".  A different "__missing__" '
                 'method is used\n'
                 '      by "collections.defaultdict".\n'
                 '\n'
                 '   d[key] = value\n'
                 '\n'
                 '      Set "d[key]" to *value*.\n'
                 '\n'
                 '   del d[key]\n'
                 '\n'
                 '      Remove "d[key]" from *d*.  Raises a "KeyError" if '
                 '*key* is not\n'
                 '      in the map.\n'
                 '\n'
                 '   key in d\n'
                 '\n'
                 '      Return "True" if *d* has a key *key*, else "False".\n'
                 '\n'
                 '   key not in d\n'
                 '\n'
                 '      Equivalent to "not key in d".\n'
                 '\n'
                 '   iter(d)\n'
                 '\n'
                 '      Return an iterator over the keys of the dictionary.  '
                 'This is a\n'
                 '      shortcut for "iter(d.keys())".\n'
                 '\n'
                 '   clear()\n'
                 '\n'
                 '      Remove all items from the dictionary.\n'
                 '\n'
                 '   copy()\n'
                 '\n'
                 '      Return a shallow copy of the dictionary.\n'
                 '\n'
                 '   classmethod fromkeys(seq[, value])\n'
                 '\n'
                 '      Create a new dictionary with keys from *seq* and '
                 'values set to\n'
                 '      *value*.\n'
                 '\n'
                 '      "fromkeys()" is a class method that returns a new '
                 'dictionary.\n'
                 '      *value* defaults to "None".\n'
                 '\n'
                 '   get(key[, default])\n'
                 '\n'
                 '      Return the value for *key* if *key* is in the '
                 'dictionary, else\n'
                 '      *default*. If *default* is not given, it defaults to '
                 '"None", so\n'
                 '      that this method never raises a "KeyError".\n'
                 '\n'
                 '   items()\n'
                 '\n'
                 '      Return a new view of the dictionary\'s items ("(key, '
                 'value)"\n'
                 '      pairs). See the *documentation of view objects*.\n'
                 '\n'
                 '   keys()\n'
                 '\n'
                 "      Return a new view of the dictionary's keys.  See the\n"
                 '      *documentation of view objects*.\n'
                 '\n'
                 '   pop(key[, default])\n'
                 '\n'
                 '      If *key* is in the dictionary, remove it and return '
                 'its value,\n'
                 '      else return *default*.  If *default* is not given and '
                 '*key* is\n'
                 '      not in the dictionary, a "KeyError" is raised.\n'
                 '\n'
                 '   popitem()\n'
                 '\n'
                 '      Remove and return an arbitrary "(key, value)" pair '
                 'from the\n'
                 '      dictionary.\n'
                 '\n'
                 '      "popitem()" is useful to destructively iterate over a\n'
                 '      dictionary, as often used in set algorithms.  If the '
                 'dictionary\n'
                 '      is empty, calling "popitem()" raises a "KeyError".\n'
                 '\n'
                 '   setdefault(key[, default])\n'
                 '\n'
                 '      If *key* is in the dictionary, return its value.  If '
                 'not, insert\n'
                 '      *key* with a value of *default* and return *default*.  '
                 '*default*\n'
                 '      defaults to "None".\n'
                 '\n'
                 '   update([other])\n'
                 '\n'
                 '      Update the dictionary with the key/value pairs from '
                 '*other*,\n'
                 '      overwriting existing keys.  Return "None".\n'
                 '\n'
                 '      "update()" accepts either another dictionary object or '
                 'an\n'
                 '      iterable of key/value pairs (as tuples or other '
                 'iterables of\n'
                 '      length two).  If keyword arguments are specified, the '
                 'dictionary\n'
                 '      is then updated with those key/value pairs: '
                 '"d.update(red=1,\n'
                 '      blue=2)".\n'
                 '\n'
                 '   values()\n'
                 '\n'
                 "      Return a new view of the dictionary's values.  See "
                 'the\n'
                 '      *documentation of view objects*.\n'
                 '\n'
                 '   Dictionaries compare equal if and only if they have the '
                 'same "(key,\n'
                 '   value)" pairs. Order comparisons (\'<\', \'<=\', \'>=\', '
                 "'>') raise\n"
                 '   "TypeError".\n'
                 '\n'
                 'See also: "types.MappingProxyType" can be used to create a '
                 'read-only\n'
                 '  view of a "dict".\n'
                 '\n'
                 '\n'
                 'Dictionary view objects\n'
                 '=======================\n'
                 '\n'
                 'The objects returned by "dict.keys()", "dict.values()" and\n'
                 '"dict.items()" are *view objects*.  They provide a dynamic '
                 'view on the\n'
                 "dictionary's entries, which means that when the dictionary "
                 'changes,\n'
                 'the view reflects these changes.\n'
                 '\n'
                 'Dictionary views can be iterated over to yield their '
                 'respective data,\n'
                 'and support membership tests:\n'
                 '\n'
                 'len(dictview)\n'
                 '\n'
                 '   Return the number of entries in the dictionary.\n'
                 '\n'
                 'iter(dictview)\n'
                 '\n'
                 '   Return an iterator over the keys, values or items '
                 '(represented as\n'
                 '   tuples of "(key, value)") in the dictionary.\n'
                 '\n'
                 '   Keys and values are iterated over in an arbitrary order '
                 'which is\n'
                 '   non-random, varies across Python implementations, and '
                 'depends on\n'
                 "   the dictionary's history of insertions and deletions. If "
                 'keys,\n'
                 '   values and items views are iterated over with no '
                 'intervening\n'
                 '   modifications to the dictionary, the order of items will '
                 'directly\n'
                 '   correspond.  This allows the creation of "(value, key)" '
                 'pairs using\n'
                 '   "zip()": "pairs = zip(d.values(), d.keys())".  Another '
                 'way to\n'
                 '   create the same list is "pairs = [(v, k) for (k, v) in '
                 'd.items()]".\n'
                 '\n'
                 '   Iterating views while adding or deleting entries in the '
                 'dictionary\n'
                 '   may raise a "RuntimeError" or fail to iterate over all '
                 'entries.\n'
                 '\n'
                 'x in dictview\n'
                 '\n'
                 '   Return "True" if *x* is in the underlying dictionary\'s '
                 'keys, values\n'
                 '   or items (in the latter case, *x* should be a "(key, '
                 'value)"\n'
                 '   tuple).\n'
                 '\n'
                 'Keys views are set-like since their entries are unique and '
                 'hashable.\n'
                 'If all values are hashable, so that "(key, value)" pairs are '
                 'unique\n'
                 'and hashable, then the items view is also set-like.  (Values '
                 'views are\n'
                 'not treated as set-like since the entries are generally not '
                 'unique.)\n'
                 'For set-like views, all of the operations defined for the '
                 'abstract\n'
                 'base class "collections.abc.Set" are available (for example, '
                 '"==",\n'
                 '"<", or "^").\n'
                 '\n'
                 'An example of dictionary view usage:\n'
                 '\n'
                 "   >>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, "
                 "'spam': 500}\n"
                 '   >>> keys = dishes.keys()\n'
                 '   >>> values = dishes.values()\n'
                 '\n'
                 '   >>> # iteration\n'
                 '   >>> n = 0\n'
                 '   >>> for val in values:\n'
                 '   ...     n += val\n'
                 '   >>> print(n)\n'
                 '   504\n'
                 '\n'
                 '   >>> # keys and values are iterated over in the same '
                 'order\n'
                 '   >>> list(keys)\n'
                 "   ['eggs', 'bacon', 'sausage', 'spam']\n"
                 '   >>> list(values)\n'
                 '   [2, 1, 1, 500]\n'
                 '\n'
                 '   >>> # view objects are dynamic and reflect dict changes\n'
                 "   >>> del dishes['eggs']\n"
                 "   >>> del dishes['sausage']\n"
                 '   >>> list(keys)\n'
                 "   ['spam', 'bacon']\n"
                 '\n'
                 '   >>> # set operations\n'
                 "   >>> keys & {'eggs', 'bacon', 'salad'}\n"
                 "   {'bacon'}\n"
                 "   >>> keys ^ {'sausage', 'juice'}\n"
                 "   {'juice', 'sausage', 'bacon', 'spam'}\n",
 'typesmethods': '\n'
                 'Methods\n'
                 '*******\n'
                 '\n'
                 'Methods are functions that are called using the attribute '
                 'notation.\n'
                 'There are two flavors: built-in methods (such as "append()" '
                 'on lists)\n'
                 'and class instance methods.  Built-in methods are described '
                 'with the\n'
                 'types that support them.\n'
                 '\n'
                 'If you access a method (a function defined in a class '
                 'namespace)\n'
                 'through an instance, you get a special object: a *bound '
                 'method* (also\n'
                 'called *instance method*) object. When called, it will add '
                 'the "self"\n'
                 'argument to the argument list.  Bound methods have two '
                 'special read-\n'
                 'only attributes: "m.__self__" is the object on which the '
                 'method\n'
                 'operates, and "m.__func__" is the function implementing the '
                 'method.\n'
                 'Calling "m(arg-1, arg-2, ..., arg-n)" is completely '
                 'equivalent to\n'
                 'calling "m.__func__(m.__self__, arg-1, arg-2, ..., arg-n)".\n'
                 '\n'
                 'Like function objects, bound method objects support getting '
                 'arbitrary\n'
                 'attributes.  However, since method attributes are actually '
                 'stored on\n'
                 'the underlying function object ("meth.__func__"), setting '
                 'method\n'
                 'attributes on bound methods is disallowed.  Attempting to '
                 'set an\n'
                 'attribute on a method results in an "AttributeError" being '
                 'raised.  In\n'
                 'order to set a method attribute, you need to explicitly set '
                 'it on the\n'
                 'underlying function object:\n'
                 '\n'
                 '   >>> class C:\n'
                 '   ...     def method(self):\n'
                 '   ...         pass\n'
                 '   ...\n'
                 '   >>> c = C()\n'
                 "   >>> c.method.whoami = 'my name is method'  # can't set on "
                 'the method\n'
                 '   Traceback (most recent call last):\n'
                 '     File "<stdin>", line 1, in <module>\n'
                 "   AttributeError: 'method' object has no attribute "
                 "'whoami'\n"
                 "   >>> c.method.__func__.whoami = 'my name is method'\n"
                 '   >>> c.method.whoami\n'
                 "   'my name is method'\n"
                 '\n'
                 'See *The standard type hierarchy* for more information.\n',
 'typesmodules': '\n'
                 'Modules\n'
                 '*******\n'
                 '\n'
                 'The only special operation on a module is attribute access: '
                 '"m.name",\n'
                 'where *m* is a module and *name* accesses a name defined in '
                 "*m*'s\n"
                 'symbol table. Module attributes can be assigned to.  (Note '
                 'that the\n'
                 '"import" statement is not, strictly speaking, an operation '
                 'on a module\n'
                 'object; "import foo" does not require a module object named '
                 '*foo* to\n'
                 'exist, rather it requires an (external) *definition* for a '
                 'module\n'
                 'named *foo* somewhere.)\n'
                 '\n'
                 'A special attribute of every module is "__dict__". This is '
                 'the\n'
                 "dictionary containing the module's symbol table. Modifying "
                 'this\n'
                 "dictionary will actually change the module's symbol table, "
                 'but direct\n'
                 'assignment to the "__dict__" attribute is not possible (you '
                 'can write\n'
                 '"m.__dict__[\'a\'] = 1", which defines "m.a" to be "1", but '
                 "you can't\n"
                 'write "m.__dict__ = {}").  Modifying "__dict__" directly is '
                 'not\n'
                 'recommended.\n'
                 '\n'
                 'Modules built into the interpreter are written like this: '
                 '"<module\n'
                 '\'sys\' (built-in)>".  If loaded from a file, they are '
                 'written as\n'
                 '"<module \'os\' from '
                 '\'/usr/local/lib/pythonX.Y/os.pyc\'>".\n',
 'typesseq': '\n'
             'Sequence Types --- "list", "tuple", "range"\n'
             '*******************************************\n'
             '\n'
             'There are three basic sequence types: lists, tuples, and range\n'
             'objects. Additional sequence types tailored for processing of '
             '*binary\n'
             'data* and *text strings* are described in dedicated sections.\n'
             '\n'
             '\n'
             'Common Sequence Operations\n'
             '==========================\n'
             '\n'
             'The operations in the following table are supported by most '
             'sequence\n'
             'types, both mutable and immutable. The '
             '"collections.abc.Sequence" ABC\n'
             'is provided to make it easier to correctly implement these '
             'operations\n'
             'on custom sequence types.\n'
             '\n'
             'This table lists the sequence operations sorted in ascending '
             'priority.\n'
             'In the table, *s* and *t* are sequences of the same type, *n*, '
             '*i*,\n'
             '*j* and *k* are integers and *x* is an arbitrary object that '
             'meets any\n'
             'type and value restrictions imposed by *s*.\n'
             '\n'
             'The "in" and "not in" operations have the same priorities as '
             'the\n'
             'comparison operations. The "+" (concatenation) and "*" '
             '(repetition)\n'
             'operations have the same priority as the corresponding numeric\n'
             'operations. [3]\n'
             '\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| Operation                  | Result                           '
             '| Notes      |\n'
             '+============================+==================================+============+\n'
             '| "x in s"                   | "True" if an item of *s* is      '
             '| (1)        |\n'
             '|                            | equal to *x*, else "False"       '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "x not in s"               | "False" if an item of *s* is     '
             '| (1)        |\n'
             '|                            | equal to *x*, else "True"        '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "s + t"                    | the concatenation of *s* and *t* '
             '| (6)(7)     |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "s * n" or "n * s"         | equivalent to adding *s* to      '
             '| (2)(7)     |\n'
             '|                            | itself *n* times                 '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "s[i]"                     | *i*th item of *s*, origin 0      '
             '| (3)        |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "s[i:j]"                   | slice of *s* from *i* to *j*     '
             '| (3)(4)     |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "s[i:j:k]"                 | slice of *s* from *i* to *j*     '
             '| (3)(5)     |\n'
             '|                            | with step *k*                    '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "len(s)"                   | length of *s*                    '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "min(s)"                   | smallest item of *s*             '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "max(s)"                   | largest item of *s*              '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "s.index(x[, i[, j]])"     | index of the first occurrence of '
             '| (8)        |\n'
             '|                            | *x* in *s* (at or after index    '
             '|            |\n'
             '|                            | *i* and before index *j*)        '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '| "s.count(x)"               | total number of occurrences of   '
             '|            |\n'
             '|                            | *x* in *s*                       '
             '|            |\n'
             '+----------------------------+----------------------------------+------------+\n'
             '\n'
             'Sequences of the same type also support comparisons.  In '
             'particular,\n'
             'tuples and lists are compared lexicographically by comparing\n'
             'corresponding elements. This means that to compare equal, every\n'
             'element must compare equal and the two sequences must be of the '
             'same\n'
             'type and have the same length.  (For full details see '
             '*Comparisons* in\n'
             'the language reference.)\n'
             '\n'
             'Notes:\n'
             '\n'
             '1. While the "in" and "not in" operations are used only for '
             'simple\n'
             '   containment testing in the general case, some specialised '
             'sequences\n'
             '   (such as "str", "bytes" and "bytearray") also use them for\n'
             '   subsequence testing:\n'
             '\n'
             '      >>> "gg" in "eggs"\n'
             '      True\n'
             '\n'
             '2. Values of *n* less than "0" are treated as "0" (which yields '
             'an\n'
             '   empty sequence of the same type as *s*).  Note that items in '
             'the\n'
             '   sequence *s* are not copied; they are referenced multiple '
             'times.\n'
             '   This often haunts new Python programmers; consider:\n'
             '\n'
             '      >>> lists = [[]] * 3\n'
             '      >>> lists\n'
             '      [[], [], []]\n'
             '      >>> lists[0].append(3)\n'
             '      >>> lists\n'
             '      [[3], [3], [3]]\n'
             '\n'
             '   What has happened is that "[[]]" is a one-element list '
             'containing\n'
             '   an empty list, so all three elements of "[[]] * 3" are '
             'references\n'
             '   to this single empty list.  Modifying any of the elements of\n'
             '   "lists" modifies this single list. You can create a list of\n'
             '   different lists this way:\n'
             '\n'
             '      >>> lists = [[] for i in range(3)]\n'
             '      >>> lists[0].append(3)\n'
             '      >>> lists[1].append(5)\n'
             '      >>> lists[2].append(7)\n'
             '      >>> lists\n'
             '      [[3], [5], [7]]\n'
             '\n'
             '   Further explanation is available in the FAQ entry *How do I '
             'create\n'
             '   a multidimensional list?*.\n'
             '\n'
             '3. If *i* or *j* is negative, the index is relative to the end '
             'of\n'
             '   the string: "len(s) + i" or "len(s) + j" is substituted.  But '
             'note\n'
             '   that "-0" is still "0".\n'
             '\n'
             '4. The slice of *s* from *i* to *j* is defined as the sequence '
             'of\n'
             '   items with index *k* such that "i <= k < j".  If *i* or *j* '
             'is\n'
             '   greater than "len(s)", use "len(s)".  If *i* is omitted or '
             '"None",\n'
             '   use "0".  If *j* is omitted or "None", use "len(s)".  If *i* '
             'is\n'
             '   greater than or equal to *j*, the slice is empty.\n'
             '\n'
             '5. The slice of *s* from *i* to *j* with step *k* is defined as '
             'the\n'
             '   sequence of items with index  "x = i + n*k" such that "0 <= n '
             '<\n'
             '   (j-i)/k".  In other words, the indices are "i", "i+k", '
             '"i+2*k",\n'
             '   "i+3*k" and so on, stopping when *j* is reached (but never\n'
             '   including *j*).  If *i* or *j* is greater than "len(s)", use\n'
             '   "len(s)".  If *i* or *j* are omitted or "None", they become '
             '"end"\n'
             '   values (which end depends on the sign of *k*).  Note, *k* '
             'cannot be\n'
             '   zero. If *k* is "None", it is treated like "1".\n'
             '\n'
             '6. Concatenating immutable sequences always results in a new\n'
             '   object. This means that building up a sequence by repeated\n'
             '   concatenation will have a quadratic runtime cost in the '
             'total\n'
             '   sequence length. To get a linear runtime cost, you must '
             'switch to\n'
             '   one of the alternatives below:\n'
             '\n'
             '   * if concatenating "str" objects, you can build a list and '
             'use\n'
             '     "str.join()" at the end or else write to an "io.StringIO"\n'
             '     instance and retrieve its value when complete\n'
             '\n'
             '   * if concatenating "bytes" objects, you can similarly use\n'
             '     "bytes.join()" or "io.BytesIO", or you can do in-place\n'
             '     concatenation with a "bytearray" object.  "bytearray" '
             'objects are\n'
             '     mutable and have an efficient overallocation mechanism\n'
             '\n'
             '   * if concatenating "tuple" objects, extend a "list" instead\n'
             '\n'
             '   * for other types, investigate the relevant class '
             'documentation\n'
             '\n'
             '7. Some sequence types (such as "range") only support item\n'
             "   sequences that follow specific patterns, and hence don't "
             'support\n'
             '   sequence concatenation or repetition.\n'
             '\n'
             '8. "index" raises "ValueError" when *x* is not found in *s*. '
             'When\n'
             '   supported, the additional arguments to the index method '
             'allow\n'
             '   efficient searching of subsections of the sequence. Passing '
             'the\n'
             '   extra arguments is roughly equivalent to using '
             '"s[i:j].index(x)",\n'
             '   only without copying any data and with the returned index '
             'being\n'
             '   relative to the start of the sequence rather than the start '
             'of the\n'
             '   slice.\n'
             '\n'
             '\n'
             'Immutable Sequence Types\n'
             '========================\n'
             '\n'
             'The only operation that immutable sequence types generally '
             'implement\n'
             'that is not also implemented by mutable sequence types is '
             'support for\n'
             'the "hash()" built-in.\n'
             '\n'
             'This support allows immutable sequences, such as "tuple" '
             'instances, to\n'
             'be used as "dict" keys and stored in "set" and "frozenset" '
             'instances.\n'
             '\n'
             'Attempting to hash an immutable sequence that contains '
             'unhashable\n'
             'values will result in "TypeError".\n'
             '\n'
             '\n'
             'Mutable Sequence Types\n'
             '======================\n'
             '\n'
             'The operations in the following table are defined on mutable '
             'sequence\n'
             'types. The "collections.abc.MutableSequence" ABC is provided to '
             'make\n'
             'it easier to correctly implement these operations on custom '
             'sequence\n'
             'types.\n'
             '\n'
             'In the table *s* is an instance of a mutable sequence type, *t* '
             'is any\n'
             'iterable object and *x* is an arbitrary object that meets any '
             'type and\n'
             'value restrictions imposed by *s* (for example, "bytearray" '
             'only\n'
             'accepts integers that meet the value restriction "0 <= x <= '
             '255").\n'
             '\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| Operation                      | '
             'Result                           | Notes                 |\n'
             '+================================+==================================+=======================+\n'
             '| "s[i] = x"                     | item *i* of *s* is replaced '
             'by   |                       |\n'
             '|                                | '
             '*x*                              |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s[i:j] = t"                   | slice of *s* from *i* to *j* '
             'is  |                       |\n'
             '|                                | replaced by the contents of '
             'the  |                       |\n'
             '|                                | iterable '
             '*t*                     |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "del s[i:j]"                   | same as "s[i:j] = '
             '[]"            |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s[i:j:k] = t"                 | the elements of "s[i:j:k]" '
             'are   | (1)                   |\n'
             '|                                | replaced by those of '
             '*t*         |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "del s[i:j:k]"                 | removes the elements '
             'of          |                       |\n'
             '|                                | "s[i:j:k]" from the '
             'list         |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s.append(x)"                  | appends *x* to the end of '
             'the    |                       |\n'
             '|                                | sequence (same '
             'as                |                       |\n'
             '|                                | "s[len(s):len(s)] = '
             '[x]")        |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s.clear()"                    | removes all items from "s" '
             '(same | (5)                   |\n'
             '|                                | as "del '
             's[:]")                   |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s.copy()"                     | creates a shallow copy of '
             '"s"    | (5)                   |\n'
             '|                                | (same as '
             '"s[:]")                 |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s.extend(t)" or "s += t"      | extends *s* with the contents '
             'of |                       |\n'
             '|                                | *t* (for the most part the '
             'same  |                       |\n'
             '|                                | as "s[len(s):len(s)] = '
             't")       |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s *= n"                       | updates *s* with its '
             'contents    | (6)                   |\n'
             '|                                | repeated *n* '
             'times               |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s.insert(i, x)"               | inserts *x* into *s* at '
             'the      |                       |\n'
             '|                                | index given by *i* (same '
             'as      |                       |\n'
             '|                                | "s[i:i] = '
             '[x]")                  |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s.pop([i])"                   | retrieves the item at *i* '
             'and    | (2)                   |\n'
             '|                                | also removes it from '
             '*s*         |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s.remove(x)"                  | remove the first item from '
             '*s*   | (3)                   |\n'
             '|                                | where "s[i] == '
             'x"                |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '| "s.reverse()"                  | reverses the items of *s* '
             'in     | (4)                   |\n'
             '|                                | '
             'place                            |                       |\n'
             '+--------------------------------+----------------------------------+-----------------------+\n'
             '\n'
             'Notes:\n'
             '\n'
             '1. *t* must have the same length as the slice it is replacing.\n'
             '\n'
             '2. The optional argument *i* defaults to "-1", so that by '
             'default\n'
             '   the last item is removed and returned.\n'
             '\n'
             '3. "remove" raises "ValueError" when *x* is not found in *s*.\n'
             '\n'
             '4. The "reverse()" method modifies the sequence in place for\n'
             '   economy of space when reversing a large sequence.  To remind '
             'users\n'
             '   that it operates by side effect, it does not return the '
             'reversed\n'
             '   sequence.\n'
             '\n'
             '5. "clear()" and "copy()" are included for consistency with the\n'
             "   interfaces of mutable containers that don't support slicing\n"
             '   operations (such as "dict" and "set")\n'
             '\n'
             '   New in version 3.3: "clear()" and "copy()" methods.\n'
             '\n'
             '6. The value *n* is an integer, or an object implementing\n'
             '   "__index__()".  Zero and negative values of *n* clear the '
             'sequence.\n'
             '   Items in the sequence are not copied; they are referenced '
             'multiple\n'
             '   times, as explained for "s * n" under *Common Sequence '
             'Operations*.\n'
             '\n'
             '\n'
             'Lists\n'
             '=====\n'
             '\n'
             'Lists are mutable sequences, typically used to store collections '
             'of\n'
             'homogeneous items (where the precise degree of similarity will '
             'vary by\n'
             'application).\n'
             '\n'
             'class class list([iterable])\n'
             '\n'
             '   Lists may be constructed in several ways:\n'
             '\n'
             '   * Using a pair of square brackets to denote the empty list: '
             '"[]"\n'
             '\n'
             '   * Using square brackets, separating items with commas: '
             '"[a]",\n'
             '     "[a, b, c]"\n'
             '\n'
             '   * Using a list comprehension: "[x for x in iterable]"\n'
             '\n'
             '   * Using the type constructor: "list()" or "list(iterable)"\n'
             '\n'
             '   The constructor builds a list whose items are the same and in '
             'the\n'
             "   same order as *iterable*'s items.  *iterable* may be either "
             'a\n'
             '   sequence, a container that supports iteration, or an '
             'iterator\n'
             '   object.  If *iterable* is already a list, a copy is made and\n'
             '   returned, similar to "iterable[:]". For example, '
             '"list(\'abc\')"\n'
             '   returns "[\'a\', \'b\', \'c\']" and "list( (1, 2, 3) )" '
             'returns "[1, 2,\n'
             '   3]". If no argument is given, the constructor creates a new '
             'empty\n'
             '   list, "[]".\n'
             '\n'
             '   Many other operations also produce lists, including the '
             '"sorted()"\n'
             '   built-in.\n'
             '\n'
             '   Lists implement all of the *common* and *mutable* sequence\n'
             '   operations. Lists also provide the following additional '
             'method:\n'
             '\n'
             '   sort(*, key=None, reverse=None)\n'
             '\n'
             '      This method sorts the list in place, using only "<" '
             'comparisons\n'
             '      between items. Exceptions are not suppressed - if any '
             'comparison\n'
             '      operations fail, the entire sort operation will fail (and '
             'the\n'
             '      list will likely be left in a partially modified state).\n'
             '\n'
             '      "sort()" accepts two arguments that can only be passed by\n'
             '      keyword (*keyword-only arguments*):\n'
             '\n'
             '      *key* specifies a function of one argument that is used '
             'to\n'
             '      extract a comparison key from each list element (for '
             'example,\n'
             '      "key=str.lower"). The key corresponding to each item in '
             'the list\n'
             '      is calculated once and then used for the entire sorting '
             'process.\n'
             '      The default value of "None" means that list items are '
             'sorted\n'
             '      directly without calculating a separate key value.\n'
             '\n'
             '      The "functools.cmp_to_key()" utility is available to '
             'convert a\n'
             '      2.x style *cmp* function to a *key* function.\n'
             '\n'
             '      *reverse* is a boolean value.  If set to "True", then the '
             'list\n'
             '      elements are sorted as if each comparison were reversed.\n'
             '\n'
             '      This method modifies the sequence in place for economy of '
             'space\n'
             '      when sorting a large sequence.  To remind users that it '
             'operates\n'
             '      by side effect, it does not return the sorted sequence '
             '(use\n'
             '      "sorted()" to explicitly request a new sorted list '
             'instance).\n'
             '\n'
             '      The "sort()" method is guaranteed to be stable.  A sort '
             'is\n'
             '      stable if it guarantees not to change the relative order '
             'of\n'
             '      elements that compare equal --- this is helpful for '
             'sorting in\n'
             '      multiple passes (for example, sort by department, then by '
             'salary\n'
             '      grade).\n'
             '\n'
             '      **CPython implementation detail:** While a list is being '
             'sorted,\n'
             '      the effect of attempting to mutate, or even inspect, the '
             'list is\n'
             '      undefined.  The C implementation of Python makes the list '
             'appear\n'
             '      empty for the duration, and raises "ValueError" if it can '
             'detect\n'
             '      that the list has been mutated during a sort.\n'
             '\n'
             '\n'
             'Tuples\n'
             '======\n'
             '\n'
             'Tuples are immutable sequences, typically used to store '
             'collections of\n'
             'heterogeneous data (such as the 2-tuples produced by the '
             '"enumerate()"\n'
             'built-in). Tuples are also used for cases where an immutable '
             'sequence\n'
             'of homogeneous data is needed (such as allowing storage in a '
             '"set" or\n'
             '"dict" instance).\n'
             '\n'
             'class class tuple([iterable])\n'
             '\n'
             '   Tuples may be constructed in a number of ways:\n'
             '\n'
             '   * Using a pair of parentheses to denote the empty tuple: '
             '"()"\n'
             '\n'
             '   * Using a trailing comma for a singleton tuple: "a," or '
             '"(a,)"\n'
             '\n'
             '   * Separating items with commas: "a, b, c" or "(a, b, c)"\n'
             '\n'
             '   * Using the "tuple()" built-in: "tuple()" or '
             '"tuple(iterable)"\n'
             '\n'
             '   The constructor builds a tuple whose items are the same and '
             'in the\n'
             "   same order as *iterable*'s items.  *iterable* may be either "
             'a\n'
             '   sequence, a container that supports iteration, or an '
             'iterator\n'
             '   object.  If *iterable* is already a tuple, it is returned\n'
             '   unchanged. For example, "tuple(\'abc\')" returns "(\'a\', '
             '\'b\', \'c\')"\n'
             '   and "tuple( [1, 2, 3] )" returns "(1, 2, 3)". If no argument '
             'is\n'
             '   given, the constructor creates a new empty tuple, "()".\n'
             '\n'
             '   Note that it is actually the comma which makes a tuple, not '
             'the\n'
             '   parentheses. The parentheses are optional, except in the '
             'empty\n'
             '   tuple case, or when they are needed to avoid syntactic '
             'ambiguity.\n'
             '   For example, "f(a, b, c)" is a function call with three '
             'arguments,\n'
             '   while "f((a, b, c))" is a function call with a 3-tuple as the '
             'sole\n'
             '   argument.\n'
             '\n'
             '   Tuples implement all of the *common* sequence operations.\n'
             '\n'
             'For heterogeneous collections of data where access by name is '
             'clearer\n'
             'than access by index, "collections.namedtuple()" may be a more\n'
             'appropriate choice than a simple tuple object.\n'
             '\n'
             '\n'
             'Ranges\n'
             '======\n'
             '\n'
             'The "range" type represents an immutable sequence of numbers and '
             'is\n'
             'commonly used for looping a specific number of times in "for" '
             'loops.\n'
             '\n'
             'class class range(stop)\n'
             'class class range(start, stop[, step])\n'
             '\n'
             '   The arguments to the range constructor must be integers '
             '(either\n'
             '   built-in "int" or any object that implements the "__index__"\n'
             '   special method).  If the *step* argument is omitted, it '
             'defaults to\n'
             '   "1". If the *start* argument is omitted, it defaults to "0". '
             'If\n'
             '   *step* is zero, "ValueError" is raised.\n'
             '\n'
             '   For a positive *step*, the contents of a range "r" are '
             'determined\n'
             '   by the formula "r[i] = start + step*i" where "i >= 0" and '
             '"r[i] <\n'
             '   stop".\n'
             '\n'
             '   For a negative *step*, the contents of the range are still\n'
             '   determined by the formula "r[i] = start + step*i", but the\n'
             '   constraints are "i >= 0" and "r[i] > stop".\n'
             '\n'
             '   A range object will be empty if "r[0]" does not meet the '
             'value\n'
             '   constraint. Ranges do support negative indices, but these '
             'are\n'
             '   interpreted as indexing from the end of the sequence '
             'determined by\n'
             '   the positive indices.\n'
             '\n'
             '   Ranges containing absolute values larger than "sys.maxsize" '
             'are\n'
             '   permitted but some features (such as "len()") may raise\n'
             '   "OverflowError".\n'
             '\n'
             '   Range examples:\n'
             '\n'
             '      >>> list(range(10))\n'
             '      [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n'
             '      >>> list(range(1, 11))\n'
             '      [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n'
             '      >>> list(range(0, 30, 5))\n'
             '      [0, 5, 10, 15, 20, 25]\n'
             '      >>> list(range(0, 10, 3))\n'
             '      [0, 3, 6, 9]\n'
             '      >>> list(range(0, -10, -1))\n'
             '      [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]\n'
             '      >>> list(range(0))\n'
             '      []\n'
             '      >>> list(range(1, 0))\n'
             '      []\n'
             '\n'
             '   Ranges implement all of the *common* sequence operations '
             'except\n'
             '   concatenation and repetition (due to the fact that range '
             'objects\n'
             '   can only represent sequences that follow a strict pattern '
             'and\n'
             '   repetition and concatenation will usually violate that '
             'pattern).\n'
             '\n'
             'The advantage of the "range" type over a regular "list" or '
             '"tuple" is\n'
             'that a "range" object will always take the same (small) amount '
             'of\n'
             'memory, no matter the size of the range it represents (as it '
             'only\n'
             'stores the "start", "stop" and "step" values, calculating '
             'individual\n'
             'items and subranges as needed).\n'
             '\n'
             'Range objects implement the "collections.abc.Sequence" ABC, and\n'
             'provide features such as containment tests, element index '
             'lookup,\n'
             'slicing and support for negative indices (see *Sequence Types '
             '---\n'
             'list, tuple, range*):\n'
             '\n'
             '>>> r = range(0, 20, 2)\n'
             '>>> r\n'
             'range(0, 20, 2)\n'
             '>>> 11 in r\n'
             'False\n'
             '>>> 10 in r\n'
             'True\n'
             '>>> r.index(10)\n'
             '5\n'
             '>>> r[5]\n'
             '10\n'
             '>>> r[:5]\n'
             'range(0, 10, 2)\n'
             '>>> r[-1]\n'
             '18\n'
             '\n'
             'Testing range objects for equality with "==" and "!=" compares '
             'them as\n'
             'sequences.  That is, two range objects are considered equal if '
             'they\n'
             'represent the same sequence of values.  (Note that two range '
             'objects\n'
             'that compare equal might have different "start", "stop" and '
             '"step"\n'
             'attributes, for example "range(0) == range(2, 1, 3)" or '
             '"range(0, 3,\n'
             '2) == range(0, 4, 2)".)\n'
             '\n'
             'Changed in version 3.2: Implement the Sequence ABC. Support '
             'slicing\n'
             'and negative indices. Test "int" objects for membership in '
             'constant\n'
             'time instead of iterating through all items.\n'
             '\n'
             "Changed in version 3.3: Define '==' and '!=' to compare range "
             'objects\n'
             'based on the sequence of values they define (instead of '
             'comparing\n'
             'based on object identity).\n'
             '\n'
             'New in version 3.3: The "start", "stop" and "step" attributes.\n',
 'typesseq-mutable': '\n'
                     'Mutable Sequence Types\n'
                     '**********************\n'
                     '\n'
                     'The operations in the following table are defined on '
                     'mutable sequence\n'
                     'types. The "collections.abc.MutableSequence" ABC is '
                     'provided to make\n'
                     'it easier to correctly implement these operations on '
                     'custom sequence\n'
                     'types.\n'
                     '\n'
                     'In the table *s* is an instance of a mutable sequence '
                     'type, *t* is any\n'
                     'iterable object and *x* is an arbitrary object that '
                     'meets any type and\n'
                     'value restrictions imposed by *s* (for example, '
                     '"bytearray" only\n'
                     'accepts integers that meet the value restriction "0 <= x '
                     '<= 255").\n'
                     '\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| Operation                      | '
                     'Result                           | Notes                 '
                     '|\n'
                     '+================================+==================================+=======================+\n'
                     '| "s[i] = x"                     | item *i* of *s* is '
                     'replaced by   |                       |\n'
                     '|                                | '
                     '*x*                              |                       '
                     '|\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s[i:j] = t"                   | slice of *s* from *i* '
                     'to *j* is  |                       |\n'
                     '|                                | replaced by the '
                     'contents of the  |                       |\n'
                     '|                                | iterable '
                     '*t*                     |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "del s[i:j]"                   | same as "s[i:j] = '
                     '[]"            |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s[i:j:k] = t"                 | the elements of '
                     '"s[i:j:k]" are   | (1)                   |\n'
                     '|                                | replaced by those of '
                     '*t*         |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "del s[i:j:k]"                 | removes the elements '
                     'of          |                       |\n'
                     '|                                | "s[i:j:k]" from the '
                     'list         |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s.append(x)"                  | appends *x* to the '
                     'end of the    |                       |\n'
                     '|                                | sequence (same '
                     'as                |                       |\n'
                     '|                                | "s[len(s):len(s)] = '
                     '[x]")        |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s.clear()"                    | removes all items '
                     'from "s" (same | (5)                   |\n'
                     '|                                | as "del '
                     's[:]")                   |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s.copy()"                     | creates a shallow '
                     'copy of "s"    | (5)                   |\n'
                     '|                                | (same as '
                     '"s[:]")                 |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s.extend(t)" or "s += t"      | extends *s* with the '
                     'contents of |                       |\n'
                     '|                                | *t* (for the most '
                     'part the same  |                       |\n'
                     '|                                | as "s[len(s):len(s)] '
                     '= t")       |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s *= n"                       | updates *s* with its '
                     'contents    | (6)                   |\n'
                     '|                                | repeated *n* '
                     'times               |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s.insert(i, x)"               | inserts *x* into *s* '
                     'at the      |                       |\n'
                     '|                                | index given by *i* '
                     '(same as      |                       |\n'
                     '|                                | "s[i:i] = '
                     '[x]")                  |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s.pop([i])"                   | retrieves the item at '
                     '*i* and    | (2)                   |\n'
                     '|                                | also removes it from '
                     '*s*         |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s.remove(x)"                  | remove the first item '
                     'from *s*   | (3)                   |\n'
                     '|                                | where "s[i] == '
                     'x"                |                       |\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '| "s.reverse()"                  | reverses the items of '
                     '*s* in     | (4)                   |\n'
                     '|                                | '
                     'place                            |                       '
                     '|\n'
                     '+--------------------------------+----------------------------------+-----------------------+\n'
                     '\n'
                     'Notes:\n'
                     '\n'
                     '1. *t* must have the same length as the slice it is '
                     'replacing.\n'
                     '\n'
                     '2. The optional argument *i* defaults to "-1", so that '
                     'by default\n'
                     '   the last item is removed and returned.\n'
                     '\n'
                     '3. "remove" raises "ValueError" when *x* is not found in '
                     '*s*.\n'
                     '\n'
                     '4. The "reverse()" method modifies the sequence in place '
                     'for\n'
                     '   economy of space when reversing a large sequence.  To '
                     'remind users\n'
                     '   that it operates by side effect, it does not return '
                     'the reversed\n'
                     '   sequence.\n'
                     '\n'
                     '5. "clear()" and "copy()" are included for consistency '
                     'with the\n'
                     "   interfaces of mutable containers that don't support "
                     'slicing\n'
                     '   operations (such as "dict" and "set")\n'
                     '\n'
                     '   New in version 3.3: "clear()" and "copy()" methods.\n'
                     '\n'
                     '6. The value *n* is an integer, or an object '
                     'implementing\n'
                     '   "__index__()".  Zero and negative values of *n* clear '
                     'the sequence.\n'
                     '   Items in the sequence are not copied; they are '
                     'referenced multiple\n'
                     '   times, as explained for "s * n" under *Common '
                     'Sequence Operations*.\n',
 'unary': '\n'
          'Unary arithmetic and bitwise operations\n'
          '***************************************\n'
          '\n'
          'All unary arithmetic and bitwise operations have the same '
          'priority:\n'
          '\n'
          '   u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr\n'
          '\n'
          'The unary "-" (minus) operator yields the negation of its numeric\n'
          'argument.\n'
          '\n'
          'The unary "+" (plus) operator yields its numeric argument '
          'unchanged.\n'
          '\n'
          'The unary "~" (invert) operator yields the bitwise inversion of '
          'its\n'
          'integer argument.  The bitwise inversion of "x" is defined as\n'
          '"-(x+1)".  It only applies to integral numbers.\n'
          '\n'
          'In all three cases, if the argument does not have the proper type, '
          'a\n'
          '"TypeError" exception is raised.\n',
 'while': '\n'
          'The "while" statement\n'
          '*********************\n'
          '\n'
          'The "while" statement is used for repeated execution as long as an\n'
          'expression is true:\n'
          '\n'
          '   while_stmt ::= "while" expression ":" suite\n'
          '                  ["else" ":" suite]\n'
          '\n'
          'This repeatedly tests the expression and, if it is true, executes '
          'the\n'
          'first suite; if the expression is false (which may be the first '
          'time\n'
          'it is tested) the suite of the "else" clause, if present, is '
          'executed\n'
          'and the loop terminates.\n'
          '\n'
          'A "break" statement executed in the first suite terminates the '
          'loop\n'
          'without executing the "else" clause\'s suite.  A "continue" '
          'statement\n'
          'executed in the first suite skips the rest of the suite and goes '
          'back\n'
          'to testing the expression.\n',
 'with': '\n'
         'The "with" statement\n'
         '********************\n'
         '\n'
         'The "with" statement is used to wrap the execution of a block with\n'
         'methods defined by a context manager (see section *With Statement\n'
         'Context Managers*). This allows common "try"..."except"..."finally"\n'
         'usage patterns to be encapsulated for convenient reuse.\n'
         '\n'
         '   with_stmt ::= "with" with_item ("," with_item)* ":" suite\n'
         '   with_item ::= expression ["as" target]\n'
         '\n'
         'The execution of the "with" statement with one "item" proceeds as\n'
         'follows:\n'
         '\n'
         '1. The context expression (the expression given in the "with_item")\n'
         '   is evaluated to obtain a context manager.\n'
         '\n'
         '2. The context manager\'s "__exit__()" is loaded for later use.\n'
         '\n'
         '3. The context manager\'s "__enter__()" method is invoked.\n'
         '\n'
         '4. If a target was included in the "with" statement, the return\n'
         '   value from "__enter__()" is assigned to it.\n'
         '\n'
         '   Note: The "with" statement guarantees that if the "__enter__()"\n'
         '     method returns without an error, then "__exit__()" will always '
         'be\n'
         '     called. Thus, if an error occurs during the assignment to the\n'
         '     target list, it will be treated the same as an error occurring\n'
         '     within the suite would be. See step 6 below.\n'
         '\n'
         '5. The suite is executed.\n'
         '\n'
         '6. The context manager\'s "__exit__()" method is invoked.  If an\n'
         '   exception caused the suite to be exited, its type, value, and\n'
         '   traceback are passed as arguments to "__exit__()". Otherwise, '
         'three\n'
         '   "None" arguments are supplied.\n'
         '\n'
         '   If the suite was exited due to an exception, and the return '
         'value\n'
         '   from the "__exit__()" method was false, the exception is '
         'reraised.\n'
         '   If the return value was true, the exception is suppressed, and\n'
         '   execution continues with the statement following the "with"\n'
         '   statement.\n'
         '\n'
         '   If the suite was exited for any reason other than an exception, '
         'the\n'
         '   return value from "__exit__()" is ignored, and execution '
         'proceeds\n'
         '   at the normal location for the kind of exit that was taken.\n'
         '\n'
         'With more than one item, the context managers are processed as if\n'
         'multiple "with" statements were nested:\n'
         '\n'
         '   with A() as a, B() as b:\n'
         '       suite\n'
         '\n'
         'is equivalent to\n'
         '\n'
         '   with A() as a:\n'
         '       with B() as b:\n'
         '           suite\n'
         '\n'
         'Changed in version 3.1: Support for multiple context expressions.\n'
         '\n'
         'See also: **PEP 0343** - The "with" statement\n'
         '\n'
         '     The specification, background, and examples for the Python '
         '"with"\n'
         '     statement.\n',
 'yield': '\n'
          'The "yield" statement\n'
          '*********************\n'
          '\n'
          '   yield_stmt ::= yield_expression\n'
          '\n'
          'A "yield" statement is semantically equivalent to a *yield\n'
          'expression*. The yield statement can be used to omit the '
          'parentheses\n'
          'that would otherwise be required in the equivalent yield '
          'expression\n'
          'statement. For example, the yield statements\n'
          '\n'
          '   yield <expr>\n'
          '   yield from <expr>\n'
          '\n'
          'are equivalent to the yield expression statements\n'
          '\n'
          '   (yield <expr>)\n'
          '   (yield from <expr>)\n'
          '\n'
          'Yield expressions and statements are only used when defining a\n'
          '*generator* function, and are only used in the body of the '
          'generator\n'
          'function.  Using yield in a function definition is sufficient to '
          'cause\n'
          'that definition to create a generator function instead of a normal\n'
          'function.\n'
          '\n'
          'For full details of "yield" semantics, refer to the *Yield\n'
          'expressions* section.\n'}
lib\pydoc_data\_pydoc.css
 
lib\pydoc_data\__init__.py
lib\site-packages\README
 
lib\sqlite3\dbapi2.py
# pysqlite2/dbapi2.py: the DB-API 2.0 interface
#
# Copyright (C) 2004-2005 Gerhard Häring <[email protected]>
#
# This file is part of pysqlite.
#
# This software is provided 'as-is', without any express or implied
# warranty.  In no event will the authors be held liable for any damages
# arising from the use of this software.
#
# Permission is granted to anyone to use this software for any purpose,
# including commercial applications, and to alter it and redistribute it
# freely, subject to the following restrictions:
#
# 1. The origin of this software must not be misrepresented; you must not
#    claim that you wrote the original software. If you use this software
#    in a product, an acknowledgment in the product documentation would be
#    appreciated but is not required.
# 2. Altered source versions must be plainly marked as such, and must not be
#    misrepresented as being the original software.
# 3. This notice may not be removed or altered from any source distribution.

import datetime
import time
import collections.abc

from _sqlite3 import *

paramstyle = "qmark"

threadsafety = 1

apilevel = "2.0"

Date = datetime.date

Time = datetime.time

Timestamp = datetime.datetime

def DateFromTicks(ticks):
    return Date(*time.localtime(ticks)[:3])

def TimeFromTicks(ticks):
    return Time(*time.localtime(ticks)[3:6])

def TimestampFromTicks(ticks):
    return Timestamp(*time.localtime(ticks)[:6])

version_info = tuple([int(x) for x in version.split(".")])
sqlite_version_info = tuple([int(x) for x in sqlite_version.split(".")])

Binary = memoryview
collections.abc.Sequence.register(Row)

def register_adapters_and_converters():
    def adapt_date(val):
        return val.isoformat()

    def adapt_datetime(val):
        return val.isoformat(" ")

    def convert_date(val):
        return datetime.date(*map(int, val.split(b"-")))

    def convert_timestamp(val):
        datepart, timepart = val.split(b" ")
        year, month, day = map(int, datepart.split(b"-"))
        timepart_full = timepart.split(b".")
        hours, minutes, seconds = map(int, timepart_full[0].split(b":"))
        if len(timepart_full) == 2:
            microseconds = int('{:0<6.6}'.format(timepart_full[1].decode()))
        else:
            microseconds = 0

        val = datetime.datetime(year, month, day, hours, minutes, seconds, microseconds)
        return val


    register_adapter(datetime.date, adapt_date)
    register_adapter(datetime.datetime, adapt_datetime)
    register_converter("date", convert_date)
    register_converter("timestamp", convert_timestamp)

register_adapters_and_converters()

# Clean up namespace

del(register_adapters_and_converters)
lib\sqlite3\dump.py
# Mimic the sqlite3 console shell's .dump command
# Author: Paul Kippes <[email protected]>

# Every identifier in sql is quoted based on a comment in sqlite
# documentation "SQLite adds new keywords from time to time when it
# takes on new features. So to prevent your code from being broken by
# future enhancements, you should normally quote any identifier that
# is an English language word, even if you do not have to."

def _iterdump(connection):
    """
    Returns an iterator to the dump of the database in an SQL text format.

    Used to produce an SQL dump of the database.  Useful to save an in-memory
    database for later restoration.  This function should not be called
    directly but instead called from the Connection method, iterdump().
    """

    cu = connection.cursor()
    yield('BEGIN TRANSACTION;')

    # sqlite_master table contains the SQL CREATE statements for the database.
    q = """
        SELECT "name", "type", "sql"
        FROM "sqlite_master"
            WHERE "sql" NOT NULL AND
            "type" == 'table'
            ORDER BY "name"
        """
    schema_res = cu.execute(q)
    for table_name, type, sql in schema_res.fetchall():
        if table_name == 'sqlite_sequence':
            yield('DELETE FROM "sqlite_sequence";')
        elif table_name == 'sqlite_stat1':
            yield('ANALYZE "sqlite_master";')
        elif table_name.startswith('sqlite_'):
            continue
        # NOTE: Virtual table support not implemented
        #elif sql.startswith('CREATE VIRTUAL TABLE'):
        #    qtable = table_name.replace("'", "''")
        #    yield("INSERT INTO sqlite_master(type,name,tbl_name,rootpage,sql)"\
        #        "VALUES('table','{0}','{0}',0,'{1}');".format(
        #        qtable,
        #        sql.replace("''")))
        else:
            yield('{0};'.format(sql))

        # Build the insert statement for each row of the current table
        table_name_ident = table_name.replace('"', '""')
        res = cu.execute('PRAGMA table_info("{0}")'.format(table_name_ident))
        column_names = [str(table_info[1]) for table_info in res.fetchall()]
        q = """SELECT 'INSERT INTO "{0}" VALUES({1})' FROM "{0}";""".format(
            table_name_ident,
            ",".join("""'||quote("{0}")||'""".format(col.replace('"', '""')) for col in column_names))
        query_res = cu.execute(q)
        for row in query_res:
            yield("{0};".format(row[0]))

    # Now when the type is 'index', 'trigger', or 'view'
    q = """
        SELECT "name", "type", "sql"
        FROM "sqlite_master"
            WHERE "sql" NOT NULL AND
            "type" IN ('index', 'trigger', 'view')
        """
    schema_res = cu.execute(q)
    for name, type, sql in schema_res.fetchall():
        yield('{0};'.format(sql))

    yield('COMMIT;')
lib\sqlite3\__init__.py
# pysqlite2/__init__.py: the pysqlite2 package.
#
# Copyright (C) 2005 Gerhard Häring <[email protected]>
#
# This file is part of pysqlite.
#
# This software is provided 'as-is', without any express or implied
# warranty.  In no event will the authors be held liable for any damages
# arising from the use of this software.
#
# Permission is granted to anyone to use this software for any purpose,
# including commercial applications, and to alter it and redistribute it
# freely, subject to the following restrictions:
#
# 1. The origin of this software must not be misrepresented; you must not
#    claim that you wrote the original software. If you use this software
#    in a product, an acknowledgment in the product documentation would be
#    appreciated but is not required.
# 2. Altered source versions must be plainly marked as such, and must not be
#    misrepresented as being the original software.
# 3. This notice may not be removed or altered from any source distribution.

def _():
    import sys
    if sys.implementation.name == 'ironpython':
        import clr
        try:
            clr.AddReference('IronPython.SQLite')
        except:
            pass
_()
del _

from sqlite3.dbapi2 import *
lib\turtledemo\bytedesign.py
#!/usr/bin/env python3
"""      turtle-example-suite:

        tdemo_bytedesign.py

An example adapted from the example-suite
of PythonCard's turtle graphics.

It's based on an article in BYTE magazine
Problem Solving with Logo: Using Turtle
Graphics to Redraw a Design
November 1982, p. 118 - 134

-------------------------------------------

Due to the statement

t.delay(0)

in line 152, which sets the animation delay
to 0, this animation runs in "line per line"
mode as fast as possible.
"""

import math
from turtle import Turtle, mainloop
from time import clock

# wrapper for any additional drawing routines
# that need to know about each other
class Designer(Turtle):

    def design(self, homePos, scale):
        self.up()
        for i in range(5):
            self.forward(64.65 * scale)
            self.down()
            self.wheel(self.position(), scale)
            self.up()
            self.backward(64.65 * scale)
            self.right(72)
        self.up()
        self.goto(homePos)
        self.right(36)
        self.forward(24.5 * scale)
        self.right(198)
        self.down()
        self.centerpiece(46 * scale, 143.4, scale)
        self.getscreen().tracer(True)

    def wheel(self, initpos, scale):
        self.right(54)
        for i in range(4):
            self.pentpiece(initpos, scale)
        self.down()
        self.left(36)
        for i in range(5):
            self.tripiece(initpos, scale)
        self.left(36)
        for i in range(5):
            self.down()
            self.right(72)
            self.forward(28 * scale)
            self.up()
            self.backward(28 * scale)
        self.left(54)
        self.getscreen().update()

    def tripiece(self, initpos, scale):
        oldh = self.heading()
        self.down()
        self.backward(2.5 * scale)
        self.tripolyr(31.5 * scale, scale)
        self.up()
        self.goto(initpos)
        self.setheading(oldh)
        self.down()
        self.backward(2.5 * scale)
        self.tripolyl(31.5 * scale, scale)
        self.up()
        self.goto(initpos)
        self.setheading(oldh)
        self.left(72)
        self.getscreen().update()

    def pentpiece(self, initpos, scale):
        oldh = self.heading()
        self.up()
        self.forward(29 * scale)
        self.down()
        for i in range(5):
            self.forward(18 * scale)
            self.right(72)
        self.pentr(18 * scale, 75, scale)
        self.up()
        self.goto(initpos)
        self.setheading(oldh)
        self.forward(29 * scale)
        self.down()
        for i in range(5):
            self.forward(18 * scale)
            self.right(72)
        self.pentl(18 * scale, 75, scale)
        self.up()
        self.goto(initpos)
        self.setheading(oldh)
        self.left(72)
        self.getscreen().update()

    def pentl(self, side, ang, scale):
        if side < (2 * scale): return
        self.forward(side)
        self.left(ang)
        self.pentl(side - (.38 * scale), ang, scale)

    def pentr(self, side, ang, scale):
        if side < (2 * scale): return
        self.forward(side)
        self.right(ang)
        self.pentr(side - (.38 * scale), ang, scale)

    def tripolyr(self, side, scale):
        if side < (4 * scale): return
        self.forward(side)
        self.right(111)
        self.forward(side / 1.78)
        self.right(111)
        self.forward(side / 1.3)
        self.right(146)
        self.tripolyr(side * .75, scale)

    def tripolyl(self, side, scale):
        if side < (4 * scale): return
        self.forward(side)
        self.left(111)
        self.forward(side / 1.78)
        self.left(111)
        self.forward(side / 1.3)
        self.left(146)
        self.tripolyl(side * .75, scale)

    def centerpiece(self, s, a, scale):
        self.forward(s); self.left(a)
        if s < (7.5 * scale):
            return
        self.centerpiece(s - (1.2 * scale), a, scale)

def main():
    t = Designer()
    t.speed(0)
    t.hideturtle()
    t.getscreen().delay(0)
    t.getscreen().tracer(0)
    at = clock()
    t.design(t.position(), 2)
    et = clock()
    return "runtime: %.2f sec." % (et-at)

if __name__ == '__main__':
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\chaos.py
# File: tdemo_chaos.py
# Author: Gregor Lingl
# Date: 2009-06-24

# A demonstration of chaos

from turtle import *

N = 80

def f(x):
    return 3.9*x*(1-x)

def g(x):
    return 3.9*(x-x**2)

def h(x):
    return 3.9*x-3.9*x*x

def jumpto(x, y):
    penup(); goto(x,y)

def line(x1, y1, x2, y2):
    jumpto(x1, y1)
    pendown()
    goto(x2, y2)

def coosys():
    line(-1, 0, N+1, 0)
    line(0, -0.1, 0, 1.1)

def plot(fun, start, color):
    pencolor(color)
    x = start
    jumpto(0, x)
    pendown()
    dot(5)
    for i in range(N):
        x=fun(x)
        goto(i+1,x)
        dot(5)

def main():
    reset()
    setworldcoordinates(-1.0,-0.1, N+1, 1.1)
    speed(0)
    hideturtle()
    coosys()
    plot(f, 0.35, "blue")
    plot(g, 0.35, "green")
    plot(h, 0.35, "red")
    # Now zoom in:
    for s in range(100):
        setworldcoordinates(0.5*s,-0.1, N+1, 1.1)
    return "Done!"

if __name__ == "__main__":
    main()
    mainloop()
lib\turtledemo\clock.py
#!/usr/bin/env python3
# -*- coding: cp1252 -*-
"""       turtle-example-suite:

             tdemo_clock.py

Enhanced clock-program, showing date
and time
  ------------------------------------
   Press STOP to exit the program!
  ------------------------------------
"""
from turtle import *
from datetime import datetime

def jump(distanz, winkel=0):
    penup()
    right(winkel)
    forward(distanz)
    left(winkel)
    pendown()

def hand(laenge, spitze):
    fd(laenge*1.15)
    rt(90)
    fd(spitze/2.0)
    lt(120)
    fd(spitze)
    lt(120)
    fd(spitze)
    lt(120)
    fd(spitze/2.0)

def make_hand_shape(name, laenge, spitze):
    reset()
    jump(-laenge*0.15)
    begin_poly()
    hand(laenge, spitze)
    end_poly()
    hand_form = get_poly()
    register_shape(name, hand_form)

def clockface(radius):
    reset()
    pensize(7)
    for i in range(60):
        jump(radius)
        if i % 5 == 0:
            fd(25)
            jump(-radius-25)
        else:
            dot(3)
            jump(-radius)
        rt(6)

def setup():
    global second_hand, minute_hand, hour_hand, writer
    mode("logo")
    make_hand_shape("second_hand", 125, 25)
    make_hand_shape("minute_hand",  130, 25)
    make_hand_shape("hour_hand", 90, 25)
    clockface(160)
    second_hand = Turtle()
    second_hand.shape("second_hand")
    second_hand.color("gray20", "gray80")
    minute_hand = Turtle()
    minute_hand.shape("minute_hand")
    minute_hand.color("blue1", "red1")
    hour_hand = Turtle()
    hour_hand.shape("hour_hand")
    hour_hand.color("blue3", "red3")
    for hand in second_hand, minute_hand, hour_hand:
        hand.resizemode("user")
        hand.shapesize(1, 1, 3)
        hand.speed(0)
    ht()
    writer = Turtle()
    #writer.mode("logo")
    writer.ht()
    writer.pu()
    writer.bk(85)

def wochentag(t):
    wochentag = ["Monday", "Tuesday", "Wednesday",
        "Thursday", "Friday", "Saturday", "Sunday"]
    return wochentag[t.weekday()]

def datum(z):
    monat = ["Jan.", "Feb.", "Mar.", "Apr.", "May", "June",
             "July", "Aug.", "Sep.", "Oct.", "Nov.", "Dec."]
    j = z.year
    m = monat[z.month - 1]
    t = z.day
    return "%s %d %d" % (m, t, j)

def tick():
    t = datetime.today()
    sekunde = t.second + t.microsecond*0.000001
    minute = t.minute + sekunde/60.0
    stunde = t.hour + minute/60.0
    try:
        tracer(False)  # Terminator can occur here
        writer.clear()
        writer.home()
        writer.forward(65)
        writer.write(wochentag(t),
                     align="center", font=("Courier", 14, "bold"))
        writer.back(150)
        writer.write(datum(t),
                     align="center", font=("Courier", 14, "bold"))
        writer.forward(85)
        tracer(True)
        second_hand.setheading(6*sekunde)  # or here
        minute_hand.setheading(6*minute)
        hour_hand.setheading(30*stunde)
        tracer(True)
        ontimer(tick, 100)
    except Terminator:
        pass  # turtledemo user pressed STOP

def main():
    tracer(False)
    setup()
    tracer(True)
    tick()
    return "EVENTLOOP"

if __name__ == "__main__":
    mode("logo")
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\colormixer.py
# colormixer

from turtle import Screen, Turtle, mainloop

class ColorTurtle(Turtle):

    def __init__(self, x, y):
        Turtle.__init__(self)
        self.shape("turtle")
        self.resizemode("user")
        self.shapesize(3,3,5)
        self.pensize(10)
        self._color = [0,0,0]
        self.x = x
        self._color[x] = y
        self.color(self._color)
        self.speed(0)
        self.left(90)
        self.pu()
        self.goto(x,0)
        self.pd()
        self.sety(1)
        self.pu()
        self.sety(y)
        self.pencolor("gray25")
        self.ondrag(self.shift)

    def shift(self, x, y):
        self.sety(max(0,min(y,1)))
        self._color[self.x] = self.ycor()
        self.fillcolor(self._color)
        setbgcolor()

def setbgcolor():
    screen.bgcolor(red.ycor(), green.ycor(), blue.ycor())

def main():
    global screen, red, green, blue
    screen = Screen()
    screen.delay(0)
    screen.setworldcoordinates(-1, -0.3, 3, 1.3)

    red = ColorTurtle(0, .5)
    green = ColorTurtle(1, .5)
    blue = ColorTurtle(2, .5)
    setbgcolor()

    writer = Turtle()
    writer.ht()
    writer.pu()
    writer.goto(1,1.15)
    writer.write("DRAG!",align="center",font=("Arial",30,("bold","italic")))
    return "EVENTLOOP"

if __name__ == "__main__":
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\forest.py
#!/usr/bin/env python3
"""     turtlegraphics-example-suite:

             tdemo_forest.py

Displays a 'forest' of 3 breadth-first-trees
similar to the one in tree.
For further remarks see tree.py

This example is a 'breadth-first'-rewrite of
a Logo program written by Erich Neuwirth. See
http://homepage.univie.ac.at/erich.neuwirth/
"""
from turtle import Turtle, colormode, tracer, mainloop
from random import randrange
from time import clock

def symRandom(n):
    return randrange(-n,n+1)

def randomize( branchlist, angledist, sizedist ):
    return [ (angle+symRandom(angledist),
              sizefactor*1.01**symRandom(sizedist))
                     for angle, sizefactor in branchlist ]

def randomfd( t, distance, parts, angledist ):
    for i in range(parts):
        t.left(symRandom(angledist))
        t.forward( (1.0 * distance)/parts )

def tree(tlist, size, level, widthfactor, branchlists, angledist=10, sizedist=5):
    # benutzt Liste von turtles und Liste von Zweiglisten,
    # fuer jede turtle eine!
    if level > 0:
        lst = []
        brs = []
        for t, branchlist in list(zip(tlist,branchlists)):
            t.pensize( size * widthfactor )
            t.pencolor( 255 - (180 - 11 * level + symRandom(15)),
                        180 - 11 * level + symRandom(15),
                        0 )
            t.pendown()
            randomfd(t, size, level, angledist )
            yield 1
            for angle, sizefactor in branchlist:
                t.left(angle)
                lst.append(t.clone())
                brs.append(randomize(branchlist, angledist, sizedist))
                t.right(angle)
        for x in tree(lst, size*sizefactor, level-1, widthfactor, brs,
                      angledist, sizedist):
            yield None


def start(t,x,y):
    colormode(255)
    t.reset()
    t.speed(0)
    t.hideturtle()
    t.left(90)
    t.penup()
    t.setpos(x,y)
    t.pendown()

def doit1(level, pen):
    pen.hideturtle()
    start(pen, 20, -208)
    t = tree( [pen], 80, level, 0.1, [[ (45,0.69), (0,0.65), (-45,0.71) ]] )
    return t

def doit2(level, pen):
    pen.hideturtle()
    start(pen, -135, -130)
    t = tree( [pen], 120, level, 0.1, [[ (45,0.69), (-45,0.71) ]] )
    return t

def doit3(level, pen):
    pen.hideturtle()
    start(pen, 190, -90)
    t = tree( [pen], 100, level, 0.1, [[ (45,0.7), (0,0.72), (-45,0.65) ]] )
    return t

# Hier 3 Baumgeneratoren:
def main():
    p = Turtle()
    p.ht()
    tracer(75,0)
    u = doit1(6, Turtle(undobuffersize=1))
    s = doit2(7, Turtle(undobuffersize=1))
    t = doit3(5, Turtle(undobuffersize=1))
    a = clock()
    while True:
        done = 0
        for b in u,s,t:
            try:
                b.__next__()
            except:
                done += 1
        if done == 3:
            break

    tracer(1,10)
    b = clock()
    return "runtime: %.2f sec." % (b-a)

if __name__ == '__main__':
    main()
    mainloop()
lib\turtledemo\fractalcurves.py
#!/usr/bin/env python3
"""      turtle-example-suite:

        tdemo_fractalCurves.py

This program draws two fractal-curve-designs:
(1) A hilbert curve (in a box)
(2) A combination of Koch-curves.

The CurvesTurtle class and the fractal-curve-
methods are taken from the PythonCard example
scripts for turtle-graphics.
"""
from turtle import *
from time import sleep, clock

class CurvesTurtle(Pen):
    # example derived from
    # Turtle Geometry: The Computer as a Medium for Exploring Mathematics
    # by Harold Abelson and Andrea diSessa
    # p. 96-98
    def hilbert(self, size, level, parity):
        if level == 0:
            return
        # rotate and draw first subcurve with opposite parity to big curve
        self.left(parity * 90)
        self.hilbert(size, level - 1, -parity)
        # interface to and draw second subcurve with same parity as big curve
        self.forward(size)
        self.right(parity * 90)
        self.hilbert(size, level - 1, parity)
        # third subcurve
        self.forward(size)
        self.hilbert(size, level - 1, parity)
        # fourth subcurve
        self.right(parity * 90)
        self.forward(size)
        self.hilbert(size, level - 1, -parity)
        # a final turn is needed to make the turtle
        # end up facing outward from the large square
        self.left(parity * 90)

    # Visual Modeling with Logo: A Structural Approach to Seeing
    # by James Clayson
    # Koch curve, after Helge von Koch who introduced this geometric figure in 1904
    # p. 146
    def fractalgon(self, n, rad, lev, dir):
        import math

        # if dir = 1 turn outward
        # if dir = -1 turn inward
        edge = 2 * rad * math.sin(math.pi / n)
        self.pu()
        self.fd(rad)
        self.pd()
        self.rt(180 - (90 * (n - 2) / n))
        for i in range(n):
            self.fractal(edge, lev, dir)
            self.rt(360 / n)
        self.lt(180 - (90 * (n - 2) / n))
        self.pu()
        self.bk(rad)
        self.pd()

    # p. 146
    def fractal(self, dist, depth, dir):
        if depth < 1:
            self.fd(dist)
            return
        self.fractal(dist / 3, depth - 1, dir)
        self.lt(60 * dir)
        self.fractal(dist / 3, depth - 1, dir)
        self.rt(120 * dir)
        self.fractal(dist / 3, depth - 1, dir)
        self.lt(60 * dir)
        self.fractal(dist / 3, depth - 1, dir)

def main():
    ft = CurvesTurtle()

    ft.reset()
    ft.speed(0)
    ft.ht()
    ft.getscreen().tracer(1,0)
    ft.pu()

    size = 6
    ft.setpos(-33*size, -32*size)
    ft.pd()

    ta=clock()
    ft.fillcolor("red")
    ft.begin_fill()
    ft.fd(size)

    ft.hilbert(size, 6, 1)

    # frame
    ft.fd(size)
    for i in range(3):
        ft.lt(90)
        ft.fd(size*(64+i%2))
    ft.pu()
    for i in range(2):
        ft.fd(size)
        ft.rt(90)
    ft.pd()
    for i in range(4):
        ft.fd(size*(66+i%2))
        ft.rt(90)
    ft.end_fill()
    tb=clock()
    res =  "Hilbert: %.2fsec. " % (tb-ta)

    sleep(3)

    ft.reset()
    ft.speed(0)
    ft.ht()
    ft.getscreen().tracer(1,0)

    ta=clock()
    ft.color("black", "blue")
    ft.begin_fill()
    ft.fractalgon(3, 250, 4, 1)
    ft.end_fill()
    ft.begin_fill()
    ft.color("red")
    ft.fractalgon(3, 200, 4, -1)
    ft.end_fill()
    tb=clock()
    res +=  "Koch: %.2fsec." % (tb-ta)
    return res

if __name__  == '__main__':
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\lindenmayer.py
#!/usr/bin/env python3
"""       turtle-example-suite:

        xtx_lindenmayer_indian.py

Each morning women in Tamil Nadu, in southern
India, place designs, created by using rice
flour and known as kolam on the thresholds of
their homes.

These can be described by Lindenmayer systems,
which can easily be implemented with turtle
graphics and Python.

Two examples are shown here:
(1) the snake kolam
(2) anklets of Krishna

Taken from Marcia Ascher: Mathematics
Elsewhere, An Exploration of Ideas Across
Cultures

"""
################################
# Mini Lindenmayer tool
###############################

from turtle import *

def replace( seq, replacementRules, n ):
    for i in range(n):
        newseq = ""
        for element in seq:
            newseq = newseq + replacementRules.get(element,element)
        seq = newseq
    return seq

def draw( commands, rules ):
    for b in commands:
        try:
            rules[b]()
        except TypeError:
            try:
                draw(rules[b], rules)
            except:
                pass


def main():
    ################################
    # Example 1: Snake kolam
    ################################


    def r():
        right(45)

    def l():
        left(45)

    def f():
        forward(7.5)

    snake_rules = {"-":r, "+":l, "f":f, "b":"f+f+f--f--f+f+f"}
    snake_replacementRules = {"b": "b+f+b--f--b+f+b"}
    snake_start = "b--f--b--f"

    drawing = replace(snake_start, snake_replacementRules, 3)

    reset()
    speed(3)
    tracer(1,0)
    ht()
    up()
    backward(195)
    down()
    draw(drawing, snake_rules)

    from time import sleep
    sleep(3)

    ################################
    # Example 2: Anklets of Krishna
    ################################

    def A():
        color("red")
        circle(10,90)

    def B():
        from math import sqrt
        color("black")
        l = 5/sqrt(2)
        forward(l)
        circle(l, 270)
        forward(l)

    def F():
        color("green")
        forward(10)

    krishna_rules = {"a":A, "b":B, "f":F}
    krishna_replacementRules = {"a" : "afbfa", "b" : "afbfbfbfa" }
    krishna_start = "fbfbfbfb"

    reset()
    speed(0)
    tracer(3,0)
    ht()
    left(45)
    drawing = replace(krishna_start, krishna_replacementRules, 3)
    draw(drawing, krishna_rules)
    tracer(1)
    return "Done!"

if __name__=='__main__':
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\minimal_hanoi.py
#!/usr/bin/env python3
"""       turtle-example-suite:

         tdemo_minimal_hanoi.py

A minimal 'Towers of Hanoi' animation:
A tower of 6 discs is transferred from the
left to the right peg.

An imho quite elegant and concise
implementation using a tower class, which
is derived from the built-in type list.

Discs are turtles with shape "square", but
stretched to rectangles by shapesize()
 ---------------------------------------
       To exit press STOP button
 ---------------------------------------
"""
from turtle import *

class Disc(Turtle):
    def __init__(self, n):
        Turtle.__init__(self, shape="square", visible=False)
        self.pu()
        self.shapesize(1.5, n*1.5, 2) # square-->rectangle
        self.fillcolor(n/6., 0, 1-n/6.)
        self.st()

class Tower(list):
    "Hanoi tower, a subclass of built-in type list"
    def __init__(self, x):
        "create an empty tower. x is x-position of peg"
        self.x = x
    def push(self, d):
        d.setx(self.x)
        d.sety(-150+34*len(self))
        self.append(d)
    def pop(self):
        d = list.pop(self)
        d.sety(150)
        return d

def hanoi(n, from_, with_, to_):
    if n > 0:
        hanoi(n-1, from_, to_, with_)
        to_.push(from_.pop())
        hanoi(n-1, with_, from_, to_)

def play():
    onkey(None,"space")
    clear()
    try:
        hanoi(6, t1, t2, t3)
        write("press STOP button to exit",
              align="center", font=("Courier", 16, "bold"))
    except Terminator:
        pass  # turtledemo user pressed STOP

def main():
    global t1, t2, t3
    ht(); penup(); goto(0, -225)   # writer turtle
    t1 = Tower(-250)
    t2 = Tower(0)
    t3 = Tower(250)
    # make tower of 6 discs
    for i in range(6,0,-1):
        t1.push(Disc(i))
    # prepare spartanic user interface ;-)
    write("press spacebar to start game",
          align="center", font=("Courier", 16, "bold"))
    onkey(play, "space")
    listen()
    return "EVENTLOOP"

if __name__=="__main__":
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\nim.py
"""      turtle-example-suite:

            tdemo_nim.py

Play nim against the computer. The player
who takes the last stick is the winner.

Implements the model-view-controller
design pattern.
"""


import turtle
import random
import time

SCREENWIDTH = 640
SCREENHEIGHT = 480

MINSTICKS = 7
MAXSTICKS = 31

HUNIT = SCREENHEIGHT // 12
WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)

SCOLOR = (63, 63, 31)
HCOLOR = (255, 204, 204)
COLOR = (204, 204, 255)

def randomrow():
    return random.randint(MINSTICKS, MAXSTICKS)

def computerzug(state):
    xored = state[0] ^ state[1] ^ state[2]
    if xored == 0:
        return randommove(state)
    for z in range(3):
        s = state[z] ^ xored
        if s <= state[z]:
            move = (z, s)
            return move

def randommove(state):
    m = max(state)
    while True:
        z = random.randint(0,2)
        if state[z] > (m > 1):
            break
    rand = random.randint(m > 1, state[z]-1)
    return z, rand


class NimModel(object):
    def __init__(self, game):
        self.game = game

    def setup(self):
        if self.game.state not in [Nim.CREATED, Nim.OVER]:
            return
        self.sticks = [randomrow(), randomrow(), randomrow()]
        self.player = 0
        self.winner = None
        self.game.view.setup()
        self.game.state = Nim.RUNNING

    def move(self, row, col):
        maxspalte = self.sticks[row]
        self.sticks[row] = col
        self.game.view.notify_move(row, col, maxspalte, self.player)
        if self.game_over():
            self.game.state = Nim.OVER
            self.winner = self.player
            self.game.view.notify_over()
        elif self.player == 0:
            self.player = 1
            row, col = computerzug(self.sticks)
            self.move(row, col)
            self.player = 0

    def game_over(self):
        return self.sticks == [0, 0, 0]

    def notify_move(self, row, col):
        if self.sticks[row] <= col:
            return
        self.move(row, col)


class Stick(turtle.Turtle):
    def __init__(self, row, col, game):
        turtle.Turtle.__init__(self, visible=False)
        self.row = row
        self.col = col
        self.game = game
        x, y = self.coords(row, col)
        self.shape("square")
        self.shapesize(HUNIT/10.0, WUNIT/20.0)
        self.speed(0)
        self.pu()
        self.goto(x,y)
        self.color("white")
        self.showturtle()

    def coords(self, row, col):
        packet, remainder = divmod(col, 5)
        x = (3 + 11 * packet + 2 * remainder) * WUNIT
        y = (2 + 3 * row) * HUNIT
        return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2

    def makemove(self, x, y):
        if self.game.state != Nim.RUNNING:
            return
        self.game.controller.notify_move(self.row, self.col)


class NimView(object):
    def __init__(self, game):
        self.game = game
        self.screen = game.screen
        self.model = game.model
        self.screen.colormode(255)
        self.screen.tracer(False)
        self.screen.bgcolor((240, 240, 255))
        self.writer = turtle.Turtle(visible=False)
        self.writer.pu()
        self.writer.speed(0)
        self.sticks = {}
        for row in range(3):
            for col in range(MAXSTICKS):
                self.sticks[(row, col)] = Stick(row, col, game)
        self.display("... a moment please ...")
        self.screen.tracer(True)

    def display(self, msg1, msg2=None):
        self.screen.tracer(False)
        self.writer.clear()
        if msg2 is not None:
            self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
            self.writer.pencolor("red")
            self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
        self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
        self.writer.pencolor("black")
        self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
        self.screen.tracer(True)

    def setup(self):
        self.screen.tracer(False)
        for row in range(3):
            for col in range(self.model.sticks[row]):
                self.sticks[(row, col)].color(SCOLOR)
        for row in range(3):
            for col in range(self.model.sticks[row], MAXSTICKS):
                self.sticks[(row, col)].color("white")
        self.display("Your turn! Click leftmost stick to remove.")
        self.screen.tracer(True)

    def notify_move(self, row, col, maxspalte, player):
        if player == 0:
            farbe = HCOLOR
            for s in range(col, maxspalte):
                self.sticks[(row, s)].color(farbe)
        else:
            self.display(" ... thinking ...         ")
            time.sleep(0.5)
            self.display(" ... thinking ... aaah ...")
            farbe = COLOR
            for s in range(maxspalte-1, col-1, -1):
                time.sleep(0.2)
                self.sticks[(row, s)].color(farbe)
            self.display("Your turn! Click leftmost stick to remove.")

    def notify_over(self):
        if self.game.model.winner == 0:
            msg2 = "Congrats. You're the winner!!!"
        else:
            msg2 = "Sorry, the computer is the winner."
        self.display("To play again press space bar. To leave press ESC.", msg2)

    def clear(self):
        if self.game.state == Nim.OVER:
            self.screen.clear()


class NimController(object):

    def __init__(self, game):
        self.game = game
        self.sticks = game.view.sticks
        self.BUSY = False
        for stick in self.sticks.values():
            stick.onclick(stick.makemove)
        self.game.screen.onkey(self.game.model.setup, "space")
        self.game.screen.onkey(self.game.view.clear, "Escape")
        self.game.view.display("Press space bar to start game")
        self.game.screen.listen()

    def notify_move(self, row, col):
        if self.BUSY:
            return
        self.BUSY = True
        self.game.model.notify_move(row, col)
        self.BUSY = False


class Nim(object):
    CREATED = 0
    RUNNING = 1
    OVER = 2
    def __init__(self, screen):
        self.state = Nim.CREATED
        self.screen = screen
        self.model = NimModel(self)
        self.view = NimView(self)
        self.controller = NimController(self)


def main():
    mainscreen = turtle.Screen()
    mainscreen.mode("standard")
    mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
    nim = Nim(mainscreen)
    return "EVENTLOOP"

if __name__ == "__main__":
    main()
    turtle.mainloop()
lib\turtledemo\paint.py
#!/usr/bin/env python3
"""       turtle-example-suite:

            tdemo_paint.py

A simple  event-driven paint program

- left mouse button moves turtle
- middle mouse button changes color
- right mouse button toogles betweem pen up
(no line drawn when the turtle moves) and
pen down (line is drawn). If pen up follows
at least two pen-down moves, the polygon that
includes the starting point is filled.
 -------------------------------------------
 Play around by clicking into the canvas
 using all three mouse buttons.
 -------------------------------------------
          To exit press STOP button
 -------------------------------------------
"""
from turtle import *

def switchupdown(x=0, y=0):
    if pen()["pendown"]:
        end_fill()
        up()
    else:
        down()
        begin_fill()

def changecolor(x=0, y=0):
    global colors
    colors = colors[1:]+colors[:1]
    color(colors[0])

def main():
    global colors
    shape("circle")
    resizemode("user")
    shapesize(.5)
    width(3)
    colors=["red", "green", "blue", "yellow"]
    color(colors[0])
    switchupdown()
    onscreenclick(goto,1)
    onscreenclick(changecolor,2)
    onscreenclick(switchupdown,3)
    return "EVENTLOOP"

if __name__ == "__main__":
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\peace.py
#!/usr/bin/env python3
"""       turtle-example-suite:

              tdemo_peace.py

A simple drawing suitable as a beginner's
programming example. Aside from the
peacecolors assignment and the for loop,
it only uses turtle commands.
"""

from turtle import *

def main():
    peacecolors = ("red3",  "orange", "yellow",
                   "seagreen4", "orchid4",
                   "royalblue1", "dodgerblue4")

    reset()
    Screen()
    up()
    goto(-320,-195)
    width(70)

    for pcolor in peacecolors:
        color(pcolor)
        down()
        forward(640)
        up()
        backward(640)
        left(90)
        forward(66)
        right(90)

    width(25)
    color("white")
    goto(0,-170)
    down()

    circle(170)
    left(90)
    forward(340)
    up()
    left(180)
    forward(170)
    right(45)
    down()
    forward(170)
    up()
    backward(170)
    left(90)
    down()
    forward(170)
    up()

    goto(0,300) # vanish if hideturtle() is not available ;-)
    return "Done!"

if __name__ == "__main__":
    main()
    mainloop()
lib\turtledemo\penrose.py
#!/usr/bin/env python3
"""       xturtle-example-suite:

          xtx_kites_and_darts.py

Constructs two aperiodic penrose-tilings,
consisting of kites and darts, by the method
of inflation in six steps.

Starting points are the patterns "sun"
consisting of five kites and "star"
consisting of five darts.

For more information see:
 http://en.wikipedia.org/wiki/Penrose_tiling
 -------------------------------------------
"""
from turtle import *
from math import cos, pi
from time import clock, sleep

f = (5**0.5-1)/2.0   # (sqrt(5)-1)/2 -- golden ratio
d = 2 * cos(3*pi/10)

def kite(l):
    fl = f * l
    lt(36)
    fd(l)
    rt(108)
    fd(fl)
    rt(36)
    fd(fl)
    rt(108)
    fd(l)
    rt(144)

def dart(l):
    fl = f * l
    lt(36)
    fd(l)
    rt(144)
    fd(fl)
    lt(36)
    fd(fl)
    rt(144)
    fd(l)
    rt(144)

def inflatekite(l, n):
    if n == 0:
        px, py = pos()
        h, x, y = int(heading()), round(px,3), round(py,3)
        tiledict[(h,x,y)] = True
        return
    fl = f * l
    lt(36)
    inflatedart(fl, n-1)
    fd(l)
    rt(144)
    inflatekite(fl, n-1)
    lt(18)
    fd(l*d)
    rt(162)
    inflatekite(fl, n-1)
    lt(36)
    fd(l)
    rt(180)
    inflatedart(fl, n-1)
    lt(36)

def inflatedart(l, n):
    if n == 0:
        px, py = pos()
        h, x, y = int(heading()), round(px,3), round(py,3)
        tiledict[(h,x,y)] = False
        return
    fl = f * l
    inflatekite(fl, n-1)
    lt(36)
    fd(l)
    rt(180)
    inflatedart(fl, n-1)
    lt(54)
    fd(l*d)
    rt(126)
    inflatedart(fl, n-1)
    fd(l)
    rt(144)

def draw(l, n, th=2):
    clear()
    l = l * f**n
    shapesize(l/100.0, l/100.0, th)
    for k in tiledict:
        h, x, y = k
        setpos(x, y)
        setheading(h)
        if tiledict[k]:
            shape("kite")
            color("black", (0, 0.75, 0))
        else:
            shape("dart")
            color("black", (0.75, 0, 0))
        stamp()

def sun(l, n):
    for i in range(5):
        inflatekite(l, n)
        lt(72)

def star(l,n):
    for i in range(5):
        inflatedart(l, n)
        lt(72)

def makeshapes():
    tracer(0)
    begin_poly()
    kite(100)
    end_poly()
    register_shape("kite", get_poly())
    begin_poly()
    dart(100)
    end_poly()
    register_shape("dart", get_poly())
    tracer(1)

def start():
    reset()
    ht()
    pu()
    makeshapes()
    resizemode("user")

def test(l=200, n=4, fun=sun, startpos=(0,0), th=2):
    global tiledict
    goto(startpos)
    setheading(0)
    tiledict = {}
    a = clock()
    tracer(0)
    fun(l, n)
    b = clock()
    draw(l, n, th)
    tracer(1)
    c = clock()
    print("Calculation:   %7.4f s" % (b - a))
    print("Drawing:  %7.4f s" % (c - b))
    print("Together: %7.4f s" % (c - a))
    nk = len([x for x in tiledict if tiledict[x]])
    nd = len([x for x in tiledict if not tiledict[x]])
    print("%d kites and %d darts = %d pieces." % (nk, nd, nk+nd))

def demo(fun=sun):
    start()
    for i in range(8):
        a = clock()
        test(300, i, fun)
        b = clock()
        t = b - a
        if t < 2:
            sleep(2 - t)

def main():
    #title("Penrose-tiling with kites and darts.")
    mode("logo")
    bgcolor(0.3, 0.3, 0)
    demo(sun)
    sleep(2)
    demo(star)
    pencolor("black")
    goto(0,-200)
    pencolor(0.7,0.7,1)
    write("Please wait...",
          align="center", font=('Arial Black', 36, 'bold'))
    test(600, 8, startpos=(70, 117))
    return "Done"

if __name__ == "__main__":
    msg = main()
    mainloop()
lib\turtledemo\planet_and_moon.py
#!/usr/bin/env python3
"""       turtle-example-suite:

        tdemo_planets_and_moon.py

Gravitational system simulation using the
approximation method from Feynman-lectures,
p.9-8, using turtlegraphics.

Example: heavy central body, light planet,
very light moon!
Planet has a circular orbit, moon a stable
orbit around the planet.

You can hold the movement temporarily by
pressing the left mouse button with the
mouse over the scrollbar of the canvas.

"""
from turtle import Shape, Turtle, mainloop, Vec2D as Vec
from time import sleep

G = 8

class GravSys(object):
    def __init__(self):
        self.planets = []
        self.t = 0
        self.dt = 0.01
    def init(self):
        for p in self.planets:
            p.init()
    def start(self):
        for i in range(10000):
            self.t += self.dt
            for p in self.planets:
                p.step()

class Star(Turtle):
    def __init__(self, m, x, v, gravSys, shape):
        Turtle.__init__(self, shape=shape)
        self.penup()
        self.m = m
        self.setpos(x)
        self.v = v
        gravSys.planets.append(self)
        self.gravSys = gravSys
        self.resizemode("user")
        self.pendown()
    def init(self):
        dt = self.gravSys.dt
        self.a = self.acc()
        self.v = self.v + 0.5*dt*self.a
    def acc(self):
        a = Vec(0,0)
        for planet in self.gravSys.planets:
            if planet != self:
                v = planet.pos()-self.pos()
                a += (G*planet.m/abs(v)**3)*v
        return a
    def step(self):
        dt = self.gravSys.dt
        self.setpos(self.pos() + dt*self.v)
        if self.gravSys.planets.index(self) != 0:
            self.setheading(self.towards(self.gravSys.planets[0]))
        self.a = self.acc()
        self.v = self.v + dt*self.a

## create compound yellow/blue turtleshape for planets

def main():
    s = Turtle()
    s.reset()
    s.getscreen().tracer(0,0)
    s.ht()
    s.pu()
    s.fd(6)
    s.lt(90)
    s.begin_poly()
    s.circle(6, 180)
    s.end_poly()
    m1 = s.get_poly()
    s.begin_poly()
    s.circle(6,180)
    s.end_poly()
    m2 = s.get_poly()

    planetshape = Shape("compound")
    planetshape.addcomponent(m1,"orange")
    planetshape.addcomponent(m2,"blue")
    s.getscreen().register_shape("planet", planetshape)
    s.getscreen().tracer(1,0)

    ## setup gravitational system
    gs = GravSys()
    sun = Star(1000000, Vec(0,0), Vec(0,-2.5), gs, "circle")
    sun.color("yellow")
    sun.shapesize(1.8)
    sun.pu()
    earth = Star(12500, Vec(210,0), Vec(0,195), gs, "planet")
    earth.pencolor("green")
    earth.shapesize(0.8)
    moon = Star(1, Vec(220,0), Vec(0,295), gs, "planet")
    moon.pencolor("blue")
    moon.shapesize(0.5)
    gs.init()
    gs.start()
    return "Done!"

if __name__ == '__main__':
    main()
    mainloop()
lib\turtledemo\round_dance.py
"""      turtle-example-suite:

         tdemo_round_dance.py

(Needs version 1.1 of the turtle module that
comes with Python 3.1)

Dancing turtles have a compound shape
consisting of a series of triangles of
decreasing size.

Turtles march along a circle while rotating
pairwise in opposite direction, with one
exception. Does that breaking of symmetry
enhance the attractiveness of the example?

Press any key to stop the animation.

Technically: demonstrates use of compound
shapes, transformation of shapes as well as
cloning turtles. The animation is
controlled through update().
"""

from turtle import *

def stop():
    global running
    running = False

def main():
    global running
    clearscreen()
    bgcolor("gray10")
    tracer(False)
    shape("triangle")
    f =   0.793402
    phi = 9.064678
    s = 5
    c = 1
    # create compound shape
    sh = Shape("compound")
    for i in range(10):
        shapesize(s)
        p =get_shapepoly()
        s *= f
        c *= f
        tilt(-phi)
        sh.addcomponent(p, (c, 0.25, 1-c), "black")
    register_shape("multitri", sh)
    # create dancers
    shapesize(1)
    shape("multitri")
    pu()
    setpos(0, -200)
    dancers = []
    for i in range(180):
        fd(7)
        tilt(-4)
        lt(2)
        update()
        if i % 12 == 0:
            dancers.append(clone())
    home()
    # dance
    running = True
    onkeypress(stop)
    listen()
    cs = 1
    while running:
        ta = -4
        for dancer in dancers:
            dancer.fd(7)
            dancer.lt(2)
            dancer.tilt(ta)
            ta = -4 if ta > 0 else 2
        if cs < 180:
            right(4)
            shapesize(cs)
            cs *= 1.005
        update()
    return "DONE!"

if __name__=='__main__':
    print(main())
    mainloop()
lib\turtledemo\tree.py
#!/usr/bin/env python3
"""      turtle-example-suite:

             tdemo_tree.py

Displays a 'breadth-first-tree' - in contrast
to the classical Logo tree drawing programs,
which use a depth-first-algorithm.

Uses:
(1) a tree-generator, where the drawing is
quasi the side-effect, whereas the generator
always yields None.
(2) Turtle-cloning: At each branching point
the current pen is cloned. So in the end
there are 1024 turtles.
"""
from turtle import Turtle, mainloop
from time import clock

def tree(plist, l, a, f):
    """ plist is list of pens
    l is length of branch
    a is half of the angle between 2 branches
    f is factor by which branch is shortened
    from level to level."""
    if l > 3:
        lst = []
        for p in plist:
            p.forward(l)
            q = p.clone()
            p.left(a)
            q.right(a)
            lst.append(p)
            lst.append(q)
        for x in tree(lst, l*f, a, f):
            yield None

def maketree():
    p = Turtle()
    p.setundobuffer(None)
    p.hideturtle()
    p.speed(0)
    p.getscreen().tracer(30,0)
    p.left(90)
    p.penup()
    p.forward(-210)
    p.pendown()
    t = tree([p], 200, 65, 0.6375)
    for x in t:
        pass
    print(len(p.getscreen().turtles()))

def main():
    a=clock()
    maketree()
    b=clock()
    return "done: %.2f sec." % (b-a)

if __name__ == "__main__":
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\turtle.cfg
 
lib\turtledemo\two_canvases.py
"""turtledemo.two_canvases

Use TurtleScreen and RawTurtle to draw on two
distinct canvases in a separate windows. The
new window must be separately closed in
addition to pressing the STOP button.
"""

from turtle import TurtleScreen, RawTurtle, TK

def main():
    root = TK.Tk()
    cv1 = TK.Canvas(root, width=300, height=200, bg="#ddffff")
    cv2 = TK.Canvas(root, width=300, height=200, bg="#ffeeee")
    cv1.pack()
    cv2.pack()

    s1 = TurtleScreen(cv1)
    s1.bgcolor(0.85, 0.85, 1)
    s2 = TurtleScreen(cv2)
    s2.bgcolor(1, 0.85, 0.85)

    p = RawTurtle(s1)
    q = RawTurtle(s2)

    p.color("red", (1, 0.85, 0.85))
    p.width(3)
    q.color("blue", (0.85, 0.85, 1))
    q.width(3)

    for t in p,q:
        t.shape("turtle")
        t.lt(36)

    q.lt(180)

    for t in p, q:
        t.begin_fill()
    for i in range(5):
        for t in p, q:
            t.fd(50)
            t.lt(72)
    for t in p,q:
        t.end_fill()
        t.lt(54)
        t.pu()
        t.bk(50)

    return "EVENTLOOP"


if __name__ == '__main__':
    main()
    TK.mainloop()  # keep window open until user closes it
lib\turtledemo\wikipedia.py
"""      turtle-example-suite:

          tdemo_wikipedia3.py

This example is
inspired by the Wikipedia article on turtle
graphics. (See example wikipedia1 for URLs)

First we create (ne-1) (i.e. 35 in this
example) copies of our first turtle p.
Then we let them perform their steps in
parallel.

Followed by a complete undo().
"""
from turtle import Screen, Turtle, mainloop
from time import clock, sleep

def mn_eck(p, ne,sz):
    turtlelist = [p]
    #create ne-1 additional turtles
    for i in range(1,ne):
        q = p.clone()
        q.rt(360.0/ne)
        turtlelist.append(q)
        p = q
    for i in range(ne):
        c = abs(ne/2.0-i)/(ne*.7)
        # let those ne turtles make a step
        # in parallel:
        for t in turtlelist:
            t.rt(360./ne)
            t.pencolor(1-c,0,c)
            t.fd(sz)

def main():
    s = Screen()
    s.bgcolor("black")
    p=Turtle()
    p.speed(0)
    p.hideturtle()
    p.pencolor("red")
    p.pensize(3)

    s.tracer(36,0)

    at = clock()
    mn_eck(p, 36, 19)
    et = clock()
    z1 = et-at

    sleep(1)

    at = clock()
    while any([t.undobufferentries() for t in s.turtles()]):
        for t in s.turtles():
            t.undo()
    et = clock()
    return "runtime: %.3f sec" % (z1+et-at)


if __name__ == '__main__':
    msg = main()
    print(msg)
    mainloop()
lib\turtledemo\yinyang.py
#!/usr/bin/env python3
"""       turtle-example-suite:

            tdemo_yinyang.py

Another drawing suitable as a beginner's
programming example.

The small circles are drawn by the circle
command.

"""

from turtle import *

def yin(radius, color1, color2):
    width(3)
    color("black", color1)
    begin_fill()
    circle(radius/2., 180)
    circle(radius, 180)
    left(180)
    circle(-radius/2., 180)
    end_fill()
    left(90)
    up()
    forward(radius*0.35)
    right(90)
    down()
    color(color1, color2)
    begin_fill()
    circle(radius*0.15)
    end_fill()
    left(90)
    up()
    backward(radius*0.35)
    down()
    left(90)

def main():
    reset()
    yin(200, "black", "white")
    yin(200, "white", "black")
    ht()
    return "Done!"

if __name__ == '__main__':
    main()
    mainloop()
lib\turtledemo\__init__.py
"""
    --------------------------------------
        About this viewer
    --------------------------------------

    Tiny demo viewer to view turtle graphics example scripts.

    Quickly and dirtyly assembled by Gregor Lingl.
    June, 2006

    For more information see: turtledemo - Help

    Have fun!
"""
lib\turtledemo\__main__.py
#!/usr/bin/env python3

"""
  ----------------------------------------------
      turtleDemo - Help
  ----------------------------------------------

  This document has two sections:

  (1) How to use the demo viewer
  (2) How to add your own demos to the demo repository


  (1) How to use the demo viewer.

  Select a demoscript from the example menu.
  The (syntax colored) source code appears in the left
  source code window. IT CANNOT BE EDITED, but ONLY VIEWED!

  The demo viewer windows can be resized. The divider between text
  and canvas can be moved by grabbing it with the mouse. The text font
  size can be changed from the menu and with Control/Command '-'/'+'.
  It can also be changed on most systems with Control-mousewheel
  when the mouse is over the text.

  Press START button to start the demo.
  Stop execution by pressing the STOP button.
  Clear screen by pressing the CLEAR button.
  Restart by pressing the START button again.

  SPECIAL demos, such as clock.py are those which run EVENTDRIVEN.

      Press START button to start the demo.

      - Until the EVENTLOOP is entered everything works
      as in an ordinary demo script.

      - When the EVENTLOOP is entered, you control the
      application by using the mouse and/or keys (or it's
      controlled by some timer events)
      To stop it you can and must press the STOP button.

      While the EVENTLOOP is running, the examples menu is disabled.

      - Only after having pressed the STOP button, you may
      restart it or choose another example script.

   * * * * * * * *
   In some rare situations there may occur interferences/conflicts
   between events concerning the demo script and those concerning the
   demo-viewer. (They run in the same process.) Strange behaviour may be
   the consequence and in the worst case you must close and restart the
   viewer.
   * * * * * * * *


   (2) How to add your own demos to the demo repository

   - Place the file in the same directory as turtledemo/__main__.py
     IMPORTANT! When imported, the demo should not modify the system
     by calling functions in other modules, such as sys, tkinter, or
     turtle. Global variables should be initialized in main().

   - The code must contain a main() function which will
     be executed by the viewer (see provided example scripts).
     It may return a string which will be displayed in the Label below
     the source code window (when execution has finished.)

   - In order to run mydemo.py by itself, such as during development,
     add the following at the end of the file:

    if __name__ == '__main__':
        main()
        mainloop()  # keep window open

    python -m turtledemo.mydemo  # will then run it

   - If the demo is EVENT DRIVEN, main must return the string
     "EVENTLOOP". This informs the demo viewer that the script is
     still running and must be stopped by the user!

     If an "EVENTLOOP" demo runs by itself, as with clock, which uses
     ontimer, or minimal_hanoi, which loops by recursion, then the
     code should catch the turtle.Terminator exception that will be
     raised when the user presses the STOP button.  (Paint is not such
     a demo; it only acts in response to mouse clicks and movements.)
"""
import sys
import os

from tkinter import *
from idlelib.Percolator import Percolator
from idlelib.ColorDelegator import ColorDelegator
from idlelib.textView import view_text
from turtledemo import __doc__ as about_turtledemo

import turtle
import time

demo_dir = os.path.dirname(os.path.abspath(__file__))
darwin = sys.platform == 'darwin'

STARTUP = 1
READY = 2
RUNNING = 3
DONE = 4
EVENTDRIVEN = 5

menufont = ("Arial", 12, NORMAL)
btnfont = ("Arial", 12, 'bold')
txtfont = ['Lucida Console', 10, 'normal']

MINIMUM_FONT_SIZE = 6
MAXIMUM_FONT_SIZE = 100
font_sizes = [8, 9, 10, 11, 12, 14, 18, 20, 22, 24, 30]

def getExampleEntries():
    return [entry[:-3] for entry in os.listdir(demo_dir) if
            entry.endswith(".py") and entry[0] != '_']

help_entries = (  # (help_label,  help_doc)
    ('Turtledemo help', __doc__),
    ('About turtledemo', about_turtledemo),
    ('About turtle module', turtle.__doc__),
    )

class DemoWindow(object):

    def __init__(self, filename=None):
        self.root = root = turtle._root = Tk()
        root.title('Python turtle-graphics examples')
        root.wm_protocol("WM_DELETE_WINDOW", self._destroy)

        if darwin:
            import subprocess
            # Make sure we are the currently activated OS X application
            # so that our menu bar appears.
            p = subprocess.Popen(
                    [
                        'osascript',
                        '-e', 'tell application "System Events"',
                        '-e', 'set frontmost of the first process whose '
                              'unix id is {} to true'.format(os.getpid()),
                        '-e', 'end tell',
                    ],
                    stderr=subprocess.DEVNULL,
                    stdout=subprocess.DEVNULL,)

        root.grid_rowconfigure(0, weight=1)
        root.grid_columnconfigure(0, weight=1)
        root.grid_columnconfigure(1, minsize=90, weight=1)
        root.grid_columnconfigure(2, minsize=90, weight=1)
        root.grid_columnconfigure(3, minsize=90, weight=1)

        self.mBar = Menu(root, relief=RAISED, borderwidth=2)
        self.mBar.add_cascade(menu=self.makeLoadDemoMenu(self.mBar),
                              label='Examples', underline=0)
        self.mBar.add_cascade(menu=self.makeFontMenu(self.mBar),
                              label='Fontsize', underline=0)
        self.mBar.add_cascade(menu=self.makeHelpMenu(self.mBar),
                              label='Help', underline=0)
        root['menu'] = self.mBar

        pane = PanedWindow(orient=HORIZONTAL, sashwidth=5,
                           sashrelief=SOLID, bg='#ddd')
        pane.add(self.makeTextFrame(pane))
        pane.add(self.makeGraphFrame(pane))
        pane.grid(row=0, columnspan=4, sticky='news')

        self.output_lbl = Label(root, height= 1, text=" --- ", bg="#ddf",
                                font=("Arial", 16, 'normal'), borderwidth=2,
                                relief=RIDGE)
        self.start_btn = Button(root, text=" START ", font=btnfont,
                                fg="white", disabledforeground = "#fed",
                                command=self.startDemo)
        self.stop_btn = Button(root, text=" STOP ", font=btnfont,
                               fg="white", disabledforeground = "#fed",
                               command=self.stopIt)
        self.clear_btn = Button(root, text=" CLEAR ", font=btnfont,
                                fg="white", disabledforeground="#fed",
                                command = self.clearCanvas)
        self.output_lbl.grid(row=1, column=0, sticky='news', padx=(0,5))
        self.start_btn.grid(row=1, column=1, sticky='ew')
        self.stop_btn.grid(row=1, column=2, sticky='ew')
        self.clear_btn.grid(row=1, column=3, sticky='ew')

        Percolator(self.text).insertfilter(ColorDelegator())
        self.dirty = False
        self.exitflag = False
        if filename:
            self.loadfile(filename)
        self.configGUI(DISABLED, DISABLED, DISABLED,
                       "Choose example from menu", "black")
        self.state = STARTUP


    def onResize(self, event):
        cwidth = self._canvas.winfo_width()
        cheight = self._canvas.winfo_height()
        self._canvas.xview_moveto(0.5*(self.canvwidth-cwidth)/self.canvwidth)
        self._canvas.yview_moveto(0.5*(self.canvheight-cheight)/self.canvheight)

    def makeTextFrame(self, root):
        self.text_frame = text_frame = Frame(root)
        self.text = text = Text(text_frame, name='text', padx=5,
                                wrap='none', width=45)

        self.vbar = vbar = Scrollbar(text_frame, name='vbar')
        vbar['command'] = text.yview
        vbar.pack(side=LEFT, fill=Y)
        self.hbar = hbar = Scrollbar(text_frame, name='hbar', orient=HORIZONTAL)
        hbar['command'] = text.xview
        hbar.pack(side=BOTTOM, fill=X)
        text['yscrollcommand'] = vbar.set
        text['xscrollcommand'] = hbar.set

        text['font'] = tuple(txtfont)
        shortcut = 'Command' if darwin else 'Control'
        text.bind_all('<%s-minus>' % shortcut, self.decrease_size)
        text.bind_all('<%s-underscore>' % shortcut, self.decrease_size)
        text.bind_all('<%s-equal>' % shortcut, self.increase_size)
        text.bind_all('<%s-plus>' % shortcut, self.increase_size)
        text.bind('<Control-MouseWheel>', self.update_mousewheel)
        text.bind('<Control-Button-4>', self.increase_size)
        text.bind('<Control-Button-5>', self.decrease_size)

        text.pack(side=LEFT, fill=BOTH, expand=1)
        return text_frame

    def makeGraphFrame(self, root):
        turtle._Screen._root = root
        self.canvwidth = 1000
        self.canvheight = 800
        turtle._Screen._canvas = self._canvas = canvas = turtle.ScrolledCanvas(
                root, 800, 600, self.canvwidth, self.canvheight)
        canvas.adjustScrolls()
        canvas._rootwindow.bind('<Configure>', self.onResize)
        canvas._canvas['borderwidth'] = 0

        self.screen = _s_ = turtle.Screen()
        turtle.TurtleScreen.__init__(_s_, _s_._canvas)
        self.scanvas = _s_._canvas
        turtle.RawTurtle.screens = [_s_]
        return canvas

    def set_txtsize(self, size):
        txtfont[1] = size
        self.text['font'] = tuple(txtfont)
        self.output_lbl['text'] = 'Font size %d' % size

    def decrease_size(self, dummy=None):
        self.set_txtsize(max(txtfont[1] - 1, MINIMUM_FONT_SIZE))
        return 'break'

    def increase_size(self, dummy=None):
        self.set_txtsize(min(txtfont[1] + 1, MAXIMUM_FONT_SIZE))
        return 'break'

    def update_mousewheel(self, event):
        # For wheel up, event.delte = 120 on Windows, -1 on darwin.
        # X-11 sends Control-Button-4 event instead.
        if (event.delta < 0) == (not darwin):
            return self.decrease_size()
        else:
            return self.increase_size()

    def configGUI(self, start, stop, clear, txt="", color="blue"):
        self.start_btn.config(state=start,
                              bg="#d00" if start == NORMAL else "#fca")
        self.stop_btn.config(state=stop,
                             bg="#d00" if stop == NORMAL else "#fca")
        self.clear_btn.config(state=clear,
                              bg="#d00" if clear == NORMAL else"#fca")
        self.output_lbl.config(text=txt, fg=color)

    def makeLoadDemoMenu(self, master):
        menu = Menu(master)

        for entry in getExampleEntries():
            def load(entry=entry):
                self.loadfile(entry)
            menu.add_command(label=entry, underline=0,
                             font=menufont, command=load)
        return menu

    def makeFontMenu(self, master):
        menu = Menu(master)
        menu.add_command(label="Decrease (C-'-')", command=self.decrease_size,
                         font=menufont)
        menu.add_command(label="Increase (C-'+')", command=self.increase_size,
                         font=menufont)
        menu.add_separator()

        for size in font_sizes:
            def resize(size=size):
                self.set_txtsize(size)
            menu.add_command(label=str(size), underline=0,
                             font=menufont, command=resize)
        return menu

    def makeHelpMenu(self, master):
        menu = Menu(master)

        for help_label, help_file in help_entries:
            def show(help_label=help_label, help_file=help_file):
                view_text(self.root, help_label, help_file)
            menu.add_command(label=help_label, font=menufont, command=show)
        return menu

    def refreshCanvas(self):
        if self.dirty:
            self.screen.clear()
            self.dirty=False

    def loadfile(self, filename):
        self.clearCanvas()
        turtle.TurtleScreen._RUNNING = False
        modname = 'turtledemo.' + filename
        __import__(modname)
        self.module = sys.modules[modname]
        with open(self.module.__file__, 'r') as f:
            chars = f.read()
        self.text.delete("1.0", "end")
        self.text.insert("1.0", chars)
        self.root.title(filename + " - a Python turtle graphics example")
        self.configGUI(NORMAL, DISABLED, DISABLED,
                       "Press start button", "red")
        self.state = READY

    def startDemo(self):
        self.refreshCanvas()
        self.dirty = True
        turtle.TurtleScreen._RUNNING = True
        self.configGUI(DISABLED, NORMAL, DISABLED,
                       "demo running...", "black")
        self.screen.clear()
        self.screen.mode("standard")
        self.state = RUNNING

        try:
            result = self.module.main()
            if result == "EVENTLOOP":
                self.state = EVENTDRIVEN
            else:
                self.state = DONE
        except turtle.Terminator:
            if self.root is None:
                return
            self.state = DONE
            result = "stopped!"
        if self.state == DONE:
            self.configGUI(NORMAL, DISABLED, NORMAL,
                           result)
        elif self.state == EVENTDRIVEN:
            self.exitflag = True
            self.configGUI(DISABLED, NORMAL, DISABLED,
                           "use mouse/keys or STOP", "red")

    def clearCanvas(self):
        self.refreshCanvas()
        self.screen._delete("all")
        self.scanvas.config(cursor="")
        self.configGUI(NORMAL, DISABLED, DISABLED)

    def stopIt(self):
        if self.exitflag:
            self.clearCanvas()
            self.exitflag = False
            self.configGUI(NORMAL, DISABLED, DISABLED,
                           "STOPPED!", "red")
        turtle.TurtleScreen._RUNNING = False

    def _destroy(self):
        turtle.TurtleScreen._RUNNING = False
        self.root.destroy()
        self.root = None


def main():
    demo = DemoWindow()
    demo.root.mainloop()

if __name__ == '__main__':
    main()
lib\unittest\case.py
"""Test case implementation"""

import sys
import functools
import difflib
import logging
import pprint
import re
import warnings
import collections
import contextlib
import traceback

from . import result
from .util import (strclass, safe_repr, _count_diff_all_purpose,
                   _count_diff_hashable, _common_shorten_repr)

__unittest = True


DIFF_OMITTED = ('\nDiff is %s characters long. '
                 'Set self.maxDiff to None to see it.')

class SkipTest(Exception):
    """
    Raise this exception in a test to skip it.

    Usually you can use TestCase.skipTest() or one of the skipping decorators
    instead of raising this directly.
    """

class _ShouldStop(Exception):
    """
    The test should stop.
    """

class _UnexpectedSuccess(Exception):
    """
    The test was supposed to fail, but it didn't!
    """


class _Outcome(object):
    def __init__(self, result=None):
        self.expecting_failure = False
        self.result = result
        self.result_supports_subtests = hasattr(result, "addSubTest")
        self.success = True
        self.skipped = []
        self.expectedFailure = None
        self.errors = []

    @contextlib.contextmanager
    def testPartExecutor(self, test_case, isTest=False):
        old_success = self.success
        self.success = True
        try:
            yield
        except KeyboardInterrupt:
            raise
        except SkipTest as e:
            self.success = False
            self.skipped.append((test_case, str(e)))
        except _ShouldStop:
            pass
        except:
            exc_info = sys.exc_info()
            if self.expecting_failure:
                self.expectedFailure = exc_info
            else:
                self.success = False
                self.errors.append((test_case, exc_info))
            # explicitly break a reference cycle:
            # exc_info -> frame -> exc_info
            exc_info = None
        else:
            if self.result_supports_subtests and self.success:
                self.errors.append((test_case, None))
        finally:
            self.success = self.success and old_success


def _id(obj):
    return obj

def skip(reason):
    """
    Unconditionally skip a test.
    """
    def decorator(test_item):
        if not isinstance(test_item, type):
            @functools.wraps(test_item)
            def skip_wrapper(*args, **kwargs):
                raise SkipTest(reason)
            test_item = skip_wrapper

        test_item.__unittest_skip__ = True
        test_item.__unittest_skip_why__ = reason
        return test_item
    return decorator

def skipIf(condition, reason):
    """
    Skip a test if the condition is true.
    """
    if condition:
        return skip(reason)
    return _id

def skipUnless(condition, reason):
    """
    Skip a test unless the condition is true.
    """
    if not condition:
        return skip(reason)
    return _id

def expectedFailure(test_item):
    test_item.__unittest_expecting_failure__ = True
    return test_item


class _BaseTestCaseContext:

    def __init__(self, test_case):
        self.test_case = test_case

    def _raiseFailure(self, standardMsg):
        msg = self.test_case._formatMessage(self.msg, standardMsg)
        raise self.test_case.failureException(msg)


class _AssertRaisesBaseContext(_BaseTestCaseContext):

    def __init__(self, expected, test_case, callable_obj=None,
                 expected_regex=None):
        _BaseTestCaseContext.__init__(self, test_case)
        self.expected = expected
        self.test_case = test_case
        if callable_obj is not None:
            try:
                self.obj_name = callable_obj.__name__
            except AttributeError:
                self.obj_name = str(callable_obj)
        else:
            self.obj_name = None
        if expected_regex is not None:
            expected_regex = re.compile(expected_regex)
        self.expected_regex = expected_regex
        self.msg = None

    def handle(self, name, callable_obj, args, kwargs):
        """
        If callable_obj is None, assertRaises/Warns is being used as a
        context manager, so check for a 'msg' kwarg and return self.
        If callable_obj is not None, call it passing args and kwargs.
        """
        if callable_obj is None:
            self.msg = kwargs.pop('msg', None)
            return self
        with self:
            callable_obj(*args, **kwargs)


class _AssertRaisesContext(_AssertRaisesBaseContext):
    """A context manager used to implement TestCase.assertRaises* methods."""

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, tb):
        if exc_type is None:
            try:
                exc_name = self.expected.__name__
            except AttributeError:
                exc_name = str(self.expected)
            if self.obj_name:
                self._raiseFailure("{} not raised by {}".format(exc_name,
                                                                self.obj_name))
            else:
                self._raiseFailure("{} not raised".format(exc_name))
        else:
            traceback.clear_frames(tb)

        if issubclass(exc_type, self.expected):
            # store exception, without traceback, for later retrieval
            self.exception = exc_value.with_traceback(None)
        elif (hasattr(exc_value, 'clsException') and isinstance(exc_value.clsException, self.expected)):
            # IronPython: allow .NET exceptions
            self.exception = exc_value.clsException
        else:
            # let unexpected exceptions pass through
            return False
        if self.expected_regex is None:
            return True

        expected_regex = self.expected_regex
        if not expected_regex.search(str(exc_value)):
            self._raiseFailure('"{}" does not match "{}"'.format(
                     expected_regex.pattern, str(exc_value)))
        return True


class _AssertWarnsContext(_AssertRaisesBaseContext):
    """A context manager used to implement TestCase.assertWarns* methods."""

    def __enter__(self):
        # The __warningregistry__'s need to be in a pristine state for tests
        # to work properly.
        for v in sys.modules.values():
            if getattr(v, '__warningregistry__', None):
                v.__warningregistry__ = {}
        self.warnings_manager = warnings.catch_warnings(record=True)
        self.warnings = self.warnings_manager.__enter__()
        warnings.simplefilter("always", self.expected)
        return self

    def __exit__(self, exc_type, exc_value, tb):
        self.warnings_manager.__exit__(exc_type, exc_value, tb)
        if exc_type is not None:
            # let unexpected exceptions pass through
            return
        try:
            exc_name = self.expected.__name__
        except AttributeError:
            exc_name = str(self.expected)
        first_matching = None
        for m in self.warnings:
            w = m.message
            if not isinstance(w, self.expected):
                continue
            if first_matching is None:
                first_matching = w
            if (self.expected_regex is not None and
                not self.expected_regex.search(str(w))):
                continue
            # store warning for later retrieval
            self.warning = w
            self.filename = m.filename
            self.lineno = m.lineno
            return
        # Now we simply try to choose a helpful failure message
        if first_matching is not None:
            self._raiseFailure('"{}" does not match "{}"'.format(
                     self.expected_regex.pattern, str(first_matching)))
        if self.obj_name:
            self._raiseFailure("{} not triggered by {}".format(exc_name,
                                                               self.obj_name))
        else:
            self._raiseFailure("{} not triggered".format(exc_name))



_LoggingWatcher = collections.namedtuple("_LoggingWatcher",
                                         ["records", "output"])


class _CapturingHandler(logging.Handler):
    """
    A logging handler capturing all (raw and formatted) logging output.
    """

    def __init__(self):
        logging.Handler.__init__(self)
        self.watcher = _LoggingWatcher([], [])

    def flush(self):
        pass

    def emit(self, record):
        self.watcher.records.append(record)
        msg = self.format(record)
        self.watcher.output.append(msg)



class _AssertLogsContext(_BaseTestCaseContext):
    """A context manager used to implement TestCase.assertLogs()."""

    LOGGING_FORMAT = "%(levelname)s:%(name)s:%(message)s"

    def __init__(self, test_case, logger_name, level):
        _BaseTestCaseContext.__init__(self, test_case)
        self.logger_name = logger_name
        if level:
            self.level = logging._nameToLevel.get(level, level)
        else:
            self.level = logging.INFO
        self.msg = None

    def __enter__(self):
        if isinstance(self.logger_name, logging.Logger):
            logger = self.logger = self.logger_name
        else:
            logger = self.logger = logging.getLogger(self.logger_name)
        formatter = logging.Formatter(self.LOGGING_FORMAT)
        handler = _CapturingHandler()
        handler.setFormatter(formatter)
        self.watcher = handler.watcher
        self.old_handlers = logger.handlers[:]
        self.old_level = logger.level
        self.old_propagate = logger.propagate
        logger.handlers = [handler]
        logger.setLevel(self.level)
        logger.propagate = False
        return handler.watcher

    def __exit__(self, exc_type, exc_value, tb):
        self.logger.handlers = self.old_handlers
        self.logger.propagate = self.old_propagate
        self.logger.setLevel(self.old_level)
        if exc_type is not None:
            # let unexpected exceptions pass through
            return False
        if len(self.watcher.records) == 0:
            self._raiseFailure(
                "no logs of level {} or higher triggered on {}"
                .format(logging.getLevelName(self.level), self.logger.name))


class TestCase(object):
    """A class whose instances are single test cases.

    By default, the test code itself should be placed in a method named
    'runTest'.

    If the fixture may be used for many test cases, create as
    many test methods as are needed. When instantiating such a TestCase
    subclass, specify in the constructor arguments the name of the test method
    that the instance is to execute.

    Test authors should subclass TestCase for their own tests. Construction
    and deconstruction of the test's environment ('fixture') can be
    implemented by overriding the 'setUp' and 'tearDown' methods respectively.

    If it is necessary to override the __init__ method, the base class
    __init__ method must always be called. It is important that subclasses
    should not change the signature of their __init__ method, since instances
    of the classes are instantiated automatically by parts of the framework
    in order to be run.

    When subclassing TestCase, you can set these attributes:
    * failureException: determines which exception will be raised when
        the instance's assertion methods fail; test methods raising this
        exception will be deemed to have 'failed' rather than 'errored'.
    * longMessage: determines whether long messages (including repr of
        objects used in assert methods) will be printed on failure in *addition*
        to any explicit message passed.
    * maxDiff: sets the maximum length of a diff in failure messages
        by assert methods using difflib. It is looked up as an instance
        attribute so can be configured by individual tests if required.
    """

    failureException = AssertionError

    longMessage = True

    maxDiff = 80*8

    # If a string is longer than _diffThreshold, use normal comparison instead
    # of difflib.  See #11763.
    _diffThreshold = 2**16

    # Attribute used by TestSuite for classSetUp

    _classSetupFailed = False

    def __init__(self, methodName='runTest'):
        """Create an instance of the class that will use the named test
           method when executed. Raises a ValueError if the instance does
           not have a method with the specified name.
        """
        self._testMethodName = methodName
        self._outcome = None
        self._testMethodDoc = 'No test'
        try:
            testMethod = getattr(self, methodName)
        except AttributeError:
            if methodName != 'runTest':
                # we allow instantiation with no explicit method name
                # but not an *incorrect* or missing method name
                raise ValueError("no such test method in %s: %s" %
                      (self.__class__, methodName))
        else:
            self._testMethodDoc = testMethod.__doc__
        self._cleanups = []
        self._subtest = None

        # Map types to custom assertEqual functions that will compare
        # instances of said type in more detail to generate a more useful
        # error message.
        self._type_equality_funcs = {}
        self.addTypeEqualityFunc(dict, 'assertDictEqual')
        self.addTypeEqualityFunc(list, 'assertListEqual')
        self.addTypeEqualityFunc(tuple, 'assertTupleEqual')
        self.addTypeEqualityFunc(set, 'assertSetEqual')
        self.addTypeEqualityFunc(frozenset, 'assertSetEqual')
        self.addTypeEqualityFunc(str, 'assertMultiLineEqual')

    def addTypeEqualityFunc(self, typeobj, function):
        """Add a type specific assertEqual style function to compare a type.

        This method is for use by TestCase subclasses that need to register
        their own type equality functions to provide nicer error messages.

        Args:
            typeobj: The data type to call this function on when both values
                    are of the same type in assertEqual().
            function: The callable taking two arguments and an optional
                    msg= argument that raises self.failureException with a
                    useful error message when the two arguments are not equal.
        """
        self._type_equality_funcs[typeobj] = function

    def addCleanup(self, function, *args, **kwargs):
        """Add a function, with arguments, to be called when the test is
        completed. Functions added are called on a LIFO basis and are
        called after tearDown on test failure or success.

        Cleanup items are called even if setUp fails (unlike tearDown)."""
        self._cleanups.append((function, args, kwargs))

    def setUp(self):
        "Hook method for setting up the test fixture before exercising it."
        pass

    def tearDown(self):
        "Hook method for deconstructing the test fixture after testing it."
        pass

    @classmethod
    def setUpClass(cls):
        "Hook method for setting up class fixture before running tests in the class."

    @classmethod
    def tearDownClass(cls):
        "Hook method for deconstructing the class fixture after running all tests in the class."

    def countTestCases(self):
        return 1

    def defaultTestResult(self):
        return result.TestResult()

    def shortDescription(self):
        """Returns a one-line description of the test, or None if no
        description has been provided.

        The default implementation of this method returns the first line of
        the specified test method's docstring.
        """
        doc = self._testMethodDoc
        return doc and doc.split("\n")[0].strip() or None


    def id(self):
        return "%s.%s" % (strclass(self.__class__), self._testMethodName)

    def __eq__(self, other):
        if type(self) is not type(other):
            return NotImplemented

        return self._testMethodName == other._testMethodName

    def __hash__(self):
        return hash((type(self), self._testMethodName))

    def __str__(self):
        return "%s (%s)" % (self._testMethodName, strclass(self.__class__))

    def __repr__(self):
        return "<%s testMethod=%s>" % \
               (strclass(self.__class__), self._testMethodName)

    def _addSkip(self, result, test_case, reason):
        addSkip = getattr(result, 'addSkip', None)
        if addSkip is not None:
            addSkip(test_case, reason)
        else:
            warnings.warn("TestResult has no addSkip method, skips not reported",
                          RuntimeWarning, 2)
            result.addSuccess(test_case)

    @contextlib.contextmanager
    def subTest(self, msg=None, **params):
        """Return a context manager that will return the enclosed block
        of code in a subtest identified by the optional message and
        keyword parameters.  A failure in the subtest marks the test
        case as failed but resumes execution at the end of the enclosed
        block, allowing further test code to be executed.
        """
        if not self._outcome.result_supports_subtests:
            yield
            return
        parent = self._subtest
        if parent is None:
            params_map = collections.ChainMap(params)
        else:
            params_map = parent.params.new_child(params)
        self._subtest = _SubTest(self, msg, params_map)
        try:
            with self._outcome.testPartExecutor(self._subtest, isTest=True):
                yield
            if not self._outcome.success:
                result = self._outcome.result
                if result is not None and result.failfast:
                    raise _ShouldStop
            elif self._outcome.expectedFailure:
                # If the test is expecting a failure, we really want to
                # stop now and register the expected failure.
                raise _ShouldStop
        finally:
            self._subtest = parent

    def _feedErrorsToResult(self, result, errors):
        for test, exc_info in errors:
            if isinstance(test, _SubTest):
                result.addSubTest(test.test_case, test, exc_info)
            elif exc_info is not None:
                if issubclass(exc_info[0], self.failureException):
                    result.addFailure(test, exc_info)
                else:
                    result.addError(test, exc_info)

    def _addExpectedFailure(self, result, exc_info):
        try:
            addExpectedFailure = result.addExpectedFailure
        except AttributeError:
            warnings.warn("TestResult has no addExpectedFailure method, reporting as passes",
                          RuntimeWarning)
            result.addSuccess(self)
        else:
            addExpectedFailure(self, exc_info)

    def _addUnexpectedSuccess(self, result):
        try:
            addUnexpectedSuccess = result.addUnexpectedSuccess
        except AttributeError:
            warnings.warn("TestResult has no addUnexpectedSuccess method, reporting as failure",
                          RuntimeWarning)
            # We need to pass an actual exception and traceback to addFailure,
            # otherwise the legacy result can choke.
            try:
                raise _UnexpectedSuccess from None
            except _UnexpectedSuccess:
                result.addFailure(self, sys.exc_info())
        else:
            addUnexpectedSuccess(self)

    def run(self, result=None):
        orig_result = result
        if result is None:
            result = self.defaultTestResult()
            startTestRun = getattr(result, 'startTestRun', None)
            if startTestRun is not None:
                startTestRun()

        result.startTest(self)

        testMethod = getattr(self, self._testMethodName)
        if (getattr(self.__class__, "__unittest_skip__", False) or
            getattr(testMethod, "__unittest_skip__", False)):
            # If the class or method was skipped.
            try:
                skip_why = (getattr(self.__class__, '__unittest_skip_why__', '')
                            or getattr(testMethod, '__unittest_skip_why__', ''))
                self._addSkip(result, self, skip_why)
            finally:
                result.stopTest(self)
            return
        expecting_failure_method = getattr(testMethod,
                                           "__unittest_expecting_failure__", False)
        expecting_failure_class = getattr(self,
                                          "__unittest_expecting_failure__", False)
        expecting_failure = expecting_failure_class or expecting_failure_method
        outcome = _Outcome(result)
        try:
            self._outcome = outcome

            with outcome.testPartExecutor(self):
                self.setUp()
            if outcome.success:
                outcome.expecting_failure = expecting_failure
                with outcome.testPartExecutor(self, isTest=True):
                    testMethod()
                outcome.expecting_failure = False
                with outcome.testPartExecutor(self):
                    self.tearDown()

            self.doCleanups()
            for test, reason in outcome.skipped:
                self._addSkip(result, test, reason)
            self._feedErrorsToResult(result, outcome.errors)
            if outcome.success:
                if expecting_failure:
                    if outcome.expectedFailure:
                        self._addExpectedFailure(result, outcome.expectedFailure)
                    else:
                        self._addUnexpectedSuccess(result)
                else:
                    result.addSuccess(self)
            return result
        finally:
            result.stopTest(self)
            if orig_result is None:
                stopTestRun = getattr(result, 'stopTestRun', None)
                if stopTestRun is not None:
                    stopTestRun()

            # explicitly break reference cycles:
            # outcome.errors -> frame -> outcome -> outcome.errors
            # outcome.expectedFailure -> frame -> outcome -> outcome.expectedFailure
            outcome.errors.clear()
            outcome.expectedFailure = None

            # clear the outcome, no more needed
            self._outcome = None

    def doCleanups(self):
        """Execute all cleanup functions. Normally called for you after
        tearDown."""
        outcome = self._outcome or _Outcome()
        while self._cleanups:
            function, args, kwargs = self._cleanups.pop()
            with outcome.testPartExecutor(self):
                function(*args, **kwargs)

        # return this for backwards compatibility
        # even though we no longer us it internally
        return outcome.success

    def __call__(self, *args, **kwds):
        return self.run(*args, **kwds)

    def debug(self):
        """Run the test without collecting errors in a TestResult"""
        self.setUp()
        getattr(self, self._testMethodName)()
        self.tearDown()
        while self._cleanups:
            function, args, kwargs = self._cleanups.pop(-1)
            function(*args, **kwargs)

    def skipTest(self, reason):
        """Skip this test."""
        raise SkipTest(reason)

    def fail(self, msg=None):
        """Fail immediately, with the given message."""
        raise self.failureException(msg)

    def assertFalse(self, expr, msg=None):
        """Check that the expression is false."""
        if expr:
            msg = self._formatMessage(msg, "%s is not false" % safe_repr(expr))
            raise self.failureException(msg)

    def assertTrue(self, expr, msg=None):
        """Check that the expression is true."""
        if not expr:
            msg = self._formatMessage(msg, "%s is not true" % safe_repr(expr))
            raise self.failureException(msg)

    def _formatMessage(self, msg, standardMsg):
        """Honour the longMessage attribute when generating failure messages.
        If longMessage is False this means:
        * Use only an explicit message if it is provided
        * Otherwise use the standard message for the assert

        If longMessage is True:
        * Use the standard message
        * If an explicit message is provided, plus ' : ' and the explicit message
        """
        if not self.longMessage:
            return msg or standardMsg
        if msg is None:
            return standardMsg
        try:
            # don't switch to '{}' formatting in Python 2.X
            # it changes the way unicode input is handled
            return '%s : %s' % (standardMsg, msg)
        except UnicodeDecodeError:
            return  '%s : %s' % (safe_repr(standardMsg), safe_repr(msg))

    def assertRaises(self, excClass, callableObj=None, *args, **kwargs):
        """Fail unless an exception of class excClass is raised
           by callableObj when invoked with arguments args and keyword
           arguments kwargs. If a different type of exception is
           raised, it will not be caught, and the test case will be
           deemed to have suffered an error, exactly as for an
           unexpected exception.

           If called with callableObj omitted or None, will return a
           context object used like this::

                with self.assertRaises(SomeException):
                    do_something()

           An optional keyword argument 'msg' can be provided when assertRaises
           is used as a context object.

           The context manager keeps a reference to the exception as
           the 'exception' attribute. This allows you to inspect the
           exception after the assertion::

               with self.assertRaises(SomeException) as cm:
                   do_something()
               the_exception = cm.exception
               self.assertEqual(the_exception.error_code, 3)
        """
        context = _AssertRaisesContext(excClass, self, callableObj)
        return context.handle('assertRaises', callableObj, args, kwargs)

    def assertWarns(self, expected_warning, callable_obj=None, *args, **kwargs):
        """Fail unless a warning of class warnClass is triggered
           by callable_obj when invoked with arguments args and keyword
           arguments kwargs.  If a different type of warning is
           triggered, it will not be handled: depending on the other
           warning filtering rules in effect, it might be silenced, printed
           out, or raised as an exception.

           If called with callable_obj omitted or None, will return a
           context object used like this::

                with self.assertWarns(SomeWarning):
                    do_something()

           An optional keyword argument 'msg' can be provided when assertWarns
           is used as a context object.

           The context manager keeps a reference to the first matching
           warning as the 'warning' attribute; similarly, the 'filename'
           and 'lineno' attributes give you information about the line
           of Python code from which the warning was triggered.
           This allows you to inspect the warning after the assertion::

               with self.assertWarns(SomeWarning) as cm:
                   do_something()
               the_warning = cm.warning
               self.assertEqual(the_warning.some_attribute, 147)
        """
        context = _AssertWarnsContext(expected_warning, self, callable_obj)
        return context.handle('assertWarns', callable_obj, args, kwargs)

    def assertLogs(self, logger=None, level=None):
        """Fail unless a log message of level *level* or higher is emitted
        on *logger_name* or its children.  If omitted, *level* defaults to
        INFO and *logger* defaults to the root logger.

        This method must be used as a context manager, and will yield
        a recording object with two attributes: `output` and `records`.
        At the end of the context manager, the `output` attribute will
        be a list of the matching formatted log messages and the
        `records` attribute will be a list of the corresponding LogRecord
        objects.

        Example::

            with self.assertLogs('foo', level='INFO') as cm:
                logging.getLogger('foo').info('first message')
                logging.getLogger('foo.bar').error('second message')
            self.assertEqual(cm.output, ['INFO:foo:first message',
                                         'ERROR:foo.bar:second message'])
        """
        return _AssertLogsContext(self, logger, level)

    def _getAssertEqualityFunc(self, first, second):
        """Get a detailed comparison function for the types of the two args.

        Returns: A callable accepting (first, second, msg=None) that will
        raise a failure exception if first != second with a useful human
        readable error message for those types.
        """
        #
        # NOTE(gregory.p.smith): I considered isinstance(first, type(second))
        # and vice versa.  I opted for the conservative approach in case
        # subclasses are not intended to be compared in detail to their super
        # class instances using a type equality func.  This means testing
        # subtypes won't automagically use the detailed comparison.  Callers
        # should use their type specific assertSpamEqual method to compare
        # subclasses if the detailed comparison is desired and appropriate.
        # See the discussion in http://bugs.python.org/issue2578.
        #
        if type(first) is type(second):
            asserter = self._type_equality_funcs.get(type(first))
            if asserter is not None:
                if isinstance(asserter, str):
                    asserter = getattr(self, asserter)
                return asserter

        return self._baseAssertEqual

    def _baseAssertEqual(self, first, second, msg=None):
        """The default assertEqual implementation, not type specific."""
        if not first == second:
            standardMsg = '%s != %s' % _common_shorten_repr(first, second)
            msg = self._formatMessage(msg, standardMsg)
            raise self.failureException(msg)

    def assertEqual(self, first, second, msg=None):
        """Fail if the two objects are unequal as determined by the '=='
           operator.
        """
        assertion_func = self._getAssertEqualityFunc(first, second)
        assertion_func(first, second, msg=msg)

    def assertNotEqual(self, first, second, msg=None):
        """Fail if the two objects are equal as determined by the '!='
           operator.
        """
        if not first != second:
            msg = self._formatMessage(msg, '%s == %s' % (safe_repr(first),
                                                          safe_repr(second)))
            raise self.failureException(msg)

    def assertAlmostEqual(self, first, second, places=None, msg=None,
                          delta=None):
        """Fail if the two objects are unequal as determined by their
           difference rounded to the given number of decimal places
           (default 7) and comparing to zero, or by comparing that the
           between the two objects is more than the given delta.

           Note that decimal places (from zero) are usually not the same
           as significant digits (measured from the most signficant digit).

           If the two objects compare equal then they will automatically
           compare almost equal.
        """
        if first == second:
            # shortcut
            return
        if delta is not None and places is not None:
            raise TypeError("specify delta or places not both")

        if delta is not None:
            if abs(first - second) <= delta:
                return

            standardMsg = '%s != %s within %s delta' % (safe_repr(first),
                                                        safe_repr(second),
                                                        safe_repr(delta))
        else:
            if places is None:
                places = 7

            if round(abs(second-first), places) == 0:
                return

            standardMsg = '%s != %s within %r places' % (safe_repr(first),
                                                          safe_repr(second),
                                                          places)
        msg = self._formatMessage(msg, standardMsg)
        raise self.failureException(msg)

    def assertNotAlmostEqual(self, first, second, places=None, msg=None,
                             delta=None):
        """Fail if the two objects are equal as determined by their
           difference rounded to the given number of decimal places
           (default 7) and comparing to zero, or by comparing that the
           between the two objects is less than the given delta.

           Note that decimal places (from zero) are usually not the same
           as significant digits (measured from the most signficant digit).

           Objects that are equal automatically fail.
        """
        if delta is not None and places is not None:
            raise TypeError("specify delta or places not both")
        if delta is not None:
            if not (first == second) and abs(first - second) > delta:
                return
            standardMsg = '%s == %s within %s delta' % (safe_repr(first),
                                                        safe_repr(second),
                                                        safe_repr(delta))
        else:
            if places is None:
                places = 7
            if not (first == second) and round(abs(second-first), places) != 0:
                return
            standardMsg = '%s == %s within %r places' % (safe_repr(first),
                                                         safe_repr(second),
                                                         places)

        msg = self._formatMessage(msg, standardMsg)
        raise self.failureException(msg)


    def assertSequenceEqual(self, seq1, seq2, msg=None, seq_type=None):
        """An equality assertion for ordered sequences (like lists and tuples).

        For the purposes of this function, a valid ordered sequence type is one
        which can be indexed, has a length, and has an equality operator.

        Args:
            seq1: The first sequence to compare.
            seq2: The second sequence to compare.
            seq_type: The expected datatype of the sequences, or None if no
                    datatype should be enforced.
            msg: Optional message to use on failure instead of a list of
                    differences.
        """
        if seq_type is not None:
            seq_type_name = seq_type.__name__
            if not isinstance(seq1, seq_type):
                raise self.failureException('First sequence is not a %s: %s'
                                        % (seq_type_name, safe_repr(seq1)))
            if not isinstance(seq2, seq_type):
                raise self.failureException('Second sequence is not a %s: %s'
                                        % (seq_type_name, safe_repr(seq2)))
        else:
            seq_type_name = "sequence"

        differing = None
        try:
            len1 = len(seq1)
        except (TypeError, NotImplementedError):
            differing = 'First %s has no length.    Non-sequence?' % (
                    seq_type_name)

        if differing is None:
            try:
                len2 = len(seq2)
            except (TypeError, NotImplementedError):
                differing = 'Second %s has no length.    Non-sequence?' % (
                        seq_type_name)

        if differing is None:
            if seq1 == seq2:
                return

            differing = '%ss differ: %s != %s\n' % (
                    (seq_type_name.capitalize(),) +
                    _common_shorten_repr(seq1, seq2))

            for i in range(min(len1, len2)):
                try:
                    item1 = seq1[i]
                except (TypeError, IndexError, NotImplementedError):
                    differing += ('\nUnable to index element %d of first %s\n' %
                                 (i, seq_type_name))
                    break

                try:
                    item2 = seq2[i]
                except (TypeError, IndexError, NotImplementedError):
                    differing += ('\nUnable to index element %d of second %s\n' %
                                 (i, seq_type_name))
                    break

                if item1 != item2:
                    differing += ('\nFirst differing element %d:\n%s\n%s\n' %
                                 (i, item1, item2))
                    break
            else:
                if (len1 == len2 and seq_type is None and
                    type(seq1) != type(seq2)):
                    # The sequences are the same, but have differing types.
                    return

            if len1 > len2:
                differing += ('\nFirst %s contains %d additional '
                             'elements.\n' % (seq_type_name, len1 - len2))
                try:
                    differing += ('First extra element %d:\n%s\n' %
                                  (len2, seq1[len2]))
                except (TypeError, IndexError, NotImplementedError):
                    differing += ('Unable to index element %d '
                                  'of first %s\n' % (len2, seq_type_name))
            elif len1 < len2:
                differing += ('\nSecond %s contains %d additional '
                             'elements.\n' % (seq_type_name, len2 - len1))
                try:
                    differing += ('First extra element %d:\n%s\n' %
                                  (len1, seq2[len1]))
                except (TypeError, IndexError, NotImplementedError):
                    differing += ('Unable to index element %d '
                                  'of second %s\n' % (len1, seq_type_name))
        standardMsg = differing
        diffMsg = '\n' + '\n'.join(
            difflib.ndiff(pprint.pformat(seq1).splitlines(),
                          pprint.pformat(seq2).splitlines()))

        standardMsg = self._truncateMessage(standardMsg, diffMsg)
        msg = self._formatMessage(msg, standardMsg)
        self.fail(msg)

    def _truncateMessage(self, message, diff):
        max_diff = self.maxDiff
        if max_diff is None or len(diff) <= max_diff:
            return message + diff
        return message + (DIFF_OMITTED % len(diff))

    def assertListEqual(self, list1, list2, msg=None):
        """A list-specific equality assertion.

        Args:
            list1: The first list to compare.
            list2: The second list to compare.
            msg: Optional message to use on failure instead of a list of
                    differences.

        """
        self.assertSequenceEqual(list1, list2, msg, seq_type=list)

    def assertTupleEqual(self, tuple1, tuple2, msg=None):
        """A tuple-specific equality assertion.

        Args:
            tuple1: The first tuple to compare.
            tuple2: The second tuple to compare.
            msg: Optional message to use on failure instead of a list of
                    differences.
        """
        self.assertSequenceEqual(tuple1, tuple2, msg, seq_type=tuple)

    def assertSetEqual(self, set1, set2, msg=None):
        """A set-specific equality assertion.

        Args:
            set1: The first set to compare.
            set2: The second set to compare.
            msg: Optional message to use on failure instead of a list of
                    differences.

        assertSetEqual uses ducktyping to support different types of sets, and
        is optimized for sets specifically (parameters must support a
        difference method).
        """
        try:
            difference1 = set1.difference(set2)
        except TypeError as e:
            self.fail('invalid type when attempting set difference: %s' % e)
        except AttributeError as e:
            self.fail('first argument does not support set difference: %s' % e)

        try:
            difference2 = set2.difference(set1)
        except TypeError as e:
            self.fail('invalid type when attempting set difference: %s' % e)
        except AttributeError as e:
            self.fail('second argument does not support set difference: %s' % e)

        if not (difference1 or difference2):
            return

        lines = []
        if difference1:
            lines.append('Items in the first set but not the second:')
            for item in difference1:
                lines.append(repr(item))
        if difference2:
            lines.append('Items in the second set but not the first:')
            for item in difference2:
                lines.append(repr(item))

        standardMsg = '\n'.join(lines)
        self.fail(self._formatMessage(msg, standardMsg))

    def assertIn(self, member, container, msg=None):
        """Just like self.assertTrue(a in b), but with a nicer default message."""
        if member not in container:
            standardMsg = '%s not found in %s' % (safe_repr(member),
                                                  safe_repr(container))
            self.fail(self._formatMessage(msg, standardMsg))

    def assertNotIn(self, member, container, msg=None):
        """Just like self.assertTrue(a not in b), but with a nicer default message."""
        if member in container:
            standardMsg = '%s unexpectedly found in %s' % (safe_repr(member),
                                                        safe_repr(container))
            self.fail(self._formatMessage(msg, standardMsg))

    def assertIs(self, expr1, expr2, msg=None):
        """Just like self.assertTrue(a is b), but with a nicer default message."""
        if expr1 is not expr2:
            standardMsg = '%s is not %s' % (safe_repr(expr1),
                                             safe_repr(expr2))
            self.fail(self._formatMessage(msg, standardMsg))

    def assertIsNot(self, expr1, expr2, msg=None):
        """Just like self.assertTrue(a is not b), but with a nicer default message."""
        if expr1 is expr2:
            standardMsg = 'unexpectedly identical: %s' % (safe_repr(expr1),)
            self.fail(self._formatMessage(msg, standardMsg))

    def assertDictEqual(self, d1, d2, msg=None):
        self.assertIsInstance(d1, dict, 'First argument is not a dictionary')
        self.assertIsInstance(d2, dict, 'Second argument is not a dictionary')

        if d1 != d2:
            standardMsg = '%s != %s' % _common_shorten_repr(d1, d2)
            diff = ('\n' + '\n'.join(difflib.ndiff(
                           pprint.pformat(d1).splitlines(),
                           pprint.pformat(d2).splitlines())))
            standardMsg = self._truncateMessage(standardMsg, diff)
            self.fail(self._formatMessage(msg, standardMsg))

    def assertDictContainsSubset(self, subset, dictionary, msg=None):
        """Checks whether dictionary is a superset of subset."""
        warnings.warn('assertDictContainsSubset is deprecated',
                      DeprecationWarning)
        missing = []
        mismatched = []
        for key, value in subset.items():
            if key not in dictionary:
                missing.append(key)
            elif value != dictionary[key]:
                mismatched.append('%s, expected: %s, actual: %s' %
                                  (safe_repr(key), safe_repr(value),
                                   safe_repr(dictionary[key])))

        if not (missing or mismatched):
            return

        standardMsg = ''
        if missing:
            standardMsg = 'Missing: %s' % ','.join(safe_repr(m) for m in
                                                    missing)
        if mismatched:
            if standardMsg:
                standardMsg += '; '
            standardMsg += 'Mismatched values: %s' % ','.join(mismatched)

        self.fail(self._formatMessage(msg, standardMsg))


    def assertCountEqual(self, first, second, msg=None):
        """An unordered sequence comparison asserting that the same elements,
        regardless of order.  If the same element occurs more than once,
        it verifies that the elements occur the same number of times.

            self.assertEqual(Counter(list(first)),
                             Counter(list(second)))

         Example:
            - [0, 1, 1] and [1, 0, 1] compare equal.
            - [0, 0, 1] and [0, 1] compare unequal.

        """
        first_seq, second_seq = list(first), list(second)
        try:
            first = collections.Counter(first_seq)
            second = collections.Counter(second_seq)
        except TypeError:
            # Handle case with unhashable elements
            differences = _count_diff_all_purpose(first_seq, second_seq)
        else:
            if first == second:
                return
            differences = _count_diff_hashable(first_seq, second_seq)

        if differences:
            standardMsg = 'Element counts were not equal:\n'
            lines = ['First has %d, Second has %d:  %r' % diff for diff in differences]
            diffMsg = '\n'.join(lines)
            standardMsg = self._truncateMessage(standardMsg, diffMsg)
            msg = self._formatMessage(msg, standardMsg)
            self.fail(msg)

    def assertMultiLineEqual(self, first, second, msg=None):
        """Assert that two multi-line strings are equal."""
        self.assertIsInstance(first, str, 'First argument is not a string')
        self.assertIsInstance(second, str, 'Second argument is not a string')

        if first != second:
            # don't use difflib if the strings are too long
            if (len(first) > self._diffThreshold or
                len(second) > self._diffThreshold):
                self._baseAssertEqual(first, second, msg)
            firstlines = first.splitlines(keepends=True)
            secondlines = second.splitlines(keepends=True)
            if len(firstlines) == 1 and first.strip('\r\n') == first:
                firstlines = [first + '\n']
                secondlines = [second + '\n']
            standardMsg = '%s != %s' % _common_shorten_repr(first, second)
            diff = '\n' + ''.join(difflib.ndiff(firstlines, secondlines))
            standardMsg = self._truncateMessage(standardMsg, diff)
            self.fail(self._formatMessage(msg, standardMsg))

    def assertLess(self, a, b, msg=None):
        """Just like self.assertTrue(a < b), but with a nicer default message."""
        if not a < b:
            standardMsg = '%s not less than %s' % (safe_repr(a), safe_repr(b))
            self.fail(self._formatMessage(msg, standardMsg))

    def assertLessEqual(self, a, b, msg=None):
        """Just like self.assertTrue(a <= b), but with a nicer default message."""
        if not a <= b:
            standardMsg = '%s not less than or equal to %s' % (safe_repr(a), safe_repr(b))
            self.fail(self._formatMessage(msg, standardMsg))

    def assertGreater(self, a, b, msg=None):
        """Just like self.assertTrue(a > b), but with a nicer default message."""
        if not a > b:
            standardMsg = '%s not greater than %s' % (safe_repr(a), safe_repr(b))
            self.fail(self._formatMessage(msg, standardMsg))

    def assertGreaterEqual(self, a, b, msg=None):
        """Just like self.assertTrue(a >= b), but with a nicer default message."""
        if not a >= b:
            standardMsg = '%s not greater than or equal to %s' % (safe_repr(a), safe_repr(b))
            self.fail(self._formatMessage(msg, standardMsg))

    def assertIsNone(self, obj, msg=None):
        """Same as self.assertTrue(obj is None), with a nicer default message."""
        if obj is not None:
            standardMsg = '%s is not None' % (safe_repr(obj),)
            self.fail(self._formatMessage(msg, standardMsg))

    def assertIsNotNone(self, obj, msg=None):
        """Included for symmetry with assertIsNone."""
        if obj is None:
            standardMsg = 'unexpectedly None'
            self.fail(self._formatMessage(msg, standardMsg))

    def assertIsInstance(self, obj, cls, msg=None):
        """Same as self.assertTrue(isinstance(obj, cls)), with a nicer
        default message."""
        if not isinstance(obj, cls):
            standardMsg = '%s is not an instance of %r' % (safe_repr(obj), cls)
            self.fail(self._formatMessage(msg, standardMsg))

    def assertNotIsInstance(self, obj, cls, msg=None):
        """Included for symmetry with assertIsInstance."""
        if isinstance(obj, cls):
            standardMsg = '%s is an instance of %r' % (safe_repr(obj), cls)
            self.fail(self._formatMessage(msg, standardMsg))

    def assertRaisesRegex(self, expected_exception, expected_regex,
                          callable_obj=None, *args, **kwargs):
        """Asserts that the message in a raised exception matches a regex.

        Args:
            expected_exception: Exception class expected to be raised.
            expected_regex: Regex (re pattern object or string) expected
                    to be found in error message.
            callable_obj: Function to be called.
            msg: Optional message used in case of failure. Can only be used
                    when assertRaisesRegex is used as a context manager.
            args: Extra args.
            kwargs: Extra kwargs.
        """
        context = _AssertRaisesContext(expected_exception, self, callable_obj,
                                       expected_regex)

        return context.handle('assertRaisesRegex', callable_obj, args, kwargs)

    def assertWarnsRegex(self, expected_warning, expected_regex,
                         callable_obj=None, *args, **kwargs):
        """Asserts that the message in a triggered warning matches a regexp.
        Basic functioning is similar to assertWarns() with the addition
        that only warnings whose messages also match the regular expression
        are considered successful matches.

        Args:
            expected_warning: Warning class expected to be triggered.
            expected_regex: Regex (re pattern object or string) expected
                    to be found in error message.
            callable_obj: Function to be called.
            msg: Optional message used in case of failure. Can only be used
                    when assertWarnsRegex is used as a context manager.
            args: Extra args.
            kwargs: Extra kwargs.
        """
        context = _AssertWarnsContext(expected_warning, self, callable_obj,
                                      expected_regex)
        return context.handle('assertWarnsRegex', callable_obj, args, kwargs)

    def assertRegex(self, text, expected_regex, msg=None):
        """Fail the test unless the text matches the regular expression."""
        if isinstance(expected_regex, (str, bytes)):
            assert expected_regex, "expected_regex must not be empty."
            expected_regex = re.compile(expected_regex)
        if not expected_regex.search(text):
            msg = msg or "Regex didn't match"
            msg = '%s: %r not found in %r' % (msg, expected_regex.pattern, text)
            raise self.failureException(msg)

    def assertNotRegex(self, text, unexpected_regex, msg=None):
        """Fail the test if the text matches the regular expression."""
        if isinstance(unexpected_regex, (str, bytes)):
            unexpected_regex = re.compile(unexpected_regex)
        match = unexpected_regex.search(text)
        if match:
            msg = msg or "Regex matched"
            msg = '%s: %r matches %r in %r' % (msg,
                                               text[match.start():match.end()],
                                               unexpected_regex.pattern,
                                               text)
            raise self.failureException(msg)


    def _deprecate(original_func):
        def deprecated_func(*args, **kwargs):
            warnings.warn(
                'Please use {0} instead.'.format(original_func.__name__),
                DeprecationWarning, 2)
            return original_func(*args, **kwargs)
        return deprecated_func

    # see #9424
    failUnlessEqual = assertEquals = _deprecate(assertEqual)
    failIfEqual = assertNotEquals = _deprecate(assertNotEqual)
    failUnlessAlmostEqual = assertAlmostEquals = _deprecate(assertAlmostEqual)
    failIfAlmostEqual = assertNotAlmostEquals = _deprecate(assertNotAlmostEqual)
    failUnless = assert_ = _deprecate(assertTrue)
    failUnlessRaises = _deprecate(assertRaises)
    failIf = _deprecate(assertFalse)
    assertRaisesRegexp = _deprecate(assertRaisesRegex)
    assertRegexpMatches = _deprecate(assertRegex)



class FunctionTestCase(TestCase):
    """A test case that wraps a test function.

    This is useful for slipping pre-existing test functions into the
    unittest framework. Optionally, set-up and tidy-up functions can be
    supplied. As with TestCase, the tidy-up ('tearDown') function will
    always be called if the set-up ('setUp') function ran successfully.
    """

    def __init__(self, testFunc, setUp=None, tearDown=None, description=None):
        super(FunctionTestCase, self).__init__()
        self._setUpFunc = setUp
        self._tearDownFunc = tearDown
        self._testFunc = testFunc
        self._description = description

    def setUp(self):
        if self._setUpFunc is not None:
            self._setUpFunc()

    def tearDown(self):
        if self._tearDownFunc is not None:
            self._tearDownFunc()

    def runTest(self):
        self._testFunc()

    def id(self):
        return self._testFunc.__name__

    def __eq__(self, other):
        if not isinstance(other, self.__class__):
            return NotImplemented

        return self._setUpFunc == other._setUpFunc and \
               self._tearDownFunc == other._tearDownFunc and \
               self._testFunc == other._testFunc and \
               self._description == other._description

    def __hash__(self):
        return hash((type(self), self._setUpFunc, self._tearDownFunc,
                     self._testFunc, self._description))

    def __str__(self):
        return "%s (%s)" % (strclass(self.__class__),
                            self._testFunc.__name__)

    def __repr__(self):
        return "<%s tec=%s>" % (strclass(self.__class__),
                                     self._testFunc)

    def shortDescription(self):
        if self._description is not None:
            return self._description
        doc = self._testFunc.__doc__
        return doc and doc.split("\n")[0].strip() or None


class _SubTest(TestCase):

    def __init__(self, test_case, message, params):
        super().__init__()
        self._message = message
        self.test_case = test_case
        self.params = params
        self.failureException = test_case.failureException

    def runTest(self):
        raise NotImplementedError("subtests cannot be run directly")

    def _subDescription(self):
        parts = []
        if self._message:
            parts.append("[{}]".format(self._message))
        if self.params:
            params_desc = ', '.join(
                "{}={!r}".format(k, v)
                for (k, v) in sorted(self.params.items()))
            parts.append("({})".format(params_desc))
        return " ".join(parts) or '(<subtest>)'

    def id(self):
        return "{} {}".format(self.test_case.id(), self._subDescription())

    def shortDescription(self):
        """Returns a one-line description of the subtest, or None if no
        description has been provided.
        """
        return self.test_case.shortDescription()

    def __str__(self):
        return "{} {}".format(self.test_case, self._subDescription())
lib\unittest\loader.py
"""Loading unittests."""

import os
import re
import sys
import traceback
import types
import functools

from fnmatch import fnmatch

from . import case, suite, util

__unittest = True

# what about .pyc or .pyo (etc)
# we would need to avoid loading the same tests multiple times
# from '.py', '.pyc' *and* '.pyo'
VALID_MODULE_NAME = re.compile(r'[_a-z]\w*\.py$', re.IGNORECASE)


class _FailedTest(case.TestCase):
    _testMethodName = None

    def __init__(self, method_name, exception):
        self._exception = exception
        super(_FailedTest, self).__init__(method_name)

    def __getattr__(self, name):
        if name != self._testMethodName:
            return super(_FailedTest, self).__getattr__(name)
        def testFailure():
            raise self._exception
        return testFailure


def _make_failed_import_test(name, suiteClass):
    message = 'Failed to import test module: %s\n%s' % (name, traceback.format_exc())
    return _make_failed_test(name, ImportError(message), suiteClass)

def _make_failed_load_tests(name, exception, suiteClass):
    return _make_failed_test(name, exception, suiteClass)

def _make_failed_test(methodname, exception, suiteClass):
    test = _FailedTest(methodname, exception)
    return suiteClass((test,))

def _make_skipped_test(methodname, exception, suiteClass):
    @case.skip(str(exception))
    def testSkipped(self):
        pass
    attrs = {methodname: testSkipped}
    TestClass = type("ModuleSkipped", (case.TestCase,), attrs)
    return suiteClass((TestClass(methodname),))

def _jython_aware_splitext(path):
    if path.lower().endswith('$py.class'):
        return path[:-9]
    return os.path.splitext(path)[0]


class TestLoader(object):
    """
    This class is responsible for loading tests according to various criteria
    and returning them wrapped in a TestSuite
    """
    testMethodPrefix = 'test'
    sortTestMethodsUsing = staticmethod(util.three_way_cmp)
    suiteClass = suite.TestSuite
    _top_level_dir = None

    def loadTestsFromTestCase(self, testCaseClass):
        """Return a suite of all tests cases contained in testCaseClass"""
        if issubclass(testCaseClass, suite.TestSuite):
            raise TypeError("Test cases should not be derived from "
                            "TestSuite. Maybe you meant to derive from "
                            "TestCase?")
        testCaseNames = self.getTestCaseNames(testCaseClass)
        if not testCaseNames and hasattr(testCaseClass, 'runTest'):
            testCaseNames = ['runTest']
        loaded_suite = self.suiteClass(map(testCaseClass, testCaseNames))
        return loaded_suite

    def loadTestsFromModule(self, module, use_load_tests=True):
        """Return a suite of all tests cases contained in the given module"""
        tests = []
        for name in dir(module):
            obj = getattr(module, name)
            if isinstance(obj, type) and issubclass(obj, case.TestCase):
                tests.append(self.loadTestsFromTestCase(obj))

        load_tests = getattr(module, 'load_tests', None)
        tests = self.suiteClass(tests)
        if use_load_tests and load_tests is not None:
            try:
                return load_tests(self, tests, None)
            except Exception as e:
                return _make_failed_load_tests(module.__name__, e,
                                               self.suiteClass)
        return tests

    def loadTestsFromName(self, name, module=None):
        """Return a suite of all tests cases given a string specifier.

        The name may resolve either to a module, a test case class, a
        test method within a test case class, or a callable object which
        returns a TestCase or TestSuite instance.

        The method optionally resolves the names relative to a given module.
        """
        parts = name.split('.')
        if module is None:
            parts_copy = parts[:]
            while parts_copy:
                try:
                    module = __import__('.'.join(parts_copy))
                    break
                except ImportError:
                    del parts_copy[-1]
                    if not parts_copy:
                        raise
            parts = parts[1:]
        obj = module
        for part in parts:
            parent, obj = obj, getattr(obj, part)

        if isinstance(obj, types.ModuleType):
            return self.loadTestsFromModule(obj)
        elif isinstance(obj, type) and issubclass(obj, case.TestCase):
            return self.loadTestsFromTestCase(obj)
        elif (isinstance(obj, types.FunctionType) and
              isinstance(parent, type) and
              issubclass(parent, case.TestCase)):
            name = parts[-1]
            inst = parent(name)
            # static methods follow a different path
            if not isinstance(getattr(inst, name), types.FunctionType):
                return self.suiteClass([inst])
        elif isinstance(obj, suite.TestSuite):
            return obj
        if callable(obj):
            test = obj()
            if isinstance(test, suite.TestSuite):
                return test
            elif isinstance(test, case.TestCase):
                return self.suiteClass([test])
            else:
                raise TypeError("calling %s returned %s, not a test" %
                                (obj, test))
        else:
            raise TypeError("don't know how to make test from: %s" % obj)

    def loadTestsFromNames(self, names, module=None):
        """Return a suite of all tests cases found using the given sequence
        of string specifiers. See 'loadTestsFromName()'.
        """
        suites = [self.loadTestsFromName(name, module) for name in names]
        return self.suiteClass(suites)

    def getTestCaseNames(self, testCaseClass):
        """Return a sorted sequence of method names found within testCaseClass
        """
        def isTestMethod(attrname, testCaseClass=testCaseClass,
                         prefix=self.testMethodPrefix):
            return attrname.startswith(prefix) and \
                callable(getattr(testCaseClass, attrname))
        testFnNames = list(filter(isTestMethod, dir(testCaseClass)))
        if self.sortTestMethodsUsing:
            testFnNames.sort(key=functools.cmp_to_key(self.sortTestMethodsUsing))
        return testFnNames

    def discover(self, start_dir, pattern='test*.py', top_level_dir=None):
        """Find and return all test modules from the specified start
        directory, recursing into subdirectories to find them and return all
        tests found within them. Only test files that match the pattern will
        be loaded. (Using shell style pattern matching.)

        All test modules must be importable from the top level of the project.
        If the start directory is not the top level directory then the top
        level directory must be specified separately.

        If a test package name (directory with '__init__.py') matches the
        pattern then the package will be checked for a 'load_tests' function. If
        this exists then it will be called with loader, tests, pattern.

        If load_tests exists then discovery does  *not* recurse into the package,
        load_tests is responsible for loading all tests in the package.

        The pattern is deliberately not stored as a loader attribute so that
        packages can continue discovery themselves. top_level_dir is stored so
        load_tests does not need to pass this argument in to loader.discover().

        Paths are sorted before being imported to ensure reproducible execution
        order even on filesystems with non-alphabetical ordering like ext3/4.
        """
        set_implicit_top = False
        if top_level_dir is None and self._top_level_dir is not None:
            # make top_level_dir optional if called from load_tests in a package
            top_level_dir = self._top_level_dir
        elif top_level_dir is None:
            set_implicit_top = True
            top_level_dir = start_dir

        top_level_dir = os.path.abspath(top_level_dir)

        if not top_level_dir in sys.path:
            # all test modules must be importable from the top level directory
            # should we *unconditionally* put the start directory in first
            # in sys.path to minimise likelihood of conflicts between installed
            # modules and development versions?
            sys.path.insert(0, top_level_dir)
        self._top_level_dir = top_level_dir

        is_not_importable = False
        is_namespace = False
        tests = []
        if os.path.isdir(os.path.abspath(start_dir)):
            start_dir = os.path.abspath(start_dir)
            if start_dir != top_level_dir:
                is_not_importable = not os.path.isfile(os.path.join(start_dir, '__init__.py'))
        else:
            # support for discovery from dotted module names
            try:
                __import__(start_dir)
            except ImportError:
                is_not_importable = True
            else:
                the_module = sys.modules[start_dir]
                top_part = start_dir.split('.')[0]
                try:
                    start_dir = os.path.abspath(
                       os.path.dirname((the_module.__file__)))
                except AttributeError:
                    # look for namespace packages
                    try:
                        spec = the_module.__spec__
                    except AttributeError:
                        spec = None

                    if spec and spec.loader is None:
                        if spec.submodule_search_locations is not None:
                            is_namespace = True

                            for path in the_module.__path__:
                                if (not set_implicit_top and
                                    not path.startswith(top_level_dir)):
                                    continue
                                self._top_level_dir = \
                                    (path.split(the_module.__name__
                                         .replace(".", os.path.sep))[0])
                                tests.extend(self._find_tests(path,
                                                              pattern,
                                                              namespace=True))
                    elif the_module.__name__ in sys.builtin_module_names:
                        # builtin module
                        raise TypeError('Can not use builtin modules '
                                        'as dotted module names') from None
                    else:
                        raise TypeError(
                            'don\'t know how to discover from {!r}'
                            .format(the_module)) from None

                if set_implicit_top:
                    if not is_namespace:
                        self._top_level_dir = \
                           self._get_directory_containing_module(top_part)
                        sys.path.remove(top_level_dir)
                    else:
                        sys.path.remove(top_level_dir)

        if is_not_importable:
            raise ImportError('Start directory is not importable: %r' % start_dir)

        if not is_namespace:
            tests = list(self._find_tests(start_dir, pattern))
        return self.suiteClass(tests)

    def _get_directory_containing_module(self, module_name):
        module = sys.modules[module_name]
        full_path = os.path.abspath(module.__file__)

        if os.path.basename(full_path).lower().startswith('__init__.py'):
            return os.path.dirname(os.path.dirname(full_path))
        else:
            # here we have been given a module rather than a package - so
            # all we can do is search the *same* directory the module is in
            # should an exception be raised instead
            return os.path.dirname(full_path)

    def _get_name_from_path(self, path):
        path = _jython_aware_splitext(os.path.normpath(path))

        _relpath = os.path.relpath(path, self._top_level_dir)
        assert not os.path.isabs(_relpath), "Path must be within the project"
        assert not _relpath.startswith('..'), "Path must be within the project"

        name = _relpath.replace(os.path.sep, '.')
        return name

    def _get_module_from_name(self, name):
        __import__(name)
        return sys.modules[name]

    def _match_path(self, path, full_path, pattern):
        # override this method to use alternative matching strategy
        return fnmatch(path, pattern)

    def _find_tests(self, start_dir, pattern, namespace=False):
        """Used by discovery. Yields test suites it loads."""
        paths = sorted(os.listdir(start_dir))

        for path in paths:
            full_path = os.path.join(start_dir, path)
            if os.path.isfile(full_path):
                if not VALID_MODULE_NAME.match(path):
                    # valid Python identifiers only
                    continue
                if not self._match_path(path, full_path, pattern):
                    continue
                # if the test file matches, load it
                name = self._get_name_from_path(full_path)
                try:
                    module = self._get_module_from_name(name)
                except case.SkipTest as e:
                    yield _make_skipped_test(name, e, self.suiteClass)
                except:
                    yield _make_failed_import_test(name, self.suiteClass)
                else:
                    mod_file = os.path.abspath(getattr(module, '__file__', full_path))
                    realpath = _jython_aware_splitext(os.path.realpath(mod_file))
                    fullpath_noext = _jython_aware_splitext(os.path.realpath(full_path))
                    if realpath.lower() != fullpath_noext.lower():
                        module_dir = os.path.dirname(realpath)
                        mod_name = _jython_aware_splitext(os.path.basename(full_path))
                        expected_dir = os.path.dirname(full_path)
                        msg = ("%r module incorrectly imported from %r. Expected %r. "
                               "Is this module globally installed?")
                        raise ImportError(msg % (mod_name, module_dir, expected_dir))
                    yield self.loadTestsFromModule(module)
            elif os.path.isdir(full_path):
                if (not namespace and
                    not os.path.isfile(os.path.join(full_path, '__init__.py'))):
                    continue

                load_tests = None
                tests = None
                if fnmatch(path, pattern):
                    # only check load_tests if the package directory itself matches the filter
                    name = self._get_name_from_path(full_path)
                    package = self._get_module_from_name(name)
                    load_tests = getattr(package, 'load_tests', None)
                    tests = self.loadTestsFromModule(package, use_load_tests=False)

                if load_tests is None:
                    if tests is not None:
                        # tests loaded from package file
                        yield tests
                    # recurse into the package
                    yield from self._find_tests(full_path, pattern,
                                                namespace=namespace)
                else:
                    try:
                        yield load_tests(self, tests, pattern)
                    except Exception as e:
                        yield _make_failed_load_tests(package.__name__, e,
                                                      self.suiteClass)

defaultTestLoader = TestLoader()


def _makeLoader(prefix, sortUsing, suiteClass=None):
    loader = TestLoader()
    loader.sortTestMethodsUsing = sortUsing
    loader.testMethodPrefix = prefix
    if suiteClass:
        loader.suiteClass = suiteClass
    return loader

def getTestCaseNames(testCaseClass, prefix, sortUsing=util.three_way_cmp):
    return _makeLoader(prefix, sortUsing).getTestCaseNames(testCaseClass)

def makeSuite(testCaseClass, prefix='test', sortUsing=util.three_way_cmp,
              suiteClass=suite.TestSuite):
    return _makeLoader(prefix, sortUsing, suiteClass).loadTestsFromTestCase(
        testCaseClass)

def findTestCases(module, prefix='test', sortUsing=util.three_way_cmp,
                  suiteClass=suite.TestSuite):
    return _makeLoader(prefix, sortUsing, suiteClass).loadTestsFromModule(\
        module)
lib\unittest\main.py
"""Unittest main program"""

import sys
import argparse
import os

from . import loader, runner
from .signals import installHandler

__unittest = True

MAIN_EXAMPLES = """\
Examples:
  %(prog)s test_module               - run tests from test_module
  %(prog)s module.TestClass          - run tests from module.TestClass
  %(prog)s module.Class.test_method  - run specified test method
"""

MODULE_EXAMPLES = """\
Examples:
  %(prog)s                           - run default set of tests
  %(prog)s MyTestSuite               - run suite 'MyTestSuite'
  %(prog)s MyTestCase.testSomething  - run MyTestCase.testSomething
  %(prog)s MyTestCase                - run all 'test*' test methods
                                       in MyTestCase
"""

def _convert_name(name):
    # on Linux / Mac OS X 'foo.PY' is not importable, but on
    # Windows it is. Simpler to do a case insensitive match
    # a better check would be to check that the name is a
    # valid Python module name.
    if os.path.isfile(name) and name.lower().endswith('.py'):
        if os.path.isabs(name):
            rel_path = os.path.relpath(name, os.getcwd())
            if os.path.isabs(rel_path) or rel_path.startswith(os.pardir):
                return name
            name = rel_path
        # on Windows both '\' and '/' are used as path
        # separators. Better to replace both than rely on os.path.sep
        return name[:-3].replace('\\', '.').replace('/', '.')
    return name

def _convert_names(names):
    return [_convert_name(name) for name in names]


class TestProgram(object):
    """A command-line program that runs a set of tests; this is primarily
       for making test modules conveniently executable.
    """
    # defaults for testing
    module=None
    verbosity = 1
    failfast = catchbreak = buffer = progName = warnings = None
    _discovery_parser = None

    def __init__(self, module='__main__', defaultTest=None, argv=None,
                    testRunner=None, testLoader=loader.defaultTestLoader,
                    exit=True, verbosity=1, failfast=None, catchbreak=None,
                    buffer=None, warnings=None):
        if isinstance(module, str):
            self.module = __import__(module)
            for part in module.split('.')[1:]:
                self.module = getattr(self.module, part)
        else:
            self.module = module
        if argv is None:
            argv = sys.argv

        self.exit = exit
        self.failfast = failfast
        self.catchbreak = catchbreak
        self.verbosity = verbosity
        self.buffer = buffer
        if warnings is None and not sys.warnoptions:
            # even if DreprecationWarnings are ignored by default
            # print them anyway unless other warnings settings are
            # specified by the warnings arg or the -W python flag
            self.warnings = 'default'
        else:
            # here self.warnings is set either to the value passed
            # to the warnings args or to None.
            # If the user didn't pass a value self.warnings will
            # be None. This means that the behavior is unchanged
            # and depends on the values passed to -W.
            self.warnings = warnings
        self.defaultTest = defaultTest
        self.testRunner = testRunner
        self.testLoader = testLoader
        self.progName = os.path.basename(argv[0])
        self.parseArgs(argv)
        self.runTests()

    def usageExit(self, msg=None):
        if msg:
            print(msg)
        if self._discovery_parser is None:
            self._initArgParsers()
        self._print_help()
        sys.exit(2)

    def _print_help(self, *args, **kwargs):
        if self.module is None:
            print(self._main_parser.format_help())
            print(MAIN_EXAMPLES % {'prog': self.progName})
            self._discovery_parser.print_help()
        else:
            print(self._main_parser.format_help())
            print(MODULE_EXAMPLES % {'prog': self.progName})

    def parseArgs(self, argv):
        self._initArgParsers()
        if self.module is None:
            if len(argv) > 1 and argv[1].lower() == 'discover':
                self._do_discovery(argv[2:])
                return
            self._main_parser.parse_args(argv[1:], self)
            if not self.tests:
                # this allows "python -m unittest -v" to still work for
                # test discovery.
                self._do_discovery([])
                return
        else:
            self._main_parser.parse_args(argv[1:], self)

        if self.tests:
            self.testNames = _convert_names(self.tests)
            if __name__ == '__main__':
                # to support python -m unittest ...
                self.module = None
        elif self.defaultTest is None:
            # createTests will load tests from self.module
            self.testNames = None
        elif isinstance(self.defaultTest, str):
            self.testNames = (self.defaultTest,)
        else:
            self.testNames = list(self.defaultTest)
        self.createTests()

    def createTests(self):
        if self.testNames is None:
            self.test = self.testLoader.loadTestsFromModule(self.module)
        else:
            self.test = self.testLoader.loadTestsFromNames(self.testNames,
                                                           self.module)

    def _initArgParsers(self):
        parent_parser = self._getParentArgParser()
        self._main_parser = self._getMainArgParser(parent_parser)
        self._discovery_parser = self._getDiscoveryArgParser(parent_parser)

    def _getParentArgParser(self):
        parser = argparse.ArgumentParser(add_help=False)

        parser.add_argument('-v', '--verbose', dest='verbosity',
                            action='store_const', const=2,
                            help='Verbose output')
        parser.add_argument('-q', '--quiet', dest='verbosity',
                            action='store_const', const=0,
                            help='Quiet output')

        if self.failfast is None:
            parser.add_argument('-f', '--failfast', dest='failfast',
                                action='store_true',
                                help='Stop on first fail or error')
            self.failfast = False
        if self.catchbreak is None:
            parser.add_argument('-c', '--catch', dest='catchbreak',
                                action='store_true',
                                help='Catch Ctrl-C and display results so far')
            self.catchbreak = False
        if self.buffer is None:
            parser.add_argument('-b', '--buffer', dest='buffer',
                                action='store_true',
                                help='Buffer stdout and stderr during tests')
            self.buffer = False

        return parser

    def _getMainArgParser(self, parent):
        parser = argparse.ArgumentParser(parents=[parent])
        parser.prog = self.progName
        parser.print_help = self._print_help

        parser.add_argument('tests', nargs='*',
                            help='a list of any number of test modules, '
                            'classes and test methods.')

        return parser

    def _getDiscoveryArgParser(self, parent):
        parser = argparse.ArgumentParser(parents=[parent])
        parser.prog = '%s discover' % self.progName
        parser.epilog = ('For test discovery all test modules must be '
                         'importable from the top level directory of the '
                         'project.')

        parser.add_argument('-s', '--start-directory', dest='start',
                            help="Directory to start discovery ('.' default)")
        parser.add_argument('-p', '--pattern', dest='pattern',
                            help="Pattern to match tests ('test*.py' default)")
        parser.add_argument('-t', '--top-level-directory', dest='top',
                            help='Top level directory of project (defaults to '
                                 'start directory)')
        for arg in ('start', 'pattern', 'top'):
            parser.add_argument(arg, nargs='?',
                                default=argparse.SUPPRESS,
                                help=argparse.SUPPRESS)

        return parser

    def _do_discovery(self, argv, Loader=None):
        self.start = '.'
        self.pattern = 'test*.py'
        self.top = None
        if argv is not None:
            # handle command line args for test discovery
            if self._discovery_parser is None:
                # for testing
                self._initArgParsers()
            self._discovery_parser.parse_args(argv, self)

        loader = self.testLoader if Loader is None else Loader()
        self.test = loader.discover(self.start, self.pattern, self.top)

    def runTests(self):
        if self.catchbreak:
            installHandler()
        if self.testRunner is None:
            self.testRunner = runner.TextTestRunner
        if isinstance(self.testRunner, type):
            try:
                testRunner = self.testRunner(verbosity=self.verbosity,
                                             failfast=self.failfast,
                                             buffer=self.buffer,
                                             warnings=self.warnings)
            except TypeError:
                # didn't accept the verbosity, buffer or failfast arguments
                testRunner = self.testRunner()
        else:
            # it is assumed to be a TestRunner instance
            testRunner = self.testRunner
        self.result = testRunner.run(self.test)
        if self.exit:
            sys.exit(not self.result.wasSuccessful())

main = TestProgram
lib\unittest\mock.py
# mock.py
# Test tools for mocking and patching.
# Maintained by Michael Foord
# Backport for other versions of Python available from
# http://pypi.python.org/pypi/mock

__all__ = (
    'Mock',
    'MagicMock',
    'patch',
    'sentinel',
    'DEFAULT',
    'ANY',
    'call',
    'create_autospec',
    'FILTER_DIR',
    'NonCallableMock',
    'NonCallableMagicMock',
    'mock_open',
    'PropertyMock',
)


__version__ = '1.0'


import inspect
import pprint
import sys
from functools import wraps, partial


BaseExceptions = (BaseException,)
if 'java' in sys.platform:
    # jython
    import java
    BaseExceptions = (BaseException, java.lang.Throwable)


FILTER_DIR = True

# Workaround for issue #12370
# Without this, the __class__ properties wouldn't be set correctly
_safe_super = super

def _is_instance_mock(obj):
    # can't use isinstance on Mock objects because they override __class__
    # The base class for all mocks is NonCallableMock
    return issubclass(type(obj), NonCallableMock)


def _is_exception(obj):
    return (
        isinstance(obj, BaseExceptions) or
        isinstance(obj, type) and issubclass(obj, BaseExceptions)
    )


class _slotted(object):
    __slots__ = ['a']


DescriptorTypes = (
    type(_slotted.a),
    property,
)


def _get_signature_object(func, as_instance, eat_self):
    """
    Given an arbitrary, possibly callable object, try to create a suitable
    signature object.
    Return a (reduced func, signature) tuple, or None.
    """
    if isinstance(func, type) and not as_instance:
        # If it's a type and should be modelled as a type, use __init__.
        try:
            func = func.__init__
        except AttributeError:
            return None
        # Skip the `self` argument in __init__
        eat_self = True
    elif not isinstance(func, FunctionTypes):
        # If we really want to model an instance of the passed type,
        # __call__ should be looked up, not __init__.
        try:
            func = func.__call__
        except AttributeError:
            return None
    if eat_self:
        sig_func = partial(func, None)
    else:
        sig_func = func
    try:
        return func, inspect.signature(sig_func)
    except ValueError:
        # Certain callable types are not supported by inspect.signature()
        return None


def _check_signature(func, mock, skipfirst, instance=False):
    sig = _get_signature_object(func, instance, skipfirst)
    if sig is None:
        return
    func, sig = sig
    def checksig(_mock_self, *args, **kwargs):
        sig.bind(*args, **kwargs)
    _copy_func_details(func, checksig)
    type(mock)._mock_check_sig = checksig


def _copy_func_details(func, funcopy):
    funcopy.__name__ = func.__name__
    funcopy.__doc__ = func.__doc__
    try:
        funcopy.__text_signature__ = func.__text_signature__
    except AttributeError:
        pass
    # we explicitly don't copy func.__dict__ into this copy as it would
    # expose original attributes that should be mocked
    try:
        funcopy.__module__ = func.__module__
    except AttributeError:
        pass
    try:
        funcopy.__defaults__ = func.__defaults__
    except AttributeError:
        pass
    try:
        funcopy.__kwdefaults__ = func.__kwdefaults__
    except AttributeError:
        pass


def _callable(obj):
    if isinstance(obj, type):
        return True
    if getattr(obj, '__call__', None) is not None:
        return True
    return False


def _is_list(obj):
    # checks for list or tuples
    # XXXX badly named!
    return type(obj) in (list, tuple)


def _instance_callable(obj):
    """Given an object, return True if the object is callable.
    For classes, return True if instances would be callable."""
    if not isinstance(obj, type):
        # already an instance
        return getattr(obj, '__call__', None) is not None

    # *could* be broken by a class overriding __mro__ or __dict__ via
    # a metaclass
    for base in (obj,) + obj.__mro__:
        if base.__dict__.get('__call__') is not None:
            return True
    return False


def _set_signature(mock, original, instance=False):
    # creates a function with signature (*args, **kwargs) that delegates to a
    # mock. It still does signature checking by calling a lambda with the same
    # signature as the original.
    if not _callable(original):
        return

    skipfirst = isinstance(original, type)
    result = _get_signature_object(original, instance, skipfirst)
    if result is None:
        return
    func, sig = result
    def checksig(*args, **kwargs):
        sig.bind(*args, **kwargs)
    _copy_func_details(func, checksig)

    name = original.__name__
    if not name.isidentifier():
        name = 'funcopy'
    context = {'_checksig_': checksig, 'mock': mock}
    src = """def %s(*args, **kwargs):
    _checksig_(*args, **kwargs)
    return mock(*args, **kwargs)""" % name
    exec (src, context)
    funcopy = context[name]
    _setup_func(funcopy, mock)
    return funcopy


def _setup_func(funcopy, mock):
    funcopy.mock = mock

    # can't use isinstance with mocks
    if not _is_instance_mock(mock):
        return

    def assert_called_with(*args, **kwargs):
        return mock.assert_called_with(*args, **kwargs)
    def assert_called_once_with(*args, **kwargs):
        return mock.assert_called_once_with(*args, **kwargs)
    def assert_has_calls(*args, **kwargs):
        return mock.assert_has_calls(*args, **kwargs)
    def assert_any_call(*args, **kwargs):
        return mock.assert_any_call(*args, **kwargs)
    def reset_mock():
        funcopy.method_calls = _CallList()
        funcopy.mock_calls = _CallList()
        mock.reset_mock()
        ret = funcopy.return_value
        if _is_instance_mock(ret) and not ret is mock:
            ret.reset_mock()

    funcopy.called = False
    funcopy.call_count = 0
    funcopy.call_args = None
    funcopy.call_args_list = _CallList()
    funcopy.method_calls = _CallList()
    funcopy.mock_calls = _CallList()

    funcopy.return_value = mock.return_value
    funcopy.side_effect = mock.side_effect
    funcopy._mock_children = mock._mock_children

    funcopy.assert_called_with = assert_called_with
    funcopy.assert_called_once_with = assert_called_once_with
    funcopy.assert_has_calls = assert_has_calls
    funcopy.assert_any_call = assert_any_call
    funcopy.reset_mock = reset_mock

    mock._mock_delegate = funcopy


def _is_magic(name):
    return '__%s__' % name[2:-2] == name


class _SentinelObject(object):
    "A unique, named, sentinel object."
    def __init__(self, name):
        self.name = name

    def __repr__(self):
        return 'sentinel.%s' % self.name


class _Sentinel(object):
    """Access attributes to return a named object, usable as a sentinel."""
    def __init__(self):
        self._sentinels = {}

    def __getattr__(self, name):
        if name == '__bases__':
            # Without this help(unittest.mock) raises an exception
            raise AttributeError
        return self._sentinels.setdefault(name, _SentinelObject(name))


sentinel = _Sentinel()

DEFAULT = sentinel.DEFAULT
_missing = sentinel.MISSING
_deleted = sentinel.DELETED


def _copy(value):
    if type(value) in (dict, list, tuple, set):
        return type(value)(value)
    return value


_allowed_names = set(
    [
        'return_value', '_mock_return_value', 'side_effect',
        '_mock_side_effect', '_mock_parent', '_mock_new_parent',
        '_mock_name', '_mock_new_name'
    ]
)


def _delegating_property(name):
    _allowed_names.add(name)
    _the_name = '_mock_' + name
    def _get(self, name=name, _the_name=_the_name):
        sig = self._mock_delegate
        if sig is None:
            return getattr(self, _the_name)
        return getattr(sig, name)
    def _set(self, value, name=name, _the_name=_the_name):
        sig = self._mock_delegate
        if sig is None:
            self.__dict__[_the_name] = value
        else:
            setattr(sig, name, value)

    return property(_get, _set)



class _CallList(list):

    def __contains__(self, value):
        if not isinstance(value, list):
            return list.__contains__(self, value)
        len_value = len(value)
        len_self = len(self)
        if len_value > len_self:
            return False

        for i in range(0, len_self - len_value + 1):
            sub_list = self[i:i+len_value]
            if sub_list == value:
                return True
        return False

    def __repr__(self):
        return pprint.pformat(list(self))


def _check_and_set_parent(parent, value, name, new_name):
    if not _is_instance_mock(value):
        return False
    if ((value._mock_name or value._mock_new_name) or
        (value._mock_parent is not None) or
        (value._mock_new_parent is not None)):
        return False

    _parent = parent
    while _parent is not None:
        # setting a mock (value) as a child or return value of itself
        # should not modify the mock
        if _parent is value:
            return False
        _parent = _parent._mock_new_parent

    if new_name:
        value._mock_new_parent = parent
        value._mock_new_name = new_name
    if name:
        value._mock_parent = parent
        value._mock_name = name
    return True

# Internal class to identify if we wrapped an iterator object or not.
class _MockIter(object):
    def __init__(self, obj):
        self.obj = iter(obj)
    def __iter__(self):
        return self
    def __next__(self):
        return next(self.obj)

class Base(object):
    _mock_return_value = DEFAULT
    _mock_side_effect = None
    def __init__(self, *args, **kwargs):
        pass



class NonCallableMock(Base):
    """A non-callable version of `Mock`"""

    def __new__(cls, *args, **kw):
        # every instance has its own class
        # so we can create magic methods on the
        # class without stomping on other mocks
        new = type(cls.__name__, (cls,), {'__doc__': cls.__doc__})
        instance = object.__new__(new)
        return instance


    def __init__(
            self, spec=None, wraps=None, name=None, spec_set=None,
            parent=None, _spec_state=None, _new_name='', _new_parent=None,
            _spec_as_instance=False, _eat_self=None, **kwargs
        ):
        if _new_parent is None:
            _new_parent = parent

        __dict__ = self.__dict__
        __dict__['_mock_parent'] = parent
        __dict__['_mock_name'] = name
        __dict__['_mock_new_name'] = _new_name
        __dict__['_mock_new_parent'] = _new_parent

        if spec_set is not None:
            spec = spec_set
            spec_set = True
        if _eat_self is None:
            _eat_self = parent is not None

        self._mock_add_spec(spec, spec_set, _spec_as_instance, _eat_self)

        __dict__['_mock_children'] = {}
        __dict__['_mock_wraps'] = wraps
        __dict__['_mock_delegate'] = None

        __dict__['_mock_called'] = False
        __dict__['_mock_call_args'] = None
        __dict__['_mock_call_count'] = 0
        __dict__['_mock_call_args_list'] = _CallList()
        __dict__['_mock_mock_calls'] = _CallList()

        __dict__['method_calls'] = _CallList()

        if kwargs:
            self.configure_mock(**kwargs)

        _safe_super(NonCallableMock, self).__init__(
            spec, wraps, name, spec_set, parent,
            _spec_state
        )


    def attach_mock(self, mock, attribute):
        """
        Attach a mock as an attribute of this one, replacing its name and
        parent. Calls to the attached mock will be recorded in the
        `method_calls` and `mock_calls` attributes of this one."""
        mock._mock_parent = None
        mock._mock_new_parent = None
        mock._mock_name = ''
        mock._mock_new_name = None

        setattr(self, attribute, mock)


    def mock_add_spec(self, spec, spec_set=False):
        """Add a spec to a mock. `spec` can either be an object or a
        list of strings. Only attributes on the `spec` can be fetched as
        attributes from the mock.

        If `spec_set` is True then only attributes on the spec can be set."""
        self._mock_add_spec(spec, spec_set)


    def _mock_add_spec(self, spec, spec_set, _spec_as_instance=False,
                       _eat_self=False):
        _spec_class = None
        _spec_signature = None

        if spec is not None and not _is_list(spec):
            if isinstance(spec, type):
                _spec_class = spec
            else:
                _spec_class = _get_class(spec)
            res = _get_signature_object(spec,
                                        _spec_as_instance, _eat_self)
            _spec_signature = res and res[1]

            spec = dir(spec)

        __dict__ = self.__dict__
        __dict__['_spec_class'] = _spec_class
        __dict__['_spec_set'] = spec_set
        __dict__['_spec_signature'] = _spec_signature
        __dict__['_mock_methods'] = spec


    def __get_return_value(self):
        ret = self._mock_return_value
        if self._mock_delegate is not None:
            ret = self._mock_delegate.return_value

        if ret is DEFAULT:
            ret = self._get_child_mock(
                _new_parent=self, _new_name='()'
            )
            self.return_value = ret
        return ret


    def __set_return_value(self, value):
        if self._mock_delegate is not None:
            self._mock_delegate.return_value = value
        else:
            self._mock_return_value = value
            _check_and_set_parent(self, value, None, '()')

    __return_value_doc = "The value to be returned when the mock is called."
    return_value = property(__get_return_value, __set_return_value,
                            __return_value_doc)


    @property
    def __class__(self):
        if self._spec_class is None:
            return type(self)
        return self._spec_class

    called = _delegating_property('called')
    call_count = _delegating_property('call_count')
    call_args = _delegating_property('call_args')
    call_args_list = _delegating_property('call_args_list')
    mock_calls = _delegating_property('mock_calls')


    def __get_side_effect(self):
        delegated = self._mock_delegate
        if delegated is None:
            return self._mock_side_effect
        sf = delegated.side_effect
        if sf is not None and not callable(sf) and not isinstance(sf, _MockIter):
            sf = _MockIter(sf)
            delegated.side_effect = sf
        return sf

    def __set_side_effect(self, value):
        value = _try_iter(value)
        delegated = self._mock_delegate
        if delegated is None:
            self._mock_side_effect = value
        else:
            delegated.side_effect = value

    side_effect = property(__get_side_effect, __set_side_effect)


    def reset_mock(self, visited=None):
        "Restore the mock object to its initial state."
        if visited is None:
            visited = []
        if id(self) in visited:
            return
        visited.append(id(self))

        self.called = False
        self.call_args = None
        self.call_count = 0
        self.mock_calls = _CallList()
        self.call_args_list = _CallList()
        self.method_calls = _CallList()

        for child in self._mock_children.values():
            if isinstance(child, _SpecState):
                continue
            child.reset_mock(visited)

        ret = self._mock_return_value
        if _is_instance_mock(ret) and ret is not self:
            ret.reset_mock(visited)


    def configure_mock(self, **kwargs):
        """Set attributes on the mock through keyword arguments.

        Attributes plus return values and side effects can be set on child
        mocks using standard dot notation and unpacking a dictionary in the
        method call:

        >>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
        >>> mock.configure_mock(**attrs)"""
        for arg, val in sorted(kwargs.items(),
                               # we sort on the number of dots so that
                               # attributes are set before we set attributes on
                               # attributes
                               key=lambda entry: entry[0].count('.')):
            args = arg.split('.')
            final = args.pop()
            obj = self
            for entry in args:
                obj = getattr(obj, entry)
            setattr(obj, final, val)


    def __getattr__(self, name):
        if name == '_mock_methods':
            raise AttributeError(name)
        elif self._mock_methods is not None:
            if name not in self._mock_methods or name in _all_magics:
                raise AttributeError("Mock object has no attribute %r" % name)
        elif _is_magic(name):
            raise AttributeError(name)

        result = self._mock_children.get(name)
        if result is _deleted:
            raise AttributeError(name)
        elif result is None:
            wraps = None
            if self._mock_wraps is not None:
                # XXXX should we get the attribute without triggering code
                # execution?
                wraps = getattr(self._mock_wraps, name)

            result = self._get_child_mock(
                parent=self, name=name, wraps=wraps, _new_name=name,
                _new_parent=self
            )
            self._mock_children[name]  = result

        elif isinstance(result, _SpecState):
            result = create_autospec(
                result.spec, result.spec_set, result.instance,
                result.parent, result.name
            )
            self._mock_children[name]  = result

        return result


    def __repr__(self):
        _name_list = [self._mock_new_name]
        _parent = self._mock_new_parent
        last = self

        dot = '.'
        if _name_list == ['()']:
            dot = ''
        seen = set()
        while _parent is not None:
            last = _parent

            _name_list.append(_parent._mock_new_name + dot)
            dot = '.'
            if _parent._mock_new_name == '()':
                dot = ''

            _parent = _parent._mock_new_parent

            # use ids here so as not to call __hash__ on the mocks
            if id(_parent) in seen:
                break
            seen.add(id(_parent))

        _name_list = list(reversed(_name_list))
        _first = last._mock_name or 'mock'
        if len(_name_list) > 1:
            if _name_list[1] not in ('()', '().'):
                _first += '.'
        _name_list[0] = _first
        name = ''.join(_name_list)

        name_string = ''
        if name not in ('mock', 'mock.'):
            name_string = ' name=%r' % name

        spec_string = ''
        if self._spec_class is not None:
            spec_string = ' spec=%r'
            if self._spec_set:
                spec_string = ' spec_set=%r'
            spec_string = spec_string % self._spec_class.__name__
        return "<%s%s%s id='%s'>" % (
            type(self).__name__,
            name_string,
            spec_string,
            id(self)
        )


    def __dir__(self):
        """Filter the output of `dir(mock)` to only useful members."""
        if not FILTER_DIR:
            return object.__dir__(self)

        extras = self._mock_methods or []
        from_type = dir(type(self))
        from_dict = list(self.__dict__)

        from_type = [e for e in from_type if not e.startswith('_')]
        from_dict = [e for e in from_dict if not e.startswith('_') or
                     _is_magic(e)]
        return sorted(set(extras + from_type + from_dict +
                          list(self._mock_children)))


    def __setattr__(self, name, value):
        if name in _allowed_names:
            # property setters go through here
            return object.__setattr__(self, name, value)
        elif (self._spec_set and self._mock_methods is not None and
            name not in self._mock_methods and
            name not in self.__dict__):
            raise AttributeError("Mock object has no attribute '%s'" % name)
        elif name in _unsupported_magics:
            msg = 'Attempting to set unsupported magic method %r.' % name
            raise AttributeError(msg)
        elif name in _all_magics:
            if self._mock_methods is not None and name not in self._mock_methods:
                raise AttributeError("Mock object has no attribute '%s'" % name)

            if not _is_instance_mock(value):
                setattr(type(self), name, _get_method(name, value))
                original = value
                value = lambda *args, **kw: original(self, *args, **kw)
            else:
                # only set _new_name and not name so that mock_calls is tracked
                # but not method calls
                _check_and_set_parent(self, value, None, name)
                setattr(type(self), name, value)
                self._mock_children[name] = value
        elif name == '__class__':
            self._spec_class = value
            return
        else:
            if _check_and_set_parent(self, value, name, name):
                self._mock_children[name] = value
        return object.__setattr__(self, name, value)


    def __delattr__(self, name):
        if name in _all_magics and name in type(self).__dict__:
            delattr(type(self), name)
            if name not in self.__dict__:
                # for magic methods that are still MagicProxy objects and
                # not set on the instance itself
                return

        if name in self.__dict__:
            object.__delattr__(self, name)

        obj = self._mock_children.get(name, _missing)
        if obj is _deleted:
            raise AttributeError(name)
        if obj is not _missing:
            del self._mock_children[name]
        self._mock_children[name] = _deleted


    def _format_mock_call_signature(self, args, kwargs):
        name = self._mock_name or 'mock'
        return _format_call_signature(name, args, kwargs)


    def _format_mock_failure_message(self, args, kwargs):
        message = 'Expected call: %s\nActual call: %s'
        expected_string = self._format_mock_call_signature(args, kwargs)
        call_args = self.call_args
        if len(call_args) == 3:
            call_args = call_args[1:]
        actual_string = self._format_mock_call_signature(*call_args)
        return message % (expected_string, actual_string)


    def _call_matcher(self, _call):
        """
        Given a call (or simply a (args, kwargs) tuple), return a
        comparison key suitable for matching with other calls.
        This is a best effort method which relies on the spec's signature,
        if available, or falls back on the arguments themselves.
        """
        sig = self._spec_signature
        if sig is not None:
            if len(_call) == 2:
                name = ''
                args, kwargs = _call
            else:
                name, args, kwargs = _call
            try:
                return name, sig.bind(*args, **kwargs)
            except TypeError as e:
                return e.with_traceback(None)
        else:
            return _call


    def assert_called_with(_mock_self, *args, **kwargs):
        """assert that the mock was called with the specified arguments.

        Raises an AssertionError if the args and keyword args passed in are
        different to the last call to the mock."""
        self = _mock_self
        if self.call_args is None:
            expected = self._format_mock_call_signature(args, kwargs)
            raise AssertionError('Expected call: %s\nNot called' % (expected,))

        def _error_message():
            msg = self._format_mock_failure_message(args, kwargs)
            return msg
        expected = self._call_matcher((args, kwargs))
        actual = self._call_matcher(self.call_args)
        if expected != actual:
            cause = expected if isinstance(expected, Exception) else None
            raise AssertionError(_error_message()) from cause


    def assert_called_once_with(_mock_self, *args, **kwargs):
        """assert that the mock was called exactly once and with the specified
        arguments."""
        self = _mock_self
        if not self.call_count == 1:
            msg = ("Expected '%s' to be called once. Called %s times." %
                   (self._mock_name or 'mock', self.call_count))
            raise AssertionError(msg)
        return self.assert_called_with(*args, **kwargs)


    def assert_has_calls(self, calls, any_order=False):
        """assert the mock has been called with the specified calls.
        The `mock_calls` list is checked for the calls.

        If `any_order` is False (the default) then the calls must be
        sequential. There can be extra calls before or after the
        specified calls.

        If `any_order` is True then the calls can be in any order, but
        they must all appear in `mock_calls`."""
        expected = [self._call_matcher(c) for c in calls]
        cause = expected if isinstance(expected, Exception) else None
        all_calls = _CallList(self._call_matcher(c) for c in self.mock_calls)
        if not any_order:
            if expected not in all_calls:
                raise AssertionError(
                    'Calls not found.\nExpected: %r\n'
                    'Actual: %r' % (calls, self.mock_calls)
                ) from cause
            return

        all_calls = list(all_calls)

        not_found = []
        for kall in expected:
            try:
                all_calls.remove(kall)
            except ValueError:
                not_found.append(kall)
        if not_found:
            raise AssertionError(
                '%r not all found in call list' % (tuple(not_found),)
            ) from cause


    def assert_any_call(self, *args, **kwargs):
        """assert the mock has been called with the specified arguments.

        The assert passes if the mock has *ever* been called, unlike
        `assert_called_with` and `assert_called_once_with` that only pass if
        the call is the most recent one."""
        expected = self._call_matcher((args, kwargs))
        actual = [self._call_matcher(c) for c in self.call_args_list]
        if expected not in actual:
            cause = expected if isinstance(expected, Exception) else None
            expected_string = self._format_mock_call_signature(args, kwargs)
            raise AssertionError(
                '%s call not found' % expected_string
            ) from cause


    def _get_child_mock(self, **kw):
        """Create the child mocks for attributes and return value.
        By default child mocks will be the same type as the parent.
        Subclasses of Mock may want to override this to customize the way
        child mocks are made.

        For non-callable mocks the callable variant will be used (rather than
        any custom subclass)."""
        _type = type(self)
        if not issubclass(_type, CallableMixin):
            if issubclass(_type, NonCallableMagicMock):
                klass = MagicMock
            elif issubclass(_type, NonCallableMock) :
                klass = Mock
        else:
            klass = _type.__mro__[1]
        return klass(**kw)



def _try_iter(obj):
    if obj is None:
        return obj
    if _is_exception(obj):
        return obj
    if _callable(obj):
        return obj
    try:
        return iter(obj)
    except TypeError:
        # XXXX backwards compatibility
        # but this will blow up on first call - so maybe we should fail early?
        return obj



class CallableMixin(Base):

    def __init__(self, spec=None, side_effect=None, return_value=DEFAULT,
                 wraps=None, name=None, spec_set=None, parent=None,
                 _spec_state=None, _new_name='', _new_parent=None, **kwargs):
        self.__dict__['_mock_return_value'] = return_value

        _safe_super(CallableMixin, self).__init__(
            spec, wraps, name, spec_set, parent,
            _spec_state, _new_name, _new_parent, **kwargs
        )

        self.side_effect = side_effect


    def _mock_check_sig(self, *args, **kwargs):
        # stub method that can be replaced with one with a specific signature
        pass


    def __call__(_mock_self, *args, **kwargs):
        # can't use self in-case a function / method we are mocking uses self
        # in the signature
        _mock_self._mock_check_sig(*args, **kwargs)
        return _mock_self._mock_call(*args, **kwargs)


    def _mock_call(_mock_self, *args, **kwargs):
        self = _mock_self
        self.called = True
        self.call_count += 1
        _new_name = self._mock_new_name
        _new_parent = self._mock_new_parent

        _call = _Call((args, kwargs), two=True)
        self.call_args = _call
        self.call_args_list.append(_call)
        self.mock_calls.append(_Call(('', args, kwargs)))

        seen = set()
        skip_next_dot = _new_name == '()'
        do_method_calls = self._mock_parent is not None
        name = self._mock_name
        while _new_parent is not None:
            this_mock_call = _Call((_new_name, args, kwargs))
            if _new_parent._mock_new_name:
                dot = '.'
                if skip_next_dot:
                    dot = ''

                skip_next_dot = False
                if _new_parent._mock_new_name == '()':
                    skip_next_dot = True

                _new_name = _new_parent._mock_new_name + dot + _new_name

            if do_method_calls:
                if _new_name == name:
                    this_method_call = this_mock_call
                else:
                    this_method_call = _Call((name, args, kwargs))
                _new_parent.method_calls.append(this_method_call)

                do_method_calls = _new_parent._mock_parent is not None
                if do_method_calls:
                    name = _new_parent._mock_name + '.' + name

            _new_parent.mock_calls.append(this_mock_call)
            _new_parent = _new_parent._mock_new_parent

            # use ids here so as not to call __hash__ on the mocks
            _new_parent_id = id(_new_parent)
            if _new_parent_id in seen:
                break
            seen.add(_new_parent_id)

        ret_val = DEFAULT
        effect = self.side_effect
        if effect is not None:
            if _is_exception(effect):
                raise effect

            if not _callable(effect):
                result = next(effect)
                if _is_exception(result):
                    raise result
                if result is DEFAULT:
                    result = self.return_value
                return result

            ret_val = effect(*args, **kwargs)

        if (self._mock_wraps is not None and
             self._mock_return_value is DEFAULT):
            return self._mock_wraps(*args, **kwargs)
        if ret_val is DEFAULT:
            ret_val = self.return_value
        return ret_val



class Mock(CallableMixin, NonCallableMock):
    """
    Create a new `Mock` object. `Mock` takes several optional arguments
    that specify the behaviour of the Mock object:

    * `spec`: This can be either a list of strings or an existing object (a
      class or instance) that acts as the specification for the mock object. If
      you pass in an object then a list of strings is formed by calling dir on
      the object (excluding unsupported magic attributes and methods). Accessing
      any attribute not in this list will raise an `AttributeError`.

      If `spec` is an object (rather than a list of strings) then
      `mock.__class__` returns the class of the spec object. This allows mocks
      to pass `isinstance` tests.

    * `spec_set`: A stricter variant of `spec`. If used, attempting to *set*
      or get an attribute on the mock that isn't on the object passed as
      `spec_set` will raise an `AttributeError`.

    * `side_effect`: A function to be called whenever the Mock is called. See
      the `side_effect` attribute. Useful for raising exceptions or
      dynamically changing return values. The function is called with the same
      arguments as the mock, and unless it returns `DEFAULT`, the return
      value of this function is used as the return value.

      If `side_effect` is an iterable then each call to the mock will return
      the next value from the iterable. If any of the members of the iterable
      are exceptions they will be raised instead of returned.

    * `return_value`: The value returned when the mock is called. By default
      this is a new Mock (created on first access). See the
      `return_value` attribute.

    * `wraps`: Item for the mock object to wrap. If `wraps` is not None then
      calling the Mock will pass the call through to the wrapped object
      (returning the real result). Attribute access on the mock will return a
      Mock object that wraps the corresponding attribute of the wrapped object
      (so attempting to access an attribute that doesn't exist will raise an
      `AttributeError`).

      If the mock has an explicit `return_value` set then calls are not passed
      to the wrapped object and the `return_value` is returned instead.

    * `name`: If the mock has a name then it will be used in the repr of the
      mock. This can be useful for debugging. The name is propagated to child
      mocks.

    Mocks can also be called with arbitrary keyword arguments. These will be
    used to set attributes on the mock after it is created.
    """



def _dot_lookup(thing, comp, import_path):
    try:
        return getattr(thing, comp)
    except AttributeError:
        __import__(import_path)
        return getattr(thing, comp)


def _importer(target):
    components = target.split('.')
    import_path = components.pop(0)
    thing = __import__(import_path)

    for comp in components:
        import_path += ".%s" % comp
        thing = _dot_lookup(thing, comp, import_path)
    return thing


def _is_started(patcher):
    # XXXX horrible
    return hasattr(patcher, 'is_local')


class _patch(object):

    attribute_name = None
    _active_patches = []

    def __init__(
            self, getter, attribute, new, spec, create,
            spec_set, autospec, new_callable, kwargs
        ):
        if new_callable is not None:
            if new is not DEFAULT:
                raise ValueError(
                    "Cannot use 'new' and 'new_callable' together"
                )
            if autospec is not None:
                raise ValueError(
                    "Cannot use 'autospec' and 'new_callable' together"
                )

        self.getter = getter
        self.attribute = attribute
        self.new = new
        self.new_callable = new_callable
        self.spec = spec
        self.create = create
        self.has_local = False
        self.spec_set = spec_set
        self.autospec = autospec
        self.kwargs = kwargs
        self.additional_patchers = []


    def copy(self):
        patcher = _patch(
            self.getter, self.attribute, self.new, self.spec,
            self.create, self.spec_set,
            self.autospec, self.new_callable, self.kwargs
        )
        patcher.attribute_name = self.attribute_name
        patcher.additional_patchers = [
            p.copy() for p in self.additional_patchers
        ]
        return patcher


    def __call__(self, func):
        if isinstance(func, type):
            return self.decorate_class(func)
        return self.decorate_callable(func)


    def decorate_class(self, klass):
        for attr in dir(klass):
            if not attr.startswith(patch.TEST_PREFIX):
                continue

            attr_value = getattr(klass, attr)
            if not hasattr(attr_value, "__call__"):
                continue

            patcher = self.copy()
            setattr(klass, attr, patcher(attr_value))
        return klass


    def decorate_callable(self, func):
        if hasattr(func, 'patchings'):
            func.patchings.append(self)
            return func

        @wraps(func)
        def patched(*args, **keywargs):
            extra_args = []
            entered_patchers = []

            exc_info = tuple()
            try:
                for patching in patched.patchings:
                    arg = patching.__enter__()
                    entered_patchers.append(patching)
                    if patching.attribute_name is not None:
                        keywargs.update(arg)
                    elif patching.new is DEFAULT:
                        extra_args.append(arg)

                args += tuple(extra_args)
                return func(*args, **keywargs)
            except:
                if (patching not in entered_patchers and
                    _is_started(patching)):
                    # the patcher may have been started, but an exception
                    # raised whilst entering one of its additional_patchers
                    entered_patchers.append(patching)
                # Pass the exception to __exit__
                exc_info = sys.exc_info()
                # re-raise the exception
                raise
            finally:
                for patching in reversed(entered_patchers):
                    patching.__exit__(*exc_info)

        patched.patchings = [self]
        return patched


    def get_original(self):
        target = self.getter()
        name = self.attribute

        original = DEFAULT
        local = False

        try:
            original = target.__dict__[name]
        except (AttributeError, KeyError):
            original = getattr(target, name, DEFAULT)
        else:
            local = True

        if not self.create and original is DEFAULT:
            raise AttributeError(
                "%s does not have the attribute %r" % (target, name)
            )
        return original, local


    def __enter__(self):
        """Perform the patch."""
        new, spec, spec_set = self.new, self.spec, self.spec_set
        autospec, kwargs = self.autospec, self.kwargs
        new_callable = self.new_callable
        self.target = self.getter()

        # normalise False to None
        if spec is False:
            spec = None
        if spec_set is False:
            spec_set = None
        if autospec is False:
            autospec = None

        if spec is not None and autospec is not None:
            raise TypeError("Can't specify spec and autospec")
        if ((spec is not None or autospec is not None) and
            spec_set not in (True, None)):
            raise TypeError("Can't provide explicit spec_set *and* spec or autospec")

        original, local = self.get_original()

        if new is DEFAULT and autospec is None:
            inherit = False
            if spec is True:
                # set spec to the object we are replacing
                spec = original
                if spec_set is True:
                    spec_set = original
                    spec = None
            elif spec is not None:
                if spec_set is True:
                    spec_set = spec
                    spec = None
            elif spec_set is True:
                spec_set = original

            if spec is not None or spec_set is not None:
                if original is DEFAULT:
                    raise TypeError("Can't use 'spec' with create=True")
                if isinstance(original, type):
                    # If we're patching out a class and there is a spec
                    inherit = True

            Klass = MagicMock
            _kwargs = {}
            if new_callable is not None:
                Klass = new_callable
            elif spec is not None or spec_set is not None:
                this_spec = spec
                if spec_set is not None:
                    this_spec = spec_set
                if _is_list(this_spec):
                    not_callable = '__call__' not in this_spec
                else:
                    not_callable = not callable(this_spec)
                if not_callable:
                    Klass = NonCallableMagicMock

            if spec is not None:
                _kwargs['spec'] = spec
            if spec_set is not None:
                _kwargs['spec_set'] = spec_set

            # add a name to mocks
            if (isinstance(Klass, type) and
                issubclass(Klass, NonCallableMock) and self.attribute):
                _kwargs['name'] = self.attribute

            _kwargs.update(kwargs)
            new = Klass(**_kwargs)

            if inherit and _is_instance_mock(new):
                # we can only tell if the instance should be callable if the
                # spec is not a list
                this_spec = spec
                if spec_set is not None:
                    this_spec = spec_set
                if (not _is_list(this_spec) and not
                    _instance_callable(this_spec)):
                    Klass = NonCallableMagicMock

                _kwargs.pop('name')
                new.return_value = Klass(_new_parent=new, _new_name='()',
                                         **_kwargs)
        elif autospec is not None:
            # spec is ignored, new *must* be default, spec_set is treated
            # as a boolean. Should we check spec is not None and that spec_set
            # is a bool?
            if new is not DEFAULT:
                raise TypeError(
                    "autospec creates the mock for you. Can't specify "
                    "autospec and new."
                )
            if original is DEFAULT:
                raise TypeError("Can't use 'autospec' with create=True")
            spec_set = bool(spec_set)
            if autospec is True:
                autospec = original

            new = create_autospec(autospec, spec_set=spec_set,
                                  _name=self.attribute, **kwargs)
        elif kwargs:
            # can't set keyword args when we aren't creating the mock
            # XXXX If new is a Mock we could call new.configure_mock(**kwargs)
            raise TypeError("Can't pass kwargs to a mock we aren't creating")

        new_attr = new

        self.temp_original = original
        self.is_local = local
        setattr(self.target, self.attribute, new_attr)
        if self.attribute_name is not None:
            extra_args = {}
            if self.new is DEFAULT:
                extra_args[self.attribute_name] =  new
            for patching in self.additional_patchers:
                arg = patching.__enter__()
                if patching.new is DEFAULT:
                    extra_args.update(arg)
            return extra_args

        return new


    def __exit__(self, *exc_info):
        """Undo the patch."""
        if not _is_started(self):
            raise RuntimeError('stop called on unstarted patcher')

        if self.is_local and self.temp_original is not DEFAULT:
            setattr(self.target, self.attribute, self.temp_original)
        else:
            delattr(self.target, self.attribute)
            if not self.create and not hasattr(self.target, self.attribute):
                # needed for proxy objects like django settings
                setattr(self.target, self.attribute, self.temp_original)

        del self.temp_original
        del self.is_local
        del self.target
        for patcher in reversed(self.additional_patchers):
            if _is_started(patcher):
                patcher.__exit__(*exc_info)


    def start(self):
        """Activate a patch, returning any created mock."""
        result = self.__enter__()
        self._active_patches.append(self)
        return result


    def stop(self):
        """Stop an active patch."""
        try:
            self._active_patches.remove(self)
        except ValueError:
            # If the patch hasn't been started this will fail
            pass

        return self.__exit__()



def _get_target(target):
    try:
        target, attribute = target.rsplit('.', 1)
    except (TypeError, ValueError):
        raise TypeError("Need a valid target to patch. You supplied: %r" %
                        (target,))
    getter = lambda: _importer(target)
    return getter, attribute


def _patch_object(
        target, attribute, new=DEFAULT, spec=None,
        create=False, spec_set=None, autospec=None,
        new_callable=None, **kwargs
    ):
    """
    patch the named member (`attribute`) on an object (`target`) with a mock
    object.

    `patch.object` can be used as a decorator, class decorator or a context
    manager. Arguments `new`, `spec`, `create`, `spec_set`,
    `autospec` and `new_callable` have the same meaning as for `patch`. Like
    `patch`, `patch.object` takes arbitrary keyword arguments for configuring
    the mock object it creates.

    When used as a class decorator `patch.object` honours `patch.TEST_PREFIX`
    for choosing which methods to wrap.
    """
    getter = lambda: target
    return _patch(
        getter, attribute, new, spec, create,
        spec_set, autospec, new_callable, kwargs
    )


def _patch_multiple(target, spec=None, create=False, spec_set=None,
                    autospec=None, new_callable=None, **kwargs):
    """Perform multiple patches in a single call. It takes the object to be
    patched (either as an object or a string to fetch the object by importing)
    and keyword arguments for the patches::

        with patch.multiple(settings, FIRST_PATCH='one', SECOND_PATCH='two'):
            ...

    Use `DEFAULT` as the value if you want `patch.multiple` to create
    mocks for you. In this case the created mocks are passed into a decorated
    function by keyword, and a dictionary is returned when `patch.multiple` is
    used as a context manager.

    `patch.multiple` can be used as a decorator, class decorator or a context
    manager. The arguments `spec`, `spec_set`, `create`,
    `autospec` and `new_callable` have the same meaning as for `patch`. These
    arguments will be applied to *all* patches done by `patch.multiple`.

    When used as a class decorator `patch.multiple` honours `patch.TEST_PREFIX`
    for choosing which methods to wrap.
    """
    if type(target) is str:
        getter = lambda: _importer(target)
    else:
        getter = lambda: target

    if not kwargs:
        raise ValueError(
            'Must supply at least one keyword argument with patch.multiple'
        )
    # need to wrap in a list for python 3, where items is a view
    items = list(kwargs.items())
    attribute, new = items[0]
    patcher = _patch(
        getter, attribute, new, spec, create, spec_set,
        autospec, new_callable, {}
    )
    patcher.attribute_name = attribute
    for attribute, new in items[1:]:
        this_patcher = _patch(
            getter, attribute, new, spec, create, spec_set,
            autospec, new_callable, {}
        )
        this_patcher.attribute_name = attribute
        patcher.additional_patchers.append(this_patcher)
    return patcher


def patch(
        target, new=DEFAULT, spec=None, create=False,
        spec_set=None, autospec=None, new_callable=None, **kwargs
    ):
    """
    `patch` acts as a function decorator, class decorator or a context
    manager. Inside the body of the function or with statement, the `target`
    is patched with a `new` object. When the function/with statement exits
    the patch is undone.

    If `new` is omitted, then the target is replaced with a
    `MagicMock`. If `patch` is used as a decorator and `new` is
    omitted, the created mock is passed in as an extra argument to the
    decorated function. If `patch` is used as a context manager the created
    mock is returned by the context manager.

    `target` should be a string in the form `'package.module.ClassName'`. The
    `target` is imported and the specified object replaced with the `new`
    object, so the `target` must be importable from the environment you are
    calling `patch` from. The target is imported when the decorated function
    is executed, not at decoration time.

    The `spec` and `spec_set` keyword arguments are passed to the `MagicMock`
    if patch is creating one for you.

    In addition you can pass `spec=True` or `spec_set=True`, which causes
    patch to pass in the object being mocked as the spec/spec_set object.

    `new_callable` allows you to specify a different class, or callable object,
    that will be called to create the `new` object. By default `MagicMock` is
    used.

    A more powerful form of `spec` is `autospec`. If you set `autospec=True`
    then the mock will be created with a spec from the object being replaced.
    All attributes of the mock will also have the spec of the corresponding
    attribute of the object being replaced. Methods and functions being
    mocked will have their arguments checked and will raise a `TypeError` if
    they are called with the wrong signature. For mocks replacing a class,
    their return value (the 'instance') will have the same spec as the class.

    Instead of `autospec=True` you can pass `autospec=some_object` to use an
    arbitrary object as the spec instead of the one being replaced.

    By default `patch` will fail to replace attributes that don't exist. If
    you pass in `create=True`, and the attribute doesn't exist, patch will
    create the attribute for you when the patched function is called, and
    delete it again afterwards. This is useful for writing tests against
    attributes that your production code creates at runtime. It is off by
    default because it can be dangerous. With it switched on you can write
    passing tests against APIs that don't actually exist!

    Patch can be used as a `TestCase` class decorator. It works by
    decorating each test method in the class. This reduces the boilerplate
    code when your test methods share a common patchings set. `patch` finds
    tests by looking for method names that start with `patch.TEST_PREFIX`.
    By default this is `test`, which matches the way `unittest` finds tests.
    You can specify an alternative prefix by setting `patch.TEST_PREFIX`.

    Patch can be used as a context manager, with the with statement. Here the
    patching applies to the indented block after the with statement. If you
    use "as" then the patched object will be bound to the name after the
    "as"; very useful if `patch` is creating a mock object for you.

    `patch` takes arbitrary keyword arguments. These will be passed to
    the `Mock` (or `new_callable`) on construction.

    `patch.dict(...)`, `patch.multiple(...)` and `patch.object(...)` are
    available for alternate use-cases.
    """
    getter, attribute = _get_target(target)
    return _patch(
        getter, attribute, new, spec, create,
        spec_set, autospec, new_callable, kwargs
    )


class _patch_dict(object):
    """
    Patch a dictionary, or dictionary like object, and restore the dictionary
    to its original state after the test.

    `in_dict` can be a dictionary or a mapping like container. If it is a
    mapping then it must at least support getting, setting and deleting items
    plus iterating over keys.

    `in_dict` can also be a string specifying the name of the dictionary, which
    will then be fetched by importing it.

    `values` can be a dictionary of values to set in the dictionary. `values`
    can also be an iterable of `(key, value)` pairs.

    If `clear` is True then the dictionary will be cleared before the new
    values are set.

    `patch.dict` can also be called with arbitrary keyword arguments to set
    values in the dictionary::

        with patch.dict('sys.modules', mymodule=Mock(), other_module=Mock()):
            ...

    `patch.dict` can be used as a context manager, decorator or class
    decorator. When used as a class decorator `patch.dict` honours
    `patch.TEST_PREFIX` for choosing which methods to wrap.
    """

    def __init__(self, in_dict, values=(), clear=False, **kwargs):
        if isinstance(in_dict, str):
            in_dict = _importer(in_dict)
        self.in_dict = in_dict
        # support any argument supported by dict(...) constructor
        self.values = dict(values)
        self.values.update(kwargs)
        self.clear = clear
        self._original = None


    def __call__(self, f):
        if isinstance(f, type):
            return self.decorate_class(f)
        @wraps(f)
        def _inner(*args, **kw):
            self._patch_dict()
            try:
                return f(*args, **kw)
            finally:
                self._unpatch_dict()

        return _inner


    def decorate_class(self, klass):
        for attr in dir(klass):
            attr_value = getattr(klass, attr)
            if (attr.startswith(patch.TEST_PREFIX) and
                 hasattr(attr_value, "__call__")):
                decorator = _patch_dict(self.in_dict, self.values, self.clear)
                decorated = decorator(attr_value)
                setattr(klass, attr, decorated)
        return klass


    def __enter__(self):
        """Patch the dict."""
        self._patch_dict()


    def _patch_dict(self):
        values = self.values
        in_dict = self.in_dict
        clear = self.clear

        try:
            original = in_dict.copy()
        except AttributeError:
            # dict like object with no copy method
            # must support iteration over keys
            original = {}
            for key in in_dict:
                original[key] = in_dict[key]
        self._original = original

        if clear:
            _clear_dict(in_dict)

        try:
            in_dict.update(values)
        except AttributeError:
            # dict like object with no update method
            for key in values:
                in_dict[key] = values[key]


    def _unpatch_dict(self):
        in_dict = self.in_dict
        original = self._original

        _clear_dict(in_dict)

        try:
            in_dict.update(original)
        except AttributeError:
            for key in original:
                in_dict[key] = original[key]


    def __exit__(self, *args):
        """Unpatch the dict."""
        self._unpatch_dict()
        return False

    start = __enter__
    stop = __exit__


def _clear_dict(in_dict):
    try:
        in_dict.clear()
    except AttributeError:
        keys = list(in_dict)
        for key in keys:
            del in_dict[key]


def _patch_stopall():
    """Stop all active patches. LIFO to unroll nested patches."""
    for patch in reversed(_patch._active_patches):
        patch.stop()


patch.object = _patch_object
patch.dict = _patch_dict
patch.multiple = _patch_multiple
patch.stopall = _patch_stopall
patch.TEST_PREFIX = 'test'

magic_methods = (
    "lt le gt ge eq ne "
    "getitem setitem delitem "
    "len contains iter "
    "hash str sizeof "
    "enter exit "
    # we added divmod and rdivmod here instead of numerics
    # because there is no idivmod
    "divmod rdivmod neg pos abs invert "
    "complex int float index "
    "trunc floor ceil "
    "bool next "
)

numerics = (
    "add sub mul div floordiv mod lshift rshift and xor or pow truediv"
)
inplace = ' '.join('i%s' % n for n in numerics.split())
right = ' '.join('r%s' % n for n in numerics.split())

# not including __prepare__, __instancecheck__, __subclasscheck__
# (as they are metaclass methods)
# __del__ is not supported at all as it causes problems if it exists

_non_defaults = set('__%s__' % method for method in [
    'get', 'set', 'delete', 'reversed', 'missing', 'reduce', 'reduce_ex',
    'getinitargs', 'getnewargs', 'getstate', 'setstate', 'getformat',
    'setformat', 'repr', 'dir', 'subclasses', 'format',
])


def _get_method(name, func):
    "Turns a callable object (like a mock) into a real function"
    def method(self, *args, **kw):
        return func(self, *args, **kw)
    method.__name__ = name
    return method


_magics = set(
    '__%s__' % method for method in
    ' '.join([magic_methods, numerics, inplace, right]).split()
)

_all_magics = _magics | _non_defaults

_unsupported_magics = set([
    '__getattr__', '__setattr__',
    '__init__', '__new__', '__prepare__'
    '__instancecheck__', '__subclasscheck__',
    '__del__'
])

_calculate_return_value = {
    '__hash__': lambda self: object.__hash__(self),
    '__str__': lambda self: object.__str__(self),
    '__sizeof__': lambda self: object.__sizeof__(self),
}

_return_values = {
    '__lt__': NotImplemented,
    '__gt__': NotImplemented,
    '__le__': NotImplemented,
    '__ge__': NotImplemented,
    '__int__': 1,
    '__contains__': False,
    '__len__': 0,
    '__exit__': False,
    '__complex__': 1j,
    '__float__': 1.0,
    '__bool__': True,
    '__index__': 1,
}


def _get_eq(self):
    def __eq__(other):
        ret_val = self.__eq__._mock_return_value
        if ret_val is not DEFAULT:
            return ret_val
        return self is other
    return __eq__

def _get_ne(self):
    def __ne__(other):
        if self.__ne__._mock_return_value is not DEFAULT:
            return DEFAULT
        return self is not other
    return __ne__

def _get_iter(self):
    def __iter__():
        ret_val = self.__iter__._mock_return_value
        if ret_val is DEFAULT:
            return iter([])
        # if ret_val was already an iterator, then calling iter on it should
        # return the iterator unchanged
        return iter(ret_val)
    return __iter__

_side_effect_methods = {
    '__eq__': _get_eq,
    '__ne__': _get_ne,
    '__iter__': _get_iter,
}



def _set_return_value(mock, method, name):
    fixed = _return_values.get(name, DEFAULT)
    if fixed is not DEFAULT:
        method.return_value = fixed
        return

    return_calulator = _calculate_return_value.get(name)
    if return_calulator is not None:
        try:
            return_value = return_calulator(mock)
        except AttributeError:
            # XXXX why do we return AttributeError here?
            #      set it as a side_effect instead?
            return_value = AttributeError(name)
        method.return_value = return_value
        return

    side_effector = _side_effect_methods.get(name)
    if side_effector is not None:
        method.side_effect = side_effector(mock)



class MagicMixin(object):
    def __init__(self, *args, **kw):
        self._mock_set_magics()  # make magic work for kwargs in init
        _safe_super(MagicMixin, self).__init__(*args, **kw)
        self._mock_set_magics()  # fix magic broken by upper level init


    def _mock_set_magics(self):
        these_magics = _magics

        if getattr(self, "_mock_methods", None) is not None:
            these_magics = _magics.intersection(self._mock_methods)

            remove_magics = set()
            remove_magics = _magics - these_magics

            for entry in remove_magics:
                if entry in type(self).__dict__:
                    # remove unneeded magic methods
                    delattr(self, entry)

        # don't overwrite existing attributes if called a second time
        these_magics = these_magics - set(type(self).__dict__)

        _type = type(self)
        for entry in these_magics:
            setattr(_type, entry, MagicProxy(entry, self))



class NonCallableMagicMock(MagicMixin, NonCallableMock):
    """A version of `MagicMock` that isn't callable."""
    def mock_add_spec(self, spec, spec_set=False):
        """Add a spec to a mock. `spec` can either be an object or a
        list of strings. Only attributes on the `spec` can be fetched as
        attributes from the mock.

        If `spec_set` is True then only attributes on the spec can be set."""
        self._mock_add_spec(spec, spec_set)
        self._mock_set_magics()



class MagicMock(MagicMixin, Mock):
    """
    MagicMock is a subclass of Mock with default implementations
    of most of the magic methods. You can use MagicMock without having to
    configure the magic methods yourself.

    If you use the `spec` or `spec_set` arguments then *only* magic
    methods that exist in the spec will be created.

    Attributes and the return value of a `MagicMock` will also be `MagicMocks`.
    """
    def mock_add_spec(self, spec, spec_set=False):
        """Add a spec to a mock. `spec` can either be an object or a
        list of strings. Only attributes on the `spec` can be fetched as
        attributes from the mock.

        If `spec_set` is True then only attributes on the spec can be set."""
        self._mock_add_spec(spec, spec_set)
        self._mock_set_magics()



class MagicProxy(object):
    def __init__(self, name, parent):
        self.name = name
        self.parent = parent

    def __call__(self, *args, **kwargs):
        m = self.create_mock()
        return m(*args, **kwargs)

    def create_mock(self):
        entry = self.name
        parent = self.parent
        m = parent._get_child_mock(name=entry, _new_name=entry,
                                   _new_parent=parent)
        setattr(parent, entry, m)
        _set_return_value(parent, m, entry)
        return m

    def __get__(self, obj, _type=None):
        return self.create_mock()



class _ANY(object):
    "A helper object that compares equal to everything."

    def __eq__(self, other):
        return True

    def __ne__(self, other):
        return False

    def __repr__(self):
        return '<ANY>'

ANY = _ANY()



def _format_call_signature(name, args, kwargs):
    message = '%s(%%s)' % name
    formatted_args = ''
    args_string = ', '.join([repr(arg) for arg in args])
    kwargs_string = ', '.join([
        '%s=%r' % (key, value) for key, value in kwargs.items()
    ])
    if args_string:
        formatted_args = args_string
    if kwargs_string:
        if formatted_args:
            formatted_args += ', '
        formatted_args += kwargs_string

    return message % formatted_args



class _Call(tuple):
    """
    A tuple for holding the results of a call to a mock, either in the form
    `(args, kwargs)` or `(name, args, kwargs)`.

    If args or kwargs are empty then a call tuple will compare equal to
    a tuple without those values. This makes comparisons less verbose::

        _Call(('name', (), {})) == ('name',)
        _Call(('name', (1,), {})) == ('name', (1,))
        _Call(((), {'a': 'b'})) == ({'a': 'b'},)

    The `_Call` object provides a useful shortcut for comparing with call::

        _Call(((1, 2), {'a': 3})) == call(1, 2, a=3)
        _Call(('foo', (1, 2), {'a': 3})) == call.foo(1, 2, a=3)

    If the _Call has no name then it will match any name.
    """
    def __new__(cls, value=(), name=None, parent=None, two=False,
                from_kall=True):
        name = ''
        args = ()
        kwargs = {}
        _len = len(value)
        if _len == 3:
            name, args, kwargs = value
        elif _len == 2:
            first, second = value
            if isinstance(first, str):
                name = first
                if isinstance(second, tuple):
                    args = second
                else:
                    kwargs = second
            else:
                args, kwargs = first, second
        elif _len == 1:
            value, = value
            if isinstance(value, str):
                name = value
            elif isinstance(value, tuple):
                args = value
            else:
                kwargs = value

        if two:
            return tuple.__new__(cls, (args, kwargs))

        return tuple.__new__(cls, (name, args, kwargs))


    def __init__(self, value=(), name=None, parent=None, two=False,
                 from_kall=True):
        self.name = name
        self.parent = parent
        self.from_kall = from_kall


    def __eq__(self, other):
        if other is ANY:
            return True
        try:
            len_other = len(other)
        except TypeError:
            return False

        self_name = ''
        if len(self) == 2:
            self_args, self_kwargs = self
        else:
            self_name, self_args, self_kwargs = self

        other_name = ''
        if len_other == 0:
            other_args, other_kwargs = (), {}
        elif len_other == 3:
            other_name, other_args, other_kwargs = other
        elif len_other == 1:
            value, = other
            if isinstance(value, tuple):
                other_args = value
                other_kwargs = {}
            elif isinstance(value, str):
                other_name = value
                other_args, other_kwargs = (), {}
            else:
                other_args = ()
                other_kwargs = value
        elif len_other == 2:
            # could be (name, args) or (name, kwargs) or (args, kwargs)
            first, second = other
            if isinstance(first, str):
                other_name = first
                if isinstance(second, tuple):
                    other_args, other_kwargs = second, {}
                else:
                    other_args, other_kwargs = (), second
            else:
                other_args, other_kwargs = first, second
        else:
            return False

        if self_name and other_name != self_name:
            return False

        # this order is important for ANY to work!
        return (other_args, other_kwargs) == (self_args, self_kwargs)


    def __ne__(self, other):
        return not self.__eq__(other)


    def __call__(self, *args, **kwargs):
        if self.name is None:
            return _Call(('', args, kwargs), name='()')

        name = self.name + '()'
        return _Call((self.name, args, kwargs), name=name, parent=self)


    def __getattr__(self, attr):
        if self.name is None:
            return _Call(name=attr, from_kall=False)
        name = '%s.%s' % (self.name, attr)
        return _Call(name=name, parent=self, from_kall=False)


    def __repr__(self):
        if not self.from_kall:
            name = self.name or 'call'
            if name.startswith('()'):
                name = 'call%s' % name
            return name

        if len(self) == 2:
            name = 'call'
            args, kwargs = self
        else:
            name, args, kwargs = self
            if not name:
                name = 'call'
            elif not name.startswith('()'):
                name = 'call.%s' % name
            else:
                name = 'call%s' % name
        return _format_call_signature(name, args, kwargs)


    def call_list(self):
        """For a call object that represents multiple calls, `call_list`
        returns a list of all the intermediate calls as well as the
        final call."""
        vals = []
        thing = self
        while thing is not None:
            if thing.from_kall:
                vals.append(thing)
            thing = thing.parent
        return _CallList(reversed(vals))


call = _Call(from_kall=False)



def create_autospec(spec, spec_set=False, instance=False, _parent=None,
                    _name=None, **kwargs):
    """Create a mock object using another object as a spec. Attributes on the
    mock will use the corresponding attribute on the `spec` object as their
    spec.

    Functions or methods being mocked will have their arguments checked
    to check that they are called with the correct signature.

    If `spec_set` is True then attempting to set attributes that don't exist
    on the spec object will raise an `AttributeError`.

    If a class is used as a spec then the return value of the mock (the
    instance of the class) will have the same spec. You can use a class as the
    spec for an instance object by passing `instance=True`. The returned mock
    will only be callable if instances of the mock are callable.

    `create_autospec` also takes arbitrary keyword arguments that are passed to
    the constructor of the created mock."""
    if _is_list(spec):
        # can't pass a list instance to the mock constructor as it will be
        # interpreted as a list of strings
        spec = type(spec)

    is_type = isinstance(spec, type)

    _kwargs = {'spec': spec}
    if spec_set:
        _kwargs = {'spec_set': spec}
    elif spec is None:
        # None we mock with a normal mock without a spec
        _kwargs = {}
    if _kwargs and instance:
        _kwargs['_spec_as_instance'] = True

    _kwargs.update(kwargs)

    Klass = MagicMock
    if type(spec) in DescriptorTypes:
        # descriptors don't have a spec
        # because we don't know what type they return
        _kwargs = {}
    elif not _callable(spec):
        Klass = NonCallableMagicMock
    elif is_type and instance and not _instance_callable(spec):
        Klass = NonCallableMagicMock

    _name = _kwargs.pop('name', _name)

    _new_name = _name
    if _parent is None:
        # for a top level object no _new_name should be set
        _new_name = ''

    mock = Klass(parent=_parent, _new_parent=_parent, _new_name=_new_name,
                 name=_name, **_kwargs)

    if isinstance(spec, FunctionTypes):
        # should only happen at the top level because we don't
        # recurse for functions
        mock = _set_signature(mock, spec)
    else:
        _check_signature(spec, mock, is_type, instance)

    if _parent is not None and not instance:
        _parent._mock_children[_name] = mock

    if is_type and not instance and 'return_value' not in kwargs:
        mock.return_value = create_autospec(spec, spec_set, instance=True,
                                            _name='()', _parent=mock)

    for entry in dir(spec):
        if _is_magic(entry):
            # MagicMock already does the useful magic methods for us
            continue

        # XXXX do we need a better way of getting attributes without
        # triggering code execution (?) Probably not - we need the actual
        # object to mock it so we would rather trigger a property than mock
        # the property descriptor. Likewise we want to mock out dynamically
        # provided attributes.
        # XXXX what about attributes that raise exceptions other than
        # AttributeError on being fetched?
        # we could be resilient against it, or catch and propagate the
        # exception when the attribute is fetched from the mock
        try:
            original = getattr(spec, entry)
        except AttributeError:
            continue

        kwargs = {'spec': original}
        if spec_set:
            kwargs = {'spec_set': original}

        if not isinstance(original, FunctionTypes):
            new = _SpecState(original, spec_set, mock, entry, instance)
            mock._mock_children[entry] = new
        else:
            parent = mock
            if isinstance(spec, FunctionTypes):
                parent = mock.mock

            skipfirst = _must_skip(spec, entry, is_type)
            kwargs['_eat_self'] = skipfirst
            new = MagicMock(parent=parent, name=entry, _new_name=entry,
                            _new_parent=parent,
                            **kwargs)
            mock._mock_children[entry] = new
            _check_signature(original, new, skipfirst=skipfirst)

        # so functions created with _set_signature become instance attributes,
        # *plus* their underlying mock exists in _mock_children of the parent
        # mock. Adding to _mock_children may be unnecessary where we are also
        # setting as an instance attribute?
        if isinstance(new, FunctionTypes):
            setattr(mock, entry, new)

    return mock


def _must_skip(spec, entry, is_type):
    """
    Return whether we should skip the first argument on spec's `entry`
    attribute.
    """
    if not isinstance(spec, type):
        if entry in getattr(spec, '__dict__', {}):
            # instance attribute - shouldn't skip
            return False
        spec = spec.__class__

    for klass in spec.__mro__:
        result = klass.__dict__.get(entry, DEFAULT)
        if result is DEFAULT:
            continue
        if isinstance(result, (staticmethod, classmethod)):
            return False
        elif isinstance(getattr(result, '__get__', None), MethodWrapperTypes):
            # Normal method => skip if looked up on type
            # (if looked up on instance, self is already skipped)
            return is_type
        else:
            return False

    # shouldn't get here unless function is a dynamically provided attribute
    # XXXX untested behaviour
    return is_type


def _get_class(obj):
    try:
        return obj.__class__
    except AttributeError:
        # it is possible for objects to have no __class__
        return type(obj)


class _SpecState(object):

    def __init__(self, spec, spec_set=False, parent=None,
                 name=None, ids=None, instance=False):
        self.spec = spec
        self.ids = ids
        self.spec_set = spec_set
        self.parent = parent
        self.instance = instance
        self.name = name


FunctionTypes = (
    # python function
    type(create_autospec),
    # instance method
    type(ANY.__eq__),
)

MethodWrapperTypes = (
    type(ANY.__eq__.__get__),
)


file_spec = None

def _iterate_read_data(read_data):
    # Helper for mock_open:
    # Retrieve lines from read_data via a generator so that separate calls to
    # readline, read, and readlines are properly interleaved
    sep = b'\n' if isinstance(read_data, bytes) else '\n'
    data_as_list = [l + sep for l in read_data.split(sep)]

    if data_as_list[-1] == sep:
        # If the last line ended in a newline, the list comprehension will have an
        # extra entry that's just a newline.  Remove this.
        data_as_list = data_as_list[:-1]
    else:
        # If there wasn't an extra newline by itself, then the file being
        # emulated doesn't have a newline to end the last line  remove the
        # newline that our naive format() added
        data_as_list[-1] = data_as_list[-1][:-1]

    for line in data_as_list:
        yield line


def mock_open(mock=None, read_data=''):
    """
    A helper function to create a mock to replace the use of `open`. It works
    for `open` called directly or used as a context manager.

    The `mock` argument is the mock object to configure. If `None` (the
    default) then a `MagicMock` will be created for you, with the API limited
    to methods or attributes available on standard file handles.

    `read_data` is a string for the `read` methoddline`, and `readlines` of the
    file handle to return.  This is an empty string by default.
    """
    def _readlines_side_effect(*args, **kwargs):
        if handle.readlines.return_value is not None:
            return handle.readlines.return_value
        return list(_state[0])

    def _read_side_effect(*args, **kwargs):
        if handle.read.return_value is not None:
            return handle.read.return_value
        return type(read_data)().join(_state[0])

    def _readline_side_effect():
        if handle.readline.return_value is not None:
            while True:
                yield handle.readline.return_value
        for line in _state[0]:
            yield line


    global file_spec
    if file_spec is None:
        import _io
        file_spec = list(set(dir(_io.TextIOWrapper)).union(set(dir(_io.BytesIO))))

    if mock is None:
        mock = MagicMock(name='open', spec=open)

    handle = MagicMock(spec=file_spec)
    handle.__enter__.return_value = handle

    _state = [_iterate_read_data(read_data), None]

    handle.write.return_value = None
    handle.read.return_value = None
    handle.readline.return_value = None
    handle.readlines.return_value = None

    handle.read.side_effect = _read_side_effect
    _state[1] = _readline_side_effect()
    handle.readline.side_effect = _state[1]
    handle.readlines.side_effect = _readlines_side_effect

    def reset_data(*args, **kwargs):
        _state[0] = _iterate_read_data(read_data)
        if handle.readline.side_effect == _state[1]:
            # Only reset the side effect if the user hasn't overridden it.
            _state[1] = _readline_side_effect()
            handle.readline.side_effect = _state[1]
        return DEFAULT

    mock.side_effect = reset_data
    mock.return_value = handle
    return mock


class PropertyMock(Mock):
    """
    A mock intended to be used as a property, or other descriptor, on a class.
    `PropertyMock` provides `__get__` and `__set__` methods so you can specify
    a return value when it is fetched.

    Fetching a `PropertyMock` instance from an object calls the mock, with
    no args. Setting it calls the mock with the value being set.
    """
    def _get_child_mock(self, **kwargs):
        return MagicMock(**kwargs)

    def __get__(self, obj, obj_type):
        return self()
    def __set__(self, obj, val):
        self(val)
lib\unittest\result.py
"""Test result object"""

import io
import sys
import traceback

from . import util
from functools import wraps

__unittest = True

def failfast(method):
    @wraps(method)
    def inner(self, *args, **kw):
        if getattr(self, 'failfast', False):
            self.stop()
        return method(self, *args, **kw)
    return inner

STDOUT_LINE = '\nStdout:\n%s'
STDERR_LINE = '\nStderr:\n%s'


class TestResult(object):
    """Holder for test result information.

    Test results are automatically managed by the TestCase and TestSuite
    classes, and do not need to be explicitly manipulated by writers of tests.

    Each instance holds the total number of tests run, and collections of
    failures and errors that occurred among those test runs. The collections
    contain tuples of (testcase, exceptioninfo), where exceptioninfo is the
    formatted traceback of the error that occurred.
    """
    _previousTestClass = None
    _testRunEntered = False
    _moduleSetUpFailed = False
    def __init__(self, stream=None, descriptions=None, verbosity=None):
        self.failfast = False
        self.failures = []
        self.errors = []
        self.testsRun = 0
        self.skipped = []
        self.expectedFailures = []
        self.unexpectedSuccesses = []
        self.shouldStop = False
        self.buffer = False
        self._stdout_buffer = None
        self._stderr_buffer = None
        self._original_stdout = sys.stdout
        self._original_stderr = sys.stderr
        self._mirrorOutput = False

    def printErrors(self):
        "Called by TestRunner after test run"

    def startTest(self, test):
        "Called when the given test is about to be run"
        self.testsRun += 1
        self._mirrorOutput = False
        self._setupStdout()

    def _setupStdout(self):
        if self.buffer:
            if self._stderr_buffer is None:
                self._stderr_buffer = io.StringIO()
                self._stdout_buffer = io.StringIO()
            sys.stdout = self._stdout_buffer
            sys.stderr = self._stderr_buffer

    def startTestRun(self):
        """Called once before any tests are executed.

        See startTest for a method called before each test.
        """

    def stopTest(self, test):
        """Called when the given test has been run"""
        self._restoreStdout()
        self._mirrorOutput = False

    def _restoreStdout(self):
        if self.buffer:
            if self._mirrorOutput:
                output = sys.stdout.getvalue()
                error = sys.stderr.getvalue()
                if output:
                    if not output.endswith('\n'):
                        output += '\n'
                    self._original_stdout.write(STDOUT_LINE % output)
                if error:
                    if not error.endswith('\n'):
                        error += '\n'
                    self._original_stderr.write(STDERR_LINE % error)

            sys.stdout = self._original_stdout
            sys.stderr = self._original_stderr
            self._stdout_buffer.seek(0)
            self._stdout_buffer.truncate()
            self._stderr_buffer.seek(0)
            self._stderr_buffer.truncate()

    def stopTestRun(self):
        """Called once after all tests are executed.

        See stopTest for a method called after each test.
        """

    @failfast
    def addError(self, test, err):
        """Called when an error has occurred. 'err' is a tuple of values as
        returned by sys.exc_info().
        """
        self.errors.append((test, self._exc_info_to_string(err, test)))
        self._mirrorOutput = True

    @failfast
    def addFailure(self, test, err):
        """Called when an error has occurred. 'err' is a tuple of values as
        returned by sys.exc_info()."""
        self.failures.append((test, self._exc_info_to_string(err, test)))
        self._mirrorOutput = True

    def addSubTest(self, test, subtest, err):
        """Called at the end of a subtest.
        'err' is None if the subtest ended successfully, otherwise it's a
        tuple of values as returned by sys.exc_info().
        """
        # By default, we don't do anything with successful subtests, but
        # more sophisticated test results might want to record them.
        if err is not None:
            if getattr(self, 'failfast', False):
                self.stop()
            if issubclass(err[0], test.failureException):
                errors = self.failures
            else:
                errors = self.errors
            errors.append((subtest, self._exc_info_to_string(err, test)))
            self._mirrorOutput = True

    def addSuccess(self, test):
        "Called when a test has completed successfully"
        pass

    def addSkip(self, test, reason):
        """Called when a test is skipped."""
        self.skipped.append((test, reason))

    def addExpectedFailure(self, test, err):
        """Called when an expected failure/error occured."""
        self.expectedFailures.append(
            (test, self._exc_info_to_string(err, test)))

    @failfast
    def addUnexpectedSuccess(self, test):
        """Called when a test was expected to fail, but succeed."""
        self.unexpectedSuccesses.append(test)

    def wasSuccessful(self):
        """Tells whether or not this result was a success."""
        # The hasattr check is for test_result's OldResult test.  That
        # way this method works on objects that lack the attribute.
        # (where would such result intances come from? old stored pickles?)
        return ((len(self.failures) == len(self.errors) == 0) and
                (not hasattr(self, 'unexpectedSuccesses') or
                 len(self.unexpectedSuccesses) == 0))

    def stop(self):
        """Indicates that the tests should be aborted."""
        self.shouldStop = True

    def _exc_info_to_string(self, err, test):
        """Converts a sys.exc_info()-style tuple of values into a string."""
        exctype, value, tb = err
        # Skip test runner traceback levels
        while tb and self._is_relevant_tb_level(tb):
            tb = tb.tb_next

        if exctype is test.failureException:
            # Skip assert*() traceback levels
            length = self._count_relevant_tb_levels(tb)
            msgLines = traceback.format_exception(exctype, value, tb, length)
        else:
            msgLines = traceback.format_exception(exctype, value, tb)

        if self.buffer:
            output = sys.stdout.getvalue()
            error = sys.stderr.getvalue()
            if output:
                if not output.endswith('\n'):
                    output += '\n'
                msgLines.append(STDOUT_LINE % output)
            if error:
                if not error.endswith('\n'):
                    error += '\n'
                msgLines.append(STDERR_LINE % error)
        return ''.join(msgLines)


    def _is_relevant_tb_level(self, tb):
        return '__unittest' in tb.tb_frame.f_globals

    def _count_relevant_tb_levels(self, tb):
        length = 0
        while tb and not self._is_relevant_tb_level(tb):
            length += 1
            tb = tb.tb_next
        return length

    def __repr__(self):
        return ("<%s run=%i errors=%i failures=%i>" %
               (util.strclass(self.__class__), self.testsRun, len(self.errors),
                len(self.failures)))
lib\unittest\runner.py
"""Running tests"""

import sys
import time
import warnings

from . import result
from .signals import registerResult

__unittest = True


class _WritelnDecorator(object):
    """Used to decorate file-like objects with a handy 'writeln' method"""
    def __init__(self,stream):
        self.stream = stream

    def __getattr__(self, attr):
        if attr in ('stream', '__getstate__'):
            raise AttributeError(attr)
        return getattr(self.stream,attr)

    def writeln(self, arg=None):
        if arg:
            self.write(arg)
        self.write('\n') # text-mode streams translate to \r\n if needed


class TextTestResult(result.TestResult):
    """A test result class that can print formatted text results to a stream.

    Used by TextTestRunner.
    """
    separator1 = '=' * 70
    separator2 = '-' * 70

    def __init__(self, stream, descriptions, verbosity):
        super(TextTestResult, self).__init__(stream, descriptions, verbosity)
        self.stream = stream
        self.showAll = verbosity > 1
        self.dots = verbosity == 1
        self.descriptions = descriptions

    def getDescription(self, test):
        doc_first_line = test.shortDescription()
        if self.descriptions and doc_first_line:
            return '\n'.join((str(test), doc_first_line))
        else:
            return str(test)

    def startTest(self, test):
        super(TextTestResult, self).startTest(test)
        if self.showAll:
            self.stream.write(self.getDescription(test))
            self.stream.write(" ... ")
            self.stream.flush()

    def addSuccess(self, test):
        super(TextTestResult, self).addSuccess(test)
        if self.showAll:
            self.stream.writeln("ok")
        elif self.dots:
            self.stream.write('.')
            self.stream.flush()

    def addError(self, test, err):
        super(TextTestResult, self).addError(test, err)
        if self.showAll:
            self.stream.writeln("ERROR")
        elif self.dots:
            self.stream.write('E')
            self.stream.flush()

    def addFailure(self, test, err):
        super(TextTestResult, self).addFailure(test, err)
        if self.showAll:
            self.stream.writeln("FAIL")
        elif self.dots:
            self.stream.write('F')
            self.stream.flush()

    def addSkip(self, test, reason):
        super(TextTestResult, self).addSkip(test, reason)
        if self.showAll:
            self.stream.writeln("skipped {0!r}".format(reason))
        elif self.dots:
            self.stream.write("s")
            self.stream.flush()

    def addExpectedFailure(self, test, err):
        super(TextTestResult, self).addExpectedFailure(test, err)
        if self.showAll:
            self.stream.writeln("expected failure")
        elif self.dots:
            self.stream.write("x")
            self.stream.flush()

    def addUnexpectedSuccess(self, test):
        super(TextTestResult, self).addUnexpectedSuccess(test)
        if self.showAll:
            self.stream.writeln("unexpected success")
        elif self.dots:
            self.stream.write("u")
            self.stream.flush()

    def printErrors(self):
        if self.dots or self.showAll:
            self.stream.writeln()
        self.printErrorList('ERROR', self.errors)
        self.printErrorList('FAIL', self.failures)

    def printErrorList(self, flavour, errors):
        for test, err in errors:
            self.stream.writeln(self.separator1)
            self.stream.writeln("%s: %s" % (flavour,self.getDescription(test)))
            self.stream.writeln(self.separator2)
            self.stream.writeln("%s" % err)


class TextTestRunner(object):
    """A test runner class that displays results in textual form.

    It prints out the names of tests as they are run, errors as they
    occur, and a summary of the results at the end of the test run.
    """
    resultclass = TextTestResult

    def __init__(self, stream=None, descriptions=True, verbosity=1,
                 failfast=False, buffer=False, resultclass=None, warnings=None):
        if stream is None:
            stream = sys.stderr
        self.stream = _WritelnDecorator(stream)
        self.descriptions = descriptions
        self.verbosity = verbosity
        self.failfast = failfast
        self.buffer = buffer
        self.warnings = warnings
        if resultclass is not None:
            self.resultclass = resultclass

    def _makeResult(self):
        return self.resultclass(self.stream, self.descriptions, self.verbosity)

    def run(self, test):
        "Run the given test case or test suite."
        result = self._makeResult()
        registerResult(result)
        result.failfast = self.failfast
        result.buffer = self.buffer
        with warnings.catch_warnings():
            if self.warnings:
                # if self.warnings is set, use it to filter all the warnings
                warnings.simplefilter(self.warnings)
                # if the filter is 'default' or 'always', special-case the
                # warnings from the deprecated unittest methods to show them
                # no more than once per module, because they can be fairly
                # noisy.  The -Wd and -Wa flags can be used to bypass this
                # only when self.warnings is None.
                if self.warnings in ['default', 'always']:
                    warnings.filterwarnings('module',
                            category=DeprecationWarning,
                            message='Please use assert\w+ instead.')
            startTime = time.time()
            startTestRun = getattr(result, 'startTestRun', None)
            if startTestRun is not None:
                startTestRun()
            try:
                test(result)
            finally:
                stopTestRun = getattr(result, 'stopTestRun', None)
                if stopTestRun is not None:
                    stopTestRun()
            stopTime = time.time()
        timeTaken = stopTime - startTime
        result.printErrors()
        if hasattr(result, 'separator2'):
            self.stream.writeln(result.separator2)
        run = result.testsRun
        self.stream.writeln("Ran %d test%s in %.3fs" %
                            (run, run != 1 and "s" or "", timeTaken))
        self.stream.writeln()

        expectedFails = unexpectedSuccesses = skipped = 0
        try:
            results = map(len, (result.expectedFailures,
                                result.unexpectedSuccesses,
                                result.skipped))
        except AttributeError:
            pass
        else:
            expectedFails, unexpectedSuccesses, skipped = results

        infos = []
        if not result.wasSuccessful():
            self.stream.write("FAILED")
            failed, errored = len(result.failures), len(result.errors)
            if failed:
                infos.append("failures=%d" % failed)
            if errored:
                infos.append("errors=%d" % errored)
        else:
            self.stream.write("OK")
        if skipped:
            infos.append("skipped=%d" % skipped)
        if expectedFails:
            infos.append("expected failures=%d" % expectedFails)
        if unexpectedSuccesses:
            infos.append("unexpected successes=%d" % unexpectedSuccesses)
        if infos:
            self.stream.writeln(" (%s)" % (", ".join(infos),))
        else:
            self.stream.write("\n")
        return result
lib\unittest\signals.py
import signal
import weakref

from functools import wraps

__unittest = True


class _InterruptHandler(object):
    def __init__(self, default_handler):
        self.called = False
        self.original_handler = default_handler
        if isinstance(default_handler, int):
            if default_handler == signal.SIG_DFL:
                # Pretend it's signal.default_int_handler instead.
                default_handler = signal.default_int_handler
            elif default_handler == signal.SIG_IGN:
                # Not quite the same thing as SIG_IGN, but the closest we
                # can make it: do nothing.
                def default_handler(unused_signum, unused_frame):
                    pass
            else:
                raise TypeError("expected SIGINT signal handler to be "
                                "signal.SIG_IGN, signal.SIG_DFL, or a "
                                "callable object")
        self.default_handler = default_handler

    def __call__(self, signum, frame):
        installed_handler = signal.getsignal(signal.SIGINT)
        if installed_handler is not self:
            # if we aren't the installed handler, then delegate immediately
            # to the default handler
            self.default_handler(signum, frame)

        if self.called:
            self.default_handler(signum, frame)
        self.called = True
        for result in _results.keys():
            result.stop()

_results = weakref.WeakKeyDictionary()
def registerResult(result):
    _results[result] = 1

def removeResult(result):
    return bool(_results.pop(result, None))

_interrupt_handler = None
def installHandler():
    global _interrupt_handler
    if _interrupt_handler is None:
        default_handler = signal.getsignal(signal.SIGINT)
        _interrupt_handler = _InterruptHandler(default_handler)
        signal.signal(signal.SIGINT, _interrupt_handler)


def removeHandler(method=None):
    if method is not None:
        @wraps(method)
        def inner(*args, **kwargs):
            initial = signal.getsignal(signal.SIGINT)
            removeHandler()
            try:
                return method(*args, **kwargs)
            finally:
                signal.signal(signal.SIGINT, initial)
        return inner

    global _interrupt_handler
    if _interrupt_handler is not None:
        signal.signal(signal.SIGINT, _interrupt_handler.original_handler)
lib\unittest\suite.py
"""TestSuite"""

import sys

from . import case
from . import util

__unittest = True


def _call_if_exists(parent, attr):
    func = getattr(parent, attr, lambda: None)
    func()


class BaseTestSuite(object):
    """A simple test suite that doesn't provide class or module shared fixtures.
    """
    _cleanup = True

    def __init__(self, tests=()):
        self._tests = []
        self._removed_tests = 0
        self.addTests(tests)

    def __repr__(self):
        return "<%s tests=%s>" % (util.strclass(self.__class__), list(self))

    def __eq__(self, other):
        if not isinstance(other, self.__class__):
            return NotImplemented
        return list(self) == list(other)

    def __iter__(self):
        return iter(self._tests)

    def countTestCases(self):
        cases = self._removed_tests
        for test in self:
            if test:
                cases += test.countTestCases()
        return cases

    def addTest(self, test):
        # sanity checks
        if not callable(test):
            raise TypeError("{} is not callable".format(repr(test)))
        if isinstance(test, type) and issubclass(test,
                                                 (case.TestCase, TestSuite)):
            raise TypeError("TestCases and TestSuites must be instantiated "
                            "before passing them to addTest()")
        self._tests.append(test)

    def addTests(self, tests):
        if isinstance(tests, str):
            raise TypeError("tests must be an iterable of tests, not a string")
        for test in tests:
            self.addTest(test)

    def run(self, result):
        for index, test in enumerate(self):
            if result.shouldStop:
                break
            test(result)
            if self._cleanup:
                self._removeTestAtIndex(index)
        return result

    def _removeTestAtIndex(self, index):
        """Stop holding a reference to the TestCase at index."""
        try:
            test = self._tests[index]
        except TypeError:
            # support for suite implementations that have overriden self._tests
            pass
        else:
            # Some unittest tests add non TestCase/TestSuite objects to
            # the suite.
            if hasattr(test, 'countTestCases'):
                self._removed_tests += test.countTestCases()
            self._tests[index] = None

    def __call__(self, *args, **kwds):
        return self.run(*args, **kwds)

    def debug(self):
        """Run the tests without collecting errors in a TestResult"""
        for test in self:
            test.debug()


class TestSuite(BaseTestSuite):
    """A test suite is a composite test consisting of a number of TestCases.

    For use, create an instance of TestSuite, then add test case instances.
    When all tests have been added, the suite can be passed to a test
    runner, such as TextTestRunner. It will run the individual test cases
    in the order in which they were added, aggregating the results. When
    subclassing, do not forget to call the base class constructor.
    """

    def run(self, result, debug=False):
        topLevel = False
        if getattr(result, '_testRunEntered', False) is False:
            result._testRunEntered = topLevel = True

        for index, test in enumerate(self):
            if result.shouldStop:
                break

            if _isnotsuite(test):
                self._tearDownPreviousClass(test, result)
                self._handleModuleFixture(test, result)
                self._handleClassSetUp(test, result)
                result._previousTestClass = test.__class__

                if (getattr(test.__class__, '_classSetupFailed', False) or
                    getattr(result, '_moduleSetUpFailed', False)):
                    continue

            if not debug:
                test(result)
            else:
                test.debug()

            if self._cleanup:
                self._removeTestAtIndex(index)

        if topLevel:
            self._tearDownPreviousClass(None, result)
            self._handleModuleTearDown(result)
            result._testRunEntered = False
        return result

    def debug(self):
        """Run the tests without collecting errors in a TestResult"""
        debug = _DebugResult()
        self.run(debug, True)

    ################################

    def _handleClassSetUp(self, test, result):
        previousClass = getattr(result, '_previousTestClass', None)
        currentClass = test.__class__
        if currentClass == previousClass:
            return
        if result._moduleSetUpFailed:
            return
        if getattr(currentClass, "__unittest_skip__", False):
            return

        try:
            currentClass._classSetupFailed = False
        except TypeError:
            # test may actually be a function
            # so its class will be a builtin-type
            pass

        setUpClass = getattr(currentClass, 'setUpClass', None)
        if setUpClass is not None:
            _call_if_exists(result, '_setupStdout')
            try:
                setUpClass()
            except Exception as e:
                if isinstance(result, _DebugResult):
                    raise
                currentClass._classSetupFailed = True
                className = util.strclass(currentClass)
                errorName = 'setUpClass (%s)' % className
                self._addClassOrModuleLevelException(result, e, errorName)
            finally:
                _call_if_exists(result, '_restoreStdout')

    def _get_previous_module(self, result):
        previousModule = None
        previousClass = getattr(result, '_previousTestClass', None)
        if previousClass is not None:
            previousModule = previousClass.__module__
        return previousModule


    def _handleModuleFixture(self, test, result):
        previousModule = self._get_previous_module(result)
        currentModule = test.__class__.__module__
        if currentModule == previousModule:
            return

        self._handleModuleTearDown(result)


        result._moduleSetUpFailed = False
        try:
            module = sys.modules[currentModule]
        except KeyError:
            return
        setUpModule = getattr(module, 'setUpModule', None)
        if setUpModule is not None:
            _call_if_exists(result, '_setupStdout')
            try:
                setUpModule()
            except Exception as e:
                if isinstance(result, _DebugResult):
                    raise
                result._moduleSetUpFailed = True
                errorName = 'setUpModule (%s)' % currentModule
                self._addClassOrModuleLevelException(result, e, errorName)
            finally:
                _call_if_exists(result, '_restoreStdout')

    def _addClassOrModuleLevelException(self, result, exception, errorName):
        error = _ErrorHolder(errorName)
        addSkip = getattr(result, 'addSkip', None)
        if addSkip is not None and isinstance(exception, case.SkipTest):
            addSkip(error, str(exception))
        else:
            result.addError(error, sys.exc_info())

    def _handleModuleTearDown(self, result):
        previousModule = self._get_previous_module(result)
        if previousModule is None:
            return
        if result._moduleSetUpFailed:
            return

        try:
            module = sys.modules[previousModule]
        except KeyError:
            return

        tearDownModule = getattr(module, 'tearDownModule', None)
        if tearDownModule is not None:
            _call_if_exists(result, '_setupStdout')
            try:
                tearDownModule()
            except Exception as e:
                if isinstance(result, _DebugResult):
                    raise
                errorName = 'tearDownModule (%s)' % previousModule
                self._addClassOrModuleLevelException(result, e, errorName)
            finally:
                _call_if_exists(result, '_restoreStdout')

    def _tearDownPreviousClass(self, test, result):
        previousClass = getattr(result, '_previousTestClass', None)
        currentClass = test.__class__
        if currentClass == previousClass:
            return
        if getattr(previousClass, '_classSetupFailed', False):
            return
        if getattr(result, '_moduleSetUpFailed', False):
            return
        if getattr(previousClass, "__unittest_skip__", False):
            return

        tearDownClass = getattr(previousClass, 'tearDownClass', None)
        if tearDownClass is not None:
            _call_if_exists(result, '_setupStdout')
            try:
                tearDownClass()
            except Exception as e:
                if isinstance(result, _DebugResult):
                    raise
                className = util.strclass(previousClass)
                errorName = 'tearDownClass (%s)' % className
                self._addClassOrModuleLevelException(result, e, errorName)
            finally:
                _call_if_exists(result, '_restoreStdout')


class _ErrorHolder(object):
    """
    Placeholder for a TestCase inside a result. As far as a TestResult
    is concerned, this looks exactly like a unit test. Used to insert
    arbitrary errors into a test suite run.
    """
    # Inspired by the ErrorHolder from Twisted:
    # http://twistedmatrix.com/trac/browser/trunk/twisted/trial/runner.py

    # attribute used by TestResult._exc_info_to_string
    failureException = None

    def __init__(self, description):
        self.description = description

    def id(self):
        return self.description

    def shortDescription(self):
        return None

    def __repr__(self):
        return "<ErrorHolder description=%r>" % (self.description,)

    def __str__(self):
        return self.id()

    def run(self, result):
        # could call result.addError(...) - but this test-like object
        # shouldn't be run anyway
        pass

    def __call__(self, result):
        return self.run(result)

    def countTestCases(self):
        return 0

def _isnotsuite(test):
    "A crude way to tell apart testcases and suites with duck-typing"
    try:
        iter(test)
    except TypeError:
        return True
    return False


class _DebugResult(object):
    "Used by the TestSuite to hold previous class when running in debug."
    _previousTestClass = None
    _moduleSetUpFailed = False
    shouldStop = False
lib\unittest\util.py
"""Various utility functions."""

from collections import namedtuple, OrderedDict
from os.path import commonprefix

__unittest = True

_MAX_LENGTH = 80
_PLACEHOLDER_LEN = 12
_MIN_BEGIN_LEN = 5
_MIN_END_LEN = 5
_MIN_COMMON_LEN = 5
_MIN_DIFF_LEN = _MAX_LENGTH - \
               (_MIN_BEGIN_LEN + _PLACEHOLDER_LEN + _MIN_COMMON_LEN +
                _PLACEHOLDER_LEN + _MIN_END_LEN)
assert _MIN_DIFF_LEN >= 0

def _shorten(s, prefixlen, suffixlen):
    skip = len(s) - prefixlen - suffixlen
    if skip > _PLACEHOLDER_LEN:
        s = '%s[%d chars]%s' % (s[:prefixlen], skip, s[len(s) - suffixlen:])
    return s

def _common_shorten_repr(*args):
    args = tuple(map(safe_repr, args))
    maxlen = max(map(len, args))
    if maxlen <= _MAX_LENGTH:
        return args

    prefix = commonprefix(args)
    prefixlen = len(prefix)

    common_len = _MAX_LENGTH - \
                 (maxlen - prefixlen + _MIN_BEGIN_LEN + _PLACEHOLDER_LEN)
    if common_len > _MIN_COMMON_LEN:
        assert _MIN_BEGIN_LEN + _PLACEHOLDER_LEN + _MIN_COMMON_LEN + \
               (maxlen - prefixlen) < _MAX_LENGTH
        prefix = _shorten(prefix, _MIN_BEGIN_LEN, common_len)
        return tuple(prefix + s[prefixlen:] for s in args)

    prefix = _shorten(prefix, _MIN_BEGIN_LEN, _MIN_COMMON_LEN)
    return tuple(prefix + _shorten(s[prefixlen:], _MIN_DIFF_LEN, _MIN_END_LEN)
                 for s in args)

def safe_repr(obj, short=False):
    try:
        result = repr(obj)
    except Exception:
        result = object.__repr__(obj)
    if not short or len(result) < _MAX_LENGTH:
        return result
    return result[:_MAX_LENGTH] + ' [truncated]...'

def strclass(cls):
    return "%s.%s" % (cls.__module__, cls.__name__)

def sorted_list_difference(expected, actual):
    """Finds elements in only one or the other of two, sorted input lists.

    Returns a two-element tuple of lists.    The first list contains those
    elements in the "expected" list but not in the "actual" list, and the
    second contains those elements in the "actual" list but not in the
    "expected" list.    Duplicate elements in either input list are ignored.
    """
    i = j = 0
    missing = []
    unexpected = []
    while True:
        try:
            e = expected[i]
            a = actual[j]
            if e < a:
                missing.append(e)
                i += 1
                while expected[i] == e:
                    i += 1
            elif e > a:
                unexpected.append(a)
                j += 1
                while actual[j] == a:
                    j += 1
            else:
                i += 1
                try:
                    while expected[i] == e:
                        i += 1
                finally:
                    j += 1
                    while actual[j] == a:
                        j += 1
        except IndexError:
            missing.extend(expected[i:])
            unexpected.extend(actual[j:])
            break
    return missing, unexpected


def unorderable_list_difference(expected, actual):
    """Same behavior as sorted_list_difference but
    for lists of unorderable items (like dicts).

    As it does a linear search per item (remove) it
    has O(n*n) performance."""
    missing = []
    while expected:
        item = expected.pop()
        try:
            actual.remove(item)
        except ValueError:
            missing.append(item)

    # anything left in actual is unexpected
    return missing, actual

def three_way_cmp(x, y):
    """Return -1 if x < y, 0 if x == y and 1 if x > y"""
    return (x > y) - (x < y)

_Mismatch = namedtuple('Mismatch', 'actual expected value')

def _count_diff_all_purpose(actual, expected):
    'Returns list of (cnt_act, cnt_exp, elem) triples where the counts differ'
    # elements need not be hashable
    s, t = list(actual), list(expected)
    m, n = len(s), len(t)
    NULL = object()
    result = []
    for i, elem in enumerate(s):
        if elem is NULL:
            continue
        cnt_s = cnt_t = 0
        for j in range(i, m):
            if s[j] == elem:
                cnt_s += 1
                s[j] = NULL
        for j, other_elem in enumerate(t):
            if other_elem == elem:
                cnt_t += 1
                t[j] = NULL
        if cnt_s != cnt_t:
            diff = _Mismatch(cnt_s, cnt_t, elem)
            result.append(diff)

    for i, elem in enumerate(t):
        if elem is NULL:
            continue
        cnt_t = 0
        for j in range(i, n):
            if t[j] == elem:
                cnt_t += 1
                t[j] = NULL
        diff = _Mismatch(0, cnt_t, elem)
        result.append(diff)
    return result

def _ordered_count(iterable):
    'Return dict of element counts, in the order they were first seen'
    c = OrderedDict()
    for elem in iterable:
        c[elem] = c.get(elem, 0) + 1
    return c

def _count_diff_hashable(actual, expected):
    'Returns list of (cnt_act, cnt_exp, elem) triples where the counts differ'
    # elements must be hashable
    s, t = _ordered_count(actual), _ordered_count(expected)
    result = []
    for elem, cnt_s in s.items():
        cnt_t = t.get(elem, 0)
        if cnt_s != cnt_t:
            diff = _Mismatch(cnt_s, cnt_t, elem)
            result.append(diff)
    for elem, cnt_t in t.items():
        if elem not in s:
            diff = _Mismatch(0, cnt_t, elem)
            result.append(diff)
    return result
lib\unittest\__init__.py
"""
Python unit testing framework, based on Erich Gamma's JUnit and Kent Beck's
Smalltalk testing framework.

This module contains the core framework classes that form the basis of
specific test cases and suites (TestCase, TestSuite etc.), and also a
text-based utility class for running the tests and reporting the results
 (TextTestRunner).

Simple usage:

    import unittest

    class IntegerArithmeticTestCase(unittest.TestCase):
        def testAdd(self):  ## test method names begin 'test*'
            self.assertEqual((1 + 2), 3)
            self.assertEqual(0 + 1, 1)
        def testMultiply(self):
            self.assertEqual((0 * 10), 0)
            self.assertEqual((5 * 8), 40)

    if __name__ == '__main__':
        unittest.main()

Further information is available in the bundled documentation, and from

  http://docs.python.org/library/unittest.html

Copyright (c) 1999-2003 Steve Purcell
Copyright (c) 2003-2010 Python Software Foundation
This module is free software, and you may redistribute it and/or modify
it under the same terms as Python itself, so long as this copyright message
and disclaimer are retained in their original form.

IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.  THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
"""

__all__ = ['TestResult', 'TestCase', 'TestSuite',
           'TextTestRunner', 'TestLoader', 'FunctionTestCase', 'main',
           'defaultTestLoader', 'SkipTest', 'skip', 'skipIf', 'skipUnless',
           'expectedFailure', 'TextTestResult', 'installHandler',
           'registerResult', 'removeResult', 'removeHandler']

# Expose obsolete functions for backwards compatibility
__all__.extend(['getTestCaseNames', 'makeSuite', 'findTestCases'])

__unittest = True

from .result import TestResult
from .case import (TestCase, FunctionTestCase, SkipTest, skip, skipIf,
                   skipUnless, expectedFailure)
from .suite import BaseTestSuite, TestSuite
from .loader import (TestLoader, defaultTestLoader, makeSuite, getTestCaseNames,
                     findTestCases)
from .main import TestProgram, main
from .runner import TextTestRunner, TextTestResult
from .signals import installHandler, registerResult, removeResult, removeHandler

# deprecated
_TextTestResult = TextTestResult
lib\unittest\__main__.py
"""Main entry point"""

import sys
if sys.argv[0].endswith("__main__.py"):
    import os.path
    # We change sys.argv[0] to make help message more useful
    # use executable without path, unquoted
    # (it's just a hint anyway)
    # (if you have spaces in your executable you get what you deserve!)
    executable = os.path.basename(sys.executable)
    sys.argv[0] = executable + " -m unittest"
    del os

__unittest = True

from .main import main, TestProgram

main(module=None)
lib\urllib\error.py
"""Exception classes raised by urllib.

The base exception class is URLError, which inherits from OSError.  It
doesn't define any behavior of its own, but is the base class for all
exceptions defined in this package.

HTTPError is an exception class that is also a valid HTTP response
instance.  It behaves this way because HTTP protocol errors are valid
responses, with a status code, headers, and a body.  In some contexts,
an application may want to handle an exception like a regular
response.
"""

import urllib.response

__all__ = ['URLError', 'HTTPError', 'ContentTooShortError']


# do these error classes make sense?
# make sure all of the OSError stuff is overridden.  we just want to be
# subtypes.

class URLError(OSError):
    # URLError is a sub-type of OSError, but it doesn't share any of
    # the implementation.  need to override __init__ and __str__.
    # It sets self.args for compatibility with other EnvironmentError
    # subclasses, but args doesn't have the typical format with errno in
    # slot 0 and strerror in slot 1.  This may be better than nothing.
    def __init__(self, reason, filename=None):
        self.args = reason,
        self.reason = reason
        if filename is not None:
            self.filename = filename

    def __str__(self):
        return '<urlopen error %s>' % self.reason

class HTTPError(URLError, urllib.response.addinfourl):
    """Raised when HTTP error occurs, but also acts like non-error return"""
    __super_init = urllib.response.addinfourl.__init__

    def __init__(self, url, code, msg, hdrs, fp):
        self.code = code
        self.msg = msg
        self.hdrs = hdrs
        self.fp = fp
        self.filename = url
        # The addinfourl classes depend on fp being a valid file
        # object.  In some cases, the HTTPError may not have a valid
        # file object.  If this happens, the simplest workaround is to
        # not initialize the base classes.
        if fp is not None:
            self.__super_init(fp, hdrs, url, code)

    def __str__(self):
        return 'HTTP Error %s: %s' % (self.code, self.msg)

    # since URLError specifies a .reason attribute, HTTPError should also
    #  provide this attribute. See issue13211 for discussion.
    @property
    def reason(self):
        return self.msg

    @property
    def headers(self):
        return self.hdrs

    @headers.setter
    def headers(self, headers):
        self.hdrs = headers

# exception raised when downloaded size does not match content-length
class ContentTooShortError(URLError):
    def __init__(self, message, content):
        URLError.__init__(self, message)
        self.content = content
lib\urllib\parse.py
"""Parse (absolute and relative) URLs.

urlparse module is based upon the following RFC specifications.

RFC 3986 (STD66): "Uniform Resource Identifiers" by T. Berners-Lee, R. Fielding
and L.  Masinter, January 2005.

RFC 2732 : "Format for Literal IPv6 Addresses in URL's by R.Hinden, B.Carpenter
and L.Masinter, December 1999.

RFC 2396:  "Uniform Resource Identifiers (URI)": Generic Syntax by T.
Berners-Lee, R. Fielding, and L. Masinter, August 1998.

RFC 2368: "The mailto URL scheme", by P.Hoffman , L Masinter, J. Zawinski, July 1998.

RFC 1808: "Relative Uniform Resource Locators", by R. Fielding, UC Irvine, June
1995.

RFC 1738: "Uniform Resource Locators (URL)" by T. Berners-Lee, L. Masinter, M.
McCahill, December 1994

RFC 3986 is considered the current standard and any future changes to
urlparse module should conform with it.  The urlparse module is
currently not entirely compliant with this RFC due to defacto
scenarios for parsing, and for backward compatibility purposes, some
parsing quirks from older RFCs are retained. The testcases in
test_urlparse.py provides a good indicator of parsing behavior.
"""

import re
import sys
import collections

__all__ = ["urlparse", "urlunparse", "urljoin", "urldefrag",
           "urlsplit", "urlunsplit", "urlencode", "parse_qs",
           "parse_qsl", "quote", "quote_plus", "quote_from_bytes",
           "unquote", "unquote_plus", "unquote_to_bytes"]

# A classification of schemes ('' means apply by default)
uses_relative = ['ftp', 'http', 'gopher', 'nntp', 'imap',
                 'wais', 'file', 'https', 'shttp', 'mms',
                 'prospero', 'rtsp', 'rtspu', '', 'sftp',
                 'svn', 'svn+ssh']
uses_netloc = ['ftp', 'http', 'gopher', 'nntp', 'telnet',
               'imap', 'wais', 'file', 'mms', 'https', 'shttp',
               'snews', 'prospero', 'rtsp', 'rtspu', 'rsync', '',
               'svn', 'svn+ssh', 'sftp', 'nfs', 'git', 'git+ssh']
uses_params = ['ftp', 'hdl', 'prospero', 'http', 'imap',
               'https', 'shttp', 'rtsp', 'rtspu', 'sip', 'sips',
               'mms', '', 'sftp', 'tel']

# These are not actually used anymore, but should stay for backwards
# compatibility.  (They are undocumented, but have a public-looking name.)
non_hierarchical = ['gopher', 'hdl', 'mailto', 'news',
                    'telnet', 'wais', 'imap', 'snews', 'sip', 'sips']
uses_query = ['http', 'wais', 'imap', 'https', 'shttp', 'mms',
              'gopher', 'rtsp', 'rtspu', 'sip', 'sips', '']
uses_fragment = ['ftp', 'hdl', 'http', 'gopher', 'news',
                 'nntp', 'wais', 'https', 'shttp', 'snews',
                 'file', 'prospero', '']

# Characters valid in scheme names
scheme_chars = ('abcdefghijklmnopqrstuvwxyz'
                'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
                '0123456789'
                '+-.')

# Unsafe bytes to be removed per WHATWG spec
_UNSAFE_URL_BYTES_TO_REMOVE = ['\t', '\r', '\n']

# XXX: Consider replacing with functools.lru_cache
MAX_CACHE_SIZE = 20
_parse_cache = {}

def clear_cache():
    """Clear the parse cache and the quoters cache."""
    _parse_cache.clear()
    _safe_quoters.clear()


# Helpers for bytes handling
# For 3.2, we deliberately require applications that
# handle improperly quoted URLs to do their own
# decoding and encoding. If valid use cases are
# presented, we may relax this by using latin-1
# decoding internally for 3.3
_implicit_encoding = 'ascii'
_implicit_errors = 'strict'

def _noop(obj):
    return obj

def _encode_result(obj, encoding=_implicit_encoding,
                        errors=_implicit_errors):
    return obj.encode(encoding, errors)

def _decode_args(args, encoding=_implicit_encoding,
                       errors=_implicit_errors):
    return tuple(x.decode(encoding, errors) if x else '' for x in args)

def _coerce_args(*args):
    # Invokes decode if necessary to create str args
    # and returns the coerced inputs along with
    # an appropriate result coercion function
    #   - noop for str inputs
    #   - encoding function otherwise
    str_input = isinstance(args[0], str)
    for arg in args[1:]:
        # We special-case the empty string to support the
        # "scheme=''" default argument to some functions
        if arg and isinstance(arg, str) != str_input:
            raise TypeError("Cannot mix str and non-str arguments")
    if str_input:
        return args + (_noop,)
    return _decode_args(args) + (_encode_result,)

# Result objects are more helpful than simple tuples
class _ResultMixinStr(object):
    """Standard approach to encoding parsed results from str to bytes"""
    __slots__ = ()

    def encode(self, encoding='ascii', errors='strict'):
        return self._encoded_counterpart(*(x.encode(encoding, errors) for x in self))


class _ResultMixinBytes(object):
    """Standard approach to decoding parsed results from bytes to str"""
    __slots__ = ()

    def decode(self, encoding='ascii', errors='strict'):
        return self._decoded_counterpart(*(x.decode(encoding, errors) for x in self))


class _NetlocResultMixinBase(object):
    """Shared methods for the parsed result objects containing a netloc element"""
    __slots__ = ()

    @property
    def username(self):
        return self._userinfo[0]

    @property
    def password(self):
        return self._userinfo[1]

    @property
    def hostname(self):
        hostname = self._hostinfo[0]
        if not hostname:
            hostname = None
        elif hostname is not None:
            hostname = hostname.lower()
        return hostname

    @property
    def port(self):
        port = self._hostinfo[1]
        if port is not None:
            port = int(port, 10)
            # Return None on an illegal port
            if not ( 0 <= port <= 65535):
                return None
        return port


class _NetlocResultMixinStr(_NetlocResultMixinBase, _ResultMixinStr):
    __slots__ = ()

    @property
    def _userinfo(self):
        netloc = self.netloc
        userinfo, have_info, hostinfo = netloc.rpartition('@')
        if have_info:
            username, have_password, password = userinfo.partition(':')
            if not have_password:
                password = None
        else:
            username = password = None
        return username, password

    @property
    def _hostinfo(self):
        netloc = self.netloc
        _, _, hostinfo = netloc.rpartition('@')
        _, have_open_br, bracketed = hostinfo.partition('[')
        if have_open_br:
            hostname, _, port = bracketed.partition(']')
            _, _, port = port.partition(':')
        else:
            hostname, _, port = hostinfo.partition(':')
        if not port:
            port = None
        return hostname, port


class _NetlocResultMixinBytes(_NetlocResultMixinBase, _ResultMixinBytes):
    __slots__ = ()

    @property
    def _userinfo(self):
        netloc = self.netloc
        userinfo, have_info, hostinfo = netloc.rpartition(b'@')
        if have_info:
            username, have_password, password = userinfo.partition(b':')
            if not have_password:
                password = None
        else:
            username = password = None
        return username, password

    @property
    def _hostinfo(self):
        netloc = self.netloc
        _, _, hostinfo = netloc.rpartition(b'@')
        _, have_open_br, bracketed = hostinfo.partition(b'[')
        if have_open_br:
            hostname, _, port = bracketed.partition(b']')
            _, _, port = port.partition(b':')
        else:
            hostname, _, port = hostinfo.partition(b':')
        if not port:
            port = None
        return hostname, port


from collections import namedtuple

_DefragResultBase = namedtuple('DefragResult', 'url fragment')
_SplitResultBase = namedtuple('SplitResult', 'scheme netloc path query fragment')
_ParseResultBase = namedtuple('ParseResult', 'scheme netloc path params query fragment')

# For backwards compatibility, alias _NetlocResultMixinStr
# ResultBase is no longer part of the documented API, but it is
# retained since deprecating it isn't worth the hassle
ResultBase = _NetlocResultMixinStr

# Structured result objects for string data
class DefragResult(_DefragResultBase, _ResultMixinStr):
    __slots__ = ()
    def geturl(self):
        if self.fragment:
            return self.url + '#' + self.fragment
        else:
            return self.url

class SplitResult(_SplitResultBase, _NetlocResultMixinStr):
    __slots__ = ()
    def geturl(self):
        return urlunsplit(self)

class ParseResult(_ParseResultBase, _NetlocResultMixinStr):
    __slots__ = ()
    def geturl(self):
        return urlunparse(self)

# Structured result objects for bytes data
class DefragResultBytes(_DefragResultBase, _ResultMixinBytes):
    __slots__ = ()
    def geturl(self):
        if self.fragment:
            return self.url + b'#' + self.fragment
        else:
            return self.url

class SplitResultBytes(_SplitResultBase, _NetlocResultMixinBytes):
    __slots__ = ()
    def geturl(self):
        return urlunsplit(self)

class ParseResultBytes(_ParseResultBase, _NetlocResultMixinBytes):
    __slots__ = ()
    def geturl(self):
        return urlunparse(self)

# Set up the encode/decode result pairs
def _fix_result_transcoding():
    _result_pairs = (
        (DefragResult, DefragResultBytes),
        (SplitResult, SplitResultBytes),
        (ParseResult, ParseResultBytes),
    )
    for _decoded, _encoded in _result_pairs:
        _decoded._encoded_counterpart = _encoded
        _encoded._decoded_counterpart = _decoded

_fix_result_transcoding()
del _fix_result_transcoding

def urlparse(url, scheme='', allow_fragments=True):
    """Parse a URL into 6 components:
    <scheme>://<netloc>/<path>;<params>?<query>#<fragment>
    Return a 6-tuple: (scheme, netloc, path, params, query, fragment).
    Note that we don't break the components up in smaller bits
    (e.g. netloc is a single string) and we don't expand % escapes."""
    url, scheme, _coerce_result = _coerce_args(url, scheme)
    splitresult = urlsplit(url, scheme, allow_fragments)
    scheme, netloc, url, query, fragment = splitresult
    if scheme in uses_params and ';' in url:
        url, params = _splitparams(url)
    else:
        params = ''
    result = ParseResult(scheme, netloc, url, params, query, fragment)
    return _coerce_result(result)

def _splitparams(url):
    if '/'  in url:
        i = url.find(';', url.rfind('/'))
        if i < 0:
            return url, ''
    else:
        i = url.find(';')
    return url[:i], url[i+1:]

def _splitnetloc(url, start=0):
    delim = len(url)   # position of end of domain part of url, default is end
    for c in '/?#':    # look for delimiters; the order is NOT important
        wdelim = url.find(c, start)        # find first of this delim
        if wdelim >= 0:                    # if found
            delim = min(delim, wdelim)     # use earliest delim position
    return url[start:delim], url[delim:]   # return (domain, rest)

def _checknetloc(netloc):
    if not netloc or not any(ord(c) > 127 for c in netloc):
        return
    # looking for characters like \u2100 that expand to 'a/c'
    # IDNA uses NFKC equivalence, so normalize for this check
    import unicodedata
    netloc2 = unicodedata.normalize('NFKC', netloc)
    if netloc == netloc2:
        return
    _, _, netloc = netloc.rpartition('@') # anything to the left of '@' is okay
    for c in '/?#@:':
        if c in netloc2:
            raise ValueError("netloc '" + netloc2 + "' contains invalid " +
                             "characters under NFKC normalization")

def _remove_unsafe_bytes_from_url(url):
    for b in _UNSAFE_URL_BYTES_TO_REMOVE:
        url = url.replace(b, "")
    return url

def urlsplit(url, scheme='', allow_fragments=True):
    """Parse a URL into 5 components:
    <scheme>://<netloc>/<path>?<query>#<fragment>
    Return a 5-tuple: (scheme, netloc, path, query, fragment).
    Note that we don't break the components up in smaller bits
    (e.g. netloc is a single string) and we don't expand % escapes."""
    url, scheme, _coerce_result = _coerce_args(url, scheme)
    url = _remove_unsafe_bytes_from_url(url)
    scheme = _remove_unsafe_bytes_from_url(scheme)
    allow_fragments = bool(allow_fragments)
    key = url, scheme, allow_fragments, type(url), type(scheme)
    cached = _parse_cache.get(key, None)
    if cached:
        return _coerce_result(cached)
    if len(_parse_cache) >= MAX_CACHE_SIZE: # avoid runaway growth
        clear_cache()
    netloc = query = fragment = ''
    i = url.find(':')
    if i > 0:
        if url[:i] == 'http': # optimize the common case
            scheme = url[:i].lower()
            url = url[i+1:]
            if url[:2] == '//':
                netloc, url = _splitnetloc(url, 2)
                if (('[' in netloc and ']' not in netloc) or
                        (']' in netloc and '[' not in netloc)):
                    raise ValueError("Invalid IPv6 URL")
            if allow_fragments and '#' in url:
                url, fragment = url.split('#', 1)
            if '?' in url:
                url, query = url.split('?', 1)
            _checknetloc(netloc)
            v = SplitResult(scheme, netloc, url, query, fragment)
            _parse_cache[key] = v
            return _coerce_result(v)
        for c in url[:i]:
            if c not in scheme_chars:
                break
        else:
            # make sure "url" is not actually a port number (in which case
            # "scheme" is really part of the path)
            rest = url[i+1:]
            if not rest or any(c not in '0123456789' for c in rest):
                # not a port number
                scheme, url = url[:i].lower(), rest

    if url[:2] == '//':
        netloc, url = _splitnetloc(url, 2)
        if (('[' in netloc and ']' not in netloc) or
                (']' in netloc and '[' not in netloc)):
            raise ValueError("Invalid IPv6 URL")
    if allow_fragments and '#' in url:
        url, fragment = url.split('#', 1)
    if '?' in url:
        url, query = url.split('?', 1)
    _checknetloc(netloc)
    v = SplitResult(scheme, netloc, url, query, fragment)
    _parse_cache[key] = v
    return _coerce_result(v)

def urlunparse(components):
    """Put a parsed URL back together again.  This may result in a
    slightly different, but equivalent URL, if the URL that was parsed
    originally had redundant delimiters, e.g. a ? with an empty query
    (the draft states that these are equivalent)."""
    scheme, netloc, url, params, query, fragment, _coerce_result = (
                                                  _coerce_args(*components))
    if params:
        url = "%s;%s" % (url, params)
    return _coerce_result(urlunsplit((scheme, netloc, url, query, fragment)))

def urlunsplit(components):
    """Combine the elements of a tuple as returned by urlsplit() into a
    complete URL as a string. The data argument can be any five-item iterable.
    This may result in a slightly different, but equivalent URL, if the URL that
    was parsed originally had unnecessary delimiters (for example, a ? with an
    empty query; the RFC states that these are equivalent)."""
    scheme, netloc, url, query, fragment, _coerce_result = (
                                          _coerce_args(*components))
    if netloc or (scheme and scheme in uses_netloc and url[:2] != '//'):
        if url and url[:1] != '/': url = '/' + url
        url = '//' + (netloc or '') + url
    if scheme:
        url = scheme + ':' + url
    if query:
        url = url + '?' + query
    if fragment:
        url = url + '#' + fragment
    return _coerce_result(url)

def urljoin(base, url, allow_fragments=True):
    """Join a base URL and a possibly relative URL to form an absolute
    interpretation of the latter."""
    if not base:
        return url
    if not url:
        return base
    base, url, _coerce_result = _coerce_args(base, url)
    bscheme, bnetloc, bpath, bparams, bquery, bfragment = \
            urlparse(base, '', allow_fragments)
    scheme, netloc, path, params, query, fragment = \
            urlparse(url, bscheme, allow_fragments)
    if scheme != bscheme or scheme not in uses_relative:
        return _coerce_result(url)
    if scheme in uses_netloc:
        if netloc:
            return _coerce_result(urlunparse((scheme, netloc, path,
                                              params, query, fragment)))
        netloc = bnetloc
    if path[:1] == '/':
        return _coerce_result(urlunparse((scheme, netloc, path,
                                          params, query, fragment)))
    if not path and not params:
        path = bpath
        params = bparams
        if not query:
            query = bquery
        return _coerce_result(urlunparse((scheme, netloc, path,
                                          params, query, fragment)))
    segments = bpath.split('/')[:-1] + path.split('/')
    # XXX The stuff below is bogus in various ways...
    if segments[-1] == '.':
        segments[-1] = ''
    while '.' in segments:
        segments.remove('.')
    while 1:
        i = 1
        n = len(segments) - 1
        while i < n:
            if (segments[i] == '..'
                and segments[i-1] not in ('', '..')):
                del segments[i-1:i+1]
                break
            i = i+1
        else:
            break
    if segments == ['', '..']:
        segments[-1] = ''
    elif len(segments) >= 2 and segments[-1] == '..':
        segments[-2:] = ['']
    return _coerce_result(urlunparse((scheme, netloc, '/'.join(segments),
                                      params, query, fragment)))

def urldefrag(url):
    """Removes any existing fragment from URL.

    Returns a tuple of the defragmented URL and the fragment.  If
    the URL contained no fragments, the second element is the
    empty string.
    """
    url, _coerce_result = _coerce_args(url)
    if '#' in url:
        s, n, p, a, q, frag = urlparse(url)
        defrag = urlunparse((s, n, p, a, q, ''))
    else:
        frag = ''
        defrag = url
    return _coerce_result(DefragResult(defrag, frag))

_hexdig = '0123456789ABCDEFabcdef'
_hextobyte = None

def unquote_to_bytes(string):
    """unquote_to_bytes('abc%20def') -> b'abc def'."""
    # Note: strings are encoded as UTF-8. This is only an issue if it contains
    # unescaped non-ASCII characters, which URIs should not.
    if not string:
        # Is it a string-like object?
        string.split
        return b''
    if isinstance(string, str):
        string = string.encode('utf-8')
    bits = string.split(b'%')
    if len(bits) == 1:
        return string
    res = [bits[0]]
    append = res.append
    # Delay the initialization of the table to not waste memory
    # if the function is never called
    global _hextobyte
    if _hextobyte is None:
        _hextobyte = {(a + b).encode(): bytes([int(a + b, 16)])
                      for a in _hexdig for b in _hexdig}
    for item in bits[1:]:
        try:
            append(_hextobyte[item[:2]])
            append(item[2:])
        except KeyError:
            append(b'%')
            append(item)
    return b''.join(res)

_asciire = re.compile('([\x00-\x7f]+)')

def unquote(string, encoding='utf-8', errors='replace'):
    """Replace %xx escapes by their single-character equivalent. The optional
    encoding and errors parameters specify how to decode percent-encoded
    sequences into Unicode characters, as accepted by the bytes.decode()
    method.
    By default, percent-encoded sequences are decoded with UTF-8, and invalid
    sequences are replaced by a placeholder character.

    unquote('abc%20def') -> 'abc def'.
    """
    if '%' not in string:
        string.split
        return string
    if encoding is None:
        encoding = 'utf-8'
    if errors is None:
        errors = 'replace'
    bits = _asciire.split(string)
    res = [bits[0]]
    append = res.append
    for i in range(1, len(bits), 2):
        append(unquote_to_bytes(bits[i]).decode(encoding, errors))
        append(bits[i + 1])
    return ''.join(res)

def parse_qs(qs, keep_blank_values=False, strict_parsing=False,
             encoding='utf-8', errors='replace'):
    """Parse a query given as a string argument.

        Arguments:

        qs: percent-encoded query string to be parsed

        keep_blank_values: flag indicating whether blank values in
            percent-encoded queries should be treated as blank strings.
            A true value indicates that blanks should be retained as
            blank strings.  The default false value indicates that
            blank values are to be ignored and treated as if they were
            not included.

        strict_parsing: flag indicating what to do with parsing errors.
            If false (the default), errors are silently ignored.
            If true, errors raise a ValueError exception.

        encoding and errors: specify how to decode percent-encoded sequences
            into Unicode characters, as accepted by the bytes.decode() method.
    """
    parsed_result = {}
    pairs = parse_qsl(qs, keep_blank_values, strict_parsing,
                      encoding=encoding, errors=errors)
    for name, value in pairs:
        if name in parsed_result:
            parsed_result[name].append(value)
        else:
            parsed_result[name] = [value]
    return parsed_result

def parse_qsl(qs, keep_blank_values=False, strict_parsing=False,
              encoding='utf-8', errors='replace'):
    """Parse a query given as a string argument.

    Arguments:

    qs: percent-encoded query string to be parsed

    keep_blank_values: flag indicating whether blank values in
        percent-encoded queries should be treated as blank strings.  A
        true value indicates that blanks should be retained as blank
        strings.  The default false value indicates that blank values
        are to be ignored and treated as if they were  not included.

    strict_parsing: flag indicating what to do with parsing errors. If
        false (the default), errors are silently ignored. If true,
        errors raise a ValueError exception.

    encoding and errors: specify how to decode percent-encoded sequences
        into Unicode characters, as accepted by the bytes.decode() method.

    Returns a list, as G-d intended.
    """
    qs, _coerce_result = _coerce_args(qs)
    pairs = [s2 for s1 in qs.split('&') for s2 in s1.split(';')]
    r = []
    for name_value in pairs:
        if not name_value and not strict_parsing:
            continue
        nv = name_value.split('=', 1)
        if len(nv) != 2:
            if strict_parsing:
                raise ValueError("bad query field: %r" % (name_value,))
            # Handle case of a control-name with no equal sign
            if keep_blank_values:
                nv.append('')
            else:
                continue
        if len(nv[1]) or keep_blank_values:
            name = nv[0].replace('+', ' ')
            name = unquote(name, encoding=encoding, errors=errors)
            name = _coerce_result(name)
            value = nv[1].replace('+', ' ')
            value = unquote(value, encoding=encoding, errors=errors)
            value = _coerce_result(value)
            r.append((name, value))
    return r

def unquote_plus(string, encoding='utf-8', errors='replace'):
    """Like unquote(), but also replace plus signs by spaces, as required for
    unquoting HTML form values.

    unquote_plus('%7e/abc+def') -> '~/abc def'
    """
    string = string.replace('+', ' ')
    return unquote(string, encoding, errors)

_ALWAYS_SAFE = frozenset(b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
                         b'abcdefghijklmnopqrstuvwxyz'
                         b'0123456789'
                         b'_.-')
_ALWAYS_SAFE_BYTES = bytes(_ALWAYS_SAFE)
_safe_quoters = {}

class Quoter(collections.defaultdict):
    """A mapping from bytes (in range(0,256)) to strings.

    String values are percent-encoded byte values, unless the key < 128, and
    in the "safe" set (either the specified safe set, or default set).
    """
    # Keeps a cache internally, using defaultdict, for efficiency (lookups
    # of cached keys don't call Python code at all).
    def __init__(self, safe):
        """safe: bytes object."""
        self.safe = _ALWAYS_SAFE.union(safe)

    def __repr__(self):
        # Without this, will just display as a defaultdict
        return "<Quoter %r>" % dict(self)

    def __missing__(self, b):
        # Handle a cache miss. Store quoted string in cache and return.
        res = chr(b) if b in self.safe else '%{:02X}'.format(b)
        self[b] = res
        return res

def quote(string, safe='/', encoding=None, errors=None):
    """quote('abc def') -> 'abc%20def'

    Each part of a URL, e.g. the path info, the query, etc., has a
    different set of reserved characters that must be quoted.

    RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax lists
    the following reserved characters.

    reserved    = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
                  "$" | ","

    Each of these characters is reserved in some component of a URL,
    but not necessarily in all of them.

    By default, the quote function is intended for quoting the path
    section of a URL.  Thus, it will not encode '/'.  This character
    is reserved, but in typical usage the quote function is being
    called on a path where the existing slash characters are used as
    reserved characters.

    string and safe may be either str or bytes objects. encoding and errors
    must not be specified if string is a bytes object.

    The optional encoding and errors parameters specify how to deal with
    non-ASCII characters, as accepted by the str.encode method.
    By default, encoding='utf-8' (characters are encoded with UTF-8), and
    errors='strict' (unsupported characters raise a UnicodeEncodeError).
    """
    if isinstance(string, str):
        if not string:
            return string
        if encoding is None:
            encoding = 'utf-8'
        if errors is None:
            errors = 'strict'
        string = string.encode(encoding, errors)
    else:
        if encoding is not None:
            raise TypeError("quote() doesn't support 'encoding' for bytes")
        if errors is not None:
            raise TypeError("quote() doesn't support 'errors' for bytes")
    return quote_from_bytes(string, safe)

def quote_plus(string, safe='', encoding=None, errors=None):
    """Like quote(), but also replace ' ' with '+', as required for quoting
    HTML form values. Plus signs in the original string are escaped unless
    they are included in safe. It also does not have safe default to '/'.
    """
    # Check if ' ' in string, where string may either be a str or bytes.  If
    # there are no spaces, the regular quote will produce the right answer.
    if ((isinstance(string, str) and ' ' not in string) or
        (isinstance(string, bytes) and b' ' not in string)):
        return quote(string, safe, encoding, errors)
    if isinstance(safe, str):
        space = ' '
    else:
        space = b' '
    string = quote(string, safe + space, encoding, errors)
    return string.replace(' ', '+')

def quote_from_bytes(bs, safe='/'):
    """Like quote(), but accepts a bytes object rather than a str, and does
    not perform string-to-bytes encoding.  It always returns an ASCII string.
    quote_from_bytes(b'abc def\x3f') -> 'abc%20def%3f'
    """
    if not isinstance(bs, (bytes, bytearray)):
        raise TypeError("quote_from_bytes() expected bytes")
    if not bs:
        return ''
    if isinstance(safe, str):
        # Normalize 'safe' by converting to bytes and removing non-ASCII chars
        safe = safe.encode('ascii', 'ignore')
    else:
        safe = bytes([c for c in safe if c < 128])
    if not bs.rstrip(_ALWAYS_SAFE_BYTES + safe):
        return bs.decode()
    try:
        quoter = _safe_quoters[safe]
    except KeyError:
        _safe_quoters[safe] = quoter = Quoter(safe).__getitem__
    return ''.join([quoter(char) for char in bs])

def urlencode(query, doseq=False, safe='', encoding=None, errors=None):
    """Encode a dict or sequence of two-element tuples into a URL query string.

    If any values in the query arg are sequences and doseq is true, each
    sequence element is converted to a separate parameter.

    If the query arg is a sequence of two-element tuples, the order of the
    parameters in the output will match the order of parameters in the
    input.

    The components of a query arg may each be either a string or a bytes type.

    The safe, encoding, and errors parameters are passed down to quote_plus()
    (encoding and errors only if a component is a str).
    """

    if hasattr(query, "items"):
        query = query.items()
    else:
        # It's a bother at times that strings and string-like objects are
        # sequences.
        try:
            # non-sequence items should not work with len()
            # non-empty strings will fail this
            if len(query) and not isinstance(query[0], tuple):
                raise TypeError
            # Zero-length sequences of all types will get here and succeed,
            # but that's a minor nit.  Since the original implementation
            # allowed empty dicts that type of behavior probably should be
            # preserved for consistency
        except TypeError:
            ty, va, tb = sys.exc_info()
            raise TypeError("not a valid non-string sequence "
                            "or mapping object").with_traceback(tb)

    l = []
    if not doseq:
        for k, v in query:
            if isinstance(k, bytes):
                k = quote_plus(k, safe)
            else:
                k = quote_plus(str(k), safe, encoding, errors)

            if isinstance(v, bytes):
                v = quote_plus(v, safe)
            else:
                v = quote_plus(str(v), safe, encoding, errors)
            l.append(k + '=' + v)
    else:
        for k, v in query:
            if isinstance(k, bytes):
                k = quote_plus(k, safe)
            else:
                k = quote_plus(str(k), safe, encoding, errors)

            if isinstance(v, bytes):
                v = quote_plus(v, safe)
                l.append(k + '=' + v)
            elif isinstance(v, str):
                v = quote_plus(v, safe, encoding, errors)
                l.append(k + '=' + v)
            else:
                try:
                    # Is this a sufficient test for sequence-ness?
                    x = len(v)
                except TypeError:
                    # not a sequence
                    v = quote_plus(str(v), safe, encoding, errors)
                    l.append(k + '=' + v)
                else:
                    # loop over the sequence
                    for elt in v:
                        if isinstance(elt, bytes):
                            elt = quote_plus(elt, safe)
                        else:
                            elt = quote_plus(str(elt), safe, encoding, errors)
                        l.append(k + '=' + elt)
    return '&'.join(l)

# Utilities to parse URLs (most of these return None for missing parts):
# unwrap('<URL:type://host/path>') --> 'type://host/path'
# splittype('type:opaquestring') --> 'type', 'opaquestring'
# splithost('//host[:port]/path') --> 'host[:port]', '/path'
# splituser('user[:passwd]@host[:port]') --> 'user[:passwd]', 'host[:port]'
# splitpasswd('user:passwd') -> 'user', 'passwd'
# splitport('host:port') --> 'host', 'port'
# splitquery('/path?query') --> '/path', 'query'
# splittag('/path#tag') --> '/path', 'tag'
# splitattr('/path;attr1=value1;attr2=value2;...') ->
#   '/path', ['attr1=value1', 'attr2=value2', ...]
# splitvalue('attr=value') --> 'attr', 'value'
# urllib.parse.unquote('abc%20def') -> 'abc def'
# quote('abc def') -> 'abc%20def')

def to_bytes(url):
    """to_bytes(u"URL") --> 'URL'."""
    # Most URL schemes require ASCII. If that changes, the conversion
    # can be relaxed.
    # XXX get rid of to_bytes()
    if isinstance(url, str):
        try:
            url = url.encode("ASCII").decode()
        except UnicodeError:
            raise UnicodeError("URL " + repr(url) +
                               " contains non-ASCII characters")
    return url

def unwrap(url):
    """unwrap('<URL:type://host/path>') --> 'type://host/path'."""
    url = str(url).strip()
    if url[:1] == '<' and url[-1:] == '>':
        url = url[1:-1].strip()
    if url[:4] == 'URL:': url = url[4:].strip()
    return url

_typeprog = None
def splittype(url):
    """splittype('type:opaquestring') --> 'type', 'opaquestring'."""
    global _typeprog
    if _typeprog is None:
        _typeprog = re.compile('^([^/:]+):')

    match = _typeprog.match(url)
    if match:
        scheme = match.group(1)
        return scheme.lower(), url[len(scheme) + 1:]
    return None, url

_hostprog = None
def splithost(url):
    """splithost('//host[:port]/path') --> 'host[:port]', '/path'."""
    global _hostprog
    if _hostprog is None:
        _hostprog = re.compile('//([^/#?]*)(.*)', re.DOTALL)

    match = _hostprog.match(url)
    if match:
        host_port = match.group(1)
        path = match.group(2)
        if path and not path.startswith('/'):
            path = '/' + path
        return host_port, path
    return None, url

_userprog = None
def splituser(host):
    """splituser('user[:passwd]@host[:port]') --> 'user[:passwd]', 'host[:port]'."""
    global _userprog
    if _userprog is None:
        _userprog = re.compile('^(.*)@(.*)$')

    match = _userprog.match(host)
    if match: return match.group(1, 2)
    return None, host

_passwdprog = None
def splitpasswd(user):
    """splitpasswd('user:passwd') -> 'user', 'passwd'."""
    global _passwdprog
    if _passwdprog is None:
        _passwdprog = re.compile('^([^:]*):(.*)$',re.S)

    match = _passwdprog.match(user)
    if match: return match.group(1, 2)
    return user, None

# splittag('/path#tag') --> '/path', 'tag'
_portprog = None
def splitport(host):
    """splitport('host:port') --> 'host', 'port'."""
    global _portprog
    if _portprog is None:
        _portprog = re.compile('^(.*):([0-9]*)$')

    match = _portprog.match(host)
    if match:
        host, port = match.groups()
        if port:
            return host, port
    return host, None

_nportprog = None
def splitnport(host, defport=-1):
    """Split host and port, returning numeric port.
    Return given default port if no ':' found; defaults to -1.
    Return numerical port if a valid number are found after ':'.
    Return None if ':' but not a valid number."""
    global _nportprog
    if _nportprog is None:
        _nportprog = re.compile('^(.*):(.*)$')

    match = _nportprog.match(host)
    if match:
        host, port = match.group(1, 2)
        if port:
            try:
                nport = int(port)
            except ValueError:
                nport = None
            return host, nport
    return host, defport

_queryprog = None
def splitquery(url):
    """splitquery('/path?query') --> '/path', 'query'."""
    global _queryprog
    if _queryprog is None:
        _queryprog = re.compile('^(.*)\?([^?]*)$')

    match = _queryprog.match(url)
    if match: return match.group(1, 2)
    return url, None

_tagprog = None
def splittag(url):
    """splittag('/path#tag') --> '/path', 'tag'."""
    global _tagprog
    if _tagprog is None:
        _tagprog = re.compile('^(.*)#([^#]*)$')

    match = _tagprog.match(url)
    if match: return match.group(1, 2)
    return url, None

def splitattr(url):
    """splitattr('/path;attr1=value1;attr2=value2;...') ->
        '/path', ['attr1=value1', 'attr2=value2', ...]."""
    words = url.split(';')
    return words[0], words[1:]

_valueprog = None
def splitvalue(attr):
    """splitvalue('attr=value') --> 'attr', 'value'."""
    global _valueprog
    if _valueprog is None:
        _valueprog = re.compile('^([^=]*)=(.*)$')

    match = _valueprog.match(attr)
    if match: return match.group(1, 2)
    return attr, None
lib\urllib\request.py
"""An extensible library for opening URLs using a variety of protocols

The simplest way to use this module is to call the urlopen function,
which accepts a string containing a URL or a Request object (described
below).  It opens the URL and returns the results as file-like
object; the returned object has some extra methods described below.

The OpenerDirector manages a collection of Handler objects that do
all the actual work.  Each Handler implements a particular protocol or
option.  The OpenerDirector is a composite object that invokes the
Handlers needed to open the requested URL.  For example, the
HTTPHandler performs HTTP GET and POST requests and deals with
non-error returns.  The HTTPRedirectHandler automatically deals with
HTTP 301, 302, 303 and 307 redirect errors, and the HTTPDigestAuthHandler
deals with digest authentication.

urlopen(url, data=None) -- Basic usage is the same as original
urllib.  pass the url and optionally data to post to an HTTP URL, and
get a file-like object back.  One difference is that you can also pass
a Request instance instead of URL.  Raises a URLError (subclass of
OSError); for HTTP errors, raises an HTTPError, which can also be
treated as a valid response.

build_opener -- Function that creates a new OpenerDirector instance.
Will install the default handlers.  Accepts one or more Handlers as
arguments, either instances or Handler classes that it will
instantiate.  If one of the argument is a subclass of the default
handler, the argument will be installed instead of the default.

install_opener -- Installs a new opener as the default opener.

objects of interest:

OpenerDirector -- Sets up the User Agent as the Python-urllib client and manages
the Handler classes, while dealing with requests and responses.

Request -- An object that encapsulates the state of a request.  The
state can be as simple as the URL.  It can also include extra HTTP
headers, e.g. a User-Agent.

BaseHandler --

internals:
BaseHandler and parent
_call_chain conventions

Example usage:

import urllib.request

# set up authentication info
authinfo = urllib.request.HTTPBasicAuthHandler()
authinfo.add_password(realm='PDQ Application',
                      uri='https://mahler:8092/site-updates.py',
                      user='klem',
                      passwd='geheim$parole')

proxy_support = urllib.request.ProxyHandler({"http" : "http://ahad-haam:3128"})

# build a new opener that adds authentication and caching FTP handlers
opener = urllib.request.build_opener(proxy_support, authinfo,
                                     urllib.request.CacheFTPHandler)

# install it
urllib.request.install_opener(opener)

f = urllib.request.urlopen('http://www.python.org/')
"""

# XXX issues:
# If an authentication error handler that tries to perform
# authentication for some reason but fails, how should the error be
# signalled?  The client needs to know the HTTP error code.  But if
# the handler knows that the problem was, e.g., that it didn't know
# that hash algo that requested in the challenge, it would be good to
# pass that information along to the client, too.
# ftp errors aren't handled cleanly
# check digest against correct (i.e. non-apache) implementation

# Possible extensions:
# complex proxies  XXX not sure what exactly was meant by this
# abstract factory for opener

import base64
import bisect
import email
import hashlib
import http.client
import io
import os
import posixpath
import re
import socket
import sys
import time
import collections
import tempfile
import contextlib
import warnings


from urllib.error import URLError, HTTPError, ContentTooShortError
from urllib.parse import (
    urlparse, urlsplit, urljoin, unwrap, quote, unquote,
    splittype, splithost, splitport, splituser, splitpasswd,
    splitattr, splitquery, splitvalue, splittag, to_bytes,
    unquote_to_bytes, urlunparse)
from urllib.response import addinfourl, addclosehook

# check for SSL
try:
    import ssl
except ImportError:
    _have_ssl = False
else:
    _have_ssl = True

__all__ = [
    # Classes
    'Request', 'OpenerDirector', 'BaseHandler', 'HTTPDefaultErrorHandler',
    'HTTPRedirectHandler', 'HTTPCookieProcessor', 'ProxyHandler',
    'HTTPPasswordMgr', 'HTTPPasswordMgrWithDefaultRealm',
    'AbstractBasicAuthHandler', 'HTTPBasicAuthHandler', 'ProxyBasicAuthHandler',
    'AbstractDigestAuthHandler', 'HTTPDigestAuthHandler', 'ProxyDigestAuthHandler',
    'HTTPHandler', 'FileHandler', 'FTPHandler', 'CacheFTPHandler', 'DataHandler',
    'UnknownHandler', 'HTTPErrorProcessor',
    # Functions
    'urlopen', 'install_opener', 'build_opener',
    'pathname2url', 'url2pathname', 'getproxies',
    # Legacy interface
    'urlretrieve', 'urlcleanup', 'URLopener', 'FancyURLopener',
]

# used in User-Agent header sent
__version__ = sys.version[:3]

_opener = None
def urlopen(url, data=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT,
            *, cafile=None, capath=None, cadefault=False, context=None):
    global _opener
    if cafile or capath or cadefault:
        if context is not None:
            raise ValueError(
                "You can't pass both context and any of cafile, capath, and "
                "cadefault"
            )
        if not _have_ssl:
            raise ValueError('SSL support not available')
        context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH,
                                             cafile=cafile,
                                             capath=capath)
        https_handler = HTTPSHandler(context=context)
        opener = build_opener(https_handler)
    elif context:
        https_handler = HTTPSHandler(context=context)
        opener = build_opener(https_handler)
    elif _opener is None:
        _opener = opener = build_opener()
    else:
        opener = _opener
    return opener.open(url, data, timeout)

def install_opener(opener):
    global _opener
    _opener = opener

_url_tempfiles = []
def urlretrieve(url, filename=None, reporthook=None, data=None):
    """
    Retrieve a URL into a temporary location on disk.

    Requires a URL argument. If a filename is passed, it is used as
    the temporary file location. The reporthook argument should be
    a callable that accepts a block number, a read size, and the
    total file size of the URL target. The data argument should be
    valid URL encoded data.

    If a filename is passed and the URL points to a local resource,
    the result is a copy from local file to new file.

    Returns a tuple containing the path to the newly created
    data file as well as the resulting HTTPMessage object.
    """
    url_type, path = splittype(url)

    with contextlib.closing(urlopen(url, data)) as fp:
        headers = fp.info()

        # Just return the local path and the "headers" for file://
        # URLs. No sense in performing a copy unless requested.
        if url_type == "file" and not filename:
            return os.path.normpath(path), headers

        # Handle temporary file setup.
        if filename:
            tfp = open(filename, 'wb')
        else:
            tfp = tempfile.NamedTemporaryFile(delete=False)
            filename = tfp.name
            _url_tempfiles.append(filename)

        with tfp:
            result = filename, headers
            bs = 1024*8
            size = -1
            read = 0
            blocknum = 0
            if "content-length" in headers:
                size = int(headers["Content-Length"])

            if reporthook:
                reporthook(blocknum, bs, size)

            while True:
                block = fp.read(bs)
                if not block:
                    break
                read += len(block)
                tfp.write(block)
                blocknum += 1
                if reporthook:
                    reporthook(blocknum, bs, size)

    if size >= 0 and read < size:
        raise ContentTooShortError(
            "retrieval incomplete: got only %i out of %i bytes"
            % (read, size), result)

    return result

def urlcleanup():
    """Clean up temporary files from urlretrieve calls."""
    for temp_file in _url_tempfiles:
        try:
            os.unlink(temp_file)
        except OSError:
            pass

    del _url_tempfiles[:]
    global _opener
    if _opener:
        _opener = None

# copied from cookielib.py
_cut_port_re = re.compile(r":\d+$", re.ASCII)
def request_host(request):
    """Return request-host, as defined by RFC 2965.

    Variation from RFC: returned value is lowercased, for convenient
    comparison.

    """
    url = request.full_url
    host = urlparse(url)[1]
    if host == "":
        host = request.get_header("Host", "")

    # remove port, if present
    host = _cut_port_re.sub("", host, 1)
    return host.lower()

class Request:

    def __init__(self, url, data=None, headers={},
                 origin_req_host=None, unverifiable=False,
                 method=None):
        self.full_url = url
        self.headers = {}
        self.unredirected_hdrs = {}
        self._data = None
        self.data = data
        self._tunnel_host = None
        for key, value in headers.items():
            self.add_header(key, value)
        if origin_req_host is None:
            origin_req_host = request_host(self)
        self.origin_req_host = origin_req_host
        self.unverifiable = unverifiable
        if method:
            self.method = method

    @property
    def full_url(self):
        if self.fragment:
            return '{}#{}'.format(self._full_url, self.fragment)
        return self._full_url

    @full_url.setter
    def full_url(self, url):
        # unwrap('<URL:type://host/path>') --> 'type://host/path'
        self._full_url = unwrap(url)
        self._full_url, self.fragment = splittag(self._full_url)
        self._parse()

    @full_url.deleter
    def full_url(self):
        self._full_url = None
        self.fragment = None
        self.selector = ''

    @property
    def data(self):
        return self._data

    @data.setter
    def data(self, data):
        if data != self._data:
            self._data = data
            # issue 16464
            # if we change data we need to remove content-length header
            # (cause it's most probably calculated for previous value)
            if self.has_header("Content-length"):
                self.remove_header("Content-length")

    @data.deleter
    def data(self):
        self.data = None

    def _parse(self):
        self.type, rest = splittype(self._full_url)
        if self.type is None:
            raise ValueError("unknown url type: %r" % self.full_url)
        self.host, self.selector = splithost(rest)
        if self.host:
            self.host = unquote(self.host)

    def get_method(self):
        """Return a string indicating the HTTP request method."""
        default_method = "POST" if self.data is not None else "GET"
        return getattr(self, 'method', default_method)

    def get_full_url(self):
        return self.full_url

    def set_proxy(self, host, type):
        if self.type == 'https' and not self._tunnel_host:
            self._tunnel_host = self.host
        else:
            self.type= type
            self.selector = self.full_url
        self.host = host

    def has_proxy(self):
        return self.selector == self.full_url

    def add_header(self, key, val):
        # useful for something like authentication
        self.headers[key.capitalize()] = val

    def add_unredirected_header(self, key, val):
        # will not be added to a redirected request
        self.unredirected_hdrs[key.capitalize()] = val

    def has_header(self, header_name):
        return (header_name in self.headers or
                header_name in self.unredirected_hdrs)

    def get_header(self, header_name, default=None):
        return self.headers.get(
            header_name,
            self.unredirected_hdrs.get(header_name, default))

    def remove_header(self, header_name):
        self.headers.pop(header_name, None)
        self.unredirected_hdrs.pop(header_name, None)

    def header_items(self):
        hdrs = self.unredirected_hdrs.copy()
        hdrs.update(self.headers)
        return list(hdrs.items())

class OpenerDirector:
    def __init__(self):
        client_version = "Python-urllib/%s" % __version__
        self.addheaders = [('User-agent', client_version)]
        # self.handlers is retained only for backward compatibility
        self.handlers = []
        # manage the individual handlers
        self.handle_open = {}
        self.handle_error = {}
        self.process_response = {}
        self.process_request = {}

    def add_handler(self, handler):
        if not hasattr(handler, "add_parent"):
            raise TypeError("expected BaseHandler instance, got %r" %
                            type(handler))

        added = False
        for meth in dir(handler):
            if meth in ["redirect_request", "do_open", "proxy_open"]:
                # oops, coincidental match
                continue

            i = meth.find("_")
            protocol = meth[:i]
            condition = meth[i+1:]

            if condition.startswith("error"):
                j = condition.find("_") + i + 1
                kind = meth[j+1:]
                try:
                    kind = int(kind)
                except ValueError:
                    pass
                lookup = self.handle_error.get(protocol, {})
                self.handle_error[protocol] = lookup
            elif condition == "open":
                kind = protocol
                lookup = self.handle_open
            elif condition == "response":
                kind = protocol
                lookup = self.process_response
            elif condition == "request":
                kind = protocol
                lookup = self.process_request
            else:
                continue

            handlers = lookup.setdefault(kind, [])
            if handlers:
                bisect.insort(handlers, handler)
            else:
                handlers.append(handler)
            added = True

        if added:
            bisect.insort(self.handlers, handler)
            handler.add_parent(self)

    def close(self):
        # Only exists for backwards compatibility.
        pass

    def _call_chain(self, chain, kind, meth_name, *args):
        # Handlers raise an exception if no one else should try to handle
        # the request, or return None if they can't but another handler
        # could.  Otherwise, they return the response.
        handlers = chain.get(kind, ())
        for handler in handlers:
            func = getattr(handler, meth_name)
            result = func(*args)
            if result is not None:
                return result

    def open(self, fullurl, data=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT):
        # accept a URL or a Request object
        if isinstance(fullurl, str):
            req = Request(fullurl, data)
        else:
            req = fullurl
            if data is not None:
                req.data = data

        req.timeout = timeout
        protocol = req.type

        # pre-process request
        meth_name = protocol+"_request"
        for processor in self.process_request.get(protocol, []):
            meth = getattr(processor, meth_name)
            req = meth(req)

        response = self._open(req, data)

        # post-process response
        meth_name = protocol+"_response"
        for processor in self.process_response.get(protocol, []):
            meth = getattr(processor, meth_name)
            response = meth(req, response)

        return response

    def _open(self, req, data=None):
        result = self._call_chain(self.handle_open, 'default',
                                  'default_open', req)
        if result:
            return result

        protocol = req.type
        result = self._call_chain(self.handle_open, protocol, protocol +
                                  '_open', req)
        if result:
            return result

        return self._call_chain(self.handle_open, 'unknown',
                                'unknown_open', req)

    def error(self, proto, *args):
        if proto in ('http', 'https'):
            # XXX http[s] protocols are special-cased
            dict = self.handle_error['http'] # https is not different than http
            proto = args[2]  # YUCK!
            meth_name = 'http_error_%s' % proto
            http_err = 1
            orig_args = args
        else:
            dict = self.handle_error
            meth_name = proto + '_error'
            http_err = 0
        args = (dict, proto, meth_name) + args
        result = self._call_chain(*args)
        if result:
            return result

        if http_err:
            args = (dict, 'default', 'http_error_default') + orig_args
            return self._call_chain(*args)

# XXX probably also want an abstract factory that knows when it makes
# sense to skip a superclass in favor of a subclass and when it might
# make sense to include both

def build_opener(*handlers):
    """Create an opener object from a list of handlers.

    The opener will use several default handlers, including support
    for HTTP, FTP and when applicable HTTPS.

    If any of the handlers passed as arguments are subclasses of the
    default handlers, the default handlers will not be used.
    """
    opener = OpenerDirector()
    default_classes = [ProxyHandler, UnknownHandler, HTTPHandler,
                       HTTPDefaultErrorHandler, HTTPRedirectHandler,
                       FTPHandler, FileHandler, HTTPErrorProcessor,
                       DataHandler]
    if hasattr(http.client, "HTTPSConnection"):
        default_classes.append(HTTPSHandler)
    skip = set()
    for klass in default_classes:
        for check in handlers:
            if isinstance(check, type):
                if issubclass(check, klass):
                    skip.add(klass)
            elif isinstance(check, klass):
                skip.add(klass)
    for klass in skip:
        default_classes.remove(klass)

    for klass in default_classes:
        opener.add_handler(klass())

    for h in handlers:
        if isinstance(h, type):
            h = h()
        opener.add_handler(h)
    return opener

class BaseHandler:
    handler_order = 500

    def add_parent(self, parent):
        self.parent = parent

    def close(self):
        # Only exists for backwards compatibility
        pass

    def __lt__(self, other):
        if not hasattr(other, "handler_order"):
            # Try to preserve the old behavior of having custom classes
            # inserted after default ones (works only for custom user
            # classes which are not aware of handler_order).
            return True
        return self.handler_order < other.handler_order


class HTTPErrorProcessor(BaseHandler):
    """Process HTTP error responses."""
    handler_order = 1000  # after all other processing

    def http_response(self, request, response):
        code, msg, hdrs = response.code, response.msg, response.info()

        # According to RFC 2616, "2xx" code indicates that the client's
        # request was successfully received, understood, and accepted.
        if not (200 <= code < 300):
            response = self.parent.error(
                'http', request, response, code, msg, hdrs)

        return response

    https_response = http_response

class HTTPDefaultErrorHandler(BaseHandler):
    def http_error_default(self, req, fp, code, msg, hdrs):
        raise HTTPError(req.full_url, code, msg, hdrs, fp)

class HTTPRedirectHandler(BaseHandler):
    # maximum number of redirections to any single URL
    # this is needed because of the state that cookies introduce
    max_repeats = 4
    # maximum total number of redirections (regardless of URL) before
    # assuming we're in a loop
    max_redirections = 10

    def redirect_request(self, req, fp, code, msg, headers, newurl):
        """Return a Request or None in response to a redirect.

        This is called by the http_error_30x methods when a
        redirection response is received.  If a redirection should
        take place, return a new Request to allow http_error_30x to
        perform the redirect.  Otherwise, raise HTTPError if no-one
        else should try to handle this url.  Return None if you can't
        but another Handler might.
        """
        m = req.get_method()
        if (not (code in (301, 302, 303, 307) and m in ("GET", "HEAD")
            or code in (301, 302, 303) and m == "POST")):
            raise HTTPError(req.full_url, code, msg, headers, fp)

        # Strictly (according to RFC 2616), 301 or 302 in response to
        # a POST MUST NOT cause a redirection without confirmation
        # from the user (of urllib.request, in this case).  In practice,
        # essentially all clients do redirect in this case, so we do
        # the same.
        # be conciliant with URIs containing a space
        newurl = newurl.replace(' ', '%20')
        CONTENT_HEADERS = ("content-length", "content-type")
        newheaders = dict((k, v) for k, v in req.headers.items()
                          if k.lower() not in CONTENT_HEADERS)
        return Request(newurl,
                       headers=newheaders,
                       origin_req_host=req.origin_req_host,
                       unverifiable=True)

    # Implementation note: To avoid the server sending us into an
    # infinite loop, the request object needs to track what URLs we
    # have already seen.  Do this by adding a handler-specific
    # attribute to the Request object.
    def http_error_302(self, req, fp, code, msg, headers):
        # Some servers (incorrectly) return multiple Location headers
        # (so probably same goes for URI).  Use first header.
        if "location" in headers:
            newurl = headers["location"]
        elif "uri" in headers:
            newurl = headers["uri"]
        else:
            return

        # fix a possible malformed URL
        urlparts = urlparse(newurl)

        # For security reasons we don't allow redirection to anything other
        # than http, https or ftp.

        if urlparts.scheme not in ('http', 'https', 'ftp', ''):
            raise HTTPError(
                newurl, code,
                "%s - Redirection to url '%s' is not allowed" % (msg, newurl),
                headers, fp)

        if not urlparts.path:
            urlparts = list(urlparts)
            urlparts[2] = "/"
        newurl = urlunparse(urlparts)

        newurl = urljoin(req.full_url, newurl)

        # XXX Probably want to forget about the state of the current
        # request, although that might interact poorly with other
        # handlers that also use handler-specific request attributes
        new = self.redirect_request(req, fp, code, msg, headers, newurl)
        if new is None:
            return

        # loop detection
        # .redirect_dict has a key url if url was previously visited.
        if hasattr(req, 'redirect_dict'):
            visited = new.redirect_dict = req.redirect_dict
            if (visited.get(newurl, 0) >= self.max_repeats or
                len(visited) >= self.max_redirections):
                raise HTTPError(req.full_url, code,
                                self.inf_msg + msg, headers, fp)
        else:
            visited = new.redirect_dict = req.redirect_dict = {}
        visited[newurl] = visited.get(newurl, 0) + 1

        # Don't close the fp until we are sure that we won't use it
        # with HTTPError.
        fp.read()
        fp.close()

        return self.parent.open(new, timeout=req.timeout)

    http_error_301 = http_error_303 = http_error_307 = http_error_302

    inf_msg = "The HTTP server returned a redirect error that would " \
              "lead to an infinite loop.\n" \
              "The last 30x error message was:\n"


def _parse_proxy(proxy):
    """Return (scheme, user, password, host/port) given a URL or an authority.

    If a URL is supplied, it must have an authority (host:port) component.
    According to RFC 3986, having an authority component means the URL must
    have two slashes after the scheme.
    """
    scheme, r_scheme = splittype(proxy)
    if not r_scheme.startswith("/"):
        # authority
        scheme = None
        authority = proxy
    else:
        # URL
        if not r_scheme.startswith("//"):
            raise ValueError("proxy URL with no authority: %r" % proxy)
        # We have an authority, so for RFC 3986-compliant URLs (by ss 3.
        # and 3.3.), path is empty or starts with '/'
        end = r_scheme.find("/", 2)
        if end == -1:
            end = None
        authority = r_scheme[2:end]
    userinfo, hostport = splituser(authority)
    if userinfo is not None:
        user, password = splitpasswd(userinfo)
    else:
        user = password = None
    return scheme, user, password, hostport

class ProxyHandler(BaseHandler):
    # Proxies must be in front
    handler_order = 100

    def __init__(self, proxies=None):
        if proxies is None:
            proxies = getproxies()
        assert hasattr(proxies, 'keys'), "proxies must be a mapping"
        self.proxies = proxies
        for type, url in proxies.items():
            setattr(self, '%s_open' % type,
                    lambda r, proxy=url, type=type, meth=self.proxy_open:
                        meth(r, proxy, type))

    def proxy_open(self, req, proxy, type):
        orig_type = req.type
        proxy_type, user, password, hostport = _parse_proxy(proxy)
        if proxy_type is None:
            proxy_type = orig_type

        if req.host and proxy_bypass(req.host):
            return None

        if user and password:
            user_pass = '%s:%s' % (unquote(user),
                                   unquote(password))
            creds = base64.b64encode(user_pass.encode()).decode("ascii")
            req.add_header('Proxy-authorization', 'Basic ' + creds)
        hostport = unquote(hostport)
        req.set_proxy(hostport, proxy_type)
        if orig_type == proxy_type or orig_type == 'https':
            # let other handlers take care of it
            return None
        else:
            # need to start over, because the other handlers don't
            # grok the proxy's URL type
            # e.g. if we have a constructor arg proxies like so:
            # {'http': 'ftp://proxy.example.com'}, we may end up turning
            # a request for http://acme.example.com/a into one for
            # ftp://proxy.example.com/a
            return self.parent.open(req, timeout=req.timeout)

class HTTPPasswordMgr:

    def __init__(self):
        self.passwd = {}

    def add_password(self, realm, uri, user, passwd):
        # uri could be a single URI or a sequence
        if isinstance(uri, str):
            uri = [uri]
        if realm not in self.passwd:
            self.passwd[realm] = {}
        for default_port in True, False:
            reduced_uri = tuple(
                [self.reduce_uri(u, default_port) for u in uri])
            self.passwd[realm][reduced_uri] = (user, passwd)

    def find_user_password(self, realm, authuri):
        domains = self.passwd.get(realm, {})
        for default_port in True, False:
            reduced_authuri = self.reduce_uri(authuri, default_port)
            for uris, authinfo in domains.items():
                for uri in uris:
                    if self.is_suburi(uri, reduced_authuri):
                        return authinfo
        return None, None

    def reduce_uri(self, uri, default_port=True):
        """Accept authority or URI and extract only the authority and path."""
        # note HTTP URLs do not have a userinfo component
        parts = urlsplit(uri)
        if parts[1]:
            # URI
            scheme = parts[0]
            authority = parts[1]
            path = parts[2] or '/'
        else:
            # host or host:port
            scheme = None
            authority = uri
            path = '/'
        host, port = splitport(authority)
        if default_port and port is None and scheme is not None:
            dport = {"http": 80,
                     "https": 443,
                     }.get(scheme)
            if dport is not None:
                authority = "%s:%d" % (host, dport)
        return authority, path

    def is_suburi(self, base, test):
        """Check if test is below base in a URI tree

        Both args must be URIs in reduced form.
        """
        if base == test:
            return True
        if base[0] != test[0]:
            return False
        common = posixpath.commonprefix((base[1], test[1]))
        if len(common) == len(base[1]):
            return True
        return False


class HTTPPasswordMgrWithDefaultRealm(HTTPPasswordMgr):

    def find_user_password(self, realm, authuri):
        user, password = HTTPPasswordMgr.find_user_password(self, realm,
                                                            authuri)
        if user is not None:
            return user, password
        return HTTPPasswordMgr.find_user_password(self, None, authuri)


class AbstractBasicAuthHandler:

    # XXX this allows for multiple auth-schemes, but will stupidly pick
    # the last one with a realm specified.

    # allow for double- and single-quoted realm values
    # (single quotes are a violation of the RFC, but appear in the wild)
    rx = re.compile('(?:.*,)*[ \t]*([^ \t]+)[ \t]+'
                    'realm=(["\']?)([^"\']*)\\2', re.I)

    # XXX could pre-emptively send auth info already accepted (RFC 2617,
    # end of section 2, and section 1.2 immediately after "credentials"
    # production).

    def __init__(self, password_mgr=None):
        if password_mgr is None:
            password_mgr = HTTPPasswordMgr()
        self.passwd = password_mgr
        self.add_password = self.passwd.add_password

    def http_error_auth_reqed(self, authreq, host, req, headers):
        # host may be an authority (without userinfo) or a URL with an
        # authority
        # XXX could be multiple headers
        authreq = headers.get(authreq, None)

        if authreq:
            scheme = authreq.split()[0]
            if scheme.lower() != 'basic':
                raise ValueError("AbstractBasicAuthHandler does not"
                                 " support the following scheme: '%s'" %
                                 scheme)
            else:
                mo = AbstractBasicAuthHandler.rx.search(authreq)
                if mo:
                    scheme, quote, realm = mo.groups()
                    if quote not in ['"',"'"]:
                        warnings.warn("Basic Auth Realm was unquoted",
                                      UserWarning, 2)
                    if scheme.lower() == 'basic':
                        return self.retry_http_basic_auth(host, req, realm)

    def retry_http_basic_auth(self, host, req, realm):
        user, pw = self.passwd.find_user_password(realm, host)
        if pw is not None:
            raw = "%s:%s" % (user, pw)
            auth = "Basic " + base64.b64encode(raw.encode()).decode("ascii")
            if req.get_header(self.auth_header, None) == auth:
                return None
            req.add_unredirected_header(self.auth_header, auth)
            return self.parent.open(req, timeout=req.timeout)
        else:
            return None


class HTTPBasicAuthHandler(AbstractBasicAuthHandler, BaseHandler):

    auth_header = 'Authorization'

    def http_error_401(self, req, fp, code, msg, headers):
        url = req.full_url
        response = self.http_error_auth_reqed('www-authenticate',
                                          url, req, headers)
        return response


class ProxyBasicAuthHandler(AbstractBasicAuthHandler, BaseHandler):

    auth_header = 'Proxy-authorization'

    def http_error_407(self, req, fp, code, msg, headers):
        # http_error_auth_reqed requires that there is no userinfo component in
        # authority.  Assume there isn't one, since urllib.request does not (and
        # should not, RFC 3986 s. 3.2.1) support requests for URLs containing
        # userinfo.
        authority = req.host
        response = self.http_error_auth_reqed('proxy-authenticate',
                                          authority, req, headers)
        return response


# Return n random bytes.
_randombytes = os.urandom


class AbstractDigestAuthHandler:
    # Digest authentication is specified in RFC 2617.

    # XXX The client does not inspect the Authentication-Info header
    # in a successful response.

    # XXX It should be possible to test this implementation against
    # a mock server that just generates a static set of challenges.

    # XXX qop="auth-int" supports is shaky

    def __init__(self, passwd=None):
        if passwd is None:
            passwd = HTTPPasswordMgr()
        self.passwd = passwd
        self.add_password = self.passwd.add_password
        self.retried = 0
        self.nonce_count = 0
        self.last_nonce = None

    def reset_retry_count(self):
        self.retried = 0

    def http_error_auth_reqed(self, auth_header, host, req, headers):
        authreq = headers.get(auth_header, None)
        if self.retried > 5:
            # Don't fail endlessly - if we failed once, we'll probably
            # fail a second time. Hm. Unless the Password Manager is
            # prompting for the information. Crap. This isn't great
            # but it's better than the current 'repeat until recursion
            # depth exceeded' approach <wink>
            raise HTTPError(req.full_url, 401, "digest auth failed",
                            headers, None)
        else:
            self.retried += 1
        if authreq:
            scheme = authreq.split()[0]
            if scheme.lower() == 'digest':
                return self.retry_http_digest_auth(req, authreq)
            elif scheme.lower() != 'basic':
                raise ValueError("AbstractDigestAuthHandler does not support"
                                 " the following scheme: '%s'" % scheme)

    def retry_http_digest_auth(self, req, auth):
        token, challenge = auth.split(' ', 1)
        chal = parse_keqv_list(filter(None, parse_http_list(challenge)))
        auth = self.get_authorization(req, chal)
        if auth:
            auth_val = 'Digest %s' % auth
            if req.headers.get(self.auth_header, None) == auth_val:
                return None
            req.add_unredirected_header(self.auth_header, auth_val)
            resp = self.parent.open(req, timeout=req.timeout)
            return resp

    def get_cnonce(self, nonce):
        # The cnonce-value is an opaque
        # quoted string value provided by the client and used by both client
        # and server to avoid chosen plaintext attacks, to provide mutual
        # authentication, and to provide some message integrity protection.
        # This isn't a fabulous effort, but it's probably Good Enough.
        s = "%s:%s:%s:" % (self.nonce_count, nonce, time.ctime())
        b = s.encode("ascii") + _randombytes(8)
        dig = hashlib.sha1(b).hexdigest()
        return dig[:16]

    def get_authorization(self, req, chal):
        try:
            realm = chal['realm']
            nonce = chal['nonce']
            qop = chal.get('qop')
            algorithm = chal.get('algorithm', 'MD5')
            # mod_digest doesn't send an opaque, even though it isn't
            # supposed to be optional
            opaque = chal.get('opaque', None)
        except KeyError:
            return None

        H, KD = self.get_algorithm_impls(algorithm)
        if H is None:
            return None

        user, pw = self.passwd.find_user_password(realm, req.full_url)
        if user is None:
            return None

        # XXX not implemented yet
        if req.data is not None:
            entdig = self.get_entity_digest(req.data, chal)
        else:
            entdig = None

        A1 = "%s:%s:%s" % (user, realm, pw)
        A2 = "%s:%s" % (req.get_method(),
                        # XXX selector: what about proxies and full urls
                        req.selector)
        if qop == 'auth':
            if nonce == self.last_nonce:
                self.nonce_count += 1
            else:
                self.nonce_count = 1
                self.last_nonce = nonce
            ncvalue = '%08x' % self.nonce_count
            cnonce = self.get_cnonce(nonce)
            noncebit = "%s:%s:%s:%s:%s" % (nonce, ncvalue, cnonce, qop, H(A2))
            respdig = KD(H(A1), noncebit)
        elif qop is None:
            respdig = KD(H(A1), "%s:%s" % (nonce, H(A2)))
        else:
            # XXX handle auth-int.
            raise URLError("qop '%s' is not supported." % qop)

        # XXX should the partial digests be encoded too?

        base = 'username="%s", realm="%s", nonce="%s", uri="%s", ' \
               'response="%s"' % (user, realm, nonce, req.selector,
                                  respdig)
        if opaque:
            base += ', opaque="%s"' % opaque
        if entdig:
            base += ', digest="%s"' % entdig
        base += ', algorithm="%s"' % algorithm
        if qop:
            base += ', qop=auth, nc=%s, cnonce="%s"' % (ncvalue, cnonce)
        return base

    def get_algorithm_impls(self, algorithm):
        # lambdas assume digest modules are imported at the top level
        if algorithm == 'MD5':
            H = lambda x: hashlib.md5(x.encode("ascii")).hexdigest()
        elif algorithm == 'SHA':
            H = lambda x: hashlib.sha1(x.encode("ascii")).hexdigest()
        # XXX MD5-sess
        KD = lambda s, d: H("%s:%s" % (s, d))
        return H, KD

    def get_entity_digest(self, data, chal):
        # XXX not implemented yet
        return None


class HTTPDigestAuthHandler(BaseHandler, AbstractDigestAuthHandler):
    """An authentication protocol defined by RFC 2069

    Digest authentication improves on basic authentication because it
    does not transmit passwords in the clear.
    """

    auth_header = 'Authorization'
    handler_order = 490  # before Basic auth

    def http_error_401(self, req, fp, code, msg, headers):
        host = urlparse(req.full_url)[1]
        retry = self.http_error_auth_reqed('www-authenticate',
                                           host, req, headers)
        self.reset_retry_count()
        return retry


class ProxyDigestAuthHandler(BaseHandler, AbstractDigestAuthHandler):

    auth_header = 'Proxy-Authorization'
    handler_order = 490  # before Basic auth

    def http_error_407(self, req, fp, code, msg, headers):
        host = req.host
        retry = self.http_error_auth_reqed('proxy-authenticate',
                                           host, req, headers)
        self.reset_retry_count()
        return retry

class AbstractHTTPHandler(BaseHandler):

    def __init__(self, debuglevel=0):
        self._debuglevel = debuglevel

    def set_http_debuglevel(self, level):
        self._debuglevel = level

    def do_request_(self, request):
        host = request.host
        if not host:
            raise URLError('no host given')

        if request.data is not None:  # POST
            data = request.data
            if isinstance(data, str):
                msg = "POST data should be bytes or an iterable of bytes. " \
                      "It cannot be of type str."
                raise TypeError(msg)
            if not request.has_header('Content-type'):
                request.add_unredirected_header(
                    'Content-type',
                    'application/x-www-form-urlencoded')
            if not request.has_header('Content-length'):
                try:
                    mv = memoryview(data)
                except TypeError:
                    if isinstance(data, collections.Iterable):
                        raise ValueError("Content-Length should be specified "
                                "for iterable data of type %r %r" % (type(data),
                                data))
                else:
                    request.add_unredirected_header(
                            'Content-length', '%d' % (len(mv) * mv.itemsize))

        sel_host = host
        if request.has_proxy():
            scheme, sel = splittype(request.selector)
            sel_host, sel_path = splithost(sel)
        if not request.has_header('Host'):
            request.add_unredirected_header('Host', sel_host)
        for name, value in self.parent.addheaders:
            name = name.capitalize()
            if not request.has_header(name):
                request.add_unredirected_header(name, value)

        return request

    def do_open(self, http_class, req, **http_conn_args):
        """Return an HTTPResponse object for the request, using http_class.

        http_class must implement the HTTPConnection API from http.client.
        """
        host = req.host
        if not host:
            raise URLError('no host given')

        # will parse host:port
        h = http_class(host, timeout=req.timeout, **http_conn_args)

        headers = dict(req.unredirected_hdrs)
        headers.update(dict((k, v) for k, v in req.headers.items()
                            if k not in headers))

        # TODO(jhylton): Should this be redesigned to handle
        # persistent connections?

        # We want to make an HTTP/1.1 request, but the addinfourl
        # class isn't prepared to deal with a persistent connection.
        # It will try to read all remaining data from the socket,
        # which will block while the server waits for the next request.
        # So make sure the connection gets closed after the (only)
        # request.
        headers["Connection"] = "close"
        headers = dict((name.title(), val) for name, val in headers.items())

        if req._tunnel_host:
            tunnel_headers = {}
            proxy_auth_hdr = "Proxy-Authorization"
            if proxy_auth_hdr in headers:
                tunnel_headers[proxy_auth_hdr] = headers[proxy_auth_hdr]
                # Proxy-Authorization should not be sent to origin
                # server.
                del headers[proxy_auth_hdr]
            h.set_tunnel(req._tunnel_host, headers=tunnel_headers)

        try:
            try:
                h.request(req.get_method(), req.selector, req.data, headers)
            except OSError as err: # timeout error
                raise URLError(err)
            r = h.getresponse()
        except:
            h.close()
            raise

        # If the server does not send us a 'Connection: close' header,
        # HTTPConnection assumes the socket should be left open. Manually
        # mark the socket to be closed when this response object goes away.
        if h.sock:
            h.sock.close()
            h.sock = None

        r.url = req.get_full_url()
        # This line replaces the .msg attribute of the HTTPResponse
        # with .headers, because urllib clients expect the response to
        # have the reason in .msg.  It would be good to mark this
        # attribute is deprecated and get then to use info() or
        # .headers.
        r.msg = r.reason
        return r


class HTTPHandler(AbstractHTTPHandler):

    def http_open(self, req):
        return self.do_open(http.client.HTTPConnection, req)

    http_request = AbstractHTTPHandler.do_request_

if hasattr(http.client, 'HTTPSConnection'):

    class HTTPSHandler(AbstractHTTPHandler):

        def __init__(self, debuglevel=0, context=None, check_hostname=None):
            AbstractHTTPHandler.__init__(self, debuglevel)
            self._context = context
            self._check_hostname = check_hostname

        def https_open(self, req):
            return self.do_open(http.client.HTTPSConnection, req,
                context=self._context, check_hostname=self._check_hostname)

        https_request = AbstractHTTPHandler.do_request_

    __all__.append('HTTPSHandler')

class HTTPCookieProcessor(BaseHandler):
    def __init__(self, cookiejar=None):
        import http.cookiejar
        if cookiejar is None:
            cookiejar = http.cookiejar.CookieJar()
        self.cookiejar = cookiejar

    def http_request(self, request):
        self.cookiejar.add_cookie_header(request)
        return request

    def http_response(self, request, response):
        self.cookiejar.extract_cookies(response, request)
        return response

    https_request = http_request
    https_response = http_response

class UnknownHandler(BaseHandler):
    def unknown_open(self, req):
        type = req.type
        raise URLError('unknown url type: %s' % type)

def parse_keqv_list(l):
    """Parse list of key=value strings where keys are not duplicated."""
    parsed = {}
    for elt in l:
        k, v = elt.split('=', 1)
        if v[0] == '"' and v[-1] == '"':
            v = v[1:-1]
        parsed[k] = v
    return parsed

def parse_http_list(s):
    """Parse lists as described by RFC 2068 Section 2.

    In particular, parse comma-separated lists where the elements of
    the list may include quoted-strings.  A quoted-string could
    contain a comma.  A non-quoted string could have quotes in the
    middle.  Neither commas nor quotes count if they are escaped.
    Only double-quotes count, not single-quotes.
    """
    res = []
    part = ''

    escape = quote = False
    for cur in s:
        if escape:
            part += cur
            escape = False
            continue
        if quote:
            if cur == '\\':
                escape = True
                continue
            elif cur == '"':
                quote = False
            part += cur
            continue

        if cur == ',':
            res.append(part)
            part = ''
            continue

        if cur == '"':
            quote = True

        part += cur

    # append last part
    if part:
        res.append(part)

    return [part.strip() for part in res]

class FileHandler(BaseHandler):
    # Use local file or FTP depending on form of URL
    def file_open(self, req):
        url = req.selector
        if url[:2] == '//' and url[2:3] != '/' and (req.host and
                req.host != 'localhost'):
            if not req.host in self.get_names():
                raise URLError("file:// scheme is supported only on localhost")
        else:
            return self.open_local_file(req)

    # names for the localhost
    names = None
    def get_names(self):
        if FileHandler.names is None:
            try:
                FileHandler.names = tuple(
                    socket.gethostbyname_ex('localhost')[2] +
                    socket.gethostbyname_ex(socket.gethostname())[2])
            except socket.gaierror:
                FileHandler.names = (socket.gethostbyname('localhost'),)
        return FileHandler.names

    # not entirely sure what the rules are here
    def open_local_file(self, req):
        import email.utils
        import mimetypes
        host = req.host
        filename = req.selector
        localfile = url2pathname(filename)
        try:
            stats = os.stat(localfile)
            size = stats.st_size
            modified = email.utils.formatdate(stats.st_mtime, usegmt=True)
            mtype = mimetypes.guess_type(filename)[0]
            headers = email.message_from_string(
                'Content-type: %s\nContent-length: %d\nLast-modified: %s\n' %
                (mtype or 'text/plain', size, modified))
            if host:
                host, port = splitport(host)
            if not host or \
                (not port and _safe_gethostbyname(host) in self.get_names()):
                if host:
                    origurl = 'file://' + host + filename
                else:
                    origurl = 'file://' + filename
                return addinfourl(open(localfile, 'rb'), headers, origurl)
        except OSError as exp:
            # users shouldn't expect OSErrors coming from urlopen()
            raise URLError(exp)
        raise URLError('file not on local host')

def _safe_gethostbyname(host):
    try:
        return socket.gethostbyname(host)
    except socket.gaierror:
        return None

class FTPHandler(BaseHandler):
    def ftp_open(self, req):
        import ftplib
        import mimetypes
        host = req.host
        if not host:
            raise URLError('ftp error: no host given')
        host, port = splitport(host)
        if port is None:
            port = ftplib.FTP_PORT
        else:
            port = int(port)

        # username/password handling
        user, host = splituser(host)
        if user:
            user, passwd = splitpasswd(user)
        else:
            passwd = None
        host = unquote(host)
        user = user or ''
        passwd = passwd or ''

        try:
            host = socket.gethostbyname(host)
        except OSError as msg:
            raise URLError(msg)
        path, attrs = splitattr(req.selector)
        dirs = path.split('/')
        dirs = list(map(unquote, dirs))
        dirs, file = dirs[:-1], dirs[-1]
        if dirs and not dirs[0]:
            dirs = dirs[1:]
        try:
            fw = self.connect_ftp(user, passwd, host, port, dirs, req.timeout)
            type = file and 'I' or 'D'
            for attr in attrs:
                attr, value = splitvalue(attr)
                if attr.lower() == 'type' and \
                   value in ('a', 'A', 'i', 'I', 'd', 'D'):
                    type = value.upper()
            fp, retrlen = fw.retrfile(file, type)
            headers = ""
            mtype = mimetypes.guess_type(req.full_url)[0]
            if mtype:
                headers += "Content-type: %s\n" % mtype
            if retrlen is not None and retrlen >= 0:
                headers += "Content-length: %d\n" % retrlen
            headers = email.message_from_string(headers)
            return addinfourl(fp, headers, req.full_url)
        except ftplib.all_errors as exp:
            exc = URLError('ftp error: %r' % exp)
            raise exc.with_traceback(sys.exc_info()[2])

    def connect_ftp(self, user, passwd, host, port, dirs, timeout):
        return ftpwrapper(user, passwd, host, port, dirs, timeout,
                          persistent=False)

class CacheFTPHandler(FTPHandler):
    # XXX would be nice to have pluggable cache strategies
    # XXX this stuff is definitely not thread safe
    def __init__(self):
        self.cache = {}
        self.timeout = {}
        self.soonest = 0
        self.delay = 60
        self.max_conns = 16

    def setTimeout(self, t):
        self.delay = t

    def setMaxConns(self, m):
        self.max_conns = m

    def connect_ftp(self, user, passwd, host, port, dirs, timeout):
        key = user, host, port, '/'.join(dirs), timeout
        if key in self.cache:
            self.timeout[key] = time.time() + self.delay
        else:
            self.cache[key] = ftpwrapper(user, passwd, host, port,
                                         dirs, timeout)
            self.timeout[key] = time.time() + self.delay
        self.check_cache()
        return self.cache[key]

    def check_cache(self):
        # first check for old ones
        t = time.time()
        if self.soonest <= t:
            for k, v in list(self.timeout.items()):
                if v < t:
                    self.cache[k].close()
                    del self.cache[k]
                    del self.timeout[k]
        self.soonest = min(list(self.timeout.values()))

        # then check the size
        if len(self.cache) == self.max_conns:
            for k, v in list(self.timeout.items()):
                if v == self.soonest:
                    del self.cache[k]
                    del self.timeout[k]
                    break
            self.soonest = min(list(self.timeout.values()))

    def clear_cache(self):
        for conn in self.cache.values():
            conn.close()
        self.cache.clear()
        self.timeout.clear()

class DataHandler(BaseHandler):
    def data_open(self, req):
        # data URLs as specified in RFC 2397.
        #
        # ignores POSTed data
        #
        # syntax:
        # dataurl   := "data:" [ mediatype ] [ ";base64" ] "," data
        # mediatype := [ type "/" subtype ] *( ";" parameter )
        # data      := *urlchar
        # parameter := attribute "=" value
        url = req.full_url

        scheme, data = url.split(":",1)
        mediatype, data = data.split(",",1)

        # even base64 encoded data URLs might be quoted so unquote in any case:
        data = unquote_to_bytes(data)
        if mediatype.endswith(";base64"):
            data = base64.decodebytes(data)
            mediatype = mediatype[:-7]

        if not mediatype:
            mediatype = "text/plain;charset=US-ASCII"

        headers = email.message_from_string("Content-type: %s\nContent-length: %d\n" %
            (mediatype, len(data)))

        return addinfourl(io.BytesIO(data), headers, url)


# Code move from the old urllib module

MAXFTPCACHE = 10        # Trim the ftp cache beyond this size

# Helper for non-unix systems
if os.name == 'nt':
    from nturl2path import url2pathname, pathname2url
else:
    def url2pathname(pathname):
        """OS-specific conversion from a relative URL of the 'file' scheme
        to a file system path; not recommended for general use."""
        return unquote(pathname)

    def pathname2url(pathname):
        """OS-specific conversion from a file system path to a relative URL
        of the 'file' scheme; not recommended for general use."""
        return quote(pathname)

# This really consists of two pieces:
# (1) a class which handles opening of all sorts of URLs
#     (plus assorted utilities etc.)
# (2) a set of functions for parsing URLs
# XXX Should these be separated out into different modules?


ftpcache = {}
class URLopener:
    """Class to open URLs.
    This is a class rather than just a subroutine because we may need
    more than one set of global protocol-specific options.
    Note -- this is a base class for those who don't want the
    automatic handling of errors type 302 (relocated) and 401
    (authorization needed)."""

    __tempfiles = None

    version = "Python-urllib/%s" % __version__

    # Constructor
    def __init__(self, proxies=None, **x509):
        msg = "%(class)s style of invoking requests is deprecated. " \
              "Use newer urlopen functions/methods" % {'class': self.__class__.__name__}
        warnings.warn(msg, DeprecationWarning, stacklevel=3)
        if proxies is None:
            proxies = getproxies()
        assert hasattr(proxies, 'keys'), "proxies must be a mapping"
        self.proxies = proxies
        self.key_file = x509.get('key_file')
        self.cert_file = x509.get('cert_file')
        self.addheaders = [('User-Agent', self.version)]
        self.__tempfiles = []
        self.__unlink = os.unlink # See cleanup()
        self.tempcache = None
        # Undocumented feature: if you assign {} to tempcache,
        # it is used to cache files retrieved with
        # self.retrieve().  This is not enabled by default
        # since it does not work for changing documents (and I
        # haven't got the logic to check expiration headers
        # yet).
        self.ftpcache = ftpcache
        # Undocumented feature: you can use a different
        # ftp cache by assigning to the .ftpcache member;
        # in case you want logically independent URL openers
        # XXX This is not threadsafe.  Bah.

    def __del__(self):
        self.close()

    def close(self):
        self.cleanup()

    def cleanup(self):
        # This code sometimes runs when the rest of this module
        # has already been deleted, so it can't use any globals
        # or import anything.
        if self.__tempfiles:
            for file in self.__tempfiles:
                try:
                    self.__unlink(file)
                except OSError:
                    pass
            del self.__tempfiles[:]
        if self.tempcache:
            self.tempcache.clear()

    def addheader(self, *args):
        """Add a header to be used by the HTTP interface only
        e.g. u.addheader('Accept', 'sound/basic')"""
        self.addheaders.append(args)

    # External interface
    def open(self, fullurl, data=None):
        """Use URLopener().open(file) instead of open(file, 'r')."""
        fullurl = unwrap(to_bytes(fullurl))
        fullurl = quote(fullurl, safe="%/:=&?~#+!$,;'@()*[]|")
        if self.tempcache and fullurl in self.tempcache:
            filename, headers = self.tempcache[fullurl]
            fp = open(filename, 'rb')
            return addinfourl(fp, headers, fullurl)
        urltype, url = splittype(fullurl)
        if not urltype:
            urltype = 'file'
        if urltype in self.proxies:
            proxy = self.proxies[urltype]
            urltype, proxyhost = splittype(proxy)
            host, selector = splithost(proxyhost)
            url = (host, fullurl) # Signal special case to open_*()
        else:
            proxy = None
        name = 'open_' + urltype
        self.type = urltype
        name = name.replace('-', '_')
        if not hasattr(self, name):
            if proxy:
                return self.open_unknown_proxy(proxy, fullurl, data)
            else:
                return self.open_unknown(fullurl, data)
        try:
            if data is None:
                return getattr(self, name)(url)
            else:
                return getattr(self, name)(url, data)
        except (HTTPError, URLError):
            raise
        except OSError as msg:
            raise OSError('socket error', msg).with_traceback(sys.exc_info()[2])

    def open_unknown(self, fullurl, data=None):
        """Overridable interface to open unknown URL type."""
        type, url = splittype(fullurl)
        raise OSError('url error', 'unknown url type', type)

    def open_unknown_proxy(self, proxy, fullurl, data=None):
        """Overridable interface to open unknown URL type."""
        type, url = splittype(fullurl)
        raise OSError('url error', 'invalid proxy for %s' % type, proxy)

    # External interface
    def retrieve(self, url, filename=None, reporthook=None, data=None):
        """retrieve(url) returns (filename, headers) for a local object
        or (tempfilename, headers) for a remote object."""
        url = unwrap(to_bytes(url))
        if self.tempcache and url in self.tempcache:
            return self.tempcache[url]
        type, url1 = splittype(url)
        if filename is None and (not type or type == 'file'):
            try:
                fp = self.open_local_file(url1)
                hdrs = fp.info()
                fp.close()
                return url2pathname(splithost(url1)[1]), hdrs
            except OSError as msg:
                pass
        fp = self.open(url, data)
        try:
            headers = fp.info()
            if filename:
                tfp = open(filename, 'wb')
            else:
                import tempfile
                garbage, path = splittype(url)
                garbage, path = splithost(path or "")
                path, garbage = splitquery(path or "")
                path, garbage = splitattr(path or "")
                suffix = os.path.splitext(path)[1]
                (fd, filename) = tempfile.mkstemp(suffix)
                self.__tempfiles.append(filename)
                tfp = os.fdopen(fd, 'wb')
            try:
                result = filename, headers
                if self.tempcache is not None:
                    self.tempcache[url] = result
                bs = 1024*8
                size = -1
                read = 0
                blocknum = 0
                if "content-length" in headers:
                    size = int(headers["Content-Length"])
                if reporthook:
                    reporthook(blocknum, bs, size)
                while 1:
                    block = fp.read(bs)
                    if not block:
                        break
                    read += len(block)
                    tfp.write(block)
                    blocknum += 1
                    if reporthook:
                        reporthook(blocknum, bs, size)
            finally:
                tfp.close()
        finally:
            fp.close()

        # raise exception if actual size does not match content-length header
        if size >= 0 and read < size:
            raise ContentTooShortError(
                "retrieval incomplete: got only %i out of %i bytes"
                % (read, size), result)

        return result

    # Each method named open_<type> knows how to open that type of URL

    def _open_generic_http(self, connection_factory, url, data):
        """Make an HTTP connection using connection_class.

        This is an internal method that should be called from
        open_http() or open_https().

        Arguments:
        - connection_factory should take a host name and return an
          HTTPConnection instance.
        - url is the url to retrieval or a host, relative-path pair.
        - data is payload for a POST request or None.
        """

        user_passwd = None
        proxy_passwd= None
        if isinstance(url, str):
            host, selector = splithost(url)
            if host:
                user_passwd, host = splituser(host)
                host = unquote(host)
            realhost = host
        else:
            host, selector = url
            # check whether the proxy contains authorization information
            proxy_passwd, host = splituser(host)
            # now we proceed with the url we want to obtain
            urltype, rest = splittype(selector)
            url = rest
            user_passwd = None
            if urltype.lower() != 'http':
                realhost = None
            else:
                realhost, rest = splithost(rest)
                if realhost:
                    user_passwd, realhost = splituser(realhost)
                if user_passwd:
                    selector = "%s://%s%s" % (urltype, realhost, rest)
                if proxy_bypass(realhost):
                    host = realhost

        if not host: raise OSError('http error', 'no host given')

        if proxy_passwd:
            proxy_passwd = unquote(proxy_passwd)
            proxy_auth = base64.b64encode(proxy_passwd.encode()).decode('ascii')
        else:
            proxy_auth = None

        if user_passwd:
            user_passwd = unquote(user_passwd)
            auth = base64.b64encode(user_passwd.encode()).decode('ascii')
        else:
            auth = None
        http_conn = connection_factory(host)
        headers = {}
        if proxy_auth:
            headers["Proxy-Authorization"] = "Basic %s" % proxy_auth
        if auth:
            headers["Authorization"] =  "Basic %s" % auth
        if realhost:
            headers["Host"] = realhost

        # Add Connection:close as we don't support persistent connections yet.
        # This helps in closing the socket and avoiding ResourceWarning

        headers["Connection"] = "close"

        for header, value in self.addheaders:
            headers[header] = value

        if data is not None:
            headers["Content-Type"] = "application/x-www-form-urlencoded"
            http_conn.request("POST", selector, data, headers)
        else:
            http_conn.request("GET", selector, headers=headers)

        try:
            response = http_conn.getresponse()
        except http.client.BadStatusLine:
            # something went wrong with the HTTP status line
            raise URLError("http protocol error: bad status line")

        # According to RFC 2616, "2xx" code indicates that the client's
        # request was successfully received, understood, and accepted.
        if 200 <= response.status < 300:
            return addinfourl(response, response.msg, "http:" + url,
                              response.status)
        else:
            return self.http_error(
                url, response.fp,
                response.status, response.reason, response.msg, data)

    def open_http(self, url, data=None):
        """Use HTTP protocol."""
        return self._open_generic_http(http.client.HTTPConnection, url, data)

    def http_error(self, url, fp, errcode, errmsg, headers, data=None):
        """Handle http errors.

        Derived class can override this, or provide specific handlers
        named http_error_DDD where DDD is the 3-digit error code."""
        # First check if there's a specific handler for this error
        name = 'http_error_%d' % errcode
        if hasattr(self, name):
            method = getattr(self, name)
            if data is None:
                result = method(url, fp, errcode, errmsg, headers)
            else:
                result = method(url, fp, errcode, errmsg, headers, data)
            if result: return result
        return self.http_error_default(url, fp, errcode, errmsg, headers)

    def http_error_default(self, url, fp, errcode, errmsg, headers):
        """Default error handler: close the connection and raise OSError."""
        fp.close()
        raise HTTPError(url, errcode, errmsg, headers, None)

    if _have_ssl:
        def _https_connection(self, host):
            return http.client.HTTPSConnection(host,
                                           key_file=self.key_file,
                                           cert_file=self.cert_file)

        def open_https(self, url, data=None):
            """Use HTTPS protocol."""
            return self._open_generic_http(self._https_connection, url, data)

    def open_file(self, url):
        """Use local file or FTP depending on form of URL."""
        if not isinstance(url, str):
            raise URLError('file error: proxy support for file protocol currently not implemented')
        if url[:2] == '//' and url[2:3] != '/' and url[2:12].lower() != 'localhost/':
            raise ValueError("file:// scheme is supported only on localhost")
        else:
            return self.open_local_file(url)

    def open_local_file(self, url):
        """Use local file."""
        import email.utils
        import mimetypes
        host, file = splithost(url)
        localname = url2pathname(file)
        try:
            stats = os.stat(localname)
        except OSError as e:
            raise URLError(e.strerror, e.filename)
        size = stats.st_size
        modified = email.utils.formatdate(stats.st_mtime, usegmt=True)
        mtype = mimetypes.guess_type(url)[0]
        headers = email.message_from_string(
            'Content-Type: %s\nContent-Length: %d\nLast-modified: %s\n' %
            (mtype or 'text/plain', size, modified))
        if not host:
            urlfile = file
            if file[:1] == '/':
                urlfile = 'file://' + file
            return addinfourl(open(localname, 'rb'), headers, urlfile)
        host, port = splitport(host)
        if (not port
           and socket.gethostbyname(host) in ((localhost(),) + thishost())):
            urlfile = file
            if file[:1] == '/':
                urlfile = 'file://' + file
            elif file[:2] == './':
                raise ValueError("local file url may start with / or file:. Unknown url of type: %s" % url)
            return addinfourl(open(localname, 'rb'), headers, urlfile)
        raise URLError('local file error: not on local host')

    def open_ftp(self, url):
        """Use FTP protocol."""
        if not isinstance(url, str):
            raise URLError('ftp error: proxy support for ftp protocol currently not implemented')
        import mimetypes
        host, path = splithost(url)
        if not host: raise URLError('ftp error: no host given')
        host, port = splitport(host)
        user, host = splituser(host)
        if user: user, passwd = splitpasswd(user)
        else: passwd = None
        host = unquote(host)
        user = unquote(user or '')
        passwd = unquote(passwd or '')
        host = socket.gethostbyname(host)
        if not port:
            import ftplib
            port = ftplib.FTP_PORT
        else:
            port = int(port)
        path, attrs = splitattr(path)
        path = unquote(path)
        dirs = path.split('/')
        dirs, file = dirs[:-1], dirs[-1]
        if dirs and not dirs[0]: dirs = dirs[1:]
        if dirs and not dirs[0]: dirs[0] = '/'
        key = user, host, port, '/'.join(dirs)
        # XXX thread unsafe!
        if len(self.ftpcache) > MAXFTPCACHE:
            # Prune the cache, rather arbitrarily
            for k in list(self.ftpcache):
                if k != key:
                    v = self.ftpcache[k]
                    del self.ftpcache[k]
                    v.close()
        try:
            if key not in self.ftpcache:
                self.ftpcache[key] = \
                    ftpwrapper(user, passwd, host, port, dirs)
            if not file: type = 'D'
            else: type = 'I'
            for attr in attrs:
                attr, value = splitvalue(attr)
                if attr.lower() == 'type' and \
                   value in ('a', 'A', 'i', 'I', 'd', 'D'):
                    type = value.upper()
            (fp, retrlen) = self.ftpcache[key].retrfile(file, type)
            mtype = mimetypes.guess_type("ftp:" + url)[0]
            headers = ""
            if mtype:
                headers += "Content-Type: %s\n" % mtype
            if retrlen is not None and retrlen >= 0:
                headers += "Content-Length: %d\n" % retrlen
            headers = email.message_from_string(headers)
            return addinfourl(fp, headers, "ftp:" + url)
        except ftperrors() as exp:
            raise URLError('ftp error %r' % exp).with_traceback(sys.exc_info()[2])

    def open_data(self, url, data=None):
        """Use "data" URL."""
        if not isinstance(url, str):
            raise URLError('data error: proxy support for data protocol currently not implemented')
        # ignore POSTed data
        #
        # syntax of data URLs:
        # dataurl   := "data:" [ mediatype ] [ ";base64" ] "," data
        # mediatype := [ type "/" subtype ] *( ";" parameter )
        # data      := *urlchar
        # parameter := attribute "=" value
        try:
            [type, data] = url.split(',', 1)
        except ValueError:
            raise OSError('data error', 'bad data URL')
        if not type:
            type = 'text/plain;charset=US-ASCII'
        semi = type.rfind(';')
        if semi >= 0 and '=' not in type[semi:]:
            encoding = type[semi+1:]
            type = type[:semi]
        else:
            encoding = ''
        msg = []
        msg.append('Date: %s'%time.strftime('%a, %d %b %Y %H:%M:%S GMT',
                                            time.gmtime(time.time())))
        msg.append('Content-type: %s' % type)
        if encoding == 'base64':
            # XXX is this encoding/decoding ok?
            data = base64.decodebytes(data.encode('ascii')).decode('latin-1')
        else:
            data = unquote(data)
        msg.append('Content-Length: %d' % len(data))
        msg.append('')
        msg.append(data)
        msg = '\n'.join(msg)
        headers = email.message_from_string(msg)
        f = io.StringIO(msg)
        #f.fileno = None     # needed for addinfourl
        return addinfourl(f, headers, url)


class FancyURLopener(URLopener):
    """Derived class with handlers for errors we can handle (perhaps)."""

    def __init__(self, *args, **kwargs):
        URLopener.__init__(self, *args, **kwargs)
        self.auth_cache = {}
        self.tries = 0
        self.maxtries = 10

    def http_error_default(self, url, fp, errcode, errmsg, headers):
        """Default error handling -- don't raise an exception."""
        return addinfourl(fp, headers, "http:" + url, errcode)

    def http_error_302(self, url, fp, errcode, errmsg, headers, data=None):
        """Error 302 -- relocated (temporarily)."""
        self.tries += 1
        if self.maxtries and self.tries >= self.maxtries:
            if hasattr(self, "http_error_500"):
                meth = self.http_error_500
            else:
                meth = self.http_error_default
            self.tries = 0
            return meth(url, fp, 500,
                        "Internal Server Error: Redirect Recursion", headers)
        result = self.redirect_internal(url, fp, errcode, errmsg, headers,
                                        data)
        self.tries = 0
        return result

    def redirect_internal(self, url, fp, errcode, errmsg, headers, data):
        if 'location' in headers:
            newurl = headers['location']
        elif 'uri' in headers:
            newurl = headers['uri']
        else:
            return
        fp.close()

        # In case the server sent a relative URL, join with original:
        newurl = urljoin(self.type + ":" + url, newurl)

        urlparts = urlparse(newurl)

        # For security reasons, we don't allow redirection to anything other
        # than http, https and ftp.

        # We are using newer HTTPError with older redirect_internal method
        # This older method will get deprecated in 3.3

        if urlparts.scheme not in ('http', 'https', 'ftp', ''):
            raise HTTPError(newurl, errcode,
                            errmsg +
                            " Redirection to url '%s' is not allowed." % newurl,
                            headers, fp)

        return self.open(newurl)

    def http_error_301(self, url, fp, errcode, errmsg, headers, data=None):
        """Error 301 -- also relocated (permanently)."""
        return self.http_error_302(url, fp, errcode, errmsg, headers, data)

    def http_error_303(self, url, fp, errcode, errmsg, headers, data=None):
        """Error 303 -- also relocated (essentially identical to 302)."""
        return self.http_error_302(url, fp, errcode, errmsg, headers, data)

    def http_error_307(self, url, fp, errcode, errmsg, headers, data=None):
        """Error 307 -- relocated, but turn POST into error."""
        if data is None:
            return self.http_error_302(url, fp, errcode, errmsg, headers, data)
        else:
            return self.http_error_default(url, fp, errcode, errmsg, headers)

    def http_error_401(self, url, fp, errcode, errmsg, headers, data=None,
            retry=False):
        """Error 401 -- authentication required.
        This function supports Basic authentication only."""
        if 'www-authenticate' not in headers:
            URLopener.http_error_default(self, url, fp,
                                         errcode, errmsg, headers)
        stuff = headers['www-authenticate']
        match = re.match('[ \t]*([^ \t]+)[ \t]+realm="([^"]*)"', stuff)
        if not match:
            URLopener.http_error_default(self, url, fp,
                                         errcode, errmsg, headers)
        scheme, realm = match.groups()
        if scheme.lower() != 'basic':
            URLopener.http_error_default(self, url, fp,
                                         errcode, errmsg, headers)
        if not retry:
            URLopener.http_error_default(self, url, fp, errcode, errmsg,
                    headers)
        name = 'retry_' + self.type + '_basic_auth'
        if data is None:
            return getattr(self,name)(url, realm)
        else:
            return getattr(self,name)(url, realm, data)

    def http_error_407(self, url, fp, errcode, errmsg, headers, data=None,
            retry=False):
        """Error 407 -- proxy authentication required.
        This function supports Basic authentication only."""
        if 'proxy-authenticate' not in headers:
            URLopener.http_error_default(self, url, fp,
                                         errcode, errmsg, headers)
        stuff = headers['proxy-authenticate']
        match = re.match('[ \t]*([^ \t]+)[ \t]+realm="([^"]*)"', stuff)
        if not match:
            URLopener.http_error_default(self, url, fp,
                                         errcode, errmsg, headers)
        scheme, realm = match.groups()
        if scheme.lower() != 'basic':
            URLopener.http_error_default(self, url, fp,
                                         errcode, errmsg, headers)
        if not retry:
            URLopener.http_error_default(self, url, fp, errcode, errmsg,
                    headers)
        name = 'retry_proxy_' + self.type + '_basic_auth'
        if data is None:
            return getattr(self,name)(url, realm)
        else:
            return getattr(self,name)(url, realm, data)

    def retry_proxy_http_basic_auth(self, url, realm, data=None):
        host, selector = splithost(url)
        newurl = 'http://' + host + selector
        proxy = self.proxies['http']
        urltype, proxyhost = splittype(proxy)
        proxyhost, proxyselector = splithost(proxyhost)
        i = proxyhost.find('@') + 1
        proxyhost = proxyhost[i:]
        user, passwd = self.get_user_passwd(proxyhost, realm, i)
        if not (user or passwd): return None
        proxyhost = "%s:%s@%s" % (quote(user, safe=''),
                                  quote(passwd, safe=''), proxyhost)
        self.proxies['http'] = 'http://' + proxyhost + proxyselector
        if data is None:
            return self.open(newurl)
        else:
            return self.open(newurl, data)

    def retry_proxy_https_basic_auth(self, url, realm, data=None):
        host, selector = splithost(url)
        newurl = 'https://' + host + selector
        proxy = self.proxies['https']
        urltype, proxyhost = splittype(proxy)
        proxyhost, proxyselector = splithost(proxyhost)
        i = proxyhost.find('@') + 1
        proxyhost = proxyhost[i:]
        user, passwd = self.get_user_passwd(proxyhost, realm, i)
        if not (user or passwd): return None
        proxyhost = "%s:%s@%s" % (quote(user, safe=''),
                                  quote(passwd, safe=''), proxyhost)
        self.proxies['https'] = 'https://' + proxyhost + proxyselector
        if data is None:
            return self.open(newurl)
        else:
            return self.open(newurl, data)

    def retry_http_basic_auth(self, url, realm, data=None):
        host, selector = splithost(url)
        i = host.find('@') + 1
        host = host[i:]
        user, passwd = self.get_user_passwd(host, realm, i)
        if not (user or passwd): return None
        host = "%s:%s@%s" % (quote(user, safe=''),
                             quote(passwd, safe=''), host)
        newurl = 'http://' + host + selector
        if data is None:
            return self.open(newurl)
        else:
            return self.open(newurl, data)

    def retry_https_basic_auth(self, url, realm, data=None):
        host, selector = splithost(url)
        i = host.find('@') + 1
        host = host[i:]
        user, passwd = self.get_user_passwd(host, realm, i)
        if not (user or passwd): return None
        host = "%s:%s@%s" % (quote(user, safe=''),
                             quote(passwd, safe=''), host)
        newurl = 'https://' + host + selector
        if data is None:
            return self.open(newurl)
        else:
            return self.open(newurl, data)

    def get_user_passwd(self, host, realm, clear_cache=0):
        key = realm + '@' + host.lower()
        if key in self.auth_cache:
            if clear_cache:
                del self.auth_cache[key]
            else:
                return self.auth_cache[key]
        user, passwd = self.prompt_user_passwd(host, realm)
        if user or passwd: self.auth_cache[key] = (user, passwd)
        return user, passwd

    def prompt_user_passwd(self, host, realm):
        """Override this in a GUI environment!"""
        import getpass
        try:
            user = input("Enter username for %s at %s: " % (realm, host))
            passwd = getpass.getpass("Enter password for %s in %s at %s: " %
                (user, realm, host))
            return user, passwd
        except KeyboardInterrupt:
            print()
            return None, None


# Utility functions

_localhost = None
def localhost():
    """Return the IP address of the magic hostname 'localhost'."""
    global _localhost
    if _localhost is None:
        _localhost = socket.gethostbyname('localhost')
    return _localhost

_thishost = None
def thishost():
    """Return the IP addresses of the current host."""
    global _thishost
    if _thishost is None:
        try:
            _thishost = tuple(socket.gethostbyname_ex(socket.gethostname())[2])
        except socket.gaierror:
            _thishost = tuple(socket.gethostbyname_ex('localhost')[2])
    return _thishost

_ftperrors = None
def ftperrors():
    """Return the set of errors raised by the FTP class."""
    global _ftperrors
    if _ftperrors is None:
        import ftplib
        _ftperrors = ftplib.all_errors
    return _ftperrors

_noheaders = None
def noheaders():
    """Return an empty email Message object."""
    global _noheaders
    if _noheaders is None:
        _noheaders = email.message_from_string("")
    return _noheaders


# Utility classes

class ftpwrapper:
    """Class used by open_ftp() for cache of open FTP connections."""

    def __init__(self, user, passwd, host, port, dirs, timeout=None,
                 persistent=True):
        self.user = user
        self.passwd = passwd
        self.host = host
        self.port = port
        self.dirs = dirs
        self.timeout = timeout
        self.refcount = 0
        self.keepalive = persistent
        try:
            self.init()
        except:
            self.close()
            raise

    def init(self):
        import ftplib
        self.busy = 0
        self.ftp = ftplib.FTP()
        self.ftp.connect(self.host, self.port, self.timeout)
        self.ftp.login(self.user, self.passwd)
        _target = '/'.join(self.dirs)
        self.ftp.cwd(_target)

    def retrfile(self, file, type):
        import ftplib
        self.endtransfer()
        if type in ('d', 'D'): cmd = 'TYPE A'; isdir = 1
        else: cmd = 'TYPE ' + type; isdir = 0
        try:
            self.ftp.voidcmd(cmd)
        except ftplib.all_errors:
            self.init()
            self.ftp.voidcmd(cmd)
        conn = None
        if file and not isdir:
            # Try to retrieve as a file
            try:
                cmd = 'RETR ' + file
                conn, retrlen = self.ftp.ntransfercmd(cmd)
            except ftplib.error_perm as reason:
                if str(reason)[:3] != '550':
                    raise URLError('ftp error: %r' % reason).with_traceback(
                        sys.exc_info()[2])
        if not conn:
            # Set transfer mode to ASCII!
            self.ftp.voidcmd('TYPE A')
            # Try a directory listing. Verify that directory exists.
            if file:
                pwd = self.ftp.pwd()
                try:
                    try:
                        self.ftp.cwd(file)
                    except ftplib.error_perm as reason:
                        raise URLError('ftp error: %r' % reason) from reason
                finally:
                    self.ftp.cwd(pwd)
                cmd = 'LIST ' + file
            else:
                cmd = 'LIST'
            conn, retrlen = self.ftp.ntransfercmd(cmd)
        self.busy = 1

        ftpobj = addclosehook(conn.makefile('rb'), self.file_close)
        self.refcount += 1
        conn.close()
        # Pass back both a suitably decorated object and a retrieval length
        return (ftpobj, retrlen)

    def endtransfer(self):
        self.busy = 0

    def close(self):
        self.keepalive = False
        if self.refcount <= 0:
            self.real_close()

    def file_close(self):
        self.endtransfer()
        self.refcount -= 1
        if self.refcount <= 0 and not self.keepalive:
            self.real_close()

    def real_close(self):
        self.endtransfer()
        try:
            self.ftp.close()
        except ftperrors():
            pass

# Proxy handling
def getproxies_environment():
    """Return a dictionary of scheme -> proxy server URL mappings.

    Scan the environment for variables named <scheme>_proxy;
    this seems to be the standard convention.  If you need a
    different way, you can pass a proxies dictionary to the
    [Fancy]URLopener constructor.

    """
    proxies = {}
    for name, value in os.environ.items():
        name = name.lower()
        if value and name[-6:] == '_proxy':
            proxies[name[:-6]] = value

    # CVE-2016-1000110 - If we are running as CGI script, forget HTTP_PROXY
    # (non-all-lowercase) as it may be set from the web server by a "Proxy:"
    # header from the client
    if 'REQUEST_METHOD' in os.environ:
        proxies.pop('http', None)

    return proxies

def proxy_bypass_environment(host):
    """Test if proxies should not be used for a particular host.

    Checks the environment for a variable named no_proxy, which should
    be a list of DNS suffixes separated by commas, or '*' for all hosts.
    """
    no_proxy = os.environ.get('no_proxy', '') or os.environ.get('NO_PROXY', '')
    # '*' is special case for always bypass
    if no_proxy == '*':
        return 1
    # strip port off host
    hostonly, port = splitport(host)
    # check if the host ends with any of the DNS suffixes
    no_proxy_list = [proxy.strip() for proxy in no_proxy.split(',')]
    for name in no_proxy_list:
        if name and (hostonly.endswith(name) or host.endswith(name)):
            return 1
    # otherwise, don't bypass
    return 0


# This code tests an OSX specific data structure but is testable on all
# platforms
def _proxy_bypass_macosx_sysconf(host, proxy_settings):
    """
    Return True iff this host shouldn't be accessed using a proxy

    This function uses the MacOSX framework SystemConfiguration
    to fetch the proxy information.

    proxy_settings come from _scproxy._get_proxy_settings or get mocked ie:
    { 'exclude_simple': bool,
      'exceptions': ['foo.bar', '*.bar.com', '127.0.0.1', '10.1', '10.0/16']
    }
    """
    from fnmatch import fnmatch

    hostonly, port = splitport(host)

    def ip2num(ipAddr):
        parts = ipAddr.split('.')
        parts = list(map(int, parts))
        if len(parts) != 4:
            parts = (parts + [0, 0, 0, 0])[:4]
        return (parts[0] << 24) | (parts[1] << 16) | (parts[2] << 8) | parts[3]

    # Check for simple host names:
    if '.' not in host:
        if proxy_settings['exclude_simple']:
            return True

    hostIP = None

    for value in proxy_settings.get('exceptions', ()):
        # Items in the list are strings like these: *.local, 169.254/16
        if not value: continue

        m = re.match(r"(\d+(?:\.\d+)*)(/\d+)?", value)
        if m is not None:
            if hostIP is None:
                try:
                    hostIP = socket.gethostbyname(hostonly)
                    hostIP = ip2num(hostIP)
                except OSError:
                    continue

            base = ip2num(m.group(1))
            mask = m.group(2)
            if mask is None:
                mask = 8 * (m.group(1).count('.') + 1)
            else:
                mask = int(mask[1:])
            mask = 32 - mask

            if (hostIP >> mask) == (base >> mask):
                return True

        elif fnmatch(host, value):
            return True

    return False


if sys.platform == 'darwin' and sys.implementation.name != "ironpython": # https://github.com/IronLanguages/ironpython3/issues/1050
    from _scproxy import _get_proxy_settings, _get_proxies

    def proxy_bypass_macosx_sysconf(host):
        proxy_settings = _get_proxy_settings()
        return _proxy_bypass_macosx_sysconf(host, proxy_settings)

    def getproxies_macosx_sysconf():
        """Return a dictionary of scheme -> proxy server URL mappings.

        This function uses the MacOSX framework SystemConfiguration
        to fetch the proxy information.
        """
        return _get_proxies()



    def proxy_bypass(host):
        if getproxies_environment():
            return proxy_bypass_environment(host)
        else:
            return proxy_bypass_macosx_sysconf(host)

    def getproxies():
        return getproxies_environment() or getproxies_macosx_sysconf()


elif os.name == 'nt':
    def getproxies_registry():
        """Return a dictionary of scheme -> proxy server URL mappings.

        Win32 uses the registry to store proxies.

        """
        proxies = {}
        try:
            import winreg
        except ImportError:
            # Std module, so should be around - but you never know!
            return proxies
        try:
            internetSettings = winreg.OpenKey(winreg.HKEY_CURRENT_USER,
                r'Software\Microsoft\Windows\CurrentVersion\Internet Settings')
            proxyEnable = winreg.QueryValueEx(internetSettings,
                                               'ProxyEnable')[0]
            if proxyEnable:
                # Returned as Unicode but problems if not converted to ASCII
                proxyServer = str(winreg.QueryValueEx(internetSettings,
                                                       'ProxyServer')[0])
                if '=' in proxyServer:
                    # Per-protocol settings
                    for p in proxyServer.split(';'):
                        protocol, address = p.split('=', 1)
                        # See if address has a type:// prefix
                        if not re.match('^([^/:]+)://', address):
                            address = '%s://%s' % (protocol, address)
                        proxies[protocol] = address
                else:
                    # Use one setting for all protocols
                    if proxyServer[:5] == 'http:':
                        proxies['http'] = proxyServer
                    else:
                        proxies['http'] = 'http://%s' % proxyServer
                        proxies['https'] = 'https://%s' % proxyServer
                        proxies['ftp'] = 'ftp://%s' % proxyServer
            internetSettings.Close()
        except (OSError, ValueError, TypeError):
            # Either registry key not found etc, or the value in an
            # unexpected format.
            # proxies already set up to be empty so nothing to do
            pass
        return proxies

    def getproxies():
        """Return a dictionary of scheme -> proxy server URL mappings.

        Returns settings gathered from the environment, if specified,
        or the registry.

        """
        return getproxies_environment() or getproxies_registry()

    def proxy_bypass_registry(host):
        try:
            import winreg
        except ImportError:
            # Std modules, so should be around - but you never know!
            return 0
        try:
            internetSettings = winreg.OpenKey(winreg.HKEY_CURRENT_USER,
                r'Software\Microsoft\Windows\CurrentVersion\Internet Settings')
            proxyEnable = winreg.QueryValueEx(internetSettings,
                                               'ProxyEnable')[0]
            proxyOverride = str(winreg.QueryValueEx(internetSettings,
                                                     'ProxyOverride')[0])
            # ^^^^ Returned as Unicode but problems if not converted to ASCII
        except OSError:
            return 0
        if not proxyEnable or not proxyOverride:
            return 0
        # try to make a host list from name and IP address.
        rawHost, port = splitport(host)
        host = [rawHost]
        try:
            addr = socket.gethostbyname(rawHost)
            if addr != rawHost:
                host.append(addr)
        except OSError:
            pass
        try:
            fqdn = socket.getfqdn(rawHost)
            if fqdn != rawHost:
                host.append(fqdn)
        except OSError:
            pass
        # make a check value list from the registry entry: replace the
        # '<local>' string by the localhost entry and the corresponding
        # canonical entry.
        proxyOverride = proxyOverride.split(';')
        # now check if we match one of the registry values.
        for test in proxyOverride:
            if test == '<local>':
                if '.' not in rawHost:
                    return 1
            test = test.replace(".", r"\.")     # mask dots
            test = test.replace("*", r".*")     # change glob sequence
            test = test.replace("?", r".")      # change glob char
            for val in host:
                if re.match(test, val, re.I):
                    return 1
        return 0

    def proxy_bypass(host):
        """Return a dictionary of scheme -> proxy server URL mappings.

        Returns settings gathered from the environment, if specified,
        or the registry.

        """
        if getproxies_environment():
            return proxy_bypass_environment(host)
        else:
            return proxy_bypass_registry(host)

else:
    # By default use environment variables
    getproxies = getproxies_environment
    proxy_bypass = proxy_bypass_environment
lib\urllib\response.py
"""Response classes used by urllib.

The base class, addbase, defines a minimal file-like interface,
including read() and readline().  The typical response object is an
addinfourl instance, which defines an info() method that returns
headers and a geturl() method that returns the url.
"""

import tempfile

__all__ = ['addbase', 'addclosehook', 'addinfo', 'addinfourl']


class addbase(tempfile._TemporaryFileWrapper):
    """Base class for addinfo and addclosehook. Is a good idea for garbage collection."""

    # XXX Add a method to expose the timeout on the underlying socket?

    def __init__(self, fp):
        super(addbase,  self).__init__(fp, '<urllib response>', delete=False)
        # Keep reference around as this was part of the original API.
        self.fp = fp

    def __repr__(self):
        return '<%s at %r whose fp = %r>' % (self.__class__.__name__,
                                             id(self), self.file)

    def __enter__(self):
        if self.fp.closed:
            raise ValueError("I/O operation on closed file")
        return self

    def __exit__(self, type, value, traceback):
        self.close()


class addclosehook(addbase):
    """Class to add a close hook to an open file."""

    def __init__(self, fp, closehook, *hookargs):
        super(addclosehook, self).__init__(fp)
        self.closehook = closehook
        self.hookargs = hookargs

    def close(self):
        try:
            closehook = self.closehook
            hookargs = self.hookargs
            if closehook:
                self.closehook = None
                self.hookargs = None
                closehook(*hookargs)
        finally:
            super(addclosehook, self).close()


class addinfo(addbase):
    """class to add an info() method to an open file."""

    def __init__(self, fp, headers):
        super(addinfo, self).__init__(fp)
        self.headers = headers

    def info(self):
        return self.headers


class addinfourl(addinfo):
    """class to add info() and geturl() methods to an open file."""

    def __init__(self, fp, headers, url, code=None):
        super(addinfourl, self).__init__(fp, headers)
        self.url = url
        self.code = code

    def getcode(self):
        return self.code

    def geturl(self):
        return self.url
lib\urllib\robotparser.py
""" robotparser.py

    Copyright (C) 2000  Bastian Kleineidam

    You can choose between two licenses when using this package:
    1) GNU GPLv2
    2) PSF license for Python 2.2

    The robots.txt Exclusion Protocol is implemented as specified in
    http://www.robotstxt.org/norobots-rfc.txt
"""

import urllib.parse, urllib.request

__all__ = ["RobotFileParser"]

class RobotFileParser:
    """ This class provides a set of methods to read, parse and answer
    questions about a single robots.txt file.

    """

    def __init__(self, url=''):
        self.entries = []
        self.default_entry = None
        self.disallow_all = False
        self.allow_all = False
        self.set_url(url)
        self.last_checked = 0

    def mtime(self):
        """Returns the time the robots.txt file was last fetched.

        This is useful for long-running web spiders that need to
        check for new robots.txt files periodically.

        """
        return self.last_checked

    def modified(self):
        """Sets the time the robots.txt file was last fetched to the
        current time.

        """
        import time
        self.last_checked = time.time()

    def set_url(self, url):
        """Sets the URL referring to a robots.txt file."""
        self.url = url
        self.host, self.path = urllib.parse.urlparse(url)[1:3]

    def read(self):
        """Reads the robots.txt URL and feeds it to the parser."""
        try:
            f = urllib.request.urlopen(self.url)
        except urllib.error.HTTPError as err:
            if err.code in (401, 403):
                self.disallow_all = True
            elif err.code >= 400 and err.code < 500:
                self.allow_all = True
        else:
            raw = f.read()
            self.parse(raw.decode("utf-8").splitlines())

    def _add_entry(self, entry):
        if "*" in entry.useragents:
            # the default entry is considered last
            if self.default_entry is None:
                # the first default entry wins
                self.default_entry = entry
        else:
            self.entries.append(entry)

    def parse(self, lines):
        """Parse the input lines from a robots.txt file.

        We allow that a user-agent: line is not preceded by
        one or more blank lines.
        """
        # states:
        #   0: start state
        #   1: saw user-agent line
        #   2: saw an allow or disallow line
        state = 0
        entry = Entry()

        self.modified()
        for line in lines:
            if not line:
                if state == 1:
                    entry = Entry()
                    state = 0
                elif state == 2:
                    self._add_entry(entry)
                    entry = Entry()
                    state = 0
            # remove optional comment and strip line
            i = line.find('#')
            if i >= 0:
                line = line[:i]
            line = line.strip()
            if not line:
                continue
            line = line.split(':', 1)
            if len(line) == 2:
                line[0] = line[0].strip().lower()
                line[1] = urllib.parse.unquote(line[1].strip())
                if line[0] == "user-agent":
                    if state == 2:
                        self._add_entry(entry)
                        entry = Entry()
                    entry.useragents.append(line[1])
                    state = 1
                elif line[0] == "disallow":
                    if state != 0:
                        entry.rulelines.append(RuleLine(line[1], False))
                        state = 2
                elif line[0] == "allow":
                    if state != 0:
                        entry.rulelines.append(RuleLine(line[1], True))
                        state = 2
        if state == 2:
            self._add_entry(entry)


    def can_fetch(self, useragent, url):
        """using the parsed robots.txt decide if useragent can fetch url"""
        if self.disallow_all:
            return False
        if self.allow_all:
            return True
        # Until the robots.txt file has been read or found not
        # to exist, we must assume that no url is allowable.
        # This prevents false positives when a user erronenously
        # calls can_fetch() before calling read().
        if not self.last_checked:
            return False
        # search for given user agent matches
        # the first match counts
        parsed_url = urllib.parse.urlparse(urllib.parse.unquote(url))
        url = urllib.parse.urlunparse(('','',parsed_url.path,
            parsed_url.params,parsed_url.query, parsed_url.fragment))
        url = urllib.parse.quote(url)
        if not url:
            url = "/"
        for entry in self.entries:
            if entry.applies_to(useragent):
                return entry.allowance(url)
        # try the default entry last
        if self.default_entry:
            return self.default_entry.allowance(url)
        # agent not found ==> access granted
        return True

    def __str__(self):
        return ''.join([str(entry) + "\n" for entry in self.entries])


class RuleLine:
    """A rule line is a single "Allow:" (allowance==True) or "Disallow:"
       (allowance==False) followed by a path."""
    def __init__(self, path, allowance):
        if path == '' and not allowance:
            # an empty value means allow all
            allowance = True
        path = urllib.parse.urlunparse(urllib.parse.urlparse(path))
        self.path = urllib.parse.quote(path)
        self.allowance = allowance

    def applies_to(self, filename):
        return self.path == "*" or filename.startswith(self.path)

    def __str__(self):
        return (self.allowance and "Allow" or "Disallow") + ": " + self.path


class Entry:
    """An entry has one or more user-agents and zero or more rulelines"""
    def __init__(self):
        self.useragents = []
        self.rulelines = []

    def __str__(self):
        ret = []
        for agent in self.useragents:
            ret.extend(["User-agent: ", agent, "\n"])
        for line in self.rulelines:
            ret.extend([str(line), "\n"])
        return ''.join(ret)

    def applies_to(self, useragent):
        """check if this entry applies to the specified agent"""
        # split the name token and make it lower case
        useragent = useragent.split("/")[0].lower()
        for agent in self.useragents:
            if agent == '*':
                # we have the catch-all agent
                return True
            agent = agent.lower()
            if agent in useragent:
                return True
        return False

    def allowance(self, filename):
        """Preconditions:
        - our agent applies to this entry
        - filename is URL decoded"""
        for line in self.rulelines:
            if line.applies_to(filename):
                return line.allowance
        return True
lib\urllib\__init__.py
lib\venv\__init__.py
"""
Virtual environment (venv) package for Python. Based on PEP 405.

Copyright (C) 2011-2014 Vinay Sajip.
Licensed to the PSF under a contributor agreement.

usage: python -m venv [-h] [--system-site-packages] [--symlinks] [--clear]
            [--upgrade]
            ENV_DIR [ENV_DIR ...]

Creates virtual Python environments in one or more target directories.

positional arguments:
  ENV_DIR               A directory to create the environment in.

optional arguments:
  -h, --help            show this help message and exit
  --system-site-packages
                        Give the virtual environment access to the system
                        site-packages dir.
  --symlinks            Attempt to symlink rather than copy.
  --clear               Delete the environment directory if it already exists.
                        If not specified and the directory exists, an error is
                        raised.
  --upgrade             Upgrade the environment directory to use this version
                        of Python, assuming Python has been upgraded in-place.
  --without-pip         Skips installing or upgrading pip in the virtual
                        environment (pip is bootstrapped by default)
"""
import logging
import os
import shutil
import subprocess
import sys
import types

logger = logging.getLogger(__name__)


class EnvBuilder:
    """
    This class exists to allow virtual environment creation to be
    customized. The constructor parameters determine the builder's
    behaviour when called upon to create a virtual environment.

    By default, the builder makes the system (global) site-packages dir
    *un*available to the created environment.

    If invoked using the Python -m option, the default is to use copying
    on Windows platforms but symlinks elsewhere. If instantiated some
    other way, the default is to *not* use symlinks.

    :param system_site_packages: If True, the system (global) site-packages
                                 dir is available to created environments.
    :param clear: If True and the target directory exists, it is deleted.
                  Otherwise, if the target directory exists, an error is
                  raised.
    :param symlinks: If True, attempt to symlink rather than copy files into
                     virtual environment.
    :param upgrade: If True, upgrade an existing virtual environment.
    :param with_pip: If True, ensure pip is installed in the virtual
                     environment
    """

    def __init__(self, system_site_packages=False, clear=False,
                 symlinks=False, upgrade=False, with_pip=False):
        self.system_site_packages = system_site_packages
        self.clear = clear
        self.symlinks = symlinks
        self.upgrade = upgrade
        self.with_pip = with_pip

    def create(self, env_dir):
        """
        Create a virtual environment in a directory.

        :param env_dir: The target directory to create an environment in.

        """
        env_dir = os.path.abspath(env_dir)
        context = self.ensure_directories(env_dir)
        self.create_configuration(context)
        self.setup_python(context)
        if self.with_pip:
            self._setup_pip(context)
        if not self.upgrade:
            self.setup_scripts(context)
            self.post_setup(context)

    def clear_directory(self, path):
        for fn in os.listdir(path):
            fn = os.path.join(path, fn)
            if os.path.islink(fn) or os.path.isfile(fn):
                os.remove(fn)
            elif os.path.isdir(fn):
                shutil.rmtree(fn)

    def ensure_directories(self, env_dir):
        """
        Create the directories for the environment.

        Returns a context object which holds paths in the environment,
        for use by subsequent logic.
        """

        def create_if_needed(d):
            if not os.path.exists(d):
                os.makedirs(d)
            elif os.path.islink(d) or os.path.isfile(d):
                raise ValueError('Unable to create directory %r' % d)

        if os.path.exists(env_dir) and self.clear:
            self.clear_directory(env_dir)
        context = types.SimpleNamespace()
        context.env_dir = env_dir
        context.env_name = os.path.split(env_dir)[1]
        context.prompt = '(%s) ' % context.env_name
        create_if_needed(env_dir)
        env = os.environ
        if sys.platform == 'darwin' and '__PYVENV_LAUNCHER__' in env:
            executable = os.environ['__PYVENV_LAUNCHER__']
        else:
            executable = sys.executable
        dirname, exename = os.path.split(os.path.abspath(executable))
        context.executable = executable
        context.python_dir = dirname
        context.python_exe = exename
        if sys.platform == 'win32':
            binname = 'Scripts'
            incpath = 'Include'
            libpath = os.path.join(env_dir, 'Lib', 'site-packages')
        else:
            binname = 'bin'
            incpath = 'include'
            libpath = os.path.join(env_dir, 'lib',
                                   'python%d.%d' % sys.version_info[:2],
                                   'site-packages')
        context.inc_path = path = os.path.join(env_dir, incpath)
        create_if_needed(path)
        create_if_needed(libpath)
        # Issue 21197: create lib64 as a symlink to lib on 64-bit non-OS X POSIX
        if ((sys.maxsize > 2**32) and (os.name == 'posix') and
            (sys.platform != 'darwin')):
            link_path = os.path.join(env_dir, 'lib64')
            if not os.path.exists(link_path):   # Issue #21643
                os.symlink('lib', link_path)
        context.bin_path = binpath = os.path.join(env_dir, binname)
        context.bin_name = binname
        context.env_exe = os.path.join(binpath, exename)
        create_if_needed(binpath)
        return context

    def create_configuration(self, context):
        """
        Create a configuration file indicating where the environment's Python
        was copied from, and whether the system site-packages should be made
        available in the environment.

        :param context: The information for the environment creation request
                        being processed.
        """
        context.cfg_path = path = os.path.join(context.env_dir, 'pyvenv.cfg')
        with open(path, 'w', encoding='utf-8') as f:
            f.write('home = %s\n' % context.python_dir)
            if self.system_site_packages:
                incl = 'true'
            else:
                incl = 'false'
            f.write('include-system-site-packages = %s\n' % incl)
            f.write('version = %d.%d.%d\n' % sys.version_info[:3])

    if os.name == 'nt':
        def include_binary(self, f):
            if f.endswith(('.pyd', '.dll')):
                result = True
            else:
                result = f.startswith('python') and f.endswith('.exe')
            return result

    def symlink_or_copy(self, src, dst, relative_symlinks_ok=False):
        """
        Try symlinking a file, and if that fails, fall back to copying.
        """
        force_copy = not self.symlinks
        if not force_copy:
            try:
                if not os.path.islink(dst): # can't link to itself!
                    if relative_symlinks_ok:
                        assert os.path.dirname(src) == os.path.dirname(dst)
                        os.symlink(os.path.basename(src), dst)
                    else:
                        os.symlink(src, dst)
            except Exception:   # may need to use a more specific exception
                logger.warning('Unable to symlink %r to %r', src, dst)
                force_copy = True
        if force_copy:
            shutil.copyfile(src, dst)

    def setup_python(self, context):
        """
        Set up a Python executable in the environment.

        :param context: The information for the environment creation request
                        being processed.
        """
        binpath = context.bin_path
        path = context.env_exe
        copier = self.symlink_or_copy
        copier(context.executable, path)
        dirname = context.python_dir
        if os.name != 'nt':
            if not os.path.islink(path):
                os.chmod(path, 0o755)
            for suffix in ('python', 'python3'):
                path = os.path.join(binpath, suffix)
                if not os.path.exists(path):
                    # Issue 18807: make copies if
                    # symlinks are not wanted
                    copier(context.env_exe, path, relative_symlinks_ok=True)
                    if not os.path.islink(path):
                        os.chmod(path, 0o755)
        else:
            subdir = 'DLLs'
            include = self.include_binary
            files = [f for f in os.listdir(dirname) if include(f)]
            for f in files:
                src = os.path.join(dirname, f)
                dst = os.path.join(binpath, f)
                if dst != context.env_exe:  # already done, above
                    copier(src, dst)
            dirname = os.path.join(dirname, subdir)
            if os.path.isdir(dirname):
                files = [f for f in os.listdir(dirname) if include(f)]
                for f in files:
                    src = os.path.join(dirname, f)
                    dst = os.path.join(binpath, f)
                    copier(src, dst)
            # copy init.tcl over
            for root, dirs, files in os.walk(context.python_dir):
                if 'init.tcl' in files:
                    tcldir = os.path.basename(root)
                    tcldir = os.path.join(context.env_dir, 'Lib', tcldir)
                    if not os.path.exists(tcldir):
                        os.makedirs(tcldir)
                    src = os.path.join(root, 'init.tcl')
                    dst = os.path.join(tcldir, 'init.tcl')
                    shutil.copyfile(src, dst)
                    break

    def _setup_pip(self, context):
        """Installs or upgrades pip in a virtual environment"""
        # We run ensurepip in isolated mode to avoid side effects from
        # environment vars, the current directory and anything else
        # intended for the global Python environment
        cmd = [context.env_exe, '-Im', 'ensurepip', '--upgrade',
                                                    '--default-pip']
        subprocess.check_output(cmd, stderr=subprocess.STDOUT)

    def setup_scripts(self, context):
        """
        Set up scripts into the created environment from a directory.

        This method installs the default scripts into the environment
        being created. You can prevent the default installation by overriding
        this method if you really need to, or if you need to specify
        a different location for the scripts to install. By default, the
        'scripts' directory in the venv package is used as the source of
        scripts to install.
        """
        path = os.path.abspath(os.path.dirname(__file__))
        path = os.path.join(path, 'scripts')
        self.install_scripts(context, path)

    def post_setup(self, context):
        """
        Hook for post-setup modification of the venv. Subclasses may install
        additional packages or scripts here, add activation shell scripts, etc.

        :param context: The information for the environment creation request
                        being processed.
        """
        pass

    def replace_variables(self, text, context):
        """
        Replace variable placeholders in script text with context-specific
        variables.

        Return the text passed in , but with variables replaced.

        :param text: The text in which to replace placeholder variables.
        :param context: The information for the environment creation request
                        being processed.
        """
        text = text.replace('__VENV_DIR__', context.env_dir)
        text = text.replace('__VENV_NAME__', context.env_name)
        text = text.replace('__VENV_PROMPT__', context.prompt)
        text = text.replace('__VENV_BIN_NAME__', context.bin_name)
        text = text.replace('__VENV_PYTHON__', context.env_exe)
        return text

    def install_scripts(self, context, path):
        """
        Install scripts into the created environment from a directory.

        :param context: The information for the environment creation request
                        being processed.
        :param path:    Absolute pathname of a directory containing script.
                        Scripts in the 'common' subdirectory of this directory,
                        and those in the directory named for the platform
                        being run on, are installed in the created environment.
                        Placeholder variables are replaced with environment-
                        specific values.
        """
        binpath = context.bin_path
        plen = len(path)
        for root, dirs, files in os.walk(path):
            if root == path: # at top-level, remove irrelevant dirs
                for d in dirs[:]:
                    if d not in ('common', os.name):
                        dirs.remove(d)
                continue # ignore files in top level
            for f in files:
                srcfile = os.path.join(root, f)
                suffix = root[plen:].split(os.sep)[2:]
                if not suffix:
                    dstdir = binpath
                else:
                    dstdir = os.path.join(binpath, *suffix)
                if not os.path.exists(dstdir):
                    os.makedirs(dstdir)
                dstfile = os.path.join(dstdir, f)
                with open(srcfile, 'rb') as f:
                    data = f.read()
                if srcfile.endswith('.exe'):
                    mode = 'wb'
                else:
                    mode = 'w'
                    try:
                        data = data.decode('utf-8')
                        data = self.replace_variables(data, context)
                    except UnicodeDecodeError as e:
                        data = None
                        logger.warning('unable to copy script %r, '
                                       'may be binary: %s', srcfile, e)
                if data is not None:
                    with open(dstfile, mode) as f:
                        f.write(data)
                    shutil.copymode(srcfile, dstfile)


def create(env_dir, system_site_packages=False, clear=False,
                    symlinks=False, with_pip=False):
    """
    Create a virtual environment in a directory.

    By default, makes the system (global) site-packages dir *un*available to
    the created environment, and uses copying rather than symlinking for files
    obtained from the source Python installation.

    :param env_dir: The target directory to create an environment in.
    :param system_site_packages: If True, the system (global) site-packages
                                 dir is available to the environment.
    :param clear: If True and the target directory exists, it is deleted.
                  Otherwise, if the target directory exists, an error is
                  raised.
    :param symlinks: If True, attempt to symlink rather than copy files into
                     virtual environment.
    :param with_pip: If True, ensure pip is installed in the virtual
                     environment
    """
    builder = EnvBuilder(system_site_packages=system_site_packages,
                         clear=clear, symlinks=symlinks, with_pip=with_pip)
    builder.create(env_dir)

def main(args=None):
    compatible = True
    if sys.version_info < (3, 3):
        compatible = False
    elif not hasattr(sys, 'base_prefix'):
        compatible = False
    if not compatible:
        raise ValueError('This script is only for use with Python >= 3.3')
    else:
        import argparse

        parser = argparse.ArgumentParser(prog=__name__,
                                         description='Creates virtual Python '
                                                     'environments in one or '
                                                     'more target '
                                                     'directories.',
                                         epilog='Once an environment has been '
                                                'created, you may wish to '
                                                'activate it, e.g. by '
                                                'sourcing an activate script '
                                                'in its bin directory.')
        parser.add_argument('dirs', metavar='ENV_DIR', nargs='+',
                            help='A directory to create the environment in.')
        parser.add_argument('--system-site-packages', default=False,
                            action='store_true', dest='system_site',
                            help='Give the virtual environment access to the '
                                 'system site-packages dir.')
        if os.name == 'nt':
            use_symlinks = False
        else:
            use_symlinks = True
        group = parser.add_mutually_exclusive_group()
        group.add_argument('--symlinks', default=use_symlinks,
                           action='store_true', dest='symlinks',
                           help='Try to use symlinks rather than copies, '
                                'when symlinks are not the default for '
                                'the platform.')
        group.add_argument('--copies', default=not use_symlinks,
                           action='store_false', dest='symlinks',
                           help='Try to use copies rather than symlinks, '
                                'even when symlinks are the default for '
                                'the platform.')
        parser.add_argument('--clear', default=False, action='store_true',
                            dest='clear', help='Delete the contents of the '
                                               'environment directory if it '
                                               'already exists, before '
                                               'environment creation.')
        parser.add_argument('--upgrade', default=False, action='store_true',
                            dest='upgrade', help='Upgrade the environment '
                                               'directory to use this version '
                                               'of Python, assuming Python '
                                               'has been upgraded in-place.')
        parser.add_argument('--without-pip', dest='with_pip',
                            default=True, action='store_false',
                            help='Skips installing or upgrading pip in the '
                                 'virtual environment (pip is bootstrapped '
                                 'by default)')
        options = parser.parse_args(args)
        if options.upgrade and options.clear:
            raise ValueError('you cannot supply --upgrade and --clear together.')
        builder = EnvBuilder(system_site_packages=options.system_site,
                             clear=options.clear,
                             symlinks=options.symlinks,
                             upgrade=options.upgrade,
                             with_pip=options.with_pip)
        for d in options.dirs:
            builder.create(d)

if __name__ == '__main__':
    rc = 1
    try:
        main()
        rc = 0
    except Exception as e:
        print('Error: %s' % e, file=sys.stderr)
    sys.exit(rc)
lib\venv\__main__.py
import sys
from . import main

rc = 1
try:
    main()
    rc = 0
except Exception as e:
    print('Error: %s' % e, file=sys.stderr)
sys.exit(rc)
lib\venv\scripts\nt\activate.bat
@echo off
set "VIRTUAL_ENV=__VENV_DIR__"

if not defined PROMPT (
    set "PROMPT=$P$G"
)

if defined _OLD_VIRTUAL_PROMPT (
    set "PROMPT=%_OLD_VIRTUAL_PROMPT%"
)

if defined _OLD_VIRTUAL_PYTHONHOME (
    set "PYTHONHOME=%_OLD_VIRTUAL_PYTHONHOME%"
)

set "_OLD_VIRTUAL_PROMPT=%PROMPT%"
set "PROMPT=__VENV_PROMPT__%PROMPT%"

if defined PYTHONHOME (
    set "_OLD_VIRTUAL_PYTHONHOME=%PYTHONHOME%"
    set PYTHONHOME=
)

if defined _OLD_VIRTUAL_PATH (
    set "PATH=%_OLD_VIRTUAL_PATH%"
) else (
    set "_OLD_VIRTUAL_PATH=%PATH%"
)

set "PATH=%VIRTUAL_ENV%\__VENV_BIN_NAME__;%PATH%"

:END
lib\venv\scripts\nt\Activate.ps1
function global:deactivate ([switch]$NonDestructive) {
    # Revert to original values
    if (Test-Path function:_OLD_VIRTUAL_PROMPT) {
        copy-item function:_OLD_VIRTUAL_PROMPT function:prompt
        remove-item function:_OLD_VIRTUAL_PROMPT
    }

    if (Test-Path env:_OLD_VIRTUAL_PYTHONHOME) {
        copy-item env:_OLD_VIRTUAL_PYTHONHOME env:PYTHONHOME
        remove-item env:_OLD_VIRTUAL_PYTHONHOME
    }

    if (Test-Path env:_OLD_VIRTUAL_PATH) {
        copy-item env:_OLD_VIRTUAL_PATH env:PATH
        remove-item env:_OLD_VIRTUAL_PATH
    }

    if (Test-Path env:VIRTUAL_ENV) {
        remove-item env:VIRTUAL_ENV
    }

    if (!$NonDestructive) {
        # Self destruct!
        remove-item function:deactivate
    }
}

deactivate -nondestructive

$env:VIRTUAL_ENV="__VENV_DIR__"

# Set the prompt to include the env name
# Make sure _OLD_VIRTUAL_PROMPT is global
function global:_OLD_VIRTUAL_PROMPT {""}
copy-item function:prompt function:_OLD_VIRTUAL_PROMPT
function global:prompt {
    Write-Host -NoNewline -ForegroundColor Green '__VENV_PROMPT__'
    _OLD_VIRTUAL_PROMPT
}

# Clear PYTHONHOME
if (Test-Path env:PYTHONHOME) {
    copy-item env:PYTHONHOME env:_OLD_VIRTUAL_PYTHONHOME
    remove-item env:PYTHONHOME
}

# Add the venv to the PATH
copy-item env:PATH env:_OLD_VIRTUAL_PATH
$env:PATH = "$env:VIRTUAL_ENV\__VENV_BIN_NAME__;$env:PATH"
lib\venv\scripts\nt\deactivate.bat
@echo off

if defined _OLD_VIRTUAL_PROMPT (
    set "PROMPT=%_OLD_VIRTUAL_PROMPT%"
)
set _OLD_VIRTUAL_PROMPT=

if defined _OLD_VIRTUAL_PYTHONHOME (
    set "PYTHONHOME=%_OLD_VIRTUAL_PYTHONHOME%"
    set _OLD_VIRTUAL_PYTHONHOME=
)

if defined _OLD_VIRTUAL_PATH (
    set "PATH=%_OLD_VIRTUAL_PATH%"
)

set _OLD_VIRTUAL_PATH=

set VIRTUAL_ENV=

:END
lib\venv\scripts\posix\activate
 
lib\venv\scripts\posix\activate.csh
 
lib\venv\scripts\posix\activate.fish
 
lib\wsgiref\handlers.py
"""Base classes for server/gateway implementations"""

from .util import FileWrapper, guess_scheme, is_hop_by_hop
from .headers import Headers

import sys, os, time

__all__ = [
    'BaseHandler', 'SimpleHandler', 'BaseCGIHandler', 'CGIHandler',
    'IISCGIHandler', 'read_environ'
]

# Weekday and month names for HTTP date/time formatting; always English!
_weekdayname = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
_monthname = [None, # Dummy so we can use 1-based month numbers
              "Jan", "Feb", "Mar", "Apr", "May", "Jun",
              "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

def format_date_time(timestamp):
    year, month, day, hh, mm, ss, wd, y, z = time.gmtime(timestamp)
    return "%s, %02d %3s %4d %02d:%02d:%02d GMT" % (
        _weekdayname[wd], day, _monthname[month], year, hh, mm, ss
    )

_is_request = {
    'SCRIPT_NAME', 'PATH_INFO', 'QUERY_STRING', 'REQUEST_METHOD', 'AUTH_TYPE',
    'CONTENT_TYPE', 'CONTENT_LENGTH', 'HTTPS', 'REMOTE_USER', 'REMOTE_IDENT',
}.__contains__

def _needs_transcode(k):
    return _is_request(k) or k.startswith('HTTP_') or k.startswith('SSL_') \
        or (k.startswith('REDIRECT_') and _needs_transcode(k[9:]))

def read_environ():
    """Read environment, fixing HTTP variables"""
    enc = sys.getfilesystemencoding()
    esc = 'surrogateescape'
    try:
        ''.encode('utf-8', esc)
    except LookupError:
        esc = 'replace'
    environ = {}

    # Take the basic environment from native-unicode os.environ. Attempt to
    # fix up the variables that come from the HTTP request to compensate for
    # the bytes->unicode decoding step that will already have taken place.
    for k, v in os.environ.items():
        if _needs_transcode(k):

            # On win32, the os.environ is natively Unicode. Different servers
            # decode the request bytes using different encodings.
            if sys.platform == 'win32':
                software = os.environ.get('SERVER_SOFTWARE', '').lower()

                # On IIS, the HTTP request will be decoded as UTF-8 as long
                # as the input is a valid UTF-8 sequence. Otherwise it is
                # decoded using the system code page (mbcs), with no way to
                # detect this has happened. Because UTF-8 is the more likely
                # encoding, and mbcs is inherently unreliable (an mbcs string
                # that happens to be valid UTF-8 will not be decoded as mbcs)
                # always recreate the original bytes as UTF-8.
                if software.startswith('microsoft-iis/'):
                    v = v.encode('utf-8').decode('iso-8859-1')

                # Apache mod_cgi writes bytes-as-unicode (as if ISO-8859-1) direct
                # to the Unicode environ. No modification needed.
                elif software.startswith('apache/'):
                    pass

                # Python 3's http.server.CGIHTTPRequestHandler decodes
                # using the urllib.unquote default of UTF-8, amongst other
                # issues.
                elif (
                    software.startswith('simplehttp/')
                    and 'python/3' in software
                ):
                    v = v.encode('utf-8').decode('iso-8859-1')

                # For other servers, guess that they have written bytes to
                # the environ using stdio byte-oriented interfaces, ending up
                # with the system code page.
                else:
                    v = v.encode(enc, 'replace').decode('iso-8859-1')

            # Recover bytes from unicode environ, using surrogate escapes
            # where available (Python 3.1+).
            else:
                v = v.encode(enc, esc).decode('iso-8859-1')

        environ[k] = v
    return environ


class BaseHandler:
    """Manage the invocation of a WSGI application"""

    # Configuration parameters; can override per-subclass or per-instance
    wsgi_version = (1,0)
    wsgi_multithread = True
    wsgi_multiprocess = True
    wsgi_run_once = False

    origin_server = True    # We are transmitting direct to client
    http_version  = "1.0"   # Version that should be used for response
    server_software = None  # String name of server software, if any

    # os_environ is used to supply configuration from the OS environment:
    # by default it's a copy of 'os.environ' as of import time, but you can
    # override this in e.g. your __init__ method.
    os_environ= read_environ()

    # Collaborator classes
    wsgi_file_wrapper = FileWrapper     # set to None to disable
    headers_class = Headers             # must be a Headers-like class

    # Error handling (also per-subclass or per-instance)
    traceback_limit = None  # Print entire traceback to self.get_stderr()
    error_status = "500 Internal Server Error"
    error_headers = [('Content-Type','text/plain')]
    error_body = b"A server error occurred.  Please contact the administrator."

    # State variables (don't mess with these)
    status = result = None
    headers_sent = False
    headers = None
    bytes_sent = 0

    def run(self, application):
        """Invoke the application"""
        # Note to self: don't move the close()!  Asynchronous servers shouldn't
        # call close() from finish_response(), so if you close() anywhere but
        # the double-error branch here, you'll break asynchronous servers by
        # prematurely closing.  Async servers must return from 'run()' without
        # closing if there might still be output to iterate over.
        try:
            self.setup_environ()
            self.result = application(self.environ, self.start_response)
            self.finish_response()
        except:
            try:
                self.handle_error()
            except:
                # If we get an error handling an error, just give up already!
                self.close()
                raise   # ...and let the actual server figure it out.


    def setup_environ(self):
        """Set up the environment for one request"""

        env = self.environ = self.os_environ.copy()
        self.add_cgi_vars()

        env['wsgi.input']        = self.get_stdin()
        env['wsgi.errors']       = self.get_stderr()
        env['wsgi.version']      = self.wsgi_version
        env['wsgi.run_once']     = self.wsgi_run_once
        env['wsgi.url_scheme']   = self.get_scheme()
        env['wsgi.multithread']  = self.wsgi_multithread
        env['wsgi.multiprocess'] = self.wsgi_multiprocess

        if self.wsgi_file_wrapper is not None:
            env['wsgi.file_wrapper'] = self.wsgi_file_wrapper

        if self.origin_server and self.server_software:
            env.setdefault('SERVER_SOFTWARE',self.server_software)


    def finish_response(self):
        """Send any iterable data, then close self and the iterable

        Subclasses intended for use in asynchronous servers will
        want to redefine this method, such that it sets up callbacks
        in the event loop to iterate over the data, and to call
        'self.close()' once the response is finished.
        """
        try:
            if not self.result_is_file() or not self.sendfile():
                for data in self.result:
                    self.write(data)
                self.finish_content()
        finally:
            self.close()


    def get_scheme(self):
        """Return the URL scheme being used"""
        return guess_scheme(self.environ)


    def set_content_length(self):
        """Compute Content-Length or switch to chunked encoding if possible"""
        try:
            blocks = len(self.result)
        except (TypeError,AttributeError,NotImplementedError):
            pass
        else:
            if blocks==1:
                self.headers['Content-Length'] = str(self.bytes_sent)
                return
        # XXX Try for chunked encoding if origin server and client is 1.1


    def cleanup_headers(self):
        """Make any necessary header changes or defaults

        Subclasses can extend this to add other defaults.
        """
        if 'Content-Length' not in self.headers:
            self.set_content_length()

    def start_response(self, status, headers,exc_info=None):
        """'start_response()' callable as specified by PEP 3333"""

        if exc_info:
            try:
                if self.headers_sent:
                    # Re-raise original exception if headers sent
                    raise exc_info[0](exc_info[1]).with_traceback(exc_info[2])
            finally:
                exc_info = None        # avoid dangling circular ref
        elif self.headers is not None:
            raise AssertionError("Headers already set!")

        self.status = status
        self.headers = self.headers_class(headers)
        status = self._convert_string_type(status, "Status")
        assert len(status)>=4,"Status must be at least 4 characters"
        assert int(status[:3]),"Status message must begin w/3-digit code"
        assert status[3]==" ", "Status message must have a space after code"

        if __debug__:
            for name, val in headers:
                name = self._convert_string_type(name, "Header name")
                val = self._convert_string_type(val, "Header value")
                assert not is_hop_by_hop(name),"Hop-by-hop headers not allowed"

        return self.write

    def _convert_string_type(self, value, title):
        """Convert/check value type."""
        if type(value) is str:
            return value
        raise AssertionError(
            "{0} must be of type str (got {1})".format(title, repr(value))
        )

    def send_preamble(self):
        """Transmit version/status/date/server, via self._write()"""
        if self.origin_server:
            if self.client_is_modern():
                self._write(('HTTP/%s %s\r\n' % (self.http_version,self.status)).encode('iso-8859-1'))
                if 'Date' not in self.headers:
                    self._write(
                        ('Date: %s\r\n' % format_date_time(time.time())).encode('iso-8859-1')
                    )
                if self.server_software and 'Server' not in self.headers:
                    self._write(('Server: %s\r\n' % self.server_software).encode('iso-8859-1'))
        else:
            self._write(('Status: %s\r\n' % self.status).encode('iso-8859-1'))

    def write(self, data):
        """'write()' callable as specified by PEP 3333"""

        assert type(data) is bytes, \
            "write() argument must be a bytes instance"

        if not self.status:
            raise AssertionError("write() before start_response()")

        elif not self.headers_sent:
            # Before the first output, send the stored headers
            self.bytes_sent = len(data)    # make sure we know content-length
            self.send_headers()
        else:
            self.bytes_sent += len(data)

        # XXX check Content-Length and truncate if too many bytes written?
        self._write(data)
        self._flush()


    def sendfile(self):
        """Platform-specific file transmission

        Override this method in subclasses to support platform-specific
        file transmission.  It is only called if the application's
        return iterable ('self.result') is an instance of
        'self.wsgi_file_wrapper'.

        This method should return a true value if it was able to actually
        transmit the wrapped file-like object using a platform-specific
        approach.  It should return a false value if normal iteration
        should be used instead.  An exception can be raised to indicate
        that transmission was attempted, but failed.

        NOTE: this method should call 'self.send_headers()' if
        'self.headers_sent' is false and it is going to attempt direct
        transmission of the file.
        """
        return False   # No platform-specific transmission by default


    def finish_content(self):
        """Ensure headers and content have both been sent"""
        if not self.headers_sent:
            # Only zero Content-Length if not set by the application (so
            # that HEAD requests can be satisfied properly, see #3839)
            self.headers.setdefault('Content-Length', "0")
            self.send_headers()
        else:
            pass # XXX check if content-length was too short?

    def close(self):
        """Close the iterable (if needed) and reset all instance vars

        Subclasses may want to also drop the client connection.
        """
        try:
            if hasattr(self.result,'close'):
                self.result.close()
        finally:
            self.result = self.headers = self.status = self.environ = None
            self.bytes_sent = 0; self.headers_sent = False


    def send_headers(self):
        """Transmit headers to the client, via self._write()"""
        self.cleanup_headers()
        self.headers_sent = True
        if not self.origin_server or self.client_is_modern():
            self.send_preamble()
            self._write(bytes(self.headers))


    def result_is_file(self):
        """True if 'self.result' is an instance of 'self.wsgi_file_wrapper'"""
        wrapper = self.wsgi_file_wrapper
        return wrapper is not None and isinstance(self.result,wrapper)


    def client_is_modern(self):
        """True if client can accept status and headers"""
        return self.environ['SERVER_PROTOCOL'].upper() != 'HTTP/0.9'


    def log_exception(self,exc_info):
        """Log the 'exc_info' tuple in the server log

        Subclasses may override to retarget the output or change its format.
        """
        try:
            from traceback import print_exception
            stderr = self.get_stderr()
            print_exception(
                exc_info[0], exc_info[1], exc_info[2],
                self.traceback_limit, stderr
            )
            stderr.flush()
        finally:
            exc_info = None

    def handle_error(self):
        """Log current error, and send error output to client if possible"""
        self.log_exception(sys.exc_info())
        if not self.headers_sent:
            self.result = self.error_output(self.environ, self.start_response)
            self.finish_response()
        # XXX else: attempt advanced recovery techniques for HTML or text?

    def error_output(self, environ, start_response):
        """WSGI mini-app to create error output

        By default, this just uses the 'error_status', 'error_headers',
        and 'error_body' attributes to generate an output page.  It can
        be overridden in a subclass to dynamically generate diagnostics,
        choose an appropriate message for the user's preferred language, etc.

        Note, however, that it's not recommended from a security perspective to
        spit out diagnostics to any old user; ideally, you should have to do
        something special to enable diagnostic output, which is why we don't
        include any here!
        """
        start_response(self.error_status,self.error_headers[:],sys.exc_info())
        return [self.error_body]


    # Pure abstract methods; *must* be overridden in subclasses

    def _write(self,data):
        """Override in subclass to buffer data for send to client

        It's okay if this method actually transmits the data; BaseHandler
        just separates write and flush operations for greater efficiency
        when the underlying system actually has such a distinction.
        """
        raise NotImplementedError

    def _flush(self):
        """Override in subclass to force sending of recent '_write()' calls

        It's okay if this method is a no-op (i.e., if '_write()' actually
        sends the data.
        """
        raise NotImplementedError

    def get_stdin(self):
        """Override in subclass to return suitable 'wsgi.input'"""
        raise NotImplementedError

    def get_stderr(self):
        """Override in subclass to return suitable 'wsgi.errors'"""
        raise NotImplementedError

    def add_cgi_vars(self):
        """Override in subclass to insert CGI variables in 'self.environ'"""
        raise NotImplementedError


class SimpleHandler(BaseHandler):
    """Handler that's just initialized with streams, environment, etc.

    This handler subclass is intended for synchronous HTTP/1.0 origin servers,
    and handles sending the entire response output, given the correct inputs.

    Usage::

        handler = SimpleHandler(
            inp,out,err,env, multithread=False, multiprocess=True
        )
        handler.run(app)"""

    def __init__(self,stdin,stdout,stderr,environ,
        multithread=True, multiprocess=False
    ):
        self.stdin = stdin
        self.stdout = stdout
        self.stderr = stderr
        self.base_env = environ
        self.wsgi_multithread = multithread
        self.wsgi_multiprocess = multiprocess

    def get_stdin(self):
        return self.stdin

    def get_stderr(self):
        return self.stderr

    def add_cgi_vars(self):
        self.environ.update(self.base_env)

    def _write(self,data):
        self.stdout.write(data)

    def _flush(self):
        self.stdout.flush()
        self._flush = self.stdout.flush


class BaseCGIHandler(SimpleHandler):

    """CGI-like systems using input/output/error streams and environ mapping

    Usage::

        handler = BaseCGIHandler(inp,out,err,env)
        handler.run(app)

    This handler class is useful for gateway protocols like ReadyExec and
    FastCGI, that have usable input/output/error streams and an environment
    mapping.  It's also the base class for CGIHandler, which just uses
    sys.stdin, os.environ, and so on.

    The constructor also takes keyword arguments 'multithread' and
    'multiprocess' (defaulting to 'True' and 'False' respectively) to control
    the configuration sent to the application.  It sets 'origin_server' to
    False (to enable CGI-like output), and assumes that 'wsgi.run_once' is
    False.
    """

    origin_server = False


class CGIHandler(BaseCGIHandler):

    """CGI-based invocation via sys.stdin/stdout/stderr and os.environ

    Usage::

        CGIHandler().run(app)

    The difference between this class and BaseCGIHandler is that it always
    uses 'wsgi.run_once' of 'True', 'wsgi.multithread' of 'False', and
    'wsgi.multiprocess' of 'True'.  It does not take any initialization
    parameters, but always uses 'sys.stdin', 'os.environ', and friends.

    If you need to override any of these parameters, use BaseCGIHandler
    instead.
    """

    wsgi_run_once = True
    # Do not allow os.environ to leak between requests in Google App Engine
    # and other multi-run CGI use cases.  This is not easily testable.
    # See http://bugs.python.org/issue7250
    os_environ = {}

    def __init__(self):
        BaseCGIHandler.__init__(
            self, sys.stdin.buffer, sys.stdout.buffer, sys.stderr,
            read_environ(), multithread=False, multiprocess=True
        )


class IISCGIHandler(BaseCGIHandler):
    """CGI-based invocation with workaround for IIS path bug

    This handler should be used in preference to CGIHandler when deploying on
    Microsoft IIS without having set the config allowPathInfo option (IIS>=7)
    or metabase allowPathInfoForScriptMappings (IIS<7).
    """
    wsgi_run_once = True
    os_environ = {}

    # By default, IIS gives a PATH_INFO that duplicates the SCRIPT_NAME at
    # the front, causing problems for WSGI applications that wish to implement
    # routing. This handler strips any such duplicated path.

    # IIS can be configured to pass the correct PATH_INFO, but this causes
    # another bug where PATH_TRANSLATED is wrong. Luckily this variable is
    # rarely used and is not guaranteed by WSGI. On IIS<7, though, the
    # setting can only be made on a vhost level, affecting all other script
    # mappings, many of which break when exposed to the PATH_TRANSLATED bug.
    # For this reason IIS<7 is almost never deployed with the fix. (Even IIS7
    # rarely uses it because there is still no UI for it.)

    # There is no way for CGI code to tell whether the option was set, so a
    # separate handler class is provided.
    def __init__(self):
        environ= read_environ()
        path = environ.get('PATH_INFO', '')
        script = environ.get('SCRIPT_NAME', '')
        if (path+'/').startswith(script+'/'):
            environ['PATH_INFO'] = path[len(script):]
        BaseCGIHandler.__init__(
            self, sys.stdin.buffer, sys.stdout.buffer, sys.stderr,
            environ, multithread=False, multiprocess=True
        )
lib\wsgiref\headers.py
"""Manage HTTP Response Headers

Much of this module is red-handedly pilfered from email.message in the stdlib,
so portions are Copyright (C) 2001,2002 Python Software Foundation, and were
written by Barry Warsaw.
"""

# Regular expression that matches `special' characters in parameters, the
# existence of which force quoting of the parameter value.
import re
tspecials = re.compile(r'[ \(\)<>@,;:\\"/\[\]\?=]')

def _formatparam(param, value=None, quote=1):
    """Convenience function to format and return a key=value pair.

    This will quote the value if needed or if quote is true.
    """
    if value is not None and len(value) > 0:
        if quote or tspecials.search(value):
            value = value.replace('\\', '\\\\').replace('"', r'\"')
            return '%s="%s"' % (param, value)
        else:
            return '%s=%s' % (param, value)
    else:
        return param


class Headers:

    """Manage a collection of HTTP response headers"""

    def __init__(self,headers):
        if type(headers) is not list:
            raise TypeError("Headers must be a list of name/value tuples")
        self._headers = headers
        if __debug__:
            for k, v in headers:
                self._convert_string_type(k)
                self._convert_string_type(v)

    def _convert_string_type(self, value):
        """Convert/check value type."""
        if type(value) is str:
            return value
        raise AssertionError("Header names/values must be"
            " of type str (got {0})".format(repr(value)))

    def __len__(self):
        """Return the total number of headers, including duplicates."""
        return len(self._headers)

    def __setitem__(self, name, val):
        """Set the value of a header."""
        del self[name]
        self._headers.append(
            (self._convert_string_type(name), self._convert_string_type(val)))

    def __delitem__(self,name):
        """Delete all occurrences of a header, if present.

        Does *not* raise an exception if the header is missing.
        """
        name = self._convert_string_type(name.lower())
        self._headers[:] = [kv for kv in self._headers if kv[0].lower() != name]

    def __getitem__(self,name):
        """Get the first header value for 'name'

        Return None if the header is missing instead of raising an exception.

        Note that if the header appeared multiple times, the first exactly which
        occurrance gets returned is undefined.  Use getall() to get all
        the values matching a header field name.
        """
        return self.get(name)

    def __contains__(self, name):
        """Return true if the message contains the header."""
        return self.get(name) is not None


    def get_all(self, name):
        """Return a list of all the values for the named field.

        These will be sorted in the order they appeared in the original header
        list or were added to this instance, and may contain duplicates.  Any
        fields deleted and re-inserted are always appended to the header list.
        If no fields exist with the given name, returns an empty list.
        """
        name = self._convert_string_type(name.lower())
        return [kv[1] for kv in self._headers if kv[0].lower()==name]


    def get(self,name,default=None):
        """Get the first header value for 'name', or return 'default'"""
        name = self._convert_string_type(name.lower())
        for k,v in self._headers:
            if k.lower()==name:
                return v
        return default


    def keys(self):
        """Return a list of all the header field names.

        These will be sorted in the order they appeared in the original header
        list, or were added to this instance, and may contain duplicates.
        Any fields deleted and re-inserted are always appended to the header
        list.
        """
        return [k for k, v in self._headers]

    def values(self):
        """Return a list of all header values.

        These will be sorted in the order they appeared in the original header
        list, or were added to this instance, and may contain duplicates.
        Any fields deleted and re-inserted are always appended to the header
        list.
        """
        return [v for k, v in self._headers]

    def items(self):
        """Get all the header fields and values.

        These will be sorted in the order they were in the original header
        list, or were added to this instance, and may contain duplicates.
        Any fields deleted and re-inserted are always appended to the header
        list.
        """
        return self._headers[:]

    def __repr__(self):
        return "Headers(%r)" % self._headers

    def __str__(self):
        """str() returns the formatted headers, complete with end line,
        suitable for direct HTTP transmission."""
        return '\r\n'.join(["%s: %s" % kv for kv in self._headers]+['',''])

    def __bytes__(self):
        return str(self).encode('iso-8859-1')

    def setdefault(self,name,value):
        """Return first matching header value for 'name', or 'value'

        If there is no header named 'name', add a new header with name 'name'
        and value 'value'."""
        result = self.get(name)
        if result is None:
            self._headers.append((self._convert_string_type(name),
                self._convert_string_type(value)))
            return value
        else:
            return result

    def add_header(self, _name, _value, **_params):
        """Extended header setting.

        _name is the header field to add.  keyword arguments can be used to set
        additional parameters for the header field, with underscores converted
        to dashes.  Normally the parameter will be added as key="value" unless
        value is None, in which case only the key will be added.

        Example:

        h.add_header('content-disposition', 'attachment', filename='bud.gif')

        Note that unlike the corresponding 'email.message' method, this does
        *not* handle '(charset, language, value)' tuples: all values must be
        strings or None.
        """
        parts = []
        if _value is not None:
            _value = self._convert_string_type(_value)
            parts.append(_value)
        for k, v in _params.items():
            k = self._convert_string_type(k)
            if v is None:
                parts.append(k.replace('_', '-'))
            else:
                v = self._convert_string_type(v)
                parts.append(_formatparam(k.replace('_', '-'), v))
        self._headers.append((self._convert_string_type(_name), "; ".join(parts)))
lib\wsgiref\simple_server.py
"""BaseHTTPServer that implements the Python WSGI protocol (PEP 3333)

This is both an example of how WSGI can be implemented, and a basis for running
simple web applications on a local machine, such as might be done when testing
or debugging an application.  It has not been reviewed for security issues,
however, and we strongly recommend that you use a "real" web server for
production use.

For example usage, see the 'if __name__=="__main__"' block at the end of the
module.  See also the BaseHTTPServer module docs for other API information.
"""

from http.server import BaseHTTPRequestHandler, HTTPServer
import sys
import urllib.parse
from wsgiref.handlers import SimpleHandler
from platform import python_implementation

__version__ = "0.2"
__all__ = ['WSGIServer', 'WSGIRequestHandler', 'demo_app', 'make_server']


server_version = "WSGIServer/" + __version__
sys_version = python_implementation() + "/" + sys.version.split()[0]
software_version = server_version + ' ' + sys_version


class ServerHandler(SimpleHandler):

    server_software = software_version

    def close(self):
        try:
            self.request_handler.log_request(
                self.status.split(' ',1)[0], self.bytes_sent
            )
        finally:
            SimpleHandler.close(self)



class WSGIServer(HTTPServer):

    """BaseHTTPServer that implements the Python WSGI protocol"""

    application = None

    def server_bind(self):
        """Override server_bind to store the server name."""
        HTTPServer.server_bind(self)
        self.setup_environ()

    def setup_environ(self):
        # Set up base environment
        env = self.base_environ = {}
        env['SERVER_NAME'] = self.server_name
        env['GATEWAY_INTERFACE'] = 'CGI/1.1'
        env['SERVER_PORT'] = str(self.server_port)
        env['REMOTE_HOST']=''
        env['CONTENT_LENGTH']=''
        env['SCRIPT_NAME'] = ''

    def get_app(self):
        return self.application

    def set_app(self,application):
        self.application = application



class WSGIRequestHandler(BaseHTTPRequestHandler):

    server_version = "WSGIServer/" + __version__

    def get_environ(self):
        env = self.server.base_environ.copy()
        env['SERVER_PROTOCOL'] = self.request_version
        env['SERVER_SOFTWARE'] = self.server_version
        env['REQUEST_METHOD'] = self.command
        if '?' in self.path:
            path,query = self.path.split('?',1)
        else:
            path,query = self.path,''

        env['PATH_INFO'] = urllib.parse.unquote_to_bytes(path).decode('iso-8859-1')
        env['QUERY_STRING'] = query

        host = self.address_string()
        if host != self.client_address[0]:
            env['REMOTE_HOST'] = host
        env['REMOTE_ADDR'] = self.client_address[0]

        if self.headers.get('content-type') is None:
            env['CONTENT_TYPE'] = self.headers.get_content_type()
        else:
            env['CONTENT_TYPE'] = self.headers['content-type']

        length = self.headers.get('content-length')
        if length:
            env['CONTENT_LENGTH'] = length

        for k, v in self.headers.items():
            k=k.replace('-','_').upper(); v=v.strip()
            if k in env:
                continue                    # skip content length, type,etc.
            if 'HTTP_'+k in env:
                env['HTTP_'+k] += ','+v     # comma-separate multiple headers
            else:
                env['HTTP_'+k] = v
        return env

    def get_stderr(self):
        return sys.stderr

    def handle(self):
        """Handle a single HTTP request"""

        self.raw_requestline = self.rfile.readline(65537)
        if len(self.raw_requestline) > 65536:
            self.requestline = ''
            self.request_version = ''
            self.command = ''
            self.send_error(414)
            return

        if not self.parse_request(): # An error code has been sent, just exit
            return

        handler = ServerHandler(
            self.rfile, self.wfile, self.get_stderr(), self.get_environ()
        )
        handler.request_handler = self      # backpointer for logging
        handler.run(self.server.get_app())



def demo_app(environ,start_response):
    from io import StringIO
    stdout = StringIO()
    print("Hello world!", file=stdout)
    print(file=stdout)
    h = sorted(environ.items())
    for k,v in h:
        print(k,'=',repr(v), file=stdout)
    start_response("200 OK", [('Content-Type','text/plain; charset=utf-8')])
    return [stdout.getvalue().encode("utf-8")]


def make_server(
    host, port, app, server_class=WSGIServer, handler_class=WSGIRequestHandler
):
    """Create a new WSGI server listening on `host` and `port` for `app`"""
    server = server_class((host, port), handler_class)
    server.set_app(app)
    return server


if __name__ == '__main__':
    httpd = make_server('', 8000, demo_app)
    sa = httpd.socket.getsockname()
    print("Serving HTTP on", sa[0], "port", sa[1], "...")
    import webbrowser
    webbrowser.open('http://localhost:8000/xyz?abc')
    httpd.handle_request()  # serve one request, then exit
    httpd.server_close()
lib\wsgiref\util.py
"""Miscellaneous WSGI-related Utilities"""

import posixpath

__all__ = [
    'FileWrapper', 'guess_scheme', 'application_uri', 'request_uri',
    'shift_path_info', 'setup_testing_defaults',
]


class FileWrapper:
    """Wrapper to convert file-like objects to iterables"""

    def __init__(self, filelike, blksize=8192):
        self.filelike = filelike
        self.blksize = blksize
        if hasattr(filelike,'close'):
            self.close = filelike.close

    def __getitem__(self,key):
        data = self.filelike.read(self.blksize)
        if data:
            return data
        raise IndexError

    def __iter__(self):
        return self

    def __next__(self):
        data = self.filelike.read(self.blksize)
        if data:
            return data
        raise StopIteration

def guess_scheme(environ):
    """Return a guess for whether 'wsgi.url_scheme' should be 'http' or 'https'
    """
    if environ.get("HTTPS") in ('yes','on','1'):
        return 'https'
    else:
        return 'http'

def application_uri(environ):
    """Return the application's base URI (no PATH_INFO or QUERY_STRING)"""
    url = environ['wsgi.url_scheme']+'://'
    from urllib.parse import quote

    if environ.get('HTTP_HOST'):
        url += environ['HTTP_HOST']
    else:
        url += environ['SERVER_NAME']

        if environ['wsgi.url_scheme'] == 'https':
            if environ['SERVER_PORT'] != '443':
                url += ':' + environ['SERVER_PORT']
        else:
            if environ['SERVER_PORT'] != '80':
                url += ':' + environ['SERVER_PORT']

    url += quote(environ.get('SCRIPT_NAME') or '/', encoding='latin1')
    return url

def request_uri(environ, include_query=True):
    """Return the full request URI, optionally including the query string"""
    url = application_uri(environ)
    from urllib.parse import quote
    path_info = quote(environ.get('PATH_INFO',''), safe='/;=,', encoding='latin1')
    if not environ.get('SCRIPT_NAME'):
        url += path_info[1:]
    else:
        url += path_info
    if include_query and environ.get('QUERY_STRING'):
        url += '?' + environ['QUERY_STRING']
    return url

def shift_path_info(environ):
    """Shift a name from PATH_INFO to SCRIPT_NAME, returning it

    If there are no remaining path segments in PATH_INFO, return None.
    Note: 'environ' is modified in-place; use a copy if you need to keep
    the original PATH_INFO or SCRIPT_NAME.

    Note: when PATH_INFO is just a '/', this returns '' and appends a trailing
    '/' to SCRIPT_NAME, even though empty path segments are normally ignored,
    and SCRIPT_NAME doesn't normally end in a '/'.  This is intentional
    behavior, to ensure that an application can tell the difference between
    '/x' and '/x/' when traversing to objects.
    """
    path_info = environ.get('PATH_INFO','')
    if not path_info:
        return None

    path_parts = path_info.split('/')
    path_parts[1:-1] = [p for p in path_parts[1:-1] if p and p != '.']
    name = path_parts[1]
    del path_parts[1]

    script_name = environ.get('SCRIPT_NAME','')
    script_name = posixpath.normpath(script_name+'/'+name)
    if script_name.endswith('/'):
        script_name = script_name[:-1]
    if not name and not script_name.endswith('/'):
        script_name += '/'

    environ['SCRIPT_NAME'] = script_name
    environ['PATH_INFO']   = '/'.join(path_parts)

    # Special case: '/.' on PATH_INFO doesn't get stripped,
    # because we don't strip the last element of PATH_INFO
    # if there's only one path part left.  Instead of fixing this
    # above, we fix it here so that PATH_INFO gets normalized to
    # an empty string in the environ.
    if name=='.':
        name = None
    return name

def setup_testing_defaults(environ):
    """Update 'environ' with trivial defaults for testing purposes

    This adds various parameters required for WSGI, including HTTP_HOST,
    SERVER_NAME, SERVER_PORT, REQUEST_METHOD, SCRIPT_NAME, PATH_INFO,
    and all of the wsgi.* variables.  It only supplies default values,
    and does not replace any existing settings for these variables.

    This routine is intended to make it easier for unit tests of WSGI
    servers and applications to set up dummy environments.  It should *not*
    be used by actual WSGI servers or applications, since the data is fake!
    """

    environ.setdefault('SERVER_NAME','127.0.0.1')
    environ.setdefault('SERVER_PROTOCOL','HTTP/1.0')

    environ.setdefault('HTTP_HOST',environ['SERVER_NAME'])
    environ.setdefault('REQUEST_METHOD','GET')

    if 'SCRIPT_NAME' not in environ and 'PATH_INFO' not in environ:
        environ.setdefault('SCRIPT_NAME','')
        environ.setdefault('PATH_INFO','/')

    environ.setdefault('wsgi.version', (1,0))
    environ.setdefault('wsgi.run_once', 0)
    environ.setdefault('wsgi.multithread', 0)
    environ.setdefault('wsgi.multiprocess', 0)

    from io import StringIO, BytesIO
    environ.setdefault('wsgi.input', BytesIO())
    environ.setdefault('wsgi.errors', StringIO())
    environ.setdefault('wsgi.url_scheme',guess_scheme(environ))

    if environ['wsgi.url_scheme']=='http':
        environ.setdefault('SERVER_PORT', '80')
    elif environ['wsgi.url_scheme']=='https':
        environ.setdefault('SERVER_PORT', '443')



_hoppish = {
    'connection':1, 'keep-alive':1, 'proxy-authenticate':1,
    'proxy-authorization':1, 'te':1, 'trailers':1, 'transfer-encoding':1,
    'upgrade':1
}.__contains__

def is_hop_by_hop(header_name):
    """Return true if 'header_name' is an HTTP/1.1 "Hop-by-Hop" header"""
    return _hoppish(header_name.lower())
lib\wsgiref\validate.py
# (c) 2005 Ian Bicking and contributors; written for Paste (http://pythonpaste.org)
# Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php
# Also licenced under the Apache License, 2.0: http://opensource.org/licenses/apache2.0.php
# Licensed to PSF under a Contributor Agreement
"""
Middleware to check for obedience to the WSGI specification.

Some of the things this checks:

* Signature of the application and start_response (including that
  keyword arguments are not used).

* Environment checks:

  - Environment is a dictionary (and not a subclass).

  - That all the required keys are in the environment: REQUEST_METHOD,
    SERVER_NAME, SERVER_PORT, wsgi.version, wsgi.input, wsgi.errors,
    wsgi.multithread, wsgi.multiprocess, wsgi.run_once

  - That HTTP_CONTENT_TYPE and HTTP_CONTENT_LENGTH are not in the
    environment (these headers should appear as CONTENT_LENGTH and
    CONTENT_TYPE).

  - Warns if QUERY_STRING is missing, as the cgi module acts
    unpredictably in that case.

  - That CGI-style variables (that don't contain a .) have
    (non-unicode) string values

  - That wsgi.version is a tuple

  - That wsgi.url_scheme is 'http' or 'https' (@@: is this too
    restrictive?)

  - Warns if the REQUEST_METHOD is not known (@@: probably too
    restrictive).

  - That SCRIPT_NAME and PATH_INFO are empty or start with /

  - That at least one of SCRIPT_NAME or PATH_INFO are set.

  - That CONTENT_LENGTH is a positive integer.

  - That SCRIPT_NAME is not '/' (it should be '', and PATH_INFO should
    be '/').

  - That wsgi.input has the methods read, readline, readlines, and
    __iter__

  - That wsgi.errors has the methods flush, write, writelines

* The status is a string, contains a space, starts with an integer,
  and that integer is in range (> 100).

* That the headers is a list (not a subclass, not another kind of
  sequence).

* That the items of the headers are tuples of strings.

* That there is no 'status' header (that is used in CGI, but not in
  WSGI).

* That the headers don't contain newlines or colons, end in _ or -, or
  contain characters codes below 037.

* That Content-Type is given if there is content (CGI often has a
  default content type, but WSGI does not).

* That no Content-Type is given when there is no content (@@: is this
  too restrictive?)

* That the exc_info argument to start_response is a tuple or None.

* That all calls to the writer are with strings, and no other methods
  on the writer are accessed.

* That wsgi.input is used properly:

  - .read() is called with zero or one argument

  - That it returns a string

  - That readline, readlines, and __iter__ return strings

  - That .close() is not called

  - No other methods are provided

* That wsgi.errors is used properly:

  - .write() and .writelines() is called with a string

  - That .close() is not called, and no other methods are provided.

* The response iterator:

  - That it is not a string (it should be a list of a single string; a
    string will work, but perform horribly).

  - That .__next__() returns a string

  - That the iterator is not iterated over until start_response has
    been called (that can signal either a server or application
    error).

  - That .close() is called (doesn't raise exception, only prints to
    sys.stderr, because we only know it isn't called when the object
    is garbage collected).
"""
__all__ = ['validator']


import re
import sys
import warnings

header_re = re.compile(r'^[a-zA-Z][a-zA-Z0-9\-_]*$')
bad_header_value_re = re.compile(r'[\000-\037]')

class WSGIWarning(Warning):
    """
    Raised in response to WSGI-spec-related warnings
    """

def assert_(cond, *args):
    if not cond:
        raise AssertionError(*args)

def check_string_type(value, title):
    if type (value) is str:
        return value
    raise AssertionError(
        "{0} must be of type str (got {1})".format(title, repr(value)))

def validator(application):

    """
    When applied between a WSGI server and a WSGI application, this
    middleware will check for WSGI compliancy on a number of levels.
    This middleware does not modify the request or response in any
    way, but will raise an AssertionError if anything seems off
    (except for a failure to close the application iterator, which
    will be printed to stderr -- there's no way to raise an exception
    at that point).
    """

    def lint_app(*args, **kw):
        assert_(len(args) == 2, "Two arguments required")
        assert_(not kw, "No keyword arguments allowed")
        environ, start_response = args

        check_environ(environ)

        # We use this to check if the application returns without
        # calling start_response:
        start_response_started = []

        def start_response_wrapper(*args, **kw):
            assert_(len(args) == 2 or len(args) == 3, (
                "Invalid number of arguments: %s" % (args,)))
            assert_(not kw, "No keyword arguments allowed")
            status = args[0]
            headers = args[1]
            if len(args) == 3:
                exc_info = args[2]
            else:
                exc_info = None

            check_status(status)
            check_headers(headers)
            check_content_type(status, headers)
            check_exc_info(exc_info)

            start_response_started.append(None)
            return WriteWrapper(start_response(*args))

        environ['wsgi.input'] = InputWrapper(environ['wsgi.input'])
        environ['wsgi.errors'] = ErrorWrapper(environ['wsgi.errors'])

        iterator = application(environ, start_response_wrapper)
        assert_(iterator is not None and iterator != False,
            "The application must return an iterator, if only an empty list")

        check_iterator(iterator)

        return IteratorWrapper(iterator, start_response_started)

    return lint_app

class InputWrapper:

    def __init__(self, wsgi_input):
        self.input = wsgi_input

    def read(self, *args):
        assert_(len(args) == 1)
        v = self.input.read(*args)
        assert_(type(v) is bytes)
        return v

    def readline(self, *args):
        assert_(len(args) <= 1)
        v = self.input.readline(*args)
        assert_(type(v) is bytes)
        return v

    def readlines(self, *args):
        assert_(len(args) <= 1)
        lines = self.input.readlines(*args)
        assert_(type(lines) is list)
        for line in lines:
            assert_(type(line) is bytes)
        return lines

    def __iter__(self):
        while 1:
            line = self.readline()
            if not line:
                return
            yield line

    def close(self):
        assert_(0, "input.close() must not be called")

class ErrorWrapper:

    def __init__(self, wsgi_errors):
        self.errors = wsgi_errors

    def write(self, s):
        assert_(type(s) is str)
        self.errors.write(s)

    def flush(self):
        self.errors.flush()

    def writelines(self, seq):
        for line in seq:
            self.write(line)

    def close(self):
        assert_(0, "errors.close() must not be called")

class WriteWrapper:

    def __init__(self, wsgi_writer):
        self.writer = wsgi_writer

    def __call__(self, s):
        assert_(type(s) is bytes)
        self.writer(s)

class PartialIteratorWrapper:

    def __init__(self, wsgi_iterator):
        self.iterator = wsgi_iterator

    def __iter__(self):
        # We want to make sure __iter__ is called
        return IteratorWrapper(self.iterator, None)

class IteratorWrapper:

    def __init__(self, wsgi_iterator, check_start_response):
        self.original_iterator = wsgi_iterator
        self.iterator = iter(wsgi_iterator)
        self.closed = False
        self.check_start_response = check_start_response

    def __iter__(self):
        return self

    def __next__(self):
        assert_(not self.closed,
            "Iterator read after closed")
        v = next(self.iterator)
        if type(v) is not bytes:
            assert_(False, "Iterator yielded non-bytestring (%r)" % (v,))
        if self.check_start_response is not None:
            assert_(self.check_start_response,
                "The application returns and we started iterating over its body, but start_response has not yet been called")
            self.check_start_response = None
        return v

    def close(self):
        self.closed = True
        if hasattr(self.original_iterator, 'close'):
            self.original_iterator.close()

    def __del__(self):
        if not self.closed:
            sys.stderr.write(
                "Iterator garbage collected without being closed")
        assert_(self.closed,
            "Iterator garbage collected without being closed")

def check_environ(environ):
    assert_(type(environ) is dict,
        "Environment is not of the right type: %r (environment: %r)"
        % (type(environ), environ))

    for key in ['REQUEST_METHOD', 'SERVER_NAME', 'SERVER_PORT',
                'wsgi.version', 'wsgi.input', 'wsgi.errors',
                'wsgi.multithread', 'wsgi.multiprocess',
                'wsgi.run_once']:
        assert_(key in environ,
            "Environment missing required key: %r" % (key,))

    for key in ['HTTP_CONTENT_TYPE', 'HTTP_CONTENT_LENGTH']:
        assert_(key not in environ,
            "Environment should not have the key: %s "
            "(use %s instead)" % (key, key[5:]))

    if 'QUERY_STRING' not in environ:
        warnings.warn(
            'QUERY_STRING is not in the WSGI environment; the cgi '
            'module will use sys.argv when this variable is missing, '
            'so application errors are more likely',
            WSGIWarning)

    for key in environ.keys():
        if '.' in key:
            # Extension, we don't care about its type
            continue
        assert_(type(environ[key]) is str,
            "Environmental variable %s is not a string: %r (value: %r)"
            % (key, type(environ[key]), environ[key]))

    assert_(type(environ['wsgi.version']) is tuple,
        "wsgi.version should be a tuple (%r)" % (environ['wsgi.version'],))
    assert_(environ['wsgi.url_scheme'] in ('http', 'https'),
        "wsgi.url_scheme unknown: %r" % environ['wsgi.url_scheme'])

    check_input(environ['wsgi.input'])
    check_errors(environ['wsgi.errors'])

    # @@: these need filling out:
    if environ['REQUEST_METHOD'] not in (
        'GET', 'HEAD', 'POST', 'OPTIONS', 'PATCH', 'PUT', 'DELETE', 'TRACE'):
        warnings.warn(
            "Unknown REQUEST_METHOD: %r" % environ['REQUEST_METHOD'],
            WSGIWarning)

    assert_(not environ.get('SCRIPT_NAME')
            or environ['SCRIPT_NAME'].startswith('/'),
        "SCRIPT_NAME doesn't start with /: %r" % environ['SCRIPT_NAME'])
    assert_(not environ.get('PATH_INFO')
            or environ['PATH_INFO'].startswith('/'),
        "PATH_INFO doesn't start with /: %r" % environ['PATH_INFO'])
    if environ.get('CONTENT_LENGTH'):
        assert_(int(environ['CONTENT_LENGTH']) >= 0,
            "Invalid CONTENT_LENGTH: %r" % environ['CONTENT_LENGTH'])

    if not environ.get('SCRIPT_NAME'):
        assert_('PATH_INFO' in environ,
            "One of SCRIPT_NAME or PATH_INFO are required (PATH_INFO "
            "should at least be '/' if SCRIPT_NAME is empty)")
    assert_(environ.get('SCRIPT_NAME') != '/',
        "SCRIPT_NAME cannot be '/'; it should instead be '', and "
        "PATH_INFO should be '/'")

def check_input(wsgi_input):
    for attr in ['read', 'readline', 'readlines', '__iter__']:
        assert_(hasattr(wsgi_input, attr),
            "wsgi.input (%r) doesn't have the attribute %s"
            % (wsgi_input, attr))

def check_errors(wsgi_errors):
    for attr in ['flush', 'write', 'writelines']:
        assert_(hasattr(wsgi_errors, attr),
            "wsgi.errors (%r) doesn't have the attribute %s"
            % (wsgi_errors, attr))

def check_status(status):
    status = check_string_type(status, "Status")
    # Implicitly check that we can turn it into an integer:
    status_code = status.split(None, 1)[0]
    assert_(len(status_code) == 3,
        "Status codes must be three characters: %r" % status_code)
    status_int = int(status_code)
    assert_(status_int >= 100, "Status code is invalid: %r" % status_int)
    if len(status) < 4 or status[3] != ' ':
        warnings.warn(
            "The status string (%r) should be a three-digit integer "
            "followed by a single space and a status explanation"
            % status, WSGIWarning)

def check_headers(headers):
    assert_(type(headers) is list,
        "Headers (%r) must be of type list: %r"
        % (headers, type(headers)))
    header_names = {}
    for item in headers:
        assert_(type(item) is tuple,
            "Individual headers (%r) must be of type tuple: %r"
            % (item, type(item)))
        assert_(len(item) == 2)
        name, value = item
        name = check_string_type(name, "Header name")
        value = check_string_type(value, "Header value")
        assert_(name.lower() != 'status',
            "The Status header cannot be used; it conflicts with CGI "
            "script, and HTTP status is not given through headers "
            "(value: %r)." % value)
        header_names[name.lower()] = None
        assert_('\n' not in name and ':' not in name,
            "Header names may not contain ':' or '\\n': %r" % name)
        assert_(header_re.search(name), "Bad header name: %r" % name)
        assert_(not name.endswith('-') and not name.endswith('_'),
            "Names may not end in '-' or '_': %r" % name)
        if bad_header_value_re.search(value):
            assert_(0, "Bad header value: %r (bad char: %r)"
            % (value, bad_header_value_re.search(value).group(0)))

def check_content_type(status, headers):
    status = check_string_type(status, "Status")
    code = int(status.split(None, 1)[0])
    # @@: need one more person to verify this interpretation of RFC 2616
    #     http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
    NO_MESSAGE_BODY = (204, 304)
    for name, value in headers:
        name = check_string_type(name, "Header name")
        if name.lower() == 'content-type':
            if code not in NO_MESSAGE_BODY:
                return
            assert_(0, ("Content-Type header found in a %s response, "
                        "which must not return content.") % code)
    if code not in NO_MESSAGE_BODY:
        assert_(0, "No Content-Type header found in headers (%s)" % headers)

def check_exc_info(exc_info):
    assert_(exc_info is None or type(exc_info) is tuple,
        "exc_info (%r) is not a tuple: %r" % (exc_info, type(exc_info)))
    # More exc_info checks?

def check_iterator(iterator):
    # Technically a bytestring is legal, which is why it's a really bad
    # idea, because it may cause the response to be returned
    # character-by-character
    assert_(not isinstance(iterator, (str, bytes)),
        "You should not return a string as your application iterator, "
        "instead return a single-item list containing a bytestring.")
lib\wsgiref\__init__.py
"""wsgiref -- a WSGI (PEP 3333) Reference Library

Current Contents:

* util -- Miscellaneous useful functions and wrappers

* headers -- Manage response headers

* handlers -- base classes for server/gateway implementations

* simple_server -- a simple BaseHTTPServer that supports WSGI

* validate -- validation wrapper that sits between an app and a server
  to detect errors in either

To-Do:

* cgi_gateway -- Run WSGI apps under CGI (pending a deployment standard)

* cgi_wrapper -- Run CGI apps under WSGI

* router -- a simple middleware component that handles URL traversal
"""
lib\xml\__init__.py
"""Core XML support for Python.

This package contains four sub-packages:

dom -- The W3C Document Object Model.  This supports DOM Level 1 +
       Namespaces.

parsers -- Python wrappers for XML parsers (currently only supports Expat).

sax -- The Simple API for XML, developed by XML-Dev, led by David
       Megginson and ported to Python by Lars Marius Garshol.  This
       supports the SAX 2 API.

etree -- The ElementTree XML library.  This is a subset of the full
       ElementTree XML release.

"""


__all__ = ["dom", "parsers", "sax", "etree"]
lib\xml\dom\domreg.py
"""Registration facilities for DOM. This module should not be used
directly. Instead, the functions getDOMImplementation and
registerDOMImplementation should be imported from xml.dom."""

# This is a list of well-known implementations.  Well-known names
# should be published by posting to [email protected], and are
# subsequently recorded in this file.

import sys

well_known_implementations = {
    'minidom':'xml.dom.minidom',
    '4DOM': 'xml.dom.DOMImplementation',
    }

# DOM implementations not officially registered should register
# themselves with their

registered = {}

def registerDOMImplementation(name, factory):
    """registerDOMImplementation(name, factory)

    Register the factory function with the name. The factory function
    should return an object which implements the DOMImplementation
    interface. The factory function can either return the same object,
    or a new one (e.g. if that implementation supports some
    customization)."""

    registered[name] = factory

def _good_enough(dom, features):
    "_good_enough(dom, features) -> Return 1 if the dom offers the features"
    for f,v in features:
        if not dom.hasFeature(f,v):
            return 0
    return 1

def getDOMImplementation(name=None, features=()):
    """getDOMImplementation(name = None, features = ()) -> DOM implementation.

    Return a suitable DOM implementation. The name is either
    well-known, the module name of a DOM implementation, or None. If
    it is not None, imports the corresponding module and returns
    DOMImplementation object if the import succeeds.

    If name is not given, consider the available implementations to
    find one with the required feature set. If no implementation can
    be found, raise an ImportError. The features list must be a sequence
    of (feature, version) pairs which are passed to hasFeature."""

    import os
    creator = None
    mod = well_known_implementations.get(name)
    if mod:
        mod = __import__(mod, {}, {}, ['getDOMImplementation'])
        return mod.getDOMImplementation()
    elif name:
        return registered[name]()
    elif not sys.flags.ignore_environment and "PYTHON_DOM" in os.environ:
        return getDOMImplementation(name = os.environ["PYTHON_DOM"])

    # User did not specify a name, try implementations in arbitrary
    # order, returning the one that has the required features
    if isinstance(features, str):
        features = _parse_feature_string(features)
    for creator in registered.values():
        dom = creator()
        if _good_enough(dom, features):
            return dom

    for creator in well_known_implementations.keys():
        try:
            dom = getDOMImplementation(name = creator)
        except Exception: # typically ImportError, or AttributeError
            continue
        if _good_enough(dom, features):
            return dom

    raise ImportError("no suitable DOM implementation found")

def _parse_feature_string(s):
    features = []
    parts = s.split()
    i = 0
    length = len(parts)
    while i < length:
        feature = parts[i]
        if feature[0] in "0123456789":
            raise ValueError("bad feature name: %r" % (feature,))
        i = i + 1
        version = None
        if i < length:
            v = parts[i]
            if v[0] in "0123456789":
                i = i + 1
                version = v
        features.append((feature, version))
    return tuple(features)
lib\xml\dom\expatbuilder.py
"""Facility to use the Expat parser to load a minidom instance
from a string or file.

This avoids all the overhead of SAX and pulldom to gain performance.
"""

# Warning!
#
# This module is tightly bound to the implementation details of the
# minidom DOM and can't be used with other DOM implementations.  This
# is due, in part, to a lack of appropriate methods in the DOM (there is
# no way to create Entity and Notation nodes via the DOM Level 2
# interface), and for performance.  The later is the cause of some fairly
# cryptic code.
#
# Performance hacks:
#
#   -  .character_data_handler() has an extra case in which continuing
#      data is appended to an existing Text node; this can be a
#      speedup since pyexpat can break up character data into multiple
#      callbacks even though we set the buffer_text attribute on the
#      parser.  This also gives us the advantage that we don't need a
#      separate normalization pass.
#
#   -  Determining that a node exists is done using an identity comparison
#      with None rather than a truth test; this avoids searching for and
#      calling any methods on the node object if it exists.  (A rather
#      nice speedup is achieved this way as well!)

from xml.dom import xmlbuilder, minidom, Node
from xml.dom import EMPTY_NAMESPACE, EMPTY_PREFIX, XMLNS_NAMESPACE
from xml.parsers import expat
from xml.dom.minidom import _append_child, _set_attribute_node
from xml.dom.NodeFilter import NodeFilter

TEXT_NODE = Node.TEXT_NODE
CDATA_SECTION_NODE = Node.CDATA_SECTION_NODE
DOCUMENT_NODE = Node.DOCUMENT_NODE

FILTER_ACCEPT = xmlbuilder.DOMBuilderFilter.FILTER_ACCEPT
FILTER_REJECT = xmlbuilder.DOMBuilderFilter.FILTER_REJECT
FILTER_SKIP = xmlbuilder.DOMBuilderFilter.FILTER_SKIP
FILTER_INTERRUPT = xmlbuilder.DOMBuilderFilter.FILTER_INTERRUPT

theDOMImplementation = minidom.getDOMImplementation()

# Expat typename -> TypeInfo
_typeinfo_map = {
    "CDATA":    minidom.TypeInfo(None, "cdata"),
    "ENUM":     minidom.TypeInfo(None, "enumeration"),
    "ENTITY":   minidom.TypeInfo(None, "entity"),
    "ENTITIES": minidom.TypeInfo(None, "entities"),
    "ID":       minidom.TypeInfo(None, "id"),
    "IDREF":    minidom.TypeInfo(None, "idref"),
    "IDREFS":   minidom.TypeInfo(None, "idrefs"),
    "NMTOKEN":  minidom.TypeInfo(None, "nmtoken"),
    "NMTOKENS": minidom.TypeInfo(None, "nmtokens"),
    }

class ElementInfo(object):
    __slots__ = '_attr_info', '_model', 'tagName'

    def __init__(self, tagName, model=None):
        self.tagName = tagName
        self._attr_info = []
        self._model = model

    def __getstate__(self):
        return self._attr_info, self._model, self.tagName

    def __setstate__(self, state):
        self._attr_info, self._model, self.tagName = state

    def getAttributeType(self, aname):
        for info in self._attr_info:
            if info[1] == aname:
                t = info[-2]
                if t[0] == "(":
                    return _typeinfo_map["ENUM"]
                else:
                    return _typeinfo_map[info[-2]]
        return minidom._no_type

    def getAttributeTypeNS(self, namespaceURI, localName):
        return minidom._no_type

    def isElementContent(self):
        if self._model:
            type = self._model[0]
            return type not in (expat.model.XML_CTYPE_ANY,
                                expat.model.XML_CTYPE_MIXED)
        else:
            return False

    def isEmpty(self):
        if self._model:
            return self._model[0] == expat.model.XML_CTYPE_EMPTY
        else:
            return False

    def isId(self, aname):
        for info in self._attr_info:
            if info[1] == aname:
                return info[-2] == "ID"
        return False

    def isIdNS(self, euri, ename, auri, aname):
        # not sure this is meaningful
        return self.isId((auri, aname))

def _intern(builder, s):
    return builder._intern_setdefault(s, s)

def _parse_ns_name(builder, name):
    assert ' ' in name
    parts = name.split(' ')
    intern = builder._intern_setdefault
    if len(parts) == 3:
        uri, localname, prefix = parts
        prefix = intern(prefix, prefix)
        qname = "%s:%s" % (prefix, localname)
        qname = intern(qname, qname)
        localname = intern(localname, localname)
    elif len(parts) == 2:
        uri, localname = parts
        prefix = EMPTY_PREFIX
        qname = localname = intern(localname, localname)
    else:
        raise ValueError("Unsupported syntax: spaces in URIs not supported: %r" % name)
    return intern(uri, uri), localname, prefix, qname


class ExpatBuilder:
    """Document builder that uses Expat to build a ParsedXML.DOM document
    instance."""

    def __init__(self, options=None):
        if options is None:
            options = xmlbuilder.Options()
        self._options = options
        if self._options.filter is not None:
            self._filter = FilterVisibilityController(self._options.filter)
        else:
            self._filter = None
            # This *really* doesn't do anything in this case, so
            # override it with something fast & minimal.
            self._finish_start_element = id
        self._parser = None
        self.reset()

    def createParser(self):
        """Create a new parser object."""
        return expat.ParserCreate()

    def getParser(self):
        """Return the parser object, creating a new one if needed."""
        if not self._parser:
            self._parser = self.createParser()
            self._intern_setdefault = self._parser.intern.setdefault
            self._parser.buffer_text = True
            self._parser.ordered_attributes = True
            self._parser.specified_attributes = True
            self.install(self._parser)
        return self._parser

    def reset(self):
        """Free all data structures used during DOM construction."""
        self.document = theDOMImplementation.createDocument(
            EMPTY_NAMESPACE, None, None)
        self.curNode = self.document
        self._elem_info = self.document._elem_info
        self._cdata = False

    def install(self, parser):
        """Install the callbacks needed to build the DOM into the parser."""
        # This creates circular references!
        parser.StartDoctypeDeclHandler = self.start_doctype_decl_handler
        parser.StartElementHandler = self.first_element_handler
        parser.EndElementHandler = self.end_element_handler
        parser.ProcessingInstructionHandler = self.pi_handler
        if self._options.entities:
            parser.EntityDeclHandler = self.entity_decl_handler
        parser.NotationDeclHandler = self.notation_decl_handler
        if self._options.comments:
            parser.CommentHandler = self.comment_handler
        if self._options.cdata_sections:
            parser.StartCdataSectionHandler = self.start_cdata_section_handler
            parser.EndCdataSectionHandler = self.end_cdata_section_handler
            parser.CharacterDataHandler = self.character_data_handler_cdata
        else:
            parser.CharacterDataHandler = self.character_data_handler
        parser.ExternalEntityRefHandler = self.external_entity_ref_handler
        parser.XmlDeclHandler = self.xml_decl_handler
        parser.ElementDeclHandler = self.element_decl_handler
        parser.AttlistDeclHandler = self.attlist_decl_handler

    def parseFile(self, file):
        """Parse a document from a file object, returning the document
        node."""
        parser = self.getParser()
        first_buffer = True
        try:
            while 1:
                buffer = file.read(16*1024)
                if not buffer:
                    break
                parser.Parse(buffer, 0)
                if first_buffer and self.document.documentElement:
                    self._setup_subset(buffer)
                first_buffer = False
            parser.Parse("", True)
        except ParseEscape:
            pass
        doc = self.document
        self.reset()
        self._parser = None
        return doc

    def parseString(self, string):
        """Parse a document from a string, returning the document node."""
        parser = self.getParser()
        try:
            parser.Parse(string, True)
            self._setup_subset(string)
        except ParseEscape:
            pass
        doc = self.document
        self.reset()
        self._parser = None
        return doc

    def _setup_subset(self, buffer):
        """Load the internal subset if there might be one."""
        if self.document.doctype:
            extractor = InternalSubsetExtractor()
            extractor.parseString(buffer)
            subset = extractor.getSubset()
            self.document.doctype.internalSubset = subset

    def start_doctype_decl_handler(self, doctypeName, systemId, publicId,
                                   has_internal_subset):
        doctype = self.document.implementation.createDocumentType(
            doctypeName, publicId, systemId)
        doctype.ownerDocument = self.document
        _append_child(self.document, doctype)
        self.document.doctype = doctype
        if self._filter and self._filter.acceptNode(doctype) == FILTER_REJECT:
            self.document.doctype = None
            del self.document.childNodes[-1]
            doctype = None
            self._parser.EntityDeclHandler = None
            self._parser.NotationDeclHandler = None
        if has_internal_subset:
            if doctype is not None:
                doctype.entities._seq = []
                doctype.notations._seq = []
            self._parser.CommentHandler = None
            self._parser.ProcessingInstructionHandler = None
            self._parser.EndDoctypeDeclHandler = self.end_doctype_decl_handler

    def end_doctype_decl_handler(self):
        if self._options.comments:
            self._parser.CommentHandler = self.comment_handler
        self._parser.ProcessingInstructionHandler = self.pi_handler
        if not (self._elem_info or self._filter):
            self._finish_end_element = id

    def pi_handler(self, target, data):
        node = self.document.createProcessingInstruction(target, data)
        _append_child(self.curNode, node)
        if self._filter and self._filter.acceptNode(node) == FILTER_REJECT:
            self.curNode.removeChild(node)

    def character_data_handler_cdata(self, data):
        childNodes = self.curNode.childNodes
        if self._cdata:
            if (  self._cdata_continue
                  and childNodes[-1].nodeType == CDATA_SECTION_NODE):
                childNodes[-1].appendData(data)
                return
            node = self.document.createCDATASection(data)
            self._cdata_continue = True
        elif childNodes and childNodes[-1].nodeType == TEXT_NODE:
            node = childNodes[-1]
            value = node.data + data
            node.data = value
            return
        else:
            node = minidom.Text()
            node.data = data
            node.ownerDocument = self.document
        _append_child(self.curNode, node)

    def character_data_handler(self, data):
        childNodes = self.curNode.childNodes
        if childNodes and childNodes[-1].nodeType == TEXT_NODE:
            node = childNodes[-1]
            node.data = node.data + data
            return
        node = minidom.Text()
        node.data = node.data + data
        node.ownerDocument = self.document
        _append_child(self.curNode, node)

    def entity_decl_handler(self, entityName, is_parameter_entity, value,
                            base, systemId, publicId, notationName):
        if is_parameter_entity:
            # we don't care about parameter entities for the DOM
            return
        if not self._options.entities:
            return
        node = self.document._create_entity(entityName, publicId,
                                            systemId, notationName)
        if value is not None:
            # internal entity
            # node *should* be readonly, but we'll cheat
            child = self.document.createTextNode(value)
            node.childNodes.append(child)
        self.document.doctype.entities._seq.append(node)
        if self._filter and self._filter.acceptNode(node) == FILTER_REJECT:
            del self.document.doctype.entities._seq[-1]

    def notation_decl_handler(self, notationName, base, systemId, publicId):
        node = self.document._create_notation(notationName, publicId, systemId)
        self.document.doctype.notations._seq.append(node)
        if self._filter and self._filter.acceptNode(node) == FILTER_ACCEPT:
            del self.document.doctype.notations._seq[-1]

    def comment_handler(self, data):
        node = self.document.createComment(data)
        _append_child(self.curNode, node)
        if self._filter and self._filter.acceptNode(node) == FILTER_REJECT:
            self.curNode.removeChild(node)

    def start_cdata_section_handler(self):
        self._cdata = True
        self._cdata_continue = False

    def end_cdata_section_handler(self):
        self._cdata = False
        self._cdata_continue = False

    def external_entity_ref_handler(self, context, base, systemId, publicId):
        return 1

    def first_element_handler(self, name, attributes):
        if self._filter is None and not self._elem_info:
            self._finish_end_element = id
        self.getParser().StartElementHandler = self.start_element_handler
        self.start_element_handler(name, attributes)

    def start_element_handler(self, name, attributes):
        node = self.document.createElement(name)
        _append_child(self.curNode, node)
        self.curNode = node

        if attributes:
            for i in range(0, len(attributes), 2):
                a = minidom.Attr(attributes[i], EMPTY_NAMESPACE,
                                 None, EMPTY_PREFIX)
                value = attributes[i+1]
                a.value = value
                a.ownerDocument = self.document
                _set_attribute_node(node, a)

        if node is not self.document.documentElement:
            self._finish_start_element(node)

    def _finish_start_element(self, node):
        if self._filter:
            # To be general, we'd have to call isSameNode(), but this
            # is sufficient for minidom:
            if node is self.document.documentElement:
                return
            filt = self._filter.startContainer(node)
            if filt == FILTER_REJECT:
                # ignore this node & all descendents
                Rejecter(self)
            elif filt == FILTER_SKIP:
                # ignore this node, but make it's children become
                # children of the parent node
                Skipper(self)
            else:
                return
            self.curNode = node.parentNode
            node.parentNode.removeChild(node)
            node.unlink()

    # If this ever changes, Namespaces.end_element_handler() needs to
    # be changed to match.
    #
    def end_element_handler(self, name):
        curNode = self.curNode
        self.curNode = curNode.parentNode
        self._finish_end_element(curNode)

    def _finish_end_element(self, curNode):
        info = self._elem_info.get(curNode.tagName)
        if info:
            self._handle_white_text_nodes(curNode, info)
        if self._filter:
            if curNode is self.document.documentElement:
                return
            if self._filter.acceptNode(curNode) == FILTER_REJECT:
                self.curNode.removeChild(curNode)
                curNode.unlink()

    def _handle_white_text_nodes(self, node, info):
        if (self._options.whitespace_in_element_content
            or not info.isElementContent()):
            return

        # We have element type information and should remove ignorable
        # whitespace; identify for text nodes which contain only
        # whitespace.
        L = []
        for child in node.childNodes:
            if child.nodeType == TEXT_NODE and not child.data.strip():
                L.append(child)

        # Remove ignorable whitespace from the tree.
        for child in L:
            node.removeChild(child)

    def element_decl_handler(self, name, model):
        info = self._elem_info.get(name)
        if info is None:
            self._elem_info[name] = ElementInfo(name, model)
        else:
            assert info._model is None
            info._model = model

    def attlist_decl_handler(self, elem, name, type, default, required):
        info = self._elem_info.get(elem)
        if info is None:
            info = ElementInfo(elem)
            self._elem_info[elem] = info
        info._attr_info.append(
            [None, name, None, None, default, 0, type, required])

    def xml_decl_handler(self, version, encoding, standalone):
        self.document.version = version
        self.document.encoding = encoding
        # This is still a little ugly, thanks to the pyexpat API. ;-(
        if standalone >= 0:
            if standalone:
                self.document.standalone = True
            else:
                self.document.standalone = False


# Don't include FILTER_INTERRUPT, since that's checked separately
# where allowed.
_ALLOWED_FILTER_RETURNS = (FILTER_ACCEPT, FILTER_REJECT, FILTER_SKIP)

class FilterVisibilityController(object):
    """Wrapper around a DOMBuilderFilter which implements the checks
    to make the whatToShow filter attribute work."""

    __slots__ = 'filter',

    def __init__(self, filter):
        self.filter = filter

    def startContainer(self, node):
        mask = self._nodetype_mask[node.nodeType]
        if self.filter.whatToShow & mask:
            val = self.filter.startContainer(node)
            if val == FILTER_INTERRUPT:
                raise ParseEscape
            if val not in _ALLOWED_FILTER_RETURNS:
                raise ValueError(
                      "startContainer() returned illegal value: " + repr(val))
            return val
        else:
            return FILTER_ACCEPT

    def acceptNode(self, node):
        mask = self._nodetype_mask[node.nodeType]
        if self.filter.whatToShow & mask:
            val = self.filter.acceptNode(node)
            if val == FILTER_INTERRUPT:
                raise ParseEscape
            if val == FILTER_SKIP:
                # move all child nodes to the parent, and remove this node
                parent = node.parentNode
                for child in node.childNodes[:]:
                    parent.appendChild(child)
                # node is handled by the caller
                return FILTER_REJECT
            if val not in _ALLOWED_FILTER_RETURNS:
                raise ValueError(
                      "acceptNode() returned illegal value: " + repr(val))
            return val
        else:
            return FILTER_ACCEPT

    _nodetype_mask = {
        Node.ELEMENT_NODE:                NodeFilter.SHOW_ELEMENT,
        Node.ATTRIBUTE_NODE:              NodeFilter.SHOW_ATTRIBUTE,
        Node.TEXT_NODE:                   NodeFilter.SHOW_TEXT,
        Node.CDATA_SECTION_NODE:          NodeFilter.SHOW_CDATA_SECTION,
        Node.ENTITY_REFERENCE_NODE:       NodeFilter.SHOW_ENTITY_REFERENCE,
        Node.ENTITY_NODE:                 NodeFilter.SHOW_ENTITY,
        Node.PROCESSING_INSTRUCTION_NODE: NodeFilter.SHOW_PROCESSING_INSTRUCTION,
        Node.COMMENT_NODE:                NodeFilter.SHOW_COMMENT,
        Node.DOCUMENT_NODE:               NodeFilter.SHOW_DOCUMENT,
        Node.DOCUMENT_TYPE_NODE:          NodeFilter.SHOW_DOCUMENT_TYPE,
        Node.DOCUMENT_FRAGMENT_NODE:      NodeFilter.SHOW_DOCUMENT_FRAGMENT,
        Node.NOTATION_NODE:               NodeFilter.SHOW_NOTATION,
        }


class FilterCrutch(object):
    __slots__ = '_builder', '_level', '_old_start', '_old_end'

    def __init__(self, builder):
        self._level = 0
        self._builder = builder
        parser = builder._parser
        self._old_start = parser.StartElementHandler
        self._old_end = parser.EndElementHandler
        parser.StartElementHandler = self.start_element_handler
        parser.EndElementHandler = self.end_element_handler

class Rejecter(FilterCrutch):
    __slots__ = ()

    def __init__(self, builder):
        FilterCrutch.__init__(self, builder)
        parser = builder._parser
        for name in ("ProcessingInstructionHandler",
                     "CommentHandler",
                     "CharacterDataHandler",
                     "StartCdataSectionHandler",
                     "EndCdataSectionHandler",
                     "ExternalEntityRefHandler",
                     ):
            setattr(parser, name, None)

    def start_element_handler(self, *args):
        self._level = self._level + 1

    def end_element_handler(self, *args):
        if self._level == 0:
            # restore the old handlers
            parser = self._builder._parser
            self._builder.install(parser)
            parser.StartElementHandler = self._old_start
            parser.EndElementHandler = self._old_end
        else:
            self._level = self._level - 1

class Skipper(FilterCrutch):
    __slots__ = ()

    def start_element_handler(self, *args):
        node = self._builder.curNode
        self._old_start(*args)
        if self._builder.curNode is not node:
            self._level = self._level + 1

    def end_element_handler(self, *args):
        if self._level == 0:
            # We're popping back out of the node we're skipping, so we
            # shouldn't need to do anything but reset the handlers.
            self._builder._parser.StartElementHandler = self._old_start
            self._builder._parser.EndElementHandler = self._old_end
            self._builder = None
        else:
            self._level = self._level - 1
            self._old_end(*args)


# framework document used by the fragment builder.
# Takes a string for the doctype, subset string, and namespace attrs string.

_FRAGMENT_BUILDER_INTERNAL_SYSTEM_ID = \
    "http://xml.python.org/entities/fragment-builder/internal"

_FRAGMENT_BUILDER_TEMPLATE = (
    '''\
<!DOCTYPE wrapper
  %%s [
  <!ENTITY fragment-builder-internal
    SYSTEM "%s">
%%s
]>
<wrapper %%s
>&fragment-builder-internal;</wrapper>'''
    % _FRAGMENT_BUILDER_INTERNAL_SYSTEM_ID)


class FragmentBuilder(ExpatBuilder):
    """Builder which constructs document fragments given XML source
    text and a context node.

    The context node is expected to provide information about the
    namespace declarations which are in scope at the start of the
    fragment.
    """

    def __init__(self, context, options=None):
        if context.nodeType == DOCUMENT_NODE:
            self.originalDocument = context
            self.context = context
        else:
            self.originalDocument = context.ownerDocument
            self.context = context
        ExpatBuilder.__init__(self, options)

    def reset(self):
        ExpatBuilder.reset(self)
        self.fragment = None

    def parseFile(self, file):
        """Parse a document fragment from a file object, returning the
        fragment node."""
        return self.parseString(file.read())

    def parseString(self, string):
        """Parse a document fragment from a string, returning the
        fragment node."""
        self._source = string
        parser = self.getParser()
        doctype = self.originalDocument.doctype
        ident = ""
        if doctype:
            subset = doctype.internalSubset or self._getDeclarations()
            if doctype.publicId:
                ident = ('PUBLIC "%s" "%s"'
                         % (doctype.publicId, doctype.systemId))
            elif doctype.systemId:
                ident = 'SYSTEM "%s"' % doctype.systemId
        else:
            subset = ""
        nsattrs = self._getNSattrs() # get ns decls from node's ancestors
        document = _FRAGMENT_BUILDER_TEMPLATE % (ident, subset, nsattrs)
        try:
            parser.Parse(document, 1)
        except:
            self.reset()
            raise
        fragment = self.fragment
        self.reset()
##         self._parser = None
        return fragment

    def _getDeclarations(self):
        """Re-create the internal subset from the DocumentType node.

        This is only needed if we don't already have the
        internalSubset as a string.
        """
        doctype = self.context.ownerDocument.doctype
        s = ""
        if doctype:
            for i in range(doctype.notations.length):
                notation = doctype.notations.item(i)
                if s:
                    s = s + "\n  "
                s = "%s<!NOTATION %s" % (s, notation.nodeName)
                if notation.publicId:
                    s = '%s PUBLIC "%s"\n             "%s">' \
                        % (s, notation.publicId, notation.systemId)
                else:
                    s = '%s SYSTEM "%s">' % (s, notation.systemId)
            for i in range(doctype.entities.length):
                entity = doctype.entities.item(i)
                if s:
                    s = s + "\n  "
                s = "%s<!ENTITY %s" % (s, entity.nodeName)
                if entity.publicId:
                    s = '%s PUBLIC "%s"\n             "%s"' \
                        % (s, entity.publicId, entity.systemId)
                elif entity.systemId:
                    s = '%s SYSTEM "%s"' % (s, entity.systemId)
                else:
                    s = '%s "%s"' % (s, entity.firstChild.data)
                if entity.notationName:
                    s = "%s NOTATION %s" % (s, entity.notationName)
                s = s + ">"
        return s

    def _getNSattrs(self):
        return ""

    def external_entity_ref_handler(self, context, base, systemId, publicId):
        if systemId == _FRAGMENT_BUILDER_INTERNAL_SYSTEM_ID:
            # this entref is the one that we made to put the subtree
            # in; all of our given input is parsed in here.
            old_document = self.document
            old_cur_node = self.curNode
            parser = self._parser.ExternalEntityParserCreate(context)
            # put the real document back, parse into the fragment to return
            self.document = self.originalDocument
            self.fragment = self.document.createDocumentFragment()
            self.curNode = self.fragment
            try:
                parser.Parse(self._source, 1)
            finally:
                self.curNode = old_cur_node
                self.document = old_document
                self._source = None
            return -1
        else:
            return ExpatBuilder.external_entity_ref_handler(
                self, context, base, systemId, publicId)


class Namespaces:
    """Mix-in class for builders; adds support for namespaces."""

    def _initNamespaces(self):
        # list of (prefix, uri) ns declarations.  Namespace attrs are
        # constructed from this and added to the element's attrs.
        self._ns_ordered_prefixes = []

    def createParser(self):
        """Create a new namespace-handling parser."""
        parser = expat.ParserCreate(namespace_separator=" ")
        parser.namespace_prefixes = True
        return parser

    def install(self, parser):
        """Insert the namespace-handlers onto the parser."""
        ExpatBuilder.install(self, parser)
        if self._options.namespace_declarations:
            parser.StartNamespaceDeclHandler = (
                self.start_namespace_decl_handler)

    def start_namespace_decl_handler(self, prefix, uri):
        """Push this namespace declaration on our storage."""
        self._ns_ordered_prefixes.append((prefix, uri))

    def start_element_handler(self, name, attributes):
        if ' ' in name:
            uri, localname, prefix, qname = _parse_ns_name(self, name)
        else:
            uri = EMPTY_NAMESPACE
            qname = name
            localname = None
            prefix = EMPTY_PREFIX
        node = minidom.Element(qname, uri, prefix, localname)
        node.ownerDocument = self.document
        _append_child(self.curNode, node)
        self.curNode = node

        if self._ns_ordered_prefixes:
            for prefix, uri in self._ns_ordered_prefixes:
                if prefix:
                    a = minidom.Attr(_intern(self, 'xmlns:' + prefix),
                                     XMLNS_NAMESPACE, prefix, "xmlns")
                else:
                    a = minidom.Attr("xmlns", XMLNS_NAMESPACE,
                                     "xmlns", EMPTY_PREFIX)
                a.value = uri
                a.ownerDocument = self.document
                _set_attribute_node(node, a)
            del self._ns_ordered_prefixes[:]

        if attributes:
            node._ensure_attributes()
            _attrs = node._attrs
            _attrsNS = node._attrsNS
            for i in range(0, len(attributes), 2):
                aname = attributes[i]
                value = attributes[i+1]
                if ' ' in aname:
                    uri, localname, prefix, qname = _parse_ns_name(self, aname)
                    a = minidom.Attr(qname, uri, localname, prefix)
                    _attrs[qname] = a
                    _attrsNS[(uri, localname)] = a
                else:
                    a = minidom.Attr(aname, EMPTY_NAMESPACE,
                                     aname, EMPTY_PREFIX)
                    _attrs[aname] = a
                    _attrsNS[(EMPTY_NAMESPACE, aname)] = a
                a.ownerDocument = self.document
                a.value = value
                a.ownerElement = node

    if __debug__:
        # This only adds some asserts to the original
        # end_element_handler(), so we only define this when -O is not
        # used.  If changing one, be sure to check the other to see if
        # it needs to be changed as well.
        #
        def end_element_handler(self, name):
            curNode = self.curNode
            if ' ' in name:
                uri, localname, prefix, qname = _parse_ns_name(self, name)
                assert (curNode.namespaceURI == uri
                        and curNode.localName == localname
                        and curNode.prefix == prefix), \
                        "element stack messed up! (namespace)"
            else:
                assert curNode.nodeName == name, \
                       "element stack messed up - bad nodeName"
                assert curNode.namespaceURI == EMPTY_NAMESPACE, \
                       "element stack messed up - bad namespaceURI"
            self.curNode = curNode.parentNode
            self._finish_end_element(curNode)


class ExpatBuilderNS(Namespaces, ExpatBuilder):
    """Document builder that supports namespaces."""

    def reset(self):
        ExpatBuilder.reset(self)
        self._initNamespaces()


class FragmentBuilderNS(Namespaces, FragmentBuilder):
    """Fragment builder that supports namespaces."""

    def reset(self):
        FragmentBuilder.reset(self)
        self._initNamespaces()

    def _getNSattrs(self):
        """Return string of namespace attributes from this element and
        ancestors."""
        # XXX This needs to be re-written to walk the ancestors of the
        # context to build up the namespace information from
        # declarations, elements, and attributes found in context.
        # Otherwise we have to store a bunch more data on the DOM
        # (though that *might* be more reliable -- not clear).
        attrs = ""
        context = self.context
        L = []
        while context:
            if hasattr(context, '_ns_prefix_uri'):
                for prefix, uri in context._ns_prefix_uri.items():
                    # add every new NS decl from context to L and attrs string
                    if prefix in L:
                        continue
                    L.append(prefix)
                    if prefix:
                        declname = "xmlns:" + prefix
                    else:
                        declname = "xmlns"
                    if attrs:
                        attrs = "%s\n    %s='%s'" % (attrs, declname, uri)
                    else:
                        attrs = " %s='%s'" % (declname, uri)
            context = context.parentNode
        return attrs


class ParseEscape(Exception):
    """Exception raised to short-circuit parsing in InternalSubsetExtractor."""
    pass

class InternalSubsetExtractor(ExpatBuilder):
    """XML processor which can rip out the internal document type subset."""

    subset = None

    def getSubset(self):
        """Return the internal subset as a string."""
        return self.subset

    def parseFile(self, file):
        try:
            ExpatBuilder.parseFile(self, file)
        except ParseEscape:
            pass

    def parseString(self, string):
        try:
            ExpatBuilder.parseString(self, string)
        except ParseEscape:
            pass

    def install(self, parser):
        parser.StartDoctypeDeclHandler = self.start_doctype_decl_handler
        parser.StartElementHandler = self.start_element_handler

    def start_doctype_decl_handler(self, name, publicId, systemId,
                                   has_internal_subset):
        if has_internal_subset:
            parser = self.getParser()
            self.subset = []
            parser.DefaultHandler = self.subset.append
            parser.EndDoctypeDeclHandler = self.end_doctype_decl_handler
        else:
            raise ParseEscape()

    def end_doctype_decl_handler(self):
        s = ''.join(self.subset).replace('\r\n', '\n').replace('\r', '\n')
        self.subset = s
        raise ParseEscape()

    def start_element_handler(self, name, attrs):
        raise ParseEscape()


def parse(file, namespaces=True):
    """Parse a document, returning the resulting Document node.

    'file' may be either a file name or an open file object.
    """
    if namespaces:
        builder = ExpatBuilderNS()
    else:
        builder = ExpatBuilder()

    if isinstance(file, str):
        with open(file, 'rb') as fp:
            result = builder.parseFile(fp)
    else:
        result = builder.parseFile(file)
    return result


def parseString(string, namespaces=True):
    """Parse a document from a string, returning the resulting
    Document node.
    """
    if namespaces:
        builder = ExpatBuilderNS()
    else:
        builder = ExpatBuilder()
    return builder.parseString(string)


def parseFragment(file, context, namespaces=True):
    """Parse a fragment of a document, given the context from which it
    was originally extracted.  context should be the parent of the
    node(s) which are in the fragment.

    'file' may be either a file name or an open file object.
    """
    if namespaces:
        builder = FragmentBuilderNS(context)
    else:
        builder = FragmentBuilder(context)

    if isinstance(file, str):
        with open(file, 'rb') as fp:
            result = builder.parseFile(fp)
    else:
        result = builder.parseFile(file)
    return result


def parseFragmentString(string, context, namespaces=True):
    """Parse a fragment of a document from a string, given the context
    from which it was originally extracted.  context should be the
    parent of the node(s) which are in the fragment.
    """
    if namespaces:
        builder = FragmentBuilderNS(context)
    else:
        builder = FragmentBuilder(context)
    return builder.parseString(string)


def makeBuilder(options):
    """Create a builder based on an Options object."""
    if options.namespaces:
        return ExpatBuilderNS(options)
    else:
        return ExpatBuilder(options)
lib\xml\dom\minicompat.py
"""Python version compatibility support for minidom.

This module contains internal implementation details and
should not be imported; use xml.dom.minidom instead.
"""

# This module should only be imported using "import *".
#
# The following names are defined:
#
#   NodeList      -- lightest possible NodeList implementation
#
#   EmptyNodeList -- lightest possible NodeList that is guaranteed to
#                    remain empty (immutable)
#
#   StringTypes   -- tuple of defined string types
#
#   defproperty   -- function used in conjunction with GetattrMagic;
#                    using these together is needed to make them work
#                    as efficiently as possible in both Python 2.2+
#                    and older versions.  For example:
#
#                        class MyClass(GetattrMagic):
#                            def _get_myattr(self):
#                                return something
#
#                        defproperty(MyClass, "myattr",
#                                    "return some value")
#
#                    For Python 2.2 and newer, this will construct a
#                    property object on the class, which avoids
#                    needing to override __getattr__().  It will only
#                    work for read-only attributes.
#
#                    For older versions of Python, inheriting from
#                    GetattrMagic will use the traditional
#                    __getattr__() hackery to achieve the same effect,
#                    but less efficiently.
#
#                    defproperty() should be used for each version of
#                    the relevant _get_<property>() function.

__all__ = ["NodeList", "EmptyNodeList", "StringTypes", "defproperty"]

import xml.dom

StringTypes = (str,)


class NodeList(list):
    __slots__ = ()

    def item(self, index):
        if 0 <= index < len(self):
            return self[index]

    def _get_length(self):
        return len(self)

    def _set_length(self, value):
        raise xml.dom.NoModificationAllowedErr(
            "attempt to modify read-only attribute 'length'")

    length = property(_get_length, _set_length,
                      doc="The number of nodes in the NodeList.")

    # For backward compatibility
    def __setstate__(self, state):
        if state is None:
            state = []
        self[:] = state


class EmptyNodeList(tuple):
    __slots__ = ()

    def __add__(self, other):
        NL = NodeList()
        NL.extend(other)
        return NL

    def __radd__(self, other):
        NL = NodeList()
        NL.extend(other)
        return NL

    def item(self, index):
        return None

    def _get_length(self):
        return 0

    def _set_length(self, value):
        raise xml.dom.NoModificationAllowedErr(
            "attempt to modify read-only attribute 'length'")

    length = property(_get_length, _set_length,
                      doc="The number of nodes in the NodeList.")


def defproperty(klass, name, doc):
    get = getattr(klass, ("_get_" + name))
    def set(self, value, name=name):
        raise xml.dom.NoModificationAllowedErr(
            "attempt to modify read-only attribute " + repr(name))
    assert not hasattr(klass, "_set_" + name), \
           "expected not to find _set_" + name
    prop = property(get, set, doc=doc)
    setattr(klass, name, prop)
lib\xml\dom\minidom.py
"""Simple implementation of the Level 1 DOM.

Namespaces and other minor Level 2 features are also supported.

parse("foo.xml")

parseString("<foo><bar/></foo>")

Todo:
=====
 * convenience methods for getting elements and text.
 * more testing
 * bring some of the writer and linearizer code into conformance with this
        interface
 * SAX 2 namespaces
"""

import io
import xml.dom

from xml.dom import EMPTY_NAMESPACE, EMPTY_PREFIX, XMLNS_NAMESPACE, domreg
from xml.dom.minicompat import *
from xml.dom.xmlbuilder import DOMImplementationLS, DocumentLS

# This is used by the ID-cache invalidation checks; the list isn't
# actually complete, since the nodes being checked will never be the
# DOCUMENT_NODE or DOCUMENT_FRAGMENT_NODE.  (The node being checked is
# the node being added or removed, not the node being modified.)
#
_nodeTypes_with_children = (xml.dom.Node.ELEMENT_NODE,
                            xml.dom.Node.ENTITY_REFERENCE_NODE)


class Node(xml.dom.Node):
    namespaceURI = None # this is non-null only for elements and attributes
    parentNode = None
    ownerDocument = None
    nextSibling = None
    previousSibling = None

    prefix = EMPTY_PREFIX # non-null only for NS elements and attributes

    def __bool__(self):
        return True

    def toxml(self, encoding=None):
        return self.toprettyxml("", "", encoding)

    def toprettyxml(self, indent="\t", newl="\n", encoding=None):
        if encoding is None:
            writer = io.StringIO()
        else:
            writer = io.TextIOWrapper(io.BytesIO(),
                                      encoding=encoding,
                                      errors="xmlcharrefreplace",
                                      newline='\n')
        if self.nodeType == Node.DOCUMENT_NODE:
            # Can pass encoding only to document, to put it into XML header
            self.writexml(writer, "", indent, newl, encoding)
        else:
            self.writexml(writer, "", indent, newl)
        if encoding is None:
            return writer.getvalue()
        else:
            return writer.detach().getvalue()

    def hasChildNodes(self):
        return bool(self.childNodes)

    def _get_childNodes(self):
        return self.childNodes

    def _get_firstChild(self):
        if self.childNodes:
            return self.childNodes[0]

    def _get_lastChild(self):
        if self.childNodes:
            return self.childNodes[-1]

    def insertBefore(self, newChild, refChild):
        if newChild.nodeType == self.DOCUMENT_FRAGMENT_NODE:
            for c in tuple(newChild.childNodes):
                self.insertBefore(c, refChild)
            ### The DOM does not clearly specify what to return in this case
            return newChild
        if newChild.nodeType not in self._child_node_types:
            raise xml.dom.HierarchyRequestErr(
                "%s cannot be child of %s" % (repr(newChild), repr(self)))
        if newChild.parentNode is not None:
            newChild.parentNode.removeChild(newChild)
        if refChild is None:
            self.appendChild(newChild)
        else:
            try:
                index = self.childNodes.index(refChild)
            except ValueError:
                raise xml.dom.NotFoundErr()
            if newChild.nodeType in _nodeTypes_with_children:
                _clear_id_cache(self)
            self.childNodes.insert(index, newChild)
            newChild.nextSibling = refChild
            refChild.previousSibling = newChild
            if index:
                node = self.childNodes[index-1]
                node.nextSibling = newChild
                newChild.previousSibling = node
            else:
                newChild.previousSibling = None
            newChild.parentNode = self
        return newChild

    def appendChild(self, node):
        if node.nodeType == self.DOCUMENT_FRAGMENT_NODE:
            for c in tuple(node.childNodes):
                self.appendChild(c)
            ### The DOM does not clearly specify what to return in this case
            return node
        if node.nodeType not in self._child_node_types:
            raise xml.dom.HierarchyRequestErr(
                "%s cannot be child of %s" % (repr(node), repr(self)))
        elif node.nodeType in _nodeTypes_with_children:
            _clear_id_cache(self)
        if node.parentNode is not None:
            node.parentNode.removeChild(node)
        _append_child(self, node)
        node.nextSibling = None
        return node

    def replaceChild(self, newChild, oldChild):
        if newChild.nodeType == self.DOCUMENT_FRAGMENT_NODE:
            refChild = oldChild.nextSibling
            self.removeChild(oldChild)
            return self.insertBefore(newChild, refChild)
        if newChild.nodeType not in self._child_node_types:
            raise xml.dom.HierarchyRequestErr(
                "%s cannot be child of %s" % (repr(newChild), repr(self)))
        if newChild is oldChild:
            return
        if newChild.parentNode is not None:
            newChild.parentNode.removeChild(newChild)
        try:
            index = self.childNodes.index(oldChild)
        except ValueError:
            raise xml.dom.NotFoundErr()
        self.childNodes[index] = newChild
        newChild.parentNode = self
        oldChild.parentNode = None
        if (newChild.nodeType in _nodeTypes_with_children
            or oldChild.nodeType in _nodeTypes_with_children):
            _clear_id_cache(self)
        newChild.nextSibling = oldChild.nextSibling
        newChild.previousSibling = oldChild.previousSibling
        oldChild.nextSibling = None
        oldChild.previousSibling = None
        if newChild.previousSibling:
            newChild.previousSibling.nextSibling = newChild
        if newChild.nextSibling:
            newChild.nextSibling.previousSibling = newChild
        return oldChild

    def removeChild(self, oldChild):
        try:
            self.childNodes.remove(oldChild)
        except ValueError:
            raise xml.dom.NotFoundErr()
        if oldChild.nextSibling is not None:
            oldChild.nextSibling.previousSibling = oldChild.previousSibling
        if oldChild.previousSibling is not None:
            oldChild.previousSibling.nextSibling = oldChild.nextSibling
        oldChild.nextSibling = oldChild.previousSibling = None
        if oldChild.nodeType in _nodeTypes_with_children:
            _clear_id_cache(self)

        oldChild.parentNode = None
        return oldChild

    def normalize(self):
        L = []
        for child in self.childNodes:
            if child.nodeType == Node.TEXT_NODE:
                if not child.data:
                    # empty text node; discard
                    if L:
                        L[-1].nextSibling = child.nextSibling
                    if child.nextSibling:
                        child.nextSibling.previousSibling = child.previousSibling
                    child.unlink()
                elif L and L[-1].nodeType == child.nodeType:
                    # collapse text node
                    node = L[-1]
                    node.data = node.data + child.data
                    node.nextSibling = child.nextSibling
                    if child.nextSibling:
                        child.nextSibling.previousSibling = node
                    child.unlink()
                else:
                    L.append(child)
            else:
                L.append(child)
                if child.nodeType == Node.ELEMENT_NODE:
                    child.normalize()
        self.childNodes[:] = L

    def cloneNode(self, deep):
        return _clone_node(self, deep, self.ownerDocument or self)

    def isSupported(self, feature, version):
        return self.ownerDocument.implementation.hasFeature(feature, version)

    def _get_localName(self):
        # Overridden in Element and Attr where localName can be Non-Null
        return None

    # Node interfaces from Level 3 (WD 9 April 2002)

    def isSameNode(self, other):
        return self is other

    def getInterface(self, feature):
        if self.isSupported(feature, None):
            return self
        else:
            return None

    # The "user data" functions use a dictionary that is only present
    # if some user data has been set, so be careful not to assume it
    # exists.

    def getUserData(self, key):
        try:
            return self._user_data[key][0]
        except (AttributeError, KeyError):
            return None

    def setUserData(self, key, data, handler):
        old = None
        try:
            d = self._user_data
        except AttributeError:
            d = {}
            self._user_data = d
        if key in d:
            old = d[key][0]
        if data is None:
            # ignore handlers passed for None
            handler = None
            if old is not None:
                del d[key]
        else:
            d[key] = (data, handler)
        return old

    def _call_user_data_handler(self, operation, src, dst):
        if hasattr(self, "_user_data"):
            for key, (data, handler) in list(self._user_data.items()):
                if handler is not None:
                    handler.handle(operation, key, data, src, dst)

    # minidom-specific API:

    def unlink(self):
        self.parentNode = self.ownerDocument = None
        if self.childNodes:
            for child in self.childNodes:
                child.unlink()
            self.childNodes = NodeList()
        self.previousSibling = None
        self.nextSibling = None

    # A Node is its own context manager, to ensure that an unlink() call occurs.
    # This is similar to how a file object works.
    def __enter__(self):
        return self

    def __exit__(self, et, ev, tb):
        self.unlink()

defproperty(Node, "firstChild", doc="First child node, or None.")
defproperty(Node, "lastChild",  doc="Last child node, or None.")
defproperty(Node, "localName",  doc="Namespace-local name of this node.")


def _append_child(self, node):
    # fast path with less checks; usable by DOM builders if careful
    childNodes = self.childNodes
    if childNodes:
        last = childNodes[-1]
        node.previousSibling = last
        last.nextSibling = node
    childNodes.append(node)
    node.parentNode = self

def _in_document(node):
    # return True iff node is part of a document tree
    while node is not None:
        if node.nodeType == Node.DOCUMENT_NODE:
            return True
        node = node.parentNode
    return False

def _write_data(writer, data):
    "Writes datachars to writer."
    if data:
        data = data.replace("&", "&amp;").replace("<", "&lt;"). \
                    replace("\"", "&quot;").replace(">", "&gt;")
        writer.write(data)

def _get_elements_by_tagName_helper(parent, name, rc):
    for node in parent.childNodes:
        if node.nodeType == Node.ELEMENT_NODE and \
            (name == "*" or node.tagName == name):
            rc.append(node)
        _get_elements_by_tagName_helper(node, name, rc)
    return rc

def _get_elements_by_tagName_ns_helper(parent, nsURI, localName, rc):
    for node in parent.childNodes:
        if node.nodeType == Node.ELEMENT_NODE:
            if ((localName == "*" or node.localName == localName) and
                (nsURI == "*" or node.namespaceURI == nsURI)):
                rc.append(node)
            _get_elements_by_tagName_ns_helper(node, nsURI, localName, rc)
    return rc

class DocumentFragment(Node):
    nodeType = Node.DOCUMENT_FRAGMENT_NODE
    nodeName = "#document-fragment"
    nodeValue = None
    attributes = None
    parentNode = None
    _child_node_types = (Node.ELEMENT_NODE,
                         Node.TEXT_NODE,
                         Node.CDATA_SECTION_NODE,
                         Node.ENTITY_REFERENCE_NODE,
                         Node.PROCESSING_INSTRUCTION_NODE,
                         Node.COMMENT_NODE,
                         Node.NOTATION_NODE)

    def __init__(self):
        self.childNodes = NodeList()


class Attr(Node):
    __slots__=('_name', '_value', 'namespaceURI',
               '_prefix', 'childNodes', '_localName', 'ownerDocument', 'ownerElement')
    nodeType = Node.ATTRIBUTE_NODE
    attributes = None
    specified = False
    _is_id = False

    _child_node_types = (Node.TEXT_NODE, Node.ENTITY_REFERENCE_NODE)

    def __init__(self, qName, namespaceURI=EMPTY_NAMESPACE, localName=None,
                 prefix=None):
        self.ownerElement = None
        self._name = qName
        self.namespaceURI = namespaceURI
        self._prefix = prefix
        self.childNodes = NodeList()

        # Add the single child node that represents the value of the attr
        self.childNodes.append(Text())

        # nodeValue and value are set elsewhere

    def _get_localName(self):
        try:
            return self._localName
        except AttributeError:
            return self.nodeName.split(":", 1)[-1]

    def _get_specified(self):
        return self.specified

    def _get_name(self):
        return self._name

    def _set_name(self, value):
        self._name = value
        if self.ownerElement is not None:
            _clear_id_cache(self.ownerElement)

    nodeName = name = property(_get_name, _set_name)

    def _get_value(self):
        return self._value

    def _set_value(self, value):
        self._value = value
        self.childNodes[0].data = value
        if self.ownerElement is not None:
            _clear_id_cache(self.ownerElement)
        self.childNodes[0].data = value

    nodeValue = value = property(_get_value, _set_value)

    def _get_prefix(self):
        return self._prefix

    def _set_prefix(self, prefix):
        nsuri = self.namespaceURI
        if prefix == "xmlns":
            if nsuri and nsuri != XMLNS_NAMESPACE:
                raise xml.dom.NamespaceErr(
                    "illegal use of 'xmlns' prefix for the wrong namespace")
        self._prefix = prefix
        if prefix is None:
            newName = self.localName
        else:
            newName = "%s:%s" % (prefix, self.localName)
        if self.ownerElement:
            _clear_id_cache(self.ownerElement)
        self.name = newName

    prefix = property(_get_prefix, _set_prefix)

    def unlink(self):
        # This implementation does not call the base implementation
        # since most of that is not needed, and the expense of the
        # method call is not warranted.  We duplicate the removal of
        # children, but that's all we needed from the base class.
        elem = self.ownerElement
        if elem is not None:
            del elem._attrs[self.nodeName]
            del elem._attrsNS[(self.namespaceURI, self.localName)]
            if self._is_id:
                self._is_id = False
                elem._magic_id_nodes -= 1
                self.ownerDocument._magic_id_count -= 1
        for child in self.childNodes:
            child.unlink()
        del self.childNodes[:]

    def _get_isId(self):
        if self._is_id:
            return True
        doc = self.ownerDocument
        elem = self.ownerElement
        if doc is None or elem is None:
            return False

        info = doc._get_elem_info(elem)
        if info is None:
            return False
        if self.namespaceURI:
            return info.isIdNS(self.namespaceURI, self.localName)
        else:
            return info.isId(self.nodeName)

    def _get_schemaType(self):
        doc = self.ownerDocument
        elem = self.ownerElement
        if doc is None or elem is None:
            return _no_type

        info = doc._get_elem_info(elem)
        if info is None:
            return _no_type
        if self.namespaceURI:
            return info.getAttributeTypeNS(self.namespaceURI, self.localName)
        else:
            return info.getAttributeType(self.nodeName)

defproperty(Attr, "isId",       doc="True if this attribute is an ID.")
defproperty(Attr, "localName",  doc="Namespace-local name of this attribute.")
defproperty(Attr, "schemaType", doc="Schema type for this attribute.")


class NamedNodeMap(object):
    """The attribute list is a transient interface to the underlying
    dictionaries.  Mutations here will change the underlying element's
    dictionary.

    Ordering is imposed artificially and does not reflect the order of
    attributes as found in an input document.
    """

    __slots__ = ('_attrs', '_attrsNS', '_ownerElement')

    def __init__(self, attrs, attrsNS, ownerElement):
        self._attrs = attrs
        self._attrsNS = attrsNS
        self._ownerElement = ownerElement

    def _get_length(self):
        return len(self._attrs)

    def item(self, index):
        try:
            return self[list(self._attrs.keys())[index]]
        except IndexError:
            return None

    def items(self):
        L = []
        for node in self._attrs.values():
            L.append((node.nodeName, node.value))
        return L

    def itemsNS(self):
        L = []
        for node in self._attrs.values():
            L.append(((node.namespaceURI, node.localName), node.value))
        return L

    def __contains__(self, key):
        if isinstance(key, str):
            return key in self._attrs
        else:
            return key in self._attrsNS

    def keys(self):
        return self._attrs.keys()

    def keysNS(self):
        return self._attrsNS.keys()

    def values(self):
        return self._attrs.values()

    def get(self, name, value=None):
        return self._attrs.get(name, value)

    __len__ = _get_length

    def _cmp(self, other):
        if self._attrs is getattr(other, "_attrs", None):
            return 0
        else:
            return (id(self) > id(other)) - (id(self) < id(other))

    def __eq__(self, other):
        return self._cmp(other) == 0

    def __ge__(self, other):
        return self._cmp(other) >= 0

    def __gt__(self, other):
        return self._cmp(other) > 0

    def __le__(self, other):
        return self._cmp(other) <= 0

    def __lt__(self, other):
        return self._cmp(other) < 0

    def __ne__(self, other):
        return self._cmp(other) != 0

    def __getitem__(self, attname_or_tuple):
        if isinstance(attname_or_tuple, tuple):
            return self._attrsNS[attname_or_tuple]
        else:
            return self._attrs[attname_or_tuple]

    # same as set
    def __setitem__(self, attname, value):
        if isinstance(value, str):
            try:
                node = self._attrs[attname]
            except KeyError:
                node = Attr(attname)
                node.ownerDocument = self._ownerElement.ownerDocument
                self.setNamedItem(node)
            node.value = value
        else:
            if not isinstance(value, Attr):
                raise TypeError("value must be a string or Attr object")
            node = value
            self.setNamedItem(node)

    def getNamedItem(self, name):
        try:
            return self._attrs[name]
        except KeyError:
            return None

    def getNamedItemNS(self, namespaceURI, localName):
        try:
            return self._attrsNS[(namespaceURI, localName)]
        except KeyError:
            return None

    def removeNamedItem(self, name):
        n = self.getNamedItem(name)
        if n is not None:
            _clear_id_cache(self._ownerElement)
            del self._attrs[n.nodeName]
            del self._attrsNS[(n.namespaceURI, n.localName)]
            if hasattr(n, 'ownerElement'):
                n.ownerElement = None
            return n
        else:
            raise xml.dom.NotFoundErr()

    def removeNamedItemNS(self, namespaceURI, localName):
        n = self.getNamedItemNS(namespaceURI, localName)
        if n is not None:
            _clear_id_cache(self._ownerElement)
            del self._attrsNS[(n.namespaceURI, n.localName)]
            del self._attrs[n.nodeName]
            if hasattr(n, 'ownerElement'):
                n.ownerElement = None
            return n
        else:
            raise xml.dom.NotFoundErr()

    def setNamedItem(self, node):
        if not isinstance(node, Attr):
            raise xml.dom.HierarchyRequestErr(
                "%s cannot be child of %s" % (repr(node), repr(self)))
        old = self._attrs.get(node.name)
        if old:
            old.unlink()
        self._attrs[node.name] = node
        self._attrsNS[(node.namespaceURI, node.localName)] = node
        node.ownerElement = self._ownerElement
        _clear_id_cache(node.ownerElement)
        return old

    def setNamedItemNS(self, node):
        return self.setNamedItem(node)

    def __delitem__(self, attname_or_tuple):
        node = self[attname_or_tuple]
        _clear_id_cache(node.ownerElement)
        node.unlink()

    def __getstate__(self):
        return self._attrs, self._attrsNS, self._ownerElement

    def __setstate__(self, state):
        self._attrs, self._attrsNS, self._ownerElement = state

defproperty(NamedNodeMap, "length",
            doc="Number of nodes in the NamedNodeMap.")

AttributeList = NamedNodeMap


class TypeInfo(object):
    __slots__ = 'namespace', 'name'

    def __init__(self, namespace, name):
        self.namespace = namespace
        self.name = name

    def __repr__(self):
        if self.namespace:
            return "<TypeInfo %r (from %r)>" % (self.name, self.namespace)
        else:
            return "<TypeInfo %r>" % self.name

    def _get_name(self):
        return self.name

    def _get_namespace(self):
        return self.namespace

_no_type = TypeInfo(None, None)

class Element(Node):
    __slots__=('ownerDocument', 'parentNode', 'tagName', 'nodeName', 'prefix',
               'namespaceURI', '_localName', 'childNodes', '_attrs', '_attrsNS',
               'nextSibling', 'previousSibling')
    nodeType = Node.ELEMENT_NODE
    nodeValue = None
    schemaType = _no_type

    _magic_id_nodes = 0

    _child_node_types = (Node.ELEMENT_NODE,
                         Node.PROCESSING_INSTRUCTION_NODE,
                         Node.COMMENT_NODE,
                         Node.TEXT_NODE,
                         Node.CDATA_SECTION_NODE,
                         Node.ENTITY_REFERENCE_NODE)

    def __init__(self, tagName, namespaceURI=EMPTY_NAMESPACE, prefix=None,
                 localName=None):
        self.parentNode = None
        self.tagName = self.nodeName = tagName
        self.prefix = prefix
        self.namespaceURI = namespaceURI
        self.childNodes = NodeList()
        self.nextSibling = self.previousSibling = None

        # Attribute dictionaries are lazily created
        # attributes are double-indexed:
        #    tagName -> Attribute
        #    URI,localName -> Attribute
        # in the future: consider lazy generation
        # of attribute objects this is too tricky
        # for now because of headaches with
        # namespaces.
        self._attrs = None
        self._attrsNS = None

    def _ensure_attributes(self):
        if self._attrs is None:
            self._attrs = {}
            self._attrsNS = {}

    def _get_localName(self):
        try:
            return self._localName
        except AttributeError:
            return self.tagName.split(":", 1)[-1]

    def _get_tagName(self):
        return self.tagName

    def unlink(self):
        if self._attrs is not None:
            for attr in list(self._attrs.values()):
                attr.unlink()
        self._attrs = None
        self._attrsNS = None
        Node.unlink(self)

    def getAttribute(self, attname):
        if self._attrs is None:
            return ""
        try:
            return self._attrs[attname].value
        except KeyError:
            return ""

    def getAttributeNS(self, namespaceURI, localName):
        if self._attrsNS is None:
            return ""
        try:
            return self._attrsNS[(namespaceURI, localName)].value
        except KeyError:
            return ""

    def setAttribute(self, attname, value):
        attr = self.getAttributeNode(attname)
        if attr is None:
            attr = Attr(attname)
            attr.value = value # also sets nodeValue
            attr.ownerDocument = self.ownerDocument
            self.setAttributeNode(attr)
        elif value != attr.value:
            attr.value = value
            if attr.isId:
                _clear_id_cache(self)

    def setAttributeNS(self, namespaceURI, qualifiedName, value):
        prefix, localname = _nssplit(qualifiedName)
        attr = self.getAttributeNodeNS(namespaceURI, localname)
        if attr is None:
            attr = Attr(qualifiedName, namespaceURI, localname, prefix)
            attr.value = value
            attr.ownerDocument = self.ownerDocument
            self.setAttributeNode(attr)
        else:
            if value != attr.value:
                attr.value = value
                if attr.isId:
                    _clear_id_cache(self)
            if attr.prefix != prefix:
                attr.prefix = prefix
                attr.nodeName = qualifiedName

    def getAttributeNode(self, attrname):
        if self._attrs is None:
            return None
        return self._attrs.get(attrname)

    def getAttributeNodeNS(self, namespaceURI, localName):
        if self._attrsNS is None:
            return None
        return self._attrsNS.get((namespaceURI, localName))

    def setAttributeNode(self, attr):
        if attr.ownerElement not in (None, self):
            raise xml.dom.InuseAttributeErr("attribute node already owned")
        self._ensure_attributes()
        old1 = self._attrs.get(attr.name, None)
        if old1 is not None:
            self.removeAttributeNode(old1)
        old2 = self._attrsNS.get((attr.namespaceURI, attr.localName), None)
        if old2 is not None and old2 is not old1:
            self.removeAttributeNode(old2)
        _set_attribute_node(self, attr)

        if old1 is not attr:
            # It might have already been part of this node, in which case
            # it doesn't represent a change, and should not be returned.
            return old1
        if old2 is not attr:
            return old2

    setAttributeNodeNS = setAttributeNode

    def removeAttribute(self, name):
        if self._attrsNS is None:
            raise xml.dom.NotFoundErr()
        try:
            attr = self._attrs[name]
        except KeyError:
            raise xml.dom.NotFoundErr()
        self.removeAttributeNode(attr)

    def removeAttributeNS(self, namespaceURI, localName):
        if self._attrsNS is None:
            raise xml.dom.NotFoundErr()
        try:
            attr = self._attrsNS[(namespaceURI, localName)]
        except KeyError:
            raise xml.dom.NotFoundErr()
        self.removeAttributeNode(attr)

    def removeAttributeNode(self, node):
        if node is None:
            raise xml.dom.NotFoundErr()
        try:
            self._attrs[node.name]
        except KeyError:
            raise xml.dom.NotFoundErr()
        _clear_id_cache(self)
        node.unlink()
        # Restore this since the node is still useful and otherwise
        # unlinked
        node.ownerDocument = self.ownerDocument

    removeAttributeNodeNS = removeAttributeNode

    def hasAttribute(self, name):
        if self._attrs is None:
            return False
        return name in self._attrs

    def hasAttributeNS(self, namespaceURI, localName):
        if self._attrsNS is None:
            return False
        return (namespaceURI, localName) in self._attrsNS

    def getElementsByTagName(self, name):
        return _get_elements_by_tagName_helper(self, name, NodeList())

    def getElementsByTagNameNS(self, namespaceURI, localName):
        return _get_elements_by_tagName_ns_helper(
            self, namespaceURI, localName, NodeList())

    def __repr__(self):
        return "<DOM Element: %s at %#x>" % (self.tagName, id(self))

    def writexml(self, writer, indent="", addindent="", newl=""):
        # indent = current indentation
        # addindent = indentation to add to higher levels
        # newl = newline string
        writer.write(indent+"<" + self.tagName)

        attrs = self._get_attributes()
        a_names = sorted(attrs.keys())

        for a_name in a_names:
            writer.write(" %s=\"" % a_name)
            _write_data(writer, attrs[a_name].value)
            writer.write("\"")
        if self.childNodes:
            writer.write(">")
            if (len(self.childNodes) == 1 and
                self.childNodes[0].nodeType == Node.TEXT_NODE):
                self.childNodes[0].writexml(writer, '', '', '')
            else:
                writer.write(newl)
                for node in self.childNodes:
                    node.writexml(writer, indent+addindent, addindent, newl)
                writer.write(indent)
            writer.write("</%s>%s" % (self.tagName, newl))
        else:
            writer.write("/>%s"%(newl))

    def _get_attributes(self):
        self._ensure_attributes()
        return NamedNodeMap(self._attrs, self._attrsNS, self)

    def hasAttributes(self):
        if self._attrs:
            return True
        else:
            return False

    # DOM Level 3 attributes, based on the 22 Oct 2002 draft

    def setIdAttribute(self, name):
        idAttr = self.getAttributeNode(name)
        self.setIdAttributeNode(idAttr)

    def setIdAttributeNS(self, namespaceURI, localName):
        idAttr = self.getAttributeNodeNS(namespaceURI, localName)
        self.setIdAttributeNode(idAttr)

    def setIdAttributeNode(self, idAttr):
        if idAttr is None or not self.isSameNode(idAttr.ownerElement):
            raise xml.dom.NotFoundErr()
        if _get_containing_entref(self) is not None:
            raise xml.dom.NoModificationAllowedErr()
        if not idAttr._is_id:
            idAttr._is_id = True
            self._magic_id_nodes += 1
            self.ownerDocument._magic_id_count += 1
            _clear_id_cache(self)

defproperty(Element, "attributes",
            doc="NamedNodeMap of attributes on the element.")
defproperty(Element, "localName",
            doc="Namespace-local name of this element.")


def _set_attribute_node(element, attr):
    _clear_id_cache(element)
    element._ensure_attributes()
    element._attrs[attr.name] = attr
    element._attrsNS[(attr.namespaceURI, attr.localName)] = attr

    # This creates a circular reference, but Element.unlink()
    # breaks the cycle since the references to the attribute
    # dictionaries are tossed.
    attr.ownerElement = element

class Childless:
    """Mixin that makes childless-ness easy to implement and avoids
    the complexity of the Node methods that deal with children.
    """
    __slots__ = ()

    attributes = None
    childNodes = EmptyNodeList()
    firstChild = None
    lastChild = None

    def _get_firstChild(self):
        return None

    def _get_lastChild(self):
        return None

    def appendChild(self, node):
        raise xml.dom.HierarchyRequestErr(
            self.nodeName + " nodes cannot have children")

    def hasChildNodes(self):
        return False

    def insertBefore(self, newChild, refChild):
        raise xml.dom.HierarchyRequestErr(
            self.nodeName + " nodes do not have children")

    def removeChild(self, oldChild):
        raise xml.dom.NotFoundErr(
            self.nodeName + " nodes do not have children")

    def normalize(self):
        # For childless nodes, normalize() has nothing to do.
        pass

    def replaceChild(self, newChild, oldChild):
        raise xml.dom.HierarchyRequestErr(
            self.nodeName + " nodes do not have children")


class ProcessingInstruction(Childless, Node):
    nodeType = Node.PROCESSING_INSTRUCTION_NODE
    __slots__ = ('target', 'data')

    def __init__(self, target, data):
        self.target = target
        self.data = data

    # nodeValue is an alias for data
    def _get_nodeValue(self):
        return self.data
    def _set_nodeValue(self, value):
        self.data = value
    nodeValue = property(_get_nodeValue, _set_nodeValue)

    # nodeName is an alias for target
    def _get_nodeName(self):
        return self.target
    def _set_nodeName(self, value):
        self.target = value
    nodeName = property(_get_nodeName, _set_nodeName)

    def writexml(self, writer, indent="", addindent="", newl=""):
        writer.write("%s<?%s %s?>%s" % (indent,self.target, self.data, newl))


class CharacterData(Childless, Node):
    __slots__=('_data', 'ownerDocument','parentNode', 'previousSibling', 'nextSibling')

    def __init__(self):
        self.ownerDocument = self.parentNode = None
        self.previousSibling = self.nextSibling = None
        self._data = ''
        Node.__init__(self)

    def _get_length(self):
        return len(self.data)
    __len__ = _get_length

    def _get_data(self):
        return self._data
    def _set_data(self, data):
        self._data = data

    data = nodeValue = property(_get_data, _set_data)

    def __repr__(self):
        data = self.data
        if len(data) > 10:
            dotdotdot = "..."
        else:
            dotdotdot = ""
        return '<DOM %s node "%r%s">' % (
            self.__class__.__name__, data[0:10], dotdotdot)

    def substringData(self, offset, count):
        if offset < 0:
            raise xml.dom.IndexSizeErr("offset cannot be negative")
        if offset >= len(self.data):
            raise xml.dom.IndexSizeErr("offset cannot be beyond end of data")
        if count < 0:
            raise xml.dom.IndexSizeErr("count cannot be negative")
        return self.data[offset:offset+count]

    def appendData(self, arg):
        self.data = self.data + arg

    def insertData(self, offset, arg):
        if offset < 0:
            raise xml.dom.IndexSizeErr("offset cannot be negative")
        if offset >= len(self.data):
            raise xml.dom.IndexSizeErr("offset cannot be beyond end of data")
        if arg:
            self.data = "%s%s%s" % (
                self.data[:offset], arg, self.data[offset:])

    def deleteData(self, offset, count):
        if offset < 0:
            raise xml.dom.IndexSizeErr("offset cannot be negative")
        if offset >= len(self.data):
            raise xml.dom.IndexSizeErr("offset cannot be beyond end of data")
        if count < 0:
            raise xml.dom.IndexSizeErr("count cannot be negative")
        if count:
            self.data = self.data[:offset] + self.data[offset+count:]

    def replaceData(self, offset, count, arg):
        if offset < 0:
            raise xml.dom.IndexSizeErr("offset cannot be negative")
        if offset >= len(self.data):
            raise xml.dom.IndexSizeErr("offset cannot be beyond end of data")
        if count < 0:
            raise xml.dom.IndexSizeErr("count cannot be negative")
        if count:
            self.data = "%s%s%s" % (
                self.data[:offset], arg, self.data[offset+count:])

defproperty(CharacterData, "length", doc="Length of the string data.")


class Text(CharacterData):
    __slots__ = ()

    nodeType = Node.TEXT_NODE
    nodeName = "#text"
    attributes = None

    def splitText(self, offset):
        if offset < 0 or offset > len(self.data):
            raise xml.dom.IndexSizeErr("illegal offset value")
        newText = self.__class__()
        newText.data = self.data[offset:]
        newText.ownerDocument = self.ownerDocument
        next = self.nextSibling
        if self.parentNode and self in self.parentNode.childNodes:
            if next is None:
                self.parentNode.appendChild(newText)
            else:
                self.parentNode.insertBefore(newText, next)
        self.data = self.data[:offset]
        return newText

    def writexml(self, writer, indent="", addindent="", newl=""):
        _write_data(writer, "%s%s%s" % (indent, self.data, newl))

    # DOM Level 3 (WD 9 April 2002)

    def _get_wholeText(self):
        L = [self.data]
        n = self.previousSibling
        while n is not None:
            if n.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE):
                L.insert(0, n.data)
                n = n.previousSibling
            else:
                break
        n = self.nextSibling
        while n is not None:
            if n.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE):
                L.append(n.data)
                n = n.nextSibling
            else:
                break
        return ''.join(L)

    def replaceWholeText(self, content):
        # XXX This needs to be seriously changed if minidom ever
        # supports EntityReference nodes.
        parent = self.parentNode
        n = self.previousSibling
        while n is not None:
            if n.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE):
                next = n.previousSibling
                parent.removeChild(n)
                n = next
            else:
                break
        n = self.nextSibling
        if not content:
            parent.removeChild(self)
        while n is not None:
            if n.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE):
                next = n.nextSibling
                parent.removeChild(n)
                n = next
            else:
                break
        if content:
            self.data = content
            return self
        else:
            return None

    def _get_isWhitespaceInElementContent(self):
        if self.data.strip():
            return False
        elem = _get_containing_element(self)
        if elem is None:
            return False
        info = self.ownerDocument._get_elem_info(elem)
        if info is None:
            return False
        else:
            return info.isElementContent()

defproperty(Text, "isWhitespaceInElementContent",
            doc="True iff this text node contains only whitespace"
                " and is in element content.")
defproperty(Text, "wholeText",
            doc="The text of all logically-adjacent text nodes.")


def _get_containing_element(node):
    c = node.parentNode
    while c is not None:
        if c.nodeType == Node.ELEMENT_NODE:
            return c
        c = c.parentNode
    return None

def _get_containing_entref(node):
    c = node.parentNode
    while c is not None:
        if c.nodeType == Node.ENTITY_REFERENCE_NODE:
            return c
        c = c.parentNode
    return None


class Comment(CharacterData):
    nodeType = Node.COMMENT_NODE
    nodeName = "#comment"

    def __init__(self, data):
        CharacterData.__init__(self)
        self._data = data

    def writexml(self, writer, indent="", addindent="", newl=""):
        if "--" in self.data:
            raise ValueError("'--' is not allowed in a comment node")
        writer.write("%s<!--%s-->%s" % (indent, self.data, newl))


class CDATASection(Text):
    __slots__ = ()

    nodeType = Node.CDATA_SECTION_NODE
    nodeName = "#cdata-section"

    def writexml(self, writer, indent="", addindent="", newl=""):
        if self.data.find("]]>") >= 0:
            raise ValueError("']]>' not allowed in a CDATA section")
        writer.write("<![CDATA[%s]]>" % self.data)


class ReadOnlySequentialNamedNodeMap(object):
    __slots__ = '_seq',

    def __init__(self, seq=()):
        # seq should be a list or tuple
        self._seq = seq

    def __len__(self):
        return len(self._seq)

    def _get_length(self):
        return len(self._seq)

    def getNamedItem(self, name):
        for n in self._seq:
            if n.nodeName == name:
                return n

    def getNamedItemNS(self, namespaceURI, localName):
        for n in self._seq:
            if n.namespaceURI == namespaceURI and n.localName == localName:
                return n

    def __getitem__(self, name_or_tuple):
        if isinstance(name_or_tuple, tuple):
            node = self.getNamedItemNS(*name_or_tuple)
        else:
            node = self.getNamedItem(name_or_tuple)
        if node is None:
            raise KeyError(name_or_tuple)
        return node

    def item(self, index):
        if index < 0:
            return None
        try:
            return self._seq[index]
        except IndexError:
            return None

    def removeNamedItem(self, name):
        raise xml.dom.NoModificationAllowedErr(
            "NamedNodeMap instance is read-only")

    def removeNamedItemNS(self, namespaceURI, localName):
        raise xml.dom.NoModificationAllowedErr(
            "NamedNodeMap instance is read-only")

    def setNamedItem(self, node):
        raise xml.dom.NoModificationAllowedErr(
            "NamedNodeMap instance is read-only")

    def setNamedItemNS(self, node):
        raise xml.dom.NoModificationAllowedErr(
            "NamedNodeMap instance is read-only")

    def __getstate__(self):
        return [self._seq]

    def __setstate__(self, state):
        self._seq = state[0]

defproperty(ReadOnlySequentialNamedNodeMap, "length",
            doc="Number of entries in the NamedNodeMap.")


class Identified:
    """Mix-in class that supports the publicId and systemId attributes."""

    __slots__ = 'publicId', 'systemId'

    def _identified_mixin_init(self, publicId, systemId):
        self.publicId = publicId
        self.systemId = systemId

    def _get_publicId(self):
        return self.publicId

    def _get_systemId(self):
        return self.systemId

class DocumentType(Identified, Childless, Node):
    nodeType = Node.DOCUMENT_TYPE_NODE
    nodeValue = None
    name = None
    publicId = None
    systemId = None
    internalSubset = None

    def __init__(self, qualifiedName):
        self.entities = ReadOnlySequentialNamedNodeMap()
        self.notations = ReadOnlySequentialNamedNodeMap()
        if qualifiedName:
            prefix, localname = _nssplit(qualifiedName)
            self.name = localname
        self.nodeName = self.name

    def _get_internalSubset(self):
        return self.internalSubset

    def cloneNode(self, deep):
        if self.ownerDocument is None:
            # it's ok
            clone = DocumentType(None)
            clone.name = self.name
            clone.nodeName = self.name
            operation = xml.dom.UserDataHandler.NODE_CLONED
            if deep:
                clone.entities._seq = []
                clone.notations._seq = []
                for n in self.notations._seq:
                    notation = Notation(n.nodeName, n.publicId, n.systemId)
                    clone.notations._seq.append(notation)
                    n._call_user_data_handler(operation, n, notation)
                for e in self.entities._seq:
                    entity = Entity(e.nodeName, e.publicId, e.systemId,
                                    e.notationName)
                    entity.actualEncoding = e.actualEncoding
                    entity.encoding = e.encoding
                    entity.version = e.version
                    clone.entities._seq.append(entity)
                    e._call_user_data_handler(operation, n, entity)
            self._call_user_data_handler(operation, self, clone)
            return clone
        else:
            return None

    def writexml(self, writer, indent="", addindent="", newl=""):
        writer.write("<!DOCTYPE ")
        writer.write(self.name)
        if self.publicId:
            writer.write("%s  PUBLIC '%s'%s  '%s'"
                         % (newl, self.publicId, newl, self.systemId))
        elif self.systemId:
            writer.write("%s  SYSTEM '%s'" % (newl, self.systemId))
        if self.internalSubset is not None:
            writer.write(" [")
            writer.write(self.internalSubset)
            writer.write("]")
        writer.write(">"+newl)

class Entity(Identified, Node):
    attributes = None
    nodeType = Node.ENTITY_NODE
    nodeValue = None

    actualEncoding = None
    encoding = None
    version = None

    def __init__(self, name, publicId, systemId, notation):
        self.nodeName = name
        self.notationName = notation
        self.childNodes = NodeList()
        self._identified_mixin_init(publicId, systemId)

    def _get_actualEncoding(self):
        return self.actualEncoding

    def _get_encoding(self):
        return self.encoding

    def _get_version(self):
        return self.version

    def appendChild(self, newChild):
        raise xml.dom.HierarchyRequestErr(
            "cannot append children to an entity node")

    def insertBefore(self, newChild, refChild):
        raise xml.dom.HierarchyRequestErr(
            "cannot insert children below an entity node")

    def removeChild(self, oldChild):
        raise xml.dom.HierarchyRequestErr(
            "cannot remove children from an entity node")

    def replaceChild(self, newChild, oldChild):
        raise xml.dom.HierarchyRequestErr(
            "cannot replace children of an entity node")

class Notation(Identified, Childless, Node):
    nodeType = Node.NOTATION_NODE
    nodeValue = None

    def __init__(self, name, publicId, systemId):
        self.nodeName = name
        self._identified_mixin_init(publicId, systemId)


class DOMImplementation(DOMImplementationLS):
    _features = [("core", "1.0"),
                 ("core", "2.0"),
                 ("core", None),
                 ("xml", "1.0"),
                 ("xml", "2.0"),
                 ("xml", None),
                 ("ls-load", "3.0"),
                 ("ls-load", None),
                 ]

    def hasFeature(self, feature, version):
        if version == "":
            version = None
        return (feature.lower(), version) in self._features

    def createDocument(self, namespaceURI, qualifiedName, doctype):
        if doctype and doctype.parentNode is not None:
            raise xml.dom.WrongDocumentErr(
                "doctype object owned by another DOM tree")
        doc = self._create_document()

        add_root_element = not (namespaceURI is None
                                and qualifiedName is None
                                and doctype is None)

        if not qualifiedName and add_root_element:
            # The spec is unclear what to raise here; SyntaxErr
            # would be the other obvious candidate. Since Xerces raises
            # InvalidCharacterErr, and since SyntaxErr is not listed
            # for createDocument, that seems to be the better choice.
            # XXX: need to check for illegal characters here and in
            # createElement.

            # DOM Level III clears this up when talking about the return value
            # of this function.  If namespaceURI, qName and DocType are
            # Null the document is returned without a document element
            # Otherwise if doctype or namespaceURI are not None
            # Then we go back to the above problem
            raise xml.dom.InvalidCharacterErr("Element with no name")

        if add_root_element:
            prefix, localname = _nssplit(qualifiedName)
            if prefix == "xml" \
               and namespaceURI != "http://www.w3.org/XML/1998/namespace":
                raise xml.dom.NamespaceErr("illegal use of 'xml' prefix")
            if prefix and not namespaceURI:
                raise xml.dom.NamespaceErr(
                    "illegal use of prefix without namespaces")
            element = doc.createElementNS(namespaceURI, qualifiedName)
            if doctype:
                doc.appendChild(doctype)
            doc.appendChild(element)

        if doctype:
            doctype.parentNode = doctype.ownerDocument = doc

        doc.doctype = doctype
        doc.implementation = self
        return doc

    def createDocumentType(self, qualifiedName, publicId, systemId):
        doctype = DocumentType(qualifiedName)
        doctype.publicId = publicId
        doctype.systemId = systemId
        return doctype

    # DOM Level 3 (WD 9 April 2002)

    def getInterface(self, feature):
        if self.hasFeature(feature, None):
            return self
        else:
            return None

    # internal
    def _create_document(self):
        return Document()

class ElementInfo(object):
    """Object that represents content-model information for an element.

    This implementation is not expected to be used in practice; DOM
    builders should provide implementations which do the right thing
    using information available to it.

    """

    __slots__ = 'tagName',

    def __init__(self, name):
        self.tagName = name

    def getAttributeType(self, aname):
        return _no_type

    def getAttributeTypeNS(self, namespaceURI, localName):
        return _no_type

    def isElementContent(self):
        return False

    def isEmpty(self):
        """Returns true iff this element is declared to have an EMPTY
        content model."""
        return False

    def isId(self, aname):
        """Returns true iff the named attribute is a DTD-style ID."""
        return False

    def isIdNS(self, namespaceURI, localName):
        """Returns true iff the identified attribute is a DTD-style ID."""
        return False

    def __getstate__(self):
        return self.tagName

    def __setstate__(self, state):
        self.tagName = state

def _clear_id_cache(node):
    if node.nodeType == Node.DOCUMENT_NODE:
        node._id_cache.clear()
        node._id_search_stack = None
    elif _in_document(node):
        node.ownerDocument._id_cache.clear()
        node.ownerDocument._id_search_stack= None

class Document(Node, DocumentLS):
    __slots__ = ('_elem_info', 'doctype',
                 '_id_search_stack', 'childNodes', '_id_cache')
    _child_node_types = (Node.ELEMENT_NODE, Node.PROCESSING_INSTRUCTION_NODE,
                         Node.COMMENT_NODE, Node.DOCUMENT_TYPE_NODE)

    implementation = DOMImplementation()
    nodeType = Node.DOCUMENT_NODE
    nodeName = "#document"
    nodeValue = None
    attributes = None
    parentNode = None
    previousSibling = nextSibling = None


    # Document attributes from Level 3 (WD 9 April 2002)

    actualEncoding = None
    encoding = None
    standalone = None
    version = None
    strictErrorChecking = False
    errorHandler = None
    documentURI = None

    _magic_id_count = 0

    def __init__(self):
        self.doctype = None
        self.childNodes = NodeList()
        # mapping of (namespaceURI, localName) -> ElementInfo
        #        and tagName -> ElementInfo
        self._elem_info = {}
        self._id_cache = {}
        self._id_search_stack = None

    def _get_elem_info(self, element):
        if element.namespaceURI:
            key = element.namespaceURI, element.localName
        else:
            key = element.tagName
        return self._elem_info.get(key)

    def _get_actualEncoding(self):
        return self.actualEncoding

    def _get_doctype(self):
        return self.doctype

    def _get_documentURI(self):
        return self.documentURI

    def _get_encoding(self):
        return self.encoding

    def _get_errorHandler(self):
        return self.errorHandler

    def _get_standalone(self):
        return self.standalone

    def _get_strictErrorChecking(self):
        return self.strictErrorChecking

    def _get_version(self):
        return self.version

    def appendChild(self, node):
        if node.nodeType not in self._child_node_types:
            raise xml.dom.HierarchyRequestErr(
                "%s cannot be child of %s" % (repr(node), repr(self)))
        if node.parentNode is not None:
            # This needs to be done before the next test since this
            # may *be* the document element, in which case it should
            # end up re-ordered to the end.
            node.parentNode.removeChild(node)

        if node.nodeType == Node.ELEMENT_NODE \
           and self._get_documentElement():
            raise xml.dom.HierarchyRequestErr(
                "two document elements disallowed")
        return Node.appendChild(self, node)

    def removeChild(self, oldChild):
        try:
            self.childNodes.remove(oldChild)
        except ValueError:
            raise xml.dom.NotFoundErr()
        oldChild.nextSibling = oldChild.previousSibling = None
        oldChild.parentNode = None
        if self.documentElement is oldChild:
            self.documentElement = None

        return oldChild

    def _get_documentElement(self):
        for node in self.childNodes:
            if node.nodeType == Node.ELEMENT_NODE:
                return node

    def unlink(self):
        if self.doctype is not None:
            self.doctype.unlink()
            self.doctype = None
        Node.unlink(self)

    def cloneNode(self, deep):
        if not deep:
            return None
        clone = self.implementation.createDocument(None, None, None)
        clone.encoding = self.encoding
        clone.standalone = self.standalone
        clone.version = self.version
        for n in self.childNodes:
            childclone = _clone_node(n, deep, clone)
            assert childclone.ownerDocument.isSameNode(clone)
            clone.childNodes.append(childclone)
            if childclone.nodeType == Node.DOCUMENT_NODE:
                assert clone.documentElement is None
            elif childclone.nodeType == Node.DOCUMENT_TYPE_NODE:
                assert clone.doctype is None
                clone.doctype = childclone
            childclone.parentNode = clone
        self._call_user_data_handler(xml.dom.UserDataHandler.NODE_CLONED,
                                     self, clone)
        return clone

    def createDocumentFragment(self):
        d = DocumentFragment()
        d.ownerDocument = self
        return d

    def createElement(self, tagName):
        e = Element(tagName)
        e.ownerDocument = self
        return e

    def createTextNode(self, data):
        if not isinstance(data, str):
            raise TypeError("node contents must be a string")
        t = Text()
        t.data = data
        t.ownerDocument = self
        return t

    def createCDATASection(self, data):
        if not isinstance(data, str):
            raise TypeError("node contents must be a string")
        c = CDATASection()
        c.data = data
        c.ownerDocument = self
        return c

    def createComment(self, data):
        c = Comment(data)
        c.ownerDocument = self
        return c

    def createProcessingInstruction(self, target, data):
        p = ProcessingInstruction(target, data)
        p.ownerDocument = self
        return p

    def createAttribute(self, qName):
        a = Attr(qName)
        a.ownerDocument = self
        a.value = ""
        return a

    def createElementNS(self, namespaceURI, qualifiedName):
        prefix, localName = _nssplit(qualifiedName)
        e = Element(qualifiedName, namespaceURI, prefix)
        e.ownerDocument = self
        return e

    def createAttributeNS(self, namespaceURI, qualifiedName):
        prefix, localName = _nssplit(qualifiedName)
        a = Attr(qualifiedName, namespaceURI, localName, prefix)
        a.ownerDocument = self
        a.value = ""
        return a

    # A couple of implementation-specific helpers to create node types
    # not supported by the W3C DOM specs:

    def _create_entity(self, name, publicId, systemId, notationName):
        e = Entity(name, publicId, systemId, notationName)
        e.ownerDocument = self
        return e

    def _create_notation(self, name, publicId, systemId):
        n = Notation(name, publicId, systemId)
        n.ownerDocument = self
        return n

    def getElementById(self, id):
        if id in self._id_cache:
            return self._id_cache[id]
        if not (self._elem_info or self._magic_id_count):
            return None

        stack = self._id_search_stack
        if stack is None:
            # we never searched before, or the cache has been cleared
            stack = [self.documentElement]
            self._id_search_stack = stack
        elif not stack:
            # Previous search was completed and cache is still valid;
            # no matching node.
            return None

        result = None
        while stack:
            node = stack.pop()
            # add child elements to stack for continued searching
            stack.extend([child for child in node.childNodes
                          if child.nodeType in _nodeTypes_with_children])
            # check this node
            info = self._get_elem_info(node)
            if info:
                # We have to process all ID attributes before
                # returning in order to get all the attributes set to
                # be IDs using Element.setIdAttribute*().
                for attr in node.attributes.values():
                    if attr.namespaceURI:
                        if info.isIdNS(attr.namespaceURI, attr.localName):
                            self._id_cache[attr.value] = node
                            if attr.value == id:
                                result = node
                            elif not node._magic_id_nodes:
                                break
                    elif info.isId(attr.name):
                        self._id_cache[attr.value] = node
                        if attr.value == id:
                            result = node
                        elif not node._magic_id_nodes:
                            break
                    elif attr._is_id:
                        self._id_cache[attr.value] = node
                        if attr.value == id:
                            result = node
                        elif node._magic_id_nodes == 1:
                            break
            elif node._magic_id_nodes:
                for attr in node.attributes.values():
                    if attr._is_id:
                        self._id_cache[attr.value] = node
                        if attr.value == id:
                            result = node
            if result is not None:
                break
        return result

    def getElementsByTagName(self, name):
        return _get_elements_by_tagName_helper(self, name, NodeList())

    def getElementsByTagNameNS(self, namespaceURI, localName):
        return _get_elements_by_tagName_ns_helper(
            self, namespaceURI, localName, NodeList())

    def isSupported(self, feature, version):
        return self.implementation.hasFeature(feature, version)

    def importNode(self, node, deep):
        if node.nodeType == Node.DOCUMENT_NODE:
            raise xml.dom.NotSupportedErr("cannot import document nodes")
        elif node.nodeType == Node.DOCUMENT_TYPE_NODE:
            raise xml.dom.NotSupportedErr("cannot import document type nodes")
        return _clone_node(node, deep, self)

    def writexml(self, writer, indent="", addindent="", newl="", encoding=None):
        if encoding is None:
            writer.write('<?xml version="1.0" ?>'+newl)
        else:
            writer.write('<?xml version="1.0" encoding="%s"?>%s' % (
                encoding, newl))
        for node in self.childNodes:
            node.writexml(writer, indent, addindent, newl)

    # DOM Level 3 (WD 9 April 2002)

    def renameNode(self, n, namespaceURI, name):
        if n.ownerDocument is not self:
            raise xml.dom.WrongDocumentErr(
                "cannot rename nodes from other documents;\n"
                "expected %s,\nfound %s" % (self, n.ownerDocument))
        if n.nodeType not in (Node.ELEMENT_NODE, Node.ATTRIBUTE_NODE):
            raise xml.dom.NotSupportedErr(
                "renameNode() only applies to element and attribute nodes")
        if namespaceURI != EMPTY_NAMESPACE:
            if ':' in name:
                prefix, localName = name.split(':', 1)
                if (  prefix == "xmlns"
                      and namespaceURI != xml.dom.XMLNS_NAMESPACE):
                    raise xml.dom.NamespaceErr(
                        "illegal use of 'xmlns' prefix")
            else:
                if (  name == "xmlns"
                      and namespaceURI != xml.dom.XMLNS_NAMESPACE
                      and n.nodeType == Node.ATTRIBUTE_NODE):
                    raise xml.dom.NamespaceErr(
                        "illegal use of the 'xmlns' attribute")
                prefix = None
                localName = name
        else:
            prefix = None
            localName = None
        if n.nodeType == Node.ATTRIBUTE_NODE:
            element = n.ownerElement
            if element is not None:
                is_id = n._is_id
                element.removeAttributeNode(n)
        else:
            element = None
        n.prefix = prefix
        n._localName = localName
        n.namespaceURI = namespaceURI
        n.nodeName = name
        if n.nodeType == Node.ELEMENT_NODE:
            n.tagName = name
        else:
            # attribute node
            n.name = name
            if element is not None:
                element.setAttributeNode(n)
                if is_id:
                    element.setIdAttributeNode(n)
        # It's not clear from a semantic perspective whether we should
        # call the user data handlers for the NODE_RENAMED event since
        # we're re-using the existing node.  The draft spec has been
        # interpreted as meaning "no, don't call the handler unless a
        # new node is created."
        return n

defproperty(Document, "documentElement",
            doc="Top-level element of this document.")


def _clone_node(node, deep, newOwnerDocument):
    """
    Clone a node and give it the new owner document.
    Called by Node.cloneNode and Document.importNode
    """
    if node.ownerDocument.isSameNode(newOwnerDocument):
        operation = xml.dom.UserDataHandler.NODE_CLONED
    else:
        operation = xml.dom.UserDataHandler.NODE_IMPORTED
    if node.nodeType == Node.ELEMENT_NODE:
        clone = newOwnerDocument.createElementNS(node.namespaceURI,
                                                 node.nodeName)
        for attr in node.attributes.values():
            clone.setAttributeNS(attr.namespaceURI, attr.nodeName, attr.value)
            a = clone.getAttributeNodeNS(attr.namespaceURI, attr.localName)
            a.specified = attr.specified

        if deep:
            for child in node.childNodes:
                c = _clone_node(child, deep, newOwnerDocument)
                clone.appendChild(c)

    elif node.nodeType == Node.DOCUMENT_FRAGMENT_NODE:
        clone = newOwnerDocument.createDocumentFragment()
        if deep:
            for child in node.childNodes:
                c = _clone_node(child, deep, newOwnerDocument)
                clone.appendChild(c)

    elif node.nodeType == Node.TEXT_NODE:
        clone = newOwnerDocument.createTextNode(node.data)
    elif node.nodeType == Node.CDATA_SECTION_NODE:
        clone = newOwnerDocument.createCDATASection(node.data)
    elif node.nodeType == Node.PROCESSING_INSTRUCTION_NODE:
        clone = newOwnerDocument.createProcessingInstruction(node.target,
                                                             node.data)
    elif node.nodeType == Node.COMMENT_NODE:
        clone = newOwnerDocument.createComment(node.data)
    elif node.nodeType == Node.ATTRIBUTE_NODE:
        clone = newOwnerDocument.createAttributeNS(node.namespaceURI,
                                                   node.nodeName)
        clone.specified = True
        clone.value = node.value
    elif node.nodeType == Node.DOCUMENT_TYPE_NODE:
        assert node.ownerDocument is not newOwnerDocument
        operation = xml.dom.UserDataHandler.NODE_IMPORTED
        clone = newOwnerDocument.implementation.createDocumentType(
            node.name, node.publicId, node.systemId)
        clone.ownerDocument = newOwnerDocument
        if deep:
            clone.entities._seq = []
            clone.notations._seq = []
            for n in node.notations._seq:
                notation = Notation(n.nodeName, n.publicId, n.systemId)
                notation.ownerDocument = newOwnerDocument
                clone.notations._seq.append(notation)
                if hasattr(n, '_call_user_data_handler'):
                    n._call_user_data_handler(operation, n, notation)
            for e in node.entities._seq:
                entity = Entity(e.nodeName, e.publicId, e.systemId,
                                e.notationName)
                entity.actualEncoding = e.actualEncoding
                entity.encoding = e.encoding
                entity.version = e.version
                entity.ownerDocument = newOwnerDocument
                clone.entities._seq.append(entity)
                if hasattr(e, '_call_user_data_handler'):
                    e._call_user_data_handler(operation, n, entity)
    else:
        # Note the cloning of Document and DocumentType nodes is
        # implementation specific.  minidom handles those cases
        # directly in the cloneNode() methods.
        raise xml.dom.NotSupportedErr("Cannot clone node %s" % repr(node))

    # Check for _call_user_data_handler() since this could conceivably
    # used with other DOM implementations (one of the FourThought
    # DOMs, perhaps?).
    if hasattr(node, '_call_user_data_handler'):
        node._call_user_data_handler(operation, node, clone)
    return clone


def _nssplit(qualifiedName):
    fields = qualifiedName.split(':', 1)
    if len(fields) == 2:
        return fields
    else:
        return (None, fields[0])


def _do_pulldom_parse(func, args, kwargs):
    events = func(*args, **kwargs)
    toktype, rootNode = events.getEvent()
    events.expandNode(rootNode)
    events.clear()
    return rootNode

def parse(file, parser=None, bufsize=None):
    """Parse a file into a DOM by filename or file object."""
    if parser is None and not bufsize:
        from xml.dom import expatbuilder
        return expatbuilder.parse(file)
    else:
        from xml.dom import pulldom
        return _do_pulldom_parse(pulldom.parse, (file,),
            {'parser': parser, 'bufsize': bufsize})

def parseString(string, parser=None):
    """Parse a file into a DOM from a string."""
    if parser is None:
        from xml.dom import expatbuilder
        return expatbuilder.parseString(string)
    else:
        from xml.dom import pulldom
        return _do_pulldom_parse(pulldom.parseString, (string,),
                                 {'parser': parser})

def getDOMImplementation(features=None):
    if features:
        if isinstance(features, str):
            features = domreg._parse_feature_string(features)
        for f, v in features:
            if not Document.implementation.hasFeature(f, v):
                return None
    return Document.implementation
lib\xml\dom\NodeFilter.py
# This is the Python mapping for interface NodeFilter from
# DOM2-Traversal-Range. It contains only constants.

class NodeFilter:
    """
    This is the DOM2 NodeFilter interface. It contains only constants.
    """
    FILTER_ACCEPT = 1
    FILTER_REJECT = 2
    FILTER_SKIP   = 3

    SHOW_ALL                    = 0xFFFFFFFF
    SHOW_ELEMENT                = 0x00000001
    SHOW_ATTRIBUTE              = 0x00000002
    SHOW_TEXT                   = 0x00000004
    SHOW_CDATA_SECTION          = 0x00000008
    SHOW_ENTITY_REFERENCE       = 0x00000010
    SHOW_ENTITY                 = 0x00000020
    SHOW_PROCESSING_INSTRUCTION = 0x00000040
    SHOW_COMMENT                = 0x00000080
    SHOW_DOCUMENT               = 0x00000100
    SHOW_DOCUMENT_TYPE          = 0x00000200
    SHOW_DOCUMENT_FRAGMENT      = 0x00000400
    SHOW_NOTATION               = 0x00000800

    def acceptNode(self, node):
        raise NotImplementedError
lib\xml\dom\pulldom.py
import xml.sax
import xml.sax.handler

START_ELEMENT = "START_ELEMENT"
END_ELEMENT = "END_ELEMENT"
COMMENT = "COMMENT"
START_DOCUMENT = "START_DOCUMENT"
END_DOCUMENT = "END_DOCUMENT"
PROCESSING_INSTRUCTION = "PROCESSING_INSTRUCTION"
IGNORABLE_WHITESPACE = "IGNORABLE_WHITESPACE"
CHARACTERS = "CHARACTERS"

class PullDOM(xml.sax.ContentHandler):
    _locator = None
    document = None

    def __init__(self, documentFactory=None):
        from xml.dom import XML_NAMESPACE
        self.documentFactory = documentFactory
        self.firstEvent = [None, None]
        self.lastEvent = self.firstEvent
        self.elementStack = []
        self.push = self.elementStack.append
        try:
            self.pop = self.elementStack.pop
        except AttributeError:
            # use class' pop instead
            pass
        self._ns_contexts = [{XML_NAMESPACE:'xml'}] # contains uri -> prefix dicts
        self._current_context = self._ns_contexts[-1]
        self.pending_events = []

    def pop(self):
        result = self.elementStack[-1]
        del self.elementStack[-1]
        return result

    def setDocumentLocator(self, locator):
        self._locator = locator

    def startPrefixMapping(self, prefix, uri):
        if not hasattr(self, '_xmlns_attrs'):
            self._xmlns_attrs = []
        self._xmlns_attrs.append((prefix or 'xmlns', uri))
        self._ns_contexts.append(self._current_context.copy())
        self._current_context[uri] = prefix or None

    def endPrefixMapping(self, prefix):
        self._current_context = self._ns_contexts.pop()

    def startElementNS(self, name, tagName , attrs):
        # Retrieve xml namespace declaration attributes.
        xmlns_uri = 'http://www.w3.org/2000/xmlns/'
        xmlns_attrs = getattr(self, '_xmlns_attrs', None)
        if xmlns_attrs is not None:
            for aname, value in xmlns_attrs:
                attrs._attrs[(xmlns_uri, aname)] = value
            self._xmlns_attrs = []
        uri, localname = name
        if uri:
            # When using namespaces, the reader may or may not
            # provide us with the original name. If not, create
            # *a* valid tagName from the current context.
            if tagName is None:
                prefix = self._current_context[uri]
                if prefix:
                    tagName = prefix + ":" + localname
                else:
                    tagName = localname
            if self.document:
                node = self.document.createElementNS(uri, tagName)
            else:
                node = self.buildDocument(uri, tagName)
        else:
            # When the tagname is not prefixed, it just appears as
            # localname
            if self.document:
                node = self.document.createElement(localname)
            else:
                node = self.buildDocument(None, localname)

        for aname,value in attrs.items():
            a_uri, a_localname = aname
            if a_uri == xmlns_uri:
                if a_localname == 'xmlns':
                    qname = a_localname
                else:
                    qname = 'xmlns:' + a_localname
                attr = self.document.createAttributeNS(a_uri, qname)
                node.setAttributeNodeNS(attr)
            elif a_uri:
                prefix = self._current_context[a_uri]
                if prefix:
                    qname = prefix + ":" + a_localname
                else:
                    qname = a_localname
                attr = self.document.createAttributeNS(a_uri, qname)
                node.setAttributeNodeNS(attr)
            else:
                attr = self.document.createAttribute(a_localname)
                node.setAttributeNode(attr)
            attr.value = value

        self.lastEvent[1] = [(START_ELEMENT, node), None]
        self.lastEvent = self.lastEvent[1]
        self.push(node)

    def endElementNS(self, name, tagName):
        self.lastEvent[1] = [(END_ELEMENT, self.pop()), None]
        self.lastEvent = self.lastEvent[1]

    def startElement(self, name, attrs):
        if self.document:
            node = self.document.createElement(name)
        else:
            node = self.buildDocument(None, name)

        for aname,value in attrs.items():
            attr = self.document.createAttribute(aname)
            attr.value = value
            node.setAttributeNode(attr)

        self.lastEvent[1] = [(START_ELEMENT, node), None]
        self.lastEvent = self.lastEvent[1]
        self.push(node)

    def endElement(self, name):
        self.lastEvent[1] = [(END_ELEMENT, self.pop()), None]
        self.lastEvent = self.lastEvent[1]

    def comment(self, s):
        if self.document:
            node = self.document.createComment(s)
            self.lastEvent[1] = [(COMMENT, node), None]
            self.lastEvent = self.lastEvent[1]
        else:
            event = [(COMMENT, s), None]
            self.pending_events.append(event)

    def processingInstruction(self, target, data):
        if self.document:
            node = self.document.createProcessingInstruction(target, data)
            self.lastEvent[1] = [(PROCESSING_INSTRUCTION, node), None]
            self.lastEvent = self.lastEvent[1]
        else:
            event = [(PROCESSING_INSTRUCTION, target, data), None]
            self.pending_events.append(event)

    def ignorableWhitespace(self, chars):
        node = self.document.createTextNode(chars)
        self.lastEvent[1] = [(IGNORABLE_WHITESPACE, node), None]
        self.lastEvent = self.lastEvent[1]

    def characters(self, chars):
        node = self.document.createTextNode(chars)
        self.lastEvent[1] = [(CHARACTERS, node), None]
        self.lastEvent = self.lastEvent[1]

    def startDocument(self):
        if self.documentFactory is None:
            import xml.dom.minidom
            self.documentFactory = xml.dom.minidom.Document.implementation

    def buildDocument(self, uri, tagname):
        # Can't do that in startDocument, since we need the tagname
        # XXX: obtain DocumentType
        node = self.documentFactory.createDocument(uri, tagname, None)
        self.document = node
        self.lastEvent[1] = [(START_DOCUMENT, node), None]
        self.lastEvent = self.lastEvent[1]
        self.push(node)
        # Put everything we have seen so far into the document
        for e in self.pending_events:
            if e[0][0] == PROCESSING_INSTRUCTION:
                _,target,data = e[0]
                n = self.document.createProcessingInstruction(target, data)
                e[0] = (PROCESSING_INSTRUCTION, n)
            elif e[0][0] == COMMENT:
                n = self.document.createComment(e[0][1])
                e[0] = (COMMENT, n)
            else:
                raise AssertionError("Unknown pending event ",e[0][0])
            self.lastEvent[1] = e
            self.lastEvent = e
        self.pending_events = None
        return node.firstChild

    def endDocument(self):
        self.lastEvent[1] = [(END_DOCUMENT, self.document), None]
        self.pop()

    def clear(self):
        "clear(): Explicitly release parsing structures"
        self.document = None

class ErrorHandler:
    def warning(self, exception):
        print(exception)
    def error(self, exception):
        raise exception
    def fatalError(self, exception):
        raise exception

class DOMEventStream:
    def __init__(self, stream, parser, bufsize):
        self.stream = stream
        self.parser = parser
        self.bufsize = bufsize
        if not hasattr(self.parser, 'feed'):
            self.getEvent = self._slurp
        self.reset()

    def reset(self):
        self.pulldom = PullDOM()
        # This content handler relies on namespace support
        self.parser.setFeature(xml.sax.handler.feature_namespaces, 1)
        self.parser.setContentHandler(self.pulldom)

    def __getitem__(self, pos):
        rc = self.getEvent()
        if rc:
            return rc
        raise IndexError

    def __next__(self):
        rc = self.getEvent()
        if rc:
            return rc
        raise StopIteration

    def __iter__(self):
        return self

    def expandNode(self, node):
        event = self.getEvent()
        parents = [node]
        while event:
            token, cur_node = event
            if cur_node is node:
                return
            if token != END_ELEMENT:
                parents[-1].appendChild(cur_node)
            if token == START_ELEMENT:
                parents.append(cur_node)
            elif token == END_ELEMENT:
                del parents[-1]
            event = self.getEvent()

    def getEvent(self):
        # use IncrementalParser interface, so we get the desired
        # pull effect
        if not self.pulldom.firstEvent[1]:
            self.pulldom.lastEvent = self.pulldom.firstEvent
        while not self.pulldom.firstEvent[1]:
            buf = self.stream.read(self.bufsize)
            if not buf:
                self.parser.close()
                return None
            self.parser.feed(buf)
        rc = self.pulldom.firstEvent[1][0]
        self.pulldom.firstEvent[1] = self.pulldom.firstEvent[1][1]
        return rc

    def _slurp(self):
        """ Fallback replacement for getEvent() using the
            standard SAX2 interface, which means we slurp the
            SAX events into memory (no performance gain, but
            we are compatible to all SAX parsers).
        """
        self.parser.parse(self.stream)
        self.getEvent = self._emit
        return self._emit()

    def _emit(self):
        """ Fallback replacement for getEvent() that emits
            the events that _slurp() read previously.
        """
        rc = self.pulldom.firstEvent[1][0]
        self.pulldom.firstEvent[1] = self.pulldom.firstEvent[1][1]
        return rc

    def clear(self):
        """clear(): Explicitly release parsing objects"""
        self.pulldom.clear()
        del self.pulldom
        self.parser = None
        self.stream = None

class SAX2DOM(PullDOM):

    def startElementNS(self, name, tagName , attrs):
        PullDOM.startElementNS(self, name, tagName, attrs)
        curNode = self.elementStack[-1]
        parentNode = self.elementStack[-2]
        parentNode.appendChild(curNode)

    def startElement(self, name, attrs):
        PullDOM.startElement(self, name, attrs)
        curNode = self.elementStack[-1]
        parentNode = self.elementStack[-2]
        parentNode.appendChild(curNode)

    def processingInstruction(self, target, data):
        PullDOM.processingInstruction(self, target, data)
        node = self.lastEvent[0][1]
        parentNode = self.elementStack[-1]
        parentNode.appendChild(node)

    def ignorableWhitespace(self, chars):
        PullDOM.ignorableWhitespace(self, chars)
        node = self.lastEvent[0][1]
        parentNode = self.elementStack[-1]
        parentNode.appendChild(node)

    def characters(self, chars):
        PullDOM.characters(self, chars)
        node = self.lastEvent[0][1]
        parentNode = self.elementStack[-1]
        parentNode.appendChild(node)


default_bufsize = (2 ** 14) - 20

def parse(stream_or_string, parser=None, bufsize=None):
    if bufsize is None:
        bufsize = default_bufsize
    if isinstance(stream_or_string, str):
        stream = open(stream_or_string, 'rb')
    else:
        stream = stream_or_string
    if not parser:
        parser = xml.sax.make_parser()
    return DOMEventStream(stream, parser, bufsize)

def parseString(string, parser=None):
    from io import StringIO

    bufsize = len(string)
    buf = StringIO(string)
    if not parser:
        parser = xml.sax.make_parser()
    return DOMEventStream(buf, parser, bufsize)
lib\xml\dom\xmlbuilder.py
"""Implementation of the DOM Level 3 'LS-Load' feature."""

import copy
import xml.dom

from xml.dom.NodeFilter import NodeFilter


__all__ = ["DOMBuilder", "DOMEntityResolver", "DOMInputSource"]


class Options:
    """Features object that has variables set for each DOMBuilder feature.

    The DOMBuilder class uses an instance of this class to pass settings to
    the ExpatBuilder class.
    """

    # Note that the DOMBuilder class in LoadSave constrains which of these
    # values can be set using the DOM Level 3 LoadSave feature.

    namespaces = 1
    namespace_declarations = True
    validation = False
    external_parameter_entities = True
    external_general_entities = True
    external_dtd_subset = True
    validate_if_schema = False
    validate = False
    datatype_normalization = False
    create_entity_ref_nodes = True
    entities = True
    whitespace_in_element_content = True
    cdata_sections = True
    comments = True
    charset_overrides_xml_encoding = True
    infoset = False
    supported_mediatypes_only = False

    errorHandler = None
    filter = None


class DOMBuilder:
    entityResolver = None
    errorHandler = None
    filter = None

    ACTION_REPLACE = 1
    ACTION_APPEND_AS_CHILDREN = 2
    ACTION_INSERT_AFTER = 3
    ACTION_INSERT_BEFORE = 4

    _legal_actions = (ACTION_REPLACE, ACTION_APPEND_AS_CHILDREN,
                      ACTION_INSERT_AFTER, ACTION_INSERT_BEFORE)

    def __init__(self):
        self._options = Options()

    def _get_entityResolver(self):
        return self.entityResolver
    def _set_entityResolver(self, entityResolver):
        self.entityResolver = entityResolver

    def _get_errorHandler(self):
        return self.errorHandler
    def _set_errorHandler(self, errorHandler):
        self.errorHandler = errorHandler

    def _get_filter(self):
        return self.filter
    def _set_filter(self, filter):
        self.filter = filter

    def setFeature(self, name, state):
        if self.supportsFeature(name):
            state = state and 1 or 0
            try:
                settings = self._settings[(_name_xform(name), state)]
            except KeyError:
                raise xml.dom.NotSupportedErr(
                    "unsupported feature: %r" % (name,))
            else:
                for name, value in settings:
                    setattr(self._options, name, value)
        else:
            raise xml.dom.NotFoundErr("unknown feature: " + repr(name))

    def supportsFeature(self, name):
        return hasattr(self._options, _name_xform(name))

    def canSetFeature(self, name, state):
        key = (_name_xform(name), state and 1 or 0)
        return key in self._settings

    # This dictionary maps from (feature,value) to a list of
    # (option,value) pairs that should be set on the Options object.
    # If a (feature,value) setting is not in this dictionary, it is
    # not supported by the DOMBuilder.
    #
    _settings = {
        ("namespace_declarations", 0): [
            ("namespace_declarations", 0)],
        ("namespace_declarations", 1): [
            ("namespace_declarations", 1)],
        ("validation", 0): [
            ("validation", 0)],
        ("external_general_entities", 0): [
            ("external_general_entities", 0)],
        ("external_general_entities", 1): [
            ("external_general_entities", 1)],
        ("external_parameter_entities", 0): [
            ("external_parameter_entities", 0)],
        ("external_parameter_entities", 1): [
            ("external_parameter_entities", 1)],
        ("validate_if_schema", 0): [
            ("validate_if_schema", 0)],
        ("create_entity_ref_nodes", 0): [
            ("create_entity_ref_nodes", 0)],
        ("create_entity_ref_nodes", 1): [
            ("create_entity_ref_nodes", 1)],
        ("entities", 0): [
            ("create_entity_ref_nodes", 0),
            ("entities", 0)],
        ("entities", 1): [
            ("entities", 1)],
        ("whitespace_in_element_content", 0): [
            ("whitespace_in_element_content", 0)],
        ("whitespace_in_element_content", 1): [
            ("whitespace_in_element_content", 1)],
        ("cdata_sections", 0): [
            ("cdata_sections", 0)],
        ("cdata_sections", 1): [
            ("cdata_sections", 1)],
        ("comments", 0): [
            ("comments", 0)],
        ("comments", 1): [
            ("comments", 1)],
        ("charset_overrides_xml_encoding", 0): [
            ("charset_overrides_xml_encoding", 0)],
        ("charset_overrides_xml_encoding", 1): [
            ("charset_overrides_xml_encoding", 1)],
        ("infoset", 0): [],
        ("infoset", 1): [
            ("namespace_declarations", 0),
            ("validate_if_schema", 0),
            ("create_entity_ref_nodes", 0),
            ("entities", 0),
            ("cdata_sections", 0),
            ("datatype_normalization", 1),
            ("whitespace_in_element_content", 1),
            ("comments", 1),
            ("charset_overrides_xml_encoding", 1)],
        ("supported_mediatypes_only", 0): [
            ("supported_mediatypes_only", 0)],
        ("namespaces", 0): [
            ("namespaces", 0)],
        ("namespaces", 1): [
            ("namespaces", 1)],
    }

    def getFeature(self, name):
        xname = _name_xform(name)
        try:
            return getattr(self._options, xname)
        except AttributeError:
            if name == "infoset":
                options = self._options
                return (options.datatype_normalization
                        and options.whitespace_in_element_content
                        and options.comments
                        and options.charset_overrides_xml_encoding
                        and not (options.namespace_declarations
                                 or options.validate_if_schema
                                 or options.create_entity_ref_nodes
                                 or options.entities
                                 or options.cdata_sections))
            raise xml.dom.NotFoundErr("feature %s not known" % repr(name))

    def parseURI(self, uri):
        if self.entityResolver:
            input = self.entityResolver.resolveEntity(None, uri)
        else:
            input = DOMEntityResolver().resolveEntity(None, uri)
        return self.parse(input)

    def parse(self, input):
        options = copy.copy(self._options)
        options.filter = self.filter
        options.errorHandler = self.errorHandler
        fp = input.byteStream
        if fp is None and options.systemId:
            import urllib.request
            fp = urllib.request.urlopen(input.systemId)
        return self._parse_bytestream(fp, options)

    def parseWithContext(self, input, cnode, action):
        if action not in self._legal_actions:
            raise ValueError("not a legal action")
        raise NotImplementedError("Haven't written this yet...")

    def _parse_bytestream(self, stream, options):
        import xml.dom.expatbuilder
        builder = xml.dom.expatbuilder.makeBuilder(options)
        return builder.parseFile(stream)


def _name_xform(name):
    return name.lower().replace('-', '_')


class DOMEntityResolver(object):
    __slots__ = '_opener',

    def resolveEntity(self, publicId, systemId):
        assert systemId is not None
        source = DOMInputSource()
        source.publicId = publicId
        source.systemId = systemId
        source.byteStream = self._get_opener().open(systemId)

        # determine the encoding if the transport provided it
        source.encoding = self._guess_media_encoding(source)

        # determine the base URI is we can
        import posixpath, urllib.parse
        parts = urllib.parse.urlparse(systemId)
        scheme, netloc, path, params, query, fragment = parts
        # XXX should we check the scheme here as well?
        if path and not path.endswith("/"):
            path = posixpath.dirname(path) + "/"
            parts = scheme, netloc, path, params, query, fragment
            source.baseURI = urllib.parse.urlunparse(parts)

        return source

    def _get_opener(self):
        try:
            return self._opener
        except AttributeError:
            self._opener = self._create_opener()
            return self._opener

    def _create_opener(self):
        import urllib.request
        return urllib.request.build_opener()

    def _guess_media_encoding(self, source):
        info = source.byteStream.info()
        if "Content-Type" in info:
            for param in info.getplist():
                if param.startswith("charset="):
                    return param.split("=", 1)[1].lower()


class DOMInputSource(object):
    __slots__ = ('byteStream', 'characterStream', 'stringData',
                 'encoding', 'publicId', 'systemId', 'baseURI')

    def __init__(self):
        self.byteStream = None
        self.characterStream = None
        self.stringData = None
        self.encoding = None
        self.publicId = None
        self.systemId = None
        self.baseURI = None

    def _get_byteStream(self):
        return self.byteStream
    def _set_byteStream(self, byteStream):
        self.byteStream = byteStream

    def _get_characterStream(self):
        return self.characterStream
    def _set_characterStream(self, characterStream):
        self.characterStream = characterStream

    def _get_stringData(self):
        return self.stringData
    def _set_stringData(self, data):
        self.stringData = data

    def _get_encoding(self):
        return self.encoding
    def _set_encoding(self, encoding):
        self.encoding = encoding

    def _get_publicId(self):
        return self.publicId
    def _set_publicId(self, publicId):
        self.publicId = publicId

    def _get_systemId(self):
        return self.systemId
    def _set_systemId(self, systemId):
        self.systemId = systemId

    def _get_baseURI(self):
        return self.baseURI
    def _set_baseURI(self, uri):
        self.baseURI = uri


class DOMBuilderFilter:
    """Element filter which can be used to tailor construction of
    a DOM instance.
    """

    # There's really no need for this class; concrete implementations
    # should just implement the endElement() and startElement()
    # methods as appropriate.  Using this makes it easy to only
    # implement one of them.

    FILTER_ACCEPT = 1
    FILTER_REJECT = 2
    FILTER_SKIP = 3
    FILTER_INTERRUPT = 4

    whatToShow = NodeFilter.SHOW_ALL

    def _get_whatToShow(self):
        return self.whatToShow

    def acceptNode(self, element):
        return self.FILTER_ACCEPT

    def startContainer(self, element):
        return self.FILTER_ACCEPT

del NodeFilter


class DocumentLS:
    """Mixin to create documents that conform to the load/save spec."""

    async_ = False

    def _get_async(self):
        return False

    def _set_async(self, flag):
        if flag:
            raise xml.dom.NotSupportedErr(
                "asynchronous document loading is not supported")

    def abort(self):
        # What does it mean to "clear" a document?  Does the
        # documentElement disappear?
        raise NotImplementedError(
            "haven't figured out what this means yet")

    def load(self, uri):
        raise NotImplementedError("haven't written this yet")

    def loadXML(self, source):
        raise NotImplementedError("haven't written this yet")

    def saveXML(self, snode):
        if snode is None:
            snode = self
        elif snode.ownerDocument is not self:
            raise xml.dom.WrongDocumentErr()
        return snode.toxml()


class DOMImplementationLS:
    MODE_SYNCHRONOUS = 1
    MODE_ASYNCHRONOUS = 2

    def createDOMBuilder(self, mode, schemaType):
        if schemaType is not None:
            raise xml.dom.NotSupportedErr(
                "schemaType not yet supported")
        if mode == self.MODE_SYNCHRONOUS:
            return DOMBuilder()
        if mode == self.MODE_ASYNCHRONOUS:
            raise xml.dom.NotSupportedErr(
                "asynchronous builders are not supported")
        raise ValueError("unknown value for mode")

    def createDOMWriter(self):
        raise NotImplementedError(
            "the writer interface hasn't been written yet!")

    def createDOMInputSource(self):
        return DOMInputSource()
lib\xml\dom\__init__.py
"""W3C Document Object Model implementation for Python.

The Python mapping of the Document Object Model is documented in the
Python Library Reference in the section on the xml.dom package.

This package contains the following modules:

minidom -- A simple implementation of the Level 1 DOM with namespace
           support added (based on the Level 2 specification) and other
           minor Level 2 functionality.

pulldom -- DOM builder supporting on-demand tree-building for selected
           subtrees of the document.

"""


class Node:
    """Class giving the NodeType constants."""
    __slots__ = ()

    # DOM implementations may use this as a base class for their own
    # Node implementations.  If they don't, the constants defined here
    # should still be used as the canonical definitions as they match
    # the values given in the W3C recommendation.  Client code can
    # safely refer to these values in all tests of Node.nodeType
    # values.

    ELEMENT_NODE                = 1
    ATTRIBUTE_NODE              = 2
    TEXT_NODE                   = 3
    CDATA_SECTION_NODE          = 4
    ENTITY_REFERENCE_NODE       = 5
    ENTITY_NODE                 = 6
    PROCESSING_INSTRUCTION_NODE = 7
    COMMENT_NODE                = 8
    DOCUMENT_NODE               = 9
    DOCUMENT_TYPE_NODE          = 10
    DOCUMENT_FRAGMENT_NODE      = 11
    NOTATION_NODE               = 12


#ExceptionCode
INDEX_SIZE_ERR                 = 1
DOMSTRING_SIZE_ERR             = 2
HIERARCHY_REQUEST_ERR          = 3
WRONG_DOCUMENT_ERR             = 4
INVALID_CHARACTER_ERR          = 5
NO_DATA_ALLOWED_ERR            = 6
NO_MODIFICATION_ALLOWED_ERR    = 7
NOT_FOUND_ERR                  = 8
NOT_SUPPORTED_ERR              = 9
INUSE_ATTRIBUTE_ERR            = 10
INVALID_STATE_ERR              = 11
SYNTAX_ERR                     = 12
INVALID_MODIFICATION_ERR       = 13
NAMESPACE_ERR                  = 14
INVALID_ACCESS_ERR             = 15
VALIDATION_ERR                 = 16


class DOMException(Exception):
    """Abstract base class for DOM exceptions.
    Exceptions with specific codes are specializations of this class."""

    def __init__(self, *args, **kw):
        if self.__class__ is DOMException:
            raise RuntimeError(
                "DOMException should not be instantiated directly")
        Exception.__init__(self, *args, **kw)

    def _get_code(self):
        return self.code


class IndexSizeErr(DOMException):
    code = INDEX_SIZE_ERR

class DomstringSizeErr(DOMException):
    code = DOMSTRING_SIZE_ERR

class HierarchyRequestErr(DOMException):
    code = HIERARCHY_REQUEST_ERR

class WrongDocumentErr(DOMException):
    code = WRONG_DOCUMENT_ERR

class InvalidCharacterErr(DOMException):
    code = INVALID_CHARACTER_ERR

class NoDataAllowedErr(DOMException):
    code = NO_DATA_ALLOWED_ERR

class NoModificationAllowedErr(DOMException):
    code = NO_MODIFICATION_ALLOWED_ERR

class NotFoundErr(DOMException):
    code = NOT_FOUND_ERR

class NotSupportedErr(DOMException):
    code = NOT_SUPPORTED_ERR

class InuseAttributeErr(DOMException):
    code = INUSE_ATTRIBUTE_ERR

class InvalidStateErr(DOMException):
    code = INVALID_STATE_ERR

class SyntaxErr(DOMException):
    code = SYNTAX_ERR

class InvalidModificationErr(DOMException):
    code = INVALID_MODIFICATION_ERR

class NamespaceErr(DOMException):
    code = NAMESPACE_ERR

class InvalidAccessErr(DOMException):
    code = INVALID_ACCESS_ERR

class ValidationErr(DOMException):
    code = VALIDATION_ERR

class UserDataHandler:
    """Class giving the operation constants for UserDataHandler.handle()."""

    # Based on DOM Level 3 (WD 9 April 2002)

    NODE_CLONED   = 1
    NODE_IMPORTED = 2
    NODE_DELETED  = 3
    NODE_RENAMED  = 4

XML_NAMESPACE = "http://www.w3.org/XML/1998/namespace"
XMLNS_NAMESPACE = "http://www.w3.org/2000/xmlns/"
XHTML_NAMESPACE = "http://www.w3.org/1999/xhtml"
EMPTY_NAMESPACE = None
EMPTY_PREFIX = None

from .domreg import getDOMImplementation, registerDOMImplementation
lib\xml\etree\cElementTree.py
# Deprecated alias for xml.etree.ElementTree

from xml.etree.ElementTree import *
lib\xml\etree\ElementInclude.py
#
# ElementTree
# $Id: ElementInclude.py 3375 2008-02-13 08:05:08Z fredrik $
#
# limited xinclude support for element trees
#
# history:
# 2003-08-15 fl   created
# 2003-11-14 fl   fixed default loader
#
# Copyright (c) 2003-2004 by Fredrik Lundh.  All rights reserved.
#
# [email protected]
# http://www.pythonware.com
#
# --------------------------------------------------------------------
# The ElementTree toolkit is
#
# Copyright (c) 1999-2008 by Fredrik Lundh
#
# By obtaining, using, and/or copying this software and/or its
# associated documentation, you agree that you have read, understood,
# and will comply with the following terms and conditions:
#
# Permission to use, copy, modify, and distribute this software and
# its associated documentation for any purpose and without fee is
# hereby granted, provided that the above copyright notice appears in
# all copies, and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Secret Labs AB or the author not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
# TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
# ABILITY AND FITNESS.  IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
# BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THIS SOFTWARE.
# --------------------------------------------------------------------

# Licensed to PSF under a Contributor Agreement.
# See http://www.python.org/psf/license for licensing details.

##
# Limited XInclude support for the ElementTree package.
##

import copy
from . import ElementTree

XINCLUDE = "{http://www.w3.org/2001/XInclude}"

XINCLUDE_INCLUDE = XINCLUDE + "include"
XINCLUDE_FALLBACK = XINCLUDE + "fallback"

##
# Fatal include error.

class FatalIncludeError(SyntaxError):
    pass

##
# Default loader.  This loader reads an included resource from disk.
#
# @param href Resource reference.
# @param parse Parse mode.  Either "xml" or "text".
# @param encoding Optional text encoding (UTF-8 by default for "text").
# @return The expanded resource.  If the parse mode is "xml", this
#    is an ElementTree instance.  If the parse mode is "text", this
#    is a Unicode string.  If the loader fails, it can return None
#    or raise an OSError exception.
# @throws OSError If the loader fails to load the resource.

def default_loader(href, parse, encoding=None):
    if parse == "xml":
        with open(href, 'rb') as file:
            data = ElementTree.parse(file).getroot()
    else:
        if not encoding:
            encoding = 'UTF-8'
        with open(href, 'r', encoding=encoding) as file:
            data = file.read()
    return data

##
# Expand XInclude directives.
#
# @param elem Root element.
# @param loader Optional resource loader.  If omitted, it defaults
#     to {@link default_loader}.  If given, it should be a callable
#     that implements the same interface as <b>default_loader</b>.
# @throws FatalIncludeError If the function fails to include a given
#     resource, or if the tree contains malformed XInclude elements.
# @throws OSError If the function fails to load a given resource.

def include(elem, loader=None):
    if loader is None:
        loader = default_loader
    # look for xinclude elements
    i = 0
    while i < len(elem):
        e = elem[i]
        if e.tag == XINCLUDE_INCLUDE:
            # process xinclude directive
            href = e.get("href")
            parse = e.get("parse", "xml")
            if parse == "xml":
                node = loader(href, parse)
                if node is None:
                    raise FatalIncludeError(
                        "cannot load %r as %r" % (href, parse)
                        )
                node = copy.copy(node)
                if e.tail:
                    node.tail = (node.tail or "") + e.tail
                elem[i] = node
            elif parse == "text":
                text = loader(href, parse, e.get("encoding"))
                if text is None:
                    raise FatalIncludeError(
                        "cannot load %r as %r" % (href, parse)
                        )
                if i:
                    node = elem[i-1]
                    node.tail = (node.tail or "") + text + (e.tail or "")
                else:
                    elem.text = (elem.text or "") + text + (e.tail or "")
                del elem[i]
                continue
            else:
                raise FatalIncludeError(
                    "unknown parse type in xi:include tag (%r)" % parse
                )
        elif e.tag == XINCLUDE_FALLBACK:
            raise FatalIncludeError(
                "xi:fallback tag must be child of xi:include (%r)" % e.tag
                )
        else:
            include(e, loader)
        i = i + 1
lib\xml\etree\ElementPath.py
#
# ElementTree
# $Id: ElementPath.py 3375 2008-02-13 08:05:08Z fredrik $
#
# limited xpath support for element trees
#
# history:
# 2003-05-23 fl   created
# 2003-05-28 fl   added support for // etc
# 2003-08-27 fl   fixed parsing of periods in element names
# 2007-09-10 fl   new selection engine
# 2007-09-12 fl   fixed parent selector
# 2007-09-13 fl   added iterfind; changed findall to return a list
# 2007-11-30 fl   added namespaces support
# 2009-10-30 fl   added child element value filter
#
# Copyright (c) 2003-2009 by Fredrik Lundh.  All rights reserved.
#
# [email protected]
# http://www.pythonware.com
#
# --------------------------------------------------------------------
# The ElementTree toolkit is
#
# Copyright (c) 1999-2009 by Fredrik Lundh
#
# By obtaining, using, and/or copying this software and/or its
# associated documentation, you agree that you have read, understood,
# and will comply with the following terms and conditions:
#
# Permission to use, copy, modify, and distribute this software and
# its associated documentation for any purpose and without fee is
# hereby granted, provided that the above copyright notice appears in
# all copies, and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Secret Labs AB or the author not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
# TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
# ABILITY AND FITNESS.  IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
# BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THIS SOFTWARE.
# --------------------------------------------------------------------

# Licensed to PSF under a Contributor Agreement.
# See http://www.python.org/psf/license for licensing details.

##
# Implementation module for XPath support.  There's usually no reason
# to import this module directly; the <b>ElementTree</b> does this for
# you, if needed.
##

import re

xpath_tokenizer_re = re.compile(
    "("
    "'[^']*'|\"[^\"]*\"|"
    "::|"
    "//?|"
    "\.\.|"
    "\(\)|"
    "[/.*:\[\]\(\)@=])|"
    "((?:\{[^}]+\})?[^/\[\]\(\)@=\s]+)|"
    "\s+"
    )

def xpath_tokenizer(pattern, namespaces=None):
    for token in xpath_tokenizer_re.findall(pattern):
        tag = token[1]
        if tag and tag[0] != "{" and ":" in tag:
            try:
                prefix, uri = tag.split(":", 1)
                if not namespaces:
                    raise KeyError
                yield token[0], "{%s}%s" % (namespaces[prefix], uri)
            except KeyError:
                raise SyntaxError("prefix %r not found in prefix map" % prefix)
        else:
            yield token

def get_parent_map(context):
    parent_map = context.parent_map
    if parent_map is None:
        context.parent_map = parent_map = {}
        for p in context.root.iter():
            for e in p:
                parent_map[e] = p
    return parent_map

def prepare_child(next, token):
    tag = token[1]
    def select(context, result):
        for elem in result:
            for e in elem:
                if e.tag == tag:
                    yield e
    return select

def prepare_star(next, token):
    def select(context, result):
        for elem in result:
            yield from elem
    return select

def prepare_self(next, token):
    def select(context, result):
        yield from result
    return select

def prepare_descendant(next, token):
    token = next()
    if token[0] == "*":
        tag = "*"
    elif not token[0]:
        tag = token[1]
    else:
        raise SyntaxError("invalid descendant")
    def select(context, result):
        for elem in result:
            for e in elem.iter(tag):
                if e is not elem:
                    yield e
    return select

def prepare_parent(next, token):
    def select(context, result):
        # FIXME: raise error if .. is applied at toplevel?
        parent_map = get_parent_map(context)
        result_map = {}
        for elem in result:
            if elem in parent_map:
                parent = parent_map[elem]
                if parent not in result_map:
                    result_map[parent] = None
                    yield parent
    return select

def prepare_predicate(next, token):
    # FIXME: replace with real parser!!! refs:
    # http://effbot.org/zone/simple-iterator-parser.htm
    # http://javascript.crockford.com/tdop/tdop.html
    signature = []
    predicate = []
    while 1:
        token = next()
        if token[0] == "]":
            break
        if token[0] and token[0][:1] in "'\"":
            token = "'", token[0][1:-1]
        signature.append(token[0] or "-")
        predicate.append(token[1])
    signature = "".join(signature)
    # use signature to determine predicate type
    if signature == "@-":
        # [@attribute] predicate
        key = predicate[1]
        def select(context, result):
            for elem in result:
                if elem.get(key) is not None:
                    yield elem
        return select
    if signature == "@-='":
        # [@attribute='value']
        key = predicate[1]
        value = predicate[-1]
        def select(context, result):
            for elem in result:
                if elem.get(key) == value:
                    yield elem
        return select
    if signature == "-" and not re.match("\-?\d+$", predicate[0]):
        # [tag]
        tag = predicate[0]
        def select(context, result):
            for elem in result:
                if elem.find(tag) is not None:
                    yield elem
        return select
    if signature == "-='" and not re.match("\-?\d+$", predicate[0]):
        # [tag='value']
        tag = predicate[0]
        value = predicate[-1]
        def select(context, result):
            for elem in result:
                for e in elem.findall(tag):
                    if "".join(e.itertext()) == value:
                        yield elem
                        break
        return select
    if signature == "-" or signature == "-()" or signature == "-()-":
        # [index] or [last()] or [last()-index]
        if signature == "-":
            # [index]
            index = int(predicate[0]) - 1
            if index < 0:
                raise SyntaxError("XPath position >= 1 expected")
        else:
            if predicate[0] != "last":
                raise SyntaxError("unsupported function")
            if signature == "-()-":
                try:
                    index = int(predicate[2]) - 1
                except ValueError:
                    raise SyntaxError("unsupported expression")
                if index > -2:
                    raise SyntaxError("XPath offset from last() must be negative")
            else:
                index = -1
        def select(context, result):
            parent_map = get_parent_map(context)
            for elem in result:
                try:
                    parent = parent_map[elem]
                    # FIXME: what if the selector is "*" ?
                    elems = list(parent.findall(elem.tag))
                    if elems[index] is elem:
                        yield elem
                except (IndexError, KeyError):
                    pass
        return select
    raise SyntaxError("invalid predicate")

ops = {
    "": prepare_child,
    "*": prepare_star,
    ".": prepare_self,
    "..": prepare_parent,
    "//": prepare_descendant,
    "[": prepare_predicate,
    }

_cache = {}

class _SelectorContext:
    parent_map = None
    def __init__(self, root):
        self.root = root

# --------------------------------------------------------------------

##
# Generate all matching objects.

def iterfind(elem, path, namespaces=None):
    # compile selector pattern
    cache_key = (path, None if namespaces is None
                            else tuple(sorted(namespaces.items())))
    if path[-1:] == "/":
        path = path + "*" # implicit all (FIXME: keep this?)
    try:
        selector = _cache[cache_key]
    except KeyError:
        if len(_cache) > 100:
            _cache.clear()
        if path[:1] == "/":
            raise SyntaxError("cannot use absolute path on element")
        next = iter(xpath_tokenizer(path, namespaces)).__next__
        token = next()
        selector = []
        while 1:
            try:
                selector.append(ops[token[0]](next, token))
            except StopIteration:
                raise SyntaxError("invalid path")
            try:
                token = next()
                if token[0] == "/":
                    token = next()
            except StopIteration:
                break
        _cache[cache_key] = selector
    # execute selector pattern
    result = [elem]
    context = _SelectorContext(elem)
    for select in selector:
        result = select(context, result)
    return result

##
# Find first matching object.

def find(elem, path, namespaces=None):
    try:
        return next(iterfind(elem, path, namespaces))
    except StopIteration:
        return None

##
# Find all matching objects.

def findall(elem, path, namespaces=None):
    return list(iterfind(elem, path, namespaces))

##
# Find text for first matching object.

def findtext(elem, path, default=None, namespaces=None):
    try:
        elem = next(iterfind(elem, path, namespaces))
        return elem.text or ""
    except StopIteration:
        return default
lib\xml\etree\ElementTree.py
"""Lightweight XML support for Python.

 XML is an inherently hierarchical data format, and the most natural way to
 represent it is with a tree.  This module has two classes for this purpose:

    1. ElementTree represents the whole XML document as a tree and

    2. Element represents a single node in this tree.

 Interactions with the whole document (reading and writing to/from files) are
 usually done on the ElementTree level.  Interactions with a single XML element
 and its sub-elements are done on the Element level.

 Element is a flexible container object designed to store hierarchical data
 structures in memory. It can be described as a cross between a list and a
 dictionary.  Each Element has a number of properties associated with it:

    'tag' - a string containing the element's name.

    'attributes' - a Python dictionary storing the element's attributes.

    'text' - a string containing the element's text content.

    'tail' - an optional string containing text after the element's end tag.

    And a number of child elements stored in a Python sequence.

 To create an element instance, use the Element constructor,
 or the SubElement factory function.

 You can also use the ElementTree class to wrap an element structure
 and convert it to and from XML.

"""

#---------------------------------------------------------------------
# Licensed to PSF under a Contributor Agreement.
# See http://www.python.org/psf/license for licensing details.
#
# ElementTree
# Copyright (c) 1999-2008 by Fredrik Lundh.  All rights reserved.
#
# [email protected]
# http://www.pythonware.com
# --------------------------------------------------------------------
# The ElementTree toolkit is
#
# Copyright (c) 1999-2008 by Fredrik Lundh
#
# By obtaining, using, and/or copying this software and/or its
# associated documentation, you agree that you have read, understood,
# and will comply with the following terms and conditions:
#
# Permission to use, copy, modify, and distribute this software and
# its associated documentation for any purpose and without fee is
# hereby granted, provided that the above copyright notice appears in
# all copies, and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Secret Labs AB or the author not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
# TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
# ABILITY AND FITNESS.  IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
# BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THIS SOFTWARE.
# --------------------------------------------------------------------

__all__ = [
    # public symbols
    "Comment",
    "dump",
    "Element", "ElementTree",
    "fromstring", "fromstringlist",
    "iselement", "iterparse",
    "parse", "ParseError",
    "PI", "ProcessingInstruction",
    "QName",
    "SubElement",
    "tostring", "tostringlist",
    "TreeBuilder",
    "VERSION",
    "XML", "XMLID",
    "XMLParser",
    "register_namespace",
    ]

VERSION = "1.3.0"

import sys
import re
import warnings
import io
import contextlib

from . import ElementPath


class ParseError(SyntaxError):
    """An error when parsing an XML document.

    In addition to its exception value, a ParseError contains
    two extra attributes:
        'code'     - the specific exception code
        'position' - the line and column of the error

    """
    pass

# --------------------------------------------------------------------


def iselement(element):
    """Return True if *element* appears to be an Element."""
    return hasattr(element, 'tag')


class Element:
    """An XML element.

    This class is the reference implementation of the Element interface.

    An element's length is its number of subelements.  That means if you
    want to check if an element is truly empty, you should check BOTH
    its length AND its text attribute.

    The element tag, attribute names, and attribute values can be either
    bytes or strings.

    *tag* is the element name.  *attrib* is an optional dictionary containing
    element attributes. *extra* are additional element attributes given as
    keyword arguments.

    Example form:
        <tag attrib>text<child/>...</tag>tail

    """

    tag = None
    """The element's name."""

    attrib = None
    """Dictionary of the element's attributes."""

    text = None
    """
    Text before first subelement. This is either a string or the value None.
    Note that if there is no text, this attribute may be either
    None or the empty string, depending on the parser.

    """

    tail = None
    """
    Text after this element's end tag, but before the next sibling element's
    start tag.  This is either a string or the value None.  Note that if there
    was no text, this attribute may be either None or an empty string,
    depending on the parser.

    """

    def __init__(self, tag, attrib={}, **extra):
        if not isinstance(attrib, dict):
            raise TypeError("attrib must be dict, not %s" % (
                attrib.__class__.__name__,))
        attrib = attrib.copy()
        attrib.update(extra)
        self.tag = tag
        self.attrib = attrib
        self._children = []

    def __repr__(self):
        return "<Element %s at 0x%x>" % (repr(self.tag), id(self))

    def makeelement(self, tag, attrib):
        """Create a new element with the same type.

        *tag* is a string containing the element name.
        *attrib* is a dictionary containing the element attributes.

        Do not call this method, use the SubElement factory function instead.

        """
        return self.__class__(tag, attrib)

    def copy(self):
        """Return copy of current element.

        This creates a shallow copy. Subelements will be shared with the
        original tree.

        """
        elem = self.makeelement(self.tag, self.attrib)
        elem.text = self.text
        elem.tail = self.tail
        elem[:] = self
        return elem

    def __len__(self):
        return len(self._children)

    def __bool__(self):
        warnings.warn(
            "The behavior of this method will change in future versions.  "
            "Use specific 'len(elem)' or 'elem is not None' test instead.",
            FutureWarning, stacklevel=2
            )
        return len(self._children) != 0 # emulate old behaviour, for now

    def __getitem__(self, index):
        return self._children[index]

    def __setitem__(self, index, element):
        # if isinstance(index, slice):
        #     for elt in element:
        #         assert iselement(elt)
        # else:
        #     assert iselement(element)
        self._children[index] = element

    def __delitem__(self, index):
        del self._children[index]

    def append(self, subelement):
        """Add *subelement* to the end of this element.

        The new element will appear in document order after the last existing
        subelement (or directly after the text, if it's the first subelement),
        but before the end tag for this element.

        """
        self._assert_is_element(subelement)
        self._children.append(subelement)

    def extend(self, elements):
        """Append subelements from a sequence.

        *elements* is a sequence with zero or more elements.

        """
        for element in elements:
            self._assert_is_element(element)
        self._children.extend(elements)

    def insert(self, index, subelement):
        """Insert *subelement* at position *index*."""
        self._assert_is_element(subelement)
        self._children.insert(index, subelement)

    def _assert_is_element(self, e):
        # Need to refer to the actual Python implementation, not the
        # shadowing C implementation.
        if not isinstance(e, _Element_Py):
            raise TypeError('expected an Element, not %s' % type(e).__name__)

    def remove(self, subelement):
        """Remove matching subelement.

        Unlike the find methods, this method compares elements based on
        identity, NOT ON tag value or contents.  To remove subelements by
        other means, the easiest way is to use a list comprehension to
        select what elements to keep, and then use slice assignment to update
        the parent element.

        ValueError is raised if a matching element could not be found.

        """
        # assert iselement(element)
        self._children.remove(subelement)

    def getchildren(self):
        """(Deprecated) Return all subelements.

        Elements are returned in document order.

        """
        warnings.warn(
            "This method will be removed in future versions.  "
            "Use 'list(elem)' or iteration over elem instead.",
            DeprecationWarning, stacklevel=2
            )
        return self._children

    def find(self, path, namespaces=None):
        """Find first matching element by tag name or path.

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return the first matching element, or None if no element was found.

        """
        return ElementPath.find(self, path, namespaces)

    def findtext(self, path, default=None, namespaces=None):
        """Find text for first matching element by tag name or path.

        *path* is a string having either an element tag or an XPath,
        *default* is the value to return if the element was not found,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return text content of first matching element, or default value if
        none was found.  Note that if an element is found having no text
        content, the empty string is returned.

        """
        return ElementPath.findtext(self, path, default, namespaces)

    def findall(self, path, namespaces=None):
        """Find all matching subelements by tag name or path.

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Returns list containing all matching elements in document order.

        """
        return ElementPath.findall(self, path, namespaces)

    def iterfind(self, path, namespaces=None):
        """Find all matching subelements by tag name or path.

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return an iterable yielding all matching elements in document order.

        """
        return ElementPath.iterfind(self, path, namespaces)

    def clear(self):
        """Reset element.

        This function removes all subelements, clears all attributes, and sets
        the text and tail attributes to None.

        """
        self.attrib.clear()
        self._children = []
        self.text = self.tail = None

    def get(self, key, default=None):
        """Get element attribute.

        Equivalent to attrib.get, but some implementations may handle this a
        bit more efficiently.  *key* is what attribute to look for, and
        *default* is what to return if the attribute was not found.

        Returns a string containing the attribute value, or the default if
        attribute was not found.

        """
        return self.attrib.get(key, default)

    def set(self, key, value):
        """Set element attribute.

        Equivalent to attrib[key] = value, but some implementations may handle
        this a bit more efficiently.  *key* is what attribute to set, and
        *value* is the attribute value to set it to.

        """
        self.attrib[key] = value

    def keys(self):
        """Get list of attribute names.

        Names are returned in an arbitrary order, just like an ordinary
        Python dict.  Equivalent to attrib.keys()

        """
        return self.attrib.keys()

    def items(self):
        """Get element attributes as a sequence.

        The attributes are returned in arbitrary order.  Equivalent to
        attrib.items().

        Return a list of (name, value) tuples.

        """
        return self.attrib.items()

    def iter(self, tag=None):
        """Create tree iterator.

        The iterator loops over the element and all subelements in document
        order, returning all elements with a matching tag.

        If the tree structure is modified during iteration, new or removed
        elements may or may not be included.  To get a stable set, use the
        list() function on the iterator, and loop over the resulting list.

        *tag* is what tags to look for (default is to return all elements)

        Return an iterator containing all the matching elements.

        """
        if tag == "*":
            tag = None
        if tag is None or self.tag == tag:
            yield self
        for e in self._children:
            yield from e.iter(tag)

    # compatibility
    def getiterator(self, tag=None):
        # Change for a DeprecationWarning in 1.4
        warnings.warn(
            "This method will be removed in future versions.  "
            "Use 'elem.iter()' or 'list(elem.iter())' instead.",
            PendingDeprecationWarning, stacklevel=2
        )
        return list(self.iter(tag))

    def itertext(self):
        """Create text iterator.

        The iterator loops over the element and all subelements in document
        order, returning all inner text.

        """
        tag = self.tag
        if not isinstance(tag, str) and tag is not None:
            return
        if self.text:
            yield self.text
        for e in self:
            yield from e.itertext()
            if e.tail:
                yield e.tail


def SubElement(parent, tag, attrib={}, **extra):
    """Subelement factory which creates an element instance, and appends it
    to an existing parent.

    The element tag, attribute names, and attribute values can be either
    bytes or Unicode strings.

    *parent* is the parent element, *tag* is the subelements name, *attrib* is
    an optional directory containing element attributes, *extra* are
    additional attributes given as keyword arguments.

    """
    attrib = attrib.copy()
    attrib.update(extra)
    element = parent.makeelement(tag, attrib)
    parent.append(element)
    return element


def Comment(text=None):
    """Comment element factory.

    This function creates a special element which the standard serializer
    serializes as an XML comment.

    *text* is a string containing the comment string.

    """
    element = Element(Comment)
    element.text = text
    return element


def ProcessingInstruction(target, text=None):
    """Processing Instruction element factory.

    This function creates a special element which the standard serializer
    serializes as an XML comment.

    *target* is a string containing the processing instruction, *text* is a
    string containing the processing instruction contents, if any.

    """
    element = Element(ProcessingInstruction)
    element.text = target
    if text:
        element.text = element.text + " " + text
    return element

PI = ProcessingInstruction


class QName:
    """Qualified name wrapper.

    This class can be used to wrap a QName attribute value in order to get
    proper namespace handing on output.

    *text_or_uri* is a string containing the QName value either in the form
    {uri}local, or if the tag argument is given, the URI part of a QName.

    *tag* is an optional argument which if given, will make the first
    argument (text_or_uri) be interpreted as a URI, and this argument (tag)
    be interpreted as a local name.

    """
    def __init__(self, text_or_uri, tag=None):
        if tag:
            text_or_uri = "{%s}%s" % (text_or_uri, tag)
        self.text = text_or_uri
    def __str__(self):
        return self.text
    def __repr__(self):
        return '<QName %r>' % (self.text,)
    def __hash__(self):
        return hash(self.text)
    def __le__(self, other):
        if isinstance(other, QName):
            return self.text <= other.text
        return self.text <= other
    def __lt__(self, other):
        if isinstance(other, QName):
            return self.text < other.text
        return self.text < other
    def __ge__(self, other):
        if isinstance(other, QName):
            return self.text >= other.text
        return self.text >= other
    def __gt__(self, other):
        if isinstance(other, QName):
            return self.text > other.text
        return self.text > other
    def __eq__(self, other):
        if isinstance(other, QName):
            return self.text == other.text
        return self.text == other
    def __ne__(self, other):
        if isinstance(other, QName):
            return self.text != other.text
        return self.text != other

# --------------------------------------------------------------------


class ElementTree:
    """An XML element hierarchy.

    This class also provides support for serialization to and from
    standard XML.

    *element* is an optional root element node,
    *file* is an optional file handle or file name of an XML file whose
    contents will be used to initialize the tree with.

    """
    def __init__(self, element=None, file=None):
        # assert element is None or iselement(element)
        self._root = element # first node
        if file:
            self.parse(file)

    def getroot(self):
        """Return root element of this tree."""
        return self._root

    def _setroot(self, element):
        """Replace root element of this tree.

        This will discard the current contents of the tree and replace it
        with the given element.  Use with care!

        """
        # assert iselement(element)
        self._root = element

    def parse(self, source, parser=None):
        """Load external XML document into element tree.

        *source* is a file name or file object, *parser* is an optional parser
        instance that defaults to XMLParser.

        ParseError is raised if the parser fails to parse the document.

        Returns the root element of the given source document.

        """
        close_source = False
        if not hasattr(source, "read"):
            source = open(source, "rb")
            close_source = True
        try:
            if parser is None:
                # If no parser was specified, create a default XMLParser
                parser = XMLParser()
                if hasattr(parser, '_parse_whole'):
                    # The default XMLParser, when it comes from an accelerator,
                    # can define an internal _parse_whole API for efficiency.
                    # It can be used to parse the whole source without feeding
                    # it with chunks.
                    self._root = parser._parse_whole(source)
                    return self._root
            while True:
                data = source.read(65536)
                if not data:
                    break
                parser.feed(data)
            self._root = parser.close()
            return self._root
        finally:
            if close_source:
                source.close()

    def iter(self, tag=None):
        """Create and return tree iterator for the root element.

        The iterator loops over all elements in this tree, in document order.

        *tag* is a string with the tag name to iterate over
        (default is to return all elements).

        """
        # assert self._root is not None
        return self._root.iter(tag)

    # compatibility
    def getiterator(self, tag=None):
        # Change for a DeprecationWarning in 1.4
        warnings.warn(
            "This method will be removed in future versions.  "
            "Use 'tree.iter()' or 'list(tree.iter())' instead.",
            PendingDeprecationWarning, stacklevel=2
        )
        return list(self.iter(tag))

    def find(self, path, namespaces=None):
        """Find first matching element by tag name or path.

        Same as getroot().find(path), which is Element.find()

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return the first matching element, or None if no element was found.

        """
        # assert self._root is not None
        if path[:1] == "/":
            path = "." + path
            warnings.warn(
                "This search is broken in 1.3 and earlier, and will be "
                "fixed in a future version.  If you rely on the current "
                "behaviour, change it to %r" % path,
                FutureWarning, stacklevel=2
                )
        return self._root.find(path, namespaces)

    def findtext(self, path, default=None, namespaces=None):
        """Find first matching element by tag name or path.

        Same as getroot().findtext(path),  which is Element.findtext()

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return the first matching element, or None if no element was found.

        """
        # assert self._root is not None
        if path[:1] == "/":
            path = "." + path
            warnings.warn(
                "This search is broken in 1.3 and earlier, and will be "
                "fixed in a future version.  If you rely on the current "
                "behaviour, change it to %r" % path,
                FutureWarning, stacklevel=2
                )
        return self._root.findtext(path, default, namespaces)

    def findall(self, path, namespaces=None):
        """Find all matching subelements by tag name or path.

        Same as getroot().findall(path), which is Element.findall().

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return list containing all matching elements in document order.

        """
        # assert self._root is not None
        if path[:1] == "/":
            path = "." + path
            warnings.warn(
                "This search is broken in 1.3 and earlier, and will be "
                "fixed in a future version.  If you rely on the current "
                "behaviour, change it to %r" % path,
                FutureWarning, stacklevel=2
                )
        return self._root.findall(path, namespaces)

    def iterfind(self, path, namespaces=None):
        """Find all matching subelements by tag name or path.

        Same as getroot().iterfind(path), which is element.iterfind()

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return an iterable yielding all matching elements in document order.

        """
        # assert self._root is not None
        if path[:1] == "/":
            path = "." + path
            warnings.warn(
                "This search is broken in 1.3 and earlier, and will be "
                "fixed in a future version.  If you rely on the current "
                "behaviour, change it to %r" % path,
                FutureWarning, stacklevel=2
                )
        return self._root.iterfind(path, namespaces)

    def write(self, file_or_filename,
              encoding=None,
              xml_declaration=None,
              default_namespace=None,
              method=None, *,
              short_empty_elements=True):
        """Write element tree to a file as XML.

        Arguments:
          *file_or_filename* -- file name or a file object opened for writing

          *encoding* -- the output encoding (default: US-ASCII)

          *xml_declaration* -- bool indicating if an XML declaration should be
                               added to the output. If None, an XML declaration
                               is added if encoding IS NOT either of:
                               US-ASCII, UTF-8, or Unicode

          *default_namespace* -- sets the default XML namespace (for "xmlns")

          *method* -- either "xml" (default), "html, "text", or "c14n"

          *short_empty_elements* -- controls the formatting of elements
                                    that contain no content. If True (default)
                                    they are emitted as a single self-closed
                                    tag, otherwise they are emitted as a pair
                                    of start/end tags

        """
        if not method:
            method = "xml"
        elif method not in _serialize:
            raise ValueError("unknown method %r" % method)
        if not encoding:
            if method == "c14n":
                encoding = "utf-8"
            else:
                encoding = "us-ascii"
        enc_lower = encoding.lower()
        with _get_writer(file_or_filename, enc_lower) as write:
            if method == "xml" and (xml_declaration or
                    (xml_declaration is None and
                     enc_lower not in ("utf-8", "us-ascii", "unicode"))):
                declared_encoding = encoding
                if enc_lower == "unicode":
                    # Retrieve the default encoding for the xml declaration
                    import locale
                    declared_encoding = locale.getpreferredencoding()
                write("<?xml version='1.0' encoding='%s'?>\n" % (
                    declared_encoding,))
            if method == "text":
                _serialize_text(write, self._root)
            else:
                qnames, namespaces = _namespaces(self._root, default_namespace)
                serialize = _serialize[method]
                serialize(write, self._root, qnames, namespaces,
                          short_empty_elements=short_empty_elements)

    def write_c14n(self, file):
        # lxml.etree compatibility.  use output method instead
        return self.write(file, method="c14n")

# --------------------------------------------------------------------
# serialization support

@contextlib.contextmanager
def _get_writer(file_or_filename, encoding):
    # returns text write method and release all resources after using
    try:
        write = file_or_filename.write
    except AttributeError:
        # file_or_filename is a file name
        if encoding == "unicode":
            file = open(file_or_filename, "w")
        else:
            file = open(file_or_filename, "w", encoding=encoding,
                        errors="xmlcharrefreplace")
        with file:
            yield file.write
    else:
        # file_or_filename is a file-like object
        # encoding determines if it is a text or binary writer
        if encoding == "unicode":
            # use a text writer as is
            yield write
        else:
            # wrap a binary writer with TextIOWrapper
            with contextlib.ExitStack() as stack:
                if isinstance(file_or_filename, io.BufferedIOBase):
                    file = file_or_filename
                elif isinstance(file_or_filename, io.RawIOBase):
                    file = io.BufferedWriter(file_or_filename)
                    # Keep the original file open when the BufferedWriter is
                    # destroyed
                    stack.callback(file.detach)
                else:
                    # This is to handle passed objects that aren't in the
                    # IOBase hierarchy, but just have a write method
                    file = io.BufferedIOBase()
                    file.writable = lambda: True
                    file.write = write
                    try:
                        # TextIOWrapper uses this methods to determine
                        # if BOM (for UTF-16, etc) should be added
                        file.seekable = file_or_filename.seekable
                        file.tell = file_or_filename.tell
                    except AttributeError:
                        pass
                file = io.TextIOWrapper(file,
                                        encoding=encoding,
                                        errors="xmlcharrefreplace",
                                        newline="\n")
                # Keep the original file open when the TextIOWrapper is
                # destroyed
                stack.callback(file.detach)
                yield file.write

def _namespaces(elem, default_namespace=None):
    # identify namespaces used in this tree

    # maps qnames to *encoded* prefix:local names
    qnames = {None: None}

    # maps uri:s to prefixes
    namespaces = {}
    if default_namespace:
        namespaces[default_namespace] = ""

    def add_qname(qname):
        # calculate serialized qname representation
        try:
            if qname[:1] == "{":
                uri, tag = qname[1:].rsplit("}", 1)
                prefix = namespaces.get(uri)
                if prefix is None:
                    prefix = _namespace_map.get(uri)
                    if prefix is None:
                        prefix = "ns%d" % len(namespaces)
                    if prefix != "xml":
                        namespaces[uri] = prefix
                if prefix:
                    qnames[qname] = "%s:%s" % (prefix, tag)
                else:
                    qnames[qname] = tag # default element
            else:
                if default_namespace:
                    # FIXME: can this be handled in XML 1.0?
                    raise ValueError(
                        "cannot use non-qualified names with "
                        "default_namespace option"
                        )
                qnames[qname] = qname
        except TypeError:
            _raise_serialization_error(qname)

    # populate qname and namespaces table
    for elem in elem.iter():
        tag = elem.tag
        if isinstance(tag, QName):
            if tag.text not in qnames:
                add_qname(tag.text)
        elif isinstance(tag, str):
            if tag not in qnames:
                add_qname(tag)
        elif tag is not None and tag is not Comment and tag is not PI:
            _raise_serialization_error(tag)
        for key, value in elem.items():
            if isinstance(key, QName):
                key = key.text
            if key not in qnames:
                add_qname(key)
            if isinstance(value, QName) and value.text not in qnames:
                add_qname(value.text)
        text = elem.text
        if isinstance(text, QName) and text.text not in qnames:
            add_qname(text.text)
    return qnames, namespaces

def _serialize_xml(write, elem, qnames, namespaces,
                   short_empty_elements, **kwargs):
    tag = elem.tag
    text = elem.text
    if tag is Comment:
        write("<!--%s-->" % text)
    elif tag is ProcessingInstruction:
        write("<?%s?>" % text)
    else:
        tag = qnames[tag]
        if tag is None:
            if text:
                write(_escape_cdata(text))
            for e in elem:
                _serialize_xml(write, e, qnames, None,
                               short_empty_elements=short_empty_elements)
        else:
            write("<" + tag)
            items = list(elem.items())
            if items or namespaces:
                if namespaces:
                    for v, k in sorted(namespaces.items(),
                                       key=lambda x: x[1]):  # sort on prefix
                        if k:
                            k = ":" + k
                        write(" xmlns%s=\"%s\"" % (
                            k,
                            _escape_attrib(v)
                            ))
                for k, v in sorted(items):  # lexical order
                    if isinstance(k, QName):
                        k = k.text
                    if isinstance(v, QName):
                        v = qnames[v.text]
                    else:
                        v = _escape_attrib(v)
                    write(" %s=\"%s\"" % (qnames[k], v))
            if text or len(elem) or not short_empty_elements:
                write(">")
                if text:
                    write(_escape_cdata(text))
                for e in elem:
                    _serialize_xml(write, e, qnames, None,
                                   short_empty_elements=short_empty_elements)
                write("</" + tag + ">")
            else:
                write(" />")
    if elem.tail:
        write(_escape_cdata(elem.tail))

HTML_EMPTY = ("area", "base", "basefont", "br", "col", "frame", "hr",
              "img", "input", "isindex", "link", "meta", "param")

try:
    HTML_EMPTY = set(HTML_EMPTY)
except NameError:
    pass

def _serialize_html(write, elem, qnames, namespaces, **kwargs):
    tag = elem.tag
    text = elem.text
    if tag is Comment:
        write("<!--%s-->" % _escape_cdata(text))
    elif tag is ProcessingInstruction:
        write("<?%s?>" % _escape_cdata(text))
    else:
        tag = qnames[tag]
        if tag is None:
            if text:
                write(_escape_cdata(text))
            for e in elem:
                _serialize_html(write, e, qnames, None)
        else:
            write("<" + tag)
            items = list(elem.items())
            if items or namespaces:
                if namespaces:
                    for v, k in sorted(namespaces.items(),
                                       key=lambda x: x[1]):  # sort on prefix
                        if k:
                            k = ":" + k
                        write(" xmlns%s=\"%s\"" % (
                            k,
                            _escape_attrib(v)
                            ))
                for k, v in sorted(items):  # lexical order
                    if isinstance(k, QName):
                        k = k.text
                    if isinstance(v, QName):
                        v = qnames[v.text]
                    else:
                        v = _escape_attrib_html(v)
                    # FIXME: handle boolean attributes
                    write(" %s=\"%s\"" % (qnames[k], v))
            write(">")
            ltag = tag.lower()
            if text:
                if ltag == "script" or ltag == "style":
                    write(text)
                else:
                    write(_escape_cdata(text))
            for e in elem:
                _serialize_html(write, e, qnames, None)
            if ltag not in HTML_EMPTY:
                write("</" + tag + ">")
    if elem.tail:
        write(_escape_cdata(elem.tail))

def _serialize_text(write, elem):
    for part in elem.itertext():
        write(part)
    if elem.tail:
        write(elem.tail)

_serialize = {
    "xml": _serialize_xml,
    "html": _serialize_html,
    "text": _serialize_text,
# this optional method is imported at the end of the module
#   "c14n": _serialize_c14n,
}


def register_namespace(prefix, uri):
    """Register a namespace prefix.

    The registry is global, and any existing mapping for either the
    given prefix or the namespace URI will be removed.

    *prefix* is the namespace prefix, *uri* is a namespace uri. Tags and
    attributes in this namespace will be serialized with prefix if possible.

    ValueError is raised if prefix is reserved or is invalid.

    """
    if re.match("ns\d+$", prefix):
        raise ValueError("Prefix format reserved for internal use")
    for k, v in list(_namespace_map.items()):
        if k == uri or v == prefix:
            del _namespace_map[k]
    _namespace_map[uri] = prefix

_namespace_map = {
    # "well-known" namespace prefixes
    "http://www.w3.org/XML/1998/namespace": "xml",
    "http://www.w3.org/1999/xhtml": "html",
    "http://www.w3.org/1999/02/22-rdf-syntax-ns#": "rdf",
    "http://schemas.xmlsoap.org/wsdl/": "wsdl",
    # xml schema
    "http://www.w3.org/2001/XMLSchema": "xs",
    "http://www.w3.org/2001/XMLSchema-instance": "xsi",
    # dublin core
    "http://purl.org/dc/elements/1.1/": "dc",
}
# For tests and troubleshooting
register_namespace._namespace_map = _namespace_map

def _raise_serialization_error(text):
    raise TypeError(
        "cannot serialize %r (type %s)" % (text, type(text).__name__)
        )

def _escape_cdata(text):
    # escape character data
    try:
        # it's worth avoiding do-nothing calls for strings that are
        # shorter than 500 character, or so.  assume that's, by far,
        # the most common case in most applications.
        if "&" in text:
            text = text.replace("&", "&amp;")
        if "<" in text:
            text = text.replace("<", "&lt;")
        if ">" in text:
            text = text.replace(">", "&gt;")
        return text
    except (TypeError, AttributeError):
        _raise_serialization_error(text)

def _escape_attrib(text):
    # escape attribute value
    try:
        if "&" in text:
            text = text.replace("&", "&amp;")
        if "<" in text:
            text = text.replace("<", "&lt;")
        if ">" in text:
            text = text.replace(">", "&gt;")
        if "\"" in text:
            text = text.replace("\"", "&quot;")
        if "\n" in text:
            text = text.replace("\n", "&#10;")
        return text
    except (TypeError, AttributeError):
        _raise_serialization_error(text)

def _escape_attrib_html(text):
    # escape attribute value
    try:
        if "&" in text:
            text = text.replace("&", "&amp;")
        if ">" in text:
            text = text.replace(">", "&gt;")
        if "\"" in text:
            text = text.replace("\"", "&quot;")
        return text
    except (TypeError, AttributeError):
        _raise_serialization_error(text)

# --------------------------------------------------------------------

def tostring(element, encoding=None, method=None, *,
             short_empty_elements=True):
    """Generate string representation of XML element.

    All subelements are included.  If encoding is "unicode", a string
    is returned. Otherwise a bytestring is returned.

    *element* is an Element instance, *encoding* is an optional output
    encoding defaulting to US-ASCII, *method* is an optional output which can
    be one of "xml" (default), "html", "text" or "c14n".

    Returns an (optionally) encoded string containing the XML data.

    """
    stream = io.StringIO() if encoding == 'unicode' else io.BytesIO()
    ElementTree(element).write(stream, encoding, method=method,
                               short_empty_elements=short_empty_elements)
    return stream.getvalue()

class _ListDataStream(io.BufferedIOBase):
    """An auxiliary stream accumulating into a list reference."""
    def __init__(self, lst):
        self.lst = lst

    def writable(self):
        return True

    def seekable(self):
        return True

    def write(self, b):
        self.lst.append(b)

    def tell(self):
        return len(self.lst)

def tostringlist(element, encoding=None, method=None, *,
                 short_empty_elements=True):
    lst = []
    stream = _ListDataStream(lst)
    ElementTree(element).write(stream, encoding, method=method,
                               short_empty_elements=short_empty_elements)
    return lst


def dump(elem):
    """Write element tree or element structure to sys.stdout.

    This function should be used for debugging only.

    *elem* is either an ElementTree, or a single Element.  The exact output
    format is implementation dependent.  In this version, it's written as an
    ordinary XML file.

    """
    # debugging
    if not isinstance(elem, ElementTree):
        elem = ElementTree(elem)
    elem.write(sys.stdout, encoding="unicode")
    tail = elem.getroot().tail
    if not tail or tail[-1] != "\n":
        sys.stdout.write("\n")

# --------------------------------------------------------------------
# parsing


def parse(source, parser=None):
    """Parse XML document into element tree.

    *source* is a filename or file object containing XML data,
    *parser* is an optional parser instance defaulting to XMLParser.

    Return an ElementTree instance.

    """
    tree = ElementTree()
    tree.parse(source, parser)
    return tree


def iterparse(source, events=None, parser=None):
    """Incrementally parse XML document into ElementTree.

    This class also reports what's going on to the user based on the
    *events* it is initialized with.  The supported events are the strings
    "start", "end", "start-ns" and "end-ns" (the "ns" events are used to get
    detailed namespace information).  If *events* is omitted, only
    "end" events are reported.

    *source* is a filename or file object containing XML data, *events* is
    a list of events to report back, *parser* is an optional parser instance.

    Returns an iterator providing (event, elem) pairs.

    """
    close_source = False
    if not hasattr(source, "read"):
        source = open(source, "rb")
        close_source = True
    try:
        return _IterParseIterator(source, events, parser, close_source)
    except:
        if close_source:
            source.close()
        raise


class XMLPullParser:

    def __init__(self, events=None, *, _parser=None):
        # The _parser argument is for internal use only and must not be relied
        # upon in user code. It will be removed in a future release.
        # See http://bugs.python.org/issue17741 for more details.

        # _elementtree.c expects a list, not a deque
        self._events_queue = []
        self._index = 0
        self._parser = _parser or XMLParser(target=TreeBuilder())
        # wire up the parser for event reporting
        if events is None:
            events = ("end",)
        self._parser._setevents(self._events_queue, events)

    def feed(self, data):
        """Feed encoded data to parser."""
        if self._parser is None:
            raise ValueError("feed() called after end of stream")
        if data:
            try:
                self._parser.feed(data)
            except SyntaxError as exc:
                self._events_queue.append(exc)

    def _close_and_return_root(self):
        # iterparse needs this to set its root attribute properly :(
        root = self._parser.close()
        self._parser = None
        return root

    def close(self):
        """Finish feeding data to parser.

        Unlike XMLParser, does not return the root element. Use
        read_events() to consume elements from XMLPullParser.
        """
        self._close_and_return_root()

    def read_events(self):
        """Return an iterator over currently available (event, elem) pairs.

        Events are consumed from the internal event queue as they are
        retrieved from the iterator.
        """
        events = self._events_queue
        while True:
            index = self._index
            try:
                event = events[self._index]
                # Avoid retaining references to past events
                events[self._index] = None
            except IndexError:
                break
            index += 1
            # Compact the list in a O(1) amortized fashion
            # As noted above, _elementree.c needs a list, not a deque
            if index * 2 >= len(events):
                events[:index] = []
                self._index = 0
            else:
                self._index = index
            if isinstance(event, Exception):
                raise event
            else:
                yield event


class _IterParseIterator:

    def __init__(self, source, events, parser, close_source=False):
        # Use the internal, undocumented _parser argument for now; When the
        # parser argument of iterparse is removed, this can be killed.
        self._parser = XMLPullParser(events=events, _parser=parser)
        self._file = source
        self._close_file = close_source
        self.root = self._root = None

    def __next__(self):
        try:
            while 1:
                for event in self._parser.read_events():
                    return event
                if self._parser._parser is None:
                    break
                # load event buffer
                data = self._file.read(16 * 1024)
                if data:
                    self._parser.feed(data)
                else:
                    self._root = self._parser._close_and_return_root()
            self.root = self._root
        except:
            if self._close_file:
                self._file.close()
            raise
        if self._close_file:
            self._file.close()
        raise StopIteration

    def __iter__(self):
        return self


def XML(text, parser=None):
    """Parse XML document from string constant.

    This function can be used to embed "XML Literals" in Python code.

    *text* is a string containing XML data, *parser* is an
    optional parser instance, defaulting to the standard XMLParser.

    Returns an Element instance.

    """
    if not parser:
        parser = XMLParser(target=TreeBuilder())
    parser.feed(text)
    return parser.close()


def XMLID(text, parser=None):
    """Parse XML document from string constant for its IDs.

    *text* is a string containing XML data, *parser* is an
    optional parser instance, defaulting to the standard XMLParser.

    Returns an (Element, dict) tuple, in which the
    dict maps element id:s to elements.

    """
    if not parser:
        parser = XMLParser(target=TreeBuilder())
    parser.feed(text)
    tree = parser.close()
    ids = {}
    for elem in tree.iter():
        id = elem.get("id")
        if id:
            ids[id] = elem
    return tree, ids

# Parse XML document from string constant.  Alias for XML().
fromstring = XML

def fromstringlist(sequence, parser=None):
    """Parse XML document from sequence of string fragments.

    *sequence* is a list of other sequence, *parser* is an optional parser
    instance, defaulting to the standard XMLParser.

    Returns an Element instance.

    """
    if not parser:
        parser = XMLParser(target=TreeBuilder())
    for text in sequence:
        parser.feed(text)
    return parser.close()

# --------------------------------------------------------------------


class TreeBuilder:
    """Generic element structure builder.

    This builder converts a sequence of start, data, and end method
    calls to a well-formed element structure.

    You can use this class to build an element structure using a custom XML
    parser, or a parser for some other XML-like format.

    *element_factory* is an optional element factory which is called
    to create new Element instances, as necessary.

    """
    def __init__(self, element_factory=None):
        self._data = [] # data collector
        self._elem = [] # element stack
        self._last = None # last element
        self._tail = None # true if we're after an end tag
        if element_factory is None:
            element_factory = Element
        self._factory = element_factory

    def close(self):
        """Flush builder buffers and return toplevel document Element."""
        assert len(self._elem) == 0, "missing end tags"
        assert self._last is not None, "missing toplevel element"
        return self._last

    def _flush(self):
        if self._data:
            if self._last is not None:
                text = "".join(self._data)
                if self._tail:
                    assert self._last.tail is None, "internal error (tail)"
                    self._last.tail = text
                else:
                    assert self._last.text is None, "internal error (text)"
                    self._last.text = text
            self._data = []

    def data(self, data):
        """Add text to current element."""
        self._data.append(data)

    def start(self, tag, attrs):
        """Open new element and return it.

        *tag* is the element name, *attrs* is a dict containing element
        attributes.

        """
        self._flush()
        self._last = elem = self._factory(tag, attrs)
        if self._elem:
            self._elem[-1].append(elem)
        self._elem.append(elem)
        self._tail = 0
        return elem

    def end(self, tag):
        """Close and return current Element.

        *tag* is the element name.

        """
        self._flush()
        self._last = self._elem.pop()
        assert self._last.tag == tag,\
               "end tag mismatch (expected %s, got %s)" % (
                   self._last.tag, tag)
        self._tail = 1
        return self._last


# also see ElementTree and TreeBuilder
class XMLParser:
    """Element structure builder for XML source data based on the expat parser.

    *html* are predefined HTML entities (not supported currently),
    *target* is an optional target object which defaults to an instance of the
    standard TreeBuilder class, *encoding* is an optional encoding string
    which if given, overrides the encoding specified in the XML file:
    http://www.iana.org/assignments/character-sets

    """

    def __init__(self, html=0, target=None, encoding=None):
        try:
            from xml.parsers import expat
        except ImportError:
            try:
                import pyexpat as expat
            except ImportError:
                raise ImportError(
                    "No module named expat; use SimpleXMLTreeBuilder instead"
                    )
        parser = expat.ParserCreate(encoding, "}")
        if target is None:
            target = TreeBuilder()
        # underscored names are provided for compatibility only
        self.parser = self._parser = parser
        self.target = self._target = target
        self._error = expat.error
        self._names = {} # name memo cache
        # main callbacks
        parser.DefaultHandlerExpand = self._default
        if hasattr(target, 'start'):
            parser.StartElementHandler = self._start
        if hasattr(target, 'end'):
            parser.EndElementHandler = self._end
        if hasattr(target, 'data'):
            parser.CharacterDataHandler = target.data
        # miscellaneous callbacks
        if hasattr(target, 'comment'):
            parser.CommentHandler = target.comment
        if hasattr(target, 'pi'):
            parser.ProcessingInstructionHandler = target.pi
        # Configure pyexpat: buffering, new-style attribute handling.
        parser.buffer_text = 1
        parser.ordered_attributes = 1
        parser.specified_attributes = 1
        self._doctype = None
        self.entity = {}
        try:
            self.version = "Expat %d.%d.%d" % expat.version_info
        except AttributeError:
            pass # unknown

    def _setevents(self, events_queue, events_to_report):
        # Internal API for XMLPullParser
        # events_to_report: a list of events to report during parsing (same as
        # the *events* of XMLPullParser's constructor.
        # events_queue: a list of actual parsing events that will be populated
        # by the underlying parser.
        #
        parser = self._parser
        append = events_queue.append
        for event_name in events_to_report:
            if event_name == "start":
                parser.ordered_attributes = 1
                parser.specified_attributes = 1
                def handler(tag, attrib_in, event=event_name, append=append,
                            start=self._start):
                    append((event, start(tag, attrib_in)))
                parser.StartElementHandler = handler
            elif event_name == "end":
                def handler(tag, event=event_name, append=append,
                            end=self._end):
                    append((event, end(tag)))
                parser.EndElementHandler = handler
            elif event_name == "start-ns":
                def handler(prefix, uri, event=event_name, append=append):
                    append((event, (prefix or "", uri or "")))
                parser.StartNamespaceDeclHandler = handler
            elif event_name == "end-ns":
                def handler(prefix, event=event_name, append=append):
                    append((event, None))
                parser.EndNamespaceDeclHandler = handler
            else:
                raise ValueError("unknown event %r" % event_name)

    def _raiseerror(self, value):
        err = ParseError(value)
        err.code = value.code
        err.position = value.lineno, value.offset
        raise err

    def _fixname(self, key):
        # expand qname, and convert name string to ascii, if possible
        try:
            name = self._names[key]
        except KeyError:
            name = key
            if "}" in name:
                name = "{" + name
            self._names[key] = name
        return name

    def _start(self, tag, attr_list):
        # Handler for expat's StartElementHandler. Since ordered_attributes
        # is set, the attributes are reported as a list of alternating
        # attribute name,value.
        fixname = self._fixname
        tag = fixname(tag)
        attrib = {}
        if attr_list:
            for i in range(0, len(attr_list), 2):
                attrib[fixname(attr_list[i])] = attr_list[i+1]
        return self.target.start(tag, attrib)

    def _end(self, tag):
        return self.target.end(self._fixname(tag))

    def _default(self, text):
        prefix = text[:1]
        if prefix == "&":
            # deal with undefined entities
            try:
                data_handler = self.target.data
            except AttributeError:
                return
            try:
                data_handler(self.entity[text[1:-1]])
            except KeyError:
                from xml.parsers import expat
                err = expat.error(
                    "undefined entity %s: line %d, column %d" %
                    (text, self.parser.ErrorLineNumber,
                    self.parser.ErrorColumnNumber)
                    )
                err.code = 11 # XML_ERROR_UNDEFINED_ENTITY
                err.lineno = self.parser.ErrorLineNumber
                err.offset = self.parser.ErrorColumnNumber
                raise err
        elif prefix == "<" and text[:9] == "<!DOCTYPE":
            self._doctype = [] # inside a doctype declaration
        elif self._doctype is not None:
            # parse doctype contents
            if prefix == ">":
                self._doctype = None
                return
            text = text.strip()
            if not text:
                return
            self._doctype.append(text)
            n = len(self._doctype)
            if n > 2:
                type = self._doctype[1]
                if type == "PUBLIC" and n == 4:
                    name, type, pubid, system = self._doctype
                    if pubid:
                        pubid = pubid[1:-1]
                elif type == "SYSTEM" and n == 3:
                    name, type, system = self._doctype
                    pubid = None
                else:
                    return
                if hasattr(self.target, "doctype"):
                    self.target.doctype(name, pubid, system[1:-1])
                elif self.doctype != self._XMLParser__doctype:
                    # warn about deprecated call
                    self._XMLParser__doctype(name, pubid, system[1:-1])
                    self.doctype(name, pubid, system[1:-1])
                self._doctype = None

    def doctype(self, name, pubid, system):
        """(Deprecated)  Handle doctype declaration

        *name* is the Doctype name, *pubid* is the public identifier,
        and *system* is the system identifier.

        """
        warnings.warn(
            "This method of XMLParser is deprecated.  Define doctype() "
            "method on the TreeBuilder target.",
            DeprecationWarning,
            )

    # sentinel, if doctype is redefined in a subclass
    __doctype = doctype

    def feed(self, data):
        """Feed encoded data to parser."""
        try:
            self.parser.Parse(data, 0)
        except self._error as v:
            self._raiseerror(v)

    def close(self):
        """Finish feeding data to parser and return element structure."""
        try:
            self.parser.Parse("", 1) # end of data
        except self._error as v:
            self._raiseerror(v)
        try:
            close_handler = self.target.close
        except AttributeError:
            pass
        else:
            return close_handler()
        finally:
            # get rid of circular references
            del self.parser, self._parser
            del self.target, self._target


# Import the C accelerators
try:
    # Element is going to be shadowed by the C implementation. We need to keep
    # the Python version of it accessible for some "creative" by external code
    # (see tests)
    _Element_Py = Element

    # Element, SubElement, ParseError, TreeBuilder, XMLParser
    from _elementtree import *
except ImportError:
    pass
lib\xml\etree\__init__.py
# $Id: __init__.py 3375 2008-02-13 08:05:08Z fredrik $
# elementtree package

# --------------------------------------------------------------------
# The ElementTree toolkit is
#
# Copyright (c) 1999-2008 by Fredrik Lundh
#
# By obtaining, using, and/or copying this software and/or its
# associated documentation, you agree that you have read, understood,
# and will comply with the following terms and conditions:
#
# Permission to use, copy, modify, and distribute this software and
# its associated documentation for any purpose and without fee is
# hereby granted, provided that the above copyright notice appears in
# all copies, and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Secret Labs AB or the author not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
# TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
# ABILITY AND FITNESS.  IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
# BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THIS SOFTWARE.
# --------------------------------------------------------------------

# Licensed to PSF under a Contributor Agreement.
# See http://www.python.org/psf/license for licensing details.
lib\xml\parsers\expat.py
"""Interface to the Expat non-validating XML parser."""
import sys

from pyexpat import *

# provide pyexpat submodules as xml.parsers.expat submodules
sys.modules['xml.parsers.expat.model'] = model
sys.modules['xml.parsers.expat.errors'] = errors
lib\xml\parsers\__init__.py
"""Python interfaces to XML parsers.

This package contains one module:

expat -- Python wrapper for James Clark's Expat parser, with namespace
         support.

"""
lib\xml\sax\expatreader.py
"""
SAX driver for the pyexpat C module.  This driver works with
pyexpat.__version__ == '2.22'.
"""

version = "0.20"

from xml.sax._exceptions import *
from xml.sax.handler import feature_validation, feature_namespaces
from xml.sax.handler import feature_namespace_prefixes
from xml.sax.handler import feature_external_ges, feature_external_pes
from xml.sax.handler import feature_string_interning
from xml.sax.handler import property_xml_string, property_interning_dict

# xml.parsers.expat does not raise ImportError in Jython
import sys
if sys.platform[:4] == "java":
    raise SAXReaderNotAvailable("expat not available in Java", None)
del sys

try:
    from xml.parsers import expat
except ImportError:
    raise SAXReaderNotAvailable("expat not supported", None)
else:
    if not hasattr(expat, "ParserCreate"):
        raise SAXReaderNotAvailable("expat not supported", None)
from xml.sax import xmlreader, saxutils, handler

AttributesImpl = xmlreader.AttributesImpl
AttributesNSImpl = xmlreader.AttributesNSImpl

# If we're using a sufficiently recent version of Python, we can use
# weak references to avoid cycles between the parser and content
# handler, otherwise we'll just have to pretend.
try:
    import _weakref
except ImportError:
    def _mkproxy(o):
        return o
else:
    import weakref
    _mkproxy = weakref.proxy
    del weakref, _weakref

class _ClosedParser:
    pass

# --- ExpatLocator

class ExpatLocator(xmlreader.Locator):
    """Locator for use with the ExpatParser class.

    This uses a weak reference to the parser object to avoid creating
    a circular reference between the parser and the content handler.
    """
    def __init__(self, parser):
        self._ref = _mkproxy(parser)

    def getColumnNumber(self):
        parser = self._ref
        if parser._parser is None:
            return None
        return parser._parser.ErrorColumnNumber

    def getLineNumber(self):
        parser = self._ref
        if parser._parser is None:
            return 1
        return parser._parser.ErrorLineNumber

    def getPublicId(self):
        parser = self._ref
        if parser is None:
            return None
        return parser._source.getPublicId()

    def getSystemId(self):
        parser = self._ref
        if parser is None:
            return None
        return parser._source.getSystemId()


# --- ExpatParser

class ExpatParser(xmlreader.IncrementalParser, xmlreader.Locator):
    """SAX driver for the pyexpat C module."""

    def __init__(self, namespaceHandling=0, bufsize=2**16-20):
        xmlreader.IncrementalParser.__init__(self, bufsize)
        self._source = xmlreader.InputSource()
        self._parser = None
        self._namespaces = namespaceHandling
        self._lex_handler_prop = None
        self._parsing = 0
        self._entity_stack = []
        self._external_ges = 1
        self._interning = None

    # XMLReader methods

    def parse(self, source):
        "Parse an XML document from a URL or an InputSource."
        source = saxutils.prepare_input_source(source)

        self._source = source
        self.reset()
        self._cont_handler.setDocumentLocator(ExpatLocator(self))
        xmlreader.IncrementalParser.parse(self, source)

    def prepareParser(self, source):
        if source.getSystemId() is not None:
            self._parser.SetBase(source.getSystemId())

    # Redefined setContentHandler to allow changing handlers during parsing

    def setContentHandler(self, handler):
        xmlreader.IncrementalParser.setContentHandler(self, handler)
        if self._parsing:
            self._reset_cont_handler()

    def getFeature(self, name):
        if name == feature_namespaces:
            return self._namespaces
        elif name == feature_string_interning:
            return self._interning is not None
        elif name in (feature_validation, feature_external_pes,
                      feature_namespace_prefixes):
            return 0
        elif name == feature_external_ges:
            return self._external_ges
        raise SAXNotRecognizedException("Feature '%s' not recognized" % name)

    def setFeature(self, name, state):
        if self._parsing:
            raise SAXNotSupportedException("Cannot set features while parsing")

        if name == feature_namespaces:
            self._namespaces = state
        elif name == feature_external_ges:
            self._external_ges = state
        elif name == feature_string_interning:
            if state:
                if self._interning is None:
                    self._interning = {}
            else:
                self._interning = None
        elif name == feature_validation:
            if state:
                raise SAXNotSupportedException(
                    "expat does not support validation")
        elif name == feature_external_pes:
            if state:
                raise SAXNotSupportedException(
                    "expat does not read external parameter entities")
        elif name == feature_namespace_prefixes:
            if state:
                raise SAXNotSupportedException(
                    "expat does not report namespace prefixes")
        else:
            raise SAXNotRecognizedException(
                "Feature '%s' not recognized" % name)

    def getProperty(self, name):
        if name == handler.property_lexical_handler:
            return self._lex_handler_prop
        elif name == property_interning_dict:
            return self._interning
        elif name == property_xml_string:
            if self._parser:
                if hasattr(self._parser, "GetInputContext"):
                    return self._parser.GetInputContext()
                else:
                    raise SAXNotRecognizedException(
                        "This version of expat does not support getting"
                        " the XML string")
            else:
                raise SAXNotSupportedException(
                    "XML string cannot be returned when not parsing")
        raise SAXNotRecognizedException("Property '%s' not recognized" % name)

    def setProperty(self, name, value):
        if name == handler.property_lexical_handler:
            self._lex_handler_prop = value
            if self._parsing:
                self._reset_lex_handler_prop()
        elif name == property_interning_dict:
            self._interning = value
        elif name == property_xml_string:
            raise SAXNotSupportedException("Property '%s' cannot be set" %
                                           name)
        else:
            raise SAXNotRecognizedException("Property '%s' not recognized" %
                                            name)

    # IncrementalParser methods

    def feed(self, data, isFinal = 0):
        if not self._parsing:
            self.reset()
            self._parsing = 1
            self._cont_handler.startDocument()

        try:
            # The isFinal parameter is internal to the expat reader.
            # If it is set to true, expat will check validity of the entire
            # document. When feeding chunks, they are not normally final -
            # except when invoked from close.
            self._parser.Parse(data, isFinal)
        except expat.error as e:
            exc = SAXParseException(expat.ErrorString(e.code), e, self)
            # FIXME: when to invoke error()?
            self._err_handler.fatalError(exc)

    def close(self):
        if (self._entity_stack or self._parser is None or
            isinstance(self._parser, _ClosedParser)):
            # If we are completing an external entity, do nothing here
            return
        try:
            self.feed("", isFinal = 1)
            self._cont_handler.endDocument()
            self._parsing = 0
            # break cycle created by expat handlers pointing to our methods
            self._parser = None
        finally:
            self._parsing = 0
            if self._parser is not None:
                # Keep ErrorColumnNumber and ErrorLineNumber after closing.
                parser = _ClosedParser()
                parser.ErrorColumnNumber = self._parser.ErrorColumnNumber
                parser.ErrorLineNumber = self._parser.ErrorLineNumber
                self._parser = parser
            bs = self._source.getByteStream()
            if bs is not None:
                bs.close()

    def _reset_cont_handler(self):
        self._parser.ProcessingInstructionHandler = \
                                    self._cont_handler.processingInstruction
        self._parser.CharacterDataHandler = self._cont_handler.characters

    def _reset_lex_handler_prop(self):
        lex = self._lex_handler_prop
        parser = self._parser
        if lex is None:
            parser.CommentHandler = None
            parser.StartCdataSectionHandler = None
            parser.EndCdataSectionHandler = None
            parser.StartDoctypeDeclHandler = None
            parser.EndDoctypeDeclHandler = None
        else:
            parser.CommentHandler = lex.comment
            parser.StartCdataSectionHandler = lex.startCDATA
            parser.EndCdataSectionHandler = lex.endCDATA
            parser.StartDoctypeDeclHandler = self.start_doctype_decl
            parser.EndDoctypeDeclHandler = lex.endDTD

    def reset(self):
        if self._namespaces:
            self._parser = expat.ParserCreate(self._source.getEncoding(), " ",
                                              intern=self._interning)
            self._parser.namespace_prefixes = 1
            self._parser.StartElementHandler = self.start_element_ns
            self._parser.EndElementHandler = self.end_element_ns
        else:
            self._parser = expat.ParserCreate(self._source.getEncoding(),
                                              intern = self._interning)
            self._parser.StartElementHandler = self.start_element
            self._parser.EndElementHandler = self.end_element

        self._reset_cont_handler()
        self._parser.UnparsedEntityDeclHandler = self.unparsed_entity_decl
        self._parser.NotationDeclHandler = self.notation_decl
        self._parser.StartNamespaceDeclHandler = self.start_namespace_decl
        self._parser.EndNamespaceDeclHandler = self.end_namespace_decl

        self._decl_handler_prop = None
        if self._lex_handler_prop:
            self._reset_lex_handler_prop()
#         self._parser.DefaultHandler =
#         self._parser.DefaultHandlerExpand =
#         self._parser.NotStandaloneHandler =
        self._parser.ExternalEntityRefHandler = self.external_entity_ref
        try:
            self._parser.SkippedEntityHandler = self.skipped_entity_handler
        except AttributeError:
            # This pyexpat does not support SkippedEntity
            pass
        self._parser.SetParamEntityParsing(
            expat.XML_PARAM_ENTITY_PARSING_UNLESS_STANDALONE)

        self._parsing = 0
        self._entity_stack = []

    # Locator methods

    def getColumnNumber(self):
        if self._parser is None:
            return None
        return self._parser.ErrorColumnNumber

    def getLineNumber(self):
        if self._parser is None:
            return 1
        return self._parser.ErrorLineNumber

    def getPublicId(self):
        return self._source.getPublicId()

    def getSystemId(self):
        return self._source.getSystemId()

    # event handlers
    def start_element(self, name, attrs):
        self._cont_handler.startElement(name, AttributesImpl(attrs))

    def end_element(self, name):
        self._cont_handler.endElement(name)

    def start_element_ns(self, name, attrs):
        pair = name.split()
        if len(pair) == 1:
            # no namespace
            pair = (None, name)
        elif len(pair) == 3:
            pair = pair[0], pair[1]
        else:
            # default namespace
            pair = tuple(pair)

        newattrs = {}
        qnames = {}
        for (aname, value) in attrs.items():
            parts = aname.split()
            length = len(parts)
            if length == 1:
                # no namespace
                qname = aname
                apair = (None, aname)
            elif length == 3:
                qname = "%s:%s" % (parts[2], parts[1])
                apair = parts[0], parts[1]
            else:
                # default namespace
                qname = parts[1]
                apair = tuple(parts)

            newattrs[apair] = value
            qnames[apair] = qname

        self._cont_handler.startElementNS(pair, None,
                                          AttributesNSImpl(newattrs, qnames))

    def end_element_ns(self, name):
        pair = name.split()
        if len(pair) == 1:
            pair = (None, name)
        elif len(pair) == 3:
            pair = pair[0], pair[1]
        else:
            pair = tuple(pair)

        self._cont_handler.endElementNS(pair, None)

    # this is not used (call directly to ContentHandler)
    def processing_instruction(self, target, data):
        self._cont_handler.processingInstruction(target, data)

    # this is not used (call directly to ContentHandler)
    def character_data(self, data):
        self._cont_handler.characters(data)

    def start_namespace_decl(self, prefix, uri):
        self._cont_handler.startPrefixMapping(prefix, uri)

    def end_namespace_decl(self, prefix):
        self._cont_handler.endPrefixMapping(prefix)

    def start_doctype_decl(self, name, sysid, pubid, has_internal_subset):
        self._lex_handler_prop.startDTD(name, pubid, sysid)

    def unparsed_entity_decl(self, name, base, sysid, pubid, notation_name):
        self._dtd_handler.unparsedEntityDecl(name, pubid, sysid, notation_name)

    def notation_decl(self, name, base, sysid, pubid):
        self._dtd_handler.notationDecl(name, pubid, sysid)

    def external_entity_ref(self, context, base, sysid, pubid):
        if not self._external_ges:
            return 1

        source = self._ent_handler.resolveEntity(pubid, sysid)
        source = saxutils.prepare_input_source(source,
                                               self._source.getSystemId() or
                                               "")

        self._entity_stack.append((self._parser, self._source))
        self._parser = self._parser.ExternalEntityParserCreate(context)
        self._source = source

        try:
            xmlreader.IncrementalParser.parse(self, source)
        except:
            return 0  # FIXME: save error info here?

        (self._parser, self._source) = self._entity_stack[-1]
        del self._entity_stack[-1]
        return 1

    def skipped_entity_handler(self, name, is_pe):
        if is_pe:
            # The SAX spec requires to report skipped PEs with a '%'
            name = '%'+name
        self._cont_handler.skippedEntity(name)

# ---

def create_parser(*args, **kwargs):
    return ExpatParser(*args, **kwargs)

# ---

if __name__ == "__main__":
    import xml.sax.saxutils
    p = create_parser()
    p.setContentHandler(xml.sax.saxutils.XMLGenerator())
    p.setErrorHandler(xml.sax.ErrorHandler())
    p.parse("http://www.ibiblio.org/xml/examples/shakespeare/hamlet.xml")
lib\xml\sax\handler.py
"""
This module contains the core classes of version 2.0 of SAX for Python.
This file provides only default classes with absolutely minimum
functionality, from which drivers and applications can be subclassed.

Many of these classes are empty and are included only as documentation
of the interfaces.

$Id$
"""

version = '2.0beta'

#============================================================================
#
# HANDLER INTERFACES
#
#============================================================================

# ===== ERRORHANDLER =====

class ErrorHandler:
    """Basic interface for SAX error handlers.

    If you create an object that implements this interface, then
    register the object with your XMLReader, the parser will call the
    methods in your object to report all warnings and errors. There
    are three levels of errors available: warnings, (possibly)
    recoverable errors, and unrecoverable errors. All methods take a
    SAXParseException as the only parameter."""

    def error(self, exception):
        "Handle a recoverable error."
        raise exception

    def fatalError(self, exception):
        "Handle a non-recoverable error."
        raise exception

    def warning(self, exception):
        "Handle a warning."
        print(exception)


# ===== CONTENTHANDLER =====

class ContentHandler:
    """Interface for receiving logical document content events.

    This is the main callback interface in SAX, and the one most
    important to applications. The order of events in this interface
    mirrors the order of the information in the document."""

    def __init__(self):
        self._locator = None

    def setDocumentLocator(self, locator):
        """Called by the parser to give the application a locator for
        locating the origin of document events.

        SAX parsers are strongly encouraged (though not absolutely
        required) to supply a locator: if it does so, it must supply
        the locator to the application by invoking this method before
        invoking any of the other methods in the DocumentHandler
        interface.

        The locator allows the application to determine the end
        position of any document-related event, even if the parser is
        not reporting an error. Typically, the application will use
        this information for reporting its own errors (such as
        character content that does not match an application's
        business rules). The information returned by the locator is
        probably not sufficient for use with a search engine.

        Note that the locator will return correct information only
        during the invocation of the events in this interface. The
        application should not attempt to use it at any other time."""
        self._locator = locator

    def startDocument(self):
        """Receive notification of the beginning of a document.

        The SAX parser will invoke this method only once, before any
        other methods in this interface or in DTDHandler (except for
        setDocumentLocator)."""

    def endDocument(self):
        """Receive notification of the end of a document.

        The SAX parser will invoke this method only once, and it will
        be the last method invoked during the parse. The parser shall
        not invoke this method until it has either abandoned parsing
        (because of an unrecoverable error) or reached the end of
        input."""

    def startPrefixMapping(self, prefix, uri):
        """Begin the scope of a prefix-URI Namespace mapping.

        The information from this event is not necessary for normal
        Namespace processing: the SAX XML reader will automatically
        replace prefixes for element and attribute names when the
        http://xml.org/sax/features/namespaces feature is true (the
        default).

        There are cases, however, when applications need to use
        prefixes in character data or in attribute values, where they
        cannot safely be expanded automatically; the
        start/endPrefixMapping event supplies the information to the
        application to expand prefixes in those contexts itself, if
        necessary.

        Note that start/endPrefixMapping events are not guaranteed to
        be properly nested relative to each-other: all
        startPrefixMapping events will occur before the corresponding
        startElement event, and all endPrefixMapping events will occur
        after the corresponding endElement event, but their order is
        not guaranteed."""

    def endPrefixMapping(self, prefix):
        """End the scope of a prefix-URI mapping.

        See startPrefixMapping for details. This event will always
        occur after the corresponding endElement event, but the order
        of endPrefixMapping events is not otherwise guaranteed."""

    def startElement(self, name, attrs):
        """Signals the start of an element in non-namespace mode.

        The name parameter contains the raw XML 1.0 name of the
        element type as a string and the attrs parameter holds an
        instance of the Attributes class containing the attributes of
        the element."""

    def endElement(self, name):
        """Signals the end of an element in non-namespace mode.

        The name parameter contains the name of the element type, just
        as with the startElement event."""

    def startElementNS(self, name, qname, attrs):
        """Signals the start of an element in namespace mode.

        The name parameter contains the name of the element type as a
        (uri, localname) tuple, the qname parameter the raw XML 1.0
        name used in the source document, and the attrs parameter
        holds an instance of the Attributes class containing the
        attributes of the element.

        The uri part of the name tuple is None for elements which have
        no namespace."""

    def endElementNS(self, name, qname):
        """Signals the end of an element in namespace mode.

        The name parameter contains the name of the element type, just
        as with the startElementNS event."""

    def characters(self, content):
        """Receive notification of character data.

        The Parser will call this method to report each chunk of
        character data. SAX parsers may return all contiguous
        character data in a single chunk, or they may split it into
        several chunks; however, all of the characters in any single
        event must come from the same external entity so that the
        Locator provides useful information."""

    def ignorableWhitespace(self, whitespace):
        """Receive notification of ignorable whitespace in element content.

        Validating Parsers must use this method to report each chunk
        of ignorable whitespace (see the W3C XML 1.0 recommendation,
        section 2.10): non-validating parsers may also use this method
        if they are capable of parsing and using content models.

        SAX parsers may return all contiguous whitespace in a single
        chunk, or they may split it into several chunks; however, all
        of the characters in any single event must come from the same
        external entity, so that the Locator provides useful
        information."""

    def processingInstruction(self, target, data):
        """Receive notification of a processing instruction.

        The Parser will invoke this method once for each processing
        instruction found: note that processing instructions may occur
        before or after the main document element.

        A SAX parser should never report an XML declaration (XML 1.0,
        section 2.8) or a text declaration (XML 1.0, section 4.3.1)
        using this method."""

    def skippedEntity(self, name):
        """Receive notification of a skipped entity.

        The Parser will invoke this method once for each entity
        skipped. Non-validating processors may skip entities if they
        have not seen the declarations (because, for example, the
        entity was declared in an external DTD subset). All processors
        may skip external entities, depending on the values of the
        http://xml.org/sax/features/external-general-entities and the
        http://xml.org/sax/features/external-parameter-entities
        properties."""


# ===== DTDHandler =====

class DTDHandler:
    """Handle DTD events.

    This interface specifies only those DTD events required for basic
    parsing (unparsed entities and attributes)."""

    def notationDecl(self, name, publicId, systemId):
        "Handle a notation declaration event."

    def unparsedEntityDecl(self, name, publicId, systemId, ndata):
        "Handle an unparsed entity declaration event."


# ===== ENTITYRESOLVER =====

class EntityResolver:
    """Basic interface for resolving entities. If you create an object
    implementing this interface, then register the object with your
    Parser, the parser will call the method in your object to
    resolve all external entities. Note that DefaultHandler implements
    this interface with the default behaviour."""

    def resolveEntity(self, publicId, systemId):
        """Resolve the system identifier of an entity and return either
        the system identifier to read from as a string, or an InputSource
        to read from."""
        return systemId


#============================================================================
#
# CORE FEATURES
#
#============================================================================

feature_namespaces = "http://xml.org/sax/features/namespaces"
# true: Perform Namespace processing (default).
# false: Optionally do not perform Namespace processing
#        (implies namespace-prefixes).
# access: (parsing) read-only; (not parsing) read/write

feature_namespace_prefixes = "http://xml.org/sax/features/namespace-prefixes"
# true: Report the original prefixed names and attributes used for Namespace
#       declarations.
# false: Do not report attributes used for Namespace declarations, and
#        optionally do not report original prefixed names (default).
# access: (parsing) read-only; (not parsing) read/write

feature_string_interning = "http://xml.org/sax/features/string-interning"
# true: All element names, prefixes, attribute names, Namespace URIs, and
#       local names are interned using the built-in intern function.
# false: Names are not necessarily interned, although they may be (default).
# access: (parsing) read-only; (not parsing) read/write

feature_validation = "http://xml.org/sax/features/validation"
# true: Report all validation errors (implies external-general-entities and
#       external-parameter-entities).
# false: Do not report validation errors.
# access: (parsing) read-only; (not parsing) read/write

feature_external_ges = "http://xml.org/sax/features/external-general-entities"
# true: Include all external general (text) entities.
# false: Do not include external general entities.
# access: (parsing) read-only; (not parsing) read/write

feature_external_pes = "http://xml.org/sax/features/external-parameter-entities"
# true: Include all external parameter entities, including the external
#       DTD subset.
# false: Do not include any external parameter entities, even the external
#        DTD subset.
# access: (parsing) read-only; (not parsing) read/write

all_features = [feature_namespaces,
                feature_namespace_prefixes,
                feature_string_interning,
                feature_validation,
                feature_external_ges,
                feature_external_pes]


#============================================================================
#
# CORE PROPERTIES
#
#============================================================================

property_lexical_handler = "http://xml.org/sax/properties/lexical-handler"
# data type: xml.sax.sax2lib.LexicalHandler
# description: An optional extension handler for lexical events like comments.
# access: read/write

property_declaration_handler = "http://xml.org/sax/properties/declaration-handler"
# data type: xml.sax.sax2lib.DeclHandler
# description: An optional extension handler for DTD-related events other
#              than notations and unparsed entities.
# access: read/write

property_dom_node = "http://xml.org/sax/properties/dom-node"
# data type: org.w3c.dom.Node
# description: When parsing, the current DOM node being visited if this is
#              a DOM iterator; when not parsing, the root DOM node for
#              iteration.
# access: (parsing) read-only; (not parsing) read/write

property_xml_string = "http://xml.org/sax/properties/xml-string"
# data type: String
# description: The literal string of characters that was the source for
#              the current event.
# access: read-only

property_encoding = "http://www.python.org/sax/properties/encoding"
# data type: String
# description: The name of the encoding to assume for input data.
# access: write: set the encoding, e.g. established by a higher-level
#                protocol. May change during parsing (e.g. after
#                processing a META tag)
#         read:  return the current encoding (possibly established through
#                auto-detection.
# initial value: UTF-8
#

property_interning_dict = "http://www.python.org/sax/properties/interning-dict"
# data type: Dictionary
# description: The dictionary used to intern common strings in the document
# access: write: Request that the parser uses a specific dictionary, to
#                allow interning across different documents
#         read:  return the current interning dictionary, or None
#

all_properties = [property_lexical_handler,
                  property_dom_node,
                  property_declaration_handler,
                  property_xml_string,
                  property_encoding,
                  property_interning_dict]
lib\xml\sax\saxutils.py
"""\
A library of useful helper classes to the SAX classes, for the
convenience of application and driver writers.
"""

import os, urllib.parse, urllib.request
import io
import codecs
from . import handler
from . import xmlreader

def __dict_replace(s, d):
    """Replace substrings of a string using a dictionary."""
    for key, value in d.items():
        s = s.replace(key, value)
    return s

def escape(data, entities={}):
    """Escape &, <, and > in a string of data.

    You can escape other strings of data by passing a dictionary as
    the optional entities parameter.  The keys and values must all be
    strings; each key will be replaced with its corresponding value.
    """

    # must do ampersand first
    data = data.replace("&", "&amp;")
    data = data.replace(">", "&gt;")
    data = data.replace("<", "&lt;")
    if entities:
        data = __dict_replace(data, entities)
    return data

def unescape(data, entities={}):
    """Unescape &amp;, &lt;, and &gt; in a string of data.

    You can unescape other strings of data by passing a dictionary as
    the optional entities parameter.  The keys and values must all be
    strings; each key will be replaced with its corresponding value.
    """
    data = data.replace("&lt;", "<")
    data = data.replace("&gt;", ">")
    if entities:
        data = __dict_replace(data, entities)
    # must do ampersand last
    return data.replace("&amp;", "&")

def quoteattr(data, entities={}):
    """Escape and quote an attribute value.

    Escape &, <, and > in a string of data, then quote it for use as
    an attribute value.  The \" character will be escaped as well, if
    necessary.

    You can escape other strings of data by passing a dictionary as
    the optional entities parameter.  The keys and values must all be
    strings; each key will be replaced with its corresponding value.
    """
    entities = entities.copy()
    entities.update({'\n': '&#10;', '\r': '&#13;', '\t':'&#9;'})
    data = escape(data, entities)
    if '"' in data:
        if "'" in data:
            data = '"%s"' % data.replace('"', "&quot;")
        else:
            data = "'%s'" % data
    else:
        data = '"%s"' % data
    return data


def _gettextwriter(out, encoding):
    if out is None:
        import sys
        return sys.stdout

    if isinstance(out, io.TextIOBase):
        # use a text writer as is
        return out

    if isinstance(out, (codecs.StreamWriter, codecs.StreamReaderWriter)):
        # use a codecs stream writer as is
        return out

    # wrap a binary writer with TextIOWrapper
    if isinstance(out, io.RawIOBase):
        # Keep the original file open when the TextIOWrapper is
        # destroyed
        class _wrapper:
            __class__ = out.__class__
            def __getattr__(self, name):
                return getattr(out, name)
        buffer = _wrapper()
        buffer.close = lambda: None
    else:
        # This is to handle passed objects that aren't in the
        # IOBase hierarchy, but just have a write method
        buffer = io.BufferedIOBase()
        buffer.writable = lambda: True
        buffer.write = out.write
        try:
            # TextIOWrapper uses this methods to determine
            # if BOM (for UTF-16, etc) should be added
            buffer.seekable = out.seekable
            buffer.tell = out.tell
        except AttributeError:
            pass
    return io.TextIOWrapper(buffer, encoding=encoding,
                            errors='xmlcharrefreplace',
                            newline='\n',
                            write_through=True)

class XMLGenerator(handler.ContentHandler):

    def __init__(self, out=None, encoding="iso-8859-1", short_empty_elements=False):
        handler.ContentHandler.__init__(self)
        out = _gettextwriter(out, encoding)
        self._write = out.write
        self._flush = out.flush
        self._ns_contexts = [{}] # contains uri -> prefix dicts
        self._current_context = self._ns_contexts[-1]
        self._undeclared_ns_maps = []
        self._encoding = encoding
        self._short_empty_elements = short_empty_elements
        self._pending_start_element = False

    def _qname(self, name):
        """Builds a qualified name from a (ns_url, localname) pair"""
        if name[0]:
            # Per http://www.w3.org/XML/1998/namespace, The 'xml' prefix is
            # bound by definition to http://www.w3.org/XML/1998/namespace.  It
            # does not need to be declared and will not usually be found in
            # self._current_context.
            if 'http://www.w3.org/XML/1998/namespace' == name[0]:
                return 'xml:' + name[1]
            # The name is in a non-empty namespace
            prefix = self._current_context[name[0]]
            if prefix:
                # If it is not the default namespace, prepend the prefix
                return prefix + ":" + name[1]
        # Return the unqualified name
        return name[1]

    def _finish_pending_start_element(self,endElement=False):
        if self._pending_start_element:
            self._write('>')
            self._pending_start_element = False

    # ContentHandler methods

    def startDocument(self):
        self._write('<?xml version="1.0" encoding="%s"?>\n' %
                        self._encoding)

    def endDocument(self):
        self._flush()

    def startPrefixMapping(self, prefix, uri):
        self._ns_contexts.append(self._current_context.copy())
        self._current_context[uri] = prefix
        self._undeclared_ns_maps.append((prefix, uri))

    def endPrefixMapping(self, prefix):
        self._current_context = self._ns_contexts[-1]
        del self._ns_contexts[-1]

    def startElement(self, name, attrs):
        self._finish_pending_start_element()
        self._write('<' + name)
        for (name, value) in attrs.items():
            self._write(' %s=%s' % (name, quoteattr(value)))
        if self._short_empty_elements:
            self._pending_start_element = True
        else:
            self._write(">")

    def endElement(self, name):
        if self._pending_start_element:
            self._write('/>')
            self._pending_start_element = False
        else:
            self._write('</%s>' % name)

    def startElementNS(self, name, qname, attrs):
        self._finish_pending_start_element()
        self._write('<' + self._qname(name))

        for prefix, uri in self._undeclared_ns_maps:
            if prefix:
                self._write(' xmlns:%s="%s"' % (prefix, uri))
            else:
                self._write(' xmlns="%s"' % uri)
        self._undeclared_ns_maps = []

        for (name, value) in attrs.items():
            self._write(' %s=%s' % (self._qname(name), quoteattr(value)))
        if self._short_empty_elements:
            self._pending_start_element = True
        else:
            self._write(">")

    def endElementNS(self, name, qname):
        if self._pending_start_element:
            self._write('/>')
            self._pending_start_element = False
        else:
            self._write('</%s>' % self._qname(name))

    def characters(self, content):
        if content:
            self._finish_pending_start_element()
            if not isinstance(content, str):
                content = str(content, self._encoding)
            self._write(escape(content))

    def ignorableWhitespace(self, content):
        if content:
            self._finish_pending_start_element()
            if not isinstance(content, str):
                content = str(content, self._encoding)
            self._write(content)

    def processingInstruction(self, target, data):
        self._finish_pending_start_element()
        self._write('<?%s %s?>' % (target, data))


class XMLFilterBase(xmlreader.XMLReader):
    """This class is designed to sit between an XMLReader and the
    client application's event handlers.  By default, it does nothing
    but pass requests up to the reader and events on to the handlers
    unmodified, but subclasses can override specific methods to modify
    the event stream or the configuration requests as they pass
    through."""

    def __init__(self, parent = None):
        xmlreader.XMLReader.__init__(self)
        self._parent = parent

    # ErrorHandler methods

    def error(self, exception):
        self._err_handler.error(exception)

    def fatalError(self, exception):
        self._err_handler.fatalError(exception)

    def warning(self, exception):
        self._err_handler.warning(exception)

    # ContentHandler methods

    def setDocumentLocator(self, locator):
        self._cont_handler.setDocumentLocator(locator)

    def startDocument(self):
        self._cont_handler.startDocument()

    def endDocument(self):
        self._cont_handler.endDocument()

    def startPrefixMapping(self, prefix, uri):
        self._cont_handler.startPrefixMapping(prefix, uri)

    def endPrefixMapping(self, prefix):
        self._cont_handler.endPrefixMapping(prefix)

    def startElement(self, name, attrs):
        self._cont_handler.startElement(name, attrs)

    def endElement(self, name):
        self._cont_handler.endElement(name)

    def startElementNS(self, name, qname, attrs):
        self._cont_handler.startElementNS(name, qname, attrs)

    def endElementNS(self, name, qname):
        self._cont_handler.endElementNS(name, qname)

    def characters(self, content):
        self._cont_handler.characters(content)

    def ignorableWhitespace(self, chars):
        self._cont_handler.ignorableWhitespace(chars)

    def processingInstruction(self, target, data):
        self._cont_handler.processingInstruction(target, data)

    def skippedEntity(self, name):
        self._cont_handler.skippedEntity(name)

    # DTDHandler methods

    def notationDecl(self, name, publicId, systemId):
        self._dtd_handler.notationDecl(name, publicId, systemId)

    def unparsedEntityDecl(self, name, publicId, systemId, ndata):
        self._dtd_handler.unparsedEntityDecl(name, publicId, systemId, ndata)

    # EntityResolver methods

    def resolveEntity(self, publicId, systemId):
        return self._ent_handler.resolveEntity(publicId, systemId)

    # XMLReader methods

    def parse(self, source):
        self._parent.setContentHandler(self)
        self._parent.setErrorHandler(self)
        self._parent.setEntityResolver(self)
        self._parent.setDTDHandler(self)
        self._parent.parse(source)

    def setLocale(self, locale):
        self._parent.setLocale(locale)

    def getFeature(self, name):
        return self._parent.getFeature(name)

    def setFeature(self, name, state):
        self._parent.setFeature(name, state)

    def getProperty(self, name):
        return self._parent.getProperty(name)

    def setProperty(self, name, value):
        self._parent.setProperty(name, value)

    # XMLFilter methods

    def getParent(self):
        return self._parent

    def setParent(self, parent):
        self._parent = parent

# --- Utility functions

def prepare_input_source(source, base=""):
    """This function takes an InputSource and an optional base URL and
    returns a fully resolved InputSource object ready for reading."""

    if isinstance(source, str):
        source = xmlreader.InputSource(source)
    elif hasattr(source, "read"):
        f = source
        source = xmlreader.InputSource()
        source.setByteStream(f)
        if hasattr(f, "name") and isinstance(f.name, str):
            source.setSystemId(f.name)

    if source.getByteStream() is None:
        sysid = source.getSystemId()
        basehead = os.path.dirname(os.path.normpath(base))
        sysidfilename = os.path.join(basehead, sysid)
        if os.path.isfile(sysidfilename):
            source.setSystemId(sysidfilename)
            f = open(sysidfilename, "rb")
        else:
            source.setSystemId(urllib.parse.urljoin(base, sysid))
            f = urllib.request.urlopen(source.getSystemId())

        source.setByteStream(f)

    return source
lib\xml\sax\xmlreader.py
"""An XML Reader is the SAX 2 name for an XML parser. XML Parsers
should be based on this code. """

from . import handler

from ._exceptions import SAXNotSupportedException, SAXNotRecognizedException


# ===== XMLREADER =====

class XMLReader:
    """Interface for reading an XML document using callbacks.

    XMLReader is the interface that an XML parser's SAX2 driver must
    implement. This interface allows an application to set and query
    features and properties in the parser, to register event handlers
    for document processing, and to initiate a document parse.

    All SAX interfaces are assumed to be synchronous: the parse
    methods must not return until parsing is complete, and readers
    must wait for an event-handler callback to return before reporting
    the next event."""

    def __init__(self):
        self._cont_handler = handler.ContentHandler()
        self._dtd_handler = handler.DTDHandler()
        self._ent_handler = handler.EntityResolver()
        self._err_handler = handler.ErrorHandler()

    def parse(self, source):
        "Parse an XML document from a system identifier or an InputSource."
        raise NotImplementedError("This method must be implemented!")

    def getContentHandler(self):
        "Returns the current ContentHandler."
        return self._cont_handler

    def setContentHandler(self, handler):
        "Registers a new object to receive document content events."
        self._cont_handler = handler

    def getDTDHandler(self):
        "Returns the current DTD handler."
        return self._dtd_handler

    def setDTDHandler(self, handler):
        "Register an object to receive basic DTD-related events."
        self._dtd_handler = handler

    def getEntityResolver(self):
        "Returns the current EntityResolver."
        return self._ent_handler

    def setEntityResolver(self, resolver):
        "Register an object to resolve external entities."
        self._ent_handler = resolver

    def getErrorHandler(self):
        "Returns the current ErrorHandler."
        return self._err_handler

    def setErrorHandler(self, handler):
        "Register an object to receive error-message events."
        self._err_handler = handler

    def setLocale(self, locale):
        """Allow an application to set the locale for errors and warnings.

        SAX parsers are not required to provide localization for errors
        and warnings; if they cannot support the requested locale,
        however, they must raise a SAX exception. Applications may
        request a locale change in the middle of a parse."""
        raise SAXNotSupportedException("Locale support not implemented")

    def getFeature(self, name):
        "Looks up and returns the state of a SAX2 feature."
        raise SAXNotRecognizedException("Feature '%s' not recognized" % name)

    def setFeature(self, name, state):
        "Sets the state of a SAX2 feature."
        raise SAXNotRecognizedException("Feature '%s' not recognized" % name)

    def getProperty(self, name):
        "Looks up and returns the value of a SAX2 property."
        raise SAXNotRecognizedException("Property '%s' not recognized" % name)

    def setProperty(self, name, value):
        "Sets the value of a SAX2 property."
        raise SAXNotRecognizedException("Property '%s' not recognized" % name)

class IncrementalParser(XMLReader):
    """This interface adds three extra methods to the XMLReader
    interface that allow XML parsers to support incremental
    parsing. Support for this interface is optional, since not all
    underlying XML parsers support this functionality.

    When the parser is instantiated it is ready to begin accepting
    data from the feed method immediately. After parsing has been
    finished with a call to close the reset method must be called to
    make the parser ready to accept new data, either from feed or
    using the parse method.

    Note that these methods must _not_ be called during parsing, that
    is, after parse has been called and before it returns.

    By default, the class also implements the parse method of the XMLReader
    interface using the feed, close and reset methods of the
    IncrementalParser interface as a convenience to SAX 2.0 driver
    writers."""

    def __init__(self, bufsize=2**16):
        self._bufsize = bufsize
        XMLReader.__init__(self)

    def parse(self, source):
        from . import saxutils
        source = saxutils.prepare_input_source(source)

        self.prepareParser(source)
        file = source.getByteStream()
        buffer = file.read(self._bufsize)
        while buffer:
            self.feed(buffer)
            buffer = file.read(self._bufsize)
        self.close()

    def feed(self, data):
        """This method gives the raw XML data in the data parameter to
        the parser and makes it parse the data, emitting the
        corresponding events. It is allowed for XML constructs to be
        split across several calls to feed.

        feed may raise SAXException."""
        raise NotImplementedError("This method must be implemented!")

    def prepareParser(self, source):
        """This method is called by the parse implementation to allow
        the SAX 2.0 driver to prepare itself for parsing."""
        raise NotImplementedError("prepareParser must be overridden!")

    def close(self):
        """This method is called when the entire XML document has been
        passed to the parser through the feed method, to notify the
        parser that there are no more data. This allows the parser to
        do the final checks on the document and empty the internal
        data buffer.

        The parser will not be ready to parse another document until
        the reset method has been called.

        close may raise SAXException."""
        raise NotImplementedError("This method must be implemented!")

    def reset(self):
        """This method is called after close has been called to reset
        the parser so that it is ready to parse new documents. The
        results of calling parse or feed after close without calling
        reset are undefined."""
        raise NotImplementedError("This method must be implemented!")

# ===== LOCATOR =====

class Locator:
    """Interface for associating a SAX event with a document
    location. A locator object will return valid results only during
    calls to DocumentHandler methods; at any other time, the
    results are unpredictable."""

    def getColumnNumber(self):
        "Return the column number where the current event ends."
        return -1

    def getLineNumber(self):
        "Return the line number where the current event ends."
        return -1

    def getPublicId(self):
        "Return the public identifier for the current event."
        return None

    def getSystemId(self):
        "Return the system identifier for the current event."
        return None

# ===== INPUTSOURCE =====

class InputSource:
    """Encapsulation of the information needed by the XMLReader to
    read entities.

    This class may include information about the public identifier,
    system identifier, byte stream (possibly with character encoding
    information) and/or the character stream of an entity.

    Applications will create objects of this class for use in the
    XMLReader.parse method and for returning from
    EntityResolver.resolveEntity.

    An InputSource belongs to the application, the XMLReader is not
    allowed to modify InputSource objects passed to it from the
    application, although it may make copies and modify those."""

    def __init__(self, system_id = None):
        self.__system_id = system_id
        self.__public_id = None
        self.__encoding  = None
        self.__bytefile  = None
        self.__charfile  = None

    def setPublicId(self, public_id):
        "Sets the public identifier of this InputSource."
        self.__public_id = public_id

    def getPublicId(self):
        "Returns the public identifier of this InputSource."
        return self.__public_id

    def setSystemId(self, system_id):
        "Sets the system identifier of this InputSource."
        self.__system_id = system_id

    def getSystemId(self):
        "Returns the system identifier of this InputSource."
        return self.__system_id

    def setEncoding(self, encoding):
        """Sets the character encoding of this InputSource.

        The encoding must be a string acceptable for an XML encoding
        declaration (see section 4.3.3 of the XML recommendation).

        The encoding attribute of the InputSource is ignored if the
        InputSource also contains a character stream."""
        self.__encoding = encoding

    def getEncoding(self):
        "Get the character encoding of this InputSource."
        return self.__encoding

    def setByteStream(self, bytefile):
        """Set the byte stream (a Python file-like object which does
        not perform byte-to-character conversion) for this input
        source.

        The SAX parser will ignore this if there is also a character
        stream specified, but it will use a byte stream in preference
        to opening a URI connection itself.

        If the application knows the character encoding of the byte
        stream, it should set it with the setEncoding method."""
        self.__bytefile = bytefile

    def getByteStream(self):
        """Get the byte stream for this input source.

        The getEncoding method will return the character encoding for
        this byte stream, or None if unknown."""
        return self.__bytefile

    def setCharacterStream(self, charfile):
        """Set the character stream for this input source. (The stream
        must be a Python 2.0 Unicode-wrapped file-like that performs
        conversion to Unicode strings.)

        If there is a character stream specified, the SAX parser will
        ignore any byte stream and will not attempt to open a URI
        connection to the system identifier."""
        self.__charfile = charfile

    def getCharacterStream(self):
        "Get the character stream for this input source."
        return self.__charfile

# ===== ATTRIBUTESIMPL =====

class AttributesImpl:

    def __init__(self, attrs):
        """Non-NS-aware implementation.

        attrs should be of the form {name : value}."""
        self._attrs = attrs

    def getLength(self):
        return len(self._attrs)

    def getType(self, name):
        return "CDATA"

    def getValue(self, name):
        return self._attrs[name]

    def getValueByQName(self, name):
        return self._attrs[name]

    def getNameByQName(self, name):
        if name not in self._attrs:
            raise KeyError(name)
        return name

    def getQNameByName(self, name):
        if name not in self._attrs:
            raise KeyError(name)
        return name

    def getNames(self):
        return list(self._attrs.keys())

    def getQNames(self):
        return list(self._attrs.keys())

    def __len__(self):
        return len(self._attrs)

    def __getitem__(self, name):
        return self._attrs[name]

    def keys(self):
        return list(self._attrs.keys())

    def __contains__(self, name):
        return name in self._attrs

    def get(self, name, alternative=None):
        return self._attrs.get(name, alternative)

    def copy(self):
        return self.__class__(self._attrs)

    def items(self):
        return list(self._attrs.items())

    def values(self):
        return list(self._attrs.values())

# ===== ATTRIBUTESNSIMPL =====

class AttributesNSImpl(AttributesImpl):

    def __init__(self, attrs, qnames):
        """NS-aware implementation.

        attrs should be of the form {(ns_uri, lname): value, ...}.
        qnames of the form {(ns_uri, lname): qname, ...}."""
        self._attrs = attrs
        self._qnames = qnames

    def getValueByQName(self, name):
        for (nsname, qname) in self._qnames.items():
            if qname == name:
                return self._attrs[nsname]

        raise KeyError(name)

    def getNameByQName(self, name):
        for (nsname, qname) in self._qnames.items():
            if qname == name:
                return nsname

        raise KeyError(name)

    def getQNameByName(self, name):
        return self._qnames[name]

    def getQNames(self):
        return list(self._qnames.values())

    def copy(self):
        return self.__class__(self._attrs, self._qnames)


def _test():
    XMLReader()
    IncrementalParser()
    Locator()

if __name__ == "__main__":
    _test()
lib\xml\sax\_exceptions.py
"""Different kinds of SAX Exceptions"""
import sys
if sys.platform[:4] == "java":
    from java.lang import Exception
del sys

# ===== SAXEXCEPTION =====

class SAXException(Exception):
    """Encapsulate an XML error or warning. This class can contain
    basic error or warning information from either the XML parser or
    the application: you can subclass it to provide additional
    functionality, or to add localization. Note that although you will
    receive a SAXException as the argument to the handlers in the
    ErrorHandler interface, you are not actually required to raise
    the exception; instead, you can simply read the information in
    it."""

    def __init__(self, msg, exception=None):
        """Creates an exception. The message is required, but the exception
        is optional."""
        self._msg = msg
        self._exception = exception
        Exception.__init__(self, msg)

    def getMessage(self):
        "Return a message for this exception."
        return self._msg

    def getException(self):
        "Return the embedded exception, or None if there was none."
        return self._exception

    def __str__(self):
        "Create a string representation of the exception."
        return self._msg

    def __getitem__(self, ix):
        """Avoids weird error messages if someone does exception[ix] by
        mistake, since Exception has __getitem__ defined."""
        raise AttributeError("__getitem__")


# ===== SAXPARSEEXCEPTION =====

class SAXParseException(SAXException):
    """Encapsulate an XML parse error or warning.

    This exception will include information for locating the error in
    the original XML document. Note that although the application will
    receive a SAXParseException as the argument to the handlers in the
    ErrorHandler interface, the application is not actually required
    to raise the exception; instead, it can simply read the
    information in it and take a different action.

    Since this exception is a subclass of SAXException, it inherits
    the ability to wrap another exception."""

    def __init__(self, msg, exception, locator):
        "Creates the exception. The exception parameter is allowed to be None."
        SAXException.__init__(self, msg, exception)
        self._locator = locator

        # We need to cache this stuff at construction time.
        # If this exception is raised, the objects through which we must
        # traverse to get this information may be deleted by the time
        # it gets caught.
        self._systemId = self._locator.getSystemId()
        self._colnum = self._locator.getColumnNumber()
        self._linenum = self._locator.getLineNumber()

    def getColumnNumber(self):
        """The column number of the end of the text where the exception
        occurred."""
        return self._colnum

    def getLineNumber(self):
        "The line number of the end of the text where the exception occurred."
        return self._linenum

    def getPublicId(self):
        "Get the public identifier of the entity where the exception occurred."
        return self._locator.getPublicId()

    def getSystemId(self):
        "Get the system identifier of the entity where the exception occurred."
        return self._systemId

    def __str__(self):
        "Create a string representation of the exception."
        sysid = self.getSystemId()
        if sysid is None:
            sysid = "<unknown>"
        linenum = self.getLineNumber()
        if linenum is None:
            linenum = "?"
        colnum = self.getColumnNumber()
        if colnum is None:
            colnum = "?"
        return "%s:%s:%s: %s" % (sysid, linenum, colnum, self._msg)


# ===== SAXNOTRECOGNIZEDEXCEPTION =====

class SAXNotRecognizedException(SAXException):
    """Exception class for an unrecognized identifier.

    An XMLReader will raise this exception when it is confronted with an
    unrecognized feature or property. SAX applications and extensions may
    use this class for similar purposes."""


# ===== SAXNOTSUPPORTEDEXCEPTION =====

class SAXNotSupportedException(SAXException):
    """Exception class for an unsupported operation.

    An XMLReader will raise this exception when a service it cannot
    perform is requested (specifically setting a state or value). SAX
    applications and extensions may use this class for similar
    purposes."""

# ===== SAXNOTSUPPORTEDEXCEPTION =====

class SAXReaderNotAvailable(SAXNotSupportedException):
    """Exception class for a missing driver.

    An XMLReader module (driver) should raise this exception when it
    is first imported, e.g. when a support module cannot be imported.
    It also may be raised during parsing, e.g. if executing an external
    program is not permitted."""
lib\xml\sax\__init__.py
"""Simple API for XML (SAX) implementation for Python.

This module provides an implementation of the SAX 2 interface;
information about the Java version of the interface can be found at
http://www.megginson.com/SAX/.  The Python version of the interface is
documented at <...>.

This package contains the following modules:

handler -- Base classes and constants which define the SAX 2 API for
           the 'client-side' of SAX for Python.

saxutils -- Implementation of the convenience classes commonly used to
            work with SAX.

xmlreader -- Base classes and constants which define the SAX 2 API for
             the parsers used with SAX for Python.

expatreader -- Driver that allows use of the Expat parser with SAX.
"""

from .xmlreader import InputSource
from .handler import ContentHandler, ErrorHandler
from ._exceptions import SAXException, SAXNotRecognizedException, \
                        SAXParseException, SAXNotSupportedException, \
                        SAXReaderNotAvailable


def parse(source, handler, errorHandler=ErrorHandler()):
    parser = make_parser()
    parser.setContentHandler(handler)
    parser.setErrorHandler(errorHandler)
    parser.parse(source)

def parseString(string, handler, errorHandler=ErrorHandler()):
    from io import BytesIO

    if errorHandler is None:
        errorHandler = ErrorHandler()
    parser = make_parser()
    parser.setContentHandler(handler)
    parser.setErrorHandler(errorHandler)

    inpsrc = InputSource()
    inpsrc.setByteStream(BytesIO(string))
    parser.parse(inpsrc)

# this is the parser list used by the make_parser function if no
# alternatives are given as parameters to the function

default_parser_list = ["xml.sax.expatreader"]

# tell modulefinder that importing sax potentially imports expatreader
_false = 0
if _false:
    import xml.sax.expatreader

import os, sys
if not sys.flags.ignore_environment and "PY_SAX_PARSER" in os.environ:
    default_parser_list = os.environ["PY_SAX_PARSER"].split(",")
del os

_key = "python.xml.sax.parser"
if sys.platform[:4] == "java" and sys.registry.containsKey(_key):
    default_parser_list = sys.registry.getProperty(_key).split(",")


def make_parser(parser_list = []):
    """Creates and returns a SAX parser.

    Creates the first parser it is able to instantiate of the ones
    given in the list created by doing parser_list +
    default_parser_list.  The lists must contain the names of Python
    modules containing both a SAX parser and a create_parser function."""

    for parser_name in parser_list + default_parser_list:
        try:
            return _create_parser(parser_name)
        except ImportError as e:
            import sys
            if parser_name in sys.modules:
                # The parser module was found, but importing it
                # failed unexpectedly, pass this exception through
                raise
        except SAXReaderNotAvailable:
            # The parser module detected that it won't work properly,
            # so try the next one
            pass

    raise SAXReaderNotAvailable("No parsers found", None)

# --- Internal utility methods used by make_parser

if sys.platform[ : 4] == "java":
    def _create_parser(parser_name):
        from org.python.core import imp
        drv_module = imp.importName(parser_name, 0, globals())
        return drv_module.create_parser()

else:
    def _create_parser(parser_name):
        drv_module = __import__(parser_name,{},{},['create_parser'])
        return drv_module.create_parser()

del sys
lib\xmlrpc\client.py
#
# XML-RPC CLIENT LIBRARY
# $Id$
#
# an XML-RPC client interface for Python.
#
# the marshalling and response parser code can also be used to
# implement XML-RPC servers.
#
# Notes:
# this version is designed to work with Python 2.1 or newer.
#
# History:
# 1999-01-14 fl  Created
# 1999-01-15 fl  Changed dateTime to use localtime
# 1999-01-16 fl  Added Binary/base64 element, default to RPC2 service
# 1999-01-19 fl  Fixed array data element (from Skip Montanaro)
# 1999-01-21 fl  Fixed dateTime constructor, etc.
# 1999-02-02 fl  Added fault handling, handle empty sequences, etc.
# 1999-02-10 fl  Fixed problem with empty responses (from Skip Montanaro)
# 1999-06-20 fl  Speed improvements, pluggable parsers/transports (0.9.8)
# 2000-11-28 fl  Changed boolean to check the truth value of its argument
# 2001-02-24 fl  Added encoding/Unicode/SafeTransport patches
# 2001-02-26 fl  Added compare support to wrappers (0.9.9/1.0b1)
# 2001-03-28 fl  Make sure response tuple is a singleton
# 2001-03-29 fl  Don't require empty params element (from Nicholas Riley)
# 2001-06-10 fl  Folded in _xmlrpclib accelerator support (1.0b2)
# 2001-08-20 fl  Base xmlrpclib.Error on built-in Exception (from Paul Prescod)
# 2001-09-03 fl  Allow Transport subclass to override getparser
# 2001-09-10 fl  Lazy import of urllib, cgi, xmllib (20x import speedup)
# 2001-10-01 fl  Remove containers from memo cache when done with them
# 2001-10-01 fl  Use faster escape method (80% dumps speedup)
# 2001-10-02 fl  More dumps microtuning
# 2001-10-04 fl  Make sure import expat gets a parser (from Guido van Rossum)
# 2001-10-10 sm  Allow long ints to be passed as ints if they don't overflow
# 2001-10-17 sm  Test for int and long overflow (allows use on 64-bit systems)
# 2001-11-12 fl  Use repr() to marshal doubles (from Paul Felix)
# 2002-03-17 fl  Avoid buffered read when possible (from James Rucker)
# 2002-04-07 fl  Added pythondoc comments
# 2002-04-16 fl  Added __str__ methods to datetime/binary wrappers
# 2002-05-15 fl  Added error constants (from Andrew Kuchling)
# 2002-06-27 fl  Merged with Python CVS version
# 2002-10-22 fl  Added basic authentication (based on code from Phillip Eby)
# 2003-01-22 sm  Add support for the bool type
# 2003-02-27 gvr Remove apply calls
# 2003-04-24 sm  Use cStringIO if available
# 2003-04-25 ak  Add support for nil
# 2003-06-15 gn  Add support for time.struct_time
# 2003-07-12 gp  Correct marshalling of Faults
# 2003-10-31 mvl Add multicall support
# 2004-08-20 mvl Bump minimum supported Python version to 2.1
# 2014-12-02 ch/doko  Add workaround for gzip bomb vulnerability
#
# Copyright (c) 1999-2002 by Secret Labs AB.
# Copyright (c) 1999-2002 by Fredrik Lundh.
#
# [email protected]
# http://www.pythonware.com
#
# --------------------------------------------------------------------
# The XML-RPC client interface is
#
# Copyright (c) 1999-2002 by Secret Labs AB
# Copyright (c) 1999-2002 by Fredrik Lundh
#
# By obtaining, using, and/or copying this software and/or its
# associated documentation, you agree that you have read, understood,
# and will comply with the following terms and conditions:
#
# Permission to use, copy, modify, and distribute this software and
# its associated documentation for any purpose and without fee is
# hereby granted, provided that the above copyright notice appears in
# all copies, and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Secret Labs AB or the author not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
# TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
# ABILITY AND FITNESS.  IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
# BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THIS SOFTWARE.
# --------------------------------------------------------------------

"""
An XML-RPC client interface for Python.

The marshalling and response parser code can also be used to
implement XML-RPC servers.

Exported exceptions:

  Error          Base class for client errors
  ProtocolError  Indicates an HTTP protocol error
  ResponseError  Indicates a broken response package
  Fault          Indicates an XML-RPC fault package

Exported classes:

  ServerProxy    Represents a logical connection to an XML-RPC server

  MultiCall      Executor of boxcared xmlrpc requests
  DateTime       dateTime wrapper for an ISO 8601 string or time tuple or
                 localtime integer value to generate a "dateTime.iso8601"
                 XML-RPC value
  Binary         binary data wrapper

  Marshaller     Generate an XML-RPC params chunk from a Python data structure
  Unmarshaller   Unmarshal an XML-RPC response from incoming XML event message
  Transport      Handles an HTTP transaction to an XML-RPC server
  SafeTransport  Handles an HTTPS transaction to an XML-RPC server

Exported constants:

  (none)

Exported functions:

  getparser      Create instance of the fastest available parser & attach
                 to an unmarshalling object
  dumps          Convert an argument tuple or a Fault instance to an XML-RPC
                 request (or response, if the methodresponse option is used).
  loads          Convert an XML-RPC packet to unmarshalled data plus a method
                 name (None if not present).
"""

import base64
import sys
import time
from datetime import datetime
import http.client
import urllib.parse
from xml.parsers import expat
import errno
from io import BytesIO
try:
    import gzip
except ImportError:
    gzip = None #python can be built without zlib/gzip support

# --------------------------------------------------------------------
# Internal stuff

def escape(s):
    s = s.replace("&", "&amp;")
    s = s.replace("<", "&lt;")
    return s.replace(">", "&gt;",)

# used in User-Agent header sent
__version__ = sys.version[:3]

# xmlrpc integer limits
MAXINT =  2**31-1
MININT = -2**31

# --------------------------------------------------------------------
# Error constants (from Dan Libby's specification at
# http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php)

# Ranges of errors
PARSE_ERROR       = -32700
SERVER_ERROR      = -32600
APPLICATION_ERROR = -32500
SYSTEM_ERROR      = -32400
TRANSPORT_ERROR   = -32300

# Specific errors
NOT_WELLFORMED_ERROR  = -32700
UNSUPPORTED_ENCODING  = -32701
INVALID_ENCODING_CHAR = -32702
INVALID_XMLRPC        = -32600
METHOD_NOT_FOUND      = -32601
INVALID_METHOD_PARAMS = -32602
INTERNAL_ERROR        = -32603

# --------------------------------------------------------------------
# Exceptions

##
# Base class for all kinds of client-side errors.

class Error(Exception):
    """Base class for client errors."""
    def __str__(self):
        return repr(self)

##
# Indicates an HTTP-level protocol error.  This is raised by the HTTP
# transport layer, if the server returns an error code other than 200
# (OK).
#
# @param url The target URL.
# @param errcode The HTTP error code.
# @param errmsg The HTTP error message.
# @param headers The HTTP header dictionary.

class ProtocolError(Error):
    """Indicates an HTTP protocol error."""
    def __init__(self, url, errcode, errmsg, headers):
        Error.__init__(self)
        self.url = url
        self.errcode = errcode
        self.errmsg = errmsg
        self.headers = headers
    def __repr__(self):
        return (
            "<ProtocolError for %s: %s %s>" %
            (self.url, self.errcode, self.errmsg)
            )

##
# Indicates a broken XML-RPC response package.  This exception is
# raised by the unmarshalling layer, if the XML-RPC response is
# malformed.

class ResponseError(Error):
    """Indicates a broken response package."""
    pass

##
# Indicates an XML-RPC fault response package.  This exception is
# raised by the unmarshalling layer, if the XML-RPC response contains
# a fault string.  This exception can also be used as a class, to
# generate a fault XML-RPC message.
#
# @param faultCode The XML-RPC fault code.
# @param faultString The XML-RPC fault string.

class Fault(Error):
    """Indicates an XML-RPC fault package."""
    def __init__(self, faultCode, faultString, **extra):
        Error.__init__(self)
        self.faultCode = faultCode
        self.faultString = faultString
    def __repr__(self):
        return "<Fault %s: %r>" % (self.faultCode, self.faultString)

# --------------------------------------------------------------------
# Special values

##
# Backwards compatibility

boolean = Boolean = bool

##
# Wrapper for XML-RPC DateTime values.  This converts a time value to
# the format used by XML-RPC.
# <p>
# The value can be given as a datetime object, as a string in the
# format "yyyymmddThh:mm:ss", as a 9-item time tuple (as returned by
# time.localtime()), or an integer value (as returned by time.time()).
# The wrapper uses time.localtime() to convert an integer to a time
# tuple.
#
# @param value The time, given as a datetime object, an ISO 8601 string,
#              a time tuple, or an integer time value.


# Issue #13305: different format codes across platforms
_day0 = datetime(1, 1, 1)
if _day0.strftime('%Y') == '0001':      # Mac OS X
    def _iso8601_format(value):
        return value.strftime("%Y%m%dT%H:%M:%S")
elif _day0.strftime('%4Y') == '0001':   # Linux
    def _iso8601_format(value):
        return value.strftime("%4Y%m%dT%H:%M:%S")
else:
    def _iso8601_format(value):
        return value.strftime("%Y%m%dT%H:%M:%S").zfill(17)
del _day0


def _strftime(value):
    if isinstance(value, datetime):
        return _iso8601_format(value)

    if not isinstance(value, (tuple, time.struct_time)):
        if value == 0:
            value = time.time()
        value = time.localtime(value)

    return "%04d%02d%02dT%02d:%02d:%02d" % value[:6]

class DateTime:
    """DateTime wrapper for an ISO 8601 string or time tuple or
    localtime integer value to generate 'dateTime.iso8601' XML-RPC
    value.
    """

    def __init__(self, value=0):
        if isinstance(value, str):
            self.value = value
        else:
            self.value = _strftime(value)

    def make_comparable(self, other):
        if isinstance(other, DateTime):
            s = self.value
            o = other.value
        elif isinstance(other, datetime):
            s = self.value
            o = _iso8601_format(other)
        elif isinstance(other, str):
            s = self.value
            o = other
        elif hasattr(other, "timetuple"):
            s = self.timetuple()
            o = other.timetuple()
        else:
            otype = (hasattr(other, "__class__")
                     and other.__class__.__name__
                     or type(other))
            raise TypeError("Can't compare %s and %s" %
                            (self.__class__.__name__, otype))
        return s, o

    def __lt__(self, other):
        s, o = self.make_comparable(other)
        return s < o

    def __le__(self, other):
        s, o = self.make_comparable(other)
        return s <= o

    def __gt__(self, other):
        s, o = self.make_comparable(other)
        return s > o

    def __ge__(self, other):
        s, o = self.make_comparable(other)
        return s >= o

    def __eq__(self, other):
        s, o = self.make_comparable(other)
        return s == o

    def __ne__(self, other):
        s, o = self.make_comparable(other)
        return s != o

    def timetuple(self):
        return time.strptime(self.value, "%Y%m%dT%H:%M:%S")

    ##
    # Get date/time value.
    #
    # @return Date/time value, as an ISO 8601 string.

    def __str__(self):
        return self.value

    def __repr__(self):
        return "<DateTime %r at %x>" % (self.value, id(self))

    def decode(self, data):
        self.value = str(data).strip()

    def encode(self, out):
        out.write("<value><dateTime.iso8601>")
        out.write(self.value)
        out.write("</dateTime.iso8601></value>\n")

def _datetime(data):
    # decode xml element contents into a DateTime structure.
    value = DateTime()
    value.decode(data)
    return value

def _datetime_type(data):
    return datetime.strptime(data, "%Y%m%dT%H:%M:%S")

##
# Wrapper for binary data.  This can be used to transport any kind
# of binary data over XML-RPC, using BASE64 encoding.
#
# @param data An 8-bit string containing arbitrary data.

class Binary:
    """Wrapper for binary data."""

    def __init__(self, data=None):
        if data is None:
            data = b""
        else:
            if not isinstance(data, (bytes, bytearray)):
                raise TypeError("expected bytes or bytearray, not %s" %
                                data.__class__.__name__)
            data = bytes(data)  # Make a copy of the bytes!
        self.data = data

    ##
    # Get buffer contents.
    #
    # @return Buffer contents, as an 8-bit string.

    def __str__(self):
        return str(self.data, "latin-1")  # XXX encoding?!

    def __eq__(self, other):
        if isinstance(other, Binary):
            other = other.data
        return self.data == other

    def __ne__(self, other):
        if isinstance(other, Binary):
            other = other.data
        return self.data != other

    def decode(self, data):
        self.data = base64.decodebytes(data)

    def encode(self, out):
        out.write("<value><base64>\n")
        encoded = base64.encodebytes(self.data)
        out.write(encoded.decode('ascii'))
        out.write("</base64></value>\n")

def _binary(data):
    # decode xml element contents into a Binary structure
    value = Binary()
    value.decode(data)
    return value

WRAPPERS = (DateTime, Binary)

# --------------------------------------------------------------------
# XML parsers

class ExpatParser:
    # fast expat parser for Python 2.0 and later.
    def __init__(self, target):
        self._parser = parser = expat.ParserCreate(None, None)
        self._target = target
        parser.StartElementHandler = target.start
        parser.EndElementHandler = target.end
        parser.CharacterDataHandler = target.data
        encoding = None
        target.xml(encoding, None)

    def feed(self, data):
        self._parser.Parse(data, 0)

    def close(self):
        try:
            parser = self._parser
        except AttributeError:
            pass
        else:
            del self._target, self._parser # get rid of circular references
            parser.Parse(b"", True) # end of data

# --------------------------------------------------------------------
# XML-RPC marshalling and unmarshalling code

##
# XML-RPC marshaller.
#
# @param encoding Default encoding for 8-bit strings.  The default
#     value is None (interpreted as UTF-8).
# @see dumps

class Marshaller:
    """Generate an XML-RPC params chunk from a Python data structure.

    Create a Marshaller instance for each set of parameters, and use
    the "dumps" method to convert your data (represented as a tuple)
    to an XML-RPC params chunk.  To write a fault response, pass a
    Fault instance instead.  You may prefer to use the "dumps" module
    function for this purpose.
    """

    # by the way, if you don't understand what's going on in here,
    # that's perfectly ok.

    def __init__(self, encoding=None, allow_none=False):
        self.memo = {}
        self.data = None
        self.encoding = encoding
        self.allow_none = allow_none

    dispatch = {}

    def dumps(self, values):
        out = []
        write = out.append
        dump = self.__dump
        if isinstance(values, Fault):
            # fault instance
            write("<fault>\n")
            dump({'faultCode': values.faultCode,
                  'faultString': values.faultString},
                 write)
            write("</fault>\n")
        else:
            # parameter block
            # FIXME: the xml-rpc specification allows us to leave out
            # the entire <params> block if there are no parameters.
            # however, changing this may break older code (including
            # old versions of xmlrpclib.py), so this is better left as
            # is for now.  See @XMLRPC3 for more information. /F
            write("<params>\n")
            for v in values:
                write("<param>\n")
                dump(v, write)
                write("</param>\n")
            write("</params>\n")
        result = "".join(out)
        return result

    def __dump(self, value, write):
        try:
            f = self.dispatch[type(value)]
        except KeyError:
            # check if this object can be marshalled as a structure
            if not hasattr(value, '__dict__'):
                raise TypeError("cannot marshal %s objects" % type(value))
            # check if this class is a sub-class of a basic type,
            # because we don't know how to marshal these types
            # (e.g. a string sub-class)
            for type_ in type(value).__mro__:
                if type_ in self.dispatch.keys():
                    raise TypeError("cannot marshal %s objects" % type(value))
            # XXX(twouters): using "_arbitrary_instance" as key as a quick-fix
            # for the p3yk merge, this should probably be fixed more neatly.
            f = self.dispatch["_arbitrary_instance"]
        f(self, value, write)

    def dump_nil (self, value, write):
        if not self.allow_none:
            raise TypeError("cannot marshal None unless allow_none is enabled")
        write("<value><nil/></value>")
    dispatch[type(None)] = dump_nil

    def dump_bool(self, value, write):
        write("<value><boolean>")
        write(value and "1" or "0")
        write("</boolean></value>\n")
    dispatch[bool] = dump_bool

    def dump_long(self, value, write):
        if value > MAXINT or value < MININT:
            raise OverflowError("int exceeds XML-RPC limits")
        write("<value><int>")
        write(str(int(value)))
        write("</int></value>\n")
    dispatch[int] = dump_long

    # backward compatible
    dump_int = dump_long

    def dump_double(self, value, write):
        write("<value><double>")
        write(repr(value))
        write("</double></value>\n")
    dispatch[float] = dump_double

    def dump_unicode(self, value, write, escape=escape):
        write("<value><string>")
        write(escape(value))
        write("</string></value>\n")
    dispatch[str] = dump_unicode

    def dump_bytes(self, value, write):
        write("<value><base64>\n")
        encoded = base64.encodebytes(value)
        write(encoded.decode('ascii'))
        write("</base64></value>\n")
    dispatch[bytes] = dump_bytes
    dispatch[bytearray] = dump_bytes

    def dump_array(self, value, write):
        i = id(value)
        if i in self.memo:
            raise TypeError("cannot marshal recursive sequences")
        self.memo[i] = None
        dump = self.__dump
        write("<value><array><data>\n")
        for v in value:
            dump(v, write)
        write("</data></array></value>\n")
        del self.memo[i]
    dispatch[tuple] = dump_array
    dispatch[list] = dump_array

    def dump_struct(self, value, write, escape=escape):
        i = id(value)
        if i in self.memo:
            raise TypeError("cannot marshal recursive dictionaries")
        self.memo[i] = None
        dump = self.__dump
        write("<value><struct>\n")
        for k, v in value.items():
            write("<member>\n")
            if not isinstance(k, str):
                raise TypeError("dictionary key must be string")
            write("<name>%s</name>\n" % escape(k))
            dump(v, write)
            write("</member>\n")
        write("</struct></value>\n")
        del self.memo[i]
    dispatch[dict] = dump_struct

    def dump_datetime(self, value, write):
        write("<value><dateTime.iso8601>")
        write(_strftime(value))
        write("</dateTime.iso8601></value>\n")
    dispatch[datetime] = dump_datetime

    def dump_instance(self, value, write):
        # check for special wrappers
        if value.__class__ in WRAPPERS:
            self.write = write
            value.encode(self)
            del self.write
        else:
            # store instance attributes as a struct (really?)
            self.dump_struct(value.__dict__, write)
    dispatch[DateTime] = dump_instance
    dispatch[Binary] = dump_instance
    # XXX(twouters): using "_arbitrary_instance" as key as a quick-fix
    # for the p3yk merge, this should probably be fixed more neatly.
    dispatch["_arbitrary_instance"] = dump_instance

##
# XML-RPC unmarshaller.
#
# @see loads

class Unmarshaller:
    """Unmarshal an XML-RPC response, based on incoming XML event
    messages (start, data, end).  Call close() to get the resulting
    data structure.

    Note that this reader is fairly tolerant, and gladly accepts bogus
    XML-RPC data without complaining (but not bogus XML).
    """

    # and again, if you don't understand what's going on in here,
    # that's perfectly ok.

    def __init__(self, use_datetime=False, use_builtin_types=False):
        self._type = None
        self._stack = []
        self._marks = []
        self._data = []
        self._methodname = None
        self._encoding = "utf-8"
        self.append = self._stack.append
        self._use_datetime = use_builtin_types or use_datetime
        self._use_bytes = use_builtin_types

    def close(self):
        # return response tuple and target method
        if self._type is None or self._marks:
            raise ResponseError()
        if self._type == "fault":
            raise Fault(**self._stack[0])
        return tuple(self._stack)

    def getmethodname(self):
        return self._methodname

    #
    # event handlers

    def xml(self, encoding, standalone):
        self._encoding = encoding
        # FIXME: assert standalone == 1 ???

    def start(self, tag, attrs):
        # prepare to handle this element
        if tag == "array" or tag == "struct":
            self._marks.append(len(self._stack))
        self._data = []
        self._value = (tag == "value")

    def data(self, text):
        self._data.append(text)

    def end(self, tag):
        # call the appropriate end tag handler
        try:
            f = self.dispatch[tag]
        except KeyError:
            pass # unknown tag ?
        else:
            return f(self, "".join(self._data))

    #
    # accelerator support

    def end_dispatch(self, tag, data):
        # dispatch data
        try:
            f = self.dispatch[tag]
        except KeyError:
            pass # unknown tag ?
        else:
            return f(self, data)

    #
    # element decoders

    dispatch = {}

    def end_nil (self, data):
        self.append(None)
        self._value = 0
    dispatch["nil"] = end_nil

    def end_boolean(self, data):
        if data == "0":
            self.append(False)
        elif data == "1":
            self.append(True)
        else:
            raise TypeError("bad boolean value")
        self._value = 0
    dispatch["boolean"] = end_boolean

    def end_int(self, data):
        self.append(int(data))
        self._value = 0
    dispatch["i4"] = end_int
    dispatch["i8"] = end_int
    dispatch["int"] = end_int

    def end_double(self, data):
        self.append(float(data))
        self._value = 0
    dispatch["double"] = end_double

    def end_string(self, data):
        if self._encoding:
            data = data.decode(self._encoding)
        self.append(data)
        self._value = 0
    dispatch["string"] = end_string
    dispatch["name"] = end_string # struct keys are always strings

    def end_array(self, data):
        mark = self._marks.pop()
        # map arrays to Python lists
        self._stack[mark:] = [self._stack[mark:]]
        self._value = 0
    dispatch["array"] = end_array

    def end_struct(self, data):
        mark = self._marks.pop()
        # map structs to Python dictionaries
        dict = {}
        items = self._stack[mark:]
        for i in range(0, len(items), 2):
            dict[items[i]] = items[i+1]
        self._stack[mark:] = [dict]
        self._value = 0
    dispatch["struct"] = end_struct

    def end_base64(self, data):
        value = Binary()
        value.decode(data.encode("ascii"))
        if self._use_bytes:
            value = value.data
        self.append(value)
        self._value = 0
    dispatch["base64"] = end_base64

    def end_dateTime(self, data):
        value = DateTime()
        value.decode(data)
        if self._use_datetime:
            value = _datetime_type(data)
        self.append(value)
    dispatch["dateTime.iso8601"] = end_dateTime

    def end_value(self, data):
        # if we stumble upon a value element with no internal
        # elements, treat it as a string element
        if self._value:
            self.end_string(data)
    dispatch["value"] = end_value

    def end_params(self, data):
        self._type = "params"
    dispatch["params"] = end_params

    def end_fault(self, data):
        self._type = "fault"
    dispatch["fault"] = end_fault

    def end_methodName(self, data):
        if self._encoding:
            data = data.decode(self._encoding)
        self._methodname = data
        self._type = "methodName" # no params
    dispatch["methodName"] = end_methodName

## Multicall support
#

class _MultiCallMethod:
    # some lesser magic to store calls made to a MultiCall object
    # for batch execution
    def __init__(self, call_list, name):
        self.__call_list = call_list
        self.__name = name
    def __getattr__(self, name):
        return _MultiCallMethod(self.__call_list, "%s.%s" % (self.__name, name))
    def __call__(self, *args):
        self.__call_list.append((self.__name, args))

class MultiCallIterator:
    """Iterates over the results of a multicall. Exceptions are
    raised in response to xmlrpc faults."""

    def __init__(self, results):
        self.results = results

    def __getitem__(self, i):
        item = self.results[i]
        if type(item) == type({}):
            raise Fault(item['faultCode'], item['faultString'])
        elif type(item) == type([]):
            return item[0]
        else:
            raise ValueError("unexpected type in multicall result")

class MultiCall:
    """server -> an object used to boxcar method calls

    server should be a ServerProxy object.

    Methods can be added to the MultiCall using normal
    method call syntax e.g.:

    multicall = MultiCall(server_proxy)
    multicall.add(2,3)
    multicall.get_address("Guido")

    To execute the multicall, call the MultiCall object e.g.:

    add_result, address = multicall()
    """

    def __init__(self, server):
        self.__server = server
        self.__call_list = []

    def __repr__(self):
        return "<MultiCall at %x>" % id(self)

    __str__ = __repr__

    def __getattr__(self, name):
        return _MultiCallMethod(self.__call_list, name)

    def __call__(self):
        marshalled_list = []
        for name, args in self.__call_list:
            marshalled_list.append({'methodName' : name, 'params' : args})

        return MultiCallIterator(self.__server.system.multicall(marshalled_list))

# --------------------------------------------------------------------
# convenience functions

FastMarshaller = FastParser = FastUnmarshaller = None

##
# Create a parser object, and connect it to an unmarshalling instance.
# This function picks the fastest available XML parser.
#
# return A (parser, unmarshaller) tuple.

def getparser(use_datetime=False, use_builtin_types=False):
    """getparser() -> parser, unmarshaller

    Create an instance of the fastest available parser, and attach it
    to an unmarshalling object.  Return both objects.
    """
    if FastParser and FastUnmarshaller:
        if use_builtin_types:
            mkdatetime = _datetime_type
            mkbytes = base64.decodebytes
        elif use_datetime:
            mkdatetime = _datetime_type
            mkbytes = _binary
        else:
            mkdatetime = _datetime
            mkbytes = _binary
        target = FastUnmarshaller(True, False, mkbytes, mkdatetime, Fault)
        parser = FastParser(target)
    else:
        target = Unmarshaller(use_datetime=use_datetime, use_builtin_types=use_builtin_types)
        if FastParser:
            parser = FastParser(target)
        else:
            parser = ExpatParser(target)
    return parser, target

##
# Convert a Python tuple or a Fault instance to an XML-RPC packet.
#
# @def dumps(params, **options)
# @param params A tuple or Fault instance.
# @keyparam methodname If given, create a methodCall request for
#     this method name.
# @keyparam methodresponse If given, create a methodResponse packet.
#     If used with a tuple, the tuple must be a singleton (that is,
#     it must contain exactly one element).
# @keyparam encoding The packet encoding.
# @return A string containing marshalled data.

def dumps(params, methodname=None, methodresponse=None, encoding=None,
          allow_none=False):
    """data [,options] -> marshalled data

    Convert an argument tuple or a Fault instance to an XML-RPC
    request (or response, if the methodresponse option is used).

    In addition to the data object, the following options can be given
    as keyword arguments:

        methodname: the method name for a methodCall packet

        methodresponse: true to create a methodResponse packet.
        If this option is used with a tuple, the tuple must be
        a singleton (i.e. it can contain only one element).

        encoding: the packet encoding (default is UTF-8)

    All byte strings in the data structure are assumed to use the
    packet encoding.  Unicode strings are automatically converted,
    where necessary.
    """

    assert isinstance(params, (tuple, Fault)), "argument must be tuple or Fault instance"
    if isinstance(params, Fault):
        methodresponse = 1
    elif methodresponse and isinstance(params, tuple):
        assert len(params) == 1, "response tuple must be a singleton"

    if not encoding:
        encoding = "utf-8"

    if FastMarshaller:
        m = FastMarshaller(encoding)
    else:
        m = Marshaller(encoding, allow_none)

    data = m.dumps(params)

    if encoding != "utf-8":
        xmlheader = "<?xml version='1.0' encoding='%s'?>\n" % str(encoding)
    else:
        xmlheader = "<?xml version='1.0'?>\n" # utf-8 is default

    # standard XML-RPC wrappings
    if methodname:
        # a method call
        if not isinstance(methodname, str):
            methodname = methodname.encode(encoding)
        data = (
            xmlheader,
            "<methodCall>\n"
            "<methodName>", methodname, "</methodName>\n",
            data,
            "</methodCall>\n"
            )
    elif methodresponse:
        # a method response, or a fault structure
        data = (
            xmlheader,
            "<methodResponse>\n",
            data,
            "</methodResponse>\n"
            )
    else:
        return data # return as is
    return "".join(data)

##
# Convert an XML-RPC packet to a Python object.  If the XML-RPC packet
# represents a fault condition, this function raises a Fault exception.
#
# @param data An XML-RPC packet, given as an 8-bit string.
# @return A tuple containing the unpacked data, and the method name
#     (None if not present).
# @see Fault

def loads(data, use_datetime=False, use_builtin_types=False):
    """data -> unmarshalled data, method name

    Convert an XML-RPC packet to unmarshalled data plus a method
    name (None if not present).

    If the XML-RPC packet represents a fault condition, this function
    raises a Fault exception.
    """
    p, u = getparser(use_datetime=use_datetime, use_builtin_types=use_builtin_types)
    p.feed(data)
    p.close()
    return u.close(), u.getmethodname()

##
# Encode a string using the gzip content encoding such as specified by the
# Content-Encoding: gzip
# in the HTTP header, as described in RFC 1952
#
# @param data the unencoded data
# @return the encoded data

def gzip_encode(data):
    """data -> gzip encoded data

    Encode data using the gzip content encoding as described in RFC 1952
    """
    if not gzip:
        raise NotImplementedError
    f = BytesIO()
    gzf = gzip.GzipFile(mode="wb", fileobj=f, compresslevel=1)
    gzf.write(data)
    gzf.close()
    encoded = f.getvalue()
    f.close()
    return encoded

##
# Decode a string using the gzip content encoding such as specified by the
# Content-Encoding: gzip
# in the HTTP header, as described in RFC 1952
#
# @param data The encoded data
# @keyparam max_decode Maximum bytes to decode (20MB default), use negative
#    values for unlimited decoding
# @return the unencoded data
# @raises ValueError if data is not correctly coded.
# @raises ValueError if max gzipped payload length exceeded

def gzip_decode(data, max_decode=20971520):
    """gzip encoded data -> unencoded data

    Decode data using the gzip content encoding as described in RFC 1952
    """
    if not gzip:
        raise NotImplementedError
    f = BytesIO(data)
    gzf = gzip.GzipFile(mode="rb", fileobj=f)
    try:
        if max_decode < 0: # no limit
            decoded = gzf.read()
        else:
            decoded = gzf.read(max_decode + 1)
    except OSError:
        raise ValueError("invalid data")
    f.close()
    gzf.close()
    if max_decode >= 0 and len(decoded) > max_decode:
        raise ValueError("max gzipped payload length exceeded")
    return decoded

##
# Return a decoded file-like object for the gzip encoding
# as described in RFC 1952.
#
# @param response A stream supporting a read() method
# @return a file-like object that the decoded data can be read() from

class GzipDecodedResponse(gzip.GzipFile if gzip else object):
    """a file-like object to decode a response encoded with the gzip
    method, as described in RFC 1952.
    """
    def __init__(self, response):
        #response doesn't support tell() and read(), required by
        #GzipFile
        if not gzip:
            raise NotImplementedError
        self.io = BytesIO(response.read())
        gzip.GzipFile.__init__(self, mode="rb", fileobj=self.io)

    def close(self):
        try:
            gzip.GzipFile.close(self)
        finally:
            self.io.close()


# --------------------------------------------------------------------
# request dispatcher

class _Method:
    # some magic to bind an XML-RPC method to an RPC server.
    # supports "nested" methods (e.g. examples.getStateName)
    def __init__(self, send, name):
        self.__send = send
        self.__name = name
    def __getattr__(self, name):
        return _Method(self.__send, "%s.%s" % (self.__name, name))
    def __call__(self, *args):
        return self.__send(self.__name, args)

##
# Standard transport class for XML-RPC over HTTP.
# <p>
# You can create custom transports by subclassing this method, and
# overriding selected methods.

class Transport:
    """Handles an HTTP transaction to an XML-RPC server."""

    # client identifier (may be overridden)
    user_agent = "Python-xmlrpc/%s" % __version__

    #if true, we'll request gzip encoding
    accept_gzip_encoding = True

    # if positive, encode request using gzip if it exceeds this threshold
    # note that many server will get confused, so only use it if you know
    # that they can decode such a request
    encode_threshold = None #None = don't encode

    def __init__(self, use_datetime=False, use_builtin_types=False):
        self._use_datetime = use_datetime
        self._use_builtin_types = use_builtin_types
        self._connection = (None, None)
        self._extra_headers = []

    ##
    # Send a complete request, and parse the response.
    # Retry request if a cached connection has disconnected.
    #
    # @param host Target host.
    # @param handler Target PRC handler.
    # @param request_body XML-RPC request body.
    # @param verbose Debugging flag.
    # @return Parsed response.

    def request(self, host, handler, request_body, verbose=False):
        #retry request once if cached connection has gone cold
        for i in (0, 1):
            try:
                return self.single_request(host, handler, request_body, verbose)
            except OSError as e:
                if i or e.errno not in (errno.ECONNRESET, errno.ECONNABORTED,
                                        errno.EPIPE):
                    raise
            except http.client.BadStatusLine: #close after we sent request
                if i:
                    raise

    def single_request(self, host, handler, request_body, verbose=False):
        # issue XML-RPC request
        try:
            http_conn = self.send_request(host, handler, request_body, verbose)
            resp = http_conn.getresponse()
            if resp.status == 200:
                self.verbose = verbose
                return self.parse_response(resp)

        except Fault:
            raise
        except Exception:
            #All unexpected errors leave connection in
            # a strange state, so we clear it.
            self.close()
            raise

        #We got an error response.
        #Discard any response data and raise exception
        if resp.getheader("content-length", ""):
            resp.read()
        raise ProtocolError(
            host + handler,
            resp.status, resp.reason,
            dict(resp.getheaders())
            )


    ##
    # Create parser.
    #
    # @return A 2-tuple containing a parser and an unmarshaller.

    def getparser(self):
        # get parser and unmarshaller
        return getparser(use_datetime=self._use_datetime,
                         use_builtin_types=self._use_builtin_types)

    ##
    # Get authorization info from host parameter
    # Host may be a string, or a (host, x509-dict) tuple; if a string,
    # it is checked for a "user:pw@host" format, and a "Basic
    # Authentication" header is added if appropriate.
    #
    # @param host Host descriptor (URL or (URL, x509 info) tuple).
    # @return A 3-tuple containing (actual host, extra headers,
    #     x509 info).  The header and x509 fields may be None.

    def get_host_info(self, host):

        x509 = {}
        if isinstance(host, tuple):
            host, x509 = host

        auth, host = urllib.parse.splituser(host)

        if auth:
            auth = urllib.parse.unquote_to_bytes(auth)
            auth = base64.encodebytes(auth).decode("utf-8")
            auth = "".join(auth.split()) # get rid of whitespace
            extra_headers = [
                ("Authorization", "Basic " + auth)
                ]
        else:
            extra_headers = []

        return host, extra_headers, x509

    ##
    # Connect to server.
    #
    # @param host Target host.
    # @return An HTTPConnection object

    def make_connection(self, host):
        #return an existing connection if possible.  This allows
        #HTTP/1.1 keep-alive.
        if self._connection and host == self._connection[0]:
            return self._connection[1]
        # create a HTTP connection object from a host descriptor
        chost, self._extra_headers, x509 = self.get_host_info(host)
        self._connection = host, http.client.HTTPConnection(chost)
        return self._connection[1]

    ##
    # Clear any cached connection object.
    # Used in the event of socket errors.
    #
    def close(self):
        host, connection = self._connection
        if connection:
            self._connection = (None, None)
            connection.close()

    ##
    # Send HTTP request.
    #
    # @param host Host descriptor (URL or (URL, x509 info) tuple).
    # @param handler Targer RPC handler (a path relative to host)
    # @param request_body The XML-RPC request body
    # @param debug Enable debugging if debug is true.
    # @return An HTTPConnection.

    def send_request(self, host, handler, request_body, debug):
        connection = self.make_connection(host)
        headers = self._extra_headers[:]
        if debug:
            connection.set_debuglevel(1)
        if self.accept_gzip_encoding and gzip:
            connection.putrequest("POST", handler, skip_accept_encoding=True)
            headers.append(("Accept-Encoding", "gzip"))
        else:
            connection.putrequest("POST", handler)
        headers.append(("Content-Type", "text/xml"))
        headers.append(("User-Agent", self.user_agent))
        self.send_headers(connection, headers)
        self.send_content(connection, request_body)
        return connection

    ##
    # Send request headers.
    # This function provides a useful hook for subclassing
    #
    # @param connection httpConnection.
    # @param headers list of key,value pairs for HTTP headers

    def send_headers(self, connection, headers):
        for key, val in headers:
            connection.putheader(key, val)

    ##
    # Send request body.
    # This function provides a useful hook for subclassing
    #
    # @param connection httpConnection.
    # @param request_body XML-RPC request body.

    def send_content(self, connection, request_body):
        #optionally encode the request
        if (self.encode_threshold is not None and
            self.encode_threshold < len(request_body) and
            gzip):
            connection.putheader("Content-Encoding", "gzip")
            request_body = gzip_encode(request_body)

        connection.putheader("Content-Length", str(len(request_body)))
        connection.endheaders(request_body)

    ##
    # Parse response.
    #
    # @param file Stream.
    # @return Response tuple and target method.

    def parse_response(self, response):
        # read response data from httpresponse, and parse it
        # Check for new http response object, otherwise it is a file object.
        if hasattr(response, 'getheader'):
            if response.getheader("Content-Encoding", "") == "gzip":
                stream = GzipDecodedResponse(response)
            else:
                stream = response
        else:
            stream = response

        p, u = self.getparser()

        while 1:
            data = stream.read(1024)
            if not data:
                break
            if self.verbose:
                print("body:", repr(data))
            p.feed(data)

        if stream is not response:
            stream.close()
        p.close()

        return u.close()

##
# Standard transport class for XML-RPC over HTTPS.

class SafeTransport(Transport):
    """Handles an HTTPS transaction to an XML-RPC server."""

    def __init__(self, use_datetime=False, use_builtin_types=False, *,
                 context=None):
        super().__init__(use_datetime=use_datetime, use_builtin_types=use_builtin_types)
        self.context = context

    # FIXME: mostly untested

    def make_connection(self, host):
        if self._connection and host == self._connection[0]:
            return self._connection[1]

        if not hasattr(http.client, "HTTPSConnection"):
            raise NotImplementedError(
            "your version of http.client doesn't support HTTPS")
        # create a HTTPS connection object from a host descriptor
        # host may be a string, or a (host, x509-dict) tuple
        chost, self._extra_headers, x509 = self.get_host_info(host)
        self._connection = host, http.client.HTTPSConnection(chost,
            None, context=self.context, **(x509 or {}))
        return self._connection[1]

##
# Standard server proxy.  This class establishes a virtual connection
# to an XML-RPC server.
# <p>
# This class is available as ServerProxy and Server.  New code should
# use ServerProxy, to avoid confusion.
#
# @def ServerProxy(uri, **options)
# @param uri The connection point on the server.
# @keyparam transport A transport factory, compatible with the
#    standard transport class.
# @keyparam encoding The default encoding used for 8-bit strings
#    (default is UTF-8).
# @keyparam verbose Use a true value to enable debugging output.
#    (printed to standard output).
# @see Transport

class ServerProxy:
    """uri [,options] -> a logical connection to an XML-RPC server

    uri is the connection point on the server, given as
    scheme://host/target.

    The standard implementation always supports the "http" scheme.  If
    SSL socket support is available (Python 2.0), it also supports
    "https".

    If the target part and the slash preceding it are both omitted,
    "/RPC2" is assumed.

    The following options can be given as keyword arguments:

        transport: a transport factory
        encoding: the request encoding (default is UTF-8)

    All 8-bit strings passed to the server proxy are assumed to use
    the given encoding.
    """

    def __init__(self, uri, transport=None, encoding=None, verbose=False,
                 allow_none=False, use_datetime=False, use_builtin_types=False,
                 *, context=None):
        # establish a "logical" server connection

        # get the url
        type, uri = urllib.parse.splittype(uri)
        if type not in ("http", "https"):
            raise OSError("unsupported XML-RPC protocol")
        self.__host, self.__handler = urllib.parse.splithost(uri)
        if not self.__handler:
            self.__handler = "/RPC2"

        if transport is None:
            if type == "https":
                handler = SafeTransport
                extra_kwargs = {"context": context}
            else:
                handler = Transport
                extra_kwargs = {}
            transport = handler(use_datetime=use_datetime,
                                use_builtin_types=use_builtin_types,
                                **extra_kwargs)
        self.__transport = transport

        self.__encoding = encoding or 'utf-8'
        self.__verbose = verbose
        self.__allow_none = allow_none

    def __close(self):
        self.__transport.close()

    def __request(self, methodname, params):
        # call a method on the remote server

        request = dumps(params, methodname, encoding=self.__encoding,
                        allow_none=self.__allow_none).encode(self.__encoding)

        response = self.__transport.request(
            self.__host,
            self.__handler,
            request,
            verbose=self.__verbose
            )

        if len(response) == 1:
            response = response[0]

        return response

    def __repr__(self):
        return (
            "<ServerProxy for %s%s>" %
            (self.__host, self.__handler)
            )

    __str__ = __repr__

    def __getattr__(self, name):
        # magic method dispatcher
        return _Method(self.__request, name)

    # note: to call a remote object with an non-standard name, use
    # result getattr(server, "strange-python-name")(args)

    def __call__(self, attr):
        """A workaround to get special attributes on the ServerProxy
           without interfering with the magic __getattr__
        """
        if attr == "close":
            return self.__close
        elif attr == "transport":
            return self.__transport
        raise AttributeError("Attribute %r not found" % (attr,))

# compatibility

Server = ServerProxy

# --------------------------------------------------------------------
# test code

if __name__ == "__main__":

    # simple test program (from the XML-RPC specification)

    # local server, available from Lib/xmlrpc/server.py
    server = ServerProxy("http://localhost:8000")

    try:
        print(server.currentTime.getCurrentTime())
    except Error as v:
        print("ERROR", v)

    multi = MultiCall(server)
    multi.getData()
    multi.pow(2,9)
    multi.add(1,2)
    try:
        for response in multi():
            print(response)
    except Error as v:
        print("ERROR", v)
lib\xmlrpc\server.py
r"""XML-RPC Servers.

This module can be used to create simple XML-RPC servers
by creating a server and either installing functions, a
class instance, or by extending the SimpleXMLRPCServer
class.

It can also be used to handle XML-RPC requests in a CGI
environment using CGIXMLRPCRequestHandler.

The Doc* classes can be used to create XML-RPC servers that
serve pydoc-style documentation in response to HTTP
GET requests. This documentation is dynamically generated
based on the functions and methods registered with the
server.

A list of possible usage patterns follows:

1. Install functions:

server = SimpleXMLRPCServer(("localhost", 8000))
server.register_function(pow)
server.register_function(lambda x,y: x+y, 'add')
server.serve_forever()

2. Install an instance:

class MyFuncs:
    def __init__(self):
        # make all of the sys functions available through sys.func_name
        import sys
        self.sys = sys
    def _listMethods(self):
        # implement this method so that system.listMethods
        # knows to advertise the sys methods
        return list_public_methods(self) + \
                ['sys.' + method for method in list_public_methods(self.sys)]
    def pow(self, x, y): return pow(x, y)
    def add(self, x, y) : return x + y

server = SimpleXMLRPCServer(("localhost", 8000))
server.register_introspection_functions()
server.register_instance(MyFuncs())
server.serve_forever()

3. Install an instance with custom dispatch method:

class Math:
    def _listMethods(self):
        # this method must be present for system.listMethods
        # to work
        return ['add', 'pow']
    def _methodHelp(self, method):
        # this method must be present for system.methodHelp
        # to work
        if method == 'add':
            return "add(2,3) => 5"
        elif method == 'pow':
            return "pow(x, y[, z]) => number"
        else:
            # By convention, return empty
            # string if no help is available
            return ""
    def _dispatch(self, method, params):
        if method == 'pow':
            return pow(*params)
        elif method == 'add':
            return params[0] + params[1]
        else:
            raise ValueError('bad method')

server = SimpleXMLRPCServer(("localhost", 8000))
server.register_introspection_functions()
server.register_instance(Math())
server.serve_forever()

4. Subclass SimpleXMLRPCServer:

class MathServer(SimpleXMLRPCServer):
    def _dispatch(self, method, params):
        try:
            # We are forcing the 'export_' prefix on methods that are
            # callable through XML-RPC to prevent potential security
            # problems
            func = getattr(self, 'export_' + method)
        except AttributeError:
            raise Exception('method "%s" is not supported' % method)
        else:
            return func(*params)

    def export_add(self, x, y):
        return x + y

server = MathServer(("localhost", 8000))
server.serve_forever()

5. CGI script:

server = CGIXMLRPCRequestHandler()
server.register_function(pow)
server.handle_request()
"""

# Written by Brian Quinlan ([email protected]).
# Based on code written by Fredrik Lundh.

from xmlrpc.client import Fault, dumps, loads, gzip_encode, gzip_decode
from http.server import BaseHTTPRequestHandler
import http.server
import socketserver
import sys
import os
import re
import pydoc
import inspect
import traceback
try:
    import fcntl
except ImportError:
    fcntl = None

def resolve_dotted_attribute(obj, attr, allow_dotted_names=True):
    """resolve_dotted_attribute(a, 'b.c.d') => a.b.c.d

    Resolves a dotted attribute name to an object.  Raises
    an AttributeError if any attribute in the chain starts with a '_'.

    If the optional allow_dotted_names argument is false, dots are not
    supported and this function operates similar to getattr(obj, attr).
    """

    if allow_dotted_names:
        attrs = attr.split('.')
    else:
        attrs = [attr]

    for i in attrs:
        if i.startswith('_'):
            raise AttributeError(
                'attempt to access private attribute "%s"' % i
                )
        else:
            obj = getattr(obj,i)
    return obj

def list_public_methods(obj):
    """Returns a list of attribute strings, found in the specified
    object, which represent callable attributes"""

    return [member for member in dir(obj)
                if not member.startswith('_') and
                    callable(getattr(obj, member))]

class SimpleXMLRPCDispatcher:
    """Mix-in class that dispatches XML-RPC requests.

    This class is used to register XML-RPC method handlers
    and then to dispatch them. This class doesn't need to be
    instanced directly when used by SimpleXMLRPCServer but it
    can be instanced when used by the MultiPathXMLRPCServer
    """

    def __init__(self, allow_none=False, encoding=None,
                 use_builtin_types=False):
        self.funcs = {}
        self.instance = None
        self.allow_none = allow_none
        self.encoding = encoding or 'utf-8'
        self.use_builtin_types = use_builtin_types

    def register_instance(self, instance, allow_dotted_names=False):
        """Registers an instance to respond to XML-RPC requests.

        Only one instance can be installed at a time.

        If the registered instance has a _dispatch method then that
        method will be called with the name of the XML-RPC method and
        its parameters as a tuple
        e.g. instance._dispatch('add',(2,3))

        If the registered instance does not have a _dispatch method
        then the instance will be searched to find a matching method
        and, if found, will be called. Methods beginning with an '_'
        are considered private and will not be called by
        SimpleXMLRPCServer.

        If a registered function matches a XML-RPC request, then it
        will be called instead of the registered instance.

        If the optional allow_dotted_names argument is true and the
        instance does not have a _dispatch method, method names
        containing dots are supported and resolved, as long as none of
        the name segments start with an '_'.

            *** SECURITY WARNING: ***

            Enabling the allow_dotted_names options allows intruders
            to access your module's global variables and may allow
            intruders to execute arbitrary code on your machine.  Only
            use this option on a secure, closed network.

        """

        self.instance = instance
        self.allow_dotted_names = allow_dotted_names

    def register_function(self, function, name=None):
        """Registers a function to respond to XML-RPC requests.

        The optional name argument can be used to set a Unicode name
        for the function.
        """

        if name is None:
            name = function.__name__
        self.funcs[name] = function

    def register_introspection_functions(self):
        """Registers the XML-RPC introspection methods in the system
        namespace.

        see http://xmlrpc.usefulinc.com/doc/reserved.html
        """

        self.funcs.update({'system.listMethods' : self.system_listMethods,
                      'system.methodSignature' : self.system_methodSignature,
                      'system.methodHelp' : self.system_methodHelp})

    def register_multicall_functions(self):
        """Registers the XML-RPC multicall method in the system
        namespace.

        see http://www.xmlrpc.com/discuss/msgReader$1208"""

        self.funcs.update({'system.multicall' : self.system_multicall})

    def _marshaled_dispatch(self, data, dispatch_method = None, path = None):
        """Dispatches an XML-RPC method from marshalled (XML) data.

        XML-RPC methods are dispatched from the marshalled (XML) data
        using the _dispatch method and the result is returned as
        marshalled data. For backwards compatibility, a dispatch
        function can be provided as an argument (see comment in
        SimpleXMLRPCRequestHandler.do_POST) but overriding the
        existing method through subclassing is the preferred means
        of changing method dispatch behavior.
        """

        try:
            params, method = loads(data, use_builtin_types=self.use_builtin_types)

            # generate response
            if dispatch_method is not None:
                response = dispatch_method(method, params)
            else:
                response = self._dispatch(method, params)
            # wrap response in a singleton tuple
            response = (response,)
            response = dumps(response, methodresponse=1,
                             allow_none=self.allow_none, encoding=self.encoding)
        except Fault as fault:
            response = dumps(fault, allow_none=self.allow_none,
                             encoding=self.encoding)
        except:
            # report exception back to server
            exc_type, exc_value, exc_tb = sys.exc_info()
            response = dumps(
                Fault(1, "%s:%s" % (exc_type, exc_value)),
                encoding=self.encoding, allow_none=self.allow_none,
                )

        return response.encode(self.encoding)

    def system_listMethods(self):
        """system.listMethods() => ['add', 'subtract', 'multiple']

        Returns a list of the methods supported by the server."""

        methods = set(self.funcs.keys())
        if self.instance is not None:
            # Instance can implement _listMethod to return a list of
            # methods
            if hasattr(self.instance, '_listMethods'):
                methods |= set(self.instance._listMethods())
            # if the instance has a _dispatch method then we
            # don't have enough information to provide a list
            # of methods
            elif not hasattr(self.instance, '_dispatch'):
                methods |= set(list_public_methods(self.instance))
        return sorted(methods)

    def system_methodSignature(self, method_name):
        """system.methodSignature('add') => [double, int, int]

        Returns a list describing the signature of the method. In the
        above example, the add method takes two integers as arguments
        and returns a double result.

        This server does NOT support system.methodSignature."""

        # See http://xmlrpc.usefulinc.com/doc/sysmethodsig.html

        return 'signatures not supported'

    def system_methodHelp(self, method_name):
        """system.methodHelp('add') => "Adds two integers together"

        Returns a string containing documentation for the specified method."""

        method = None
        if method_name in self.funcs:
            method = self.funcs[method_name]
        elif self.instance is not None:
            # Instance can implement _methodHelp to return help for a method
            if hasattr(self.instance, '_methodHelp'):
                return self.instance._methodHelp(method_name)
            # if the instance has a _dispatch method then we
            # don't have enough information to provide help
            elif not hasattr(self.instance, '_dispatch'):
                try:
                    method = resolve_dotted_attribute(
                                self.instance,
                                method_name,
                                self.allow_dotted_names
                                )
                except AttributeError:
                    pass

        # Note that we aren't checking that the method actually
        # be a callable object of some kind
        if method is None:
            return ""
        else:
            return pydoc.getdoc(method)

    def system_multicall(self, call_list):
        """system.multicall([{'methodName': 'add', 'params': [2, 2]}, ...]) => \
[[4], ...]

        Allows the caller to package multiple XML-RPC calls into a single
        request.

        See http://www.xmlrpc.com/discuss/msgReader$1208
        """

        results = []
        for call in call_list:
            method_name = call['methodName']
            params = call['params']

            try:
                # XXX A marshalling error in any response will fail the entire
                # multicall. If someone cares they should fix this.
                results.append([self._dispatch(method_name, params)])
            except Fault as fault:
                results.append(
                    {'faultCode' : fault.faultCode,
                     'faultString' : fault.faultString}
                    )
            except:
                exc_type, exc_value, exc_tb = sys.exc_info()
                results.append(
                    {'faultCode' : 1,
                     'faultString' : "%s:%s" % (exc_type, exc_value)}
                    )
        return results

    def _dispatch(self, method, params):
        """Dispatches the XML-RPC method.

        XML-RPC calls are forwarded to a registered function that
        matches the called XML-RPC method name. If no such function
        exists then the call is forwarded to the registered instance,
        if available.

        If the registered instance has a _dispatch method then that
        method will be called with the name of the XML-RPC method and
        its parameters as a tuple
        e.g. instance._dispatch('add',(2,3))

        If the registered instance does not have a _dispatch method
        then the instance will be searched to find a matching method
        and, if found, will be called.

        Methods beginning with an '_' are considered private and will
        not be called.
        """

        func = None
        try:
            # check to see if a matching function has been registered
            func = self.funcs[method]
        except KeyError:
            if self.instance is not None:
                # check for a _dispatch method
                if hasattr(self.instance, '_dispatch'):
                    return self.instance._dispatch(method, params)
                else:
                    # call instance method directly
                    try:
                        func = resolve_dotted_attribute(
                            self.instance,
                            method,
                            self.allow_dotted_names
                            )
                    except AttributeError:
                        pass

        if func is not None:
            return func(*params)
        else:
            raise Exception('method "%s" is not supported' % method)

class SimpleXMLRPCRequestHandler(BaseHTTPRequestHandler):
    """Simple XML-RPC request handler class.

    Handles all HTTP POST requests and attempts to decode them as
    XML-RPC requests.
    """

    # Class attribute listing the accessible path components;
    # paths not on this list will result in a 404 error.
    rpc_paths = ('/', '/RPC2')

    #if not None, encode responses larger than this, if possible
    encode_threshold = 1400 #a common MTU

    #Override form StreamRequestHandler: full buffering of output
    #and no Nagle.
    wbufsize = -1
    disable_nagle_algorithm = True

    # a re to match a gzip Accept-Encoding
    aepattern = re.compile(r"""
                            \s* ([^\s;]+) \s*            #content-coding
                            (;\s* q \s*=\s* ([0-9\.]+))? #q
                            """, re.VERBOSE | re.IGNORECASE)

    def accept_encodings(self):
        r = {}
        ae = self.headers.get("Accept-Encoding", "")
        for e in ae.split(","):
            match = self.aepattern.match(e)
            if match:
                v = match.group(3)
                v = float(v) if v else 1.0
                r[match.group(1)] = v
        return r

    def is_rpc_path_valid(self):
        if self.rpc_paths:
            return self.path in self.rpc_paths
        else:
            # If .rpc_paths is empty, just assume all paths are legal
            return True

    def do_POST(self):
        """Handles the HTTP POST request.

        Attempts to interpret all HTTP POST requests as XML-RPC calls,
        which are forwarded to the server's _dispatch method for handling.
        """

        # Check that the path is legal
        if not self.is_rpc_path_valid():
            self.report_404()
            return

        try:
            # Get arguments by reading body of request.
            # We read this in chunks to avoid straining
            # socket.read(); around the 10 or 15Mb mark, some platforms
            # begin to have problems (bug #792570).
            max_chunk_size = 10*1024*1024
            size_remaining = int(self.headers["content-length"])
            L = []
            while size_remaining:
                chunk_size = min(size_remaining, max_chunk_size)
                chunk = self.rfile.read(chunk_size)
                if not chunk:
                    break
                L.append(chunk)
                size_remaining -= len(L[-1])
            data = b''.join(L)

            data = self.decode_request_content(data)
            if data is None:
                return #response has been sent

            # In previous versions of SimpleXMLRPCServer, _dispatch
            # could be overridden in this class, instead of in
            # SimpleXMLRPCDispatcher. To maintain backwards compatibility,
            # check to see if a subclass implements _dispatch and dispatch
            # using that method if present.
            response = self.server._marshaled_dispatch(
                    data, getattr(self, '_dispatch', None), self.path
                )
        except Exception as e: # This should only happen if the module is buggy
            # internal error, report as HTTP server error
            self.send_response(500)

            # Send information about the exception if requested
            if hasattr(self.server, '_send_traceback_header') and \
                    self.server._send_traceback_header:
                self.send_header("X-exception", str(e))
                trace = traceback.format_exc()
                trace = str(trace.encode('ASCII', 'backslashreplace'), 'ASCII')
                self.send_header("X-traceback", trace)

            self.send_header("Content-length", "0")
            self.end_headers()
        else:
            self.send_response(200)
            self.send_header("Content-type", "text/xml")
            if self.encode_threshold is not None:
                if len(response) > self.encode_threshold:
                    q = self.accept_encodings().get("gzip", 0)
                    if q:
                        try:
                            response = gzip_encode(response)
                            self.send_header("Content-Encoding", "gzip")
                        except NotImplementedError:
                            pass
            self.send_header("Content-length", str(len(response)))
            self.end_headers()
            self.wfile.write(response)

    def decode_request_content(self, data):
        #support gzip encoding of request
        encoding = self.headers.get("content-encoding", "identity").lower()
        if encoding == "identity":
            return data
        if encoding == "gzip":
            try:
                return gzip_decode(data)
            except NotImplementedError:
                self.send_response(501, "encoding %r not supported" % encoding)
            except ValueError:
                self.send_response(400, "error decoding gzip content")
        else:
            self.send_response(501, "encoding %r not supported" % encoding)
        self.send_header("Content-length", "0")
        self.end_headers()

    def report_404 (self):
            # Report a 404 error
        self.send_response(404)
        response = b'No such page'
        self.send_header("Content-type", "text/plain")
        self.send_header("Content-length", str(len(response)))
        self.end_headers()
        self.wfile.write(response)

    def log_request(self, code='-', size='-'):
        """Selectively log an accepted request."""

        if self.server.logRequests:
            BaseHTTPRequestHandler.log_request(self, code, size)

class SimpleXMLRPCServer(socketserver.TCPServer,
                         SimpleXMLRPCDispatcher):
    """Simple XML-RPC server.

    Simple XML-RPC server that allows functions and a single instance
    to be installed to handle requests. The default implementation
    attempts to dispatch XML-RPC calls to the functions or instance
    installed in the server. Override the _dispatch method inherited
    from SimpleXMLRPCDispatcher to change this behavior.
    """

    allow_reuse_address = True

    # Warning: this is for debugging purposes only! Never set this to True in
    # production code, as will be sending out sensitive information (exception
    # and stack trace details) when exceptions are raised inside
    # SimpleXMLRPCRequestHandler.do_POST
    _send_traceback_header = False

    def __init__(self, addr, requestHandler=SimpleXMLRPCRequestHandler,
                 logRequests=True, allow_none=False, encoding=None,
                 bind_and_activate=True, use_builtin_types=False):
        self.logRequests = logRequests

        SimpleXMLRPCDispatcher.__init__(self, allow_none, encoding, use_builtin_types)
        socketserver.TCPServer.__init__(self, addr, requestHandler, bind_and_activate)


class MultiPathXMLRPCServer(SimpleXMLRPCServer):
    """Multipath XML-RPC Server
    This specialization of SimpleXMLRPCServer allows the user to create
    multiple Dispatcher instances and assign them to different
    HTTP request paths.  This makes it possible to run two or more
    'virtual XML-RPC servers' at the same port.
    Make sure that the requestHandler accepts the paths in question.
    """
    def __init__(self, addr, requestHandler=SimpleXMLRPCRequestHandler,
                 logRequests=True, allow_none=False, encoding=None,
                 bind_and_activate=True, use_builtin_types=False):

        SimpleXMLRPCServer.__init__(self, addr, requestHandler, logRequests, allow_none,
                                    encoding, bind_and_activate, use_builtin_types)
        self.dispatchers = {}
        self.allow_none = allow_none
        self.encoding = encoding or 'utf-8'

    def add_dispatcher(self, path, dispatcher):
        self.dispatchers[path] = dispatcher
        return dispatcher

    def get_dispatcher(self, path):
        return self.dispatchers[path]

    def _marshaled_dispatch(self, data, dispatch_method = None, path = None):
        try:
            response = self.dispatchers[path]._marshaled_dispatch(
               data, dispatch_method, path)
        except:
            # report low level exception back to server
            # (each dispatcher should have handled their own
            # exceptions)
            exc_type, exc_value = sys.exc_info()[:2]
            response = dumps(
                Fault(1, "%s:%s" % (exc_type, exc_value)),
                encoding=self.encoding, allow_none=self.allow_none)
            response = response.encode(self.encoding)
        return response

class CGIXMLRPCRequestHandler(SimpleXMLRPCDispatcher):
    """Simple handler for XML-RPC data passed through CGI."""

    def __init__(self, allow_none=False, encoding=None, use_builtin_types=False):
        SimpleXMLRPCDispatcher.__init__(self, allow_none, encoding, use_builtin_types)

    def handle_xmlrpc(self, request_text):
        """Handle a single XML-RPC request"""

        response = self._marshaled_dispatch(request_text)

        print('Content-Type: text/xml')
        print('Content-Length: %d' % len(response))
        print()
        sys.stdout.flush()
        sys.stdout.buffer.write(response)
        sys.stdout.buffer.flush()

    def handle_get(self):
        """Handle a single HTTP GET request.

        Default implementation indicates an error because
        XML-RPC uses the POST method.
        """

        code = 400
        message, explain = BaseHTTPRequestHandler.responses[code]

        response = http.server.DEFAULT_ERROR_MESSAGE % \
            {
             'code' : code,
             'message' : message,
             'explain' : explain
            }
        response = response.encode('utf-8')
        print('Status: %d %s' % (code, message))
        print('Content-Type: %s' % http.server.DEFAULT_ERROR_CONTENT_TYPE)
        print('Content-Length: %d' % len(response))
        print()
        sys.stdout.flush()
        sys.stdout.buffer.write(response)
        sys.stdout.buffer.flush()

    def handle_request(self, request_text=None):
        """Handle a single XML-RPC request passed through a CGI post method.

        If no XML data is given then it is read from stdin. The resulting
        XML-RPC response is printed to stdout along with the correct HTTP
        headers.
        """

        if request_text is None and \
            os.environ.get('REQUEST_METHOD', None) == 'GET':
            self.handle_get()
        else:
            # POST data is normally available through stdin
            try:
                length = int(os.environ.get('CONTENT_LENGTH', None))
            except (ValueError, TypeError):
                length = -1
            if request_text is None:
                request_text = sys.stdin.read(length)

            self.handle_xmlrpc(request_text)


# -----------------------------------------------------------------------------
# Self documenting XML-RPC Server.

class ServerHTMLDoc(pydoc.HTMLDoc):
    """Class used to generate pydoc HTML document for a server"""

    def markup(self, text, escape=None, funcs={}, classes={}, methods={}):
        """Mark up some plain text, given a context of symbols to look for.
        Each context dictionary maps object names to anchor names."""
        escape = escape or self.escape
        results = []
        here = 0

        # XXX Note that this regular expression does not allow for the
        # hyperlinking of arbitrary strings being used as method
        # names. Only methods with names consisting of word characters
        # and '.'s are hyperlinked.
        pattern = re.compile(r'\b((http|ftp)://\S+[\w/]|'
                                r'RFC[- ]?(\d+)|'
                                r'PEP[- ]?(\d+)|'
                                r'(self\.)?((?:\w|\.)+))\b')
        while 1:
            match = pattern.search(text, here)
            if not match: break
            start, end = match.span()
            results.append(escape(text[here:start]))

            all, scheme, rfc, pep, selfdot, name = match.groups()
            if scheme:
                url = escape(all).replace('"', '&quot;')
                results.append('<a href="%s">%s</a>' % (url, url))
            elif rfc:
                url = 'http://www.rfc-editor.org/rfc/rfc%d.txt' % int(rfc)
                results.append('<a href="%s">%s</a>' % (url, escape(all)))
            elif pep:
                url = 'http://www.python.org/dev/peps/pep-%04d/' % int(pep)
                results.append('<a href="%s">%s</a>' % (url, escape(all)))
            elif text[end:end+1] == '(':
                results.append(self.namelink(name, methods, funcs, classes))
            elif selfdot:
                results.append('self.<strong>%s</strong>' % name)
            else:
                results.append(self.namelink(name, classes))
            here = end
        results.append(escape(text[here:]))
        return ''.join(results)

    def docroutine(self, object, name, mod=None,
                   funcs={}, classes={}, methods={}, cl=None):
        """Produce HTML documentation for a function or method object."""

        anchor = (cl and cl.__name__ or '') + '-' + name
        note = ''

        title = '<a name="%s"><strong>%s</strong></a>' % (
            self.escape(anchor), self.escape(name))

        if inspect.ismethod(object):
            args = inspect.getfullargspec(object)
            # exclude the argument bound to the instance, it will be
            # confusing to the non-Python user
            argspec = inspect.formatargspec (
                    args.args[1:],
                    args.varargs,
                    args.varkw,
                    args.defaults,
                    annotations=args.annotations,
                    formatvalue=self.formatvalue
                )
        elif inspect.isfunction(object):
            args = inspect.getfullargspec(object)
            argspec = inspect.formatargspec(
                args.args, args.varargs, args.varkw, args.defaults,
                annotations=args.annotations,
                formatvalue=self.formatvalue)
        else:
            argspec = '(...)'

        if isinstance(object, tuple):
            argspec = object[0] or argspec
            docstring = object[1] or ""
        else:
            docstring = pydoc.getdoc(object)

        decl = title + argspec + (note and self.grey(
               '<font face="helvetica, arial">%s</font>' % note))

        doc = self.markup(
            docstring, self.preformat, funcs, classes, methods)
        doc = doc and '<dd><tt>%s</tt></dd>' % doc
        return '<dl><dt>%s</dt>%s</dl>\n' % (decl, doc)

    def docserver(self, server_name, package_documentation, methods):
        """Produce HTML documentation for an XML-RPC server."""

        fdict = {}
        for key, value in methods.items():
            fdict[key] = '#-' + key
            fdict[value] = fdict[key]

        server_name = self.escape(server_name)
        head = '<big><big><strong>%s</strong></big></big>' % server_name
        result = self.heading(head, '#ffffff', '#7799ee')

        doc = self.markup(package_documentation, self.preformat, fdict)
        doc = doc and '<tt>%s</tt>' % doc
        result = result + '<p>%s</p>\n' % doc

        contents = []
        method_items = sorted(methods.items())
        for key, value in method_items:
            contents.append(self.docroutine(value, key, funcs=fdict))
        result = result + self.bigsection(
            'Methods', '#ffffff', '#eeaa77', ''.join(contents))

        return result

class XMLRPCDocGenerator:
    """Generates documentation for an XML-RPC server.

    This class is designed as mix-in and should not
    be constructed directly.
    """

    def __init__(self):
        # setup variables used for HTML documentation
        self.server_name = 'XML-RPC Server Documentation'
        self.server_documentation = \
            "This server exports the following methods through the XML-RPC "\
            "protocol."
        self.server_title = 'XML-RPC Server Documentation'

    def set_server_title(self, server_title):
        """Set the HTML title of the generated server documentation"""

        self.server_title = server_title

    def set_server_name(self, server_name):
        """Set the name of the generated HTML server documentation"""

        self.server_name = server_name

    def set_server_documentation(self, server_documentation):
        """Set the documentation string for the entire server."""

        self.server_documentation = server_documentation

    def generate_html_documentation(self):
        """generate_html_documentation() => html documentation for the server

        Generates HTML documentation for the server using introspection for
        installed functions and instances that do not implement the
        _dispatch method. Alternatively, instances can choose to implement
        the _get_method_argstring(method_name) method to provide the
        argument string used in the documentation and the
        _methodHelp(method_name) method to provide the help text used
        in the documentation."""

        methods = {}

        for method_name in self.system_listMethods():
            if method_name in self.funcs:
                method = self.funcs[method_name]
            elif self.instance is not None:
                method_info = [None, None] # argspec, documentation
                if hasattr(self.instance, '_get_method_argstring'):
                    method_info[0] = self.instance._get_method_argstring(method_name)
                if hasattr(self.instance, '_methodHelp'):
                    method_info[1] = self.instance._methodHelp(method_name)

                method_info = tuple(method_info)
                if method_info != (None, None):
                    method = method_info
                elif not hasattr(self.instance, '_dispatch'):
                    try:
                        method = resolve_dotted_attribute(
                                    self.instance,
                                    method_name
                                    )
                    except AttributeError:
                        method = method_info
                else:
                    method = method_info
            else:
                assert 0, "Could not find method in self.functions and no "\
                          "instance installed"

            methods[method_name] = method

        documenter = ServerHTMLDoc()
        documentation = documenter.docserver(
                                self.server_name,
                                self.server_documentation,
                                methods
                            )

        return documenter.page(self.server_title, documentation)

class DocXMLRPCRequestHandler(SimpleXMLRPCRequestHandler):
    """XML-RPC and documentation request handler class.

    Handles all HTTP POST requests and attempts to decode them as
    XML-RPC requests.

    Handles all HTTP GET requests and interprets them as requests
    for documentation.
    """

    def do_GET(self):
        """Handles the HTTP GET request.

        Interpret all HTTP GET requests as requests for server
        documentation.
        """
        # Check that the path is legal
        if not self.is_rpc_path_valid():
            self.report_404()
            return

        response = self.server.generate_html_documentation().encode('utf-8')
        self.send_response(200)
        self.send_header("Content-type", "text/html")
        self.send_header("Content-length", str(len(response)))
        self.end_headers()
        self.wfile.write(response)

class DocXMLRPCServer(  SimpleXMLRPCServer,
                        XMLRPCDocGenerator):
    """XML-RPC and HTML documentation server.

    Adds the ability to serve server documentation to the capabilities
    of SimpleXMLRPCServer.
    """

    def __init__(self, addr, requestHandler=DocXMLRPCRequestHandler,
                 logRequests=True, allow_none=False, encoding=None,
                 bind_and_activate=True, use_builtin_types=False):
        SimpleXMLRPCServer.__init__(self, addr, requestHandler, logRequests,
                                    allow_none, encoding, bind_and_activate,
                                    use_builtin_types)
        XMLRPCDocGenerator.__init__(self)

class DocCGIXMLRPCRequestHandler(   CGIXMLRPCRequestHandler,
                                    XMLRPCDocGenerator):
    """Handler for XML-RPC data and documentation requests passed through
    CGI"""

    def handle_get(self):
        """Handles the HTTP GET request.

        Interpret all HTTP GET requests as requests for server
        documentation.
        """

        response = self.generate_html_documentation().encode('utf-8')

        print('Content-Type: text/html')
        print('Content-Length: %d' % len(response))
        print()
        sys.stdout.flush()
        sys.stdout.buffer.write(response)
        sys.stdout.buffer.flush()

    def __init__(self):
        CGIXMLRPCRequestHandler.__init__(self)
        XMLRPCDocGenerator.__init__(self)


if __name__ == '__main__':
    import datetime

    class ExampleService:
        def getData(self):
            return '42'

        class currentTime:
            @staticmethod
            def getCurrentTime():
                return datetime.datetime.now()

    server = SimpleXMLRPCServer(("localhost", 8000))
    server.register_function(pow)
    server.register_function(lambda x,y: x+y, 'add')
    server.register_instance(ExampleService(), allow_dotted_names=True)
    server.register_multicall_functions()
    print('Serving XML-RPC on localhost port 8000')
    print('It is advisable to run this example server within a secure, closed network.')
    try:
        server.serve_forever()
    except KeyboardInterrupt:
        print("\nKeyboard interrupt received, exiting.")
        server.server_close()
        sys.exit(0)
lib\xmlrpc\__init__.py
# This directory is a Python package.
LICENSE
 
README.md
IronPython Console
==================

IronPython is an open-source implementation of the Python programming language that is tightly integrated with the .NET Framework. IronPython can use the .NET Framework and Python libraries, and other .NET languages can use Python code just as easily.

This package contains a standalone Python interpreter running on .NET Framework, invokable from the command line as `ipy`. It also includes the Python Standard Library released by the Python project, but slightly modified to work better with IronPython and .NET.

The current target is Python 3.4, although features and behaviors from later versions may be included. Refer to the [source code repository](https://github.com/IronLanguages/ironpython3) for list of features from each version of CPython that have been implemented.


## Differences with CPython
While compatibility with CPython is one of our main goals with IronPython 3, there are still some differences that may cause issues. See [Differences from CPython](https://github.com/IronLanguages/ironpython3/blob/master/Documentation/differences-from-c-python.md) for details.

## Package compatibility
See the [Package compatibility](https://github.com/IronLanguages/ironpython3/blob/master/Documentation/package-compatibility.md) document for information on compatibility with popular Python packages.
tools\VERIFICATION.txt
VERIFICATION Verification is intended to assist the Chocolatey moderators and community in verifying that this package's contents are trustworthy.

This package is published by the IronPython Project itself. The binaries are identical to other package types published by the project, in particular the IronPython nuget package.
lib\distutils\command\wininst-10.0-amd64.exe.ignore
 
lib\distutils\command\wininst-10.0.exe.ignore
 
lib\distutils\command\wininst-6.0.exe.ignore
 
lib\distutils\command\wininst-7.1.exe.ignore
 
lib\distutils\command\wininst-8.0.exe.ignore
 
lib\distutils\command\wininst-9.0-amd64.exe.ignore
 
lib\distutils\command\wininst-9.0.exe.ignore
 

Log in or click on link to see number of positives.

In cases where actual malware is found, the packages are subject to removal. Software sometimes has false positives. Moderators do not necessarily validate the safety of the underlying software, only that a package retrieves software from the official distribution point and/or validate embedded software against official distribution point (where distribution rights allow redistribution).

Chocolatey Pro provides runtime protection from possible malware.

Add to Builder Version Downloads Last Updated Status
IronPython 3.4.0 1124 Monday, December 12, 2022 Approved
IronPython 2.7.12 4699 Friday, January 21, 2022 Approved
IronPython 2.7.11 5068 Tuesday, November 17, 2020 Approved
IronPython 2.7.11-candidate1 131 Tuesday, September 15, 2020 Approved
IronPython 2.7.10 1851 Thursday, May 28, 2020 Approved
IronPython 2.7.10-alpha0 413 Saturday, February 23, 2019 Approved
IronPython 2.7.9 6690 Tuesday, October 9, 2018 Approved
IronPython 2.7.9-candidate1 236 Monday, August 20, 2018 Approved
IronPython 2.7.8.1 8913 Tuesday, March 20, 2018 Approved
IronPython 2.7.5.20150916 1694 Tuesday, September 15, 2015 Approved
IronPython 2.7.5.20150915 382 Tuesday, September 15, 2015 Approved
IronPython 2.7.4.20140816 1423 Friday, August 15, 2014 Approved
IronPython 2.7.4.20140815 376 Friday, August 15, 2014 Approved

This package has no dependencies.

Discussion for the IronPython Package

Ground Rules:

  • This discussion is only about IronPython and the IronPython package. If you have feedback for Chocolatey, please contact the Google Group.
  • This discussion will carry over multiple versions. If you have a comment about a particular version, please note that in your comments.
  • The maintainers of this Chocolatey Package will be notified about new comments that are posted to this Disqus thread, however, it is NOT a guarantee that you will get a response. If you do not hear back from the maintainers after posting a message below, please follow up by using the link on the left side of this page or follow this link to contact maintainers. If you still hear nothing back, please follow the package triage process.
  • Tell us what you love about the package or IronPython, or tell us what needs improvement.
  • Share your experiences with the package, or extra configuration or gotchas that you've found.
  • If you use a url, the comment will be flagged for moderation until you've been whitelisted. Disqus moderated comments are approved on a weekly schedule if not sooner. It could take between 1-5 days for your comment to show up.
comments powered by Disqus